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Preface

The subject of this book is the detection and correction of errors in digital information. Such
errors almost inevitably occur after the transmission, storage or processing of information in
digital (mainly binary) form, because of noise and interference in communication channels,
or imperfections in storage media, for example. Protecting digital information with a suitable
error-control code enables the efficient detection and correction of any errors that may have
occurred.

Error-control codes are now used in almost the entire range of information communication,
storage and processing systems. Rapid advances in electronic and optical devices and systems
have enabled the implementation of very powerful codes with close to optimum error-control
performance. In addition, new types of code, and new decoding methods, have recently been
developed and are starting to be applied. However, error-control coding is complex, novel and
unfamiliar, not yet widely understood and appreciated. This book sets out to provide a clear
description of the essentials of the topic, with comprehensive and up-to-date coverage of the
most useful codes and their decoding algorithms. The book has a practical engineering and
information technology emphasis, but includes relevant background material and fundamental
theoretical aspects. Several system applications of error-control codes are described, and there
are many worked examples and problems for the reader to solve.

The book is an advanced text aimed at postgraduate and third/final year undergraduate
students of courses on telecommunications engineering, communication networks, electronic
engineering, computer science, information systems and technology, digital signal processing,
and applied mathematics, and for engineers and researchers working in any of these areas. The
book is designed to be virtually self-contained for a reader with any of these backgrounds.
Enough information and signal theory, and coding mathematics, is included to enable a full
understanding of any of the error-control topics described in the book.

Chapter 1 provides an introduction to information theory and how it relates to error-control
coding. The theory defines what we mean by information, determines limits on the capacity of
an information channel and tells us how efficient a code is at detecting and correcting errors.
Chapter 2 describes the basic concepts of error detection and correction, in the context of the
parameters, encoding and decoding of some simple binary block error-control codes. Block
codes were the first type of error-control code to be discovered, in the decade from about 1940
to 1950. The two basic ways in which error coding is applied to an information system are
also described: forward error correction and retransmission error control. A particularly useful
kind of block code, the cyclic code, is introduced in Chapter 3, together with an example of
a practical application, the cyclic redundancy check (CRC) code for the Ethernet standard. In
Chapters 4 and 5 two very effective and widely used classes of cyclic codes are described,

xiii
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xiv Preface

the Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon (RS) codes, named after their
inventors. BCH codes can be binary or non-binary, but the RS codes are non-binary and are
particularly effective in a large number of error-control scenarios. One of the best known of
these, also described in Chapter 5, is the application of RS codes to error correction in the
compact disk (CD).

Not long after the discovery of block codes, a second type of error-control codes emerged,
initially called recurrent and later convolutional codes. Encoding and decoding even a quite
powerful convolutional code involves rather simple, repetitive, quasi-continuous processes,
applied on a very convenient trellis representation of the code, instead of the more complex
block processing that seems to be required in the case of a powerful block code. This makes it
relatively easy to use maximum likelihood (soft-decision) decoding with convolutional codes,
in the form of the optimum Viterbi algorithm (VA). Convolutional codes, their trellis and state
diagrams, soft-decision detection, the Viterbi decoding algorithm, and practical punctured
and rate-compatible coding schemes are all presented in Chapter 6. Disappointingly, however,
even very powerful convolutional codes were found to be incapable of achieving performances
close to the limits first published by Shannon, the father of information theory, in 1948. This
was still true even when very powerful combinations of block and convolutional codes, called
concatenated codes, were devised. The breakthrough, by Berrou, Glavieux and Thitimajshima
in 1993, was to use a special kind of interleaved concatenation, in conjunction with iterative
soft-decision decoding. All aspects of these very effective coding schemes, called turbo codes
because of the supercharging effect of the iterative decoding algorithm, are fully described in
Chapter 7.

The final chapter returns to the topic of block codes, in the form of low-density parity check
(LDPC) codes. Block codes had been found to have trellis representations, so that they could
be soft-decision decoded with performances almost as good as those of convolutional codes.
Also, they could be used in effective turbo coding schemes. Complexity remained a problem,
however, until it was quite recently realized that a particularly simple class of codes, the LDPC
codes discovered by Gallager in 1962, was capable of delivering performances as good or better
than those of turbo codes when decoded by an appropriate iterative algorithm. All aspects of
the construction, encoding, decoding and performance of LDPC codes are fully described in
Chapter 8, together with various forms of LDPC codes which are particularly effective for use
in communication networks.

Appendix A shows how to calculate the error probability of digital signals transmitted over
additive white Gaussian noise (AWGN) channels, and Appendix B introduces various topics
in discrete mathematics. These are followed by a list of the answers to the problems located
at the end of each chapter. Detailed solutions are available on the website associated with this
book, which can be found at the following address:

http://elaf1.fi.mdp.edu.ar/Error Control

The website also contains additional material, which will be regularly updated in response
to comments and questions from readers.
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I {.} interleaver permutation pE (ξ/X = x)
IA, I (X ; A) mutual information between the random variables A and X
IE , I (X ; E) mutual information between the random variables E and X
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IE = Tr(IA, Eb/N0) extrinsic information transfer function
J (σ ) mutual information function
JMTC number of encoders in a multiple turbo code
J−1(IA) inverse of the mutual information function
L(x) metric of a given event x
L(bi ) log likelihood ratio for bit bi

L(bi/Y), L(bi/Y n
1 ) conditioned log likelihood ratio given the received

sequence Y , for bit bi

Lc measure of the channel signal-to-noise ratio
LcY ( j) channel information for a turbo decoder, j th iteration
Le(bi ) extrinsic log likelihood ratio for bit bi

L ( j)
e (bi ) extrinsic log likelihood ratio for bit bi , j-th iteration

L ( j)(bi/Y) conditioned log likelihood ratio given the received
sequence Y , for bit bi , j th iteration

MI × NI size of a block interleaver
nY random variable with zero mean value and variance σ 2

Y
p(x) probability distribution of a discrete random variable
p(X j ) source marginal distribution function
pA(ξ/X = x) probability density function of a priori estimates A for X = x
pE (ξ/X = x) probability density function of extrinsic estimates E for

X = x
pMTC the angular coefficient of a linear interleaver
R j (Y j/X j ) channel transition probability
sMTC linear shift of a linear interleaver

S j
i = {Si , Si+1, . . . , Sj } generic vector or sequence of states of a Hidden Markov

source
u current state value
u′ previous state value
X = Xn

1 = {X1, X2, . . . , Xn} vector or sequence of n random variables

X j
i = {Xi , Xi+1, . . . , X j } generic vector or sequence of random variables

Chapter 8

δQij difference of coefficients Qx
ij

δRij difference of coefficients Rx
ij

A and B sparse submatrices of the parity check matrix H (Chapter 8)

A(i t)
ij a posteriori estimate in iteration number it

d decoded vector

d̂ estimated decoded vector
d j symbol nodes
d (i)

c number of symbol nodes or bits related to parity check
node hi

d ( j)
v number of parity check equations in which the bit or

symbol d j participates
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dp message packet code vector
dpn message packet in a fountain or linear random code
Ex number of excess packets of a fountain or linear random

code
f+(|z1|, |z2|), f−(|z1|, |z2|) look-up tables for an LDPC decoder implementation with

entries |z1|, |z2|
f x

j a priori estimates of the received symbols

Gfr fragment generator matrix
{Gkn} generator matrix of a fountain or linear random code
hi parity check nodes
IE,SND(IA, dv, Eb/N0, Rc) EXIT chart for the symbol node decoder
IE,PCND(IA, dc) EXIT chart for the parity check node decoder
L(b1 ⊕ b2), L(b1)[⊕]L(b2) LLR of an exclusive-OR sum of two bits

Lch = L (0)
ch channel LLR

L (it)
ij LLR that each parity check node hi sends to each symbol

node d j in iteration number it∣∣L Qx
ij

∣∣, ∣∣L f x
j

∣∣, ∣∣L Rx
ij

∣∣, ∣∣L Qx
j

∣∣ L values for Qx
ij, f x

j , Rx
ij , Qx

j , respectively

|Lz| an L value, that is, the absolute value of the natural log
of z

M( j) set of indexes of all the children parity check nodes
connected to the symbol node d j

M( j)\i set of indexes of all the children parity check nodes
connected to the symbol node d j with the exclusion of
the child parity check node hi

N (i) set of indexes of all the parent symbol nodes connected to
the parity check node hi

N (i)\ j set of indexes of all the parent symbol nodes connected to
the parity check node hi with the exclusion of the
parent symbol node d j

Nt number of entries of a look-up table for the logarithmic
LDPC decoder

Qx
j a posteriori probabilities

Qx
ij estimate that each symbol node d j sends to each of its

children parity check nodes hi in the sum–product
algorithm

Rx
ij estimate that each parity check node hi sends to each of its

parent symbol nodes d j in the sum–product algorithm
s number of ‘1’s per column of parity check matrix H

(Chapter 8)
tp transmitted packet code vector
tpn transmitted packet in a fountain or linear random code
v number of ‘1’s per row of parity check matrix H (Chapter 8)
z positive real number such that z ≤ 1

Z (it)
ij LLR that each symbol node d j sends to each parity check

node hi in iteration number it
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Appendix A

τ time duration of a given pulse (Appendix A)
ak amplitude of the symbol k in a digital amplitude modulated signal
NR received noise power
p(t) signal in a digital amplitude modulated transmission
Q(k) normalized Gaussian probability density function
T duration of the transmitted symbol in a digital

amplitude-modulated signal
SR received signal power
U threshold voltage (Appendix A)
x(t), y(t), n(t) transmitted, received and noise signals, respectively

Appendix B

φ(X ) minimum-degree polynomial
F field
f (X ) polynomial defined over GF(2)
Gr group



OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Abbreviations

ACK positive acknowledgement
APP a posteriori probability
ARQ automatic repeat request
AWGN additive white Gaussian noise
BCH Bose, Chaudhuri, Hocquenghem (code)
BCJR Bahl, Cocke, Jelinek, Raviv (algorithm)
BEC binary erasure channel
BER bit error rate
BM/B–M Berlekamp–Massey (algorithm)
BPS/bps bits per second
BSC binary symmetric channel
ch channel
CD compact disk
CIRC cross-interleaved Reed–Solomon code
conv convolutional (code)
CRC cyclic redundancy check
dec decoder
deg degree
DMC discrete memoryless channel
DMS discrete memoryless source
DRP dithered relatively prime (interleaver)
enc encoder
EFM eight-to-fourteen modulation
EXIT extrinsic information transfer
FCS frame check sequence
FEC forward error correction
FIR finite impulse response
FSSM finite state sequential machine
GF Galois field
HCF/hcf highest common factor
IIR infinite impulse response
ISI inter-symbol interference
lim limit
LCM/lcm lowest common multiple
LDPC low-density parity check (code)

xxv
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LLR log likelihood ratio
LT Luby transform
MAP maximum a posteriori probability
ML maximum likelihood
MLD maximum likelihood detection
mod modulo
MTC multiple turbo code
NAK negative acknowledgement
NRZ non-return to zero
ns non-systematic
opt optimum
PCND parity check node decoder
RCPC rate-compatible punctured code(s)
RLL run length limited
RS Reed–Solomon (code)
RSC recursive systematic convolutional (code/encoder)
RZ return to zero
SND symbol node decoder
SOVA soft-output Viterbi algorithm
SPA sum–product algorithm
VA Viterbi algorithm
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1
Information and Coding Theory

In his classic paper ‘A Mathematical Theory of Communication’, Claude Shannon [1] intro-
duced the main concepts and theorems of what is known as information theory. Definitions
and models for two important elements are presented in this theory. These elements are the
binary source (BS) and the binary symmetric channel (BSC). A binary source is a device that
generates one of the two possible symbols ‘0’ and ‘1’ at a given rate r, measured in symbols
per second. These symbols are called bits (binary digits) and are generated randomly.

The BSC is a medium through which it is possible to transmit one symbol per time unit.
However, this channel is not reliable, and is characterized by the error probability p (0 ≤ p ≤
1/2) that an output bit can be different from the corresponding input. The symmetry of this
channel comes from the fact that the error probability p is the same for both of the symbols
involved.

Information theory attempts to analyse communication between a transmitter and a receiver
through an unreliable channel, and in this approach performs, on the one hand, an analysis of
information sources, especially the amount of information produced by a given source, and, on
the other hand, states the conditions for performing reliable transmission through an unreliable
channel.

There are three main concepts in this theory:

1. The first one is the definition of a quantity that can be a valid measurement of information,
which should be consistent with a physical understanding of its properties.

2. The second concept deals with the relationship between the information and the source that
generates it. This concept will be referred to as source information. Well-known information
theory techniques like compression and encryption are related to this concept.

3. The third concept deals with the relationship between the information and the unreliable
channel through which it is going to be transmitted. This concept leads to the definition of
a very important parameter called the channel capacity. A well-known information theory
technique called error-correction coding is closely related to this concept. This type of
coding forms the main subject of this book.

One of the most used techniques in information theory is a procedure called coding, which is
intended to optimize transmission and to make efficient use of the capacity of a given channel.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

1
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2 Essentials of Error-Control Coding

Table 1.1 Coding: a codeword for each message

Messages Codewords

s1 101

s2 01

s3 110

s4 000

In general terms, coding is a bijective assignment between a set of messages to be transmitted,
and a set of codewords that are used for transmitting these messages. Usually this procedure
adopts the form of a table in which each message of the transmission is in correspondence
with the codeword that represents it (see an example in Table 1.1).

Table 1.1 shows four codewords used for representing four different messages. As seen in
this simple example, the length of the codeword is not constant. One important property of a
coding table is that it is constructed in such a way that every codeword is uniquely decodable.
This means that in the transmission of a sequence composed of these codewords there should
be only one possible way of interpreting that sequence. This is necessary when variable-length
coding is used.

If the code shown in Table 1.1 is compared with a constant-length code for the same case,
constituted from four codewords of two bits, 00, 01, 10, 11, it is seen that the code in Table 1.1
adds redundancy. Assuming equally likely messages, the average number of transmitted bits
per symbol is equal to 2.75. However, if for instance symbol s2 were characterized by a
probability of being transmitted of 0.76, and all other symbols in this code were characterized
by a probability of being transmitted equal to 0.08, then this source would transmit an average
number of bits per symbol of 2.24 bits. As seen in this simple example, a level of compression is
possible when the information source is not uniform, that is, when a source generates messages
that are not equally likely.

The source information measure, the channel capacity measure and coding are all related
by one of the Shannon theorems, the channel coding theorem, which is stated as follows:

If the information rate of a given source does not exceed the capacity of a given channel,
then there exists a coding technique that makes possible transmission through this unreliable
channel with an arbitrarily low error rate.

This important theorem predicts the possibility of error-free transmission through a noisy or
unreliable channel. This is obtained by using coding. The above theorem is due to Claude
Shannon [1, 2], and states the restrictions on the transmission of information through a noisy
channel, stating also that the solution for overcoming those restrictions is the application of
a rather sophisticated coding technique. What is not formally stated is how to implement this
coding technique.

A block diagram of a communication system as related to information theory is shown in
Figure 1.1.

The block diagram seen in Figure 1.1 shows two types of encoders. The channel encoder
is designed to perform error correction with the aim of converting an unreliable channel into
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Source
encoder

Noisy channel

Source
decoder

Channel
decoder

Destination

Source Channel
encoder

Figure 1.1 A communication system: source and channel coding

a reliable one. On the other hand, there also exists a source encoder that is designed to make
the source information rate approach the channel capacity. The destination is also called the
information sink.

Some concepts relating to the transmission of discrete information are introduced in the
following sections.

1.1 Information

1.1.1 A Measure of Information

From the point of view of information theory, information is not knowledge, as commonly
understood, but instead relates to the probabilities of the symbols used to send messages
between a source and a destination over an unreliable channel. A quantitative measure of
symbol information is related to its probability of occurrence, either as it emerges from a
source or when it arrives at its destination. The less likely the event of a symbol occurrence,
the higher is the information provided by this event. This suggests that a quantitative measure
of symbol information will be inversely proportional to the probability of occurrence.

Assuming an arbitrary message xi which is one of the possible messages from a set a given
discrete source can emit, and P(xi ) = Pi is the probability that this message is emitted, the
output of this information source can be modelled as a random variable X that can adopt any of
the possible values xi , so that P(X = xi ) = Pi . Shannon defined a measure of the information
for the event xi by using a logarithmic measure operating over the base b:

Ii ≡ − logb Pi = logb

(
1

Pi

)
(1)

The information of the event depends only on its probability of occurrence, and is not
dependent on its content.
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The base of the logarithmic measure can be converted by using

loga(x) = logb(x)
1

logb(a)
(2)

If this measure is calculated to base 2, the information is said to be measured in bits. If the
measure is calculated using natural logarithms, the information is said to be measured in nats.
As an example, if the event is characterized by a probability of Pi = 1/2, the corresponding
information is Ii = 1 bit. From this point of view, a bit is the amount of information obtained
from one of two possible, and equally likely, events. This use of the term bit is essentially
different from what has been described as the binary digit. In this sense the bit acts as the unit
of the measure of information.

Some properties of information are derived from its definition:

Ii ≥ 0 0 ≤ Pi ≤ 1

Ii → 0 if Pi → 1

Ii > I j if Pi < Pj

For any two independent source messages xi and x j with probabilities Pi and Pj respectively,
and with joint probability P(xi , x j ) = Pi Pj , the information of the two messages is the addition
of the information in each message:

Ii j = logb
1

Pi Pj
= logb

1

Pi
+ logb

1

Pj
= Ii + I j

1.2 Entropy and Information Rate

In general, an information source generates any of a set of M different symbols, which are
considered as representatives of a discrete random variable X that adopts any value in the range
A = {x1, x2, . . . , xM}. Each symbol xi has the probability Pi of being emitted and contains
information Ii . The symbol probabilities must be in agreement with the fact that at least one
of them will be emitted, so

M∑
i=1

Pi = 1 (3)

The source symbol probability distribution is stationary, and the symbols are independent
and transmitted at a rate of r symbols per second. This description corresponds to a discrete
memoryless source (DMS), as shown in Figure 1.2.

Each symbol contains the information Ii so that the set {I1, I2, . . . , IM} can be seen as a
discrete random variable with average information

Hb(X ) =
M∑

i=1

Pi Ii =
M∑

i=1

Pi logb

(
1

Pi

)
(4)
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Discrete
memoryless
source

xi , x j , ...

Figure 1.2 A discrete memoryless source

The function so defined is called the entropy of the source. When base 2 is used, the entropy
is measured in bits per symbol:

H (X ) =
M∑

i=1

Pi Ii =
M∑

i=1

Pi log2

(
1

Pi

)
bits per symbol (5)

The symbol information value when Pi = 0 is mathematically undefined. To solve this
situation, the following condition is imposed: Ii = ∞ if Pi = 0. Therefore Pi log2

(
1
/

Pi
) = 0

(L’Hopital’s rule) if Pi = 0. On the other hand, Pi log
(
1
/

Pi
) = 0 if Pi = 1.

Example 1.1: Suppose that a DMS is defined over the range of X, A = {x1, x2, x3, x4}, and
the corresponding probability values for each symbol are P(X = x1) = 1/2, P(X = x2) =
P(X = x3) = 1/8 and P(X = x4) = 1/4.

Entropy for this DMS is evaluated as

H (X ) =
M∑

i=1

Pi log2

(
1

Pi

)
= 1

2
log2(2) + 1

8
log2(8) + 1

8
log2(8) + 1

4
log2(4)

= 1.75 bits per symbol

Example 1.2: A source characterized in the frequency domain with a bandwidth of W =
4000 Hz is sampled at the Nyquist rate, generating a sequence of values taken from the range
A = {−2, −1, 0, 1, 2} with the following corresponding set of probabilities

{
1
2
, 1

4
, 1

8
, 1

16
, 1

16

}
.

Calculate the source rate in bits per second.
Entropy is first evaluated as

H (X ) =
M∑

i=1

Pi log2

(
1

Pi

)
= 1

2
log2(2) + 1

4
log2(4) + 1

8
log2(8)

+2 × 1

16
log2(16) = 15

8
bits per sample

The minimum sampling frequency is equal to 8000 samples per second, so that the information
rate is equal to 15 kbps.

Entropy can be evaluated to a different base by using

Hb(X ) = H (X )

log2(b)
(6)
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Entropy H (X ) can be understood as the mean value of the information per symbol provided
by the source being measured, or, equivalently, as the mean value experienced by an observer
before knowing the source output. In another sense, entropy is a measure of the randomness
of the source being analysed. The entropy function provides an adequate quantitative measure
of the parameters of a given source and is in agreement with physical understanding of the
information emitted by a source.

Another interpretation of the entropy function [5] is seen by assuming that if n � 1 symbols
are emitted, nH (X ) bits is the total amount of information emitted. As the source generates
r symbols per second, the whole emitted sequence takes n/r seconds. Thus, information will
be transmitted at a rate of

nH (X )

(n/r )
bps (7)

The information rate is then equal to

R = r H (X ) bps (8)

The Shannon theorem states that information provided by a given DMS can be coded using
binary digits and transmitted over an equivalent noise-free channel at a rate of

rb ≥ R symbols or binary digits per second

It is again noted here that the bit is the unit of information, whereas the symbol or binary
digit is one of the two possible symbols or signals ‘0’ or ‘1’, usually also called bits.

Theorem 1.1: Let X be a random variable that adopts values in the range A = {x1 ,
x2, . . . , xM} and represents the output of a given source. Then it is possible to show that

0 ≤ H (X ) ≤ log2(M) (9)

Additionally,

H (X ) = 0 if and only if Pi = 1 for some i

H (X ) = log2(M) if and only if Pi = 1
/

M for every i (10)

The condition 0 ≤ H (X ) can be verified by applying the following:

Pi log2(1/Pi ) → 0 if Pi → 0

The condition H (X ) ≤ log2(M) can be verified in the following manner:
Let Q1, Q2, . . . , QM be arbitrary probability values that are used to replace terms 1/Pi by

the terms Qi/Pi in the expression of the entropy [equation (5)]. Then the following inequality
is used:

ln(x) ≤ x − 1

where equality occurs if x = 1 (see Figure 1.3).
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Figure 1.3 Inequality ln(x) ≤ x − 1

After converting entropy to its natural logarithmic form, we obtain

M∑
i=1

Pi log2

(
Qi

Pi

)
= 1

ln(2)

M∑
i=1

Pi ln

(
Qi

Pi

)
and if x = Qi

/
Pi ,

M∑
i=1

Pi ln

(
Qi

Pi

)
≤

M∑
i=1

Pi

(
Qi

Pi
− 1

)
=

M∑
i=1

Qi −
M∑

i=1

Pi (11)

As the coefficients Qi are probability values, they fit the normalizing condition
∑M

i=1 Qi ≤ 1,

and it is also true that
∑M

i=1 Pi = 1.
Then

M∑
i=1

Pi log2

(
Qi

Pi

)
≤ 0 (12)

If now the probabilities Qi adopt equally likely values Qi = 1
/

M,

M∑
i=1

Pi log2

(
1

Pi M

)
=

M∑
i=1

Pi log2

(
1

Pi

)
−

M∑
i=1

Pi log2(M) = H (X ) − log2(M) ≤ 0

H (X ) ≤ log2(M) (13)
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Figure 1.4 Entropy function for the binary source

In the above inequality, equality occurs when log2

(
1
/

Pi
) = log2(M), which means that Pi =

1
/

M .
The maximum value of the entropy is then log2(M), and occurs when all the symbols

transmitted by a given source are equally likely. Uniform distribution corresponds to maximum
entropy.

In the case of a binary source (M = 2) and assuming that the probabilities of the symbols
are the values

P0 = α P1 = 1 − α (14)

the entropy is equal to

H (X ) = �(α) = α log2

(
1

α

)
+ (1 − α) log2

(
1

1 − α

)
(15)

This expression is depicted in Figure 1.4.
The maximum value of this function is given when α = 1 − α, that is, α = 1/2, so that the

entropy is equal to H (X ) = log2 2 = 1 bps. (This is the same as saying one bit per binary digit
or binary symbol.)

When α → 1, entropy tends to zero. The function �(α) will be used to represent the entropy
of the binary source, evaluated using logarithms to base 2.

Example 1.3: A given source emits r = 3000 symbols per second from a range of four
symbols, with the probabilities given in Table 1.2.
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Table 1.2 Example 1.3

xi Pi Ii

A 1/3 1.5849

B 1/3 1.5849

C 1/6 2.5849

D 1/6 2.5849

The entropy is evaluated as

H (X ) = 2 × 1

3
× log2(3) + 2 × 1

6
× log2(6) = 1.9183 bits per symbol

And this value is close to the maximum possible value, which is log2(4) = 2 bits per symbol.
The information rate is equal to

R = r H (X ) = (3000)1.9183 = 5754.9 bps

1.3 Extended DMSs

In certain circumstances it is useful to consider information as grouped into blocks of symbols.
This is generally done in binary format. For a memoryless source that takes values in the
range {x1, x2, . . . , xM}, and where Pi is the probability that the symbol xi is emitted, the order
n extension of the range of a source has Mn symbols {y1, y2, . . . , yMn}. The symbol yi is
constituted from a sequence of n symbols xi j . The probability P(Y = yi ) is the probability of
the corresponding sequence xi1, xi2, . . . , xin:

P(Y = yi ) = Pi1, Pi2, . . . , Pin (16)

where yi is the symbol of the extended source that corresponds to the sequence xi1, xi2, . . . , xin.
Then

H (Xn) =
∑
y=xn

P(yi ) log2

1

P(yi )
(17)

Example 1.4: Construct the order 2 extension of the source of Example 1.1, and calculate its
entropy.

Symbols of the original source are characterized by the probabilities P(X = x1) =
1/2, P(X = x2) = P(X = x3) = 1/8 and P(X = x4) = 1/4.

Symbol probabilities for the desired order 2 extended source are given in Table 1.3.
The entropy of this extended source is equal to

H (X2) =
M2∑
i=1

Pi log2

(
1

Pi

)
= 0.25 log2(4) + 2 × 0.125 log2(8) + 5 × 0.0625 log2(16)

+4 × 0.03125 log2(32) + 4 × 0.015625 log2(64) = 3.5 bits per symbol
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Table 1.3 Symbols of the order 2 extended source and their probabilities for Example 1.4

Symbol Probability Symbol Probability Symbol Probability Symbol Probability

x1x1 0.25 x2x1 0.0625 x3x1 0.0625 x4x1 0.125

x1x2 0.0625 x2x2 0.015625 x3x2 0.015625 x4x2 0.03125

x1x3 0.0625 x2x3 0.015625 x3x3 0.015625 x4x3 0.03125

x1x4 0.125 x2x4 0.03125 x3x4 0.03125 x4x4 0.0625

As seen in this example, the order 2 extended source has an entropy which is twice that of the
entropy of the original, non-extended source. It can be shown that the order n extension of a
DMS fits the condition H (Xn) = nH (X ).

1.4 Channels and Mutual Information

1.4.1 Information Transmission over Discrete Channels

A quantitative measure of source information has been introduced in the above sections. Now
the transmission of that information through a given channel will be considered. This will
provide a quantitative measure of the information received after its transmission through that
channel. Here attention is on the transmission of the information, rather than on its generation.

A channel is always a medium through which the information being transmitted can suffer
from the effect of noise, which produces errors, that is, changes of the values initially transmit-
ted. In this sense there will be a probability that a given transmitted symbol is converted into
another symbol. From this point of view the channel is considered as unreliable. The Shannon
channel coding theorem gives the conditions for achieving reliable transmission through an
unreliable channel, as stated previously.

1.4.2 Information Channels

Definition 1.1: An information channel is characterized by an input range of symbols
{x1, x2, . . . , xU }, an output range {y1, y2, . . . , yV } and a set of conditional probabilities
P(y j/xi ) that determines the relationship between the input xi and the output y j . This con-
ditional probability corresponds to that of receiving symbol y j if symbol xi was previously
transmitted, as shown in Figure 1.5.

The set of probabilities P(y j/xi ) is arranged into a matrix Pch that characterizes completely
the corresponding discrete channel:

Pi j = P(y j/xi )
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P (y2 / x2)
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Figure 1.5 A discrete transmission channel

Pch =

⎡⎢⎢⎢⎢⎣
P(y1/x1) P(y2/x1) · · · P(yV /x1)

P(y1/x2) P(y2/x2) · · · P(yV /x2)

...
...

...

P(y1/xU ) P(y2/xU ) · · · P(yV /xU )

⎤⎥⎥⎥⎥⎦ (18)

Pch =

⎡⎢⎢⎢⎢⎣
P11 P12 · · · P1V

P21 P22 · · · P2V

...
...

...

PU1 PU2 · · · PU V

⎤⎥⎥⎥⎥⎦ (19)

Each row in this matrix corresponds to an input, and each column corresponds to an output.
Addition of all the values of a row is equal to one. This is because after transmitting a symbol
xi , there must be a received symbol y j at the channel output.

Therefore,

V∑
j=1

Pi j = 1, i = 1, 2, . . . , U (20)

Example 1.5: The binary symmetric channel (BSC).
The BSC is characterized by a probability p that one of the binary symbols converts into the

other one (see Figure 1.6). Each binary symbol has, on the other hand, a probability of being
transmitted. The probabilities of a 0 or a 1 being transmitted are α and 1 − α respectively.

According to the notation used,

x1 = 0, x2 = 1 and y1 = 0, y2 = 1
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P(0) = α

P(1) = 1– α

Figure 1.6 Binary symmetric channel

The probability matrix for the BSC is equal to

Pch =
[

1 − p p
p 1 − p

]
(21)

Example 1.6: The binary erasure channel (BEC).
In its most basic form, the transmission of binary information involves sending two different

waveforms to identify the symbols ‘0’ and ‘1’. At the receiver, normally an optimum detection
operation is used to decide whether the waveform received, affected by filtering and noise in
the channel, corresponds to a ‘0’ or a ‘1’. This operation, often called matched filter detection,
can sometimes give an indecisive result. If confidence in the received symbol is not high, it
may be preferable to indicate a doubtful result by means of an erasure symbol. Correction of
the erasure symbols is then normally carried out by other means in another part of the system.

In other scenarios the transmitted information is coded, which makes it possible to detect if
there are errors in a bit or packet of information. In these cases it is also possible to apply the
concept of data erasures. This is used, for example, in the concatenated coding system of the
compact disc, where on receipt of the information the first decoder detects errors and marks
or erases a group of symbols, thus enabling the correction of these symbols in the second
decoder. Another example of the erasure channel arises during the transmission of packets
over the Internet. If errors are detected in a received packet, then they can be erased, and
the erasures corrected by means of retransmission protocols (normally involving the use of a
parallel feedback channel).

The use of erasures modifies the BSC model, giving rise to the BEC, as shown in Figure 1.7.
For this channel, 0 ≤ p ≤ 1 / 2, where p is the erasure probability, and the channel model has

two inputs and three outputs. When the received values are unreliable, or if blocks are detected

p

p
0

1

0

1
1− p

1− p

?

P (0) = α

P (1) = 1− α

x1

x2

y1

y2

y3

Figure 1.7 Binary erasure channel
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to contain errors, then erasures are declared, indicated by the symbol ‘?’. The probability
matrix of the BEC is the following:

Pch =
[

1 − p p 0
0 p 1 − p

]
(22)

1.5 Channel Probability Relationships

As stated above, the probability matrix Pch characterizes a channel. This matrix is of order
U × V for a channel with U input symbols and V output symbols. Input symbols are char-
acterized by the set of probabilities {P(x1), P(x2), . . . , P(xU )}, whereas output symbols are
characterized by the set of probabilities {P(y1), P(y2), . . . , P(yV )}.

Pch =

⎡⎢⎢⎢⎣
P11 P12 · · · P1V

P21 P22 · · · P2V
...

...
...

PU1 PU2 PU V

⎤⎥⎥⎥⎦
The relationships between input and output probabilities are the following: The symbol y1

can be received in U different ways. In fact this symbol can be received with probability P11 if
symbol x1 was actually transmitted, with probability P21 if symbol x2 was actually transmitted,
and so on.

Any of the U input symbols can be converted by the channel into the output symbol y1.
The probability of the reception of symbol y1, P(y1), is calculated as P(y1) = P11 P(x1) +
P21 P(x2) + · · · + PU1 P(xU ). Calculation of the probabilities of the output symbols leads to
the following system of equations:

P11 P(x1) + P21 P(x2) + · · · + PU1 P(xU ) = P(y1)
P12 P(x1) + P22 P(x2) + · · · + PU2 P(xU ) = P(y2)

...

P1V P(x1) + P2V P(x2) + · · · + PU V P(xU ) = P(yV )

(23)

Output symbol probabilities are calculated as a function of the input symbol probabilities
P(xi ) and the conditional probabilities P(y j/xi ). It is however to be noted that knowledge of
the output probabilities P(y j ) and the conditional probabilities P(y j/xi ) provides solutions
for values of P(xi ) that are not unique. This is because there are many input probability
distributions that give the same output distribution.

Application of the Bayes rule to the conditional probabilities P(y j/xi ) allows us to determine
the conditional probability of a given input xi after receiving a given output y j :

P(xi/y j ) = P(y j/xi )P(xi )

P(y j )
(24)
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Figure 1.8 Example 1.7

By combining this expression with expression (23), equation (24) can be written as

P(xi/y j ) = P(y j/xi )P(xi )∑U
i=1 P(y j/xi )P(xi )

(25)

Conditional probabilities P(y j/xi ) are usually called forward probabilities, and conditional
probabilities P(xi/y j ) are known as backward probabilities. The numerator in the above ex-
pression describes the probability of the joint event:

P(xi , y j ) = P(y j/xi )P(xi ) = P(xi/y j )P(y j ) (26)

Example 1.7: Consider the binary channel for which the input range and output range are in
both cases equal to {0, 1}. The corresponding transition probability matrix is in this case equal to

Pch =
[

3/4 1/4
1/8 7/8

]
Figure 1.8 represents this binary channel.

Source probabilities provide the statistical information about the input symbols. In this case
it happens that P(X = 0) = 4/5 and P(X = 1) = 1/5. According to the transition probability
matrix for this case,

P(Y = 0/X = 0) = 3/4 P(Y = 1/X = 0) = 1/4
P(Y = 0/X = 1) = 1/8 P(Y = 1/X = 1) = 7/8

These values can be used to calculate the output symbol probabilities:

P(Y = 0) = P(Y = 0/X = 0)P(X = 0) + P(Y = 0/X = 1)P(X = 1)

= 3

4
× 4

5
+ 1

8
× 1

5
= 25

40

P(Y = 1) = P(Y = 1/X = 0)P(X = 0) + P(Y = 1/X = 1)P(X = 1)

= 1

4
× 4

5
+ 7

8
× 1

5
= 15

40

which confirms that P(Y = 0) + P(Y = 1) = 1 is true.
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These values can be used to evaluate the backward conditional probabilities:

P(X = 0/Y = 0) = P(Y = 0/X = 0)P(X = 0)

P(Y = 0)
= (3/4)(4/5)

(25/40)
= 24

25

P(X = 0/Y = 1) = P(Y = 1/X = 0)P(X = 0)

P(Y = 1)
= (1/4)(4/5)

(15/40)
= 8

15

P(X = 1/Y = 1) = P(Y = 1/X = 1)P(X = 1)

P(Y = 1)
= (7/8)(1/5)

(15/40)
= 7

15

P(X = 1/Y = 0) = P(Y = 0/X = 1)P(X = 1)

P(Y = 0)
= (1/8)(1/5)

(25/40)
= 1

25

1.6 The A Priori and A Posteriori Entropies

The probability of occurrence of a given output symbol y j is P(y j ), calculated using expression
(23). However, if the actual transmitted symbol xi is known, then the related conditional
probability of the output symbol becomes P(y j/xi ). In the same way, the probability of a
given input symbol, initially P(xi ), can also be refined if the actual output is known. Thus,
if the received symbol y j appears at the output of the channel, then the related input symbol
conditional probability becomes P(xi/y j ).

The probability P(xi ) is known as the a priori probability; that is, it is the probability that
characterizes the input symbol before the presence of any output symbol is known. Normally,
this probability is equal to the probability that the input symbol has of being emitted by the
source (the source symbol probability). The probability P(xi/y j ) is an estimate of the symbol
xi after knowing that a given symbol y j appeared at the channel output, and is called the a
posteriori probability.

As has been defined, the source entropy is an average calculated over the information of a
set of symbols for a given source:

H (X ) =
∑

i

P(xi ) log2

[
1

P(xi )

]

This definition corresponds to the a priori entropy. The a posteriori entropy is given by the
following expression:

H (X/y j ) =
∑

i

P(xi/y j ) log2

[
1

P(xi/y j )

]
i = 1, 2, . . . , U (27)

Example 1.8: Determine the a priori and a posteriori entropies for the channel of
Example 1.7.

The a priori entropy is equal to

H (X ) = 4

5
log2

(
5

4

)
+ 1

5
log2(5) = 0.7219 bits
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Assuming that a ‘0’ is present at the channel output,

H (X/0) = 24

25
log2

(
25

24

)
+ 1

25
log2 (25) = 0.2423 bits

and in the case of a ‘1’ present at the channel output,

H (X/1) = 8

15
log2

(
15

8

)
+ 7

15
log2

(
15

7

)
= 0.9968 bits

Thus, entropy decreases after receiving a ‘0’ and increases after receiving a ‘1’.

1.7 Mutual Information

According to the description of a channel depicted in Figure 1.5, P(xi ) is the probability that
a given input symbol is emitted by the source, P(y j ) determines the probability that a given
output symbol y j is present at the channel output, P(xi , y j ) is the joint probability of having
symbol xi at the input and symbol y j at the output, P(y j/xi ) is the probability that the channel
converts the input symbol xi into the output symbol y j and P(xi/y j ) is the probability that xi

has been transmitted if y j is received.

1.7.1 Mutual Information: Definition

Mutual information measures the information transferred when xi is sent and y j is received,
and is defined as

I (xi , y j ) = log2

P(xi/y j )

P(xi )
bits (28)

In a noise-free channel, each y j is uniquely connected to the corresponding xi , and so they
constitute an input–output pair (xi , y j ) for which P(xi/y j ) = 1 and I (xi , y j ) = log2

1
P(xi )

bits;
that is, the transferred information is equal to the self-information that corresponds to the input
xi .

In a very noisy channel, the output y j and the input xi would be completely uncorrelated, and
so P(xi/y j ) = P(xi ) and also I (xi , y j ) = 0; that is, there is no transference of information. In
general, a given channel will operate between these two extremes.

The mutual information is defined between the input and the output of a given channel.
An average of the calculation of the mutual information for all input–output pairs of a given
channel is the average mutual information:

I (X, Y ) =
∑
i, j

P(xi , y j )I (xi , y j ) =
∑
i, j

P(xi , y j ) log2

[
P(xi/y j )

P(xi )

]
bits per symbol (29)

This calculation is done over the input and output alphabets. The average mutual information
measures the average amount of source information obtained from each output symbol.
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The following expressions are useful for modifying the mutual information expression:

P(xi , y j ) = P(xi/y j )P(y j ) = P(y j/xi )P(xi )

P(y j ) =
∑

i

P(y j/xi )P(xi )

P(xi ) =
∑

j

P(xi/y j )P(y j )

Then

I (X, Y ) = ∑
i, j

P(xi , y j )I (xi , y j )

= ∑
i, j

P(xi , y j ) log2

[
1

P(xi )

]
− ∑

i, j
P(xi , y j ) log2

[
1

P(xi/y j )

]
(30)

∑
i, j

P(xi , y j ) log2

[
1

P(xi )

]
= ∑

i

[∑
j

P(xi/y j )P(y j )

]
log2

1

P(xi )∑
i

P(xi ) log2

1

P(xi )
= H (X )

I (X, Y ) = H (X ) − H (X/Y )

(31)

where H (X
/

Y ) = ∑
i, j P(xi , y j ) log2

1
P(xi /y j )

is usually called the equivocation.

In a sense, the equivocation can be seen as the information lost in the noisy channel, and
is a function of the backward conditional probability. The observation of an output symbol y j

provides H (X ) − H (X/Y ) bits of information. This difference is the mutual information of
the channel.

1.7.2 Mutual Information: Properties

Since

P(xi/y j )P(y j ) = P(y j/xi )P(xi )

the mutual information fits the condition

I (X, Y ) = I (Y, X )

And by interchanging input and output it is also true that

I (X, Y ) = H (Y ) − H (Y/X ) (32)

where

H (Y ) =
∑

j

P(y j ) log2

1

P(y j )
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which is the destination entropy or output channel entropy:

H (Y/X ) =
∑
i, j

P(xi , y j ) log2

1

P(y j/xi )
(33)

This last entropy is usually called the noise entropy.
Thus, the information transferred through the channel is the difference between the output

entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is
the difference between the number of bits needed for determining a given input symbol before
knowing the corresponding output symbol, and the number of bits needed for determining
a given input symbol after knowing the corresponding output symbol, I (X, Y ) = H (X ) −
H (X/Y ).

As the channel mutual information expression is a difference between two quantities, it
seems that this parameter can adopt negative values. However, and in spite of the fact that for
some y j , H (X/y j ) can be larger than H (X ), this is not possible for the average value calculated
over all the outputs:∑

i, j

P(xi , y j ) log2

P(xi/y j )

P(xi )
=

∑
i, j

P(xi , y j ) log2

P(xi , y j )

P(xi )P(y j )

then

−I (X, Y ) =
∑
i, j

P(xi , y j ) log2

P(xi )P(y j )

P(xi , y j )
≤ 0

because this expression is of the form

M∑
i=1

Pi log2

(
Qi

Pi

)
≤ 0 (34)

which is the expression (12) used for demonstrating Theorem 1.1. The above expression can
be applied due to the factor P(xi )P(y j ), which is the product of two probabilities, so that it
behaves as the quantity Qi , which in this expression is a dummy variable that fits the condition∑

i Qi ≤ 1.
It can be concluded that the average mutual information is a non-negative number. It can

also be equal to zero, when the input and the output are independent of each other.
A related entropy called the joint entropy is defined as

H (X, Y ) = ∑
i, j

P(xi , y j ) log2

1

P(xi , y j )

= ∑
i, j

P(xi , y j ) log2

P(xi )P(y j )

P(xi , y j )
+ ∑

i, j
P(xi , y j ) log2

1

P(xi )P(y j )

(35)

Then the set of all the entropies defined so far can be represented in Figure 1.9. The circles define
regions for entropies H (X ) and H (Y ), the intersection between these two entropies is the mutual
information I (X, Y ), while the differences between the input and output entropies are H (X/Y )
and H (Y/X ) respectively (Figure 1.9). The union of these entropies constitutes the joint entropy
H (X, Y ).
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H (X )
H (Y)

I (X,Y )

H (X/Y ) H (Y/X )

Figure 1.9 Relationships among the different entropies

Example 1.9: Entropies of the binary symmetric channel (BSC).
The BSC is constructed with two inputs (x1, x2) and two outputs (y1, y2), with alphabets

over the range A = {0, 1}. The symbol probabilities are P(x1) = α and P(x2) = 1 − α, and
the transition probabilities are P(y1/x2) = P(y2/x1) = p and P(y1/x1) = P(y2/x2) = 1 − p
(see Figure 1.10). This means that the error probability p is equal for the two possible symbols.
The average error probability is equal to

P = P(x1)P(y2/x1) + P(x2)P(y1/x2) = αp + (1 − α)p = p

The mutual information can be calculated as

I (X, Y ) = H (Y ) − H (Y/X )

The output Y has two symbols y1 and y2, such that P(y2) = 1 − P(y1). Since

P(y1) = P(y1/x1)P(x1) + P(y1/x2)P(x2)
= (1 − p)α + p(1 − α)
= α − pα + p − pα = α + p − 2αp

(36)

the destination or sink entropy is equal to

H (Y ) = P(y1) log2

1

P(y1)
+ [1 − P(y1)] log2

1

[1 − P(y1)]
= � [P(y1)]

= � (α + p − 2αp)

(37)

p

p

1− p

1− p

x1

x2

X Y 

P(x1) = α

P(x2) = 1 − α

y1

y2

Figure 1.10 BSC of Example 1.9



OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

20 Essentials of Error-Control Coding

The noise entropy H (Y/X ) can be calculated as

H (Y/X )=
∑
i, j

P(xi , y j ) log2

1

P(y j/xi )

=
∑
i, j

P(y j/xi )P(xi ) log2

1

P(y j/xi )

=
∑

i

P(xi )

[∑
j

P(y j/xi ) log2

1

P(y j/xi )

]

= P(x1)

[
P(y2/x1) log2

1

P(y2/x1)
+ P(y1/x1) log2

1

P(y1/x1)

]
+P(x2)

[
P(y2/x2) log2

1

P(y2/x2)
+ P(y1/x2) log2

1

P(y1/x2)

]
= α

[
p log2

1

p
+ (1 − p) log2

1

(1 − p)

]
+ (1 − α)

[
(1 − p) log2

1

(1 − p)
+ p log2

1

p

]
= p log2

1

p
+ (1 − p) log2

1

(1 − p)
= �(p) (38)

Note that the noise entropy of the BSC is determined only by the forward conditional probabili-
ties of the channel, being independent of the source probabilities. This facilitates the calculation
of the channel capacity for this channel, as explained in the following section.

Finally,

I (X, Y ) = H (Y ) − H (Y/X ) = �(α + p − 2αp) − �(p) (39)

The average mutual information of the BSC depends on the source probability α and on the
channel error probability p.

When the channel error probability p is very small, then

I (X, Y ) ≈ �(α) − �(0) ≈ �(α) = H (X )

This means that the average mutual information, which represents the amount of information
transferred through the channel, is equal to the source entropy. On the other hand, when the
channel error probability approaches its maximum value p ≈ 1/2, then

I (X, Y ) = �(α + 1/2 − α) − �(1/2) = 0

and the average mutual information tends to zero, showing that there is no transference of
information between the input and the output.

Example 1.10: Entropies of the binary erasure channel (BEC).
The BEC is defined with an alphabet of two inputs and three outputs, with symbol prob-

abilities P(x1) = α and P(x2) = 1 − α, and transition probabilities P(y1/x1) = 1 − p and
P(y2/x1) = p, P(y3/x1) = 0 and P(y1/x2) = 0, and P(y2/x2) = p and P(y3/x2) = 1 − p.
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Now to calculate the mutual information as I (X, Y ) = H (Y ) − H (Y/X ),the following val-
ues are determined:

P(y1) = P(y1/x1)P(x1) + P(y1/x2)P(x2) = α(1 − p)

P(y2) = P(y2/x1)P(x1) + P(y2/x2)P(x2) = p

P(y3) = P(y3/x1)P(x1) + P(y3/x2)P(x2) = (1 − α)(1 − p)

In this way the output or sink entropy is equal to

H (Y ) = P(y1) log2

1

P(y1)
+ P(y2) log2

1

P(y2)
+ P(y3) log2

1

P(y3)

= α(1 − p) log2

1

α(1 − p)
+ p log2

1

p
+ (1 − α)(1 − p) log2

1

(1 − α)(1 − p)

= (1 − p)�(α) + �(p)

The noise entropy H (Y/X ) remains to be calculated:

H (Y/X ) =
∑
i, j

P(y j/xi )P(xi ) log2

1

P(y j/xi )
= p log2

1

p
+ (1 − p) log2

1

(1 − p)
= �(p)

after which the mutual information is finally given by

I (X, Y ) = H (Y ) − H (Y/X ) = (1 − p)�(α)

1.8 Capacity of a Discrete Channel

The definition of the average mutual information allows us to introduce the concept of channel
capacity. This parameter characterizes the channel and is basically defined as the maximum
possible value that the average mutual information can adopt for a given channel:

Cs = max
P(xi )

I (X, Y ) bits per symbol (40)

It is noted that the definition of the channel capacity involves not only the channel itself but
also the source and its statistical properties. However the channel capacity depends only on
the conditional probabilities of the channel, and not on the probabilities of the source symbols,
since the capacity is a value of the average mutual information given for particular values of
the source symbols.

Channel capacity represents the maximum amount of information per symbol transferred
through that channel.

In the case of the BSC, maximization of the average mutual information is obtained by
maximizing the expression

Cs = max
P(xi )

I (X, Y ) = max
P(xi )

{H (Y ) − H (Y/X )}
= max

P(xi )
{�(α + p − 2αp) − �(p)} = 1 − �(p) = 1 − H (p)

(41)

which is obtained when α = 1 − α = 1/2.
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If the maximum rate of symbols per second, s, allowed in the channel is known, then the
capacity of the channel per time unit is equal to

C = sCs bps (42)

which, as will be seen, represents the maximum rate of information transference in the channel.

1.9 The Shannon Theorems

1.9.1 Source Coding Theorem

The source coding theorem and the channel coding (channel capacity) theorem are the two
main theorems stated by Shannon [1, 2]. The source coding theorem determines a bound on the
level of compression of a given information source. The definitions for the different classes of
entropies presented in previous sections, and particularly the definition of the source entropy,
are applied to the analysis of this theorem.

Information entropy has an intuitive interpretation [1, 6]. If the DMS emits a large number
of symbols nf taken from an alphabet A = {x1, x2, . . . , xM} in the form of a sequence of
nf symbols, symbol x1 will appear nf P(x1) times, symbol x2, nf P(x2) times, and symbol
xM , nf P(xM ) times. These sequences are known as typical sequences and are characterized by
the probability

P ≈
M∏

i=1

[P(xi )]
nf P(xi ) (43)

since

P(xi ) = 2log2[P(xi )]

P ≈
M∏

i=1

[P(xi )]
nf P(xi ) =

M∏
i=1

2log2[P(xi )]nf P(xi ) =
M∏

i=1

2nf log2[P(xi )]P(xi )

= 2
nf

M∑
i=1

p(xi ) log2[P(xi )]

= 2−nf H (X )

(44)

Typical sequences are those with the maximum probability of being emitted by the infor-
mation source. Non-typical sequences are those with very low probability of occurrence. This
means that of the total of Mnf possible sequences that can be emitted from the information
source with alphabet A = {x1, x2, . . . , xM}, only 2nf H (X ) sequences have a significant proba-
bility of occurring. An error of magnitude ε is made by assuming that only 2nf H (X ) sequences
are transmitted instead of the total possible number of them. This error can be arbitrarily small
if nf → ∞. This is the essence of the data compression theorem.

This means that the source information can be transmitted using a significantly lower number
of sequences than the total possible number of them.
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If only 2nf H (X ) sequences are to be transmitted, and using a binary format of representing in-
formation, there will be nf H (X ) bits needed for representing this information. Since sequences
are constituted of symbols, there will be H (X ) bits per symbol needed for a suitable represen-
tation of this information. This means that the source entropy is the amount of information per
symbol of the source.

For a DMS with independent symbols, it can be said that compression of the information
provided by this source is possible only if the probability density function of this source is
not uniform, that is, if the symbols of this source are not equally likely. As seen in previous
sections, a source with M equally likely symbols fits the following conditions:

H (X ) = log2 M, 2nf(X ) = 2nf log2 M = Mnf (45)

The number of typical sequences for a DMS with equally likely symbols is equal to the
maximum possible number of sequences that this source can emit.

This has been a short introduction to the concept of data and information compression.
However, the aim of this chapter is to introduce the main concepts of a technique called
error-control coding, closely related to the Shannon channel coding (capacity) theorem.

1.9.2 Channel Capacity and Coding

Communication between a source and a destination happens by the sending of information from
the former to the latter, through a medium called the communication channel. Communication
channels are properly modelled by using the conditional probability matrix defined between
the input and the output, which allows us to determine the reliability of the information arriving
at the receiver. The important result provided by the Shannon capacity theorem is that it is
possible to have an error-free (reliable) transmission through a noisy (unreliable) channel,
by means of the use of a rather sophisticated coding technique, as long as the transmission
rate is kept to a value less than or equal to the channel capacity. The bound imposed by this
theorem is over the transmission rate of the communication, but not over the reliability of the
communication.

In the following, transmission of sequences or blocks of n bits over a BSC is considered. In
this case the input and the output are n-tuples or vectors defined over the extensions Xn and
Y n respectively. The conditional probabilities will be used:

P(X/Y) =
n∏

i=1

P(xi/y j )

Input and output vectors X and Y are words of n bits. By transmitting a given input vector X,
and making the assumption that the number of bits n is relatively large, the error probability p
of the BSC determines that the output vector Y of this channel will differ in np positions with
respect to the input vector X.

On the other hand, the number of sequences of n bits with differences in np positions is
equal to (

n
np

)
(46)
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By using the Stirling approximation [6]

n! ≈ nn e−n
√

2πn (47)

it can be shown that (
n
np

)
≈ 2n�(p) (48)

This result indicates that for each input block of n bits, there exists 2n�(p) possible output
sequences as a result of the errors introduced by the channel.

On the other hand, the output of the channel can be considered as a discrete source from
which 2nH (Y ) typical sequences can be emitted. Then the amount

M = 2nH (Y )

2n�(p)
= 2n[H (Y )−�(p)] (49)

represents the maximum number of possible inputs able to be transmitted and to be converted
by the distortion of the channel into non-overlapping sequences.

The smaller the error probability of the channel, the larger is the number of non-overlapping
sequences. By applying the base 2 logarithmic function,

log2 M = n [H (Y ) − �(p)]

and then

Rs = log2 M

n
= H (Y ) − �(p) (50)

The probability density function of the random variable Y depends on the probability density
function of the message and on the statistical properties of the channel. There is in general
terms a probability density function of the message X that can maximize the entropy H (Y ).
If the input is characterized by a uniform probability density function and the channel is a
BSC, the output has a maximum entropy, H (Y ) = 1. This makes the expression (50) adopt its
maximum value

Rs = 1 − �(p) (51)

which is valid for the BSC.
This is indeed the parameter that has been defined as the channel capacity. This will therefore

be the maximum possible transmission rate for the BSC if error-free transmission is desired
over that channel. This could be obtained by the use of a rather sophisticated error coding
technique.

Equation (51) for the BSC is depicted in Figure 1.11.
The channel capacity is the maximum transmission rate over that channel for reliable trans-

mission. The worst case for the BSC is given when p = 1/2 because the extreme value p = 1
corresponds after all to a transmission where the roles of the transmitted symbols are inter-
changed (binary transmission).

So far, a description of the channel coding theorem has been developed by analysing the
communication channel as a medium that distorts the sequences being transmitted.

The channel coding theorem is stated in the following section.
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Figure 1.11 Channel capacity for the BSC

1.9.3 Channel Coding Theorem

The channel capacity of a discrete memoryless channel is equal to

Cs = max
P(xi )

I (X, Y ) bits per symbol (52)

The channel capacity per unit time C is related to the channel capacity Cs by the expression
C = sCs. If the transmission rate R fits the condition R < C , then for an arbitrary value ε > 0,
there exists a code with block length n that makes the error probability of the transmission
be less than ε. If R > C then there is no guarantee of reliable transmission; that is, there is
no guarantee that the arbitrary value of ε is a bound for the error probability, as it may be
exceeded. The limiting value of this arbitrary constant ε is zero.

Example 1.11: Determine the channel capacity of the channel of Figure 1.12 if all the input
symbols are equally likely, and

P(y1/x1) = P(y2/x2) = P(y3/x3) = 0.5

P(y1/x2) = P(y1/x3) = 0.25

P(y2/x1) = P(y2/x3) = 0.25

P(y3/x1) = P(y3/x2) = 0.25
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Figure 1.12 Example 1.11

The channel capacity can be calculated by first determining the mutual information and then
maximizing this parameter. This maximization consists of looking for the input probability
density function that makes the output entropy be maximal.

In this case the input probability density function is uniform and this makes the output
probability density function be maximum. However this is not always the case. In a general
case, the probability density function should be selected to maximize the mutual information.
For this example,

H (Y/X ) = P(x1)H (Y/X = x1) + P(x2)H (Y/X = x2) + P(x3)H (Y/X = x3)

and

H (Y/X = x1) = H (Y/X = x2) = H (Y/X = x3) = 1

4
log2(4) + 1

4
log2(4) + 1

2
log2(2)

= 0.5 + 0.5 + 0.5 = 1.5

H (Y/X ) = 1.5

Therefore,

I (X, Y ) = H (Y ) − 1.5

The output entropy is maximal for an output alphabet with equally likely symbols, so that

H (Y ) = 1

3
log2(3) + 1

3
log2(3) + 1

3
log2(3) = log2(3) = 1.585

Then

Cs = 1.585 − 1.5 = 0.085 bits per symbol

This rather small channel capacity is a consequence of the fact that each input symbol has a
probability of 1/2 of emerging from the channel in error.
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1.10 Signal Spaces and the Channel Coding Theorem

The theory of vector spaces can be applied to the field of the communication signals and is a
very useful tool for understanding the Shannon channel coding theorem [2, 5, 6].

For a given signal x(t) that is transmitted through a continuous channel with a bandwidth
B, there is an equivalent representation that is based on the sampling theorem:

x(t) =
∑

k

xk sinc(2Bt − k) (53)

where

xk = x(kTs) and Ts = 1
/

2B (54)

with xk = x(kTs) being the samples of the signal obtained at a sampling rate 1
/

Ts.

Signals are in general power limited, and this power limit can be expressed as a function of
the samples xk as

P = x2 = x2
k (55)

Assuming that the signal has duration T , this signal can be represented by a discrete number
of samples n = T

/
Ts = 2BT . This means that the n numbers x1, x2, . . . , xn represent this

signal. This is true because of the sampling theorem, which states that the signal can be
perfectly reconstructed if this set of n samples is known. This set of numbers can be thought
of as a vector, which becomes a vectorial representation of the signal, with the property of
allowing us a perfect reconstruction of this signal by calculating

x(t) =
∑

k

x(kTs) sinc( fst − k)

fs = 1

Ts

≥ 2W (56)

where W is the bandwidth of the signal that has to fit the condition

W ≤ B ≤ fs − W (57)

This vector represents the signal x(t) and is denoted as X = (x1, x2, . . . , xn) with n = 2BT =
2W T . The reconstruction of the signal x(t), based on this vector representation [expression
(53)], is given in terms of a signal representation over a set of orthogonal functions like the
sinc functions. The representative vector is n dimensional. Its norm can be calculated as

||X||2 = x2
1 + x2

2 + · · · + x2
n =

n∑
i=1

x2
i (58)

If the number of samples is large, n � 1, and

1

n
||X||2 = 1

n

n∑
i=1

x2
i = x2

k = P (59)

||X|| =
√

n P =
√

2 BTP (60)



OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

28 Essentials of Error-Control Coding

nPN|||| =N
nP|||| =X

Figure 1.13 Vector representation of signals

so the norm of the vector is proportional to its power. By allowing the components of the vector
X vary through all their possible values, a hypersphere will appear in the corresponding vector
space. This hypersphere is of radius ||X||, and all the possible vectors will be enclosed by this
sphere. The volume of this hypersphere is equal to Vol,n = Kn||X||n.

As noise is also a signal, it can adopt a vector representation. This signal is usually passed
through a filter of bandwidth B and then sampled, and so this set of samples constitutes a
vector that represents the filtered noise. This vector will be denoted as N = (N1, N2, . . . , Nn),
and if PN is the noise power, then this vector has a norm equal to ||N|| = √

n PN. Thus, signals
and noise have vector representation as shown in Figure 1.13.

Noise in this model is additive and independent of (uncorrelated with) the transmitted signals.
During transmission, channel distortion transforms the input vector X into an output vector Y
whose norm will be equal to ||Y|| = ||X + N|| = √

n(P + PN) [2] (see Figure 1.14). (Signal
and noise powers are added as they are uncorrelated.)

1.10.1 Capacity of the Gaussian Channel

The Gaussian channel resulting from the sampling of the signals is a discrete channel, which
is described in Figure 1.15.

The variable N represents the samples of a Gaussian variable and is in turn a Gaussian
random variable with squared variance PN. The signal has a power P. If all the variables are
represented by vectors of length n, they are related by

Y = X + N (61)

nP

nPN

n (P + PN)

Figure 1.14 Vector addition of signals and noise
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Figure 1.15 Gaussian channel

If the number of samples, n, is large, the noise power can be calculated as the average of the
noise samples:

1

n

n∑
i=1

N 2
i = 1

n

n∑
i=1

|Y − X|2 ≤ PN (62)

which means that

|Y − X|2 ≤ n PN (63)

This can be seen as the noise sphere representing the tip of the output vector Y around the
transmitted (or true) vector X, whose radius is

√
n PN, which is proportional to the noise power

at the input. Since noise and transmitted signals are uncorrelated,

1

n

n∑
i=1

y2
i = 1

n

n∑
i=1

x2
i + 1

n

n∑
i=1

N 2
i ≤ P + PN (64)

Then

|Y|2 ≤ n(P + PN) (65)

and the output sequences are inside n-dimensional spheres of radius
√

n(P + PN) centred at
the origin, as shown in Figure 1.16.

X

Sphere of
radius

nPN

n-dimensional
sphere of radius

n(P + PN)

Figure 1.16 A representation of the output vector space
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Figure 1.16 can be understood as follows. The transmission of the input vector X gen-
erates an associated sphere whose radius is proportional to the noise power of the channel,√

n PN. In addition, output vectors generate the output vector space, a hypersphere with radius√
n(P + PN). The question is how many spheres of radius

√
n PN can be placed, avoiding

overlapping, inside a hypersphere of radius
√

n(P + PN)?
For a given n-dimensional hypersphere of radius Re, the volume is equal to

Vol,n = Kn Rn
e (66)

where Kn is a constant and Re is the radius of the sphere. The number of non-overlapped
messages that are able to be transmitted reliably in this channel is [2, 6]

M = Kn [n(P + PN)]n/2

Kn(n PN)n/2
=

(
P + PN

PN

)n/2

(67)

The channel capacity, the number of possible signals that can be transmitted reliably, and
the length of the transmitted vectors are related as follows:

Cs = 1

n
log2(M) = 1

n

n

2
log2

(
1 + P

PN

)
= 1

2
log2

(
1 + P

PN

)
(68)

A continuous channel with power spectral density N0/2, bandwidth B and signal power P
can be converted into a discrete channel by sampling it at the Nyquist rate. The noise sample
power is equal to

PN =
∫ B

−B
(N0/2) d f = N0 B (69)

Then

Cs = 1

2
log2

(
1 + P

N0 B

)
(70)

A given signal with bandwidth W transmitted through this channel and sampled at the
Nyquist rate will fulfil the condition W = B, and will be represented by 2W = 2B samples
per second.

The channel capacity per second is calculated by multiplying Cs, the capacity per symbol
or sample, by the number of samples per second of the signal:

C = 2BCs = B log2

(
1 + P

N0 B

)
bps (71)

This Shannon equation states that in order to reliably transmit signals through a given channel
they should be selected by taking into account that, after being affected by noise, at the channel
output the noise spheres must remain non-overlapped, so that each signal can be properly
distinguished.

There will be therefore a number M of coded messages of length T , that is, of M coded
vectors of n components each, resulting from evaluating how many spheres of radius

√
n PN
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can be placed in a hypersphere (output vector space) of radius
√

n(P + PN), where

M =
[√

n(P + PN)√
n PN

]n

=
(

1 + P

PN

)n/2

Assuming now that during time T , one of μ possible symbols is transmitted at r symbols
per second, the number of different signals that can be constructed is

M = μrT (72)

In the particular case of binary signals, that is for μ = 2, the number of possible non-
overlapped signals is M = 2rT .

The channel capacity, as defined by Shannon, is the maximum amount of information that
can be transmitted per unit time. The Shannon theorem determines the amount of information
that can be reliably transmitted through a given channel. The number of possible messages of
length T that can be reliably transmitted is M.From this point of view, the combination of source
and channel can be seen as a discrete output source Y with an alphabet of size M. The maximum
entropy of this destination source (or information sink) is achieved when all the output symbols
are equally likely, and this entropy is equal to log2 M , which is in turn the amount of information
provided at this sink. The maximum rate measured in symbols per second is then equal to(
1
/

T
)

log2 M. The channel capacity is measured as the limiting value of this maximum rate
when the length of the message tends to infinity:

C = lim
T →∞

1

T
log2 M bps (73)

Then, taking into account previous expressions,

C = lim
T →∞

1

T
log2 M = lim

T →∞
1

T
log2(μrT ) = lim

T →∞
rT

T
log2 μ = r log2 μ bps (74)

This calculation considers the channel to be noise free. For instance, in the case of the binary
alphabet, μ = 2 and C = r. The number of distinguishable signals for reliable transmission is
equal to

M ≤
(

1 + P

PN

)n/2

with n = 2BT (75)

C = lim
T →∞

1

T
log2 M = lim

T →∞
1

T
log2

(
1 + P

PN

)n / 2
= 2BT

2T
log2

(
1 + P

PN

)
= B log2

(
1 + P

PN

)
bps

(76)

Example 1.12: Find the channel capacity of the telephony channel, assuming that the min-
imum signal-to-noise ratio of this system is

(
P

/
PN

)
dB

= 30 dB and the signal and channel
transmission bandwidths are both equal to W = 3 kHz.

As (P/PN)dB = 30 dB and (P/PN) = 1000

C = 3000 log2(1 + 1000) ≈ 30 kbps
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Figure 1.17 An encoder for the BSC

1.11 Error-Control Coding

Figure 1.17 shows the block diagram of an encoding scheme. The source generates information
symbols at a rate R. The channel is a BSC, characterized by a capacity Cs = 1 − �(p) and a
symbol rate s. Mutual information is maximized by previously coding the source in order to
make it have equally likely binary symbols or bits. Then, an encoder takes blocks of bits and
converts them into M-ary equally likely symbols [1, 2] that carry log2 M bits per symbol each. In
this way, information adopts a format suitable for its transmission through the channel. The BSC
encoder represents each symbol by a randomly selected vector or word of n binary symbols.

Each binary symbol of the vector of length n carries an amount of information equal
to log2 M

/
n. Since s symbols per second are transmitted, the encoded source information

rate is

R = s log2 M

n
(77)

The Shannon theorem requires that

R ≤ C = sCs

which in this case means that

log2 M

n
≤ Cs

log2 M ≤ nCs (78)

M = 2n(Cs−δ) (79)

0 ≤ δ < Cs (80)

δ can be arbitrarily small, and in this case R → C.

Assume now that the coded vectors of length n bits are in an n-dimensional vector space. If the
vector components are taken from the binary field, the coordinates of this vector representation
adopt one of the two possible values, one or zero. In this case the distance between any two
vectors can be evaluated using the number of different components they have. Thus, if c is a
given vector of the code, or codeword, and c′ is a vector that differs in l positions with respect
to c, the distance between c and c′ is l, a random variable with values between 0 and n. If
the value of n is very large, vector c′ is always within a sphere of radius d < n. The decoder
will decide that c has been the transmitted vector when receiving c′ if this received vector
is inside the sphere of radius d and none of the remaining M − 1 codewords are inside that
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sphere. Incorrect decoding happens when the number of errors produced during transmission
is such that the received vector is outside the sphere of radius d and lies in the sphere of another
codeword different from c. Incorrect decoding also occurs even if the received vector lies in
the sphere of radius d, but another codeword is also inside that sphere. Then, the total error
probability is equal to [5]

Pe = Ple + Pce (81)

where Ple is the probability of the fact that the received vector is outside the sphere of radius d
and Pce is the probability that two or more codewords are inside the same sphere. It is noted that
this event is possible because of the random encoding process, and so two or more codewords
can be within the same sphere of radius d.

Ple is the probability of the error event l ≥ d. Transmission errors are statistically indepen-
dent and happen with a probability p < 1/2, and the number of errors l is a random variable
governed by the binomial distribution

l = np, σ 2 = n(1 − p)p (82)

If the sphere radius is adopted as

d = nβ, p < β < 1/2 (83)

it is taken as slightly larger than the number of expected errors per word. The error probability
Ple is then equal to

Ple = P (l ≥ d) ≤
(

σ

d − l

)2

= p(1 − p)

n(β − p)2
(84)

and if the conditions expressed in (83) are true, then Ple → 0 as n → ∞.

On the other hand, in order to estimate the error probability, a number m is defined to
describe the number of words or vectors contained within the sphere of radius d surrounding a
particular one of the M codewords. As before, Shannon assumed a random encoding technique
for solving this problem. From this point of view, the remaining M − 1 codewords are inside the
n-dimensional vector space, and the probability that a randomly encoded vector or codeword
is inside the sphere containing m vectors is

m

2n
(85)

Apart from the particular codeword selected, there exist M − 1 other code vectors, so that
using equation (79)

Pce = (M − 1) m 2−n < M m 2−n < m 2−n 2n(Cs−δ)

= m 2−n 2n[1−�(p)−δ] = m 2−n[�(p)+δ]
(86)

All the m vectors that are inside the sphere of radius d, defined around the codeword c, have
d different positions with respect to the codeword, or less. The number of possible codewords
with d different positions with respect to the codeword is equal to

(n
d

)
. In general, the number
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m of codewords inside the sphere of radius d is

m =
d∑

i=0

(
n
i

)
=

(
n
0

)
+

(
n
1

)
+ · · · +

(
n
d

)
, d = nβ (87)

Among all the terms in the above expression, the term
(n

d

)
is the largest, and it can be

considered as a bound on the sum of the d + 1 other terms as follows:

m ≤ (d + 1)

(
n
d

)
= n!

(n − d)!d!
(d + 1) (88)

Since d = nβ, and by using the Stirling approximation for the factorial number n! (n! ≈
nn e−n

√
2πn if n � 1),

m ≤ (d + 1)

(
n
d

)
= 2n�(β) nβ + 1√

2πnβ(1 − β)

and by combining it with expression (86),

Pce ≤ nβ + 1√
2πnβ(1 − β)

2−n[δ+�(p)−�(β)] = nβ + 1√
2πnβ(1 − β)

2−n{δ−[�(β)−�(p)]} (89)

The above expression says that the random coding error probability Pce tends to zero if δ >

�(β) − �(p), which is a function of the parameter p, the error probability of the BSC, and if
n → ∞. Once again the error probability tends to zero if the length of the codeword tends to
infinity. The value of the parameter δ is the degree of sacrifice of the channel capacity, and it
should fit the condition 0 ≤ δ < Cs.

Finally, replacing the two terms of the error probability corresponding, respectively, to the
effect of the noise and to the random coding [5], we obtain

Pe = Ple + Pce ≤ p(1 − p)

n(β − p)2
+ nβ + 1√

2πnβ(1 − β)
2−n{δ−[�(β)−�(p)]} (90)

For a given value of p, if β is taken according to expression (83), and fitting also the condition
δ > �(β) − �(p), then δ′ = δ − [�(β) − �(p)] > 0 and the error probability is

Pe = Ple + Pce ≤ K1

n
+ √

nK2 2−nK3 + K4√
n

2−nK3 (91)

where K1, K2, K3 and K4 are positive constants. The first and third terms clearly tend to zero

as n → ∞, and the same happens with the term
√

nK2 2−nK3 =
√

nK2

2nK3
if it is analysed using the

L’Hopital rule. Hence, Pe → 0 as long as n → ∞, and so error-free transmission is possible
when R < C.

1.12 Limits to Communication and their Consequences

In a communication system operating over the additive white Gaussian noise (AWGN) channel
for which there exists a restriction on the bandwidth, the Nyquist and Shannon theorems are
enough to provide a design framework for such a system [5, 7].
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R = (log2 M) / T

M = 2RT

Figure 1.18 An ideal communication system

An ideal communication system characterized by a given signal-to-noise ratio P
PN

= S
N and

a given bandwidth B is able to perform error-free transmission at a rate R = B log2(1 + S/N ).
The ideal system as defined by Shannon is one as seen in Figure 1.18 [5].

The source information is provided in blocks of duration T and encoded as one of the M
possible signals such that R = log2 M

/
T . There is a set of M = 2RT possible signals. The

signal y(t) = x(t) + n(t) is the noisy version of the transmitted signal x(t), which is obtained
after passing through the band-limited AWGN channel. The Shannon theorem states that

lim
Pe→0

lim
T →∞

log2 M

T
= B log2

(
1 + S

N

)
(92)

The transmission rate of the communication system tends to the channel capacity, R → C ,
if the coding block length, and hence the decoding delay, tends to infinity, T → ∞. Then,
from this point of view, this is a non-practical system.

An inspection of the expression C = B log2 (1 + S/N ) leads to the conclusion that both the
bandwidth and the signal-to-noise ratio contribute to the performance of the system, as their
increase provides a higher capacity, and their product is constant for a given capacity, and so
they can be interchanged to improve the system performance. This expression is depicted in
Figure 1.19.

For a band-limited communication system of bandwidth B and in the presence of white
noise, the noise power is equal to N = N0 B, where N0 is the power spectral density of the
noise in that channel. Then

C

B
= log2

(
1 + S

N0 B

)
There is an equivalent expression for the signal-to-noise ratio described in terms of the

average bit energy Eb and the transmission rate R.

If R = C then

Eb

N0

= S

N0 R
= S

N0C
(93)

C

B
= log2

(
1 + Eb

N0

C

B

)
, 2C/B = 1 + Eb

N0

(
C

B

)
(94)

Eb

N0

= B

C

(
2C/B − 1

)
(95)
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Figure 1.19 Practical and non-practical operation regions

The Shannon limit can be now analysed from equation

C

B
= log2

(
1 + Eb

N0

C

B

)
(96)

making use of the expression

lim
x→0

(1 + x)1/x = e

where x = Eb

N0

(
C
B

)
.

Since log2(1 + x) = x 1
x log2(1 + x) = x log2

[
(1 + x)1/x

]
[7],

C

B
= C

B

Eb

N0

log2

(
1 + Eb

N0

C

B

)N0 B/C Eb

⇒ 1 = Eb

N0

log2

(
1 + Eb

N0

C

B

)N0 B/C Eb
(97)

If C
B → 0, obtained by letting B → ∞,

Eb

N0

= 1

log2 (e)
= 0.693
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or (
Eb

N0

)
dB

= −1.59 dB (98)

This value is usually called the Shannon limit. This is a performance bound on the value of
the ratio Eb

/
N0, using a rather sophisticated coding technique, and for which the channel

bandwidth and the code length n are very large. This means that if the ratio Eb

/
N0 is kept

slightly higher than this value, it is possible to have error-free transmission by means of the
use of such a sophisticated coding technique.

From the equation

2C/B = 1 + Eb

N0

(
C

B

)
(99)

a curve can be obtained relating the normalized bandwidth B/C (Hz/bps) and the ratio Eb

/
N0.

For a particular transmission rate R,

2R/B ≤ 1 + Eb

N0

(
R

B

)
(100)

Eb

N0

≥
(

B

R

) (
2R/B − 1

)
(101)

Expression (100) can be also depicted, and it defines two operating regions, one of practical
use and another one of impractical use [1, 2, 5, 7]. This curve is seen in Figure 1.20, which
represents the quotient R/B as a function of the ratio Eb/N0. The two regions are separated by
the curve that corresponds to the case R = C [equation (99)]. This curve shows the Shannon
limit when R/B → 0. However, for each value of R/B, there exists a different bound, which
can be obtained by using this curve.

Eb/N0 (dB)

0.10

1

10

100

R/B

−10 10 20 30 40 50

Practical region

Non-practical
region

Bound –
1.59 dB 

0

Figure 1.20 Practical and non-practical operation regions. The Shannon limit
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�

Problems

1.1 A DMS produces symbols with the probabilities as given in Table P.1.1.

Table P.1.1 Probabilities of the

symbols of a discrete source

A 0.4

B 0.2

C 0.2

D 0.1

E 0.05

F 0.05

(a) Find the self-information associated with each symbol, and the entropy of
the source.

(b) Calculate the maximum possible source entropy, and hence determine the
source efficiency.

1.2 (a) Calculate the entropy of a DMS that generates five symbols {A, B, C, D, E }
with probabilities PA = 1/2, PB = 1/4, PC = 1/8, PD = 1/16 and PE =
1/16.

(b) Determine the information contained in the emitted sequence DADED.
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1.3 Calculate the source entropy, the transinformation I (X, Y) and the capacity of
the BSC defined in Figure P.1.1.

p = 0.25 p = 0.25

0

1

P(0) = α = 0.2

P(1) = 1− α = 0.8

1 − p = 0.75

1 − p = 0.75

Figure P.1.1 A binary symmetric channel

1.4 Show that for the BSC, the entropy is maximum when all the symbols of the
discrete source are equally likely.

1.5 An independent-symbol binary source with probabilities 0.25 and 0.75 is trans-
mitted over a BSC with transition (error) probability p = 0.01. Calculate the equiv-
ocation H (X/Y) and the transinformation I (X, Y).

1.6 What is the capacity of the cascade of BSCs as given in Figure P.1.2?

0

0.1 0.1 0.1 0.1

0.9 0.9

0.90.9
1

0

1

P(0) = α

P(1) = 1 − α

Figure P.1.2 A cascade of BSCs

1.7 Consider a binary channel with input and output alphabets {0, 1} and the transi-
tion probability matrix:

Pch =
[
3/5 2/5
1/5 4/5

]
Determine the a priori and the two a posteriori entropies of this channel.

1.8 Find the conditional probabilities P(xi /yj ) of the BEC with an erasure probabil-
ity of 0.469, when the source probabilities are 0.25 and 0.75. Hence find the
equivocation, transinformation and capacity of the channel.

1.9 Calculate the transinformation and estimate the capacity of the non-symmetric
erasure channel given in Figure P.1.3.



OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

40 Essentials of Error-Control Coding

0.1

0

11−α = 0.7

α = 0.3 0

1

E

x1

x2

0.9

0.8

0.2

Figure P.1.3 A non-symmetric erasure channel

1.10 Figure P.1.4 shows a non-symmetric binary channel. Show that in this case
I (X, Y) = � [q + (1 − p − q)α] − α�(p) − (1 − α)�(q).

P(0) = α

P(1) = 1 − α

0

1

0

1

p

q

1− p

1− q

Figure P.1.4 A non-symmetric binary channel

1.11 Find the transinformation, the capacity and the channel efficiency of the sym-
metric erasure and error channel given in Figure P.1.5.

0.9

0.9

0.08

0.08

00

1

E

0.02

0.02

11− α = 0.75

α = 0.25

Figure P.1.5 A symmetric erasure and error channel

1.12 Consider transmission over a telephone line with a bandwidth B = 3 kHz. This
is an analogue channel which can be considered as perturbed by AWGN, and
for which the power signal-to-noise ratio is at least 30 dB.
(a) What is the capacity of this channel, in the above conditions?
(b) What is the required signal-to-noise ratio to transmit an M-ary signal able to

carry 19,200 bps?

1.13 An analogue channel perturbed by AWGN has a bandwidth B = 25 kHz and a
power signal-to-noise ratio SNR of 18 dB. What is the capacity of this channel
in bits per second?

�
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2
Block Codes

2.1 Error-Control Coding

One of the predictions made in the Shannon channel coding theorem is that a rather sophisticated
coding technique can convert a noisy channel (unreliable transmission) into an error-free
channel (reliable transmission).

Demonstration of the theorem about the possibility of having error-free transmission is
done by using a coding technique of a random nature [1, 3]. In this technique, message
words are arranged as blocks of k bits, which are randomly assigned codewords of n bits,
n > k, in an assignment that is basically a bijective function characterized by the addition
of redundancy. This bijective assignment allows us to uniquely decode each message. This
coding technique is essentially a block coding method. However, what is not completely
defined in the theorem is a constructive method for designing such a sophisticated coding
technique.

There are basically two mechanisms for adding redundancy, in relation to error-control
coding techniques [4]. These two basic mechanisms are block coding and convolutional coding.
This chapter is devoted to block coding.

Errors can be detected or corrected. In general, for a given code, more errors can be detected
than corrected, because correction requires knowledge of both the position and the magnitude
of the error.

2.2 Error Detection and Correction

For a given practical requirement, detection of errors is simpler than the correction of errors.
The decision for applying detection or correction in a given code design depends on the
characteristics of the application. When the communication system is able to provide a full-
duplex transmission (that is, a transmission for which the source and the destination can
communicate at the same time, and in a two way mode, as it is in the case of telephone
connection, for instance), codes can be designed for detecting errors, because the correction is
performed by requiring a repetition of the transmission. These schemes are known as automatic
repeat reQuest (ARQ) schemes.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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In any ARQ system there is the possibility of requiring a retransmission of a given message.
There are on the other hand communication systems for which the full-duplex mode is not
allowed. An example of one of them is the communication system called paging, a sending of
alphanumerical characters as text messages for a mobile user. In this type of communication
system, there is no possibility of requiring retransmission in the case of a detected error, and so
the receiver has to implement some error-correction algorithm to properly decode the message.
This transmission mode is known as forward error correction (FEC).

2.2.1 Simple Codes: The Repetition Code

One of the simplest ways of performing coding is to repeat a transmitted symbol n times. If
this transmission uses a binary alphabet then the bit ‘1’ is usually represented by a sequence
of n ‘1’s, while the bit ‘0’ is represented by a sequence of n ‘0’s.

If errors happen randomly and with an error probability Pe = p [as happens in the case of
the binary symmetric channel (BSC)], the binomial distribution describes the probability of
having i errors in a word of n bits:

P(i, n) =
(

n
i

)
pi (1 − p)n−i ∼=

(
n
i

)
pi p � 1(

n
i

)
= n!

i!(n − i)!

(1)

Usually the value of p is small enough to validate the approximation made in equation (1). On
the other hand and for the same reason, it will be also true that if p � 1, then the probability
of having i errors is higher than that of having i + 1 errors; that is, P(i + 1, n) � P(i, n).

For the particular case of a repetition code with n = 3 for instance, the codewords are (111)
and (000). Usually, the former represents the bit ‘1’ and the latter represents the bit ‘0’. An
error-detection rule will be that the reception of any of the possible three-bit words different
from the codewords (six in total) will be considered as an error event. Thus, error detection is
possible, and for instance the reception of the word (110) can be considered as an error event.
Since codewords and, in general, binary words can be represented as vectors in a vector space,
coding can be understood as a procedure in which the messages are represented by codewords
selected from an expanded vector space. Thus, coding basically means an expansion of the
dimension of the message vector space from which some vectors are selected as codewords,
while other vector are not. In this example there are eight vectors in the expanded vector space,
from which only two are selected as codewords. The remaining six possible received patterns
are considered error patterns. It can be said that this code can detect error patterns of one or
two errors. By considering that the probability of having one error is higher than that of having
two errors, the patterns

(110), (101) and (011)

will be considered as transmitted sequences of three ‘1’s that, affected by noise, suffered from
one error. According to this rule, the decoder will decide that by receiving these words, the
transmitted codeword was (111), and the transmitted message was ‘1’. In the same way, the
patterns

(001), (010) and (100)
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will be considered as sequences of three ‘0’s that, affected by noise, suffered from one error.
According to this rule, the decoder will decide that on receiving these words, the transmitted
codeword was (000), and the transmitted message was ‘0’. This decoding rule cannot correct
two-error patterns.

