

Botnet Detection
Countering the Largest

Security Threat

www.dbebooks.com - Free Books & magazines

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems

George Mason University

Fairfax, VA 22030-4444

email: jajodia@gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION

SECURITY are, one, to establish the state of the art of, and set the course for future research

in information security and, two, to serve as a central reference source for advanced and

timely topics in information security research and development. The scope of this series

includes all aspects of computer and network security and related areas such as fault tolerance

and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive

overviews of specific topics in information security, as well as works that are larger in scope

or that contain more detailed background information than can be accommodated in shorter

survey articles. The series also serves as a forum for topics that may not have reached a level

of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with

ideas for books under this series.

Additional titles in the series:
PRIVACY-RESPECTING INTRUSION DETECTION by Ulrich Flegel; ISBN: 978-

0-387-68254-9
SYNCHRONIZING INTERNET PROTOCOL SECURITY (SIPSec) by Charles A.

Shoniregun;

ISBN: 978-0-387-32724-2

SECURE DATA MANAGEMENT IN DECENTRALIZED SYSTEMS edited by Ting Yu

and Sushil Jajodia; ISBN: 978-0-387-27694-6

NETWORK SECURITY POLICIES AND PROCEDURES by Douglas W. Frye; ISBN: 0-

387-30937-3

DATA WAREHOUSING AND DATA MINING TECHNIQUES FOR CYBER SECURITY
by Anoop Singhal; ISBN: 978-0-387-26409-7

SECURE LOCALIZATION AND TIME SYNCHRONIZATION FOR WIRELESS

SENSOR AND AD HOC NETWORKS edited by Radha Poovendran, Cliff Wang, and Sumit

Roy; ISBN: 0-387-32721-5

PRESERVING PRIVACY IN ON-LINE ANALYTICAL PROCESSING (OLAP) by Lingyu

Wang, Sushil Jajodia and Duminda Wijesekera; ISBN: 978-0-387-46273-8

SECURITY FOR WIRELESS SENSOR NETWORKS by Donggang Liu and Peng Ning;

ISBN: 978-0-387-32723-5

MALWARE DETECTION edited by Somesh Jha, Cliff Wang, Mihai Christodorescu, Dawn

Song, and Douglas Maughan; ISBN: 978-0-387-32720-4

ELECTRONIC POSTAGE SYSTEMS: Technology, Security, Economics by Gerrit

Bleumer; ISBN: 978-0-387-29313-2

Additional information about this series can be obtained from
http://www.springer.com

Botnet Detection
Countering the Largest

Security Threat

edited by

Wenke Lee
Georgia Institute of Technology, USA

Cliff Wang
US Army Research Office, USA

David Dagon
Georgia Institute of Technology, USA

Wenke Lee

Georgia Institute Technology

College of Computing

266 Ferst Drive

Atlanta GA 30332-0765

wenke.lee@gmail.com

Cliff Wang

US Army Research Office

Computing and Information Science Div.

P.O.Box 12211

Research Triangle Park NC 27709-2211

cliff.wang@us.army.mil

David Dagon

Georgia Institute Technology

College of Computing

266 Ferst Drive

Atlanta GA 30332-0765

dagon@cc.gatech.edu

Library of Congress Control Number:

ISBN-13: 978-0-387-68766-7 eISBN-13: 978-0-387-68768-1

Printed on acid-free paper.

© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or

in part without the written permission of the publisher (Springer

Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,

USA), except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and

retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and

similar terms, even if they are not identified as such, is not to be taken as

an expression of opinion as to whether or not they are subject to

proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

 2007936179

Preface

Bots are computers infected with malicious program(s) that cause them to operate

against the owners’ intentions and without their knowledge. Bots communicate with

and take orders from their “botmasters”. They can form distributed networks of bots,

or botnets, to perform coordinated attacks. Botnets have become the platform of

choice for launching attacks on the Internet, including spam, phishing, click fraud,

key logging, key cracking and copyright violations, and denial of service (DoS).

More ominously, botnets can be an effective malware launching platform in such a

way that a new worm or virus is sent out instantaneously by numerous bots. Such

lightning strike significantly shortens the response time and patch window that net-

work administrators need to perform basic maintenance. There are many millions of

bots on the Internet on any given day, organized into thousands of botnets. It is clear

that botnets have become the most serious security threat on the Internet.

New approaches are need for botnet detection and response because existing se-

curity mechanisms, e.g., anti-virus (AV) software and intrusion detection systems,

are inadequate. Since bots are “computing resources”, the botmasters have the in-

centive to keep the bots under their control for as long as possible. Therefore, the

bots employ active evasion techniques to hide their activities. For example, malware

(or botcode) can be “packed” to evade AV signature matching, bots use standard (or,

common) protocols (e.g., IRC, http, etc.) for communication, and their activity

level can be set to below the normal user/computer activity level, etc.

In June 2006, the U.S. Army Research Office (ARO), Defense Advanced Re-

search Project Agency (DARPA), and Department of Homeland Security (DHS)

jointly sponsored a workshop on botnets. At the workshop, leading researchers as

well as government and industry representatives presented talks and held discus-

sions on topics including botnet detection techniques, response strategies, models

and taxonomy, and social and economical aspects of botnets.

This book is a collection of research papers presented at the workshop, as well

as some more recent work from the workshop participants.

Network monitoring is essential to botnet detection because bots have to com-

municate with a command center and/or with each other relatively frequently to get

updates and coordinate their activities. Chapter One, “Botnet Detection Based on

VI Preface

Network Behavior”, presents an approach to identify botnet command and control

activities using network flow statistics such as bandwidth, packet timing, and burst

duration. Chapter Two, “Honeynet-based Botnet Scan Traffic Analysis”, shows how

to use a honeynet to capture bots, study their scanning behavior, and then infer some

general properties of botnets.

A bot is a (compromised) computer running a malware or botcode. The botcode

dictates when and where a bot should contact a command center and what (mali-

cious) activities that bot needs to perform. Thus, if we can analyze the behavior of the

botcode, we can provide the critical information for botnet detection and response.

Chapter Three, “Characterizing Bot’s Remote Control Behavior”, describes an ap-

proach to differentiate a botcode and benign programs and identify the bot command

and control behavior.

Malware or botcode often tries to evade and resist analysis. One evasion tech-

nique that botcode can use is to contain hidden behavior that is only activated when

the (input) conditions are right. Chapter Four, “Automatically Identifying Trigger-

based Behavior in Malware”, describes how to automatically identify and satisfy

the conditions that will activate the hidden behavior so that the triggered malicious

behavior of botcode can be observed and analyzed. Since many malware analysis

techniques rely on virtual machines, an evasion or defensive technique used by the

botcode or a remote botnet command server is to detect whether a bot is running on

a virtual machine. Chapter Five, “Towards Sound Detection of Virtual Machines”,

demonstrates that indeed it is quite feasible to detect virtual machine monitors re-

motely across the Internet.

A major difference between botnets and previous generations of attacks is that

botnets are often used “for profit” (or, various forms of financial frauds). Chapter

Six, “Botnets and Proactive System Defense”, analyzes how botnets can compromise

the security of online economy and suggests several directions in proactive defense.

Chapter Seven, “Detecting Botnet Membership with DNSBL Counterintelligence”,

illustrates that “market-related activities” by the botmasters can be used to detect

botnets. In the case study, the botmaster wants to check that his spamming bots are

“fresh”, i.e., they are not listed in block-lists, so that they can be sold/rented for a

good price to the spamer. However, look-ups by the botmaster can be detected as

different from normal/legitimate look-ups, and thus his bots can be identified.

Botnet detection and response is currently an arms race. The botmasters rapidly

evolve their botnet propagation and command and control technologies to evade the

latest detection and response techniques from security researchers. If there are fun-

damental trade-offs and limitations associated with each type of botnets, then we

can design countermeasures with the objective to minimize the utility (or increase

the “cost”) of botnets. Chapter Eight is a study on taxonomy of botnets. It analyzes

possible (i.e., existing and future) botnets based on the utility of the communication

structures and their corresponding metrics, and identifies the response most effective

against the botnets.

We believe that this book will be an invaluable reference for security researchers,

practitioners, and students interested in developing botnets detection and response

technologies. Together, we will win the war against botnets.

Preface VII

We wish to thank the generous financial support from the U.S. Army Research

Office that made it possible to run the Botnet workshop and publish this book.

Atlanta, GA Wenke Lee

Research Triangle Park, NC Cliff Wang

August 2007 David Dagon

Contents

Botnet Detection Based on Network Behavior

W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas 1

Honeynet-based Botnet Scan Traffic Analysis

Zhichun Li, Anup Goyal, and Yan Chen . 25

Characterizing Bots’ Remote Control Behavior

Elizabeth Stinson and John C. Mitchell . 45

Automatically Identifying Trigger-based Behavior in Malware

David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song,

and Heng Yin . 65

Towards Sound Detection of Virtual Machines

Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian

Perrig, Leendert van Doorn . 89

Botnets and Proactive System Defense

John Bambenek and Agnes Klus . 117

Detecting Botnet Membership with DNSBL Counterintelligence

Anirudh Ramachandran, Nick Feamster, and David Dagon 131

A Taxonomy of Botnet Structures

David Dagon, Guofei Gu, Christopher P. Lee . 143

List of Contributors

John Bambenek

University of Illinois at Urbana-

Champaign

Urbana, IL 61801

bambenek@uiuc.edu

David Brumley

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

dbrumley@cmu.edu

Yan Chen

Northwestern University

Evanston, IL 60208

ychen@cs.northwestern.edu

David Dagon

266 Ferst Drive

Georgia Institute of Technology

Atlanta, GA 30332

dagon@cc.gatech.edu

Nick Feamster

266 Ferst Drive

Georgia Institute of Technology

Atlanta, GA 30332

feamster@cc.gatech.edu

Jason Franklin

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

jfrankli@cs.cmu.edu

Anup Goyal

Northwestern University

Evanston, IL 60208

gao210@cs.northwestern.edu

Guofei Gu

266 Ferst Drive

Georgia Institute of Technology

Atlanta, GA 30332

guofei@cc.gatech.edu

Cody Hartwig

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

chartwig@cmu.edu

Agnes Klus

University of Illinois at Urbana-

Champaign

Urbana, IL 61801

aklus@uiuc.edu

David Lapsely

BBN Technologies

Cambridge, MA 02138

dlapsely@bbn.com

XII List of Contributors

Christopher P. Lee

266 Ferst Drive

Georgia Institute of Technology

Atlanta, GA 30332

chrislee@gatech.edu

Zhichun Li

Northwestern University

Evanston, IL 60208

lizc@cs.northwestern.edu

Zhenkai Liang

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

zliang@cmu.edu

Carl Livadas

Intel Research

Santa Clara, CA 95054

carlx.livadas@intel.com

Mark Luk

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

mluk@cmu.edu

Jonathan M. McCune

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

jonmccune@cmu.edu

John C. Mitchell

Stanford University

Stanford, CA 94305

mitchell@cs.stanford.edu

James Newsome

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

jnewsome@cmu.edu

Adrian Perrig

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

perrig@cmu.edu

Anirudh Ramachandran

266 Ferst Drive

Georgia Institute of Technology

Atlanta, GA 30332

avr@cc.gatech.edu

Arvind Seshadri

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

arvinds@cs.cmu.edu

Dawn Song

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

dawnsong@cmu.edu

Elizabeth Stinson

Stanford University

Stanford, CA 94305

stinson@cs.stanford.edu

W. Timothy Strayer

BBN Technologies

Cambridge, MA 02138

strayer@bbn.com

Leendert van Doorn

Advanced Micro Devices

Austin, TX 78741

Leendert.vanDoorn@amd.com

Robert Walsh

BBN Technologies

Cambridge, MA 02138

rwalsh@bbn.com

Heng Yin

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

hyin@cmu.edu

Botnet Detection Based on Network Behavior

W. Timothy Strayer1, David Lapsely1, Robert Walsh1, and Carl Livadas2

1 BBN Technologies, Cambridge, MA 02138

strayer|dlapsely|rwalsh@bbn.com
2 Intel Research, Santa Clara, CA 95054

carlx.livadas@intel.com

Current techniques for detecting botnets examine traffic content for IRC commands,

monitor DNS for strange usage, or set up honeynets to capture live bots. Our bot-

net detection approach is to examine flow characteristics such as bandwidth, packet

timing, and burst duration for evidence of botnet command and control activity. We

have constructed an architecture that first eliminates traffic that is unlikely to be a

part of a botnet, classifies the remaining traffic into a group that is likely to be part of

a botnet, then correlates the likely traffic to find common communications patterns

that would suggest the activity of a botnet. Our results show that botnet evidence can

be extracted from a traffic trace containing over 1.3 million flows.

1 Introduction

Botnets are one of the most dangerous species of network-based attack today because

they involve the use of very large, coordinated groups of hosts for both brute-force

and subtle attacks. These large groups of hosts are assembled by turning vulnerable

hosts into so-called zombies, or bots, after which they can be controlled from afar. A

collection of bots, when controlled by a single command and control (C2) infrastruc-

ture, form what is called a botnet. Botnets obfuscate the attacking host by providing

a level of indirection — the attack host is separated from its victim by the layer of

zombie hosts, and the attack itself is separated from the assembly of the botnet by an

arbitrary amount of time.

Botnets derive their power by scale, both in their cumulative bandwidth and in

their reach. Botnets can cause severe network disruptions through massive distributed

denial-of-service attacks, and the threat of this disruption can cost enterprises large

sums in extortion fees. They are responsible for a vast majority of the spam on the In-

ternet today. Botnets are also used to harvest personal, corporate, or government sen-

sitive information for sale on a thriving organized crime market. They are a reusable

and renewable resource.

Governments are taking the threat of botnets seriously. In August 2005, Britain’s

NISCC (National Infrastructure Security Coordination Centre, the UK equivalent

2 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

to US-CERT) issued a warning about the increase in trojan activity targeting UK

government networks, stating that “the attacker’s aim appears to be covert gathering

and transmitting of commercially or economically valuable information” [22]. In

November 2005, the discovery of a botnet in US Department of Defense [32] caused

the head of DoD networks to issue an “information assurance standdown,” followed

by a full sweep of all DoD networks [5].

Efforts are underway to quantify the botnet problem, detect the presence of bot-

nets, and design defenses against attacks by botnets. In academia, for example, Ra-

machandran et al. have been studying the effectiveness of monitoring queries to DNS

blackhole lists to find bot masters looking to see if their bots have been black-

listed [23]. Dagon et al. use diurnal models to compare the propagation rate for

different botnets [4]. Karasaridis et al. use suspicious host activity reports (scanning

ports, emailing spam and virus, generating DDoS traffic) as indicators of flows to

analyze [14]. And Kandula et al. suggest ways for websites and other services to

thwart bot and other mechanical agents by using Turing tests [13].

Non-profit and volunteer organizations are involved. The Honeynet Project [31],

for example, has done extensive work on capturing live bots and characterizing

botnet activities, and a group of white-hat vigilantes is scouring the Internet looking

for evidence of botnets [21]. Industry and federally funded centers are also active:

Symantec publishes a semi-annual Internet Security Threat Report [30] identifying

trends in attack mechanisms, and CERT maintains a Vulnerability Notes Database [1]

with information on botnet and other attack vectors.

Determining the source of a botnet-based attack is a particular challenge. First,

there is a distinction between the attack and the attack mechanism. For single-

flow [26] and “stepping stone” chained-flow [37] attacks, the flow is both the mech-

anism and the attack, but for botnets, the mechanism (the botnet) is constructed and

maintained independently of how it is used. Second, there is a difference in what

constitutes the “attack origin.” Tracing flow-based attacks attempts to yield a single

responsible host; with botnets, every zombie host is an attacker. Finally, most flow-

based traceback systems adopt a reactive approach to attacks; the tracing of packets

back to their origin hosts is triggered after an attack is detected. Botnets can exist

in a benign state for an arbitrary amount of time before they are used for a specific

attack, affording some opportunity to identify them prior to the attack.

We are interested in botnets with tight command and control infrastructures, as

shown in Figure 1. IRC is the most common botnet C2 mechanism [10, 11, 16, 18,

19, 31] because it is scalable and easy to hide within. While instances of botnets

with looser control structures, such as those that use peer-to-peer networks, are in-

creasing, IRC-style C2 is still the most prevalent because it is scalable and provides

instantaneous control over the bots.

In botnets that use the chat style of command and control, the attacker issues

commands to the zombie hosts via a “rendezvous point,” which is usually an IRC

server. The rendezvous point may or may not be a compromised machine — there

are many public IRC servers that host unmonitored channels. The attacker and the

zombie hosts subscribe to the same IRC channel. The attacker issues commands and

the bots respond through that channel.

Botnet Detection Based on Network Behavior 3

Fig. 1. Actors in IRC-Based Botnet Architecture

This chapter presents a system for detecting the presence of a botnet and identi-

fying the rendezvous point using passive traffic analysis. (Some initial results were

presented in [29].) Our goal is to determine if we can find evidence of botnet activity

by only monitoring network traffic, and not by examining the traffic content, relying

on port numbers (IRC’s is 6667), or by watching DNS servers. We adopt a proac-

tive approach by identifying hosts that are likely part of a botnet before an attack by

extracting and analyzing flow characteristics that seem to match botnet C2 traffic.

Our technique employs a pipeline of increasingly more complex analyzers, fil-

tering out unlikely flows along each step, so that the most computationally inten-

sive analysis is done on a dramatically reduced traffic set. First, individual flows are

subjected to a series of filters and classifiers to eliminate as many of the flows as

possible, while being somewhat conservative so that botnet flows are not likely to

be eliminated. Next, the flows are correlated with each other, looking for groups of

flows that may be related by being part of the same botnet. Finally, the topologi-

cal information in the correlated flows is examined for the presence of a common

communication hub.

2 Approach

Since the vast majority of botnets are controlled using variations on IRC bots,

many botnet detection systems begin by simply looking for chat sessions (TCP port

6667) [12], and then examining the content for botnet commands [2]. Like many

client-server protocols, however, the use of a standard port number is largely just a

suggestion. Also, relying on having access to the packet contents and, even with that

access, being able to identify botnet commands, is an overly simplistic assumption.

4 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

Our system assumes only that the botnet command and control (C2) infrastructure is

based loosely on IRC.

2.1 Characterization of IRC-based C2 Flows

IRC-based botnets currently dominate as the preferred deployment technique. This

reflects the freely available bot-building source code, allowing attackers to focus on

botnet applications rather than on architecting and coding “mere plumbing.” IRC

is implemented through text-based interactions. Strings are sent to the chat server,

which replicates that data to each client. In the case of botnets, the clients are zom-

bies, and botnet commands are special strings.

We use chat traffic as an initial proxy for botnet C2 traffic. By looking at ex-

ample botnet commands [31], the important insight is that C2 messages are brief in

addition to being text-based. In the absence of access to extensive botnet traces, we

characterize chat flows to identify how we can separate the C2 channel from other

Internet traffic.

Specifically, there are four notable points. First, identification of chat is a statisti-

cal problem. For each attribute of a flow, chat flows are spread across the spectrum of

values. Instead of a deterministic decision, one is left with a probabilistic conclusion,

complete with the risk of false positives and false negatives.

Second, identification of chat in the absence of well-known ports and access to

the packet content is a difficult problem. Flows can be winnowed into likely chat and

likely non-chat classifications, but the likely chat classification will certainly include

a number of non-chat flows.

Third, consideration of attributes in isolation is a good start, but is not suffi-

cient — it is equivalent to using independent probabilities to evaluate the traffic.

Stronger techniques based upon interdependent conditional probabilities may be

needed as well.

Finally, the resulting characterization is good for guiding the construction of ef-

ficient filters for data reduction. By reducing the data set, even if it contains some

false positives, later steps can take advantage of more computationally intensive ap-

proaches.

2.2 The Processing Pipeline

Figure 2 shows our traffic-processing pipeline. Packet traces (in our case these are

recorded traces, but there is no reason the input cannot be live) are fed into a series

of quick reduction filters. With some a priori knowledge, one can also imagine a set

of white lists and black lists based on known good sites (packets to or from eBay,

for example, are very unlikely to be part of a botnet) and bad sites (those places

on a watch list, for example). Other filters examine simple flow attributions such as

duration or average packet size.

After the initial filters, the remaining flows are passed through a flow classifica-

tion engine based on machine learning techniques. The classifiers attempt to group

Botnet Detection Based on Network Behavior 5

Fig. 2. Botnet Detection Processing Pipeline

flows into broadly defined categories. Those flows that appear to have chat-like char-

acteristics are passed on to the correlator stage.

The correlator does a pairwise examination of the remaining flows looking for

flows that are behaving in a similar manner, as one might expect of two flows gen-

erated by the same application. Botnets are so large that commands are issued to the

whole group, or large subgroups, and not to individuals. Flows that are correlated are

passed on to topological analysis, where “social topology” is applied to determine

which flows share a common controller.

The result of this pipeline is a (hopefully) small set of flows that show a fair

amount of evidence that they are related and are part of a botnet. The pipeline does

not prove the flows are part of a botnet; rather, the flows that survive strongly suggest

closer examination. This examination may be deep, if there is access to the hosts that

are the flow endpoints, as may happen in an enterprise or campus, or the examination

may be limited to listing the flows and the flow endpoints in a watch list for later use

if a botnet-based attack occurs. Knowing the social structure of a group of hosts prior

to an attack is better than trying to piece the structure together during the attack.

2.3 Source of Background Traffic

It would be too contrived to try to create a large dataset of both background and bot-

net traffic using a tightly controlled testbed. Instead, we incorporated a background

traffic data set recorded from true Internet use. We chose packet traces collected on

the Dartmouth campus under their CRAWDAD project [15]. The traces are a com-

plete set of TCP/IP headers from the campus wireless, taken over a period of four

6 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

months (November 1, 2003 to February 28, 2004) from a variety of campus locations.

No payloads were included in the trace.

In all, the traces were 164 GBytes compressed, and approximately 3.8 times that

amount when uncompressed. This large trace set means that we truly are looking for

the needle (botnet C2 flows) in a haystack.

From this set of traces, we selected a subset of traces that corresponded to a

particular building that we shall label “Building X.” We believed the traces from

Building X to be representative of “typical” Internet background traffic for our botnet

scenario. We then selected a reference time point of Monday November 10, 14:30

EST, 2003 as the time at which we would attempt to detect our synthesized botnet

(the needle) in the presence of this background traffic (the haystack). Our detection

process examined all of the uni-directional flows of data between hosts from the start

of the Building X traces on Monday November 1, 2003 at 23:12 EST until just after

our reference time point on Monday November 10, 2003 at 14:30 EST. In total, 1.34

million uni-directional data flows were examined.

2.4 Source of Botnet Traces

In order to generate traffic that was representative of real botnet traffic, we imple-

mented a benign bot based on the “Kaiten” bot, a widespread bot that has readily

downloadable source code. The Kaiten bot was implemented in C using approxi-

mately 1000 lines of code. We reverse engineered the Kaiten code and then reimple-

mented it.

The original Kaiten bot had a repertoire of TCP- and UDP-based attacks. Our

bot implementation does not implement these attacks. Like the Kaiten bot, our bot

provides a number of remotely controlled features, including a mechanism to execute

arbitrary commands on the bot client, HTTP download capability, a flexible multi-

process architecture, a highly configurable architecture and a rich command set.

In order to obtain traces of actual botnet traffic, we constructed a botnet testbed

within BBN’s production network. Our setup consisted of an IRC server (rendezvous

point), a code server, 10 zombie hosts, and an attacker. Figure 3 shows the topology

of our botnet testbed. The attacker, the rendezvous point, and one zombie host reside

on an external network. Nine zombies and the victim were hosted within the BBN

network. The code server was a large well known public Internet site.

We used this test facility to obtain actual traces of the communications between

the various botnet entities while the botnet was in operation. Our experiments en-

tailed using the IRC server to instruct the zombies to download attack code from the

code server and to subsequently launch a coordinated TCP “attack” on the victim

host. The traces collected involved ssh transmissions used for setting up and moni-

toring the experiments, IRC traffic between the bots and the IRC server, http traffic

between the zombies and the code server (for downloading the attack code), and the

TCP traffic involved in the coordinated TCP attack on the victim host. The setup and

the launch of the attack were successively repeated in order to increase the amount

of trace data collected.

Botnet Detection Based on Network Behavior 7

Fig. 3. Botnet Trace Collection Testbed

We collected 539 flows associated with our botnet using tcpdump at the IRC

server. Forty two of these flows were C2 flows. We merged this botnet trace with

the Dartmouth traffic data set in order to create a test data set that contained ground

truth that could be verified after all of the data reduction filters and other analyzers

have been applied. Our botnet was active on the order of hours, while the Dartmouth

traces span four months, exacerbating the vast size difference between the needle

and the haystack.

3 Filtering Stage

We recognize that the statistical nature of the problem creates a trade-off between

keeping as many botnet C2 flows as possible and reduction of the data set to the

meaningful subset of flows to speed later steps. The selection of the cutoff for quick

filtering for data reduction requires both quantitative statistical information and hu-

man judgment. Even if the selection of the cutoff were phrased in terms of meeting

a false positive or a false negative goal, that goal is based upon judgment. The filters

and filter parameters we chose reflect this.

8 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

Fig. 4. Filtering Out Flows Not Likely Part of a Botnet

There were five distinct filters in this stage, as shown in Figure 4. The first filtered

by IP protocol to select TCP-based flows, resulting in 1,337,098 flows. Since the bot

was derived from an IRC-style TCP base, all of the ground-truth botnet C2 flows

were TCP based. All of the C2 flows survived this filter.

The second filter removed the nuisance port-scanning chaff, reducing the data set

to 786,629 flows. Flows containing only TCP packets with SYN or RST flags indi-

cate that communication was never established, and so provide no information about

chat or botnet C2 flows. No application-level data was transferred by these flows. Un-

fortunately for today’s Internet, probes of system vulnerabilities are commonplace.

While SYN-RST exchanges indicate suspicious activity that may be worth investiga-

tion, they do not assist with characterizing botnet C2 flows. About 43% of the flows

are eliminated by this step. Again, all of the ground-truth botnet C2 flows survived

the filter.

Since botnets do not sustain bulk data transfers, the next filter removed high

bitrate flows. Peer-to-peer file sharing is a significant load on the Internet, and may

take place on chat ports by coincidence (since the chat port is not reserved) or by

intent (to avoid identification and filtering). Dropping bulk transfers (flow bandwidth

greater than 8 Kb/s with at least 50 packets) also eliminates software updates and rich

web page transfers. Yet, filtering the high bit-rate flows had a small effect. About

Botnet Detection Based on Network Behavior 9

1% of the flows are dropped, leaving 763,125. From a flow perspective, this is a

minor amount, but from a packet and forensic archive perspective this represents a

worthwhile effort. Again, all of the bot C2 flows survived the filter.

Chat (and botnet C2 commands) generally generate small packets. Using a 300-

byte packet size cutoff for the chat packets in the Dartmouth data set shows that about

0.25% of the chat traffic would be falsely rejected and 72% of the non-chat flows are

eliminated. Since there are several orders of magnitude more non-chat flows than

chat flows, filtering exclusively on average packet size would cut the amount of data

to process in half; since this filter comes fourth, it has a relatively moderate effect.

About 6% of the flows are dropped, leaving 717,521. All of the ground-truth botnet

C2 flows survived the filter.

The fifth filter drops brief flows (less than 2 packets or 60 seconds) from consid-

eration. Real chats and botnets are likely not well represented by excessively short

duration flows. This filter has a significant effect, reducing the data by a factor of

about 20, dominating even the elimination of the port-scanning activities. All of the

ground-truth botnet C2 flows survived the filter.

Overall, the data set is reduced by a factor of about 37, from 1,337,098 TCP flows

down to 36,228, while still preserving the ground-truth botnet C2 flows. This filtering

stage avoided the use of TCP port numbers, and therefore is relevant to situations

where applications may be masquerading on unexpected ports. Furthermore, this

significant data reduction resulted without the use of white-listing services as trusted

IP address and port number combinations.

4 Classifier Stage

Once the simple filters have reduced the data set, the next step is to process the data

set using more sophisticated flow classification techniques. Several techniques have

been developed to automatically identify (and often classify) various types of com-

munication streams. Some use clues from the traffic content. Dewes et al. [6], for

instance, proposed a scheme for identifying chat traffic that relies on a combination

of discriminating criteria, including service port number, packet size distribution,

and packet content. Sen et al. [25] used a signature-based scheme to discern traffic

produced by several well-known P2P applications by identifying particular charac-

teristics in the syntax of packet contents exchanged as part of the operation of the

particular P2P applications.

Other flow classification approaches focus on the use of statistical techniques to

characterize and classify traffic streams. Roughan et al. [24] used traffic classification

for the purpose of identifying four major classes of service: interactive, bulk data

transfer, streaming, and transactional. They investigated the effectiveness of using

packet size and flow duration characteristics, and simple classification schemes were

observed to produce very accurate traffic flow classification.

In a similar approach, Moore and Zuev [20] applied variants of the Naı̈ve

Bayesian classification scheme to classify flows into 10 distinct application groups.

The authors also searched through the various traffic characteristics to identify those

10 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

that are most effective at discriminating among the various traffic flow classes. By

also identifying highly correlated traffic flow characteristics, this search was also

effective in pruning the number of traffic flow characteristics used to discriminate

among traffic flows. Highly correlated characteristics provide comparable and, of-

ten, redundant information about the traffic flows. Thus, in many cases it suffices to

use only one of the correlated characteristics to discriminate among traffic flows.

Since IRC-type botnet C2 flows share many characteristics with normal IRC chat

flows, we adopt and build upon the above statistical flow classification techniques to

discriminate among IRC and non-IRC traffic (see Livadas et al. [17]). The focus on

IRC traffic simplifies the training step because the default IRC port (namely, port

6667) can be used to accurately identify and label IRC traffic for training and ground

truth.

We considered three machine learning classification algorithms, namely J48

decision trees (the WEKA [34] implementation of C4.5 decision trees [8]), Naı̈ve

Bayes, and Bayesian Networks, and evaluated the performance of each classifier

using the false negative rate (FNR) and the false positive rate (FPR). The relative

importance of each of these metrics depends on the ultimate use of the classifica-

tion results. A low FNR attempts to minimize the fraction of the IRC flows will

be discarded, while a low FPR attempts to minimize the amount of non-IRC flows

included. We explored the effectiveness of these machine learning techniques along

three dimensions: (1) the subset of characteristics/features used to describe the flows,

(2) the classification scheme, and (3) the size of the training set size.

Table 1 summarizes the flow characteristics that we collected for each of the

flows in the Dartmouth traces. The characteristics in the top of the table were not

used for classification purposes — they either involve characteristics that seemed

inconsequential in classifying flows, or are accumulated quantities, which are indi-

rectly captured by the corresponding rates or percentages and the flow duration. Our

experiments revealed that the following attributes have high discriminatory value:

duration, role, average bytes per packet (Bpp), average bits per second (bps), and

average packets per second (pps). Among these, the Bpp provided the most discrim-

inatory power.

Figure 5 depicts the FNR vs. FPR scatter plot for several runs of J48, Naı̈ve

Bayes, and Bayesian Networks for the labeled Building X trace. Each data point

corresponds to a different subset of the initial flow attribute set. The figure reveals

clustering in the performance of each of three classification techniques. Naı̈ve Bayes

seems to have low FNR, but higher FPR. The Bayesian Networks technique seems

to have low FPR, but higher FNR. J48 seems to strike a balance between FNR and

FPR.

Only the Naı̈ve Bayes classifiers were successful in achieving low FNR in the

case of our botnet testbed IRC flows — notably, one of our Naı̈ve Bayes classifiers

accurately classified 41 out of the 42 botnet testbed IRC flows, thus achieving an

FNR of 2.17%. In contrast, the J48 and the Bayesian Networks classifiers, possibly

tuned too tightly to the training set, performed very poorly with FNRs of 28.26 and

19.57% respectively. However, while the Naı̈ve Bayes classifiers had a low FNR,

they also had a high FPR of 30.41%. Of the 36,136 non-botnet flows, 11,004 were

Botnet Detection Based on Network Behavior 11

Table 1. Traffic Flow Characteristics

start/end Flow start/end times

IP-proto IP protocol of flow

TCP flags Summary of TCP SYN/FIN/ACK flags

pkts Total pkts exchanged in flow

Bytes Total Bytes exchanged in flow

pushed pkts Total packets pushed in flow

duration Flow duration

maxwin Maximum initial congestion window

role Whether client or server initiated flow

Bpp Average Bytes-per-packet for flow

bps Average bits-per-second for flow

pps Average packets-per-second for flow

PctPktsPushed Percentage of packets pushed in flow

PctBppHistBin0–7 Percent of packets in one of eight packet size

bins; these variables collectively form a his-

togram of packet size for flow

varIAT Variance of packet inter-arrival time for flow

varBpp Variance of Bytes-per-packet for flow

classified as belonging to the botnet. After training on the flows yielded from the ear-

lier heuristic filtering stage, our best-performing classifiers achieved a 70% reduction

in the number of candidate chat flows. Presuming that such performance would be

routinely achievable in this stage, the 36K flows yielded from the heuristic filtering

stage would be further reduced to 11K flows. In the case of the testbed flows, our

best-performing classifiers retained 41 of the 42 chat flows.

Despite their promise, the training and performance of classifiers was quite sen-

sitive to the flow attributes used, the training set, and the number of flows used for

training. Thus, prior to their use in a deployable system we expect that further ef-

fort would be needed in order to identify the most beneficial flow characteristics and

training set. For the processing of our testbed experiment, we bypassed the classifi-

cation stage and proceeded directly from filtering to correlation.

5 Correlation Stage

The filters and classifiers have reduced the traffic data set from almost 1.34 million

flows to about 36 thousand, but recall that these flows span a four-month period.

Our next stage, correlation, looks for relationships between two or more flows that

suggest that they are part of the same botnet. The question about whether one flow

12 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

 0.1

 1

 10

 100

 1 10 100

F
P

R
 (

%
)

FNR (%)

FNR versus FPR For IRC/non-IRC Flows of Building X

J48
NaiveBayes

BayesNet

Fig. 5. FNR and FPR of J48, Naı̈ve Bayes, and Bayesian Net Classification Schemes for

IRC/non-IRC Flows of Building X

is correlated with another only makes sense if the two flows are active at the same

time, so while we have four months of data, the correlation stage is run at a particular

instance in time. The question is: Which flows are correlated at this moment?

We picked a time during the data when we knew the botnet was active. There

were 95 post-filtered flows active at that time, where 20 of these flows were the

ground-truth botnet C2 flows (a forward and a reverse flow from each of the 10

zombie hosts to the rendezvous point).

5.1 Flow Correlation

Two flows are said to be correlated when they exhibit one or more common proper-

ties. In general, there are three reasons that two flows exhibit common properties:

• They are the product of similar applications, such as those applications that trans-

fer bulk data as quickly as possible

• There is a causal relationship, such as in remote logins or proxies, where an event

on one flow causes an event to occur on another flow

• There is one transmitter and multiple receivers, such as in multicast, where one

message is transmitted to many receivers

The first reason is a product of the nature of network protocols. TCP behaves the

same no matter what application is driving it. If two applications present large files

for transfer, there is little at the packet level to distinguish the traffic outside of the

addressing information.

The second correlation reason speaks to the so-called stepping stone detection

problem, where an attacker remotely logs into one host, then from there remotely

Botnet Detection Based on Network Behavior 13

logs into another host, repeating to form a chain of remote logins. The attacker sees

the login shell of the last host, and anything typed in at the local keyboard cascades

its way to the pseudo terminal at the last host. The cascading of the data is what

provides the casual relationship among the flows in the chain.

The third reason for correlation happens because the same data is being sent

to different receivers, so naturally the set of flows will show similar characteristics.

Botnets that use IRC for the command and control channel essentially form multicast

groups via a series of operations on unicast connections.

No matter the reason for correlation, any algorithm that sets out to determine

which pairs of flow are correlated must begin with this question: What is a sufficient

description scheme for flows so that the algorithm can determine if two flows are

correlated under a particular meaning of correlation?

Flow Description

A flow is defined as a set of packets that belong to the same instance of communi-

cation between an application at a source host, and an application at a destination

host. The most common way to identify a particular TCP or UDP flow is using a 5-

tuple of values from the packets’ layer 3 and 4 headers: the source and destination IP

addresses, the source and destination port numbers, and the protocol identifier num-

ber. These five values definitively identify a particular instance of communication

between a source host application and destination host application.

It is one thing to uniquely identify the flow; it is something all together different

to uniquely describe a flow. Describing an object allows that object to be compared

and contrasted with other objects. The same is true for flows. Choosing a certain set

of characteristics and quantizing those characteristics provides one means of captur-

ing describable aspects of the flow for comparison with other flows.

Certainly a flow can be completely described using a full packet trace, as one

might get from a tool such as tcpdump. Such a trace lists when each packet event oc-

curred, what was inside the packet’s header, and what data each packet was carrying.

Since a flow can be arbitrarily long, a packet trace can be arbitrarily long.

Packet trace files are a complete description, but they are not a compact one. It

may be sufficient to extract and efficiently express a set of flow characteristics as a

proxy for the full flow description.

Flow Characteristics

Flow characteristics fall into two categories: static characteristics that do not change

over the lifetime of the flow, and dynamic characteristics that vary as the flow pro-

gresses through time. The immutable information kept in the IP and TCP/UDP head-

ers of a packet is a good source of static characteristics. These include the values

that form the flow identification 5-tuple — source and destination IP address, source

and destination port numbers, and protocol. Flow start and stop times, and the flow’s

duration, are examples of static characteristics that are not carried in the packet.

14 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

Dynamic characteristics can also be drawn from the packet header and payload

information, such as packet size values, flow control window settings, IPid values,

protocol flag settings, and application data. Looking outside of the packet, dynamic

characteristics include packet arrival and departure times. Further dynamic charac-

teristics can be derived, such as throughput (amount of data transferred divided by

the transfer duration), and burst times (groupings of packet arrivals or departures that

are close in time).

Among the common dynamic flow characteristics that are easily expressed as a

time series are:

• Packet event times

• Packet inter-arrival times

• Inter-burst times

• Bytes per packet

• Cumulative bytes per packet

• Bytes per burst

• Periodic throughput samples

Flow Correlation Algorithms

The most common flow correlation algorithms compare connections to see if they

might be stepping stones — the causal relationship noted above. Our aim is to find

correlations between flows based on a multicast relationship. We hypothesize that

stepping stone correlation algorithms can be used to find botnets. Consequently, we

will take a quick survey of stepping stone correlation algorithms looking for one that

may be appropriate for our purposes.

Since traffic is often encrypted, flow correlation algorithms usually compare con-

nections based on some characteristic other than packet content. Most correlation

algorithms use only a single characteristic to describe packet flows. For example,

an algorithm might describe a flow based on its packet inter-arrival times. Whatever

the characteristic may be, it is chosen so that it can be used to identify related con-

nections. These algorithms use the characteristic values as inputs into one or more

functions that compare flows. The comparison function(s) create a metric used to de-

cide if the flows are correlated. If the correlation between two flows is strong enough,

one might decide that the flows are a stepping stone pair. Often, this decision is made

by comparing the metric to a threshold.

Zhang and Paxon [37] describe a stepping stone detection method based on com-

paring the end times of “off periods,” or idle times, in two data streams. The charac-

teristics they focus on is the timing of the edge of bursts. Yoda and Etoh [35] describe

an algorithm based on the difference between the average propagation delay and the

minimum propagation delay between the two connections. Their flow characteristic

is the round-trip time. Wang et al. [33] present a stepping stone identification scheme

that uses similarity function over a vector of inter-packet delay measures (their flow

characteristic) between two packet streams.

Botnet Detection Based on Network Behavior 15

The aim of some approaches is to assert guaranteed false positive and negative

rates under delay and chaff perturbations. Blum et al. [3] designed a stepping stone

detection algorithm based on the deviation in the number of packets in each connec-

tion. Zhang et al. [36] propose three schemes that match packets from one flow to

packets in a second flow to detect stepping stone connections. Both Blum and Zhang

use packet counts as the flow characteristic. He and Tong [9] propose four packet

counting (their flow characteristic) strategies — two algorithms based on bounded

memory or bounded delay perturbation and chaff, and two algorithms that handle

timing perturbation and chaff insertion simultaneously.

Strayer et al. [28] proposed a correlation algorithm that examines the causal re-

lationship between packet events based on the assumption that, because networks

attempt to operate efficiently, the likelihood of a transmission on one connection be-

ing a response to a prior receipt on another generally decreases as the elapsed time

between them increases. Packet arrival time is the flow characteristic maintained

here.

Donoho et al. [7] use character counts at different time scales, along with an

assumption that there is a “maximum delay tolerance” to produce theoretical limits

on the ability of attackers to disguise their traffic for sufficiently long connections.

Each of these techniques creates a time series of a certain flow characteristic and

uses it to compare flow pairs. This implies a pairwise comparison over each value of

the time series. It also means that the stepping stone detection algorithms rely heavily

on the accuracy of series of one flow characteristic value.

Because of the one-to-many “multicasting” model of the C2 (and chat) architec-

ture, we expect the communication flows between the botnet C2 host and the IRC

server, and between the IRC server and the botnet members, to be temporally corre-

lated. Since data sent to the chat server is promptly multicast to all chat members, the

flows to (and from) all chat members should exhibit similar timing characteristics as

well as contemporary fluctuations in bandwidth.

Any of the flow correlation algorithms based on temporal flow characteristics

cited above could be applied to this stage, but they are each computationally expen-

sive. These and most other current flow correlation algorithms examine each flow

every time there is a new packet arrival, and every pairwise “correlation value” is

updated. This implies O(n2) calculations for each packet, where n is the number

of active flows. We prefer an algorithm that performs a calculation only once per

packet arrival — to update that packet’s flow value — delaying the O(n2) compari-

son until the time when flow correlation question was asked. We developed such an

algorithm for use in stepping stone detection [27]. This algorithm uses multiple flow

characteristics but remains efficient in per-flow correlation value updating.

5.2 Multi-Dimensional Flow Correlation

In constructing a new flow correlation algorithm, our first aim is to increase robust-

ness by including more than one flow characteristic for comparison. Our second aim

is to record the time series of the values of these characteristics more efficiently and

16 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

eliminate the need for maintaining a full correlation matrix over all time. Let us look

at the second aim first.

Time series are arbitrarily long time-value pairs that are not easy to manipulate.

Statistical measures over the time series, however, attempt to describe the shape of

the data in a finite space, and are much easier to manage. Taking the average, for

example, describes an arbitrarily long series of values in one value, but at the loss of

a lot of fidelity. Taking the second moment, the variance, gets some of that fidelity

back by describing how different the values are from each other. Further moments

describe the peakedness of the data (kurtosis) and the symmetry of the peaks (skew).

A nice aspect of using moments is that they can be estimated on the fly, and any

new event causes the recalculation of the moments for that flow only. So a char-

acteristic of a flow — say packet sizes — can be described by a small vector of

statistical moments of that characteristic. This satisfies part of the second aim for

efficient recording of the values for the flow characteristics.

If a single characteristic for a flow can be described using a small vector, then

why not widen the vector to include statistical moments for other flow characteris-

tics? Doing this would satisfy the first aim of including multiple characteristics in

a flow correlation algorithm, but it does not suggest how to combine the multiple

characteristics into a single comparison.

Our answer is to treat each flow’s description vector as a point in n-space, where

n is the cardinality of the vector, and apply a distance calculation as a measure of

correlation, where nearness is more correlated. The distance does not have to be

maintained for all flow pairs over all time, but calculated only when the correlation

question is raised. This satisfies the second part of aim two.

Expressing a time series as a set of moments loses fidelity, which means that

some unrelated flows with different time series of values over a particular charac-

teristic might accidentally have the same moments over that time series. This is a

matter of entropy; if there /indexentropy is not enough descriptive power in the vec-

tor, the flows cannot be adequately distinguished one flow from another, and false

positives will occur. Our hypothesis is that, by adding more characteristics, the en-

tropy is raised, mitigating the loss of fidelity of reducing any one characteristic to a

vector of moments.

Determining the Characteristics

We have been abstractly discussing the use of multiple flow characteristics in a flow

correlation algorithm, but determining which characteristics are most useful is the

subject of studies and experiments. However, there are some useful features in a flow

characteristic that might make one better suited than another.

First, the characteristic should be dynamic and expressed as a time series. Sam-

ples of the moments of a dynamic data set are themselves dynamic. Two flows that

share this dynamic nature of the moments are likely to be correlated. If the moments

remain static, then two uncorrelated flows with the same values will always show as

a false positive.

Botnet Detection Based on Network Behavior 17

Next, the characteristic should measure something about the flow that is imposed

externally, not by the communications protocol. Since TCP/IP is probably the com-

mon transport, then characteristics imposed by TCP or IP will likely not discriminate

between flows. Packet size is an example of a bad characteristic when the application

gives TCP/IP a very large amount of data to send, but it is a good one when the appli-

cation offers small amounts of data. Packet inter-arrival times and packet inter-burst

times are similar.

