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Preface

The subject of this book is the detection and correction of errors in digital information. Such
errors almost inevitably occur after the transmission, storage or processing of information in
digital (mainly binary) form, because of noise and interference in communication channels,
or imperfections in storage media, for example. Protecting digital information with a suitable
error-control code enables the efficient detection and correction of any errors that may have
occurred.

Error-control codes are now used in almost the entire range of information communication,
storage and processing systems. Rapid advances in electronic and optical devices and systems
have enabled the implementation of very powerful codes with close to optimum error-control
performance. In addition, new types of code, and new decoding methods, have recently been
developed and are starting to be applied. However, error-control coding is complex, novel and
unfamiliar, not yet widely understood and appreciated. This book sets out to provide a clear
description of the essentials of the topic, with comprehensive and up-to-date coverage of the
most useful codes and their decoding algorithms. The book has a practical engineering and
information technology emphasis, but includes relevant background material and fundamental
theoretical aspects. Several system applications of error-control codes are described, and there
are many worked examples and problems for the reader to solve.

The book is an advanced text aimed at postgraduate and third/final year undergraduate
students of courses on telecommunications engineering, communication networks, electronic
engineering, computer science, information systems and technology, digital signal processing,
and applied mathematics, and for engineers and researchers working in any of these areas. The
book is designed to be virtually self-contained for a reader with any of these backgrounds.
Enough information and signal theory, and coding mathematics, is included to enable a full
understanding of any of the error-control topics described in the book.

Chapter 1 provides an introduction to information theory and how it relates to error-control
coding. The theory defines what we mean by information, determines limits on the capacity of
an information channel and tells us how efficient a code is at detecting and correcting errors.
Chapter 2 describes the basic concepts of error detection and correction, in the context of the
parameters, encoding and decoding of some simple binary block error-control codes. Block
codes were the first type of error-control code to be discovered, in the decade from about 1940
to 1950. The two basic ways in which error coding is applied to an information system are
also described: forward error correction and retransmission error control. A particularly useful
kind of block code, the cyclic code, is introduced in Chapter 3, together with an example of
a practical application, the cyclic redundancy check (CRC) code for the Ethernet standard. In
Chapters 4 and 5 two very effective and widely used classes of cyclic codes are described,



Xiv Preface

the Bose—Chaudhuri-Hocquenghem (BCH) and Reed—Solomon (RS) codes, named after their
inventors. BCH codes can be binary or non-binary, but the RS codes are non-binary and are
particularly effective in a large number of error-control scenarios. One of the best known of
these, also described in Chapter 5, is the application of RS codes to error correction in the
compact disk (CD).

Not long after the discovery of block codes, a second type of error-control codes emerged,
initially called recurrent and later convolutional codes. Encoding and decoding even a quite
powerful convolutional code involves rather simple, repetitive, quasi-continuous processes,
applied on a very convenient trellis representation of the code, instead of the more complex
block processing that seems to be required in the case of a powerful block code. This makes it
relatively easy to use maximum likelihood (soft-decision) decoding with convolutional codes,
in the form of the optimum Viterbi algorithm (VA). Convolutional codes, their trellis and state
diagrams, soft-decision detection, the Viterbi decoding algorithm, and practical punctured
and rate-compatible coding schemes are all presented in Chapter 6. Disappointingly, however,
even very powerful convolutional codes were found to be incapable of achieving performances
close to the limits first published by Shannon, the father of information theory, in 1948. This
was still true even when very powerful combinations of block and convolutional codes, called
concatenated codes, were devised. The breakthrough, by Berrou, Glavieux and Thitimajshima
in 1993, was to use a special kind of interleaved concatenation, in conjunction with iterative
soft-decision decoding. All aspects of these very effective coding schemes, called turbo codes
because of the supercharging effect of the iterative decoding algorithm, are fully described in
Chapter 7.