If this code is used in an error-detection scheme, a pattern of three errors cannot be detected,
because such an error event means that, for instance, a sequence of three ‘0’s is converted into a
sequence of three ‘1’s, which is a valid codeword, and vice versa. When receiving this pattern,
the decoder can only assume that it is a valid codeword, thus being unable to detect this error
event. The word error probability (Pwe) for this case can be evaluated as

Pwe = P(3, 3) = p3

If this code is used in an error-correction mode, a two-error pattern event makes the decoder
fail, and so the word error probability is given by the following expression:

Pwe = P(2, 3) + P(3, 3) = 3p2(1 − p) + p3= 3p2 − 2p3

In all the cases, Pe = p is the error probability the communication system has without the
use of coding. For the BSC, this probability is that of a given bit being converted into its
complement. After the application of coding, Pwe measures the error probability per word. In
general, this error probability will be smaller than the error probability of the uncoded system.
However, the use of coding involves the transmission of redundancy, which means that the
transmission rate has deteriorated. At the end of this chapter, consideration will be given to
making a fair comparison between the coded and uncoded cases (see Section 2.11.1).

The code rate is defined as the ratio between the number of information bits and the number
of coded bits:

Rc = k

n
(2)

Repetition codes have a large error-detection/correction capability, but a very small code
rate. In this book some other coding techniques will be analysed that provide an error-correction
capability similar to the repetition code, but with a better code rate. They will be thus considered
as better coding techniques than repetition coding. The repetition code is a nice example that
shows the difference between error detection and correction.

2.3 Block Codes: Introduction and Parameters

Block coding of information is organized so that the message to be transmitted, basically
presented in binary format, is grouped into blocks of k bits, which are called the message bits,
constituting a set of 2k possible messages. The encoder takes each block of k bits, and converts
it into a longer block of n > k bits, called the coded bits or the bits of the codeword. In this
procedure there are (n − k) bits that the encoder adds to the message word, which are usually
called redundant bits or parity check bits. As explained in the previous chapter, error-control
coding requires the use of a mechanism for adding redundancy to the message word. This
redundancy addition (encoding operation) can be performed in different ways, but always in a
way that by applying the inverse operation (decoding) at the decoder the message information
can be successfully recovered.
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The final step in the decoding process involves the application of the decoding procedure, and
then the discarding of the redundancy bits, since they do not contain any message information.
These types of codes are called block codes and are denoted by Cb(n, k). The rate of the code,
Rc = k/n, is a measure of the level of redundancy applied in a given code, being the ratio of the
coded bits that represent information or message bits. This is closely related to the increased
bandwidth needed in the transmission when coding is used.

If for example a block code with code rate Rc = 2/3 is utilized, then it should be taken
into account that in the same time T during which in the uncoded scheme the two signals
representing the two message bits are transmitted, there now will be in the coded case three
signals transmitted, so that each signal has a duration that changes from being T/2 for the
uncoded case to T/3 for the coded case. This means that the spectral occupancy is higher
in the coded case. Equivalently, storing coded digital information will require more physical
space than that of the uncoded information. Thus an important practical consideration is to
keep the code rate at a reasonable level, even though in general it leads to a trade-off with
respect to the error-correction capability of the code.

Since the 2k messages are converted into codewords of n bits, this encoding procedure can
be understood as an expansion of the message vector space of size 2k to a coded vector space
of larger size 2n , from which a set of 2k codewords is conveniently selected. Block codes can
be properly analysed by using vector space theory.

2.4 The Vector Space over the Binary Field

A vector space is essentially a set of vectors ruled by certain conditions, which are verified
by performing operations over these vectors, operations that are usually defined over a given
field F .

The vector space V consists of a set of elements over which a binary operation called
addition, denoted by the symbol ⊕, is defined. If F is a field, the binary operation called
product, denoted by the symbol •, is defined between an element of the field F and the vectors
of the space V . Thus, V is a vector space that is said to be defined over the field F [4–9].

The following conditions are verified for a given vector space:� V is a commutative group for the binary operation of addition.� For any a ∈ F and any u ∈ V , a • u ∈ V .� For any u, v ∈ V and any a, b ∈ F , a • (u + v) = a • u + a • v

and also (a + b) • (u) = a • u + b • u.� For any u ∈ V and any a, b ∈ F , (a • b) • u = a • (b • u).� If 1 is the unit element in F then 1 • u = u for any u ∈ V .

It is also true that for this type of vector space

� For any u ∈ V , if 0 is the zero element in F , 0 • u = 0.� For any scalar c ∈ F , c • 0 = 0.� For any scalar c ∈ F and any vector u ∈ V , (−c) • u = c • (−u) = −(c • u)
where (−c) • u = c • (−u) is the additive inverse of c • u.
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A very useful vector space for the description of block codes is the vector space defined
over the binary field, or Galois field GF(2). Galois fields GF(q) are defined for all the prime
numbers q and their powers. The binary field GF(2) is a particular case of a Galois field for
which q = 2. Consider an ordered sequence of n components (a0, a1, . . . , an−1) where each
component ai is an element of the field GF(2), that is, an element adopting one of the two
possible values 0 or 1. This sequence will be called an n-component vector. There will be total
of 2n vectors. The corresponding vector space for this set of vectors will be denoted as Vn .

The binary addition operation ⊕ is defined for this vector space as follows: if u =
(u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1) are vectors in Vn , then

u ⊕ v = (u1 ⊕ v1, u2 ⊕ v2, . . . , un ⊕ vn) (3)

where ⊕ is the classic modulo-2 addition. Since the sum vector is also an n-component vector,
this vector also belongs to the vector space Vn , and so the vector space is said to be closed
under the addition operation ⊕. The addition of any two vectors of a given vector space is also
another vector of the same vector space.

Operations defined over the binary field are modulo-2 addition and multiplication. They are
described as follows:

Modulo-2 addition

0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

Modulo-2 multiplication

0 • 0 = 0

0 • 1 = 0

1 • 0 = 0

1 • 1 = 1

Vn is a commutative group under the addition operation. The all-zero vector 0 = (0, 0, . . . , 0)
is also in the vector space and is the identity for the addition operation:

u ⊕ 0 = (u1 ⊕ 0, u2 ⊕ 0, . . . , un ⊕ 0) = u (4)

and

u ⊕ u = (u1 ⊕ u1, u2 ⊕ u2, . . . , un ⊕ un) = 0 (5)

Each vector of a vector space defined over the binary field is its own additive inverse. It can
be shown that the vector space defined over GF(2) is a commutative group, so that associative
and commutative laws are verified. The product between a vector of the vectorial space u ∈ V
and a scalar of the binary field a ∈ GF(2) can be defined as

a • u = (a • u1, a • u2, . . . , a • un−1) (6)
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where a • ui is a modulo-2 multiplication. It can be shown that the addition and scalar multi-
plication fit the associative, commutative and distributive laws, so that the set of vectors Vn is
a vector space defined over the binary field GF(2).

Example 2.1: The vector space of vectors with four components consists of 24 = 16 vectors:

V4 = {(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111),
(1000), (1001), (1010), (1011), (1100), (1101), (1110), (1111)}

The addition of any two of these vectors is another vector in the same vector space:

(1011) ⊕ (0010) = (1001)

For each vector of this vector space, there are only two scalar multiplications:

0 • (1011) = (0000)
1 • (1011) = (1011)

2.4.1 Vector Subspaces

For a given set of vectors forming a vector space V defined over a field F , it is possible to
find a subset of vectors inside the vector space V , which can obey all the conditions for also
being a vector space. This subset S is called a subspace of the vector space V . This non-empty
subset S of the vector space V is a subspace if the following conditions are obeyed:

� For any two vectors in S, u, v ∈ S, the sum vector (u + v) ∈ S.� For any element of the field a ∈ F and any vector u ∈ S, the scalar multiplication a • u ∈ S.

Example 2.2: The following subset is a subspace of the vector space V4:

S = {(0000), (1001), (0100), (1101)}

On the other hand, if {v1, v2, . . . , vk} is a set of vectors of the vector space V defined over
F and a1, a2, . . . , ak are scalar numbers of the field F , the sum

a1 • v1 ⊕ a2 • v2 ⊕ · · · ⊕ ak • vk (7)

is called a linear combination of the vectors {v1, v2, . . . , vk}. Addition of linear combina-
tions and multiplication of a linear combination by an element of the field F are also linear
combinations of the vectors {v1, v2, . . . , vk}.

Theorem 2.1: If {v1, v2, . . . , vk} are k vectors in V defined over F , the set of all the linear
combinations of {v1, v2, . . . , vk} is a subspace S of V .
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Example 2.3: By considering two vectors (1001) and (0100) of the vector space V4, their
linear combinations form the same subspace S as shown in the above example:

0 • (1001) ⊕ 0 • (0100) = (0000)
0 • (1001) ⊕ 1 • (0100) = (0100)
1 • (1001) ⊕ 0 • (0100) = (1001)
1 • (1001) ⊕ 1 • (0100) = (1101)

A set of k vectors {v1, v2, . . . , vk} is said to be linearly dependent if and only if there exist
k scalars of the field F , not all equal to zero, such that a linear combination is equal to the
all-zero vector:

a1 • v1 ⊕ a2 • v2 ⊕ · · · ⊕ ak • vk = 0 (8)

If the set of vectors is not linearly dependent, then this set is said to be linearly independent.

Example 2.4: Vectors (1001), (0100) and (1101) are linearly dependent because

1 • (1001) ⊕ 1 • (0100) ⊕ 1 • (1101) = (0000)

A set of vectors is said to generate a vector space V if each vector in that vector space is a
linear combination of the vectors of the set.

In any vector space or subspace there exists a set of at least Bli linearly independent vectors
that generate such a vectorial space or subspace.

For a given vector space Vn defined over GF(2), the following set of vectors

e0 = (1, 0, . . . 0)
e1 = (0, 1, . . . , 0)
...

en−1 = (0, 0, . . . , 1)

(9)

is the set of vectors ei that have a non-zero component only at position i . This set of vectors is
linearly independent. Any vector of the vector space can be described as a function of this set:

(a0, a1, . . . , an−1) = a0 • e0 + a1 • e1 + · · · + an−1 • en−1 (10)

This set of linearly independent vectors
{
e0, e1, . . . , en−1

}
generates the vector space Vn ,

whose dimension is n. If k < n, the set of linearly independent vectors {v1, v2, . . . , vk} gener-
ates the vector space S of Vn through all their possible linear combinations:

c = m1 • v1 ⊕ m2 • v2 ⊕ · · · ⊕ mk • vk (11)

The subspace formed is of dimension k and it consists of 2k vectors. The number of com-
binations is 2k because the coefficients mi ∈ GF(2) adopt only one of the two possible values
0 or 1.
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Another interesting operation to be considered is the inner product between two vectors.
Given the vectors u = (u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1), the inner product is de-
fined as

u ◦ v = u0 • v0 ⊕ u1 • v1 ⊕ · · · ⊕ un−1 • vn−1 (12)

where additions and multiplications are done modulo 2.
This product obeys the commutative, associative and distributive laws. If u ◦ v = 0 then it

is said that vectors u = (u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1) are orthogonal.

2.4.2 Dual Subspace

If S is a k-dimensional subspace of the n-dimensional vector space Vn , the set Sd of vectors v
for which for any u ∈ S and v ∈ Sd, u ◦ v = 0 is called the dual subspace of S. It is possible
to demonstrate that this set is also a subspace of Vn . Moreover, it can also be demonstrated
that if the subspace S is of dimension k, the dual subspace Sd is of dimension (n − k). In other
words,

dim(S) + dim(Sd) = n (13)

Example 2.5: For the vector space V4 over GF(2), the following set of vectors S =
{(0000), (0011), (0110), (0100), (0101), (0111), (0010), (0001)} is a three-dimensional sub-
space of V4 for which the one-dimensional subspace Sd = {(0000), (1000)} is the dual subspace
Sd of S.

2.4.3 Matrix Form

The linearly independent vectors that generate a given space or subspace can be organized as
row vectors of a matrix. Such a matrix of size k × n is defined over GF(2), and is a rectangular
array of k rows and n columns:

G =

⎡⎢⎢⎢⎣
g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

...
gk−1,0 gk−1,1 · · · gk−1,n−1

⎤⎥⎥⎥⎦ (14)

Each entry of this matrix belongs to the binary field GF(2), gi j ∈ GF(2). Each of its rows can be
understood as a vector of dimension 1 × n. If the k rows of this matrix are linearly independent,
they can be considered as a basis that generates 2k possible linear combinations that, as a set,
becomes a k-dimensional vector subspace of the vector space Vn . This subspace is called the
row space of G. It is possible to perform linear operations and permutations between rows, or
sum of rows, over the matrix G but the subspace generated by the modified matrix G’ is the
same as that generated by the matrix G.
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Example 2.6: In the following matrix G, the third row is replaced by the addition of the
second and third rows, and the first and second rows are permuted, generating the matrix G′:

G =
⎡⎣1 0 1 1 0

0 1 0 0 1
1 1 0 1 1

⎤⎦ G ′ =
⎡⎣0 1 0 0 1

1 0 1 1 0
1 0 0 1 0

⎤⎦
Both matrices generate the same subspace, which is the following three-dimensional sub-

space of the vector space V5:

0 • (10110) ⊕ 0 • (01001) ⊕ 0 • (11011) = (00000)
0 • (10110) ⊕ 0 • (01001) ⊕ 1 • (11011) = (11011)
0 • (10110) ⊕ 1 • (01001) ⊕ 0 • (11011) = (01001)
1 • (10110) ⊕ 0 • (01001) ⊕ 0 • (11011) = (10110)
0 • (10110) ⊕ 1 • (01001) ⊕ 1 • (11011) = (10010)
1 • (10110) ⊕ 1 • (01001) ⊕ 0 • (11011) = (11111)
1 • (10110) ⊕ 0 • (01001) ⊕ 1 • (11011) = (01101)
1 • (10110) ⊕ 1 • (01001) ⊕ 1 • (11011) = (00100)

2.4.4 Dual Subspace Matrix

For the vector subspace S, which is the row space of the matrix G that has k linearly independent
rows, if Sd is the dual subspace, the dimension of this dual subspace is n − k. Matrix G can be
described more compactly if its rows are denoted as row vectors of dimension 1 × n:

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ (15)

Let h0, h1, . . . , hn−k−1 be the linearly independent row vectors of a matrix for which Sd is
the row subspace. These vectors generate Sd. Therefore, a matrix H of dimension (n − k) × n
can be constructed using the vectors h0, h1, . . . , hn−k−1 as row vectors:

H =

⎡⎢⎢⎢⎣
h0

h1
...

hn−k−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h00 h01 · · · h0,n−1

h10 h11 · · · h1,n−1

...
...

...
hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1

⎤⎥⎥⎥⎦ (16)

The row space of H is Sd, the dual subspace of S, which in turn is the row space of G. Since
each row vector gi of G is a vector in S, and each row vector h j of H is a vector in Sd, the inner
product between them is zero, gi ◦ h j = 0. The row space of G is the dual space of the row
space of H. Thus for each matrix G of dimension k × n with k linearly independent vectors,
there exists a matrix H of dimension (n − k) × n with n − k linearly independent vectors, so
that for each row vector gi of G and each row vector h j of H it is true that gi ◦ h j = 0 [4].
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Example 2.7: Given the matrix

G =
⎡⎣1 0 1 1 0

0 1 0 0 1
1 1 0 1 1

⎤⎦
its rows generate a subspace consisting of the following vectors:

S = {(00000), (11011), (10110), (01001), (10010), (11111), (01101), (00100)}
The matrix

H =
[

0 1 0 0 1
1 0 0 1 0

]
has row vectors that generate the row space Sd consisting of the following vectors:

Sd = {(00000), (01001), (10010), (11011)}
which is the dual space of S. It is indeed verified that gi ◦ h j = 0:

(10110) ◦ (01001) = 0
(10110) ◦ (10010) = 0
(01001) ◦ (01001) = 0
(01001) ◦ (10010) = 0
(11011) ◦ (01001) = 0
(11011) ◦ (10010) = 0

2.5 Linear Block Codes

The above considerations regarding vector space theory will be useful for the description of
a block code. Message information to be encoded is grouped into a k-bit block constituting
a generic message m = (m0, m1, . . . , mk−1) that is one of 2k possible messages. The encoder
takes this message and generates a codeword or code vector c = (c0, c1, . . . , cn−1) of n com-
ponents, where normally n > k; that is, redundancy is added. This procedure is basically a
bijective assignment between the 2k vectors of the message vector space and 2k of the 2n

possible vectors of the encoded vector space.
When k and n are small numbers, this assignment can be done by means of a table, but

when these numbers are large, there is a need to find a generating mechanism for the encoding
process. Given this need, linearity of the operations in this mechanism greatly simplifies the
encoding procedure.

Definition 2.1: A block code of length n and 2k message words is said to be a linear block
code Cb(n, k) if the 2k codewords form a vector subspace, of dimension k, of the vector space
Vn of all the vectors of length n with components in the field GF(2) [3, 4, 6].

Encoding basically means to take the 2k binary message words of k bits each, and assign to
them some of the 2n vectors of n bits. This is a bijective function. Since usually k < n, there
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are more vectors of n bits than those of k bits, and so the selection of the vectors of n bits
has to be done using the lowest level of redundancy while maximizing the distance among the
codewords.

The set of 2k codewords constitute a vector subspace of the set of words of n bits. As a
consequence of its definition, a linear block code is characterized by the fact that the sum of
any of two codewords is also a codeword.

2.5.1 Generator Matrix G

Since a linear block code Cb(n, k) is a vector subspace of the vector space Vn , there will be
k linearly independent vectors that in turn are codewords g0, g1, . . . , gk−1, such that each
possible codeword is a linear combination of them:

c = m0 • g0 ⊕ m1 • g1 ⊕ · · · ⊕ mk−1 • gk−1 (17)

These linearly independent vectors can be arranged in a matrix called the generator
matrix G:

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

...
gk−1,0 gk−1,1 · · · gk−1,n−1

⎤⎥⎥⎥⎦ (18)

This is a matrix mechanism for generating any codeword. For a given message vector m =
(m0, m1, . . . , mk−1), the corresponding codeword is obtained by matrix multiplication:

c = m ◦ G = (m0, m1, . . . , mk−1) ◦

⎡⎢⎢⎢⎣
g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

...
gk−1,0 gk−1,1 · · · gk−1,n−1

⎤⎥⎥⎥⎦

= (m0, m1, . . . , mk−1) ◦

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ = m0 • g0 ⊕ m1 • g1 ⊕ · · · ⊕ mk−1 • gk−1

(19)

Note that the symbol ‘◦’ represents the inner product between vectors or matrices, whereas the
symbol ‘•’ represents the multiplication by a scalar in the field GF(2) of a vector of the vector
space or subspace used.

The rows of the generator matrix G generate the linear block code Cb(n, k), or, equivalently,
the k linearly independent rows of G completely define the code.
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Table 2.1 Codewords of a linear block code Cb(7, 4)

Message Codewords

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1

0 0 1 0 1 1 1 0 0 1 0

0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 0 1 1 0 1 0 0

0 1 0 1 1 1 0 0 1 0 1

0 1 1 0 1 0 0 0 1 1 0

0 1 1 1 0 0 1 0 1 1 1

1 0 0 0 1 1 0 1 0 0 0

1 0 0 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 1 0

1 0 1 1 1 0 0 1 0 1 1

1 1 0 0 1 0 1 1 1 0 0

1 1 0 1 0 0 0 1 1 0 1

1 1 1 0 0 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1

Example 2.8: Consider the following generator matrix of size 4 × 7 and obtain the codeword
corresponding to the vector message m = (1001):

G =

⎡⎢⎢⎣
g0

g1

g2

g3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
The corresponding codeword is

c = m ◦ G = 1 • g0 ⊕ 0 • g1 ⊕ 0 • g2 ⊕ 1 • g3 = (1101000) ⊕ (1010001) = (0111001)

Table 2.1 shows the code generated by the generator matrix G of this example.

2.5.2 Block Codes in Systematic Form

In Table 2.1 it can be seen that the last four bits of each codeword are the same as the message
bits; that is, the message appears as it is, inside the codeword. In this case, the first three bits are
the so-called parity check or redundancy bits. This particular form of the codeword is called
systematic form. In this form, the codewords consist of the (n − k) parity check bits followed by
the k bits of the message. The structure of a codeword in systematic form is shown in Figure 2.1.

n − k parity check bits k message bits

Figure 2.1 Systematic form of a codeword of a block code
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In the convention selected in this book, the message bits are placed at the end of the codeword,
while the redundancy bits are placed at the beginning of the codeword, but this can be done
the other way round. However, the choice of convention does not modify the properties of a
given block code, although some mathematic expressions related to the code will of course
adopt a different form in each case. In the current bibliography on error-correcting codes, the
systematic form can be found adopting both of the two conventions described above.

A systematic linear block code Cb(n, k) is uniquely specified by a generator matrix of the
form

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p00 p01 · · · p0,n−k−1

p10 p11 · · · p1,n−k−1

...
...

...
pk−1,0 pk−1,1 · · · pk−1,n−k−1︸ ︷︷ ︸

submatrix P k × (n − k)

1 0 0 · · ·
0 1 0 · · ·
...

...
...

0 0 0 · · ·︸ ︷︷ ︸
submatrix I k × k

0
0
...
1

⎤⎥⎥⎥⎦ (20)

which, in a compact notation, is

G = [P Ik] (21)

In systematic block coding, it is possible to establish an analytical expression between
the parity check and the message bits. If m = (m0, m1, . . . , mk−1) is the message vector and
c = (c0, c1, . . . , cn−1) the coded vector, the parity check bits can be obtained as a function of
the message bits using the following expression:

cn−k+i = mi

c j = m0 • p0 j + m1 • p1 j + · · · + mk−1 • pk−1, j 0 ≤ j < n − k
(22)

These n − k equations are called the parity check equations.

Example 2.9: Consider the generator matrix of the linear block code Cb(7, 4), presented in
the previous example, and state the parity check equations for the following case:

c = m ◦ G = (m0, m1, m2, m3) ◦

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
Then the parity check equations adopt the form

c0 = m0 ⊕ m2 ⊕ m3

c1 = m0 ⊕ m1 ⊕ m2

c2 = m1 ⊕ m2 ⊕ m3

c3 = m0

c4 = m1

c5 = m2

c6 = m3
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2.5.3 Parity Check Matrix H

As explained in previous sections, the generator matrix G contains k linearly independent
vectors that generate the vector subspace S of the vector space Vn , which is in turn associated
with a dual vector subspace Sd of the same vector space Vn that is generated by the rows of a
matrix H. Each vector of the row space of the matrix G is orthogonal to the rows of the matrix
H and vice versa.

The 2n−k linear combinations of the matrix H generate the dual code Cbd(n, n − k), which
is the dual subspace of the code Cb generated by the matrix G. The systematic form of the
parity check matrix H of the code Cb generated by the generator matrix G is

H =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1︸ ︷︷ ︸
submatrix I (n − k) × (n − k)

p00 p10 · · · pk−1,0

p01 p11 · · · pk−1,1

...
...

...
p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

submatrix PT (n − k) × k

= [
In−k PT

]
(23)

where PT is the transpose of the parity check submatrix P. The matrix H is constructed so that
the inner product between any row vector gi of G and any row vector h j of H is zero:

gi ◦ h j = pi j ⊕ pi j = 0 (24)

This condition can be summarized in the matrix expression

G ◦ HT = 0 (25)

It can also be verified that the parity check equations can be obtained from the parity check
matrix H, so that this matrix also specifies completely a given block code. Since a codeword
in systematic form is expressed as

c = (c0, c1, . . . , cn−k−1, m0, m1, . . . , mk−1) (26)

then since

c ◦ HT = m ◦ G ◦ HT = 0 (27)

for the row j of H,

c j ⊕ p0 j • m0 ⊕ p1 j • m1 ⊕ · · · ⊕ pk−1, j • mk−1 = 0 (28)

or, equivalently,

c j = p0 j • m0 ⊕ p1 j • m1 ⊕ · · · ⊕ pk−1, j • mk−1 0 ≤ j < n − k (29)

Example 2.10: Determine the parity check matrix H for the linear block code Cb(7, 4) gen-
erated by the generator matrix

G =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
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Since

G =

⎡⎢⎢⎣
1 1 0
0 1 1
1 1 1
1 0 1︸ ︷︷ ︸
submatrix P

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
︸ ︷︷ ︸

submatrix I

the parity check matrix H is constructed using these submatrices:

H =
⎡⎣1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
A practical implementation of these codes could be done using combinational logic for the
parity check equations.

2.6 Syndrome Error Detection

So far the definitions for the generator and the parity check matrices of a given block code
have been presented. The codeword c = (c0, c1, . . . , cn−1) is such that its components are taken
from the binary field GF(2), ci ∈ GF(2). As a consequence of its transmission through a noisy
channel, this codeword could be received containing some possible errors. The received vector
can therefore be different from the corresponding transmitted codeword, and it will be denoted
as r = (r0, r1, . . . , rn−1), where it is also true that ri ∈ GF(2).

An error event can be modelled as an error vector or error pattern e = (e0, e1, . . . , en−1),
whose components are also defined over the binary field, ei ∈ GF(2), and which is related to
the codeword and received vectors as follows:

e = r ⊕ c (30)

The error vector has non-zero components in the positions where an error has occurred.
Once the error vector is determined, a task to be performed by the decoder, it is possible to
do a correction of the received vector in order to determine an estimate of the valid codeword,
and this can be done by using the expression

c = r ⊕ e (31)

Since any codeword should obey the condition

c ◦ HT = 0

an error-detection mechanism can be implemented based on the above expression, which adopts
the following form:

S = r ◦ HT = (s0, s1, . . . , sn−k−1) (32)

This vector is called the syndrome vector. The detection operation is performed over the
received vector, so that if this operation results in the all-zero vector, then the received vector
is considered to be a valid codeword; if otherwise, the decoder has detected errors.

Since r = c ⊕ e,

S = r ◦ HT = (c ⊕ e) ◦ HT = c ◦ HT ⊕ e ◦ HT = e ◦ HT (33)
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If the error pattern is the all-zero vector, then the syndrome vector will also be an all-zero
vector, and thus the received vector is a valid codeword. When the syndrome vector contains at
least one non-zero component, it will be detecting the presence of errors in the received vector.
There is however a possibility that the syndrome vector can be the all-zero vector in spite of
the presence of errors in the received vector. This is in fact possible if the error pattern is equal
to a codeword; that is, if the number and positions of the errors are such that the transmitted
codeword is converted into another codeword. This error pattern will not be detected by the
syndrome operation. This is what is called an undetected error pattern, and as such is not within
the error-correction capability of the code.

As said above, the undetected error patterns are characterized by satisfying the condition
S = e ◦ HT = 0; that is, these are the error patterns that are equal to one of the codewords
(e = c). There will be therefore 2k − 1 undetectable non-zero error patterns.

According to the expression for calculating the syndrome vector, each of its bits can be
evaluated as follows:

s0 = r0 ⊕ rn−k • p00 ⊕ rn−k+1 • p10 ⊕ · · · ⊕ rn−1 • pk−1,0

s1 = r1 ⊕ rn−k • p01 ⊕ rn−k+1 • p11 ⊕ · · · ⊕ rn−1 • pk−1,1

...
sn−k−1 = rn−k−1 ⊕ rn−k • p0,n−k−1 ⊕ rn−k+1 • p1,n−k−1 ⊕ · · · ⊕ rn−1 • pk−1,n−k−1

(34)

The dimension of the syndrome vector is 1 × (n − k).

Example 2.11: For the same linear block code Cb(7, 4), as seen in previous examples, obtain
the analytical expressions for the syndrome vector’s bits.

If r = (r0, r1, r2, r3, r4, r5, r6)
then

S = (s0, s1, s2) = (r0, r1, r2, r3, r4, r5, r6) ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
s0 = r0 ⊕ r3 ⊕ r5 ⊕ r6

s1 = r1 ⊕ r3 ⊕ r4 ⊕ r5

s2 = r2 ⊕ r4 ⊕ r5 ⊕ r6

The syndrome vector does not depend on the received vector, but on the error vector. Thus,
solving the following system of equations

s0 = e0 ⊕ en−k • p00 ⊕ en−k+1 • p10 ⊕ · · · ⊕ en−1 • pk−1,0

s1 = e1 ⊕ en−k • p01 ⊕ en−k+1 • p11 ⊕ · · · ⊕ en−1 • pk−1,1

...
sn−k−1 = en−k−1 ⊕ en−k • p0,n−k−1 ⊕ en−k+1 • p1,n−k−1 ⊕ · · · ⊕ en−1 • pk−1,n−k−1

(35)
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will allow us to evaluate the error vector, which in turn will allow us to do an estimation of
a valid codeword. However, this set of (n − k) equations does not have a unique solution,
but exhibits 2k solutions. This is due to the fact that there are 2k error patterns that produce
the same syndrome vector. In spite of this, and because the noise power normally acts with
minimum effect, the error pattern with the least number of errors will be considered to be the
true solution of this system of equations.

Example 2.12: For the linear block code Cb(7, 4) of the previous example, a transmitted
codeword c = (0011010) is affected by the channel noise and received as the vector r =
(0001010). The calculation of the syndrome vector results in the vector S = (001), which in
terms of the system of equations (35) becomes

0 = e0 ⊕ e3 ⊕ e5 ⊕ e6

0 = e1 ⊕ e3 ⊕ e4 ⊕ e5

1 = e2 ⊕ e4 ⊕ e5 ⊕ e6

There are 24 = 16 different error patterns that satisfy the above equations (see Table 2.2).
Since errors in a codeword of n bits are governed by the binomial distribution, the error

pattern with i errors is more likely than the error pattern of i + 1 errors, which means that
for channels like the BSC, the error pattern with the smallest number of non-zero components
will be considered as the true error pattern. In this case the error pattern e = (0010000) is
considered, among the 16 possibilities, to be the true error pattern, and so

c = r ⊕ e = (0011010) = (0001010) ⊕ (0010000)

Table 2.2 Error patterns that satisfy the equations of Example 2.12

e0 e1 e2 e3 e4 e5 e6

0 0 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 0 0 1

0 1 0 1 0 0 1

0 0 0 1 0 1 0

1 1 0 0 0 1 0

0 1 1 0 0 1 1

1 0 1 1 0 1 1

0 1 0 0 1 0 0

1 0 0 1 1 0 0

1 1 1 0 1 0 1

0 0 1 1 1 0 1

1 0 1 0 1 1 0

0 1 1 1 1 1 0

1 1 0 1 1 1 1

0 0 0 0 1 1 1
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2.7 Minimum Distance of a Block Code

The minimum distance dmin is an important parameter of a code, especially for a block code.
Before defining this parameter, other useful definitions related to the minimum distance are
first provided [3, 4].

Definition 2.2: The number of non-zero components ci 
= 0 of a given vector c =
(c0, c1, . . . , cn−1) of size (1 × n) is called the weight, or Hamming weight, w(c), of that vector.
In the case of a vector defined over the binary field GF(2), the weight is the number of ‘1’s in
the vector.

Definition 2.3: The Hamming distance between any two vectors c1 = (
c01, c11, . . . , cn−1,1

)
and c2 = (

c02, c12, . . . , cn−1,2

)
, d(c1, c2), is the number of component positions in which the

two vectors differ.
For instance, if c1 = (0011010) and c2 = (1011100), then d(c1, c2) = 3.

According to the above definitions, it can be verified that

d(ci , c j ) = w(ci ⊕ c j ) (36)

For a given code, the minimum value of the distance between all possible pairs of codewords
can be calculated. This minimum value of the distance evaluated over all the codewords of the
code is called the minimum distance of the code, dmin:

dmin = min
{
d(ci , c j ); ci , c j ∈ Cb; ci 
= c j

}
(37)

Since, in general, block codes are designed to be linear, the addition of any two code vectors
is another code vector. From this point of view, any codeword can be seen as the addition
of at least two other codewords. Since the Hamming distance is the number of positions in
which two vectors differ, and on the other hand the weight of the sum of two vectors is the
Hamming distance between these two vectors, then the weight of a codeword is at the same time
the distance between two other vectors of that code. Thus, the minimum value of the weight
evaluated over all the codewords of a code, excepting the all-zero vector, is the minimum
distance of the code:

dmin = min
{
w(ci ⊕ c j ); ci , c j ∈ Cb; ci 
= c j

} = min {w(cm); cm ∈ Cb; cm 
= 0} (38)

Therefore, the minimum distance of a linear block code Cb(n, k) is the minimum value of the
weight of the non-zero codewords of that code.

As an example, the linear block code analysed in previous examples has minimum distance
dmin = 3, because this is the minimum value of the weight evaluated over all the non-zero
codewords of this code (see Table 2.1).

2.7.1 Minimum Distance and the Structure of the H Matrix

There is an interesting relationship between the minimum distance dmin of a code and its parity
check matrix H.
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Theorem 2.2: Consider a linear block code Cb(n, k) completely determined by its parity
check matrix H. For each codeword of Hamming weight pH, there exist pH columns of the
parity check matrix H that when added together result in the all-zero vector. In the same way,
it can be said that if the parity check matrix H contains pH columns that when added give the
all-zero vector, then there is in the code a vector of weight pH [4].

In order to see this, parity check matrix H is described in the following form:

H = [
h0, h1, . . . , hn−1

]
(39)

where hi is the i th column of this matrix. If a codeword c = (c0, c1, . . . , cn−1) has a weight
pH, then there exist pH non-zero components in that vector ci1 = ci2 = · · · = cipH

= 1, for
which 0 ≤ i1 < i2 < · · · < i pH

≤ n − 1.
Since

c ◦ HT = 0

then

c0 • h0 ⊕ c1 • h1 ⊕ · · · ⊕ cn−1 • hn−1

= ci1 • hi1 ⊕ ci2 • hi2 ⊕ · · · ⊕ cipH
•hipH

= hi1 ⊕ hi2 ⊕ · · · ⊕ hipH = 0
(40)

Similarly, the second part of the theorem can be demonstrated.

The following corollary is then derived:

Corollary 2.7.1: For a linear block code Cb(n, k) completely determined by its parity check
matrix H, the minimum weight or minimum distance of this code is equal to the minimum
number of columns of that matrix which when added together result in the all-zero vector 0.

Example 2.13: For the linear block code Cb(7, 4), as seen in previous examples, whose parity
check matrix is of the form

H =
⎡⎣ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
determine the minimum distance of this code.

It can be seen that the addition of the first, third and seventh column results in the all-zero
vector 0. Hence, and because the same result cannot be obtained by the addition of only two
columns, the minimum distance of this code is dmin = 3.

2.8 Error-Correction Capability of a Block Code

The minimum distance of a code is the minimum number of components changed by the
effect of the noise that converts a code vector into another vector of the same code. If having
transmitted the codeword c the noise transforms this vector in the received vector r, the distance
between c and r is the weight of the error pattern d(c, r) = w(e) = l, that is, the number of
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positions that change their value in the original vector c due to the effects of noise. If the noise
modifies dmin positions, then it is possible in the worst case that a code vector is transformed
into another vector of the same code, so that the error event is undetectable. If the number of
positions the noise alters is dmin − 1, it is guaranteed that the codeword cannot be converted
into another codeword. Thus, the error-detection capability of a linear block code Cb(n, k) of
minimum distance dmin is dmin − 1. This is evaluated for the worst case, that is, for the case
in which the error event of dmin bits happens over a codeword that has a Hamming weight
dmin. However, there could be other detectable error patterns of the weight dmin. Based on this
analysis, the error-detection capability of a code can be measured by means of the probability
that the code fails to determine an estimate of the codeword from the received vector, which is
evaluated using the weight distribution function of the code. Since a detection failure happens
when the error pattern is equal to a non-zero codeword,

PU(E) =
n∑

i=1

Ai pi (1 − p)n−i (41)

where Ai is the number of codewords of weight i and p is the error probability for the BSC,
for which this analysis is valid. When the minimum distance is dmin, the values of A1 to Admin−1

are all zero.

Example 2.14: For the linear block code Cb(7, 4), previously analysed values of the weight
distribution function are equal to

A0 = 1, A1 = A2 = 0, A3 = 7, A4 = 7, A5 = A6 = 0, A7 = 1

The probability of an undetected error is therefore

PU(E) =
n∑

i=1

Ai pi (1 − p)n−i = 7p3(1 − p)4 + 7p4(1 − p)3 + p7 ≈ 7p3

where the approximation is based on the error probability for the BSC being a small number
p � 1.

In order to determine the error-correction capability of a linear block code Cb(n, k), an
integer number t that fits the condition

2t + 1 ≤ dmin ≤ 2t + 2 (42)

will represent the number of bits that can be corrected.
If having transmitted a codeword c1 the noise effects transform this vector into the received

vector r , then with respect to another codeword c2 the following inequality will be true:

d(c1, r ) + d(c2, r ) ≥ d(c1, c2) (43)

By assuming an error pattern of t ′ errors, d(c1, r ) = t ′. As c1 and c2 are codewords,
d(c1, c2) ≥ dmin ≥ 2t + 1 and

d(c2, r ) ≥ 2t + 1 − t ′ (44)
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By adopting t ′ ≤ t ,

d(c2, r ) > t (45)

This means that for an error pattern of weight t or less, the distance between any other codeword
c2 and the received vector r is higher than the distance between the codeword c1 and the
received vector r , which is t ′ ≤ t . This also means that the probability P(r/c1) is higher than
the probability P(r/c2) for any other codeword c2. This is the process of maximum likelihood
decoding, and in this operation the received vector r is decoded as the codeword c1. This way
the code is able to successfully decode any error pattern of weight t = ⌊ dmin−1

2

⌋
, where 
�

means the largest integer number no greater than dmin−1
2

.
As happened in the detection of errors, for the correction of errors there are more possible

correctable patterns than those determined by the number t . For a linear block code Cb(n, k)
able to correct up to t errors, there are 2n−k correctable error patterns including the error
patterns of t or fewer errors.

If a linear block code Cb(n, k), able to correct all the error patterns of weight t or less, is
used in a transmission over the BSC with error probability p, the error probability of the coded
system is given by

Pwe =
n∑

i=t+1

(
n
i

)
pi (1 − p)n−i (46)

In hybrid systems, where errors are in part corrected, and in part detected, these codes are
utilized in such a way that error patterns of weight λ are corrected and error patterns of weight
l > λ are detected. If the error pattern is of weight λ or less, the system corrects it, and if the
error pattern is of weight larger than λ, but less than l + 1, the system detects it. This is possible
if dmin ≥ l + λ + 1.

If for example the minimum distance of a linear block code Cb(n, k) is dmin = 7, this code
can be used for correcting error patterns of weight λ = 2 or less and detecting error patterns
of weight l = 4 or less.

2.9 Syndrome Detection and the Standard Array

A linear block code Cb(n, k) is constructed as a bijective assignment between the 2k message
vectors and the set {c1, c2, . . . , c2k }. Each of these vectors is transmitted through the channel
and converted into a received vector r that can be any vector of the 2n vectors of the vector space
Vn defined over the binary field GF(2). Any decoding technique is essentially a decision rule,
based on the vector space Vn being partitioned into 2k possible disjoint sets D1, D2, . . . , D2k

such that the vector ci is in the set Di . There is a unique correspondence between the set Di

and the vector ci . If the received vector is in Di , it will be decoded as ci .
The standard array is a method for doing this operation [4, 6]. The array is constructed in

the following way:
A row containing the codewords, including and starting from the all-zero vector (0, 0, . . . , 0),

is constructed. This row contains 2k vectors taken from the whole set of 2n possible vectors.

c1 = (0, 0, . . . , 0) c2 c3 . . . c2k (47)
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Then an error pattern e2 is selected and placed below c1 (the all-zero vector), and then the sum
vector ci ⊕ e2 is placed below ci . This is done with all the error patterns taken from the vector
space that have to be allocated, a total of 2n−k vectors.

c1 = (0, 0, . . . , 0) c2 . . . ci . . . c2k

e2 c2 ⊕ e2 . . . ci ⊕ e2 . . . c2k ⊕ e2
...
e2n−k c2 ⊕ e2n−k . . . ci ⊕ e2n−k . . . c2k ⊕ e2n−k

(48)

In this array the sum of any two vectors in the same row is a code vector. There are only 2n/2k

disjoint rows in this array. These rows are the so-called cosets of the linear block code Cb(n, k).
The vector that starts each coset is called the leader of that coset, and it can be any vector of
that row.

Example 2.15: For the linear block code Cb(5, 3) generated by the matrix given below,
determine the standard array.

G =
⎡⎣0 1 0 0 1

1 0 1 1 0
1 0 0 1 0

⎤⎦
There are in this case 2k = 23 = 8 columns and 2n−k = 22 = 4 rows in the standard array.
Table 2.3 shows the standard array for the code of Example 2.15.

The standard array can also be seen as constituted of 2k disjoint columns, and in each of these
columns are 2n−k vectors having as the first vector a code vector. These 2k disjoint columns
D1, D2, . . . , D2k can be used in a decoding procedure. If having transmitted a codeword ci ,
the received vector is r, this received vector will be in Di if the error pattern that occurred is its
coset leader. In this case the received vector will be successfully decoded. If the error pattern
is not a coset leader, a decoding error happens. Due to this, the 2n−k coset leaders including
the all-zero pattern are the correctable error patterns. It can be deduced that a linear block code
Cb(n, k) can correct 2n−k error patterns.

In order to minimize the error probability, all the correctable error patterns, which are the
coset leaders, will have to be the most likely patterns. In the case of a transmission over the
BSC, the most likely patterns are those of the lowest possible weight. Thus, each coset leader
will be of the lowest possible weight among the vectors of that row. The decoding in this
case will be maximum likelihood decoding, that is, minimum distance decoding, so that the
decoded code vector is at minimum distance with respect to the received vector.

Table 2.3 Standard array for the code of Example 2.15

0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0

0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0

0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1
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In conclusion it can be said that a linear block code Cb(n, k) is able to detect 2n − 2k error
patterns and correct 2n−k error patterns.

It can also be said that
For a linear block code Cb(n, k) with minimum distance dmin, all the vectors of weight

t = ⌊ dmin−1
2

⌋
or less can be used as coset leaders. This is in agreement with the fact that not

all the weight t + 1 error patterns can be corrected, even when some of them can be. On the
other hand, all the vectors of the same coset have the same syndrome, whereas syndromes for
different cosets are different.

By taking a coset leader as the vector ei , any other vector of that coset is the sum of the
leader vector and the code vector ci . For this case, the syndrome is calculated as

(ci ⊕ ei ) ◦ HT = ci ◦ HT ⊕ ei ◦ HT = ei ◦ HT (49)

The syndrome of any vector of the coset is equal to the syndrome of the leader of that coset.
Syndromes are vectors with (n − k) components that have a bijective assignment with the
cosets. For each correctable error pattern, there is a different syndrome vector. This allows
us to implement simpler decoding by constructing a table where correctable error patterns
and their corresponding syndrome vectors are arranged, so that when the decoder makes the
syndrome calculation and knows the syndrome vector, it can recognize the corresponding error
pattern. Thus, the decoder is able to correct the received vector by adding the error pattern to that
received vector. Thus syndrome decoding consists of the following steps: With the information
provided by the table S → e, the syndrome vector is calculated as a function of the received
vector using S = r ◦ HT; then the decoder resorts to the table to identify which error pattern
ei corresponds to the calculated syndrome vector and finally corrects the received vector by
doing ci = r ⊕ ei . This procedure can be used when the table S → e is of a reasonable size to
be implemented in practice.

Example 2.16: For the linear block code Cb(7, 4) with parity check matrix

H =
⎡⎣ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
there are 24 = 16 code vectors and 27−4 = 8 cosets, or correctable error patterns. The minimum
distance has also been calculated and is equal to dmin = 3 and so this code is able to correct
any pattern of one error. In this case the total number of correctable error patterns is equal to
the number of error patterns the code can correct, and there are seven correctable error patterns
and the all-zero error pattern, as the possible patterns. The table S → e for this code is seen in
Table 2.4.

As an example, assume that the transmitted code vector was c = (1010001) and after the
transmission of this vector the received vector is r = (1010011), then the syndrome vector
in this case is r ◦ HT = (111) and so the leader of the corresponding coset is (0000010) and
c = (1010001) = (1010011) ⊕ (0000010).
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Table 2.4 Error patterns and their corresponding

syndrome vectors, Example 2.16

Error patterns Syndromes

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 0 1

2.10 Hamming Codes

A widely used class of linear block codes is the Hamming code family [11]. For any positive
integer m ≥ 3, there exists a Hamming code with the following characteristics:

Length n = 2m − 1
Number of message bits k = 2m − m − 1
Number of parity check bits n − k = m
Error-correction capability t = 1, (dmin = 3)

The parity check matrix H of these codes is formed of the non-zero columns of m bits, and
can be implemented in systematic form:

H = [Im Q]

where the identity submatrix Im is a square matrix of size m × m and the submatrix Q consists
of the 2m − m − 1 columns formed with vectors of weight 2 or more.

For the simplest case, for which m = 3,

n = 23 − 1 = 7

k = 23 − 3 − 1 = 4

n − k = m = 3

t = 1(dmin = 3)

H =
⎡⎣1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
which is the linear block code Cb(7, 4) that has been analysed previously in this chapter. The
generator matrix can be constructed using the following expression for linear block codes of
systematic form:

G = [
QT I2m−m−1

]
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In the parity check matrix H, the sum of three columns can result in the all-zero vector, and it is
not possible for the sum of two columns to give the same result, and so the minimum distance
of the code is dmin = 3. This means that they can be used for correcting any error pattern of
one error, or detecting any error pattern of up to two errors. In this case there are also 2m − 1
correctable error patterns and on the other hand there exist 2m cosets, so that the number of
possible correctable error patterns is the same as the number of different cosets (syndrome
vectors). The codes with this characteristic are called perfect codes. The code of Example 2.10
is a Hamming code.

2.11 Forward Error Correction and Automatic Repeat ReQuest

2.11.1 Forward Error Correction

Communication systems that use the FEC approach are not able to request a repetition of
the transmission of coded information. Due to this, all the capability of the code is used for
error correction. The source information generates a binary signal representing equally likely
symbols at a rate rb. The encoder takes a group of k message bits, and adds to it n − k parity
check bits. This is the encoding procedure for a linear block code Cb(n, k) whose code rate is
Rc = k/n, with Rc < 1. Figure 2.2 shows a block diagram of an FEC communication system.

The transmission rate r over the channel has to be higher than the source information rate rb:

r =
(n

k

)
rb = rb

Rc

(50)

The code used in the FEC system is characterized by having a minimum distance dmin =
2t + 1. The performance is evaluated of a communication system perturbed by additive white
Gaussian noise (AWGN) in the channel, leading to an error probability p � 1. The source
(uncoded) information has an average bit energy Eb, so that the average bit energy for a coded
bit is reduced to Rc Eb. The ratio Eb/N0 is equal to(

Eb

N0

)
C

= Rc Eb

N0

= Rc

(
Eb

N0

)
(51)

As seen in Chapter 1, the quotient between the average bit energy Eb and the power spectral
density N0 plays an important role in the characterization of communication systems, and it
will be used a basic parameter for comparison proposes.

In this section the difference between the coded and uncoded cases is analysed.

Encoder Transm. Channel + Receiver Decoder

Pe = p

r = rb

r = rb/RcRc = k /n Gn(f ) = No/2

Figure 2.2 Block diagram of an FEC system
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There are two error probability definitions: the message bit error rate (BER) or bit error
probability, denoted here as Pbe, and the word error probability, denoted as Pwe. A given linear
block code can correct error patterns of weight t , or less, in a block or codeword of n bits. The
word error probability is bounded by

Pwe ≤
n∑

i=t+1

P(i,n) (52)

Assuming that the error probability of the channel is small, p � 1, the following approxi-
mation can be made:

Pwe
∼= P(t + 1,n) ∼=

(
n

t + 1

)
pt+1 (53)

This basically means that the words that the code cannot correct have t + 1 errors. Since the
codeword is truncated after decoding, in each uncorrected word there are

(
k
n

)
(t + 1) message

bit errors, on average. If a large number N � 1 of words are transmitted, then Nk information
source or message bits are transmitted, and the bit error probability is equal to

Pbe =
(

k
n

)
(t + 1) NPwe

kN
= 1

n
(t + 1) Pwe (54)

Pbe
∼=

(
n − 1

t

)
pt+1 (55)

For a communication system designed to operate over the AWGN channel, for which the
power spectral density is Gn( f ) = N0/2, and for which binary polar format and matched
filtering are applied, the error probability Pe is given by (see Appendix 1)

Pe = Q

(√
2

Eb

N0

)
(56)

and then

p = Q

(√
2

(
Eb

N0

)
C

)
= Q

(√
2Rc

Eb

N0

)
(57)

The bit error probability for an FEC system is then

Pbe
∼=

(
n − 1

t

) [
Q

(√
2Rc

Eb

N0

)]t+1

(58)

An uncoded communication system has an error probability

Pbe
∼= Q

(√
2

Eb

N0

)
(59)
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Expressions (58) and (59) allow us to do a comparison between the coded and uncoded
cases. This comparison will indicate if there is an improvement or not when using FEC error-
control coding, with respect to the uncoded case. This comparison depends on the values of t
and Rc, characteristic parameters of the code being used. Even for a good code, if the amount
of noise power present in the channel is very large, the coded case usually performs worse
than the uncoded case. However, for a reasonable level of noise power, the coded case is better
than the uncoded one if a good code is used. Now it is clear why the comparison between the
coded and uncoded case is not fair if it is done as in Section 2.2.1, in which the repetition code
was introduced, because in that comparison the rate of the code, 1/3, had not been taken into
account. The triple repetition of a bit means that the energy per information (message) bit is
three times higher, and this should be taken into account if a fair comparison is intended.

Example 2.17: The triple repetition code
By making use of expressions (58) and (59) determine if the triple repetition code has a

good performance in comparison with the uncoded case, by plotting the bit error probability
as a function of the parameter Eb/N0 for both cases.

In Figure 2.3 the bit error probability curve (dotted) describes the performance of the rep-
etition code with n = 3 [theoretical estimation using (58)], and a simulation curve (dashed),
with respect to uncoded binary transmission (solid curve), in both cases using polar format
(A = ±1). This shows that the repetition code with n = 3 is even worse than uncoded trans-
mission. This is because the code rate of the repetition code is very small with respect to its
error-correction capability.

In the chapters which follow, more efficient codes than the repetition code will be introduced.

Uncoded binary

Three-time repetition code, theoretical curve

Hard-decision decoding of a triple repetition code, simulation

−2 0 2 4 6 8 10 12

100

10−1

10−2

10−3

10−4

10−5

10−6

Eb/N0 (dB)

Pbe

Figure 2.3 Bit error probability for the three-time repetition code
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2.11.2 Automatic Repeat ReQuest

ARQ communication systems are based on the detection of errors in a coded block or frame and
on the retransmission of the block or frame when errors have been detected. In this case a two-
way channel is needed in order to request retransmissions. For a given code, the error-detection
capability possible in an ARQ system is higher than the error-correction capability of its FEC
counterpart, because the error-control capability of the code is spent only on detection, while
the correction requires not only the detection but also the localization of the errors. On the
other hand, there is an additional cost in an ARQ system, which is the need for a retransmission
link. There are also additional operations for the acknowledgement and repetition processes
that reduce the transmission rate of the communication system. A block diagram of an ARQ
system is seen in Figure 2.4.

Each codeword is stored in the transmitter buffer and then transmitted. This codeword can
be affected by noise, so that at the receiving end the decoder analyses if the received vector
belongs or not to the code. A positive acknowledgement (ACK) is transmitted by the receiver
if the received vector or word is a codeword; that is, the decoder did not detect any error in that
vector. Otherwise the decoder transmits a negative acknowledgement (NAK) if the decoder
identifies that the received vector has some errors, and is not a code vector. Upon reception
of a NAK message at the transmitter, the corresponding block in the transmitter buffer is
retransmitted.

An ARQ system has a reduced transmission rate with respect to an FEC system as a result
of the retransmission process. In all of this, it is considered that the error probability over the
retransmission channel is negligible. This means that the ACK and NAK messages do not
suffer from errors in their transmission. In this way, every word found to have transmission
errors is successfully corrected by means of one or more retransmissions. In this case all the
error-control capability is spent on error detection, so that dmin = l + 1, and the system is able
to detect any error pattern of up to l errors. The error probability is determined by the event of
an undetected error pattern, that is, an error pattern with dmin = l + 1 or more errors:

Pwe =
n∑

i=l+1

P(i,n) ∼= P(l + 1,n) ∼=
(

n
l + 1

)
pl+1 (60)

Two-way channel

Data
transmission

Positive or negative
acknowledgement

ACK/NAK

Encoder

Transmitter
buffer

Decoder

Receiver
buffer

Figure 2.4 Block diagram of an ARQ system



OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 69

Then the bit error probability is

Pbe =
(

l + 1

n

)
Pwe

∼=
(

n − 1
l

)
pl+1 (61)

These expressions are similar to those given for the FEC system, and are obtained by replacing
t by l.

Retransmissions happen with a certain probability. Retransmission is not required when the
receiver has received a valid codeword, an event with probability P(0, n), or when the number
of errors in the received vector produces an undetectable error pattern, an event with probability
Pwe. Therefore, the retransmission probability Pret is given by [3]

Pret = 1 − (P(0, n) + Pwe) (62)

Since usually Pwe � P(0, n),

Pret
∼= 1 − P(0, n) = 1 − (1 − p)n ∼= np (63)

2.11.3 ARQ Schemes

2.11.3.1 Stop and wait

The stop-and-wait scheme is such that the transmission of a block or word requires the reception
of an acknowledgement (ACK or NAK) of the previous word. The transmitter does not send
the following word until the present word has arrived. Figure 2.5 shows the operation of a
stop-and-wait ARQ scheme. This scheme requires storage of only one word at the transmitter,
which means that the transmitter buffer is of minimum size, but the stopping time D could be
very long, and it is related to the transmission delay of the system, td, where D ≥ 2td.

Transmitter Receiver

1

2

2

2

2

1

ACK

NAK

Figure 2.5 Stop-and-wait ARQ scheme
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ACK

NAK

Figure 2.6 A go-back-N ARQ scheme

2.11.3.2 Go-back N

The go-back-N scheme involves a continuous transmission of words. When the receiver sends
a NAK, the transmitter goes back to the corresponding word, stored in the transmitter buffer,
and restarts the transmission from that word. This requires the storage of N words in the
transmitter buffer, where N is determined by the round-trip delay of the system. The receiver
discards the N − 1 words received after detecting one with errors in spite of the possibility of
their being correctly received, in order to preserve the order of the word sequence. Thus the
receiver needs to store only one word. Figure 2.6 describes the process.

Figure 2.6 shows a go-back-N ARQ scheme with N = 2. Both the received word in which
errors have been detected and the one which follows it are discarded.

2.11.3.3 Selective repeat

The selective-repeat scheme is the most efficient ARQ scheme in terms of transmission rate,
but has the largest memory requirement. When a NAK arrives, the transmitter resends only
the corresponding word, and the order of correctly received words is then re-established at the
receiver. Figure 2.7 illustrates the selective-repeat ARQ scheme.

In order to properly analyse the overall code rate or efficiency, Rc, of these ARQ schemes,
it is necessary to take into account their statistics and delay times.

Transmitter Receiver
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1

4
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3

3

1
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3

ACK

ACK

ACK

ACK

NAK

Figure 2.7 Selective-repeat ARQ scheme
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2.11.4 ARQ Scheme Efficiencies

To determine the transmission efficiency of the ARQ transmission schemes, the effect of the
repetitions or retransmissions in each type of scheme needs to be evaluated.

In schemes based on the retransmission of single words (or blocks, packets or frames),
the total number of retransmissions is a random variable m determined by the retransmission
probability

P(m = 1) = 1 − Pret, P(m = 2) = Pret(1 − Pret), etc.

The average number of transmissions of a word in order for it to be accepted as correct is

m̄ = 1(1 − Pret) + 2Pret(1 − Pret) + 3P2
ret(1 − Pret) + · · ·

= (1 − Pret)(1 + 2Pret + 3P2
ret + · · · )

= 1

1 − Pret

(64)

On average the system must transmit nm̄ bits to send k message bits. The efficiency therefore
is

R
′
c = k

nm̄
= k

n
(1 − Pret) = k

n
(1 − p)n (65)

The transmission bit rate rb and r are related by

r = rb

R ′
c

(66)

The probability of error p is calculated using the appropriate expression [as in equation (57),
for example] with R

′
c instead of Rc.

The previous expressions apply to systems where single words are retransmitted. In the
form described by equations (65) and (66), they characterize the selective-repeat ARQ scheme.
However, in the case of the stop-and-wait scheme, the transmission rate is reduced by the factor

Tw

Tw+D , where D ≥ 2td. The duration td is the channel delay, and Tw is the duration of the word
or packet, and so

Tw = n

r
≤ k

rb

(67)

Therefore the efficiency of the stop-and-wait ARQ scheme is

R
′
c = k

n

(1 − Pret)

(1 + D/Tw)
≤

(
k

n

)
(1 − Pret)(
1 + 2tdrb

k

) (68)

The ratio D/Tw can be expressed as a function of fixed parameters of the system:

D

Tw

≥ 2tdrb

k
(69)
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A go-back-N ARQ scheme does not suffer from wasted transmitter stop times, but has to
restart transmission when there are errors. For this case the average number of transmissions
of a word is

m̄ = 1(1 − Pret) + (1 + N )Pret(1 − Pret) + (1 + 2N )P2
ret(1 − Pret) + · · ·

= (1 − Pret)[1 + Pret + P2
ret + P3

ret + · · · + NPret(1 + 2Pret + 3P2
ret + · · · )]

= (1 − Pret)

[
1

1 − Pret

+ NPret

(1 − Pret)
2

]
= 1 + NPret

1 − Pret

(70)

and so the transmission rate is modified by the factor

R
′
c = k

n

(1 − Pret)

(1 − Pret + NPret)
≤

(
k

n

)
(1 − Pret)(

1 − Pret + (
2tdrb

k

)
Pret

) (71)

which involves use of the expression

N ≥ 2td
Tw

(72)

Unlike in the case of a selective-repeat scheme, stop-and-wait and go-back-N schemes
exhibit transmission efficiencies that depend on the channel delay. Thus the efficiency R

′
c in

these latter cases is considered to be acceptable if 2tdrb � k. Even if 2tdrb > k, go-back-N
scheme operates better than stop-and-wait scheme if p is small.

Figure 2.8 shows the efficiencies relative to k/n of the three ARQ schemes. Selective repeat
is the most efficient, assuming infinite transmitter memory. Go-back N also has good efficiency
if the channel delay is not too large. Channel delay is seen to have a significant effect on the
efficiency of the stop-and-wait scheme, becoming unacceptably low if the delay is too long.
Selective repeat is the best option in scenarios where high-transmission rates over channels
with large delays is required [4].

2.11.5 Hybrid-ARQ Schemes

Up to now the characteristics of FEC and ARQ coding schemes have been described. Their
essential difference resides in the possibility of having or not a return link for the transmission of
ACK or NAK and to request a retransmission. From the operational point of view, FEC schemes
having a constant coding rate, but not a return link over which to request a retransmission,
must decode using only the received vector. As previously remarked, given a particular code
with minimum distance dmin, the number of errors it is capable of correcting, t = ⌊ dmin−1

2

⌋
, is

less than the number it is capable of detecting, l = dmin − 1. In terms of the most recent and
efficient coding techniques, like turbo and low-density parity check codes, it is necessary to
use relatively long block lengths in order to obtain efficient and powerful error correction, and
the complexity of the decoding operation is normally high.
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Probability p
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Efficiency
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td=10−2

Stop and
wait, td=1

Stop and wait,
td=10−1
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N=128, N=32 and
N=4 

Figure 2.8 Efficiency relative to k/n for stop-and-wait, go-back-N and selective-repeat ARQ schemes,

with rb = 262, k = 262, n = 524; N = 4, 32 and 128 (go-back N ); and for td = 10−2, 10−1 and 1 (stop

and wait)

On the other hand, ARQ systems have a coding rate that varies with the channel noise
conditions. In addition, even the detection of very few errors leads to a retransmission and
hence a loss of efficiency. In this sense, FEC systems maintain their code rate while cor-
recting small numbers of errors without needing retransmissions. However, there exists the
possibility of erroneous decoding if the number of errors exceeds the correction capability
of the code, and so the possibility of retransmission can lead to ARQ schemes being more
reliable.

Depending therefore on the state of the channel, one or other of the systems will be more
efficient. This suggests that where possible a combination of the two techniques might operate
more efficiently than either on its own. This combination of ARQ and FEC schemes is called
hybrid ARQ. Here the FEC is used to correct small numbers of errors, which also will normally
occur most often. Given that correction of only a small number of errors per word or packet is
intended, the corresponding code can be quite simple. The FEC attempts correction of a word,
and if the syndrome evaluated over the corrected word indicates that it is a valid codeword, then
it is accepted. If the syndrome indicates that errors are detected in the corrected word, then it
is highly likely that there were more errors in the received word than the FEC could correct,
and ARQ is used to ask for a retransmission.
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There are two forms of hybrid ARQ, called type 1 and type 2. Hybrid-ARQ type 1 is typically
based on a block code that is designed partly to correct a small number of errors and partly
to detect a large number of errors, as determined by the expression dmin ≥ l + λ + 1. So for
example a code with minimum distance dmin = 11 could be used to correct patterns of up to
λ = 3 errors, and also to detect any pattern of up to l = 7 errors. It should be remembered that
l > λ always applies in the above expression.

As will be seen in the following chapters, block codes can often be decoded by solving a
system of equations. Appropriate construction of the system of equations allows the number of
errors in correctable error patterns to be controlled, permitting correction of all patterns of up to
λ errors. The code can also have additional capability devoted to error detection. The decoder
therefore attempts to correct up to λ errors per block or packet, and recalculates the syndrome
vector of the decoded word. If the syndrome is equal to zero, the word is accepted, and if not,
a retransmission is requested. In general, compared to a purely ARQ scheme (non-hybrid), the
code rate Rc in a hybrid scheme will be less than that for a non-hybrid scheme. This reduces
the efficiency at low-error probabilities. However, at high-error probabilities the efficiency of
a non-hybrid scheme decreases more rapidly than that of a hybrid scheme as the error rate
increases.

Hybrid-ARQ-type 2 schemes generate an improvement in transmission efficiency by send-
ing parity bits for error correction only when they are needed. This technique involves two
kinds of codes, one a code C0(n, k) which has high rate and is used for error detection only,
and the other a 1/2-rate code C1(2k, k) which has the property that the information bits can
be obtained from the parity bits by a process of inversion, and for that reason it is called
an invertible code. In what follows, a codeword will be represented in its systematic form
as a vector where the parity bits are denoted as a function of the message (information)
bits:

c = ( f (m0, m1, . . . , mk−1), m0, m1, . . . , mk−1) = ( f (m), m)

The operation of the hybrid-ARQ-type 2 scheme can be seen in Figures 2.9 and 2.10. In these
figures the notation used is, for example, that c̃ = (

f̃ (m), m̃
)

is the received version (affected by
the channel and so possibly containing errors) of c = ( f (m), m). Also, f (m) is the redundancy
obtained using code C0, while q(m) is that using C1. The hybrid-ARQ-type 2 scheme operates
by repeatedly iterating between the two alternatives described in the flow charts of Figures 2.9
and 2.10, respectively. In this iteration the transmission or retransmission is affected by sending
the codeword produced by code C0 from the message itself, m, or by sending the redundancy
(parity bits) of the codeword produced by code C1, q(m), respectively. The receiver stores the
received versions of the message (information bits) or the redundancy (parity bits), respectively,
depending on which alternative is being carried out. Having the message bits and the parity
bits generated by code C1, the decoder in the receiver can apply error correction. As the
redundancy and the message have the same number of bits, the retransmission does not lead to
a loss of efficiency over a system that always retransmits the message m while also permitting
an additional decoding process for more effective overall error control. The process continues
until the message bits are correctly decoded. For more details of hybrid-ARQ schemes, and
particularly of the invertible codes used in type 2, the reader is referred to the book by Lin and
Costello [4].
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Figure 2.9 First alternative of the hybrid-ARQ-type 2 iterative scheme
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Figure 2.10 Second alternative of the hybrid-ARQ-type 2 iterative scheme
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Problems

2.1 For the triple repetition block code Cb(3, 1) generated by using the parity check
submatrix P = [1 1], construct the table of all the possible received vectors
and calculate the corresponding syndrome vectors S = r • HT to determine cor-
rectable and detectable error patterns, according to the error-correction capabil-
ity of the code.

2.2 The minimum Hamming distance of a block code is dmin = 11. Determine the
error-correction and error-detection capability of this code.

2.3 (a) Determine the minimum Hamming distance of a code of code length n that
should detect up to six errors and correct up to four errors per code vector,
in a transmission over a BSC. (b) If the same block code is used on a binary
erasure channel, how many erasures in a block can it detect, and how many can
it correct? (c) What is the minimum block length that a code with this minimum
Hamming distance can have?
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2.4 A binary block code has code vectors in systematic form as given in Table P.2.1.

Table P.2.1 A block code table

0 0 0 0 0 0

0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 1 1 0

1 1 0 0 0 1

1 0 1 1 0 1

0 1 1 0 1 1

0 0 0 1 1 1

(a) What is the rate of the code?
(b) Write down the generator and parity check matrices of this code in systematic

form.
(c) What is the minimum Hamming distance of the code?
(d) How many errors can it correct, and how many can it detect?
(e) Compute the syndrome vector for the received vector r = (101011) and

hence find the location of any error.

2.5 (a) Construct a linear block code Cb(5, 2), maximizing its minimum Hamming
distance.

(b) Determine the generator and parity check matrices of this code.

2.6 A binary linear block code has the following generator matrix in systematic form:

G =
⎡⎣1 1 0 1 1 0 0 1 1 0 1 0 0

1 0 1 1 0 1 0 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 1

⎤⎦
(a) Find the parity check matrix H and hence write down the parity check equa-

tions.
(b) Find the minimum Hamming distance of the code.

2.7 The generator matrix of a binary linear block code is given below:

G =
[
1 1 0 0 1 1 1 0
0 0 1 1 1 1 0 1

]

(a) Write down the parity check equations of the code.
(b) Determine the code rate and minimum Hamming distance.
(c) If the error rate at the input of the decoder is 10−3, estimate the error rate at

the output of the decoder.
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2.8 The Hamming block code Cb(15, 11) has the following parity check submatrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Construct the parity check matrix of the code.
(b) Construct the error pattern syndrome table.
(c) Apply syndrome decoding to the received vector r = (011111001011011).

2.9 A binary Hamming single-error-correcting code has length n = 10. What is
(a) the number of information digits k;
(b) the number of parity check digits n − k;
(c) the rate of the code;
(d) the parity check equation;
(e) the code vector if all the information digits are ‘1’s and
(f) the syndrome if an error occurs at the seventh digit of a code vector?

2.10 Random errors with probability p = 10−3 on a BSC are to be corrected by a
random-error-control block code with n = 15, k = 11 and dmin = 3. What is the
overall throughput rate and block error probability after decoding, when the code
is used
(a) in FEC mode and
(b) in retransmission error correction (ARQ) mode?

2.11 An FEC scheme operates on an AWGN channel and it should perform with a
bit error rate Pbe < 10−4, using the minimum transmitted power. Options for this
scheme are the block codes as given in Table P.2.2.

Table P.2.2 Options for Problem 2.11

n k dmin

31 26 3

31 21 5

31 16 7

(a) Determine the best option if minimum transmitted power is required.
(b) Calculate the coding gain at the desired Pbe with respect to uncoded trans-

mission.
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2.12 An ARQ scheme operates on an AWGN channel and it should perform with a
bit error rate Pbe < 10−5. Options for this scheme are the block codes as given
in Table P.2.3.
(a) Determine for each case the required value of r b/r .
(b) Determine for each case the required value of Eb/N0.

Table P.2.3 Options for Problem 2.12

n k dmin

12 11 2

15 11 3

16 11 4

2.13 Show that the generator matrix of a linear block error-correcting code can be
derived from the parity check equations of the code.

�
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3
Cyclic Codes

Cyclic codes are an important class of linear block codes, characterized by the fact of being
easily implemented using sequential logic or shift registers.

3.1 Description

For a given vector of n components, c = (c0, c1, . . . , cn−1), a right-shift rotation of its compo-
nents generates a different vector. If this right-shift rotation is done i times, a cyclically rotated
version of the original vector is obtained as follows:

c(i) = (cn−i , cn−i+1, . . . , cn−1, c0, c1, . . . , cn−i−1)

A given linear block code is said to be cyclic if for each of its code vectors the i th cyclic
rotation is also a code vector of the same code [1–3]. Also, remember that being a linear block
code, the sum of any two code vectors of a cyclic code is also a code vector. As an example,
the linear block code Cb(7, 4) described in Chapter 2 is also a cyclic linear block code.

3.2 Polynomial Representation of Codewords

Codewords of a given cyclic code Ccyc(n, k) can be represented by polynomials. These poly-
nomials are defined over a Galois field GF(2m), being of particular interest those defined over
the binary field GF(2).

A polynomial is an expression in a variable X , constituted of terms of the form ci Xi , where
the coefficients ci belong to the field GF(2m) over which the polynomial is defined, and the
exponent i is an integer number that corresponds to the position of the coefficient or element in
a given code vector. A polynomial representation c(X ) of a code vector c = (c0, c1, . . . , cn−1)
is then of the form

c(X ) = c0 + c1 X + · · · + cn−1 Xn−1 ci ∈ GF(2m) (1)

Operations with polynomials defined over a given field are the same as usual, but following
the operation rules defined over that field. If cn−1 = 1, the polynomial is called monic. In

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
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the case of polynomials defined over the binary field GF(2), the operations are addition and
multiplication modulo 2, described in the previous chapter. The addition of two polynomials
defined over GF(2), c1(X ) and c2(X ), is therefore the modulo-2 addition of the coefficients
corresponding to the same term Xi , that is, those with the same exponent (or at the same
position in the code vector). If

c1(X ) = c01 + c11 X + · · · + cn−1,1 Xn−1

and

c2(X ) = c02 + c12 X + · · · + cn−1,2 Xn−1 (2)

then the addition of these two polynomials is equal to

c1(X ) ⊕ c2(X ) = c01 ⊕ c02 + (c11 ⊕ c12) X + · · · + (
cn−1,1 ⊕ cn−1,2

)
Xn−1 (3)

In this case, the degree of the polynomial, which is the highest value of the exponent over
the variable X , is n − 1. However the addition of any two polynomials can also be calculated
using expression (3) even when the degrees of the polynomials are not the same.

The multiplication of two polynomials is done using multiplication and addition modulo 2.
The multiplication of polynomials c1(X ) and c2(X ), c1(X ) • c2(X ), is calculated as

c1(X ) • c2(X ) = c01 • c02 + (c01 • c12 ⊕ c02 • c11) X + · · · + (
cn−1,1 • cn−1,2

)
X2(n−1)

(4)

Operations in expressions (3) and (4) are all additions and multiplications modulo 2. Addition
and multiplication of polynomials obey the commutative, associative and distributive laws.

It is also possible to define division of polynomials. Let c1(X ) and c2(X ) be two polynomials
defined over the binary field, both of the form of equation (2), and where c2(X ) �= 0, a non-zero
polynomial. The division operation between these two polynomials is defined by the existence
of two unique polynomials of the same binary field q(X ) and r (X ), called the quotient and the
remainder, respectively, which fit the following equation:

c1(X ) = q(X ) • c2(X ) ⊕ r (X ) (5)

Additional properties of polynomials defined over the Galois field GF(2m) can be found in
Appendix B.

In the following, and for notational simplicity, addition and multiplication will be denoted
by ‘+’ and ‘.’, instead of being denoted by the modulo-2 operation symbols ‘⊕’ and ‘•’.

The polynomial description defined over a given Galois field, and, in particular, when it is the
binary field, allows us a more suitable analysis of a cyclic code Ccyc(n, k). In this polynomial
representation, the variable X is used in its exponential form X j , where j identifies the position
of ‘1’s in the code vector equivalent to the polynomial. This is the same as saying that if the
term X j exists in the polynomial corresponding to a given code vector, there is a one ‘1’ in
position j of that code vector or codeword, while if it does not exist, this position is occupied by
a zero ‘0’. Therefore, the polynomial expression c(X ) of a code vector c = (c0, c1, . . . , cn−1)
is of the form of equation (1)

c(X ) = c0 + c1 X + · · · + cn−1 Xn−1
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Thus, a polynomial for a code vector of n components is a polynomial of degree n − 1
or less. Codewords of a given cyclic code Ccyc(n, k) will be equivalently referred to as code
vectors or code polynomials.

3.3 Generator Polynomial of a Cyclic Code

The i-position right-shift rotation of a code vector c has the following polynomial expression:

c(i)(X ) = cn−i + cn−i+1 X + · · · + cn−i−1 Xn−1 (6)

The relationship between the i-position right-shift rotated polynomial c(i)(X ) and the original
code polynomial c(X ) is of the form

Xi c(X ) = q(X )(Xn + 1) + c(i)(X ) (7)

The polynomial expression for the i-position right-shift rotated polynomial c(i)(X ) of the
original code polynomial c(X ) is then equal to

c(i)(X ) = Xi c(X ) mod (Xn + 1) (8)

Mod is the modulo operation defined now over polynomials; that is, it is calculated by taking
the remainder of the division of Xi c(X ) and Xn + 1.

Among all the code polynomials of a given cyclic code Ccyc(n, k), there will be a certain
polynomial of minimum degree [1]. This polynomial will have minimum degree r , so that in
its polynomial expression the term of the form Xr will exist; that is, the coefficient cr will
be equal to ‘1’. Therefore, this polynomial will be of the form g(X ) = g0 + g1 X + · · · + Xr .
If there is another polynomial with minimum degree, this polynomial would be of the form
g1(X ) = g10 + g11 X + · · · + Xr . However, because the cyclic code Ccyc(n, k) is a linear block
code, the sum of these two code polynomials should belong to the code, and this sum will
end up being a polynomial of degree (r − 1), which contradicts the initial assumption that
the minimum possible degree is r . Therefore, the non-zero minimum-degree code polynomial
of a given cyclic code Ccyc(n, k) is unique. It is possible to demonstrate that in the non-zero
minimum-degree polynomial of a given cyclic code Ccyc(n, k), g0 = 1. Then, the expression
for such a non-zero minimum-degree polynomial of a given cyclic code Ccyc(n, k) is

g(X ) = 1 + g1 X + · · · + gr−1 Xr−1 + Xr (9)

On the other hand, polynomials of the form Xg(X ), X2g(X ), . . . , Xn−r−1g(X ) are all poly-
nomials of degree less than n, and so by using expression (7) to express Xi g(X ), it can be seen
that division of each of these polynomials by the polynomial Xn + 1 will result in a quotient
equal to zero, q(X ) = 0, which means that

Xg(X ) = g(1)(X )
X2g(X ) = g(2)(X )
...
X (n−r−1)g(X ) = g(n−r−1)(X )

(10)
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So these polynomials are right-shift rotations of the minimum-degree polynomial, and are also
code polynomials. Since a cyclic code Ccyc(n, k) is also a linear block code, linear combinations
of code polynomials are also code polynomials, and therefore

c(X ) = m0g(X ) + m1 Xg(X ) + · · · + mn−r−1 Xn−r−1g(X )

c(X ) = (
m0 + m1 X + · · · + mn−r−1 Xn−r−1

)
g(X ) (11)

In expression (11), g(X ) is the non-zero minimum-degree polynomial of the cyclic code
Ccyc(n, k), described in equation (9). Expression (11) determines that a code polynomial c(X )
is a multiple of the non-zero minimum-degree polynomial g(X ). This property is very useful
for the encoding and decoding of a cyclic code Ccyc(n, k). Coefficients mi , i = 0, 1, 2, . . . ,

n − r − 1, in expression (11) are elements of GF(2); that is, they are equal to zero or one. Then
there will be 2n−r polynomials of degree n − 1 or less that are multiples of g(X ). These are
all the possible linear combinations of the initial set of code polynomials so that they form a
cyclic code Ccyc(n, k). For a bijective assignment between the message and the coded vector
spaces, there should be 2k possible linear combinations. Therefore, 2n−r = 2k or r = n − k.
In other words, r , the degree of the non-zero minimum-degree polynomial, is also the number
of redundancy bits the code adds to the message vector.

The non-zero minimum-degree polynomial is then of the form

g(X ) = 1 + g1 X + · · · + gn−k−1 Xn−k−1 + Xn−k (12)

Summarizing, in a linear cyclic code Ccyc(n, k), there is a unique non-zero minimum-degree
code polynomial, and any other code polynomial is a multiple of this polynomial.

The non-zero minimum-degree polynomial is of degree r , and any other code polynomial
of the linear cyclic code Ccyc(n, k) is of degree n − 1 or less, and so

c(X ) = m(X )g(X ) = (
m0 + m1 X + · · · + mk−1 Xk−1

)
g(X ) (13)

where mi , i = 0, 1, 2, . . . , k − 1, are the bits of the message vector to be encoded. Since the
non-zero minimum-degree code polynomial completely determines and generates the linear
cyclic code Ccyc(n, k), it is called the generator polynomial.

Example 3.1: Determine the code vectors corresponding to the message vectors m0 =
(0000), m1 = (1000), m2 = (0100) and m3 = (1100) of the linear cyclic code Ccyc(7, 4) gen-
erated by the generator polynomial g(X ) = 1 + X + X3.

The corresponding code vectors and code polynomials are listed in Table 3.1.

Table 3.1 Code polynomials of a linear cyclic code Ccyc(7, 4)

Message m Code vectors c Code polynomials c(X )

0000 0000000 0 = 0g(X )

1000 1101000 1 + X + X 3 = 1g(X )

0100 0110100 X + X 2 + X 4 = Xg(X )

1100 1011100 1 + X 2 + X 3 + X 4 = (1 + X )g(X )
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There are two important relationships between the generator polynomial g(X ) and the
polynomial Xn + 1. The first one is that if g(X ) is a generator polynomial of a given linear
cyclic code Ccyc(n, k), then g(X ) is a factor of Xn + 1.

The demonstration of this is as follows: If the generator polynomial of degree r is multiplied
by Xk , it converts into a polynomial of degree n, because n = k + r . By applying equation
(8), and dividing Xk g(X ) by Xn + 1, the quotient q(X ) is equal to one, because these are two
monic polynomials of the same degree. Thus

Xk g(X ) = (Xn + 1) + g(k)(X ) = (Xn + 1) + a(X )g(X )(
Xk + a(X )

)
g(X ) = (Xn + 1) (14)

since g(k)(X ) is a code polynomial as it is a kth right-shift rotation of g(X ). Thus, g(X ) is a
factor of Xn + 1.

The same can be stated in reverse; that is, if a polynomial of degree r = n − k is a factor of
Xn + 1, then this polynomial generates a linear cyclic code Ccyc(n, k).

Any polynomial factor of Xn + 1 can generate a linear cyclic code Ccyc(n, k).

3.4 Cyclic Codes in Systematic Form

So far, the encoding procedure for a linear cyclic code Ccyc(n, k) has been introduced as a
multiplication between the message polynomial m(X ) and the generator polynomial g(X ), and
this operation is sufficient to generate any code polynomial of the code. However, this encoding
procedure is essentially non-systematic. Given a polynomial that fits the conditions for being
the generator polynomial of a linear cyclic code Ccyc(n, k), and if the message polynomial is
of the form

m(X ) = m0 + m1 X + · · · + mk−1 Xk−1 (15)

then the systematic version of the linear cyclic code Ccyc(n, k) can be obtained by performing
the following operations [1–3]:

The polynomial Xn−km(X ) = m0 Xn−k + m1 Xn−k+1 + · · · + mk−1 Xn−1 is first formed, and
then divided by the generator polynomial g(X ):

Xn−km(X ) = q(X )g(X ) + p(X ) (16)

Here p(X ) is the remainder polynomial of the division of equation (16), which has degree
n − k − 1 or less, since the degree of g(X ) is n − k. By reordering equation (16), we obtain

Xn−km(X ) + p(X ) = q(X )g(X )

where it is seen that the polynomial Xn−km(X ) + p(X ) is a code polynomial because it is a
factor of g(X ). In this polynomial, the term Xn−km(X ) represents the message polynomial right-
shifted n − k positions, whereas p(X ) is the remainder polynomial of this division and acts as
the redundancy polynomial, occupying the lower degree terms of the polynomial expression
in X . This procedure allows the code polynomial to adopt the systematic form

c(X ) = Xn−km(X ) + p(X )

= p0 + p1 X + · · · + pn−k−1 Xn−k−1 + m0 Xn−k + m1 Xn−k+1 + · · · + mk−1 Xn−1

(17)
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that when expressed as a code vector is equal to

c = (p0, p1, . . . , pn−k−1, m0, m1, . . . , mk−1) (18)

Example 3.2: For the linear cyclic code Ccyc(7, 4) generated by the generator polynomial
g(X ) = 1 + X + X3, determine the systematic form of the codeword corresponding to the
message vector m = (1010).

The message polynomial is m(X ) = 1 + X2, and as n − k = 7 − 4 = 3, the polynomial
X3m(X ) = X3 + X5 is calculated. The polynomial division is done as follows:

X5 + X3 | X3 + X + 1
X5 + X3 + X2 X2

− − − − − − −
X2 = p(X )

Then

c(X ) = p(X ) + X3m(X ) = X2 + X3 + X5

and so

c = (0011010)

Table 3.2 shows the linear cyclic code Ccyc(7, 4) generated by the polynomial g(X ) =
1 + X + X3, which is the same as that introduced in Chapter 2 as the linear block code Cb(7, 4).

Table 3.2 Linear cyclic code Ccyc(7, 4)

generated by the polynomial

g(X ) = 1 + X + X 3

Message m Code vector c

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1

0 0 1 0 1 1 1 0 0 1 0

0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 0 1 1 0 1 0 0

0 1 0 1 1 1 0 0 1 0 1

0 1 1 0 1 0 0 0 1 1 0

0 1 1 1 0 0 1 0 1 1 1

1 0 0 0 1 1 0 1 0 0 0

1 0 0 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 1 0

1 0 1 1 1 0 0 1 0 1 1

1 1 0 0 1 0 1 1 1 0 0

1 1 0 1 0 0 0 1 1 0 1

1 1 1 0 0 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1
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3.5 Generator Matrix of a Cyclic Code

As seen in previous sections, a linear cyclic code Ccyc(n, k) generated by the generator polyno-
mial g(X ) = 1 + g1 X + · · · + gn−k−1 Xn−k−1 + Xn−k is spanned by the k code polynomials,
g(X ), Xg(X ), . . . , Xn−k g(X ), which can be represented as row vectors of a generator matrix
of dimension k × n:

G =

⎡⎢⎢⎢⎢⎣
g0 g1 g2 · · · gn−k 0 0 · · · 0

0 g0 g1 · · · gn−k−1 gn−k 0 · · · 0

...
...

...
...

...

0 0 · · · g0 g1 g2 · · · gn−k

⎤⎥⎥⎥⎥⎦ (19)

where g0 = gn−k = 1.

This generator matrix is not of systematic form. In general, and by operating over the rows
of this matrix, a systematic form generator matrix can be obtained.

Example 3.3: For the linear cyclic code Ccyc(7, 4) generated by the polynomial g(X ) =
1 + X + X3, determine the corresponding generator matrix and then convert it into a systematic
generator matrix.