Finally, for practical purposes, the characteristic should be easily measured.

Throughput, for example, requires maintaining an amount of data seen over a win-

dow of time, while packet arrival times require no history.

Estimating the Moments

Since the time series values are arbitrarily long, and the are arriving in real time, we

need to calculate the moments as a running estimate. The estimated weighted moving

average (EWMA) is a nice way to estimate an average while weighting the influence

of the past. The formula is: newEWMA = α(newValue)+(1−α)(oldEWMA). We

set α at 0.75 to emphasis new events while maintaining the smoothing effect of old

events. The second moment, variance, is estimated in a similar fashion: newVAR =
α(|newValue − EWMA|) + (1 − α)(oldVAR). We do not use higher moments.

Calculating the Distance

We treat a flow’s vector of characteristics as a point in n-space, and use a distance

measure to determine correlation based on closeness. But values from different char-

acteristics, and from different moments within each characteristic, have magnitudes

that must be normalized before they can be used, otherwise characteristics with large

values will artificially outweigh characteristics with smaller values. Further, some

characteristics can have unbounded values.

Rather than normalize values and then use them to find the distance, it is better to

normalize the difference. This way we maintain the natural meaning of the difference

of v1 and v2, then fit that into a 0-to-1 scale.

One common normalizer is an exponential: norm diff = 1e−λ(|v1 − v2|), where

λ is a weighting factor to determine how steeply the asymptote rises to 1. It makes

sense that each characteristic would need a different λ, but if λ is set incorrectly,

there will be too much or too little distinction between values of v1 − v2.

Instead, we use the following: norm diff = (|v1 − v2|)/(v1 + v2). As v2 ap-

proaches v1 from below, the normalized difference drops off nearly linearly. As v2

grows larger than v1, the normalized difference grows asymptotically to 1. This nor-

malizer is self-weighting and does not require special values such as λ.

The distance between two flows is calculated using the Euclidean formula of

taking the square root of the sum of the squares of the differences:

distance =
√

∑n

i=1
(norm diffi)

2

18 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

where n is the number of values in the flow characteristics vector, and norm diffi is

the normalized difference of the ith value in the vector. Since each vector element

difference is normalized to 1, the maximum distance is
√

n.

5.3 Correlation Results

Figures 6 and 7 display the results of pairwise distances between each of the 95

filtered flows. (Because the classification stage dropped some of the ground-truth

botnet flows, we ran the correlation algorithm over the filtered, but not classified,

flows.) Figure 6 clearly shows a horizontal band of flow pairs whose Euclidean dis-

tance is very small, separated by a band of white space up to distance of about 2.

This indicates that a group of flows are clustered very near each other in n-space,

and that there is a gap between that cluster and the next nearest flows.

Figure 7 also shows this gap in terms of a probability distribution of the distances.

Note that there is a substantial spike near distance 0, then there is a flat area (no or

few flow pairs) until distance 2. The spike is a cluster of flow pairs that are very close

in distance. In fact, there are 9 flow pairs whose distance is less than 0.5, and it is

this set that forms the cluster of interest.

The identification of clusters of correlated flows certainly suggest further inves-

tigation, which is the aim of the next stage, the topological analysis. This correlation

stage does not prove the existence of a botnet — there is no test for maliciousness in

the filtering, classifying, and clustering of flows — but given a cluster of flows, the

natural next question is, What structure do these and other flows form, and does this

structure identify a host that is acting like a botnet controller.

0 100 200 300 400

0

2

4

6

8

10

12

14

Flow Pair ID

D
is

ta
n

ce

Fig. 6. Scatter Plot of Distances between Flow Pairs

Botnet Detection Based on Network Behavior 19

0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

Distance

P
ro

b
ab

il
it

y

Fig. 7. Distance Probability Density Function of Flow Pair Distances

6 Topological Analysis Stage

The topological analysis starts by selecting only those flow pairs that are highly

correlated. Figures 6 and 7 both show that there is a grouping of highly correlated

flow pairs with distances close to 0. Our hypothesis is that these highly correlated

flow pairs correspond to botnet C2 flows. We isolate these flow pairs by selecting

only those flow pairs with a distance of less than 0.5. These flow pairs correspond to

the top 17% most highly correlated flow pairs. On further investigation, we note that

every one of these flow pairs corresponds to a C2 connection between a zombie host

and the rendezvous point (IRC server), thus validating our hypothesis.

The next step in the topological analysis is to analyze the overall correlation

structure of the correlated flow pairs. This process can be easily automated. Figure 8

shows a graph where each node corresponds to a unique flow pair identifier and

each edge connects two highly correlated flow pairs. The graph shows a “perfect”

or mesh clustering between the set of nine highly correlated flow pairs. This perfect

clustering shows that each of the highly correlated flow pairs correlates with all of

the other highly correlated flow pairs. In other words, the nine botnet C2 connections

all correlate extremely well with each other. This again confirms our hypothesis.

The final step in the topological analysis is to determine the communication

topology that corresponds to these highly correlated flow pairs and to identify which

of the hosts, if any, is acting as a rendezvous point. This is a two part process that

can be automated easily. First, we generate a graph that has as its edges the highly

correlated flow pairs identified in the first step of the topological analysis and as its

nodes the host IP addresses that correspond to the endpoints of these flow pairs. Sec-

ond, we look for the node with the highest in-degree or out-degree and select that as

20 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

270

256

264

258

254

262

252

272

260

Fig. 8. Flow Pair Clustering

a candidate rendezvous point (IRC Server). Figure 9 shows a directed graph gen-

erated using the first part of this procedure (in this figure, IP addresses have been

replaced by labels to identify the roles of the hosts). The communication structure of

the botnet is immediately obvious from the figure and it is very easy to identify the

rendezvous point as the node having the highest in-degree.

The topological analysis is able to identify nine out of the ten zombie hosts in our

botnet. The nine zombies identified correspond to “local” zombies that are all located

on machines in the same building at BBN (see Figure 3). The one zombie host not

identified corresponds to a “remote” bot running on an offsite host. This result is

perfectly understandable: we would not expect flows from a remote bot to correlate

that well with flows from local bots as the difference in communication paths would

almost always result in significant differences in flow characteristics.

In summary, the topological analysis stage examines the structure of highly cor-

related flow pairs. By constructing graphs of these correlated flow pairs, graphs of

the corresponding node pairs and then looking for nodes with high in-degree, it is

Botnet Detection Based on Network Behavior 21

Zombie6

IRC Server

Zombie1

Zombie2

Zombie8

Zombie5

Zombie7

Zombie9

Zombie3

Zombie4

Fig. 9. Host-based Clustering

possible to identify the communication structure of our botnet, the rendezvous point

and nine out of ten zombies. The results from topological analysis stage clearly sup-

ported our hypothesis that C2 botnet flows are highly correlated.

7 Discussion

While it has been suggested that botnet controllers will migrate from IRC as their

preferred C2 infrastructure [25], the abstract model of tight central control repre-

sented by IRC is very efficient and will likely survive for quite some time. It is

important, therefore, to consider a system that detects very large, high volume data

sets for evidence of tight botnet C2 activity.

Our system performs gross, simple filtering to reduce the amount of data that will

be subjected to more computationally intensive algorithms. Once the data has been

filtered, the flows are classified using machine learning techniques, then the flows

that are in the “chat” class are correlated to find clusters of flows that share similar

22 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

timing and packet size characteristics. The cluster is then analyzed to try to identify

the botnet controller host.

Our experiment with Dartmouth campus data, starting with nearly 9 million flows

augmented with traffic traces from a benign botnet, shows that the ground truth bot-

net C2 flows can indeed survive the data reduction and correlation to be identified as

a cluster. These results show that the method is promising.

This method is also nicely suited for real-time analysis of traffic data. The filter-

ing stage requires very simple logic to cull the data set down by a factor of 37. While

we may not be able to expect that degree of reduction in all cases, there was nothing

particularly special about the Dartmouth data that contributed to the reduction factor.

The culling of the data, especially when done in real time, allows much more time for

more complex algorithms later in the pipe, namely the machine learning classifiers

and the correlation.

An important lesson learned from our classification stage is the importance of

both legitimate and malicious training traffic and an accurate manner to label it.

Given such representative training traffic, machine learning-based classifiers can per-

form well and be very effective. The trick is to get a good training set.

Our experience with the new correlation algorithm showed that the algorithm

holds promise. The algorithm we used is designed to reduce the computational com-

plexity of comparing n flows in a pairwise manner. The resulting cluster, while not

a complete set of flows from the ground truth botnet, was certainly enough to allow

the topological analysis of the flow endpoints, and the rest of the ground-truth botnet

traffic was easily extracted.

Detecting botnet activity is presently labor intensive and largely ad hoc. Our

pipelined botnet C2 detection system shows that it is possible to comb through packet

traces, even in real time, to extract evidence of tight command and control activity

and, from that evidence, discover the botnet controller.

Acknowledgments

This work was sponsored by the U.S. Army Research Office under contract No.

W911NF-05-C-0066. The content of the information does not necessarily reflect the

position or the policy of the U.S. Government, and no official endorcement should

be inferred.

The authors wish to thank Doug Maughan and Cliff Wang for their support, and

Mark Allman for his valuable insights. We also thank David Kotz and gratefully ac-

knowledge the use of wireless data from the CRAWDAD archive at Dartmouth Col-

lege. We also wish to acknowledge the support and contributions of our colleagues

at BBN Technologies: Christine Jones, Beverly Schwartz, Sarah Edwards, Walter

Milliken, and Alden Jackson.

References

1. US-CERT Vulnerability Notes Database. http://www.kb.cert.org/vuls/.

Botnet Detection Based on Network Behavior 23

2. Paul Barford and Vinod Yegneswaran. An inside look at botnets (to appear in series:

Advances in information security, springer), 2006.

3. A. Blum, D. Song, and S. Venkataraman. Detection of interactive stepping stones: Al-

gorithms and confidence bounds. In Proceedings of the 7th International Symposium on

Recent Advances in Intrusion Detection (RAID ’04), September 2004.

4. David Dagon, Cliff Zou, and Wenke Lee. Modeling botnet propagation using time zones.

In Proceedings of the 13th Annual Network and Distributed System Security Symposium

(NDSS ’06), February 2006.

5. Defense Security Service. Memorandum for facility security officers: Foreign-based

threat to defense contractor unclassified networks, October 18, 2005.

6. Christian Dewes, Arne Wichmann, and Anja Feldmann. An analysis of internet chat

systems. In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, pages 51–64, New York, NY, USA, 2003. ACM Press.

7. David L. Donoho, Ana Georgina Flesia, Umesh Shankar, Vern Paxson, Jason Coit, and

Stuart Staniford. Multiscale stepping-stone detection: Detecting pairs of jittered interac-

tive streams by exploiting maximum tolerable delay. In Proc. International Symposium

on Recent Advances in Intrusion Detection, pages 17–35, October 2002.

8. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley

& Sons, Inc., 2 edition, 2001.

9. T. He and L. Tong. Detecting encrypted stepping-stone connections. IEEE Transactions

on Signal Processing, 2007.

10. Thorsten Holz. A Short Visit to the Bot Zoo. IEEE Security & Privacy, 3(3):76–79, May

2005.

11. Kevin J. Houle and George M. Weaver. Trends in denial of service technology. CERT

Coordination Center, October 2001.

12. A. Householder, Art Manion, Linda Pesante, George M. Weaver, and Rob Thomas. Man-

aging the threat of denial-of-service attacks. CERT Coordination Center, October 2001.

13. S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: Surviving organized ddos

attacks that mimic flash crowds. In Proceedings of the 2nd Symposium on Networked

Systems Design and Implementation, May 2005.

14. Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale botnet detection and

characterization. In Proceedings of the First Workshop on Hot Topics in Understanding

Botnets, April 2007.

15. David Kotz and Tristan Henderson. CRAWDAD: A Community Resource for Archiving

Wireless Data at Dartmouth. IEEE Pervasive Computing, 4(4), oct-dec 2006.

16. Elias Levy. The Making of a Spam Zombie Army. IEEE Security & Privacy, 1(4):58–59,

July 2003.

17. Carl Livadas, Robert Walsh, David Lapsley, and W. Timothy Strayer. Using Machine

Learning Techniques to Identify Botnet Traffic. In Proceedings of the 2nd IEEE LCN

Workshop on Network Security, 2006.

18. Bill McCarty. Automated Identity Theft. IEEE Security & Privacy, 1(5):89–92, Septem-

ber 2003.

19. Bill McCarty. Botnets: Big and Bigger. IEEE Security & Privacy, 1(4):87–90, July 2003.

20. Andrew W. Moore and Denis Zuev. Internet traffic classification using bayesian analysis

techniques. In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS interna-

tional conference on Measurement and modeling of computer systems, pages 50–60, New

York, NY, USA, 2005. ACM Press.

21. R. Naraine. Botnet hunters search for ‘command and control’ servers. eWeek, June 17,

2005.

24 W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas

22. National Infrastructure Security Coordination Center. Targeted trojan email attacks.

NISCC Briefing 08/2005, June 16, 2005.

23. Anirudh Ramachandran, Nick Feamster, and David Dagon. Revealing botnet membership

using DNSBL counter-intelligence. In Proceedings of the 2nd Workshop on Steps to

Reducing Unwanted Traffic on the Internet (SRUTI), 2006.

24. Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-of-

service mapping for qos: a statistical signature-based approach to ip traffic classification.

In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet measure-

ment, pages 135–148, New York, NY, USA, 2004. ACM Press.

25. Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Accurate, scalable in-network

identification of p2p traffic using application signatures. In WWW ’04: Proceedings of the

13th international conference on World Wide Web, pages 512–521, New York, NY, USA,

2004. ACM Press.

26. Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchak-

ountio, Beverly Schwartz, Stephen T. Kent, and W. Timothy Strayer. Single-packet IP

traceback. ACM/IEEE Trans. on Networking, December 2002.

27. W. Timothy Strayer, Christine Jones, Beverley Schwartz, Sarah Edwards, Walter Mil-

liken, and Alden Jackson. Efficient multi-dimensional flow correlation. In Proceedings

of the 32st IEEE Conference on Local Computer Networks (LCN’07), November 2007.

Submitted for publication.

28. W. Timothy Strayer, Christine Jones, Beverly Schwartz, Joanne Mikkelson, and Carl Li-

vadas. Architecture for Multi-Stage Network Attack Traceback. In Proceedings of the

IEEE LCN Workshop on Network Security (WoNS 2005), Sydney, Australia, November

2005.

29. W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley. Detecting Botnets

with Tight Command and Control. In Proceedings of the 31st IEEE Conference on Local

Computer Networks (LCN’06), November 2006.

30. Symantec. Symantec Internet Security Threat Report. Trends for July – December 06,

March 2007.

31. The Honeynet Project. Know Your Enemy : Learning about Security Threats. Addison-

Wesley Professional; 2 edition (May 17, 2004), March 2004.

32. Rob Thormeyer. Hacker arrested for breaching dod systems with ‘botnets’. Government

Computer News, November 4, 2005.

33. Xinyuan Wang, Douglas S. Reeves, and S. Felix Wu. Inter-packet delay based correlation

for tracing encrypted connections through stepping stones. In Proc. European Symposium

on Research in Computer Security, pages 244–263, October 2002.

34. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques (2nd Edition). Morgan Kaufmann, San Francisco, CA, 2005.

35. Kunikazu Yoda and Hiroaki Etoh. Finding a connection chain for tracing intruders. In

Proc. European Symposium on Research in Computer Security, pages 191–205, October

2000.

36. L. Zhang, A. G. Persaud, A. Johnson, and Y. Guan. Detection of stepping stone attacks

under delay and chaff perturbations. In Proceedings of the 25th IEEE International Per-

formance Computing and Communications Conference, April 2006.

37. Yin Zhang and Vern Paxson. Detecting stepping stones. In Proc. USENIX Security Sym-

posium ’00, pages 171–184, August 2000.

Honeynet-based Botnet Scan Traffic Analysis

Zhichun Li, Anup Goyal, and Yan Chen

Northwestern University, Evanston, IL 60208

{lizc,ago210,ychen}@cs.northwestern.edu

1 Introduction

With the increasing importance of Internet in everyone’s daily life, Internet security

poses a serious problem. Nowadays, botnets are the major tool to launch Internet-

scale attacks. A “botnet” is a network of compromised machines that is remotely

controlled by an attacker. In contrast of the earlier hacking activities (mainly used

to show off the attackers’ technique skills), botnets are better organized and mainly

used for the profit-centered endeavors. For example, the attacker can make profit

through Email spam [16], click fraud [6], game accounts and credit card numbers

harvest, and extortion through DoS attacks.

Although thorough understanding and prevention of botnets are very important.

Currently, the research community gains only limited insight into botnets.

Several approaches can help to understand the botnet phenomena:

Source code study is to examine the botnets’ source code, given that the most fa-

mous bot sources are under GPL. This can give us an insight about all the mali-

cious activities that can be achieved by the botnet. However, there are different

versions of botnets and major versions have different variants. It is hard to study

all their source codes, given many of them might not be obtained in the first

place. Another problem is that this approach only gives us the static features of

botnets, but not the dynamic features, such as the size of botnets, the geological

distribution of the bots, etc.. However this study can give us some insight into

their current functionalities and how they achieve that.

Command and Control study is the study of IRC traffic or other communication

protocols that botnets use for communication. Potentially, this approach can be

used to observe the global view, if the traffic of IRC command and control chan-

nel can be sniffed. However, the trend has moved towards using private IRC

servers or other communication protocols, such as WEB or P2P. Moreover, a

more fundamental problem is that botnets may encrypt their command and con-

trol channels. The covert channel detection could be extremely difficult.

26 Zhichun Li, Anup Goyal, and Yan Chen

Controlling botnet is to gain the control of the botnet, so that we can have a global

view and study its behavior. Usually, researchers limited their approach to either

set up or buy a botnet. Another way is to hijack the botnets’ DDNS entries [5].

However, this is dependent on whether the DDNS vendors are willing to coop-

erate and whether the DDNS names can be detected.

Behavior study is the study of the botnet by observing their behaviors. For example,

botnet scanning, botnet based DoS attack, botnet based spam, botnet based click

fraud etc.. This study usually can capture dynamic features and measurements

become easier.

We are interested in developing a general technique which has a minimum mon-

itoring overhead for observing botnet behavior, and hard to evade by botnets. There-

fore, people from any corner around the world can easily adopt it to measure the

characteristics of the botnet behavior. If we could aggregate the measurements, po-

tentially we can get a more accurate global picture of the botnets. After carefully

analyzing the above behavioral list, we found that the botnet scanning behavior is

ingrained to the botnet because this is the most effective way for them to recruit new

bots. Therefore, we believe in near future, the botmaster will not give up scanning.

Moreover, monitoring scanning is relatively easy. With a honeynet installed people

can easily get the botnet scanning traffic.

With this motivation, we designed a general paradigm to extract botnet related

scanning events and analyzing methods. We further analyzed one year honeynet traf-

fic from a large research institution to demonstrate the methods.

In [15], three types of scanning strategies of botnets have been introduced: local-

ized scanning, targeted scanning and uniform scanning. Localized scanning is that

each bot chose the scanning range based their own IP prefixes. Targeted scanning is

that the botmaster specified a particular IP prefix for bots to scan. The uniform scan-

ning is the botnet scanning the whole Internet. Here, we call the targeted scanning

and the uniform scanning as global scanning, since usually it is hard to determine

the scanning range of a botnet. In the honeynet, the global scanning events can be

easily identified since it usually related to large number of sources. However, the

localized scanning is quite hard to identify. It is hard to differentiate whether it is a

single scanner or it is part of a large botnet.

In this chapter, we mainly studied the botnet scanning behaviors, and use its

scanning behavior to infer the general properties of botnets. Scanning is the major

tool for recruiting new bots. In our study we found out that 75% of the successful

botnet scanning events followed by the malicious payloads. Understanding the bot-

net scanning behavior is very important since it will help us to understand how to

detect/prevent botnet propagation. Moreover, we can gain insight into the general

properties of botnets through this study. Because of the prevalence of botnet scan

activities, we believe that scan based botnet property inference is also very general.

In this book chapter we mainly wanted to answer the following questions.

• How to use botnet scan behavior to infer the general properties of the botnets?

• How to extract the botnet scan events?

• How are the network level behavior of the botnets?

Honeynet-based Botnet Scan Traffic Analysis 27

• What are the different scan strategies used by the botnets and how these related

to dynamic behavior of the bots?

In this book chapter, we demonstrated that the botnet scan traffic can be very

useful in terms of inferring the general properties of the botnets. We developed a

general paradigm for botnet scan event extraction. Based on it we analyzed one year

honeynet traffic. In our study, we found that the bot population is highly diverse. Al-

though, 41% of bots come form top 20 ASes, but the total population is from 2860

ASes. But the bot population is pretty concentrated in certain IP ranges, which con-

firmed the conclusion from botnet spamming study [16]. The IP range distributions

have high variance from botnets to botnets. This implies the IP blacklist might not

always be effective for different botnets. In most cases, the scan arrival follows a

Poisson process and the inter arrival time follow an exponential distribution. This

suggested that the bots scan randomly and the scan range is much larger than the

sensor size. We found there are two clear modes for bots to arrive. They either arrive

mostly at the very beginning or they are pretty evenly distributed in the whole scan

event duration. This might due to different scan strategies the botmasters used. We

also found some very complex scan strategies used by the botmasters.

The rest of this book chapter is organized as follows. We discussed the related

work in Section 2. Section 3 described the design of the general botnet scan event ex-

traction paradigms. Section 5 discussed our findings of analyzing botnet scan events

extracted from one year honeynet traffic from a large research institution. Finally,

Section 6 stated the conclusions.

2 Related Work

Currently, most botnet studies leverage on two approaches: IRC channel monitor-

ing [3,15] and DNS hijacking [5,16]. If the botnet uses an IRC based command and

control mechanism and does not encrypt the channel, potentially a faked bot can be

inserted into the channel to monitor the botnet behavior. To be really useful, this fur-

ther requires the botnet IRC channel allows message broadcasting, so that a bot can

hear the information of other bots. Obviously, this approach can get the botnet be-

havior from a “insider’s perspective”. However, given the trend of botnet command

and control mechanisms are changing towards WEB [14] or P2P [7] based approach.

This approach might bias the study towards the characteristics of IRC based botnets.

If we can know the domain name of a botnet’s command and control server, and

we can convince the domain name service provider to redirect the domain name to

another system, potentially we can hijack the botnet and control it by ourselves. In

this way, we can fully control the botnet and study its behavior. However, usually

to find the domain name and convince the DNS service provider to redirect the do-

main name for us is not always easy, especially when the botnet use a DNS service

provider in a foreign country.

Botnets have been used for cyber-crimes for quite some time, but studies on bot-

net detection are sparse. Known techniques for botnet detection includes honeynets

28 Zhichun Li, Anup Goyal, and Yan Chen

and IDS system with signature detection. Honeynets [12] or darknets can be proved

useful in studying botnet behavior, but cannot track the actual infected host. Signa-

ture matching and behavior of existing botnet can be used for detection. An open-

source system like Snort [8] can be used for detection of known botnets. Signature

matching has its own disadvantage that it can be easily fooled by smart bots and also

fails for new botnets. [2] has suggested an anomaly-based detection method, which

combine an IRC mesh detection component with a TCP scan detection heuristic for

detecting botnet attacks. However, this system suffers from false positive and could

be evaded by simple encoding of IRC channel. Another interesting work for finding

botnet membership is by using DNSBL Counter-Intelligence [17]. This method is

limited to the detection of spamming botnets and it is computationally expensive and

memory intensive.

As [3] firstly suggested that botnet propagation and attack behavior can be an-

other way to study the botnets. We mainly studied the scan behavior of botnets and

through it we inferred the general properties of botnets. We argue this also is a very

important angle, since most botnets leverage on scanning and exploiting the vulnera-

ble hosts to recruit new bots. Therefore, it is a very common behavior of the botnets.

Understand it better will help us improve the botnet detection/prevention. Since the

botnet scanning activities are prevalence, it is also a general way to infer the proper-

ties of botnets. In [19], they mainly infer the difference between the botnet scanning

event with worm propagation and misconfigurations. Here, we focused on using the

scanning events to understand the botnet scan behavior and botnet proprieties in gen-

eral.

Most general honeynet [1,13,20] and honeyfarm [4,18] approach can be used to

monitor the botnet scanning behavior. A large continuous IP space is good for mon-

itoring the botnet global scan, i.e., scan a given IP prefix which is different from the

bots’ IP prefix. A distributed honeynet/honeyfarm can be better in terms of monitor-

ing local scan activities in which case each bot scan their local prefixes.

3 Botnet Scanning Event Identification

Figure 1 shows the botnet event extraction and analysis paradigm. To understand

the botnet scanning behavior, we first extract coordinated scanning events from the

honeynet traffic. A botnet scan event is a large scale coordinated scanning event

which normally has to employ large number of bots. We use the large number of

unique sources contacting the honeynet as an indicator of the botnet scanning. Then,

we separate the misconfiguration and worm cases from botnet cases. We focus on

the analysis of botnet events

3.1 Honeynet and Data Collection

Traffic sent to unused Internet addresses (“darknets”) can reflect a variety of activity.

We cannot determine the nature of the activity by simply watching it passively as

probes arrive because the specifics of most forms of activity only manifest after the

Honeynet-based Botnet Scan Traffic Analysis 29

Misconfiguration

Botnet
Worm

Misconfiguration
Separation

Honeynets/Honeyfarms
Traffic

Traffic Classification

Event Extraction

Worm
Separation

Botnet Event
Analysis

Fig. 1. Botnet event extraction and analysis paradigm

source establishes a connection (or, sometimes, a whole set of connections compris-

ing a session) with the destination. As a general approach, we can take traffic sent

to unresponsive darknets and channel it to a honeypot system that will respond in

some fashion. Such a combination is often referred to as a honeynet. Honeynet sys-

tems can employ low- or medium-interaction honeypots [1, 13], which provide fake

responses of varying detail, and thus can elicit a range of possible activity from the

sender. Going further, one can employ high-interaction honeypots (full, infectible

systems, often running inside virtual machines), which when coupled with a hon-

eynet is termed as a honeyfarm [4, 18].

Our analysis is based on one year (2006) honeynet data from a large research in-

stitution. The honeynet has ten continuous class C networks. The half of the sensor is

dark which means no response to any incoming packets and the second half accom-

panied with Honeyd responder which simulate most popular protocols and respond

the SYN/ACK packets to the unknown protocols. The configuration is similar to the

ones used in [10, 19]. We also adapt the source-destination filtering [10].

30 Zhichun Li, Anup Goyal, and Yan Chen

3.2 Traffic Classification

Some attack traffic can have complex session structures involving multiple applica-

tion protocols. For example, the attacker can send an exploit to TCP port 139 which,

if successful, results in opening a shell and issuing a http download command. In

general, the application protocol contacted first is the protocol being exploited, so

we label the entire session with the first protocol used. This also provides consistent

labeling for those connection attempts in which the honeynet did not respond and

we observe only the initial SYN packet. We aggregate the connections to sessions

using an approach similar to the first step algorithm by Kannan et al [9]. We consider

all those connections within Taggreg of each other as part of the same session for a

given pair of hosts. We used the same threshold, Taggreg = 100 seconds, as Kannan

et al [9], and found that this grouped the majority of connections between any given

pair of hosts.

For application protocols which are not commonly used, the average back-

ground radiation noise is low and thus port numbers are used to separate event

traffic. However, noise is usually quite strong for more popular protocols, thus

requiring further differentiation. Assuming that we observe at least one success-

ful session from each sender, we can use the payload analysis of that session

to separate it from other traffic. We use a similar approach for the Radiation-

analy summaries proposed in [19], which further classify the traffic within one

application protocol or one application protocol family by rich semantic anal-

ysis. We analyzed the semantics of 20 common and backdoor protocols based

on Bro’s application semantic analysis [11], and generated a session summary

for each session (e.g., 445/tcp/[exploit] (NAMED PIPE:"\\<dst-IP>\IPC$

\wkssvc"; RPC request (4280 bytes))). Based on the session summary we

can further classify the traffic within one protocol family.

3.3 Event Extraction

We found for the traffic of all the port number or protocol semantics, the traffic con-

sists of a steady background noise with some large spikes. The large spikes usually

are corresponding to the botnet scanning events. We found to extract the big spikes

is similar to the traditional signal detection problem. Signal strength S is defined as

the peak of unique source count arrival, and the typical unique source count when

there are no events is defined as noise strength N . Noise strength is calculated as the

median of unique source counts of every time interval for TN days before the event.

If the event occurrence time is less than TN/2, then noise strength is the median of

the time window TN . We define the signal to noise ratio as SNR = S
N

, and examine

only those events with large SNR. We use TN = 30 (30 days) since we never see

an event last more than two days. The thresholds we use are SNR ≥ 50.

We calculate the unique source count of every pre-defined time interval for a

given protocol. Event extraction is done using time series analysis. While many gen-

eral statistical signal detection approaches might be applied here, we currently ex-

tract the events semi-manually. We first automatically extract potential events using

Honeynet-based Botnet Scan Traffic Analysis 31

the following algorithm: for any given time interval, we calculate the median of the

previous TN intervals and the SNR. For those spikes which exceed our SNR thresh-

old, we extend the range until S ≤ ωN where ω is a tunable parameter controlling

the amount of the signal tail to include in the event.

After an event is extracted, we might refine the event by re-scaling it into smaller

time intervals and recalculating the unique source counts. We use manual analysis

and visualization techniques at this point, since re-scaling might make the shape of

events more complex.

3.4 Misconfiguration and Worm Separation

Events with a large number of sources are usually misconfigurations, botnets and

worms [19]. We separate misconfigurations from worms or botnets based on the ob-

servation that botnet scans and worms contact a significant range of the IP addresses

in the sensor, whereas events with few hotspots target are caused by misconfigura-

tions. We use two metrics to separate misconfiguations from other events. The ad-

dress hit ratio, NE/ND, where NE is the number of destination addresses involved

in the event and ND is the number of destination addresses in the honeynet, should

be much smaller for misconfigurations than for botnet sweeps or worms. Secondly,

the average number of sources per destination address should be much larger for mis-

configurations. If the first metric is below given threshold while the second crosses

a given threshold, we consider the event to be a misconfiguration; otherwise it is

classified as a worm or botnet event.

Worm behavior and botnet probes are quite similar: both scan and send exploits

to the address range in a similar manner. However, usually the number of sources for

worms grows much more quickly than botnets, and events also last longer for worms.

But if botnets scans the entire Internet, with new infected bots continuing to join the

scan activity, then there is no observable difference from worms. Hence it is difficult

to define a strict distinction between botnet sweeps and worms. In this paper, we treat

all events with an exponential growing trend in the number of sources as worms [22],

and the other events as botnet sweeps. We use the Kalman filter based exponential

trend detection proposed in [22] to differentiate botnet and worm events.

4 Botnet Scanning Event Analysis

In our one year honeynet traffic, we found 43 botnet global scan events. We first ana-

lyzed the overall sender (bot) characteristics of the all the senders. Then, we analyzed

each event individually and compare the characteristics among different events.

In this book chapter, we focused on the following characteristics of botnet scan-

ning behavior.

• Bot IP distribution and AS distribution

• Bot operating system characteristics

• Botnet scan arrival behavior

• Bot arrival and departure process observed in the scanning events

32 Zhichun Li, Anup Goyal, and Yan Chen

• Bot observed local scan rate behavior

• Botnet scanning source and destination relationship

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

.0
.0

3
2

.0
.0

.0

6
4

.0
.0

.0

9
6

.0
.0

.0

1
2

8
.0

.0
.0

1
6

0
.0

.0
.0

1
9

2
.0

.0
.0

2
2

4
.0

.0
.0

F
(x

)

Fig. 2. The number of all unique source IP addresses, as a function of IP address space. On

the x-axis, IP address space is binned by /24.

4.1 Source Characteristics of Bots

We observed thousands of senders in most of the events. In 43 events, we totally ob-

served 63,851 unique senders. Figure 2 shows the number of senders (bots) observed

over all the events, as a function of IP address space. The overall trend is very similar

to the spamming IP distribution in [16]. From the figure we knew, most bots are from

60.* – 90.* and 193.* – 222.* and some are from 24.* (cable modem provider). The

figure illustrated that the bots mostly come from quite concentrated IP ranges. This

result confirmed the result from the bot spamming behavior study [16].

We also analyzed the IP space distribution for every event. We found for most

events we got the similar IP space distribution as figure 2. However, there are some

events whose IP space distributions are far from the total distribution. Figure 3 and

Figure 4 shows a few such examples. Since different events might be corresponding

to different botnets, this implies the IP space distributions of different botnets can be

quite different. Therefore, the coarse grain IP range based botnet filtering or detect

might not work well in practice.

In our study, we found most bots are from a relative small number of ASes. More

than 22% of bots are from the five ASes, and 41% of the bots from 20 ASes. In

Honeynet-based Botnet Scan Traffic Analysis 33

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

.0
.0

3
2
.0

.0
.0

6
4
.0

.0
.0

9
6
.0

.0
.0

1
2
8
.0

.0
.0

1
6
0
.0

.0
.0

1
9
2
.0

.0
.0

2
2
4
.0

.0
.0

F
(x

)

Fig. 3. The number of all unique source IP addresses for the event on TCP port 2967 on

2006-11-26, as a function of IP address space. On the x-axis, IP address space is binned by

/24.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

.0
.0

3
2
.0

.0
.0

6
4
.0

.0
.0

9
6
.0

.0
.0

1
2
8
.0

.0
.0

1
6
0
.0

.0
.0

1
9
2
.0

.0
.0

2
2
4
.0

.0
.0

F
(x

)

Fig. 4. The number of all unique source IP addresses for the event on TCP port 5000 on

2006-8-24, as a function of IP address space. On the x-axis, IP address space is binned by /24.

Table 1, we showed the top 20 ASes and the corresponding number of bots for each

AS. From the analysis of the top 20 ASes, we found about 21% of the bots are Asia,

mainly from China, Korea and Taiwan. Europe and North America (Unite States and

Canada) have similar amount of bots 9.5% and 9% respectively. Surprisingly there

are also about 2% bots coming from Brazil. The bot population is from 2860 ASes in

total. Although our honeynet detection sensor is in Unite States but the bots indeed

34 Zhichun Li, Anup Goyal, and Yan Chen

AS number #Source AS Name Primary Country

4134 4449 CHINANET-BACKBONE China

9318 2988 Hanaro Telecom Inc Korea

3462 2712 Data Communication Business Group Taiwan

4837 2091 CHINA169-BACKBONE China

5617 1849 Polish Telecom’s commercial IP network Poland

7132 1660 SBC Internet Services United States

6327 1545 Shaw Communications Inc. Canada

19262 1441 Verizon Internet Serv United States

3320 1060 Deutsche Telekom AG Germany

3352 855 Internet Access Network of TDE Spain

7738 744 Telecomunicacoes da Bahia S.A Brazil

20961 675 Autonomous System Poland

577 619 Bell Canada Canada

3269 609 Telecom ITALIA Italy

9394 541 CHINA RAILWAY Internet(CRNET) China

12322 533 PROXAD AS for Proxad/Free ISP France

8167 498 Telecomunicacoes de Santa Catarina SA Brazil

3356 493 Level 3 Communications United States

25310 469 Cable and Wireless Access LTD United Kingdom

4766 429 Korea Telcom Korea

Table 1. Amount of scan received from botnet scanning in the top 20 ASes.

come from all over the world. The overall result are similar to the result from [16].

The difference between our result and the result from [16] is mainly that we observed

more hosts from Europe than them.

4.2 Operating Systems of Bots

We also investigated the prevalence of operating system among the bots. We used

p0f [21] tool to identified the operating system versions. P0f is a passive OS fin-

gerprinting tool which mainly uses the TCP options within the TCP SYN packets to

identify the operating system versions. For each bot, we might observe multiple SYN

packets. Sometimes, the different SYN packets from a bot might be given different

OS results by p0f. We used the following priorities to solve the potential conflict. We

think the other OS types have higher priority than Windows, and Windows has higher

priority than Unknown. The rule is to favorite the non-Windows operating systems

Honeynet-based Botnet Scan Traffic Analysis 35

Operating System Clients

Windows 58797 (92%)

-Windows 2000 or XP 58028 (90.8%)

-Windows 98 404 (0.63%)

-Windows NT 329 (0.51%)

-Windows 2003 25 (<.1%)

-Windows 95 11 (<.1%)

Linux 9 (<.1%)

Novell 23 (<.1%)

HP-UX 1 (<.1%)

Unidentified 5021 (7.8%)

Total 63851

Table 2. The operating system distribution for unique senders of received scan, as determined

by passive OS fingerprinting.

and to try to avoid assigning Unknown. Table 2 shows the operating system distri-

bution we found. We found 92% of the bots are identified as Windows machines by

p0f [21]. And among the Windows machines, 90.8% of the bots are Windows 2000

or XP. This result supported the conventional wisdom that botnet army are mainly

comprised Windows machines.

We also did the similar analysis at per event level. We found for all the 43 events

the dominated operating system are Windows. We did not observe any events which

mainly consist of other types of machines. Although, there are some rumors that

some botnets are Linux or Unix based, based on our finding, we believe the percent-

age of non-Windows based botnets in the botnet population are really low.

4.3 Scan Arrival Characteristics

For all the botnet events, we analyzed how the scan sessions arrive in time. We found

for most events the very beginning and the very end of the events have complex ar-

rival behavior. However, for most events in the middle part, the scan arrival speeds

are quite constant, and the more than half of the events’ inter-arrival time follows

exponential distributions. This suggested that the scan arrivals follow a Poisson dis-

tribution. One plausible explanation for this is based on the law of rare events. Usu-

ally the botnet scans a large IP scope, and the sensor is only a tiny portion of it. If

the botnet uses random scanning, for each scan session there is a small probability

p to arrive the honeynet detection sensor. According the law of rare events, the ob-

served scan sessions in a given time interval will follow a Poisson distribution and

the inter arrival time will follow an exponential distribution. Among the 43 events,

36 Zhichun Li, Anup Goyal, and Yan Chen

0
2
0
0

4
0
0

6
0
0

8
0
0

UTC Time

C
u
m

u
la

ti
v
e
 A

rr
iv

a
ls

12:00 16:00 20:00 00:00

Fig. 5. The cumulative scan session arrival process of the event on TCP port 8888 on 2006-

02-06, which corresponding to a backdoor shell.

0 100 200 300 400 500 600

−
3
.0

−
2
.5

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.0

Interarrival time (seconds)

L
o
g
(1

−
F

(x
))

Fig. 6. The inter-arrival time log scale CDF of the event on TCP port 8888 on 2006-02-06,

which corresponding to a backdoor shell.

about 25 (58%) events the inter-arrival time follows an exponential distribution. This

suggested most botnets indeed use a random scan strategy. An example of the scan

arrival and scan inter arrival time is shown in Figure 5 and Figure 6 respectively.

4.4 Source Arrival and Departure

We also investigated for each event when the bots are observed. We defined, for a

given bot, the time it begins to scan as its true source arrival time, and the time it

Honeynet-based Botnet Scan Traffic Analysis 37

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

UTC Time

C
u
m

u
la

ti
v
e
 #

 o
f
s
o
u
rc

e
s

04:00 06:00 08:00 10:00 12:00

Fig. 7. The arrival process of the event on TCP port 1433 on 2006-01-22 (from 2006-01-22

21:00 to 2006-01-23 07:00), which corresponding to a MS SQL Server vulnerability.

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

UTC Time

C
u
m

u
la

ti
v
e
 #

 o
f
s
o
u
rc

e
s

02:00 04:00 06:00 08:00

Fig. 8. The arrival process of the event on TCP port 1433 on 2006-08-24, which corresponding

to a MS SQL Server vulnerability.

stops to scan as its true source departure time. We cannot measure the true arrival

time and departure time of the bots, since the botnet might scan a large range and the

honeynet sensor can only observe a small sample of the scans. Instead, we defined

the time of the first scan we seen from a given bot as its observed arrival time, and the

time of the last scan we seen from the same bot as its observed departure time. For

random scanning, we can assume the scans we observed are a random sampling from

the total scan population. Certainly the sampling errors will influence the results. The

38 Zhichun Li, Anup Goyal, and Yan Chen

number of scan between the first scan sent out by a bot and the first scan we observed

from that given bot follows a geometry distribution. If we assume the scan speed is

close to constant, the time difference of the first scan sent out by a bot and the first

scan we observed from that bot will also follow a geometry distribution. We can

make the similar argument to the true departure time of the bot and the departure

time we observed. For the long lived events usually we can use the observed arrival

and departure time as good approximation of the true arrival and departure time. For

the short lived event the observed arrival and departure time might not be able to

present true arrival and departure time.

For the long lived events, we found there are two types of source arrival pro-

cesses. In some events, most bots arrived at the beginning part of the events, but on

some other events bots arrivals distributed over the whole period of the event dura-

tion. Figure 7 and Figure 8 showed such two representative cases respectively.

In Figure 7, most bots arrived at the beginning part of the events. This might cor-

respond to the case that after the botmaster typed the scan command in the command

and control channel, immediately the bots in the channel received the scan command

and began to scan. The true source arrival times of bots are same, so the observed

source arrival time follows a geometry distribution.

In Figure 8, the bot arrive uniformly in the event duration, which indicate the true

source arrival time of different bots are different and also should be uniformly dis-

tributed in time. There are two possibilities to make this happen. One possibility is

that every bot defer to execute the scan command by random seconds uniformly. The

other possibility is that the scan command is the default channel topic [15]. There-

fore, after a bot join the channel, it will get the scan command and start scanning.

From the data we cannot separate these two cases.

In the departure process, we found, in all the long-lived events, many bots depart

before the events end.

For the events most bots arrived at the beginning part of the events, we observed

at the end of event, the bot departure rate increased sharply. We analyzed several

botnet source code genres and found in most case the botmaster asks the bot to scan

a fixed amount of time. If that is the case, it makes sense that at the end of the time

specified by the botmaster all the remaining bots end the scanning.

There is one event different from other events, in which the bots arrived in groups,

but the total scan arrivals are still linear in time. In Figure 9 we can see there are four

major groups of bots arrived in batch. But in Figure 10 the number of scan arrivals

is still linear in time. Through further analysis we found, after the first group of bots

departed, the second group of bots arrived immediately. This is also true for other

consecutive groups of bots. Obviously, the botmaster intentionally divide the bots in

four groups to do the scanning one after another.

We also studied the observed bot scan duration, i.e., the time between the first

scan observed from a given bot and the last scan observed from the given bot. An

example CDF of the scan duration is shown in Figure 11. However, we found the

scan duration varies from events to events. There is no clear pattern can be found.

Honeynet-based Botnet Scan Traffic Analysis 39

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

UTC Time

C
u
m

u
la

ti
v
e
 #

 o
f
s
o
u
rc

e
s

20:00 00:00 04:00 08:00 12:00 16:00

Fig. 9. The bot arrival process of event on TCP port 139 from 2006-08-24 13:40 to 2006-08-25

11:04, which corresponding to a Netbios-SSN scan.

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

UTC Time

C
u
m

u
la

ti
v
e
 A

rr
iv

a
ls

20:00 00:00 04:00 08:00 12:00 16:00

Fig. 10. The scan arrival of event on TCP port 139 from 2006-08-24 13:40 to 2006-08-25

11:04, which corresponding to a Netbios-SSN scan.

4.5 Observed Local Scan Rate

We calculated the local scan rate of a given bot as the number of scans we observed

minus one over its observed scan duration. The idea behind is that we can think after

the first scan arrives we started the timer, and in the observed scan duration we will

observed the scans except the first one. We will not define the local scan rate for the

senders from which only one scan is observed.

40 Zhichun Li, Anup Goyal, and Yan Chen

0 5000 10000 15000 20000 25000 30000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Scan duration (seconds)

F
(x

)

Fig. 11. The CDF of observed scan duration of bots of event on TCP port 1433 on 2006-08-24,

which corresponding to a MS SQL Server vulnerability.

0.00 0.01 0.02 0.03 0.04 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Local Scan Speed (probes/second)

F
(x

)

Fig. 12. The CDF of local scan rate distribution of the event on TCP port 5900 on 2006-09-26,

which corresponding to a VNC vulnerabilty.

We first looked at the CDF of local scan rate of different events. In four cases,

the numbers of bots which send more than one scans are very small, so the CDF is

not very representative. For the remaining cases, we found most bots have similar

local scan rate with a few bot with very high local scan rate. We further analyzed the

bots with very high local scan rate, and find they are not necessarily the bots which

send most scans. Many of such cases are due to they have very short observed scan

duration. Figure 12 shows an example of such a CDF distribution.

Honeynet-based Botnet Scan Traffic Analysis 41

We further investigated whether the local scan speed have any correlation with

the bot arrival and departure time. We did not find any obvious trend. We believe in

most case, the bot arrival and departure time might not have strong correlation with

their local scan speed. However they might have certain weak correlation and which

can be buried into the random noises in the data. Figure 13 and Figure 14 show an

example of this analysis.
5
e
−

0
4

2
e
−

0
3

1
e
−

0
2

5
e
−

0
2

2
e
−

0
1

UTC Time

L
o
c
a
l
S

c
a
n
 S

p
e
e
d
 −

 l
o
g
 s

c
a
le

00:00 00:24 00:48 01:12

Fig. 13. The scatter plot of the source observed arrival times and their corresponding observed

scan rate of the event on TCP port 1025 on 2006-09-19.