The final chapter returns to the topic of block codes, in the form of low-density parity check
(LDPC) codes. Block codes had been found to have trellis representations, so that they could
be soft-decision decoded with performances almost as good as those of convolutional codes.
Also, they could be used in effective turbo coding schemes. Complexity remained a problem,
however, until it was quite recently realized that a particularly simple class of codes, the LDPC
codes discovered by Gallager in 1962, was capable of delivering performances as good or better
than those of turbo codes when decoded by an appropriate iterative algorithm. All aspects of
the construction, encoding, decoding and performance of LDPC codes are fully described in
Chapter 8, together with various forms of LDPC codes which are particularly effective for use
in communication networks.

Appendix A shows how to calculate the error probability of digital signals transmitted over
additive white Gaussian noise (AWGN) channels, and Appendix B introduces various topics
in discrete mathematics. These are followed by a list of the answers to the problems located
at the end of each chapter. Detailed solutions are available on the website associated with this
book, which can be found at the following address:

http://elaf1.fi.mdp.edu.ar/Error_Control

The website also contains additional material, which will be regularly updated in response
to comments and questions from readers.
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Information and Coding Theory

In his classic paper ‘A Mathematical Theory of Communication’, Claude Shannon [1] intro-
duced the main concepts and theorems of what is known as information theory. Definitions
and models for two important elements are presented in this theory. These elements are the
binary source (BS) and the binary symmetric channel (BSC). A binary source is a device that
generates one of the two possible symbols ‘0’ and ‘1’ at a given rate », measured in symbols
per second. These symbols are called bits (binary digits) and are generated randomly.

The BSC is a medium through which it is possible to transmit one symbol per time unit.
However, this channel is not reliable, and is characterized by the error probability p (0 < p <
1/2) that an output bit can be different from the corresponding input. The symmetry of this
channel comes from the fact that the error probability p is the same for both of the symbols
involved.

Information theory attempts to analyse communication between a transmitter and a receiver
through an unreliable channel, and in this approach performs, on the one hand, an analysis of
information sources, especially the amount of information produced by a given source, and, on
the other hand, states the conditions for performing reliable transmission through an unreliable
channel.

There are three main concepts in this theory:

1. The first one is the definition of a quantity that can be a valid measurement of information,
which should be consistent with a physical understanding of its properties.

2. The second concept deals with the relationship between the information and the source that
generates it. This concept will be referred to as source information. Well-known information
theory techniques like compression and encryption are related to this concept.

3. The third concept deals with the relationship between the information and the unreliable
channel through which it is going to be transmitted. This concept leads to the definition of
a very important parameter called the channel capacity. A well-known information theory
technique called error-correction coding is closely related to this concept. This type of
coding forms the main subject of this book.

One of the most used techniques in information theory is a procedure called coding, which is
intended to optimize transmission and to make efficient use of the capacity of a given channel.

Essentials of Error-Control Coding Jorge Castifieira Moreira and Patrick Guy Farrell
© 2006 John Wiley & Sons, Ltd
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Table 1.1 Coding: a codeword for each message

Messages Codewords
51 101
) 01
53 110
S4 000

In general terms, coding is a bijective assignment between a set of messages to be transmitted,
and a set of codewords that are used for transmitting these messages. Usually this procedure
adopts the form of a table in which each message of the transmission is in correspondence
with the codeword that represents it (see an example in Table 1.1).

Table 1.1 shows four codewords used for representing four different messages. As seen in
this simple example, the length of the codeword is not constant. One important property of a
coding table is that it is constructed in such a way that every codeword is uniquely decodable.
This means that in the transmission of a sequence composed of these codewords there should
be only one possible way of interpreting that sequence. This is necessary when variable-length
coding is used.

If the code shown in Table 1.1 is compared with a constant-length code for the same case,
constituted from four codewords of two bits, 00, 01, 10, 11, it is seen that the code in Table 1.1
adds redundancy. Assuming equally likely messages, the average number of transmitted bits
per symbol is equal to 2.75. However, if for instance symbol s, were characterized by a
probability of being transmitted of 0.76, and all other symbols in this code were characterized
by a probability of being transmitted equal to 0.08, then this source would transmit an average
number of bits per symbol of 2.24 bits. As seen in this simple example, a level of compression is
possible when the information source is not uniform, that is, when a source generates messages
that are not equally likely.