In this case the matrix is of the form

G =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤⎥⎥⎦
Linear row operations over this matrix can be carried out to obtain a systematic form of the

generator matrix. These row operations are additions and multiplications in the binary field
GF(2). Thus, and by replacing the third row by the addition of the first and third rows, the
matrix becomes

G ′ =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
0 0 0 1 1 0 1

⎤⎥⎥⎦
And replacing the fourth row by the addition of the first, second and fourth rows, the matrix
becomes

G
′′ =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
This last modified matrix G

′′
generates the same code as that of the generator matrix G, but the

assignment between the message and the code vector spaces is different in each case. Observe
that the modified and systematic generator matrix G

′′
is the same as that of the linear block

code Cb(7, 4) introduced in Chapter 2.
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Summarizing, the systematic form of a linear cyclic code Ccyc(n, k) and its corresponding
expressions are obtained by calculating the following:

The polynomial Xn−k+i , i = 0, 1, 2, . . . , k − 1, is divided by the generator polynomial
g(X ):

Xn−k+i = qi (X )g(X ) + pi (X ) (20)

where pi (X ) is the remainder of the division and

pi (X ) = pi0 + pi1 X + · · · + pi,n−k−1 Xn−k−1 (21)

Since Xn−k+i + pi (X ) = qi (X )g(X ) is multiple of g(X ), it is a code polynomial. Its coeffi-
cients can be ordered into a matrix

G =

⎡⎢⎢⎢⎢⎣
p00 p01 · · · p0,n−k−1 1 0 0 · · · 0

p10 p11 · · · p1,n−k−1 0 1 0 · · · 0

...
... · · · ...

...
...

... · · · ...

pk−1,0 pk−1,1 · · · pk−1,n−k−1 0 0 0 · · · 1

⎤⎥⎥⎥⎥⎦ (22)

This matrix is a generator matrix for the linear cyclic code Ccyc(n, k) in systematic form.
Similarly, the corresponding parity check matrix H can also be found as follows:

H =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0 0 p00 p10 · · · pk−1,0

0 1 · · · 0 0 p01 p11 · · · pk−1,1

...
...

...
...

...
...

...

0 0 · · · 0 1 p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1

⎤⎥⎥⎥⎥⎦ (23)

Example 3.4: The polynomial X7 + 1 can be factorized as follows:

X7 + 1 = (1 + X )(1 + X + X3)(1 + X2 + X3)

Since n = 7, both the polynomials g2(X ) = 1 + X + X3 and g3(X ) = 1 + X2 + X3, which
are of degree r = n − k = 3, generate cyclic codes Ccyc(7, 4). In the same way, the polynomial
g4(X ) = (1 + X )(1 + X + X3) = 1 + X2 + X3 + X4 generates a cyclic code Ccyc(7, 3).

The decomposition into factors of X7 + 1 is unique, and is of the form seen above, so that
the different cyclic codes of length n = 7 can be identified and generated.

The cyclic code generated by the polynomial g1(X ) = 1 + X is a linear block code of even
parity. This is because its generator matrix is of the form

G1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦



OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 89

which can be converted by Gaussian elimination (the general form of the process introduced
in Example 3.3) into a matrix of systematic form

G ′
1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
where it is seen that the sum of any number of rows results in a codeword with an even number
of ‘1’s.

The generator polynomial g2(X ) = 1 + X + X3 corresponds to a cyclic Hamming code,
as introduced in Example 3.2. The generator polynomial g3(X ) = 1 + X2 + X3 is also the
generator polynomial of a cyclic Hamming code whose generator matrix in systematic form
is equal to

G ′
3 =

⎡⎢⎢⎣
1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1

⎤⎥⎥⎦
In this generator matrix, the submatrix P has at least two ‘1’s in each row, which makes it a
generator matrix of a Hamming code Cb(7, 4).

Both the generator polynomials g4(X ) = (1 + X )(1 + X + X3) = 1 + X2 + X3 + X4 and
g5(X ) = (1 + X )(1 + X2 + X3) = 1 + X + X2 + X4 generate cyclic codes Ccyc(7, 3).

Finally, the generator polynomial g6(X ) = (1 + X + X3)(1 + X2 + X3) = 1 + X + X2 +
X3 + X4 + X5 + X6 corresponds to a repetition code Ccyc(7, 1) with a generator matrix of
the form

G7 = [
1 1 1 1 1 1 1

]
3.6 Syndrome Calculation and Error Detection

As defined in Chapter 2 for block codes, the received vector, which is the transmitted vector
containing possible errors, is r = (r0, r1, . . . , rn−1). This is a vector with elements of the
Galois field GF(2), which can also have a polynomial representation

r (X ) = r0 + r1 X + r2 X2 + · · · + rn−1 Xn−1 (24)

Dividing this polynomial by g(X ) gives

r (X ) = q(X )g(X ) + S(X ) (25)

where the remainder of this division is a polynomial of degree n − k − 1 or less. Since a
code polynomial is a multiple of g(X ), then if the remainder of the division (25) is zero, the
received polynomial is a code polynomial. If the division (25) has a non-zero polynomial as
the remainder, then the procedure detects a polynomial that does not belong to the code. The
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syndrome vector is again a vector of n − k components that are at the same time the coefficients
of the polynomial S(X ) = s0 + s1 X + · · · + sn−k−1 Xn−k−1.

The following theorem can be stated for the syndrome polynomial:

Theorem 3.1: If the received polynomial r (X ) = r0 + r1 X + r2 X2 + · · · + rn−1 Xn−1 gener-
ates the syndrome polynomial S(X ), then a cyclic shift (rotation) of the received polynomial
r (1)(X ) generates the syndrome polynomial S(1)(X ).

From equation (7),

Xr (X ) = rn−1(Xn + 1) + r (1)(X ) (26)

or

r (1)(X ) = rn−1(Xn + 1) + Xr (X ) (27)

If this expression is divided by g(X ),

f (X )g(X ) + t(X ) = rn−1g(X )h(X ) + X [q(X )g(X ) + S(X )] (28)

where t(X ) is the syndrome polynomial of r (1)(X ). Reordering this equation, we get

X S(X ) = [ f (X ) + rn−1h(X ) + Xq(X )] g(X ) + t(X ) (29)

which means that t(X ) is the remainder of the division of XS(X ) by g(X ), and so t(X ) =
S(1)(X ). This procedure can be extended by induction in order to determine that S(i)(X ) is the
syndrome polynomial of r (i)(X ).

As in the case of any block code, if c(X ) = c0 + c1 X + · · · + cn−1 Xn−1 is a code polynomial
and e(X ) = e0 + e1 X + · · · + en−1 Xn−1 is the error pattern in polynomial form, then

r (X ) = c(X ) + e(X ) = q(X )g(X ) + S(X ) (30)

and

e(X ) = c(X ) + q(X )g(X ) + S(X )

= f (X )g(X ) + q(X )g(X ) + S(X ) (31)

= [ f (X ) + q(X )] g(X ) + S(X )

If the received polynomial r (X ) is divided by the generator polynomial g(X ), the remainder
obtained by this operation is the corresponding syndrome polynomial S(X ).

3.7 Decoding of Cyclic Codes

The decoding of cyclic codes can be implemented in the same way as for block codes. A
table S → e identifying the relationship between the syndromes and the error patterns can be
constructed first, and then the syndrome polynomial is evaluated for the received polynomial
r (X ) by dividing this polynomial by the generator polynomial g(X ) to obtain the syndrome
polynomial. The constructed table allows us to identify the error pattern that corresponds to
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Table 3.3 Single error patterns and their syndromes for the cyclic linear block code Ccyc(7, 4)

Error patterns (polynomial form) Syndrome polynomials Vector Form

e6(X ) = X 6 S(X ) = 1 + X 2 101

e5(X ) = X 5 S(X ) = 1 + X + X 2 111

e4(X ) = X 4 S(X ) = X + X 2 011

e3(X ) = X 3 S(X ) = 1 + X 110

e2(X ) = X 2 S(X ) = X 2 001

e1(X ) = X 1 S(X ) = X 010

e6(X ) = X 0 S(X ) = 1 100

the calculated syndrome, according to equation (31). The following is an example based on
the cyclic code Ccyc(7, 4).

Example 3.5: The cyclic linear block code Ccyc(7, 4) generated by the polynomial g(X ) =
1 + X + X3, which has a minimum Hamming distance dmin = 3, can correct any single error
pattern. There are seven patterns of this kind. Table 3.3 shows single error patterns and their
corresponding syndromes for this cyclic linear block code. The all-zero pattern corresponds
to the decoding of a code polynomial (i.e., the no-error case).

As in the block code case, once the syndrome has been calculated and the corresponding
error pattern found from the table, then the error-correction procedure is to add the error
pattern to the received vector. Of course, if an error-pattern polynomial has the form of a code
polynomial, then it will be undetectable and therefore uncorrectable, as both the syndrome and
the error pattern will be null vectors.

Theorem 3.1 is the basis of several other decoding algorithms for cyclic codes [1]. One
of them is the Meggitt algorithm [5]. This decoder is based on the relationship between the
cyclically shifted versions of a given codeword and their corresponding shifts in the received
vector. It operates in a bit-by-bit mode, so that it first determines if the most significant bit
contains an error or not, and then cyclically shifts the received vector and the correspond-
ing syndrome in order to analyse the following bits of the received vector. The algorithm
decides whether the most significant bit contains an error, or not, by determining if the syn-
drome evaluated over the received polynomial corresponds to a syndrome for the error pattern
with an error in the most significant bit. If this is the case, the algorithm changes that bit,
and then accordingly modifies the corresponding syndrome. By continuing to cyclically shift
the modified received vector and syndrome, errors will be corrected as they are shifted into
the most significant position. The algorithm accepts the received vector or polynomial as a
code vector or polynomial if at the end of all the modifications the final version of the syndrome
polynomial is the zero polynomial. Since the decoder operates only on the most significant
bit, it is necessary to store only the syndromes corresponding to errors in that bit (as well as in
other bits if correcting multiple errors), thus reducing the size of the table S → e.

As a result of this interesting property, which allows the cyclic decoding to be performed in
a bit-by-bit mode, and with cyclic shifts of the received vector, cyclic codes are particularly
useful for the correction of burst errors, either clustered within a given code vector or affecting
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the first and the final parts of a code vector. In this case the error pattern is of the form
e(X ) = X j B(X ), where 0 ≤ j ≤ n − 1, and B(X ) is a polynomial of degree equal to or less
than n − k − 1, which will not contain g(X ) as a factor.

A modification of the Meggitt decoder is the error-trapping decoder. This algorithm is
particularly efficient in the correction of single error patterns, double error patterns in some
codes and burst errors. Its efficiency falls for other error patterns. The error-trapping decoder
can be applied to error patterns with certain properties, such as a sequence of n − k bits or
less placed the most significant positions of the received vector. In this case it is possible to
show that the error polynomial e(X ) is equal to Xk S(n−k)(X ), where S(n−k)(X ) is the syndrome
polynomial of the received polynomial r (X ) shifted by n − k positions. This property makes
easier the correction of such an error pattern, because it is necessary to calculate only S(n−k)(X )
and then add Xk S(n−k)(X ) to r (X ) . In the same way, it is possible to perform the decoding
of error patterns of size n − k or less even when they do not occur in the most significant
positions of the code vector, hence the name of the error-trapping algorithm. It can be shown
that, for a given cyclic code, capable of correcting error patterns of t random errors or less,
error-trapping happens if the weight of the syndrome vector is less than or equal to t . Details
of this algorithm can be found in [1].

3.8 An Application Example: Cyclic Redundancy Check Code
for the Ethernet Standard

One of the most interesting applications of cyclic codes is the cyclic redundancy check (CRC)
code utilized in the Ethernet protocol. The redundancy calculated by the systematic procedure
of cyclic coding is placed in the so-called frame check sequence (FCS) field, which follows
the data block in the data frame of that protocol. The cyclic code used in this case is a cyclic
code that adds 32 redundancy bits, and its corresponding polynomial generator is

g(X ) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1

One interesting property of cyclic block codes is that the number of parity check bits the
code adds to the message vector is equal to the degree of the generator polynomial. Thus,
and independently of the size of the data packet to be transmitted, the CRC for the standard
Ethernet, for instance, always adds 32 bits of redundancy.

In the case of the standard protocol Ethernet, the data packet size varies from k = 512
to k = 12,144 bits. The k information bits are the first part of the whole message, and are
considered as a polynomial m(X ), which is followed by the n − k = 32 redundancy bits that
result from the division of the shifted message polynomial Xn−km(X ) by g(X ). The receiver
does the same operation on the message bits, so that if the redundancy calculated at the
receiver is equal to the redundancy sent in the FCS, then the packet is accepted as a valid one.
A retransmission of the packet is required if the recalculated redundancy is different from the
contents of the FCS.

Consider a simple example of this procedure, using the cyclic block code Ccyc(7, 4) in-
troduced in Example 3.3. Assume that the message m = (1010) has to be transmitted. After
encoding this message, the resulting code vector is c = (0011010), where the redundancy is in
bold. One way of performing the decoding of this code vector is to recalculate at the receiver
the redundancy obtained by encoding the message vector m = (1010), and by verifying that
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Table 3.4 Minimum Hamming distance for different packet

configurations in the standard protocol Ethernet

Code length n Minimum Hamming distance dmin

3007–12,144 4

301–3006 5

204–300 6

124–203 7

90–123 8

this redundancy is equal to (001). An equivalent decoding method consists of evaluating the
syndrome vector over the whole code vector c = (0011010), in order to verify if this syndrome
vector is the all- zero vector. In the case of the Ethernet protocol, the decoding is performed
as in the former case.

The code length can be variable in the Ethernet protocol, as we have seen. This makes the
error-detection capability also variable with the code length. In [6] the values of the minimum
Hamming distance as a function of the code length are presented, in the case of the standard
Ethernet protocol. Table 3.4 determines the minimum Hamming distance as a function of the
code length.

This means that, depending on the packet length, three to seven random errors will always
be detectable, as well as certain patterns of much larger numbers of random errors and many
burst error patterns (in fact, any error pattern which is not a codeword).
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Problems

3.1 Determine if the polynomial 1 + X + X 3 + X 4 is a generator polynomial of a
binary linear cyclic block code with code length n ≤ 7.

3.2 Verify that the generator polynomial g(X) = 1 + X + X 2 + X 3 generates a binary
cyclic code Ccyc(8, 5) and determine the code polynomial for the message vector
m = (10101) in systematic form.

3.3 A binary linear cyclic code Ccyc(n, k) has code length n = 7 and generator poly-
nomial g(X) = 1 + X 2 + X 3 + X 4.
(a) Find the code rate, the generator and parity check matrices of the code in

systematic form, and its Hamming distance.
(b) If all the information symbols are ‘1’s, what is the corresponding code vector?
(c) Find the syndrome corresponding to an error in the first information symbol,

and show that the code is capable of correcting this error.

3.4 Define what is meant by a cyclic error-control code.

3.5 A binary linear cyclic block code Ccyc(n, k) has code length n = 14 and generator
polynomial g(X) = 1 + X 3 + X 4 + X 5.
(a) If all the information symbols are ‘1’s, what is the corresponding code vector?
(b) Find the syndrome corresponding to an error in the last information symbol.

Is this code capable of correcting this error?
(c) Can cyclic codes be non-linear?

3.6 (a) Determine the table of code vectors of the binary linear cyclic block code
Ccyc(6, 2) generated by the polynomial g(X) = 1 + X + X 3 + X 4.

(b) Calculate the minimum Hamming distance of the code, and its error-
correction capability.
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3.7 A binary linear cyclic block code with a code length of n = 14 has the generator
polynomial g(X) = 1 + X 2 + X 6.
(a) Determine the number of information and parity check bits in each code

vector.
(b) Determine the number of code vectors in the code.
(c) Determine the generator and parity check matrices of the code.
(d) Determine the minimum Hamming distance of the code.
(e) Determine the burst error-correction capability of the code.
(f) Describe briefly how to encode and decode this code.

3.8 For a given binary linear cyclic block code Ccyc(15, 11) generated by the poly-
nomial g(X) = 1 + X + X 4,
(a) determine the code vector in systematic form of the message vector m =

(11001101011) and
(b) decode the received vector r = (000010001101011).

�
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4
BCH Codes

BCH (Bose, Chaudhuri [1], Hocquenghem [2]) codes are a class of linear and cyclic block
codes that can be considered as a generalization of the Hamming codes, as they can be designed
for any value of the error-correction capability t . These codes are defined in the binary field
GF(2), and also in their non-binary version, over the Galois field GF(q). Included in this latter
case is the most relevant family of non-binary codes, which is the family of Reed–Solomon
codes [3], to be presented in Chapter 5.

4.1 Introduction: The Minimal Polynomial

As seen in the previous chapter, cyclic codes are linear block codes with the special property that
cyclically shifted versions of code vectors are also code vectors. As a special case introduced
as an example of a linear block code, the Hamming code Ccyc(7, 4) has also been shown to be
a cyclic code generated by the generator polynomial g(X ) = 1 + X + X3.

Cyclic codes have the property that the code vectors are generated by multiplying the
message polynomial m(X ) by the generator polynomial g(X ). In fact, in the non-systematic
form the message polynomial m(X ) is multiplied by the generator polynomial g(X ), and in
the systematic form there is an equivalent polynomial q(X ) that is multiplied by the generator
polynomial g(X ). Being a polynomial, g(X ) has to have roots that are in number equal to its
degree. A generator polynomial with coefficients over GF(2) need not have all of its roots
belonging to this field, as some of the roots can be elements of the extended field GF(2m). This
concept is described and clarified in Appendix B, in which an example of the extended field
GF(23) = GF(8) is introduced.

As an example, the Hamming code Ccyc(7, 4) introduced in Chapters 2 and 3 is analysed
here, in order to see which are the roots of its generator polynomial g(X ) = g1(X ). Since any
code vector is generated by multiplying a given message vector by this generator polynomial,
any code vector, seen as a code polynomial, will have at least the same roots as this generator
polynomial, g(X ) = g1(X ). This allows us to construct a system of syndrome equations, as
the roots of the code polynomials are known. Taking into account the example in Table B.3
of Appendix B, for the case of the extended Galois field GF(8), it is seen that α, which is a
primitive element of that field, is also a root of the primitive polynomial p(X ) = 1 + X + X3,

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
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which should not be confused with the generator polynomial of the code under analysis, g1(X ).
However, in this particular case, they are the same. Therefore it is possible to say that α is a
root of g1(X ) because, from Table B.3,

g1(α) = 1 + α + α3 = 1 + α + 1 + α = 0

If α is a root of g1(X ), then it is also a root of any code polynomial g1(X ) of the Hamming
code Ccyc(7, 4), and this allows us to state a first syndrome equation s1 = r (α). As the degree
of the generator polynomial is 3, there are still two other roots to be found for this polynomial.
By substituting the element α2 of the extended field GF(8), it is found that

g1(α2) = 1 + α2 + α6 = 1 + α2 + 1 + α2 = 0

This verifies that α2 is a root of the generator polynomial g1(X ) of the Hamming code
Ccyc(7, 4), and so it is also a root of any code polynomial of this code, allowing us to form a
second syndrome equation s2 = r (α2). By substituting all the elements of the extended field,
it is possible to identify that α4 is the third root of the generator polynomial g1(X ) of the Ham-
ming code Ccyc(7, 4), and also to state that 1, α3, α5 and α6 are not roots of that polynomial.
Since α, α2 and α4 are roots of the polynomial g1(X ),

g1(X ) = (X + α)(X + α2)(X + α4)

= X3 + (α + α2 + α4)X2 + (α3 + α5 + α6)X + 1

= X3 + X + 1

By substituting in the expression for a received polynomial the roots α and α2, for instance,
it is possible to find a system of two equations that allows the solution of two unknowns, which
are the position and the value of a single error in that polynomial.

In order to correct an error pattern containing two errors, for instance, it would be necessary
to have a system of at least four equations, to solve for the positions and values of the two
errors. This would be the case of a linear block code able to correct error patterns of size t = 2.
In the case of the Hamming code Ccyc(7, 4), there is just one additional root, α4, associated
with the additional equation s4 = r (α4), making only three in all. This is not enough to allow the
construction of a set of four equations, the minimal requirement for correcting error patterns of
size t = 2. This is in agreement with the fact that this Hamming code Ccyc(7, 4), characterized
by a minimum Hamming distance dmin = 3, can correct only error patterns of size t = 1.

The other elements of the extended field GF(8), α3, α5 and α6, which were found not to be
roots of the generator polynomial g1(X ) of the Hamming code Ccyc(7, 4), can however be the
roots of another polynomial, and thus

g2(X ) = (X + α3)(X + α5)(X + α6)

= X3 + (α3 + α5 + α6)X2 + (α + α2 + α4)X + 1

= X3 + X2 + 1

This polynomial also generates a linear cyclic block code Ccyc(7, 4), as seen in Example 3.4 in
Chapter 3, because this polynomial is a factor of X7 + 1. In fact both polynomials g1(X ) and
g2(X ) are factors of X7 + 1, and the remaining polynomial that gives the whole factorization
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of X7 + 1 is g3(X ) = X + 1, whose unique root is the element 1 of the extended field GF(8).
In this way, all the non-zero elements of the extended field GF(8) are roots of X7 + 1.

The polynomial g1(X ) = �1(X ) is called the minimal polynomial of the elements α, α2

and α4, and it is essentially a polynomial for which these elements are roots [4]. In the same
way, g2(X ) = �2(X ) is called the minimal polynomial of the elements α3, α5 and α6, and
g3(X ) = �3(X ) is the minimal polynomial of the element 1.

Since, for instance, the Hamming code Ccyc(7, 4) has a generator polynomial with just three
roots, and is not able to guarantee the correction of any error pattern of size t = 2, it would be
possible to add the missing root, α3, by forming a generator polynomial as the multiplication of
g1(X ) = �1(X ) and g2(X ) = �2(X ). However, it could be more appropriate to take the lowest
common multiple (LCM) of these two polynomials, in order to avoid multiple roots, which
will only add redundancy without improving the error-correction capability of the code. Note
that the degree of the generator polynomial is the level of redundancy added by the coding
technique. Therefore, in this particular case, the minimum common multiple of g1(X ) = �1(X )
and g2(X ) = �2(X ) will form a generator polynomial with roots α, α2, α3, α4, α5 and α6,
so that α5 and α6 are also added automatically. Then the resulting generator polynomial is of
the form

g4(X ) = �1(X )�2(X )

= (X3 + X + 1)(X3 + X2 + 1)

= X6 + X5 + X4 + X3 + X2 + X + 1

which is, as has been seen in Chapter 3, Example 3.4, the generator polynomial of a cyclic
repetition code with n = 7, Ccyc(7, 1), whose minimum Hamming distance is dmin = 7, able
to correct any error pattern of size t = 3 or less. This is in agreement with the fact that, in this
case, there is a system of six equations that allows us to determine the positions and values
of up to three errors in a given codeword, as a consequence of its generator polynomial g4(X )
having as roots the elements α, α2, α3, α4, α5 and α6.

This introduction leads to a more formal definition of a BCH code.

4.2 Description of BCH Cyclic Codes

As said in the above sections, BCH codes are a generalization of Hamming codes, and they
can be designed to be able to correct any error pattern of size t or less [1, 2, 4]. In this sense
the generalization of the Hamming codes extends the design of codes for t = 1 (Hamming
codes) to codes for any desired higher value of t (BCH codes). The design method is based on
taking an LCM of appropriate minimal polynomials, as described in the previous section for
a particular example.

For any positive integer m ≥ 3 and t < 2m−1, there exists a binary BCH code CBCH(n, k)
with the following properties:

Code length n = 2m − 1
Number of parity bits n − k ≤ mt
Minimum Hamming distance dmin ≥ 2t + 1
Error-correction capability t errors in a code vector
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These codes are able to correct any error pattern of size t or less, in a code vector of length
n, n = 2m − 1.

The generator polynomial of a BCH code is described in terms of its roots, taken from the
Galois field GF(2m). If α is a primitive element in GF(2m), the generator polynomial g(X ) of a
BCH code for correcting t errors in a code vector of length n = 2m − 1 is the minimum-degree
polynomial over GF(2) that has α, α2, . . . , α2t as its roots:

g(αi ) = 0, i = 1, 2, . . . , 2t (1)

It also true that g(X ) has αi and its conjugate as its roots (see Appendix B). On the other
hand, if �i (X ) is the minimal polynomial of αi then the LCM of �1(X ), �2(X ), . . . , �2t (X )
is the generator polynomial g(X ):

g(X ) = LCM {�1(X ), �2(X ), . . . , �2t (X )} (2)

However, and due to repetition of conjugate roots, it can be shown that the generator poly-
nomial g(X ) can be formed with only the odd index minimal polynomials [4]:

g(X ) = LCM {�1(X ), �3(X ), . . . , �2t−1(X )} (3)

Since the degree of each minimal polynomial is m or less, the degree of g(X ) is at most mt .
As BCH codes are cyclic codes, this means that the value of n − k can be at most mt .

The Hamming codes are a particular class of BCH codes, for which the generator polynomial
is g(X ) = �1(X ). A BCH code for t = 1 is then a Hamming code. Since α is a primitive element
of GF(2m), then �1(X ) is a polynomial of degree m.

Example 4.1: Let α be a primitive element of GF(24), as seen in Table B.4 of the Appendix B,
then 1 + α + α4 = 0. From Table B.5 (Appendix B), the minimal polynomials of α, α3 and
α5 are, respectively,

�1(X ) = 1 + X + X4

�3(X ) = 1 + X + X2 + X3 + X4

�5(X ) = 1 + X + X2

A BCH code for correcting error patterns of size t = 2 or less, and with block length
n = 24 − 1 = 15, will have the generator polynomial

g(X ) = LCM {�1(X ), �3(X )}
Since �1(X ) and �3(X ) are two irreducible and distinct polynomials,

g(X ) = �1(X )�3(X )

= (1 + X + X4)(1 + X + X2 + X3 + X4)

= 1 + X4 + X6 + X7 + X8

This is the BCH code CBCH(15, 7) with minimum Hamming distance dmin ≥ 5. Since the
generator polynomial is of weight 5, the minimum Hamming distance of the BCH code which
this polynomial generates is dmin = 5.
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In order to increase the error-correction capability to any error pattern of size t = 3 or less,
the corresponding binary BCH code is CBCH(15, 5) with minimum distance dmin ≥ 7, which
can be constructed using the generator polynomial

g(X ) = �1(X )�3(X )�5(X )

= (1 + X + X4)(1 + X + X2 + X3 + X4)(1 + X + X2)

= 1 + X + X2 + X4 + X5 + X8 + X10

This generator polynomial is of weight 7, and so it generates a BCH code of minimum Hamming
distance dmin = 7.

As a result of the definition of a linear binary block BCH code CBCH(n, k) for correcting
error patterns of size t or less, and with code length n = 2m − 1, it is possible to affirm that
any code polynomial of such a code will have α, α2, . . . , α2t and their conjugates as its
roots. This is so because any code polynomial is a multiple of the corresponding generator
polynomial g(X ), and also of all the minimal polynomials �1(X ), �2(X ), . . . , �2t (X ). Any
code polynomial c(X ) = c0 + c1 X + . . . + cn−1 Xn−1 of CBCH(n, k) has primitive element αi

as a root:

c(αi ) = c0 + c1α
i + · · · + cn−1α

i(n−1) = 0 (4)

In matrix form,

(c0, c1, . . . , cn−1) ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

αi

α2i

...

α(n−1)i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (5)

The inner product of the code vector (c0, c1, . . . , cn−1) and the vector of roots
(
1, αi ,

α2i , . . . , α(n−1)i
)

is equal to zero. The following matrix can then be formed:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 α3 · · · αn−1

1 α2 (α2)2 (α2)3 · · · (α2)n−1

1 α3 (α3)2 (α3)3 · · · (α3)n−1

...
...

...
...

...

1 α2t (α2t )2 (α2t )3 · · · (α2t )n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

If c is a code vector, it should be true that

c ◦ H T = 0 (7)

From this point of view, the linear binary block BCH code CBCH(n, k) is the dual row space of
the matrix H, and this matrix is in turn its parity check matrix. If for some i and some j , α j is the
conjugate of αi , then c(α j ) = 0. This means that the inner product of c = (c0, c1, . . . , cn−1)
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with the i th row of H is zero, so that these rows can be omitted in the construction of the
matrix H, which then adopts the form

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 α3 · · · αn−1

1 α3 (α3)2 (α3)3 · · · (α3)n−1

1 α5 (α5)2 (α5)3 · · · (α5)n−1

...
...

...
...

...

1 α2t−1 (α2t−1)2 (α2t−1)3 · · · (α2t−1)n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Each element of the matrix H is an element of GF(2m), which can be represented as an
m-component vector taken over GF(2), arranged as a column, which allows us to construct the
same matrix in binary form.

Example 4.2: For the binary BCH code CBCH(15, 7) of length n = 24 − 1 = 15, able to
correct any error pattern of size t = 2 or less, and α being a primitive element of GF(24), the
parity check matrix H is of the form

H =
[

1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α3 α6 α9 α12 α0 α3 α6 α9 α12 α0 α3 α6 α9 α12

]

which can be described in binary form by making use of Table B.4 of Appendix B:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

· · ·
1

· · ·
0

· · ·
0

· · ·
0

· · ·
1

· · ·
1

· · ·
0

· · ·
0

· · ·
0

· · ·
1

· · ·
1

· · ·
0

· · ·
0

· · ·
0

· · ·
1

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.2.1 Bounds on the Error-Correction Capability of a BCH Code:
The Vandermonde Determinant

It can be shown that a given BCH code must have minimum distance dmin ≥ 2t + 1, so that
its corresponding parity check matrix H has 2t + 1 columns that sum to the zero vector. BCH
codes are linear block codes, and so the minimum distance is defined by the non-zero code
vector of minimum weight. Should there exist a non-zero code vector of weight pH ≤ 2t , with
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non-zero elements c j1, c j2, . . . , cjp
H

, then

(c j1, c j2, . . . , cjpH
) ◦

⎡⎢⎢⎢⎢⎣
α j1 (α2) j1 · · · (α2t ) j1

α j2 (α2) j2 (α2t ) j2

...
...

...

αjpH (α2)jpH · · · (α2t )jpH

⎤⎥⎥⎥⎥⎦ = 0 (9)

By making use of
(
α2t

)ji = (
αji

)2t
and as pH ≤ 2t , we obtain

(c j1, c j2, . . . , cjpH
) ◦

⎡⎢⎢⎢⎢⎣
α j1 (α j1)2 · · · (α j1)pH

α j2 (α j2)2 (α j2)pH

...
...

...

αjpH (αjpH )2 · · · (αjpH )pH

⎤⎥⎥⎥⎥⎦ = 0 (10)

which becomes a pH × pH matrix that fits the result indicated in equation (10) only if its
determinant is zero:

∣∣∣∣∣∣∣∣∣∣

α j1 (α j1)2 · · · (α j1)pH

α j2 (α j2)2 (α j2)pH

...
...

...

αjpH (αjpH )2 · · · (αjpH )pH

∣∣∣∣∣∣∣∣∣∣
= 0 (11)

Extracting a common factor from each row, we get

α( j1+ j2+ ···+jpH)

∣∣∣∣∣∣∣∣∣∣

1 α j1 · · · (α j1)(pH−1)

1 α j2 (α j2)(pH−1)

...
...

...

1 αjpH · · · (αjpH )(pH−1)

∣∣∣∣∣∣∣∣∣∣
= 0 (12)

This determinant is called the Vandermonde determinant, and is a non-zero determinant [4, 5].
Thus, the initial assumption that pH ≤ 2t is not valid, and the minimum Hamming distance of
a binary BCH code is then equal to 2t + 1 or more. Demonstration of the non-zero property
of the Vandermonde determinant is delayed until the next chapter, on Reed–Solomon codes.
The parameter 2t + 1 is called the designed distance of a BCH code, but the actual minimum
distance can be higher.

Binary BCH codes can also be designed with block lengths less than 2m − 1, in a similar
way to that described for BCH codes of length equal to 2m − 1. If β is an element of order n
in the GF(2m), then n is a factor of 2m − 1. Let g(X ) be a minimum-degree binary polynomial
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that has β, β2, . . . , β2t as its roots. Let �1(X ), �2(X ), . . . , �2t (X ) be minimal polynomials
of β, β2, . . . , β2t , respectively. Then

g(X ) = LCM {�1(X ), �2(X ), . . . , �2t (X )} (13)

Since βn = 1, β, β2, . . . , β2t are roots of Xn + 1. Therefore the cyclic code generated by
g(X ) is a code of code length n. It can be shown, in the same way as for binary BCH codes of
code length n = 2m − 1, that the number of parity check bits is not greater than mt , and that
the minimum Hamming distance is at least dmin ≥ 2t + 1.

The above analysis provides us a more general definition of a binary BCH code [4]. If β

is an element of GF(2m) and u0 a positive integer, then the binary BCH code with a designed
minimum distance d0 is generated by the minimum-degree generator polynomial g(X ) that
has as its roots powers of the element β, β, βn0+1, . . . , βn0+d0−2, with 0 ≤ i < d0 − 1:

g(X ) = LCM
{
�1(X ), �2(X ), . . . , �d0−2(X )

}
(14)

Here, �i (X ) is the minimal polynomial of βu0+i and ni is its order. The constructed binary
BCH code has a code length equal to n:

n = LCM
{
n1, n2, . . . , nd0−2

}
(15)

The designed binary BCH code has minimum distance d0, a maximum number m (d0 − 1)
of parity check bits, and is able to correct any error pattern of size

⌊ d0−1
2

⌋
.

When u0 = 1 then d0 = 2t + 1, and if β is a primitive element of GF(2m) then the code
length of the binary BCH code is n = 2m − 1. In this case the binary BCH code is said to be
primitive. When u0 = 1 and with d0 = 2t + 1, if β is not a primitive element of GF(2m) then
the code length of the binary BCH code is not 2m − 1, but is equal to the order of β. In this case
the binary BCH code is said to be non-primitive. The requirement that the (d0 − 1) powers of
β have to be roots of the generator polynomial g(X ) ensures that the binary BCH code has a
minimum distance of at least d0.

4.3 Decoding of BCH Codes

The code polynomial, the error polynomial and the received polynomial are related by the
following expression:

r (X ) = c(X ) + e(X ) (16)

Syndrome decoding can be used with BCH codes, as they are linear cyclic block codes.
Recall that, for a given code polynomial c(X ), c(αi ) = 0, and that this is equivalent to

c ◦ H T = 0 (17)

Combining this expression with that used to calculate the syndrome vector,

S = (s0, s1, . . . , s2t ) = r ◦ H T
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and the following set of equations is obtained:

si = r (αi ) = e(αi ) = r0 + r1(αi ) + · · · + rn−1(αi )n−1 (18)

with 1 ≤ i ≤ 2t.
These equations allow us to calculate the i th component of the syndrome vector by replacing

the variable X with the root αi in the received polynomial r (X ). The syndrome vector consists
of elements of the Galois field GF(2m). Another method of evaluating these elements proceeds
in the following way: The received polynomial is first divided by �i (X ), which is the minimal
polynomial corresponding to the root αi , so that �i (α

i ) = 0, and then

r (X ) = ai (X )�i (X ) + bi (X ) (19)

which gives, when substituting αi ,

r (αi ) = bi (α
i ) (20)

Example 4.3: For the binary linear cyclic block code BCH CBCH(15, 7) able to correct any
error pattern of size 2 or less, and if the received vector is of the form r = (100000001000000),
which in polynomial form is equal to r (X ) = 1 + X8, determine the syndrome vector.

The above method leads to

s1 = r (α) = 1 + α8 = α2

s2 = r (α2) = 1 + α = α4

s3 = r (α3) = 1 + α9 = 1 + α + α3 = α7

s4 = r (α4) = 1 + α2 = α8

4.4 Error-Location and Error-Evaluation Polynomials

Rearranging equation (16), the code polynomial c(X ) is related to the received polynomial
r (X ) and the error polynomial e(X ) as follows:

c(X ) = r (X ) + e(X ) (21)

All these polynomials are defined with coefficients over GF(2). Let us assume that the error
vector contains τ non-zero elements, representing an error pattern of τ errors placed at positions
X j1, X j2, . . . , X jτ , where 0 ≤ j1 < j2 < · · · < jτ ≤ n − 1.

The error-location number is then defined as

βl = α jl (22)

where l = 1, 2, 3, . . . ,τ .
The syndrome vector components are calculated, as was stated in previous sections, by

replacing the variable X in the received polynomial r (X ) with the roots αi , i = 1, 2, . . . , 2t .
It is then true that

si = r (αi ) = c(αi ) + e(αi ) = e(αi ) (23)
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Thus, a system of 2t equations can be formed as follows:

s1 = r (α) = e(α) = e j1β1 + e j2β2 + · · · + e jτ βτ

s2 = r (α2) = e(α2) = e j1β
2
1 + e j2β

2
2 + · · · + e jτ β

2
τ

...

s2t = r (α2t ) = e(α2t ) = e j1β
2t
1 + e j2β

2t
2 + · · · + e jτ β

2t
τ

(24)

Variables β1, β2, . . . , βτ are unknown. An algorithm that solves this set of equations is a
decoding algorithm for a binary BCH code. The unknown variables are the positions of the
errors. There are 2k different solutions for these equations, but in the random error case only
the solution with the minimum weight will be the true solution.

In order to decode a binary BCH code, it is convenient to define the following polynomials:
The error-location polynomial is defined as

σ (X ) = (X − α− j1)(X − α− j2) · · · (X − α− jτ ) =
τ∏

l=1

(X − α− jl) (25)

and the error-evaluation polynomial is

W (X ) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(X − α−ji) (26)

This last polynomial is needed only for non-binary (q ≥ 3) BCH codes, because in the binary
case the error values are always 1. The error values can be calculated from

e jl = W (α− jl)

σ ′(α− jl)
(27)

where σ ′(X ) is the derivative of the polynomial σ (X ) with respect to X . Polynomials σ (X )
and W (X ) are relative prime, since from the way they are defined, they do not have roots in
common. Certainly, if α−jh is a root of σ (X ), then

W (α−jh) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(α−jh − α−ji) = ejh

τ∏
i=1
i �=l

(α−jh − α−ji) �= 0

On the other hand, the derivative of the error-location polynomial is equal to

σ
′
(X ) =

τ∑
l=1

τ∏
i=1
i �=l

(X − α−ji) (28)

By replacing X with the root value α−jh,

σ
′
(α−jh) =

τ∏
i=1
i �=l

(α−jh − α−ji) (29)

So from the above equations,

ejh = W (α−jh)

σ ′(α−jh)
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Polynomials σ (X ) and W (X ) allow us to calculate the positions of the errors and to deter-
mine their values by using expression (27). Additionally, the syndrome polynomial of degree
deg{S(X )} ≤ 2t − 1 is defined as

S(X ) = s1 + s2 X + s3 X2 + · · · + s2t X2t−1 =
2t−1∑
j = 0

s j + 1 X j (30)

If S(X ) = 0 then the received polynomial is a code polynomial or contains an uncorrectable
error pattern.

4.5 The Key Equation

There exists a relationship between the polynomials σ (X ), S(X ) and W (X ) which is called the
key equation, whose solution is a decoding algorithm for a BCH code. The following theorem
states this relationship:

Theorem 4.1: There exists a polynomial μ(X ) such that the polynomials σ (X ), S(X ) and
W (X ) fit the key equation

σ (X )S(X ) = −W (X ) + μ(X )X2t (31)

This is the same as saying that

{σ (X )S(X ) + W (X ) } mod (X2t ) = 0 (32)

In the expression that defines the syndrome polynomial S(X ),

S(X ) =
2t−1∑
j= 0

s j+1 X j =
2t−1∑
j= 0

(
τ∑

i=1

ejiα
ji( j+1)

)
X j =

τ∑
i=1

ejiα
ji

2t−1∑
j= 0

(αji X ) j

S(X ) =
τ∑

i=1

ejiα
ji

(
αji X

)2t − 1(
αji X

) − 1
=

τ∑
i=1

eji

(
αji X

)2t − 1

X − α−ji
(33)

and then

σ (X )S(X ) =
τ∑

i=1

eji

(
αji X

)2t − 1

X − α−ji

τ∏
l=1

(X − α− jl) =
τ∑

i=1

eji
[
(αji X )2t − 1

] τ∏
i=1
i �=l

(X − α− jl)

= −
τ∑

i=1

eji

τ∏
i=1
i �=l

(X − α− jl) +
⎡⎣ τ∑

i=1

ejiα
ji(2t)

τ∏
i=1
i �=l

(X − α− jl)

⎤⎦ X2t (34)

= −W (X ) + μ(X )X2t

The key equation offers a decoding method for BCH codes. In order to solve this equation,
the Euclidean algorithm, which applies not only to numbers but also to polynomials, is utilized
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[5]. A more detailed explanation of the key equation will be developed in Chapter 5 on Reed–
Solomon codes. This equation is also involved in other decoding algorithms for binary BCH
codes, and for Reed–Solomon codes. One of them is the Berlekamp–Massey algorithm [8, 9],
which will be described in Chapter 5.

4.6 Decoding of Binary BCH Codes Using the Euclidean Algorithm

For two given numbers A and B, the Euclidean algorithm determines the highest common
factor (HCF) of these two numbers, C = HCF(A, B). It also finds two integer numbers, or
for our purpose, two polynomials S and T , such that

C = SA + TB (35)

This algorithm is useful for solving the key equation that involves the polynomials

−μ(X )X2t + σ (X )S(X ) = −W (X ) (36)

where X2t plays the role of A and the syndrome polynomial S(X ) plays the role of B.

4.6.1 The Euclidean Algorithm

Let A and B be two integer numbers such that A ≥ B, or equivalently let A and B be two
polynomials such that deg(A) ≥ deg(B). The initial conditions are r−1 = A and r0 = B. In a
recursive calculation, and in the i th recursion, the value ri is obtained as the remainder of the
division of ri−2 by ri−1; that is,

ri−2 = qiri−1 + ri (37)

where ri < ri−1 or, for polynomials, deg(ri ) < deg(ri−1).
The recursive equation is then

ri = ri−2 − qiri−1 (38)

Expressions for si and ti can also be obtained as

ri = si A + ti B (39)

The recursion (38) is also valid for these coefficients:

si = si−2 − qi si−1

ti = ti−2 − qi ti−1 (40)

Then

r−1 = A = (1)A + (0)B

r0 = B = (0)A + (1)B
(41)
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The initial conditions are

s−1 = 1, t−1 = 0 (42)

Example 4.4: Apply the Euclidean algorithm to the numbers A = 112 and B = 54.

112/54 = 2, remainder 4

4 = 112 + (−2) × 54

r1 = r−1 − q1r0

r−1 = 112, r0 = 54, r1 = 4

54/4 = 13, remainder 2

2 = 54 + (−13) × 4

r2 = r0 − q2r1

r2 = 2

4/2 = 2, remainder 0

Therefore, 2 is the HCF of 112 and 54.
A more suitable way of implementing this algorithm is by constructing a table like Table 4.1.
The HCF is 2 because the remainder in the next step in the table is 0. In each step of the

recursion, it happens that

112 = (1) × 112 + (0) × 54

54 = (0) × 112 + (1) × 54

4 = (1) × 112 + (−2) × 54

2 = (−13) × 112 + (27) × 54

Now Euclidean algorithm is applied to the key equation

−μ(X )X2t + σ (X )S(X ) = −W (X )

The polynomials involved are X2t and S(X ), and the i th recursion is of the form

ri (X ) = si (X )X2t + ti (X )S(X ) (43)

Table 4.1 Euclidean algorithm for evaluating the HCF of two integer numbers

i ri = ri−2 − qiri−1 qi si = si−2 − qi si−1 ti = ti−2 − qi ti−1

−1 112 – 1 0

0 54 – 0 1

1 4 2 1 −2

2 2 13 −13 27
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Multiplying equation (43) by λ, we obtain

λri (X ) = λsi (X )X2t + λti (X )S(X ) = −W (X ) = −μ(X )X2t + σ (X )S(X ) (44)

where

deg (ri (X )) ≤ t + 1. (45)

Thus,

W (X ) = −λri (X )

σ (X ) = λti (X ) (46)

where λ is a constant that makes the resulting polynomial be a monic polynomial.

Example 4.5: For the binary linear cyclic block BCH code CBCH(15, 7) with t = 2 and for
the received vector r = (100000001000000), which in polynomial form is equal to r (X ) =
1 + X8 (from Example 4.3), determine, by using the Euclidean algorithm, the decoded code
polynomial.

The syndrome vector components were calculated in Example 4.3:

s1 = r (α) = α2

s2 = r (α2) = α4

s3 = r (α3) = α7

s4 = r (α4) = α8

Therefore the syndrome polynomial is

S(X ) = α8 X3 + α7 X2 + α4 X + α2

Note that while operating over the extended Galois field GF(q), where q = 2m , the additive
inverse of any element of that field is that same element (see Appendix B), and the minus signs
in equations (36), (44) and (46) convert into plus signs. The Euclidean algorithm is applied by
constructing Table 4.2.

When the degree of the polynomial in column ri (X ) is lower than the degree of the polynomial
in column ti (X ), the recursion is halted. In this case,

ri (X ) = α5

ti (X ) = α11 X2 + α5 X + α3

Table 4.2 Euclidean algorithm for the key equation, Example 4.5

i ri = ri−2 − qiri−1 qi ti = ti−2 − qi ti−1

−1 X 2t = X 4 – 0

0 S(X ) = α8 X 3 + α7 X 2 + α4 X + α2 – 1

1 α4 X 2 + α13 X + α8 α7 X + α6 α7 X + α6

2 α5 α4 X + α8 α11 X 2 + α5 X + α3
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The polynomial ti (X ) is multiplied by an element λ ∈ GF(24), which is conveniently selected
to convert this polynomial into a monic polynomial. This value of λ is λ = α4. Therefore,

W (X ) = −λri (X ) = λri (X ) = α4α5 = α9

and

σ (X ) = λti (X ) = α4
(
α11 X2 + α5 X + α3

) = X2 + α9 X + α7

The following step consists of substituting in turn all the elements of the corresponding
Galois field in the error-location polynomial, in order to determine its roots. This procedure
is known as the Chien search [6]. Thus, variable X in the error-location polynomial σ (X ) is
replaced with 1, α, α2, . . . , αn−1, where n = 2m − 1. Since αn = 1 and α−h = αn−h , then if
αh is a root of the error-location polynomial σ (X ), αn−h is the corresponding error-location
number, which determines that bit rn−h is in error. In the binary case this information is enough
to do the error correction, because if the bit rn−h is in error, then its value is inverted to correct
it.

Performing the above Chien search, the roots of the error-location polynomials are found to
be α− j1 = 1 and α− j2 = α7. Then, and since

α0 = α− j1 = α−0

j1 = 0

and

α7 = α− j2 = α−8

j2 = 8

Errors are located in positions j1 = 0 and j2 = 8. Values of the errors are determined by
evaluating the derivative of the error-location polynomial

σ
′
(X ) = α9

Then, and by applying expression (27),

e j1 = W (α− j1)

σ ′(α− j1)
= W (α0)

σ ′(α0)
= α9

α9
= 1

e j2 = W (α− j2)

σ ′(α− j2)
= W (α7)

σ ′(α7)
= α9

α9
= 1

The result is obvious as this BCH code is a binary code, and so errors are always of value 1.
The error polynomial is therefore

e(X ) = X0 + X8 = 1 + X8

After the correction of the received polynomial, done by using equation (21), the decoded
polynomial is the zero polynomial, that is, the all-zero vector.
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Problems

4.1 Verify that the polynomial p(X) = 1 + X2 + X5 is an irreducible polynomial. It
can also be a primitive polynomial. What are the conditions for this to happen?

4.2 Construct the Galois field GF(25) generated by p(X) = 1 + X2 + X5, showing a
table with the polynomial and binary representations of its elements.

4.3 Determine the minimal polynomials of the elements of the Galois field GF(25)
constructed in Problem 4.2.

4.4 Determine the generator polynomial of the binary BCH code CBCH(31, 16) able
to correct error patterns of size t = 3 or less.
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4.5 Determine the generator polynomial of a binary BCH code of code length n = 31
able to correct error patterns of size t = 2 or less. Also, determine the value of
k and the minimum Hamming distance of the code.

4.6 A binary cyclic BCH code CBCH(n, k) has code length n = 15 and generator
polynomial g(X) = (X + 1)(1 + X + X4)(1 + X + X2 + X3 + X4).
(a) What is the minimum Hamming distance of the code?
(b) Describe a decoding algorithm for this code, and demonstrate its operation

by means of an example.
Note: Use the Galois field GF(24) shown in Appendix B, Table B.4.

4.7 (a) Show that the shortest binary cyclic BCH code with the generator polyno-
mial g(X) = (1 + X + X4)(1 + X + X2 + X3 + X4) has code length n = 15
and minimum Hamming distance dmin = 5.

(b) Describe the Meggitt or an algebraic decoding method for the above code.
(c) Use the decoding method you have described to show how errors in the first

two positions of a received vector would be corrected.

4.8 Use the BCH bound to show that the minimum Hamming distance of the cyclic
code with block length n = 7 and g(X) = (X + 1)(1 + X + X3) is 4.
(a) What is the minimum Hamming distance if n = 14 and why?

4.9 The binary cyclic BCH code CBCH(15, 7) is able to correct error patterns of
size t = 2 or less, and has a generator polynomial of the form g(X) = (1 + X +
X4)(1 + X + X2 + X3 + X4) = 1 + X4 + X6 + X7 + X8, which operates over the
Galois field GF(24) (Appendix B, Table B.4).

Assume that the received vector is r = (100000001000000) and decode it
using the Euclidean algorithm.

4.10 Show that for a double-error-correcting cyclic code,

s3 = s2
1 + s2

1βl + s1β
2
l where βl = α jl

and hence find the errors in the received vector r = (000100111111011), given
that the transmitted vector is from the cyclic BCH code CBCH(15, 7) generated
by g(X) = (1 + X + X4)(1 + X + X2 + X3 + X4).

4.11 For the binary BCH code CBCH(31, 21), obtained in Problem 4.5, perform the
decoding of the received polynomials:
(a) r1(X) = X7 + X30;
(b) r2(X) = 1 + X17 + X28.

�
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5
Reed–Solomon Codes

Reed–Solomon (RS) codes are a class of linear, non-binary, cyclic block codes [1]. This class is a
subfamily of the family of the linear, non-binary, cyclic BCH codes which form a generalization
over the Galois field GF(q) of the binary BCH codes introduced in Chapter 4 [2, 3]. Here q is
a power of a prime number pprime, q = pm

prime, where m is a positive integer. These non-binary
BCH codes are usually called q-ary codes since they operate over the alphabet of q elements
of the Galois field GF(q), with q > 2. In this sense these codes are different from binary codes,
which have elements taken from the binary field GF(2). This is why q-ary codes are also called
non-binary codes. All the concepts and properties verified for binary BCH codes are also valid
for these non-binary codes.

5.1 Introduction

A block code Cb(n, k) defined over GF(q) is a subspace of dimension k of the vector space
Vn of vectors of n components, where the components are elements of GF(q). A cyclic q-ary
code over GF(q) is generated by a generator polynomial of degree n − k whose coefficients
are elements of GF(q). This generator polynomial is a factor of Xn − 1. The encoding of q-ary
codes is similar to the encoding of binary BCH codes.

Binary BCH codes can be generalized to operate over the Galois field GF(q):
For any two positive integer numbers v and t , there exists a q-ary code of code length n =
qv − 1, able to correct any error pattern of size t or less, which is constructed with at least
2vt parity check elements. If α is a primitive element of the Galois field GF(qv), the generator
polynomial of a q-ary BCH code able to correct any error pattern of size t or less is the
minimum-degree polynomial with coefficients from GF(q) that has α, α2, . . . , α2t as its roots.
If φi (X ) is the minimal polynomial of αi [2], then

g(X ) = LCM {φ1(X ), φ2(X ), . . . , φ2t (X )} (1)

The degree of each minimal polynomial is v or less. The degree of the generator polynomial
g(X ) is at most 2vt , which means that the maximum number of parity check elements is 2vt . In
the case of q = 2, the definition corresponds to the binary BCH codes presented in Chapter 4.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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A special subfamily of q-ary BCH codes is obtained when v = 1, and they are the so-called
Reed–Solomon codes, named in honour of their discoverers.

An RS code CRS(n, k) able to correct any error pattern of size t or less is defined over the
Galois field GF(q), and it has as parameters

Code length n = q − 1
Number of parity check elements n − k = 2t
Minimum distance dmin = 2t + 1
Error-correction capability t element errors per code vector

Ifα is a primitive element of GF(q) thenαq−1 = 1. An RS code CRS(n, k) of length n = q − 1
and dimension k is the linear, cyclic, block RS code generated by the polynomial

g(X ) = (X − α)
(
X − α2

) · · · (X − αn−k
)

= (X − α)
(
X − α2

) · · · (X − α2t
)

(2)

= g0 + g1 X + g2 X2 + · · · + g2t−1 X2t−1 + g2t X2t

The difference with respect to the definition given for a binary BCH code is that coefficients
gi of this generator polynomial belong to the extended Galois field GF(q). On the other hand,
the minimal polynomials are of the simplest form, �i (X ) = X − αi .

The most useful codes, in practice, of this class are defined over Galois fields of the form
GF(2m), that is, finite fields with elements that have a binary representation in the form of a
vector with elements over GF(2). Each element αi is root of the minimal polynomial X − αi

so that X − αi is a factor of Xn − 1. As a consequence of this, g(X ) is also a factor of Xn − 1
and hence it is the generator polynomial of a cyclic code with elements taken from GF(2m).
Since operations are defined over GF(2m), where the additive inverse of a given element is that
same element, addition and subtraction are the same operation, and so to say that αi is a root
of X − αi is the same as to say that it is a root of X + αi .

An RS code can be equivalently defined as the set of code polynomials c(X ) over GF(q) of
degree deg{c(X )} ≤ n − 1 that have α, α2, . . . , αn−k as their roots [3]. Therefore c(X ) ∈ CRS

if and only if

c(α) = c(α2) = c(α3) = · · · = c(α2t ) = 0 where deg {c(X )} ≤ n − 1 (3)

This definition is in agreement with the fact that the corresponding generator polynomial has
α, α2, . . . , αn−k as its roots, and that any code polynomial is generated by multiplying a given
message polynomial by the generator polynomial. Then if

c(X ) = c0 + c1 X + · · · + cn−1 Xn−1 ∈ CRS,

it is true that

c(αi ) = c0 + c1α
i + · · · + cn−1(αi )n−1 = c0 + c1α

i + · · · + cn−1α
(n−1)i = 0, (4)

1 ≤ i ≤ n − k
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5.2 Error-Correction Capability of RS Codes:
The Vandermonde Determinant

Equation (4) states that the inner product between the code vector (c0, c1, . . . , cn−1) and the root
vector (1, αi , α2i , . . . , α(n−1)i ) is zero, for 1 ≤ i ≤ n − k. This condition can be summarized
in the form of a matrix, which is the parity check matrix H:

H =

⎡⎢⎢⎢⎢⎢⎣
1 α α2 α3 · · · αn−1

1 α2 (α2)2 (α2)3 · · · (α2)n−1

1 α3 (α3)2 (α3)3 · · · (α3)n−1

...
...

...
...

...
1 αn−k (αn−k)2 (αn−k)3 · · · (αn−k)n−1

⎤⎥⎥⎥⎥⎥⎦ (5)

In this matrix any set of n − k or fewer columns is linearly independent. In order to show this,
consider a set of n − k columns i1, i2, . . . , in−k with 0 ≤ i1 < i2 < · · · < in−k ≤ n − 1. It will
be convenient to use the modified notation α j = αi j , where 1 ≤ j ≤ n − k. The set of columns
i1, i2, . . . , in−k is linearly independent if and only if the following determinant is zero [2]:∣∣∣∣∣∣∣∣∣

α1 α2 · · · αn−k

(α1)2 (α2)2 · · · (αn−k)2

...
...

...

(α1)n−k (α2)n−k · · · (αn−k)n−k

∣∣∣∣∣∣∣∣∣ �= 0 (6)

This determinant can be converted into

α1α2 . . . αn−k

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
α1 α2 · · · αn−k
...

...
...

(α1)n−k−1 (α2)n−k−1 · · · (αn−k)n−k−1

∣∣∣∣∣∣∣∣∣ (7)

= α1α2 . . . αn−k V (α1, α2, . . . , αn−k) �= 0

where V (α1, α2, . . . , αn−k) is the so-called Vandermonde determinant. Since αi �= 0, it will be
sufficient to prove that if V (α1, α2, . . . , αn−k) �= 0, then the n − k columns of the matrix H are
linearly independent. For n − k = 2 [3],∣∣∣∣ 1 1

α1 α2

∣∣∣∣ = α2 − α1 �= 0

If the polynomial

f (X ) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
X α2 · · · αn−k
...

...
...

Xn−k−1 (α2)n−k−1 · · · (αn−k)n−k−1

∣∣∣∣∣∣∣∣∣ (8)
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is constructed, it can be seen that αi is root of that polynomial for 2 ≤ i ≤ n − k, since two
columns of this determinant will be equal when X is replaced by αi , resulting in f (αi ) = 0.
Therefore,

f (X ) = c(X − α2)(X − α3) · · · (X − αn−k) = (−1)n−k−1 c
n−k∏
j=2

(α j − X ) (9)

where c is a constant. Now

f (α1) = V (α1, α2, . . . , αn−k) (10)

and, by using determinant properties, the constant c can be obtained:

c = (−1)n−k−1

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
α2 α3 · · · αn−k
...

...
...

(α2)n−k−2 (α3)n−k−2 · · · (αn−k)n−k−2

∣∣∣∣∣∣∣∣∣ (11)

= (−1)n−k−1 V (α2, α3, . . . , αn−k)

Then, by induction, the value of c can be finally determined as

c = (−1)n−k−1
n−k∏

2≤i< j≤n−k

(α j − αi ) (12)

By replacing X with α1 and including the value of the constant c from the above equation,
we obtain

V (α1, α2, . . . , αn−k) =
∏

1≤i< j≤n−k

(α j − αi ) (13)

Since αi = α ji and as α is a primitive element of GF(q), then it is also true that αi �=
α j if i �= j so that V (α1, α2, . . . , αn−k) �= 0. As a consequence of this, there are n − k + 1
columns that are linearly dependent; that is, there are n − k + 1 columns that added result
in the all-zero vector. Therefore the minimum distance of an RS code CRS(n, k) is equal to
d min = n − k + 1 = 2t + 1.

Another conclusion derived from the above analysis is that RS codes are maximum separable
distance codes, since their minimum distance meets the Singleton bound dmin ≤ n − k + 1 with
equality.

Example 5.1: Construct the Galois field GF(23) generated by the irreducible polynomial
pi (X ) = 1 + X2 + X3.

If α is a primitive element of GF(23), then pi (α) = 1 + α2 + α3 = 0, or α3 = 1 + α2. The
Galois field GF(23) can be constructed, utilizing the above expression. Thus, for instance,
α4 = αα3 = α(1 + α2) = α + α3 = 1 + α + α2. Table 5.1 shows the polynomial and binary
forms of the elements of the Galois field GF(23) generated by the irreducible polynomial
pi (X ) = 1 + X2 + X3.
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Table 5.1 Galois field GF(23) generated by pi (X ) = 1 + X 2 + X 3

Exponential form Polynomial form Binary form

0 0 0 0 0

1 1 1 0 0

α α 0 1 0

α2 α2 0 0 1

α3 1 + α2 1 0 1

α4 1 + α + α2 1 1 1

α5 1 + α 1 1 0

α6 α + α2 0 1 1

If this Galois field is compared with that introduced in Appendix B, generated by pi (X ) =
1 + X + X3, then it is seen that the differences are in the polynomial and binary representations
for each element.

Example 5.2: Construct the generator polynomial of an RS code CRS(7, 5) that operates over
the Galois field GF(23), which has pi (X ) = 1 + X2 + X3 as its primitive polynomial.

Since this RS code has n − k = 2, it is able to correct any error pattern of size t = 1.
The corresponding generator polynomial is

g(X ) = (X + α)(X + α2) = X2 + (α + α2)X + α3 = X2 + α6 X + α3

5.3 RS Codes in Systematic Form

An RS code generated by a given generator polynomial of the form of (2) is a linear and cyclic
block RS code CRS(n, n − 2t) consisting of code polynomials c(X ) of degree n − 1 or less. All
these polynomials are formed with coefficients that are elements of the Galois field GF(2m).
Code polynomials are multiples of the generator polynomial g(X ), thus containing all its roots.

A message polynomial is of the form

m(X ) = m0 + m1 X + · · · + mk−1 Xk−1 (14)

This message polynomial is also formed with coefficients that are elements of GF(2m). The
systematic form for these codes is obtained in the same way as for binary BCH codes, that is,
by obtaining the remainder p(x) of the division of Xn−km(X ) by g(X ):

Xn−km(X ) = q(X )g(X ) + p(X ) (15)

Example 5.3: Determine the code vector in systematic form for the RS code of Example 5.2
when the message to be transmitted is (001 101 111 010 011).

The message is converted into its polynomial form:

m(X ) = α2 + α3 X + α4 X2 + αX3 + α6 X4
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Then

Xn−km(X ) = X7−5m(X )

= X2
[
α2 + α3 X + α4 X2 + αX3 + α6 X4

]
= α2 X2 + α3 X3 + α4 X4 + αX5 + α6 X6

In systematic form,

α6 X6 + αX5 + α4 X4 + α3 X3 + α2 X2 |X2 + α6 X + α3

α6 X6 + α5 X5 + α2 X4 α6 X4 + X3 + α3 X2 + α2 X

X5 + α5 X4 + α3 X3+α2 X2

X5 + α6 X4 + α3 X3

α3 X4 + 0X3 + α2 X2

α3 X4 + α2 X3 + α6 X2

α2 X3 + αX2

α2 X3 + αX2 + α5 X

p(X ) = α5 X

The code polynomial is then

c(X ) = α5 X + α2 X2 + α3 X3 + α4 X4 + αX5 + α6 X6

which in vector form is equal to

(000 110 001 101 111 010 011)

It can be verified that this is a code vector or code polynomial by replacing the variable X in
c(X ) with the roots α and α2, to see that the result is zero:

c(α) = α6 + α4 + α6 + α + α6 + α5 = α + α5 + α4 + α6 = 1 + 1 = 0

c(α2) = 1 + α6 + α2 + α5 + α4 + α4 = 1 + α6 + α2 + α5 = α4 + α4 = 0

5.4 Syndrome Decoding of RS Codes

After encoding a given message, the code polynomial

c(X ) = c0 + c1 X + · · · + cn−1 Xn−1

is transmitted and affected by noise, and converted into a received polynomial of the form

r (X ) = r0 + r1 X + · · · + rn−1 Xn−1
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which is related to the error polynomial e(X ) = e0 + e1 X + · · · + en−1 Xn−1 and the code
polynomial c(X ) as follows:

r (X ) = c(X ) + e(X ) (16)

Let us assume that the error polynomial contains τ non-zero elements, which means that
during transmission τ errors occurred, placed at positions X j1 , X j2 , . . . , X jτ , where 0 ≤ j1 <

j2 < · · · < jτ ≤ n − 1. In the case of a non-binary code defined over GF(2m), all the vectors
involved, the code vector, the received vector and the error vector, are formed from elements
of that field. In this case the error-correction procedure requires not only knowledge of the
position of the errors but also their values in GF(2m).

Let us again define the error-location number as

βi = α ji where i = 1, 2, 3, . . . , τ (17)

The syndrome calculation is performed in the same way as for the binary BCH codes, and it
implies the evaluation of the received polynomial r (X ), replacing the variable X by the roots
αi , i = 1, 2, . . . , 2t . Once again

r (αi ) = c(αi ) + e(αi ) = e(αi ) (18)

A system of equations is then formed with these expressions:

s1 = r (α) = e(α) = e j1β1 + e j2β2 + · · · + e jτ βτ

s2 = r (α2) = e(α2) = e j1β
2
1 + e j2β

2
2 + · · · + e jτ β

2
τ (19)

...

s2t = r (α2t ) = e(α2t ) = e j1β
2t
1 + e j2β

2t
2 + · · · + e jτ β

2t
τ

In the particular case of RS codes CRS(n, n − 2) that are able to correct any error pattern of
size t = 1, syndrome calculation involves only two equations, which leads to a rather simple
solution

s1 = r (α) = e(α) = e j1β1 = e j1α
j1

s2 = r (α2) = e(α2) = e j1β
2
1 = e j1α

2 j1
(20)

Then

e j1α
2 j1

e j1α j1
= α j1 = s2

s1

s1 = e j1α
j1 = e j1

s2

s1

(21)

e j1 = s2
1

s2

This system has two equations and is able to determine two unknown variables, which are the
error location and the error value.
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Example 5.4: For the case of the RS code of Example 5.3, assume that the received vector is
r = (000 101 111 111 011) = (0 α5 α2 α3 α4 α4 α6). Determine the position and value of the
single error that happened during transmission, and the corrected code polynomial.

s1 = r (α) = α6 + α4 + α6 + α + α2 + α5 = α2 + α6 = α

s2 = r (α2) = 1 + α6 + α2 + α5 + 1 + α4 = 1 + α4 = α6

α j1 = s2

s1

= α6

α
= α5

e j1 = s2
1

s2

= α2

α6
= α−4 = α3

Hence the error-location polynomial is

e(X ) = α3 X5

c(X ) = e(X ) + r (X )

= α5 X + α2 X2 + α3 X3 + α4 X4 + (α4 + α3)X5 + α6 X6

= α5 X + α2 X2 + α3 X3 + α4 X4 + αX5 + α6 X6

5.5 The Euclidean Algorithm: Error-Location and
Error-Evaluation Polynomials

As a result of the non-binary nature of these codes, there is a need to determine both the
locations and the values of the errors, so that the following two polynomials are defined [2, 3].

The error-location polynomial is

σ (X ) = (X − α− j1 )(X − α− j2 ) · · · (X − α− jτ ) =
τ∏

l=1

(X − α− jl ) (22)

and the error-evaluation polynomial is

W (X ) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(X − α− ji )

.

(23)

It can be shown that the error value is equal to

e jl = W (α− jl )

σ ′(α− jl )
(24)

where σ ′(X ) is the derivative of the error-location polynomial σ (X ).
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Polynomials σ (X ) and W (X ) are relative prime, since, in the way they are defined, they do
not have any root in common. Therefore, if α− jh is a root of σ (X ), then

W (α− jh ) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(α− jh − α− ji ) = e jh

τ∏
i=1
i �=l

(α− jh − α− ji ) �= 0

On the other hand, the derivative with respect to X of the polynomial σ (X ), σ ′(X ), is equal
to

σ ′(X ) =
τ∑

l=1

τ∏
i=1
i �=l

(X − α− ji ) (25)

By substituting for the variable X the value of the root α− jh , we get

σ ′(α− jh ) =
τ∏

i=1
i �=h

(α− jh − α− ji ) (26)

Thus, from the above equations,

e jh = W (α− jh )

σ ′(α− jh )

Roots of the polynomial σ (X ) determine the positions of the errors, and then polynomial
W (X ) and equation (24) can be used to determine the values of the errors.

An additional polynomial, S(X ), called the syndrome polynomial, whose degree is
deg{S(X )} ≤ n − k − 1, is also defined as

S(X ) = s1 + s2 X + s3 X2 + · · · + sn−k Xn−k−1 =
n−k−1∑

j=0

s j+1 X j (27)

If S(X ) = 0 then the corresponding received polynomial is a code polynomial belonging to
the RS code, i.e., r (X ) ∈ CRS(n, k), unless an uncorrectable error pattern has occurred.

As in the case of binary BCH codes, there is a relationship among the polynomials σ (X ),
S(X ) and W (X ), which is called the key equation, whose solution is a decoding method for an
RS code. The following theorem states this relationship:

Theorem 5.1: There exists a polynomial μ(X ), such that polynomials σ (X ), S(X ) and W (X )
satisfy the key equation

σ (X )S(X ) = −W (X ) + μ(X )Xn−k (28)

This theorem has already been demonstrated in Chapter 4, for binary BCH codes.
As an example, consider the family of RS codes CRS(n, n − 4) that are able to correct any

error pattern of size t = 2 or less. Errors are in positions j1 and j2, such that

0 ≤ j1 < j2 ≤ n − 1
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The received polynomial is evaluated for the roots, leading to a system of four equations,
with four unknown variables, which are the positions and the values of the two errors:

s1 = r (α) = e(α) = e j1α
j1 + e j2α

j2

s2 = r (α2) = e(α2) = e j1α
2 j1 + e j2α

2 j2

s3 = r (α3) = e(α3) = e j1α
3 j1 + e j2α

3 j2

s4 = r (α4) = e(α4) = e j1α
4 j1 + e j2α

4 j2

This system of four equations is non-linear, but solvable. The polynomials σ (X ) and W (X )
are calculated as follows:

σ (X ) = (X − α− j1 )(X − α− j2 )

and

W (X ) = e j1 (X − α− j2 ) + e j2 (X − α− j1 )

These are co-prime polynomials for which 1 is the highest common factor. Roots of σ (X ) are
different from roots of W (X ). The values of the errors are

e j1 = W (α− j1 )

σ ′(α− j1 )
and e j2 = W (α− j2 )

σ ′(α− j2 )

σ
′
(X ) = (X − α− j1 ) + (X − α− j2 )

Then

σ
′
(α− j1 ) = α− j1 − α− j2

σ
′
(α− j2 ) = α− j2 − α− j1

and

W (α− j1 ) = e j1 (α− j1 − α− j2 )

W (α− j2 ) = e j2 (α− j2 − α− j1 )

The syndrome polynomial is of the form

S(X ) = s1 + s2 X + s3 X2 + s4 X3

=
3∑

j=0

s j+1 X j

=
3∑

j=0

[
e j1α

( j+1) j1 + e j2α
( j+1) j2

]
X j

= e j1α
j1

3∑
j=0

(α j1 X ) j + e j2α
j2

3∑
j=0

(
α j2 X

) j
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and by using the expression
∑τ

j=0 X j = X τ+1−1
X−1

,

S(X ) = e j1α
j1

(α j1 X )4 − 1

α j1 X − 1
+ e j2α

j2
(α j2 X )4 − 1

α j2 X − 1
= e j1

α4 j1 X4 − 1

X − α− j1
+ e j2

α4 j2 X4 − 1

X − α− j2

S(X ) = − e j1

X − α− j1
− e j2

X − α− j2
+ X4

[
e j1

α4 j1

X − α− j1
+ e j2

α4 j2

X − α− j2

]
Multiplying S(X ) by σ (X ),

σ (X )S(X ) = −e j1 (X − α− j2 ) − e j2 (X − α− j1 ) + X4μ(X ) = −W (X ) + X4μ(X )

which is the key equation corresponding to this example.

5.6 Decoding of RS Codes Using the Euclidean Algorithm

A simple example of the use of the Euclidean algorithm for factorizing two integer numbers
was introduced in the previous chapter. This algorithm is now utilized for solving the key
equation in the decoding of RS codes [3]. The key equation is of the form

σ (X )S(X ) − μ(X )Xn−k = −W (X )

The algorithm is applied to the polynomials Xn−k and S(X ) so that the i th recursion is

ri (X ) = si (X )Xn−k + ti (X )S(X ) (29)

and

deg{ri (X )} ≤
⌊n − k

2

⌋
+ 1 (30)

On the other hand,

W (X ) = −λri (X ) (31)

σ (X ) = λti (X )

where λ is a constant that converts the polynomial into a monic polynomial.

Example 5.5: For the RS code CRS(7, 3) defined over GF(23), generated by the primitive
polynomial pi (X ) = 1 + X2 + X3, and for the received vector r = (000 000 011 000 111 000
000), determine using the Euclidean algorithm the error polynomial and the decoded vector.

According to the received vector, the received polynomial is equal to

r (X ) = α6 X2 + α4 X4
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Table 5.2 Euclidean algorithm for solving the key equation, Example 5.5

i ri = ri−2 − qiri−1 qi ti = ti−2 − qi ti−1

−1 Xn−k = X 4 0

0 S(X ) = α4 X 3 + α4 X 2 + α6 X 1

1 α3 X 2 + α2 X α3 X + α3 α3 X + α3

2 α4 X αX + α5 α4 X 2 + α3 X + α5

The syndrome vector components are

s1 = r (α) = α + α = 0

s2 = r (α2) = α3 + α5 = α6

s3 = r (α3) = α5 + α2 = α4

s4 = r (α4) = 1 + α6 = α4

The syndrome polynomial is then

S(X ) = α6 X + α4 X2 + α4 X3

The Euclidean algorithm is applied using Table 5.2.
If the degree of the polynomial in the column ri (X ) is less than the degree of the polynomial

in the column ti (X ), then the recursion is halted. It also happens that α4 X is a factor of
α3 X2 + α2 X . Then

W1(X ) = α4 X

σ1(X ) = α4 X2 + α3 X + α5

The polynomial so obtained,σ1(X ), is multiplied by an element of the Galois fieldλ ∈ GF(23)
in order to convert it into a monic polynomial. This value of λ is λ = α3. Then

W (X ) = λW1(X ) = α3α4 X = X

and

σ (X ) = λσ1(X ) = α3
(
α4 X2 + α3 X + α5

) = X2 + α6 X + α

The Chien search [5] (as described in Chapter 4) is then used to determine the roots of this
error-location polynomial.

These roots are found to be α3 and α5. Therefore,

α3 = α− j1 = α−4

j1 = 4

and

α5 = α− j2 = α−2

j2 = 2
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Errors are thus located at positions j1 = 4 and j2 = 2. The derivative of the error-location
polynomial is

σ ′(X ) = α6

and so the error values are

e j1 = W (α− j1 )

σ ′(α− j1 )
= W (α3)

σ ′(α3)
= α3

α6
= α−3 = α4

e j2 = W (α− j2 )

σ ′(α− j2 )
= W (α5)

σ ′(α5)
= α5

α6
= α−1 = α6

The error polynomial is then

e(X ) = α6 X2 + α4 X4

so that the received vector is corrected by adding to it the error pattern, and thus the decoded
vector is finally the all-zero vector.

5.6.1 Steps of the Euclidean Algorithm

For an RS code CRS(n, k) with error-correction capability t , where 2t ≤ n − k, and for a
received polynomial r (X ), application of the Euclidean algorithm involves the following steps
[3]:

1. Calculate the syndrome vector components s j = r (α j ), 1 ≤ j ≤ n − k, and then construct
the syndrome polynomial

S(X ) =
n−k∑
j=1

s j X j+1 (32)

2. If S(X ) = 0 then the corresponding received vector is considered to be a code vector.
3. If S(X ) �= 0 then the algorithm is initialized as

r−1(X ) = Xn−k

r0 = S(X )

t−1(X ) = 0 (33)

t0(X ) = 1

i = −1

4. Recursion parameters are determined as

ri (X ) = ri−2(X ) − q(X )ri−1(X ) (34)
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and

ti (X ) = ti−2(X ) − q(X )ti−1(X ) (35)

This recursion proceeds as long as deg (ri (X )) ≥ t.
5. When deg (ri (X )) < t , the recursion halts and a number λ ∈ GF(2m) is obtained and so

λti (X ) becomes a monic polynomial. Then

σ (X ) = λti (X ) (36)

and

W (X ) = −λri (X ) (37)

6. Roots of the polynomial σ (X ) are obtained by using the Chien search.
7. Error values are calculated using

e jh = W (α− jh)

σ ′(α− jh)

8. The error polynomial is constructed using

e(X ) = e j1 X j1 + e j2 X j2 + · · · + e jτ X jτ (38)

9. Error correction is verified, such that if

e(αi ) �= r (αi ) for any i (39)

then error correction is discarded since (39) means that the number of errors was over the
error-correction capability of the code.

If

e(αi ) = r (αi ) for all i (40)

then

c(X ) = r (X ) + e(X )

5.7 Decoding of RS and BCH Codes Using the
Berlekamp–Massey Algorithm

The Berlekamp–Massey (B–M) algorithm [2, 6, 7] is an alternative algebraic decoding algo-
rithm for RS and BCH codes. In the case of binary BCH codes, there is no need to calculate the
error values, as it is enough to determine the positions of the errors to perform error correction
in GF(2). This is different from the case of non-binary BCH codes and RS codes, where both
error location and error values have to be determined to perform error correction.

In the case of BCH codes, equations (16) and (18) of Chapter 4 are still valid; that is,
syndrome decoding involves the calculation of the 2t components of the syndrome vector

S = (s1, s2, . . . , s2t)
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Syndrome vector components can be calculated by replacing the variable X with the different
roots αi , i = 1, 2, . . . , 2t , in the expression of the received polynomial r (X ). As both RS and
BCH codes are linear, the syndrome depends only on the error event. Assume that the error
pattern contains τ errors in positions X j1 , X j2 , . . . , X jτ , so that the error pattern in polynomial
form is

e(X ) = X j1 + X j2 + · · · + X jτ

Since syndrome components can be evaluated as a function of the error pattern,

s1 = α j1 + α j2 + · · · + α jτ

s2 = (α j1 )2 + (α j2 )2 + · · · + (α jτ )2 (41)

...

s2t = (α j1 )2t + (α j2 )2t + · · · + (α jτ )2t

The α ji values are unknown. Any algorithm able to find a solution to this system of equations
can be considered as a decoding algorithm for BCH codes. Equation (19) is the equivalent
system of equations for RS codes.

A procedure to calculate values α j1 , α j2 , . . . , α jτ allows us to determine the error positions
j1, j2, . . . , jτ which in the case of binary BCH codes constitute enough information to perform
error correction. The so-called error-location numbers are usually defined as

βi = α ji

By using this definition the system of equations (41) looks like the system of equations (24)
of Chapter 4. Indeed, in the case of binary BCH codes, coefficients eji are all equal to unity,
e ji = 1, giving

s1 = β1 + β2 + · · · + βτ

s2 = (β1)2 + (β2)2 + · · · + (βτ )2 (42)

...

s2t = (β1)2t + (β2)2t + · · · + (βτ )2t

The error-location polynomial can have a slightly different definition with respect to expres-
sion (22), which is the following:

σBM(X ) = (1 + β1 X )(1 + β2 X ) . . . (1 + βτ X ) (43)

= σ + σ1 X + · · · + στ X τ

Roots of this polynomial are β−1
1 , β−1

2 , . . . , β−1
τ , the inverses of the error-location numbers.

This is a modified definition of the error-location polynomial with respect to the definition
given for the decoding of RS codes using the Euclidean algorithm, as a tool for solving the key
equation. This modified definition is however more suitable for the description of the B–M
algorithm.
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Coefficients of this modified polynomial can be expressed in the following manner:

σ0 = 1

σ1 = β1 + β2 + · · · + βτ

σ2 = β1β2 + β2β3 + · · · + βτ−1βτ (44)

...

στ = β1β2 . . . βτ

This set of equations is known as the elementary symmetric functions and is related to the
system of equations (42) as follows:

s1 + σ1 = 0

s2 + σ1s1 = 0

s3 + σ1s2 + σ2s1 + σ3 = 0 (45)

...

sτ+1 + σ1sτ + · · · + στ−1s2 + στ s1 = 0

These equations are called Newton identities [2]. Thus, for instance,

s2 + σ1s1 = (β1)2 + (β2)2 + · · · + (βτ )2 + (β1 + β2 + · · · + βτ )(β1 + β2 + · · · + βτ ) = 0

since in GF(2m) the products βiβ j + β jβi = 0. The remaining Newton identities can be derived
in the same way.

5.7.1 B–M Iterative Algorithm for Finding the Error-Location Polynomial

The decoding procedure based on the B–M algorithm is now introduced [6, 7]. Demonstration
of its main properties can be found in [4]. The algorithm basically consists of finding the
coefficients of the error-location polynomial, σ1, σ2, . . . , στ , whose roots then determine the
error positions.

The B–M algorithm starts with the evaluation of the 2t syndrome vector components S =
(s1, s2, . . . , s2t ), which then allow us to find the coefficients σ1, σ2, . . . , στ of the error-location
polynomial, whose roots are the inverses of the error-location numbers β1, β2, . . . , βτ . In the
case of a binary BCH code, the final step is to perform error correction at the determined
error positions, and in the case of an RS code or a non-binary BCH code, the error values at
those positions have to be calculated, in order to finally perform error correction. As indicated
above, the core of the B–M algorithm is an iterative method for determining the error-location
polynomial coefficients σ1, σ2, . . . , στ .

The algorithm proceeds as follows [2]: The first step is to determine a minimum-degree
polynomial σ

(1)
BM(X ) that satisfies the first Newton identity described in (45). Then the second

Newton identity is tested. If the polynomial σ
(1)
BM(X ) satisfies the second Newton identity in

(45), then σ
(2)
BM(X ) = σ

(1)
BM(X ). Otherwise the decoding procedure adds a correction term to
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σ
(1)
BM(X ) in order to form the polynomial σ

(2)
BM(X ), able to satisfy the first two Newton identities.

This procedure is subsequently applied to find σ
(3)
BM(X ), and the following polynomials, until

determination of the polynomial σ
(2t)
BM (X ) is complete. Once the algorithm reaches this step, the

polynomial σ
(2t)
BM (X ) is adopted as the error-location polynomial σBM(X ), σBM(X ) = σ

(2t)
BM (X ),

since this last polynomial satisfies the whole set of Newton identities described in (45).
This algorithm can be implemented in iterative form. Let the minimum-degree polynomial

obtained in the μth iteration and able to satisfy the first μ Newton identities, denoted by
σ

(μ)
BM(X ), be of the form

σ
(μ)
BM(X ) = 1 + σ

(μ)
1 X + σ

(μ)
2 X2 + · · · + σ

(μ)
lμ

Xlμ (46)

where lμ is the degree of the polynomial σ
(μ)
BM(X ). Then, a quantity dμ, called the μth discrep-

ancy, is obtained by using the following expression:

dμ = sμ+1 + σ
(μ)
1 sμ + σ

(μ)
2 sμ−1 + · · · + σ

(μ)
lμ

sμ+1−lμ (47)

If the discrepancy dμ is equal to zero, dμ = 0, then the minimum-degree polynomial σ
(μ)
BM(X )

satisfies (μ + 1)th Newton identity, and it becomes σ
(μ+1)
BM (X ):

σ
(μ+1)
BM (X ) = σ

(μ)
BM(X ) (48)

If the discrepancy dμ is not equal to zero, dμ �= 0, then the minimum-degree polynomial

σ
(μ)
BM(X ) does not satisfy the (μ + 1)th Newton identity, and a correction term is calculated to

be added to σ
(μ)
BM(X ), in order to form σ

(μ+1)
BM (X ).

In the calculation of the correction term, the algorithm resorts to a previous step ρ of the
iteration, with respect to μ, such that the discrepancy dρ �= 0 and ρ − lρ is a maximum. The

number lρ is the degree of the polynomial σ
(ρ)
BM(X ).

Then

σ (μ+1)(X ) = σ (μ)(X ) + dμd−1
ρ X (μ−ρ)σ (ρ)(X ) (49)

and this polynomial of minimum degree satisfies the (μ + 1)th Newton identity.
The B–M algorithm can be implemented in the form of a table, as given in Table 5.3.