4.6 Scan Source Destination Relationship

We also analyzed source destination relationships. We mainly studied two distribu-

tions: how many sources target a destination address in the honeynet sensor, and how

many destinations are contacted by a source.

We found in all the events, the distribution of how many sources a destination

contacts is close to the binomial distribution with only very few exceptions. This

implies that the source usually choose the destination uniform randomly. Figure 15

is such an example.

The distribution of how many destinations a source targets is more complex.

Sometimes it has multiple modes. The conjecture is that it can be explained as a

multiplex of multiple binomial distributions, due to different bots might have differ-

ent scan speeds and durations. In Figure 16 we showed an example which clearly has

this pattern.

42 Zhichun Li, Anup Goyal, and Yan Chen

5
e
−

0
4

2
e
−

0
3

1
e
−

0
2

5
e
−

0
2

2
e
−

0
1

UTC Time

L
o
c
a
l
S

c
a
n
 S

p
e
e
d
 −

 l
o
g
 s

c
a
le

00:00 00:24 00:48 01:12

Fig. 14. The scatter plot of the source observed departure times and their corresponding ob-

served scan rates of the event on TCP port 1025 on 2006-09-19.

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

of SIPs/DIP

C
o
u
n
t
o
f
d
e
s
ti
n
a
ti
o
n
s

5 11 17 23 29 37 44 59 97

Fig. 15. The distribution of number of sources a destination contacted of the event on TCP

port 1433 on 2006-08-24, which corresponding to a MS SQL Server vulnerability.

5 Conclusion

Botnets have become the most serious threats to the Internet security. Many cyber-

crimes are botnet related. Measuring and understanding the botnet will help us gain

more insight to the botnet phenomenon, and further help us design better detection

and prevention systems.

Honeynet-based Botnet Scan Traffic Analysis 43

0
1
0

2
0

3
0

4
0

5
0

6
0

of DIPs/SIP

C
o
u
n
t
o
f
s
o
u
rc

e
s

1 3 5 7 9 12 15 18 21 24 27 30 33 39

Fig. 16. The distribution of number of destinations a source touched of the event on TCP port

2967 on 2006-11-27, which corresponding to a backdoor shell.

In this book chapter, we proposed a general framework to extract botnet global

scanning events. Based on one year honeynet traffic from a large research institution

we studied the six different botnet scanning characteristics. We found botnets al-

though mainly from a small number of ASes but indeed spread out all over the world

from totally 2860 ASes. There are two different botnet arrival/departure patterns: all

together and gradually. We conjecture this is related to different scan strategies. We

also found the scan arrivals are linear in time and inter-arrival time follows a expo-

nential distribution, which might imply the scans are random scanning and the scan

range is much larger than the detection sensor.

References

1. M. Bailey et al. The Internet motion sensor: A distributed blackhole monitoring system.

In Proc. of NDSS, 2005.

2. James Binkley and Suresh Singh. An algorithm for anomaly-based botnet detection. In

Proceedings of Steps to Reducing Unwanted Traffic on the Internet Workshop (SRUTI

’06), 2006.

3. E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding, detect-

ing, and disrupting botnets. In Proceedings of USENIX Workshop on Steps to Reducing

Unwanted Traffic on the Internet, July 2005.

4. W. Cui et al. GQ: Realizing a system to catch worms in a quarter million places. Technical

Report TR-06-004, ICSI, 2006.

5. D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation using time zones. In Pro-

ceedings of the 13th Network and Distributed System Security Symposium (NDSS’06),

2006.

44 Zhichun Li, Anup Goyal, and Yan Chen

6. Neil Daswani, Michael Stoppelman, the Google Click Quality, and Inc Security Teams,

Google. The anatomy of Clickbot.A. In USENIX First Workshop on Hot Topics in Un-

derstanding Botnets (HotBots), 2007.

7. Julian Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang, and David

Dagon. Peer-to-peer botnets: Overview and case study. In USENIX First Workshop on

Hot Topics in Understanding Botnets (HotBots), 2007.

8. Christopher W. Hanna. Using snort to detect rogue irc bot programs, Oct

2004. http://www.giac.org/certified_professionals/practicals/
gsec/4095.php.

9. J. Kannan et al. Semi-automated discovery of application session structure. In Proc. of

ACM IMC, 2006.

10. R. Pang et al. Characteristics of Internet background radiation. In Proc. of ACM IMC,

2004.

11. V. Paxson. Bro: A system for detecting network intruders in real-time. Computer Net-

works, 31, 1999.

12. The Honeynet Project and Research Alliance. Know your enemy: Tracking botnets.

http://honeynet.org/papers/bots, March 2005.

13. N. Provos. A virtual honeypot framework. In Proc. of USENIX Security, 2004.

14. Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and Nagendra

Modadugu. The ghost in the browser: Analysis of web-based malware. In USENIX

First Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

15. Moheeb A. Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A multifaceted

approach to understanding the botnet phenomenon. In Proc. of ACM/USENIX IMC, 2006.

16. Anirudh Ramachandran and Nick Feamster. Understanding the network-level behavior

of spammers. In Proceedings of ACM SIGCOMM ’06, September 2006.

17. Anirudh Ramachandran, Nick Feamster, and David Dagon. Revealing botnet member-

ship using DNSBL counter-intelligence. In Proceedings of Steps to Reducing Unwanted

Traffic on the Internet Workshop (SRUTI ’06), 2006.

18. M. Vrable et al. Scalability, fidelity, and containment in the potemkin virtual honeyfarm.

In Proc. of SOSP, 2005.

19. V. Yegneswaran, Paul Barford, and Vern Paxson. Using honeynets for Internet situational

awareness. In In Proc. of ACM Hotnets IV, 2005.

20. V. Yegneswaran et al. On the design and use of Internet sinks for network abuse monitor-

ing. In Proc. of RAID, 2004.

21. Michal Zalewski. the new p0f. http://lcamtuf.coredump.cx/p0f.shtml.

22. Cliff C. Zou et al. Monitoring and early warning for Internet worms. In Prof. of ACM

CCS, 2003.

Characterizing Bots’ Remote Control Behavior

Elizabeth Stinson and John C. Mitchell

Department of Computer Science, Stanford University, Stanford, CA 94305

{stinson,mitchell}@cs.stanford.edu

Summary. A botnet is a collection of bots, each generally running on a compromised system

and responding to commands over a “command-and-control” overlay network. We investigate

observable differences in the behavior of bots and benign programs, focusing on the way that

bots respond to data received over the network. Our experimental platform monitors execu-

tion of an arbitrary Win32 binary, considering data received over the network to be tainted,

applying library-call-level taint propagation, and checking for tainted arguments to selected

system calls. As a way of further distinguishing locally-initiated from remotely-initiated ac-

tions, we capture and propagate “cleanliness” of local user input (as received via the keyboard

or mouse). Testing indicates behavioral separation of major bot families (ago, DSNX, evil,

G-SyS, sd, Spy) from benign programs with low error rate.

Key words: host-based, behavior-based, detection, taint, interposition, system call

1 Introduction

Botnets have been instrumental in distributed denial of service attacks, click fraud,

phishing, malware distribution, manipulation of online polls and games, and identity

theft [2, 17, 18, 24, 27, 30]. As much as 70% of all spam may be transmitted through

botnets [4] and as many as 1

4
of all computers may be participants in a botnet [34]. A

bot master (or “botherder”) directs the activities of a botnet by issuing commands that

are transmitted over a command-and-control (C&C) overlay network. Some previous

network-based botnet detection efforts have attempted to exploit this ongoing C&C

behavior or its side effects [3, 6, 24]. Our work investigates the potential for host-

based behavioral bot detection. In particular, we test the hypothesis that the behavior

of installed bots can be characterized in a way that distinguishes malicious bots from

innocuous processes. We are not aware of any prior studies of this topic.

Each participating bot independently executes each command received over the

C&C network. A bot command takes some number of parameters (possibly zero) –

each of a particular type – in some fixed order. For example, many bots provide a

web-download command, which commonly takes two parameters; the first is a URL

that identifies a remote resource (typically a file) that should be downloaded, and the

46 Elizabeth Stinson and John C. Mitchell

second is the file path on the host system at which to store the downloaded data. A

botnet constitutes a remotely programmable platform with the set of commands it

supports forming its API.

Many parameterized bot commands are implemented by invoking operating sys-

tem services on the host system. For example, the web-download command connects

to a target over the network, requests some data from that target, and creates a file

on the host system; all of these actions (connect, network send and receive, and

file creation) are performed via execution of system calls. Typically, a command’s

parameters provide information used in the system call invocation. For example,

the connect system call takes an IP address argument, which identifies the target

host with which a connection should be established. Implementations of the web-

download command obtain that target host IP from the given URL parameter. Thus,

execution of many parameterized commands causes system call invocations on argu-

ments obtained from those parameters.

In this chapter, we test the experimental hypothesis that the remote control of bots

through parameterized commands separates bot behavior from normal execution of

innocuous programs. We postulate that a process exhibits external or remote con-

trol when it uses data received from the network (an untrusted source) in a system

call argument (a trusted sink). We test our hypothesis via a prototype implemen-

tation, BotSwat, designed for the environment in which the vast majority of bots

operate: home users’ PCs running Windows XP or 2000 [24]. BotSwat can monitor

execution of an arbitrary Win32 binary and interposes on the run-time library calls

(including system calls) made by a process. We consider data received over the net-

work to be tainted and track tainted data as it propagates via dynamic library calls to

other memory regions. We identify execution of parameterized bot commands when

tainted arguments are supplied to select gate functions, which are system calls used

in malicious bot activity.

Our experimental results suggest that the presence of network packet contents

in selected system call arguments is an effective indicator for malicious Win32 bots,

including tested variants of agobot, DSNXbot, evilbot, G-SySbot, sdbot, and Spybot.

Bots from these families constitute 98.2% of malicious bots seen in the wild [17].

While these bots may implement commands in significantly different ways, similar-

ities in the way they respond to external control allow a single approach to identify

them. Additionally, the thousands of variants of each such family generally differ

in ways that will not affect our ability to detect them; this is in contrast to tradi-

tional anti-malware signature scanners which may require a distinct signature for

each variant [35]. Moreover, our generic approach does not rely on a particular C&C

communication protocol (e.g., Internet Relay Chat (IRC)) or botnet topology (e.g.,

centralized).

Since our prototype implementation only has visibility into memory-copying

calls made via a Dynamically Linked Library (DLL), we introduce strategies to coun-

teract the effects of out-of-band memory copies – those which occur outside of the

interposition mechanism. In particular, we perform content-based tainting, which

considers a memory region tainted if its contents are identical to a known tainted

string. We also introduce substring-based tainting, whereby a region will be con-

Characterizing Bots’ Remote Control Behavior 47

sidered tainted if its contents are a substring of any data received by the monitored

process over the network. These strategies are applied upon calls by a monitored

process into taint propagation functions, which are DLL functions used to copy or

convert the contents of memory. Applying these strategies allows us to effectively

identify bot behavior even when all of the bot’s calls to memory-copying functions

are out-of-band, which may occur if the bot statically links in C library functions.

Since BotSwat uses library-call-level taint propagation, bots could apply out-

of-band encryption functions (e.g., XOR) to network data and consequently defeat

detection by the prototype implementation. This is a limitation of our current test-

ing platform rather than a deficiency in the characterization of bot remote-control

behavior. Our testing of versions of agobot, which encrypt C&C communications

via dynamic calls to the OpenSSL library, indicates that remote control behavior can

still be identified (even when communications are encrypted), given visibility into

the cryptographic function calls. Current botnet C&C communications tend to be

unencrypted [18].

While both bots and benign programs may create files, interact with the network,

and execute programs, we are able to separate bot behavior from that of benign pro-

grams by distinguishing between remotely-initiated and locally-initiated actions. We

tested applications typical to the target environment (home-user PCs) which exhibit

extensive network interaction. Early testing revealed that a benign program may use

some tainted value in a system call argument as a result of local user input. For exam-

ple, when a user downloads a webpage via a browser then clicks on a hypertext link

therein, the browser will consequently request the content stored at the linked URL.

In so doing, the browser will invoke system calls (e.g., connect, send) on tainted

arguments (the URL). If user input were not tracked, this sequence of events would

look similar to bot execution of the web download command. To account for this

phenomenon in our experimental assessment, we designed and implemented a user-

input module that identifies data values resulting from local user input as received

via the keyboard or mouse. These clean strings are used to identify instances of local

control. Our testing of eight benign programs over a variety of activities common to

those applications resulted in eight total flagged behaviors (five different) whereas

testing six bots resulted in a total of 202 flagged behaviors (18 different).

In Sect. 2, we provide background information on bots. Section 3 describes our

experimental method, and Sect. 4 details our prototype implementation. Our exper-

imental results are given in Sect. 5. We discuss the potential for and challenges to

applying our findings for real-time host-based bot detection in Sect. 6. Section 7

describes related work and Sect. 8 provides concluding remarks.

2 Bots and Botnets

2.1 Bot Families and Variants

The Honeynet Project identifies four main Win32 bot families: (1) agobot – the

most well known; (2) sdbot – the most common; (3) DSNXbot; and (4) mIRC-based

48 Elizabeth Stinson and John C. Mitchell

bots [24]. A family is “a new, distinct sample of malicious code,” whereas a variant

is “a new iteration of the same family, one that has minor differences but that is still

based on the original” [33]. Variants may be created by augmenting the functionality

of a bot (e.g., adding a new exploit for use in spreading) or by applying “pack-

ing transformations” (such as compression and encryption) to a bot binary [33, 35].

We tested at least one variant from each of the first three major Win32 bot families

(agobot, sdbot, and DSNXbot) as well as evilbot and Spybot. Data from McAfee

suggests that bots from these tested families collectively constitute 98.2% of known

variants (as of June 2005) [17]. Since bots in the wild may link in C library functions

statically or dynamically, we tested bots under both conditions.

Fig. 1. Bot capabilities

2.2 Bot Capabilities and Commands

Figure 1 provides a summary of some of the functionality exported by the tested

bots. The shaded cells represent activities that are detected by BotSwat as described

in Sect. 5. Note that, of the 22 different bot activities listed, 21 are implemented as

parameterized commands by each of the bots that provides that capability. The ex-

ception is keylogging, which – for both of the bots that perform it – logs the captured

keystrokes to a file whose name is statically configured. This chart reflects the bot

Characterizing Bots’ Remote Control Behavior 49

versions we tested; different variants from each of these families may export more or

less functionality.

Candidate Commands

Since our characterization of bot behavior exploits the fact that command parameters

are often used in system call arguments, we identify a bot’s candidate commands as

those which take at least one parameter that is subsequently used (in whole or in part)

in an argument to a critical system function. Our method considers non-candidate

commands, those which take no parameters or parameters with only “local meaning”

to the bot, out-of-scope.

Any bot execution of a received command is an instance in which that bot is

being remotely controlled. The remote control behavior associated with a particular

command consists of all the actions taken by the bot as a direct consequence of re-

ceipt of that command. Not all commands result in an equal amount of remote control

behavior; e.g., a command that asks a bot to return its ID (some statically-configured

value) to the bot controller entails fewer actions than the described web-download

command. We approximate a command’s remote control behavior by identifying the

number of distinct system calls invoked during a successful execution of that com-

mand; these values were obtained through bot source code inspection. A bot’s total

potential remote control behavior, then, is the sum of the remote-control behavior of

each of that bot’s commands (Table 1, Row 1). Our coverage of that potential can

be measured by summing the remote-control behavior of each of a bot’s candidate

commands (Table 1, Row 2). The complete list of system calls used in the tallies

can be found in [44]. The number of system calls invoked by a bot’s candidate com-

mands accounts for around 64 to 79% of the system calls invoked over all of the

bot’s commands. Interestingly enough, the non-candidate commands that cause the

highest number of system call invocations generally perform beneficial tasks (from

the perspective of the compromised host); specific examples of this can be found

in [44].

Table 1. The number of system calls invoked during successful execution of commands

ago DSNX evil GSyS sd Spy

syscalls invoked over all cmds 591 145 5 187 173 202

syscalls invoked over candidate cmds 417 114 5 122 110 145

3 Experimental Method

We developed a host-based method that identifies instances of external control,

whereby a process uses data it received from an untrusted source in a system call

50 Elizabeth Stinson and John C. Mitchell

argument without having received intervening (local) user input implicitly or explic-

itly agreeing to this use.

Tainting Component This component identifies when untrusted data is received

by the system (taint instantiation) and tracks that data as it propagates to other mem-

ory regions (taint propagation). For our method, taint instantiation occurs upon net-

work receive, and taint propagation keeps track of memory regions to which tainted

data is written. This component exports an interface that enables querying whether a

particular memory region is considered tainted.

User Input Component This purpose of this component is to identify actions

that are initiated by the local application user. A primary challenge in designing this

component is to identify the data values corresponding to mouse input events where

this mapping (from event to value) is heavily application-dependent and not typi-

cally exposed (i.e., available via a library call). This component exports an interface

that enables learning whether a data value or memory region is considered clean or

whether a syscall invocation is likely the result of user input.

Behavior-Check Procedure Triggered by invocation of selected system calls, this

procedure queries the tainting and user-input components to determine whether to

flag the invocation as exhibiting external control. Invocations on arguments that con-

tain more bytes of tainted than clean data are flagged.

4 Implementation

This section describes the interposition approach and the tainting, user-input, and

behavior-check instrumentation used to evaluate our hypothesis.

4.1 Library and System Call Interposition

We use the detours library provided by Microsoft Research for library- and

system-call interposition [9]. Our platform consists of a set of functions that we

want to interpose upon, a replacement function for each, and a mechanism for per-

forming interposition. The replacement functions contain the tainting, user-input,

and behavior-check instrumentation. This platform is packaged as a DLL that can be

injected into a target process upon its creation. Our implementation consists of ap-

proximately 70,000 lines of C++ code and, for the purpose of conducting thorough

experiments, may intercept up to 2,200 API functions.

4.2 Tainting Module

Our tainting module operates dynamically at the library-call level and considers data

received over the network to be tainted; consequently, network receive functions

(e.g., recv, WSARecv) are instrumented as taint instantiators. Taint propagation

functions include those which copy memory from a source to a destination buffer

(e.g., memcpy), convert a buffer’s contents to a numeric value (e.g., atoi), or con-

vert one numeric value to another (e.g., htons). Taintedness can be a property of

Characterizing Bots’ Remote Control Behavior 51

memory addresses, strings, or numeric values. A total of 172 different functions (enu-

merated in [44]) were instrumented as taint propagators.

As a result of out-of-band memory copies, our mechanism may possess one of

two flawed views regarding a particular memory region. If a destination region D is

written to with tainted data via an out-of-band operation, we will not know that D
should be considered tainted. Our belief that D does not contain tainted data is a false

negative. Similarly, a tainted region T may be written to via an out-of-band operation

with untainted data; in this case, our belief that T is tainted is a false positive. We

perform content-matching to reduce false positives and content-based and substring-

based tainting to reduce false negatives.

To reduce false positives, we perform content-matching: for a believed-to-be-

tainted memory region M, before taking any action on the basis of M’s supposed

taintedness (where actions include propagating taint or flagging a syscall invoca-

tion), we confirm that M’s contents match the relevant portion of the network receive

buffer N from which M allegedly descended. The information needed to perform

such a comparison (an identifier of N, the offset into N from which this tainted data

descended, the number of bytes of tainted data, etc.) is stored in the data structure

describing a tainted memory region.

There are three conditions under which a region may be considered tainted:

address-based, content-based, and substring-based. Under address-based tainting,

a memory region is considered tainted if its address range overlaps with that of a

known tainted region. With content-based tainting, a memory region is considered

tainted if its contents are identical to a known tainted string. Under substring-based

tainting , a memory region is considered tainted if its contents are a substring of any

data received over the network by this process.

The tainting module may run in one of two modes, which differ in the condi-

tions used to determine taintedness. Under cause-and-effect propagation (C&E), a

memory region is considered tainted if the address-based or content-based conditions

hold. Under correlative propagation (CORR), a memory region will be considered

if any of the three conditions holds. Consequently, these modes differ in the amount

of resilience provided against out-of-band copies. Cause-and-effect propagation was

designed for the case where the majority of memory-copies made by a monitored

process are visible to the interposition mechanism. We refer to this as cause-and-

effect propagation since, in applying it, there is a tight causal relationship between

receipt of some data over the network and use of that data in a system call argu-

ment. That is, we can point to a sequence of memory copies from a network receive

buffer to a system call argument buffer. Correlative propagation, on the other hand,

was designed for the case where most or all memory copies occur out of band – as

occurs when a bot statically links in C library functions. This mode is referred to as

correlative propagation since, in applying it, we are ultimately identifying when data

received over the network correlates to that used in syscall arguments.

Upon a call to a taint propagation function f, that function’s relevant arguments

are checked for taintedness via applying the appropriate conditions, given the mode,

and performing content-matching. Given a tainted source argument, taint propaga-

tion proceeds in the following way. For source buffers, we ensure that the tainted

52 Elizabeth Stinson and John C. Mitchell

portion of that buffer is a known tainted string and its address range is a known

tainted region. If f copies some portion of this source buffer to a destination buffer,

the corresponding portion of the destination region is transitively marked tainted. If,

on the other hand, f converts the source buffer to a numeric value, we add the numeric

result to our collection of tainted numbers. Finally, if the tainted source argument is

a number which f converts to another number, we add the destination value to our

set of tainted numbers.

4.3 User Input Module

Our implementation tracks local user input as received via the keyboard or mouse

and considers subsequent use of such clean data, such as in a system call argu-

ment, innocuous. Obtaining the data value corresponding to a keystroke is generally

straightforward as the system generates a message in response to keyboard input for

the target application identifying the key or character. Our implementation monitors

such messages and creates, for each line of keyboard input, a clean string consisting

of the previously input characters.

Obtaining the data value corresponding to a mouse input event is more chal-

lenging as the system generates, upon receipt of such an event, a message which

merely identifies the target window, type of event (e.g. left button down), and coor-

dinate pair within that window at which the event occurred. The actual data value

corresponding to such an event is application-defined and not available via a library

call. Our implementation addresses this opacity via exploiting locality of reference;

in particular, our goal was to identify when an application was executing code to

handle a user-input event. We posited that any data values referenced during exe-

cution of such code could be considered clean and that in this way we could infer

a set of data values corresponding to a user input event. For a Windows user in-

put event E, an application calls DispatchMessage in order to invoke that ap-

plication’s predefined handler for E. The handler must process E prior to return-

ing from DispatchMessage [32] and may invoke system calls in its processing.

Thus, upon entry to DispatchMessage and until return from it, we add any string

referenced by any interposed-upon function to our collection of clean strings.

4.4 Behavior-Check Procedure

Our ability to identify bot behavior relies in part on our selection of appropriate sys-

tem calls and their arguments to check for taintedness and cleanliness. The collection

of bot capabilities (Fig. 1) informed our selection of system calls (gates) and their

particular arguments (sinks); these are described below. The algorithm is as follows.

If the sink type is numeric, if the argument value is tainted, we flag the invocation;

otherwise, we pass control to the system call. While a numeric value will either be

considered tainted or not, buffer arguments may contain some number of bytes of

tainted and/or clean data. If the sink type is a data buffer which contains no tainted

data, control is passed to the system call. Otherwise, we query the user-input module

to determine whether that buffer also contains clean data. If not, the invocation is

Characterizing Bots’ Remote Control Behavior 53

flagged; if so, this procedure will flag the invocation only if the argument contains

more bytes of tainted than clean data.

A behavior is a general description of an action that may be detected via check-

ing particular arguments for one or more system calls. The same gate function may

be instrumented to detect multiple different behaviors. Conversely, multiple library

functions may be instrumented to check for a single behavior. Table 2 contains the

complete list of behaviors and associated gate functions. In general, we favored in-

strumenting lower-level API functions as gates; e.g., instrumenting NtOpenFile
as a gate enables us to detect all behaviors that entail listing a directory, deleting a

file, or replacing a file since the higher-level API functions for these tasks ultimately

call into NtOpenFile.

Two behaviors (tainted send and derived send) require a bit more explanation.

Tainted send occurs when data received over one connection (or socket) is sent out

on another; e.g., when a bot is acting as a proxy, it echoes out on a second socket

the data heard on the first. Since an application may commonly receive and send cer-

tain fixed strings over a variety of connections, we do not perform content-based or

substring-based tainting for such strings. The set of such strings is small, application-

specific, and generally consists of protocol header fields; e.g., a browser’s set in-

cludes HTTP/1.1 and Accept-Range. Consequently, the tainted send behavior

is not flagged for transmission of routine messages that do not otherwise contain

tainted data. Derived send occurs when a system call is invoked on some tainted in-

put to obtain a result that is then sent on the network. Various data leaking commands

match derived send, including one which takes a registry key name and returns its

value.

5 Experimental Evaluation

This section provides the results of testing our experimental hypothesis – that the

remote control behavior of bots can be detected via checking selected system calls

for tainted arguments – on bots and benign programs. To determine the utility of our

behavioral characterization, we compare the effects of detected commands to those

of all commands.

5.1 Bot Experiment Setup

We edited the source code of each bot by altering its C&C parameters such that,

when executed, that bot would connect to a C&C server under our control. We then

built two versions of each bot: one which dynamically linked in C library functions

(DYN) and a second which statically linked these in (STAT). We then executed each

bot binary, injecting our DLL into the newly-spawned bot process so as to intercept

its API calls (as described in 4.1). We were then able to exercise each bot over its set

of commands and monitor the effects of each such command.

54 Elizabeth Stinson and John C. Mitchell

Table 2. Detected behaviors and the gate functions for each behavior

Behavior gate function

B1 tainted open file NtOpenFile

B2 tainted create file NtCreateFile

B3 tainted program execution CreateProcess{A,W}

B4 tainted process termination NtTerminateProcess

B5 bind tainted IP NtDeviceIoControlFile

B6 bind tainted port NtDeviceIoControlFile

B7 connect to tainted IP connect; WSAConnect

B8 connect to tainted port connect; WSAConnect

B9 tainted send NtDeviceIoControlFile; SSL write

B10 derived send NtDeviceIoControlFile; SSL write

B11 sendto tainted IP sendto; WSASendTo

B12 sendto tainted port sendto; WSASendTo

B13 tainted set registry key NtSetValueKey

B14 tainted delete registry key NtDeleteValueKey

B15 tainted create service CreateService{A,W}

B16 tainted delete service OpenService{A,W}

B17 tainted HttpSendRequest HttpSendRequest{A,W}

B18 tainted IcmpSendEcho IcmpSendEcho{A,W}

5.2 Terminology

When BotSwat flags a system call invocation, we say that a behavior is detected. If

flagging this invocation is incorrect, we refer to this as a false positive. Any behavior

flagged for a benign program is considered a false positive. If BotSwat fails to flag a

system call invocation on an argument that contains data received over the network

(most likely because BotSwat does not know that this argument should be considered

tainted), we say a behavior is exhibited but not detected and refer to this as a false

negative. We say that a command is detected when BotSwat correctly flags at least

one behavior exhibited by that command; thus, commands which exhibit more than

one behavior may have a false negative but still be detected.

5.3 Bot Results

In summary, we found that the external or remote control behavior of bots can be

measured by identifying system call invocations which use tainted parameters. More-

over, the effects of a bot’s detected commands account for the majority of the effects

Characterizing Bots’ Remote Control Behavior 55

of all of a bot’s commands (where effects are measured via number of system call

invocations). Bots in general exhibit a great volume and diversity of behaviors. Ta-

ble 3 provides a summary of our test results. Row 1 identifies the total number of

commands provided by each of the tested bots. The number of those commands that

take at least one parameter that is subsequently used (in whole or in part) in a critical

system function is provided in row 2. The 3rd row gives the number of candidate

commands that were detected using cause-and-effect propagation (C&E) for bots

built with C library functions dynamically linked in (DYN). The last row shows the

number of candidate commands detected using correlative propagation (CORR) on

bots built with statically linked in C library functions (STAT). We did not have a

version of evilbot which dynamically linked in C library functions.

Table 3. Summary of bot command detection

ago DSNX evil GSyS sd Spy

cmds 88 28 5 56 50 36

candidate cmds 36 14 5 26 20 15

detected cmds (DYN, C&E) 33 14 N/A 26 20 15

detected cmds (STAT, CORR) 31 10 5 12 12 15

Detection of Commands on Dynamically-Linked Bots

The best detection occurs under cause-and-effect propagation on dynamically-linked

bots, since these conditions provide the best visibility into the bot’s use of data re-

ceived over the network. Only three total candidate commands were not detected

in this mode: agobot’s harvest.registry and scanning commands. Agobot’s

scanning commands use a transformation of a received parameter in a system call ar-

gument. Taintedness was not propagated across this transformation operation; thus,

scan.start and scan.startallwere not detected. Also, the same set of com-

mands was detected (and the same behaviors flagged for each command) for agobot

whether that bot encrypted C&C messages via dynamic calls to the OpenSSL library

or not. Thus, detection of remote control is resilient to command encryption, given

visibility into the cryptographic function calls.

Detection of Commands on Statically-Linked Bots

Since all tested bots either primarily or exclusively use C library functions for mem-

ory copying, static linking severely hinders visibility into a bot’s use of received data.

We were still, however, able to detect execution of many of the bots’ candidate com-

mands by correlating received network data to system call arguments. We explore

below the effects of detected vs. undetected commands and provide some evidence

56 Elizabeth Stinson and John C. Mitchell

that these undetected commands are significantly less harmful than are the detected

commands. Many of the undetected commands rely on the previous execution of

a command this is detected under these conditions. In particular, three of DSNX’s

four undetected commands (75%), seven of sdbot’s eight (87.5%), and seven of G-

SySbot’s fourteen (50%) perform clone management; this functionality only makes

sense when a clone exists to be managed. The command that creates a clone – for

each of these three bots – was detected under STAT, CORR. There were three false

positives under this mode; in all cases, the incorrectly flagged behavior was in fact

malicious but not an example of external control.

The candidate commands that were not detected under STAT, CORR share a

common property that could be used to produce even better detection results. Specif-

ically, 24 of the 28 undetected commands use sprintf to format the argument

buffers passed to system calls. Calls to this buffer-formatting function were not visi-

ble to BotSwat (under STAT), thus it was not able to infer that the resulting argument

buffers contained (among other data) strings received over the network. Statistical

tests that measure how similar a buffer’s contents are to data received over the net-

work may provide significant gains.

The Effects of Detected Commands Relative to All Commands

As discussed in Sect. 2.2, not all commands result in an equal amount of remote con-

trol behavior. We find that the commands we are able to detect for each bot – even

under STAT, CORR – account for the majority of that bot’s total potential remote

control behavior. For Spybot, e.g., under STAT, CORR, the number of system calls

invoked during execution of detected commands is 145 (Table 4) and during execu-

tion of all commands is 202 (Table 1). The same pattern held for all tested bots and is

a consequence of the relative severity of commands we are able to detect even under

these conditions.

Table 4. The number of system calls invoked during successful execution of candidate and

detected commands

ago DSNX evil GSyS sd Spy

syscalls invoked by candidate cmds 417 114 5 122 110 145

syscalls . . . detected cmds (DYN, C&E) 393 114 N/A 122 110 145

syscalls . . . detected cmds (STAT, CORR) 386 110 5 99 99 145

Bots Exhibit Volume and Diversity of Behaviors

For each bot command, we counted the number of distinct behaviors correctly de-

tected in a successful execution of that command. Then we tallied these values across

Characterizing Bots’ Remote Control Behavior 57

commands, giving us the number of times each behavior was detected for each bot

(Fig. 2). It is not uncommon for execution of a single command to result in detection

of multiple behaviors. Executing a port redirect command, e.g., generally results in

four detected behaviors: binding a tainted port (B6), connecting to a tainted IP (B7),

connecting to a tainted port (B8), and tainted send (B9). Note that in practice the

raw number of detected bot behaviors might be much larger since execution of cer-

tain commands may cause the same behavior to be repeatedly flagged. Such is the

case with denial-of-service (DoS) commands, which often cause a particular behav-

ior to be flagged with transmission of each DoS packet. We note that the distribution

of detected behaviors across bot families is not uniform; e.g., behavior B11 (sendto

tainted IP) is frequently flagged in agobot but never in DSNXbot and only rarely in

G-SyS, sd, and Spybots. Such differences may be leveraged to perform classification

of an encountered bot as more likely to be a variant of a particular family.

Fig. 2. The number of times each behavior was detected, over all of a bot’s commands

5.4 Benign Program Results

We tested eight benign applications that exhibit extensive network interaction across

a variety of activities typical to these programs. False positives in this context are

any instances in which a system call invocation is flagged. This could arise from

imperfections in our user-input module implementation, which may not be able to

infer that a system call invocation is the result of local user input. Alternatively, a

benign program may genuinely exhibit external or remote control. There were eight

false positives: two for the browser, three for the email client, two for the IRC client,

and one for the IRC server. The programs, activities across which their behavior was

traced, and results are described below.

Benign Program Testing

We tested a browser (firefox), email client (Eudora), IRC client (mIRC), ssh client

(putty), FTP clients (WS FP and SecureFX), anti-virus (AV) signature updater

58 Elizabeth Stinson and John C. Mitchell

(Symantec’s LuComServer 3 0.exe), and IRC server (Unreal IRCd). Since the ma-

jority of systems infected with bots are those of home users (who do not typically run

server programs) [29], we tested against only one server program. We note, however,

that server programs may, at an abstract level, be designed to respond to certain types

of external control (that exerted by the client).

We used the browser to visit a variety of sites, some containing linked-in im-

ages. Once at a site, we clicked on hypertext links, downloaded files specified by

links, saved the web page’s contents to a file, executed downloaded programs from

within the browser, etc. With the email client, we received, composed, replied to,

forwarded, and sent email, including and excluding attachments, and including and

excluding HTML. We also saved and executed received attachments from within the

email client. We exercised the IRC client over a range of its capabilities: connecting

to a server and channel, messaging, DCC file transfer, etc. We used the ssh client

to connect to and execute commands on a remote host. Using FTP clients, we con-

nected to and browsed various FTP sites, navigated across directories (alternatively

using the mouse and keyboard), and downloaded files. We tested the AV signature

updater via establishing a base state with stale virus definitions files then instructing

the updater to get the latest AV signatures. Finally, the IRC server was networked to

other servers and serviced clients.

Benign Program Results

We present the results of running under correlative propagation (which has the most

relaxed requirements for taintedness) with the user-input module enabled. Four of

the eight false positives occur as a result of the automatic downloading of linked-in

images performed in rendering an HTML document. Two of these were exhibited by

the browser and two by the email client, both upon receipt of an HTML document

containing an element. Receipt of such an element causes the

application to request the content specified in the SRC URL. Also, when the user

receives an email with an attachment, Eudora automatically creates a file of the same

name (as the received file), which causes the tainted open file behavior (B1).

The mIRC client generated two false positives as a result of performing Di-

rect Client Protocol (DCC) file receipt. These false positives reveal limitations in

our user-input module implementation. In preparation for DCC file transfer, the file

sender provides an IP and port to the recipient via a network message. The recipient

then creates a TCP connection to the sender using the specified IP and port. There-

fore, behaviors B7 (connecting to a tainted IP) and B8 (connecting to a tainted port)

were flagged. Prior to the chat client creating such a connection, however, the client

asks the user whether he wishes to perform this operation and will only proceed if

the user responds affirmatively. Our user-input module was not able to infer the con-

nection between the user input agreeing to this behavior (via a dialog box) and the

values used to create the network connection.

The IRC server repeatedly exhibited the tainted send behavior (B9) – which iden-

tifies when data heard over one socket is sent out on another. Clearly this behavior

is expected, since the overriding purpose of an IRC server is to participate in a chat

Characterizing Bots’ Remote Control Behavior 59

network, which entails receiving messages and sharing those with its clients and/or

other servers.

Benign Results Discussion

We find it interesting that most of the detected behaviors of benign programs may

be known to carry a risk and thus our flagging of these behaviors may not be to-

tally inappropriate. In particular, [45] recommends disabling DCC file receipt so as

to avoid malware infection (2 behaviors); the automatic downloading of linked-in

images performed by the email client and browser may be exploited to perform DoS

attacks [43] (4 behaviors); and email attachments are a known malware propagation

vector (1 behavior).

Table 5 summarizes the detection of behaviors across all tested programs. Note

that a single run of any such program may exhibit fewer behaviors depending upon

the inputs to that particular run-time instance. In general, bots exhibit high volume

(202 across all bots and all commands, as in Fig. 2) and great diversity (18 different)

of behaviors. By contrast, only eight behaviors total (five different) were flagged over

execution of all benign programs even when testing under the most liberal taint prop-

agation mode, correlative. We discuss how one might handle these false positives in

Sect. 6. Finally, we acknowledge the limitations of black-box dynamic testing; that

is, there may be other inputs to these benign programs that would result in flagging

additional behaviors. Similarly, it may be the case that higher fidelity taint propaga-

tion (e.g., assembly-code-level tainting) reveals additional behaviors. That said, all

programs (malicious and benign) were tested using the same system, and the demon-

strated behavioral gap between bots and benign applications under these conditions

is dramatic.

5.5 Performance Results

Function interception via the detours library imposes an overhead of fewer than

400 nanoseconds per invocation [9]. We measured the overall performance impact of

BotSwat’s instrumentation via scripting a bot to receive then execute various com-

mands; the bot’s performance was measured natively and under each of the two prop-

agation modes. The overall measured performance overhead is 2.81% when using

C&E propagation and 3.87% under CORR.

6 Potential for Host-Based, Behavioral Bot Detection

Signature-based anti-malware mechanisms suffer from several critical limitations,

including the inability to detect novel malware instances or obfuscated variants and

the need to continuously update their signature sets [31, 35]. A recent study found

that even the most effective anti-virus vendor failed to detect a significant percentage

of malware samples found in the wild [38]. Behavior-based approaches to malware

60 Elizabeth Stinson and John C. Mitchell

Table 5. For each tested program, the number of distinct behaviors detected

distinct behaviors which behaviors

agobot 16 B1 - B16

GSySbot 12 B1 - B3, B6 - B12, B17, B18

sdbot 12 B1 - B3, B6 - B12, B17, B18

Spybot 10 B1 - B4, B6 - B9, B11, B12

DSNXbot 7 B1 - B3, B6 - B9

evilbot 1 B3

Eudora 3 B1, B7, B17

Firefox 2 B7, B9

mIRC 2 B7, B8

Unreal IRCd 1 B9

putty 0 N/A

SecureFX 0 N/A

Symantec AV updater 0 N/A

WS FTP 0 N/A

detection provide a powerful alternative: the ability to detect entire classes of mal-

ware including previously unseen instances. The primary challenge is to identify a

useful behavioral characterization: one which identifies behavior fundamental to a

class of malware but which is not generally exhibited by innocuous programs. The

data presents a compelling argument that our characterization meets these criteria;

the very behavior that makes bots most useful to their installers (their programma-

bility) provides the basis for detection.

Our prototype implementation was designed to test the effectiveness of our be-

havioral characterization; a secure implementation of our method must be able to

detect and differentiate such remote control behavior in a way that is difficult for mal-

ware to adaptively evade and subvert. Designing such a system is a research problem

unto itself. We highlight some fundamental challenges and tradeoffs in building a bot

detection mechanism based on our findings.

Process Monitoring Mechanism The mechanism that enables visibility into a pro-

cess’s actions may also be referred to as a sandbox. There are two primary design

considerations: visibility, which refers to the type and granularity of events visible to

the sandbox, and isolation, which refers to the difficulty of a monitored process to

evade or subvert the sandbox. The (user-space) in-line function hooks [9] used in the

prototype implementation provide high visibility (as the interposition code runs in

the same address space as the monitored application) but very weak isolation [8,10].

Kernel-space system call interposition and Virtual Machine Introspection [23] are

additional possibilities.

Characterizing Bots’ Remote Control Behavior 61

Tainting Challenges and Tradeoffs Since a malicious bot may evade detection via

performing data movement (or data transformation) operations out-of-band, cover-

age is a critical aspect of the system’s security. There appears at present to be a fun-

damental tradeoff in dynamic tainting modules between coverage and performance;

i.e., tainting implementations that provide thorough coverage (as in [12]) exact sig-

nificant performance penalties. Also, if there are operations across which taintedness

is not propagated (e.g., writes to persistent storage or pipes), surely such avenues

will be used to launder tainted data. Propagating taint more thoroughly may result in

more flagged behaviors and false positives.

User Input Module Challenges There are two types of attacks specific to this

component: spoofing user input events and genuinely obtaining user input. Expo-

sure to user-input-spoofing attacks may be minimized by incorporating a kernel-level

component that identifies receipt of user input events. The latter attack, however,

highlights the fundamental challenge in designing this module: since the meaning of

user input events is inherently application-defined, a user-input module must rely on

the application that received a user-input event to implicitly or explicitly identify the

semantics of that input. Consequently, if a malicious process is able to legitimately

obtain any local user input, that process may be able to arbitrarily assign meaning to

that input.

System Inputs and Outputs An interesting question is which processes to monitor

using the detection mechanism. A reasonable decision may be to not monitor known

benign programs. Such a decision would inevitably cause attackers to explore ways

in which such known benign programs could be coopted to do the attackers’ bid-

ding (as in [43]). Either way, a general decision must be made about when to label

something a bot. A reasonable tradeoff may be to require some volume and diversity

of behaviors; then a lower threshold more narrowly constrains the attacker’s arena

but may also result in more false positives. Additionally, one could whitelist certain

behaviors known to be generated by particular applications during their legitimate

operation (as in Sect. 5.4). A final option may be to identify and flag execution of

commands – sequences of correlated behaviors – rather than individual behaviors.

7 Related Work

Tainting has been applied statically, dynamically, at a language level, via an inter-

preter, an emulator, compiler extensions, etc. [1, 11, 12, 14, 15,19, 25].

Much previous run-time, host-based, anti-malware research has focused on iden-

tifying when a host program (generally assumed to be non-malicious) has been ex-

ploited [5, 12, 13, 20, 26]. While a bot may be spread via leveraging such exploits,

monitoring execution of an installed bot using one of these mechanisms will gener-

ally not result in the bot being identified as malicious since no exploit of a local host

program is entailed in normal bot execution. Other behavior-based research has been

done to identify rootkits and spyware [7, 22, 28, 42].

Host-based approaches to bot detection include scanning the contents of files and

memory for certain byte sequences as well as content-based filtering, which identi-

62 Elizabeth Stinson and John C. Mitchell

fies receipt of packets containing known bot-command keywords. Network-based

approaches to botnet detection include those which: (a) detect secondary effects of

botnets [3, 6]; (b) set up honeypots to obtain bot binaries then infiltrate those bot-

nets [24, 36, 37]; (c) mitigate the effects of a botnet at a DDoS victim [21]; (d) ap-

ply content-based Network Intrusion Detection System (NIDS) signatures [16]; (e)

identify IRC NICK messages likely to have been generated by bots [40]; (f) track

and correlate various types of NIDS alarms to identify bot-infection sequences [39];

(g) perform analysis of flow data to identify suspected bots then likely conversations

between such suspected bots and their C&C servers [41].

8 Conclusions

Botnets present a serious and increasing threat, as launching points for attacks includ-

ing spam, distributed denial of service, sniffing, keylogging, and malware distribu-

tion. Our work explores whether the execution of malicious bots can be distinguished

from that of innocuous programs. We provided a characterization of the remote con-

trol behavior of bots, identified the fraction of current bot remote-control behavior

covered by this characterization, built a prototype implementation, and evaluated our

hypothesis against six bots from five different families and a variety of benign appli-

cations typical to the target environment. We introduce techniques, such as content-

based and substring-based tainting, that enable us to effectively identify a bot’s re-

mote control behavior even when visibility into the memory-copying calls made by

a bot is severely limited.

Experimental evaluation suggests that the external or remote control behavior of

bots can be detected by identifying system call invocations which use tainted pa-

rameters. We see that the effects of a bot’s candidate commands (as measured via

number of system call invocations) constitute the vast majority of the effects of all of

a bot’s commands. We also see that bots in general exhibit a great volume and diver-

sity of behaviors. Finally, we note that, when we track local user input and sanitize

subsequent uses of it, benign programs relatively rarely exhibit the external con-

trol behavior that we’re measuring. Significant challenges remain in the problem of

building a secure and robust bot detection system based on these observed behavioral

differences.

Acknowledgements. We are grateful to Galen Hunt, David Dagon, Andrew

Sakai, Adam Barth, Tal Garfinkel, Wenke Lee, and Christian Kreibich.

References

1. Turoff, A.: Defensive CGI Programming with Taint Mode and CGI::UNTAINT

2. Schneier, B.: How Bot Those Nets? In Wired Magazine, July 27, 2006.

3. Dagon, D.: Botnet Detection and Response: The Network Is the Infection. In Operations,

Analysis, and Research Center Workshop, July 2005.