The source information measure, the channel capacity measure and coding are all related
by one of the Shannon theorems, the channel coding theorem, which is stated as follows:

If the information rate of a given source does not exceed the capacity of a given channel,
then there exists a coding technique that makes possible transmission through this unreliable
channel with an arbitrarily low error rate.

This important theorem predicts the possibility of error-free transmission through a noisy or
unreliable channel. This is obtained by using coding. The above theorem is due to Claude
Shannon [1, 2], and states the restrictions on the transmission of information through a noisy
channel, stating also that the solution for overcoming those restrictions is the application of
a rather sophisticated coding technique. What is not formally stated is how to implement this
coding technique.

A block diagram of a communication system as related to information theory is shown in
Figure 1.1.

The block diagram seen in Figure 1.1 shows two types of encoders. The channel encoder
is designed to perform error correction with the aim of converting an unreliable channel into
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Source > Source > Channel
encoder encoder
A
Noisy channel
Destination |« Source Channel P
decoder decoder

Figure 1.1 A communication system: source and channel coding

a reliable one. On the other hand, there also exists a source encoder that is designed to make
the source information rate approach the channel capacity. The destination is also called the
information sink.

Some concepts relating to the transmission of discrete information are introduced in the
following sections.

1.1 Information

1.1.1 A Measure of Information

From the point of view of information theory, information is not knowledge, as commonly
understood, but instead relates to the probabilities of the symbols used to send messages
between a source and a destination over an unreliable channel. A quantitative measure of
symbol information is related to its probability of occurrence, either as it emerges from a
source or when it arrives at its destination. The less likely the event of a symbol occurrence,
the higher is the information provided by this event. This suggests that a quantitative measure
of symbol information will be inversely proportional to the probability of occurrence.

Assuming an arbitrary message x; which is one of the possible messages from a set a given
discrete source can emit, and P(x;) = P; is the probability that this message is emitted, the
output of this information source can be modelled as a random variable X that can adopt any of
the possible values x;, so that P(X = x;) = P;. Shannon defined a measure of the information
for the event x; by using a logarithmic measure operating over the base b:

1
I; = —log, P; = log, <F> (1)

The information of the event depends only on its probability of occurrence, and is not
dependent on its content.
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The base of the logarithmic measure can be converted by using

log,(x) = log,(x) 2)

log,(a)

If this measure is calculated to base 2, the information is said to be measured in bits. If the
measure is calculated using natural logarithms, the information is said to be measured in nats.
As an example, if the event is characterized by a probability of P; = 1/2, the corresponding
information is /; = 1 bit. From this point of view, a bit is the amount of information obtained
from one of two possible, and equally likely, events. This use of the term bif is essentially
different from what has been described as the binary digit. In this sense the bit acts as the unit
of the measure of information.
Some properties of information are derived from its definition:

;=0 0=<P =1
I, -0 ifP—1
Ii>Ij ifPl‘<Pj

For any two independent source messages x; and x; with probabilities P; and P; respectively,
and with joint probability P(x;, x;) = P; P;, the information of the two messages is the addition
of the information in each message:

1 1 1
lij =log, 7=~ =log, & +log, - =1L +;
i i J

1.2 Entropy and Information Rate

In general, an information source generates any of a set of M different symbols, which are
considered as representatives of a discrete random variable X that adopts any value in the range
A = {x1, x2, ..., xpy}. Each symbol x; has the probability P; of being emitted and contains
information /;. The symbol probabilities must be in agreement with the fact that at least one
of them will be emitted, so
M
dYop=1 3)

i=1

The source symbol probability distribution is stationary, and the symbols are independent
and transmitted at a rate of » symbols per second. This description corresponds to a discrete
memoryless source (DMS), as shown in Figure 1.2.