Table 5.3 B–M algorithm table for determining the error-location polynomial

μ σ
(μ)
BM(X ) dμ lμ μ − lμ

−1 1 1 0 −1

0 1 s1 0 0

1

·
·

2t
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The minimum-degree polynomialσ
(μ+1)
BM (X ) in iterationμ + 1 can be calculated as a function

of the minimum-degree polynomial σ
(μ)
BM(X ) of the μth iteration as follows:

If dμ = 0 then σ
(μ+1)
BM (X ) = σ

(μ)
BM(X ), lμ+1 = lμ.

If dμ �= 0, the algorithm resorts to a previous row ρ, such that dρ �= 0 and ρ − lρ is maximum.
Then

σ
(μ+1)
BM (X ) = σ

μ

BM(X ) + dμd−1
ρ X (μ−ρ)σ (ρ)(X ),

lμ+1 = max(lμ, lρ + μ − ρ),

dμ+1 = sμ+2 + σ
(μ+1)
1 sμ+1 + · · · + σ

(μ+1)
lμ+1

sμ+2−lμ+1
(50)

The above procedure has to be applied for the 2t rows of the table, until the minimum-degree
polynomial σ

(2t)
BM (X ) is obtained, and finally this last polynomial is adopted as the error-

location polynomial σ
(2t)
BM (X ) = σBM(X ). In general, if the degree of σ

(2t)
BM (X ) is larger than t ,

then it is likely that its roots do not correspond to the inverses of the real error-location numbers,
since it is also likely that the error event was severe, and affected more than t elements, being
over the error-correction capability of the code.

After the determination of the error-location polynomial, the roots of this polynomial are
calculated by applying the Chien search, as used in Euclidean algorithm decoding, by replacing
the variable X with all the elements of the Galois field GF(q), 1, α, α2, . . . , αq−2, in the
expression of the obtained error-location polynomial, looking for the condition σBM(αi ) = 0.
This procedure leads to an estimate of the error pattern of minimum weight, which solves the
system of syndrome equations. This will be the true error pattern that occurred on the channel
if the number of errors τ in this pattern is τ ≤ t .

Example 5.6: Apply the B–M algorithm to Example 4.3, which concerns the binary BCH
code CBCH(15, 7) with t = 2, and a received polynomial of the form r (X ) = 1 + X8.

The syndrome components were calculated in Example 4.3 as

s1 = r (α) = α2

s2 = r (α2) = α4

s3 = r (α3) = α7

s4 = r (α4) = α8

Table 5.4 is used to apply the B–M algorithm in order to determine the error-location
polynomial for the case of Example 5.6.

As an example, row μ + 1 = 1 is obtained from information at row μ = 0 by evaluating

l1 = max(l0, l−1 + 0 − (−1)) = 1

σ
(1)
BM(X ) = σ

(0)
BM(X ) + d0d−1

−1 X (0−(−1))σ (−1)(X ) = 1 + α21−1 X11 = 1 + α2 X

and

d1 = s2 + σ
(1)
1 s1 = α4 + α2α2 = 0
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Table 5.4 B–M algorithm table, Example 5.6

μ σ
(μ)
BM(X ) dμ lμ μ − lμ ρ

−1 1 1 0 −1

0 1 α2 0 0

1 1 + α2 X 0 1 0 −1

2 1 + α2 X α10 1 1

3 1 + α2 X + α8 X 2 0 2 1 0

4 1 + α2 X + α8 X 2

The next step is performed using row μ = 1, whose information is useful to determine the
values in row μ + 1 = 2, and since the discrepancy is zero, d1 = 0, then

σ
(2)
BM(X ) = σ

(1)
BM(X ), l2 = l1 = 1 d2 = s3 + σ

(2)
1 s2 = α7 + α2α4 = α10

The procedure ends at row μ = 4, where the error-location polynomial is finally

σBM(X ) = σ
(4)
BM(X ) = 1 + α2 X + α8 X2

whose roots are β−1
1 = 1 = α0 = α− j1 and β−1

2 = α7 = α−8 = α− j2 , and so error positions
are at j1 = 0 and j2 = 8.

The error-location polynomial σBM(X ) = 1 + α2 X + α8 X2 (B–M algorithm, Example 5.6)
is obtained as a function of the error-location polynomial σ (X ) = α7 + α9 X + X2 (Euclidean
algorithm, Example 4.5) by multiplying σ (X ) = α7 + α9 X + X2 by α8. Therefore, both poly-
nomials have the same roots. After performing error correction, the decoded polynomial is the
all-zero polynomial, as in the case of Example 4.5.

5.7.2 B–M Decoding of RS Codes

RS codes are non-binary codes, and this means that a given error, located at a given position,
can adopt any value among the elements of the Galois field GF(q) used for the design of that
code. As explained above, this brings an additional step into the decoding of RS codes, which
is the need to determine not only the position but also the value of an error, to perform error
correction. The following examples can be used to illustrate that the error-location polynomial,
calculated for a given error pattern, does not depend on the error value. Therefore the B–M
algorithm, which is in essence useful for determining this error-location polynomial, can be
applied in the same way as for binary BCH codes in order to determine the error-location
numbers in the decoding of an RS code. Indeed, the B–M algorithm solves part of a system
of 2t equations, with 2t unknowns, by forming a system of t equations, to determine the t
unknowns which are the positions of the errors. Therefore the system of equations (42) is to
be solved for determining error-location numbers in an RS code, whose complete system of
equations is of the form of (19). The difference between these two systems of equations is that
the system of equations (19) leaves open the actual error values, while the system of equations
(42) considers the existence of an error to be an error event of value 1.

Once the B–M algorithm determines the error-location polynomial, and by using the Chien
Search, its roots can be calculated, and the error positions are then determined. At this point,
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error values can be obtained by using expressions (22)–(24), as done in the Euclidean algorithm.
There is however an equivalent method, described by Berlekamp [4] for evaluating error values.
This equivalent method requires the definition of the following polynomial [2]:

Z (X ) = 1 + (s1 + σ1) X + (s2 + σ1s1 + σ2) X2 + · · · +
(sτ + σ1sτ−1 + σ2sτ−2 + · · · + στ ) X τ (51)

Error values at position βi = α ji are calculated as

e ji = Z
(
β−1

i

)∏τ
k=1
k �=i

(
1 + βkβ

−1
i

) (52)

Example 5.7: Decode the received vector r = (000 000 011 000 111 000 000) for the RS
code CRS(7, 3), over GF(8) (prime polynomial pi (X ) = 1 + X2 + X3), using the B–M algo-
rithm (see Example 5.5).

According to the received vector, converted into its polynomial form

r (X ) = α6 X2 + α4 X4

the syndrome vector components are

s1 = r (α) = 0

s2 = r (α2) = α6

s3 = r (α3) = α4

s4 = r (α4) = α4

The B–M algorithm is applied by means of Table 5.5.
The error-location polynomial is then

σBM(X ) = σ
(4)
BM(X ) = 1 + α5 X + α6 X2

whose roots are β−1
1 = α3 = α−4 = α− j1 and β−1

2 = α5 = α−2 = α− j2 , and so error positions
are j1 = 4 and j2 = 2.

Table 5.5 B–M algorithm table, Example 5.7

μ σ
(μ)
BM(X ) dμ lμ μ − lμ ρ

−1 1 1 0 −1

0 1 0 0 0

1 1 α6 1 0 −1

2 1 + α6 X 2 α4 2 0 1

3 1 + α5 X + α6 X 2 0 2 1

4 1 + α5 X + α6 X 2
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The error-location polynomial σBM(X ) = 1 + α5 X + α6 X2 is obtained as a function of the
error-location polynomial σ (X ) = α + α6 X + X2 obtained for the same case by applying the
Euclidean algorithm in Example 5.5, Table 5.2, by multiplying σ (X ) = α + α6 X + X2 by α6.
Therefore both polynomials have the same roots.

Calculation of the error values requires to form the polynomial

Z (X ) = 1 + (s1 + σ1)X + (s2 + σ1s1 + σ2)X2 = 1 + α5 X + (α6 + α50 + α6)X2 = 1 + α5 X

Then

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

) = 1 + α5α3

(1 + α−5α3)
= α5

α
= α4

e j2 = Z
(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) = 1 + α5α5

(1 + α−3α5)
= α2

α3
= α6

Example 5.8: Decode the received vector r = (000 000 100 000 100 000 000) for an RS
code CRS(7, 3) over GF(23) (prime polynomial pi (X ) = 1 + X2 + X3). In this example, the
error pattern presents the same error positions as in Example 5.7, but all errors are of value 1.

The received error vector represented in its polynomial form is

r (X ) = X2 + X4

The syndrome vector components are

s1 = r (α) = α5

s2 = r (α2) = α3

s3 = r (α3) = α3

s4 = r (α4) = α6

The B–M algorithm is applied by means of Table 5.6.
The error-location polynomial is then

σBM(X ) = σ
(4)
BM(X ) = 1 + α5 X + α6 X2

Table 5.6 B–M algorithm table, Example 5.8

μ σ
(μ)
BM(X ) dμ lμ μ − lμ ρ

−1 1 1 0 −1

0 1 α5 0 0 −1

1 1 + α5 X 0 1 0

2 1 + α5 X α4 1 1 1

3 1 + α5 X + α6 X 2 0 2 1 0

4 1 + α5 X + α6 X 2
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which is the same error-location polynomial calculated in Example 5.7, where the error pattern
has errors at the same positions, but of different magnitude in comparison with the error pattern
of this example.

Roots of this polynomial are β−1
1 = α3 = α−4 = α− j1 and β−1

2 = α5 = α−2 = α− j2 , and
errors are at positions j1 = 4 and j2 = 2.

Error values are calculated by using the following polynomial:

Z (X ) = 1 + (s1 + σ1)X + (s2 + σ1s1 + σ2)X2

= 1 + (α5 + α5)X + (α3 + α5α5 + α6)X2

= 1 + α6 X2

So

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

) = 1 + α6α6

(1 + α−5α3)
= α

α
= 1

e j2 = Z
(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) = 1 + α6α10

(1 + α−3α5)
= α3

α3
= 1

5.7.3 Relationship Between the Error-Location Polynomials of
the Euclidean and B–M Algorithms

Error-location polynomials defined in both of these algorithms are practically the same. As an
example, for the case of RS codes able to correct error patterns of size t = 2 or less, and for
the Euclidean algorithm, the error-location polynomial is equal to

σ (X ) = (X − α− j1 )(X − α− j2 )

= (X + α− j1 )(X + α− j2 )

= (
X + β−1

1

)(
X + β−1

2

)
= (1 + β1 X )(1 + β2 X )/(β1β2)

= σBM(X )/(β1β2)

So, for the same error event, both the Euclidean and the B–M error-location polynomials
have the same roots, since they differ only by a constant factor. In general,

σ (X ) = σBM(X )∏
τ
i=1βi

5.8 A Practical Application: Error-Control Coding for
the Compact Disk

5.8.1 Compact Disk Characteristics

The error-control coding system for the compact disk (CD) is perhaps one of the most interesting
applications of RS codes [8–15]. This system has been designed from the point of view of a
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communication system, where the transmitter is the recording process, the channel is the disk
and the receiver is the CD reader. This storage technique is used for both digital and analog
information, like music for instance. In the case of dealing with analog signals, an analog-to-
digital conversion of that signal is required. This is done over the right and left channels of
a stereo audio signal. The sampling frequency is 44.1 kHz, allowing the conversion of high-
quality audio signals with spectral content up to 20 kHz into a digital format. The quantization
used is of 16 bits, so that the signal-to-quantization noise ratio is about 90 dB. Distortion is
therefore around 0.005%. The sampling frequency has been selected as a function of parameters
of the television signal,

{(625 − 37)/625} × 3 × 15,625 = 44.1 kHz

where 625 is the number of lines in PAL system, 37 is the number of unused lines, 3 is the
number of audio samples recorded per line and 15,625 Hz is the line frequency [8–14].

The digitized information is then protected against noise by using RS codes, which in the
case of the error-correction coding for the CD are two shortened versions of the RS code
CRS(255, 251), which operate over the Galois field GF(28), able to correct error patterns of
size t = 2 or less each, implemented in concatenated form.

The channel is a practical example of channels with burst errors, whose effect is diminished
in this coding technique by using concatenated RS codes and interleaving.

The two shortened versions of the RS code are concatenated by using an interleaver, giving
form to the so-called cross-interleaved Reed–Solomon code. The analog signal is sampled by
taking six samples from each of the audio channels, the right and left channels, thus forming
a group of 12 vectors of 16 bits each, that is, a vector of 24 bytes. This information is first
processed by an interleaver, and then input to the first encoder, which is a shortened version
CRS(28, 24) of the RS code CRS(255, 251). This encoder generates an output of 28 bytes that is
input to another interleaver, which in turn passes these 28-byte interleaved vectors to a second
encoder, another shortened version CRS(32, 28) of the RS code CRS(255, 251). The shortening
procedure is described in Section 5.9.

The coded information is added to another byte, containing synchronization information,
and is then modified by a process known as eight-to-fourteen modulation (EFM) before being
printed on the disk surface in digital format. This modulation is applied on the one hand to
remove low-frequency components in the spectrum of the signal so as to avoid interference with
the tracking control system needed for the reading of the disk, and on the other hand because
the CD reader uses self-synchronization, that is, obtains a synchronization signal from the
received signal itself, it is important to avoid long chains of ‘0’s, to keep the synchronizer
locked. In this particular case the EFM avoids the existence of chains of ‘0’s longer than 10.
EFM is essentially a conversion of vectors of 8 bits into vectors of 14 bits, such that the run
length limited (RLL) conditions are obeyed. These RLL conditions are such that there should
be at least two ‘0’s between any two ‘1’s, and at most ten ‘0’s between any two ‘1’s. Since
the vectors have to be concatenated, there is a need to add interconnecting vectors of 3 bits, in
order to maintain the RLL conditions over the concatenation of vectors. So finally each vector
of 8 bits is converted into a vector of 17 bits. At the end of the whole process, which involves
error-control coding, additional information and EFM, the six samples of audio stereo convert
into a sequence of 588 bits. This information is transferred to the disk surface at a speed of
4.332 Mbps.
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t

v(t)

Figure 5.1 Sampled audio signal

5.8.2 Channel Characteristics

The disk on which information is printed is a plastic disk covered by an aluminium–copper
alloy, with a diameter of 120 mm, a thickness of 1.2 mm and a printed pit thickness of 1.6 μm.
The CD reader has an AlGaAs laser of wavelength 0.8 μm that reads over the pits to detect the
printed value, at a constant speed of 1.25 m/s, and so the angular speed has to vary between
8 and 3.5 revolutions per second. This is done to keep the data rate at a constant value. The
error-control coding applied for CDs has a strong error-correction capability, and this makes
possible simple manufacture of disks because errors expected due to imperfections in the
printing process are automatically corrected by the CD reader [10–14].

5.8.3 Coding Procedure

As described in the previous section, the coding procedure for the CD is a combination of RS
codes and interleavers. The basic coding block is an array of six samples of 16 bits each taken
over the right and left audio channels, resulting in an uncoded vector of 24 bytes. Figure 5.1
represents the left or right audio signal that is sampled to form the uncoded vector.

These six samples are arranged in a vector as shown in Figure 5.2, where samples coming
from the right and left channels are identified.

Interleaver I1 takes the even-numbered samples for each stereo channel and separates them
from the odd-numbered samples, moving two time windows and filling the empty windows with
previous data. Encoder C1 is a shortened version CRS(28, 24) of the RS code CRS(255, 251)
that adds 4 bytes to the uncoded information, generating a vector of 28 bytes. This is the
so-called outer code.

Vector of 24 bytes 

L L R R L L R R L L R R L L R R L L R R L L R R

Figure 5.2 Uncoded message format
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Encoder C1 Interleaver  I2 Encoder C2Interleaver  I1 Interleaver E3 

Figure 5.3 Coding procedure for the CD

Interleaver I2 generates a delay of 4 bytes over each processed vector with respect to the
previous vector, performing a variable-delay interleave for each position, but a constant-delay
interleave between consecutive positions. Encoder C2 is also a shortened version CRS(32, 28)
of the RS code CRS(255, 251) that adds 4 bytes to the interleaved and coded vector received
from interleaver I2, which is a vector of 28 bytes. This is the so-called inner code. After
encoding, the resulting interleaved and coded vector is of 32 bytes. Interleaver I3 performs
delays and some element inversions to facilitate the operation of an interpolation procedure
that takes place after decoding, and that makes imperceptible in the recovered audio signal any
errors produced by the whole decoder [8–10]. Figure 5.3 shows this interleaving and encoding
procedure.

The decoder performs the inverse of each of the operations described, in order to recover
the information.

5.9 Encoding for RS codes CRS(28, 24), CRS(32, 28) and CRS(255, 251)

In its original design an RS code is designed for operation over the Galois field GF(2m), and
its code length is n = 2m − 1. One interesting application of these codes is the design of RS
codes over the extended Galois field GF(28) = GF(256), because any element of a code vector
in these codes is itself a vector of 8 bits, or a byte. An RS code designed over this field, able
to correct any error pattern of size t = 2 or less, is the RS code CRS(255, 251). A table of
the codewords in this code would be enormous. However, the first page of the table (or set
of codewords at the top of the table) would contain codewords with ‘0’s only in the most
significant message positions. Therefore a shortened RS code can be formed by taking this
page of codewords and deleting the positions that are ‘0’s in all the codewords on this page.
More specifically, a shortened RS code can be constructed by setting sRS message symbols
to zero, where 1 ≤ sRS < k. Then the length of the code is n − sRS symbols, the number of
message symbols is k − sRS and the number of parity symbols is n − k as before, where all
the symbols remain in GF(2m). The generator polynomial and the error-correcting capability
of the shortened code is the same as that of the unshortened code, but the code is no longer
cyclic since not all cyclic shifts of codewords in the shortened code are also in the shortened
code. For this reason the shortened code is said to be quasi-cyclic.

In this way, an RS code can be designed without the restriction of having a fixed code
length n = 2m − 1, so that the code length can be significantly reduced, without losing any
good property of the main code. Thus, shortened RS codes CRS(28, 24) and CRS(32, 28)
are obtained from the original RS code CRS(255, 251) by setting sRS = 227 and sRS = 223,
respectively, and both the shortened codes have the same error-correction capability as that
of the main code CRS(255, 251), which is t = 2. The main code and the shortened versions of
this code all have a minimum distance dmin = 5. These two codes are the constituent codes of
the CD error-control coding system.
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For the main code,

q = 2m = 28

n = 2m − 1 = 255

n − k = 2t = 255 − 251 = 4

dmin = 2t + 1 = 5

The shortened versions of the main code CRS(255, 251), the codes CRS(28, 24) and
CRS(32, 28), all have the same parameters, except that the shortened codes have n = 28 and
k = 24 for the former, and n = 32 and k = 28 for the latter.

The coding procedure for the CD utilizes an interleaver between these two shortened RS
codes, which essentially creates a delayed distribution of the bytes in a given code vector. In this
way, the uncoded message of 24 bytes is first encoded by the shortened RS code CRS(28, 24)
that generates a code vector of 28 bytes, and then the interleaver forms a vector of 28 bytes
containing bytes from previous code vectors generated by the first encoder. In this interleaving
process, each element of the vector of 28 bytes generated by the first encoder is placed in
different vectors of 28 bytes position by position. The resulting vector of 28 bytes is input to
the encoder of the shortened RS code CRS(32, 28) that adds 4 bytes to the vector and generates
at the end a code vector of 32 bytes.

An example of the operation of these shortened RS codes is introduced here. The encoder
operates in systematic form. A message vector, expressed in polynomial form m(X ), is multi-
plied by X2t = X4, as usually done in the systematic encoding of an RS code, generating the
polynomial X4m(X ), which is then divided by the generator polynomial g(X ) of the code. As
said above, this generator polynomial is the same as that of the main code, and is also the same
for both shortened versions of RS codes CRS(28, 24) and CRS(32, 28). Therefore, if t = 2, then

g(X ) = (X + α)(X + α2)(X + α3)(X + α4)

g(X ) = (X2 + α26 X + α3)(X2 + α28 X + α7)

g(X ) = X4 + (α26 + α28)X3 + (α7 + α54)X2 + (α31 + α33)X + α10

g(X ) = X4 + α76 X3 + α251 X2 + α81 X + α10 (53)

All operations performed in the calculation of this generator polynomial are done in GF(28).
This is the generator polynomial of RS codes CRS(255, 251), CRS(28, 24) and CRS(32, 28). As
explained above, systematic encoding of a given message polynomial m(X ) consists in taking
the remainder polynomial of the division of X4m(X ) by g(X ). This remainder polynomial is
of degree 2t − 1 or less, and represents the 4 bytes added by this encoding.

As a result of both shortened RS codes having the same generator polynomial, in this
concatenated scheme, the code vector generated by the outer code, the shortened RS code
CRS(28, 24), has to be altered, in order to conveniently enable operation of the second encoder.
This is so because, as said above, the generator polynomial for both shortened RS codes in this
concatenation is the same. Indeed, after the encoding of a vector of 24 bytes into a code vector
of 28 bytes, the resulting code vector belongs to the code, and so it is a multiple of g(X ). Even
after shifting by 4 bytes the positions of this code polynomial before the second encoding, it is
very likely that the shifted code vector of the inner code is still a code vector of the shortened
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More significant 12 bytes Less significant 12 bytes 

4 parity bytes 

Figure 5.4 Code vector generated by the shortened RS code CRS(28, 24)

RS code CRS(32, 28). If this is so, then in the systematic encoding procedure for the second
(inner) encoder, it is very likely that the remainder, that is, the redundancy, will be a zero
polynomial, because the vector to be encoded already belongs to this code. For this reason, the
parity bytes generated by the outer code, the shortened RS code CRS(28, 24), are placed in the
middle of the code vector before the inner encoding process, as shown in Figure 5.4 [9, 15].

Example 5.9: An arbitrary message vector m of 24 bytes will be encoded by the shortened
RS code CRS(28, 24) [15]:

m = (
α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α2 α1 α0 0

α4 α3 α2 α1 α40 α30 α20 α10
)

The convention used here is that the most significant element of the Galois field GF(28) =
GF(256) is on the left, and the least significant element is on the right. The message vector
is composed of elements of the field; for example, element α2 has a binary representation
of the form (00100000). The resulting encoded vector generated by the shortened RS code
CRS(28, 24), expressed in a way that the 4 bytes of the redundancy are in the middle of the
code vector, is

c1 = (
α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249

α228 α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10
)

Part of the polynomial division involved in the calculation of this code vector is as follows:

X4 + α76 X3 + α251 X2 + α81 X + α10 α100 X27 + α90 X26 + α80 X25 + α70 X24 + α0 X23

+ 0.X22 + 0.X21 + α70 X20 . . .

α100 X27 + α176 X26 + α96 X25 + α181 X24 + α110 X23

+ α77 X26 + α225 X25 + α61 X24 + α126 X23

+ α77 X26 + α153 X25 + α73 X24 + α158 X23 + α87 X22

+ α93 X25 + α188 X24 + α161 X23 + α87 X22

...
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The division stops after 23 operations. The last part of this division is

α218 X4 + α41 X3 + α83 X2 + α251 X

α218 X4 + α39 X3 + α284 X2 + α44 X + α228

+α89 X3 + α139 X2 + α249 X + α228

The remainder polynomial is the calculated redundancy, which is, as said above, placed in
the middle of the message vector.

The second encoder in this concatenated scheme, for the shortened RS code CRS(32, 28),
takes the code vector of 28 bytes generated by the first encoder, and operates in the same way
as that described above, in order to calculate the additional 4 bytes of redundancy. The number
of steps in the division is now 27, instead of 23. The encoded vector is finally of the form

c2 = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 α228

α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10 α144 α68 α240 α5)

Now the redundant bytes are placed as traditionally done at the end of the resulting code
vector, that is, in the least significant positions. It is noted here that in the real CD coding
procedure, there is an interleaver between these two concatenated encoders.

It is practically impossible to enumerate all the code vectors that form these codes, even
in the case of shortened RS codes. Any of the 256 elements of the field being used have the
possibility of being in each position of the message vector of 24 bytes. This means that the
total number of code vectors in the shortened RS code CRS(28, 24) is

2km = 224×8 = 6.27710 × 1057

This is the size of the input of the table of code vectors, and also the number of message vectors
that can be encoded. The shortened RS code CRS(32, 28) expands this vector space into a space
of the following number of code vectors:

2nm = 228×8 = 2.69599 × 1067

The relationship between these quantities is

2nm/2km = 228×8/224×8 = 232 = 4.29 × 109

which gives an idea of the expansion capability of the encoding procedure.

5.10 Decoding of RS Codes CRS(28, 24) and CRS(32, 28)

5.10.1 B–M Decoding

For both shortened versions of RS codes under analysis, the error-correction capability is t = 2,
and so the error pattern polynomial is of the form

e(X ) = e j1 X j1 + e j2 X j2 (54)
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where e j1 , e j2 , j1 and j2 are unknown variables. There are four unknown variables that can be
determined by finding the solution of a linearly independent system of four equations. After
determining the positions and values of these two errors, error-correction can be performed.

As explained in the previous section, the B–M algorithm [6, 7] can determine the error-
location polynomial and then, together with expressions (51) and (52), it is possible to determine
the positions and values of the errors. In this case, both shortened RS codes have the same
error-correction capability; that is, they are able to correct any error pattern of size t = 2 or
less. The B–M table in this case contains rows from μ = −1 to μ = 4. The error-location
polynomial for the shortened RS codes CRS (28, 24) and CRS (32, 28) is of the form

σ (X ) = 1 + σ1 X + σ2 X2 (55)

The following polynomial is also necessary for evaluating the error values:

Z (X ) = 1 + (S1 + σ )X + (S2 + σ1S1 + σ2)X2 (56)

Then

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

)
e j2 = Z

(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) (57)

The error polynomial is thus obtained, and is then added to the received polynomial r (X )
to perform error correction.

Example 5.10: Decoding for the concatenation of the RS codes CRS(28, 24) and CRS(32, 28)
of a code vector of 32 bytes. The received vector contains two errors at positions 8 and 16. In
the particular example, errors are erasures of the elements at those positions, represented in the
received vector with the symbol 0∗∗. The received vector r is the code vector calculated in
Example 5.9 that when affected by the above error pattern becomes

r = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 0∗∗

α2 α1 α0 0 α4 α3 α2 0∗∗ α40 α30 α20 α10 α144 α68 α240 α5)

The syndrome vector components are

s1 = α31, s2 = α132, s3 = α121, s4 = α133

These values are necessary for applying the B–M algorithm (see Table 5.7).
Therefore the error-location polynomial is equal to

σBM(X ) = 1 + σ1 X + σ2 X2 = 1 + α208 X + α24 X2

whose roots are

β−1
1 = α239 β−1

2 = α247
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Table 5.7 B–M algorithm table, Example 5.10

μ σ
(μ)
BM(X ) dμ lμ μ − lμ

−1 1 1 0 −1

0 1 α31 0 0

1 1 + α31 X α126 1 0

2 1 + α101 X α128 1 1

3 1 + α101 X + α97 X 2 α32 2 1

4 1 + α208 X + α24 X 2 α168 2 2

Then the error-location numbers are

β1 = α−239 = α255−239 = α16 = α j1

β2 = α−247 = α255−247 = α8 = α j2

and so error positions are

j1 = 16 j2 = 8

The polynomial Z (X ) is, for this case,

Z (X ) = 1 + (s1 + σ )X + (s2 + σ1s1 + σ2)X2 = 1 + α165 X + α138 X2

and the error values at the error positions are

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

) = α128

e j2 = Z
(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) = α1 = α

The first decoder finds these two errors and adds the error polynomial

e(X ) = e j1 X j1 + e j2 X j2 = α128 X16 + αX8

to the received polynomial, converting the received vector

r = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 0∗∗

α2 α1 α0 0 α4 α3 α2 0∗∗ α40 α30 α20 α10 α144 α68 α240 α5)

into the decoded vector

c = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 α128

α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10 α144 α68 α240 α5)
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The first decoder ends its operation by truncating the corresponding redundancy and by
passing to the second decoder the following vector:

c′ = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249

α128 α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10)

The second decoder calculates the syndrome of this vector, which turns out to be the all –
zero vector in this case, so that the vector is already a code vector. This example indicates
that the concatenation, in this way, of two RS codes does not make much sense if both are of
similar characteristics, since the error-correction capability of the scheme is almost equal to
that of one of the two RS codes involved. In only a few cases is the second decoder able to
correct errors effectively, as explained in more detail in Section 5.11 below. This emphasizes
the importance of the interleaver actually used in the coding procedure for the CD. Finally, the
decoded vector is

m̂ = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α2 α1 α0 0

α4 α3 α2 α1 α40 α30 α20 α10)

which is the true message vector transmitted in this example.

5.10.2 Alternative Decoding Methods

As pointed out in previous sections, any algorithm able to solve the system of equations (19)
can be used in a decoding algorithm for RS codes. Among these algorithms are the Euclidean
algorithm and the B–M algorithm, both introduced in previous sections in this chapter. In the
particular case of the concatenation of the RS codes CRS(28, 24) and CRS(32, 28), the error-
correction capability of each of these codes is t = 2, so that the error pattern polynomial is of
the form of (54), in which e j1 , e j2 , X j1 and X j2 are the unknown variables that are the positions
and values of the two possible errors. Since the number of unknown variables is 4, there must be
a system of at least four equations to uniquely determine these unknown variables. This system
of equations comes from the calculation of the four syndrome vector components obtained by
replacing the variable X in the expression of the received polynomial r (X ) by the roots of the
corresponding Galois field α, α2, α3 and α4. The received vector is considered to be a valid
code vector if the four components of the syndrome vector are all equal to zero. Otherwise
there is at least one error in the received vector. If the number of errors is equal to the minimum
distance of the code, in this case dmin = 5, then the received vector may convert into another
code vector. In this case the error pattern is beyond the error-correction capability of the code.

The most well-known algorithms for decoding RS codes are those already introduced in
previous sections, the Euclidean and the B–M algorithms [2, 4, 6, 7], which can be implemented
in either the time domain (as described in this chapter) or the finite field transform (spectral)
domain [16]. Other algorithms can also be implemented. Among them, there exists a decoding
algorithm based on the direct solution of the corresponding system of equations, which, in this
particular case, is of low complexity because a maximum of only two errors (t = 2) have to
be determined.
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5.10.3 Direct Solution of Syndrome Equations

If the maximum number of errors to be corrected is relatively small, as it is in this case, then the
direct solution of the corresponding system of syndrome equations can be a simpler alternative
to the well-known decoding algorithms. In this case, the system of syndrome equations is of
the form

s1 = e(α) = e j1β1 + e j2β2

s2 = e(α2) = e j1β
2
1 + e j2β

2
2

s3 = e(α3) = e j1β
3
1 + e j2β

3
2

s4 = e(α4) = e j1β
4
1 + e j2β

4
2

(58)

where

β1 = α j1

β2 = α j2
(59)

From equation (58), we can form the terms

s1s3 + s2
2

s1s4 + s2s3

s2s4 + s2
3

(60)

and by multiplying these terms by β2
1 , β1 and 1, respectively, the following equation is obtained:(

s1s3 + s2
2

)
β2

1 + (s1s4 + s2s3)β1 + s2s4 + s2
3 = 0

In the same way, but multiplying now by β2
2 , β2 and 1, respectively, the following equation

is also obtained: (
s1s3 + s2

2

)
β2

2 + (s1s4 + s2s3) β2 + s2s4 + s2
3 = 0

These last two equations are almost the same, the difference being that the former is expressed
in β1 and the latter is expressed in β2. They can however be combined into one equation as(

s1s3 + s2
2

)
β2 + (s1s4 + s2s3) β + s2s4 + s2

3 = 0 (61)

where β = β1, β2 are the two roots of equation (61). Roots for this equation can be found by
using the Chien search over the possible values of β, which are the positions numbered from
0 to 31 (α0 and α31) for the case of the RS code CRS(32, 28), and from 0 to 27 (α0 and α27) for
the case of the RS code CRS(28, 24), leading to the solution of roots β1 and β2. Another way
is that once one of the roots has been determined, then the other one can be obtained by using

β2 = β1 + s1s4 + s2s3

s1s3 + s2
2

(62)

an expression that comes from the well-known relationship of the roots of a quadratic equation.
Once the values of the roots are determined, equation (58) can be solved to calculate the error
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values. On the one hand,

s2 + s1β2 = e j1

(
β2

1 + β1β2

)
and thus

e j1 = (s2 + s1β2)/
(
β2

1 + β1β2

)
(63)

On the other hand,

s2 + s1β1 = e j2

(
β2

2 + β1β2

)
and thus

e j2 = (s2 + s1β1)/
(
β2

2 + β1β2

)
(64)

If the number of errors in the received vector is 2, then the solution is unique. Error correction
is then performed by adding the received vector to the error vector.

The complexity of this proposed direct-solution algorithm is less than the Euclidean algo-
rithm complexity, since equation (61) is directly obtained with the syndrome vector compo-
nents, and its roots are the error-location numbers β1 and β2, whose calculation leads to the
whole solution of the system. There is no need to look for the error-location polynomial σ (X ).
It is just that the left-hand term in equation (61) is somehow an error-location polynomial for
this method, since if β is replaced by 1/X , and if the resulting polynomial is normalized to be
monic, then this expression becomes the error-location polynomial of the Euclidean algorithm
(see Examples 5.5 and 5.7).

If the number of errors is different from 2, then it is quite likely that the system of syn-
drome equations will be incorrectly solved. Therefore a suitable decoding process consists of
three steps to sequentially evaluate three different situations. First, the four syndrome vector
components have to be calculated. If all these components are equal to zero, the decoding
procedure adopts the received vector as a code vector. Otherwise the decoder assumes that
the received vector has only one error, and performs error correction according to expressions
(21), which are valid for determining the position and the value of one error. This procedure is
very simple. Expressions (21) can be used to calculate the magnitude and position of the error,
and then the error correction is performed by using (16). After performing this single-error
correction, the syndrome of the corrected vector is calculated. If the syndrome vector is the
all-zero vector, then the decoder considers that this correction was successful, and that the
corrected vector is a code vector. The decoding procedure halts at this step and proceeds to
the next received vector. Otherwise the decoder assumes that the received vector contains two
errors, and proceeds to calculate the roots of equation (61) by means of the Chien search. After
determining the values and positions of the two errors, error correction is again performed,
another corrected vector is evaluated and the syndrome vector components are determined for
this corrected vector. If after the assumption of a two-error pattern the correction is successful;
that is, the syndrome calculated over the corrected vector has all its components equal to zero,
then the corrected vector is considered as a code vector. Otherwise the received vector is left
as it has been received, and the decoder proceeds to decode the next received vector.
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Example 5.11: Solve Example 5.5, using expressions (61)–(64).
According to the received polynomial

r (X ) = α6 X2 + α4 X4

the syndrome vector components are

s1 = r (α) = α8 + α8 = 0

s2 = r (α2) = α3 + α5 = α6

s3 = r (α3) = α5 + α2 = α4

s4 = r (α4) = 1 + α6 = α4

Equation (61) is of the form(
s1s3 + s2

2

)
β2 + (s1s4 + s2s3)β + s2s4 + s2

3

= [0.α4 + (α6)2]β2 + [0.α4 + α6α4]β + α6α4 + (α4)2

= α5β2 + α3β + α4

= 0

This equation has two roots, β1 = α2 and β2 = α4. This means that the first error is at position
j1 = 2, and the other error is at position j2 = 4.

Values of the errors are calculated by using (63) and (64):

e j1 = (s2 + s1β2)(
β2

1 + β1β2

) = α6 + 0.α4

α4 + α2α4
= α6

e j2 = (s2 + s1β1)(
β2

2 + β1β2

) = α6 + 0.α2

α8 + α2α4
= α4

The error polynomial is then

e(X ) = α6 X2 + α4 X4

and the transmitted vector was the all-zero vector.

5.11 Importance of Interleaving

In general terms, concatenation of RS codes is not efficient without interleaving [8, 9, 15].
Burst errors are very common in the CD system, since information is printed in digital format
over the disk surface as a long and continuous spiral line, and so any scratch, rip or mark over
the surface can produce a serious damage of the printed information, that is, essentially a chain
or burst of errors in the digital sequence. Interleaving plays an important role in reducing the
effect of this sort of error event.
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At first sight, it seems that the concatenation of the two shortened RS codes of the CD system,
with error-correction capability t = 2 each, could have an error-correction capability of t = 4
errors in a code vector of 32 bytes, since the first encoder adds four redundancy elements to
correct two errors, and the second encoder does the same to correct another two errors. From
this point of view, it would be necessary to solve a system of eight syndrome equations, in
order to determine four error positions and their four error values.

However, the most common way of decoding a serial concatenation of codes is to first
perform the operation of decoding the inner code, and then to pass the resulting vector to
the outer decoder. In this case, most of the error patterns of size larger than 2, t > 2, make
the decoder of the RS code CRS(32, 28) collapse, because its corresponding system of syndrome
equations cannot be solved properly, and so this decoder passes the received vector to the
outer decoder, which in turn cannot correct that error pattern either. Thus the concatenated
system is in the end incapable of correcting more than a few error patterns of size t = 3 or
t = 4. The above explanation is true for the concatenation of two RS codes without using
interleaving in between the two codes. Here is noted the importance of the interleaving/de-
interleaving procedure, which causes a given burst error pattern, which is essentially a long
chain of consecutive errors, be distributed over many different consecutive code vectors, each
one containing a small number of bytes in error. Thus, for instance, a burst error pattern of three
errors, serially decoded without interleaving between the codes, generally cannot be corrected.
However, this error pattern is converted by the interleaving procedure into single error patterns
in three different received vectors, making the three-error event correctable, since the serial
decoders can manage error events of size t = 1. This is the essence of interleaving; that is, the
interleaving somehow randomizes and distributes a burst over many received vectors, reducing
the size of the error event per received vector.

By making use of the interleaver, the most common way of decoding in the CD system is
to use the first decoder in erasure mode; that is, in a mode where it first detects errors and then
erases them, before passing the resulting vector to the second decoder. This means that the first
decoder performs only error detection.

If the first decoder detects errors in the received vector, then it erases all its positions, de-
interleaves the erased received vector and passes it to the second decoder. The second decoder
knows which positions are erased, and therefore knows the positions of the possible errors. The
system of four syndrome equations of the second decoder is then able to determine the error
values in up to four of these error positions, thus performing the correction of error patterns of
size t = 4 or less. The relationship between the positions of the code vectors of the RS codes
CRS(32, 28) and CRS(28, 24) is illustrated in Figure 5.5.

The vector of 32 bytes is input to the first decoder. After determining the syndrome vector
and detecting errors, it erases and reorders the received vector, taking out the four parity bytes
at positions 0, 1, 2 and 3 of the vector of 32 bytes, and passes to the second decoder a vector of
28 bytes. This second decoder performs error correction and takes out bytes at positions 0, 1, 2
and 3 of the vector of 28 bytes, to obtain the decoded vector of 24 bytes. This procedure would
be implemented taking into account the interleaver between the two codes in the CD system.
Since the first decoder erases those received vectors found in error, and passes the erased vector
via the de-interleaver to the second decoder, the whole error-control coding scheme for the
CD is capable of correcting any error pattern of size t = 4 or less. The second decoder, which
corresponds to the RS code CRS(28, 24), corrects these error patterns by solving a system of
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Figure 5.5 Relationship between positions of code vectors of the RS codes CRS(32, 28) and CRS(28, 24)

equations of the form

s1 = r (α) = e j1β1 + e j2β2 + e j3β3 + e j4β4

s2 = r (α2) = e j1 (β1)2 + e j2 (β2)2 + e j3 (β3)2 + e j4 (β4)2 (65)

s3 = r (α3) = e j1 (β1)3 + e j2 (β2)3 + e j3 (β3)3 + e j4 (β4)3

s4 = r (α4) = e j1 (β1)4 + e j2 (β2)4 + e j3 (β3)4 + e j4 (β4)4

where positions βi = α ji , 0 ≤ ji < 28, are known, as they are passed from the first decoder to
the second one. It is necessary to determine only the values of errors e ji . Interleaving provides
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Figure 5.6 Limiting burst error pattern of error-correction coding for the CD

the whole coding system with a higher error-correction capability. This is briefly described in
Figure 5.6.

In Figure 5.6 the horizontal axis is the time sequential order in which bytes are transmitted,
whereas in the vertical axis the vector of 28 bytes received from the decoder of the RS code
CRS(32, 28) can be observed. This figure shows only the first 17 steps of the interleaving, and
only 9 bytes of the vector of 28 bytes. The whole array would have 112 columns and 28 rows,
and it would be an array of vectors that the first decoder passes to the second decoder. Each
vector is distributed by the de-interleaving process, placing its bytes with consecutive delays
of size 4D, D being the size of a byte. The first vector coming from the decoder of the RS
code CRS(32, 28) is for instance placed at positions numbered (1, 1), (2, 5), (3, 9), (4, 13),
etc., as depicted in Figure 5.6 with oblique lines. The 4 bytes provided by the first encoder are
discarded here. If for instance two vectors of 32 bytes were found to have errors and erased,
the second erased vector would be placed in positions numbered (1, 2), (2, 6), (3, 10), (4, 14),
and so on. When the decoder of the RS code CRS(32, 28) receives a vector of 32 bytes, it
calculates the syndrome vector components, and if this vector is different from the all-zero
vector, then instead of performing error correction, the decoder erases all the positions of the
received vector. After this, the decoder takes out the 4 bytes of redundancy and places as a
column the 28 resulting bytes, in 28 different columns, so that the first byte is the first in column
1, the second byte is the second in column 5, the third byte is the third in column 9, and so
on. Thus, the 28 received bytes of the received vector of 32 bytes that result from the removal
of the first four redundant bytes become single bytes in 1 of 28 different columns or vectors.
If for instance a burst error pattern of 32 bytes occurs, which could not be corrected if the
concatenated system does not use interleaving, it is converted by the interleaving procedure
into a series of 28 vectors with only one error in each, now able to be corrected by the second
decoder that corresponds to the RS code CRS(28, 24).

The erasure technique is not very efficient if the received vector has only few errors, because
the first decoder erases valid bytes, but if as happens usually in the CD channel a burst of
errors affects the received vector, the efficiency is very high. When a burst of 17 vectors of
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32 bytes each affects the transmission, which is an error event that can be seen as affecting the
first 17 columns in Figure 5.6, an erasure of 5 bytes happens in the column 17 of that array,
which is a received vector for the second decoder. This column contains bytes of received
vectors numbered 1, 5, 9, 13 and 17, which were received and erased by the first decoder after
truncating 4 bytes of redundancy. The second decoder [RS code CRS(28, 24)] cannot correct
this error pattern. Therefore the whole system is able to correct a burst error event of 16 vectors
of 32 bytes, and so the total number of bits that can be corrected in a burst error pattern is

16 × 24 × 8 = 3072 bits

As seen in the above description of the interleaving procedure, there is a big difference in
the error-correction capability of the concatenated RS codes when interleaving is used. The
difference with respect to the concatenation of the same RS codes without interleaving is now
evident, as in this latter case, error events of more than 2 bytes in a given vector normally
cannot be corrected. As pointed out previously, the concatenation of the two RS codes without
interleaving has an error-correction capability similar to that of only one of the RS codes used.

RS codes demonstrate a very strong error-correction capability, especially against the burst
errors that happen in mobile communications and in the reading process of a CD. One of the
reasons for such a high correction capability is that RS codes are non-binary, and their error
correction is performed over an element of a Galois field, that is, over a group of bits, no matter
whether one or all of them are in error. This error-correction capability increases enormously
if these codes are implemented in serial concatenation with interleaving, which has the ability
to spread burst errors into several successive outer code vectors, converting burst errors into
random-like errors.
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Problems

5.1 A cyclic code over GF(4) has the generator polynomial g(X) = X + 1, and is to
have a code length n = 3. The field elements are generated by the polynomial
α2 + α + 1 = 0. Find the generator matrix of the code in systematic form, the
minimum Hamming distance of the code and the syndrome vector if the received
vector is r = (α α α).

5.2 (a) Determine the generator polynomial of an RS code CRS(n, k) that operates
over the field GF(24) and is able to correct any error pattern of size t = 2 or
less.

(b) For the RS code of item (a), decode the received polynomial r (X) = αX3 +
α11 X7 by using the Euclidean algorithm.

(c) For the RS code of item (a), decode the received polynomial r (X) = α8 X5.

5.3 (a) Determine the generator polynomial of an RS code that operates over the field
GF(24) and is able to correct any error pattern of size t = 3 or less.

(b) Determine the values of n and k.

5.4 For the RS code of Problem 5.3, decode the received vector r = (000α7 00α3

00000α4 00) by using the Euclidean and the B–M algorithms.
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5.5 Consider the RS code with symbols in GF(23), with three information symbols,
k = 3, code length n = 7, and the generator polynomial g(X) = (X + α2)(X + α3)
(X + α4)(X + α5) where α is a root of the primitive polynomial pi (X) = 1 + X + X3

used to represent the elements of GF(23).
(a) How many symbol errors can this code correct?
(b) Decode the received vector r = (0110111) to determine the transmitted code

vector.

5.6 The redundant symbols of a 1/2-rate RS code over GF(5) with code length 4 are
given by

c1 = 4k1 + 2k2

c2 = 3k1 + 3k2

(a) Find the number of code vectors, the generator matrix and the Hamming
distance of the code.

(b) Show that the vector (1134) is not a code vector, and find the closest code
vector.

5.7 An extended RS code over GF(22) has the following generator matrix:

G =
⎡⎣1 α 1 0 0

1 α2 0 1 0
1 1 0 0 1

⎤⎦
(a) What is the rate of the code, and its minimum Hamming distance?
(b) Is r = (α2 α α 0 1 ) a code vector of this code?

(c) The received vector r = ( 0 α 1 α2 0 ) contains a single error: find its
position and value.

5.8 Consider a shortened RS code CRS(8, 4) operating over the Galois field GF(24)
with error-correction capability t = 2.
(a) Obtain its generator polynomial, and then the code vector for the message

vector m = (α4 α7 0 α5 ).
(b) Consider now that this code vector is input to a second shortened RS code

CRS(12, 8), also operating over the same field, and with the same generator
polynomial and error-correction capability as the shortened RS code CRS(8, 4).
Determine the resulting concatenated code vector.

(c) Use either the Euclidean or the B–M decoding algorithm to decode the result-
ing concatenated code vector of item (b) when it is affected by either the error
pattern e(X) = X3 + X10 + X11 or the error pattern e(X) = X + X6 + X9.

5.9 The concatenated scheme of Problem 5.8 is now constructed using between the
two concatenated codes a convolutional interleaver like that seen in Figure P.5.1.
After the first encoding, a word of eight elements is generated. The first element
of this word is placed in the first position of the first column of the interleaver, the
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Figure P.5.1 An interleaver for a concatenation of two RS codes

second element in the second position of the second column of the interleaver, and
so on. Then the resulting word is input to the second encoder to finally generate
a codeword of 12 elements. Determine the increased error-correction capability
of this scheme with respect to the direct concatenation performed in Problem 5.8.

�
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6
Convolutional Codes

A second important technique in error-control coding is that of convolutional coding [1–6]. In
this type of coding the encoder output is not in block form, but is in the form of an encoded
sequence generated from an input information sequence. The encoded output sequence is
generated from present and previous message input elements, in a continuous encoding process
that creates redundancy relationships in the encoded sequence of elements. A given message
sequence generates a particular encoded sequence. The redundancy in the encoded sequence
is used by the corresponding decoder to infer the message sequence by performing error
correction. The whole set of encoded sequences form a convolutional code Cconv, where there
exists a bijective (one-to-one) relationship between message sequences and encoded sequences.

From this point of view, a sequence can also be considered as a vector. Then, message
sequences belong to a message vector space, and encoded sequences belong to a code vector
space. Message sequence vectors are shorter than code sequence vectors, and so there are
potentially many more possible code sequences than message sequences, which permits the
selection of code sequences containing redundancy, thus allowing errors to be corrected. The set
of selected sequences in the code vector space is the convolutional code. A suitable decoding
algorithm can allow us to determine the message sequence as a function of the received
sequence, which is the code sequence affected by the errors on the channel.

In general terms, convolutional encoding is designed so that its decoding can be performed
in some structured and simplified way. One of the design assumptions that simplifies decoding
is linearity of the code. For this reason, linear convolutional codes are preferred. The source
alphabet is taken from a finite field or Galois field GF(q). The message sequence is a sequence
of segments of k elements that are simultaneously input to the encoder. For each segment of k
elements that belongs to the extended vector space [GF(q)]k , the encoder generates a segment
of n elements, n > k, which belongs to the extended vector space [GF(q)]n . Unlike in block
coding, the n elements that form the encoded segment do not depend only on the segment
of k elements that are input at a given instant i , but also on the previous segments input at
instants i − 1, i − 2, . . . , i − K , where K is the memory of the encoder. The higher the level
of memory, the higher the complexity of the convolutional decoder, and the stronger the error-
correction capability of the convolutional code. Linear convolutional codes are a subspace
of dimension k of the vector space [GF(q)]n defined over GF(q). Linear convolutional codes

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
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exist with elements from GF(q), but in most practical applications, however, message and
code sequences are composed of elements of the binary field GF(2), and the most common
structure of the corresponding convolutional code utilizes k = 1, n = 2. A convolutional code
with parameters n, k and K will be denoted as Cconv(n, k, K ).

6.1 Linear Sequential Circuits

Linear sequential circuits are an important part of convolutional encoders. They are constructed
by using basic memory units, or delays, combined with adders and scalar multipliers that
operate over GF(q). These linear sequential circuits are also known as finite state sequential
machines (FSSMs) [7]. The number of memory units, or delays, defines the level of memory of
a given convolutional code Cconv(n, k, K ), determining also its error-correction capability. Each
memory unit is assigned to a corresponding state of the FSSM. Variables in these machines
or circuits can be bits, or a vector of bits understood as an element of a field, group or ring
over which the FSSM is defined [9–15]. In these algebraic structures there is usually a binary
representation of the elements that adopt the form of a vector of components taken from GF(2).

FSSM analysis is usually performed by means of a rational transfer function G(D) =
P(D)/Q(D) of polynomial expressions in the D domain, called the delay domain, where
message and code sequences adopt the polynomial form M(D) and C(D), respectively. For
multiple input–multiple output FSSMs, the relationship between the message sequences and
the code sequences is described by a rational transfer function matrix G(D).

A convolutional encoder is basically a structure created using FSSMs that for a given input
sequence generates a given output sequence. The set of all the code sequences constitutes the
convolutional code Cconv.

6.2 Convolutional Codes and Encoders

A convolutional encoder takes a k-tuple mi of message elements as the input, and generates
the n-tuple ci of coded elements as the output at a given instant i , which depends not only on
the input k-tuple mi of the message at instant i but also on previous k-tuples, m j present at
instants j < i .

As an example, Figure 6.1 shows a convolutional encoder that at each instant i takes two
input elements and generates at the same instant three output elements. Rectangular blocks
identify memory units or delays of duration D, which is defined as the time unit of the FSSM,

m(2)

m(1)

c(3)

c(2)

c(1)

 

Figure 6.1 A convolutional encoder
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m

c(2)

c(1)

Figure 6.2 Structure of a systematic convolutional encoder of rate Rc = 1/2

and is normally equal to the duration of an element of the Galois field GF(q) over which the
FSSM operates. The circles containing plus signs represent GF(q) adders, and it is also possible
to have GF(q) multipliers. In general terms, equivalent convolutional encoders can exist, that is,
convolutional encoders of different structures that generate the same convolutional code Cconv.

The quotient between the number of input elements k and the number of output elements
n defines what is called the rate of the convolutional code, Rc = k/n. In the case of the
convolutional encoder of Figure 6.1, for instance, this parameter is Rc = 2/3.

A differently structured convolutional encoder is shown in Figure 6.2, which is called a sys-
tematic encoder, since the message elements appear explicitly in the output sequence together
with the redundant elements. In this case the rate of the convolutional code is Rc = 1/2.

Properties of convolutional coding will be illustrated by means of an example based on the
convolutional encoder seen in Figure 6.3. This convolutional encoder is an FSSM that operates
over the binary field GF(2) where the input message k-tuple is simply one bit, m, and at each
instant i the encoder generates an output n-tuple of two bits c(1)

i and c(2)
i . The input sequence

mi = (m0, m1, m2, . . .) generates two output sequences c(1) = (c(1)
0 , c(1)

1 , c(1)
2 , . . .) and c(2) =

(c(2)
0 , c(2)

1 , c(2)
2 , . . .). These two output sequences can be obtained as the convolution between

the input sequence and the two impulse responses of the encoder defined for each of its
outputs. Impulse responses can be obtained by applying the unit impulse input sequence
m = (1, 0, 0, . . .) and observing the resulting outputs c(1)

i and c(2)
i . In general, a convolutional

encoder has K memory units (2 in this example), counting units in parallel (which occur when
k > 1) as a single unit, so that impulse responses extend for no more than K + 1 time units,
and are sequences of the form

g(1) =
(

g(1)
0 , g(1)

1 , g(1)
2 , . . . , g(1)

K

)
g(2) =

(
g(2)

0 , g(2)
1 , g(2)

2 , . . . , g(2)
K

)
(1)

m S1 S2

c(2)

c(1)

Figure 6.3 Convolutional encoder of rate Rc = 1/2
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Table 6.1 Generator sequences for the FSSM of Figure 6.3

i m S1 S2 c(1) c(2)

0 1 0 0 1 1

1 0 1 0 0 1

2 0 0 1 1 1

3 0 0 0 0 0

Impulse response analysis can be applied to the convolutional encoder, as seen in Figure 6.3,
assuming that the FSSM starts in the all-zero state (00). Any state of the FSSM is described by
the state vectors S1 = (s01, s11, s21, . . .) and S2 = (s02, s12, s22, . . .). For a given input sequence,
the evolution of the FSSM can be easily observed by means of a table that describes all the
parameters of that FSSM. Table 6.1 shows the evolution of the FSSM of Figure 6.3, for the
unit impulse input.

The value K + 1 (3 for this example) is called the constraint length of the convolutional
code Cconv. It is measured in time units, and is the maximum number of time units that a given
bit of the input sequence can influence the output sequence values.

If the input is the unit impulse, then c(1) = g(1) and c(2) = g(2). For this example,

g(1) = (101)

g(2) = (111)

These vectors describe the impulse responses of the FSSM and they are also a description of
the connections of the structure of the FSSM, so that when a given memory unit is connected
to an output, the corresponding bit in the impulse response vector is ‘1’, whereas for an absent
connection this bit is ‘0’.

The impulse responses are also known as the generator sequences of the convolutional code
Cconv. From this point of view, it is possible to express the encoded sequences as

c(1) = u ∗ g(1)

c(2) = u ∗ g(2) (2)

where the operator ‘∗’ denotes discrete convolution modulo 2. This means that for an integer
number l ≥ 0,

c( j)
l =

K∑
i=0

ml−i g
( j)
i = ml g

( j)
0 +ml−1g( j)

1 + · · · + ml−K g( j)
K (3)

In the particular case of the example under analysis, the FSSM of Figure 6.3,

c(1)
l =

2∑
i=0

ml−i g
(1)
i = ml + ml−2

c(2)
l =

2∑
i=0

ml−i g
(2)
i = ml+ml−1 + ml−2
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Both output sequences are concatenated to form a unique output or code sequence:

c =
(

c(1)
0 c(2)

0 , c(1)
1 c(2)

1 , c(1)
2 c(2)

2 , . . .
)

6.3 Description in the D-Transform Domain

As is well known in the field of signals and their spectra, convolution in the time domain
becomes multiplication in the spectral domain. This suggests a better description of convo-
lutional codes based on expressions given in the D-transform domain. In this domain, also
called the delay domain D, convolution (∗) becomes multiplication, so that sequences adopt a
polynomial form expressed in the variable D, where the exponent of this variable determines
the position of the element in the sequence represented.

The message sequence m(l) = (m(l)
0 , m(l)

1 , m(l)
2 , . . .) can be represented in polynomial form

as

M (l)(D) = m(l)
0 + m(l)

1 D + m(l)
2 D2 + · · · (4)

Delay D can be interpreted as a shift parameter, and it plays the same role as the term Z−1 in
the Z transform.

Impulse responses can also adopt a polynomial form

g( j)
i = (g( j)

i0 , g( j)
i1 , g( j)

i2 , . . .) (5)

G( j)
i (D) = g( j)

i0 + g( j)
i1 D + g( j)

i2 D2 + · · · (6)

Polynomial expressions of the output sequences can be then obtained as a function of the above
expressions. Thus, and for the example of the FSSM in Figure 6.3,

C (1)(D) = M(D)G(1)(D) = M(D)(1 + D2) = c(1)
0 + c(1)

1 D + c(1)
2 D2 + · · ·

C (2)(D) = M(D)G(2)(D) = M(D)(1 + D + D2) = c(2)
0 + c(2)

1 D + c(2)
2 D2 + · · · (7)

By multiplexing output polynomials C (1)(D) and C (2)(D), the code sequence in polynomial
form is finally obtained as

Cm(D) = C (1)(D2) + DC (2)(D2) (8)

Polynomial expressions of the impulse responses also indicate that the presence of a con-
nection is described in polynomial form by the existence of the corresponding power of D
(this term is multiplied by a ‘1’), while the absence of connection is seen as the absence of
such a term (this term is multiplied by a ‘0’). Polynomial expressions of the impulse responses
can also be considered as generator polynomials for each output sequence of the FSSM.

For more general structures of FSSMs or convolutional encoders where there is more than
one input and more than one output, the relationship between input i and output j is given by
the corresponding transfer function G( j)

i (D). In this input-to-output path the number of delays
or memory units D is called the length of the register. This number is equal to the degree of the
corresponding generator polynomial for such a path. To make sense, the last delay or register
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stage should be connected to at least one output, so that the length Ki for the i th register is
defined as [1]

Ki = max
1≤ j≤n

{
deg

(
g( j)

i (D)
)}

1 ≤ i ≤ k (9)

The memory order of the encoder K is obtained as a function of the above definition as

K = max
1≤i≤k

Ki = max
1≤ j≤n

1≤i≤k

{
deg

(
g( j)

i (D)
)}

(10)

If M (i)(D) is the polynomial expression of the input sequence at input i and C ( j)(D) is the
polynomial expression of the output j generated by this input, then the polynomial G( j)

i (D) =
C ( j)(D)/M (i)(D) is the transfer function that relates input i and output j . In a more general
FSSM structure for which there are k inputs and n outputs, there will be kn transfer functions
that can be arranged in matrix form as

G(D) =

⎡⎢⎢⎢⎢⎢⎢⎣
G(1)

1 (D) G(2)
1 (D) · · · G(n)

1 (D)

G(1)
2 (D) G(2)

2 (D) · · · G(n)
2 (D)

...
...

...

G(1)
k (D) G(2)

k (D) · · · G(n)
k (D)

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

A convolutional code Cconv(n, k, K ) produces an output sequence expressed in polynomial
form as

C(D) = M(D)G(D) (12)

where

M(D) = (
M (1)(D), M (2)(D), . . . , M (k)(D)

)
(13)

and

C(D) = (
C (1)(D), C (2)(D), . . . , C (n)(D)

)
(14)

so that after multiplexing,

Cm(D) = C (1)(Dn) + DC (2)(Dn) + · · · + Dn−1C (n)(Dn) (15)

Example 6.1: For the convolutional code Cconv(2, 1, 2) whose encoder is seen in Figure 6.3,
determine the polynomial expression of the output for the input sequence (100011).

The input sequence in polynomial form is

M(D) = 1 + D4 + D5

The generator matrix is of the form

G(D) = [
1 + D2 1 + D + D2

]
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S1
(1)

S1
(2)

c(2)

c(3)

c(1)

m(2)

m(1)

Figure 6.4 Encoder of convolutional code Cconv (3, 2, 1) of code rate Rc = 2/3

Then

C(D) = (
C (1)(D) C (2)(D)

)
= [

1 + D4 + D5
] [

1 + D2 1 + D + D2
]

= [
1 + D2 + D4 + D5 + D6 + D7 1 + D + D2 + D4 + D7

]
c(1) = (10101111)

c(2) = (11101001)

Finally, the output sequence is

c = (11, 01, 11, 00, 11, 10, 10, 11) .

Note that each output sequence of the encoder has K bits more than the corresponding input
sequence, making the code sequence 2K bits longer. The reason is that the output sequences
are determined by the generator sequences of the code, which in turn represent the impulse
responses of the encoder. It is as if K zeros were added to the input sequence to finally determine
the output sequence.

For the encoder of the convolutional code Cconv(3, 2, 1) seen in Figure 6.4, the input is now
a vector of 2 bits that generates an output vector of 3 bits at each instant i . Note that the input
bits are simultaneously applied, and output bits are consequently simultaneously generated at
each time instant. This code is of rate Rc = 2/3. The memory of this FSSM is defined by one
delay or register stage in each branch of the structure.

The input vector is

m =
(

m(1)
0 m(2)

0 , m(1)
1 m(2)

1 , m(1)
2 m(2)

2 , . . .
)

(16)

and it is constructed using the input sequences

m(1) =
(

m(1)
0 , m(1)

1 , m(1)
2 , . . .

)
m(2) =

(
m(2)

0 , m(2)
1 , m(2)

2 , . . .
)

(17)

Impulse responses are described as

g( j)
i =

(
g( j)

i,0 , g( j)
i,1 , . . . , g( j)

i,K

)
(18)
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Table 6.2 Response to the unit impulse input m(1)

i m(1) s(1)
1 s(2)

1 c(1) c(2) c(3)

0 1 0 0 1 1 1

1 0 1 0 1 1 0

2 0 0 0 0 0 0

which relate input i to output j . The impulse responses for the first input are given in Table 6.2.
In this case the other input is set to zero m(2)

i = 0, ∀i . Impulse responses for the second input
are given in Table 6.3.

In this case the other input is set to zero, m(1)
i = 0, ∀i .

Then

g(1)
1 = (1 1) g(2)

1 = (1 1) g(3)
1 = (1 0)

g(1)
2 = (0 1) g(2)

2 = (0 0) g(3)
2 = (1 1)

and the encoding equations can be expressed as

c(1)
l = m(1)

l + m(1)
l−1 + m(2)

l−1

c(2)
l = m(1)

l + m(1)
l−1

c(3)
l = m(1)

l + m(2)
l + m(2)

l−1

Thus, the code sequence is of the form

c =
(

c(1)
0 c(2)

0 c(3)
0 , c(1)

1 c(2)
1 c(3)

1 , c(1)
2 c(2)

2 c(3)
2 , . . .

)
Expressions for the generator polynomials in the D domain are

G(1)
1 (D) = 1 + D G(2)

1 (D) = 1 + D G(3)
1 (D) = 1

G(1)
2 (D) = D G(2)

2 (D) = 0 G(3)
2 (D) = 1 + D

Thus, and if the input vector is for instance equal to

m(1) = (101) m(2) = (011)

Table 6.3 Response to the unit impulse input m(2)

i m(2) s(1)
1 s(2)

1 c(1) c(2) c(3)

0 1 0 0 0 0 1

1 0 1 0 1 0 1

2 0 0 0 0 0 0
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then the corresponding polynomial expression is

M (1)(D) = 1 + D2 M (2)(D) = D + D2

C (1)(D) = M (1)(D)G(1)
1 (D) + M (2)(D)G(1)

2 (D)

= (1 + D2)(1 + D) + (D + D2)D

= 1 + D

C (2)(D) = M (1)(D)G(2)
1 (D) + M (2)(D)G(2)

2 (D)

= (1 + D2)(1 + D) + (D + D2)0

= 1 + D + D2 + D3

C (3)(D) = M (1)(D)G(3)
1 (D) + M (2)(D)G(3)

2 (D)

= (1 + D2)(1) + (D + D2)(1 + D)

= 1 + D + D2 + D3

and the code sequence is

c = (111, 111, 011, 011)

The general structure of the encoder can be designed to have different memory levels Ki in
each of its branches. In this case, as noted previously, the memory of the encoder is defined as
the maximum register length. If Ki is the register length of the i th register, then the memory
order is defined as [1]

K = max
1≤i≤k

(Ki ) (19)

For a given convolutional code Cconv(n, k, K ), the input vector is a sequence of kL informa-
tion bits and the code sequence contains N = nL + nK = n(L + K ) bits. The nK additional
bits are related to the memory of the FSSM or encoder. The amount

nA = n(K + 1) (20)

is the maximum number of output bits that a given input bit can influence. Then nA is the
constraint length of the code, measured in bits.

In general terms, an input of k bits generates an output of n bits, and it is said that the rate
of a convolutional code Cconv(n, k, K ) is k/n. However, and for a given finite input sequence
of length L , the corresponding output sequence will contain n(L + K ) bits, as after the input
of the L vectors of k bits each, a sequence of ‘0’s is input to empty all the registers of the
FSSM. From this point of view, the operation of the convolutional code is similar to that of a
block code, and the code rate would be

kL

n(L + K )
(21)

This number tends to k/n for a sufficiently large input sequence of length L � K .
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6.4 Convolutional Encoder Representations

6.4.1 Representation of Connections

As seen for instance in Figure 6.3, which is the encoder of a convolutional code Cconv(2, 1, 2), in
each clock cycle the bits contained in each register stage are right shifted to the following stage,
and, on the other hand, the two outputs are sampled to generate the two output bits for each input
bit. Output values depend on the way the registers are connected to the outputs. A different
output sequence would be obtained if these connections were made in a different manner.

One form of describing a convolutional code Cconv(n, k, K ) is by means of a vector de-
scription of the connections that the FSSM has, which are directly described by the vector
representation of the generator polynomials g(1) and g(2) that correspond to the upper and
lower branches of the FSSM of Figure 6.3, respectively. In this description, a ‘1’ means that
there is connection, and a ‘0’ means that the corresponding register is not connected:

g(1) = (1 0 1)

g(2) = (1 1 1)

For a given input sequence, this code description can provide the corresponding output
sequence. This can be seen by implementing a table. For example, Table 6.4 describes the
register contents, the present state, the future state and the output values c(1) and c(2) when the
input sequence is m = (100011), for the FSSM of Figure 6.3.

The resulting output sequence is c = (1101110011101011). Table 6.5 is a useful tool for
constructing the corresponding state diagram of the encoder of Figure 6.3.

Note that in Table 6.5 there is no relationship between a row and the next or previous rows,
and so in this sense it is different from Table 6.4, where this relationship indeed exists.

6.4.2 State Diagram Representation

The state of the FSSM that forms the encoder of a 1/n-rate convolutional code is defined as the
contents of its K register stages. The future state is obtained by shifting one delay D to the right
the contents of the present state so that the empty stage generated in the left-most position

Table 6.4 Output sequence for a given input sequence to the encoder of Figure 6.3

Input mi State at ti State at ti+1 c(1) c(2)

– 0 0 0 0 – –

1 0 0 1 0 1 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 0 0 0 0

1 0 0 1 0 1 1

1 1 0 1 1 1 0

0 1 1 0 1 1 0

0 0 1 0 0 1 1

0 0 0 0 0 0 0
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Table 6.5 Table of all the possible transitions for constructing a state diagram of a

convolutional encoder

Input mi State at ti State at ti+1 c(1) c(2)

– 0 0 0 0 – –

0 0 0 0 0 0 0

1 0 0 1 0 1 1

0 0 1 0 0 1 1

1 0 1 1 0 0 0

0 1 0 0 1 0 1

1 1 0 1 1 1 0

0 1 1 0 1 1 0

1 1 1 1 1 0 1

is filled with the value of the input bit at that time instant. The state diagram is a pictorial
representation of the evolution of the state sequences for these codes. The FSSM encoder of
Figure 6.3 has, for instance, the state diagram shown in Figure 6.5 [2, 4].

In this particular case there are four states, labelled Sa = 00, Sb = 10, Sc = 01 and Sd = 11.
There are only two transitions emerging from and arriving at any of these states, because there
are only two possible input values; that is, the input is either ‘1’ or ‘’0’. Transitions in Figure
6.5 by convention are shown in input–output form.

The state diagram of a convolutional encoder shows an interesting characteristic of these
codes. As described above, there are only two transitions emerging from a given state, but there
are, in this case, four states. Therefore there is some level of memory related to this fact, since
if the FSSM is in a given state, it is not possible to go to any other state in an arbitrary manner,
but only to two specific states as shown in the diagram. This sort of memory will be useful in
determining that some transitions are not allowed in the decoded sequence, thus assisting the
decisions required for error correction.

Sa = 0 0

0/00

1/0 1

Sb = 1 0 Sc = 0 1

Sd = 1 1

0/0 1

1/0 0

0/1 0

0/1 1

1/1 0

1/1 1

Figure 6.5 State diagram for the convolutional encoder of Figure 6.3
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6.4.3 Trellis Representation

A way of representing systems based on FSSMs is the tree diagram [1, 2, 4]. This representation
is useful to indicate the start of the state sequence, but however the repetitive structure of state
evolution is not clearly presented in this case. One of the interesting characteristics of the
state evolution of a convolutional code is precisely that after K + 1 initial transitions, the state
structure becomes repetitive, where K + 1 is the constraint length of the code.

On the one hand, the state diagram clearly shows the repetitive structure of the state evolution
of a convolutional code, but it is not clear for describing the initial evolution. On the other hand,
the tree clearly shows the initial sequence, but not the repetitive structure of the state evolution.
A representation that clearly describes these two different parts of the state structure of a given
convolutional code is the so-called trellis diagram. Figure 6.6 depicts the trellis diagram of the
convolutional code Cconv(2, 1, 2) being used as an example.

The same convention used in the state diagram for denoting transitions is also adopted in
this trellis representation. This trellis diagram is a state versus time instant representation.
There are 2K possible states in this diagram. As seen in Figure 6.6, the state structure becomes
repetitive after time instant t4. There are two branches emerging from and arriving at a given
state, which correspond to transitions produced by the two possible inputs to the FSSM.

6.5 Convolutional Codes in Systematic Form

In a systematic code, message information can be seen and directly extracted from the encoded
information. In the case of a convolutional code, this means that

c(i) = m(i), i = 1, 2, . . . , k (22)

g( j)
i =

{
1 j = i
0 j �= i

(23)

t1 t2 t3 t4 t5 t6
0/00 0/00 0/00 0/00 0/00

1/00 1/00 1/00

1/11 1/11 1/11 1/11 1/11

0/11 0/11 0/11

1/01 1/01 1/01

0/01 0/01 0/01 0/01

1/10 
1/10

0/10 0/10 0/10
1/10 1/10

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.6 Trellis representation of the convolutional code of Figure 6.3
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m(1)

c(1)

c(2)

Figure 6.7 A systematic convolutional encoder

The transfer function for a systematic convolutional code is of the form

G(D) =

⎡⎢⎢⎢⎣
1 0 · · · 0 G(k+1)

1 (D) G(k+2)
1 (D) · · · G(n)

1 (D)

0 1 · · · 0 G(k+1)
2 (D) G(k+2)

2 (D) · · · G(n)
2 (D)

...
...

...
...

...
...

0 0 · · · 1 G(k+1)
k (D) G(k+2)

k (D) · · · G(n)
k (D)

⎤⎥⎥⎥⎦ (24)

Example 6.2: Determine the transfer function of the systematic convolutional code as shown
in Figure 6.7, and then obtain the code sequence for the input sequence m = (1101).

The transfer function in this case is

G(D) = [
1 D + D2

]
and so the code sequence for the given input sequence, which in polynomial form is m(D) =
1 + D + D3, is obtained from

C (1)(D) = M(D)G(1)(D) = 1 + D + D3

C (2)(D) = M(D)G(2)(D) = (
1 + D + D3

) (
D + D2

) = D + D3 + D4 + D5

Then

c = (10, 11, 00, 11, 01, 01)

In the case of systematic convolutional codes, there is no need to have an inverse transfer
function decoder to obtain the input sequence, because this is directly read from the code
sequence. However, for non-systematic convolutional codes, there needs to be an n × k matrix
G−1(D), such that

G(D) ◦ G−1(D) = Ik Dl for some l ≥ 0 (25)

where Ik is the identity matrix of size k × k. For a given convolutional code Cconv(n, 1, K ), it
can be shown that its matrix G(D) has an inverse G−1(D) if and only if [16]

HCF
{
G(1)(D), G(2)(D), . . . , G(n)(D)

} = Dl , l ≥ 0 (26)
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A convolutional code characterized by its transfer function matrix G(D), for which an
inverse matrix G−1(D) exists, also has the property of being non-catastrophic [16].

Example 6.3: Verify that the following convolutional code Cconv(2, 1, 2) is catastrophic:

g(1)(D) = 1 + D

g(2)(D) = 1 + D2

Since

HCF
{
G(1)(D), G(2)(D)

} = 1 + D �= Dl , l ≥ 0

and applying the infinite input sequence

1 + D + D2 + · · · = 1

1 + D

the outputs for this encoder will be

c(1)(D) = 1

c(2)(D) = 1 + D

which give the finite output sequence c = (11, 01), followed by an infinite sequence of ‘0’s.
Let us assume that the above infinite input sequence is transmitted, and that the encoder

generates the corresponding finite sequence c = (11, 01) followed by ‘0’s. Let us also assume
that, in the channel, the transmitted sequence is affected by errors in such a way that it is
converted into the sequence c = (00, 00) followed by ‘0’s. The decoder will receive the all-
zero sequence, and in a linear code, this corresponds to the all-zero input sequence. Therefore,
the decoder will decode the infinite input sequence 1 + D + D2 + · · · = 1/ (1 + D) as the
all-zero input, thus producing an infinite number of errors, a catastrophic result.

Another characteristic of catastrophic convolutional codes is that their state diagrams show
loops of zero weight at states that are different from the self-loop at state Sa. A very in-
teresting characteristic of systematic linear convolutional codes is that they are inherently
non-catastrophic [16].

6.6 General Structure of Finite Impulse Response and Infinite Impulse
Response FSSMs

6.6.1 Finite Impulse Response FSSMs

Convolutional encoders are usually constructed using FSSMs. Figure 6.8 shows the structure
of a finite impulse response (FIR) FSSM that can be used as part of a convolutional encoder.

The coefficients of these structures are taken from the Galois field over which they are
defined, ai ∈ GF(q). In the particular case of the binary field GF(2), they can be equal to one
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a1a0 a2

S1

S0

S2

an

m

Sn

c

Figure 6.8 An FIR FSSM

or zero. The transfer function for the FIR FSSM, as shown in Figure 6.8, is

G(D) = C(D)

M(D)
= a0 + a1 D + a2 D2 + · · · + an Dn (27)

A transfer function for a particular case is obtained in the following section, and this proce-
dure for obtaining transfer functions can be easily generalized to other cases.

6.6.2 Infinite Impulse Response FSSM

An infinite impulse response (IIR) structure contains feedback coefficients that connect the
outputs of the registers to an adder, placed at the input. A general structure for IIR FSSMs is
shown in Figure 6.9.

The transfer function for this structure is shown to be

G(D) = C(D)

M(D)
= a0 + a1 D + a2 D2 + · · · + an Dn

1 + f1 D + f2 D2 + · · · + fn Dn
(28)

 

a0 a1 a2 an

S0

S1 S2 Sn

 

fnf2f1

m

 

c

Figure 6.9 An IIR FSSM



OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

172 Essentials of Error-Control Coding

In general, convolutional encoders can be constructed by using either FIR or IIR FSSMs,
and can generate systematic or non-systematic convolutional codes. There is a relationship
between the systematic and the non-systematic form of a given convolutional encoder.

6.7 State Transfer Function Matrix: Calculation of the
Transfer Function

6.7.1 State Transfer Function for FIR FSSMs

The state transfer function for a convolutional encoder or FSSM can be defined in the same
way as for the input–output transfer function, a definition that is more conveniently done in the
D domain. In order to introduce the state transfer function, the following FSSM, which is part
of the encoder shown in Figure 6.3, is now presented in Figure 6.10, with a slightly different
notation, which in this case shows the variables involved in the discrete time domain.

In this FSSM,

m(k) = s0(k)

c(1)(k) = s0(k) + s2(k) = s0(k) + s0(k − 2)

In the D domain,

C (1)(D) = S0(D) + D2S0(D) = (1 + D2)S0(D) = (1 + D2)M(D)

S0(D) = M(D)

where

s1(k) = s0(k − 1)

s2(k) = s0(k − 2)

S1(D) = DS0(D) = DM(D)

S2(D) = D2S0(D) = D2 M(D)

The transfer function is

G(D) = C (1)(D)

M(D)
= 1 + D2

s0(k) s1(k) s2(k)

m(k)

c(1)(k)

s0(k – 1) s0(k – 2)

Figure 6.10 FIR FSSM in the discrete time domain
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and the state transfer function is

S(D) = [
S0(D)/M(D) S1(D)/M(D) S2(D) /M(D)

] = [
1 D D2

]
The state transfer function can be used to determine the evolution of the states of the corre-

sponding FSSM with respect to a particular input sequence. In the case of the unit impulse input
sequence, M(D) = 1, this state transfer function describes the state sequence as sequences in
the D domain. When the FSSM is an FIR FSSM, the impulse response additionally describes
the shortest state sequence.

In this particular example, the state of the FSSM is defined by the pair (S1(D) S2(D)). Now,
and for this example, the state impulse response is[

S0(D) S1(D) S2(D)
] = [

1 D D2
] • M(D)[

S0(D) S1(D) S2(D)
] = [

1 D D2
] • 1 = [

1 D D2
]

S0 = (1, 0, 0, 0, 0, 0, . . .)

S1 = (0, 1, 0, 0, 0, 0, . . .)

S2 = (0, 0, 1, 0, 0, 0, . . .)

Therefore the state transitions vector for the impulse response is (S1 S2) =
(00, 10, 01, 00, 00, . . .), which describes the shortest state transition of the FSSM, and is also
the shortest sequence as seen in the corresponding trellis in Figure 6.6, described by the state
sequence SaSbScSa. The output sequence of the FSSM is

C (1)(D) = (1 + D2)m(D) = 1 + D2

This output is of weight 2.
The state transfer function is useful for determining analytically the state sequence of an

FSSM or convolutional encoder. For FIR FSSMs, the state S0 completely describes the state
evolution of the FSSM, and since S0(D) = M(D), the input sequence completely determines
the state sequence.

6.7.2 State Transfer Function for IIR FSSMs

Let us consider the FSSM seen in Figure 6.11, which, as will be seen in the following section, is
part of the systematic convolutional encoder that is equivalent to the encoder shown in Figure
6.3. In this figure variables are described in the discrete time domain.

A similar analysis to that presented for FIR FSSMs is the following:

s0(k) = m(k) + s2(k)

where

s1(k) = s0(k − 1)

s2(k) = s0(k − 2)

c(k) = s0(k) + s0(k − 1) + s0(k − 2)
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s0(k) s1(k)
s2(k)

m(k)

c(k)

s0(k – 1) s0(k – 2)

Figure 6.11 An IIR FSSM

In the D domain,

S1(D) = DS0(D)

S2(D) = D2S0(D)

S0(D) = M(D) + S2(D) = M(D) + D2S0(D)

S0(D) + D2S0(D) = M(D)

S0(D) = M(D)

1 + D2

C(D) = S0(D) + DS0(D) + D2S0(D) = (1 + D + D2)S0(D) = (1 + D + D2)
M(D)

1 + D2

The transfer function is

G(D) = C(D)

M(D)
= 1 + D + D2

1 + D2

and the state transfer function is [15]

S(D) =
[

S0(D)

M(D)

S1(D)

M(D)

S2(D)

M(D)

]
=

[
1

1 + D2

D

1 + D2

D2

1 + D2

]
The impulse response is now infinite, and it does not correspond to the shortest sequence of

the FSSM. The state transfer function can be used to identify which is the input for generating
the shortest sequence. In this particular case, if the input is M(D) = 1 + D2, the corresponding
state sequence is

[S0(D) S1(D) S2(D)] =
[

1

1 + D2

D

1 + D2

D2

1 + D2

]
• M(D)

=
[

1

1 + D2

D

1 + D2

D2

1 + D2

]
• (1 + D2)

= [
1 D D2

]
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which is the same as the shortest sequence of the IIR FSSM, as shown in the previous example.
For a one input–one output FSSM with K registers, the state transfer function is defined as

S(D) =
[

S0(D)

M(D)

S1(D)

M(D)
· · · SK (D)

M(D)

]
(29)

6.8 Relationship Between the Systematic and the Non-Systematic Forms

The transfer function description of an FSSM encoder can be used to obtain the equivalent
systematic form of a given non-systematic encoder [7]. This conversion method consists of
converting the transfer function of a non-systematic form, as given in expression (11), into an
expression of systematic form, like that of expression (24), by means of matrix operations.

Example 6.4: Determine the equivalent systematic version of the convolutional encoder gen-
erated by the transfer function

G(D) = Gns(D) = [
1 + D2 1 + D + D2

]
The non-systematic convolutional encoder of the code described by this transfer function is

shown in Figure 6.3. The transfer function should adopt the form of equation (24) to correspond
to a systematic convolutional encoder. In this case the procedure is quite simple, because it
only consists of dividing both polynomials of the transfer function by the polynomial 1 + D2.
This procedure converts the transfer functions of the original convolutional code, which are
in this case of FIR type, into transfer functions of IIR type. This division is done in order
to make the matrix transfer function contain the identity submatrix, which in this example is
G11(D) = 1. The resulting transfer function is

Gs(D) =
[

1
1 + D + D2

1 + D2

]
According to this expression, a non-systematic convolutional code encoded with FIR transfer

functions has an equivalent systematic convolutional code encoded with IIR transfer functions,

like the corresponding FSSM as shown in Figure 6.11. Indeed the transfer function 1+D+D2

1+D2

is of the form of equation (28) with a0 = a1 = a2 = f2 = 1, f1 = 0, ai = fi = 0 for i > 2,
and is implemented by an FSSM like that seen in Figure 6.11. Then equivalent systematic
convolutional encoder for the convolutional code of Example 6.4 is as seen in Figure 6.12.

Table 6.6 is a suitable tool for analysis of the convolutional encoder of Figure 6.12.
The corresponding trellis, obtained from Table 6.6, is given in Figure 6.13.

m

c(1)

c(2)

Figure 6.12 Equivalent systematic convolutional encoder of the encoder of Figure 6.3
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Table 6.6 Table for constructing the state diagram of the convolutional

encoder of Figure 6.12

Input mi State ti State at ti+1 c(1) c(2)

– 0 0 0 0 – –

0 0 0 0 0 0 0

1 0 0 1 0 1 1

0 0 1 1 0 0 0

1 0 1 0 0 1 1

0 1 0 0 1 0 1

1 1 0 1 1 1 0

0 1 1 1 1 0 1

1 1 1 0 1 1 0

It can be verified that transitions in the trellis of Figure 6.6, which corresponds to the
convolutional encoder of Figure 6.3, have the same output assignments as the trellis of Figure
6.13, which corresponds to the equivalent convolutional encoder in systematic form.

The difference between the systematic and the non-systematic forms of the same convolu-
tional code is in the way the input is assigned a given output. As in the case of block codes, the
systematic convolutional encoder (or systematic generator matrix) generates the same code
as its corresponding non-systematic encoder (or the corresponding non-systematic generator
matrix), but with different input–output assignments.