4. Ilett, D.: Most spam generated by botnets, says expert. ZDNet, Sept. 22, 2004.

Characterizing Bots’ Remote Control Behavior 63

5. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In IEEE Symposium on

Security and Privacy, May 2001.

6. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup: Understanding, Detecting,

and Disrupting Botnets. In Steps to Reducing Unwanted Traffic on the Internet, July 2005.

7. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based Spyware De-

tection. In Proc. 15th USENIX Security Symposium, August 2006.

8. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. First Edition, Addison-

Wesley, Upper Saddle River, NJ, 2006.

9. Hunt, G., Brubacher, B.: Detours: Binary Interception of Win32 Functions. In 3rd USENIX

Windows NT Symposium, July 1999.

10. Butler, J.: Bypassing 3rd Party Windows Buffer Overflow Protection. In phrack Volume

0x0b, Issue 0x3e, Phile #0x0, 7/13/2004.

11. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding Data

Lifetime via Whole System Simulation. In Proc. of the USENIX 13th Security Symposium,

August 2004.

12. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software. In Network and Distributed

Systems Symposium, February 2005.

13. Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R.: Detection of Injected, Dy-

namically Generated, and Obfuscated Malicious Code. In Proc. of the ACM Workshop on

Rapid Malcode, October 2003.

14. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch security

holes. In IEEE Symposium on Security and Privacy, May 2002.

15. Locking Ruby in the Safe http://www.rubycentral.com/book/taint.html
16. LURHQ. Phatbot Trojan Analysis. http://www.lurhq.com/phatbot.html
17. Overton, M.: Bots and Botnets: Risks, Issues, and Prevention. In Virus Bulletin Confer-

ence, Dublin, Ireland, October 2005.

18. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. CERT Coordination

Center, December 2005.

19. perlsec http://perldoc.perl.org/perlsec.html
20. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of Self for Unix Processes.

In IEEE Symposium on Security and Privacy, May 1996.

21. Kandula, S., Katabi, D., Jacob, M., Berger, A.: Botz-4-Sale: Surviving Organized DDoS

Attacks That Mimic Flash Crowds. In Network and Distributed System Security Sympo-

sium, May 2005.

22. Strider GhostBuster Rootkit Detection http://research.microsoft.com/
rootkit/

23. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for

Intrusion Detection. In Network & Distributed Systems Security, Feb. 2003.

24. Honeynet Project & Research Alliance. Know your Enemy: Tracking Botnets.

25. Shankar, U., Talwar, K., Foster, J., Wagner, D.: Detecting format string vulnerabilities

with type qualifiers. In Proc. 10th USENIX Security Symp., Aug. 2001.

26. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding.

In Proc. 11th USENIX Security Symposium, August 2002.

27. Naraine, R. Money Bots: Hackers Cash In on Hijacked PCs. eWeek, Sept. 2006.

28. Cui, W., Katz, R., Tan, W.: BINDER: An Extrusion-based Break-in Detector for Personal

Computers. In Proc. of the 21st Annual Computer Security Applications Conference, De-

cember 2005.

29. Martin, K.: Stop the bots. In The Register, April, 2006.

64 Elizabeth Stinson and John C. Mitchell

30. Keizer, G.: Bot Networks Behind Big Boost In Phishing Attacks. TechWeb, Nov. 2004.

31. Christodorescu, M., Jha, S.: Testing Malware Detectors. In Proc. of the International Sym-

posium on Software Testing and Analysis, July 2004.

32. MSDN Library. Using Messages and Message Queues.

33. Symantec Internet Security Threat Report, Trends for July 05-December 05. Volume IX,

Published March 2006.

34. Sturgeon, W.: Net pioneer predicts overwhelming botnet surge. ZDNet News, January 29,

2007.

35. Symantec Internet Security Threat Report, Trends for January 06-June 06, Volume X.

Published September 2006.

36. Freiling, F., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause Method-

ology to Prevent Distributed Denial-of-Service Attacks. In European Symposium On Re-

search In Computer Security, September 2006.

37. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to Understand-

ing the Botnet Phenomenon. In Proc. of ACM SIGCOMM/USENIX Internet Measurement

Conference, October 2006.

38. Jevans, D.: The Latest Trends in Phishing, Crimeware and Cash-Out Schemes. Private

correspondence.

39. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting Malware

Infection Through IDS-Driven Dialog Correlation. Manuscript.

40. Goebel, J., Holz, T.: Rishi: Identify Bot-Contaminated Hosts by IRC Nickname Evalua-

tion. 1st Workshop on Hot Topics in Understanding Botnets, April 2007.

41. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-Scale Botnet Detection and Characteri-

zation. 1st Workshop on Hot Topics in Understanding Botnets, April 2007.

42. Wang, Y., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software with

Strider GhostBuster. Microsoft Technical Report MSR-TR-2005-25.

43. Lam, V., Antonatos, S., Akritidis, P., Anagnostakis, K.: Puppetnets: Misusing Web

Browsers as a Distributed Attack Infrastructure. In the 13th ACM Conference on Com-

puter and Communications Security, October 2006.

44. Stinson, E., Mitchell, J.: Characterizing the Remote Control Behavior of Bots.

Manuscript. http://www.stanford.edu/\˜{}stinson/pub/botswat\
_long.pdf

45. mIRC Help, Viruses, Trojans, and Worms.

Automatically Identifying Trigger-based Behavior in

Malware

David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and

Heng Yin

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

{dbrumley,chartwig,zliang,jnewsome,dawnsong,hyin}@cmu.edu

Summary. Malware often contains hidden behavior which is only activated when properly

triggered. Well known examples include: the MyDoom worm which DDoS’s on particular

dates, keyloggers which only log keystrokes for particular sites, and DDoS zombies which are

only activated when given the proper command. We call such behavior trigger-based behavior.

Currently, trigger-based behavior analysis is often performed in a tedious, manual fashion.

Providing even a small amount of assistance would greatly assist and speed-up the analysis. In

this chapter, we propose that automatic analysis of trigger-based behavior in malware is pos-

sible. In particular, we design an approach for automatic trigger-based behavior detection and

analysis using dynamic binary instrumentation and mixed concrete and symbolic execution.

Our approach shows that in many cases we can:

(1) detect the existence of trigger-based behavior, (2) find the conditions that trigger

such hidden behavior, and (3) find inputs that satisfy those conditions, allowing us to ob-

serve the triggered malicious behavior in a controlled environment. We have implemented

MineSweeper, a system utilizing this approach. In our experiments, MineSweeper has suc-

cessfully identified trigger-based behavior in real-world malware. Although there are many

challenges presented by automatic trigger-based behavior detection, MineSweeper shows us

that such automatic analysis is possible and encourages future work in this area.

1 Introduction

In many malware programs, certain code paths implementing malicious behaviors

will only be executed when certain trigger conditions are met [15, 18, 23, 24]. We

call such behavior trigger-based behavior. Trigger-based behavior may be set off

by many different trigger types, such as time, system events, and network inputs.

For example, many viruses attack their host systems on specific dates, such as Fri-

day the 13th or April Fool’s Day [18, 24]; worms may launch attacks at specific

times [13], some keyloggers only record keystrokes to files when the application

window name contains certain keywords [15]; some browser-helper-object-based

spyware only logs information if the URL contains a certain keyword [23]; some

distributed denial-of-service tools only start launching attacks when receiving cer-

tain network commands [3]. Thus, trigger-based behavior is a real problem, causing

66 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

millions of dollars of damage [15, 18, 23–27], and detecting trigger-based behavior

is important for understanding the malware’s malicious behavior and for effective

malware defense.

Currently, trigger-based behavior is often analyzed in a tedious, manual process.

To the best of our knowledge, there is no previous work on automating trigger-based

behavior analysis. Given a piece of potentially malicious code, a typical manual anal-

ysis scenario is as follows: a) the analyst runs the malware in a virtual machine and

may observe nothing since the trigger condition may not be met, b) he may then per-

form some disassembly and build up a mental model of the program execution, c)

he may then guess which parts of the input or system setup to change and rerun the

malware and hope to observe something new. This process is repeated until the ana-

lyst runs out of time, patience, or gets lucky and uncovers the trigger-based behavior.

Such a manual process is slow, labor intensive, and does not scale.

These problems apply directly to botnets. From an analyst’s point of view, a bot

is a malicious binary containing many hidden behaviors. Using the framework we

describe an analyst can find the behavior a certain bot exhibits including actions it

takes and commands it responds to. We have specifically researched this application

in our most recent work [4].

Our Approach. In this chapter, we propose that automatically identifying and rea-

soning about trigger-based behavior in malware is possible, and design a system

as a first step towards this goal. In particular, we show how to design and integrate

techniques from formal verification, symbolic execution, binary analysis, and whole-

system emulation and dynamic instrumentation to enable automatic identification

and analysis of trigger-based behaviors in malware. Automatic trigger-based behav-

ior detection is an extremely challenging task. For example, completely automatic

analysis of trigger-based behavior for all programs is undecidable (Section 5). How-

ever, we show that our approach can provide great value in many cases. Our system,

MineSweeper, is able to automatically identify the trigger-based behaviors in sev-

eral real-world malware examples. Even when complete automatic analysis is not

possible, we design our system so that it still provides valuable information about

potential trigger-based code paths which a human would otherwise have to discover

manually.

To design an approach for automatic trigger-based behavior analysis, we first ob-

serve that at a high level, triggers in a program are implemented as conditional jumps

depending on inputs from the trigger types of interest such as time, keyboard, or net-

work inputs. The malicious code is triggered when the conditional jumps evaluate

to the desired directions, e.g., the current time is equal to the trigger time. There-

fore, given trigger types of interest, one key to uncovering trigger-based behavior is

to construct values for trigger inputs (i.e., inputs from trigger types of interest) that

makes the conditional jumps evaluate in the desired direction, activating the trigger-

dependent code. We call the condition that the trigger inputs need to satisfy in order

for the code execution to go down a path uncovering the trigger-based behavior the

trigger condition, and the values of the trigger inputs satisfying the trigger condition

the trigger values. Second, we observe that trigger-based behavior could be embed-

Automatically Identifying Trigger-based Behavior in Malware 67

ded at any point in the program. Thus, we need to be able to explore many different

program paths which could depend on trigger inputs.

From these observations, we design an approach as a first step towards automatic

trigger-based behavior analysis in malware. Our approach takes as inputs the binary

program of the malware to be analyzed and a set of trigger types. In order to automat-

ically explore trigger-based behavior in the program based on the given trigger types,

we employ mixed concrete and symbolic execution to automatically and iteratively

explore different code paths which could depend on trigger inputs. In particular, trig-

ger inputs are represented symbolically, and instructions that depend upon the trig-

ger inputs operate on symbolic values, and are executed symbolically. Conversely,

instructions that do not depend on trigger inputs operate on concrete values, and are

concretely (natively) evaluated (for efficiency). Thus, symbolic execution builds up

symbolic formulas over the symbolic inputs (which are in turn based on the trigger

types). Note that the ability to mix concrete and symbolic execution is important to

reduce the formula size. As our experiments indicate, almost all instructions can be

concretely executed.

For any path to be explored, the mixed concrete and symbolic execution automat-

ically generates formulas representing the conditions that the trigger inputs need to

satisfy for the program execution to go down the path. We then ask a solver (such as

a decision procedure) whether the formula can be true, i.e., whether there are trigger

input values which will satisfy the formula. An unsatisfiable formula indicates the

path just explored is not actually feasible, and we continue to explore other paths.

A satisfiable formula means we have discovered a new path which depends on trig-

ger inputs, and the formula generated represents a trigger condition. In this case, the

solver also constructs the trigger values, i.e., values for the trigger inputs necessary

to execute the path of interest. We can then execute the program in a controlled envi-

ronment, provide it with the discovered trigger values, and observe the trigger-based

behavior. By iterating this process, we automatically explore different code paths to

uncover trigger-based behaviors in the program.

In some cases the solver may not be able to return an answer to the formula

within a reasonable amount of time. In this case, we simply set a timeout and go

on to explore other paths. Therefore, we try to explore different branches and paths

as much as possible, but do not guarantee to explore all branches or paths. As our

experiments demonstrate, despite this technical difficulty in certain cases, this ap-

proach offers great practical value for automatic analysis of trigger-based behavior

in real malware, and in any case, is a big step forward compared to the current manual

process.

An additional technical challenge for malware analysis is that often we do not

have the luxury of access to source code. Even worse, malware is often packed or

obfuscated. Code packing is a technique where binary code is statically compressed

to save space, and only decompressed at runtime. Obfuscation is a technique which

is designed to make static analysis difficult. In either case, the code will be difficult,

if not impossible, to disassemble. Thus, we need to make our approach work with

only access to the binary program, and moreover, deal with binary programs which

may dynamically generate code and are potentially difficult to statically analyze. To

68 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

this end, we employ whole-system emulation and dynamic binary instrumentation

to enable mixed concrete and symbolic execution on binaries. To the best of our

knowledge, our system is the first to enable mixed concrete and symbolic execution

on binaries (see Section 6).

We have implemented our approach in a system called MineSweeper. In our ex-

periments, we show that our system is successful at automatically analyzing trigger-

based behavior in several real world malware examples, some of which are widely

spread, and some of which are packed. The total time for MineSweeper to perform

the analysis is usually less than 30 minutes, which otherwise might have taken a

manual process days to uncover.

Contributions. This chapter proposes that automatic analysis of trigger-based be-

havior is possible, and designs the first holistic approach for automatically identify-

ing trigger-based behavior in binary programs.

• We demonstrate that automatic analysis of trigger-based behavior in malware is

possible. Previous analysis was completely manual, thus any automated assis-

tance is of great value.

• We develop techniques for mixed execution of binaries and apply them to ana-

lyzing trigger-based behavior. Previous work on mixed execution required source

code [6, 14]. The ability to perform mixed execution on binaries may be of inde-

pendent interest to other applications as well.

• We implement our ideas in a tool called MineSweeper. In particular, MineSweeper

automatically: a) Detects the existence of trigger-based behavior for specified

trigger types, b) Finds the trigger condition, c) Finds input values that satisfy

the trigger condition, when the trigger condition can be solved, and d) Feeds the

trigger values to the program, causing it to exhibit the trigger behavior, so that it

may be analyzed in a controlled environment. In our experiments, the end-to-end

time to perform all steps to analyze the trigger-based behavior automatically is

usually less than 30 minutes.

• Minesweeper does not need source code, and works on unmodified binary pro-

grams. The ability to analyze binaries is absolutely necessary to be a realistic ap-

proach for malware analysis. Since we dynamically instrument code to perform

mixed execution on the fly, we are also able to handle obfuscated and packed

code, as demonstrated by our experiments. Also, our framework is extensible to

accommodate many different trigger types.

2 Problem Statement and Approach Overview

In this section, we describe the overall problem of automatic trigger-based behavior

analysis, and give an overview of our approach. We begin by introducing the running

example we use throughout the chapter. We then introduce our terminology, and the

automatic trigger-based behavior analysis problem. We then describe our approach.

Motivating Example. In Figure 1, we show the disassembly and source code for a

typical malware worm similar to MyDoom. In this example, the ddos action will

Automatically Identifying Trigger-based Behavior in Malware 69

only be activated if the call from GetLocalTime returns 10:06 11/9. Thus, the

ddos action is a trigger-based behavior which will only be triggered at this specific

time.

Note that although we have provided the source code for illustrative purposes,

this is not typically available to the analyst. Also, we have provided the complete

disassembly, though malware is often obfuscated to prevent disassembly so such

information would also not be available to the analyst. Thus, in a typical scenario,

the analyst would only know the assembly instructions for runs actually executed. In

addition, we have shown a relatively small example: real code is often much more

complex, may contain more trigger-based branches, and often other functionality that

makes it difficult to even recognize where trigger-based behavior might potentially

be in the program. This raises the question: how do we reason about potential trigger-

based behavior in a program automatically?

4012b1: call 401810 <_GetLocalTime@4>
4012b6: add $0xc,%esp
4012b9: cmpw $0x9,0xffffffee(%ebp)
4012be: jne 40132d <_main+0xad>
4012c0: cmpw $0xa,0xfffffff0(%ebp)
4012c5: jne 40132d <_main+0xad>
4012c7: cmpw $0xb,0xffffffea(%ebp)
4012cc: jne 40132d <_main+0xad>
4012ce: cmpw $0x6,0xfffffff2(%ebp)
4012d3: jne 40132d <_main+0xad>
4012d5: sub $0xc,%esp
4012d8: push $0x404000
4012dd: call 4017a0 <ddos>
4012e2: add $0x10,%esp
4012e5: jmp 40132d <_main+0xad>
...
40132d: ret

SYSTEMTIME systime;
GetLocalTime(&systime);
site = ‘‘www.usenix.org’’;
if (9 == systime.wDay){

if (10 == systime.wHour){
if (11 == systime.wMonth){

if (6 == systime.wMinute){
ddos(site);

}
}

}
}

Fig. 1. Our running example.

70 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

2.1 The Automatic Trigger-based Analysis Problem

In our problem setting, we focus on automatic discovery of trigger-based behavior

when given a piece of potentially malicious code and a list of trigger-types of interest.

Typical trigger types include the system time, system events, network and keyboard

inputs, and return values from library or system calls. We call inputs from trigger-

types of interest trigger inputs. In our running example, we assume the trigger type

of interest is GetLocalTime, thus, the returned systime is the trigger input.

The program execution may take different paths depending on the values of trig-

ger inputs. Thus, certain code paths performing malicious behaviors may only be

executed if the values of trigger inputs make the program execution go down a par-

ticular path. Behaviors of such code paths are called trigger-based behavior. The

condition that the trigger inputs need to satisfy to lead the program execution to go

down a path to the trigger-based code is called the trigger condition for the trigger-

based behavior, and the values of the trigger inputs which satisfy the trigger condition

are called the trigger values. If we supply the trigger values as the trigger inputs, the

program execution will satisfy the trigger condition and activate the trigger-based

behavior which enables us to observe the trigger-based behavior in a controlled envi-

ronment. Note that the trigger condition is a succinct form representing trigger values

which will activate the trigger-based behavior.

In our running example, the trigger condition (from the source code) is when all

4 if statements are true:

systime.wDay == 9 ∧ systime.wHour == 10 ∧ systime.wMonth ==
11 ∧ systime.wMinute == 6

And the trigger value is a compound statement where the systime structure’s

wDay field is 9, the wHour field is 10, the wMonth field is 11, and the wMinute
field is 6.

Problem Statement. Thus the problem of automatic trigger-based behavior analy-

sis is when given a piece of potentially malicious code and a list of trigger types

of interest, we automatically explore as many different code paths as possible to:

(1) discover code paths whose execution depends on trigger inputs, (2) identify the

trigger condition, (3) when possible, derive trigger values which will satisfy the trig-

ger condition, and (4) execute the program with the trigger values to observe the

trigger-based behavior in a controlled environment.

2.2 Our Approach and System Overview

Our Approach. Since trigger-based behavior could be embedded anywhere in the

program, automatically identifying trigger-based behavior requires us to automat-

ically explore as many different execution paths that depend on trigger inputs as

possible. One naı̈ve solution would be to simply do random testing, where we could

set random values to the trigger inputs and hope they will lead the program execu-

tion down different paths. However, such an approach would be hopelessly inefficient

Automatically Identifying Trigger-based Behavior in Malware 71

Binary

Program

2. Mixed

Execution

Engine
3. Solver

feasible

paths

1. Trigger

Type

Specification

4b. Runnertrigger

values

path predicates

4a. Path

Selector

Minesweeper

Fig. 2. Steps performed by MineSweeper.

and impractical since the probability of guessing the right values to satisfy the trigger

conditions would be extremely slim in most cases.

Instead, we employ an iterative approach with mixed symbolic and concrete ex-

ecution, as shown in Figure 2. The steps are:

• Step 1: When given a malicious program, the user first selects trigger types of

interest. A trigger type can be time, system events, network inputs, or any li-

brary or system call. We supply a list of trigger types that are commonly used by

malware. The user can choose from the supplied list as well as define their own

trigger type of interest.

• Step 2: Given the trigger types of interest, our approach then iteratively conducts

mixed concrete and symbolic execution to explore the different execution paths

that depend on trigger inputs and observes the trigger-based behavior. In par-

ticular, trigger inputs will be represented symbolically, and the mixed concrete

and symbolic execution builds up symbolic expressions and constraints as it goes

down a path. When it hits the next conditional jump depending on symbolic in-

puts, it will generate two path predicates: one for the current path continuing with

the true branch, and one for the current path continuing with the false branch. The

path predicate is therefore the condition on trigger inputs which make the pro-

gram execution go down that path.

• Step 3: The two path predicates will then be given to a solver to see whether each

formula can be satisfied, indicating whether the path is feasible. Each feasible

branch will then indicate a new feasible path to be further explored. The feasible

path(s) are then added to the set of paths to be further explored. For each feasible

path, the solver also returns the assignment to the trigger inputs to make the

formula true, i.e., the trigger values.

• Step 4.a: Our approach then selects the next path from the set of feasible paths

to be further explored. The process then goes back to Step 2 to continue mixed

concrete and symbolic execution along the chosen path. Execution will continue

until it hits the next conditional jump that depends on trigger inputs as described

in Step 2. In this manner we can force the program execution down any feasible

path and thus be able to iteratively explore different execution paths depending

on trigger inputs.

72 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

• Step 4.b: Our approach then executes the program concretely using the trigger

values returned by the solver in Step 3, to observe the trigger-based behavior in

a controlled environment.

System Overview. We have designed and implemented a system, MineSweeper, to

realize the above approach. At a high level, MineSweeper takes as inputs the binary

program to be analyzed and the trigger type specifications. MineSweeper provides a

default list of trigger types commonly used in malware for the user to choose from,

and also allows the user to define their own trigger types of interest. If the user does

not know what trigger type the malware may use, MineSweeper can offer further

assistance by monitoring for any possible inputs to the program, e.g., system calls

and library calls, and then prompting the user whether the input source should be

further considered as a trigger type of interest (Section 3.1).

MineSweeper has four components which implement the aforementioned pro-

cess: the Mixed Execution Engine, the Solver, the Path Selector, and the Runner, as

shown in Figure 2. The Mixed Execution Engine performs mixed concrete and sym-

bolic execution and creates the path predicates. The Solver solves the path predicates

to see whether they can be satisfied, and thus are feasible. For feasible paths, the

Solver constructs an assignment to the input variables from the trigger types which

will make the path predicates to be true. The newly discovered feasible path(s) are

added to the set of paths to be further explored. The Path Selector decides which

path among the set of feasible paths should be explored next. The Mixed Execution

Engine then continues the mixed concrete and symbolic execution along the selected

path. The constructed assignments (the trigger values) are then used as inputs to the

Runner which feeds these assignments as inputs to the original program and exe-

cutes the original program, thus allowing us to observe the trigger-based behavior in

a controlled environment.

Note that for most malware the source code is not available. Therefore, we need

to perform mixed concrete and symbolic execution on the binary directly.

Previous work on mixed concrete and symbolic execution only applies to source

code [6, 14]. To the best of our knowledge, no previous work could enable mixed

concrete and symbolic execution directly on binaries. Even though the underlying

principles between mixed execution on source code and binaries may have some

parallels, mixed execution of binaries is significantly more challenging to deal with,

and the actual techniques and engineering required are substantially different.

At a high level, previous work on mixed execution with source code statically

rewrites the program itself to perform the mixed execution. To enable mixed concrete

and symbolic execution on binaries, even those that may be obfuscated or packed,

we employ whole-system emulation and dynamic binary instrumentation so that we

can perform mixed concrete and symbolic execution on the fly.

Automatically Identifying Trigger-based Behavior in Malware 73

3 MineSweeper Design

In this section, we describe the detailed design and implementation of the compo-

nents in MineSweeper, including the trigger type specification, the Mixed Execution

Engine, the Solver, the Path Selector, and the Runner.

3.1 Trigger Type Specification

The user begins analysis by specifying one or more trigger types of interest. Allowing

multiple trigger types is necessary because trigger-based behavior may depend on

multiple trigger types. For instance, malware may be triggered by a combination of

the system time and a keyword in keyboard inputs.

By default, MineSweeper provides a list of typical trigger types commonly

used in malware, including keyboard inputs, network inputs, the system clock, and

other library and system calls used commonly in malware as triggers. In addition,

MineSweeper is designed to be easily extensible and allows the user to add addi-

tional trigger types. For example, the user can specify any function call or system

call as a trigger type.

For each trigger type that the user defines, he needs to specify where in memory

the trigger inputs will be stored so that the Mixed Execution Engine can properly

assign symbolic variables during mixed execution. For example, if the user specifies

the return values of a new function call as a trigger type, he needs to specify where

the return values are stored, e.g., in which registers, or the return memory structure

of the call or call-by-reference pointers. In our running example, the specification

would include that GetLocalTime is a trigger type. The specification would also

include that GetLocalTime stores its results in a 16-byte structure pointed to by

a stack value when GetLocalTime is called. During mixed execution, this infor-

mation is used so that a call to GetLocalTime will result in a fresh symbolic

variable for each byte returned. Such information is usually readily available in API

documentation.

If the user does not know what trigger type the malware may use, they can con-

figure MineSweeper to offer additional assistance. In this case, MineSweeper will

monitor the program execution for possible inputs to the program, e.g., system calls

and library calls. When a new input source is detected, MineSweeper prompts the

user whether the input source should be considered a trigger type of interest.

3.2 The Mixed Execution Engine

Given the specified trigger types and the program, the Mixed Execution Engine per-

forms mixed concrete and symbolic execution. In particular, trigger inputs are rep-

resented as symbolic variables, and the mixed execution builds up symbolic expres-

sions and constraints on trigger inputs as it executes. When the mixed execution

encounters the next conditional jump which depends on symbolic values, it gener-

ates two path predicates representing the constraints on the trigger inputs for two

new paths: one is the current path continuing with the true branch, and the other

74 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

is the current path continuing with the false branch. The Mixed Execution Engine

then gives both path predicates to the Solver to decide whether either one is feasible.

Feasible paths are then added to the set of paths to be further explored, and the Path

Selector decides which path to explore next.

In this section, we first describe how we enable mixed execution on binaries by

using whole-system emulation and dynamic binary instrumentation, and then de-

scribe how we create new symbolic variables for trigger inputs. Since x86 instruc-

tion set is very complex, we convert x86 instructions to be symbolically executed to

a simpler Intermediate Representation (IR) that we design, and we perform symbolic

execution on the IR. Since mixed execution can be viewed at high level as achieving

the same results as plain symbolic execution, but with performance enhancements,

for ease of explanation, we explain first plain symbolic execution and how we gener-

ate path predicates in Section 3.2, and then explain how we enhance the performance

by using mixed execution in Section 3.2.

Whole system emulation and dynamic binary instrumentation. Since for most

malware we do not have access to source code, we need to perform mixed symbolic

and concrete execution with only access to the program binary. Static binary instru-

mentation is in general considered an unsolved problem, not to mention that malware

routinely use code packing and obfuscation which makes static binary instrumenta-

tion look even more hopeless. Thus, we take the approach of dynamic binary instru-

mentation. In particular, we build our Mixed Execution Engine on top of a whole

system emulator (in our implementation, we use QEMU [2], Section 4.1) and per-

form dynamic binary instrumentation on-the-fly. By adding hooks to the emulator,

our system is notified for each instruction to be executed in the original program, at

which time we insert code to perform the mixed execution.

To perform mixed execution, for each instruction to be executed in the original

program, we need to insert code to do two things: (1) check whether the instruction

will read any trigger inputs, and if yes, we need to create new symbolic variables to

represent the trigger inputs; (2) depending on the instruction, executes the instruction

concretely (if all operands are concrete) or symbolically (if at least one operand is

symbolic). We describe how we accomplish these two things in more detail below.

Creating New Symbolic Variables for Trigger Inputs

For each instruction to be executed in the original program, the Mixed Execution En-

gine first checks whether the instruction reads any inputs from the trigger types, such

as I/O reads including keyboard and network inputs or returns from a function call

of a trigger type. If so, the Mixed Execution Engine then assigns the locations (e.g.,

return registers, stack variables, etc.) from the specification fresh symbolic variables.

In the case where a function call is declared as a trigger type, when the entry

point of the function call is executed, Mixed Execution Engine identifies the return

address. Then, when the function call returns the Mixed Execution Engine sets the

specified buffers on the stack or the registers returning values as fresh symbolic vari-

ables. Note that this is why we require the user to provide the information about

Automatically Identifying Trigger-based Behavior in Malware 75

which buffer on the stack or which register contains inputs from the trigger types

when the user defines a particular function as a trigger type, as mentioned in Sec-

tion 3.1.

Symbolic Execution

At a high level, mixed concrete and symbolic execution can be viewed as achieving

the same result as plain symbolic execution, but more efficiently. Thus, for ease of

explanation, we explain in this section how we perform plain symbolic execution in

our problem setting, and explain in Section 3.2 how we enhance the efficiency of

plain symbolic execution using mixed concrete and symbolic execution.

Translating to an Intermediate Representation (IR). In order to perform sound

symbolic execution, we must correctly interpret the semantics and effects of all

assembly statements. The x86 instruction set is complex—many instructions have

implicit side effects (e.g., add sets the eflags register on overflow), may have

implicit operands (e.g., the memory segment selector), may behave differently for

different operands (e.g., shifts by 0 do not set eflags), and there are even single

instruction loops (e.g., rep instructions). Thus, to reduce the complexity of the sym-

bolic execution logic, for each instruction that needs to be executed symbolically, we

first translate it into a sequence of much simpler intermediate representation (IR)

statements that we have designed. Our IR resembles a RISC-like assembly language,

as shown in Table 1. The translation from an x86 instruction to our IR is designed to

correctly model the semantics of the original x86 instruction, including making all

the implicit side effects explicit (e.g., setting the eflags register). We then perform

symbolic execution on the IR statements, instead of directly with the x86 instruction

set.

Instructions i ::= ∗(r1) := r2|r1 := ∗(r2)|r := v|r := r1�bv

|r := �uv | label li | jmp ℓ | ijmp r

| if r jmp ℓ1 else jmp ℓ2

Operations �b ::= +,−, ∗, /,≪,≫, &, |,⊕, ==, ! =, <,≤ (Binary operations)

�u ::= ¬, ! (unary operations)

Operands v ::= n (an integer literal) | r (a register) | ℓ (a label)

Reg. Types τ ::= reg64 t | reg32 t | reg16 t | reg8 t | reg1 t (number of bits)

Table 1. Our RISC-like assembly IR. We convert all x86 assembly instructions into this IR.

Our IR has assignments (r := v), binary and unary operations (r := r1�bv and

r := �uv where �b and �u are binary and unary operators), loading a value from

memory into a register (r1 := ∗(r2)), storing a value (∗r1 := r2), direct jumps (jmp

ℓ) to a known target label (label ℓi), indirect jumps to a computed value stored in

a register (ijmp r), and conditional jumps (if r then jmp ℓ1 else jmp ℓ2). Figure 3

76 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

shows a small portion of the x86 assembly for our running example translated into

our IR.

// 4012b1: call 401810 <_GetLocalTime@4>

...
// 4012b9: cmpw $0x9,0xffffffee(%ebp)

t0:=ebp+0xffffffee; t1:=*t0; t2:=0x9 6= t1;
// 4012be: jne 40132d <_main+0xad>

if t2 6= 0 jmp 40132d else jmp 4012c0;
// 4012c0: cmpw $0xa,0xfffffff0(%ebp)

t3:=ebp+0xfffffff0; t4:=*t3; t5:=0xa 6= t4;
// 4012c5: jne 40132d <_main+0xad>

if t5 6= 0 jmp 40132d else jmp 4012c7;
// 4012c7: cmpw $0xb,0xffffffea(%ebp)

t6:=ebp+0xffffffea; t7:=*t6; t8:=0xb 6= t7;
// 4012cc: jne 40132d <_main+0xad>

if t8 6= 0 jmp 40132d else jmp 4012ce;
// 4012ce: cmpw $0x6,0xfffffff2(%ebp)

t9:=ebp+0xfffffff2; t10:=*t9; t11:=0x6 6= t10;
// 4012d3: jne 40132d <_main+0xad>

if t11 6= 0 jmp 40132d else jmp 4012d5;
// 4012d5: execute ddos code

// 40132d: do not execute ddos code

Fig. 3. The IR for the running example.

Symbolic Execution At a high level, symbolic execution builds up symbolic expres-

sions for variables (such as registers and memory). In our setting, symbolic execution

builds a path predicate for a chosen path, i.e., the formula that the trigger inputs need

to satisfy in order for the code execution to go down that path. Intuitively, each con-

ditional jump depending on trigger inputs along the chosen path places a constraint

on the trigger inputs, since the different values of the trigger inputs will make the

conditional jump go one way or the other. The path predicate is simply a conjunction

of all these constraints.

We generate the symbolic formulas on-the-fly in a syntax-directed manner. Sym-

bolic execution was first introduced by King [17]. Below we give a brief description

of how we perform symbolic execution and compute the path predicate for the cho-

sen path in our setting.

• For binary, unary, and assignment operations we generate a let expression. A

let expression binds a unique variable name to the expression computed, e.g.,

in Figure 4 the name t0 is bound to the expression “ebp + 0xffffffee”. Vari-

able names are derived from the operand names, and renamed if necessary to

be unique. For example, in Figure 4 we see that each incarnation of the virtual

register t is uniquely named. Also note that each variable definition is properly

scoped by the preceding statements.

Automatically Identifying Trigger-based Behavior in Malware 77

let Mi = λ.x
if x == (ebp+0xffffffee) then <wMonth>
else if x == (ebp+0xfffffff0) then <wDay>
else if ... else Mi−1 x

in
let t0 = ebp + 0xffffffee in
let t1 = Mi t0 in
let t2 = 0x9 6= t1 in
let t3 = ebp + 0xfffffff0 in
let t4 = Mi t3 in
let t5 = 0xa 6= t4 in
let t6 = ebp + 0xffffffea in
let t7 = Mi t0 in
let t8 = 0xb 6= t7 in
let t9 = ebp + 0xfffffff2 in
let t10 = Mi t9 in
let t11 = 0x6 6= t10 in

(t2 == 0) // wDay is 9
∧ (t5 == 0) // and wHour is 10
∧ (t8 == 0) // and wMonth is 11
∧ (t11 == 0) // and wMinute is 6

Fig. 4. The path predicate generated.

• We symbolically execute loads and stores using λ-abstractions [21]. A store cre-

ates a new memory, which is a new λ abstraction. A load is modeled as a λ
application to mimic reading from the current memory state. The λ-abstraction

acts like an array: given an address, it returns the last value written to that address.

Let M0 represent an initial memory state. Then a store *a := v to memory ad-

dress a with value v (in memory context M0) can be modeled as an if-then-else

expression with argument x:

M1

.
= λx.if x == a then v else (M0 x)

This is a function which takes an argument — an address x — and returns the

value associated with the address, e.g., v if x == a. A memory read of address

ar is performed by function application (Mi ar)
.
= if ar == a then v else

(Mi−1 ar). The application evaluates the if-then-else expression, returning the

last-written value to the address ar.

• When encountering a conditional jump, we generate two path predicates: one for

the current path continuing with the true branch, and the other for the current path

continuing with the false branch. For example, assuming the path predicate for

the current path before the conditional jump is F , for the conditional jump if e
then jmp L1 else jmp L2 we generate the path predicates F ∧ (e ==
0) for the path continuing with the true branch, and F ∧ (e 6= 0) for the path

continuing with the false branch. The generated path predicates will be then given

to the Solver.

78 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

Figure 4 shows the path predicate generated for reaching the call to ddos (with

Mi representing the state of memory after the call to GetLocalTime).

Mixed Concrete and Symbolic Execution

To enhance the efficiency of symbolic execution, we evaluate any instruction whose

operands are not symbolic concretely on the real processor. For example, if x =
5 + 6; x = x + x;, there is no reason to build “let x = 5+6 in let x1 = x + x”

when we can evaluate it natively and generate x = 22. Also, for conditional jumps

which do not depend on symbolic values, then we know the direction taken does not

depend on the trigger, and thus we can just execute it concretely. Concrete execution

reduces the size and complexity of the formula, but can only be performed if we know

for certain that all operands are concrete. Conducting both concrete and symbolic

execution is called mixed execution. In our setting, trigger inputs are represented

as symbolic variables, and therefore any operand only has a symbolic value if it is

derived from trigger inputs. Thus, the vast majority of instructions can potentially

be evaluated concretely, offering significant performance improvements over plain

symbolic execution.

To enable mixed execution, for each instruction issued, we first need to decide

whether each operand is symbolic or not. For registers, we maintain a register status

table which indicates whether a register holds a symbolic value, and if so, the cor-

responding symbolic variable. The register status table is updated during symbolic

execution as writes to registers happen.

Memory operands are more complex, and it is important to distinguish between

memory addresses and memory contents, each of which can be either symbolic or

concrete. In the simplest case, all the memory reads and writes are to concrete mem-

ory addresses. In this case, we simply maintain a data structure which remembers

which memory cells contain symbolic values and the corresponding symbolic val-

ues. A read of a memory cell of a concrete address whose content is symbolic loads

the corresponding symbolic value. A write of a symbolic value to a concrete memory

address similarly adds an association between the symbolic value and the concrete

memory index into our data structure .

Reading or writing memory with symbolic addresses require more care because

we do not know exactly what memory cells may be read or written. In these cases,

since we cannot say definitively that all operands are concrete, we must perform the

operation symbolically. In addition, after a write to a symbolic address, we must per-

form any subsequent instruction that may load a value from that cell symbolically

(in the worse case, all subsequent instructions). Note that this way the correctness

is guaranteed since the memory operations will be modeled as λ-abstraction as de-

scribed in Section 3.2.

Thus, memory operations on symbolic addresses, especially stores to a symbolic

address, pose a potential efficiency problem (though not a correctness problem).

Since fewer instructions may be able to be executed concretely, this could increase

the formula size, and potentially increase the difficulty for the Solver to solve for the

formula. For example, in some cases, a read from a symbolic address may result in a

Automatically Identifying Trigger-based Behavior in Malware 79

case split when solving the formula: the Solver may need to create a separate formula

to solve for each possible index read. Similarly, a write to a symbolic address will

lead to a case split on subsequent reads since we need to consider the case where

the index read coincides with the index written. We treat the Solver as a pluggable

component, and can plug in the best solver capable of analyzing these situations.

However, in our tests, reads and writes with symbolic addresses happen rarely,

thus the efficiency issue with memory operations on symbolic addresses currently

does not prevent us from achieving results in practice from our experience. As future

work, we do plan to build in the ability to reason about where the symbolic addresses

might point to, i.e. alias analysis for binaries. Such reasoning is difficult since mem-

ory is treated as one contiguous array and we do not know where one object stops and

another begins (unlike in source code). Although binary alias analysis is out of scope

for this chapter, we have investigated how such alias analysis may be conducted [5].

We leave incorporating these ideas into our current infrastructure as future work.

3.3 The Solver

For each generated path predicate, the Solver checks whether it is satisfiable. One of

three things can happen:

• The solver returns satisfiable, which means the path is feasible. In this case, the

solver adds the feasible path to the set of paths to be further explored. In addition,

the solver also generates an example set of input assignments, i.e., the trigger

values, which will lead the program execution down the feasible path. The trigger

values are then given to the Runner to concretely execute the program with the

trigger values and observe the trigger-based behavior.

• The solver returns unsatisfiable. This means that the path is infeasible, i.e., no

input will ever lead us down the exact specified path, and we mark the path as

such.

• The solver takes too much time or memory. We do not consider this path further.

Other choices are possible, e.g., increasing the time-out. One interesting possibil-

ity is to optimistically continue symbolically executing the path. If in subsequent

execution we run into code that does not depend upon the trigger type, we can

still concretely execute it. For example, in:

if(SHA1(x) == y)
ddos()

we may not be able to solve for x for the comparison to be true, but we could still

optimistically execute the ddos code. Technically we would not know whether

the path is really feasible, thus do not know whether the malicious behavior will

really be exhibited in this case. However, sometimes the information about the

existence of such malicious behavior in a piece of malware may still offer value

to the analyst.

Note that the practical power of our system would thus depend on the power

of the solver. MineSweeper is extensible; we can plug in any Solver appropriate,

and our system thus can automatically benefit from any new progress on decision

procedures, etc. Currently in our implementation, we use STP as the Solver [6, 12].

80 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

3.4 The Path Selector

The Path Selector takes as input the set of currently discovered feasible paths to be

explored, and outputs the next path selected to be explored. The Path Selector can

use different heuristics to decide which path to pick from the set of feasible paths.

For example, it can use breadth-first search, depth-first search, or other strategies.

Ideally, we would like to have a strategy to help us uncover trigger-based behavior

as early as possible.

In our approach, our strategy is to explore as many conditional jumps which

depend upon trigger inputs as possible. Thus, we take a BFS-like approach where

we will always try and explore a trigger-dependent branch that has never been seen

before revisiting loop bodies.

When MineSweeper encounters a loop, it will initially try to explore both

branches of the loop header (the loop header is the conditional jump which one

branch executes the loop body, and the other branch leaves the loop). This mim-

ics executing the loop once. Additional loop iterations will be added to the end of

the path selection queue. We have found this strategy the most effective at quickly

uncovering malicious behavior in our real world examples.

3.5 Runner

The runner takes as input the trigger values and executes the program with the trig-

ger values in a controlled environment. In our design, the Runner intercepts any

calls to the specified trigger types, and replaces the returned answer with the given

trigger values. Note that since each trigger input has a fresh symbolic variable in

the mixed execution, we will be able distinguish which trigger values to supply for

which function returns. For example, the Solver may specify different assignment

values for the first and second time a function call of a trigger type returns; in this

case, the Runner will feed the different trigger values according to whether it is the

first or second time the relevant function returned. In our running example, suppose

the Solver output that the time should be 11/9 at 10:06 (in reality, the Solver would

return an assignment of values to the trigger inputs, e.g., a value for byte 1-14 of the

specified trigger type). The Runner would intercept the GetLocalTime call and

replace the 14-bytes returned with the supplied time of 11/9 10:06.

4 Implementation and Evaluation

4.1 Implementation

We have implemented the above components in C/C++ and OCaml. We use QEMU [2],

a whole system emulator, as the basis for dynamic binary instruction in the Mixed

Execution Engine. Our implementation consists of about 41,000 lines of code.

Mixed Execution Engine Implementation. The translation from an x86 binary to

our IR is about 20,000 lines of C/C++ code and 9000 lines of OCaml. Much of the

Automatically Identifying Trigger-based Behavior in Malware 81

complexity arises from the various flags and status registers different instructions

may set and test. We have also developed an extensive testing infrastructure to verify

the translation is correct: we can translate an x86 program into our IR, then back to

x86, and have it run correctly.

The concrete and symbolic execution component is much smaller, compromising

about 12000 lines of C/C++ code. In our implementation, we perform Mixed Execu-

tion Engine by a) translating the instruction into our IR, b) consulting our register and

memory maps (as discussed in Section 3.2) to decide which operands are symbolic,

and c) executing the instruction either symbolically or concretely. Also, as soon as

we hit a symbolic memory address, we switch to the symbolic execution mode as

described in Section 3.2. For efficiency, we process a block of instructions at a time.

For us, a block consists of all sequential statements up to the next conditional jump.

We load an instruction cache in the Mixed Execution Engine, then have it perform

the above operations on a block at a time.

One potential issue is that we may encounter very long concrete runs after trigger-

dependent branches. In our implementation, we use timeouts if there are other paths

to explore so that we can move on and explore the new paths instead of continuing

along very long runs that do not demonstrate any trigger-based behavior.

Solver Implementation. We use STP [6, 12], a decision procedure well suited for

bit-vector operations commonly found in assembly, as our Solver. STP can reason

about any formula over a finite domain. Since our paths are of finite length, and each

variable can take on a finite value, STP could, in theory, answer any question we

posed to it. However, in real life, STP may run out of memory, or take too long to

return an answer. We found that formulas involving modulus or division operations

can substantially increase the answer time. However, overall we have found STP

effective in our experience.

Path Selector Implementation. Since trigger-based behavior is branch-based, our

Path Selector follows a branch-based strategy. Conceptually, in our implementation,

we would do this by forking the execution of our Mixed Execution Engine at every

symbolic jump that we encounter. However, due to the size and complexity of saving,

managing, and restoring all the state, we simulate this behavior by simply running

the Mixed Execution Engine multiple times.

As part of our implementation, we also build a control flow like graph of con-

ditional jumps which depend on the trigger inputs to provide visual feedback to

the user. This graph provides visual feedback to the analyst as to the progress of

MineSweeper. Vertices in the graph are conditional jumps which depend on the trig-

ger inputs. The edges are the control flow relationship between such jumps. Figure 5

is an example of the graph generated for NetSky. By looking at the graph the analyst

can get a good high level picture as to the progress of MineSweeper, the relationship

among the path predicates for the trigger conditions, and the relationship among the

possibly many trigger conditions themselves.