Each symbol contains the information I; so that the set {I;, I, ..., Iy} can be seen as a
discrete random variable with average information

M M 1
Hy(X)=> PI; =) _ Pilog, <F> )
i=1 i=1 !
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Xi, X/' .
Discrete
memoryless |——>
source

Figure 1.2 A discrete memoryless source

The function so defined is called the entropy of the source. When base 2 is used, the entropy
is measured in bits per symbol:

H(X) = Z Pl = Z P; log, ( ) bits per symbol (®)]

The symbol information value when P; = 0 is mathematically undefined. To solve this
situation, the following condition is imposed: I; = oo if P; = 0. Therefore P; log, (1 / P,-) =0
(L’Hopital’s rule) if P; = 0. On the other hand, P; log (1/Pi) =0if P, = 1.

Example 1.1: Suppose that a DMS is defined over the range of X, A = {xy, x,, x3, x4}, and
the corresponding probability values for each symbol are P(X = x;) =1/2, P(X = x) =
P(X =x3)=1/8and P(X = x4) = 1/4.

Entropy for this DMS is evaluated as

M 1y _1 1 1 1
H(X) = Z P; log, P = - log2(2) + - 10g2(8) + - log2(8) + - 10g2(4)
= 1.75 bits per symbol

Example 1.2: A source characterized in the frequency domain with a bandwidth of W =
4000 Hz is sampled at the Nyquist rate, generating a sequence of values taken from the range
A ={-2,-1,0, 1, 2} with the following corresponding set of probabilities {5, % % 11—6, 116}.
Calculate the source rate in bits per second.

Entropy is first evaluated as

4 1\ _ 1 1 1
H(X)=)_ Plog, o ) =5 1022) + ; logy(4) + < log,(8)
i=1 !

1 1 5
+2 x 16 log,(16) = — bits per sample
The minimum sampling frequency is equal to 8000 samples per second, so that the information
rate is equal to 15 kbps.

Entropy can be evaluated to a different base by using

(6)
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Entropy H(X) can be understood as the mean value of the information per symbol provided
by the source being measured, or, equivalently, as the mean value experienced by an observer
before knowing the source output. In another sense, entropy is a measure of the randomness
of the source being analysed. The entropy function provides an adequate quantitative measure
of the parameters of a given source and is in agreement with physical understanding of the
information emitted by a source.

Another interpretation of the entropy function [5] is seen by assuming thatif n > 1 symbols
are emitted, n H(X) bits is the total amount of information emitted. As the source generates
r symbols per second, the whole emitted sequence takes n/r seconds. Thus, information will
be transmitted at a rate of

nH(X)
bps 7
(n/r)
The information rate is then equal to
R =rH(X)bps ®)

The Shannon theorem states that information provided by a given DMS can be coded using
binary digits and transmitted over an equivalent noise-free channel at a rate of

r, > R symbols or binary digits per second

It is again noted here that the bit is the unit of information, whereas the symbol or binary
digit is one of the two possible symbols or signals ‘0’ or ‘1°, usually also called bits.

Theorem 1.1: Let X be a random variable that adopts values in the range A = {xi,
X2, ..., Xy} and represents the output of a given source. Then it is possible to show that

0 < H(X) < log,(M) 9
Additionally,

H(X) =0 ifandonlyif P, = 1 for some i
H(X) =log,(M) ifandonlyif P, = I/M for every i (10)

The condition 0 < H(X) can be verified by applying the following:
Pilog,(1/P)— 0 if P, — 0

The condition H(X) < log,(M) can be verified in the following manner:

Let Oy, 0>, ..., Oy be arbitrary probability values that are used to replace terms 1/ P; by
the terms Q;/ P; in the expression of the entropy [equation (5)]. Then the following inequality
is used:

In(x) <x—1

where equality occurs if x = 1 (see Figure 1.3).
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Figure 1.3 Inequality In(x) < x — 1

After converting entropy to its natural logarithmic form, we obtain

M M
oN_ 1 ¥, (e
,;P"k’gz <?> ~ Q) ;P 1“(1%)

and if x = Q,'/P,',

M Q M Q M
§:Pi1n<?f>s§:P,~(7f—1) § Qi—Y P an
i=1 ! i

i=1 i=1

As the coefficients Q; are probability values, they fit the normalizing condition Z,Ai1 0, <1,

and it is also true that "M P, = 1.
Then

M
0,
P; log (—) <0 (12)