For the convolutional encoder in systematic form, as seen in Figure 6.12, the transfer function
matrix and the state transfer function matrix are

G(D) =
[

1
1 + D + D2

1 + D2

]
and

S(D) =
[

1

1 + D2

D

1 + D2

D2

1 + D2

]

0/00 0/00 0/00  

 

 

1/10 1/10 1/101/10 1/10 1/10 1/10

 

t1 t2 t3 t4 t5
0/00 0/00 0/00 0/00 0/00

1/11 1/11 1/11 1/11 1/11

1/11 1/11 1/11

0/01 0/01 0/01

0/01 0/01 0/01 0/01

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.13 Trellis for the convolutional encoder of Figure 6.12
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a1
a2a0  

S0  

S1 S2

f1 fn

an

c(2)
c(1)

m

Sn  

f2

Figure 6.14 General structure of systematic IIR convolutional encoders of rate Rc = 1/2

The shortest state sequence for the systematic convolutional encoder, characterized by being
implemented using IIR transfer functions, does not correspond to the unit impulse input, which
in this case generates an infinite output or state sequence. The input that produces the shortest
state sequence can be obtained by inspection of the corresponding state transfer function,
so that if this input sequence in polynomial form is equal to M(D) = 1 + D2, the system
generates the state sequence (S1 S2) = (00, 10, 01, 00, 00, . . .), that is, the shortest sequence
in the trellis as seen in Figure 6.13. The corresponding output sequence, for this case, is

C (1)(D) = 1M(D) = 1 + D2

C (2)(D) = 1 + D + D2

1 + D2
M(D) = 1 + D + D2

which is an output of weight 5.
In the general case, IIR convolutional encoders of rate Rc = 1/2 are of the form as given in

Figure 6.14.
The coefficients in this structure belong to the field over which the IIR FSSM is defined,

ai ∈ GF(q) and f j ∈ GF(q). In the particular case of encoders operating over GF(2), these
coefficients will be 1 or 0. The transfer function matrix of the general structure of Figure 6.14
for an IIR systematic convolutional encoder of rate Rc = 1/2 is shown to be [15]

G(D) =
[

1
a0 + a1 D + a2 D2 + · · · + an Dn

1 + f1 D + f2 D2 + · · · + fn Dn

]
(30)

6.9 Distance Properties of Convolutional Codes

One of the most significant parameters of an error-correcting or error-detecting code is the
minimum distance of the code, normally evaluated as the minimum value of the distance that
exists between any two code vectors of the code. When the code is linear, it is sufficient to
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determine the distance between any code vector and the all-zero vector, which is, in the end,
the weight of that code vector [1, 2, 4, 5].

As seen for block codes, the minimum distance can be interpreted as the minimum-weight
error pattern that converts a given code vector into another code vector in the same code. In
the case of convolutional codes, this becomes the number of errors that convert a given code
sequence into another valid code sequence.

Since almost all convolutional codes of practical use are linear, the minimum distance of the
code can be determined by finding the code sequence of minimum weight. From this point of
view, the above analysis implies a search for the minimum number of errors that convert the
all-zero sequence into another code sequence. This can be seen in the corresponding trellis of
the convolutional code as a sequence that emerges from the all-zero state, normally labelled Sa,
and arrives back at the same state after a certain number of transitions. Then the Hamming or
minimum distance of the code can be determined by calculating the minimum weight among
all the sequences that emerge from and arrive back at the all-zero state Sa after a finite number
of transitions.

A tool for analysing the distance properties of a convolutional code is obtained by modifying
the traditional state diagram, in such a way that the modified diagram starts and ends in the
all-zero state Sa. In this modified diagram [1, 4], the self-loop that represents the transition from
state Sa to itself is omitted. In this modified state diagram branches emerging and arriving at the
states are denoted by the term Xi , where i is the weight of the code sequence that corresponds
to that branch.

For the example of the convolutional code Cconv(2, 1, 2),introduced in previous sections,
the modified state diagram is shown in Figure 6.15.

Paths starting and arriving at the all-zero state Sa have a weight that can be calculated by
adding the exponents i of the corresponding terms of the form Xi . In this case, for instance,
the path SaSbScSa has a total weight 5, and path SaSbSdScSa is of weight 6. The remaining
paths include the loops SdSd and SbScSb that only add weight to the paths described above.
Therefore the minimum distance in this code is equal to 5, and it is usually called the minimum
free distance, df = 5. The adjective free comes from the fact that there are no restrictions on
the length of the paths of the corresponding trellis or state diagram involved in its calculation.

For convolutional codes of more complex structure, the above calculation of the modified
state diagram, and its solution to determine the minimum free distance, is not that simple.

Sa Sb Sc

X

X 0

X

X2X2

X
 

Sd

X

Sa

Figure 6.15 Modified state diagram
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More complex modified diagrams are solved by means of the Mason rule over what is called
the generating function T (X ) (see details in [1]). This generating function is defined as

T (X ) =
∑

i

Ai Xi (31)

where Ai is the number of sequences of weight i . A simplified approach to finding the generat-
ing function can be applied to the example under analysis, the convolutional code Cconv(2, 1, 2).
Let us assume that the input to the modified state diagram is 1, and so the output of this diagram
is then the generating function T (X ). In the following, the names of the states are used as phan-
tom variables in order to estimate the generating function, obtained from the modified state
diagram. This is a slight abuse of notation in which Sb, Sc and Sd, for instance, are utilized as
variables over the modified state diagram to determine the desired generating function T (X ).
Thus,

Sb = X2 + Sc

Sc = XSb + XSd = Sd = XSb + XSd

T (X ) = X2Sc

Then

XSb = Sc − XSd = Sc(1 − X )

Sb = Sc(1 − X )

X

and

Sc(1 − X )

X
= X2 + Sc

or

Sc = X3

1 − 2X

Hence,

T (X ) = X5

1 − 2X
(32)

X5 |1 − 2X
−X5 + 2X6 X5 + 2X6 + 4X7 + · · ·

2X6

− 2X6 + 4X7

4X7

The resulting expression T (X ) = X5 + 2X6 + 4X7 + · · · can be interpreted as follows:
There is one path of weight 5, two paths of weight 6 and four paths of weight 7, and so on. The
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minimum free distance of this code is therefore df = 5. The state diagram will be analysed
further in Section 6.13.

6.10 Minimum Free Distance of a Convolutional Code

The minimum free distance determines the properties of a convolutional code, and it is defined
as

df = min
{
d(ci , c j ) : mi �= m j

}
(33)

where ci , c j are two code sequences that correspond to the message sequences mi �= m j . The
minimum free distance is defined as the minimum distance between any two code sequences
of the convolutional code. Assuming that the convolutional code is linear and that transmission
over the channel makes use of a geometrically uniform signal set [17–26], the calculation of
the minimum distance between any two code sequences is the same as determining the weight
of the sum of these two code sequences as

df = min
{
w(ci ⊕ c j ) : mi �= m j

} = min {w(c) : mi �= 0} (34)

That is, the all-zero sequence is representative of the code in terms of the minimum distance
evaluation of that code. This also implies that the minimum free distance of a convolutional
code is the minimum weight calculated among all the code sequences that emerge from and
return to the all-zero state, and that are not the all-zero sequences, c �= 0.

Example 6.5: Determine the minimum free distance of the convolutional code Cconv(2, 1, 2)
used in previous examples, by employing the above procedure, implemented over the corre-
sponding trellis.

The sequence corresponding to the path described by the sequence of states SaSbScSa , seen
in bold in Figure 6.16, is the sequence of minimum weight, which is equal to 5. There are
other sequences like those described by the state sequences SaSbScSbScSa and SaSbSdScSa that
both are of weight 6. The remaining paths are all of larger weight, and so the minimum free
distance of this convolutional code is df = 5.

0 0 0

2 2 2 2

2 2 2

1 1 1

1
0 1 1

1 11 11 1 1

2

0  0 0  0 0  0 0  0 0  0

t1 t2 t3 t4 t5 t6 t7
Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.16 Minimum free distance sequence evaluated on the trellis
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In the case of convolutional codes the distance between any two code sequences is not clearly
determined, since the transmission is done not in blocks of information but as a continuous
sequence of bits with a degree of memory. However, when the all-zero sequence is transmitted,
and this sequence is converted by the effect of the channel errors into another code sequence, it
is clear that an undetectable error pattern has occurred. This is the same as in the case of block
codes, where the minimum Hamming distance can be considered as the minimum number of
errors produced by the channel that have to occur in a transmitted code vector to convert it in
another code vector; these errors in fact then corresponding to an undetectable error pattern. In
the case of convolutional codes, the weight of the minimum-weight undetectable error pattern
is also the same as the minimum free distance df of the code. The error-correction capability
of the code is then defined as the number t of errors that can be corrected, which is equal to

t =
⌊

df − 1

2

⌋
(35)

This error-correction capability is obtained when error events are separated by at least the
constraint length of the code, measured in bits.

6.11 Maximum Likelihood Detection

For a given code sequence c generated by the encoder of a convolutional code, the channel noise
converts this sequence into the received sequence sr, which is essentially the code sequence c
with errors produced in the transmission. An optimal decoder is one that is able to compare the
conditional probabilities P(sr/c′) that the received sequence sr corresponds to a possible code
sequence c′, and then decide upon the code sequence with the highest conditional probability:

P(sr/c′) = max
all c

P(sr/c) (36)

This is the maximum likelihood criterion. It is in agreement with the intuitive idea of decoding
by selecting the code sequence that is most alike the received sequence. The application of this
criterion in the case of convolutional decoding faces the fact that there are so many possible
code sequences to be considered in the decoding procedure. For a code sequence of length
L bits, there are 2Rc L possible sequences, where Rc is the rate of the code. The maximum
likelihood decoder selects a sequence c′, from the set of all these possible sequences, which
has the maximum similarity to the received sequence.

If the channel is memoryless, and the noise is additive, white and Gaussian (AWGN), each
symbol is independently affected by this noise. For a convolutional code of rate 1/n, the
probability of being alike to the received sequence is measured as

P(sr/c) =
∞∏

i=1

P(sri / ci ) =
∞∏

i=1

n∏
j=1

P(sr, j i / c ji ) (37)

where on the trellis of the code sri
is the i th branch of the received sequence sr, ci is the i th

branch of the code sequence c, sr, j i is the j th symbol of sri , and c ji is the j th code symbol of ci ,
and where each branch is constituted of n code symbols. The decoding procedure consists of
selecting a sequence that maximizes the probability function (37). One algorithm that performs
this procedure for convolutional codes is the Viterbi decoding algorithm.
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6.12 Decoding of Convolutional Codes: The Viterbi Algorithm

The Viterbi algorithm (VA) performs maximum likelihood decoding. It is applied to the trellis
of a convolutional code whose properties are conveniently used to implement this algorithm.
As explained above, one of the main problems that faces maximum likelihood decoding is
the number of calculations that have to be done over all the possible code sequences. The VA
reduces this complexity of calculation by avoiding having to take into account all the possible
sequences. The decoding procedure consists of calculating the cumulative distance between
the received sequence at an instant ti at a given state of the trellis, and each of all the code
sequences that arrive at that state at that instant ti . This calculation is done for all states of the
trellis, and for successive time instants, in order to look for the sequence with the minimum
cumulative distance. The sequence with the minimum cumulative distance is the same as the
sequence with the highest probability of being alike to the received sequence if transmission
is done over the AWGN channel.

The following example illustrates the application of the Viterbi decoding algorithm. The
distance used as a measure of the decoding procedure is the Hamming distance; that is, the
distance between any two sequences is defined as the number of differences between these two
sequences.

Example 6.6: Apply the Viterbi decoding algorithm to the convolutional code of Figure 6.12,
whose trellis is seen in Figure 6.13, if the received sequence is sr = 11 01 01 00 11 . . . .

The first step in the application of this algorithm is to determine the Hamming distance
between the received sequence and the outputs at the different states and time instants, over
the corresponding trellis. This is shown in Figure 6.17.

Message sequence 1 0 1 0 1

Code sequence 11 01 11 00 11

Received sequence 11 01 01 00 11

2 11 0 2

1 0 2

0 1 2 0

1 2 0

0 1 1

0 
0 1 1

2 22 11 11

1

1 1 0 1 0 1 0 0 1 1
t1 t2 t3 t4 t5 t7t6

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.17 Hamming distance calculations for the VA
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t1 t2 t3 t42 3

1

0
1

2

0
3 

2 

Sa = 00

Sd = 11

Sc = 01

Sb = 10

Sa = 00

Sd = 11

Sc = 01

Sb = 10

4

1 1 0 1 0 1
t1 t2 t3 t4 t52 1

1 1 0 1 0 1 0 0

4

4

1 

0 33

3

1 

0

2

2

2

3

2
3

3

3

5

4

Figure 6.18 Survivor paths in the VA

The essence of the VA is that when two or more paths arrive at a given time instant and state
of the trellis, only one of them would have the minimum cumulative distance, and should be
selected from among the others as the survivor. In fact, this decision procedure significantly
reduces the number of distance calculations required. Decisions of this kind start to be per-
formed as soon as two or more paths arrive at the same state and time instant of the trellis.
This happens after time instant t4 in this example, as seen in Figure 6.18.

In this particular example, at time instant t4, and at successive time instants, decisions can be
taken at all the states of the trellis. The reason is that there are two paths arriving at each state, but
only one of them has the minimum Hamming distance in each case. The other path has a higher
cumulative Hamming distance, and it is discarded. However, it is seen that at time instant t5, in
state Sb, there are two arriving paths that both have the same cumulative Hamming distance.
In this case the decision is taken by randomly selecting one of these two possible paths as the
survivor; the upper path in this example. On average, these random selections do not prevent
effective operation of the VA: If the error pattern is within the error-correction capability of
the code, then the decoded sequence does not pass through the state node concerned; if the
code’s correction capability has been exceeded, then the decoder fails anyway, and normally
outputs a burst of errors in the decoded sequence.

The discarding procedure is successively applied to the following time instants over each
state, now taking into account previous decisions already taken. After a given number of time
instants, the procedure is truncated, and the sequence with the minimum cumulative Hamming
distance is selected as the decoded sequence. This is shown for this example in Figure 6.19.

As seen in Figure 6.20, the decision taken at time instant t6 has produced the correct decoded
sequence. The sequence selected as the final survivor is that of minimum cumulative distance.
Then, by looking at the information provided by the trellis of Figure 6.6, the transmitted
message is finally determined by identifying along the decoded sequence which is the input
message bit that generated each of its transitions. In this example the decoder determines that
the transmitted message was the sequence 10101 . . . , and at this point it can also determine
that the decoder could correct one error present at the received sequence sr. As is seen in this
example, the Viterbi decoding algorithm leads directly to the estimated message sequence,
and performs error correction without the need of decoding table look-up, or of algebraic
equation solution, as in the case of traditional syndrome decoding of block codes. This fact
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t1 t2 t3
2

1

0 3

0

2
2

3

Sa = 00

Sb = 10

Sc = 01

Sd = 11

1 1 0 1 0 1

t4 t5
1

3
1

2

2

0 0

t63

1

4

4
3

1 1

3

4

2
2dacc =

1dacc =

3dacc =

3dacc =

Figure 6.19 Viterbi decoding algorithm, time instant t6

makes convolutional codes particularly efficient in FEC systems, or in general, for those coding
schemes where error correction is preferred over error detection.

In the above example, the decision determining the maximum likelihood path at time instant
t6 was easily taken because the value of the minimum cumulative distance was unique. However,
it is possible that at the moment of truncating the decoding sequence, to decide the final survivor
sequence, more than one sequence could have the minimum value of the cumulative distance.
To mitigate any problems this might cause, the algorithm operates as follows. As seen in
Figure 6.19, the survivor paths at time instant t6 are the same in the first stage of the trellis
(from t1 to t2). This indicates that, with high probability, the first two bits of the transmitted
sequence were 11, which corresponds to the message bit 1. The survivors are also the same in
the second stage, but disagree in subsequent stages. If the message sequence, the code sequence
and the received sequence are long enough, it can be shown that survivor paths agree with high
probability at the time instant ti , and that the decoding decision taken at time ti is correct, if the
survivor sequences are extended to time instant ti+J , where J is called the decoding length,
measured in time instants. It can be heuristically shown that the error-correction capability of
the convolutional code is maximized if J is approximately equal to five times the constraint
length of the code; that is, J ≈ 5(K + 1).

t1 t2 t3
Sa = 00

Sb = 10

Sc = 01

Sd = 11

1 1 0 1 0 1

t4 t5

0 0

t6

1 1

1dacc =

3dacc =

4d acc =

4dacc =

t7

0 1

t8

1 1

Figure 6.20 Viterbi decoding algorithm, decoded sequence at time instant t8
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This implies that, on one hand, convolutional codes are more powerful for longer messages,
and, on the other hand, it is necessary to add kK zeros to the end of the message sequence in
order to maintain the error-correction capability of the code at the end of a given message. This
makes the trellis terminate in the all-zero state Sa, enabling the decoding of a unique survivor,
as seen in Figure 6.20.

6.13 Extended and Modified State Diagram

The extended and modified state diagram is a useful tool for the analysis of convolutional codes.
The exponent of the variable Xi is again used to indicate the weight of the corresponding branch,
the exponent of the variable Y j is used to determine the length of the branch j and variable Z
is present only in the description of a given branch when this branch has been generated by an
input ‘1’. The modified generating function T (X, Y, Z ) is then defined as

T (X, Y, Z ) =
∑
i, j,l

Ai, j,l X i Y j Zl (38)

where Ai, j,l is the number of paths of weight i , which are of length j , and which result from
an input of weight l. The extended and modified state diagram of the convolutional code
Cconv(2, 1, 2) of the example under analysis, whose trellis is seen in Figure 6.6, is seen in
Figure 6.21.

If again the labels of the states are taken as phantom variables, and letting Sa = 1,

Sb = X2Y Z Sa + Y Z Sc, but Sa = 1

and so

Sb = X2Y Z + Y Z Sc

Sc = XY Sb + XY Sd

Sd = XY Z Sd + XY Z Sb

T (X, Y, Z ) = X2Y Sc

Sa Sb Sc

XY

1YZ

XYXYZ
Sd

XYZ

X2YZ X2Y

Sa

Figure 6.21 Extended and modified state diagram
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By operating over these phantom variables, it follows that

T (X, Y, Z ) = X5Y 3 Z

1 − XY Z (1 + Y )

X5Y 3 Z |1 − XY (1 + Y )Z
−X5Y 3 Z + X6Y 4 Z2(1 + Y ) X5Y 3 Z + X6Y 4 Z2(1 + Y ) + · · ·

X6Y 4 Z2(1 + Y )
−X6Y 4 Z2(1 + Y ) + X7Y 5 Z3(1 + Y )2

X7Y 5 Z3(1 + Y )2

Thus, the modified generating function for this example is equal to

T (X, Y, Z ) = X5Y 3 Z + X6Y 4 Z2(1 + Y ) + X7Y 5 Z3(1 + Y )2 + · · · (39)

There is a path of weight 5, with length 3 (three transitions), generated by an input ‘1’. There
are also two paths of weight 6, which are X6Y 4 Z2 and X6Y 4 Z2Y , and both are generated by
an input sequence of two ‘1’s, the former being of length 4 transitions and the latter of length
5 transitions. The modified generating function is useful for assessing the performance of a
convolutional code.

6.14 Error Probability Analysis for Convolutional Codes

Bit error rate (BER) performance is a straightforward measure of the error-correction capability
of any coding technique, and of course of convolutional codes. The most useful error probability
measure is the bit error probability, but first it is simpler to analyse the so-called node error
probability [1, 2, 4].

As described in previous sections, the all-zero sequence of a convolutional code can be used
to represent any code sequence in terms of the behaviour of the code in the presence of errors,
and all sequences that emerge from and return to the all-zero state Sa can be seen as modified
versions of the all-zero sequence that channel errors convert into other valid code sequences.
The node error probability is the probability that an erroneous sequence which emerges from
that node on the all-zero sequence (where a node is a state at a given time instant), and later
returns to it, is selected as a valid code sequence. The erroneous sequence is selected as valid,
instead of the correct sequence, if the number of coincidences the received sequence sr has
with respect to the erroneous code sequence is higher than the number of coincidences it has
with respect to the correct sequence (in this analysis, the all-zero sequence).

The erroneous paths are those defined by the modified generating function T (X, Y, Z ). In
the example under analysis in the previous section [equation (39)], there will be a node error
if three or more bits in the received sequence sr, of the five positions in which the erroneous
and the correct paths differ, are closer to the erroneous sequence than to the correct one. This
indicates that the weight of the received sequence is 3 or larger. In the case of the binary
symmetric channel (BSC) with error or transition probability p, the probability Pe of this
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occurring is

Pe = P(3 or more ‘1’s in the received sequence) =
5∑

e=3

(
5
e

)
pe(1 − p)5−e

For paths of length 6, an error event of length 3 generates a sequence that can be adopted
as correct or not, with equal probability. Paths with weights equal to or larger than 4 will be
erroneously decoded as

Pe =
(

6
3

)
p3(1 − p)3 +

6∑
e=1

(
6
e

)
pe(1 − p)6−e

In general, for an erroneous path of weight d ,

Pd =

⎧⎪⎪⎨⎪⎪⎩
∑d

e=(d+1)/2

(
d
e

)
pe(1 − p)d−e d odd

1

2

(
d
d/2

)
pd/2(1 − p)d/2 +

∑d

e=d/2+1

(
d
e

)
pe(1 − p)d−e d even

(40)

The node error probability is bounded by the union bound of all the possible events of this
kind, including all the possible erroneous paths at node j . This bound is given by

Pe( j) ≤
∞∑

d=df

Ad Pd (41)

where Ad is the number of code sequences of weight d, since there are Ad paths of that
Hamming weight with respect to the all-zero sequence. This bound is indeed independent of
j , and so it is equal to the desired node error probability, Pe( j) = Pe.

This error probability can be upper bounded. For d odd,

Pd =
d∑

e=(d+1)/2

(
d
e

)
pe(1 − p)d−e <

d∑
e=(d+1)/2

(
d
e

)
pd/2(1 − p)d/2

= pd/2(1 − p)d/2
d∑

e=(d+1)/2

(
d
e

)
< pd/2(1 − p)d/2

d∑
e=0

(
d
e

)
= 2d pd/2(1 − p)d/2 (42)

This expression is also valid for even values of d . The above bound can be used to provide an
upper bound on the node error probability [1, 2, 4]:

Pe <

∞∑
d=df

Ad

[
2
√

(1 − p)p
]d

(43)
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This expression is related to the generating function T (X ) = ∑∞
d=df

Ad Xd , so that

Pe < T (X )

∣∣∣∣ X = 2
√

(1 − p)p
(44)

Since the error probability on a BSC is, in general, a small number p � 1, the above
summation can be approximately calculated from its first term as follows:

Pe < Adf

[
2
√

p(1 − p)
]df = Adf

2df [p(1 − p)]df/2 ≈ Adf
2df pdf/2 (45)

Example 6.7: For the convolutional code Cconv (2, 1, 2), df = 5 and Adf
= 1, and if for

instance p = 10−2, then

Pe < Adf
2df pdf/2 = 1.25

(
10−2

)2,5 ≈ 3.10−4

The above analysis corresponds to the evaluation of the node error probability. This analysis
can then be used to determine the bit error probability, or bit error rate.

In each error event, there are erroneous bits that are in number equal to the weight of the
erroneous sequence. An estimate of the number of erroneous bits in a given time unit can be
made if the error probability Pd is modified by the total number of ‘1’s that all the sequences
of weight d have. This number can be divided by k, which is the number of message bits
transmitted in that time unit, in order to obtain

Pbe <
1

k

∞∑
d=df

Bd Pd (46)

where Bd is the total number of ‘1’s that all the sequences of weight d have.
The extended and modified generating function is expressed as

T (X, Y, Z ) =
∑
i, j,l

Ai, j,l X i Y j Zl

where Ai, j,l is the number of paths of weight i , of length j , and generated by an input of weight
l. This expression can be arranged to adopt the form

T (X, Z ) =
∞∑

d=df

∞∑
b=1

Ad,b Xd Zb (47)

and, by calculating its derivative with respect to Z ,

∂T (X, Z )

∂ Z

∣∣∣∣ Z = 1
=

∞∑
d=df

∞∑
b=1

bAd,b Xd =
∞∑

d=df

Bd Xd (48)

is obtained, where

Bd =
∞∑

b=1

bAd,b (49)
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By using the calculated bound for Pd ,

Pd = 2d pd/2(1 − p)d/2 (50)

Pbe <
1

k

∞∑
d=df

Bd Pd = 1

k

∞∑
d=df

Bd

[
2
√

p(1 − p)
]d

= 1

k

∂T (X, Z )

∂ Z

∣∣∣∣∣∣ Z = 1
X = 2

√
p(1 − p)

(51)

Expression (51) can be simplified by assuming that the most significant term is the first of
the summation, so that [1]

Pbe ≈ 1

k
Bdf

2df pdf/2 (52)

Example 6.8: For the case of the convolutional code Cconv(2, 1, 2), with df = 5 and Bdf
= 1,

and since T (X, Y, Z ) = X5Y 3 Z1 + · · ·, then if for instance p = 10−3, the BER is equal to
Pbe < Bdf

2df pdf/2 = 1.25 × (10−3)2,5 ≈ 1.01 × 10−6.

6.15 Hard and Soft Decisions

So far most of the coding techniques introduced have made use of decoding algorithms based on
what is called hard-decision detection. A hard-decision detector takes samples of the received
signal, determines whether each sample is over or under a given threshold and thus decides
whether the incoming signal represents a ‘1’ or a ‘0’. Samples are taken using a synchronizing
signal that is generated by other parts of the communication system, so that, from the decoding
point of view, perfect synchronization is assumed.

This procedure is usually called hard-decision detection because the input signal, essentially
in the form of a continuous waveform, is translated into a discrete alphabet in which there are
only two possible values for binary signalling, or q possible values for non-binary signalling.
Therefore, continuous channel information is converted into discrete detected information.
Based on this hard decision, in most of the codes already studied, the decoder was implemented
by evaluating the Hamming distance, dH, between a code vector or sequence and a received
vector or sequence.

However, when considering the concept of distance, a more intuitive idea is to think about
the so-called Euclidean distance, which is the real-number distance normally measured in
geometrical space. This concept known as the Euclidean distance d can be generalized for
a vector space of dimension n. In this case and given the vectors c1 and c2, the Euclidean
distance is the norm of the difference between these two vectors d = ||c1 − c2||. The reason
for being interested in Euclidean distance is that it enables the use of soft-decision detection,
which overcomes the loss of information inherent in hard-decision detection. In hard-decision
detection, sampled values are converted into the same hard value no matter how close to, or far
away from, the decision threshold they are. In soft-decision detection, the distance of a sample
value from the decision threshold is measured, and then used to enhance the decoding process.

The vector representation of code vectors of the triple repetition code and the even parity code
with n = 3, already described in Chapter 2, can help to introduce the concept and importance
of soft-decision detection and decoding. A given bit is usually transmitted or represented by a
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0 1 1

1 0 1

0 0 0

1 1 0

1 1 1

0 1 0

1 0 0

0 0 1

x  

y

z

Figure 6.22 Vector representation (polar format) of code vectors in a vector space of dimension n = 3

signal, such as a rectangular pulse of normalized amplitude ±1 in polar format. Code vectors
can be represented as vectors of a vector space, so that the Euclidean distance between any
two of them can also be determined. Thus, for instance, both the triple repetition code and the
even parity code, defined for a code length of n = 3, have a vector representation in a vector
space of dimension n = 3, as can be seen in Figure 6.22. In this figure the binary format is
replaced by the polar format (1 → +1, 0 → −1). Code vector projections over x , y, z are all
equal to ±1.

Figure 6.22 shows a vector space of dimension n = 3. Thus, for instance, the Euclidean
distance between the two code vectors (000) and (111) of the triple repetition code, represented
in polar format, is equal to 2

√
3. Synchronized samples taken of the received signal are the

n real numbers that are the coordinates of the received vector, which can also be represented
in the same vector space of Figure 6.22. Then it is possible to evaluate the Euclidean distance
between this received vector, and any code vector of a given code.

Example 6.9: Determine the Euclidean distance between the received vector and each of the
code vectors of the even parity code with n = 3, when the transmitted code vector is (101).
The transmission is done in polar format. Assume that after this transmission over a Gaussian
channel, the received signal looks like that seen in Figure 6.23.

Figure 6.23 shows the code vector 101 (+1 −1 +1) of the even parity code with n = 3,
which was transmitted in polar format through a Gaussian channel, and altered by the effect
of this noise. This signal x(t) is sampled to obtain the following sampled values:

x(15) = −0.1072

x(45) = −1.0504

x(75) = +1.6875

The received vector is then r = (−0.1072 −1.0504 +1.6875 ). The noise-free vectors of this
code are c1 = ( −1 −1 −1 ), c2 = ( −1 +1 +1 ), c3 = ( +1 −1 +1 ) and c4 = ( +1 +1 −1 ).
If hard decisions are taken, the decoded vector would be equal to (001), and so the even parity
code would detect an error and would require a retransmission for a correct reception of this
information. However, if soft decisions are performed by calculating the Euclidean distance
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Figure 6.23 Signal resulting from the transmission of the code vector (101) in polar format over a

Gaussian channel

between the received vector and each of the code vectors, it would happen that

d(r , c1) =
√

(−0.1072 + 1)2 + (−1.0504 + 1)2 + (1.6875 + 1)2 = 2.8324

and

d(r , c2) = 2.3396

d(r , c3) = 1.3043

d(r , c4) = 3.5571

A soft-decision decoder would then decide that the decoded vector is the code vector that
has the minimum Euclidean distance with respect to the received vector, and, in this case, this
decoder will decide in favour of the correct code vector, which is c3. This is a simple example
to show the essential difference between hard- and soft-decision detection, and the decoding
advantage that the latter provides.

Essentially, hard decision is closely related to the BSC, as introduced in Chapter 1, where
symbols 0 and 1 have a probability p of being in error, and the output alphabet is also binary.
This approach leads to the design of decoding algorithms that operate over the binary field,
such as syndrome error detection and correction.

The BSC, characterized by being symmetric, binary and memoryless, can be extended in
such a way that each source symbol, either 0 or 1, is transmitted as a signal whose samples
belong to a continuous alphabet with values in the range (−∞, +∞). This is the so-called
Gaussian channel, and it is also a memoryless channel. A soft decision is performed if the
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detector produces a value that belongs to a continuous alphabet (i.e., a real number), but the
same is also true, with little loss in performance advantage, even when the decision is performed
by producing a discrete quantized value of the continuous alphabet. In general terms, the BER
performance of a soft-decision decoder will be better than that of a hard-decision decoder,
for the same code, but this advantage is obtained in a trade-off with decoding complexity. At
first sight, soft decision can be applied without restrictions to the decoding of both block and
convolutional codes. However, and particularly in the case of long block codes, the calculations
involved are of such a complexity that optimal soft decision of these block codes is difficult
to implement in practice. But it is possible to represent block codes, as well as convolutional
codes, by means of a trellis [31]. In addition, the VA is easily modified to make use of soft-
decision detection, so that optimal soft-decision trellis decoding is feasible for block codes
using the VA, with a consequent reduction in complexity. Powerful convolutional codes can
also be of considerable size, and therefore complex to decode. Again, however, the use of the
soft-decision VA will considerably reduce the complexity of optimal decoding of a powerful
convolutional code.

6.15.1 Maximum Likelihood Criterion for the Gaussian Channel

As seen in Section 6.12, optimal decoding of convolutional codes is related to the maximum
likelihood algorithm, which essentially looks for the most likely code sequence among all
possible code sequences, based on the similarity of these sequences with respect to the received
sequence.

The maximum likelihood criterion assumes that information bits or message bits are equally
likely. A given signal si (t) taken from the set of signals {si (t)}, with i = 0, 1, . . . , M − 1, is
transmitted, and this signal is affected by noise to become the received signal r (t) = si (t) +
n(t). At the time instant T, the signal is sampled, and the value of the sampled signal is

y(T ) = bi (T ) + n(T ) (53)

where bi (T ) represents the value of the noise-free signal that represents the transmitted symbol,
and n(t) is a random Gaussian variable of zero mean value.

Since the decoder attempts to determine the value of a transmitted message bit based on
the received signal, and considering the binary case for instance, where there are just two
transmitted signals, the maximum likelihood criterion can be stated as follows:

P(s1/y) > P(s0/y) the decoder decides for hypothesis H1

P(s0/y) > P(s1/y) the decoder decides for hypothesis H0 (54)

Hypothesis H1 corresponds to the transmission of symbol ‘1’, and hypothesis H0 corresponds
to the transmission of symbol ‘0’.

By using the Bayes rule, these conditional probabilities can be expressed in the following
manner:

p(y/s1)P(s1) > p(y/s0)P(s0) the decoder decides for hypothesis H1

p(y/s1)P(s1) < p(y/s0)P(s0) the decoder decides for hypothesis H0 (55)
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or, equivalently,

p(y/s1)

p(y/s0)
>

P(s0)

P(s1)
the decoder decides for hypothesis H1

p(y/s1)

p(y/s0)
<

P(s0)

P(s1)
the decoder decides for hypothesis H0 (56)

which is known as the likelihood ratio. If the transmitted symbols are equally likely, then

p(y/s1)

p(y/s0)
> 1 the decoder decides for hypothesis H1

p(y/s1)

p(y/s0)
< 1 the decoder decides for hypothesis H0 (57)

Let us assume that the two possible transmitted signals were s1 and s0, such that the random
variables obtained after sampling the corresponding signals are y(T ) = b1 + n and y(T ) =
b0 + n. If the transmission is over an AWGN channel, the probability density function that
characterizes these random variables is of the form

p(n) = 1

σ
√

2π
e− 1

2 ( n
σ )2

This expression describes the previously presented sampled random variables when b0 =
b1 = 0. For the general case, where transmitted symbols are different from zero, the probability
density function is also a Gaussian probability density function, but with a mean value that is
equal to the noise-free value of that symbol.

The likelihood ratio can also be expressed in terms of these probability density functions
for each of the transmitted symbols, so that if

1

σ
√

2π
e
− 1

2

(
y−b1

σ

)2

1

σ
√

2π
e
− 1

2

(
y−b0

σ

)2
>

P(s0)

P(s1)
, the decoder decides for hypothesis H1 (58)

or, simplifying, if

e
− 1

2

[(
y−b1

σ

)2−
(

y−b0
σ

)2
]

>
P(s0)

P(s1)
, the decoder decides for hypothesis H1 (59)

By applying natural logarithms to both sides of the inequality, if

1

2σ 2

[
(y − b1)2 − (y − b0)2

]
> ln

(
P(s1)

P(s0)

)
, the decoder decides for hypothesis H1

And, for equally likely symbols, if

(y − b1)2 > (y − b0)2 , the decoder decides for hypothesis H1 (60)

For the Gaussian channel, the maximum likelihood decision is equivalent to the soft
minimum-distance decision. This Euclidean distance is calculated between the sampled values
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of the received signal and the values that should correspond to the elements of a given code
sequence. The decision is taken over the whole code vector or sequence. Thus, the maximum
likelihood criterion is applied by considering which code vector or sequence is closest to the
received vector or sequence, that is, which code vector or sequence minimizes the distance
with respect to the received vector or sequence.

In the case of block codes, the maximum likelihood criterion decides that the code vector
ci is the decoded vector if

d(r , ci ) = min
{
d(r , c j )

}
for all c j (61)

In the case of convolutional codes, the definition of block length is lost, since it becomes
semi-infinite. As we saw above, however, for the current purpose it can be replaced by the
decoding length. A given code sequence c generated by a convolutional code converts into
a received sequence sr, which is essentially the code sequence c containing some errors,
generated by the effect of the channel noise. An optimal decoder will compare the conditional
probability P(sr/c′) with the received sequence sr corresponding to one of the possible code
sequences c′, and will take the decision in favour of that code sequence that has the maximum
probability of being sr:

P(sr/c) = max
all c

sr/c (62)

6.15.2 Bounds for Soft-Decision Detection

A symmetric channel that models a soft-decision-detection scheme is, for example, that shown
in Figure 6.24.

The number of symbols of the output alphabet of this soft-decision channel can be increased
until it is virtually converted into a continuous output channel. If, for instance, the soft-decision
channel of Figure 6.24 would have an output alphabet of eight outputs, usually labelled outputs
0–7, then when the detector provides output 7, for example, it gives decoding information that
means that the decoded bit is highly likely to be a ‘1’. If however the detected value was

0

1

0

1

2

3

Very reliable output
for 0

Very reliable output
for 1

Less reliable ouptut
for  0

Less reliable ouptut
for  1

Figure 6.24 A soft-decision channel
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a 4, it would be giving decoding information that means that the decoded bit is still a ‘1’,
but with relatively low probability. This decision contains more information than that of a
hard decision, which would just consist of deciding that the detected bit is a ‘1’ without any
additional information about the reliability of that decision. This additional information would
not be useful if the bit was to be decoded alone. However, when bits are related to other bits in a
given code vector or code sequence, the additional information provided by the soft decisions
helps to improve the estimates of all the bits.

It can be shown that there is an additional coding gain of around 2.2 dB, if soft decision is
applied instead of hard decision. This is the case when the soft-decision detector operates over a
continuous output range. If instead the output is quantized using eight values or levels, then this
coding gain is about 2 dB, and so there is not a significant improvement when using more than
eight quantization levels. Figure 6.25 shows the BER performance of the triple repetition code
(n = 3) described in Chapter 2, with curves for both hard and unquantized soft-decision de-
coding, as well as for no coding. It can be seen that the coding gain of the soft-decision decoder
with respect to the hard-decision decoder approaches asymptotically the value of 2.2 dB.
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10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

Eb/N0 (dB)

P
b

Repetition code, soft decision

Repetition code, hard decision

Uncoded transmission 

Figure 6.25 A comparison between hard- and soft-decision decoding of the triple repetition code

(n = 3), and uncoded transmission
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As pointed out in Chapter 2, the triple repetition code has a low code rate Rc = 1/3 that
produces a poor BER performance, which is even worse than uncoded transmission, if a hard-
decision decoder is utilized. A curious phenomenon is seen in Figure 6.25, where the BER
performance of the triple repetition code using a soft-decision decoder is practically coincident
with that of uncoded transmission. This is so because, at the end of the day, the triple repetition
of a given bit is the same as to transmit it with a signal of three times more energy than in
the case of uncoded transmission. The soft-decision decoder takes advantage of this additional
energy, so that repetition is in a way equivalent to an increase in the number of output levels of
the detector to more than 2. As pointed out above, the improvement of applying soft decision
is not very significant for more than eight levels at the output of the soft-decision channel.

From this explanation it can be concluded that the triple repetition code is equivalent to
uncoded transmission if the redundancy added is understood as an increase of the bit energy, a
fact that should be taken into account in order to make a fair comparison of BER performances.
This increase in the energy per bit, which is determined by the rate Rc of the code, is a penalty
that must be offset against the gain in performance offered by the error-correcting power
of the code. Seen in a rather different way, the triple repetition code is equivalent to uncoded
transmission where each bit is sampled three times at the detector. In the case of soft-decision
decoding, the decoder uses the values of these three samples to evaluate the Euclidean distance
over an AWGN channel.

When its use is possible, soft-decision decoding provides a better BER performance than
that of hard-decision decoding of the same code, for all the coding techniques presented in
previous chapters. Sometimes, however, it is impractical to use soft-decision decoding, as
discussed previously. In the case of very long block length RS codes, for example, even soft-
decision trellis decoding has an implementation complexity which makes it impractical for
most applications.

6.15.3 An Example of Soft-Decision Decoding of Convolutional Codes

A soft-decision decoder for the convolutional code described in Figure 6.12, whose trellis is also
seen in Figure 6.13, is presented in order to show differences between hard- and soft-decision
decoding. In this example the message sequence is m = (10101), which after being encoded
and transmitted in polar format, produces the code sequence c = (+1 +1 −1 +1 +1 + 1
− 1 −1 + 1 +1). This sequence is transmitted over an AWGN channel.

Let
sr = (+1.35 −0.15 −1.25 +1.40 −0.85 −0.10 −0.95 −1.75 +0.5 + 1.30) be the received
sequence. The soft-decision VA [1–6] will be applied to decode this sequence. Then a com-
parison with a hard-decision decoder is also presented.

The first step in the application of the soft-decision decoding algorithm is to calculate the
Euclidean distance between the samples of the received signal and the corresponding outputs
for each transition of the trellis:

Message sequence m = 10101
Code sequence c = +1 + 1 −1 +1 +1 + 1 −1 −1 +1 + 1
Received sequence sr = +1.35 −0.15 −1.25 +1.40 −0.85 −0.10 −0.95

−1.75 +0.5 +1.30

If a hard-decision decoder operated on the received sequence, the sampled values of this re-
ceived sequence would be converted by hard-decision detection into a set of values normalized
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t1 t2 t3 t4
1 2

1

1 2
3

4

1
3

3

Sa = 00

Sd = 11

Sc = 01

Sb = 10

2

1 0 0 1 0 0

4

3

4

Erroneous
decision

Figure 6.26 Hard-decision decoding of example of Section 16.15.3

to be equal to ±1; that is, the output alphabet is the binary alphabet in polar format, and the de-
tection threshold would be set to zero. Therefore, and after converting the polar format into the
classic binary format, a trellis decoder would use the sequence 10 01 00 00 11 as the received
sequence, which has three errors with respect to the true transmitted sequence 11 01 11 00 11.
The error event in this case is such that the hard-decision Viterbi convolutional decoder fails at
time instant t4, because at that stage of the algorithm, the decoder discards the true sequence,
thus providing an incorrect decoded sequence. This can be seen in Figure 6.26.

Even when the algorithm still continues, to finally determine all the estimated bits of the
sequence, the decoder has already produced a decoding mistake in the first part of the sequence,
so that it will erroneously decode the whole received sequence.

Figure 6.27 is the trellis from Figure 6.13 in which now the transitions are denoted with
the corresponding output values in polar format, and input values are omitted. This trellis
representation will be useful for implementation of the soft-decision VA.

The squared Euclidean distance is the metric utilized to determine the minimum cumulative
distance of a given path. This cumulative distance is simply the sum of all the squared distances
involved in that path. The different paths arriving at a given node of the trellis are characterized
by the cumulative sum of squared distances for increasing time instants. In general, in a con-
volutional code of rate 1/n, there will be 2n possible outputs for each transition of the trellis,

–1–1 –1–1 –1–1

+1+1 +1+1 +1+1 +1+1 +1+1

+1+1 +1+1 +1+1

–1+1 –1+1 –1+1

–1+1 –1+1 –1+1 –1+1

+1–1+1–1
+1–1+1–1+1–1

+1–1+1–1

–1–1 –1–1 –1–1 –1–1 –1–1
t1 t2 t3 t4 t5

Sa = 00

Sd = 11

Sc = 01

Sb = 10

Figure 6.27 Trellis of the convolutional encoder of Figure 6.12 with output values in polar format
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which can be described as c0, c1, . . . , c2n−1. These vectors per transition have n components,
adopting the form ck = (

c(0)
k , c(1)

k , . . . , c(n−1)
k

)
. For the particular example being studied, these

vectors are c0 = (−1 − 1), c1 = (−1 + 1), c2 = ( + 1 − 1), c3 = ( + 1 + 1). The received se-
quence is also arranged as vectors of n components that are the samples of the received signal,
which adopts the form sr (i−1) = (

s(0)
r(i−1), s(1)

r(i−1), . . . , s(n−1)
r(i−1)

)
. The squared values of the distance

between the received samples sr(i−1) = (
s(0)

r(i−1), s(1)
r(i−1), . . . , s(n−1)

r(i−1)

)
at a given time instant ti

that defines the value for the transition i − 1 and some of the k possible output values for that
transition are calculated as

d2
(i−1)(sr(i−1), ck) =

n−1∑
j=1

(s( j)
r(i−1) − c( j)

k )2 (63)

For a path of U transitions of the trellis, the cumulative squared distance is calculated as

d2
U =

U+1∑
v=2

d2
v−1(sr(v−1), ck) (64)

where k varies according to the transition for which the cumulative squared distance is calcu-
lated.

The following is the soft-decision decoding of the received sequence for the example pre-
sented in this section.

As an example of the squared distance calculation, at time instant t2, the squared distance
of the transition from state Sa to the same state Sa is

d2
1 [(+1.35, −0.15), (−1, −1)] = (1.35 + 1)2 + (−0.15 + 1)2 = 6.245

All the remaining squared distances associated with the different transitions of the trellis
can be calculated as above, in order to determine, by addition of the corresponding values, the
cumulative squared distances at each time instant and state (node of the trellis), as shown in
Figures 6.28–6.30.

t1 t2 t3 t46.245 12.0675

1.445 11.467
6.299

13.499

1.667
12.699

12.267

12.900

+1.35  –0.15 –1.25 +1.40 –0.85 –0.10 

16.7

15.699

16.499

2.499

Sa = 00

Sd = 11

Sc = 01

Sb = 10

Figure 6.28 Soft-decision decoding to determine the survivor at time instant t4 on the corresponding

trellis
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6.245 12.0675

1.445 11.467

1.667

12.267

+1.35  –0.15 –1.25 +1.40

6.299

13.499

12.699

–0.85 –0.10

2.499

24.064

21.064

10.064

6.864

–0.95 –1.75

17.664

6.864

17.864

13.264

Sa = 00

Sd = 11

Sc = 01

Sb = 10

t1 t2 t3 t4 t5

Figure 6.29 Soft-decision decoding to determine the survivor at time instant t5 on the corresponding

trellis

If a decision is taken at time instant t6, the received sequence is correctly decoded, since the
minimum cumulative squared Euclidean distance is seen to be equal to d2

acum min = 7.204, for
the path that ends at the trellis node defined by the state Sb = 10, time instant t6, as seen in
Figure 6.31.

The soft-decision Viterbi decoding of the received sequence of this example shows the
advantages of using this type of decoding. Once again, soft decision leads to a better decoding
result than that of hard decision. In the former case, the decoder is able to correctly estimate
the sequence at instant t4, and then successfully decode the whole sequence correctly. In
comparison, the hard-decision decoder was shown to fail, owing to a wrong decision made at
time instant t4. In addition, the use of the squared Euclidean distance as a measure makes it
quite unlikely that two paths arriving at the same node of the trellis would have the same value
of cumulative squared distance.

1.445 11.467

1.667

12.267

6.299

13.499

12.699

2.499

10.064

6.864

6.864

13.264

9.204

15.604

14.404

7.204

18.804

12.404

17.604

10.404

6.245

+1.35  –0.15 –1.25 +1.40 –0.85 –0.10 –0.95 –1.75 +0.50 +1.30

Sa = 00

Sd = 11

Sc = 01

Sb = 10

t1 t2 t3 t4 t5 t6

Figure 6.30 Soft-decision decoding to determine the survivor at time instant t6 on the corresponding

trellis
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1.667

6.299
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10.064

6.864

6.864 9.204

7.204

12.404
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+1.35  –0.15 –1.25 +1.40 –0.85 –0.10 –0.95 –1.75 +0.50 +1.30

Sa = 00

Sd = 11

Sc = 01

Sb = 10

t1 t2 t3 t4 t5 t6

Figure 6.31 Soft-decision decoding to determine the final survivor on the corresponding trellis

In this example hard-decision decoding was seen to produce a burst of decoding errors. This
is a characteristic of convolutional decoding in the presence of an error event that is over the
error-correction capability of the convolutional code. For this reason, convolutional codes are
widely used as the inner code of serially concatenated coding schemes where the outer code is
normally a code with high capability of correcting burst errors, like a Reed–Solomon (RS) code.
Interleaving is also very commonly used between these two codes, as has been shown in Chap-
ter 5 to be particularly efficient in the case of the cross-interleaved Reed–Solomon code coding
scheme for the compact disk. In this way, with the help of the outer code and the interleaver,
burst decoding errors produced by a collapsed convolutional decoder can be properly elimi-
nated. This combination of convolutional (inner) codes and RS (outer) codes is found in many
practical applications, including digital satellite transmission and deep space communications.

6.16 Punctured Convolutional Codes and Rate-Compatible Schemes

Punctured convolutional codes are convolutional codes obtained by puncturing of some of the
outputs of the convolutional encoder. The puncturing rule selects the outputs that are eliminated
and not transmitted to the channel. Puncturing increases the rate of a convolutional code, and
is a useful design tool because it makes it easy to achieve convolutional codes with relatively
high rates. This enhancement of code rate is desirable because low-rate codes are associated
with a higher loss of bit rate, or a larger increase in transmission bandwidth, in comparison
with uncoded transmission.

This procedure is applied to a base or mother code whose code rate is always smaller than
the desired code rate, so that for a given block of k message bits, only a selection of the total
number n of coded bits that the base encoder produces are transmitted. This technique was
first introduced by Cain, Clark and Geist [30]. In general, the base code is a convolutional code
of rate Rc = 1/2 which is used to construct punctured convolutional codes of rate (n − 1)/n,
with n ≥ 3. The main concept to keep in mind in the construction of a punctured convolutional
code is that its trellis should maintain the same state and transition structure of the base code
of rate Rc = 1/2; that is, in this case, a trellis that looks like that of the Figure 6.6, where there
are two transitions emerging from and arriving at each state. This differentiates the trellis of a
punctured convolutional code of rate (n − 1)/n from that of a convolutional code of the same
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rate constructed in the traditional way. In the latter case, the rate of the code determines the
encoder structure, by requiring n − 1 parallel inputs, so that the resulting trellis will have 2n−1

transitions emerging from and arriving at each of its nodes. The punctured code trellis has
therefore fewer branches per state than that of the traditional code trellis. Thus the complexity
of the trellis is reduced, so that it also reduces the decoding complexity, whether using VA,
or the so-called BCJR algorithm described in Chapter 7. Another interesting application of
punctured convolutional codes will also be introduced in Chapter 7, involving turbo codes.

The construction of a given punctured convolutional code requires the definition of the
puncturing rule; that is, the rule that determines which of the coded outputs are not transmitted
to the channel. This puncturing rule can be properly described by means of a matrix, Pp,
where a ‘1’ indicates that the corresponding output is transmitted, whereas a ‘0’ indicates that
the corresponding output is not transmitted. The puncturing procedure has a period known as
the puncturing period Tp, so that the puncturing matrix is of size 2 × Tp when applied to a 1/2-
rate base code such as the code generated by the encoder of Figure 6.3. In the puncturing matrix
Pp, the first row determines the output bits that can be transmitted (‘1’s) or not (‘0’s) generated
by the convolutional base encoder output c(1), and the second row determines the output bits
that can be transmitted (‘1’s) or not (‘0’s) generated by the convolutional base encoder output
c(2). Read in column format, the puncturing matrix Pp defines for each transition or time
instant, if the outputs c(1) and/or c(2) are transmitted or not.

Example 6.10: Construct a punctured convolutional code of rate Rc = 2/3, using as the base
code the convolutional code of rate Rc = 1/2 whose encoder is shown in Figure 6.3. Figure 6.32
shows this punctured convolutional code of rate Rc = 2/3.

The construction of a punctured convolutional code of rate Rc = 2/3 is done by taking into
account the fact that the base encoder generates four output bits for every pair of input bits,
and so the punctured encoder should transmit only three of these four outputs to obtain the
desired code rate Rc = 2/3. This obviously requires the elimination of one output every four
outputs, making the corresponding puncturing period be equal to Tp = 2. A puncturing matrix
for this case would be of the form

Pp =
[

1 1
1 0

]

m(1)

c b
(2)

c b
(1)

S1 S2

Puncturing of
outputs cb

(1)

and cb
(2)

of the base
convolucional
code

c(2)

c(1)

Figure 6.32 Punctured convolutional encoder of rate Rc = 2/3 based on a convolutional code of rate

Rc = 1/2
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1/00 1/0 1/00

1/11 1/1 1/11 1/1 1/11

0/11 0/1 0/11

1/01 1/0 1/01

0/0 0/01 0/0 0/01

1/1
1/10

0/10
1/1

0/1
1/10

0/10

t1 t2 t3 t4 t5 t6
0/00 0/0 0/00 0/0 0/00

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.33 Trellis for a punctured convolutional code of rate Rc = 2/3 based on a convolutional code

of rate Rc = 1/2

As read in column format, the above matrix indicates that in the first transition or time
instant both outputs c(1) and c(2) of the base convolutional encoder are transmitted, and in the
following time instant only c(1) is transmitted. In this way two input bits generate three output
bits, and the code rate is the desired rate Rc = 2/3. The trellis of this punctured convolutional
encoder, constructed from the base encoder as seen in Figure 6.3, has the trellis as shown in
Figure 6.33, where in even time index transitions output c(2) is not transmitted.

After the puncturing procedure, the base code of rate Rc = 1/2 and minimum Hamming
free distance df = 5 converts into a punctured code of rate Rc = 2/3 and minimum Hamming
free distance df = 3. One path with the minimum Hamming weight of 3 is shown in bold
in Figure 6.33. This minimum free distance reduction is a logical consequence of the puncturing
procedure, but in this case, however, the punctured convolutional code has the maximum
available value of that parameter for convolutional codes of that rate. This is, in general, not
true for punctured convolutional codes of rate (n − 1)/n. From this point of view, the punctured
convolutional code of rate Rc = 2/3 has the same properties as the traditionally constructed
convolutional code of the same rate, but with the advantage of a lower decoding complexity.

Figure 6.34 shows the first two stages of the trellis of a convolutional code of rate Rc = 2/3
constructed in the traditional way, which corresponds to the convolutional encoder as seen in
Figure 6.4. It can be seen that the structural complexity of this trellis is higher than that of the
trellis in Figure 6.33. This complexity arises not only due to the four branches emerging from
and arriving at each node of the trellis, but also due to the larger number of bits per transition,
so that both the number and the length of decoding distance calculations are increased.

Puncturing of convolutional codes emerges as a nice tool for the design of convolutional
codes of a desired code rate, since this procedure only requires the use of a fixed base convolu-
tional code of rate Rc = 1/2, together with a suitable puncturing matrix Pp. For a given base
convolutional code of rate Rc = 1/2, and a given puncturing matrix of size 2 × Tp, changes in
the element values in the matrix Pp generate a family of punctured codes with different code
rates. These code rates are in general larger than the initial code rate of the base code, and
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Figure 6.34 Trellis for a convolutional code of rate Rc = 2/3 constructed in the traditional way

these different punctured convolutional codes are obtained by simply modifying the puncturing
matrix Pp. On the other hand, both the punctured encoder and decoder are based on the trellis
structure of the base convolutional code, so that they can adaptively operate in the family of
punctured convolutional codes by just knowing the changes in the puncturing matrix Pp. This
is called a set of rate-compatible punctured convolutional (RCPC) codes.

RCPC codes are very useful in automatic repeat request (ARQ) and hybrid-ARQ schemes
in order to optimize the data rate and BER performance as a function of the signal-to-noise
ratio of the channel. Thus, when the signal-to-noise ratio is high, high-rate codes (i.e., medium
error-control capability codes) are used, and when the signal-to-noise ratio in the channel is
low, relatively small-rate codes (i.e., high error-control capability codes) are then utilized. The
relative absence or presence of repeat transmission requests can be used to raise or lower the rate
of the codes in the RCPC set, usually starting from a high rate. Other system requirements or
status information can also be used to control the RCPC scheme, such as the quality-of-service
requirements of a sender, or channel state information in a multiuser wireless system.
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Problems

6.1 (a) Determine the state and trellis diagram for a convolutional code with K = 2,
code rate Rc = 1/3 and generator sequences given by the following polyno-
mials:

g(1)(D) = D + D2, g(2)(D) = 1 + D and g(3)(D) = 1 + D + D2.

(b) What is the minimum free distance of the code?
(c) Give an example to show that this code can correct double errors.
(d) Is this code catastrophic?

6.2 A binary convolutional error-correcting code has k = 1, n = 3, K = 2, g(1)(D) =
1 + D2, g(2)(D) = D and g(3)(D) = D + D2.
(a) Draw the encoder circuit and its trellis diagram, and calculate the free dis-

tance of the code.
(b) Is the code systematic or non-systematic?

6.3 (a) For the convolutional encoder of the Figure P.6.1,
determine the generator polynomials of the encoder.

(b) Is this a catastrophic code? Justify the answer.
(c) Determine the coded output for the input message m = (101).
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m

c(2)

c(1)

Figure P.6.1 Convolutional encoder, Problem 6.3

6.4 Draw the trellis diagram of the binary convolutional encoder given in Figure P.6.2,
for which Rc = 1/3.
(a) What is the constraint length and the minimum free distance of the code

generated by this encoder?
(b) Draw the path through the extended trellis diagram corresponding to the

input sequence m = (1110100), starting from the all-zero state, and thus
determine the output sequence.

m

c(2)

c(3)

c(1)

Figure P.6.2 Convolutional encoder, Problem 6.4

6.5 (a) Draw the trellis diagram of the binary convolutional code generated by the
encoder of Figure P.6.3, and determine its minimum free distance.

m

c(2)

c(1)

Figure P.6.3 Convolutional encoder, Problem 6.5

(b) Obtain the impulse response of the encoder, and its relationship with item (a).
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(c) Confirm the minimum free distance of this code using the generating function
approach.

(d) What is the node error probability for this code on a BSC with p = 10−3?

m

c(1)

c(2)

Figure P.6.4 Convolutional encoder, Problem 6.6

6.6 The received sequence sr = (01 11 00 01 11 00 00 . . .) is applied to the input
of a decoder for the binary convolutional code generated by the encoder of
Figure P.6.4.
(a) Determine the corresponding input sequence by using the Viterbi decoding

algorithm, assuming that the encoder starts in the all-zero state.

6.7 The trellis diagram of a binary error-correcting convolutional encoder is shown
in Figure P.6.5.

0

1

0

1

0/00

1/10

1/11 0/01

Figure P.6.5 Trellis diagram, Problem 6.7

A sequence output by the encoder is transmitted over a channel subject to ran-
dom errors, and is received as the sequence

sr = (11 10 11 00 11 . . .)

(a) Using the Viterbi decoding algorithm, find the sequence most likely to have
been transmitted, and hence determine the positions of any errors which
may have occurred during transmission.
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(b) A sequence from the encoder of item (a) is transmitted over an AWGN chan-
nel and is received as the sequence

sr = (33 10 23 00 33 . . .)

after soft-decision detection with four levels. Find the most likely error pattern
in the received sequence.

6.8 The convolutional encoder of IIR type and code rate Rc = 1/2, as seen in Fig-
ure P.6.6, operates with coefficients over the binary field GF(2). Determine the
transfer function and the state transfer function matrices of this code.

a0

S0

S1 S2

a1

f1
f2

a2

 

c(1)

c(2)

m

Figure P.6.6 Convolutional encoder, Problem 6.8

6.9 A binary convolutional error-correcting code has k = 1, n = 2, K = 2, g(1)(D) =
1 + D + D2 and g(2)(D) = D + D2.
(a) Draw the encoder circuit and its trellis diagram, and determine the rate and

the free distance of the code.
(b) Is the code systematic or non-systematic?

6.10 An information sequence encoded using the encoder of Problem 6.9 is transmit-
ted through a channel subject to random errors and received as the sequence.

sr = (10 01 00 01 11 11 10)

What is the information sequence?

�
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7
Turbo Codes

Berrou, Glavieux and Thitimajshima [1] introduced in 1993 a novel and apparently revolu-
tionary error-control coding technique, which they called turbo coding. This coding technique
consists essentially of a parallel concatenation of two binary convolutional codes, decoded by
an iterative decoding algorithm. These codes obtain an excellent bit error rate (BER) perfor-
mance by making use of three main components. They are constructed using two systematic
convolutional encoders that are IIR FSSMs, usually known as recursive systematic convo-
lutional (RSC) encoders, which are concatenated in parallel. In this parallel concatenation,
a random interleaver plays a very important role as the randomizing constituent part of the
coding technique. This coding scheme is decoded by means of an iterative decoder that makes
the resulting BER performance be close to the Shannon limit.

In the original structure of a turbo code, two recursive convolutional encoders are arranged
in parallel concatenation, so that each input element is encoded twice, but the input to the
second encoder passes first through a random interleaver [2, 3]. This interleaving procedure is
designed to make the encoder output sequences be statistically independent from each other.
The systematic encoders are binary FSSMs of IIR type, as introduced in Chapter 6, and usually
have code rate Rc = 1/2. As a result of the systematic form of the coding scheme, and the
double encoding of each input bit, the resulting code rate is Rc = 1/3. In order to improve
the rate, another useful technique normally included in a turbo coding scheme is puncturing
of the convolutional encoder outputs, as introduced in Chapter 6.

The decoding algorithm for the turbo coding scheme involves the corresponding decoders
of the two convolutional codes iteratively exchanging soft-decision information, so that the
information can be passed from one decoder to the other. The decoders operate in a soft-input–
soft-output mode; that is, both the input applied to each decoder, and the resulting output
generated by the decoder, should be soft decisions or estimates [3]. Both decoders operate
by utilizing what is called a priori information, and together with the channel information
provided by the samples of the received sequence, and information about the structure of the
code, they produce an estimate of the message bits. They are also able to produce an estimate
called the extrinsic information, which is passed to the other decoder, information that in the
following iteration will be used as the a priori information of the other decoder. Thus the first
decoder generates extrinsic information that is taken by the second decoder as its a priori

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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information. This procedure is repeated in the second decoder, which by using the a priori
information, the channel information and the code information generates again an estimation
of the message information, and also an extrinsic information that is now passed to the first
decoder. The first decoder then takes the received information as its a priori information for
the new iteration, and operates in the same way as described above, and so on.

The iterative passing of information between the first and the second decoders continues
until a given number of iterations is reached. With each iteration the estimates of the message
bits improve, and they usually converge to a correct estimate of the message. The number of
errors corrected increases as the number of iterations increases. However, the improvement of
the estimates does not increase linearly, and so, in practice, it is enough to utilize a reasonable
small number of iterations to achieve acceptable performance.

One of the most suitable decoding algorithms that performs soft-input–soft-output decisions
is a maximum a posteriori (MAP) algorithm known as the BCJR (Bahl, Cocke, Jelinek,
Raviv, 1974) algorithm [4]. Further optimizations of this algorithm lead to lower complexity
algorithms, like SOVA (soft-output Viterbi algorithm), and the LOG MAP algorithm, which
is basically the BCJR algorithm with logarithmic computation [2].

7.1 A Turbo Encoder

A turbo encoder constructed using two RSC encoders arranged in parallel, and combined with
a random interleaver, together with a multiplexing and puncturing block, is seen in Figure 7.1.

In the traditional structure of a turbo encoder, the encoders E1 and E2 are usually RSC
encoders of rate Rc = 1/2, such that c′

1 = c1, c′
2 = c2 and the lengths of the sequences m,

c1 and c2, and c′
1 and c′

2 are all the same. Then the overall turbo code rate is Rc = 1/3.
Puncturing [2, 6] is a technique very commonly used to improve the overall rate of the code.
The puncturing selection process is performed by periodically eliminating one or more of the
outputs generated by the constituent RSC encoders. Thus, for instance, the parity bits generated
by these two encoders can be alternately eliminated so that the redundant bit of the first encoder
is first transmitted, eliminating that of the second decoder, and in the following time instant
the redundant bit of the second encoder is transmitted, eliminating that of the first. In this way,

Encoder E1

Encoder E2

Interleaver

m

c1

c2

c = (m, c ′1, c ′2)Multiplex
& puncture
block

Figure 7.1 A turbo encoder
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the lengths of c′
1 and c′

2 are half the lengths of c1 and c2, respectively, and the resulting overall
rate becomes Rc = 1/2. Puncturing is not usually applied to the message (systematic) bits,
because this causes a BER performance loss.

There are two important components of a turbo encoder whose parameters have a major
influence on the BER performance of a turbo code: the first is the interleaver, especially its
length and structure, and the second is the use of RSC IIR FSSMs as constituent encoders [2, 3].
The excellent BER performance of these codes is enhanced when the length of the interleaver
is significantly large, but also important is its pseudo-random nature. The interleaving block,
and its corresponding de-interleaver in the decoder, does not much increase the complexity of
a turbo scheme, but it does introduce a significant delay in the system, which in some cases
can be a strong drawback, depending on the application. The RSC-generated convolutional
codes are comparatively simple, but offer excellent performance when iteratively decoded
using soft-input–soft-output algorithms.

7.2 Decoding of Turbo Codes

7.2.1 The Turbo Decoder

Turbo codes are so named because of their iterative soft-decision decoding process, which
enables the combination of relatively simple RSC codes to achieve near-optimum performance.
Turbo decoding involves iterative exchange between the constituent decoders of progressively
better estimates of the message bits, in a decoding procedure that is helped by the statistical
independence of the two code sequences generated by each input bit. The turbo decoder is
shown in Figure 7.2.

In the decoding procedure, each decoder takes into account the information provided by
the samples of the channel, which correspond to the systematic (message) and parity bits,

Interleaver

Interleaver

Dec. D1

Dec. D2

Systematic information

Parity bits from E1

Parity bits from E2

Channel data

De-interleaver

_ 

_ 

_ 

_ 

Figure 7.2 A turbo decoder
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together with the a priori information that was provided by the other decoder, which was
calculated as its extrinsic information in the previous iteration. However, instead of making a
hard decision on the estimated message bits, as done for instance in the traditional decoding of
convolutional codes using the Viterbi algorithm, the decoder produces a soft-decision estimate
of each message bit. This soft-decision information is an estimate of the corresponding bit
being a ‘1’ or a ‘0’; that is, it is a measure of the probability that the decoded bit is a ‘1’ or
a ‘0’. This information is more conveniently evaluated in logarithmic form, by using what
is known as a log likelihood ratio (LLR), to be defined below. This measure is very suitable
because it is a signed number, and its sign directly indicates whether the bit being estimated
is a ‘1’ (positive sign) or a ‘0’ (negative sign), whereas its magnitude gives a quantitative
measure of the probability that the decoded bit is a ‘1’ or a ‘0’. There are many algorithms that
operate using LLRs, and perform decoding using soft-input–soft- output values. One of these
algorithms is the BCJR algorithm [4]. Some background on the measures and probabilities
involved in this algorithm is presented next, in order to then introduce the BCJR algorithm [3].

7.2.2 Probabilities and Estimates

The probability distribution is a useful description of a discrete random variable X whose
values are taken from a discrete alphabet of symbols AX . The distribution (or histogram when
plotted graphically) is a function that assigns to each value of the variable the probability of
occurrence of that value. In the case of continuous random variables, the histogram becomes
the so-called probability density function. A probability distribution for a discrete random
variable is of the form

P(X = x) = p(x) ≥ 0 and
∑
x∈AX

p(x) = 1 (1)

where a non-negative number p(x) is assigned to each value of the random variable x ∈ AX .
An equivalent quantity often utilized in decoding algorithms is the probability measure or
metric μ(x) of the event x ∈ AX . A measure or estimate of an event x ∈ AX of a discrete
random variable is a generalization of the probability distribution, where the restriction that
the sum over all the probabilities in the distribution does not necessarily have to be equal to 1.
Then the relationship between measures μ(x) and probabilities p(x) is given by

p(x) = μ(x)∑
x∈A μ(x)

(2)

Measures have properties similar to those of probabilities. The marginal measure of an event
x ∈ AX , conditioned on a random variable Y , is obtained by summing over all the events of
the associated random variable Y :

μ(x) =
∑
y∈AY

μ(x, y) (3)

where μ(x, y) is the joint measure for a pair of random variables X and Y . The Bayes rule is
also applicable to joint measures:

μ(x, y) = μ(y/x)μ(x) (4)
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It is usually more convenient to convert products into sums by using measures in logarithmic
form. In this case the measure is called a metric of a given variable:

L(x) = − ln(μ(x)) (5)

μ(x) = e−L(x) (6)

It is also true that

L(μ(x) + μ(y)) = − ln
[
e−L(x) + e−L(y)

]
(7)

and

L(μ(x)μ(y)) = L(x) + L(y) (8)

7.2.3 Symbol Detection

Symbol detection is performed in receivers and decoders, and it is applied in order to determine
the value of a given discrete random variable X by observing events of another random variable
Y , which is related to the variable X . Thus, for instance, a given discrete random variable X
that takes values from the range of a discrete alphabet AX = {0, 1} can be the input of a binary
symmetric channel with transition or error probability p, and the corresponding output of this
channel can be the discrete random variable Y . If in this channel the output discrete random
variable Y takes values from the discrete alphabet AY = {0, 1}, it is said that the channel is a
hard-decision channel.

Another model is the Gaussian channel, where a given discrete random variable X with
values taken from the discrete polar format alphabet AX = {+1, −1} generates a continuous
random variable Y , which after being affected by white and Gaussian noise takes values from
the set of real numbers AY = �. In general terms, a hard decision over X is said to occur when
after observing the variable Y, the decoder or receiver makes a firm decision that selects one
of the two possible values of X , AX = {+1, −1}, a decision that will be denoted as x̂ . This
is the case of a decoder or receiver that takes samples of the received signal and compares
these samples with a voltage threshold in order to decide for a ‘1’ or a ‘0’ depending on this
comparison.

A soft decision of X is said to happen when after observing the variable Y the decoder or
receiver assigns a measure, metric or estimate μ(x) of X based on the observed value of Y .
There are many ways of assigning a measure μ(x) of X , that is, to make a soft decision of
X , but the more significant ones are those provided by the maximum likelihood (ML) and the
maximum a posteriori (MAP) decoding methods.

In the ML decoding method, the soft decision of X based on the event of the variable y ∈ AY

is given by the following conditional distribution function [3]:

μML(x) = p(y/x) = p(x, y)

p(x)
(9)
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In the MAP decoding method, the soft decision of X based on the event of the variable
y ∈ AY is given by the following conditional probability distribution function:

μMAP(x) = p(x/y) = p(x, y)

p(y)
(10)

The ML measure is not a probability distribution function because the normalizing condition,
the sum over the alphabet of X , AX , should be equal to 1, is not obeyed in this case. However,
it is obeyed in the case of the MAP estimation, which is indeed a probability density function.

The MAP measure is proportional to the joint probability p(x, y). Since

μMAP(x) ∝ p(x, y) (11)

then

μMAP(x) ∝ μML(x)p(x) (12)

7.2.4 The Log Likelihood Ratio

The LLR [2, 5] is the most common information measure or metric used in iterative decoding
algorithms, like the LOG MAP BCJR algorithm to be described below, and it is usually the
measure or the extrinsic estimate that each decoder communicates to the other in a turbo
decoder.

The LLR for a bit bi is denoted as L(bi ), and it is defined as the natural logarithm of the
quotient between the probabilities that the bit is equal to ‘1’ or ‘0’. Since this is a signed
number, this sign can be directly considered as representative of the symbol which is being
estimated, and so it is more convenient to define it as the quotient of the probability that the
bit is equal to +1 or −1, using the polar format. This is the same as saying that the decision
is taken over the transmitted signal alphabet in the range {±1}, rather than over the binary
information alphabet {0, 1}. This estimate is then defined as

L(bi ) = ln

(
P(bi = +1)

P(bi = −1)

)
(13)

This definition will be found more convenient in the description of the decoding algorithms,
where the sign of the LLR is directly used as the hard decision of the estimate, and its value
is utilized as the magnitude of the reliability of the estimate. Thus, a soft decision can be
understood as a weighted hard decision.

Figure 7.3 shows the LLR as a function of the bit probability of the symbol +1, which is
positive if P(bi = +1) > 0.5 (symbol ‘1’ is more likely than symbol ‘0’), and it is negative if
P(bi = +1) < 0.5 (symbol ‘0’ is more likely than symbol ‘1’). The magnitude of this amount
is a measure of the probability that the estimated bit adopts one of these two values.

From (13), and as P(bi = +1) = 1 − P(bi = −1), then [5]

eL(bi ) = P(bi = +1)

1 − P(bi = +1)
(14)
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Figure 7.3 LLR as a function of the bit probability of the symbol +1

and also

P(bi = +1) = eL(bi )

1 + eL(bi )
= 1

1 + e−L(bi )
(15)

P(bi = −1) = e−L(bi )

1 + e−L(bi )
= 1

1 + e+L(bi )
(16)

Expressions (15) and (16) can be summarized as follows:

P(bi = ±1) = e−L(bi )/2

1 + e−L(bi )
e±(L(bi )/2) = e−L(bi )/2

1 + e−L(bi )
e(bi L(bi )/2) (17)

since the bit bi = ±1.

7.3 Markov Sources and Discrete Channels

As seen in Chapter 1, a discrete channel can be described by its corresponding transition
probability matrix. The most commonly used model of a channel is the memoryless channel,
where a given input sequence X1, X2, X3, . . . of statistically independent values taken from
a discrete alphabet generates an output sequence Y1, Y2, Y3, . . . of values that are also taken
from a statistically independent discrete alphabet. Under this assumption, the output conditional
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probability is obtained as the product of the transition probabilities of the channel:

p(Y/X) =
n∏

j=1

R j (Y j/X j ) (18)

where R j (Y j/X j ) is the channel transition probability p(y j/x j ) for the transmitted symbol x j .
In this notation, x j represents the value of the signal at instant j , X j is a random variable that
represents x j and takes values from the discrete alphabet Ax , and X = Xn

1 = {X1, X2, . . . , Xn}
is a vector or sequence of random variables. The difference between X j and x j is that the former
is the random variable, and the latter is a particular value of that random variable.

Since the channel is stationary, transition probabilities are time invariant. In general, the data
source is characterized by a uniformly distributed probability distribution function, which is
called the source marginal distribution function p(X j ) of the system.

When the source output is a sequence of independent discrete data, then the source is
considered to be a discrete memoryless source. However, this is not the most suitable model
for the encoded output sequence generated by a trellis encoder, for instance, since the output
symbols are related and the sequence contains some degree of memory. The behaviour of
this sort of encoded sequences is more appropriately described by the model of the so-called
discrete hidden Markov source.

A sequence input to a channel is considered to be a discrete hidden Markov source if
its elements are selected from a discrete alphabet, and the joint probabilities of the symbol
sequences are of the form

p(X) = p(X1)
n∏

j=2

Q j (X j/X j−1) (19)

where the source transition probabilities are

Q(X j/X j−1) = p(X j−1, X j )

p(X j−1)
(20)

These are the probabilities that describe the degree of dependence among the symbols generated
by a given discrete hidden Markov source. One important property of a discrete hidden Markov
source is that the corresponding probability distribution functions are such that

p(X j ) =
∑

x j−1∈AX j−1

p(X j−1)Q j (X j/X j−1) (21)

The most relevant characteristic of a sequence generated by a discrete hidden Markov source
is that, at any time instant j , knowledge of the symbol X j makes the past and future sequences
X J−1

1 = {X1, X2, . . . , X j−1} and Xn
j+1 = {X j+1, X j+2, . . . , Xn} be independent from each

other. This allows us to do a decomposition of the sequence generated by a discrete hidden
Markov source into three subsequences, and accordingly to write the corresponding probability
distribution function as the product of three factors [1, 3]:

p(X) = p
(

X j−1
1 , X j , Xn

j+1

)
= p

(
X j−1

1 /X j

)
p(X j )p

(
Xn

j+1/X j
)

(22)
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This expression identifies the past, present and future sequences, and their statistical indepen-
dence, a fact resulting from the use of the discrete hidden Markov source model. This property
will be used in following sections.

The discrete hidden Markov source model is very suitable for describing the behaviour
of the output of a trellis encoder, which generates a sequence of related or dependent symbols
that are input to a discrete memoryless channel. Let B1, B2, B3, . . . be a sequence of branches
from the trellis of a given encoder, which assigns values of a discrete alphabet AB each
transition or branch, and let X1, X2, X3, . . . be the sequence of values taken from a discrete
alphabet AX , such that X j is the output assigned a given transition or branch B j . Then the
sequence X1, X2, X3, . . . can be considered as coming from a discrete hidden Markov source.
This sequence is input to a discrete memoryless channel, and the resulting output sequence
Y1, Y2, Y3, . . . can also be considered as a discrete hidden Markov source.

The trellis of an encoder, which essentially represents an FSSM, can be designed for either
block or convolutional codes, and is an example of the operation of a discrete hidden Markov
source. In a trellis encoder the output assigned to each branch represents the input value that is
transmitted by means of an output sequence of related or dependant symbols. In this case the
event of the occurrence Br j = br j of a transition or branch of the trellis is described by the
input value m j that produces such a transition, the output value X j that is transmitted at that
branch and the previous and present states Sj−1 and Sj that define that branch or transition.

In general, data input to an FSSM are supposed to be independent so that the joint probability
distribution function of a sequence of these input data is equal to the product

∏n
j=1 p(m j ).

Therefore the transition probabilities of the source are equal to

Q j (br j/br j−1) =
{

p(m j ) transition Sj−1 → Sj associated to m j , X j

0 transition Sj−1 → Sj does not exist
(23)

When dealing with a given discrete hidden Markov source, the intention is to determine the
hidden variables as a function of the observable variables. In the case of a discrete memoryless
channel through which a hidden Markov chain is transmitted, the intention is to determine
input variables represented by a sequence X, as a function of the observation of the output
variables of the channel, represented by a sequence Y .

An iterative solution for the above problem is the Baum and Welch algorithm, which was
applied to the decoding of convolutional codes by Bahl, Cocke, Jelinek and Raviv (BCJR)
[4] in the design of the so-called BCJR algorithm. The aim of this algorithm is to determine
an estimate or soft decision for a given sequence element at position j , X j , of the hidden
Markov chain, by observing the output sequence of a discrete memoryless channel Y that
corresponds to a given input sequence X. Thus, and by observing the output of the channel
Y = Y n

1 = {Y1, Y2, . . . , Yn} that corresponds to an input X, the following MAP estimate can
be calculated:

μMAP(X j ) = p(X j , Y) (24)

where Y is a vector that contains the observed output values. A maximum likelihood measure
of the same event is

μML(X j ) = p(X j , Y)

p(X j )
(25)
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The algorithm estimates the joint probability p(X j , Y) that defines either of these two
measures, and that can be factorized as in (22).

The Bayes rule and the following properties for joint events will be useful for obtaining
expressions for p(X j , Y):

For any two random variables X and Y , the joint probability of X and Y , P(X, Y ), can be
expressed as a function of the conditional probability of X and Y , P(X/Y ), as

P(X, Y ) = P(X/Y )P(Y ) (26)

For the joint events V = {X, Y }, W = {Y, Z} considered as other random variables, the
Bayes rule and expression (26) lead to the following expression:

P({X, Y }/Z ) = P(V/Z ) = P(V, Z )

P(Z )
= P(X, Y, Z )

P(Z )
= P(X, W )

P(Z )
= P(X/W )P(W )

P(Z )
(27)

P({X, Y }/Z ) = P(X/{Y, Z}) P(Y, Z )

P(Z )
= P(X/{Y, Z})P(Y/Z ) (28)

On the other hand, and by applying the statistical properties of a Markov chain and of a
memoryless channel,

p
(

Y j/
{

X j , Y j−1
1

})
= p(Y j/X j ) (29)

and

p
(

Y n
j+1/

{
Y j , X j , Y j−1

1

})
= p(Y n

j+1/X j ) (30)

7.4 The BCJR Algorithm: Trellis Coding and Discrete
Memoryless Channels

So far, discrete hidden Markov sources and their relationship to soft-decision decoding have
been described. The problem of the decoding of a turbo code is essentially to determine MAP
estimates or soft decisions of states and transitions of a trellis encoder, seen as a discrete hidden
Markov source whose output sequence is observed through a discrete memoryless channel.
This is shown in Figure 7.4.

The discrete hidden Markov source, as given in Figure 7.4, represents a trellis encoder (for
either block or convolutional codes), or in general, an FSSM seen as a discrete source of finite
states. This discrete hidden Markov has U states u = 0, 1, 2, . . . , U − 1. The state of the source

Hidden
Markov
source

Discrete
memoryless
channel

Receiver

Figure 7.4 Scenario for the BCJR algorithm
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in time instant i is denoted as Si , and its output is Xi . A sequence of states from time instant
i to time instant j will be denoted as S j

i = {Si , Si+1, . . . , Sj }, and will be described by the

corresponding output sequence X j
i = {Xi , Xi+1, . . . , X j }. Xi is the i th output symbol taken

from a discrete alphabet. The state transitions are determined by the transition probabilities

pi (u/u′) = P(Si = u/Si−1 = u′) (31)

and the corresponding outputs by the probabilities

qi (X/{u′, u}) = P(Xi = x/{Si−1 = u′, Si = u}) (32)

where x is taken from the discrete output alphabet.
The discrete hidden Markov source generates a sequence Xn

1 that starts at state S0 = 0
and ends at the same state S0 = 0. The output of the discrete hidden Markov source Xn

1

is the input of a noisy discrete memoryless channel that generates the distorted sequence
Y n

1 = {Y1, Y2, . . . , Yn}. Transition probabilities of the discrete memoryless channel are defined
as R(Y j/X j ), such that for every time instant 1 ≤ i ≤ n,

P
(
Y i

1/Xi
1

) =
i∏

j=1

R(Y j/X j ) (33)

The term R(Y j/X j ) determines the probability that at time instant j , the symbol Y j is the
output of the channel if the symbol X j was input to that channel. This will happen with a
transition probability P(y j/x j ) that the input symbol x j converts into the output symbol y j .

A decoder for this Markov process has to estimate the MAP probability of states and outputs
of the discrete hidden Markov source by observing the output sequence Y n

1 = {Y1, Y2, . . . , Yn}.
This means that it should calculate the probabilities

P
(
Si = u/Y n

1

) = P
(
Si = u, Y n

1

)
P(Y n

1 )
(34)

P
({Si−1 = u′, Si = u}/Y n

1

) = P
(
Si−1 = u′, Si = u, Y n

1

)
P(Y n

1 )
(35)

The notation here is that the state Si defines a given state i in a trellis, whereas its particular
value is obtained from an alphabet U of states of the trellis, with u = 0, 1, 2, . . . , U − 1.
Therefore, in a trellis, the sequence Y n

1 = {Y1, Y2, . . . , Yn} is represented by a unique path.
The following MAP probability is associated with each node or state of a trellis:

P
(
Si = u/Y n

1

)
(36)

and the following MAP probability is associated with each branch or transition of the trellis:

P
({Si−1 = u′, Si = u}/Y n

1

)
(37)
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The decoder will calculate these probabilities by observing the output sequence Y n
1 =

{Y1, Y2, . . . , Yn}. The decoder can also calculate the joint probabilities

λi (u) = P
(
Si = u, Y n

1

)
(38)

and

σi (u
′, u) = P

(
Si−1 = u′, Si = u, Y n

1

)
(39)

Since for a given output sequence Y n
1 = {Y1, Y2, . . . , Yn}, the probability P

(
Y n

1

)
is a constant

value, the quantities λi (u) and σi (u′, u) can be divided by P
(
Y n

1

)
to determine the desired MAP

probabilities. Thus, there is a method for calculating the probabilities λi (u) and σi (u′, u). This
is obtained by defining the probabilities

αi (u) = P
(
Si = u, Y i

1

)
(40)

βi (u) = P
(
Y n

i+1/Si = u
)

(41)

γi (u
′, u) = P

({Si = u, Yi } /Si−1 = u′) (42)

Then

λi (u) = P
(
Si = u, Y n

1

) = P
(
Si = u, Y i

1

)
P

(
Y n

i+1/
{

Si = u, Y i
1

})
(43)

where

P
(
Y n

i+1/
{

Si = u, Y i
1

}) = P
(
Si = u, Y n

i+1, Y i
1

)
P

(
Si = u, Y i

1

) = P
(
Si = u, Y n

1

)
P

(
Si = u, Y i

1

) (44)

But since αi (u) = P
(
Si = u, Y i

1

)
,

λi (u) = P
(
Si = u, Y i

1

)
P

(
Y n

i+1/
{

Si = u, Y i
1

}) = αi (u)P
(
Y n

i+1/Si = u
)

(45)

The above simplification is obtained by applying the property of discrete hidden Markov
sources that states that, for a given event characterized by the state Si , past and future events do
not depend on the value at this state, so that past, present and future events are all statistically
independent.