82 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

4.2 Evaluation

In order to test the effectiveness of our method, we have evaluated MineSweeper on

real malware. Our real world examples include widely spread email worms (Net-

Sky [16] and MyDoom [13]), DDoS tools (TFN [3]), and a keylogger (Perfect Key-

logger [1]). All of our experiments were performed on a 2.8Ghz Pentium dual-core

processor with 4GB of RAM. Our experiments demonstrate that our techniques are

capable of automatically analyzing current real world malware examples. Our ex-

periments also indicate that the total analysis time is quite small compared to an

otherwise manual approach.

Program Total Time Total STP Time Total Nodes # Trigger Jumps Percent

Sym.

Insn.

MyDoom 28 min 2.2 min 802042 11 0.00136%

NetSky 9 min 0.3 min 119097 6 0.00040%

Perfect Keylogger 2 min <0.1min 4592 2 0.00508%

TFN 21 min 6.5 min 859759 14 0.00052%

Table 2. Our results on several real-world malware examples.

Results Summary. Table 2 shows the results of our experiments. In this table, the

“Total Time” column is the total end-to-end experiment time for MineSweeper to

analyze each malware, i.e., the time to explore all conditional branches which depend

on the trigger inputs. Note that MineSweeper is an unoptimized prototype, and that

subsequent optimizations will likely bring the total time down. We break out the total

time spent in STP. In our experiments, we spent about 13% time on average solving

the path predicates.

The “Total Nodes” column displays the number of STP nodes used in solving

the formula. We use this as an indicator for the complexity of the formula that we

generate.

The “# Trigger Jumps” column counts how many conditional jumps were based

on trigger inputs. This number is important because it demonstrates that a relatively

small number of branches need to be explored in order to uncover the trigger-based

behavior in these experiments.

We also show the percent of symbolic vs. number of concrete (x86) instructions

executed. These numbers indicate that mixed execution reduces the formula a signif-

icant amount. This demonstrates that mixed execution is a promising approach.

Below we discuss each experiment in more detail.

Automatically Identifying Trigger-based Behavior in Malware 83

NetSky

Win32.NetSky is a Win32 worm that spreads via email. The NetSky worm was one

of the most widely spread worms of 2004. NetSky is known to have time triggered

functionality, however different variants trigger at different times. For example, the

C variant is triggered on February 26, 2004 between 6am and 9am [9]. The D variant

is triggered on March 2, 2004, when the hour is between 6am and 8am [16]. The

NetSky binary we analyzed was packed to prevent static analysis.

In our analysis, MineSweeper output that the library call GetLocalTime is a

potential trigger type. We specified GetLocalTime as the trigger type, which re-

turns a data structure that contains fields for the current month, day, year, hour, and

minute. MineSweeper then automatically explored NetSky and analyzed its trigger-

based behavior. Figure 5 shows a graph of program paths which depend on the trig-

ger. In this graph, node 1 represents the day comparison, node 2 the month, node 3

the year, and nodes 4 through 6 check the hour. As we can see, in order to gener-

ate an attack, the date must be February 26, 2004, between 6-9am. According to the

Symantec advisory, this is when NetSky.C attacks [9]. We can also see that when the

time doesn’t match, Netsky will loop back to the beginning and check again.

Overall, MineSweeper was able to discover and uncover the trigger-based be-

havior in about 9 minutes. We verified that all known trigger-based behavior was

discovered.

1. Day == 26

false 2. Month == 2
true

false 3. Year == 2004

true

false
4. Hour == 6

true

5. Hour == 7

false

Attack!

true

6. Hour == 8

false

true

false

true

Fig. 5. MineSweeper generated graph showing NetSky’s trigger-based behavior.

MyDoom

Win32.MyDoom [13] is another mass-mailing email worm with a built-in denial-of-

service time-bomb. Different variants have different trigger dates. All variants launch

DDoS attacks, most commonly against www.microsoft.com and www.sco.com. Ad-

ditionally, most variants contain a termination date which causes them to stop prop-

agating. The MyDoom binary we analyzed was packed. Overall, MineSweeper was

able to discover and uncover the trigger-based behavior in MyDoom in about 28

minutes. We verified that all know trigger-based behavior was discovered.

MineSweeper output that the library call GetSystemTimeAsFiletimewas

a potential trigger type during its initial run. GetSystemTimeAsFiletime re-

turns a structure which contains two 32 bit integers representing the current date and

84 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

time. After adding this specification, MineSweeper discovered MyDoom’s behavior

depends upon 11 different comparisons with the current date. MineSweeper automat-

ically generated the path predicates, which STP solved. After solving these values,

we were able to discover the termination date (Feb 12, 2004) as well as two DDoS

dates (Feb 1 and 3, 2004). Feeding these values into the MineSweeper confirmed the

DDoS. In addition, these values are confirmed by Symantec as the DDoS dates for

MyDoom [13].

Perfect Keylogger

Perfect Keylogger [1] is commercial software that has the ability to trigger itself

based on window title (i.e. logging is activated and deactivated by the title of the

window that is the target of the keystrokes).

MineSweeper identified GetWindowTitle as a possible trigger type. Once

we added the trigger type specification, MineSweeper discovered that Perfect Key-

logger checks if the current window name contains a pre-configured key string via

the strstr library call. In our experiment, we found that MineSweeper branched

heavily in the strstr call, e.g., checking if the first byte of the current window

name was the same as the key’s first byte, then checking if the second byte of the

current window name was the same as the key’s second byte, etc. In this scenario,

MineSweeper continued to make progress, albeit very slowly.

However, since strstr is a standard library function, we can be more efficient

by replacing strstr calls with calls to a summary function. The summary function

concisely summarizes the effects of strstr. Note that summary functions need

only be defined once, and can be reused when analyzing other examples, and that

they are a widely adopted technique in programming language research [7,28]. Once

we added this summary function, MineSweeper was able to quickly discover the

trigger value in about 2 minutes. We verified that all know trigger-based behavior

was discovered.

TFN: Tribe Flood Network

TFN [3] is a distributed denial-of-service attack zombie. Zombies are often found in

the wild where the inner workings are unknown, e.g., the zombie may respond only

to unusual messages. In the case of TFN, communication is carried out over ICMP.

Different versions of TFN use different maps from command values to actions. Our

goal in this experiment is to determine network inputs that would cause TFN to

exhibit these different actions.

The original version of TFN that we located was Linux software. For our analy-

sis, we have ported it to Windows since our current implementation is for Windows.

Therefore, our version is not vanilla TFN, but it will still allow us to do the relevant

analysis.

MineSweeper initially output that a raw ICMP network socket was the trigger

type. After adding the appropriate specification, MineSweeper was able to identify

and expand 14 conditional jumps that depend on network data. Using the solved

Automatically Identifying Trigger-based Behavior in Malware 85

formulas that we created, we were able to determine the various command values

that this version of TFN would respond to. This complex data was easily generated

in only 21 minutes using the MineSweeper system.

5 Discussion

In this chapter, we have shown that automatically analyzing trigger-based behavior

in malware is possible and described our approach and system as a first step towards

this goal. In this section, we discuss lessons we learned and limitations of the current

MineSweeper system.

Evasion Attacks. Identifying trigger-based behaviors in malware is an extremely

challenging task. Attackers are free to make code arbitrarily hard to analyze. This

follows from the fact that, at a high level, deciding whether a piece of code contains

trigger-based behavior is undecidable, e.g., the trigger condition could be anything

that halts the program. Thus, a tool that uncovers all trigger-based behavior all the

time reduces to the halting problem.

However, this theoretic result does not mean the task of providing automatic as-

sistance to identifying trigger-based behavior is futile. First, as our experiment results

demonstrate, our system is effective in identifying trigger-based behavior in malware

in the real world. Secondly, even when the attacker tries to make the code difficult to

analyze, e.g., to make the formula generated difficult for the Solver to solve, our sys-

tem offers value over the hopeless alternative, manual analysis. When the formulas

are difficult for a Solver to solve, it is most likely that it will be even more diffi-

cult for a human to think it through in his head. In addition, the formulas generated

are valuable in themselves: they concisely summarize the conditions necessary for

potential trigger-based behavior which can assist in further analysis.

One popular mechanism used to thwart analysis is static binary obfuscation or

run-time packing. These techniques are designed to make static analysis difficult.

Since MineSweeper analyzes malware as it runs, not statically, these evasion tech-

niques do not pose a problem to our approach, as demonstrated by our experiments.

Limitations of Current Implementation and Future Work. The current imple-

mentation of MineSweeper has a few limitations. First, system calls with symbolic

arguments are difficult, as they require either a) we build a symbolic formula over the

relevant code executed by the kernel, or b) create function summaries. We choose to

provide summary functions to keep the size of the generated formulas manageable,

thus MineSweeper only supports system calls with symbolic arguments when we

have defined the appropriate function summary. Summary functions need to be spec-

ified only once, and in general are useful and are widely adopted in research.

We iteratively explore paths of finite length, thus can iteratively reason about

longer and longer inputs. Handling arbitrary length inputs is a difficult problem, and

usually requires (in the worse case) manually supplying program invariants. Since

we have found many triggers are small and can be handled via our iterative process,

we leave adding support for invariants as future work.

86 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

Finally, we currently do not handle indirect jumps dependent upon trigger values,

e.g., t = GetLocalTime; jmp t->mDay;. In order to handle such cases, we

would need to reason about the possible values for the mDay. This is certainly possi-

ble: we use the Solver as an oracle to enumerate possibilities, and iteratively explore

them. We leave incorporating this step as future work.

As mentioned in Section 3.2, our original support for memory reads and writes

with symbolic indexes was handled inefficiently. However, we have recently im-

proved our system to more efficiently handle these memory accesses. This technique

is described in greater detail in a later work [4].

6 Related Work

Time-bomb analysis. Crandall et al. [8] recently proposed a virtual-machine-based

analysis technique to analyze the timetable of malware. Their technique uses time

perturbation to identify system timers in Windows. Their technique also uses lim-

ited symbolic execution and weakest precondition calculation to identify some time-

related predicates. This is a good first step towards automatic analysis of time-bombs,

however, compared to our holistic approach, their technique does not follow control

flow, and can only perform limited symbolic execution, not a full system mixed con-

crete and symbolic execution. As a result, much of their analysis done in the chapter

is manual, and their techniques miss several important time-related predicates. Ad-

ditionally, while their technique is specialized for time-bombs, ours is designed to

support more general trigger types.

Symbolic execution. Symbolic execution was first proposed by King [17]. Re-

cently, symbolic execution has been used for automatic test case generation [14,

22,29], sound replay of application dialog [20], vulnerability-based signature gener-

ation [14], and program verification, e.g., ESC/Java [10, 11].

Mixed Execution. DART and EXE have proposed mixed execution for finding bugs

in software and have demonstrated that this approach is effective in increasing cov-

erage for automatic testing [6, 14]. Their work is with source code: ours is with

binaries. At a high level, the approaches for mixed execution on source code and

binaries are similar in spirit. However, the techniques and engineering of a solution

is considerably different. For example, as mentioned one big issue is to deal with the

x86 instruction set. Though this may seem like a small side issue, in reality the engi-

neering issues are quite immense. Another difference is source code mixed execution

is usually performed by rewriting the source code so that appropriate constraints are

generated as it executes. For us, we must perform the instrumentation on the fly.

Moser et al. [19] have independently and concurrently proposed a similar method

of exploring multiple paths in a binary using symbolic execution. They have also

demonstrated positive results using this approach. While our approach is similar, our

system is capable of handling bit-level operations and more complicated, nonlinear

formulas for symbolic variables within the system.

Automatically Identifying Trigger-based Behavior in Malware 87

7 Conclusion

We have proposed that automatically analyzing trigger-based behavior in malware is

possible, and designed and implemented a system using mixed execution as a first

step towards this goal. Since often trigger-based analysis of malware is manual, any

help provided by MineSweeper is of great use. In our experiments with real-world

malware, we demonstrate MineSweeper is capable of a) detecting the existence of

trigger-based behavior for specified trigger types, b) finding the trigger condition, c)

Find input values that satisfy the trigger condition, when the trigger condition can

be solved, and d) feeding the trigger values to the program, causing it to exhibit the

trigger-based behavior, so that it may be analyzed in a controlled environment. Even

when automatic analysis fails, MineSweeper can provide an analyst with valuable

information about potential trigger-based behavior: information which previously

would have to be manually obtained. Automatic trigger-based behavior detection is

a challenging task, and we hope our work sheds new light and encourages further

work in this area.

Furthermore, this approach is specifically relevant to analysis of botnets. As dis-

cussed, botnets are merely a specific example of the general class of malicious soft-

ware containing hidden behaviors. We have further demonstrated this application in

other work [4].

References

1. Blazingtools perfect keylogger. http://www.blazingtools.com/bpk.html.

2. QEMU. http://www.qemu.org.

3. Tribal flood network. http://www.cert.org/incident_notes/IN-99-07.
html.

4. David Brumley, Cody Hartwig, Min Gyang Kang, Zhenkai Liang, James Newsome,

Pongsin Poosankam, Dawn Song, and Heng Yin. Automatically dissecting malicious

binaries. Technical Report CMU-CS-07-133, 2007.

5. David Brumley and James Newsome. Alias analysis for assembly. Technical Report

CMU-CS-06-180, Carnegie Mellon University School of Computer Science, 2006.

6. Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler. EXE:

A system for automatically generating inputs of death using symbolic execution. In Pro-

ceedings of the 13th ACM Conference on Computer and Communications Security (CCS),

October 2006.

7. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C pro-

grams. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Com-

puter Science, pages 168–176. Springer, 2004.

8. Jedidiah R. Crandall, Gary Wassermann, Daniela A. S. de Oliveira, Zhendong Su, S. Fe-

lix Wu, and Frederic T. Chong. Temporal search: Detecting hidden malware timebombs

with virtual machines. In Proceedings of the Twelfth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS XII),

October 2006.

88 D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, H. Yin

9. Tony LeePeter Ferrie. Win32.Netsky.C. http://www.symantec.com/
security_response/writeup.jsp?docid=2004-022417%-4628-99.

10. C. Flanagan and J.B. Saxe. Avoiding exponential explosion: Generating compact ver-

ification conditions. In Proceedings of the 28th ACM Symposium on the Principles of

Programming Languages (POPL), 2001.
11. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,

and Raymie Stata. Estended static checking for java. In ACM Conference on the Pro-

gramming Language Design and Implementation (PLDI), 2002.
12. Vijay Ganesh and David Dill. STP: A decision procedure for bitvectors and arrays.

http://theory.stanford.edu/˜vganesh/stp.html.
13. Scott Gettis. W32.Mydoom.B@mm. http://www.symantec.com/security_

response/writeup.jsp?docid=2004-022011%-2447-99.
14. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random

testing. In Proc. of the 2005 Programming Language Design and Implementation Con-

ference (PLDI), 2005.
15. Kevin Ha. Keylogger.Stawin. http://www.symantec.com/security_

response/writeup.jsp?docid=2004-012915%-2315-99.
16. Neal Hindocha. Win32.Netsky.D. http://www.symantec.com/security_

response/writeup.jsp?docid=2004-030110%-0232-99.
17. James King. Symbolic execution and program testing. Communications of the ACM,

19:386–394, 1976.
18. McAfee. W97M/Opey.C. ttp://vil.nai.com/vil/content/v_10290.htm.
19. Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execution

paths for malware analysis. In IEEE Symposium on Security and Privacy. IEEE Press,

2007.
20. James Newsome, David Brumley, Jason Franklin, and Dawn Song. Replayer: Automatic

protocol replay by binary analysis. In Proceedings of the 13th ACM Conference on Com-

puter and and Communications Security (CCS), October 2006.
21. Benjamin C Pierce. Types and Programming Languages. The MIT Press, 2002.
22. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for

c. In ACM SIGSOFT Sympsoium on the Foundations of Software Engineering, 2005.
23. Symantec. Spyware.e2give. http://www.symantec.com/security response/

writeup.jsp?docid=2004-102614-1006-99.
24. Symantec. Xeram.1664. http://www.symantec.com/security_response/

writeup.jsp?docid=2000-121913-2839-99.
25. United States Department of Justice Press Release. Former computer network adminis-

trator at new jersey high-tech firm sentenced to 41 months for unleashing $10 million

computer “time bomb”. http://www.usdoj.gov/criminal/cybercrime/
lloydSent.htm.

26. United States Department of Justice Press Release. Former lance, inc. employee sen-

tenced to 24 months and ordered to pay $194,609 restitution in computer fraud case.

http://www.usdoj.gov/criminal/cybercrime/SullivanSent.htm.
27. United States Department of Justice Press Release. Former technology manager sen-

tenced to a year in prison for computer hacking offense. http://www.usdoj.gov/
criminal/cybercrime/sheaSent.htm.

28. Yichen Xie and Alex Aiken. Context- and path-sensitive memory leak detection. ACM

SIGSOFT Software Engineering Notes, 30, 2005.
29. Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. Automatically

generating malicious disks using symbolic execution. In IEEE Symposium on Security

and Privacy, 2006.

Towards Sound Detection of Virtual Machines

Jason Franklin1, Mark Luk1, Jonathan M. McCune1, Arvind Seshadri1, Adrian

Perrig1, and Leendert van Doorn2

1 Carnegie Mellon University, Pittsburgh, PA 15213

jfrankli@cs.cmu.edu, {mluk, jonmccune}@cmu.edu,
arvinds@cs.cmu.edu, perrig@cmu.edu

2 Advanced Micro Devices, Austin, TX 78741

Leendert.vanDoorn@amd.com

Summary. We design, implement, and evaluate a practical timing-based approach to detect

virtual machine monitors (VMMs) without relying on VMM implementation details. The

algorithms developed in this paper are based on fundamental properties of virtual machine

monitors rather than easily modified software artifacts. We evaluate our approach against two

common VMM implementations on machines with and without hardware support for virtu-

alization in a number of remote and local experiments. We successfully distinguish between

virtual and real machines in all cases even with incomplete information regarding the VMM

implementation and hardware configuration of the targeted machine.

1 Introduction

In their seminal work, Popek and Goldberg formally defined the essential proper-

ties that a program must satisfy to be termed a virtual machine monitor: efficiency,

resource control, and equivalence [12]. In this article, we exploit the timing depen-

dency exception to the equivalence property of a VMM to detect the presence of a

virtual machine monitor (VMM) without relying on implementation details or soft-

ware artifacts.

Virtual machine monitor detection has two direct implications for botnet re-

mediation: first, it provides defenders with the ability to detect bots which utilize

VMMs for improved stealth (e.g., VM-based rootkits [10, 18, 27]) and second, ex-

ploring VMM detection allows defenders to assess the extent to which intelligent

bots can identify and potentially bias virtualized analysis environments such as high-

interaction honeypots [9, 22, 26].

Due to the sophisticated nature of modern VMMs and significant variations be-

tween implementations, implementation-independent VMM detection is a difficult

open problem. This difficulty is highlighted by the fact that most related work empha-

sizes implementation-dependent (software-artifact-based) techniques. These tech-

niques have an inherent weakness: implementation-dependent detection techniques

90 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

are easy to counter by modifying VMM implementations to mask or otherwise hide

identifiable software artifacts.

In contrast to previous work, the detection algorithms developed in this paper

are VMM implementation-independent and hardware-dependent. While the prac-

ticality of modifying VMM implementations to counter the multitude of current

implementation-dependent detection techniques can be disputed, modifying the im-

plementation of a VMM is inherently easier than modifying the underlying hard-

ware, especially since in most cases the required software modifications are trivial.

Our implementation-independent algorithms do not rely on software artifacts, mak-

ing them difficult to counter without hardware modifications, a task which is difficult

for organizations who rely on commodity hardware.

The main contribution of this article is the development of a class of implementa-

tion independent VMM detection algorithms whose execution is noticeably different

when executed inside a virtual machine versus when executed directly on the under-

lying hardware. We describe the design and implementation of our algorithms, their

success detecting a number of VMMs including VMware [23,25], the Xen VMM [2]

on standard hardware, and the Xen VMM on a machine with hardware assistance for

virtualization.

Virtualization Layer

Kernel

Hardware

Kernel

Hardware

D

D

Virtual Target System Real Target System

Fig. 1. VMM detection algorithm D on virtual and real target systems

We develop a class of VMM detectors that, when executing on a target system

of unknown status (virtual or real) with access to a trusted external timer, can dis-

tinguish between a virtual and real target system (see Figure 1). Given the exact

hardware specification and the specific VMM implementation that may be present,

detection using timing is straightforward. However, given all known and possibly

unknown VMM implementations, and all possible commodity hardware configura-

tions, detecting the presence of a VMM on a platform with uncertain configuration

is challenging. Hence, VMM detection spans a spectrum of scenarios, running from

specific (easier to detect) to general (harder to detect) along two axes: VMM im-

plementation ranging from known to unknown and hardware configuration ranging

from known to unknown (see Figure 2). We explore this space of detection scenarios

and address the challenges that lie within.

Towards Sound Detection of Virtual Machines 91

K
n
o
w

le
d
g
e
 o

f
V

M
M

 I
m

p
le

m
e
n
ta

ti
o
n

Knowledge of Hardware

less
 diffi

cu
lt t

o detect

more
 diffi

cu
lt t

o detect

more less

m
o
re

le
s
s

alpha beta

delta gamma

Fig. 2. Problem space

Complete knowledge of a system’s hardware configuration is available in some

scenarios, such as administratively controlled machines in corporations. As an ex-

ample, consider the scenario where VM-based rootkits (VMBRs) become a signifi-

cant threat in the wild. Anti-virus software makers, motivated to protect their users

against such threats, could ask users to specify their hardware (e.g., Pentium 4 2.0

GHz) upon installation of a VMM detector such as the one developed in this pa-

per. Servers run by the anti-virus company could then periodically challenge the

users’ systems to execute our hardware-specific VMM detector, designed to elicit

a detectable performance degradation when running in a VMM. If performance is

degraded sufficiently, the anti-virus software company could begin a recovery on the

users’ VM-based rootkit infected machines. A challenge in this naive model is that

the information provided by the user about their system might be incorrect, incom-

plete, or unavailable.

The techniques described in this paper successfully detect the presence of a

VMM on a target system even with uncertainty about the system’s exact hardware

configuration and specific VMM implementation. Our approach exploits VMM tim-

ing dependencies to elicit measurable VMM overhead, even in the face of limited

hardware and software configuration information. Uncertainties with respect to hard-

ware configuration include CPU microarchitecture, cache architecture, and clock

speed. Uncertainties with respect to the VMM implementation include optimizations

such as the use of binary rewriting or paravirtualization. Hardware support for virtu-

alization, such as Intel’s VT [8] or AMD’s SVM [5] technologies, further complicate

detection.

In our evaluation, we are able to identify sufficient hardware configuration infor-

mation for target systems and to ultimately distinguish between virtual and real ma-

chines. Further, our approach continues to work against VMMs that utilize hardware

support for virtualization. Our experiments demonstrate the viability of our approach

over a range of uncertainty. As such, the algorithms developed in this paper represent

a promising step towards general VMM detection techniques.

92 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

1.1 Context

The best way to understand VMM detection and to understand the relationship be-

tween this paper and past work is to describe the arms race which is VMM detection.

VMM detection is an arms race between detectors (which attempt to detect a VMM)

and VMMs (which attempt to evade detection). Below we describe the stages of the

arms race with each step labeled either current, emerging, or future to describe the

chronology of the race.

D1 V1 D2 D3 VE−1

VE−2
Success

Failure

Failure

Success

FutureEmergingCurrent

Fig. 3. VMM detection arms race

D1: Currently, detectors use software implementation-dependent artifacts such as

communication back doors, process names, and perturbed locations of system

components [19].

V1: VMMs evade detection by eliminating the specific artifacts used for detection.

For example, VMMs mask names and values (i.e., location of the IDT, special

processes, communication back doors etc...) or interpose on specific instructions

which are used in detection [10].

D2: Detectors search for previously unknown software artifacts. If found, return to

step V1 otherwise continue.

D3: In the absence of previously unknown software artifacts, detectors search for

implementation-independent perturbations such as timing (this article). If found,

continue, else jump to VE-2.

VE-1: Unable to evade implementation-independentdetection, VMMs either remain

detectable or violate an assumption of the arms race. One possible violation

is that VMMs continue to operate on commodity hardware. It’s possible that

hardware support for virtualization will eliminate VMM overhead. We suspect

this to be unlikely for multiple reasons: hardware-support is meant to fill holes

in current architecture’s virtualization support and to ease the implementation of

VMMs, it is not designed to optimize or otherwise hide the presence of a VMM.

We evaluate the results of violating this assumption in Section 6.

VE-2: With both implementation-dependent and implementation-independent de-

tectors eliminated, VMMs successfully evade detection.

Organization. Section 2 discusses necessary background including the formal

properties of a VMM. Section 3 sketches a sound approach to VMM detection. Sec-

tion 4 discusses the algorithm and protocol design for a class of VMM detection

algorithms. Section 5 describes the implementation of a detector. Section 6 presents

Towards Sound Detection of Virtual Machines 93

our experimental results. We present a security analysis in Section 7 and discuss lim-

itations and possible extensions in Section 8. We cover related work in Section 9 and

conclude in Section 10.

2 Background

We follow Popek and Goldberg in defining a virtual machine as an efficient, isolated

duplicate of the underlying hardware [12]. This definition imposes the three prop-

erties that a control program must satisfy to be termed a virtual machine monitor:

efficiency, resource control, and equivalence. To explain these three properties, we

must first introduce some terminology.

2.1 Instruction Types

We classify the underlying instructions of a machine based on their behavior. An

instruction is privileged if it can only be executed in the highest processor privilege

level, and executing it at any other privilege level results in a trap to a higher privilege

level. Privileged instructions are characteristics of the underlying hardware and are

invariant over a particular instruction set architecture. An instruction is sensitive if it

can interfere with the state of a memory-resident VMM. An instruction is innocuous

if it is not sensitive.

2.2 Virtual Machine Properties

Informally, the efficiency property dictates that programs run in a virtualized envi-

ronment show no more than minor decreases in speed. Since minor decrease in speed

is difficult to quantify, a parallel requirement of the efficiency property is that a sta-

tistically dominant subset of the virtual processor’s instructions be executed directly

by the real processor.

The resource control property dictates that a VMM maintain complete control

of system resources. This requires that it be impossible for an arbitrary program

running in a VM on top of a VMM to affect system resources, e.g., memory and

peripherals, allocated to a different VM or the VMM itself.

The equivalence property dictates that a VMM provide an environment for pro-

grams which is essentially identical to that of the original machine. Formally, any

program P executing with a VMM resident in memory, with two possible excep-

tions, must perform in a manner indistinguishable from the case when the VMM

did not exist and P had the freedom of access to privileged instructions that the

programmer had intended. The two possible exceptions to the equivalence property

result from resource availability and timing dependencies.

94 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

2.3 Exceptions

The resource availability exception states that a particular request for a resource

may not always be satisfied. As a result, a program may be unable to function in the

same manner as it would if the resource were made available. This exception exists

because a VMM shares the underlying hardware and hence consumes resources.

The timing dependency exception states that certain instruction sequences in a

program may take longer to execute. Hence, assumptions about the length of time

required for the execution of an instruction might lead to incorrect results. This ex-

ception results from the possibility of a VMM occasionally intervening in certain

instruction sequences.

These exceptions allow for the theoretical possibility of detecting a virtual ma-

chine monitor. If these exceptions did not exist, a VMM that perfectly satisfied the

equivalence property would be impossible to detect. In this paper, we study how

VMM detectors can be written which exploit these exceptions to unmask virtualized

machines.

3 Approach

We sketch the design of a sound detection algorithm that exploits the timing depen-

dency exception of a VM to distinguish between real and virtual machines.

3.1 Definitions

A VMM detection algorithm is a decision procedure which when given as input a

target machine M outputs accept if M is a virtual machine and reject if M is a real

machine. Let V be a virtual machine. A detection algorithm D is sound if and only

if when D(M) outputs accept, M is a virtual machine. A detection algorithm D is

complete if and only if on input V , D halts and outputs accept. In order to elimi-

nate any dependence on a particular VMM implementation, the approach described

below is based on an idealization of a control program which satisfies the required

properties of a VMM with the two previously mentioned exceptions. We term such

a program an idealized VMM.

3.2 Intuition behind Detection Algorithms

Failure to control the execution of a sensitive instruction executed in a virtual ma-

chine (VM) can result in a loss of control over system resources. Since this is a vi-

olation of the resource control property, a VMM must strictly control the execution

of sensitive instructions. The need to completely control system resources imposes

stringent requirements on the execution of any instruction which has the potential to

affect system resources.

Classes of instructions that can potentially affect system resources include sensitive-

privileged instructions, sensitive-unprivileged instructions, and innocuous-privileged

Towards Sound Detection of Virtual Machines 95

instructions. Innocuous-unprivileged instructions can be directly executed on the un-

derlying hardware as they pose no risk of state corruption or control modification.

It is the potentially control-modifying instructions that necessitate the existence of

timing dependencies when a program executes in a VM.

When a VMM interposes on the execution of instructions that can affect system

resources, VMM overhead is encountered. The VMM overhead of an instruction

is the additional number of cycles required to execute the instruction in a VMM

versus executing the instruction directly on real hardware. We exploit this overhead

to distinguishing between real and virtual machines.

We give an intuition as to why positive VMM overhead is independent of VMM

implementation. Assume positive VMM overhead does not exist. Then, either the

VMM overhead is zero or it is negative. If the VMM overhead is negative, then

the addition of a VMM actually increases the speed of the real machine, clearly

a contradiction. If the VMM overhead is zero and instructions execute in a positive

amount of time, then the VMM cannot interpose on instructions to maintain resource

control. A program which does not maintain resource control is not a VMM, hence

we arrive at a contradiction.

In our previous argument, we implicitly assumed that VMMs execute without

hardware assistance for virtualization. The recent commoditization of hardware sup-

port for virtualization could reduce or in the extreme case eliminate VMM overhead.

Previous work has show that even with current generation hardware support for vir-

tualization, VMMs experience considerable performance overhead [1]. In addition,

our experimental results confirm these observations. Since we cannot predict how

future hardware might improve virtualization performance; the results of this paper

only apply to current architectures.

3.3 VMM Detection Algorithm

We are interested in the class of detection algorithms that exploit the timing depen-

dency exception to distinguish between real and virtual machines. We describe this

class of algorithms as follows.

Let RC be a real machine with configuration C and let MC be a virtual or

real machine with identical configuration C. Let Benchmark be a program with k
control-modifying instructions each with VMM overhead o. Execute Benchmark
on R. Store the time required for Benchmark to complete in RC(Benchmark).
Execute Benchmark on M . Store the time required for Benchmark to com-

plete in MC(Benchmark). Compare MC(Benchmark) and RC(Benchmark). If

MC(Benchmark) is greater than RC(Benchmark) by at least k ∗o, output accept,

else output reject.

4 Algorithm and Protocol Design

We present the design of our detection algorithm and protocol.

96 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

4.1 Algorithm Design

A number of complexities surface while implementing the detection algorithm de-

veloped in the previous section. First, a Benchmark with control modifying in-

structions must be constructed. Second, the execution time of a Benchmark on

the real machine must be measured. Third, the execution time of a Benchmark on

the target machine must be measured. Each of these entails additional complexities,

explanations of which follow.

Designing for Overhead. As we previously argued, because of the inherent prop-

erties of a VMM, the VM should not be able to execute a program with control-

modifying instructions as fast as the real machine. We design a Benchmark to

include control modifying instructions empirically determined to have an overhead

across implementations and validate our selection against a VMM of unknown im-

plementation. We choose the particular control-modifying instructions and then tune

their number such that the VMM overhead is remotely (e.g., across the Internet)

noticeable.

Establishing Reference Times. The execution time of a Benchmark on RC , de-

noted Baseline(RC) is our reference for distinguishing between virtual and real

machines with hardware configuration C. The performance of our algorithm is di-

rectly related to the accuracy with which we can measure Baseline(RC). A central

complexity in establishing an accurate reference time is how to establish this value

for machines of unknown configuration.

Since the execution time of a Benchmark is dependent on the underlying hard-

ware, clearly we require some knowledge of the hardware configuration to establish

Baseline(RC). The greater the amount of information we have about the hardware

configuration, the easier it is to distinguish between real and virtual machines, how-

ever, as we require more configuration information, the number of scenarios where

our detector may work is reduced.

While our approach is independent of the mechanism used to determine the con-

figuration of the machine in question, in order to develop an end-to-end VMM detec-

tion algorithm, we proceed as follows. To start, we assume we have no configuration

information about the machine in question and that we cannot trust the machine’s

direct responses to configuration inquiries. Assuming we know the configuration of

the machine in question greatly limits the scenarios in which our detection algorithm

is applicable. Further, trusting a virtual machine’s direct response to configuration

questions can result in our acceptance of incorrect timing measurements.

We develop a heuristic approach to identify unknown hardware which works well

in practice. Our heuristic, which we call hardware discovery, uses the existence of

hardware artifacts that “shine through” a VMM. The hardware artifacts we discover

are unique to a particular architecture and allow us to infer a portion of the configu-

ration of the machine. This configuration information then allows for an estimation

of Baseline(RC). We explain our techniques for hardware discovery and runtime

estimation in the coming sections.

Measuring Execution Times in a VM. Timing the execution of a Benchmark on

M necessitates the existence of a reliable timing source. If M is a virtual machine,

Towards Sound Detection of Virtual Machines 97

the VMM may return timing measurements which do not accurately characterize the

execution time [10]. To overcome this complexity, we allow the detector to contact

an external timing source.

To remotely detect VMM overhead, we must develop a Benchmark with suffi-

cient VMM overhead to overcome possible measurement noise. Potential sources of

noise include variance in network latency, inaccuracies in timing, and variance in ex-

ecution times resulting from caching. To overcome this noise, we develop techniques

to configure the amount of VMM overhead to a nearly arbitrary extent.

4.2 Benchmark Design

Constructing a Benchmark requires that we determine which control-modifying

instructions and the correct number of these instructions to execute. Below we dis-

cuss how a Benchmark can designed to have a variable amount of VMM overhead

based on the specific instructions used and their number.

Selecting Instructions

To select the correct control-modifying instructions to induce VMM overhead, we

measured the overhead of different sensitive-privileged instructions on several dif-

ferent VMMs. We use sensitive-privileged instructions, as opposed to sensitive-

unprivileged instructions, because sensitive-unprivileged instructions violate the re-

source control property [14]. The results of these measurements are presented in

Section 6.

Number of Instructions

After selecting particular instructions, we need to further tune the VMM overhead

induced a Benchmark by selecting the number of instructions. There are two pri-

mary factors that affect the VMM overhead of a Benchmark. First, the processor

configuration of a machine, for instance, Intel Pentium IV 2.0 GHz, has a direct ef-

fect on the execution time. Second, different VMM implementation techniques have

different levels of overhead. The following analysis explains how we incorporate

these two factors into our experiments in order to select the number of instructions

in a Benchmark.

4.3 Measuring and Approximating Execution Times

First, we assume full knowledge of the configuration of the target machine. We then

limit the amount of configuration information that is known and develop an approx-

imation technique for estimating the runtime of a Benchmark over a class of ma-

chines.

98 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

E
la

p
se

d
 T

im
e

in
 S

ec
o
n
d
s)

Number of Program Iterations

VMM1
VMM2
VMM3

Real Machine

Fig. 4. Example VMM overhead of a Benchmark. Without a VMM executing, the instruc-

tions complete rapidly. With a VMM, there is noticeable overhead.

Timing With Complete Configuration Information

For purposes of demonstration, we imagine a scenario where we know the exact

hardware configuration of the machine which we wish to distinguish as real or vir-

tual, and we have access to a local machine of identical configuration. In this case,

we can execute our detection code on the identically configured local machine and

measure its execution time for use as a baseline for remote detection.

Given access to the local machine, we can determine the correct number of in-

structions to execute by estimating the noise in our experiments and running a num-

ber of experiments. We execute a Benchmark on the real hardware of the local

machine and under different VMMs, while varying the number of instructions. The

results look similar to Figure 4.

This graph is a hypothetical example based on our experimental results. The

upper lines represent the runtimes of a Benchmark with a fixed set of control-

modifying instructions under several different VMM implementations. The bottom

line is the execution time on the real hardware. To determine the required number

of instructions, we first fit equations to all the data points in the graph. We then

use these equations to determine the minimum number of instructions required to

overcome our noise estimate.

Let Model(RC) =























V MM1(x) = a1x

V MM2(x) = a2x

V MM3(x) = a3x

RealMachine(x) = bx























with a = min(a1, a2, a3) and FastestV MM(x) = ax. Given a noise estimate

of n, the minimum required number of iterations x such that FastestV MM(x) −
RealMachine(x) > n is x > n

a−b
. Since n is small in practice and our VMM

Towards Sound Detection of Virtual Machines 99

overhead is configurable to an almost arbitrary extent, selecting x based on local

experiments presents few difficulties.

In the above example, which is based on our experimental results, we have a =
0.125 and b = 0.01. If we assume our experimental noise n = 20ms (based on a

network latency variation of 10 ms), a Benchmark must run at least 175 iterations.

Approximate Timing With Incomplete Configuration Information

We now examine the case where we have incomplete configuration information for

the target machine. In this case, we determine the correct number of instructions to

execute based on a number of estimates and experiments. We assume we have access

to a machine with partial configuration information which matches that of the target

machine.

As an example, imagine that the partial configuration information we have iden-

tifies just the processor type (e.g., Pentium IV). Since the remote machine we are

attempting to distinguish as virtual or real may run at a different clock speed than

the machine we are using for our experiments, we need to bound the runtime a

Benchmark for different configurations and use these bounds for detection. In ad-

dition, since our baseline execution time will not be as accurate as in the full con-

figuration information case, we must design the Benchmark such that its execution

time is ordered as in Figure 5. Essentially, executing a Benchmark on the fastest

VMM on the fastest real machine that matches the partial configuration information

should take longer than executing the Benchmark directly on the slowest machine

matching the partial configuration information.

FR FV SVSR

architecture range architecture range

O
Execution time

Fig. 5. The required order of execution times for a Benchmark for different configurations.

Given some configuration information, FR is the fastest real machine, SR is the slowest real

machine, FV is the fastest real machine running the fastest VMM, and SV is the slowest real

machine running a VMM.

The approach we develop is to determine the range of processor speeds available

given our partial configuration information and to use these values to approximate

the execution time under different configurations. Since our detection code is CPU

bound, it is possible to estimate the runtime of a Benchmark given only a few

experiments on a single machine and a number of easily determined public values.

Given the partial configuration information we know, we determine the proces-

sor speed of the fastest machine available and denote this as F . While this value in-

creases over time, the configurable nature of the overhead elicited by a Benchmark
makes it possible to compensate for this increase. We denote the speed of the slowest

100 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

machine satisfying our partial configuration information as S. The processor speed

of the machine we are using for local experiments is denoted M . At the time of

writing this paper, F = 3.8GHZ and S = 1.3GHZ for the Pentium IV3.

As described above, we experimentally determine FastestV MM(x) = ax and

RealMachine(x) = bx by running a small number of tests on the local machine

M . We then use the ratio of the speed of the local machine to the speed of the

slowest possible machine, p = M
S

, to estimate the runtime a Benchmark on the real

hardware of S. This gives us a runtime estimate on S of SR = p∗RealMachine(x).
Similarly, we use the ratio of the speed of the local machine to the fastest machine,

u = M
F

, to estimate the runtime on the fastest virtual machine. This gives us FV =
d∗FastestV MM(x). To determine the minimum number of instructions required to

overcome our noise estimate, we require FV > SR+n or equivalently, x > n
au−bp

.

Returning to the above example and the Pentium IV, we have a = 0.125, b =
0.01, M = 2.0; GHz, p = 2.0

1.3
, and u = 2.0

3.8
. If we assume that our experimental

noise n = 20ms a Benchmark must run at least 471 iterations, more than twice as

many as in the complete configuration information case.

4.4 Protocol Design

In our scheme, a trusted agent external to the target system denoted by V interacts

with an instance of a detection algorithm D on a target machine M . V measures the

start and end times of D by either invoking D remotely or receiving a communication

immediately before D executes. After execution completes, D sends V a notification

of completion.

D contains a specially crafted sequence of instructions called the Benchmark.

The Benchmark is designed to elicit externally noticeable differences in execution

time between virtualized and non-virtualized execution environments. D executes on

the target host at the highest privilege level with interrupts turned off.

Upon receiving the notification of completion, V records the time elapsed since

invocation of D. To determine if the detection algorithm D was executed in a VMM,

V performs a lookup into a precomputed table of baseline execution times for the

target host’s hardware platform. If the execution time exceeds the threshold set for

the slowest real machine of the specified configuration, the target machine M is

considered to be a virtual machine.

5 Implementation

We detect the presence of a VMM based on performance measurements of instruc-

tion sequences, which we execute in a loop called the benchmarking loop. We use

a sequence of instructions inside of a loop rather than as a straight line program to

ease experimentation. We iterate the loop containing control-modifying instructions

3 http://www.intel.com/products/processor/pentium4

Towards Sound Detection of Virtual Machines 101

until we generate enough overhead for detection. Unless stated otherwise, our loop

iterates 217 times. We experimentally selected this value.

We implemented our Benchmarks as Linux kernel modules. Their instructions

always execute at the same privilege level as the kernel itself, which depends on the

hardware architecture and the presence or lack of a VMM. To measure execution

time locally, we use the rdtsc (read time-stamp counter) instruction before and

after the benchmarking loop. To obtain measurements using an external or remote

verifier, a user-level program measured runs on the target system and listens for

a TCP connection from the verifier. When a connection is established, measured
immediately tries to open a file that our kernel module adds to the /proc filesystem.

This results in a call to a function in our module, which immediately suspends the

calling process, disables interrupts, and begins execution of the benchmarking loop.

When the benchmarking loop finishes, interrupts are re-enabled, the calling process

gets woken up, and its file-open succeeds. Without even reading any data from the

file, measured sends a packet back across its TCP connection, indicating to the

verifier that execution of the benchmarking loop is complete.

6 Evaluation

We first describe the VMMs evaluated in our experiments and our experimental

setup, then the actions necessary to ensure timing integrity for our experiments.

Mechanisms that can detect the hardware architecture of an unknown remote system

are presented next. Finally, we provide the results of both local and remote experi-

ments, culminating in successful detection.

6.1 VMM Implementations

We evaluate our approach against two common virtual machine monitor implemen-

tation techniques [15]: full virtualization and paravirtualization. Both of these tech-

niques are used to virtualize operating system instances rather than processes on one

operating system; however, they differ in their approach to achieving this goal.

In full virtualization, the virtual replica of the underlying hardware exposed is

functionally identical to the underlying machine. This allows operating systems and

applications to run unmodified. Full virtualization is typically implemented in one of

two ways: (1) with full support from the underlying hardware, affording maximum

efficiency; and (2) without full support from the underlying hardware, requiring sen-

sitive instructions to be emulated in software.

A popular full system virtualization VMM is VMware Workstation [23,25], here-

after referred to as simply VMware. VMware runs inside of a host operating system –

as opposed to running on the raw hardware – and exposes an accurate representation

of the x86 architecture to guest operating systems. This causes VMware to suffer a

performance overhead during the execution of certain privileged instructions, since

they must be emulated in software.

102 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

Vanilla�

Linux

VMWare�

Workstation

Paravirtualized�

Xen 3.0.2
 HVM Xen 3.0.2

Local�

Router

External�

Verifier

Remote�

Verifier

Internet

Fig. 6. Experimental machine and network setup

In paravirtualization, the virtual replica of the underlying hardware exposed is

similar to the underlying machine, but it is not identical. This is done when the under-

lying machine architecture consists of sensitive instructions which are not privileged.

Paravirtualized VMMs have the drawback that operating systems must be modified

to run on them; however, they enable efficient virtualization to be performed even

when hardware support for full virtualization is unavailable.

Xen is an open-source x86 virtual machine monitor that uses paravirtualization to

achieve high performance [2]. Xen presents a software interface to the guest OS that

is not identical to the actual hardware. Therefore, the guest operating system needs to

be modified before it can run on Xen. Paravirtualization is trivially detectable from

within a guest OS, as certain features of the underlying hardware will be broken or

missing. Full virtualization on Xen can be accomplished with hardware support, e.g.,

Intel Vanderpool Technology (VT) [8] or AMD SVM [5].

6.2 Experimental Setup

We use six machines in our VMM detection experiments. Figure 6 shows these ma-

chines and their network connectivity. Three of the machines are identical 2.0 GHz

Intel Pentium IV systems. These systems run vanilla Linux, VMware Workstation,

and paravirtualized Xen 3.0.2, respectively. The fourth machine has hardware exten-

sions to support virtualization (e.g., Intel VT [8] or AMD SVM [5]) and runs Xen

3.0.2. The last two machines are used as verifiers in experiments where timing mea-

surements are made remotely. One of these is on a separate subnet from our machines

running VMMs, separated by one hop through a router, which we call the external

verifier. The other is located remotely at another university, which we call the remote

verifier. Average ping times to the external and remote verifiers are 0.4 ms and 16 ms,

respectively. All CPU-scaling and power-saving features are disabled on the external

and remote verifiers during experiments to prevent the clock frequency of the CPU

in the verifier from changing.

