Association for Ubiquity, an ACM publication
Computing Machinery
March 2014

Ubiquity Symposium

The Science In Computer Science

The Computing Sciences and STEM Education
by Paul S. Rosenbloom

Editor’s Introduction

In this latest installment of “The Science in Computer Science,” Prof. Paul Rosenbloom
continues the discussion on whether or not computer science can be considered a “natural
science.” He argues not only is computing the basis for a true science, it is in fact an entire

scientific domain.

Peter Denning
Editor-in-Chief

http://ubiquity.acm.org 1 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
March 2014

Ubiquity Symposium

The Science In Computer Science

The Computing Sciences and STEM Education

by Paul S. Rosenbloom

In this short essay, | make three claims:

1. Itistime to put the final nails in the coffin of the argument from artificiality, that
computing isn’t a true science because it studies artificial rather than natural
phenomena.

2. ltis time to go beyond the straightforward conclusion that computer science is a
respectable scientific discipline—such as physics or psychology—to the bolder
conclusion that computing actually constitutes an entire domain of science. Let us call
this domain the “computing sciences.” The computing sciences are the equal of the
physical, life and social sciences.

3. The domain of the computing sciences opens up new worlds of subject matter for STEM
education.

The first two claims are grounded in a decade of explorations into the nature, structure, stature
and role of computing in the sciences. The results of these explorations are recorded in several
papers [1, 2], and in the book On Computing: The Fourth Great Scientific Domain [3]. The third
claim is more speculative, but it follows from the consequences of the second claim.

In the opening statement to this symposium, Denning introduces the argument from
artificiality, and discusses two main counterarguments: Science is possible in artificial domains;
and natural forms of computing have been identified. However, two additional
counterarguments are also worth mentioning. First, the distinction between natural and
artificial is itself artificial and increasingly meaningless. Why are structures that are created by
physical processes (such as planets and rivers) and various species of animal (such as anthills
and beaver dams) considered natural, while comparable structures created by people are
considered artificial? This appears to stem from the traditional notion that humans occupy a
special status outside of nature, with their products therefore also being outside of nature. Yet
we now understand people are as much a part of nature as any other biological organisms, and
our products—including human-created forms of computation—are likewise just as much a
part of nature. The distinction between natural and artificial phenomena, while still useful in

http://ubiquity.acm.org 2 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
March 2014

some contexts, is thus no longer defensible as a means of distinguishing science from non-
science.

The second additional counterargument is our continually improving abilities to modify natural
processes at finer levels of detail makes it increasingly difficult across the board to distinguish
what is due to human agency and what is not. The only difference between natural and artificial
flavorings is the feedstock; the molecules themselves are identical. Genetically modified plants
are changed by human agency but are still plants. A liver grown from stem cells under
laboratory-controlled conditions is a full biological organ. As with computing, much of the rest
of science needs increasingly to be concerned with both natural and human-created (or human-
modified) forms. Computing is thus becoming indistinguishable from the other sciences in
terms of the nature of what it studies; and science as a whole is on a path to seek
understanding of everything around and in us regardless of its genesis.

Each of the existing domains of science studies the interactions among a distinctive set of
structures and processes. The physical sciences study physical (non-biological) structures—from
atoms and molecules to rocks, planets and galaxies—plus the processes that operate on them.
The life sciences study biological organisms and the processes of metabolism, growth,
development, reproduction and aging that operate on them. The social sciences study the
thought processes and behaviors of individuals and groups of people. As discussed in an earlier
Ubiquity symposium, the computing sciences study information and its transformation. The
field took an important step beginning in the 1990s when it was realized that this was in fact its
proper subject of study rather than simply (human-made) computers. The earlier emphasis on
computers may have blinded us to the existence of natural forms of computing. Now we can
see various forms of computing are already embodied, for example, within living organisms.