Then, and since βi (u) = P
(
Y n

i+1/Si = u
)
,

λi (u) = αi (u)P
(
Y n

i+1/Si = u
) = αi (u)βi (u) (46)

An equivalent expression can be obtained for σi (u′, u) as

σi (u′, u) = P
(
Si−1 = u′, Si = u, Y n

1

)
= P

(
Y n

i+1/
{

Si−1 = u′, Si = u, Y i−1
1 , Yi

})
P

(
Si−1 = u′, Si = u, Y i−1

1 , Yi
)

= P
(
Y n

i+1/Si = u
)

P
(
Si−1 = u′, Si = u, Y i−1

1 , Yi
)

= P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) P
(
Y n

i+1/Si = u
)

= P
(
Y n

i+1/Si = u
)

P
({Yi , Si = u} /

{
Si−1 = u′, Y i−1

1

})
P

({
Si−1 = u′, Y i−1

1

})
= P

(
Y n

i+1/S1 = u
)

P
({Si = u, Yi } /Si−1 = u′) P

(
Si−1 = u′, Y i−1

1

)
(47)
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Thus

σi (u′, u) = P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) P
(
Y n

i+1/Si = u
)

= αi−1(u′)γi (u′, u)βi (u)
(48)

7.5 Iterative Coefficient Calculation

In the following, coefficients αi (u) and βi (u) are calculated by iteration as a function of
coefficients γi (u′, u).

For i = 0, 1, 2, . . . , n, the definition of αi−1(u′) allows us to describe the term αi (u) as

αi (u) = P
(
Si = u, Y i

1

) = P
(
Si = u, Y i−1

1 , Yi
)

(49)

αi (u) =
U−1∑
u′= 0

P
(
Si−1 = u′, Si = u, Y i−1

1 , Yi
)

=
U−1∑
u′= 0

P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /
{

Si−1 = u′, Y i−1
1

}) (50)

αi (u) =
U−1∑
u′= 0

P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) =
U−1∑
u′= 0

αi−1(u′)γi (u
′, u)

(51)
For i = 0, the decoder utilizes the initial conditions α0(0) = 1 and α0(u) = 0, u 
= 0. In the

same way, for i = 1, 2, . . . , n − 1,

βi (u) =
U−1∑
u′= 0

P
({

Si+1 = u′, Y n
i+1

}
/Si = u

)
=

U−1∑
u′= 0

P
({

Si+1 = u′, Yi+1

}
/Si = u

)
P

(
Y n

i+2/Si+1 = u′)
βi (u) =

U−1∑
u′= 0

= βi+1(u′)γi+1(u, u′) (52)

For i = n, the decoder utilizes the contour conditions βn(0) = 1 and βn(u) = 0, u 
= 0. This
is true for a terminated trellis, that is, for a trellis that starts and ends in the zero state S0. If
this is not the case, then βn(u) = 1∀u.

On the other hand, values of γi (u′, u) are also calculated as

γi (u′, u) =
∑
AX

P(Si = u/Si−1 = u′)P(Xi = x/{Si−1 = u′, Si = u})P (Yi/Xi )

γi (u′, u) =
∑
AX

pi (u/u′)qi (X/{u′, u})R(Yi/Xi )
(53)

The sum in the above expression is done over the entire input alphabet Ax .



OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

222 Essentials of Error-Control Coding

The decoding procedure for calculating the values of λi (u) and σi (u′, u) is applied as
follows:

1. Set the initial conditions α0(0) = 1 and α0(u) = 0, u 
= 0, and the contour conditions
βn(0) = 1 and βn(u) = 0, u 
= 0 for u = 0, 1, 2, . . . , U − 1.

2. After receiving Yi , the decoder calculates γi (u′, u) with equation (53) and determines αi (u)
with equation (51). The obtained values are stored for every i and every u.

3. After receiving the whole sequence Y n
1 , the decoder recursively calculates the values βi (u)

by using expression (52). Once all the values βi (u) are determined, they can be multiplied
by αi (u) and γi (u′, u) in order to determine values of λi (u) and σi (u′, u) according to
expressions (46) and (48).

Any event dependent on the trellis states can be measured by adding the corresponding
probabilities λi (u), and any event dependent on the trellis transitions can be measured by
adding the corresponding probabilities σi (u′, u).

The iterative calculation of the values αi (u) is usually called the forward recursion, while the
iterative calculation of values βi (u) is called the backward recursion. The input information
probability is related to the values λi (u), and the coded information probability is related to
the values σi (u′, u).

Example 7.1: The BCJR algorithm is applied to the decoding of the block code Cb(5, 3) with
minimum Hamming distance dmin = 2 and the generator matrix

G =
⎡⎣1 0 1 0 0

0 1 0 1 0
0 0 1 1 1

⎤⎦
In this code there are eight code vectors. The parity check matrix is conveniently obtained

by converting the generator matrix into systematic form. This can be done by adding the three
rows of the generator matrix and by replacing the third row by this sum of rows. The resulting
matrix is of a systematic form

G ′ =
⎡⎣1 0 1 0 0

0 1 0 1 0
1 1 0 0 1

⎤⎦
Then

P ′ =
⎡⎣1 0

0 1
1 1

⎤⎦
and

H′ = [
Iq P ′T ] =

[
1 0 1 0 1
0 1 0 1 1

]
= H
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Table 7.1 Code vectors of the block code Cb(5, 3)

0 0 0 0 0

1 1 0 0 1

0 1 0 1 0

1 0 0 1 1

1 0 1 0 0

0 1 1 0 1

1 1 1 1 0

0 0 1 1 1

It is verified that

G ◦ HT =
⎡⎣1 0 1 0 0

0 1 0 1 0
0 0 1 1 1

⎤⎦
⎡⎢⎢⎢⎢⎣

1 0
0 1
1 0
0 1
1 1

⎤⎥⎥⎥⎥⎦ =
⎡⎣0 0

0 0
0 0

⎤⎦ = 0

Matrix H is the parity check matrix of the code. The eight code vectors of this code can be
obtained by multiplying the message vectors by the generator matrix G.

Table 7.1 allows us to determine the minimum weight, and therefore the minimum Hamming
distance of the code, which is pH = dmin = 2.

A trellis for this block code can be constructed, based on the information provided by the
code table, as shown in Figure 7.5.

It is assumed that the message bits that are input to the encoder of the block code are equally
likely. The operation of this code will be studied on the soft-decision, discrete, symmetric and
memoryless channel that is shown in Figure 7.6, whose transition probabilities are described
in Table 7.2. This channel has two inputs and four outputs, two of high reliability, and two of
low reliability.

It is assumed, in this example, that the transmitted code vector is c = (00000) and the
corresponding received vector is r = (10200). Note that elements of the transmitted vector are
inputs of the channel of Figure 7.6, and elements of the received vector are outputs of that

1

0

0

0

1

000 0 0

0
1

1

111

1

1

1

0

Figure 7.5 A trellis for the block code Cb(5, 3)
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0

1

0

1

2

3

High-reliability
output for 0

High-reliability
output for 1

Low-reliability output
for 0

Low-reliability output
for 1

Figure 7.6 A soft-decision discrete symmetric memoryless channel

channel. Table 7.3 shows the transition probabilities for the input elements ‘1’ and ‘0’ for each
received element.

The values γi (u′, u) are first calculated and then αi (u) and βi (u) can also be determined.
First, the calculations are described in detail as

γ1(0, 0) =
∑
x∈Ax

P(S1 = 0/S0 = 0)P(X1 = x/{S0 = 0, S1 = 0})P(Y1/X1 = x)

= P(S1 = 0/S0 = 0)P(X1 = 0/{S0 = 0, S1 = 0})P(Y1/X1 = 0)

+P(S1 = 0/S0 = 0)P(X1 = 1/{S0 = 0, S1 = 0})P(Y1/X1 = 1)

= 0.5 × 1 × 0.3 + 0.5 × 0 × 0.15

= 0.15

γ1(0, 1) =
∑

X

P(S1 = 1/S0 = 0)P(X1 = x/{S0 = 0, S1 = 1})P(Y1/X1 = x)

= P(S1 = 1/S0 = 0)P(X1 = 0/{S0 = 0, S1 = 1})P(Y1/X1 = 0)

+P(S1 = 1/S0 = 0)P(X1 = 1/{S0 = 0, S1 = 1})P(Y1/X1 = 1)

= 0.5 × 0 × 0.3 + 0.5 × 1 × 0.15

= 0.075

Table 7.2 Transition probabilities of the

channel of Figure 7.6

P(y/x)

x, y 0 1 2 3

0 0.5 0.3 0.15 0.05

1 0.05 0.15 0.3 0.5
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Table 7.3 Transition probabilities for the received vector in Example 7.1

j 1 2 3 4 5

(P(y j/0), P(y j/1)) (0.3, 0.15) (0.5, 0.05) (0.15, 0.3) (0.5, 0.05) (0.5, 0.05)

γ2(0, 0) =
∑

X

P(S2 = 0/S1 = 0)P(X2 = x/{S1 = 0, S2 = 0})P(Y2/X2 = x)

= P(S2 = 0/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 0})P(Y2/X2 = 0)

+P(S2 = 0/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 0})P(Y2/X2 = 1)

= 0.5 × 1 × 0.5 + 0.5 × 0 × 0.05

= 0.25

γ2(0, 1) = P(S2 = 1/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 1})P(Y2/X2 = 0)

+P(S2 = 1/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 1})P(Y2/X2 = 1)

= 0 × 0 × 0.5 + 0 × 0 × 0.05

= 0

γ2(0, 2) = P(S2 = 2/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 2})P(Y2/X2 = 0)

+P(S2 = 2/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 2})P(Y2/X2 = 1)

= 0.5 × 0 × 0.5 + 0.5 × 1 × 0.05

= 0.025

γ2(0, 3) = P(S2 = 3/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 3})P(Y2/X2 = 0)

+P(S2 = 3/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 3})P(Y2/X2 = 1)

= 0 × 0 × 0.5 + 0 × 0 × 0.05

= 0

In the same way, the following values are also determined:

γ2(1, 0) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ2(1, 1) = 0.5 × 1 × 0.5 + 1 × 0 × 0.05 = 0.25

γ2(1, 2) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ2(1, 3) = 0.5 × 0 × 0.5 + 0.5 × 1 × 0.05 = 0.025

γ3(0, 0) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ3(0, 1) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0
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γ3(0, 2) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(0, 3) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(1, 0) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(1, 1) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(1, 2) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ3(1, 3) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(2, 0) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(2, 1) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ3(2, 2) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(2, 3) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(3, 0) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(3, 1) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(3, 2) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(3, 3) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ4(0, 0) = 1 × 1 × 0.5 + 1 × 0 × 0.05 = 0.5

γ4(0, 1) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(1, 0) = 1 × 0 × 0.5 + 1 × 1 × 0.05 = 0.05

γ4(1, 1) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(2, 0) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(2, 1) = 1 × 0 × 0.5 + 1 × 1 × 0.05 = 0.05

γ4(3, 0) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(3, 1) = 1 × 1 × 0.5 + 1 × 0 × 0.05 = 0.5

γ5(0, 0) = 1 × 1 × 0.5 + 1 × 0 × 0.05 = 0.5

γ5(1, 0) = 1 × 0 × 0.5 + 1 × 1 × 0.05 = 0.05

Forward recursive calculation of the values αi (u) is started by setting the initial conditions
α0(m) = 0, m 
= 0:

α1(0) =
U−1∑
u′=0

α0(u′)γ1(u′, u)

=
1∑

u′=0

α0(u′)γ1(u′, u)
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= α0(0)γ1(0, 0) + α0(1)γ1(1, 0)

= 1 × 0.15 + 0 × 0 = 0.15

α1(1) = α0(0)γ1(0, 1) + α0(1)γ1(1, 1) = 1 × 0.075 + 0 × 0 = 0.075

α2(0) = α1(0)γ2(0, 0) + α1(1)γ2(1, 0) = 0.15 × 0.25 + 0.075 × 0 = 0.0375

α2(1) = α1(0)γ2(0, 1) + α1(1)γ2(1, 1) = 0.15 × 0 + 0.075 × 0.25 = 0.01875

α2(2) = α1(0)γ2(0, 2) + α1(1)γ2(1, 2) = 0.15 × 0.025 + 0.075 × 0 = 0.00375

α2(3) = α1(0)γ2(0, 3) + α1(1)γ2(1, 3) = 0.15 × 0 + 0.075 × 0.025 = 0.001875

α3(0) = α2(0)γ3(0, 0) + α2(1)γ3(1, 0) = 0.0375 × 0.075 + 0.01875 × 0.15 = 0.005625

α3(1) = α2(0)γ3(0, 1) + α2(1)γ3(1, 1) + α2(2)γ3(2, 1) + α2(3)γ3(3, 1)

= 0.0375 × 0 + 0.01875 × 0 + 0.00375 × 0.075 + 0.001875 × 0.15

= 0.0005625

α3(2) = α2(0)γ3(0, 2) + α2(1)γ3(1, 2) + α2(2)γ3(2, 2) + α2(3)γ3(3, 2)

= 0.0375 × 0.15 + 0.01875 × 0.075 + 0.00375 × 0 + 0.001875 × 0

= 0.00703125

α3(3) = α2(2)γ3(2, 3) + α2(3)γ3(3, 3)

= 0.00375 × 0.15 + 0.001875 × 0.075

= 0.000703125

α4(0) = α3(0)γ4(0, 0) + α3(1)γ4(1, 0) + α3(2)γ4(2, 0) + α3(3)γ4(3, 0)

= 0.005625 × 0.5 + 0.0005625 × 0.05 + 0.00703125 × 0 + 0.000703125 × 0

= 0.002840625

α4(1) = α3(0)γ4(0, 1) + α3(1)γ4(1, 1) + α3(2)γ4(2, 1) + α3(3)γ4(3, 1)

= 0.005625 × 0 + 0.0005625 × 0 + 0.00703125 × 0.05 + 0.000703125 × 0.5

= 0.000703125

α5(0) = α4(0)γ5(0, 0) + α4(1)γ5(1, 0)

= 0.002840625 × 0.5 + 0.000703125 × 0.05

= 0.00145546875
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Backward recursive calculation of the values βi (u) is done by setting the contour conditions
β5(0) = 1, β5(m) = 0, m 
= 0:

β4(0) = β5(0)γ5(0, 0) = 1 × 0.5 = 0.5

β4(1) = β5(0)γ5(1, 0) = 1 × 0.05 = 0.05

β3(0) = β4(1)γ4(0, 1) + β4(0)γ4(0, 0) = 0.05 × 0 + 0.5 × 0.5 = 0.25

β3(1) = β4(0)γ4(1, 0) + β4(1)γ4(1, 1) = 0.5 × 0.05 + 0.05 × 0 = 0.025

β3(2) = β4(0)γ4(2, 0) + β4(1)γ4(2, 1) = 0.5 × 0 + 0.05 × 0.05 = 0.0025

β3(3) = β4(0)γ4(3, 0) + β4(1)γ4(3, 1) = 0.5 × 0 + 0.05 × 0.5 = 0.025

β2(0) = β3(0)γ3(0, 0) + β3(1)γ3(0, 1) + β3(2)γ3(0, 2) + β3(3)γ3(0, 3)

= 0.25 × 0.075 + 0.025 × 0 + 0.0025 × 0.15 + 0.025 × 0

= 0.019125

β2(1) = β3(0)γ3(1, 0) + β3(1)γ3(1, 1) + β3(2)γ3(1, 2) + β3(3)γ3(1, 3)

= 0.25 × 0.15 + 0.025 × 0 + 0.0025 × 0.075 + 0.025 × 0

= 0.0376875

β2(2) = β3(0)γ3(2, 0) + β3(1)γ3(2, 1) + β3(2)γ3(2, 2) + β3(3)γ3(2, 3)

= 0.25 × 0 + 0.025 × 0.075 + 0.0025 × 0 + 0.025 × 0.15

= 0.005625

β2(3) = β3(0)γ3(3, 0) + β3(1)γ3(3, 1) + β3(2)γ3(3, 2) + β3(3)γ3(3, 3)

= 0.25 × 0 + 0.025 × 0.15 + 0.0025 × 0 + 0.025 × 0.075

= 0.005625

β1(0) = β2(0)γ2(0, 0) + β2(1)γ2(0, 1) + β2(2)γ2(0, 2) + β2(3)γ2(0, 3)

= 0.019125 × 0.25 + 0.0376875 × 0 + 0.005625 × 0.025 + 0.005625 × 0

= 0.004921875

β1(1) = β2(0)γ2(1, 0) + β2(1)γ2(1, 1) + β2(2)γ2(1, 2) + β2(3)γ2(1, 3)

= 0.0019125 × 0 + 0.0376875 × 0.25 + 0.005625 × 0 + 0.005625 × 0.025

= 0.0095625

β0(0) = β1(0)γ1(0, 0) + β1(1)γ1(0, 1)

= 0.004921875 × 0.15 + 0.0095625 × 0.075

= 0.00145546875
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Once the values γi (u′, u), αi (u) and βi (u) have been determined, then the values λi (u) and
σi (u′, u) can be calculated as

λ1(0) = α1(0)β1(0) = 0.15 × 0.004921675 = 0.00073828125

λ1(1) = α1(1)β1(1) = 0.075 × 0.0095625 = 0.0007171875

λ2(0) = α2(0)β2(0) = 0.00375 × 0.019125 = 0.0007171875

λ2(1) = α2(1)β2(1) = 0.01875 × 0.0376875 = 0.000706640625

λ2(2) = α2(2)β2(2) = 0.00375 × 0.005625 = 0.00002109375

λ2(3) = α2(3)β2(3) = 0.001875 × 0.005625 = 0.000010546875

With all the values already calculated, an estimate or soft decision can be made for each step
i of the decoded sequence. The coefficients λi (u) determine the estimates for input symbols
‘1’ and ‘0’ when there is only one branch or transition of the trellis arriving at a given node,
which then defines the value of that node. This happens for instance in the trellis of Figure 7.5
at nodes λ1(0), λ1(1), λ2(0), λ2(1), λ2(2) and λ2(3):

λ1(0)

λ1(0) + λ1(1)
= 0.5072 Soft decision for ‘0’ at position 1

λ1(1)

λ1(0) + λ1(1)
= 0.4928 Soft decision for ‘1’ at position 1

λ2(0) + λ2(1)

λ2(0) + λ2(1) + λ2(2) + λ2(3)
= 0.97826 Soft decision for ‘0’ at position 2

λ2(2) + λ2(3)

λ2(0) + λ2(1) + λ2(2) + λ2(3)
= 0.0217 Soft decision for ‘1’ at position 2

Coefficients σi (u′, u) are then utilized for determining the soft decisions when there are two
or more transitions or branches arriving at a given node of the trellis, and when these branches
are assigned the different input symbols:

σ3(0, 0) = α2(0)γ3(0, 0)β3(0) = 0.0375 × 0.075 × 0.25 = 0.000703125

σ3(1, 0) = α2(1)γ3(1, 0)β3(0) = 0.01875 × 0.15 × 0.25 = 0.000703125

σ3(0, 2) = α2(0)γ3(0, 2)β3(2) = 0.0375 × 0.15 × 0.0025 = 0.0000140625

σ3(1, 2) = α2(1)γ3(1, 2)β3(2) = 0.01875 × 0.075 × 0.0025 = 0.000003515625

σ3(2, 1) = α2(2)γ3(2, 1)β3(1) = 0.00375 × 0.075 × 0.025 = 0.00000703125

σ3(3, 1) = α2(3)γ3(3, 1)β3(1) = 0.001875 × 0.15 × 0.025 = 0.00000703125

σ3(2, 3) = α2(2)γ3(2, 3)β3(3) = 0.00375 × 0.15 × 0.025 = 0.0000140625

σ3(3, 3) = α2(3)γ3(3, 3)β3(3) = 0.001875 × 0.075 × 0.025 = 0.000003515625
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σ4(0, 0) = α3(0)γ4(0, 0)β4(0) = 0.005625 × 0.5 × 0.5 = 0.00140625

σ4(1, 0) = α3(1)γ4(1, 0)β4(0) = 0.0005625 × 0.05 × 0.5 = 0.0000140625

σ4(2, 1) = α3(2)γ4(2, 1)β4(1) = 0.00703125 × 0.05 × 0.05 = 0.000017578125

σ4(3, 1) = α3(3)γ4(3, 1)β4(1) = 0.000703125 × 0.5 × 0.05 = 0.000017578125

σ5(0, 0) = α4(0)γ5(0, 0)β5(0) = 0.002840625 × 0.5 × 1 = 0.0014203125

σ5(1, 0) = α4(1)γ5(1, 0)β5(0) = 0.000703125 × 0.05 × 1 = 0.00003515625

These values allow us to determine soft decisions for the corresponding nodes. For instance, for
position i = 3, the trellis transition probabilities involved in the calculation of a soft decision
for ‘0’ are

σ3(0, 0) + σ3(1, 2) + σ3(2, 1) + σ3(3, 3)

σ3(0, 0) + σ3(1, 0) + σ3(0, 2) + σ3(1, 2) + σ3(2, 1) + σ3(3, 1) + σ3(2, 3) + σ3(3, 3)

= 0.49275

which is a soft decision for ‘0’ at position 3. The soft decision for ‘1’ at that position is then
1 − 0.49275 = 0.5072. For position i = 4, the trellis transition probabilities involved in the
calculation of a soft decision for ‘0’ are

σ4(0, 0) + σ4(3, 1)

σ4(1, 0) + σ4(0, 0) + σ4(2, 1) + σ4(3, 1)
= 0.97826

and the soft decision for ‘1’ at position i = 4 is

σ4(1, 0) + σ4(2, 1)

σ4(1, 0) + σ4(0, 0) + σ4(2, 1) + σ4(3, 1)
= 0.021739

For position i = 5, the trellis transition probabilities involved in the calculation of a soft
decision for ‘0’ are

σ5(0, 0)

σ5(0, 0) + σ5(1, 0)
= 0.97584

and the soft decision for ‘1’ at position i = 5 is

σ5(1, 0)

σ5(0, 0) + σ5(1, 0)
= 0.02415

Based on the above calculations, the decoder will decide that the decoded vector is d =
(00100), which is not a code vector. The code vectors closest to the decoded vector are c =
(00000) and c = (10100). Table 7.4 shows the distance between any code vector and the
received vector r = (10200). This can help to understand why the decoder is not able to
correctly decide on the true code vector in this case.

In the Table 7.4, distances are measured as soft distances calculated over the soft-decision
channel of this example. In this table it is seen that the two code vectors c = (00000) and
c = (10100) that are closest to the received vector r = (10200) have the same distance with
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Table 7.4 Soft-decision distances from the code

vectors to the received vector r = (10200)

Code Vectors Distance to r = (10200)

1 0 2 0 0 d

0 0 0 0 0 0 0 0 0 0 3

1 0 0 1 1 3 0 0 3 3 10

0 1 0 1 0 0 3 0 3 0 9

1 1 0 0 1 3 3 0 0 3 10

0 0 1 1 1 0 0 3 3 3 8

1 0 1 0 0 3 0 3 0 0 3

0 1 1 0 1 0 3 3 0 3 8

1 1 1 1 0 3 3 3 3 0 9

respect to this vector, so that the decoder cannot correctly decode this error pattern. However
soft decisions or estimates for the bits of the received vector might be helpful to the user, and
could be iteratively updated to converge to the right solution if they were involved in a turbo
decoding scheme with other component codes.

Example 7.2: Decode the received vector of Example 7.1 by using the ML Viterbi algorithm,
where trellis transitions are assigned the conditional probability values of the channel utilized
in that example.

The ML Viterbi algorithm can be used for decoding the received vector of the Example
7.1 if the trellis transitions in the corresponding trellis (Figure 7.5) are assigned the transition
probabilities for the input elements ‘1’ and ‘0’ of the soft-decision channel used in that example
(Figure 7.6). In this way, the decoding algorithm operates as shown in Figure 7.7, where, at
time instant t3, decisions can be already taken, in order to decide which is the survivor path
among those that arrive at a given node of the trellis.
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0.150.50.3

0.50.15

0.3

0.3

0.05

0.15
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1
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1 0 2

Figure 7.7 ML Viterbi decoding algorithm at time instant t3, Example 7.2
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At time instant t3, and for state 0, there are two arriving branches with the cumulative
probabilities

time instant t3, state 0 ⇒
{

b1 → 0.3 × 0.5 × 0.15 = 0.0225(∗)
b2 → 0.15 × 0.5 × 0.3 = 0.0225

At this trellis node the cumulative probability is equal for both arriving branches, and so an
arbitrary decision is made in favour of the upper branch. This decision will influence the final
decision that the decoding algorithm will take, which will fortuitously decide for the true
vector. The decision taken at each node is denoted with an asterisk (∗).

The same procedure is applied to determine the soft decision for the other values of this
state, and thus

time instant t3, state 1 ⇒
{

b1 → 0.3 × 0.05 × 0.15 = 0.00225(∗)
b2 → 0.15 × 0.05 × 0.3 = 0.00225

Once again, the decision for state 1 is determined by making the arbitrary choice that the
upper branch is the survivor path. This repeated occurrence of the need to make an arbitrary
choice of survivor path is evidence that the received vector contains an error event that exceeds
the correcting power of the code, and is such that two code vectors are at the same distance
from the received vector.

time instant t3, state 2 ⇒
{

b1 → 0.3 × 0.5 × 0.3 = 0.045(∗)
b2 → 0.15 × 0.5 × 0.15 = 0.01125

time instant t3, state 3 ⇒
{

b1 → 0.3 × 0.05 × 0.3 = 0.0045(∗)
b2 → 0.15 × 0.05 × 0.15 = 0.001125

Figure 7.8 shows the resulting situation after the discarding of some paths at time instant t3.
For a clearer description of the calculations involved, each arriving path is marked with the

product of all the channel transition probabilities that contribute to the calculation of the soft
metric of that path. Thus, for example, at time instant t4 the following decisions are taken:

time instant t4, state 0 ⇒
{

b1 → 0.3 × 0.5 × 0.15 × 0.5 = 0.01125(∗)
b2 → 0.3 × 0.05 × 0.15 × 0.05 = 0.0001125

time instant t4, state 1 ⇒
{

b1 → 0.3 × 0.5 × 0.3 × 0.05 = 0.00225(∗)
b2 → 0.3 × 0.05 × 0.3 × 0.5 = 0.00225

Figure 7.9 shows the resulting situation after the discarding of some paths at time instant t4.
The final decision adopted at time instant t5 is then

time instant t5, state 0 ⇒
{

b1 → 0.3 × 0.5 × 0.15 × 0.5 × 0.5 = 0.005625(∗)
b2 → 0.3 × 0.5 × 0.3 × 0.05 × 0.05 = 0.0001125

The most likely path is the survivor path, as indicated in Figure 7.9 in bold, and the ML
Viterbi decoding algorithm decides for the code vector d = c = (00000). This decision is
the correct decision, but it is being obtained by chance, because of the two arbitrary upper
branch survivor path selections taken at time instant t3. If however the decision rule at this
critical time instant, where cumulative probabilities are equal for two arriving branches at the
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Figure 7.8 ML Viterbi decoding algorithm at time instant t4, Example 7.2

nodes corresponding to state 0 and state 1, was such that the lower branch had been selected,
then the final result would have been to decode the code vector d = c = (10100), that is, the
other code vector that is at the same distance as the code vector c = (00000) to the received
vector r = (10200). This emergence of two equally possible codewords confirms the same
result achieved by using the soft distances given in Table 7.3. Unless additional decoding
information is available, if for instance the code is part of a turbo scheme, then there is no
way to determine which codeword is the correct one. However, even in an iterative decoding
algorithm this sort of ambiguous situation can arise after a given number of iterations, seen as
a fluctuating and alternating decision between code vectors that are at the same distance with
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Figure 7.9 ML Viterbi algorithm at time instant t5 and final decision, Example 7.2
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respect to the received vector. Thus, the decision could fortuitously be in favour of the true
code vector or not depending on when the iteration of the algorithm is truncated.

This simple example shows the difference in decoding complexity between the BCJR algo-
rithm and the ML Viterbi algorithm. In Example 7.3 it will be however evident that in spite of
this higher complexity, the MAP BCJR decoding algorithm has a very efficient error-correction
capability when it is involved in iterative decoding algorithms. In this sense, it can be said that
the use of the MAP BCJR algorithm in the constituent decoders of an iterative turbo decoding
scheme is much less complex than the use of the Viterbi decoding algorithm applied over
the trellis of the complete turbo code, which will be very complex, especially for large-size
interleavers.

7.6 The BCJR MAP Algorithm and the LLR

The LLR can also be defined for conditional probabilities. Indeed MAP decoding algorithms
perform a soft decision or estimation of a given bit conditioned or based on the reception of
sampled values of a given received sequence Y . In this case the LLR is denoted as L(bi/Y)
and is defined as follows [2, 5]:

L(bi/Y) = ln

(
P(bi = +1/Y)

P(bi = −1/Y)

)
(54)

This estimation is based on the a posteriori probabilities of the bit bi that are determined in
iterative decoding algorithms as soft-input–soft-output decisions for each constituent decoder
in the decoding of a turbo code.

Another useful conditional LLR is based on the ratio of the probabilities that the output of
an optimal decoder is yi if the corresponding transmitted bit xi adopts one of its two possible
values +1 or −1. In logarithmic form this conditional LLR is equal to

L(yi/xi ) = ln

(
P(yi/xi = +1)

P(yi/xi = −1)

)
(55)

For the additive white Gaussian noise (AWGN) channel and for transmitted bits in polar
format xi = ±1, which after transmission are received using an optimal receiver, the conditional
LLRs described in (55) take the form

P(yi/xi = +1) = 1√
2πσ

e
−Eb
2σ2 (yi −1)2

(56)

P(yi/xi = −1) = 1√
2πσ

e
−Eb
2σ2 (yi +1)2

(57)

L(yi/xi ) = ln

(
e

−Eb
2σ2 (yi −1)2

e
−Eb
2σ2 (yi +1)2

)
= −Eb

2σ 2
(yi − 1)2 + Eb

2σ 2
(yi + 1)2 = 2

Eb

σ 2
yi = Lc yi (58)

Thus, the conditional LLR for an AWGN channel is proportional to the value of the sample
of the optimally received signal yi , and the constant of proportion is Lc = 2Eb/σ

2, a measure
of the signal-to-noise ratio in the channel.
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7.6.1 The BCJR MAP Algorithm: LLR Calculation

The decoding algorithm introduced by Bahl, Cocke, Jelinek and Raviv [4] was first imple-
mented for the trellis decoding of both block and convolutional codes, and, in comparison with
the well-known Viterbi decoding algorithm, the proposed BCJR algorithm did not provide any
particular advantage, as its complexity was higher than that of the Viterbi decoder. However,
this is a decoding algorithm that inherently utilizes soft-input–soft-output decisions, and this
becomes a decisive factor for its application in the iterative decoding of turbo codes.

In the following, a description of the BCJR MAP decoding algorithm in terms of LLRs is
developed. The definition of an LLR as a logarithm of a quotient allows some of the constant
terms involved to be cancelled, so that there is no need to calculate them in this form of
implementation of the BCJR algorithm.

The BCJR MAP decoding algorithm determines the probability that a given transmitted bit
was a +1 or a −1, depending on the received sequence Y = Y n

1 . The LLR L(bi/Y) summarizes
these two possibilities by calculating a unique number

L(bi/Y) = ln

(
P(bi = +1/Y)

P(bi = −1/Y)

)
(59)

The Bayes rule is used to express (59) as

L(bi/Y) = ln

(
P(bi = +1, Y)

P(bi = −1, Y)

)
(60)

Figure 7.10 shows the middle part of the trellis that is seen in Figure 7.5, in polar format.
Here, symbol ‘0’ is transmitted through the channel as −1, and symbol ‘1’ is transmitted
through the channel as +1. As pointed out in previous sections, the use of the polar format is
very convenient if decoders make use of LLRs, since this is a signed quantity whose sign is
the hard-decision part of the decoded or estimated value, which was transmitted in normalized
form as either a +1 or a −1.
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Figure 7.10 Trellis transitions of the block code Cb(5, 3)
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In this case, for example in the transition from state S2 to state S3, the probability that
b3 = −1 is given by the probability that this state transition is one of the four possible trellis
transitions for which b3 = −1. Then the probability that b3 = −1 is the addition of all the
probabilities associated with the information bit −1.

In general the estimation of the information bit bi is done over the trellis transition with
which the bit is associated, defined from state Si−1 to state Si . Equation (60) is then written as

L(bi/Y) = ln

(∑
{u′,u}⇒bi =+1 P(Si−1 = u′, Si = u, Y)∑
{u′,u}⇒bi =−1 P(Si−1 = u′, Si = u, Y)

)

= ln

(∑
{u′,u}⇒bi =+1 P(Si−1 = u′, Si = u, Y n

1 )∑
{u′,u}⇒bi =−1 P(Si−1 = u′, Si = u, Y n

1 )

)
(61)

Here {u′, u} ⇒ bi = +1 represents the set of all the transitions that correspond to the message
or information bit bi = +1. The same is true for {u′, u} ⇒ bi = −1 with respect to the
message bit bi = −1. Terms of the form σi (u′, u) = P(Si−1 = u′, Si = u, Y n

1 ) can be expressed
as

σi (u
′, u) = P

(
Si−1 = u′, Si = u, Y n

1

)
= P

(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) P
(
Y n

i+1/Si = u
)

= αi−1(u′)γi (u
′, u)βi (u) (62)

Then

L(bi/Y) = L(bi/Y n
1 )

= ln

(∑
{u′,u}⇒bi =+1 P(Si−1 = u′, Si = u, Y n

1 )∑
{u′,u}⇒bi =−1 P(Si−1 = u′, Si = u, Y n

1 )

)

= ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi (u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi (u′, u)βi (u)

)
(63)

7.6.2 Calculation of Coefficients γi (u′, u)

Coefficients αi−1(u′) and βi (u) are recursively calculated as functions of coefficients γi (u′, u),
so that coefficients γi (u′, u) have to be evaluated first to obtain all the quantities involved in this
algorithm. Equation (42) describes the coefficients γi (u′, u) and can be expressed in a more
convenient way by making use of the properties described by expressions (26)–(30):

γi (u
′, u) = P

({Si = u, Yi } /Si−1 = u′)
= P(Yi/{u′, u})P(u/u′)

= P(Yi/{u′, u})P(bi ) (64)
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The bit probability of the i th transition can be calculated by using expression (17):

P(bi ) = P(bi = ±1) = e−L(bi )/2

1 + e−L(bi )
ebi L(bi )/2 = C1 ebi L(bi )/2 (65)

On the other hand, the calculation of the term P(Yi/{u′, u}) is equivalent to calculating the
probability P(Yi/Xi ), where Xi is the vector associated with the transition from Si−1 = u′ to
Si = u, which in general is a vector of n bits. If the channel is a memoryless channel, then

P(Yi/{u′, u}) = P(Yi/Xi ) =
n∏

k=1

P(yik/xik) (66)

where yik and xik are the bits of the received and transmitted vectors Yi and Xi , respectively.
If transmission is done in polar format over the AWGN channel, the transmitted bits xik take
the normalized values +1 or −1, and [2]

Le(bi ) = ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi extr(u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi extr(u′, u)βi (u)

)
(67)

P(Yi/{u′, u}) =
n∏

k=1

1√
2πσ

e− Eb

2σ 2

∑n
k=1 (yik − xik)2

(68)

= 1(√
2πσ

)n e− Eb
2σ2

∑n
k=1 (y2

ik+x2
ik)e

Eb
σ2

∑n
k=1 (yik xik ) = C2 e

Eb
σ2

∑n
k=1 (yik xik ) (69)

where only the term e
Eb
σ2

∑n
k=1 (yik xik ) is significant because all the other terms in this expression

are constants. The expression for calculating coefficients γi (u′, u) is finally

γi (u
′, u) = C ebi L(bi )/2 e

Eb
σ2

∑n
k=1 (yik xik )

, C = C1C2 (70)

The above coefficients can be calculated for the BCJR MAP decoding algorithm by taking
into account the channel information or sampled values Lc yik , and the a priori information for
each constituent decoder L(bi ). This latter information is the extrinsic information provided
by the other decoder, information that has been calculated in the previous iteration. With the
channel and a priori estimations, the decoder is able to determine values of γi (u′, u) for all the
transitions of the trellis.

Forward recursive calculations allow us to determine values of coefficients αi−1(u′) as a
function of coefficients γi (u′, u), and this can be done while the signal is being received.
After receiving the whole sequence Y n

1 , backward recursive calculation can be used to deter-
mine values of coefficients βi (u). Conditional LLRs L(bi/Y n

1 ) can be finally calculated after
determining the values of coefficients αi−1(u′), γi (u′, u) and βi (u).

In this particular example, and as seen in Figure 7.5 for the trellis of the block code Cb(5, 3),
transitions are assigned only one bit. In general, however, and particularly in the case of trellises
for convolutional codes, trellis transitions are usually assigned one or more input bits, and more
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than one output bits, in the format input bits/output bits. In the most common structures of turbo
codes, constituent encoders are RSC encoders of code rate Rc = 1/2, and so the corresponding
assignment for inputs in the trellis transitions is done with just one bit. In this latter case it is
possible to distinguish between the message information and the redundant information, in the
calculation of the coefficients γi (u′, u):

γi (u
′, u) = C e(bi L(bi )/2) e

Lc
2

∑n
k=1 (yik xik )

= C e(bi L(bi )/2) e
Lc

2
yi1xi1 e

Lc
2

∑n
k=2 (yik xik )

= C e(bi L(bi )/2) e
Lc

2
yi1bi e

Lc
2

∑n
k=2 (yik xik )

= C e(bi L(bi )/2) e
Lc

2
yi1bi γi extr(u′,u) (71)

The received bit yi1 in equation (71) corresponds to the transmitted bit xi1 = bi , which is
the message or source bit that appears first in the encoded sequence of each trellis transition,
when systematic convolutional coding is used.

By taking into account the above considerations, and also that in the definition of the LLR
L(bi/Y n

1 ), the numerator is composed of the terms associated with bi = +1, whereas the
denominator is composed of the terms associated with bi = −1, the LLR L(bi/Y n

1 ) can be
written as

L(bi/Y n
1 ) = ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi (u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi (u′, u)βi (u)

)

= ln

(∑
{u′,u}⇒bi =+1 αi−1(u′) e+L(bi )/2 e+Lc yi1/2γi extr(u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′) e−L(bi )/2 e−Lc yi1/2γi extr(u′, u)βi (u)

)
= L(bi ) + Lc yi1 + Le(bi ) (72)

where

Le(bi ) = ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi extr(u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi extr(u′, u)βi (u)

)
(73)

is the so-called extrinsic LLR that is the estimation or soft decision that each decoder com-
municates to the other with respect to the information or message bit bi . This extrinsic LLR
contains the information provided by other bits related to bi that are different for each decoder,
as a consequence of the fact that the same bit bi was interleaved and encoded in a different
manner by each constituent encoder. This means that the bit bi has been encoded by encoder
E1 of the turbo encoder together with a group of bits that is different from the one utilized by
encoder E2.

In each iteration, each constituent decoder communicates to the other decoder the extrinsic
LLR

Le(bi ) = L(bi/Y n
1 ) − L(bi ) − Lc yi1 (74)

which is determined with the estimation of the message bit bi done by the decoder, from which
the a priori information and the channel information used to calculate that estimation are
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subtracted. This extrinsic information contains channel information that comes from an error
event that is different for each received sequence, which in turn depends on which decoder is
determining this information.

7.7 Turbo Decoding

So far the characteristics of the BCJR MAP algorithm usually implemented for the decoding of
turbo codes have been introduced. This decoding algorithm is essentially an iterative decoding
algorithm where each constituent decoder generates soft decisions or estimates of the message
bits that are calculated using the channel information obtained from the sampled values of the
received sequence, and the a priori information that has been provided by the other decoder
in the previous iteration. The information passed is the extrinsic LLR that each decoder has
determined in the previous iteration, which becomes the a priori information of the other
decoder in the present iteration. This iterative procedure of interchanging information is such
that, under certain conditions, estimates of the message bits are closer to the true values as the
number of iterations increases.

A priori information is information that is neither related to the channel information (sampled
values of the received sequence) nor related to the coding information (information provided
by the trellis structure of the code). The first decoder does not have a priori information
for the message bits in the first iteration, and so all the message bits in that circumstance
are equally likely. This means that the a priori LLR L(bi ) for the first decoder in the first
iteration is equal to zero, as seen in Figure 7.3, corresponding to the situation for which
P(bi = +1) = P(bi = −1) = 0.5.

The first decoder takes into account this initial a priori information and the channel infor-
mation, which is essentially provided by the sampled values of the received sequence affected
by the channel factor Lc. This sequence LcY (1)

1 consists of the systematic or message bits,
and of the parity check or redundancy bits. In most practical turbo codes, there is only one
message or systematic bit, and also only one parity check bit, since puncturing is applied to
both outputs of the two constituent encoders to make the whole turbo code be of code rate
k/n = 1/2. The example below shows that the use of puncturing is solved in the decoding
process by filling with zeros those positions that were punctured in the received sequence for
each constituent decoder.

The first decoder utilizes its a priori information and its channel information to determine
the first estimate or LLR L (1)

1 (bi/Y). Here the subscript identifies the decoder that generated
the LLR, and the superscript identifies the order or number of the iteration. In this calcula-
tion the decoder needs to first determine the values of the coefficients γi (u′, u) and then to
calculate the values of the coefficients αi−1(u′) and βi (u), which in turn are necessary for
finally determining the LLR L (1)

1 (bi/Y). After determining these estimates, the decoder has
to communicate to the other decoder the extrinsic information. Extrinsic information is the
information that includes neither the a priori information utilized in the present calculation of
L (1)

1 (bi/Y) nor the channel information of the message bit for which the extrinsic information
is calculated.

Extrinsic information L (1)
e1 (bi ) is calculated by using expression (74). The second decoder

is then able to perform its estimations with the available information. This decoder makes
use of the received sequence LcY (1)

2 containing the samples of interleaved message bits, and
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the samples of the corresponding parity check bits generated over the interleaved message
bits sequence by the encoder E2. If puncturing was applied, the punctured positions of the
encoded sequence are filled with zeros in this sequence. The second decoder takes as its a
priori information the extrinsic information L (1)

e1 (bi ) of each message bit bi , generated in the
current iteration by the first decoder. However, and since interleaving has also been applied to
the message bits, this extrinsic information should be reordered according to the interleaving
rule, before being processed by the second decoder. If the forward operation of the interleaver
is described by a function I {.}, then L (1)

2 (bi ) = I {L (1)
e1 (bi )}. The second decoder takes the

information L (1)
2 (bi ) as its a priori information, and together with the channel information

LcY (1)
2 , it is able to determine the LLR L (1)

2 (bi/Y), and by applying equation (74), it can be

used to finally calculate the extrinsic information L (1)
e2 (bi ) to be communicated to the first

decoder.
Since the extrinsic information L (1)

e2 (bi ) corresponding to the message bit bi is affected by
interleaving, as the second decoder received the interleaved version, de-interleaving takes place
for reordering this information, before transmitting it to the first decoder. The de-interleaving
operation is defined by the operator I −1{.}. The extrinsic information provided by the second
decoder is reordered to be converted into the a priori information of the first decoder, so
that L (2)

1 (bi ) = I −1{L (1)
e2 (bi )}. In this second iteration the first decoder utilizes again the same

available channel information LcY (1)
1 , but now the a priori information is different from zero,

because this information is updated by the extrinsic information provided by the second decoder
in the first iteration. In this way the first decoder produces improved estimates or LLRs of the
message bits L (2)

1 (bi/Y). Figure 7.11 describes this iterative decoding procedure for turbo codes.

Example 7.3: This example shows a turbo code with 1/2-rate RSC constituent encoders, like
those introduced as IIR systematic convolutional encoders in Chapter 6. The block diagram of
one of these RSC encoders is shown in Figure 7.12.

The RSC encoder shown in Figure 7.12 has the trellis section shown in Figure 7.13.

For each constituent encoder of the turbo code, called encoders E1 and E2, the transfer
function is of the form

G(D) =
[

1
1 + D + D2

1 + D2

]
Each RSC code has minimum free distance df = 5. Since, as mentioned earlier, the polar

format is a more convenient way of describing variables in a turbo code, the trellis of Figure 7.13
is depicted in Figure 7.14 with the assignment of inputs and outputs (variables x1 and x2) in
polar format.

Each constituent RSC encoder of the turbo scheme has a trellis of the form as given in
Figure 7.14. For brevity, these encoders are usually described in octal notation, for describing
the connexions of the corresponding convolutional encoder. Thus, for this example, the con-
volutional encoder is described as RSC code (111, 101) or (7, 5). Puncturing is also utilized in
this example to make the turbo code be of code rate Rc = 1/2. If all the outputs of these two
encoders and the corresponding message information were transmitted, the resulting code rate
would be Rc = 1/3. The puncturing rule adopted in this example is such that, alternately, one
of the two redundancy outputs is transmitted, while the other is not transmitted. Message bits
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Figure 7.11 Iterative decoding of turbo codes

are not affected by the puncturing rule, as it is known that this can result in a reduction of the
BER performance of the turbo code. The turbo code scheme is seen in Figure 7.15.

The puncturing rule adopted in this example of a turbo code is such that the systematic output
c(1)

1 is always transmitted, together with one of the two outputs c(2)
1 or c(2)

2 that are alternately
transmitted through the channel. In this case the puncturing matrices for each encoder of the
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Figure 7.12 An RSC IIR systematic convolutional encoder of rate k/n = 1/2
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Figure 7.13 Trellis section of the RSC encoder
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Figure 7.14 Trellis with transition information in polar format
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Puncturing

Figure 7.15 A 1/2 -rate turbo encoder

turbo code are respectively

P p1 =
[

1 1
1 0

]

P p2 =
[

0 0
0 1

]
The interleaver can be a random or block interleaver. There are of course other types of

interleavers, but these two are the most common ones. In the case of Example 7.3, a block
interleaver of size N × N = 4 × 4 is used. Input bit sequences consist of 16 message bits, and
two of these 16 bits are determined so that the code sequence of the first encoder is terminated.
A terminated code sequence in this example is one where the sequence starts at the all-zero
state (00), and ends in the same state.

Generally, the termination of the sequence can be ensured for the first encoder, but not
necessarily for the second encoder, since the interleaving procedure randomizes the input to
this second encoder. The puncturing rule is such that the parity check bits at odd positions of the
first encoder and the parity check bits at even positions of the second encoder are those bits that
are being alternately transmitted together with the corresponding message or systematic bits.

This way there are 14 message bits, and two additional bits that are utilized to terminate the
code sequence generated by the first encoder.

The interleaved sequence is obtained, in a block interleaver, by writing the input bits in
row format, and reading them in column format. Thus, for instance, permutation of the block
interleaver of Table 7.5 is the following:

I {.} =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

)
The inverse operation consists of arranging the interleaved bits in row format, and reading

them in column format, as shown in Table 7.6.
Therefore both the interleaving permutation I {.} and its corresponding inverse operation

are the same. This is true for block interleavers, but it is in general not true for other types of
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Table 7.5 The block

interleaver of size 4 × 4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

interleavers. Thus, if the operator I {.} is applied to the interleaved sequence(
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

)
then the de-interleaved sequence is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
)

In the following, the operation of the encoder and the decoder of the turbo code of this
example is described by using tables. Table 7.7 shows an example of a transmission where the
input or message sequence, the parity check sequence generated by each encoder, the output
sequence and the received sequences for each decoder are tabulated. The transmission is over
an AWGN channel with σ = 1.2.

Table 7.8 shows the estimates or soft decisions L (1)
1 (bi/Y) for the 16 message bits, generated

by the first decoder, which is denoted as Dec1, obtained by applying the BCJR MAP decoding
algorithm.

As seen in Table 7.8, this first estimation of the first decoder contains four errors (marked
in bold) with respect to the message bit sequence actually transmitted.

The extrinsic LLR L (1)
e1 (bi ) is also evaluated in this first iteration by the first decoder, and

these values are listed in Table 7.9. Note that this information should be interleaved before
being passed as a priori information to the second decoder.

The LLRs of Table 7.9 are the a priori values of the second decoder, which after inter-
leaving and together with the corresponding channel information is able to determine the
LLR L (1)

2 (bi/Y) for each bit. The second decoder determines the LLRs L (1)
2 (bi/Y) in the first

iteration, and these values are listed in Table 7.10.
At this stage the output of the second decoder still contains six message bit estimates in

error, as seen in Table 7.10. The extrinsic LLR L (1)
e2 (bi ) for each bit can be calculated by this

second decoder as a function of the LLR L (1)
2 (bi/Y). These values are listed in Table 7.11.

Table 7.6 The block

de-interleaver

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16
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Table 7.7 Input or message sequence, parity check sequence generated by each encoder, output

sequence, and received sequences for each decoder, for the turbo code of Example 7.3

Input Parity Parity Output Received Sequence Sequence

Sequence Cod1 Cod2 Sequence Sequence for Dec1 for Dec2

+1 +1 +1 +1 +1 +0.213 +0.364 +0.213 +0.364 +0.213 0.000

+1 −1 −1 +1 −1 −0.371 −0.351 −0.371 0.000 +0.539 −0.351

−1 +1 +1 −1 +1 +0.139 +1.818 +0.139 +1.818 +0.323 0.000

+1 −1 +1 +1 +1 +0.514 +1.646 +0.514 0.000 −1.701 +1.646

+1 +1 −1 +1 +1 +0.539 +0.388 +0.539 +0.388 −0.371 0.000

−1 −1 −1 −1 −1 −0.422 −2.587 −0.422 0.000 −0.422 −2.587

+1 +1 −1 +1 +1 +1.533 + 0.267 +1.533 +0.267 +2.028 0.000

+1 −1 −1 +1 −1 +1.457 −1.678 +1.457 0.000 −0.175 −1.678

−1 +1 −1 −1 +1 +0.323 +1.103 +0.323 +1.103 +0.139 0.000

+1 −1 −1 +1 −1 +2.028 −0.170 +2.028 0.000 +1.533 −0.170

+1 +1 −1 +1 +1 −0.414 +3.560 −0.414 +3.560 −0.414 0.000

+1 +1 −1 +1 −1 +1.482 −1.003 +1.482 0.000 −0.862 −1.003

−1 +1 −1 −1 +1 −1.701 +0.893 −1.701 +0.893 +0.514 0.000

+1 +1 −1 +1 −1 −0.175 −1.306 −0.175 0.000 +1.457 −1.306

−1 −1 +1 −1 −1 −0.862 −2.049 −0.862 −2.049 +1.482 0.000

−1 −1 −1 −1 −1 −0.918 −0.492 −0.918 0.000 −0.918 −0.492

Table 7.8 LLR estimates performed by the first decoder, in the first iteration

Position of bi L (1)
1 (bi/Y) Estimated Bits Input or Message Bits

1 0.786280 +1 +1

2 −0.547963 −1 +1
3 0.499806 +1 −1
4 0.689170 +1 +1

5 0.641047 +1 +1

6 −0.584477 −1 −1

7 2.082215 +1 +1

8 1.987796 +1 +1

9 0.295812 +1 −1
10 2.808172 +1 +1

11 −0.050543 −1 +1
12 1.831479 +1 +1

13 −1.987958 −1 −1

14 0.165691 +1 +1

15 −2.243063 −1 −1

16 −2.247578 −1 −1
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Table 7.9 Extrinsic LLRs calculated by

the first decoder, in the first iteration

L (1)
e1 (bi )

0.490347

−0.032905

0.306964

−0.025372

−0.107293

0.001045

−0.046297

−0.036260

−0.152547

−0.008128

0.524750

−0.227359

0.374643

0.409279

−1.046018

−0.972807

This extrinsic information is de-interleaved to become the a priori information of the first
decoder, in the second iteration. This decoder determines the LLRs L (2)

1 (bi/Y) based on this a
priori information and the channel information, to give the estimates as listed in Table 7.12.

A comparison of these results with those of the first iteration in Table 7.8 shows that the
estimates have improved, and the number of errors is reduced to 2.

Table 7.10 LLR estimations performed by the second

decoder, in the first iteration

Position of bi L (1)
2 (bi/Y) Estimated Bits Input Bits

1 0.768221 +1 +1

2 0.784769 +1 +1

3 −0.207484 −1 −1

4 −1.748824 −1 +1
5 −0.186654 −1 +1
6 −0.373027 −1 −1

7 2.820018 +1 +1

8 0.309994 +1 +1

9 0.473731 +1 −1
10 2.068479 +1 +1

11 0.012778 +1 +1

12 −2.510279 −1 +1
13 1.363218 +1 −1
14 2.492216 +1 +1

15 2.181300 +1 −1
16 −2.559998 −1 −1
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Table 7.11 Extrinsic LLRs calculated by the

second decoder, in the first iteration

L (1)
e2 (bi )

−0.018059

0.143722

−0.503296

0.239134

0.361309

0.211449

0.011845

0.144303

−0.026075

−0.013736

0.063321

−0.267216

0.674047

0.504420

0.349821

−0.312420

The decoding procedure continues to alternate, with appropriate interleaving and de-
interleaving, and so in each iteration the first decoder communicates to the second decoder
extrinsic information that this second decoder uses as its a priori information, in order to
produce extrinsic information that the first decoder takes as its a priori information in the next
iteration. Extrinsic estimates calculated by the second decoder in the second iteration are listed
in Table 7.13.

Table 7.12 LLR estimations performed by the first

decoder, in the second iteration

Position of bi L (2)
1 (bi/Y ) Estimated Bits Input Bits

1 0.840464 +1 +1

2 −0.031009 −1 +1
3 0.044545 +1 −1
4 1.404301 +1 +1

5 0.846298 +1 +1

6 −0.406661 −1 −1

7 2.170691 +1 +1

8 2.562218 +1 +1

9 −0.343457 −1 −1

10 2.874132 +1 +1

11 0.431024 +1 +1

12 2.316240 +1 +1

13 −1.982660 −1 −1

14 0.550832 +1 +1

15 −2.811396 −1 −1

16 −2.825644 −1 −1
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Table 7.13 Extrinsic LLRs calculated by the

second decoder, in the second iteration

L (2)
e1 (bi )

0.064426

0.173966

−0.588380

0.189984

0.529265

−0.034277

0.052512

0.233310

−0.130874

0.026234

0.111812

−0.308991

0.756415

0.561614

0.380584

−0.336884

This is again converted by properly de-interleaving of the values into the a priori information
of the first decoder in the iteration number 3. The estimates at this stage of the decoding obtained
by the first decoder are given in Table 7.14.

In this third iteration the first decoder has been able to correctly decode the message sequence,
and further iterations will not change this result, although individual bit estimates may continue
to improve. However, the estimates increase magnitude as the number of iterations increases,
and this sometimes brings overflow or underflow problems in practical calculations of these
quantities. This is the reason for the design of logarithmic versions of the iterative decoding
algorithms for turbo codes and other iteratively decoded codes, since logarithmic operations
greatly reduce these calculation difficulties.

7.7.1 Initial Conditions of Coefficients αi−1(u′) and βi (u)

As pointed out in Section 7.5, coefficients αi−1(u′) and βi (u) are obtained by forward and
backward recursions respectively, and so it is necessary to set the initial and contour conditions
for these calculations.

If a code sequence generated by one of the constituent encoders is terminated, usually at
the all-zero state, it is already known at the receiver that the initial state and the final state
of the decoded sequence should be the same state, as was the case in the previous example,
where it was known that the decoded sequence should start and end at the all-zero state. In
the decoder, knowledge of the initial state can be taken into account by setting α0(0) = 1 and
α0(u) = 0, u 
= 0. For i = n, and in the case of a terminated sequence, knowledge of the ending
state can also be taken into account by setting the contour conditions βn(0) = 1 and βn(u) =
0, u 
= 0. The sequence encoded by the second encoder is not usually terminated. Therefore
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Table 7.14 LLR estimations performed by the first

decoder, in the third iteration

Position of bi L (3)
1 (bi/Y) Estimated Bits Input Bits

1 0.981615 +1 +1

2 0.318157 +1 +1

3 −0.289548 −1 −1

4 1.543603 +1 +1

5 0.982070 +1 +1

6 −0.716361 −1 −1

7 2.273836 +1 +1

8 2.660691 +1 +1

9 −0.554936 −1 −1

10 2.969750 +1 +1

11 0.662567 +1 +1

12 2.407738 +1 +1

13 −2.161687 −1 −1

14 0.773773 +1 +1

15 −2.923458 −1 −1

16 −2.934754 −1 −1

this latter case can be taken into account by setting the contour conditions βn(u) = 1 ∀u. This
means that all the ending states in the corresponding trellis are equally likely.

7.8 Construction Methods for Turbo Codes

7.8.1 Interleavers

Interleaving is a widely used technique in digital communication and storage systems. An
interleaver takes a given sequence of symbols and permutes their positions, arranging them in
a different temporal order. The basic goal of an interleaver is to randomize the data sequence.
When used against burst errors, interleavers are designed to convert error patterns that contain
long sequences of serial erroneous data into a more random error pattern, thus distributing
errors among many code vectors [3, 7]. Burst errors are characteristic of some channels, like
the wireless channel, and they also occur in concatenated codes, where an inner decoder
overloaded with errors can pass a burst of errors to the outer decoder.

In general, data interleavers can be classified into block, convolutional, random, and linear
interleavers.

In a block interleaver, data are first written in row format in a permutation matrix, and
then read in column format. A pseudo-random interleaver is a variation of a block interleaver
where data are stored in a register at positions that are determined randomly. Convolutional
interleavers are characterized by a shift of the data, usually applied in a fixed and cumulative
way. Linear interleavers are block interleavers where the data positions are altered by following
a linear law.
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7.8.2 Block Interleavers

As explained previously, block interleavers consist of a matrix array of size MI × NI where data
are usually written in row format and then read in column format. Filling of all the positions
in the matrix is required, and this results in a delay of MI × NI intervals. The operation can be
equivalently performed by first writing data in column format and then by reading data in row
format. The block interleaver introduced in Example 7.3 as part of a turbo coding scheme is
an example of a block interleaver.

A block interleaver of size MI × NI separates the symbols of any burst error pattern of
length less than MI by at least NI symbols [3]. If, for example, a burst of three consec-
utive errors in the following sequence is written by columns into a 4 x 4 de-interleaver(

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
)
, then these errors will be separated by at least four

intervals

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

The de-interleaved sequence in this case is

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

)
which confirms that the errors are separated by four positions.

In a given application of error-control coding, a block interleaver is selected to have a number
of rows that should be ideally larger than the longest burst of errors expected, and in practice at
least as large as the length of most expected bursts. The other parameter of a block interleaver
is the number of columns of the permutation matrix, NI, which is normally selected to be equal
to or larger than the block or decoding length of the code that is used. In this way, a burst of NI

errors will produce only one error per code vector. For error-correcting codes able to correct
any error pattern of size t or less, the value of NI can be set to be larger than the expected burst
length divided by t .

7.8.3 Convolutional Interleavers

A convolutional interleaver is formed with a set of N registers that are multiplexed in such a
way that each register stores L symbols more than the previous register.

The order zero register does not contain delay and it consists of the direct transmission of
the corresponding symbol. The multiplexers commute through the different register outputs
and take out the ‘oldest’ symbol stored in each register, while another symbol is input to
that register at the same time [7]. The operation of convolutional interleaving is shown in
Figure 7.16.

Convolutional interleavers are also known as multiplexed interleavers. The interleaver oper-
ation can be properly described by a permutation rule defined over a set of N integer numbers
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Figure 7.16 A convolutional interleaver

ZN = {0, 1, . . . , N − 1}: (
0 1 · · · N − 1

π{0} π{1} π{N − 1}
)

(75)

Expression (75) corresponds to the permutation rule of a given interleaver if the following
operation performed over the set {π{0}, π{1}, . . . , π{N − 1}}:

{π{0}, π{1}, . . . , π{N − 1}} modulo N

results in the set of integer numbers ZN = {0, 1, . . . , N − 1}.

7.8.4 Random Interleavers

Random interleavers are constructed as block interleavers where the data positions are deter-
mined randomly. A pseudo-random generator can be utilized for constructing these interleavers.
The memory requirement of a random interleaver is of size MI × NI symbols, but and since
there is the practical need of having two interleavers, one for being written (filled) and another
one for being read (emptied), the actual memory requirement is then 2MI × NI symbols.

In a turbo coding scheme, the interleaver plays a very important role. In general, the BER
performance is improved if the length of the interleaver that is part of the scheme is increased.
Either block or random interleavers can be used in a turbo code. In general, it is shown in
[2] that block interleavers perform better than random interleavers if the size MI × NI of
the interleaver is small, and random interleavers perform better than block interleavers when
the size MI × NI of the interleaver is medium or large. The BER performance of a turbo
code with large random interleavers is significantly better than that of a turbo code with block
interleavers of the same size. This can be seen in Figure 7.17. However, the larger the interleaver,
the larger is the delay in the system. Sometimes, and depending on the application, the delay
occasioned by a turbo code, or more precisely, by its interleaver, can be unacceptable for a given
practical application, and so in spite of their impressive BER performance, turbo codes with
large random interleavers cannot be used. This is the case for instance in audio applications,
where sometimes the delay of a turbo code cannot be tolerated. If the delay is acceptable in
a particular application, large random interleavers allow the turbo coding BER performance
to be close to the Shannon limit. It can be concluded that both families of turbo codes, those
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Figure 7.17 BER performance of a turbo code as a function of the type and size of the interleaver

constructed using small block interleavers, and those constructed with considerably larger
random interleavers, can be used in practice, depending on the application. It has also been
shown in [2] that square block interleavers are better than rectangular block interleavers, and
that odd dimension interleavers are also better than even dimension interleavers. Therefore,
the best selection of a block interleaver is obtained by using MI = NI, and by making MI and
NI be odd numbers.
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7.8.5 Linear Interleavers

Another kind of interleaver also utilized in turbo coding schemes is the linear interleaver.
One interesting characteristic of this interleaver is that it has a mathematical expression for
generating the interleaving permutation, which avoids the need to store all the structure of the
interleaver, usually in the form of a big memory allocation, which is the case for random or
block interleavers.

In general, turbo codes have an impressive BER performance in the so-called waterfall
region, which is where the curve of Pbe versus Eb/N0 falls steeply. There is also another
characteristic region of the turbo code BER performance curve, which is known as the error
floor region. This floor region arises because of the degradation in the BER performance
caused by the relatively small minimum distance of a turbo code. This floor region is also a
consequence of the minimum distance of each of the constituent codes [2], so that the smaller
the minimum distance of the constituent codes, the higher is the BER at which the floor effect
starts appearing. In addition, the type and size of the interleaver plays an important role in
determining the minimum distance of the turbo code.

One solution for reducing the floor effect is the use of multiple turbo codes (MTC). These
codes consist of a modification of the classic structure of a turbo scheme, involving usually one
interleaver and two constituent codes. In the general structure of an MTC, there are JMTC > 2
constituent convolutional codes and JMTC − 1 interleavers, and the use of linear interleavers
in an MTC scheme can be very effective.

A linear interleaver of length L I can be described by the following permutation rule:(
0 1 · · · L I − 1

π{0} π{1} π{L I − 1}
)

(76)

where

π (i) = (i pMTC + sMTC) modL I (77)

In this expression pMTC, 0 ≤ pMTC ≤ L I − 1, is a parameter called the angular coefficient, and
sMTC, 0 ≤ sMTC ≤ L I − 1, is a parameter called the linear shift. It is required that the highest
common factor (HCF) between pMTC and L I be HCF (pMTC, L I) = 1. This definition is ex-
tracted from [10], where the authors introduce an analysis of linear interleavers with regard
to the minimum distance of an MTC. A conclusion obtained in that paper is that whereas the
minimum distance of a traditional turbo code, constructed with two constituent convolutional
codes and one interleaver, increases logarithmically with the size of the interleaver, the mini-
mum distance of an MTC exhibits a higher increase that is of order L (JMTC−2)/JMTC

I . Therefore,
linear interleavers appear to be easily constructed interleavers which also provide the turbo
code with enhanced minimum distance properties, comparable to and even better than those of
turbo codes with other types of interleavers, such as dithered relative prime (DRP) interleavers
[11] or S-random interleavers [12].

7.8.6 Code Concatenation Methods

Concatenation of codes [8] is a very useful technique that leads to the construction of very
efficient codes by using two or more constituent codes of relatively small size and complexity.
Thus, a big, powerful code with high BER performance, but of impractical complexity, can
be constructed in an equivalent concatenated form by combining two or more constituent
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Figure 7.18 Serial concatenation of codes

codes to provide the same performance at a lower cost in terms of complexity. The reduced
complexity is important especially for the decoding of these codes, which can take advantage
of the combined structure of a concatenated code. Decoding is done by combining two or more
relatively low complexity decoders, thus effectively decomposing the problem of the decoding
of a big code. If these partial decoders properly share the decoded information, by using an
iterative technique, for example, then there need be no loss in performance.

There are essentially two ways of concatenating codes: traditionally, by using the so-called
serial concatenation, and more recently, by using the parallel concatenated structure of the first
turbo coding schemes. Both concatenation techniques allow the use of iterative decoding.

7.8.6.1 Serial concatenation

Serial concatenation of codes was introduced by David Forney [8]. In a serial concatenated
code a message block of k elements is first encoded by a code C1(n1, k), normally called the
outer code, which generates a code vector of n1 elements that are then encoded by a second
code C2(n2, n1), usually called the inner code, which generates a code vector of n2 elements.
A block diagram of a serial concatenated code is seen in Figure 7.18. The decoding of the
concatenated code operates in two stages: first performing the decoding of the inner code C2

and then the decoding of the outer code C1. The decoding complexity decomposed into these
two decoders is much lower than that of the direct decoding of the whole code equivalent to
the concatenated code, and the error-control efficiency can be the same if the two decoders
interactively share their decoded information, as in turbo decoding.

An example of serial concatenation of codes, where a convolutional interleaver would be
implemented in between the two constituent encoders, is the coding scheme for the compact
disk, already described in Chapter 5.

7.8.6.2 Parallel concatenation

Parallel concatenation of codes was introduced by Berrou, Glavieux and Thitimajshima [1] as
an efficient technique suitable for turbo decoding. Iterative decoding and parallel concatenation
of codes are two of the most relevant concepts introduced in the construction of a turbo code,
which have a strong influence on the impressive BER performance of these codes.

A simple structure for a parallel concatenated encoder is seen in Figure 7.19, which is the
encoder of a turbo code of code rate Rc = 1/3.
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Figure 7.19 A parallel concatenated code

A block or sequence of message bits m is input to the encoder of one of the constituent
codes C1, which in the case of convolutional codes is an FSSM, generating an output sequence
c1. In addition, the same input sequence is first interleaved, and then input to the encoder of
the second code C2, which in the case of convolutional codes is also an FSSM, generating an
output sequence c2. The output of both encoders, c1 and c2, are multiplexed with the input m
to form the output or code sequence c, so that the concatenated code is of code rate Rc = 1/3
if all the multiplexed sequences are of the same length.

Puncturing can be applied to the encoder outputs, as described in Chapter 6, to modify the
code rate of the concatenated code. Both puncturing and parallel concatenation are suitable
techniques for the construction of a turbo code. Under certain conditions, the use of more
than two constituent codes, as in MTC schemes described previously, can lead to better BER
performance.

Example 7.4: Determine the BER performance curve of Pbe versus Eb/N0, for a turbo code
of rate Rc = 1/2 constructed using 1/2-rate RSC (5, 7) encoders, in a parallel concatenation
like that shown in Figure 7.20. Make use of the puncturing procedure of Example 7.3, such that
the systematic bit is always transmitted, together with one of the outputs c(2)

1 or c(2)
2 alternately.

Use a random interleaver of size L I = N × N = 100 × 100 = 10, 000.
The simulation shown in Figure 7.21 was done by transmitting 400 blocks of 10,000 bits of

information each. This curve shows the three main regions of the BER performance of a turbo
code [13]. In the first region, the parameter Eb/N0 is very low, and the code produces only a
degradation of the average bit energy that results in a BER performance that is worse than that
of uncoded transmission (also seen in Figure 7.21). The next region is the so-called waterfall
region where the BER performance of the turbo code is impressively good, falling steeply over
a small middle range of Eb/N0. Finally there is the so-called floor region, characterized by
the flattening of the curve, where the parameter Eb/N0 is relatively high, but the error rate
decreases only slowly.
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Figure 7.20 Turbo encoder with a block or random interleaver
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Figure 7.21 BER performance curve of Pbe versus Eb/N0, for a turbo code of rate Rc = 1/2, 1/2-rate

RSC (5, 7) encoders with puncturing, random interleaver of size L I = N × N = 10, 000, decoded by

the LOG MAP BCJR algorithm with eight iterations, in comparison with uncoded transmission
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7.8.7 Turbo Code Performance as a Function of Size and Type of Interleaver

The BER performance of binary turbo codes is evaluated as a function of the type and size of
the interleaver. Simulations are done for the standard structure, involving the use of two 1/2-rate
RSC (5, 7) encoders in parallel concatenation with puncturing, as in Example 7.3, to control
the code rate, and either a block or a random interleaver, as shown in Figure 7.20. This turbo
scheme is decoded by using the LOG MAP BCJR algorithm with eight iterations. Simulations
are such that, depending on the size of the interleaver, the total number of transmitted bits is
approximately equal to 1.5 Mbits in each case.

7.9 Other Decoding Algorithms for Turbo Codes

The decoding algorithm already introduced in this chapter for decoding turbo codes is the
MAP BCJR algorithm. This algorithm is in general of high complexity, and, on the other hand,
sums and products involved in its calculation can lead to underflow and overflow problems in
practical implementations. These calculations also require considerable amount of memory to
store all the values, until a decoding decision is taken. A logarithmic version of this algorithm
appears to be a solution for many of the above calculation problems that the original version
of the BCJR algorithm faces [2, 9]. The basic idea is that by converting calculations into their
logarithmic form, products convert into sums. The logarithm of a sum of two or more terms
seems to be a new complication, but this operation is solved by using the following equation:

ln(eA + eB) = max(A, B) + ln(1 + e−|A−B|) = max(A, B) + fc(|A − B|) (78)

where fc(|A − B|) is a correction factor that can be either exactly calculated or, in practical
implementations of this algorithm, obtained from a look-up table.

The logarithmic version of the MAP BCJR algorithm greatly reduces the overflow and
underflow effects in its application. This logarithmic version is known as the LOG MAP BCJR
algorithm. As explained above, the correction term in equation (78) can be appropriately taken
from a look-up table. Another and even simpler version of the LOG MAP BCJR algorithm is
the so-called MAX LOG MAP BCJR algorithm, in which the correction term is omitted in the
calculation, and the equation (78) is used by simply evaluating the MAX value of the involved
quantities. A detailed analysis can be found in [2], where it is shown that the MAX LOG
MAP BCJR algorithm and the SOVA (soft-output Viterbi algorithm) are those of minimal
complexity, but with a level of degradation in BER performance with respect to the LOG
MAP BCJR algorithm. Therefore, as usual, decoding complexity is in a trade-off with BER
performance. The degradation in BER performance is around 0.6 dB between the best decoder,
the LOG MAP BCJR decoder, and the worst, the SOVA decoder.

7.10 EXIT Charts for Turbo Codes

Stephan Ten Brink [13, 14] introduced a very useful tool for the analysis of iterative decoders,
which is known as the extrinsic information transfer (EXIT) chart. This tool allows us to analyse
the iteration process in decoders that utilize soft-input–soft-output estimates that are passed
form one decoder to the other. This process of interchanging information is represented in a
graphical chart that depicts the transfer of mutual information between the a priori information
that is input to these decoders and the extrinsic information that is generated by these decoders.
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The EXIT chart emerged as a development of another technique, known as density evolution,
also applied to iteratively decoded coding schemes [28]. Both tools are suitable for the analysis
of iterative decoding, but EXIT charts involve less-complex calculations and appear to be easier
to use [13–20].

EXIT charts analyse the transfer between the a priori information, which in the case of the
LOG MAP BCJR algorithm described in Section 7.6 is the LLR L(bi ) and acts as the input of
the decoder, and the extrinsic information generated by the decoder, which in the case of the
LOG MAP BCJR algorithm is denoted as the LLR Le(bi ). Both the a priori and the extrinsic
information are measured by using the mutual information between these quantities and the
information in the systematic or message bits. These quantities are related by expression (74).
Following the notation introduced by S. Ten Brink [13, 14], expression (74) can be written as

Le(bi ) = L(bi/Y n
1 ) − L(bi ) − Lc yi1 = Ei1 = Di1 − Ai1 − Yi1 (79)

where A identifies the a priori information, E identifies the extrinsic information and Y
represents the channel information. All these quantities are LLRs like those described by
expression (59). The vector E will represent a set of values Ei and the same notation will be
used for the rest of the quantities involved.

7.10.1 Introduction to EXIT Charts

As described in previous sections, the BER performance curve of Pbe versus Eb/N0 of a turbo
code basically shows three main regions:

� A first region at low values of Eb/N0, where iterative decoding performs worse than uncoded
transmission, even for a large number of iterations.� A second region at low to medium values of Eb/N0, where iterative decoding is extremely
effective. This is the waterfall region, where the performance increases, but not linearly, with
an increase in the number of iterations.� A third region at higher value of Eb/N0, the error floor, where decoding converges in few
iterations, but performance increases only slowly as Eb/N0 increases.

The EXIT chart is an especially good tool for the analysis of the waterfall region, and also
illustrates the behaviour of the code in the other two regions. The chart is constructed from
the mutual information between the a priori information and the message bit information on
the one hand, and the mutual information between the extrinsic information and the message
bit information on the other. The a priori information and the extrinsic information are the
input and output measures, respectively that a given LOG MAP decoder utilizes for iterative
decoding.

As mentioned earlier, the performance of iterative decoding is enhanced by increasing the
number of iterations, but the enhancement is not linear with this increase. It is found that the
relative improvement in performance reaches a practical limit beyond which an increase in
the number of iterations does not result in a significant increase in coding gain. This fact is
also evident in the EXIT chart, a tool that can be used to determine the number of iterations
considered sufficient to achieve a given BER performance with a particular turbo coding
scheme.
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Figure 7.22 A priori, extrinsic and channel informations managed by a LOG MAP BCJR decoder

7.10.2 Construction of the EXIT Chart

In this section the EXIT chart of the turbo code of Example 7.4, when decoded using the LOG
MAP BCJR decoder, will be constructed. This turbo code consists of two 1/2-rate RSC (5, 7)
encoders, with a random interleaver of size N × N = 10, 000, and output puncturing applied
to make the code rate be Rc = 1/2. As in Example 7.3, the first encoder generates sequences
terminating in the all-zero state.

Figure 7.22 illustrates the operation of the LOG MAP BCJR decoder for this turbo code at
an intermediate iteration.

The first decoder makes use of the a priori information, together with the channel information
of the systematic and parity check bits generated by the first encoder, to generate a vector D1 of
estimates or soft decisions with components Di = L(bi/Y1). This vector of estimates is used
by the first decoder to produce a vector of extrinsic information, which is properly interleaved
to become the a priori information vector of the current iteration for the second decoder. This
extrinsic information vector

E1 = D1 − A1 − Y1

with components

Ei1 = Le1(bi ) = L1(bi/Y1) − L1(bi ) − Lc yi1 = Di1 − Ai1 − Yi1

is generated by the first decoder as shown in Figure 7.11.
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The second decoder processes its input information, which consists of the channel infor-
mation Y2 formed from the samples of the received message or systematic bits, properly
interleaved, and the samples of the received parity check bits that have been generated by the
second encoder, together with the a priori information A2 received from the first decoder, and
generates an extrinsic information vector

E2 = D2 − A2 − Y2

whose components are

Ei2 = Le2(bi ) = L2(bi/Y2) − L2(bi ) − Lc yi2 = Di2 − Ai2 − Yi2

as indicated in Figure 7.11. This extrinsic information becomes now the a priori information
vector A1 for the first decoder, in the next iteration.

As pointed out earlier, the EXIT chart is a representation of the relationship between two
mutual informations: the mutual information between the a priori information and the message
information, and the mutual information between the extrinsic information and the message
information.

For the AWGN channel, the input and output variables are considered to be random variables
that are related by

Y = X + n

or

y = x + n (80)

where X denotes a random variable that represents the message bits x that can take one of the two
possible values x = +1 or x = −1, Y denotes the random variable that results from the detected
samples of the transmitted information and n denotes the noise random variable. The function
that characterizes this channel is the Gaussian probability density function already introduced
and described by equations (56) and (57). Then equation (58) determines the logarithmic value
of the conditional probability [14]:

L(y/x) = 2
Eb

σ 2
y = 2

σ 2
y (81)

Here the average bit energy is equal to Eb = 1 for the normalized polar format adopted in
this case. This expression allows us to determine the random variable Y that represents the
logarithmic values of the samples of the received signal that are channel observations of the
form

Y = 2

σ 2
y = 2

σ 2
(x + n) (82)

This can also be written as

Y = 2

σ 2
y = μY x + nY (83)
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where

μY = 2/σ 2 (84)

and nY is a random variable with zero mean value and variance

σ 2
Y = 4/σ 2 (85)

The mean value and the variance of this random variable are related by

μY = σ 2
Y /2 (86)

This relationship will be useful in the construction of the EXIT chart. In a turbo code, both
decoders utilize the same decoding algorithm, and often also the same code, and therefore the
same trellis or code information. However, there is in general a slight difference between the
first and the second constituent codes in a turbo scheme, which is that the first code usually
generates terminated sequences, whereas this is not necessarily the case for the sequences
generated by the second constituent code. This difference was the reason for the setting of
slightly different initial or contour conditions in the decoding algorithm used, the LOG MAP
BCJR algorithm, as pointed out in previous sections. However, if the code sequences are long
enough, then the terminated sequence effect can be neglected, so that both decoders operate
in virtually the same way, and it will be sufficient to perform the EXIT chart analysis for only
one of the decoders, for the first decoder, for instance.

7.10.3 Extrinsic Transfer Characteristics of the Constituent Decoders

EXIT charts are generated for the decoding operation of one of the constituent decoders of a
turbo code. Since the mathematical complexity of the LOG MAP BCJR decoding algorithm
is very high, then the analysis for EXIT charts is derived by Monte Carlo simulation over the
parameters of interest.

Monte Carlo simulations of the operation of a LOG MAP BCJR decoder allow us to af-
firm that the values of the a priori information A are independent and uncorrelated from the
observations or sampled values of the channel Y . On the other hand, the probability density
function, or more exactly, the histogram of the values of the extrinsic information E generated
by the LOG MAP BCJR decoder, is a Gaussian histogram (equivalent for the continuous case
to a Gaussian probability density function). It is also true that these values become the a priori
values for the next iteration, so that a similar conclusion can be stated for the probability density
function of the a priori information.

The following figures show non-normalized histograms of the extrinsic information values
generated by Monte Carlo simulation of the operation of a LOG MAP BCJR decoder for
the turbo code of Example 7.4. Figure 7.23 shows the non-normalized histogram of extrinsic
estimates for the input ‘0’, which is proportional to the probability density function denoted
as pE (ξ/x = −1), and Figure 7.24 shows the non-normalized histogram of extrinsic estimates
for the input ‘1’, which is proportional to the probability density function denoted as pE (ξ/x =
+1). Histograms are shown for different values of the parameter Eb/N0 = 0.5, 1.0, 1.5 and
2.0 dB.
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Figures 7.23 and 7.24 show that extrinsic estimates generated by a LOG MAP BCJR decoder
of a turbo code are characterized by non-normalized Gaussian histograms, or extrapolating to
the continuous case, Gaussian probability density functions. If these histograms are depicted
over the same abscissa, it can be seen that an increase of the parameter Eb/N0 produces a
shift to the right of the extrinsic estimates for input ‘1’, and a shift to the left of the extrinsic
estimates for input ‘0’; that is, they start to be more separated from each other.

These Monte Carlo simulations confirm that the extrinsic information E generated by a
LOG MAP BCJR decoder can be modelled as an independent and Gaussian random variable
nE of zero mean value and variance σ 2

E , which is added to the transmitted systematic bit x
multiplied by μE . This is true for both the extrinsic estimates for ‘0’, E (0) and for ‘1’, E (1).
Therefore

E (0) = μE0x + nE0

E (1) = μE1x + nE1 (87)

where

μE0 = σ 2
E0/2

and

μE1 = σ 2
E1/2 (88)

An interesting observation can be made about Figure 7.25, where a detailed view of the
non-normalized histograms of the extrinsic informations for ‘0’ and for ‘1’ obtained by Monte
Carlo simulations over the LOG MAP BCJR decoder of the turbo code of Example 7.4 is
presented. Bold lines describe the extrinsic estimates for ‘1’ and dotted lines describe the
extrinsic estimates for ‘0’. The non-normalized histogram of the highest peak value corresponds
to Eb/N0 = 0.2 dB, and then lower peak value histograms correspond in decreasing order to
Eb/N0 = 0.3, 0.4, 0.5 and 0.6 dB.

The circled line highlights the non-normalized histograms for ‘0’ and for ’1’ when Eb/N0 =
0.6 dB, which is the first case for which the two peak values have different abscissa values.
Now at this value of Eb/N0 = 0.6 dB, the BER performance curve of Figure 7.21, which
relates to the same turbo code, is in the waterfall region that starts at Eb/N0 = 0.5 dB and ends
at about 1.5 dB. For values of Eb/N0 lower than 0.5 dB, the non-normalized histograms for
‘0’ and ‘1’ have their peaks at the same value of the abscissa, as seen in Figure 7.25.

Abscissa values of the peaks of the histograms in Figure 7.25 for low values of Eb/N0

are coincident due to the quantization effects of the histogram representation. This means
anyway that parameters μE0 and μE1 are in this case practically equal. The peak value of
the histogram for ‘0’ is at the abscissa value μE0 that corresponds to the abscissa for the
probability density function for ‘0’, pE (ξ/X = −1), which is of the form pE (ξ/X = −1) =
e−((ξ+μE0x)2)/2σ 2

E0/
√

2πσE0. The peak value of the histogram for ‘1’ is at the abscissa value μE1

that corresponds to the abscissa for the probability density function for ‘1’, pE (ξ/X = +1),
which is of the form pE (ξ/X = +1) = e−((ξ−μE1x)2)/2σ 2

E1/
√

2πσE1. It will be observed by
means of these simulations that when the values of μE0 and μE1 are similar, the code is in the
BER performance region where the coded scheme is worse than uncoded transmission. As the
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Figure 7.25 Non-normalized histogram for extrinsic estimations for the input symbol ‘0’ of a LOG

MAP BCJR decoder of the turbo code of Example 7.4, for Eb/N0 = 0.2, 0.3, 0.4, 0.5 and 0.6 dB

values of μE0 and μE1 start to be significantly different, the turbo code performance moves
into the waterfall region.