Towards Sound Detection of Virtual Machines 103

In the remainder of the paper, we sometimes refer to a target host as “VMware”

or “Xen”, when in fact we mean the guest OS running on VMware or Xen. All

experiments run against Xen, with or without HVM support, are run against an un-

privileged user domain which is the only other domain running besides the privileged

domain 0.

In our experiments, we execute the benchmarking loop in the same privilege level

as the OS kernel. Once the benchmarking loop executes on the target host, it turns

off interrupts and executes a sequence of instructions that will experience detectable

performance differences depending on the presence or absence of a VMM. Interrupts

were disabled to improve the accuracy of timing measurements. Once the sequence

of instructions executes, the VMM detection code re-enables interrupts and sends a

notice of completion to the verifier.

We must address one more issue before delving into our benchmarking loops: the

issue of a heavily loaded target host. We compare the case where the target host is not

running a VMM with the case where it is. If there is no VMM, then disabling inter-

rupts in the benchmarking loop truly disables them. The benchmarking loop executes

to completion without interruption, rendering the load on the target host irrelevant.

If the target system is a guest running on a VMM, interrupts are at least disabled in

that guest VM. Thus, only code executing in other guest VMs on the same VMM can

affect performance. If another heavily loaded guest exists alongside the target guest,

the performance of the target guest may be degraded. This performance degradation

only applies on systems running VMMs, and will thus improve our chances of suc-

cessfully detecting the VMM. All of our experiments are run without any extra load

on the VMMs, hence we evaluate our VMM detection approach in the worst-case of

an unloaded system.

6.3 Timing Integrity

A VMM has total control over instructions executed by the guest OSes. Thus, we

cannot trust a VMM to return valid answers to rdtsc “in the wild” [10]. Figure 7

compares internal (local) versus external timing measurements for the exact same ex-

periment run on two variants of HVM Xen. One variant is the standard 3.0.2 release.

The variant labeled as “Low-Integrity” in the figure is actually an unstable develop-

ment release of Xen with a bug in the code which handles rdtsc. It is illustrative

here because a party who wishes to thwart local VMM detection may intentionally

modify their VMM to return such invalid timing measurements.

Figure 7(a) shows the internal timing measurements for a loop of a sequence of

arithmetic instructions which clears interrupts at the beginning of each loop iteration.

Xen 3.0.2 behaves as expected, with longer instruction sequences requiring longer to

execute. In contrast, “Low-Integrity” Xen does not show any overhead whatsoever. In

fact, some of the elapsed times are negative. Figure 7(b) shows a rerun of the same

experiment, except that timing is performed by an external verifier. Local rdtsc
calls are now unnecessary, and the runtime of the two experiments is nearly identical.

VMware Workstation can be made to demonstrate similar behavior. In fact,

VMware provides a configuration option for VMs called

104 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8192 8704 9216 9728 10240 10752 11264 11776 12288

C
P

U
 C

y
cl

es
 E

la
p
se

d

Instruction Sequence Length

HVM Xen Low-Integrity
HVM Xen 3.0.2

(a) Low timing integrity. Elapsed cycles

measured internally using rdtsc. The

same experiment yields dramatically differ-

ent timing results on two variants of HVM

Xen on the same physical machine.

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 8192 8704 9216 9728 10240 10752 11264 11776 12288

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Instruction Sequence Length

HVM Xen Low-Integrity
HVM Xen 3.0.2

(b) High timing integrity. Elapsed time mea-

sured via an external verifier. The same ex-

periment yields similar results, even though

one VMM was returning incorrect responses

to rdtsc instructions.

Fig. 7. Timing integrity using internal versus external verifiers

monitor control.virtual rdtsc [24]. When set to true, a virtual counter

in the VMM is used to provide values for guest OS calls to rdtsc. When set to

false, VMware allows guest OS calls to rdtsc to access the CPU’s true times-

tamp counter.

6.4 Identifying Remote Architectures

Inducing significant overhead in a VMM can result in long runtimes, which we de-

tect by measuring runtime from a separate system. However, without some idea of

the hardware architecture of the remote system in question, it is difficult to inter-

pret timing results correctly. In this section, we describe a technique which is useful

for identifying an unknown remote system as having an Intel Pentium IV CPU. If

a system is known to be equipped with a Pentium IV, we can bound its expected

performance (as demonstrated in Section 4). This bound is what allows for the es-

tablishment of a runtime threshold, above which it is likely that the target system

is running a VMM. The Netburst Microarchitecture of the Intel Pentium IV family

includes a trace cache with consistent specifications across all currently-produced

Pentium IV CPUs [3]; our hardware discovery heuristics detect the presence of the

trace cache. Other relevant characteristics of the Pentium IV microarchitecture in-

clude an out-of-order core and a rapid execution engine.

The trace cache stores instructions in the form of decoded µops rather than in

the form of raw bytes which are stored in more conventional instruction caches [17].

These traces of the dynamic instruction stream permit instructions that are noncon-

tiguous in a traditional cache to appear contiguous. A trace is a sequence of at most

n instructions and at most m basic blocks (a sequence of instructions without any

jumps) starting at any point in the dynamic instruction stream. An entry in the trace

cache is specified by a starting address and a sequence of up to m − 1 branch out-

comes, which describe the path followed. This facilitates removal of the instruction

Towards Sound Detection of Virtual Machines 105

rdtsc ;; get start time

mov $131072, %edi ;; n = 131072

loop:

xorl %eax, %eax ;; begin special

addl %ebx, %ebx ;; instr. seq.

movl %ecx, %ecx

orl %edx, %edx

... ;; 1K – 16K instr.

sub $1, %edi ;; n = n − 1

jnz loop ;; until n = 0

rdtsc ;; get end time

Fig. 8. Example assembly code used to fill trace cache with register-to-register arithmetic

instruction sequences without data hazards. These arithmetic instructions each decode to a

single µop on Intel Pentium IV CPUs.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2048 4096 6144 8192 10240 12288 14336 16384

C
P

U
 C

y
cl

es
 E

la
p
se

d

Loop Size (instructions)

Pentium 4
Pentium M

Fig. 9. When sequences of register-to-register arithmetic instructions without data hazards

populate the trace cache of an Intel Pentium IV, a CPI of 1

3
is attainable. Once an instruction

sequence exceeds the trace cache’s maximum size of 12KB, the CPI becomes 1. No such

effect is visible on a Pentium M (an architecture without a trace cache). Cycles measured

locally with rdtsc.

decode logic from the main execution loop, enabling the out-of-order core to sched-

ule multiple µops to the rapid execution engine in a single clock cycle. In the case

of register-to-register arithmetic instructions without data hazards, it is possible to

retire three µops every clock cycle. Register-to-register x86 arithmetic instructions

(e.g., add, sub, and, or, xor, mov) decode into a single µop. Thus, it is possible to

attain a Cycles-Per-Instruction (CPI) rate of 1

3
for certain sequences of instructions.

106 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Loop Multiplier

P4 VMWare 11328
P4 Xen 11328

P4 Vanilla 11328
PM Vanilla 11328
PM Vanilla 11264

P4 VMWare 11264
P4 Xen 11264

P4 Vanilla 11264

Fig. 10. Trace cache overhead timed remotely from another university. Sequences of either

11264 or 11328 arithmetic instructions with no data hazards are executed in a loop. The num-

ber of loop iterations is defined by 217 + 210k, where k is the Loop Multiplier on the X-axis.

With and without a VMM, the Pentium IV architecture shows a considerable jump in overhead

for a small number of additional instructions. In contrast, the Intel Pentium M (legend: PM)

shows no such jump.

Intel has published the size of the trace cache in the Pentium IV CPU family –

12K µops. However, the parameters m and n, as well as the number of µops into

which x86 instructions decode, have not been published. We performed an experi-

ment where we executed loops of 1024 to 16384 arithmetic instructions devoid of

data hazards on Pentium IV systems running vanilla Linux 2.6.16. Figure 8 shows

the structure of our benchmarking loop. Figure 9 shows the results of this experi-

ment when run using the rdtsc – read time-stamp counter – instruction to measure

the elapsed CPU cycles locally. On the Pentium IV, the CPI is 1

3
until the number

of instructions reaches Intel’s published trace cache capacity of 12K µops. We also

ran this experiment locally on a laptop equipped with a Pentium M CPU; no unusual

caching effects are observed (note that a CPI of less than 1 is obtained for the entire

loop).

At this point we know enough about the trace cache in Pentium IV CPUs to

construct a loop that has sufficient trace cache overhead to be detectable over the

Internet. As described above, the exact details of how the trace cache generates its

traces are not published. We performed additional experiments like those of Figure 9

locally and determined that a benchmarking loop composed of a sequence of 11264

arithmetic register-to-register instructions fits inside the trace cache, but that a se-

quence of 11328 instructions does not fit. That these figures are less than 12K is

expected, as there are additional instructions executed to maintain loop counters and

jump back to the beginning of the loop. Thus, executing these sequences multiple

times should cause the performance of the larger loop to suffer disproportionately

with respect to its added length.

Towards Sound Detection of Virtual Machines 107

Since the benchmarking loops contain only innocuous instructions, VMMs allow

them to execute directly. The exaggerated performance difference between the two

loops is largely unaffected by the presence of a VMM. Figure 10 shows the results

of an experiment designed to demonstrate this effect. The top three lines are the

execution time for the smaller sequence (11264 instructions per loop iteration) on

vanilla Linux, paravirtualized Xen, and VMware Workstation. The bottom three lines

show the same with the larger sequence (11328 instructions per loop iteration). The

middle two lines show the two sequences executed on a Pentium M running vanilla

Linux; this serves to illustrate how minimal the runtime difference between the loops

is when there is no trace cache involved. The gap between the execution time of loops

of the smaller sequence and loops of the larger sequence is considerable making this

overhead identifiable across the Internet.

6.5 Inducing Detectable VMM Overhead

Given the results of the previous section, we have partial configuration information

about the remote architecture of the target host. For example, we know the CPU is

a member of the Pentium IV family. As described in Section 4.3, we need sufficient

overhead to distinguish between the slowest member of the CPU family running a

native OS and the fastest member of the CPU family running a guest OS on a VMM.

Recall that to detect a VMM, we must induce significant performance overhead.

As described in Section 4, we use sensitive-privileged instructions which result in

the execution of additional code inside the VMM. While we do not have space to ex-

haustively treat all sensitive instructions, we select a few and analyze their overhead

on Xen 3.0.2 and VMware Workstation on an Intel Pentium IV. The instructions we

consider are cli (clear interrupts),mov %cr0, %eax (read processor control reg-

ister 0), mov %cr2, %eax (read processor control register 2), and mov %cr3,
%eax; mov %eax, %cr3 (read and write processor control register 3, which con-

tains the physical address of the base of the page directory).

We next analyze these selected instructions locally on Xen 3.0.2, VMware Work-

station, and vanilla Linux to understand their behavior (Section 6.5). Armed with this

knowledge, we construct a remote attack that successfully detects the presence of a

VMM across the Internet (Section 6.6).

Per-Instruction Overhead

We configured VMware with the configuration setting

monitor control.virtual rdtsc = false to provide guest OSes with

direct access to the CPU’s timestamp counter. Paravirtualized Xen 3.0.2 allows its

guests to access the time stamp counter by default. Thus, we can run local exper-

iments to analyze per-instruction overhead. Our analysis is based on experiments

where a small number of one of the sensitive instructions in question are inserted

in between sequences of register-to-register arithmetic instructions. For each sensi-

tive instruction, we evenly space 1, 2, 4, 8, or 16 instances of that instruction among

12,256 arithmetic instructions. We selected 12,256 to ensure that trace cache effects

108 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

 0

 10000

 20000

 30000

 40000

 50000

16 CLI8 CLI4 CLI2 CLI1 CLI

C
P

U
 C

y
c
le

s
 E

la
p

s
e

d

Instructions

Vanilla
VMWare

Xen

(a) cli (Clear Interrupts)

 0

 10000

 20000

 30000

 40000

 50000

16 CR08 CR04 CR02 CR01 CR0

C
P

U
 C

y
c
le

s
 E

la
p

s
e

d

Instructions

Vanilla
VMWare

Xen

(b) mov cr0, %eax (Read Processor Control Regis-

ter 0)

 0

 10000

 20000

 30000

 40000

 50000

16 CR28 CR24 CR22 CR21 CR2

C
P

U
 C

y
c
le

s
 E

la
p

s
e

d

Instructions

Vanilla
VMWare

Xen

(c) mov %cr2, %eax (Read Processor Control Reg-

ister 2)

 0

 40000

 80000

 120000

 160000

 200000

16 CR38 CR34 CR32 CR31 CR3

C
P

U
 C

y
c
le

s
 E

la
p

s
e

d

Instructions

Vanilla
VMWare

Xen

(d) mov %cr3, %eax; mov %eax, %cr3 (Read

and then write Processor Control Register 3)

Fig. 11. Local execution times for selected sensitive instructions

would not add noise to our results. We cannot be sure how the trace cache would

impact a smaller sequence of instructions because the exact µop structure of these

sensitive instructions is not published.

Figure 11 shows the results of local performance measurements. Figures 11(a),

11(b), and 11(c) yield very similar results. VMware Workstation shows a consistent

minor overhead above vanilla Linux. In contrast, Xen’s performance degrades sig-

nificantly with each additional sensitive instruction. However, for CR3, we read its

current value and then rewrite that value. CR3 contains the physical address of the

base of the page directory, thus the VMM must interpose on access to CR3 to uphold

Towards Sound Detection of Virtual Machines 109

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
E

la
p
se

d
 o

n
 V

er
if

ie
r

(s
ec

o
n
d
s)

Instruction Sequence Length

P4 VMWare
HVM Xen

P4 Xen
P4 Vanilla

HVM Vanilla

Fig. 12. Overhead resulting from reading and writing x86 Control Register 3 multiple times

consecutively. Without a VMM executing, these instructions complete rapidly. With a VMM,

there is sufficient overhead for remote detection via thresholding. Timed remotely from an-

other university.

the resource control property. As Figure 11(d) shows, VMware Workstation incurs

considerable overhead when it handles a write to CR3.

While reading and writing CR3 does not induce the worst overhead on Xen, the

overhead is still significant. In the next section, we show how we use reads and writes

to CR3 to detect a VMM across the Internet.

6.6 Successful Detection

We have established that an instruction sequence of reads and writes to CR3 results in

VMM overhead when the target system is running either VMware or Xen. We used a

loop containing a sequence of such instructions in our remote detection experiment.

Although we did not include HVM Xen in our analysis of per-instruction overheads

in the previous section, we include it in this experiment to validate our approach.

Figure 12 shows the results of our experiment, where the remote verifier is lo-

cated at another university. We are able to induce extremely high overhead; code

which executes in under 2 seconds on a native system takes more than 20 seconds to

execute when running on either paravirtualized Xen, HVM Xen, or VMware Work-

station. This is far above the amount of overhead necessary to overcome network

latencies, allowing us to conclude that our approach to VMM detection is feasible.

7 Security Analysis

We have shown in the previous sections that it is possible to craft code which has

pathological performance on a VMM, while still executing efficiently on bare hard-

ware. This discrepancy provides an avenue through which motivated parties can

110 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

detect VMMs. Recall that the execution of a detection algorithm has three logical

stages:

Stage 1. For a target machine RC , locate a hardware artifact to establish the con-

figuration C of the machine.

Stage 2. Establish a reference time, Baseline(RC), for distinguishing between

virtual and real machines with hardware configuration C.

Stage 3. Develop and execute a Benchmark which when running on top of a

VMM on the fastest available machine for the architecture in question executes suf-

ficiently slower than the Benchmark running in a native OS on the slowest available

machine for the architecture in question.

We analyze the security of each stage individually, describing techniques which

a VMM might deploy to evade or resist detection.

7.1 Stage 1 and 2 Evasion

A VMM can corrupt the results of stages 1 and 2 by masking all possible hardware

artifacts that are observable through the VMM and simulating alternative artifacts

from a slower machine. If a VMM were able to successfully simulate a slower ma-

chine, the baseline value established in stage 2 would be larger than necessary. This

larger value might allow a VMM to execute a Benchmark without sufficient over-

head to identify its presence.

Consider the case of a VMM running on an Intel Pentium IV. If this VMM is able

to hide the existence of the trace cache, perhaps by masquerading as an Intel Pentium

3, then as a result of the speed difference between the Pentium IV and the Pentium

3, a detection attack may complete before the detection threshold for the Pentium 3,

even with the overhead of the VMM.

For a VMM to successfully masquerade as a different architecture requires the

following to be true: the configuration of the target machine is not known a priori

and the VMM is able to simulate a slower device during stage 1 while still running at

normal speed during stage 3. To successfully hide all hardware artifacts, the VMM

would need to be a full system simulator. To execute at normal speed during stage

3, the VMM would have to be able to identify when the detection code is running

since running a cycle-accurate simulator on its own incurs delays that are orders of

magnitude larger than the overhead of any modern VMMs, making the simulator

timings off the charts [16].

7.2 Stage 3 Evasion

To describe our assumptions with respect to a VMM’s ability to evade detection,

we specify two models of VMM behavior: experiential VMMs and propositional

VMMs. Our models follow from partitioning the arms race of Section 1.1 based on

a VMM’s level of omniscience.

Experiential VMM. An experiential VMM has posteriori knowledge of experien-

tially observed detectors but lacks identifiable information (i.e. process name, code

signatures, etc.) for all detectors. It may deploy general countermeasures to evade

Towards Sound Detection of Virtual Machines 111

detection such as virtualizing local timing sources (i.e., rdtsc, performance counters,

etc.), but isn’t able to analyze programs to infer their intent. Experiential VMMs

may have a finite list of signatures to identify detectors, but are unable to prevent all

detection attempts.

Propositional VMM. A propositional VMM has a priori knowledge of detectors

and evades detection by disabling or tampering with detection attempts either before

or during its execution.

A propositional VMMs is the case where the VMM can identify all detection

algorithms and trivially thwart detection. Recent work on verifiable code execution

on untrusted devices assumes a similar model of adversarial omniscience, however

is not useful for VMM detection because it does not work across an uncontrolled

network, such as the Internet [21].

Correctly identifying a detection attack makes it possible for the VMM to inter-

pose and tamper with the execution of the attack. If the VMM realizes it is under

a detection attack prior to the execution of the benchmarking loop, it may be able

to prevent the detection attack from executing correctly, perhaps returning a valid

response in the correct amount of time for a non-virtualized host.

Identifying that a particular code segment is a detection algorithm may be dif-

ficult. One potential approach is to rely on the unique structure of our detectors,

for example, long sequences of the same operations, few or no I/O operations, and

control-flow graphs with limited branching. These properties might provide suffi-

cient invariants to generate signatures that match detection algorithms.

Even with the unique properties of our benchmarking loop, there are a number

of difficulties inherent in evading detection. First, identification techniques could

introduce false positives which would affect benign applications, secondly, a single

false negative allows for the detection of the VM.

8 Discussion

We discuss limitations and potential extensions of our approach.

8.1 VMM Implementation Independence

While commodity VMMs aren’t VMBRs specifically designed to thwart detection,

they are implemented using the same techniques. As discussed in Section 3, these

techniques necessitate the existence of VMM overhead. If hardware assisted VMMs

become more common, then this overhead may be reduced, however our results show

that current generation systems provide sufficient overhead for detection.

8.2 User-Level Detection

The detectors developed in this paper run at kernel-level rather than at user-level.

In most scenarios, running a kernel-level detector is a reasonable assumption since

112 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

the system’s administrator is interested in detecting VMBRs. Administrators and

users regularly run kernel-level integrity checkers and attackers continue to perform

remote root exploits to gain administrator status. Statistical techniques may be nec-

essary to overcome the resulting noise that user-level detection would incur.

8.3 Local VMM Detection

Rather than identify a target host as virtual or real by using an external source of time,

local VMM detection aims to demonstrate to a user if their platform is virtual or real

without a trusted time source. One potential approach is for a detector to observe the

relative inter-leavings of short code sequences which are executed concurrently as a

relative timing attack. If code sequences can be developed whose inter-leavings are

virtualization sensitive, such an approach may be able to eliminate the requirement

of a trusted time source.

8.4 Widespread Virtualization

As more and more machines run VMMs, the existence of a VMM becomes less of an

anomaly. However, to dismiss VMM detection as useless in the face of widespread

virtualization is too harsh. Legacy machines without VMMs will likely persist for

many years to come. VMM detection algorithms like the ones developed in this paper

can help protect these machines against VMBRs when upgrading is not an option. We

believe that VMM detection will remain useful as long as non-virtualized platforms

exist.

9 Related Work

Most related work either detects VMMs based on implementation details, use tech-

niques which make assumptions that limit their applicability, or relies on the integrity

of values returned from the VMM. In contrast, our detection algorithm has a higher

degree of independence with respect to the implementation of the VMM on the tar-

get host, uses a hardware discovery heuristic to identify the configuration of remote

devices, and incorporates a remote timing and decision maker to eliminate the need

to trust the VMM.

Delalleau proposed a scheme to detect the existence of a VMM by using timing

analysis [4]. The proposed scheme requires a program to first time its own execution

on a VMM-free machine in a learning phase. Then, when the program infects a sus-

pect host of known configuration, its execution time is compared against the results

from the learning phase. Because the result of the learning phase is dependent on

the exact machine configuration and the scheme is not designed to produce a config-

urable overhead, it is unclear how practical it is to deploy such a detection algorithm

in practice.

Execution path analysis (EPA) [20] was first proposed in Phrack 59 by Jan

Rutkowski as an attempt to determine the presence of kernel rootkits by analyzing

Towards Sound Detection of Virtual Machines 113

the number of certain system calls. Although the main idea can also apply to detect

VMMs, EPA has several severe drawbacks. The main drawback is that it requires

significant modification to the system (debug registers, debug exception handler)

that could be easily detected and consequently forged by the underlying VMM.

Pioneer [21] is a primitive which enables verifiable code execution on remote

machines. As part of the inherent challenge of verifiable code execution, Pioneer

needs to determine whether or not it is running inside a VMM. The solution in Pio-

neer is to time the runtime of a certain function that also reads in the interrupt enable

bit in the EFLAGS register. This function is pushed into the kernel and is expected to

run with interrupts turned off. However, if it was running inside a VMM, the output

of the EFLAGS register would be different than expected. Although promising, Pio-

neer assumes that the external verifier knows the exact hardware configuration of the

target host. We eliminate this assumption and rely on hardware artifacts to discover

the target host’s hardware configuration. In addition, the minimal timing overhead of

the Pioneer checksum function makes remote usage of Pioneer difficult.

There are a number of previously developed techniques from the blackhat com-

munity. Redpill4 is an example detection algorithm used to detect the VMware virtual

machine monitor. Redpill operates by reading the address of the Interrupt Descriptor

Table (IDT) with the SIDT instruction and checking if it has been moved to certain

locations known to be used by VMware. This algorithm can be easily fooled since it

relies on the VMM to return the correct address of the IDT [10]. Similar to Redpill,

VMware’s Back5 is a software-dependent detection attack which uses the existence

of a special I/O port, called the VMware backdoor. This I/O port is specific to the

VMware virtual machine and hence can be used to detect VMware.

Holz and Raynal describe some heuristics for detecting honeypots and other sus-

picious environments from within code executing in said environment [7]. Dornseif

et al. study mechanisms designed specifically to detect the Sebek high-interaction

honeypot [6]. Unlike these approaches, the detection algorithm we have constructed

are not based upon specific software artifacts.

Vrable et al. touch briefly on non-trivial mechanisms for detecting execution

within a VMM [26]. They allude to the fact that although a honeynet may be able to

perfectly virtualize all hardware, an attacker may be able to infer that it is executing

inside a VMM through side channel measurements.

Robin and Irvine analyzed the Intel Pentium’s architecture and ISA [14] and

pointed out problems in implementing a secure VMM on the Intel Pentium archi-

tecture. For instance, certain instructions break hardware virtualization requirements

because they read sensitive registers and/or memory locations (e.g., the clock reg-

ister and interrupt registers), but are not privileged instructions. Execution of such

instructions does not raise an exception, and thus allows the attacker to read sensi-

tive system data. However, the VMM can perform binary translation when it loads

the process into memory, and change all such instructions into system calls. Alter-

4 http://invisiblethings.org/redpill.html
5 http://chitchat.at.infoseek.co.jp/vmware/

114 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

natively, the VMM can expose a paravirtualized version of the underlying hardware,

which Xen does on the Intel x86 architecture [2].

Remote physical device fingerprinting can be used to detect VMMs if the external

verifier can directly interact with two different virtual machines running on the same

host [11]. Our approach only requires the existence of a single VM and hence is

useful in the case of virtual machine based rootkits [10]. Also, defending against

remote physical device fingerprinting is as simple as disabling or masking the TCP

option timestamps. HoneyD is an example virtual honeypot which defends against

remote physical device fingerprinting [13].

10 Conclusions

The main contribution of this article is the development of a detection algorithm

whose execution differs from the perspective of an external verifier when a target

host is virtual (versus when it is executed directly on the underlying hardware). Our

detection algorithm is based on the timing dependency exception property of a vir-

tual machine monitor. We presented results where a single benchmarking program

generates sufficient overhead on several different virtual machine monitors to be re-

motely detectable across the Internet. Included in our analysis is a machine with

hardware virtualization support. The success of our detection algorithm against this

platform demonstrates that hardware support for virtualization is not sufficient to

prevent VMM detection.

11 Acknowledgments

We thank Garth Gibson and Adam Pennington for their instruction and guidance in

the early stages of this project. We thank Michael Kozuch for his insightful comments

and useful discussions. Finally, we thank Ahren Studer for his assistance preparing

a preliminary version of this paper.

References

1. K. Adams and O. Agesen. A comparison of software and hardware techniques for x86

virtualization. In Proceedings of the ACM Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, October 2006.

2. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield. Xen and the art of virtualization. In Proceedings of the Symposium on

Operating Systems Principles (SOSP), 2003.

3. D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller, P. Roussel, Singhal R, B. Toll,

and K. S. Venkatraman. The microarchitecture of the Intel Pentium 4 processor on 90nm

technology. Intel Technology Journal, 8(1), February 2004.

4. G. Delalleau. Mesure locale des temps d’execution: application au controle d’integrite et

au fingerprinting. In Proceedings of SSTIC, 2004.

Towards Sound Detection of Virtual Machines 115

5. Advanced Micro Devices. AMD64 virtualization: Secure virtual machine architecture

reference manual. AMD Publication no. 33047 rev. 3.01, May 2005.

6. M. Dornseif, T. Holz, and C. Klein. Nosebreak - attacking honeynets. In Proceedings of

the 2004 IEEE Information Assurance Workshop, June 2004.

7. T. Holz and F. Raynal. Detecting honeypots and other suspicious environments. In Pro-

ceedings of the IEEE Workshop on Information Assurance and Security, June 2005.

8. Intel Corporation. Intel virtualization technology. Available at: http://www.intel.
com/technology/computing/vptech/, October 2005.

9. X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford. Virtual playgrounds for worm behavior

investigation. In 8th International Symposium on Recent Advances in Intrusion Detection

(RAID ’05), 2005.

10. S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. SubVirt:

Implementing malware with virtual machines. In Proceedings of the IEEE Symposium on

Security and Privacy, May 2006.

11. T. Kohno, A. Broido, and K. Claffy. Remote physical device fingerprinting. In IEEE

Symposium on Security and Privacy, May 2005.

12. G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third generation

architectures. Communications of the ACM, 17, July 1974.

13. N. Provos. Honeyd: A virtual honeypot daemon. In Proceedings of the 10th DFN-CERT

Workshop, 2003.

14. J. S. Robin and C. E. Irvine. Analysis of the intel pentium’s ability to support a secure

virtual machine monitor. In Proceedings of the USENIX Security Symposium, 2000.

15. R. Rose. Survey of system virtualization techniques. Available at: http://www.
robertwrose.com/vita/rose-virtualization.pdf, March 2004.

16. M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete computer system

simulation: The SimOS approach. IEEE Parallel and Distributed Technology: Systems

and Applications, 3(4):34–43, Winter 1995.

17. E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low latency approach to high

bandwidth instruction fetching. In Proceedings of the 29th Annual International Sympo-

sium on Microarchitecture, November 1996.

18. J. Rutkowska. Subverting Vista kernel for fun and profit. Presented at Black Hat USA,

2006.

19. J. Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU instruction.

http://invisiblethings.org/papers/redpill.html, 2004.

20. J. Rutkowski. Execution path analysis: finding kernel rootkits. Phrack, 11(59), July 2002.

21. A. Seshadri, M. Luk, E. Shi, A. Perrig, L. VanDoorn, and P. Khosla. Pioneer: Verifying

integrity and guaranteeing execution of code on legacy platforms. In Proceedings of the

Symposium on Operating Systems Principals (SOSP), 2005.

22. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in your spare time. In

Proceedings of the 11th USENIX Security Symposium (Security ’02), 2002.

23. G. Venkitachalam and B. Lim. Virtualizing I/O devices on VMware workstation’s hosted

virtual machine monitor. In USENIX Technical Conference, 2001.

24. VMWare. Timekeeping in VMWare virtual machines. Technical Report NP-ENG-Q305-

127, VMWare, Inc., July 2005.

25. VMWare. VMWare Workstation. Available at: http://www.vmware.com/, October

2005.

26. M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker, and

S. Savage. Scalability, fidelity and containment in the potemkin virtual honeyfarm. In

Proceedings of the Symposium on Operating Systems Principals (SOSP), 2005.

116 Franklin, J., Luk, M., McCune, J. M., Seshadri, A., Perrig, A., Van Doorn, L.

27. D. D. Zovi. Hardware virtualization-based rootkits. Presented at Black Hat USA, August

2006.

Botnets and Proactive System Defense

John Bambenek and Agnes Klus

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL

61801

{bambenek,aklus}@uiuc.edu

1 Introduction

In the early days of the Internet, the core application was the exchange of informa-

tion. Sendmail, gopher and other tools were designed so that researchers and other

academics could exchange information. Even after the advent of the webserver and

web browser in 1993 with NCSA Mosiac, the core activity remained the exchange of

information. It should come as no surprise that malicious individuals on the Internet

at that time were primarily concerned with gaining that information illicitly. Starting

around 1995, more sites came online that dealt more with commerce. Companies

such as eBay and Amazon.com used the web to do business anywhere in the world

24 hours a day. To make this happen, they adapted the current credit card system for

online use.

As the ”dot-com” era began, more and more new companies cropped up and more

and more old companies adapted their business to take place online. Soon online bill

payment, online banking and online investment services became the norm. Accord-

ing to a study by Pew Internet, approximately 43% of all Americans were banking

online in 2005 [1]. The primary purpose of the Internet became less about the ex-

change of information, though it still plays a key role, and more about economic

transactions online. Even the exchange of information was leveraged by companies

for advertising purposes. For example, Google makes most of its revenue by provid-

ing its information with context appropriate advertising. This change in purpose for

the Internet also led to a change in the primary reason malicious users engaged in

hacking activities online as well.

2 Paradigm Shifts in Commerce

Originally, credit card transactions were performed manually by a consumer handing

the card to a merchant, the merchant making an imprint of the card and the calling

in authorization for that credit card to be used. Fraud still happened, sure, but it was

118 John Bambenek and Agnes Klus

difficult to do on a large scale because it required not only a physical credit card but

to be physically present for each purchase where a merchant would be likely to catch

on to odd transactions. Merchants could steal credit card information and manually

process fake transactions but even they would be physically tied to a location which

could be very easily tracked. Authentication for financial transactions was basically

two-factor, you have to have your credit card and you have to be able to know how to

replicate the signature. While phone orders were made without the physical presence

of the consumer, using fraudulent financial information was still time consuming to

repeat.

With the transition to an online economy, having a physically present consumer

was no longer practical. Further, it was not practical to give ever consumer a credit

card processing terminal to attach to the computer to process transactions. Con-

sumers would simply enter in their credit card information and perhaps some other

personal information and a transaction would be approved. With the transition be-

tween in-person transactions and online transactions, authentication went from two-

factor to single-factor. Online transactions only require you to know enough infor-

mation.

With financial transactions being placed over computer systems, the possibility

of massive fraud become plausible. Replicating thousands of credit cards and then

running around town to buy things fraudulently took a great deal of time. However,

using computers you can steal thousands of credits cards simply by sending out the

right malware and repeating mundane tasks in quick succession over a short period

of time is something computers are good for.

3 Fundamental Flaws in Current System

There are four main flaws in the current system on online financial transactions that

lead to the possibility of mass exploitation. First, the authentication for most finan-

cial transactions (specifically credit card transactions) is based solely on knowing the

right information. Second, transactions take place using consumer personal comput-

ers which cannot be secure and are not trustworthy. Third, the basis of identity in

the United States is a unique 9-digit number called a Social Security Number which

is inherently insecure and easy to steal. Fourth, information security, particularly

patching vulnerabilities and creating anti-virus/anti-spyware signatures is a reactive

process.

The current system on online financial transactions is bases authentication solely

on knowing enough information. If a person knows the correct 16-digit credit card

number with CVV2 number, the correct login and password, and the address of the

victim, an attacker can make transactions in the name of the victim. While banks are

moving to two-factor authentication to perform transactions, the transition is slow

and voluntary. Many banks simply require a username and password and balance

Botnets and Proactive System Defense 119

transfers or online bill payment services can be accessed. There is no clear attempt to

move to two-factor authentication for commerce online. The leaves a system where

fraudulent financial transactions can be made by an attacker who happens to get

enough information, some of it public domain. Further, there are no small amount

of online locations that store credit card information (Google ”5424 cvv2”) where a

lazy attacker could just poach another attacker’s work.

To make matters easier for an attacker, most people who engage in electronic

commerce do so from their home personal computers. Few people in the informa-

tion technology industry are fully qualified to harden a machine against attacks on

the Internet and those are computer experts. Most consumers are not fully versed in

the full functionality of the computers, much less how to secure them. Nor should

they be experts in information security. However, our current system assumes that

the consumer’s PC is secure. A keylogger on a consumer PC makes it trivial to steal

financial information. Even encrypted traffic can be stolen relatively easily when one

of the end-points (i.e. the consumer PC) has been compromised [2].

This problem of insecure personal computers is only enhanced by consumers

who aren’t aware, much less, practice safe online browsing and e-mail practices [3].

According to the Bentley survey conducted in 2004, only 46% always update their

anti-virus software. Between 30% and 60% of people simply had little to no knowl-

edge about basic computer security issues such as viruses, spyware and safe web

browsing. Most computers ship with trial anti-virus software which surely helps but

these numbers indicate that most home users simply do not pay for updates after the

trial period ends. Only recently have Microsoft and anti-virus vendors integrated an

anti-spyware strategy into their products. Likely many more users have not installed

anti-spyware software even though many programs are free to download.

What this creates is a ripe environment for attackers to operate. There are com-

puters out there with financial data that do not have adequate protection, are operated

by unsophisticated users, and likely aren’t patched as frequently as those in a corpo-

rate environment. Even corporate environments have a hard time keeping up with

their protection, it simply isn’t a feasible strategy to assume consumers, with less re-

sources than large companies, can keep pace with a constantly changing information

security landscape.

The entire identity regime in the United States is based on a unique 9-digit num-

ber called a Social Security number. This number is required to open bank accounts,

it is used for identifying credit files, it is often used to identify medical records, it is

required by educational institutions, in short this number is used as a unique iden-

tifier which is the basis of all other identifying documents. The problem is that this

identifier is used so ubiquitously that it becomes easy to steal. Several sites even use

Social Security Numbers as logins (most infamously, student loan agencies)!

120 John Bambenek and Agnes Klus

Every month it seems there is another story in the press about a laptop getting

stolen or backup tapes getting lost that include Social Security Numbers or other fi-

nancial information. Some of these instances, such as the Department of Veteran’s

Affairs, impacted tens of millions of Americans. With the amount of instances of

theft and compromise of Social Security Numbers we are approaching a situation of

complete compromise of the entire balance of Social Security Numbers.

The theft of a Social Security Number would not be such a big deal if it were

not for the fact that knowledge of that number allowed malicious individuals to ac-

cess credit records, open financial accounts or even steal the identity of the victim.

Though identity theft can take place, and mostly does take place, using offline meth-

ods, the ability of massive compromise of a large number of victims in a short time

via the internet cannot be ignored. In 2002, one estimate places identity theft loses

at $24 billion. In 2003, that estimate is $73 billion [4] from both online and offline

attacks.

Lastly, information security tends to be practiced in a reactive manner. A new

virus is released and caught by an anti-virus company who begins to work on a sig-

nature. Usually with 24 hours they have a signature out with most anti-virus software

updating their signatures daily. This gives a maximum of 47 hours where a virus is

known and operating in the wild successfully compromising machines that are pro-

tected. Even before detection, exploitation is occurring. This means machines are

being compromised and information stolen hours if not days before protection is

available.

In addition, personal computers in general will trust all software unless it is

specifically rejected by the anti-virus or anti-spyware systems. Instead of a regime

of least privilege, where only trusted software can run, these computers run under

a regime of most privilege where anything, including unknown but malicious code,

can run without obstruction.

That patch cycle also creates problems. If the vulnerability stays secret before the

patch is released there is about four days, at best, between the patch being released

and the exploits being seen in the wild. If the vulnerability gets out before a patch is

released it could be some time where the exploit has free reign to attack machines.

The worst recent example of this window of vulnerability was with the WMF ex-

ploit [5]. There was over two weeks between the discovery of the WMF exploit and

the out-of-cycle patch being issued by Microsoft. In the meantime, over 200 differ-

ent attacks were used in the wild to exploit this vulnerability, some of which created

botnets. While there is about 4-6 days between an exploit being released after a vul-

nerability is known, the time to develop a patch is about 40-60 days [7].

The reactive nature of signature-writing and patching means that attackers will

be successful for some variable span of time in exploiting and taking over machines.

While research continues to make that span of time shorter, the window of vulnera-

Botnets and Proactive System Defense 121

bility still exists. There are also new techniques emerging that avoid detection of an

exploit by anti-virus/anti-spyware vendors which would increase the window. Sun

Tzu in The Art of War says that victory in war is impossible once the initiative has

been surrendered. For the most part, the initiative has been handed over to the attack-

ers which is why they keep winning.

4 Growth and Changes in Malware

Fig. 1. Number of trojans intercepted by Kaspersky Labs (retrieved May 20, 2007) [11].

Fig. 2. Number of botnets detected by Shadowserver foundation (retrieved May 20, 2007) [9].

122 John Bambenek and Agnes Klus

Fig. 3. Number of bot clients detected by Shadowserver foundation (retrieved May 20, 2007)

[10].

As long as there has been commerce on the Internet there has been spam. Around

2003, those spammers branched out their operations to include spyware, phishing

and botnets to further their money-making activities online. Despite spam being a

decade old problem, spam has grown and flourished despite the enormous amount of

money being spent trying to keep it under control. Despite the effort, spam continues

unabated because it keeps working; people are making money with it. Now they’ve

parlayed their efforts into general malware and phishing to keep the money flowing

in.

Phishing, as a form of social engineering, is a logical outgrowth of spamming.

More precisely it is a specific use of spam to trick a victim into doing something,

whether it be give up their personal or financial information, install software, or run

an exploit. Phishing need not be solely an e-mail operation, there have been plenty of

phishing attempts using instant messaging and with the growth of social networking,

that will likely be a vector that will be exploited.

The important feature of the growth of this form of Internet attacks is that it

comes from those with a financial incentive. For instance, ”Spamford Wallace”, a

well-known spammer, was fined for massive spyware operations to the tune of $4

million [6]. Malware developers are motivated by the ability to make money, whether

it be through Denial of Service extortion, click fraud, spam or stealing financial in-

formation.

Like spam, botnets and phishing are still growing despite the massive amount

of time and money being spend on the problem. In the 1990s, there were a hand-

ful of rootkits available so attackers could maintain control of a machine. However,

control was a one-to-one operation, specifically, an attacker could only manage one

node at a time. The evolution of botnets allowed an attacker to not only exploit many

Botnets and Proactive System Defense 123

machines simultaneously but to maintain control of those machines once they have

been exploited. While there has been some experimentation of protocols to maintain

control of those machines (for instance, older distributed denial of service tools used

a client-server model), IRC seems to be the de facto norm.

The reason for using IRC as the botnet controlling protocol is based on several

factors. First, it is a known and otherwise ”normal” protocol. People still use IRC for

chatting to this day, though its popularity has waned with instant messaging and on-

line forums. Second, there already existed IRC bots that were in use, most commonly

to keep control of an IRC chatroom. Third, IRC has the ability of having many peo-

ple in a chatroom at the same time with low bandwidth utilization. Lastly, it provided

an attacker with the ability to have real-time information flow with all of his client

machines whether they number in the thousands, tens of thousands, or in one case,

1.5 million [8].

The growth of trojan software and botnet clients has been been very steep. In

January 2003, Kaspersky Labs detected approximately 500 trojans. By the end of

December 2005 that number had grown to over 4000 (see Fig. 1). In 2006-2007,

despite the number of botnets being relatively stable between 1100-1400 (see fig.

2) but the number of bot clients 500,000 to 3 million (see fig. 3) according to the

Shadowserver Foundation. This seems to indicate that the size of botnets is growing.

Growth has taken place despite the advances in Windows XP Service Pack 2 and

Windows Vista though those developments did slow growth down for a time.

Another important fact is that even for known malware, not all of it is detected.

Some vendors are better than others, but at any given time about 20% of malware

is not detected [12]. This 80% detection is only relevant for environments that have

full anti-virus/anti-spyware protection and update their signatures on a relatively fre-

quent basis. The best case is that 20% of all malware will still manage to get through

even with ”perfect” users and a ”perfect” configuration.

Most of the botnet software comes with keyloggers built-in so attackers can steal

credit card information, usernames and passwords or potentially any other informa-

tion they want. The botnet controller has the ability to issue instructions to the clients

that can change their configurations at any time as to what they are looking for or

where they send their data to. Many bot clients can also act as e-mail relays for

spammers with the added advantage of not compromising their home IP space.

5 Future Trends of Botnets

There are six characteristics that can be identified as desirable for botnets. These

criteria are based on the assumption that an attacker wants to achieve maximum fi-

nancial gain or have maximum adverse impact to a target. They are: high capacity,

124 John Bambenek and Agnes Klus

low overhead, fast responding, flexible, anonymifying and quiet.

A botnet should have the capacity to hold as many hosts as it possible can. The

more hosts that are controlled the more financial information can be stolen, the more

machines can be leveraged in a distributed denial of service and so on. An attacker

must have some means of controlling all these machines in a relatively easy and ”low

maintenance” way. IRC was a good protocol for that up to this point because many

thousands of machines could join the same channel and simple commands could be

issued to them all simultaneously.

Going along with high capacity, a botnet needs to have low overhead. The con-

trolling protocol needs to use as little bandwidth as possible and send out as little as

possible. Part of this is to maximize capacity, part is to prevent detection, and part is

to maintain usefulness. A botnet isn’t useful to an attacker if they get DoS’d off the

network every time they try to get information from their clients.

Botnets also need to be fast responding so that an attacker is able to get the bot

clients to act in unison in a somewhat coordinated manner. Once a botnet is dis-

covered, a botnet operator has only a brief period of time to get the word out to his

clients to move to another network before he gets shut down. Or, as another example,

if an attacker wants to launch a distributed denial of service attack, it would not be as

effective if all the clients started flooding a victim starting at random points over an

hour. A distributed denial of service attack only works when the machines are more

or less acting in unison.

An attacker would want his botnet to be flexible, namely, he should be able to

deploy and redeploy his botnet in a variety of tasks with relative ease. An attacker

may want to have his bot clients keylog credit card information one day, and when

he has too much credit card information to sell off, he may wish to switch to stealing

bank account login information. He may wish to install additional software on the

clients, perhaps a browser helper object to steal SSL-encrypted information in web

browsing sessions, and so on.

One of the most important features of a botnet is that it must be controllable in

such a way as to hide the identity of the attacker. A botnet is little user to an attacker

if his ”real life” identity is broadcast to the world making it easy for the FBI to pay

him a visit. The less traceable a botnet is to its owner, the better.

Lastly, a botnet must be quiet on the network. That is to say that it should be

as undetectable as possible to intrusion detection mechanisms. Once a bot client is

discovered, the process of reverse engineering the malware begins which ultimately

point to where the botnet is controlled and that endangers the viability of the botnet

as a whole. A good botnet will be able to operate for long periods of time ”in plain

site” without being noticed by network monitoring software, and ideally, from host

Botnets and Proactive System Defense 125

monitoring software.

IRC was a natural choice to begin with for botnets. It is text-based so it is both

high-capacity and low-overhead. Machines are connected in real-time to the chat-

room so the clients are fast responding. Many of the botnet features already existed

in IRC bots, attackers simply retasked the same software, made some modifications

and rolled it out to victims. Because of the number of machines that connect to a bot-

net, assuming it is one of the already existing IRC networks, tracking a connection

is difficult (but not impossible). Lastly, since IRC is a ”normal” protocol it wouldn’t

arouse suspicion.