If now the probabilities Q; adopt equally likely values Q; = 1 / M,

ZPlog2< ) ZPlogz( ) ZPlogz(M) H(X) —log,(M) <0

H(X) < log,(M) 13)
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0 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 0.9 1
a

Figure 1.4 Entropy function for the binary source

In the above inequality, equality occurs when log, (1 / Pi) = log,(M), which means that P, =
1/M.

/The maximum value of the entropy is then log,(M), and occurs when all the symbols
transmitted by a given source are equally likely. Uniform distribution corresponds to maximum
entropy.

In the case of a binary source (M = 2) and assuming that the probabilities of the symbols
are the values

Ph=«o PP=1—-«a (14)

the entropy is equal to

H(X) = Q(a) = xlog, <l> + ({1 — a)log, < ! ) (15)
o l -«
This expression is depicted in Figure 1.4.

The maximum value of this function is given when &« = 1 — «, thatis, « = 1/2, so that the
entropy is equal to H(X) = log, 2 = 1 bps. (This is the same as saying one bit per binary digit
or binary symbol.)

When o — 1, entropy tends to zero. The function () will be used to represent the entropy
of the binary source, evaluated using logarithms to base 2.

Example 1.3: A given source emits » = 3000 symbols per second from a range of four
symbols, with the probabilities given in Table 1.2.
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Table 1.2 Example 1.3

X; P; I;

A 1/3 1.5849
B 1/3 1.5849
C 1/6 2.5849
D 1/6 2.5849

The entropy is evaluated as
1 1 .
H(X)=2x 3 x log,(3) + 2 x 3 x log,(6) = 1.9183 bits per symbol

And this value is close to the maximum possible value, which is log,(4) = 2 bits per symbol.
The information rate is equal to

R = rH(X) = (3000)1.9183 = 5754.9 bps

1.3 Extended DMSs

In certain circumstances it is useful to consider information as grouped into blocks of symbols.
This is generally done in binary format. For a memoryless source that takes values in the
range {x|, x2, ..., Xy}, and where P; is the probability that the symbol x; is emitted, the order
n extension of the range of a source has M" symbols {yi, y2, ..., yuu}. The symbol y; is
constituted from a sequence of n symbols x;;. The probability P(Y = y;) is the probability of
the corresponding sequence x;1, Xi2, - - - , Xi:

PY =y;)= P, Pa,..., Py (16)
where y; is the symbol of the extended source that corresponds to the sequence x;1, X;2, - - ., Xin-
Then

1
H(X") = P(y;)log (17)
y:Z > P(y)

Example 1.4: Construct the order 2 extension of the source of Example 1.1, and calculate its
entropy.

Symbols of the original source are characterized by the probabilities P(X = x;) =
1/2, P(X =x) = P(X =x3)=1/8and P(X = x4) = 1/4.

Symbol probabilities for the desired order 2 extended source are given in Table 1.3.

The entropy of this extended source is equal to

M? 1
H(X?*) =) Pilog, (F)
i=1 i

1

= 0.25log,(4) + 2 x 0.12510g,(8) + 5 x 0.0625 log,(16)
+4 x 0.0312510g,(32) + 4 x 0.015625 log,(64) = 3.5 bits per symbol
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Table 1.3 Symbols of the order 2 extended source and their probabilities for Example 1.4

Symbol  Probability =~ Symbol  Probability = Symbol  Probability = Symbol  Probability

X1X1 0.25 XoX1 0.0625 X3X1 0.0625 X4X1 0.125
X1X2 0.0625 X2X) 0.015625 X3X2 0.015625 X4X2 0.03125
X1X3 0.0625 X2X3 0.015625 X3X3 0.015625 X4X3 0.03125
X1X4 0.125 X2X4 0.03125 X3X4 0.03125 X4X4 0.06