Information can support representations and make distinctions. It is at the heart of the
knowledge in our heads and of everything humans have written down on paper. It exists in
many natural structures, as well as in the memories and data structures used by computers.
Information is also at the core of communications, whether in modern computer networks or
earlier oral, written, or wired traditions. The study of information has its roots in philosophy
and mathematics, and it has always played an important role in the humanities. It has more
recently led to the creation of such disciplines as information theory and information science.
Many parts of computer science—from data structures and databases to Web technologies and
artificial intelligence—also play a key role in the understanding of information. What truly
distinguishes computer science from all of these other approaches though is its emphasis on
not just information but also the dynamics of its transformation, as embodied in the diversity of
computations enabled by combinations of hardware and software. This is why the experimental
method is so important within computer science. Structures by themselves, whether
informational or otherwise, often lend themselves to analytical forms of understanding. But
when complex processes interact with structures, analytical methods typically fall short and
experimental methods are the only means toward understanding.

http://ubiquity.acm.org 3 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
March 2014

If computing is science, where does it fit in the traditional taxonomy of the physical, life, and
social sciences? Conceivably it could sit within one or more of the three existing domains;
however, its core subject matter, of information and its transformation, simply does not fit
within any of these domains. Instead, as laid out at some length in On Computing, it amounts to
the fourth domain, and a full equal of the other three.

On Computing also introduces in some detail the “relational approach” to understanding the
relationships between the core subject matter of computing and the cores of the other
domains. Much of the book then analyzes how a pair of relationships among domains—
implementation and interaction—can illuminate the scope and organization of computing as a
scientific domain, while also highlighting the rich space of exciting multidisciplinary topics that
are too often relegated to the fringes of the field. The analysis flows through four stages:

1. Monadic computing. Computing in isolation, as in theoretical computer science.

2. Pure dyadic computing. Computing relating to itself, as when a compiler implements
one language in another and when multiple computers interact in a network.

3. Mixed dyadic computing. Computing relating to individual other domains, as in robotics
and computational science.

4. Polyadic computing. Computing relating to multiple other domains, as in mixed reality
and ubiquitous computing.

It is perhaps the multidisciplinary aspects of computing that have the most to offer STEM
education, both as technologies for improving such education and as new topics of study in
their own right. The potential for improving STEM education is clear and compelling, whether
this involves simulation or virtual reality, intelligent tutoring systems or virtual humans, human-
computer or brain-computer interfaces, or forms of augmented and mixed reality that combine
the virtual with the real world. The potential as a subject for STEM education has received less
attention overall; and is what will occupy the remainder of this essay. As a source of subject
matter, multidisciplinary computing has the advantage over more traditional topics within
computing of moving beyond the abstract space of pure information transformation to make
contact with aspects of the world that are already familiar to students. Multidisciplinary
computing is also the home of much of the current and future action in computing. Students
find its topics exciting. Moreover, students who have worked with multidisciplinary computing
should be incredibly well placed for the future, notably in terms of job opportunities. Let us
look at a few examples, starting with the varieties of mixed dyadic computing—involving
implementation or interaction with one other domain—and wrapping up with polyadic
computing.

Consider first the implementation relationship. In one direction this yields implementations of
computing, but not merely the familiar varieties of electronic hardware. Babbage’s difference
engine was, for example, a 19th century mechanical (i.e., physical) computer. Today students

http://ubiquity.acm.org 4 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
March 2014

can see implementations of computing across all three domains. There are chemical computers,
biological computers, DNA computers, and social groups/networks that compute. There are
even oddities such as billiard ball computers. Mechanical and social approaches to computing
can be made concrete in the classroom in a highly visual and interactive manner; witness how
Computer Science Unplugged engages student brains and bodies in implementing and
understanding, for instance, a parallel sorting algorithm. Simulations of other approaches, such
as DNA computing, could provide insight into both how the natural processes work—in this
case how DNA replicates—and how alternative forms of computing operate, while introducing
students to a multidisciplinary topic on the frontier of today’s science and technology.