However, now that everyone knows botnets typically use IRC, administrators and

ISPs are on the lookout. Further, IRC is generally unencrypted and text-based which

makes it visible to network inspection now that administrators know what to look

for. The long-term viability of IRC as a botnet protocol is not high. There have been

some attempts at finding alternatives such as with peer-to-peer applications, how-

ever, peer-to-peer is already suspect traffic even before botnets are a consideration.

The above considerations point towards the use of XML and RSS as future di-

rections of controlling botnets. The ubiquity of RSS feeds has far eclipsed the use

of IRC as a protocol (though the purposes differ between them). RSS feeds are text-

based, have low overhead, and have the potential of reaching many clients quickly.

The communication would be asynchronous, namely, that the clients would have to

respond through some other mechanism if appropriate. As an example, many pop-

ular blogs have RSS feeds that are public that no one would suspect would contain

malicious traffic. Some of those sites include comments in their RSS feeds. An at-

tack could place a comment on the blog that would appear normal but would contain

commands for the bot clients. Those bot clients would check the RSS feed are set

intervals and would pick up those commands. There would be a delay and once the

commands were figured out the game would be over, but it would present a diffi-

cult problem to detect the first time. Once detection took place, the command syntax

could be changed in future botnets so that newer botnets would still go undetected.

Another direction attackers could take is leveraging the XML features of Google’s

Mail service (Gmail). Google mail accounts are free and no network detection (ex-

cept in very specific environments where free e-mail services are already banned by

police) would pick up on it. An interesting but unpublished feature of Gmail is that it

can be accessed over an SSL connection instead of the standard HTTP which would

make it even harder to detect malicious traffic. This would present bidirectional com-

munication between client and master.

The more normal the traffic appears and the lighter-weight the protocol is, the

more likely it will be used by botnet operators. There are a variety of different pos-

sibilities but the direction is unmistakably going to be towards more ”modern” pro-

tocols that will do an even better job at evading intrusion detection systems or other

126 John Bambenek and Agnes Klus

network monitoring.

Botnets will likely also branch out in the kinds of activities they are used in.

Having control of hundreds of thousands of machines could make a serious eco-

nomic warfare attack plausible. For instance, bot clients entering in fake transactions

in the name of the victim across 100,000 unique victims could seriously undermine

the confidence in electronic commerce forcing a rollback of those economic devel-

opments.

Another potential and under-used attack would be the development of botnets for

corporate espionage. Namely, malware would be developed explicitly only to work

within one organization or self-destruct. That malware then could be used to steal

internal passwords, steal confidential intellectual property or for general eavesdrop-

ping.

6 Remediation of Core Vulnerabilities

Consumers are a key component of remediating these problems with online com-

merce. Not only is it their computers but without their buy-in, few options remain on

the table. They are also generally unsophisticated when it comes to their computers

so solutions must be simple and require as little effort on the part of the consumer

as possible. In short, any solution must be convenient and ”free”. Banks and finan-

cial institutions bear the cost of protecting against financial fraud (which they pass

down to the consumer in increased fees) and in some cases the costs are borne by

merchants who are also victims of fraud. They also have a vested interested in pre-

venting fraud.

Consumer personal computers must be treated as untrustworthy for the purposes

of electronic commerce. There are far too many ways to compromise them and far to

many uncontrolled variables to view it any differently. By way of analogy, sniffing

network traffic is a pretty easy task. As a result, SSL encryption is required for all

sensitive transactions so they cannot be intercepted. Data traveling through the Inter-

net is not viewed as taking a safe path. Likewise, data going through a consumer PC

cannot be viewed as traveling on a safe path.

Sensitive financial and personal information should be encrypted before it touches

a potentially unsafe computer. Further, limiting the amount information on the com-

puter or that needs to be entered into the computer would provide an extra layer of

security. Banks already are starting this to some degree requiring one-time passwords

with keyring tokens or other devices so that even if an attacker gets the one-time pass-

word, they cannot compromise the account.

The fact that anti-virus and anti-spyware operate on a most privilege dynamic

(”allow all”) means that any malware developed will run on a machine until a signa-

Botnets and Proactive System Defense 127

ture is developed to stop it. Operating systems likewise trust all software installed by

any user with sufficient permissions to do so. The problem is that about 10% of all

people on the Internet will at one time or another click or otherwise install malware

unknowingly from generally phishing attacks. When social networks are used for

phishing, that number rises to over 70% [13].

Anti-virus and anti-spyware applications should move towards a least privilege or

”deny all” dynamic or at least a ”deny most”. There are a finite number of reputable

software vendors and applications out there and far more disreputable software ven-

dors and applications. Managing a system where software has to be ”trusted” before

it can be run makes the attackers job more difficult. Additionally, there is less of

a time-crunch involved when someone wants to deploy new software compared to

when malware is already in the wild and needs to be stopped yesterday. Signed soft-

ware provides a general mechanism by which to accomplish this.

As an additional step, free and consensus-based hardening scripts should be de-

veloped for the consumer and unprotected computer space. Once developed, these

scripts could be sent out on CDs by banks, credit card companies and ISPs to their

customers. Consumers will run free software if they think it will protect them and if

all they have to do to install it is click ”Next” a handful of times.

The last mechanism of protection of computers should be remote validation of

the system for its relative safety for financial transactions. Many VPN applications

will determine if a machine is patched, running anti-virus and has appropriate se-

curity settings before letting it remotely connect to an office. This model could be

adapted such that a computer is checked for basic security before a website allows

the consumer to place a transaction.

These steps should not exclude other network-based or host-based detection and

prevention technologies but should supplement them. Defense-in-depth allows for

a more secure environment by relying on multiple layers of security technologies

to protect information. The current situation is that consumer computers are ”pro-

tected” by the hope that a consumer will take the time to do so. All an attacker has

to do is undermine one layer of ineffective security. A defense-in-depth will make

it more difficult for attackers to break-in. The more effort they have to take, the less

money they can make and the more they’ll get out of the business.

As a non-technical step, the national identification system in the United States

needs to be reexamined. While the current debate is on the concept of whether or not

a national ID is appropriate or desirable, the point is missed that there is already a

national ID. The Social Security Number as an identifier has fared extremely poor

against the development of identity fraud. Either other forms not involving a national

ID need to be developed that don’t include such a simple number or an actual national

ID that can be used effectively as an identifier needs to be created.

128 John Bambenek and Agnes Klus

7 Risks to the System without Change

All of the above changes comes with significant costs to banks, financial institutions,

software developers, merchants and the government. To help justify those costs an

examination must be made as to what is really at risk.

According to the Consumer Internet Barometer [14] 67.5% of American house-

holds are shopping online yet only 25.6% of them have trust in the system. With over

111 million households in America that makes about 75 million who shop online. As-

suming that only 10% of those consumers have malware on them that steal financial

and identity information, that would make 7.5 million households that have had their

identities compromised. According to a Federal Trade Commission report [15], an

average loss with identity theft is $10,200 per victim. Using the numbers above, over

$75 billion could be stolen. Without action, these numbers will only continue to rise.

The mitigating factor preventing identity thieves from stealing that much money

is that it would be immediately noticed and shut down by financial institutions using

their fraud models. The straw is only so big. However, if the motive isn’t to make

money but to disrupt an economy, a lot of damage could be done playing with that

amount of consumer’s money. If botnets were used simply to place lots of small but

fraudulent transactions to reputable vendors without an attempt to get the money, it

could reduce the confidence in online commerce to catastrophic levels where con-

sumers simply decline to shop or otherwise transact business online. That would be

a dramatic economic effect in both lost time and lost efficiency and would have wide

economic repercussions.

8 Conclusions

The core vulnerabilities with economic commerce have yet been adequately ad-

dressed. Those vulnerabilities stem from apply an older economic model of in-person

transactions to an online setting without thinking through the security implications.

Authentication for basic financial transactions still relies on one-factor authentica-

tions, simply knowing enough information is all that it takes to authorize a transac-

tion.

Fraud and identity theft will continue to be the primary drivers of botnet growth

and development. They key to reducing those threats is to take the financial motiva-

tion out of compromising consumer computers. If the data that can be stolen from a

computer system is not enough to place a transaction, would be attackers would be

forced to use other tactics. The financial incentive allows for not only attackers to

make money, but for entrepreneurial software rights with flexible morality to make

money be enabling these attackers with new software. If no money or little money

can be made, less people will be interested in botnets.

Botnets and Proactive System Defense 129

Botnets will continue to develop and grow. The botnets will generally have more

clients per net as attackers grow the size of their botnets. It takes some level of so-

phistication to move money and not be caught so bot clients will be passed on to

someone able to truly leverage them. Eventually botnets will become harder to near-

impossible to detect on the network as the money allows for software writers to earn

a living while refining their craft. Eventually IRC will outlive its usefulness as a bot-

net protocol and a shift will be made to other modern protocols.

Proactive steps that change the dynamics of financial fraud and identity theft will

force the attackers to rethink their strategy and attempt to develop entirely new meth-

ods of attack. There are no methods to permanently stop hacking but there are ways

to change the rules of the game that force the attackers to come up with something

new. This will help move information security professionals out of the patch-cycle

and signature-development cycle that always keeps information security days behind

attackers.

Without an ability to make serious money with botnets and similar technology,

organized crime and other institutional players with the resources to really develop

these attacks will not be interested in participating because they won’t have a good

return on their time. The less sophisticated the adversary in the botnet game will

make it easier for security professionals to stay ahead.

Lastly, a defense-in-depth dynamic will need to be established for the unpro-

tected wild of consumer PCs. Those machines remain easy to exploit and are a

counter-incentive to full participation in the online economy by those consumers.

The more usable their machines are, the more they’ll be willing to buy, sell and trade

online. Those machines will be less available for not only fraud and identity theft, but

for use as distributed denial of service drones, spamming machines or other hostile

activities. This will help secure the weakest link in the cyber security puzzle.

References

1. Susannah Fox and Jean Beier, “ Online Banking 2006: Surfing to the Bank,” Pew Internet

and American Life Project, June 14, 2006. http://www.pewinternet.org/pdfs/
PIP_Online_Banking_2006.pdf.

2. John Bambenek,“Defeating Encryption,” Infosec Writers, November 11, 2004.

http://www.infosecwriters.com/text_resources/pdf/Defeating\
_Encryption.pdf.

3. Mary Culnan, “Bentley Survey on Consumers and Internet Security,” Securing the Weak

Link in Cyberspace, November 17, 2004. http://www.bentley.edu/events/
iscw2004/survey_findings.pdf.

4. Roger Thompson, “Cybersecurity & Consumer Data: What’s at Risk for the Con-

sumer?,” Prepared Witness Testimony, House Committee on Energy and Commerce.

November 19, 2003. http://energycommerce.house.gov/reparchives/
108/Hearings/11192003hearing1133/Thompson1799.htm.

130 John Bambenek and Agnes Klus

5. Sophos Labs,“Microsoft WMF vulnerability exploited in over 200 different attacks.”

Janurary 4, 2006. http://www.sophos.com/pressoffice/news/articles/
2006/01/wmfexploit.html.

6. John Leyden,“’Spamford’ Wallace fined $4m over spyware biz,” The Register, May 5,

2006.

7. Johannes Ullrich,“The Disappearing Patch Window,” http://isc.sans.org/
presentations/MITSecCampISCPresentation.pdf.

8. Internet Storm Center,“Handler’s Diary,” October 20, 2005, http://isc.sans.org/
diary.html?storyid=778.

9. Shadowserver Foundation,“Botnet Charts,”, May 20, 2007, http://www.
shadowserver.org/wiki/pmwiki.php?n=Stats.BotnetCharts.

10. Shadowserver Foundation,“Bot Counts,”, May 20, 2007, http://www.
shadowserver.org/wiki/pmwiki.php?n=Stats.BotCounts.

11. Viruslist.com,“Malware Evolution: 2005,” http://www.viruslist.com/en/
analysis?pubid=178949694.

12. Andy Patrizio, “New Means to Root Out Malware,”, Internet News, June 13, 2006,

http://www.internetnews.com/security/article.php/3613236.

13. Tom Jagatic, Nathaniel Johnson, Markus Jakobsson and Filippo Menczer, “Social

Phishing,” Communications of the ACM, pre-print, http://www.indiana.edu/
˜phishing/social-network-experiment/phishing-preprint.pdf.

14. Consumer Internet Barometer, May 20, 2007, http://www.
consumerinternetbarometer.us/.

15. Federal Trade Commission, “Identity Theft Survey Report,” September, 2003, http:
//www.ftc.gov/os/2003/09/synovatereport.pdf.

Detecting Botnet Membership with DNSBL

Counterintelligence

Anirudh Ramachandran, Nick Feamster, and David Dagon

School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332

{avr,feamster,dagon}@cc.gatech.edu

1 Introduction

Internet malice has evolved from pranks conceived and executed by amateur hackers

to a global business involving significant monetary gains for the perpetrators [20].

Examples include: (1) unsolicited commercial email (“spam”), which threatens to

render email useless by immensely decreasing the signal-to-noise ratio of traf-

fic [18]; (2) denial of service attacks, which have become common [13], and (3)

click fraud, whereby a group of attackers send bogus “clicks” for online advertise-

ments that mimic legitimate request patterns, swindling advertisers out of large sums

of money [5].

Botnets are a root cause of these problems [9], since they allow attackers to dis-

tribute tasks over thousands of hosts distributed across the Internet. A botnet is net-

work of compromised hosts (“bots”) connected to the Internet under the control of

a single entity (“botmaster”, “controller”, or command and control) [6]. The large

cumulative bandwidth and relatively untraceable nature of spam from bots makes

botnets an attractive choice for large-scale spamming. Previous work provides fur-

ther background on botnets [6, 7].

If network operators and system administrators could reliably determine whether

a host is a member of a botnet, they could take appropriate steps towards mitigating

the attacks they perpetrate. Although previous work has described an active detec-

tion technique using DNS hijacking technique and social engineering [7], there are

few efficient methods to passively detect and identify bots (i.e., without disrupting

the operation of the botnet). Indeed, detecting botnets proves to be very challeng-

ing: a victim of a botnet attack can typically only observe the attack from a single

network, from which point the attack traffic may closely resemble the traffic of le-

gitimate users. Regrettably, the state-of-the-art in botnet identification is based on

user complaints, localized honeypots and intrusion detection systems, or through the

complex correlation of data collected through darknets [14].

We propose a set of techniques to identify botnets using passive analysis of DNS-

based blackhole list (DNSBL) lookup traffic. Many Internet Service Providers (ISPs)

and enterprise networks use DNSBLs to track IP addresses that originate spam, so

132 Anirudh Ramachandran, Nick Feamster, and David Dagon

that future emails sent from these IP addresses can be rejected. For the same rea-

son, botmasters are known to sell “clean” bots (i.e., not listed in any DNSBL) at a

premium. This paper addresses the possibility of performing counter-intelligence to

help us discover identities of bots, based on the insight that botmasters themselves

must perform “reconnaissance” lookups to determine their bots’ blacklist status.

The contributions of this paper include:

1. Passive heuristics for counter-intelligence. We develop heuristics to distin-

guish DNSBL reconnaissance queries for a botnet from legitimate DNSBL traffic

(either offline or in real-time), to identify likely bots. These heuristics are based on

an enumeration of possible lookup techniques that botmasters are likely to use to

perform reconnaissance, which we detail in Section 2. Unlike previous detection

schemes, our techniques are covert and do not disrupt the botnet’s activity.

2. Study of DNSBL reconnaissance techniques. We study the prevalence of

DNSBL reconnaissance by analyzing logs from a mirror of a well-known blackhole

list for a 45-day period from November 17, 2005 to December 31, 2005. Section 4

discusses the prevalence of the different types of reconnaissance techniques that we

observed. Much to our surprise, we find that bots are performing reconnaissance on

behalf of other (possibly newly infected) bots. Although some bots perform a large

number of reconnaissance queries, it appears that much of the reconnaissance activity

is spread across many bots each of which issue few queries, thus making detection

more difficult.

3. Identification of new bots. We analyze DNSBL queries that are likely be-

ing performed by botmasters to identify “clean” bots. Such reconnaissance usually

precedes the use of bots in an attack, suggesting the possibility that this DNSBL

counter-intelligence can be used to bolster responses. Section 3 demonstrates the

possibility of such early warning. To validate our detection scheme, we correlate the

IP addresses of these likely bots with data collected at a botnet sinkhole (sinkholing

technique explained in previous work [7]) over the same time period (this dataset has

been used as “ground truth” for botnet membership in previous studies [7, 18]).

4. DNSBL-based countermeasures. Our heuristics could be used to detect re-

connaissance in real-time. This ability potentially allows for active countermeasures,

such as returning misleading responses to reconnaissance lookups, as shown in Fig-

ure 1. We revisit this topic in Section 5.

2 Model of Reconnaissance Techniques

This section describes our model for DNSBL reconnaissance techniques (i.e., the

techniques that botmasters may be using to determine whether bots have been black-

listed). Our goal in developing these models and heuristics is to distinguish DNSBL

queries issued by botmasters from those performed by legitimate mail servers.

DNSBL queries issued by mail servers are often performed by directly querying

the DNSBL, rather than relying on a local resolver. For example, SpamAssassin [21]

implements its own recursive DNS resolver. Hosts performing reconnaissance are

Detecting Botnet Membership with DNSBL Counterintelligence 133

Attacker(s) performing

DNSBL reconnaissance

Blacklist

DNS−based

Legitimate DNSBL

mailserver
lookups from victim’s

Spamming Bots

Record of Queries

(potentially misleading)
DNSBL responses

Spam recipient

C&C Commands

Fig. 1. DNSBL-based Spam Mitigation Architecture.

also unlikely to query DNSBLs using local resolvers. Thus, in both cases, the query-

ing IP address observed at the DNSBL correctly reflects the end-host performing the

query.

2.1 Properties of Reconnaissance Queries

Our detection heuristics are based on the construction of a DNSBL query graph,

where an edge in the graph from node A to node B indicates that node A has is-

sued a query to a DNSBL to determine whether node B is listed. After constructing

this graph, we develop detection heuristics based on the expected spatial and tempo-

ral characteristics of legitimate lookups versus reconnaissance-based lookups. These

characteristics hold primarily in cases when members of the botnet are not perform-

ing queries on behalf of each other, a case that makes detecting reconnaissance more

difficult, as we explain in Section 2.2. As we describe below, our detection heuristics

exploit both spatial and temporal properties of the DNSBL query graph.

Property 1 (Spatial relationships). A legitimate mail server will perform queries and

be the object of queries. In contrast, hosts performing reconnaissance-based lookups

will only perform queries; they will not be queried by other hosts.

This heuristic assumes that networks generally use the same host for both in-

bound and outbound mail servers. Although this configuration is common, some

large networks separate the hosts responsible for inbound and outbound mail servers.

In this case, queries from the inbound mail server might be misinterpreted as a re-

connaissance attempt.

In other words, legitimate mail servers are likely to be queried by other mail servers

that are receiving mail from that server. On the other hand, a host that is not itself

134 Anirudh Ramachandran, Nick Feamster, and David Dagon

being looked up by any other mail servers is, in all likelihood, not a mail server. We

can use this observation to identify hosts that are likely performing reconnaissance:

lookups from hosts that have a high out-degree in the DNSBL query graph (i.e., hosts

that are performing many lookups) but have a low in-degree are likely unrelated to

the delivery of legitimate mail. To quantify this effect, we define the lookup ratio, λ,

of some node n as follows:

λn =
dn,out

dn,in

where dout is the number of distinct IP addresses that node n queries, and din is the

number of distinct IP addresses that issue a query for node n.

When dn,in is zero (which is commonly the case), we can simply consider λn

to be a very large number. This metric is most effective when hosts performing re-

connaissance are disjoint from hosts that are actually used to spam, which appears

to the case today.However, as reconnaissance techniques become increasingly more

sophisticated (as we describe in Section 2.2), this metric may become less useful.

Still, we find that this metric proves to be quite useful in detecting many instances of

DNSBL-based reconnaissance.

The temporal arrival pattern of queries at the DNSBL by hosts performing re-

connaissance may differ from temporal characteristics of queries performed by le-

gitimate hosts. We expect this to be the case because, whereas legitimate DNSBL

lookups are driven by the arrival of actual email, reconnaissance queries will not

reflect any realistic arrival patterns of actual email.

Property 2 (Temporal relationships). A legitimate mail server’s DNSBL lookups re-

flect actual arrival patterns of real email messages: legitimate lookups are typically

driven automatically when emails arrive at the mail server and will thus arrive at a

rate that mirrors the arrival rates of emails. Reconnaissance-based lookups, on the

other hand, will not mirror the arrival patterns of legitimate email.

We may be able to exploit the fact that email traffic tends to be diurnal [10] to tease

apart DNSBL lookups that are driven by actual mail arrival from those that are driven

by reconnaissance. Discovering reconnaissance activity using this method is a topic

for future work.

2.2 Reconnaissance Techniques

In this section, we describe three classes of DNSBL reconnaissance techniques that

may be performed by botmasters: single-host, or third-party, reconnaissance; self-

reconnaissance; and reconnaissance using other bots. For each case, we describe the

basic mechanism, the heuristics that we can use to detect reconnaissance in each of

these cases, and how each technique may complicate detection.

Third-party Reconnaissance

In third-party reconnaissance, a botmaster performs DNSBL lookups from a single

host for a list of spamming bots; this host may be the command-and-control of the

Detecting Botnet Membership with DNSBL Counterintelligence 135

botnet, or it might be some other dedicated machine. In any case, we hypothesize that

the machine performing the lookups in these cases is not likely to be a mail server.

Single-host reconnaissance, if performed by a machine other than a mail server, is

easily detected, because the node performing reconnaissance will have a high value

of λn.

Once detected, single-host reconnaissance may provide useful information to aid

us in revealing botnet membership. First, once we have identified a single host per-

forming such lookups, the operator of the DNSBL can monitor the lookups issued by

that host over time to track the identity of hosts that are likely bots. If the identity of

this querying host is relatively static (i.e., if its IP address does not change over time,

or if it changes slowly enough so that its movements can be tracked in real-time), the

DNSBL operator could take active countermeasures, such as intentionally returning

incorrect information about bots’ status in the blacklist, a possibility we discuss in

more detail in Section 5.

Self-Reconnaissance

Single-host reconnaissance is simple, but it is susceptible to detection. To remain

more stealthy, and to distribute the workload of performing DNSBL reconnaissance,

botmasters may begin to distribute these lookups across the botnet itself. A simple

(albeit sub-optimal) way to distribute these queries is to have a bot perform recon-

naissance on its own behalf (“self-reconnaissance”); in other words, each bot could

issue a DNSBL query to itself (i.e., to determine whether it was listed) before sending

spam to the victim.

In this case, identifying a reconnaissance-based DNSBL query is fairly straight-

forward, because, except in cases of misconfiguration, a legitimate mail server is

unlikely to issue a DNSBL lookup for itself. Even though this technique has the

advantage of distributing the load of reconnaissance across the botnet, we did not

observe this technique being used in practice, likely because a self-query is a dead

giveaway.

Distributed Reconnaissance

A more stealthy way to distribute the operation across the botnet is to have each bot

perform reconnaissance on behalf of other bots either in the same botnet or in other

botnets. For instance, note that Property 1 is unlikely to hold: in this case, the nodes

performing reconnaissance will also be queried by other mail servers to which they

send spam. As a result, these nodes are likely to have a high dn,in, unlike nodes

performing single-host reconnaissance. Ultimately, detecting this type of reconnais-

sance activity may require mining temporal properties (e.g., Property 2).

Although using the botnet itself for DNSBL reconnaissance is more discreet than

performing this reconnaissance from a single host, a network operator who positively

identifies a small number of bots (e.g., starting with a small hit-list of known bots,

136 Anirudh Ramachandran, Nick Feamster, and David Dagon

probably by using a honeynet with known infected machines). As discussed in Sec-

tion 4, if this seed list of bots performs queries for other hosts, it is likely that these

machines are also bots.

We suspected that this mode of reconnaissance would be uncommon, possibly

because of the complexity involved in implementing and operating such a system

(e.g., keeping track of nodes in the looked-up botnet, disseminating this information

to the querying nodes etc.). Much to our surprise, we did witness this behavior; we

present these results in Section 4.

3 Data and Analysis

This section describes our data collection and analysis. We first describe our DNSBL

dataset and its limitations. Then, we describe how this dataset is used to construct the

DNSBL query graph described in Section 2.

3.1 Data Collection and Processing

Our study primarily involves two datasets collected from the same time period

(November 17, 2005 to December 31, 2005): (1) the DNSBL query logs to a mirror

of a large DNSBL, and (2) the logs of bot connections to a sinkhole for a Bobax

botnet [3]. Unlike most botnets, the Bobax bot is designed solely for spamming [2],

increasing the likelihood that a query for known Bobax host is the consequence of

the querying mail server having received spam from that host.

To verify whether the scheme we propose is indeed able to discover additional

bots, we compared the IP addresses in the DNSBL query graph against the IP ad-

dresses of spammers in a large spam corpus collected at a spam honeypot (the setup

of this honeypot is described in our earlier work [18]).

3.2 Analysis and Detection

In this section, we describe how the DNSBL query graph is constructed. Definitions

for the terminology used in our algorithm follow: (1) B, the set of IP addresses that

attempted to connect to the Bobax sinkhole during the observation period (November

17, 2005–December 31, 2005); (2) querier, the IP address of the host that performs

a given DNSBL query; (3) queried, the IP address of the host that is looked up in

a DNSBL query; and (4) G, the DNSBL query graph constructed as a result of the

algorithm.

The graph construction algorithm takes as input a set of DNSBL query logs (we

use tcpdump for packet captures) and the set B and outputs a directed graph G. The

algorithm, summarized in Figure 2, consists of two main steps: parsing and pruning.

As the algorithm suggests, we prune DNSBL queries to only include edges which

have at least one end (either querier or queried) present in the set B. Pruning is

performed for efficiency reasons: the full DNSBL query logs mostly contain queries

Detecting Botnet Membership with DNSBL Counterintelligence 137

from legitimate mail servers. Using B to prune the complete query graph allows us to

concentrate on a subgraph which has a higher percentage of reconnaissance lookups

than the unpruned graph. We recognize that our analysis will overlook reconnais-

sance activity where both the querier or queried nodes are not members of B. To

address this shortcoming, we perform a query graph extrapolation after the algo-

rithm is run. In this step, we make a second pass over the DNSBL query logs and

add edges if at least one of the endpoints of the edge (i.e., either querier or queried)

is already present in the graph. Query graph extrapolation is repeated until no new

edges are added to G.

CONSTRUCTGRAPH()

create empty directed graph G

/* Parsing */

for each DNSBL query:

Identify querier and queried

/* Pruning */

if querier ∈ B or queried ∈ B then

add querier and queried to G if they

are not already members of G
if there exists an edge E(querier, queried) ∈ G then

increment the weight of E(querier, queried)
else

add E(querier, queried) to G with weight 1

Fig. 2. Algorithm to construct a DNSBL query graph

We then compute λn for each node in the graph (Property 1), which allows us

to identify nodes involved in reconnaissance techniques described in Section 2. Al-

though the results in Section 4 suggest that some bots have large values of λn, tech-

niques that use a large number bots to look each other up may be undetectable with

this metric. We are developing techniques based on Property 2 to further improve our

detection.

4 Results

This section presents preliminary results using Property 1 to identify DNSBL re-

connaissance activity on the observed DNSBL query graph. We emphasize that the

reconnaissance being performed by bots is distinctly under the radar as far as total

DNSBL traffic is concerned: the pruned traffic amounts to less than 1% of the total

DNSBL traffic. In this section, we present two surprising results: First, botnets are

being used to perform DNSBL reconnaissance on behalf of bots in other botnets,

which has implications for botnet detection. Second, the distribution of these queries

138 Anirudh Ramachandran, Nick Feamster, and David Dagon

Node # ASN of Node Out-degree known

spammers

1 Everyone’s Internet (AS 13749) 36,875 12

2 IQuest (AS 7332) 32,159 7

3 UUNet (AS 701) 31,682 5

4 UPC Broadband (AS 6830) 26,502 8

5 E-xpedient (AS 17054) 19,530 4

Table 1. AS numbers of hosts which have the highest out-degrees. The last column shows the

number of hosts queried by this node that are known spammers (verified using logs from our

spam sinkhole).

across bots suggests that some DNSBL reconnaissance activities may be detectable

in real-time, which has implications for early detection and mitigation.

Attempts to validate our hypotheses from Section 2 resulted in some interest-

ing discoveries, including the discovery of new bots. We initially expected that most

DNSBL lookups would be third-party lookups, as described in Section 2.2, and that

we would be able to validate the queried nodes as being known bots. Instead, we

discovered the opposite: the nodes with the highest values of λn in the pruned graph

were known bots, while the queried nodes in the graph were new, previously un-

known bots. Further, using data from our spam sinkhole [18], we found that some of

these nodes were Windows machines and confirmed spam originators. This finding

suggests that, in general, it may be possible to start with a set of known bots and use

the DNSBL graph to “bootstrap” the discovery of new bots.

Table 1 shows five of the top queriers (i.e., high out-degree nodes), all of which

are known bots from our Bobax trace. Even more interesting is the fact that a few IP

addresses queried by these nodes actually sent spam to our spam honeypot. More-

over, nearly all of IP addresses that sent spam to our honeypot were not present in

our list of known bots. Due to the fact that our honeypot only captures a small por-

tion of the Internet’s spam, the fraction of total reconnaissance queries that we can

confirm as spamming bots is small. Still, we believe it strongly suggests evidence of

a known bot performing DNSBL reconnaissance on a distinct (and possibly newly

compromised) botnet.

Figure 3 shows the distribution of out-degrees for all querying nodes present

in the pruned DNSBL query graph. The long tail also confirms that bots already

have the capability to distribute these queries, which is cause for concern. Our view

of DNSBL queries is narrow (most querying nodes are geographically close to the

DNSBL mirror), so we expect that more vantage points of DNSBL lookups would

reveal other prominent “players”. The fact that the prominent players in our analysis

were also bots suggests that these nodes may also be obvious candidates for the

mitigation techniques described in Section 5.

Detecting Botnet Membership with DNSBL Counterintelligence 139

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
D

F

Outdegree

Fig. 3. CDF of the distribution of out-degrees for querying IP addresses.

5 Countermeasures

In Section 4, we found that the known bots in our Bobax trace were not the targets

of lookups, but instead were issuing lookups for other, possibly newly compromised

bots. This finding suggests a possible technique that could be used for the discovery

of new bots, even without an initial list of suspects: an initial set of suspect IP ad-

dresses could be constructed by establishing a spam trap, which according to both

previous work [18] and the observations in this paper, appear to be largely bots.

Alternatively, a suspect node could be detected simply by identifying nodes in the

DNSBL query graph with a high value of λn. Beginning with this initial suspect list,

an operator may be able to conclude that, not only are the nodes that this node is

querying likely bots, but also the node itself is likely a bot. If there are other high-

degree nodes also querying the same bots, a detection algorithm might be able to

“walk” the DNSBL graph (e.g., from parent to parent) to discover multiple distinct

botnets.

We believe that using such techniques to aggressively monitor botnet-based

DNSBL reconnaissance may prove to be useful for mitigating spam: as noted in our

previous work [18], most bots send a very low volume of spam to any single domain;

thus, reporting a bot to blacklists after the spam is received may not be effective.

With the ability to distinguish reconnaissance queries from legitimate queries,

a DNSBL operator might be able to mitigate spam more effectively. We speculate

one possibility as follows: an operator could tune the behavior of the blackhole list

server to mislead a botmaster, using a class of techniques we call reconnaissance

poisoning. On one hand, the DNSBL could trick the botmaster into thinking that a

particular bot was “clean” (i.e., unlisted) when in fact it was listed, which would

induce the botmaster to unwittingly send spam from blacklisted machines. On the

other hand, the DNSBL could also reply to a reconnaissance query with an indication

140 Anirudh Ramachandran, Nick Feamster, and David Dagon

that a host was listed, even though it was not listed, thereby discouraging a botmaster

from using a machine that would likely be capable of successfully sending spam.

Of course, active countermeasures such as reconnaissance poisoning do run the

risk of false positives: if we mistakenly attribute a legitimate DNSBL query to a re-

connaissance-based query, we could mislead a legitimate mail server into either mis-

takenly accepting spam that would have otherwise been rejected or, more regrettably,

rejecting legitimate email. Such techniques could also be defeated if the botmaster

queries multiple blacklist providers that maintain independent lists. Investigating the

extent to which our detection metrics are subject to false positives, as well as the

extent to which these false positives interfere with a legitimate mail server’s filtering

techniques, is part of our ongoing work.

6 Related Work

Botnets have been in use as vehicles of cybercrime for quite some time, but studies

on how they spread, and techniques to counter them, are relatively scarce. Previous

research has traced the history of botnets [19, 22, 23] and common modes of botnet

operation [6]. This section briefly discusses previous botnet detection techniques and

previous research on DNSBL traffic analysis.

Previous work has identified bots by examining the communication protocols

used by botnets (e.g., for “rallying”), most notably Internet Relay Chat (IRC) [8,24].

Some have suggested the use of such protocols to identify and remediate botnets. For

example, researchers have joined IRC-based botnets and enumerated victims using

IRC commands [9]; others have used network traffic to identify IRC zombies [17].

Some researchers have identified bot victims by observing the unwanted traffic they

generate, e.g., the RST storms or backscatter generated by DDoS attacks using forged

source addresses [16].

Studies show that many botnets are IRC-based [6, 23], though other protocols

are being used [15]. Attempts have been made to detect such botnets using misuse-

detection or basic intrusion detection analysis [4, 11]. Dagon et al. used DNS redi-

rection to monitor botnets [7]. In contrast, the detection techniques described in this

paper are more discreet because they do not require direct communication with any

component of the botnet.

Jung et al. found that 80% of spam sources in their analysis were listed in at least

one of seven popular blacklists [12], which correlates well with our independent

previous study [18]. To the best of our knowledge, this paper presents the first study

that uses direct analysis of DNSBL logs to infer other types of network behavior.

7 Conclusion

This paper has developed techniques and heuristics for detecting DNSBL reconnais-

sance activity, whereby botmasters perform lookups against the DNSBL to determine

whether their spamming bots have been blacklisted. We first developed heuristics for

Detecting Botnet Membership with DNSBL Counterintelligence 141

counter-intelligence based on several possible ways we figured reconnaissance was

being performed. We then studied the prevalence of each of these reconnaissance

techniques. Much to our surprise, we found that bots were in fact performing re-

connaissance on IP addresses for bots in other botnets. Based on this finding, we

have outlined possibilities for new botnet detection techniques using a traversal of

the DNSBL query graph, and we have suggested techniques that DNSBL operators

might use to more effectively stem the spam originating from botnets. We are inves-

tigating the effectiveness of these detection and mitigation techniques as part of our

ongoing work.

References

1. Taormina, Sicily, Italy, October 2004.

2. Bobax trojan analysis. http://www.lurhq.com/bobax.html, March 2005.

3. Symantec Security Alert–W32.Bobax.D worm. http://www.sarc.com/
avcenter/venc/data/w32.bobax.d.html.

4. David Brumley. Tracking hackers on IRC. http://www.doomdead.com/texts/
ircmirc/TrackingHackersonIRC.htm, 2003.

5. CNN Technology News. Expert: Botnets No. 1 emerging Internet threat. http://www.
cnn.com/2006/TECH/internet/01/31/furst/, January 2006.

6. Evan Cooke, Farnam Jahanian, and Danny McPherson. The Zombie Roundup: Under-

standing, Detecting and Disrupting Botnets. In Usenix Workshop on Steps to Reducing

Unwanted Traffic on the Internet (SRUTI), June 2005.

7. David Dagon, Cliff Zou, and Wenke Lee. Modeling botnet propagation using time zones.

In Proceedings of the 13th Annual Network and Distributed System Security Symposium

(NDSS ’06), 2006.

8. S. Dietrich, N. Long, and D. Dittrich. Analyzing distributed denial of service attack tools:

The shaft case. In Proceedings of the LISA 2000 System Administration Conference,

December 2000.

9. Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet tracking: Exploring a

root-cause methodology to prevent distributed denial-of-service attacks. Technical Report

ISSN-0935-3232, RWTH Aachen, April 2005.

10. Luis H. Gomes, Cristiano Cazita, Jussara Almeida, Virgilio Almeida, and Wagner Meira.

Characterizing a Spam Traffic. In Proc. ACM SIGCOMM Internet Measurement Confer-

ence [1].

11. Christopher Hanna. Using snort to detect rogue IRC bot programs. Technical report,

October 2004.

12. Jaeyeon Jung and Emil Sit. An Empirical Study of Spam Traffic and the Use of DNS

Black Lists. In Proc. ACM SIGCOMM Internet Measurement Conference [1], pages 370–

375.

13. Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger. Botz-4-Sale: Surviv-

ing Organized DDoS Attacks That Mimic Flash Crowds. In Proc. 2nd Symposium on

Networked Systems Design and Implementation (NSDI), Boston, MA, May 2005.

14. Sven Krasser, Gregory Conti, Julian Grizzard, Jeff Gribschaw, and Henry Owen. Real-

time and forensic network data analysis using animated and coordinated visualization. In

Proceedings of the 6th IEEE Information Assurance Workshop, 2005.

142 Anirudh Ramachandran, Nick Feamster, and David Dagon

15. Brian Krebs. Bringing botnets out of the shadows. http://www.washingtonpost.
com/wp-dyn/content/article/2006/03/21/AR20060%32100279.
html, 2006.

16. D. Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring internet denial-of-service

activity. In Proceedings of the 2001 USENIX Security Symposium, 2001.

17. Stephan Racine. Analysis of internet relay chat usage by ddos zombies. ftp://www.
tik.ee.ethz.ch/pub/students/2003-2004-Wi/MA-2004-01.pdf,

2004.

18. Anirudh Ramachandran and Nick Feamster. Understanding the Network-Level Behavior

of Spammers. In Proc. ACM SIGCOMM, Pisa, Italy, September 2006.

19. Puri Ramneek. Bots & Botnets: An Overview. http://www.giac.com/
practical/GSEC/Ramneek_Puri_GSEC.pdf, 2003.

20. S.E. Schechter and M.D. Smith. Access for sale. In 2003 ACM Workshop on Rapid

Malcode (WORM’03). ACM SIGSAC, October 2003.

21. SpamAssassin, 2005. http://www.spamassassin.org/.

22. SwatIt. Bots, drones, zombies, worms and other things that go bump in the night. http:
//swatit.org/bots/, 2004.

23. Virus Bulletin 2005 Paper on ’Bots and Botnets’. http://arachnid.homeip.
net/papers/VB2005-Bots_and_Botnets-1.0.2.pdf.

24. Y. Zhang and V. Paxson. Detecting stepping stones. In Proceedings of the 9th USENIX

Security Symposium, August 2000.

A Taxonomy of Botnet Structures

David Dagon1, Guofei Gu1, and Christopher P. Lee2

1 School of Computer Science, Georgia Institute of Technology, Atlanta GA 30332

{dagon,guofei}@cc.gatech.edu
2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,

GA 30332

chrislee@gatech.edu

1 Introduction

Malware authors routinely harness the resources of their victims, creating networks

of compromised machines called botnets. The attackers’ ability to coordinate the

victim computers presents novel challenges for researchers. To fully understand the

threat posed by such networks, we must identify classes of botnet topologies, their

potential uses, and the challenges each class presents for detection and remediation.

We believe that it is inadequate to simply enumerate the botnets we have seen to

date in the wild. Botnets have proven to be very dynamic. For example, researchers

have observed changes in botnet sizes, which have trended from large networks

(100K+ victims) to numerous smaller botnets (1-5K+ victims) [53]. Likewise, we

have seen a rapid transition from centralized botnets (e.g., IRC) to distributed orga-

nizational structures (e.g., P2P) [64]. We expect that botnets will continue to be a

dynamic, evolving threat.

We must therefore consider the structural and organizational potential of bot-

nets. Similar to how previous work detailed key aspects of individual classes of

worms [57], this paper provides a taxonomy of botnet organization, and their util-

ity for various malicious activity. We believe that future botnet research will share a

common goal of reducing the utility of botnets for botmasters. This raises important

questions: How are botnets utilized? What metrics should be used to measure the

effectiveness of remediation on such networks?

Recent work by Rajab, et al. [47] noted the need for the botnet research com-

munity to better define metrics. Their study examined problems in estimating botnet

populations. This paper argues that other metrics (bandwidth, communications effi-

ciency, robustness) require a similar thoughtful examination.

This paper therefore proposes a taxonomy of botnet topologies, based on the util-

ity of the communication structure and their corresponding metrics. Section 2 details

metrics for measuring botnet uses, and describes the structural organization of bot-

nets. In Section 3, we demonstrate how to perform measurement of selected metrics,

and analyze experimental response techniques designed to address particular classes

144 David Dagon, Guofei Gu, and Christopher P. Lee

of botnets. We note how our work relates to other areas of inquiry in Section 4. Since

this area of research is new and rapidly changing, we conclude with suggestions for

future work in Section 5.

Our contribution is the following: we identify a small number of likely structural

forms for botnets, based on a utilitarian analysis. We propose metrics for measuring

a botnet’s effectiveness, efficiency, and robustness. Our analysis of models and real

world observations suggests that some botnet structures are more resilient than others

to different types of remediation efforts. This analysis can guide future inquiry into

how to best address the botnet problem.

2 Botnet Taxonomy

The evolving and evasive nature of botnets requires researchers to anticipate possible

topologies. An interesting early contribution in this area is [13], which listed three

topologies (centralized, peer-to-peer, and random) for botnets, and roughly evaluated

performance metrics in terms of high, medium and low performance.

To more fully understand the threat, we expand on [13] and propose a taxon-

omy of possible botnet topologies and how to measure their utilization in various

malicious activities.

2.1 Purpose and Goals

Taxonomies are most useful when they classify threats in dimensions that correspond

to potential defenses [30, 31]. As [29] noted: “[a]n important and sensible goal for

an attack taxonomy ... should be to help the defender.”

Our botnet taxonomy will help researchers identify what types of responses are

most effective against botnets. Our design goals are similar to [57]: (a) assist the

defender in identifying possible types of botnets, (b) describe key properties of botnet

classes, so researchers may focus their efforts on beneficial response technologies.

Our taxonomy is driven by possible responses, and not detection. There is some

initial work in botnet detection [13–15,17,18,20]. Further, the considerable body of

literature on worm detection has identified detection techniques that can be adapted

to botnet detection [9, 21, 26, 44, 58,60, 61, 63]. We therefore leave for future work a

classification of botnet detection techniques.

2.2 Key Metrics for Botnet Structures

Naively, one could suppose that bots will organize according to various regular net-

work topologies such as star, mesh, or bus networks. These topologies are useful for

formal analysis of discrete network properties, but do not let us describe the utility

of large complex botnets.

Instead, we need to pay attention to key discriminators that let one compare im-

portant attributes of botnets. We identify three important measures of botnets: effec-

tiveness, efficiency, and robustness. We acknowledge there are other characteristics

A Taxonomy of Botnet Structures 145

the botmaster may desire, but these are not easily designed into the topology of a

victim network. For example, botmasters may desire anonymity from their botnet

(e.g., to carry out anonymous attacks); however, this property is not inherently ob-

tained from any single topology, and depends more on the application-layer design

of a botnet’s messaging system.

Table 1 lists a few botnet uses, and key relevant metrics. More than one metric

can be relevant to a botnet use, and botnets certainly have multiple uses. However,

the table lists key metrics critical to the botnet’s specified function.

Major Botnet Utilities Key Metrics Suggested Variables Comment

Effectiveness Giant portion S Large numbers of victims increases the likeli-

hood of high-bandwidth bots. Diurnal behavior

favors S over total population.

Ave. Avail. Bandwidth B Average bandwidth available at any time, be-

cause of variations in total victim bandwidth,

use by victims, and diurnal changes.

Efficiency Diameter l−1 Bots sending messages to each other and coor-

dinating activities require efficient communica-

tions.

Robustness Local transitivity γ Bots maintaining state (e.g., keycracking or

mirroring files) require redundancy to guard

against random loss. Highly transitive networks

are more robust.

Table 1. Botnet Uses and Relevant Metrics

2.3 Measuring Botnet Effectiveness

The effectiveness of a botnet is an estimate of overall utility, to accomplish a given

purpose. While botmasters may innovate new uses of botnets, the ability of a botnet

to meet existing uses such as spam, DDoS, warez distribution and phishing is roughly

approximated by size and bandwidth. Both of these terms require elaboration.

We agree with [47], that “botnet size” must be a qualified term. Here, we do

not use size to mean the total population count, such as that usually used in worm

epidemiology studies [37–39, 50]. Instead, we mean the “giant” component of the

botnet, or largest connected (or online) portion of the graph [10, 42]. Botnets are of

course more powerful if they have large infected population, but the giant component

lets us directly measure the damage potentially caused by certain botnet functions.