These simulations are also useful to show that since the extrinsic information of a given
iteration becomes the a priori information of the following iteration, the a priori estimates A
can also be modelled as a Gaussian random variable n A of zero mean value and variance σ 2

A,
which is added to the value of the transmitted systematic or message bit x multiplied by μA.
Note that the interleaving or de-interleaving applied to convert the extrinsic information of the
current iteration into a priori information of the following iteration changes only the position
of the values of the estimations but not their statistical properties [13, 14]. Therefore,

A = μAx + n A (89)

where

μA = σ 2
A/2 (90)

Thus, the probability density function for this random variable is equal to

pA(ξ/X = x) = e
−

(
(ξ−(σ 2

A/2)x)2
)
/2σ 2

A

√
2πσA

(91)
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The mutual information between the random variable A, which represents the a priori
estimates, and the variable X , which represents the systematic or message bits, is utilized to
determine a measure of the a priori information. This mutual information can be calculated
as [22]

IA = I (X ; A) = 1

2

∑
x=−1,+1

∫ ∞

−∞
pA(ξ/X = x) log2

2pA(ξ/X = x)

pA(ξ/X = −1) + pA(ξ/X = +1)
dξ

(92)
where 0 ≤ IA ≤ 1.

Expression (92) can be combined with expression (91) to give

IA = 1 −
∫ ∞

−∞

e−(ξ−σ 2
A/2)/2σ 2

A√
2πσA

log2(1 + e−ξ ) dξ (93)

The mutual information between the random variable E , which represents the extrinsic
estimates, and the variable X , which represents the systematic or message bits, is also utilized
to determine a measure of the extrinsic information:

IE = I (X ; E) = 1

2

∑
x=−1,+1

∫ ∞

−∞
pE (ξ/X = x) log2

2pE (ξ/X = x)

pE (ξ/X = −1) + pE (ξ/X = +1)
dξ

(94)
where 0 ≤ IE ≤ 1.

The EXIT chart describes, for each value of Eb/N0, the relationship between the mutual
information of the a priori information and the message bit information, IA, and the mutual
information of the extrinsic information and the message bit information, IE . This extrinsic
information transfer function is defined as

IE = Tr(IA, Eb/N0) (95)

The curve can be depicted by calculating, for a given value of IA, and a given value of the
parameter Eb/N0, the corresponding value of IE . This calculation assumes that the a priori
information A given by expressions (89) and (90), with a probability density function described
by (91), has a determined value of IA, obtained for instance by using (93).

This a priori information is applied to the LOG MAP BCJR decoder together with a block
of code vectors affected by noise according to the value of the parameter Eb/N0 for which
the EXIT chart is being calculated. The LOG MAP BCJR decoder generates a set or vector
E of extrinsic estimates characterized by a given value of IE . This value is obtained by
Monte Carlo simulation via the extrinsic estimates E, by operating on the probability density
function pE (ξ/X = x) in expression (94). All the estimates that belong to the systematic
or message bits ‘0’ will form the histogram hist E (ξ/X = −1) that represents the function
pE (ξ/X = −1), and all the estimates that belong to the systematic or message bits ‘1’ will
form the histogram hist E (ξ/X = +1) that represents the function pE (ξ/X = +1). The mutual
information IE = I (X ; E) can be then calculated over these histograms.

This procedure is described as follows for the Example 7.4. A vector of values of a priori
information A of size N × N = 10, 000 is generated by using expressions (89) and (90) for this
example, for a given value of σA. At the same time, an array of code vectors is also generated
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Figure 7.26 Non-normalized histograms of the a priori information A applied to a LOG MAP BCJR

decoder and the resulting non-normalized histograms of the extrinsic information E , for Example 7.4

with a block of message bits of size N × N = 10, 000 that, after being encoded by the code of
code rate Rc = 1/2, becomes a transmitted array of size 2N × N = 20, 000 coded bits, which
are affected by noise according to the value of the parameter Eb/N0, in this case Eb/N0 = 1dB.
The LOG MAP BCJR decoder generates with these inputs a vector of extrinsic information
E of size N × N = 10, 000. Figure 7.26 shows the results of this process, for Eb/N0 = 1dB
and two values of σA, σA = 2 and σA = 4.5, which consist of the non-normalized histograms
of the extrinsic information values and of the applied a priori values.

These histograms allow the calculation of the mutual informations of the EXIT chart. The
mutual information IA can be calculated by using expression (93), evaluated numerically, and
the corresponding value of the mutual information IE is also obtained by numerical integration
over the resulting histograms like those seen in Figure 7.26 for example, and by using expression
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(94) in the form

IE = I (X ; E)

= 1

2

[∫ ∞

−∞
hist E (ξ/X = +1) log2

2hist E (ξ/X = +1)

hist E (ξ/X = −1) + hist E (ξ/X = +1)
dξ

+
∫ ∞

−∞
hist E (ξ/X = −1) log2

2hist E (ξ/X = −1)

hist E (ξ/X = −1) + hist E (ξ/X = +1)
dξ

]
(96)

EXIT chart  Eb/N0= 0 dB

EXIT chart  Eb/N0= –0.75

EXIT chart  Eb/N0= 0.75 dB

EXIT chart  Eb/N0= 1.5 dB

EXIT chart  Eb/N0= 2.25 dB

EXIT chart  Eb/N0= 3 dB
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Figure 7.27 EXIT chart for the turbo code of Example 7.4, and different values of the parameter Eb/N0



OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

268 Essentials of Error-Control Coding

0
0

0.9

0.9

1

1

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

IE;IA

IE;IA

EXIT chart,  Eb/N0= 1 dB

EXIT chart,  Eb/N0= 2 dB

Figure 7.28 Analysis of iterative decoding of turbo codes using EXIT charts

where hist E (ξ/X = +1) and hist E (ξ/X = −1) play the role of pE (ξ/X = +1) and
pE (ξ/X = −1), respectively. Integrals in (96) are solved as discrete sums over the corre-
sponding histograms.

Values of IA and IE can vary slightly depending on the error event simulated. For a fixed
error event and a value of Eb/N0, and for different values of σA, the EXIT chart corresponding
to that value of Eb/N0 can be depicted. The dependence of this EXIT chart on the value of the
parameter Eb/N0 can also be determined. This is seen in Figure 7.27 where the EXIT chart
for the turbo code of Example 7.4 describes the mutual information IE as a function of the
mutual information IA, for different values of the parameter Eb/N0.

Similarly, an EXIT chart can also describe the mutual information IA as a function of the
mutual information IE , which can be useful for understanding the process in which the extrinsic
information of the current iteration becomes the a priori information of the following iteration.
This transfer function can be superposed over the transfer function of IE as a function of IA, to
visualize the process of information interchange in an iterative decoder. This will give a clear
picture of the transference of information.

This is seen in Figure 7.28, where the iterative decoding procedure is clearly represented. The
procedure starts with the first decoder, and at the first iteration, when the a priori information
is equal to zero, resulting in a given value of the extrinsic information and also of the mutual
information IE for a given value of Eb/N0. This extrinsic information becomes the a priori
information of the other decoder, assumed to be exactly the same as the first decoder, in the
same iteration, which now operates with a non-zero a priori information. The symmetry of
the EXIT chart analysis seen in Figure 7.28 is due to the two constituent decoders being the
same, and operating under the same conditions. This process continues such that, for each
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Figure 7.29 Analysis of iterative decoding of the turbo code of Example 7.4 using EXIT charts when

Eb/N0 = 0.5 dB

updated value of IA, there is a corresponding value of IE (vertical transitions between the two
curves) and then this value of IE converts into the following value of IA for the other decoder
(horizontal transitions between the two curves).

The curves in Figure 7.28 are for the iterative decoding of the turbo code of Example 7.4,
using the LOG MAP BCJR algorithm, for two values of the parameter Eb/N0, 1 dB and 2 dB.
It is seen that the number of significant iterations is larger in the case of Eb/N0 = 1dB. The
behaviour described in Figure 7.28 for these two values of the parameter Eb/N0 indicates
that the decoder is passing from the waterfall region to the error floor region of the BER
performance curve of this turbo code, that is, from a region where there are many significant
iterations to another where there are few.

The iterative decoding procedure does not make sense (is ineffective) beyond the point
in which the curve IE = Tr(IA, Eb/N0) and its reversed axes version IA = Tr(IE , Eb/N0)
intersect. This is seen in Figure 7.29 for the turbo code of Example 7.4 and for Eb/N0 = 0.5 dB.

As has been observed in Figures 7.21 and 7.25, the value of the parameter Eb/N0 = 0.5 dB
defines approximately the starting value for the waterfall region, but it is still a value at which
error correction operates worse than uncoded transmission. This is clearly confirmed by the
EXIT chart analysis as shown in Figure 7.29. This value of Eb/N0 is known as the threshold
of the coding scheme under iterative decoding [28].
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Problems

Concatenated Codes

7.1 The output codeword of a block code Cb(6, 3) generated by the generator matrix G

is then input to a convolutional encoder like that seen in Figure P.7.1, operating in
pseudo-block form. This means that after inputting the 6 bits of the codeword of the
block code, additional bits are also input to clear the registers of the convolutional
encoder.
(a) Determine the transpose of the parity check matrix of the block code, the

syndrome-error pattern table, the trellis diagram of the convolutional code
and its minimum free distance.

100101

010110

001011

G =

C (1)

C (2)

Figure P.7.1 Convolutional encoder in a serial concatenation with a block code
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(b) Determine the minimum distance of the concatenated code.
(c) Decode the received sequence r = (01 10 10 00 11 11 00 00) to find possible

errors, and the transmitted sequence.

7.2 The cyclic code Ccyc(3, 1) generated by the polynomial g(X) = 1 + X + X 2 is ap-
plied on a given bit ‘horizontally’ and then a second cyclic code Ccyc(7, 3) gen-
erated by the polynomial g(X) = 1 + X + X 2 + X4 is applied ‘vertically’ over the
codeword in an array code format, as seen in Figure P.7.2.
(a) Determine the rate and error-correction capability of this array code.
(b) What is the relationship between the error-correction capability of this array

code and the individual error-correction capabilities of each cyclic code?

k1

n1

k2

n2

Figure 7.2 An array code

(c) Construct the array code by applying first the cyclic code Ccyc(7, 3) and then
the cyclic code Ccyc(3, 1) in order to compare with the result of item (b).

Turbo Codes

7.3 The simple binary array code (or punctured product code) has codewords with
block length n = 8 and k = 4 information bits in the format as given in Figure
P.7.3.

1 2

3 4

5

6

7 8

Figure 7.3 A punctured array code

Symbols 1, 2, 3 and 4 are the information bits, symbols 5 and 6 are row check
bits and symbols 7 and 8 are column check bits. Thus bits 1, 2, 5 and 3, 4, 6, form
two single-parity check (SPC) row component codewords, and bits 1, 3, 7 and 2,
4, 8 form two SPC column component codewords, where each component code
has the parameters (n, k) = (3, 2).
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This array code can be regarded as a simple form of turbo code. In terms of the
turbo code structure shown in Figure P.7.4, the parallel concatenated component
encoders calculate the row and column parity checks of the array code, and the
permuter alters the order in which the information bits enter the column encoder
from {1, 2, 3, 4} to {1, 3, 2, 4}. The multiplexer then collects the information and
parity bits to form a complete codeword.

Column checks

Row checks

Permuter

Row encoder

Column encoder

Multiplexer 

Information bits

Figure 7.4 An array code viewed as a turbo code

(a) What is the rate and Hamming distance of this code?
(b) A codeword from the code is modulated, transmitted over a soft-decision dis-

crete symmetric memoryless channel like that seen in Figure P.7.5, with the
conditional probabilities described in Table P.7.1, and received as the vector r

= (10300000). Using the turbo (iterative) MAP decoding algorithm, determine
the information bits that were transmitted.

0

1

0

1

2

3

High-reliability
output for 0

High-reliability
output for 1

Low-reliability
output for 0 

Low-reliability
output for 1 

Figure 7.5 A soft-decision discrete symmetric memoryless channel

Table P.7.1 Transition probabilities of the channel of Figure

P.7.5

P(y/x)

x, y 0 1 2 3

0 0.4 0.3 0.2 0.1

1 0.1 0.2 0.3 0.4



OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

274 Essentials of Error-Control Coding

m

3-bit PR
Interleaver

C(1)

C(2)

C(3)

Figure 7.6 A 1/3-rate turbo code

7.4 Determine the minimum free distance of each of the constituent codes of the
1/3-rate turbo code encoded as shown in Figure P.7.6. Then, also determine the
minimum free distance of this turbo code.

The 3-bit pseudo-random interleaver has the permutation rule

⎛⎝1 2 3
3 1 2

⎞⎠.

Table P.7.2 Input message vector

and received sequence, Problem 7.5

Input Sequence Received Sequence

−1 −0.5290 − 0.3144

−1 −0.01479 − 0.1210

−1 −0.1959 + 0.03498

+1 1.6356 − 2.0913

−1 −0.9556 + 1.2332

+1 1.7448 − 0.7383

−1 −0.3742 − 0.1085

−1 −1.2812 − 1.8162

+1 +0.5848 + 0.1905

+1 +0.6745 − 1.1447

−1 −2.6226 − 0.5711

+1 +0.7426 + 1.0968

+1 1.1303 − 1.6990

−1 −0.6537 − 1.6155

+1 2.5879 − 0.5120

−1 −1.3861 − 2.0449
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7.5 For a turbo code with the structure of Figure 7.20, with a block interleaver of size
N × N = 4 × 4 like that used in Example 7.3, constructed using 1/2-rate SRC (5,
7) encoders and a puncturing rule like that utilized in Example 7.3, the input or
message vector is
m = (−1 −1 −1 +1 −1 +1 −1 −1 +1 +1 −1 +1 +1 −1 +1 −1

)
.This input

vector makes the first encoder sequence be terminated.
(a) Determine the input for the second decoder, and the corresponding output of

the turbo code.
(b) After being transmitted and corrupted by AWGN, the received sequence as

tabulated in Table P.7.2 is then applied to the decoder.
Use the MAP BCJR decoding algorithm to determine the decoded sequence.
Estimate the number of iterations needed to arrive at the correct solution in this
particular case.

�
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8
Low-Density Parity Check Codes

In his seminal 1949 paper [1], Shannon stated theoretical bounds on the performance of
error-correction coding. Since that time, many practical error-correction schemes have been
proposed, but none has achieved performances close to the ideal until the turbo coding scheme,
described in Chapter 7, was discovered in 1993 by Berrou, Glavieux and Thitimajshima
[3]. Following this stimulating discovery, 3 years later in 1996 MacKay and Neal [4, 5]
rediscovered a class of codes first introduced by Gallager in 1962 [6], which are now rec-
ognized also to have near-ideal performance. These Gallager codes are the subject of this
chapter.

Gallager codes, now widely known as low-density parity check (LDPC) codes, are linear
block codes that are constructed by designing a sparse parity check matrix H, that is, for
the binary case, a matrix that contains relatively few ‘1’s spread among many ‘0’s. Gallager’s
original paper, apart from various LDPC code constructions, also presented an iterative method
of decoding the codes, which was capable of achieving excellent performance. However, the
complexity of the iterative decoding algorithm was beyond the capabilities of the electronic
processors available then, which is why the codes were forgotten until 1996, even in spite of
an attempt by Tanner in 1981 [7] to revive interest in them.

The first construction method proposed for the design of the sparse parity check matrix H
associated with these codes involves the use of a fixed number of ‘1’s per row and per column
of that matrix. In this case LDPC codes are said to be regular. However, the number of ‘1’s per
row and column can be varied, leading to the so-called irregular LDPC codes.

The bit error rate (BER) performance of LDPC codes is close to that of the turbo codes.
Modified versions of the original scheme, basically implemented as irregular LDPC codes,
and also operating over GF(q), with q = 4, 8 and 16 [8], are shown to perform even better
than the best-known turbo codes, being very close to the Shannon limits. A common factor
between LDPC codes and turbo codes is that the best BER performance of these coding
techniques is obtained when a pseudo-random process is applied to the design of parts of these
coding schemes. Thus, this pseudo-random procedure is present in the design of the random
interleaver of a turbo code, and in the construction of the sparse parity check matrix H of an
LDPC code.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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8.1 Different Systematic Forms of a Block Code

As seen in Chapter 2, a systematic linear block code Cb(n, k) is uniquely specified by its
generator matrix, which in the case of systematic block codes is of the form

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p00 p01 · · · p0,n−k−1 1 0 0 · · · 0
p10 p11 · · · p1,n−k−1 0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

pk−1,0 pk−1,1 · · · pk,n−k−1 0 0 0 · · · 1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Submatrix P k × (n − k)

︸ ︷︷ ︸
Submatrix I k × k

(1)
A shorter notation for this matrix is

G = [P Ik] (2)

where P is the parity submatrix and Ik is the identity submatrix of dimension k × k. In this
form of systematic encoding, the message bits appear at the end of the code vector.

The systematic form of the parity check matrix H of the code Cb generated by the generator
matrix G is

H =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

p00 p10 · · · pk−1,0

p01 p11 · · · pk−1,1

...
...

...
p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1

⎤⎥⎥⎥⎦ = [
In−k PT]

︸ ︷︷ ︸
Submatrix I(n − k) × (n − k)

︸ ︷︷ ︸
Submatrix PT (n − k) × k

(3)

where PT is the transpose of the parity submatrix P . The parity check matrix H is such that
the inner product between a row vector gi of the generator matrix G and a row vector h j of
the parity check matrix H is zero; that is, gi and h j are orthogonal.

Therefore,

G ◦ HT = 0 (4)

and then

c ◦ HT = m ◦ G ◦ HT = 0 (5)

As will be seen in the following section, the design of an LDPC code starts with the con-
struction of the corresponding parity check matrix H, from which an equivalent systematic
parity check matrix is obtained, leading to formulation of the generator matrix G of the code.

The syndrome equation for a block code can be described in terms of the parity check
matrix H, instead of in terms of the transpose of this matrix, HT , as it was done in Chapter 4.
Then the code vector is generated from

c = GT ◦ m (6)
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Since GT is a generator matrix of dimension n × k, and the message vector m is of dimension
k × 1, the result of the operation in (6) is a code vector c of dimension n × 1, which is a column
vector. If a code vector is generated by using expression (6), then the corresponding syndrome
decoding is based on the calculation of a syndrome vector S of the form

S = H ◦ c (7)

which means that every code vector satisfies the condition

H ◦ c = 0 (8)

and that equation (4) is of the form

H ◦ GT = 0 (9)

Since the parity check matrix H is of dimension (n − k) × n, and the generator matrix
GT is of dimension n × k, the syndrome condition is represented by a matrix of dimension
(n − k) × k with all its elements equal to zero. This alternative way of encoding and decoding
a block code indicates that the parity check matrix H contains all the necessary information
to completely describe the block code. On the other hand, expression (9) will be useful for
designing an iterative decoder based on the sum–product algorithm, as will be shown in the
following sections.

8.2 Description of LDPC Codes

LDPC codes are usually designed to be linear and binary block codes. In this case there is a
generator matrix G that converts a message vector m into a code vector c by means of a matrix
multiplication. The corresponding parity check matrix H has the property that it is constructed
with linearly independent row vectors that form the dual subspace of the subspace generated
by the linearly independent row vectors of G. This means that every code vector satisfies the
condition H ◦ c = 0.

LDPC codes are designed by an appropriate construction of the corresponding parity check
matrix H, which is characterized by being sparse. According to the definition given by Gallager,
an LDPC code is denoted as CLDPC(n, s, v), where n is the code length, s is the number of ‘1’s
per column, with in general s ≥ 3, and v is the number of ‘1’s per row. If the rows of the parity
check matrix are linearly independent then the code rate is equal to (v − s)/v [4]. Otherwise
the code rate is

(
n − s ′)/n, where s ′ is the actual dimension of the row subspace generated by

the parity check matrix H. This relationship is obtained by counting the total number of ‘1’s
per row, and then per column, giving that ns = (n − k)v, which by algebraic manipulation
leads to the expression for the code rate. If the LDPC code is irregular, the numbers of ‘1’s per
row v and/or per column s are not fixed, and so the rate of the code is obtained by using the
average values of these parameters.

The code construction proposed by Gallager allowed him to demonstrate the main properties
of these codes: the error probability decreases exponentially with increasing code block length,
and the minimum distance of the code also increases with increasing code length. Tanner [7]
generalized the Gallager construction, defining the so-called bipartite graphs, where equations
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related to the graph are generalized to be independent equations for each graph condition,
instead of being simply stated as parity check conditions.

8.3 Construction of LDPC Codes

8.3.1 Regular LDPC Codes

The construction method proposed by Gallager consists of forming a sparse parity check matrix
H by randomly determining the positions of ‘1’s, with a fixed number of ones ‘1’s per column
and per row, thus creating a regular LDPC code. The condition on the number of ‘1’s per
column and per row can be relaxed, provided that the number of ‘1’s per column s satisfies
s > 2. In this case, the LDPC code is said to be irregular. The conditions to be satisfied in the
construction of the parity check matrix H of a binary regular LDPC code are [9]

� The corresponding parity check matrix H should have a fixed number v of ‘1’s per row.� The corresponding parity check matrix H should have a fixed number s of ‘1’s per column.� The overlapping of ‘1’s per column and per row should be at most equal to one. This is a
necessary condition for avoiding the presence of cycles in the corresponding bipartite graph.� The parameters s and v should be small numbers compared with the code length.

It is however very difficult to satisfy the third condition if the intention is to construct
good LDPC codes, because cycles are unavoidable in the bipartite graph of an efficient LDPC
code [18].

The above construction does not normally lead to the design of a sparse parity check matrix
H of systematic form, and so it is usually necessary to utilize Gaussian elimination to convert
this resulting matrix into a systematic parity check matrix H′ = [In−k PT ], where In−k is
the identity submatrix of dimension (n − k) × (n − k). The initially designed sparse parity
check matrix H is the parity check matrix of the LDPC code, whose generator matrix G is of
the form G = [ P Ik ].

Summarizing the design method for an LDPC code, a sparse parity check matrix H = [A B]
is constructed first, obeying the corresponding construction conditions. In general, this initial
matrix is not in systematic form. Submatrices A and B are sparse. Submatrix A is a square
matrix of dimension (n − k) × (n − k) that is non-singular, and so it has an inverse matrix
A−1. Submatrix B is of dimension (n − k) × k.

The Gaussian elimination method, operating over the binary field, modifies the matrix
H = [A B ] into the form H′ = [ Ik A−1 B ] = [ Ik PT ]. This operation is equivalent to pre-

multiplying H = [ A B ] by A−1. Once the equivalent parity check matrix H′ has been formed,
the corresponding generator matrix G can be constructed by using the submatrices obtained,
to give G = [ P Ik ]. In this way both the generator and the parity check matrices are defined,
and the LDPC code is finally designed. Note that the matrices of interest are H and G.

LDPC codes can be classified, according to the construction method used for generating the
corresponding sparse parity check matrix H, into [11]

� random LDPC codes and� structured LDPC codes
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In general, random LDPC codes show a slightly better BER performance than that of struc-
tured LDPC codes, but these latter codes are much less complex to encode than the former
codes. The construction approach proposed by MacKay [4, 5] is random, while other ap-
proaches include those based on finite field geometries, balanced incomplete block designs
and cyclic or quasi-cyclic structures [10, 11].

8.3.2 Irregular LDPC Codes

As described in previous sections, an irregular LDPC code is one with a sparse parity check
matrix H that has a variable number of ‘1’s per row or per column. In general, the BER
performances of irregular LDPC codes are better than those of regular LDPC codes. There are
several construction methods for irregular LDPC codes [9].

8.3.3 Decoding of LDPC Codes: The Tanner Graph

As described in Section 8.1, an alternative encoding method for block codes operates on the
message vector m by means of the matrix operation c = GT ◦ m, where

GT =
[

PT

Ik

]
to generate the code vector c. The transmitted vector is affected by the channel noise to be
converted in the received vector r = c + n, which is the input information for traditional
decoders of block codes based on calculation of the syndrome vector S = H ◦ r = H ◦ (GT ◦
m + n) = H ◦ n. An alternative decoding algorithm is introduced in this section, also based on
this syndrome calculation. The essence of this decoding algorithm is to determine an estimate
of a vector d that satisfies the condition H ◦ d = 0.

This algorithm is known as the sum–product algorithm, or belief propagation algorithm.
This algorithm determines the a posteriori probability of each message symbol as a function
of the received signal, the code information, expressed in the case of LDPC codes as parity
equations, and the channel characteristics. This algorithm is conveniently described over a
bipartite graph, called the Tanner graph [7], which is defined by the parity equations described in
the corresponding parity check matrix H. The bipartite graph depicts the relationship between
two types of nodes, the symbol nodes d j , which represent the transmitted symbols or bits, and
the parity check nodes hi , which represent the parity equations in which the bits or symbols
are related. Rows of the parity check matrix H identify the symbols involved in each parity
equation, so that a given row describes a parity check equation, and positions filled with ‘1’s
determine the positions of the symbols involved in that parity check equation. In this way,
and for binary LDPC codes, if the entry {i, j} of the sparse parity check matrix H is equal to
one, Hi j = 1, then there exists in the corresponding bipartite graph a connection between the
symbol node d j and the check node hi ; otherwise, the connection is not present.

The state of a given parity check node depends on the values of the symbol nodes actually
connected to it. In general, the parity check nodes connected to a given symbol node are said
to be the children nodes of that symbol node, and the symbol nodes connected to a given parity
check node are said to be the parent nodes of that parity check node.

In the sum–product algorithm, each symbol node d j sends to each of its children parity
check nodes hi an estimate Qx

i j of the probability that the parity check node is in state x , based
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R x
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Q x
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d1 d2 d3 d4 dn

h1 h2 h3 hn−k

Symbol nodes

…

…

Parity check
nodes

Figure 8.1 A Tanner graph, a bipartite graph linking symbol and parity check nodes

on the information provided by the other children nodes of that symbol node. On the other
hand, each parity check node hi sends to each of its parent symbol nodes d j an estimate Rx

i j
of the probability that the parity equation i related to the parity check node hi is satisfied, if
the symbol or parent node is in state x , by taking into account the information provided by all
the other parent symbol nodes connected to this parity check node. This is seen in the Tanner
graph of Figure 8.1.

This is an iterative process of interchanging information between the two types of nodes on
the bipartite graph. The iterative process is halted if after calculating the syndrome condition
over the estimated decoded vector d , at a given iteration, the resulting syndrome vector is the
all-zero vector. If after several successive iterations the syndrome does not become the all-
zero vector, the decoder is halted when it reaches a given predetermined number of iterations.
In both cases, the decoder generates optimally decoded symbols or bits, in the a posteriori
probability sense, but these will not form a code vector if the syndrome is not an all-zero
vector. In this sense the sum–product algorithm performs in the same way as the MAP BCJR
algorithm, defining the best possible estimate of each symbol of the received vector, but not
necessarily defining the best estimate of the whole code vector that was initially transmitted
through the channel. This is a consequence of the sum–product algorithm being a maximum
a posteriori (MAP) decoding algorithm, whereas other decoding algorithms like the Viterbi
algorithm are maximum likelihood (ML) decoding algorithms, which optimize the decoding
of the whole code vector or sequence.

In general, iterative decoding of an LDPC code converges to the true message information
when the corresponding bipartite graph has a tree structure, that is, contains no cycles. However,
the presence of cycles of relatively short lengths in the bipartite graph is virtually unavoidable
when the corresponding LDPC code has good properties, but it is often possible to remove the
shortest cycles (of length 4, 6, 8, etc.), or least reduce their number. The degrading effect of
short-length cycles in the bipartite graph however diminishes as the code length increases and
is strongly reduced if the code length is large (>1000 bits).

8.4 The Sum–Product Algorithm

In the following, the sum–product algorithm is described. The algorithm requires an initial-
ization procedure that consists of determining the values Qx

i j , which are set to the a priori
estimates of the received symbols, denoted as f x

j , the probability that the j th symbol is x . This
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information depends on the channel model utilized. In the case of the additive white Gaussian
noise (AWGN) channel, these probabilities are determined by using a Gaussian probability
density function.

After the initialization, the interchange of information between the symbol and the parity
check nodes begins. The information Rx

i j that each parity check node hi sends to its parent
symbol node d j is the probability that the parity check node hi is satisfied (that is, the parity
check equation related to this node is satisfied) when the parent symbol node being informed
is in state x . The probability of the parity check equation being satisfied is given by

P(hi/d j = x) =
∑

d:d j =x

P(hi/d)P(d/d j = x) (10)

This probability is calculated over all the possible decoded vectors d for which the parity check
equation is satisfied, when the informed parent symbol node is in state x .

For the parity check node hi , the information to be sent to the parent symbol node d j is
calculated for each value of x and is given by

Rx
i j =

∑
d:d j =x

P (hi/d)
∏

k∈N (i)\ j

Qdk
ik (11)

In this expression, N (i) represents the set of indexes of all the parent symbol nodes connected
to the parity check node hi , whereas N (i)\ j represents the same set with the exclusion of the
parent symbol node d j . The probability P

(
hi/d

)
that the parity check equation is satisfied

or not is equal to 1 or 0 respectively, for a given vector d. The symbol node d j sends to its
children parity check nodes hi the estimate Qx

i j , which is the estimate that the node is in state
x according to the information provided by the other children parity check nodes connected to
it. Then, and by using the Bayes rule,

P
(
d j = x/ {hi }i∈M( j)\i

) = P
(
d j = x

)
P

({hi }i∈M( j)\i /d j = x
)

P
({hi }i∈M( j)\i

) (12)

The information that the symbol node d j sends to its children parity check nodes is then

Qx
i j = αi j f x

j

∏
k∈M( j)\i

Rx
k j (13)

where M( j) represents the set of indexes of all the children parity check nodes connected to
the symbol node d j , whereas M( j)\i represents the same set with the exclusion of the children
parity check node hi . The coefficient f x

j is the a priori probability that d j is in state x . The
normalizing constant αi j is set to satisfy the normalizing condition

∑
x Qx

i j = 1.
In this way, the calculation of coefficients Qx

i j allow us to determine the values of the
coefficients Rx

i j that in turn can be used to perform an estimate for each value of the index j .
This is in the end an estimate for each symbol of the received vector, represented in the binary
case by the estimates for the two possible values of the variable x . This estimate is equal to

d̂ j = arg max
x

f x
j

∏
k∈M( j)

Rx
kj (14)
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which constitutes the estimate for the symbol at position j . If the estimated decoded vector d̂
satisfies the syndrome condition H ◦ d̂ = S (in general expressed in the form of H ◦ d̂ = 0),
then the estimated decoded vector d̂ is considered as a valid code vector c = d̂. Otherwise,
and if the decoder reaches the predetermined limiting number of iterations without finding a
suitable code vector that satisfies the above syndrome condition, then each symbol has been
optimally estimated, even though not all the symbols of the code vector actually transmitted
have been correctly decoded.

8.5 Sum–Product Algorithm for LDPC Codes: An Example

In this example, the following fairly sparse parity check matrix H of dimension 8 × 12 cor-
responds to a linear block code Cb(12, 4), of code rate Rc = 1/3, which is an irregular LDPC
code whose systematic generator matrix G is shown below:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 1 1 0 0 0 1
1 0 1 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡⎢⎢⎣
1 1 1 1 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0
1 1 1 0 1 0 0 1 0 0 1 0
1 0 0 1 1 1 0 1 0 0 0 1

⎤⎥⎥⎦
The encoding procedure adopted here is the traditional one, where the code vector c is

generated by multiplying the message vector m by the generator matrix G, c = m ◦ G, so that
the code vector satisfies the syndrome equation c ◦ HT = 0. As explained in Section 8.1, there
is an equivalent encoding method in which these operations are performed using c = GT◦ m
and H ◦ c = 0.

In this example, the message vector is m = (1 0 0 0), which generates the code vector
c = (1 1 1 1 1 0 0 0 1 0 0 0). This code vector is transmitted in polar format as the vector
t = (+1 +1 +1 +1 +1 −1 −1 −1 +1 −1 −1 −1). The transmission is done over an
AWGN channel with a standard deviation of σ = 0.8, and as a result of the transmission
and the sampling procedure, the following received vector is obtained:

r = (+1.3129 +2.6584 +0.7413 +2.1745 +0.5981 −0.8323 −0.3962 −1.7586

+1.4905 +0.4084 −0.9290 +1.0765)

If a hard-decision decoder was utilized, then the decoded vector would be

(1 1 1 1 1 0 0 0 1 1 0 1)

so that the channel produced two errors, at positions 10 and 12.
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As the channel in this transmission is the AWGN channel, coefficients f x
j corresponding to

the received vector can be calculated using the Gaussian probability density function, and thus

f 0
j = 1√

2πσ
e−(r j +1)2

/(2σ 2) (15)

f 1
j = 1√

2πσ
e−(r j −1)2

/(2σ 2) (16)

These estimates require us to know the value of the standard deviation of the noise σ ; that is,
they require knowledge of the channel characteristics. Table 8.1 shows the values obtained in
this particular case.

In Table 8.1 and the following tables, note that values are truncated to four decimal places,
and so iterative calculation done with these truncated values could lead to slight differences in
numerical results throughout the decoding. Thus, for example, the value of f 0

2 is small (1.43 ×
10−5), but appears in the table as zero. The actual calculations were done more accurately
using MATLAB R© Program 5.3.

Values of the coefficients f x
j represent the estimates of the channel information. The co-

efficients involved in the iterative calculation take into account the code structure, described
in the corresponding bipartite graph, which represent the parity check equations. Thus, the
syndrome condition, expressed either as H ◦ c = 0 or as c ◦ HT = 0, means that the multi-
plication of the code vector c (using addition and multiplication over GF(2)) should be equal
to the all-zero vector. Therefore the parity check equations can be written as

c2 ⊕ c4 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 = 0

c1 ⊕ c3 ⊕ c4 ⊕ c9 = 0

c2 ⊕ c5 ⊕ c7 ⊕ c12 = 0

c1 ⊕ c4 ⊕ c10 ⊕ c11 = 0

c3 ⊕ c5 ⊕ c6 ⊕ c10 = 0

c1 ⊕ c3 ⊕ c7 ⊕ c8 ⊕ c11 = 0

c2 ⊕ c6 ⊕ c8 ⊕ c9 ⊕ c10 = 0

c5 ⊕ c9 ⊕ c11 ⊕ c12 = 0

This information can be properly represented by means of the bipartite or Tanner graph, as is
done in Figure 8.2 for the example under analysis.

Each row of the parity check matrix H corresponds to a parity check equation, and thus
to a parity check node. Each bit of the code vector corresponds to a symbol node. Thus, for
instance, the children parity check nodes of the symbol node 2 are the parity check nodes
1, 3 and 7, whereas the parent symbol nodes of the parity check node 1 are the symbol nodes
2, 4, 6, 7, 8 and 12.

The initialization of the sum–product algorithm is done by setting the two coefficients of
the information to be sent from symbol nodes to parity check nodes in the first iteration,
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Figure 8.2 Bipartite graph for the example introduced in Section 8.5

Q0
i j and Q1

i j , to be equal to the estimates that come from the channel information f 0
j and f 1

j ,
respectively. Thus, for this example,

Q0
12 = 0.0000 Q1

12 = 0.0582

Q0
14 = 0.0002 Q1

14 = 0.1697

Q0
16 = 0.4878 Q1

16 = 0.0362

Q0
17 = 0.3751 Q1

17 = 0.1088

Q0
18 = 0.3181 Q1

18 = 0.0013

Q0
1,12 = 0.0172 Q1

1,12 = 0.4964

Q0
21 = 0.0076 Q1

21 = 0.4619

Q0
23 = 0.0467 Q1

23 = 0.4733

Q0
24 = 0.0002 Q1

24 = 0.1697

Q0
29 = 0.0039 Q1

29 = 0.4132

Q0
32 = 0.0000 Q1

32 = 0.0582

Q0
35 = 0.0678 Q1

35 = 0.4396

Q0
37 = 0.3751 Q1

37 = 0.1088

Q0
3,12 = 0.0172 Q1

3,12 = 0.4964

Q0
41 = 0.0076 Q1

41 = 0.4619

Q0
44 = 0.0002 Q1

44 = 0.1697

Q0
4,10 = 0.1059 Q1

4,10 = 0.3794

Q0
4,11 = 0.4967 Q1

4,11 = 0.0272
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Q0
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79 = 0.0039 Q1

79 = 0.4132

Q0
7,10 = 0.1059 Q1

7,10 = 0.3794

Q0
85 = 0.0678 Q1

85 = 0.4396

Q0
89 = 0.0039 Q1

89 = 0.4132

Q0
8,11 = 0.4967 Q1

8,11 = 0.0272

Q0
8,12 = 0.0172 Q1

8,12 = 0.4964

These initialization values allow the calculation of coefficients R0
i j and R1

i j , which will be
iteratively updated during the decoding. These values are the estimates that go from the parity
check nodes to the symbol nodes, in the bipartite graph. Thus, for example, the coefficient
R0

12 is the estimate that the child parity check node 1 sends to its parent symbol node 2, and
is calculated assuming that its corresponding parity check equation, which is c2 ⊕ c4 ⊕ c6 ⊕
c7 ⊕ c8 ⊕ c12 = 0, is satisfied, when the bit or symbol 2 is in state c2 = 0. In this sense, there
are 16 combinations (even number of ‘1’s) of the bits c4, c6, c7, c8 and c12 that can satisfy
such a condition. The probabilities associated to each combination are added to calculate the
estimate R0

12 as

R0
12 = Q0

14 Q0
16 Q0

17 Q0
18 Q0

1,12 + Q0
14 Q0

16 Q0
17 Q1

18 Q1
1,12 + Q0

14 Q0
16 Q1

17 Q0
18 Q1

1,12 + Q0
14 Q0

16 Q1
17 Q1

18 Q0
1,12

+ Q0
14 Q1

16 Q0
17 Q0

18 Q1
1,12 + Q0

14 Q1
16 Q0

17 Q1
18 Q0

1,12 + Q0
14 Q1

16 Q1
17 Q0

18 Q0
1,12 + Q0

14 Q1
16 Q1

17 Q1
18 Q1

1,12

+ Q1
14 Q0

16 Q0
17 Q0

18 Q1
1,12 + Q1

14 Q0
16 Q0

17 Q1
18 Q0

1,12 + Q1
14 Q0

16 Q1
17 Q0

18 Q0
1,12 + Q1

14 Q0
16 Q1

17 Q1
18 Q1

1,12

+ Q1
14 Q1

16 Q0
17 Q0

18 Q0
1,12 + Q1

14 Q1
16 Q0

17 Q1
18 Q1

1,12 + Q1
14 Q1

16 Q1
17 Q0

18 Q1
1,12 + Q1

14 Q1
16 Q1

17 Q1
18 Q0

1,12

= 0.0051

In the same way the coefficient R1
12 is the estimate that the child parity check node 1 sends

to its parent symbol node 2, and is calculated assuming that its corresponding parity check
equation, which is c2 ⊕ c4 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 = 0 , is satisfied, when the bit or symbol 2 is
in state c2 = 1. In this sense, there are again 16 combinations (odd number of ‘1’s) of the bits
c4, c6, c7, c8 and c12 that can satisfy such a condition. The probabilities associated with each
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

Symbol nodes dj

Parity check nodes hi

R0
12, R1

12

Q X
17

Q X
18

Q X
14

Q X
16

Q X
14

Figure 8.3 Calculation of coefficients R0
12 and R1

12

combination are added to calculate the estimate R1
12 as

R1
12 = Q0

14 Q0
16 Q0

17 Q0
18 Q1

1,12 + Q0
14 Q0

16 Q0
17 Q1

18 Q0
1,12 + Q0

14 Q0
16 Q1

17 Q0
18 Q0

1,12 + Q0
14 Q0

16 Q1
17 Q1

18 Q1
1,12

+ Q0
14 Q1

16 Q0
17 Q0

18 Q0
1,12 + Q0

14 Q1
16 Q0

17 Q1
18 Q1

1,12 + Q0
14 Q1

16 Q1
17 Q0

18 Q1
1,12 + Q0

14 Q1
16 Q1

17 Q1
18 Q0

1,12

+ Q1
14 Q0

16 Q0
17 Q0

18 Q0
1,12 + Q1

14 Q0
16 Q0

17 Q1
18 Q1

1,12 + Q1
14 Q0

16 Q1
17 Q0

18 Q1
1,12 + Q1

14 Q0
16 Q1

17 Q1
18 Q0

1,12

+ Q1
14 Q1

16 Q0
17 Q0

18 Q1
1,12 + Q1

14 Q1
16 Q0

17 Q1
18 Q0

1,12 + Q1
14 Q1

16 Q1
17 Q0

18 Q0
1,12 + Q1

14 Q1
16 Q1

17 Q1
18 Q1

1,12

= 0.0020

The process of interchanging information can be seen in Figure 8.3.
The node that is updated or informed does not participate in the calculation of the cor-

responding estimate. This makes the iterative decoding converge to the right solution. The
larger the number of ‘1’s in each row of the parity check matrix, the larger is the number of
combinations of the bits needed to calculate the coefficients R0

i j and R1
i j . Tables 8.2 and 8.3

show the values of these coefficients in the form of a matrix, where index i corresponds to a
row, and index j corresponds to a column. Table 8.2 represents coefficients R0

i j that are the

estimates for the bit or symbol x = 0, and Table 8.3 shows the values of coefficients R1
i j that

are the estimates for the bit or symbol x = 1.
To clarify notation, the value of R0

i j for indexes i = 4, j = 10 is equal to R0
4,10 = 0.0390.

Values of coefficients R0
i j and R1

i j allow us to determine the first estimate of the decoded vector

Table 8.2 Values of coefficients R0
i j , first iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0051 0.0017 0.0002 0.0001 0.0004 0.0006

2 0.0036 0.0009 0.0113 0.0043

3 0.0868 0.0109 0.0024 0.0100

4 0.0325 0.0889 0.0390 0.0088

5 0.0875 0.0925 0.0423 0.1049

6 0.0126 0.0100 0.0348 0.0431 0.0270

7 0.0250 0.0008 0.0016 0.0035 0.0037

8 0.1022 0.1101 0.0179 0.0912
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Table 8.3 Values of coefficients R1
i j , first iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0020 0.0007 0.0006 0.0008 0.0009 0.0002

2 0.0332 0.0324 0.0906 0.0372

3 0.0393 0.0035 0.0128 0.0043

4 0.0107 0.0305 0.0028 0.0299

5 0.0416 0.0398 0.0857 0.0333

6 0.0295 0.0280 0.0060 0.0188 0.0107

7 0.0089 0.0029 0.0046 0.0012 0.0003

8 0.0101 0.0264 0.0908 0.0197

d̂, using expression (14). Thus,

d̂1 =
{

0̂ → f 0
1 × R0

21 × R0
41 × R0

61 =
1̂ → f 1

1 × R1
21 × R1

41 × R1
61 =

1.13 × 10−8

4.85 × 10−6

}
⇒ ′1′

d̂2 =
{

0̂ → f 0
2 × R0

12 × R0
32 × R0

72

1̂ → f 1
2 × R1

12 × R1
32 × R1

72 =
= 1.58 × 10−10

4.06 × 10−8

}
⇒ ′1′

d̂3 =
{

0̂ → f 0
3 × R0

23 × R0
53 × R0

63

1̂ → f 1
3 × R1

23 × R1
53 × R1

63 =
= 3.59 × 10−8

1.785 × 10−5

}
⇒ ′1′

d̂4 =
{

0̂ → f 0
4 × R0

14 × R0
24 × R0

44

1̂ → f 1
4 × R1

14 × R1
24 × R1

44 =
= 3.31 × 10−10

3.19 × 10−7

}
⇒ ′1′

d̂5 =
{

0̂ → f 0
5 × R0

35 × R0
55 × R0

85

1̂ → f 1
5 × R1

35 × R1
55 × R1

85 =
= 7.007 × 10−6

6.20 × 10−7

}
⇒ ′0′

d̂6 =
{

0̂ → f 0
6 × R0

16 × R0
56 × R0

76

1̂ → f 1
6 × R1

16 × R1
56 × R1

76 =
= 3.39 × 10−9

5.34 × 10−9

}
⇒ ′1′

d̂7 =
{

0̂ → f 0
7 × R0

17 × R0
37 × R0

67

1̂ → f 1
7 × R1

17 × R1
37 × R1

67 =
= 2.73 × 10−9

6.37 × 10−9

}
⇒ ′1′

d̂8 =
{

0̂ → f 0
8 × R0

18 × R0
68 × R0

78

1̂ → f 1
8 × R1

18 × R1
68 × R1

78 =
= 7.96 × 10−9

1.03 × 10−10

}
⇒ ′0′

d̂9 =
{

0̂ → f 0
9 × R0

29 × R0
79 × R0

89

1̂ → f 1
9 × R1

29 × R1
79 × R1

89 =
= 6.52 × 10−9

4.98 × 10−7

}
⇒ ′1′

d̂10 =
{

0̂ → f 0
10 × R0

4,10 × R0
5,10 × R0

7,10

1̂ → f 1
10 × R1

4,10 × R1
5,10 × R1

7,10 =
= 1.62 × 10−6

1.17 × 10−8

}
⇒ ′0′

d̂11 =
{

0̂ → f 0
11 × R0

4,11 × R0
6,11 × R0

8,11

1̂ → f 1
11 × R1

4,11 × R1
6,11 × R1

8,11 =
= 2.12 × 10−6

7.91 × 10−7

}
⇒ ′0′

d̂12 =
{

0̂ → f 0
12 × R0

1,12 × R0
3,12 × R0

8,12

1̂ → f 1
12 × R1

1,12 × R1
3,12 × R1

8,12 =
= 9.23 × 10−9

8.87 × 10−9

}
⇒ ′1′
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The first estimate of the decoded vector is

d̂ = (
1 1 1 1 0 1 1 0 1 0 0 0

)
which contains three errors with respect to the transmitted code vector c =
(1 1 1 1 1 0 0 0 1 0 0 0)

The decoding process continues since the syndrome for this estimated vector is not the
all-zero vector.

The next iteration starts with the calculation of the values of coefficients Q0
i j and Q1

i j . These
values are determined using expression (13), where there are normalizing coefficients so that
the condition Q0

i j + Q1
i j = 1 is satisfied. Thus, for example, the value of the coefficient Q0

12

is the estimate that the parent symbol node 2 sends to child parity check node 1, calculated
by forming the product of the estimates R0

k2 of all its children parity check nodes, excepting
that of child node 1, which is the node that is being updated. In the same way, the value of the
coefficient Q1

12 is the estimate that the parent symbol node 2 sends to child parity check node
1, calculated by forming the product of the estimates R1

k2 of all its children parity check nodes,
excepting that of child node 1, which is the node that is being updated. In this notation, k is the
index of the child node, that is, the index of each of the parity check nodes that are connected
in the bipartite graph to the parent node 2. The calculated coefficients are normalized by using
the normalizing constants.

The values of coefficients Q0
12 and Q1

12, in this example, are calculated as follows:

Q0
12 = α12 f 0

2 R0
32 R0

72

Q1
12 = α12 f 1

2 R1
32 R1

72

where

α12 = 1

f 0
2 R0

32 R0
72 + f 1

2 R1
32 R1

72

Figure 8.4 shows the flow of information and nodes participating in the calculation of
coefficients Q0

12 and Q1
12 for this example.

Symbol nodes dj

Parity check nodes hi

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

R x
32

R x
72Q x

12

Figure 8.4 Calculation of the values of coefficients Q0
12 and Q1

12
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Table 8.4 Values of the coefficients Q0
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0015 0.0004 0.6601 0.7898 0.9950 0.2731

2 0.0209 0.0691 0.0083 0.1014

3 0.0018 0.7843 0.6946 0.3068

4 0.0008 0.0004 0.9091 0.9008

5 0.0010 0.8294 0.5620 0.9777

6 0.0054 0.0056 0.0688 0.9710 0.5147

7 0.0014 0.6847 0.9954 0.0046 0.9239

8 0.5273 0.0031 0.9316 0.1838

Tables 8.4 and 8.5 show the calculated values of coefficients Q0
i j and Q1

i j , respectively.

In the second iteration, the updated values of coefficients Q0
i j and Q1

i j allow us to determine

the updated values of coefficients R0
i j and R1

i j . This iteration is different from the first iteration

in the sense that coefficients Q0
i j and Q1

i j now contain updated information, rather than simply

channel information. In this second iteration the calculation of values of coefficients R0
i j and

R1
i j leads to a new estimated decoded vector d̂ , which again does not satisfy the syndrome

condition, and so the decoding process continues.
In the example under analysis, the decoder is able to find the correct code vector after three

iterations, and is also able to correct the two errors that the hard-decision received vector
contained. In this particular case the errors are in the message part of the code vector, that is, in
two of the four bits that are finally taken as the message bits, after truncating the redundancy.
The iterative decoding algorithm is able to correct these two errors. Tables 8.6 and 8.7 illustrate
the evolution of the decoding algorithm by presenting the values of the coefficients involved,
until arriving at the final solution. These tables show values that are truncated to four decimal
places, though actual values were determined in a more accurate way by using MATLAB R©

Program 5.3.
The updated values of coefficients R0

i j and R1
i j allow us to determine a new estimated decoded

vector. This second estimate of the decoded vector is shown in Table 8.8.

Table 8.5 Values of the coefficients Q1
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.9985 0.9996 0.3399 0.2102 0.0050 0.7269

2 0.9791 0.9309 0.9917 0.8986

3 0.9982 0.2157 0.3054 0.6932

4 0.9992 0.9996 0.0909 0.0992

5 0.9990 0.1706 0.4380 0.0223

6 0.9946 0.9944 0.9312 0.0290 0.4853

7 0.9986 0.3153 0.0046 0.9954 0.0761

8 0.4727 0.9969 0.0684 0.8162
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Table 8.6 Values of coefficients R0
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.5416 0.5415 0.3704 0.4284 0.4581 0.5915

2 0.1622 0.1244 0.1709 0.0940

3 0.4572 0.5750 0.6095 0.3897

4 0.1723 0.1726 0.8999 0.9081

5 0.5390 0.4409 0.1859 0.4593

6 0.5118 0.5118 0.5135 0.4876 0.1027

7 0.3463 0.9150 0.6547 0.3453 0.6808

8 0.7713 0.4851 0.5172 0.4766

According to the values shown in Table 8.8, the estimated decoded vector in the second
iteration is d̂ = (

1 1 1 1 1 0 0 0 1 0 0 1
)
, which contains only one error, in the last bit, with

respect to the true code vector. This estimated decoded vector produces a non-zero syndrome
so that the decoder proceeds to the third iteration. Again, values of coefficients Q0

i j and Q1
i j

are updated, and they are shown in Tables 8.9 and 8.10.
The updated values of coefficients R0

i j and R1
i j of this third iteration are shown in Tables

8.11 and 8.12.
With these values, a new estimate of the decoded vector is formed, as given in Table 8.13.
According to the values shown in Table 8.8, the estimated decoded vector after the third

iteration is d̂ = c = (
1 1 1 1 1 0 0 0 1 0 0 0

)
, whose syndrome vector is the all-zero vector,

and so the decoder decides that this is a code vector and the decoded message vector is

m = (
1 0 0 0

)
Thus, the iterative decoding algorithm was able to correctly decode the received vector of

12 bits of this example. The minimum Hamming distance of the block code of this example
is dmin = 4, as determined by inspection of the minimum weight among all the non-zero code
vectors, or equivalently, by noting that there are four columns (columns 3, 4, 8, and 10 for
instance) in the corresponding parity check matrix H that when added result in the all-zero
vector. This allows us to say that this code is able, using hard-decision decoding, to correct

Table 8.7 Values of coefficients R1
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.4584 0.4585 0.6296 0.5716 0.5419 0.4085

2 0.8378 0.8756 0.8291 0.9060

3 0.5428 0.4250 0.3905 0.6103

4 0.8277 0.8274 0.1001 0.0919

5 0.4610 0.5591 0.8141 0.5407

6 0.4882 0.4882 0.4865 0.5124 0.8973

7 0.6537 0.0850 0.3453 0.6547 0.3192

8 0.2287 0.5149 0.4828 0.5234
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Table 8.9 Values of coefficients Q0
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0001 0.0000 0.9707 0.8503 0.9977 0.0197

2 0.0036 0.1078 0.0003 0.0047

3 0.0002 0.2909 0.7318 0.0436

4 0.0033 0.0003 0.3358 0.6910

5 0.0145 0.4130 0.9884 0.8426

6 0.0007 0.0161 0.8013 0.9974 0.9948

7 0.0002 0.6442 0.9949 0.0009 0.6807

8 0.1413 0.0005 0.9538 0.0310

Table 8.10 Values of coefficients Q1
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.9999 1.0000 0.0293 0.1497 0.0023 0.9803

2 0.9964 0.8922 0.9997 0.9953

3 0.9998 0.7091 0.2682 0.9564

4 0.9967 0.9997 0.6642 0.3090

5 0.9855 0.5870 0.0116 0.1574

6 0.9993 0.9839 0.1987 0.0026 0.0052

7 0.9998 0.3558 0.0051 0.9991 0.3193

8 0.8587 0.9995 0.0462 0.9690

Table 8.11 Values of coefficients R0
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.8153 0.8153 0.1651 0.0501 0.1833 0.8282

2 0.1117 0.0085 0.1143 0.1109

3 0.5885 0.7115 0.3092 0.5969

4 0.5627 0.5623 0.6896 0.3370

5 0.4418 0.1750 0.5579 0.5825

6 0.2129 0.2037 0.9758 0.7882 0.7897

7 0.4485 0.6784 0.5520 0.4485 0.6424

8 0.9252 0.8053 0.1639 0.8252

Table 8.12 Values of coefficients R1
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.1847 0.1847 0.8349 0.9499 0.8167 0.1718

2 0.8883 0.9915 0.8857 0.8891

3 0.4115 0.2885 0.6908 0.4031

4 0.4373 0.4377 0.3104 0.6630

5 0.5582 0.8250 0.4421 0.4175

6 0.7871 0.7963 0.0242 0.2118 0.2103

7 0.5515 0.3216 0.4480 0.5515 0.3576

8 0.0748 0.1947 0.8361 0.1748
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any error pattern of size t = 1, with a residual error-correction capability that can be used to
correct some error patterns of size larger than t = 1. Using a soft-decision decoding algorithm,
the code can correct a double error pattern, as the above example confirms. In fact, using the
sum–product decoding algorithm, the code is capable of correcting almost all possible double
error patterns.

However, the code rate in this example is Rc = 1/3, and according to a rather simple estimate,
the product Rc(t + 1) gives an indication if the error-correction capability of a block code is
efficient or not, when it is compared with uncoded transmission. A given block code performs
better than uncoded transmission if the product Rc(t + 1) satisfies the condition Rc(t + 1) > 1.
In this example, the product is equal to (1/3) × 2 = 0.667, so that the use of this simple code
would not produce a particular advantage with respect to uncoded transmission. This is not
surprising, because the example was introduced only for the purpose of explaining in some
detail how the sum–product algorithm operates. In addition, it is rather difficult to design
good, small, sparse parity check matrices with at least three ‘1’s per column, and a rather small
number of ‘1’s per row, as required in the classic construction of an LDPC or Gallager code.
Apart from this constraint, the predicted poor overall performance of this simple code is due to
the fact that its Tanner graph (see Figure 8.2) contains several cycles of length 4 (the shortest
possible cycle length). As has already been mentioned, this degrades the performance of an
iterative soft-decision decoding algorithm like the sum–product algorithm. Cycles of length 4
are avoided if the corresponding parity check matrix H does not contain rectangular patterns
of ‘1’s, as seen in the following matrix, which is another example of a parity check matrix H
with length 4 cycles in its corresponding bipartite graph [13]:

H =

⎡⎢⎢⎢⎢⎣
1 1 0 1 0 1 1 1
1 0 1 1 1 1 0 1
0 1 1 0 0 0 1 0
1 1 0 0 1 1 0 1
0 0 1 1 1 0 1 0

⎤⎥⎥⎥⎥⎦
Similar rectangular patterns are of course also seen in the H matrix of the previously analysed

code, corresponding to the bipartite graph of Figure 8.2.
Figure 8.5 shows the BER performance of the irregular LDPC code Cb(60, 30) with rate

Rc = 1/2, where the effect of varying the maximum or predetermined number of iterations of
the sum–product decoding algorithm is clear.

LDPC codes of course behave in agreement with Shannon’s predictions, and so they perform
better for larger code lengths n. In the case of large-code length LDPC codes and for a sufficient
number of iterations, the BER performance of LDPC codes is close to the Shannon limits.

8.6 Simplifications of the Sum–Product Algorithm

The aim of the sum–product decoding algorithm is to find a decoded vector d, which is an
estimate of the code vector actually transmitted, c, able to satisfy the syndrome condition:

H ◦ d = 0
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Figure 8.5 BER performance of the irregular LDPC code Cb(60, 30) of rate Rc = 1/2, as a function

of the number of iterations

As described in Section 8.3.3, in the sum–product algorithm, each symbol node d j sends
to each child parity check node hi the estimate Qx

i j , based on the information provided by
the other children parity check nodes that the corresponding parity check node is in state
x . On the other hand, each parity check node hi sends to each parent symbol node d j the
estimate Rx

i j , calculated with the information provided by the other symbol nodes, indi-
cating that the corresponding parity check equation i is satisfied if the symbol node is in
state x .

The channel information can be determined by using the following expression:

f 1
j = 1

1 + e− 2Ay j

σ 2

(17)

so that

f 0
j = 1 − f 1

j (18)

where y j is the channel output at time instant j , and bits are transmitted in polar format with
amplitudes ± A. In general, in this text, the normalized polar format ±1 is utilized.

As has been seen in the example of Section 8.5, values of coefficients R0
i j and R1

i j are

determined as a function of the values of coefficients Q0
i j and Q1

i j by taking into account all
the combinations of code bits that satisfy the parity check equation related to that calculation.
However, Mackay and Neal introduced in their paper [4] a calculation method that avoids
having to take into account all these possibilities of the parity check equation in the calculation
of values of coefficients R0

i j and R1
i j .
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The initialization of this modified version of the sum–product algorithm is the same as
that used in the traditional form of the algorithm, as performed for the example shown in
Section 8.5.

Q0
i j = f 0

j and Q1
i j = f 1

j (19)

The modified version carries out the iterative calculation by implementing two steps, the
horizontal and the vertical steps, according to the form in which the values are taken from the
corresponding parity check matrix H. The quantity δQi j is calculated as

δQi j = Q0
i j − Q1

i j (20)

and the quantity δRi j is also defined for a pair of values or nodes i and j as

δ Ri j =
∏

j ′ ∈ N (i)\ j

δ Qi j ′ (21)

Remember that in these expressions N (i) represents the set of indexes of all the parent symbol
nodes connected to the parity check node hi , whereas N (i)\ j represents the same set with the
exclusion of the parent symbol node d j .

Coefficients R0
i j and R1

i j are then calculated by performing

R0
i j = 1/2

(
1 + δ Ri j

)
(22)

and

R1
i j = 1/2

(
1 − δRi j

)
(23)

The coefficients Q0
i j and Q1

i j are updated in the vertical step. They are determined for every
pair of nodes i, j , and for every possible value of x , which in the binary case are x = 0 or
x = 1, as follows:

Qx
i j = αi j f x

j

∏
i ′ ∈ M( j)\i

Rx
i ′ j (24)

where M( j) represents the set of indexes of all the children parity check nodes connected to
the symbol node d j , whereas M( j)\i represents the same set with the exclusion of the children
parity check node hi .

The coefficient f x
j is the a priori probability that the symbol node d j is in state x . Constant

αi j is selected so that Q0
i j + Q1

i j = 1.
The estimate of the decoded vector for the current iteration requires the calculation of the

coefficients or a posteriori probabilities Q0
j and Q1

j , which are equal to

Qx
j = α j f x

j

∏
i ∈ M( j)

Rx
i j (25)

where, once again, constant α j is selected so that Q0
j + Q1

j = 1.

The estimate of the decoded vector d̂ can be finally obtained by calculating

�

d j = max
(
Qx

j

)
(26)
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which means that

if Q0
j > Q1

j then
�

d j = 0, else
�

d j = 1 (27)

Example 8.1: Apply the Mackay–Neal simplified sum–product decoding algorithm to the
example of Section 8.5, in order to see the equivalence of this method with respect to the
traditional sum–product decoding algorithm.

The Mackay–Neal simplified sum–product decoding algorithm avoids having to take into
account all the combinations or possibilities that the corresponding parity check equation,
associated with the calculation of the involved coefficient, is satisfied. The initialization pro-
cedure is the same as that of the traditional algorithm, and it is the same for this example as
that used in Section 8.5. This means that, according to the values of Table 8.1, the initialization
sets Q0

i j = f 0
j and Q1

i j = f 1
j .

The modified method is applied by forming, with the corresponding values, the following
calculation matrices:

HQ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Q0
12 0 Q0

14 0 Q0
16 Q0

17 Q0
18 0 0 0 Q0

1,12

Q0
21 0 Q0

23 Q0
24 0 0 0 0 Q0

29 0 0 0

0 Q0
32 0 0 Q0

35 0 Q0
37 0 0 0 0 Q0

3,12

Q0
41 0 0 Q0

44 0 0 0 0 0 Q0
4,10 Q0

4,11 0

0 0 Q0
53 0 Q0

55 Q0
56 0 0 0 Q0

5,10 0 0

Q0
61 0 Q0

63 0 0 0 Q0
67 Q0

68 0 0 Q0
6,11 0

0 Q0
72 0 0 0 Q0

76 0 Q0
78 Q0

79 Q0
7,10 0 0

0 0 0 0 Q0
85 0 0 0 Q0

89 0 Q0
8,11 Q0

8,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

HQ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Q1
12 0 Q1

14 0 Q1
16 Q1

17 Q1
18 0 0 0 Q1

1,12

Q1
21 0 Q1

23 Q1
24 0 0 0 0 Q1

29 0 0 0

0 Q1
32 0 0 Q1

35 0 Q1
37 0 0 0 0 Q1

3,12

Q1
41 0 0 Q1

44 0 0 0 0 0 Q1
4,10 Q1

4,11 0

0 0 Q1
53 0 Q1

55 Q1
56 0 0 0 Q1

5,10 0 0

Q1
61 0 Q1

63 0 0 0 Q1
67 Q1

68 0 0 Q1
6,11 0

0 Q1
72 0 0 0 Q1

76 0 Q1
78 Q1

79 Q1
7,10 0 0

0 0 0 0 Q1
85 0 0 0 Q1

89 0 Q1
8,11 Q1

8,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These matrices can be subtracted to form the difference matrix

HδQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 δQ12 0 δQ14 0 δQ16 δQ17 δQ18 0 0 0 δQ1,12

δQ21 0 δQ23 δQ24 0 0 0 0 δQ29 0 0 0

0 δQ32 0 0 δQ35 0 δQ37 0 0 0 0 δQ3,12

δQ41 0 0 δQ44 0 0 0 0 0 δQ4,10 δQ4,11 0

0 0 δQ53 0 δQ55 δQ56 0 0 0 δQ5,10 0 0

δQ61 0 δQ63 0 0 0 δQ67 δQ68 0 0 δQ6,11 0

0 δQ72 0 0 0 δQ76 0 δQ78 δQ79 δQ7,10 0 0

0 0 0 0 δQ85 0 0 0 δQ89 0 δQ8,11 δQ8,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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An example of the calculation of the parity check equation of the second row of the corre-
sponding difference matrix HδQ is done here to illustrate the equivalence of this method with
respect to the traditional one. Thus, for instance, the value of the coefficient R0

21 is calculated
as

δR21 = δQ23 δQ24 δQ29

= (
Q0

23 − Q1
23

) (
Q0

24 − Q1
24

) (
Q0

29 − Q1
29

)
= (

Q0
23 Q0

24 − Q0
23 Q1

24 − Q1
23 Q0

24 + Q1
23 Q1

24

) (
Q0

29 − Q1
29

)
= Q0

23 Q0
24 Q0

29 − Q0
23 Q1

24 Q0
29 − Q1

23 Q0
24 Q0

29 + Q1
23 Q1

24 Q0
29 − Q0

23 Q0
24 Q1

29

+ Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23 Q1

24 Q1
29

By taking into account that

Q0
24 = 1 − Q1

24 and Q0
29 = 1 − Q1

29

then

R0
21 = (1/2) (1 + δR21)

= (1/2)
(
1 + Q0

23 Q0
24 Q0

29 − Q0
23 Q1

24 Q0
29 − Q1

23 Q0
24 Q0

29 + Q1
23 Q1

24 Q0
29 − Q0

23 Q0
24 Q1

29

+Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23 Q1

24 Q1
29

)
= (1/2)

[
1 + Q0

23 Q0
24 Q0

29 − Q0
23

(
1 − Q0

24

)
Q0

29 − Q1
23

(
1 − Q1

24

)
Q0

29 + Q1
23 Q1

24 Q0
29

−Q0
23

(
1 − Q1

24

)
Q1

29 + Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23

(
1 − Q0

24

)
Q1

29

]
= (1/2)

[
1 + Q0

23 Q0
24 Q0

29 − Q0
23 Q0

29 + Q0
23 Q0

24 Q0
29 − Q1

23 Q0
29 + Q1

23 Q1
24 Q0

29

+ Q1
23 Q1

24 Q0
29 − Q0

23 Q1
29 + Q0

23 Q1
24 Q1

29 + Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23 Q1

29

+ Q1
23 Q0

24 Q1
29

]
= (1/2)

[
2Q0

23 Q0
24 Q0

29 + 2Q1
23 Q1

24 Q0
29 + 2Q0

23 Q1
24 Q1

29 + 2Q1
23 Q0

24 Q1
29

+ 1 − Q0
23 Q0

29 − Q1
23 Q0

29 − Q0
23 Q1

29 − Q1
23 Q1

29

]
= (1/2)

[
2Q0

23 Q0
24 Q0

29 + 2Q1
23 Q1

24 Q0
29 + 2Q0

23 Q1
24 Q1

29 + 2Q1
23 Q0

24 Q1
29

+1 − Q0
23

(
Q0

29 + Q1
29

) − Q1
23

(
Q0

29 + Q1
29

)]
= Q0

23 Q0
24 Q0

29 + Q1
23 Q1

24 Q0
29 + Q0

23 Q1
24 Q1

29 + Q1
23 Q0

24 Q1
29

Similarly, the calculation of the coefficient R1
21 gives

R1
21 = (1/2) (1 − δR21) = Q0

23 Q1
24 Q0

29 + Q1
23 Q0

24 Q0
29 + Q0

23 Q0
24 Q1

29 + Q1
23 Q1

24 Q1
29

This example illustrates the equivalence of these two methods.
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8.7 A Logarithmic LDPC Decoder

Another important simplification of the sum–product algorithm makes use of logarithmic cal-
culation, in order to convert products or quotients into additions or subtractions. However, an
additional complication arises, because there is a need to calculate the logarithm of a sum of
terms in this algorithm. The logarithmic decoder is constructed on the basis of the MacKay–
Neal simplified sum–product decoding algorithm, and it is essentially a logarithmic refor-
mulation of the original algorithm. The decoding complexity is thereby drastically reduced.
Here, we recognize the significant contribution of Leonardo Arnone to the development of the
method presented in this section [12].

A useful expression for the development of this logarithmic algorithm is given for a number
z ≤ 1, which has an equivalent way of being expressed:

z = e−|Lz| → |Lz| = |ln (z) | (28)

The following expressions will also be useful in calculating the logarithm of a sum or a
difference:

ln(em + en) = max(m, n) + ln(1 + e−|m−n|) (29)

ln(em − en) = max(m, n) + ln(1 − e−|m−n|), m > n (30)

The logarithmic decoder is basically implemented by performing the same steps as the
MacKay–Neal simplified sum–product decoding algorithm, introduced in Section 8.6.

8.7.1 Initialization

In the initialization of the decoding algorithm, the values of coefficients Qx
i j are set to be

equal to the a priori probabilities f x
j of the symbols. Coefficient f x

j is the probability that

the j th symbol is equal to x . Thus, coefficients Q0
i j and Q1

i j are set to be equal to f 0
j and f 1

j ,
respectively. Since f x

j is a probability, it is a number less than or equal to 1, and so

f x
j = e

−
∣∣∣L f x

j

∣∣∣ → ∣∣L f x
j

∣∣ = ∣∣ln (
f x

j

) ∣∣ (31)

and

Qx
i j = e

−
∣∣∣L Qx

i j

∣∣∣ → ∣∣L Qx
i j

∣∣ = ∣∣ln (
Qx

i j

) ∣∣ (32)

8.7.2 Horizontal Step

Equation (20) can be written as

e−|LδQi j | = e
−

∣∣∣L Q0
i j

∣∣∣ − e
−

∣∣∣L Q1
i j

∣∣∣
(33)
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As this quantity is signed, it is better to rewrite it as

δQi j = (−1)si j

∣∣∣e−|LδQi j |∣∣∣ = (−1)si j

∣∣∣∣e−
∣∣∣L Q0

i j

∣∣∣ − e
−

∣∣∣L Q1
i j

∣∣∣∣∣∣∣ (34)

where

if
∣∣L Q0

i j

∣∣ ≤ ∣∣L Q1
i j

∣∣ then si j = 0

or

if
∣∣L Q0

i j

∣∣ >
∣∣L Q1

i j

∣∣ then si j = 1 (35)

Using expression (30),∣∣ln (∣∣e−|m| − e−|n|∣∣)∣∣ = min(|m|, |n|) + | ln
(
1 − e−||m|−|n||) |

then |LδQi j | can be written as

∣∣LδQi j

∣∣ = min
(∣∣L Q0

i j

∣∣ , ∣∣L Q1
i j

∣∣) +
∣∣∣∣ln (

1 − e
−

∣∣∣∣∣∣L Q0
i j

∣∣∣−∣∣∣L Q1
i j

∣∣∣∣∣∣)∣∣∣∣ (36)

or ∣∣LδQi j

∣∣ = min
(∣∣L Q0

i j

∣∣ , ∣∣L Q1
i j

∣∣) + f−
(∣∣∣∣L Q0

i j

∣∣ − ∣∣L Q1
i j

∣∣∣∣) (37)

where f− is a look-up table with entries |L Q0
i j | and |L Q1

i j |.
Expression (21) is written as

δ Ri j = e−|LδRi j | =
∏

j ′ ∈ N (i)\ j

(−1)si j ′
∣∣∣e−|Lδ Qi j ′ |

∣∣∣ = (−1)
∑

si j ′
∏

j ′ ∈ N (i)\ j

∣∣∣e−|Lδ Qi j ′ |
∣∣∣ (38)

and then ∣∣Lδ Ri j

∣∣ =
∑

j ′ ∈ N (i)\ j

∣∣LδQi j ′
∣∣ (39)

sδ Ri j =
∑

j ′ ∈ N (i)\ j

si j ′ (40)

or, equivalently,

δ Ri j = (−1)sδRi j

∣∣∣e−|LδRi j |∣∣∣ (41)

Coefficients R0
i j and R1

i j can be obtained by using expressions (22) and (23) with the values
of coefficients δ Ri j , and so in logarithmic form

ln
(
R0

i j

) = − ∣∣L R0
i j

∣∣ = ln
(

1 + (−1)sδRi j

∣∣∣e−|Lδ Ri j |∣∣∣) − ln (2) (42)
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If sδ Ri j is even,∣∣L R0
i j

∣∣ = ln (2) −
∣∣∣ln (

1 +
∣∣∣e−|Lδ Ri j |∣∣∣)∣∣∣ = ln (2) − f+

(∣∣Lδ Ri j

∣∣) (43)

If sδRri j is odd,∣∣L R0
i j

∣∣ = ln (2) +
∣∣∣ln (

1 −
∣∣∣e−|Lδ Ri j |∣∣∣)∣∣∣ = ln (2) + f−

(∣∣Lδ Ri j

∣∣) (44)

where f+(|LδRri j |) and f−(|Lδ Ri j |) are obtained from look-up tables. In a similar way, and
if sδ Ri j is even, then∣∣L R1

i j

∣∣ = ln (2) +
∣∣∣ln (

1 −
∣∣∣e−|Lδ Ri j |∣∣∣)∣∣∣ = ln (2) + f−

(∣∣Lδ Ri j

∣∣) (45)

and if sδ Ri j is odd,∣∣L R1
i j

∣∣ = ln (2) −
∣∣∣ln (

1 +
∣∣∣e−|LδRi j |∣∣∣)∣∣∣ = ln (2) − f+

(∣∣Lδ Ri j

∣∣) (46)

8.7.3 Vertical Step

In this step, and in order to solve equation (24), it is convenient to define the following constant,
for x = 0, 1:

cx
i j = f x

j

∏
i ′ ∈ M( j)\i

Rx
i ′ j (47)

which, in logarithmic form, is equal to

ln
(
cx

i j

) = ln

(
e
−

∣∣∣Lcx
i j

∣∣∣) = ln

(
e
−

∣∣∣L f x
j

∣∣∣) +
∑

i ′ ∈ M( j)\i

ln

(
e
−

∣∣∣L Rx
i ′ j

∣∣∣)
(48)

or

|Lcx
i j | = |L f x

j | +
∑

i ′∈M( j)\i

|L Rx
i ′ j | (49)

Then

αi j = 1/
(
c0

i j + c1
i j

)
(50)

and hence

Q0
i j = e

−
∣∣∣L Q0

i j

∣∣∣ = e
−

∣∣∣Lc0
i j

∣∣∣
e
−

∣∣∣Lc0
i j

∣∣∣ + e
−

∣∣∣Lc1
i j

∣∣∣ (51)

Expression (51) allows to determine |L Q0
i j | as∣∣L Q0

i j

∣∣ = ∣∣Lc0
i j

∣∣ − min
(∣∣Lc0

i j

∣∣, ∣∣Lc1
i j

∣∣) + f+
(∣∣|Lc0

i j | − |Lc1
i j |

∣∣) (52)
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Similarly, ∣∣L Q1
i j

∣∣ = ∣∣Lc1
i j

∣∣ − min
(∣∣Lc0

i j

∣∣, ∣∣Lc1
i j

∣∣) + f+
(∣∣|Lc0

i j | − |Lc1
i j |

∣∣) (53)

In each iteration, the decoder determines an estimate of the decoded vector by using expres-
sion (27). Two additional constants are defined to facilitate calculations, as done in the vertical
step. Since

Qx
j = α j f x

j

∏
i ∈ M( j)

Rx
i j = α j f x

j Rx
i j

∏
i ′ ∈ M( j)\i

Rx
i ′ j

the following constant is defined for x = 0, 1:

cx
j = e−|Lcx

j | = f x
j

∏
i ∈ M( j)

Rx
i j (54)

such that

|Lcx
j | = |Lcx

i j | + |L Rx
i j | (55)

The non-logarithmic value of the coefficient of interest is obtained as

Q0
j = e

−
∣∣∣L Q0

j

∣∣∣ = e
−

∣∣∣Lc0
j

∣∣∣
e
−

∣∣∣Lc0
j

∣∣∣ + e
−

∣∣∣Lc1
j

∣∣∣ (56)

which, in logarithmic form, is∣∣L Q0
j

∣∣ = ∣∣Lc0
j

∣∣ − min
(∣∣Lc0

j

∣∣, ∣∣Lc1
j

∣∣) + f+
(∣∣∣∣Lc0

j

∣∣ − ∣∣Lc1
j

∣∣∣∣) (57)

Similarly, ∣∣L Q1
j

∣∣ = ∣∣Lc1
j

∣∣ − min
(∣∣Lc0

j

∣∣, ∣∣Lc1
j

∣∣) + f+
(∣∣∣∣Lc0

j

∣∣ − ∣∣Lc1
j

∣∣∣∣) (58)

An estimate of the decoded vector d̂ is finally obtained by estimating each of its bits d j ,
such that

if Q0
j > Q1

j then
�

d j = 0, else
�

d j = 1 (59)

since

Q0
j = e

−
∣∣∣L Q0

j

∣∣∣
and Q1

j = e
−

∣∣∣L Q1
j

∣∣∣
Logarithmically,

if
∣∣L Q0

j

∣∣ <
∣∣L Q1

j

∣∣ then
�

d j = 0, else
�

d j = 1 (60)

8.7.4 Summary of the Logarithmic Decoding Algorithm

Initialization: Logarithmic values of coefficients |L Qx
i j | are set equal to the logarithmic values

of the a priori probabilities of the symbols |L f x
j |.

Horizontal step: Logarithmic values of the coefficients |L R0
i j | and |L R1

i j | are calculated for
each pair i, j j , using (39)–(46).
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Vertical step: Logarithmic values of the coefficients |L Q0
i j | and |L Q1

i j | are calculated for each
pair i, j , using (49), (52) and (53).

Estimate of the decoded vector: An estimate of each symbol d̂ j of the received vector is obtained
at the end of each iteration.

The values of coefficients |L Q0
j | and |L Q1

j | are calculated by using (55), (57) and (58), and

the final estimate is determined by using (60). If H ◦ �

d = 0 then the decoded vector is a code
vector, and the decoding halts. Otherwise the decoder performs the next iteration.

8.7.5 Construction of the Look-up Tables

The effective BER Performance of an LDPC Code depends, as usual, on the decoding algorithm
used to decode it. In the case of the logarithmic version of the sum–product decoding algorithm
proposed in this section, there is a need to construct the two look-up tables that are called
f+ (|z1| , |z2|) and f− (|z1|, |z2|). The maximum number of bits for representing numbers in
these tables is c, such that the maximum number of entries of these two tables is Nt = 2c. The
effect of the quantization of the values in these tables is seen in Figures 8.6 and 8.7 where
the BER performances of two LDPC codes, obtained by simulation, are depicted. One LDPC
code is of a relatively small size, with parity check matrix H1 of 30 rows and 60 columns,
whereas the other code, extracted from MacKay’s website [26], is a medium-size LDPC code,
with parity check matrix H2 of 504 rows and 1008 columns. Look-up tables were constructed
using numerical representations of c = 16 bits, so that the maximum number of entries in these
tables is Nt = 2c = 65,536.

Simulations show that small look-up tables of 256 entries can be used without producing a
significant loss in the BER performance of these LDPC codes.

An analysis of decoding complexity determines that if n is the number of columns of the
parity check matrix H corresponding to a given LDPC code, and s is the average number of
‘1’s per column in that matrix, the traditional sum–product algorithm requires the calculation
of 6ns products and 5ns sums. In the case of the logarithmic algorithm, the calculation of 14ns
sums and 3ns subtractions is required. It is seen that the logarithmic decoder requires more
sums than that of the traditional algorithm, but it should be taken into account that there is
no need of performing products, which are essentially implemented as a considerable number
of sums in most of the practical implementations of this operation. Overall, the complexity
of the logarithmic decoding algorithm is much less than that of the traditional sum–product
algorithm.

8.8 Extrinsic Information Transfer Charts for LDPC Codes

8.8.1 Introduction

So far the sum–product algorithm has been introduced as an efficient iterative decoding al-
gorithm for decoding LDPC codes, and it has been presented in its traditional form, in the
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Figure 8.6 Logarithmic decoding of LDPC code Cb(60, 30)
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MacKay–Neal simplified version, and in a logarithmic version (Section 8.7). These algorithms
operate on the basis of a convergent updating of interchange information communicated be-
tween the symbol nodes and the parity check nodes. In what follows, the convention

‘0’ → +1
‘1’ → −1

is adopted to simplify the mathematical expressions involved in extrinsic information transfer
(EXIT) chart analysis for LDPC codes.

A given LDPC code Cb(n, k), of code rate R = k/n has n symbol nodes and n − k parity
check nodes, connected as described by the corresponding bipartite graph. The bit or symbol
d j participates in d ( j)

v parity check equations, which means that, in the corresponding bipartite

graph, this symbol node is connected to s( j) = d ( j)
v parity check nodes, where s( j) is the number

of ‘1’s per column of the parity check matrix H. In the same way, the parity check node hi

relates d (i)
c symbol nodes or bits in its corresponding parity check equation, so that in the

corresponding bipartite graph this parity check node is connected to v(i) = d (i)
c symbol nodes.

In a regular LDPC code, the quantities s( j) = d ( j)
v and v(i) = d (i)

c are the same for every row
and column, respectively.

Example 8.2: Form the sparse parity check matrix H of a regular LDPC code Cb(14, 7) of
code rate Rc = 1/2 for which dv = 3 and dc = 6.

An example of a matrix of this kind is the following:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 1 0 1 0 0 0 1
0 1 1 0 1 0 0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 1 0 0 0 1 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1
1 0 0 0 1 1 0 0 0 1 1 0 1 0
0 1 0 0 0 1 1 0 1 1 0 1 0 0
1 0 1 0 0 0 1 1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Example 8.2 is an illustrative example of a regular LDPC code that has a bipartite graph

like that of Figure 8.8, where it is seen that there are cycles of length 4, one of which is noted
in bold line in this figure.

As seen in Figure 8.8, there are three connections emerging from each symbol node, and there
are six connections arriving at each parity check code. The bipartite graph can be interpreted
as an interleaving of connections. This is seen in Figure 8.9.

The graphical representation as given in Figure 8.9 then allows us to see a given LDPC code as
a code constructed using two encoders, each one with its corresponding decoder. There is a code
for the symbol nodes and another code for the parity check nodes, which are related through
a connection interleaver like that seen in Figure 8.9. This connection interleaver acts during
the iterative decoding process, which consists of the interchange of soft-decision information
(LLRs) between the symbol node decoder (SND) and the parity check node decoder (PCND),
as shown in Figure 8.10 [14]. The MAP decoder converts a priori and channel LLRs into
a posteriori LLRs. Both decoders, the SND and the PCND, perform this type of operation,
generating LLRs as their outputs. If the a priori LLR is subtracted from the corresponding



OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Symbol nodes dj

1 2 3 4 5 6 7

Parity check nodes hi

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.8 A bipartite graph for a regular LDPC code

Symbol nodes dj

1 2 3 4 5 6 7

Parity check nodes hi

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.9 Connection interleaver for a regular LDPC code

SND
Inverse connection
interleaver

Connection
interleaver

_ 

_ 

PCND

Channel
information 

syndrome
detector

Figure 8.10 Interchange of LLRs between the SND and the PCND of an LDPC decoder
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a posteriori LLR, then the extrinsic LLR is obtained. The extrinsic LLR of the current iteration
then becomes the a priori LLR for the next iteration.

From this point of view, an LDPC code can also be understood as a mixture of inner
repetition codes and a mixture of outer simple parity check codes, which operate like a serial
concatenated code [14]. This allows us to comprehend the similarity between LDPC codes and
other iteratively decoded codes, like the turbo codes introduced in Chapter 7.