In the other implementation direction, we see computational simulation in general, with its
many uses in science, engineering, education, training, communication and entertainment. At
the core of most games sits a simulated environment of some sort—whether of the physical,
life or social worlds, or some combination of all three. Simulations can provide an engaging
means of studying STEM subjects, as exemplified in the previous paragraph, but they
themselves can also be a useful and engaging topic for study within STEM education. And
beyond simulation, true implementation of other domains by computing introduces mind-
stretching scientific questions concerning whether computation underpins all of our physical
reality, whether it is possible to create computational life, and whether artificial intelligence can
yield human-level intelligence.

When we get to interaction, we see computational sensing and manipulation of the physical,
biological and social worlds. This includes remote sensing and sensor networks; as well as
robots of all sorts, from traditional industrial robots, to self-driving cars and unmanned aerial
vehicles, to rapid prototyping devices that can build everything from toys to buildings. We also
see an increasing variety of ways that computers interact with our bodies and minds. They
understand what we say, interpret our movements, and provide rich, interactive sensory and
informational experiences. They are now even starting to interface directly with our brains,
providing the technological equivalent of mind reading. Inexpensive robots are already finding
their way into STEM education, but this far from exhausts the space of possibilities. Consider
just one additional example, studying the appropriate placement of a network of sensors that
monitors a real physical environment, along with the integration of results across these
sensors. This could combine lessons in mathematics and computing along with the study of
whatever domain is being monitored.

Polyadic computing combines multiple domains and relationships to yield many of the most
exciting and forward-looking topics under investigation within the computing sciences. It
includes prosthetic devices, caretaker robots, intelligent robots, mixed reality environments
that combine the virtual and physical worlds with human interaction, and ubiquitous computing
environments that embed networked computing throughout the physical, and potentially also
the biological, world. For STEM education, a device such as a prosthetic arm—likely in a

http://ubiquity.acm.org 5 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
March 2014

simplified form—could, for example, provide a wonderful opportunity for an integrated lesson
spanning all four scientific domains.

In summary, computing is the basis for a true science, and in fact for an entire scientific domain.
When analyzed via the relational approach, it can be seen to span a wide array of important
and exciting topics that hold promise for engaging and educating our students, and for helping
them to prepare for their, and our, future.

References
[1] Rosenbloom, P. S. A new framework for Computer Science and Engineering. |EEE Computer
37 (2004), 31-36.

[2] Denning, P. J. and Rosenbloom, P. S. Computing: The fourth great domain of science.
Communications of the ACM 52,9 (2009), 27-29.

[3] Rosenbloom, P.S. On Computing: The Fourth Great Scientific Domain. MIT Press,
Cambridge, 2013.

About the Author

Paul S. Rosenbloom is a Professor of Computer Science at the University of Southern California
and a Project Leader at USC's Institute for Creative Technologies. He received a BS degree in
Mathematical Sciences (with distinction) from Stanford University and M.S. and Ph.D. degrees
in computer science from Carnegie Mellon University. Before coming to USC he was a Research
Computer Scientist at Carnegie Mellon University and an Assistant Professor of Computer
Science and Psychology at Stanford University. At USC he spent twenty years at the Information
Sciences Institute, including ten years leading new directions activities and a stint as Deputy
Director. Prof. Rosenbloom's research focuses on cognitive architectures/systems that model
the human mind while supporting the construction of artificially intelligent agents. He was a
co-creator of the Soar architecture, and is developing a new architecture/system—Sigma—
based on graphical models. Prof. Rosenbloom has also spent considerable time over the past
decade exploring the nature, stature and role of computing as a scientific discipline, culminating
in the book On Computing: The Fourth Great Scientific Domain (MIT Press, 2013).

DOI: 10.1145/2590528.2590530

http://ubiquity.acm.org 6 ©2014 Association for Computing Machinery