8.8.2 Iterative Decoding of Block Codes

The expression of the LLR has been introduced in Chapter 7, equation (13), which is rewritten
here for clarity:

L(bi ) = ln

(
P(bi = +1)

P(bi = −1)

)
Remember that the sign of this quantity is the hard decision of the estimated value, while its

absolute value is the reliability of that decision. From this definition, the following expressions
are obtained:

eL(bi ) = P(bi = +1)

P(bi = −1)
= P(bi = +1)

1 − P(bi = +1)

or

P(bi = +1) = eL(bi )

1 + eL(bi )
(61)

and

P(bi = −1) = 1

1 + eL(bi )
(62)

When decisions are taken conditioned to another variable, like a received vector Y , the LLR
is of the form of equation (54) of Chapter 7, and considering equation (55) of Chapter 7, it can
be written as

L(bi/Y) = ln

(
P(bi = +1/Y)

P(bi = −1/Y)

)
= ln

(
P(bi = +1)

P(bi = −1)

)
+ ln

(
P(yi/bi = +1)

P(yi/bi = −1)

)
(63)

As described in previous sections, the sum–product algorithm operates over parity check
equations, so that it will be useful to determine the LLR of an exclusive-OR summation of two
or more bits. For this, and for the exclusive-OR sum of two bits,

P ((b1 ⊕ b2) = +1) = P(b1 = +1)P(b2 = +1) + (1 − P(b1 = +1))(1 − P(b2 = +1))
(64)

P ((b1 ⊕ b2) = −1) = P(b1 = +1)P(b2 = −1) + (1 − P(b1 = +1))(1 − P(b2 = −1))
(65)
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where P(bi = +1) is given by equation (61). If bits b1 and b2 are generated by independent
random sources, then

P ((b1 ⊕ b2) = +1) = 1 + eL(b1) eL(b2)(
1 + eL(b1)

) (
1 + eL(b2)

) (66)

P ((b1 ⊕ b2) = −1) = eL(b1) + eL(b2)(
1 + eL(b1)

) (
1 + eL(b2)

) (67)

and so [15]

L(b1 ⊕ b2) = ln

[
P((b1 ⊕ b2) = +1)

P((b1 ⊕ b2) = −1)

]
= ln

[
1 + eL(b1)eL(b2)

eL(b1) + eL(b2)

]
≈ sign(L(b1)) sign(L(b2)) min (|L(b1)|, |L(b2)|)

(68)

This operation deserves a distinguishing notation that is defined in [15], and that in this text is
described by the symbol[⊕]:

L(b1) [⊕] L(b2) = L(b1 ⊕ b2) (69)

The following rules apply to this operation:

L(b1) [⊕] ∞ = L(b1) (70)

L(b1) [⊕] − ∞ = −L(b1) (71)

L(b1) [⊕] 0 = 0 (72)

On the other hand, the expression can be extended to the operation over more than two bits
by induction

J∑
j=1

[⊕]L(b j ) = L

(
J∑

j=1

⊕b j

)
= ln

[∏J
j=1

(
eL(b j ) + 1

) + ∏J
j=1

(
eL(b j ) − 1

)∏J
j=1

(
eL(b j ) + 1

) − ∏J
j=1

(
eL(b j ) − 1

)]
(73)

J∑
j=1

[⊕]L(b j ) = L

(
J∑

j=1

⊕b j

)
≈

[
J∏

j=1

sign(L(b j ))

]
min

j=1...J
|L(b j )| (74)

and by using

tan h(b/2) = eb − 1

eb + 1
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it becomes

J∑
j=1

[⊕]L(b j ) = L

(
J∑

j=1

⊕b j

)
= ln

[
1 + ∏J

j=1 tan h
(
L(b j )/2

)
1 − ∏J

j=1 tan h
(
L(b j )/2

)]

= 2 tan h−1

(
J∏

j=1

tan h
(
L(b j )/2

))
(75)

which can be approximately calculated as

J∑
j=1

[⊕]L(b j ) = L

(
J∑

j=1

⊕b j

)
≈

(
J∏

j=1

sign(L(b j ))

)
min

j=1...J
|L(b j )| (76)

8.8.3 EXIT Chart Construction for LDPC Codes

The transfer of mutual information between the SND and the PCND determines the EXIT chart
for an LDPC code. This analysis is simplified by applying it to a regular LDPC code; that is, an
LDPC code where the number of ‘1’s per column and per row is fixed. An example of a regular
LDPC code is presented in Example 8.2, whose bipartite graph is seen in Figures 8.8 and 8.9.
The notation used in this section is the same as that used in the case of the EXIT chart analysis
for turbo codes, presented in Chapter 7 [19–22]. Thus, IA is the mutual information between
the information of symbols or bits that correspond to symbol nodes, those over which estimates
are performed, and the a priori information, in both cases determined by LLRs. Similarly, IE is
the mutual information between the information of symbols or bits that correspond to symbol
nodes, and the extrinsic information. The EXIT chart for the SND and the PCND of an LDPC
code is described in terms of mutual information of the involved quantities, as described in
Chapter 7, and developed in the next section.

8.8.4 Mutual Information Function

For the AWGN channel, the relation of the average bit energy Eb and the noise power spectral
density N0 is equal to Eb/N0 = 1

/[
2Rcσ

2
n

]
, where Rc is the code rate and σ 2

n = N0/2 is the

noise variance. Then the channel LLR Lch = L (0)
ch is equal to

Lch = ln
p(y/x = +1)

p(y/x = −1)
= 2

σ 2
n

y = 2

σ 2
n

(x + n) (77)

where

p(y/X = x) = e−(y−x)2/2σ 2
n

√
2πσ 2

n

The variance σ 2
ch can be expressed as

σ 2
ch =

(
2

σ 2
n

σn

)2

= 4

σ 2
n

= 8Rc

Eb

N0

(78)
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By taking into account the analytical expression for IA, as given in Chapter 7,

IA = IA(σA) = 1 −
∫ ∞

−∞

e−(ξ−σ 2
A/2)/2σ 2

A√
2πσA

log2(1 + e−ξ ) dξ

the following short notation is used:

J (σ ) = IA(σA = σ ) (79)

and thus

lim
σ→0

J (σ ) = 0, lim
σ→∞ J (σ ) = 0, σ > 0

This is a monotonically decreasing and invertible function for which the value of σA can be
obtained as

σA = J−1(IA) (80)

A polynomial approximation of functions J (σ ) and J−1(I ) is presented in [14] and used
below. The input X and the output Y of the AWGN channel are related as Y = X + n, where
n is a Gaussian random variable with zero mean value and variance σ 2

n . The LLR described in
expression (77) is a function of y. On the other hand, Lch(Y ) is a variable conditioned on the
variable X = ±1, and so it also has a Gaussian distribution of mean value μch = ±2

/
σ 2

n and
variance σ 2

ch = 4
/
σ 2

n , such that μch = ±σ 2
ch

/
2.

If the mutual information between the LLR Lch(Y ) and the input X is

J (σch) = I (X ; Lch(Y )) (81)

then

J (σch) = H (X ) − H (X/Lch(Y )) = 1 −
∫ ∞

−∞

e−(ξ−σ 2
ch/2)/2σ 2

ch√
2πσch

log2(1 + e−ξ ) dξ (82)

where H (X ) is the entropy of the channel input X , and H (X/Lch(Y )) is the entropy of X
conditioned to Lch(Y ). However, J (σch) = I (X ; Lch(Y )) is equal to I (X ; Y ) so that the capacity
of the AWGN channel is equal to J (σch) = J (2/σn) [14, 23]. Following [14], a polynomial
approximation for J (σ ) is

J (σ ) ≈
⎧⎨⎩

− (0.0421061) σ 3 + (0.209252) σ 2 − (0.00640081) σ 0 ≤ σ ≤ 1.6363

1 − e(0.00181491)σ 3−(0.142675)σ 2−(0.0822054)σ+0.0549608 1.6363 < σ < 10
1 σ ≥ 10

(83)
and for the inverse function J−1(I ),

J−1(I ) ≈
{

(1.09542) I 2 + (0.214217) I + (2.33727)
√

I 0 ≤ I ≤ 0.3646
− (0.706692) ln [(0.386013) (1 − I )] + (1.75017) I 0.3646 < I < 1

(84)
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8.8.5 EXIT Chart for the SND

Since this analysis is restricted to regular LDPC codes, the number of parity equations in
which a given symbol is present is constant and equal to dv. In the case of the Example 8.2,
this parameter is dv = 3. The LLR that each symbol node d j sends to each parity check node
hi in the iteration number it is denoted as Z (i t)

i j , and the LLR that each parity check node hi

sends to each symbol node d j in the iteration number it is denoted as L (i t)
i j .

Each symbol node has as its input information a channel LLR Lch = L (0)
ch coming from the

channel, and an LLR L (i t)
i ′ j that comes from each of its children parity check nodes. The symbol

node uses this information to generate the LLR Z (i t)
i j to be sent to its dv children parity check

nodes, according to the expression

Z (i t)
i j = Lch +

∑
i ′∈M( j)\i

L (i t)
i ′ j (85)

In expression (85) the LLR L (i t)
i ′ j is the a priori LLR for the SND, Z (i t)

i j is the extrinsic LLR

generated by the SND and Lch = L (0)
ch is the LLR from the channel. At the end of this current

iteration, the SND determines an estimate, which is in turn an LLR, useful to determine an
estimate of each of the bits of the received code vector. This a posteriori estimate is equal to

A(i t)
i j = Lch +

∑
i∈M( j)

L (i t)
i j (86)

The LLR is Z (i t)
i j = |Lc−1

i j | − |Lc+1
i j |, calculated using (49).

The EXIT chart for the SND is determined by the value of the mutual information function
for the value σ of the standard deviation of the variable Z (i t)

i j described by expression (85).
The logarithmic version of the sum–product algorithm defines a linear relationship between

the quantities involved in describing the operation of the SND, as seen in expression (85).
Since channel LLRs and a priori LLRs are independent random variables, the variance of the
variable

Z (i t)
i j = Lch +

∑
i ′∈M( j)\i

L (i t)
i ′ j

is equal to [14]

σ 2
Zi j

= σ 2
ch + (dv − 1) σ 2

A = 8Rc

Eb

N0

+ (dv − 1)
[
J−1(IA)

]2
(87)

This leads to an analytical determination of the EXIT charts for LDPC codes, in comparison
with the heuristically implemented method described for the EXIT charts of turbo codes. Once
the standard deviation of the extrinsic LLRs generated by the SND has been determined, then
the mutual information between these LLRs and the bit or symbol information is directly
obtained by using expressions (80) and (83) with σA = σ = σZi j ,

IE,SND(IA, dv, Eb/N0, Rc) = J

(√
σ 2

ch + (dv − 1) σ 2
A

)
(88)
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8.8.6 EXIT Chart for the PCND

Parity check nodes generate their LLRs taking into account the parity check equations that are
defined for each of them. The estimate or LLR is calculated assuming that the parity check
equation is satisfied. An LLR expression for a parity check equation has already been obtained,
and it is given by the expression (73) in its exact version, or by (74) in its approximated version.
They are conveniently rewritten for this case as

L (i t−1)
i j = ln

⎡⎣∏I ′
i ′=1

(
eZ (i t−1)

i ′ j + 1
)

+ ∏I ′
i ′=1

(
eZ (i t−1)

i ′ j − 1
)

∏I ′
i ′=1

(
eZ (i t−1)

i ′ j + 1
)

− ∏I ′
i ′=1

(
eZ (i t−1)

i ′ j − 1
)
⎤⎦ (89)

L (i t−1)
i j ≈

[
I ′∏

i ′=1

sign
(

Z (i t−1)
i ′ j

)]
min

i ′=1...I

∣∣∣Z (i t−1)
i ′ j

∣∣∣ (90)

Here Z (i t−1)
i ′ j is the estimate generated in the previous iteration, adopted as the a priori value

for the current iteration.
Remember that the convention adopted in [15] is that the bit or symbol ‘0’ is represented by

the signal +1, and the bit or symbol ‘1’ is represented by the signal −1. If the convention is
taken the other way round, the argument in expressions (73) and (89) should be inverted. This
expression is a summation of LLRs defined by the operator [⊕]. In [16] and [17] it is shown
that the EXIT chart for the PCND for the AWGN channel can be approximately, but with high
accuracy, calculated as

IE,PCND(IA, dc) ≈ 1 − J
(√

dc − 1 J−1(1 − IA)
)

(91)

It is more useful to determine the inverse function of (91), which defines the mutual infor-
mation between the bits of the decoded vector and the a priori information, as a function of
the mutual information between the bits of the decoded vector and the extrinsic information:

IA,PCND(IE, dc) ≈ 1 − J

(
J−1(1 − IE)√

dc − 1

)
(92)

Figure 8.11 shows the EXIT chart for the SND, for different values of the parameter dv, and
Figure 8.12 shows the EXIT chart for the PCND, for different values of the parameter dc.

LDPC codes have a more analytical procedure for determining the EXIT charts than that
of turbo codes. In [16] it is shown that, for the erasure channel, optimum design of an LDPC
code is done by matching up the corresponding EXIT charts for the SND and the PCND. This
conclusion is approximately valid for other channels including the AWGN channel. EXIT
charts for LDPC codes are also useful for determining for instance a practical bound on the
number of iterations for decoding LDPC codes. However, the EXIT chart analysis is also
a good tool for the design of LDPC codes. An example of an LDPC code design is given
in [14].
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8.9 Fountain and LT Codes

8.9.1 Introduction

An interesting application field for LDPC codes is on the so-called erasure channel, introduced
in Chapter 1, and its relationship with transmission in data networks. In data transmission
over networks like the Internet, information is usually fragmented into data packets of fixed
size before being transmitted through the network. For transmission, the information in each
packet is usually encoded for detecting errors by using a cyclic redundancy check (CRC), and
the receiver detects errors by syndrome decoding applied over each data packet in order to
decide whether it accepts the data packet, or requires its retransmission. When the syndrome
calculation determines that the data packet is not a valid packet, then the system resorts to the
retransmission procedure called automatic repeat request (ARQ), described in Chapter 2. A
second channel in this duplex system is used for transmitting retransmission requests. Packets
found to contain errors are discarded, given the expectation that they will be retransmitted.
This is the traditional approach to error control in data networks, based on ARQ schemes.
However, a retransmission implies reuse of the transmission channel, and therefore throughput
is reduced.

A different approach to network error control is provided by the use of so-called fountain
codes [24, 27] in addition to the CRC. These codes generate data packets that are essentially
random functions of the whole file to be transmitted. The transmitter floods the receiver with
these data packets, without needing to know which of them are correctly received. The receiver
discards any packet containing errors, as determined by the CRC syndrome. If the original size
of the whole file to be transmitted is K data packets, and if the decoder receives N data packets,
then it is possible to correctly recover at the receiver the original information (i.e., the whole
file), provided N is sufficiently larger than K . How much larger N needs to be is determined
by the random functions used to generate the packets and by the error rate on the channel.

The process of discarding of data packets can be suitably modelled by the erasure channel,
introduced in Chapter 1, in which a packet that is discarded can be regarded as a packet
erasure. The probability of an erasure or discard is p for the binary erasure channel (BEC),
and its capacity is equal to 1 − p, as calculated in Chapter 1. If this channel operates over
a non-binary alphabet GF(q), for which q = 2m , then the erasure channel has an increased
capacity of (1 − p) m. In the transmission of data packets of a fixed length of m bits, the
erasure channel with non-binary alphabet GF(q) is a suitable model for the discarding of such
packets, so that each data packet is represented by one of the q = 2m elements of GF(q).

As demonstrated by Shannon, the capacity of a given channel does not depend on the
existence or not of a physical means for requesting retransmissions. In the case of the q-ary
erasure channel where q = 2m , this capacity remains equal to (1 − p) m independently of the
existence or not of retransmissions.

In a typical ARQ scheme, retransmissions are required regardless of the value of the erasure
or discard probability p, and this process could become enormously demanding if, for instance,
transmission is taking place in the presence of a very noisy channel. ARQ schemes are also
impractical in broadcast transmission scenarios, where the transmitter sends data packets to a
multiplicity of users over independent or partially independent channels. Here the number of
retransmissions required could seriously decrease the throughput of the transmitter. The need
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to maintain high throughput rates suggests the use of an FEC scheme for the transmission
of packets in data networks, in order to reduce, and preferably eliminate, retransmissions.
As pointed out earlier, the capacity of the q-ary erasure channel remains equal to (1 − p) m
independently of the existence or not of retransmissions, and suitable erasure-correction codes
exist to take advantage of this property.

One of the most efficient error-control techniques was introduced in Chapter 5, and is the
Reed–Solomon coding technique. An interesting property of a RS code CRS(N , K ) defined
over GF(q), where q = 2m , is that if any K of the N transmitted symbols are received, the
K information symbols can be successfully recovered. However, RS codes are complex to
decode and encode, particularly if m is large, and so they do not appear to be the most suitable
codes for data networks, where packets are normally of a large size. In addition, the rate of
an RS code needs to be determined before transmission, and is difficult to change during
transmission. Of course the transmission can start with the code rate set to match the capacity
of the erasure channel. However, the erasure probability p, which determines the capacity, can
change during transmission over a network, as a function of the users locations, for instance.
Therefore a dynamically variable code rate would be advantageous, and fountain codes appear
able to provide it very effectively.

8.9.2 Fountain Codes

A fountain code [24, 27] can be seen as a code that generates a continuous flow of transmitted
data packets, simulating the action of water falling from a spring into a collecting receptacle,
the data packet receiver. In this coding scheme, the whole information file to be transmitted is
of size Km, such that there are K data packets of m bits each. The receiver collects a set of
K data packets or more, enough to successfully recover the original transmitted information.
From this point of view, the rate of a fountain code tends to zero, because transmission is
supposedly time unlimited. However, in a practical implementation, the number of data packets
to be transmitted is dynamically determined to be finite, according to the necessities described
earlier. This usually results in a variable, but relatively high code rate. The simplest fountain
code is the linear random code.

8.9.3 Linear Random Codes

Let a whole file of information be fragmented into K data packets dp1 dp2 . . . dpK . Each
transmitted data packet contains m bits, and is going to be correctly received or not, depending
on the channel noise. Transmission is synchronous, and successive transmitted packets tpn are
ordered by a time index n. At time instant n, the encoder generates a random binary K -tuple
{Gkn}, and then the transmitted packet tpn is the exclusive-OR sum of all the information data
packets for which the random bits in {Gkn} are equal to ‘1’:

tpn =
K∑

k=1

dpk Gkn (93)

This encoding procedure can be seen as performed by an encoder whose generator matrix
has an increasing number of columns, and so at each time instant it adds another random (in
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practice pseudo-random) column to its structure. An example of such a matrix could be the
following:

G =

⎡⎢⎢⎣
1 1 0 1 0 1 · · ·
0 1 1 0 1 1 · · ·
1 0 0 0 1 1 · · ·
0 0 1 1 1 0 · · ·

⎤⎥⎥⎦ (94)

The number of rows of this increasing matrix is K , and each of its semi-infinite number of
columns are successively generated as random K -tuples {Gkn}, where n = 1, 2, 3, . . . . For the
generator matrix of (94), for example, the first transmitted data packet is the exclusive-OR sum
of the original data packets dp1 and dp3, the second transmitted packet is the exclusive-OR
sum of the original data packets dp1 and dp2, and so on.

The erasure channel will affect the transmission by erasing some of the transmitted data
packets, but the receiver collects a set of N data packets in order to form a matrix of size
K × N , such that N = K + Ex , where Ex is the number of excess packets with respect to K ,
which can be understood as the redundancy in the transmission using the fountain code. The
question that now arises is, can the original packets of information be successfully recovered
from these N received data packets? The receiver is assumed to know the so-called fragment
generator matrix Gfr, which is a matrix formed in the decoder from the N correctly received
data packets, and each column of this fragment matrix has a known value of time index n.
If the decoder also knows the pseudo-random rule that generated the K -tuple columns of the
increasing matrix used by the encoder, then it is possible to recover the original information.

If N < K , then there is no way of successfully recovering the original information. For any
non-zero value of the excess Ex , there is the possibility of a successful recovery. In the case of
N = K , the original information can be recovered if an inverse matrix of the fragment generator
matrix Gfr exists. The probability of the existence of such an inverse matrix is determined in
[24], and it is equal to(

1 − 2−K
) (

1 − 2−(K−1)
) · · · (1 − 1/8)(1 − 1/4)(1 − 1/2)

which turns out to be equal to 0.289 for any K > 10.
If N > K , then the probability δ of the existence of an invertible submatrix of size K × K ,

in the fragment generator matrix Gfr, has to be determined. This probability, shown in [24],
is to be bounded by a quantity that is a function of the excess Ex of data packets correctly
received:

δ ≤ 2−Ex (95)

This means that the probability of successful recovery of data packets is 1 − δ, and that this
happens if at least K + log2(1/δ) data packets are received.

Summarizing, the probability of successful recovery of the original information is equal to
0.289 if no redundant data packets are received, and this probability increases to 1 − δ when
Ex excess (redundant) packets are received.

However, the decoding complexity of these linear random codes is dominated by the inver-
sion of the fragment generator matrix Gfr, which requires approximately K 3 binary operations,
a limiting drawback for the transmission of a large number of large data packets, as is usually
necessary in data networks.
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8.9.4 Luby Transform Codes

Luby transform (LT) codes [25] appear to be more suitable for the erasure channel network
application. They can be understood as fountain codes characterized by a linear sparse matrix
similar to that used to define an LDPC code.

These codes are designed using a statistical analysis that models the problem of throwing
balls in order to fill a set of empty baskets. A first question arising from this particular problem
is to determine how many balls should be thrown to ensure that there is at least one ball in
each basket. Another question is to determine the number of empty baskets that results from
the throwing of a given number of balls at the set of baskets. Thus, for instance, if N balls are
thrown at K baskets, K e−N/K is the expected number of empty baskets. This means that the
expected number of empty baskets is a small number δ if N > K ln(K/δ) [24, 27].

8.9.4.1 LT encoder

The encoder of an LT code takes a set of K data packets dp1 dp2 . . . dpK to generate the coded
data packet as follows:

A degree dn is selected from a degree distribution function ρ(d), conveniently designed as
a function of the size K of the file to be encoded.

A set of dn data packets is selected in a uniform random manner to form the coded packet
tpn as the exclusive-OR of these packets.

This encoding mechanism is associated with a bipartite graph which is similar to that for
LDPC codes, and which is formed between the coded data packets tpn and the information
packets dpk .

A sparse graph is obtained when the average value of the degree dn is significantly smaller
than the number of information packets K . This encoding mechanism can be interpreted as an
LDPC code.

8.9.4.2 LT decoder

Since the encoding of an LT code is similar to that of an LDPC code, creating the transmitted
or coded data packets from the information source or message packets, the decoding of an LT
code consists of determining the vector dp as a function of the vector tp, which are related by the
expression tp = dp · G, where the matrix G corresponds to the bipartite graph of the encoding.
Both sides of the transmission know this matrix, even when it is normally a pseudo-randomly
generated matrix.

At first, this similarity with LDPC codes suggests the use of the sum–product algorithm for
decoding LT codes, but in this case the entities involved are packets that are either completely
reliable or completely unreliable (erased). This means that there are packets dpk with unity
probability of being true packets, or packets dpk that have all the same probability of not being
true packets. The decoding algorithm, in this case, operates in a very simple manner. In the
decoder coded packets tpn play the role of parity check nodes, and message packets dpk play
the role of symbol nodes. The decoder of an LT code then operates as follows:

1. It looks for a parity check node tpn that is connected to only one symbol node dpk . If this
is not the case, the algorithm cannot proceed to decode the coded packets.
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2. It sets

dpk = tpn

3. It sums dpk to all the parity check nodes tp′
n that are connected to dpk as

tpn′ = tpn′ + dpk, for all n′ for which the bits in Gn′k = 1

4. It removes all the connections related to symbol node dpk .
5. Steps (1)–(4) are repeated for all dpk .

Example 8.3: For the LT code described by the following matrix G, determine the coded data
packets for the message packet set dp1dp2dp3 = (11, 10, 01), where the message data packets
consist of two bits. Then decode the coded data packets.

G =
⎡⎣1 1 0 1

0 0 1 1
0 1 1 0

⎤⎦
According to the above generator matrix G, supposed to be randomly generated, the coded

data packets are

tp1 = dp1 = 11

tp2 = dp1 ⊕ dp3 = 10

tp3 = dp2 ⊕ dp3 = 11

tp4 = dp1 ⊕ dp2 = 01

This is expressed as the coded vector tp = (tp1 tp2 tp3 tp4) = (11, 10, 11, 01)
The corresponding bipartite graph is of the form as given in Figure 8.13.
The decoding procedure is then applied. A parity check node connected to only one symbol

node is found (11), and then that packet is assigned the decoded packet dp1 = tp1 = 11. This
result is added to the other parity check nodes connected to this symbol node, and then the
connections are removed. This is seen in Figure 8.14.

After removing connections, the algorithm searches for another parity check node that is
connected to only one symbol node, and chooses dp2 = 10. After appropriately summing the
result and removing connections, the final configuration seen in Figure 8.15 determines the
end of the decoding by setting dp3 = 01.

10 11 0111

dp1 dp2 dp3

Figure 8.13 Bipartite graph for the LT code of Example 8.3
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1001 11

11 dp2 dp3 11

1101 10

dp2 dp3

Figure 8.14 First steps in the decoding of the LT code of Example 8.3

A detailed description of the design of LT codes can be found in [24] and [25]. These codes
can be used in many practical applications. One of them is as a coding technique for distributed
multiuser information storage systems, where stored coded files that have been damaged could
be recovered by discarding (erasing) them and then decoding suitable combinations of coded
files stored elsewhere in the system.

8.10 LDPC and Turbo Codes

A common characteristic of these two coding techniques, which are the most efficient of all
those described in this book, is that they can be iteratively decoded using alternating exchanges
of soft-decision information. It is possible to demonstrate a certain degree of equivalence
between the decoders for these two impressive error-control techniques, as seen in Section
8.8.1 for instance. There are, however, some differences between them.

LDPC codes are extremely good in terms of the BER performance if the code length is large
enough. Thus, LDPC codes of length n = 10,000, for instance, have a BER performance curve
that is less than 0.1 dB from the Shannon limit. But these long block lengths lead to significant
decoding delay, and considerable encoding and decoding complexity.

On the other hand, turbo codes are constructed with relatively low complexity constituent
codes, and they also show a very good BER performance, but the error floor effect is present
at relatively high BERs. They are however more suitable for intermediate block or constraint
length applications.

For both turbo and LDPC codes, the original iterative decoding methods are more complex
than their logarithmic versions. Simplified variants of the logarithmic decoding algorithms
lead to even lower complexity decoding algorithms, usually performed by applying max or
min functions. As might be expected, however, the trade-off is some level of degradation in
the corresponding BER performance.

10

01 01 01 01

11 dp3 1011 dp3

Figure 8.15 Final steps in the decoding of the LT code of Example 8.3
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Problems

8.1 (a) Determine the number and size of the short cycles in the bipartite graph of the
irregular LDPC code Cb(12, 4) described in Section 8.5.

(b) Reduce the number of short cycles by changing the positions of ‘1’s in the
parity check matrix of item (a), but keeping the number of ‘1’s per column the
same, s = 3.

(c) Does the modified Tanner graph correspond to the same LDPC code or to a
different one?

8.2 A simple binary cyclic LDPC code can be constructed from the following circulant
matrix:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(a) Determine the rank of the above matrix, and use that to find the cyclic and
systematic parity check matrices of the code, and its systematic generator
matrix.

(b) Calculate the average number of 1s per row and column of the two parity
check matrices, and hence calculate the rate of the code, confirming that it is
the same in both cases, and also the same as the rate calculated from the
dimensions of the parity check matrices. What is the Hamming distance of the
code?

(c) Sketch the Tanner graphs of the two parity check matrices and of the circulant
matrix, and determine the length of the shortest cycle in each case. Which
graph might be best for decoding the code by means of the sum–product
algorithm?

8.3 For the LDPC code of Problem 8.2,
(a) Use the systematic generator matrix found in part (a) of Problem 8.2 to deter-

mine the codeword corresponding to the message vector m = (100).
(b) The codeword of part (a) of this problem is transmitted over an AWGN

channel in normalized polar format (±1), and is received as the vector
r = (

1.0187 −0.6225 2.0720 1.6941 −1.3798 −0.7431 −0.2565
)
.

Using the sum–product algorithm, decode this received vector on each of the three
Tanner graphs found in part (c) of Problem 8.2, and comment on the processes
and the results obtained.

8.4 The block code Cb(5, 3) introduced in Example 7.1 in Chapter 7 has the following
generator and parity check matrices:

G =
⎡⎣1 0 1 0 0

0 1 0 1 0
0 0 1 1 1

⎤⎦ , H =
[
1 0 1 0 1
0 1 0 1 1

]

In that example the codeword c = (00000) is transmitted over a soft-decision
channel, and the corresponding received vector is r = (10200). This soft-decision
channel is described in Chapter 7, in Figure 7.6 and Table 7.2.
(a) Decode the received vector using the SPA over the parity check matrix H

to show that, after enough iterations, the decision of the decoder fluctuates
between the two code vectors c = (00000) and c = (10100), which are the
closest to the received vector r = (10200).

(b) Describe the deficiencies of the bipartite graph associated with the parity check
matrix H of this code, with respect to the iterative passing of information.

�
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Appendix A: Error Probability in
the Transmission of Digital Signals

The two main problems in the transmission of digital data signals are the effects of channel
noise and inter-symbol interference (ISI) [2, 4]. In this appendix the effect of the channel
noise, assumed to be additive white Gaussian noise (AWGN), is studied, in the absence of
inter-symbol interference.

A.1 Digital Signalling

A.1.1 Pulse Amplitude Modulated Digital Signals

A digital signal can be described as a sequence of pulses that are amplitude modulated. The
corresponding signal is of the form

x(t) =
k=∞∑

k=−∞
ak p(t − kT ) (1)

where coefficient ak is the kth symbol of the sequence, such that the coefficient ak is one of
the M possible values of the information to be transmitted, taken from a discrete alphabet of
symbols. The pulse p(t) is the basic signal to be transmitted, which is multiplied by ak to
identify the different signals that make up the transmission.

The signal ak p(t − kT ) is the kth symbol that is transmitted at the kth time interval, where
T is the duration of such a time interval. Thus, the transmission consists of a sequence of
amplitude-modulated signals that are orthogonal in the time domain.

As seen in Figure A.1, the data sequence ak = A, 0, A, A, 0, A, corresponding to digital
information in binary format (101101), is a set of coefficients that multiply a normalized basic
signal or pulse p(t − kT ). If these coefficients are selected from an alphabet {0, A}, the digital
transmission is said to have a unipolar format. If coefficients are selected from an alphabet

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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A

0
tk = 2

A p(t – 2T)T

Figure A.1 A digital signal

1

0
t k

p(t – kT )

Figure A.2 A normalized pulse at time interval k multiplied by a given coefficient ak

{−A/2, A/2}, the digital transmission is said to have a polar format. In this latter case, the
sequence of this example would be given by ak = A/2, −A/2, A/2, A/2, −A/2, A/2.

Index k adopts integer values from minus to plus infinity. As seen in Figure A.2, the basic
signal p(t) is normalized and of fixed shape, centred at the corresponding time interval k, and
multiplied by a given coefficient that contains the information to be transmitted. This basic
normalized pulse is such that

p(t) =
{

1 t = 0
0 t = ±T, ±2T, . . .

(2)

The normalized pulse is centred at the corresponding time interval k and so its sample value
at the centre of that time interval is equal to 1, whereas its samples obtained at time instants
different from t = kT are equal to 0. This condition does not necessarily imply that the
pulse is time limited. Samples are taken synchronously at time instants t = kT , where k = 0,

±1, ±2, . . . , such that for a particular time instant t = k1T ,

x(k1T ) =
∑
∞

ak1
p(k1T − kT ) = ak1

(3)

since (k1T − kT ) = 0, for every k, except k = k1.
Conditions (2) describe the transmission without ISI, and are satisfied by many signal pulse

shapes. The classic rectangular pulse satisfies condition (2) if its duration τ is less than or
equal to T . The pulse sin c(t) also satisfies the orthogonality condition described in the time
domain by equation (2), but it is a pulse that is unlimited in time, however. Figure A.3 shows
the transmission of the binary information sequence (11001), using sin c(t) pulses modulated
in a polar format. At each sampling time instant t = kT , the pulse being sampled has amplitude
different from 0, while the other pulses are all equal to 0.
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Figure A.3 A digital transmission using sinc (t) pulses modulated in polar format

Each pulse occurs in a time interval of duration T . The inverse of this duration is the symbol
rate of the transmission, since it is the number of symbols that are transmitted in a unit of time
(usually a second). The symbol rate r is then equal to

r = 1/T (symbols per second) (4)

which is measured in symbols per second. When the discrete alphabet used in the transmission
contains only two symbols, M = 2, then it is binary transmission, and the corresponding
symbol rate r = rb is the binary signalling rate

rb = 1/Tb (bit per second) (5)

where T = Tb is the in time duration of each bit. The binary signalling rate is measured in bits
per second (bps).

A.2 Bit Error Rate

Figure A.4 shows the basic structure of a binary receiver.

Synchronization: T U

N0 / 2

x(t)
Low pass
filter H(f )

Sampling
and hold

y(tk)

Threshold
xd(t)

y(t)

Figure A.4 A binary receiver
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The signal x(t) is a digital signal
∑

k ak p(t − kT ), that is, an amplitude-modulated pulse
signal. This signal is affected by AWGN noise in the channel and is then input to the receiver.
The first block in this receiver is a low pass filter that eliminates part of the input noise without
producing ISI, giving the signal y(t). The receiver takes synchronized samples of this signal,
and generates after the sample-and-hold operation a random variable of the form

y(tk) = ak + n(tk) (6)

Sampled values y(tk) constitute a continuous random variable Y , and noise samples n(tk) taken
from a random signal n(t) form a random variable n.

The lowest complexity decision rule for deciding the received binary value is the so-called
hard decision, which consists only of comparing the sampled value y(tk) with a threshold U ,
such that if y(tk) > U , then the receiver considers that the transmitted bit is a 1, and if y(tk) < U
then the receiver considers that the transmitted bit is a 0. In this way the received sampled
signal y(tk) is converted into a signal xhd(t), basically of the same kind as that expressed in
equation (1), an apparently noise-free signal but possibly containing some errors with respect
to the original transmitted signal.

The probability density function of the random variable Y is related to the noise, and to
conditional probability of the transmitted symbols. The following hypotheses are relevant:

H0 is the hypothesis that a ‘0’ was transmitted ak = 0, Y = n

H1 is the hypothesis that a ‘1’ was transmitted ak = A, Y = A + n.

The probability density function of the random variable Y conditioned on the event H0 is
given by

pY(y/H0) = pN(y) (7)

where pN(y) is the Gaussian probability density function.
For hypothesis H1,

pY(y/H1) = pN(y − A) (8)

The probability density function in this case is shifted to the value n = y − A. Thus, the
probability density function for the noisy signal is the probability density function for the
noise-free discrete signal 0 or A (unipolar format) added to the probability density function of
the noise pN(n). Figure A.5 shows the reception of a given digital signal performed using hard
decision.

The probability density function for each signal is the Gaussian probability density function
centred at the value of the amplitude that is transmitted.

Figure A.6 shows the shadowed areas under each probability density function that correspond
to the probability of error associated with each hypothesis. Thus, the receiver assumes that
if Y < U , hypothesis H0 has occurred, and if Y > U, hypothesis H1 has occurred. Error
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Figure A.5 Reception of a digital signal
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Figure A.6 Bit error rate calculation

probabilities associated with each hypothesis are described in Figure A.6, and are equal to

Pe0 = P(Y > U/H0) =
∫ ∞

U
pY(y/H0) dy (9)

Pe1 = P(Y < U/H1) =
∫ U

−∞
pY (y/H1) dy (10)



OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

332 Essentials of Error-Control Coding

The threshold value U should be conveniently determined. A threshold value U close to the
amplitude 0 reduces the error probability associated with the symbol ‘1’, but strongly increases
the error probability associate with the symbol ‘0’, and vice versa. The error probability of
the whole transmission is an average over these two error probabilities, and its calculation can
lead to a proper determination of the value of the threshold U:

Pe = P0 Pe0 + P1 Pe1 (11)

where P0 = P(H0), P1 = P(H1).
P0 and P1 are the source symbol probabilities; that is, the probabilities of the transmission

of a symbol ‘0’ and ‘1’. The average error probability is precisely the mean value of the errors
in the transmission that takes into account the probability of occurrence of each symbol.

The derivative with respect to the threshold U of the average error probability is set to be
equal to zero, to determine the optimal value of the threshold:

dPe/dU = 0 (12)

This operation leads to the following expression:

P0 pY (Uopt/H0) = P1 pY (Uopt/H1) (13)

If the symbols ‘0’ and ‘1’ of the transmission are equally likely

P0 = P1 = 1

2
(14)

then

Pe = 1

2
(Pe0 + Pe1) (15)

and the optimal value of the threshold is then

pY(Uopt/H0) = pY(Uopt/H1) (16)

As seems reasonable, the optimal value of the threshold U is set to be in the middle of the two
amplitudes, Uopt = A/2, if the symbol source probabilities are equal; that is, if symbols are
equally likely (see Figure A.6).

The Gaussian probability density function with zero mean value and variance σ 2 charac-
terizes the error probability of the involved symbols if they are transmitted over the AWGN
channel. This function is of the form

pN(y) = 1√
2πσ 2

e− y2

2σ2 (17)

In general, this probability density function is shifted to a mean value m and has a variance
σ 2, such that

pN(y) = 1√
2πσ 2

e− (y−m)2

2σ2 (18)
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Figure A.7 Normalized Gaussian probability density function Q(k)

The probability that a given value of the random variable Y is larger than a value m + kσ is
a function of the number k, and it is given by

P(Y > m + kσ ) = 1√
2πσ 2

∫ ∞

m+kσ

e− (y−m)2

2σ2 dy (19)

These calculations are simplified by using the normalized Gaussian probability density func-
tion, also known as the function Q(k) (Figure A.7):

Q(k) = 1√
2π

∫ ∞

k
e− (λ)2

2 dλ (20)

obtained by putting

λ = y − m

σ
(21)

This normalized function can be used to calculate the error probabilities of the digital trans-
mission described in equations (9) and (10).

Pe0 =
∫ ∞

U
pN(y) dy = 1√

2πσ 2

∫ ∞

U
e− y2

2σ2 dy = Q(U/σ ) (22)

and

Pe1 =
∫ U

−∞
pN(y − A) dy = 1√

2πσ 2

∫ U

−∞
e− (y−A)2

2σ2 dy = Q((A − U ) / σ ) (23)

If U = Uopt, the curves intersect in the middle point Uopt = A/2.
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In this case these error probabilities are equal to

Pe0 = Pe1 = Q

(
A

2σ

)
(24)

Pe = 1

2
(Pe0 + Pe1) = Q

(
A

2σ

)
This is the minimum value of the average error probability for the transmission of two equally
likely symbols over the AWGN channel. As seen in the above expressions, the term A/2σ (or
equivalently its squared value) defines the magnitude of the number of errors in the transmis-
sion, that is, the error probability or bit error rate of the transmission.

The result is the same for transmission using the polar format (ak = ±A/2), if the symbol
amplitudes remain the same distance A apart.

The above expressions for the error probability can be generalized for the transmission of
M symbols taken from a discrete source, and they can also be described in terms of the signal-
to-noise ratio. The power associated with the transmission of the signal described in equation
(1) is useful for this latter purpose. Let us take a sufficiently long time interval T0, such that
T0 = NT, and N � 1. The amplitude-modulated pulse signal uses the normalized pulse

p(t) =
{

1 |t | < τ/2
0 ||t | > τ/2

(25)

where τ ≤ T . Then the power associated with this signal is equal to

SR = 1

T0

∫ T0/2

−T0/2

(∑
k

ak p(t − kT )2

)
dt = 1

T0

∫ T0/2

−T0/2

∑
k

a2
k p2(t − kT ) dt

= 1

T0

∫ T0/2

−T0/2

k=N/2∑
k=−N/2

a2
k p2(t − kT ) dt

SR =
∑

k

1

NT

∫ T/2

−T/2

a2
k p2(t) dt = N0

NT

∫ T/2

−T/2

a2
0 p2(t) dt + N1

NT

∫ T/2

−T/2

a2
1 p2(t) dt

SR = P0

1

T

∫ τ/2

−τ/2

a2
0 p2(t) dt + P1

1

T

∫ τ/2

−τ/2

a2
1 p2(t) dt (26)

The duration of the pulse can be equal to the whole time interval T = τ = Tb, in this case it
is said that the format is non-return-to-zero (NRZ), or it can be shorter than the whole time
interval τ < Tb, then the format is said to be return-to-zero (RZ). For the NRZ format,

SR = A2
/2 unipolar NRZ

SR = A2/4 polar NRZ

A =
{√

2SR unipolar√
4SR polar

(27)
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A

0 0
t

s1(t) s0(t)

A

t

TbTb

Figure A.8 Signalling in the NRZ unipolar format

If σ 2 is the noise power NR at the output of the receiver filter, then

(
A

2σ

)2

= A2

4NR

=
{

(1/2)(S/N )R unipolar

(S/N )R polar
(28)

Thus, unipolar format needs twice the signal-to-noise ratio to have the same BER performance
as that of the polar format.

The error probability was determined as a function of the parameter A/2σ . However, a
more convenient way of describing this performance is by means of the so-called average bit
energy-to-noise power spectral density ratio Eb/N0. This new parameter requires the following
definitions:

Eb = SR

rb

average bit energy (29)

Eb

N0

= SR

N0rb

average bit energy-to-noise power spectral density ratio (30)

The average bit energy of a sequence of symbols such as those described by the digital signal
(1) is calculated as

Eb = E

[
a2

k

∫ ∞

−∞
p2(t − k D) dt

]
= E

[
a2

k

∫ ∞

−∞
p2(t) dt

]
= a2

k

∫ ∞

−∞
p2(t) dt (31)

The above parameters are calculated for the unipolar NRZ format. In this format a ‘1’ is usually
transmitted as a rectangular pulse of amplitude A, and a ‘0’ is transmitted with zero amplitude
as in Figure A.8.

The average bit energy Eb is equal to

E1 =
∫ Tb

0

s2
1 (t) dt = A2Tb

E0 =
∫ Tb

0

s2
0 (t) dt = 0

Eb = P0 E0 + P1 E1 = 1

2
(E0 + E1) = A2Tb

2
(32)
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Figure A.9 Signalling in the NRZ polar format

Since the transmission is over the AWGN channel of bandwidth B and for the maximum
possible value of the symbol or bit rate rb = 2B, [1–4], the input noise is equal to

NR = σ 2 = N0 B = N0rb

2
(33)

This is the minimum amount of noise that inputs the receiver if a matched filter is used [1–4].
The quotient (A/2σ )2 can be now expressed as(

A

2σ

)2

= A2

4σ 2
= 2Ebrb

4N0rb/2
= Eb

N0

(34)

In the case of the NRZ polar format, where a ‘1’ is usually transmitted as a rectangular pulse of
amplitude A/2 and a ‘0’ is transmitted as a rectangular pulse of amplitude −A/2 (Figure A.9).

Then the average bit energy Eb is

E1 =
∫ Tb

0

s2
1 (t) dt = A2Tb

4

E0 =
∫ Tb

0

s2
0 (t) dt = A2Tb

4

Eb = P0 E0 + P1 E1 = 1

2
(E0 + E1) = A2Tb

4
(35)

and so (
A

2σ

)2

= A2

4σ 2
= 4Ebrb

4N0rb/2
= 2Eb

N0

(36)

It is again seen that the polar format has twice the value of (A/2σ )2 for a given value of
Eb/N0 with respect to the unipolar format:

(
A

2σ

)2

=
{

Eb

N0
unipolar

2Eb

N0
polar

(37)
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Now expressing the error probabilities of the two formats in terms of the parameter Eb/N0,
we obtain

Pe =
⎧⎨⎩ Q

(√
Eb

N0

)
unipolar

Q
(√

2Eb

N0

)
polar

(38)

This is the minimum value of the error probability and is given when the receiver uses the
matched filter. Any other filter will result in a higher bit error rate than that expressed in (38).
The matched filter is optimum in terms of maximizing the signal-to-noise ratio for the reception
of a given pulse shape, over a given channel transfer function, and affected by a given noise
probability density function.
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Appendix B: Galois Fields GF(q)

This appendix is devoted to an introduction to finite fields, usually called Galois fields GF(q).
A related algebraic structure called a group is first described. The aim of this appendix is
to define polynomial operations over these algebraic structures. The main concept in terms
of its utility for designing error-control codes is that a polynomial defined over a finite field
GF(pprime) has roots in that field, or in one of its extensions GF(q). In the same way, each
element a of the extended finite field GF(q) is a root of some polynomials with coefficients in
the finite field GF(pprime). The polynomial of minimum degree that satisfies this condition is
called a minimum polynomial of a.

B.1 Groups

A group Gr is defined as a set of elements that are related by some specific operations. For a
given group Gr of elements, the binary operation ∗ is defined as an assignment rule for any two
elements of this group, a and b. In this rule these two elements are assigned a unique element
c of the same group, such that c = a∗b. This operation is said to be closed over the group Gr

because its result is another element of the same group. This operation is said to be associative
if it satisfies

a ∗ (b ∗ c) = (a ∗ b) ∗ c (1)

B.1.1 Definition of a Group Gr

A set of elements Gr over which the binary operation ∗ is defined is said to be a group, if the
following conditions are satisfied:

1. The binary operation ∗ is associative.
2. The set of elements Gr contains an element e, such that for every element of the set a ∈ Gr,

e ∗ a = a ∗ e = a (2)

The element e is called the identity for the binary operation ∗.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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3. For every element of the set a ∈ Gr, there is another element of the same set a′ ∈ Gr, such
that

a ∗ a′ = a′ ∗ a = e (3)

The element a′ is called the inverse element of a.

A group Gr is said to be commutative if, for every pair of its elements a, b ∈ Gr, it is true
that

a ∗ b = b ∗ a (4)

It can be shown that both the inverse element a′ of an element a and the identity e of the
binary operation defined over the group Gr are unique.

B.2 Addition and Multiplication Modulo m

For a set of elements Gr = {0, 1, 2, . . . , i, j, . . . , m − 1} that satisfies the conditions for being
a group, the addition operation ⊕ between any two of its elements i and j is defined as

i ⊕ j = r

r = (i + j)mod(m) (5)

that is, the addition of any two elements of the group i and j is the remainder of the division
of the arithmetic addition (i + j) by m. This operation is called modulo-m addition.

Modulo-2 addition, for instance, is defined over the group Gr = {0, 1}:
0 ⊕ 0 = 0,

1 ⊕ 1 = 0,

0 ⊕ 1 = 1,

1 ⊕ 0 = 1,

As an example, the last result comes from the calculation of 1 + 0 = 1, and 1/2 = 0 with re-
mainder 1, then 1 ⊕ 0 = 1. A group constituted of pprime elements Gr = {1, 2, 3, . . . , pprime −
1}, where pprime is a prime number. pprime : 2, 3, 5, 7, 11, . . . is a commutative group under
modulo-pprime addition.

Multiplication modulo-pprime between any two elements i and j is defined as

i ⊗ j = r

r = i j mod pprime (6)

For the binary group Gr = {0, 1}, this operation is determined by the following table:

0 ⊗ 0 = 0

1 ⊗ 1 = 1

0 ⊗ 1 = 0

1 ⊗ 0 = 0
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Table B.1 Modulo-2 addition

⊕ 0 1

0 0 1

1 1 0

As an example, the last result of the above table comes from the calculation of 1 × 0 = 0,
and 0/2 = 0 with remainder 0, then 1 ⊗ 0 = 0.

B.3 Fields

The definition of groups is useful for introducing the definition of what is called a finite
field. A field is a set of elements F for which addition, multiplication, subtraction and division
performed with its elements result in another element of the same set. Once again, the definition
of a field is based on the operations described over such a field. For addition and multiplication
operations, the following conditions define a field:

1. F is a commutative group with respect to the addition operation. The identity element for
the addition is called ‘0’.

2. F is a commutative group for the multiplication operation. The identity element for multi-
plication is called ‘1’.

3. Multiplication is distributive with respect to addition:

a(b + c) = ab + ac (7)

The number of elements of a field is called the order of that field. A field with a finite number
of elements is usually called a finite field, or Galois field GF.

The inverse for the addition operation of an element of the field a ∈ F is denoted as −a, and
inverse for the multiplication operation of an element of the field is denoted as a−1. Subtraction
and division operations are defined as a function of the inverse elements as

a − b = a + (−b)

a/b = a(b−1) (8)

The set Gr = {0, 1} defined under addition and multiplication modulo 2 is such that Gr =
{0, 1} is a commutative group with respect to the addition operation, and is also a commutative
group with respect to the multiplication operation. This is the so-called binary field GF(2).

Operations in this binary field are defined by Tables B.1 and B.2.

Table B.2 Modulo-2 multiplication

• 0 1

0 0 0

1 0 1
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For a given prime number pprime, the set of integer numbers {0, 1, 2, 3, . . . , pprime − 1}
is a commutative group with respect to modulo-pprime addition. The set of integer numbers
{1, 2, 3, . . . , pprime − 1} is a commutative group with respect to multiplication modulo pprime.
This set is therefore a field of order pprime. They are also called prime fields GF (pprime).

An extension of a prime field GF(pprime) is called an extended finite field GF(q) = GF(pm
prime),

with m a positive integer number. This extended field is also a Galois field. Particular cases of
practical interest are the finite fields of the form GF(2m), with m a positive integer number.

For a given finite field GF(q), and for an element of this field a ∈ GF(q), the powers of
this element are also elements of the finite field, since the multiplication operation is a closed
operation. Therefore,

a1 = a, a2 = a • a, a3 = a • a • a . . .

are also elements of the same finite field GF(q). However, these powers will start to repeat
because the field is a finite field, and its order is a finite number.

In other words, there should exist two integer numbers k and m, such that m > k and
am = ak . Since a−k is the multiplicative inverse of ak , a−kam = a−kak , or am−k = 1. There is
therefore a number n such that an = 1, and this number is called the order of the element a.
Thus, powers a1, a2, a3, . . . , an−1 are all different and form a group under multiplication in
GF(q).

It can be shown that if a is a non-zero element of the finite field GF(q), then aq−1 = 1. It is
also true that if a is a non-zero element of the finite field GF(q), and if n is the order of that
element, then n divides q − 1.

A non-zero element a of a finite field GF(q) is said to be a primitive element of that field
if the order of that element is q − 1. All the powers of a primitive element a ∈ GF(q) of a
field generate all the non-zero elements of that field GF(q). Every finite field has at least one
primitive element.

B.4 Polynomials over Binary Fields

The most commonly used fields are extensions of the binary field GF(2), and they are called
Galois fields GF(2m). Binary arithmetic uses addition and multiplication modulo 2. A polyno-
mial f (X ) defined over GF(2) is of the form

f (X ) = f0 + f1 X + f2 X2 + . . . + fn Xn (9)

where the coefficients fi are either 0 or 1. The highest exponent of the variable X is called the
degree of the polynomial. There are 2n polynomials of degree n. Some of them are

n = 1 X, X + 1

n = 2 X2, 1 + X2, X + X2, 1 + X + X2

Polynomial addition and multiplication are done using operations modulo 2, and satisfy the
commutative, associative and distributive laws. An important operation is the division of two
polynomials. As an example, the division of polynomial X3 + X + 1 by the polynomial X + 1
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is done as follows:

X3 + X + 1 | X + 1
− − − − − − −−

X3 + X2 X2 + X
− − − − − − −

X2 + X + 1
X2 + X
− − − − −

r (X ) = 1

The division is of the form

f (X ) = q(X )g(X ) + r (X ) (10)

where, in this example,

r (X ) = 1

q(X ) = X + X2

Definition B.1: An element of the field a is a zero or root of a polynomial f (X ) if f (a) = 0.
In this case a is said to be a root of f (X ) and it also happens that X − a is factor of this
polynomial f (X ).

Thus, for example, a = 1 is a root of the polynomial f (X ) = 1 + X2 + X3 + X4 , and so
X + 1 is a factor of this polynomial f (X ). The division of f (X ) by X + 1 has the quotient
polynomial q(X ) = 1 + X + X3. Remember that the additive inverse of a, −a, is equal to a,
a = −a, for modulo−2 operations.

Definition B.2: A polynomial p(X ) defined over GF(2), of degree m, is said to be irreducible,
if p(X ) has no factor polynomials of degree higher than zero and lower than m.

For example, the polynomial 1 + X + X2 is an irreducible polynomial, since neither X nor
X + 1 are its factors. A polynomial of degree 2 is irreducible if it has no factor polynomials
of degree 1. A property of irreducible polynomials over the binary field GF(2), of degree m, is
that they are factors of the polynomial X2m−1 + 1. For example, the polynomial 1 + X + X3

is a factor of X23−1 + 1 = X7 + 1.
Furthermore, an irreducible polynomial pi (X ) of degree m is a primitive polynomial if the

smallest integer number n, for which pi (X ) is a factor of Xn + 1, is n = 2m − 1. For example,
the polynomial X4 + X + 1 is a factor of X24−1+1 = X15+1, and it is not a factor of any
other polynomial of the form Xn + 1, where 1 ≤ n < 15. This means that the polynomial
X4 + X + 1 is a primitive polynomial.

Another interesting property of polynomials over GF(2) is that

( f (X ))2l = f (X2l
) (11)



OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

344 Essentials of Error-Control Coding

B.5 Construction of a Galois Field GF(2m)

An extended Galois field contains not only the binary elements ‘0’ and ‘1’ but also the element
α and its powers. For this new element,

0α = α0 = 0

1α = α1 = α

α2 = αα, α3 = αα2

αiα j = αi+ j = α jαi

A set of these elements is

F = {0, 1, α, α2, . . . , αk, . . .} (12)

which contains 2m elements. Since a primitive polynomial pi (X ), over GF(2) of degree m, is
a factor of X2m−1+1, and taking into account that pi (α) = 0,

X2m−1 + 1 = p(X )q(X )

α2m−1 + 1 = p(α)q(α) = 0 (13)

α2m−1 = 1

Therefore the set F is a finite set of 2m elements:

F = {0, 1, α, α2, . . . , α2m−2} (14)

The condition

i + j < 2m − 1 (15)

should be satisfied to make the set be closed with respect to the multiplication operation. This
means that if any two elements of the set αi and α j are multiplied, the result αk = αiα j should
be an element of the same set; that is, k < 2m − 1.

If

i + j = (2m − 1) + r, 0 ≤ r < 2m−1 (16)

then

αiα j = α(i+ j) = α(2m−1)+r = αr

and this result shows that the set is closed with respect to the multiplication operation. On the
other hand, for a given integer number i , such that 0 < i < 2m−1,

α2m−1−i is the multiplicative inverse of αi (17)

Thus, the set F = {0, 1,α,α2, . . . ,α2m−2} is a group of order 2m − 1 with respect to the
multiplication operation. To ensure that the set F is a commutative group under addition, the
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operation of addition in the set must be defined. For 0 ≤ i < 2m − 1, Xi is divided by p(X ),
resulting in

Xi = qi (X )p(X ) + ai (X ) (18)

ai (X ) is of degree m − 1 or less, and a(X ) = ai0 + ai1 X + ai2 X2 + · · · + ai,m−1 Xm−1. For
0 ≤ i, j < 2m − 1,

ai (X ) 	= a j (X ) (19)

If i = 0, 1, 2, . . . , 2m−2, there are 2m − 1 different polynomials ai (X ):

αi= qi (α)p(α) + ai (α) = ai (α)

αi= ai0+ai1 X + ai2 X2+ · · · + ai,m−1 Xm−1
(20)

These polynomials represent 2m − 1 non-zero elements α0,α1,α2, . . . , α2m−2.
There are 2m − 1 different polynomials in α over GF(2) which represent the 2m − 1 different

non-zero elements of the set F . This leads to a binary representation for each element of the
set.

The addition operation is defined as

0 ⊕ 0 = 0

0 ⊕ αi = αi ⊕ 0 = αi

and

αi ⊕ α j= (ai0 ⊕ a j0) + (ai1 ⊕ a j1)X + (ai2 ⊕ a j2)X2+ · · · + (ai,m−1 ⊕ a j,m−1)Xm−1 (21)

where addition element by element is done modulo 2. This is the same as saying that the
addition of any two elements of the set F = {0, 1,α,α2, . . . ,α2m−2} is the exclusive-OR bitwise
operation between the binary representation of those two elements, which are equivalent to the
corresponding polynomial expressions in α.

This set F of elements defined as above is commutative with respect to the addition operation,
and the set of non-zero elements of F is commutative with respect to the multiplication
operation. Therefore the set

F = {0, 1,α,α2, . . . ,α2m−2}
is a Galois field or finite field of 2m elements, GF(2m).

Example B.1: Let m = 3, and pi (X ) = 1 + X + X3 a primitive polynomial over GF(2). Since
pi (α) = 1 + α + α3 = 0, then α3 = 1 + α. The field GF(23) can be constructed, making use
of the above expression, in order to determine all the non-zero elements of that field. Thus, for
example, α4 = αα3 = α(1 + α) = α + α2.

Table B.3 shows all the elements of the Galois field GF(23) generated by pi (X ) = 1 + X +
X3. Examples of the product and sum of two elements in this field are calculated as follows:

α4α6 = α10 = α10−7 = α3

α2 + α4 = α2 + α + α2 = α
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Table B.3 The Galois field GF(23) generated by pi (X ) = 1 + X + X 3

Exp. representation Polynomial representation Vector representation

0 0 0 0 0

1 1 1 0 0

α α 0 1 0

α2 α2 0 0 1

α3 1 +α 1 1 0

α4 +α +α2 0 1 1

α5 1 +α +α2 1 1 1

α6 1 +α2 1 0 1

The most commonly used way of determining the sum of two elements of a Galois field is
by doing the bitwise exclusive-OR operation over the binary representations of these two
elements.

Example B.2: Determine the table of the elements of the Galois field GF(24) generated by
the primitive polynomial pi (X ) = 1 + X + X4.

According to the expression for the primitive polynomial, pi (α) = 1 + α + α4 = 0, or α4 =
1 + α. The generated field GF(24) is shown in Table B.4.

B.6 Properties of Extended Galois Fields GF(2m)

Polynomials defined over the binary field GF(2) can have roots that belong to an extended
field GF(2m). This is the same as what happens in the case of polynomials defined over the

Table B.4 The Galois field GF(24) generated by pi (X ) = 1 + X + X 4

Exp. representation Polynomial representation Vector representation

0 0 0 0 0 0

1 1 1 0 0 0

α α 0 1 0 0

α2 α2 0 0 1 0

α3 α3 0 0 0 1

α4 1 +α 1 1 0 0

α5 α +α2 0 1 1 0

α6 +α2 +α3 0 0 1 1

α7 1 +α +α3 1 1 0 1

α8 1 +α2 1 0 1 0

α9 α +α3 0 1 0 1

α10 1 +α +α2 1 1 1 0

α11 α +α2 +α3 0 1 1 1

α12 1 +α +α2 +α3 1 1 1 1

α13 1 +α2 +α3 1 0 1 1

α14 1 +α3 1 0 0 1
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set of real numbers, which can have roots outside that set; that is, roots that are complex
numbers.

As an example, the polynomial pi (X ) = 1 + X3 + X4 is irreducible over GF(2) since it has
no roots in that field, but it has, however, its four roots in the extended Galois field GF(24).
By simply replacing the variable X in the expression for the polynomial with the elements as
given in Table B.4 of the Galois field GF(24), it can be verified that α7, α11, α13 and α14 are
indeed the roots of that polynomial. As a consequence of this,

pi (X ) = 1 + X3 + X4

= (X + α7)(X + α11)(X + α13)(X + α14)

= [X2 + (α7 + α11)X + α18][X2 + (α13 + α14)X + α27]

= [X2 + (α8)X + α3][X2 + (α2)X + α12]

= X4 + (α8 + α2)X3 + (α12 + α10 + α3)X2 + (α20 + α5)X + α15

= X4 + X3 + 1

The following theorem determines a condition to be satisfied by the roots of a polynomial
taken from an extended field. This theorem allows determination of all the roots of a given
polynomial as a function of one of these roots β.

Theorem B.1: Let f (X ) be a polynomial defined over GF(2). If an element β of the extended
Galois field GF(2m) is a root of the polynomial f (X ), then for any positive integer l ≥ 0, β2l

is also a root of that polynomial.
Demonstration of this theorem is based on equation (11), and is done by simply replacing

the variable X in the polynomial expression of f (X ) with the corresponding root

( f (β))2l = (0)2l = f (β2l
) = 0

The element β2l
is called the conjugate of β.

This theorem states that if β is an element of the extended field GF(2m) and also a root of
the polynomial f (X ), its conjugates are also elements of the same field and roots of the same
polynomial.

Example B.3: The polynomial pi (X ) = 1 + X3 + X4 defined over GF(2) has α7 as one of
its roots. This means that, by applying Theorem B.1, (α7)2 = α14, (α7)4 = α28 = α13 and
(α7)8 = α56 = α11 are also roots of that polynomial. This is the whole set of roots since the
next operation (α7)16 = α112 = α7 repeats the value of the original root.

In this example it is also verified that the root β = α7 satisfies the condition β2m−1 =
β15 = (α7)15 = α105 = α0 = 1. In general, it is verified that β2m−1 = 1, because for an element
a ∈ G F(q), it is true that aq−1 = 1. Equivalently,

β2m−1 + 1 = 0

that is, β is a root of the polynomial X2m−1 + 1. In general, every non-zero element of the
Galois field GF(2m) is a root of the polynomial X2m−1 + 1. Since the degree of the polynomial
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X2m−1 + 1 is 2m − 1, the 2m − 1 non-zero elements of GF(2m) are all roots of X2m−1 + 1.
Since the zero element 0 of the field GF(2m) is the root of the polynomial X , it is possible to
say that the elements of the field GF(2m) are all the roots of the polynomial X2m + X .

B.7 Minimal Polynomials

Since every element β of the Galois field GF(2m) is a root of the polynomial X2m + X , the
same element could be a root of a polynomial defined over GF(2) whose degree is less than
2m .

Definition B.3: The minimum-degree polynomial φ(X ), defined over GF(2) that has β as its
root, is called the minimal polynomial of β. This is the same as to say that φ(β) = 0.

Thus, the minimal polynomial of the zero element 0 is X , and the minimum polynomial of
the element 1 is 1 + X .

B.7.1 Properties of Minimal Polynomials

Minimal polynomials have the following properties [1]:

Theorem B.2: The minimum polynomial of an element β of a Galois field GF(2m) is an
irreducible polynomial.

Demonstration of this property is based on the fact that if the minimal polynomial was not
irreducible, it could be expressed as the product of at least two other polynomials φ(X ) =
φ1(X ) φ2(X ), but since φ(β) = φ1(β) φ2(β) = 0, it should be true that either φ1(β) = 0 or
φ2(β) = 0, which is contradictory with the fact that φ(X ) is of minimum degree.

Theorem B.3: For a given polynomial f (X ) defined over GF(2), and φ(X ) being the minimal
polynomial of β, if β is a root of f (X ), it follows that φ(X ) is a factor of f (X ).

Theorem B.4: The minimal polynomial φ(X ) of the element β of the Galois field GF(2m) is
a factor of X2m + X .

Theorem B.5: Let f (X ) be an irreducible polynomial defined over GF(2), and φ(X ) be the
minimal polynomial of an element β of the Galois field GF(2m). If f (β) = 0, then f (X ) =
φ(X ).

This last theorem means that if an irreducible polynomial has the element β of the Galois
field GF(2m) as its root, then that polynomial is the minimal polynomial φ(X ) of that element.

Theorem B.6: Let φ(X ) be the minimal polynomial of the element β of the Galois field
GF(2m), and let e be the smallest integer number for which β2e = β, then the minimal poly-
nomial of β is

φ(X ) =
e−1∏
i=0

(X + β2l
)
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Table B.5 Minimal polynomials of all the elements of the Galois

field GF(24) generated by pi (X ) = 1 + X + X 4

Conjugate roots Minimal polynomials

0 X
1 1 + X

α, α2, α4, α8 1 + X + X 4

α3, α6, α9, α12 1 + X + X 2 + X 3 + X 4

α5, α10 1 + X + X 2

α7, α11, α13, α14 1 + X 3 + X 4

Example B.4: Determine the minimal polynomial φ(X ) of β = α7 in GF(24). As seen in
Example B.3, the conjugates β2 = (α7)2 = α14, β22 = (α7)4 = α28 = α13 and β23 = (α7)8 =
α56 = α11 are also roots of the polynomial for which β = α7 is a root. Since β2e = β16 =
(α7)16 = α112 = α7 = β, then e = 4 so that

φ(X ) = (X + α7)(X + α11)(X + α13)(X + α14)

= [X2 + (α7 + α11)X + α18][X2 + (α13 + α14)X + α27]

= [X2 + (α8)X + α3][X2 + (α2)X + α12]

= X4 + (α8 + α2)X3 + (α12 + α10 + α3)X2 + (α20 + α5)X + α15

= X4 + X3 + 1

The construction of the Galois field GF(2m) is done by considering that the primitive poly-
nomial pi (X ) of degree m has α as its root, pi (α) = 0. Since all the powers of α generate all
the elements of the Galois field GF(2m), α is said to be a primitive element.

All the conjugates of α are also primitive elements of the Galois field GF(2m). In general, it
can be said that if β is a primitive element of the Galois field GF(2m), then all its conjugates
β2l

are also elements of the Galois field GF(2m).
Table B.5 shows the minimal polynomials of all the elements of the Galois field GF(24)

generated by pi (X ) = 1 + X + X4, as seen in Example B.2.
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Answers to Problems

Chapter 1

1.1 (a) 1.32, 2.32, 2.32, 3.32, 4.32, 4.32, 2.22
(b) 2.58, 86%

1.2 (a) 1.875 bits/symbol
(b) 17 bits

1.3 0.722, 0.123, 0.189
1.5 0.0703, 0.741
1.6 0.3199
1.7 1, 0.8112, 0.9182
1.8 1, 0.25, 0.75, 1, 0.38, 0.431, 0.531
1.9 0.767, 0.862 when α = 0.48

1.11 0.622, 0.781, 79.6%
1.12 (a) 29,902 bps,

(b) 19.21 dB
1.13 150,053 bps

Chapter 2

2.1 See Chapter 2, Section 2.2
2.2 5, 10
2.3 (a) 11 (b) n, 10 (c) 11
2.4 (a) 0.5

(b) G =
⎡⎣0 1 1 1 0 0

1 0 1 0 1 0
1 1 0 0 0 1

⎤⎦ HT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
(c) 3
(d) 1, 2
(e) (110), error in sixth position

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd
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2.5 A possible solution: G =
[

1 1 1 1 0
1 0 1 0 1

]
, H =

⎡⎣1 0 0 1 1
0 1 0 1 0
0 0 1 1 1

⎤⎦
2.6 (a)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) 7

2.7 (b) 0.25, 5 (c) 2.1 × 10−8

2.8 (a) H =

⎡⎢⎢⎣
1 0 0 0 0 0 1 0 1 1 0 1 1 1 1
0 1 0 0 0 1 0 1 0 1 1 1 1 0 1
0 0 1 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 0 0 0 1 0 1 1 1

⎤⎥⎥⎦
(c) (0110), error in the eighth position

2.9 (a) 6 (b) 4 (c) 0.6 (e) (0010111111) (f) (0110)
2.10 (a) 0.73, 1.04 × 10−4 (b) 0.722, 4.5 × 10−7

2.11 (a) Option 3 (b) 1.5 dB
2.12 (a) (12/11) rb, (15/11) rb, (16/11) rb (b) 7.2 dB, 6.63 dB, 5.85 dB

Chapter 3

3.1 It is for n = 6
3.2 (01010101)
3.3 (a) 0.43, 4 (b) (0010111) (c) r (X ) = 1
3.5 (a) (00010111111111) (b) (00111), yes (c) Yes

3.6 (a)

00 0 0 0 0 0 0
01 1 0 1 1 0 1
10 1 1 0 1 1 0
11 0 1 1 0 1 1

(b) 4, l = 3, t = 1
3.7 (a) 8, 6 (b) 256 (d) 3 (e) 6
3.8 (a) (000011001101011) (b) A correctable error in the fifth position
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Chapter 4

4.2 Examples of two elements: α9 → α + α3 + α4 → 01011, α20 → α2 + α3 → 00110
4.3

α X
1 1 + X
α, α2, α4, α8, α16 1 + X2 + X5

α3, α6, α12, α24, α17 1 + X2 + X3 + X4 + X5

α5, α10, α20, α9, α18 1 + X + X2 + X4 + X5

α7, α14, α28, α25, α19 1 + X + X2 + X3 + X5

α11, α22, α13, α26, α21 1 + X + X3 + X4 + X5

α15, α30, α29, α27, α23 1 + X3 + X5

4.4 g(X ) = 1 + X + X2 + X3 + X5 + X7 + X8 + X9 + X10 + X11 + X15

4.5 g(X ) = 1 + X3 + X5 + X6 + X8 + X9 + X10, 21, dmin = 7
4.6 (a) 6
4.7 g(X ) = 1 + X4 + X6 + X7 + X8, dmin = 5
4.8 (b) The consecutive roots are 1, α, α2; 2
4.9 e(X ) = 1 + X8

4.10 Errors at positions j1 = 11 and j2 = 4
4.11 (a) e(X ) = X7 + X30 (b) It does not detect the error positions

Chapter 5

5.1 G =
[

1 1 0
1 0 1

]
, 2, α

5.2 (a) g(X ) = X4 + α13 X3 + α6 X2 + α3 X + α10 (b) e(X ) = αX3 + α11 X7

(c) e(X ) = α8 X5

5.3 (a) g(X ) = X6 + α10 X5 + α14 X4 + α4 X3 + α6 X2 + α9 X + α6 (b) (15, 9)
5.4 e(X ) = α7 X3 + α3 X6 + α4 X12

5.5 (a) 2 (b) (1111111)

5.6 (a) 25, G =
[

1 0 4 3
0 1 2 3

]
, 3 (b) (1234)

5.7 (a) 0.6, 3 (b) Yes, (c) Fifth position, α

5.8 (a) g(X ) = X4 + α13 X3 + α6 X2 + α3 X + α10,
c(X ) = α5 X7 + α7 X5 + α4 X4 + α5 X2 + αX + α9

(b) c(X ) = α5 X11 + α7 X9 + α4 X8 + α5 X6 + αX5 + α9 X4

(c) e(X ) = X7 + X9, the decoder adds two errors,
e(X ) = X5 + X2, successful decoding of the error pattern

5.9 It can correct burst errors of 64 bits
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Chapter 6

6.1 (b) 6 (d) No
6.2 (a) 5 (b) Systematic
6.3 (a) g(1)(D) = 1 + D2, g(2)(D) = D + D2 (b) Catastrophic (c) (10, 01, 11)
6.4 (a) 2, 4 (b) (110, 101, 101, 011, 110, 011, 000)
6.5 (a) 4 (b) ( 10, 11, 11) (c) T (X ) = X4 + 2X5 + 2X6 + . . . (d) 16 × 10−6

6.6 (a) m = (101000 . . .)
6.7 (a) (11, 10, 01, 00, 11) (b) (00, 20, 20, 00, 00 . . . )
6.8 See Section 6.6
6.9 (a) 0.5, 5 (b) Non-systematic

6.10 m = (1110010 . . .)

Chapter 7

7.1 (a) HT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦, dmin,CC = 4

(b) dmin,BC = 3, dmin,conc = 5
(c) (11010000) decoded by the convolutional code, (110100) passed to the block code,
(100)decoded message vector

7.2 (a) 1/7, dmin,conc = 12 (b) dmin,conc = 12 = 3 × 4 = dmin,(3,1) × dmin,(7,3) (c) Same as (b)
7.3 (a) 0.5, 3 (b) (0000)
7.4 3, 5
7.5 (a)

m =
(−1 − 1, −1 − 1, −1 − 1, +1 − 1, −1 + 1, +1 − 1, −1 + 1, −1 − 1, +1 − 1,

+1 − 1, −1 − 1, +1 + 1, +1 − 1, −1 − 1, +1 − 1, −1 − 1

)
(b) Message successfully decoded in three iterations

Chapter 8

8.1 (a) There are at least seven cycles of length 4; the‘1’s involved in these cycles are seen
in matrix H below:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 1 1 0 0 0 1
1 0 1 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(b) In order to maintain s = 3, ‘1’s should be moved along the columns by replacement
of ‘0’s by ‘1’s and vice versa, in the same column. Every position of a ‘0’ in the above
matrix cannot be filled by replacement with a ‘1’ unless another cycle is formed.
(c) In general, it will correspond to another code.

8.2 (a) 4,

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

⎤⎥⎥⎦
(b) 3, 12/7, 13/4, 13/7, 0.429, 4 (c) 6, 4, that of cycle length 6

8.3 (a) (1011100) (b) cyclic graph, decoded vectors in successive iterations:
(1011000) , (1011001) , (1011101) , 1011100, successful decoding.

Systematic graph, decoded vectors in successive iterations:
(1011000) , (1011011) , (1011011) , 1011000, 10110101, 1011101, unsuccessful decod-
ing in six iterations.

8.4 (a) The decoder fluctuates between the two code vectors c = (00000) and c = (10100),
which are those closest to the received vector r = (10200).
(b) Connections between symbol nodes and parity check nodes are not enough for effec-
tive belief propagation.
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algorithm
BCJR, 210, 218, 234
Berlekamp-Massey, 128
Chien search, 111, 126
direct solution (of syndrome equations),

146
Euclidean, 108, 122, 125
soft output Viterbi algorithm (SOVA), 210
sum-product (belief propagation), 281,

282
Viterbi (VA), 182, 231

ARQ, 41, 68, 80, 317
go back N, 70
hybrid, 72
selective repeat, 70
stop and wait, 69

balanced incomplete block design, 281
bandwidth, 5, 27, 40, 336
bit, 1, 4
bit rate, 71
block length, 50
byte, 139

channel, 1, 10
additive white Gaussian noise (AWGN),

28, 40, 181, 213, 330
binary/non-binary erasure, 12, 39, 315,

317, 319
binary symmetric, 1, 11, 39, 188
capacity, 1, 21, 24, 31, 39
characteristics, 138, 213, 215

coding theorem, 2, 6, 25
delay, 71
discrete, 1, 30, 215, 218
feedback, 12, 65
memoryless, 191, 215, 218
non-symmetric, 39, 40
soft-decision (quantised), 194, 273
stationary, 216

code
array, 272
Bose, Chaudhuri, Hocquenghem (BCH),

97, 104
block, 41, 43, 50, 77
construction (of LDPC), 249
cyclic, 81, 86, 97, 115, 272, 281
cyclic redundancy check (CRC), 92, 317
concatenated, 140, 154, 253, 271
convolutional, 157
efficiency, 71
extended RS, 154
fountain, 317, 318
Gallager, 277
Hamming, 64, 89, 98, 99, 100
linear, 50, 157
low density parity check (LDPC), 277
linear random, 318
Luby transform (LT), 317, 320
minimum distance separable (MDS), 118
multiple turbo code (MTC), 253
non-binary/q-ary, 115, 317
non-linear, 94
non-systematic, 175
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code (Continued )
packet/frame, 68, 71, 92, 317, 318
perfect, 65
product, 272
punctured, 200, 209, 272
quasi-cyclic, 139, 281
rate, 43
rate compatible, 200, 203
regular/irregular LDPC, 280
repetition, 42, 77
Reed-Solomon (RS), 115, 136, 200
segment (of sequence), 157
sequence (of convolutional code), 161,

163, 165
shortened, 139, 154
single (simple) parity check (SPC), 88,

272, 310
structured/random LDPC, 280
systematic, 52, 119, 168, 278
turbo, 201, 209
variable length, 2
vector, 50
word, 2, 41, 50

concatenation, 140, 253
parallel, 209, 254
serial, 149, 200, 254

constraint length, 160, 184, 206

decoder
algebraic, 104, 125, 128
complexity, 147, 201, 202, 234, 254, 257,

277, 281, 297, 302, 306, 322
decoding (search) length, 184, 194
delay, 251
erasure, 149, 320
error trapping, 92
forward/backward recursion, 222, 237
hard-decision, 67, 189
inverse transfer function, 169
iterative, 130, 209, 221, 239, 282, 310
log-MAP, 210
log sum-product, 302
maximum a posteriori probability (MAP),

210, 214, 217
maximum likelihood (ML), 182, 192, 217
Meggitt, 91, 113

simplified sum-product, 297
soft-decision, 189, 194, 208
soft input, soft output, 209
spectral domain, 145
symbol/parity-check node, 308, 312, 314,

315
syndrome, 55, 89, 104, 120
turbo, 211, 239

delay (transform) domain (D-domain), 158,
161, 172

D-domain sequence, 173
detection

MAP, 214
matched filter, 12
ML, 181, 214
soft-decision, 213
symbol, 213

dimension
of block code 50
of vector space/sub-space, 47

distance, 32, 58, 177
BCH bound, 102, 113
cumulative, 182, 197
definition, 32, 58, 178
designed, 103
Euclidean, 189
Free/minimum free, 178, 180, 274
Hamming, 58, 182, 189
minimum, 58
soft, 193
squared Euclidean, 197

encoder
block, 50
catastrophic, 170, 205
channel, 3
connections, 160, 166, 281
convolutional, 158
memory, 159
non-systematic, 175
random, 33
recursive systematic, 209, 240
register length, 161
representations, 166
row/column, 273
shortest state sequence, 174, 176
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source, 3
state diagram, 166, 178, 185
systematic, 52, 85, 159, 168, 176
tree diagram, 168
trellis diagram, 168, 176, 197, 202,

218
turbo, 210

entropy, 4, 5, 6, 8
a posteriori, 15
a priori, 15
conditional, 10
forward/backward, 14
mutual, 16, 20
noise (error), 18, 20
output (sink), 18
source, 5, 8, 38

erasure, 12, 77, 149, 317
equivocation, 17, 39
error

bit error rate (BER), 329, 332
burst, 91, 137, 159, 200, 249
correction, 41, 43, 59
detection, 41, 42, 55, 89
event, 55
floor, 253, 255
pattern, 56, 91
probability, 1, 61, 66, 68, 186
random, 42, 62
rate, 2, 66, 195
undetected, 56, 68, 91, 181

EXIT chart
for turbo codes, 257, 259
for LDPC codes, 306, 312, 314, 315

finite field
binary, 32, 45, 341
conjugate element, 100, 347
construction, 344
extended, 97, 339
Galois, 45, 339
geometry, 281
primitive element, 100, 342

finite state sequential machine (FSSM), 158
impulse response sequence, 159
finite impulse response (FIR), 170, 206
generating function, 179, 207

infinite impulse response (IIR), 175, 208
transfer function, 172

forward error control/correction, 42, 65, 79,
184, 318

Gaussian elimination, 89
graph

bipartite/Tanner, 279, 281, 287, 320
cycles, 282, 297, 324
parity-check node, 283
symbol node, 283

group, 339

information
a priori, 209, 237, 239
average, 4
extrinsic, 209, 237
measure, 1, 3
mutual/transinformation, 10, 16, 39, 265,

312
rate, 4, 5
self, 38

inner product, 48, 51
interleaving, 137, 148, 253

block, 243, 25, 243, 275
convolutional, 154, 249, 250
in compact disc, 138
linear, 253
of connections, 308
permutation, 253, 273
random/pseudo-random, 209, 249, 251,

274
intersymbol interference (ISI), 328, 330

key equation, 107, 123, 125

L’Hopital’s rule, 5
linear dependence/independence, 47
log likelihood ratio (LLR), 214
low pass filter, 330

Mason’s rule, 179
matrix

generator, 48, 51, 53, 87, 162, 278, 319
parity-check, 54, 58, 278
puncturing, 201
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matrix (Continued )
row operation, 48, 87
row space, 48
state transfer function, 172, 176
transfer function, 158, 162, 170, 176
transition probability, 39

message, 2, 3, 43
modulo-2 addition/multiplication, 45, 82,

340

Newton identities, 130
Nyquist, 5, 30, 34

octal notation, 240

parity-check, 43, 52
equations, 53, 57

performance of coding, 23, 32, 34, 59, 65,
67, 68, 77, 152, 200, 203, 234, 257,
269, 277, 279, 281, 282, 297, 322

coding gain, 79, 195
error floor, 253, 255
EXIT chart, 257, 306
soft-decision bound, 194
waterfall region, 253, 255, 264, 269
union bound, 187

polynomial, 339, 342
code, 83, 100, 161
error evaluation, 106, 122
error location, 106, 122, 129
generator, 83, 94, 112, 115
irreducible, 100, 112, 343
message, 85
minimal, 97, 99, 112, 348
monic, 81
parity-check, 88, 94
primitive, 97,112, 343
remainder, 85
roots, 97, 101, 343
syndrome, 90, 123

power spectral density, 30, 65
probability

a posteriori, 15, 219, 234, 281
a priori, 15, 209
backward, 14

Bayes’ rule, 13, 192, 212, 235, 283
binomial distribution, 42
channel, 13
conditional, 10
conditional distribution, 213
density function, 24, 193, 212, 330
distribution function, 212
erasure, 12
error, 1
forward/transitional, 14, 39, 216
joint, 14
log likelihood ratio (LLR), 214, 234, 310
marginal distribution, 216
measure/metric, 212
node error, 188
output/sink, 13, 19
source, 5, 38

Q-function, 66, 333

retransmission error control/correction, 12,
41, 68, 80, 317

sampling, 5, 27, 30, 137, 189, 213, 329
sequence, 157

data, 327
generating function, 179, 185
generator, 160
survivor, 183

Shannon, 1, 2, 3, 10, 22, 34
limit, 36, 37, 209, 277, 322
theorems, 22, 25, 317

signal
average energy, 65, 335
digital, 327
M-ary, 40
non-return-to-zero (NRZ), 334
polar, 67, 190, 196, 214, 328, 334
pulse, 327
pulse amplitude modulated, 327
space, 27
-to-noise ratio, 35, 40, 65, 234, 335
unipolar, 327, 334
vector, 27, 28

sink, 3, 19



OTE/SPH OTE/SPH
JWBK102-IND JWBK102-Farrell June 17, 2006 19:11 Char Count= 0

Index 361

source, 1, 5
binary, 1
coding theorem, 22
compression, 2
discrete memoryless, 38
efficiency, 38
entropy, 5, 8, 38
extended, 9
information, 1, 6
information rate, 5, 6, 65
Markov, 215

standard array, 61
Stirling’s approximation, 24, 35
symbol, 3, 12, 213, 329
syndrome, 55, 61, 89

equations, 97, 124, 129, 146
vector, 55

systems
communications, 3, 31, 34, 42, 65, 68, 92,

200
compact disc (CD), 12, 136
data networks/internet, 12, 92, 317
duplex, 41, 317

trellis, 168, 192, 217, 223

Vandermonde determinant, 102, 117
vector

basis, 48
dual subspace, 48, 49
space, 44, 189
subspace, 46, 157

weight, 58