In the case of DDoS, the giant component, S, lets us measure the largest number

of bots that can receive instructions and participate in an attack. This contrasts with

the total population of all infected victims, which may not always be reachable by

the botmaster, e.g., because of diurnal variations. [16].

A related measure is the average amount of bandwidth that a bot can contribute,

denoted as B. Estimating bandwidth along a single link is a complex problem, and

the subject of numerous investigations in the networking community [6,25]. To esti-

mate the cumulative bandwidth of an entire botnet presents an even more challeng-

146 David Dagon, Guofei Gu, and Christopher P. Lee

ing task. For example, one could measure the bandwidth between bots, between a

bot and the botmaster, or between any bot and a third party (e.g., a DDoS victim).

By average bandwidth, B, we mean the cumulative available bandwidth in a bot that

a botmaster could generate from the various bots (e.g., for DDoS) under ideal cir-

cumstances. Such a measurement of course varies with the distribution of bandwidth

available to each member of the botnet, the probability that any victim is “on-line” at

any given time, and the amount of bandwidth already being consumed by the victims

themselves (e.g., for normal use).

We roughly classify three types of bots according to their transit categories: those

using modems (type 1), those using DSL/cable (type 2), and those using ’high-speed’

networks (type 3). While bandwidth within each class is highly variable in itself, we

believe this grouping is a reasonable first approximation because they are standard in

industry–e.g., many commodity databases already map connection classes according

to these categories [34]. The probability of a bot belonging to type i is denoted as Pi.

According to [24], a reasonable distribution for US-based bots could be estimated as

P1 = 0.3, P2 = 0.6, P3 = 0.1. Similar distributions could be inferred for a global

population.

Let us denote the average maximum network bandwidth within each type as Mi,

the average normal usage of bandwidth within each type is Ai. Thus, the average

available bandwidth could be used by a botmaster on a bot is Mi − Ai. We simplify

our measurement by assuming a botmaster would not use even more bandwidth,

since this would interfere with the victims existing use, and the disruption might

alert them to the infection.

We also need to consider the diurnal sensitivity of these networks. More complete

diurnal models of bot behavior were presented in [16]. However, to avoid modeling

diurnal changes in numerous time zones, we can use a simplified metric based on

the estimated number of hours a victim is online per day (and therefore capable of

participating in the botnet). We assign different weights (denoting the distribution

of time hosts are online each day) to each class of bots. For example, if we assume

average online hours per day for a bot using modem is 2, for a bot with DSL/ca-

ble is 6, and for a bot with high-speed is 24, then we have the probability vector

W = [2/32, 6/32, 24/32] = [0.0625, 0.1875, 0.75]. We selected these numbers

based on [43]; however, our analysis considers other ranges of values.

Using the simplified bandwidth estimation for each bot, and a simplified diurnal

model, we can express the average available bandwidth of a bot as:

B =
3

∑

i=1

(Mi − Ai)PiWi (1)

In Section 3, we suggest the utility of this metric by comparing different botnets.

The weights and distribution of hosts in each class are of course variable. To under-

stand their sensitivity, we evaluated the weighted bandwidth for different ranges of

estimates.

Figure 1 shows the weighted bandwidth, with different variations in diurnal sen-

sitivity. We can see in Figure 1(a), that the final average weighted bandwidth is

A Taxonomy of Botnet Structures 147

around 20Kbps for a single bot, for the values fixed in that plot. With approximately

50,000 such bots in a botnet, the botmaster can utilize about 1Gbps bandwidth on

average at any time.3 The parameters for the plots in Figure 1 are drawn from data

measurements described in Section 3.

The plots reveal the sensitivity of this metric to the diurnal variation in users.

Compare for example Figure 1(a), where low bandwidth users are presumed on-

line for only two hours, to Figure 1(c), where six hours is fixed instead. For diurnal

weighing above 6 hours/day, variation in the online hours for the medium and high-

bandwidth users does not result in much variation in the overall bandwidth, as shown

in Figure 1(a). However, in Figure 1(c), the online variation of the other classes has

a significant impact on bandwidth particularly when higher-speed users are “always

on” and have a diurnal weight of 1. This suggests that botnets with many low-speed

connections experience less variation when the lower-speed connections minimize

their time online. In Section 3, we further compare estimated bandwidth of two bot-

nets.

4

6

8

10

12

12

14

16

18

20

22

24

18

19

20

21

22

23

24

25

Medium BW (hours)High BW (hours)

W
e

ig
h

te
d

 B
W

 (
k
b

p
s
)

(a) Fixed online hours for

Type1 at 2, varying other

two types.

4

6

8

10

12

12

14

16

18

20

22

24

18

19

20

21

22

23

24

25

Medium BW (hours)
High BW (hours)

W
e
ig

h
te

d
 B

W
 (

k
b
p
s
)

(b) Fixed online hours for

Type1 at 4, varying other

two types.

4

6

8

10

12

12

14

16

18

20

22

24

18

19

20

21

22

23

24

25

Medium BW (hours)High BW (hours)

W
e
ig

h
te

d
 B

W
 (

k
b
p
s
)

(c) Fixed online hours for

Type1 at 6, varying other

two types.

Fig. 1. Weighted bandwidth and diurnal sensitivity. Low-bandwidth bots have a significant

effect on average bandwidth when they are online for more than ≈ 4 hours. Figures (a) through

(c) fix the diurnal weight of low-bandwidth bots at 2, 4 and 6 hours. Only at the extreme, plot

(c), does average bandwidth change significantly. This impact is seen when high- and medium

bandwidths bots have less than 24-hour/day connectivity.

2.4 Measuring Botnet Efficiency

Botmasters and security researchers may also be concerned about the efficiency of

a botnet . Whether used to forward command-and-control messages, update bot

executable code, or gather host-based information (e.g., keylogging and data ex-

filtration), a botnet may be evaluated by its communication efficiency.

We propose network diameter as one means of expressing this efficiency. By net-

work diameter, we mean the average geodesic length of a network, l. This measures

3 We repeat again the caution noted above: our available bandwidth metric does not mea-

sure the bandwidth between any two points. Rather it measures the amount of traffic the

botmaster may reasonably generate using his network.

148 David Dagon, Guofei Gu, and Christopher P. Lee

the average length of the shortest edge connecting any two nodes in the network. If

l is large, the dynamics of the network (communications, information, epidemics) is

slow. The reader may recall that in Milgram’s famous paper, social networks were

shown to have short average geodesic lengths, approximately log N , or l ≈ 6 (“six

degrees of separation”) for general society [36], while the web has a larger estimated

length, l ≈ 17 [3].

As in [23], we use the inverse geodesic length, l−1, instead of l, defined as:

l−1 =

〈

1

d(v, w)

〉

=
1

N(N − 1)

∑

v∈V

∑

w 6=v∈W

1

d(v, w)′
(2)

This way, if bots v and w are disconnected, the distance d is zero. Further, the

inverse length is normalized, ranging from 0 (no edges) to 1 (fully connected). In

the context of botnets, l−1 refers to the overlay network of bot-to-bot connections

created by the malware, instead of the physical topology of the Internet. Thus, bot

victims on the same local network (one hop away) may be several edges apart or

even unconnected in the overlay bot network created by the malware.

This metric is relevant because with each message passed through a botnet, there

is a probability of detection or failure. Some researchers have already investigated

zombie detection via stepping stone analysis, or the detection of messages being re-

layed through victim proxies [59]. It is difficult to express this chance of detection

precisely, since botnet identification is a new, developing field. But at a high level,

botnet detection techniques will generally rely on the chance of intercepting (i.e., de-

tecting and corrupting or halting) a message between two bots in a network. Assume

that bots u and v are connected through n possible paths, P1, . . . Pn, and that each

node in the path can be recovered (cleaned) with probability α. If ǫi is the chance

that path Pi is corrupted, quarantined or blocked, then all paths between u and v are

blocked with probability:

n
∏

i=1

ǫi ≤ (1 − α)n (3)

While bots u and v are connected through some path with probability 1 − (1 −
α)n, the chance of failure increases with α (i.e., as detection technologies improve).

Section 3 characterizes the performance of l−1 under increasing link decay.

We expect that in the future, botnet researchers will propose many techniques to

detect, disrupt, or interfere with botnet messaging. Network diameter, l−1 is therefore

a basic, relevant metric to determine how many opportunities network administrators

have to observe, disrupt or measure messaging.

The incentive of the botmaster is to increase l−1, which yields a more efficient

botnet, at least for selected uses noted in Table 1. Under an ideal l−1 = 1, every bot

can talk directly to every other bot. Since a botnet with more interconnections has

more short paths, it passes messages quickly, and provides fewer detection opportu-

nities.

A Taxonomy of Botnet Structures 149

2.5 Measuring Botnet Robustness

A final category of botnet use can be expressed in the robustness of such networks .

Bots routinely lose and gain new members over time. If victim machines are perform-

ing state-sensitive tasks (e.g., storing files for download, or sending spam messages

from a queue), a higher-degree of connection between bots provides fault tolerance

and recovery.

To some degree this metric correlates with an improved redundancy. But we more

precisely capture the robustness of networks using local transitivity to measure re-

dundancy. Local transitivity measures the likelihood that nodes appear in “triad”

groups. That is, given two node pairs, {u, v} and {u, w}, that share a common node,

u, local transitivity measures the chance that the other two, v and w, also share

an edge. A clustering coefficient γ, measures the average degree of local transi-

tivity [56], in a neighborhood of vertices around node v, Γv. If Ev represents the

number of edges in Γv , then γv is the clustering coefficient of node v. Where kv

represents the number of vertices in Γv, then we have:

γv =
Ev
(

kv

2

) , γ = 〈γ〉 =
1

N

∑

v∈V

γv. (4)

The average clustering coefficient 〈γ〉 measures the number of triads divided by the

maximal number of possible triads. Just like l−1, γ ranges from [0, 1], with 1 repre-

senting a complete mesh.

Local transitivity is an important measure for certain botnet uses. Warez (stolen

programs) and key cracking require reliable, redundant storage, particularly since

botnets exhibit strongly diurnal properties. To ensure uninterrupted key cracking,

or that file resources are always available, botmasters routinely designate multiple

victims to store identical files. (For examples, consult [12].) Botmasters could use

quorum systems in addition to simple backups. However, the transitivity measure γ
index generally captures the robustness of a botnet.

2.6 Botnet Network Models

To measure the robustness of different botnet architectures, we must further specify

the types of response actions available to network administrators. In a general sense,

botnets can suffer random and targeted responses. Random failures correspond to

patching by normal users, diurnal properties of computers being powered off at night,

and other random failures in a network. Targeted responses are those that select “high

value” machines to recover or patch. These response types all correspond to actions

directed at botnet vertices. Edge-oriented responses (e.g., quarantine, null routing)

have been considered elsewhere, e.g., [62].

Expanding on the general categories of botnets noted in [13], we consider dif-

ferent types of graphs studied in the extensive literature on complex networks. Our

taxonomy uses the major models from that field . For a comprehensive overview of

complex network mechanics, see [4].

150 David Dagon, Guofei Gu, and Christopher P. Lee

Erdös-Rényi Random Graph Models

To avoid creating predictable flows, botnets can be structured as random graphs. In

a random graph, each node is connected with equal probability to the other N − 1
nodes. Such networks have a logarithmically increasing l−1. The chance a bot has a

degree of k is the binomial distribution:

Pr(k) =

(

N − 1

k

)

pk(1 − p)N−1−k (5)

Particularly for large networks like botnets, it makes sense to limit the degree

k to a maximum number of edges, L. For our analysis below, we select an average

〈k〉 appropriate to botnets, instead of 〈k〉 ≈ 2L/N used by others studying general

network complexity problems [23]. Without such a limitation, a pure Erdös-Rényi

random botnet would potentially create individual bots with hundreds of edges, even

for small (5K victim) botnets. Large numbers of connections on a client host are

highly unusual, even for P2P software [33, 49]. So, unless the victim is a rare high-

capacity server, botmasters would keep 〈k〉 small, say 〈k〉 ≈ 10. In Section 3, we

measure the degree of connection in an unstructured P2P botnet, to confirm that 〈k〉
will have fairly low values.

One difficulty in random graphs is easily overcome by certain types of botnets.

Since each node has a probability Pr(k) of being connected to each vertex, the

creation of the graph requires some central collection (or record) of vertices. That is,

each bot must either know or learn the address of all the other bots, in order to have

a chance of sharing an edge. Because such a list may be discovered by honeypot

operators, botmasters have an incentive to not create such a centralized master list,

and some bots, e.g., those created by the Zindos worm [32], take explicit steps to

limit the number of victim addresses stored in one place.

This creates a technical problem for botnets that propagate through traditional

(e.g., scanning, mass-mailing) techniques. The first victims will not know the address

of subsequent victims, and have a Pr(k) biased towards zero. One solution is for the

attacker to keep track of victims joining their botnet, generate a desired topology

overlay, and transmit the edge sets to each bot.

Bot masters can easily select a desired 〈k〉 to generate such a network. For exam-

ple, they may select 〈k〉 ≤ 10, so that bots appear to have flow behavior similar to

many peer-to-peer applications [33, 49]. A botmaster could of course select a higher

〈k〉, even one close to N to create a mesh, but such structures quickly exhaust bot

resources, and may be easily detected by network administrators.

If existing botnets are not available to generate a random graph, one solution was

proposed by [13], where bots could randomly scan the Internet to find fellow bots.

Although noisy, this approach provides a last-resort technique for botnet creation.

Assuming random scanning up to L connections, the resulting botnet would have a

Poisson k distribution, and both the clustering and diameter properties of a random

graph.

A Taxonomy of Botnet Structures 151

Watts-Strogatz Small World Models

Another topology botnets can use is a Watts-Strogatz network. In such a network,

a regional network of local connections is created in a ring, within a range r. Each

bot is further connected with probability P to nodes on the opposite side of the ring

through a “shortcut”. Typically, P is quite low, and the resulting network has a length

l ≈ log N . See [4] for further discussion of small world networks.

Intuitively, we can imagine a botnet that spreads by passing along a list of r
prior victims, so that each new bot can connect to the previous r victims. To create

shortcuts in the small world, bots could also append their address to a growing list of

victims, and with probability P connect back to a prior bot. As noted in Section 3,

we have witnessed only a few anecdotal botnets that create prior victim lists, e.g.,

Zindos [32]. To frustrate remediation and recovery, the lists are typically small r ≈ 5.

In the case of propagation-created botnets, botmasters may prudently use P = 0, to

avoiding transmitting a lengthy list of prior victims. Otherwise, a bot would have to

append its address to a growing list of IPs forwarded to each new victim. As noted

above, if a botmaster desired to have shortcuts in a small world botnet, they could

instead just use an existing botnet.

Barabási-Albert Scale Free Models

The previous botnet structures are characterized by variations in clustering, and each

node exhibits a similar degree, k ≈ 〈k〉. In contrast, a Barabási-Albert network is

distinguished by degree distribution, and the distribution of k decays as a power

law. Many real-world networks have an observed power-law distribution of degrees,

creating a so-called scale free structure.

Scale-free networks contain a small number of central, highly connected “hubs”

nodes, and many leaf nodes with fewer connections. This has a significant impact on

the operation of the network. As discussed in Section 3, random node failures tend

to strike low-degree bots, making the network resistant to random patching and loss.

Targeted responses, however, can select the high degree nodes, leading to dramatic

decay in the operation of the network. This phenomenon is explored in many articles,

e.g., [5].

Researchers have noted that bots tend to organize in scale free structures, or even

star topologies [11, 15, 17]. For example, botnets might use IRCd [27] for coordina-

tion, which explicitly uses a hub architecture.

P2P Models

In a P2P model, there are structured and unstructured topologies [45, 48]. For ex-

ample, a structured P2P network might use CHORD [52], or CAN [48], while an

unstructured P2P might use the hub-and-spoke networks created under gnutella or

kazaa [45].

The unstructured P2P networks tend to have power-law link distributions [45].

We therefore treat this type of P2P network as a Barabási-Albert (scale free) model

152 David Dagon, Guofei Gu, and Christopher P. Lee

in our analysis. Similarly, structured P2P networks are similar to random networks,

in the sense that every node has almost the same degree.

In Section 3, observe new P2P-based botnets, and perform some measurements

on their structures. Since our selected metrics concern only basic botnet properties

(length, giant, and local transitivity), we can treat these networks as random or scale

free in our analysis. We encourage others to refine these models to identify distinct

P2P botnet features that distinguish them from random and scale free networks. For

the metrics proposed in this work, however, we will address P2P botnets as special

cases of the previous categories.

3 Taxonomy-Driven Botnet Response Strategies

The previous discussion of botnet organization suggests the need for diverse response

strategies. To guide future research in this developing area, we model different re-

sponses to each botnet category. Our analysis confirms the prevailing wisdom [13]

that command-and-control is often the weak link of a botnet. We confirm our model

with an empirical analysis of a real-world botnet response. Significantly, our analysis

also shows that targeting the botnet C&C is not always an effective response. Some

botnets will require new response strategies that research must provide.

3.1 Erdös-Rényi and P2P Models

For ranges appropriate to botnets, we evaluate the relationship between node degree,

k, and the diameter of the botnet, expressed as l−1. We assume that, to evade trivial

detection, botnets will attempt to limit 〈k〉 to some value similar to P2P. Empirical

studies of P2P systems reveal very low median link scores (e.g., k ≈ 5.5) [33, 49].

Figure 2(a) plots 〈k〉 against l−1 for realistic values, k ≤ 20. Others have noted that

for increasing average degrees, 〈k〉, random Erdos-Renyi models have logarithmi-

cally increasing diameters [23]. However, in Figure 2(a), realistic values of k show

a linear relationship to l−1.

We also note that giant, s, improves significantly with increases in k, enabling

connections with most of the botnet when k ≈ 10 for a 5K botnet. This agrees with

the general principle noted in Eqn. (3), where logarithmically connected networks

enjoy nearly universal broadcasting.

Local transitivity, γ, also increases logarithmically with k. But for a range of

small values of k, typical of botnets, it shows a linear increase. This means that

each additional value of k equally improves the general robustness of the botnet. We

also note a slight flare at the base of the γ plot for Figure 2(a), for very low values

of k. Intuitively, this means botnets with a very low average degree have difficulty

forming triads, but this is quickly overcome as k increases. Botmasters therefore have

incentives to increase k.

Our current analysis, however, shows that for botnets using a random topology,

random loss (e.g., infrequent user patching or anecdotal cleanup) will not diminish

the number of triads in the botnet. We also omit plotting the performance of random

A Taxonomy of Botnet Structures 153

0 50 100
0

0.005

0.01

0.015

0.02

0.025

k

L
−

1

0 10 20
4650

4700

4750

4800

4850

4900

4950

5000

k

S

0 50 100
0

0.005

0.01

0.015

0.02

0.025

k

γ

(a) Node Degree in Random Botnets

0 5 10 15 20
3.9

3.91

3.92

3.93

3.94

3.95

3.96

3.97

3.98

3.99

4
x 10

−3

random loss

γ

0 5 10 15 20
3.9

4

4.1
x 10

−3

random loss

L
−

1

(b) Random Loss in Botnets

Fig. 2. (a) Changes in length l−1, giant (s), and local transitivity (γ) in response to changes

in critical values of k, for 5K victim botnet. (b) Effect of loss on random networks.

networks under targeted responses. Targeting nodes can at best remove a few nodes

with k slightly higher than 〈k〉. The result is asymptotically the same as random loss.

The work in [55] is a good example of a hybrid botnet with a random graph

structure formed using a technique similar to Erdös-Rényi graph, through the use of

a peer list. They also confirm the robustness of such networks against targeted and

random attacks. The work in [54] is also a good example of botnets created using a

random graph structure.

In section 2 we noted that structured P2P networks are very similar to random

networks, at least in terms of the metrics we care about: length, giant and transitivity.

Structured P2P networks in fact have a constant k (often set equal to the log N size

of the network), so they are slightly more stable than purely random networks. Thus,

changes in γ and s, and l−1 are constant with the loss of random nodes.

Clearly botnets with random topologies (including structured P2P networks) are

therefore extremely resilient, and deserve further study. We speculate that the most

effective response strategies will include technologies to remove large numbers of

nodes at once. Detecting and cleaning up large numbers of victims (perhaps at the

host level) appears to be the most viable strategy. Likewise, strategies that disrupt the

ability of the network to maintain indices may be fruitful, as suggested by the P2P

index poisoning research in [51].

3.2 Watts-Strogatz Models

There are some experimental botnets [32] that use small world structures, but overall

they do not appear to have a high utility value, using the metrics we’ve proposed.

The average degree in a small world is 〈k〉 ≈ r, or the number of local links in

a graph. Thus, random and targeted responses to a small world botnet produce the

same result: the loss of r links with each removed node. Thus, the key metrics for

botnets, s, γ, l−1 all decay at a constant rate in a small world.

We presumed that shortcut links in a small world botnet are not used (P = 0),

but even if present, they would not affect γ with r ≥ 4. That is, if the number of local

154 David Dagon, Guofei Gu, and Christopher P. Lee

links is large enough to form triads, the absence of shortcuts does not significantly

increase the number of triads (which are already formed by r local neighbors).

There may be other benefits (e.g., propagation stealth or anonymity), for which

we have not proposed a utility metric. But overall, small world botnets do not have

benefits different from random networks. In other domains, researchers have noted

that small world graphs are essentially random [23].

Our investigation of experimental of botnet structures only reveals only one rep-

resentative of the Watts-Strogatz model: the Zindos [32] worm. We speculate that

the poor utility scores in the face of targeted and random loss may explain this phe-

nomena. An equally likely explanation is hinted at by Zou, et al., in [64], where the

authors noted the desire of botmasters to avoid revealing a lists of confederate botnet

members to honeypot operators.

3.3 Barabási-Albert and P2P Models

While random networks present a challenge, at least scale free networks provide

some good news for researchers. Figure 3(a) plots the change in diameter and tran-

sitivity against changes in the “core” size of the botnet, C. The “core” of a scale

free botnet is the number of high-degree central nodes–the routers and hubs used to

coordinate the soldier bots. As more core nodes are added, the diameter of the scale

free botnet stays nearly constant for small regions of C. Intuitively, splitting a hub

into smaller hubs does not significantly increase the length of the overall network.

The local minima in Figure 3(a) has an intuitive explanation. If we have a single

hub in a scale free network, C = 1, many of the added leaf nodes have a good chance

of forming triads. The scale-free generation algorithm we chose prefers high degree

nodes, and tends to form many triads when there are few hubs.

As we increase C, we create several high degree hubs that attract distinct groups

of leaf nodes. This creates many “squares”, where hubs are connected to each other,

and leaves are connected to each other. But transitivity is only measured locally (in

triads, and not other polygon paths). Thus, increasing C diminishes γ slightly. As we

increase C more, we observe a tendency for the hubs themselves to form triads, so γ
grows logarithmically.

Can botmasters avoid this drop in transitivity? We suspect not, if they wish to

maintain a “normal” degree count, relative to other applications. In Figure 3(c), we

compare changes in γ against core size using different link counts for leaf nodes.

If nodes have more links, m ≈ 16, the loss in γ shallows out. But increasing the

link count of nodes can help anomaly detection algorithms that examine link degrees

(e.g., flow log analysis). This reveals a curious mix of incentives. On the one hand

botmasters would like to have C >> 1, since a single core node is too easily re-

moved. But increasing C just a little drops local transitivity. To recover the loss in

transitivity, botmasters would have to increase link counts to rates far in excess of

average P2P degree counts.

Responses to scale free botnets are more effective. As expected, random losses

in scale free botnets are easily absorbed. Figure 3(b) shows that random patching has

almost no affect on a botnet diameter or the frequency of triad clusters. Intuitively,

A Taxonomy of Botnet Structures 155

0 20 40 60 80 100
3.1

3.12

3.14

3.16

3.18

3.2

3.22

3.24

3.26

3.28

3.3
x 10

−3

c

L
−

1

0 20 40 60 80 100
0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

c

γ

(a) Scale Free Properties

0 5 10 15 20
0.01

0.011

0.012

0.013

0.014

0.015

random loss

γ

0 5 10 15 20

3.08

3.1

3.12

3.14

3.16

3.18

3.2
x 10

−3

random loss

L
−

1

0 5 10 15 20
0.01

0.011

0.012

0.013

0.014

0.015

target loss

γ

0 5 10 15 20

3.08

3.1

3.12

3.14

3.16

3.18

3.2
x 10

−3

target loss

L
−

1

(b) Loss in Scale Free Net-

works

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

c

γ

m=16
m=8
m=4
m=2

(c) Scale Free Networks

and Transitivity

Fig. 3. (a) Changes in diameter and transitivity vs. core size, for a 5K scale free botnet. (b)

Loss in scale free networks. (c) Changes in link count for leaves in a scale free network.

because of the power law distribution of node degrees, random losses tend to affect

low-degree nodes (e.g., the leaves), and not important nodes (e.g., hubs).

Targeted responses, however, can select key nodes for response. This results in a

dramatic increase in diameter, and loss of transitivity. This suggests that researchers

should focus on technologies that allow targeted responses to high-degree nodes in

botnets. Figure 3(b) validates the intuitive idea that by removing a botnet C&C, the

network quickly disintegrates into a collection of discrete, uncoordinated infections.

As noted in [47], measuring aspects of botnets presents a challenge to re-

searchers. To demonstrate the practicality of our proposed metrics, we measured

the average link degree in an unstructured P2P botnet. We selected the nugache

worm [41], and measured the degree of connections between neighbors in the

network mesh. Nugache uses a link encrypted, peer-to-peer filesharing protocol,

WASTE [1], and uses several hard-coded IP addresses to request a list of peers to

from [41]. After connecting to peers, the bot discovers more peers and continue to

form new connections. The resulting botnet is an unstructured P2P network, which

tends to create a scale-free form. Thus, although nugache spreads by P2P systems,

the resulting mesh is a scale-free network.

Since we believe our data collection technique is somewhat unusual, we describe

it in some detail. We note that obtaining precise measurements is, of course, nearly

impossible given the distributed nature of nugache. We therefore ran multiple in-

stances of the nugache worm in a modified version of WINE [2], which guaranteed

that each copy would obtain a unique IP when a network socket is allocated under

bind() system calls. Thus, using a single multi-homed machine, we “controlled”

hundreds of nugache nodes and were able to observe their connections to the rest of

the victims in the wild. (This is similar to the use of numerous heavy-weight honey-

pots to track botnets, noted in [13].) We ran two such “batch WINE runs” for several

weeks, creating hundreds of nodes, and measured the connections degree among our

subsample of the overall population.

Figure 4(a) shows the distribution of link degrees found in the Nugache sample.

The vast majority of victims maintained less than 6 links to other victims. There are a

few nodes with a very high degree, ≈ 30. This suggests a scale-free network typical

156 David Dagon, Guofei Gu, and Christopher P. Lee

of unstructured P2P networks. Our sampling technique unfortunately could not inject

nodes into the inner ring of the nugache network (created from the hard-coded peers),

where we would expect to observe a very high link degree.

(a) Nugache Worm Link Distribution (b) Nugache Victim Joins over Time

Fig. 4. Measurements of (a) link degree in Nugache and (b) joins observed over time.

If we had contacted the owners of the low-degree nugache nodes we observed, or

otherwise caused their remediation and cleanup, our impact on the network’s utility

would have been negligible, according to our analysis. Our model above shows that

random losses in scale free networks (and unstructured P2P networks) do not signifi-

cantly degrade the network. Figure 3(b) shows that random losses fail to significantly

reduce either the diameter or transitivity values.

Of course, we were unable to measure the entire population, s, of the nugache

network using our data collection technique. Figure 4(b) illustrates the problem. This

figure plots the rate of new SYN+ACK connections observed by our batch WINE

nodes. This is therefore a rough measure of the rate of new link creation, which

may or may not correspond to the rate of new victims being recruited. (That is, a

new SYN+ACK may represent an old nugache victim we’ve just discovered, or a

new victim joining for the first time.) Since we did not catch nugache in its early

formation, or successfully inject our honeypots into the inner ring of high-degree

nodes, we saw only a small number of potentially new victims over the study period.

As the authors in [47] noted, measuring population values is a complex under-

taking. We believe our analysis shows that our proposed metrics are both practical

and useful. However, we leave for future work the design of effective data collection

techniques for P2P networks (whether structured or unstructured). Given the often

stealthy creation of such networks, we expect this may remain a challenging problem

for researchers.

3.4 Empirical Analysis

Our taxonomy also suggested that available bandwidth B is a useful metric for botnet

utility. We again note that bandwidth estimation for end-to-end hosts is a complex

A Taxonomy of Botnet Structures 157

task. Nonetheless, to show the utility of our proposed metric, we estimated the avail-

able average bandwidth in two botnets.

Using techniques described in [16], we measured one botnet of approximately

50,000 unique members in February 2005, and estimated the bandwidth of 7,326

bots chosen in a uniformly random manner. Likewise, we measured the bandwidth

of a 3,391 member subsample from a 48,000 member botnet in January of 2006.

We used the tmetric [7] tool to perform the bandwidth estimation. tmetric
essentially uses successively larger probes to estimate the bandwidth to a host. We

used a high-capacity link (OC-48) close to our network’s core routers, so that we

were more likely to measure the end host’s available bandwidth, rather than any

limitations in our internal network. Dozens of probes sent over minutes were used

to obtain an average. Again, we note that the networking community has developed

far more sophisticated techniques to estimate bandwidth end-to-end. We believe our

simple measurements were useful to quickly obtain a first order approximation of

the average bandwidth in an entire distributed network.

Figure 5(a) and (b) show the distribution of bandwidth, with min/max and aver-

age bandwidth values observed during the probes. Table 2 shows the average avail-

able bandwidth (that the botmaster can utilize) from a single bot. Using Eq(1) and

without considering the diurnal sensitivity, we can calculate the average available

bandwidth for botmaster to use on one bot is around 53.3004 Kbps. For data set 2,

the average is 34.8164 Kbps, a few less than the first case.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

B
o

ts

Bandwidth (kbps)

Sample Botnet Bandwidth Estimate
 Fri Feb 11 09:39:40 EST 2005

 (Sample n = 7326 of approx. 50K)

average bandwidth
minimum bandwidth
maximum bandwidth

(a) Botnet 1: sampling 7,326 of approxi-

mately 50K

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

B
o

ts

Bandwidth (kbps)

Sample Botnet Bandwidth Estimate 2

average bandwidth
minimum bandwidth
maximum bandwidth

(b) Botnet 2: sampling 3,380 of 48k.

Fig. 5. An estimate of bandwidth usage in two sampled botnets. Just examining the maximum

bandwidth, the botnets appear to have roughly the same distribution of high, medium and low-

speed bots, and therefore appear to pose the same DDoS threat potential. The analysis below,

however, shows how diurnal changes significantly reduce the average available bandwidth of

(b), compared to (a).

But when accounting for diurnal sensitivity, and assuming the average online

times for each class of bots is [2, 4, 24] hours, then the final average bandwidth for

botmaster on one bot is 22.7164 Kbps. If a botnet has a size of 50K, then on average

158 David Dagon, Guofei Gu, and Christopher P. Lee

Bot Bandwidth Type Low (std) Medium (std) High (std)

Dataset 1: Average Max BW 28.2356 (11.9612) 119.1708 (54.2837) 601.7158 (989.2654)

Average usage BW 19.2395 (8.5739) 74.3089 (34.4838) 364.8714 (636.2601)

Average available BW 8.9961 44.8619 236.8444

Dataset 2: Average Max BW 33.9266 (9.3649) 116.0036 (51.0478) 432.4184 (354.3628)

Average usage BW 27.9144 (8.8397) 86.2721 (33.3334) 280.6805 (229.9276)

Average available BW 6.0122 29.7315 151.7379

Table 2. Average and standard deviation of bandwidth observed in two botnets, plotted in

Figure 5

the botmaster consistently has more than 1Gbps bandwidth on average at anytime.

This suggests the botnet could easily launch a successful denial of service attack

on almost any web site. (Indeed, during our period of observation, the 50K member

botnet did DDoS several websites that only had 100Mbs transit.) For data set 2, the

weighted bandwidth is 14.6378 Kbps– comparatively lower.

The metric therefore reveals something counter-intuitive about botnets. Just look-

ing at the sampled bandwidth in Figure 5(a) and (b), it seems that the botnets have

roughly the same maximum bandwidth, and the same number of bots, and therefore

have the same general utility from a DDoS perspective. When accounting for diur-

nal changes in populations, however, the second botnet (plotted in Figure 5(b)) has

approximately half the average available bandwidth, despite having only 2,000 less

members than the other network. If network administrators had to select between

these two botnets and prioritize a single response effort, the simple bandwidth esti-

mate B shows a higher utility in the botnet in Figure 5(a).

Our bandwidth estimate metric may have other uses besides priority ranking bot-

nets. This exercise suggests that diurnal changes in botnet membership can signifi-

cantly affect a botnet’s utility as a DDoS vehicle. We leave for future work an anal-

ysis of how this metric can be leveraged in a targeted attack on a botnet. That is, we

speculate that responders might significantly reduce a botnet’s DDoS potential by

targeting the “high-speed” members of a botnet. The bandwidth B metric should let

researchers measure their progress in such a response, and tell them how many more

high-speed members must be removed, relative to the mix of low-speed members,

for a given estimated diurnal usage pattern.

4 Related Work

Our work fits into the larger body of literature addressing the statistical mechanics of

complex networks [4]. Others have studied the brittle nature of scale-free networks

and resilience of random networks in other contexts [5,23,40]. Our work adapts these

findings to the particular domain of botnets.

A Taxonomy of Botnet Structures 159

The topology of networks under active decay was analyzed in [40]. Many of

the results in [40] anticipate our own. The authors took a fascinating look at all do-

mains of network structures (e.g., including terror cells, and global history), and not

just computer networks. By restricting our analysis to botnets, we identified several

unique and interesting phenomena not considered in [40]. For example, the authors

in [40] suggest a strategy of splitting high-degree nodes to avoid targeted responses.

This is analogous to increasing C in scale free networks, discussed in 3. Since we

focused on the botnet domain, we were able to further observe that this results in a

degraded transitivity.

Botnet research is still maturing. The work in [13] anticipated many of the gen-

eral categories of botnets analyzed in Section 2, including the difficulty in responding

to different type of botnet taxonomies. The models and empirical data we presented

in Section 2 flesh out and formalize the intuitive discussion in [13].

Recently, advanced botnets with complex network structures have been studied.

Vogt, et al. [54] presented a super-botnet, the network of many independent, small

botnet, which is a special case of a random graph botnet. Wang, et al. [55] introduced

an advanced hybrid peer-to-peer botnet. Grizzard, et al. [19] provided an overview

of P2P botnet and a case study of a specific bot.

There have been several works on botnet measurement. In [17, 46], the authors

used honeynets to track existing IRC-based botnets and report a few simple statistics

about botnets. Rajab, et al., [47], argue that the estimation of botnet size is actually

hard in practice, and call for further research on the measurement of botnets. We

believe our analysis in Sections 2 and 3 help with this problem.

Wang, et al. [55], propose two metrics, connection ratio and degree ratio, to mea-

sure the resilience of removing mostly-connected bots from a botnet. In this paper,

we propose more metrics, and not only measure the robustness, but also the effec-

tiveness and efficiency of a botnet for the botmaster.

Researchers have attempted to study the botnet problem in a systematic way.

Barford and Yegneswaran [8] codify the capabilities of malware by dissecting four

widely-used Internet Relay Chat (IRC) botnet codebases. Each codebase is classified

along seven dimensions including botnet control mechanisms, host control mecha-

nisms, propagation mechanisms, exploits, delivery mechanisms, obfuscation and de-

ception mechanisms. Trend Micro [35] also proposed a taxonomy of botnet threats,

along dimensions such as attacking behavior, command and control model, rally

mechanism, communication protocol, evasion technique, and other observable activ-

ities. Our taxonomy is different from this existing work. It is a use-driven taxonomy

focused on the botnet structure. We study the problem from specific aspects such as

the structure and the utility metrics of the botnets.

Our taxonomy and discussion of general response options presumes a sensi-

tive detection system. We have not considered detection of botnets, and urge fur-

ther research. We note preliminary detection work in misuse systems [22], and IRC

traces [11]. Significantly, this early work focuses on tracking individual bots (e.g.,

to obtain a binary) and not the network cloud of coordinated attackers addressed in

our study. In [13,17], researchers focused on countering botnets (as opposed to indi-

vidual bots), which used honeypots and broad sensors to track and infiltrate botnets.

160 David Dagon, Guofei Gu, and Christopher P. Lee

Recently, there are several works on the botnet detection problem. BotHunter [20]

is a bot detection system using IDS-Driven Dialog Correlation according to defined

bot infection dialog model. Rishi [18] uses the similarity of nick name to detect bot-

net channel. Karasaridis, et al. [28], proposed to detect botnet command and control

through passive network flow record analysis.

5 Conclusion

Botnets present significant new challenges for researchers. The fluid nature of this

problem requires researchers anticipate future botnet strategies and design effective

response techniques. To assist in this effort, we presented a taxonomy of botnets

based on topological structure.

Our analysis shows that random network models (either direct Erdös-Rényi mod-

els or structured P2P systems) give botnets considerable resilience. Such formations

resist both random and targeted responses. Our analysis also showed that targeted

removals on scale free botnets offer the best response.

We have demonstrated the utility of this taxonomy by selecting a class of botnets

to remediate. Our analysis suggested that by removing command and control nodes,

targeted removal was an effective response to scale-free botnets. We measured the

impact of such responses in simulations, and using a real botnet.

5.1 Future Work

Our response strategies considered only targeted and random responses to botnets.

Byzantine failures in a botnet, where administrators infiltrate a network, e.g., [17],

may present a third response option. To some extent, [40] anticipates some issues in

such failures. Future work should assess the impact of such failures on key metrics,

and identify metrics for evasion and detection.

Because of the difficulty in measuring botnets, our empirical analysis necessarily

considered only changes in giant, s, in scale free botnets. Future work will investigate

the potential of honeypots to measure local transitivity in botnets, including P2P

botnets. The botnets we captured were very large (100K+ members), and proved

difficult to manage using current honeypot technologies.

Acknowledgments

This material is based upon work supported by the National Science Foundation

under Grant No. CCR-0133629 and CNS-0627477, and by the U.S. Army Research

Office under Grant No. W911NF0610042. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation and the U.S. Army

Research Office.

A Taxonomy of Botnet Structures 161

References

1. Waste: Anonymous, secure, encrypted sharing. http://waste.sourceforge.
net/index.php?id=projects, 2007.

2. WineHQ: Windows API Implementation for Li5Dnux. http://www.winehq.com/,

2007.
3. A.-L. Barabási and R. Albert. Science, 286(509), 1999.
4. Réka Albert and Alert-László Barabási. Statistical mechanics of complex networks. Re-

views of Modern Physics, 74(1), 2002.
5. Réka Albert, Hawoong Jeong, and Alert-Lászloó Barabási. Error and attack tolerance of

complex networks. Nature, 406:378=382, 2000.
6. Mark Allman and Vern Paxson. On estimating end-to-end network path properties. In

ACM Special Interest Group on Data Communication (SIGCOMM ’99), volume 29, 1999.
7. Michael Bacarella. TMetric bandwidth estimation tool. http://michael.

bacarella.com/projects/tmetric/, 2007.
8. Paul Barford and Vinod Yegneswaran. An inside look at botnets. In In Series: Advances

in Information Security. Springer Verlag, 2006.
9. V.H. Berk, R.S. Gray, and G. Bakos. Using sensor networks and data fusion for early

detection of active worms. In Proceedings of the SPIE AeroSense, 2003.
10. B. Bollobás. Random Graphs. Academic Press, 1985.
11. David Brumley. Tracking hackers on IRC. http://www.doomdead.com/texts/

ircmirc/TrackingHackersonIRC.htm, 2003.
12. Edwin Calimbo. Packetnews: The ultimate irc search engine. http://www.

packetnews.com/, 2007.
13. Evan Cooke and Farnam Jahanian. The zombie roundup: Understanding, detecting, and

disrupting botnets. In Steps to Reducing Unwanted Traffic on the Internet Workshop

(SRUTI ’05), 2005.
14. David Dagon. The network is the infection. http://www.caida.org/projects/

oarc/200507/slides/oarc0507-D\agon.pdf, 2005.
15. David Dagon, Amar Takar, Guofei Gu, Xinzhou Qin, and Wenke Lee. Worm population

control through periodic response. Technical report, Georgia Institute of Technology,

June 2004.
16. David Dagon, Cliff Zou, and Wenke Lee. Modeling botnet propagation using time zones.

In Proceedings of the 13th Annual Network and Distributed System Security Symposium

(NDSS’06), 2006.
17. Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet tracking: Exploring a

root-cause methodology to prevent distributed denial-of-service attacks. Technical Report

ISSN-0935-3232, RWTH Aachen, April 2005.
18. Jan Goebel and Thorsten Holz. Rishi: Identify bot contaminated hosts by irc nickname

evaluation. In USENIX Workshop on Hot Topics in Understanding Botnets (HotBots’07),

2007.
19. Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang, and David

Dagon. Peer-to-peer botnets: Overview and case study. In USENIX Workshop on Hot

Topics in Understanding Botnets (HotBots’07), 2007.
20. Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee. Bothunter:

Detecting malware infection through ids-driven dialog correlation. In 16th USENIX Se-

curity Symposium (Security’07), 2007.
21. Guofei Gu, Monirul Sharif, Xinzhou Qin, David Dagon, Wenke Lee, and George Riley.

Worm detection, early warning and response based on local victim information. In 20th

Annual Computer Security Applications Conference (ACSAC), 2004.

162 David Dagon, Guofei Gu, and Christopher P. Lee

22. Christopher Hanna. Using snort to detect rogue IRC bot programs. Technical report,

October 2004.

23. Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack vulnerability

of complex networks. Phys. Rev., E65(056109), 2002.

24. John Horrigan. Broadband adoption at home in the united states: Growing but slowing.

http://web.si.umich.edu/tprc/papers/2005/501/TPRC%20Horrigan%20Broadband.2005b.pdf,

2005.

25. Manish Jain and Constantinos Dovrolis. End-to-end available bandwidth: Measurement.

methodology, dynamics, and relation with tcp. In Special Interest Group on Data Com-

munication (SIGCOMM ’02), 2002.

26. Xuxian Jiang, Dongyan Xu, Helen J. Wang, and Eugene H. Spafford. Virtual playgrounds

for worm behavior investigation. Technical Report CERIAS Technical Report (2005-24),

Purdue University, February 2005.

27. C. Kalt. Internet relay chat: Architecture. http://www.faqs.org/rfcs/rfc2810.html, 2000.

28. Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale botnet detection and

characterization. In USENIX Workshop on Hot Topics in Understanding Botnets (Hot-

Bots’07), 2007.

29. Kevin Killourhy, Roy Maxion, and Kymie Tan. A defense-centric taxonomy based on

attack manifestations. In International Conference on Dependable Systems and Networks

(ICDS’04), 2004.

30. Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A taxonomy

of computer program security flaws, September 1994.

31. Ulf Lindqvist and Erland Jonsson. How to systematically classify computer security

intrusions. In Proceedings of the 1997 IEEE Symposium on Security and Privacy, pages

154–163, 1997.

32. LURHQ. Zindos worm analysis. http://www.lurhq.com/zindos.html, 2004.

33. Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in

unstructured peer-to-peer networks. In ICS ’02: Proceedings of the 16th international

conference on Supercomputing, pages 84–95, New York, NY, USA, 2002. ACM Press.

34. MaxMind LLC. Maxmind - ip geolocation and online fraud prevention.

http://www.maxmind.com/, 2007.

35. Trend Micro. Taxonomy of botnet threats. Technical report, Trend Micro White Paper,

November 2006.

36. S. Milgram. The small world problem. Psychology Today, 2(60), 1967.

37. D. Moore. Code-red: A case study on the spread and victims of an internet worm.

http://www.icir.org/vern/imw-2002/imw2002-papers/209.ps.gz, 2002.

38. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the

slammer worm. IEEE Magazine on Security and Privacy, 1(4), July 2003.

39. D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet quarantine: Require-

ments for containing self-propagating code. In Proceedings of the IEEE INFOCOM 2003,

March 2003.

40. Shishir Nagarja and Ross Anderson. The topology of covert conflict. Technical Report

UCAM-CL-TR-637, University of Cambridge, July 2005.

41. Jose Nazario. Botnet tracking: Tools, techniques, and lessons learned. In Black Hat, 2007.

42. M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Random graphs with arbitrary degree

distributions and their applications. Phys. Rev., E64(026118), 2001.

43. Nielsen NetRatings. Average web usage. http://www.nielsen-netratings.
com/reports.jsp?section=pub_reports&repor%t=usage&period=
weekly, 2007.

A Taxonomy of Botnet Structures 163

44. Janak J Parekh. Columbia ids worminator project. http://worminator.cs.columbia.edu/,

2004.

45. L. Qin, C. Pei, E. Cohen, L. Kai, and S. Scott. Search and replication in unstructured

peer-to-peer networks. In 16th ACM International Conference on Supercomputing, 2002.

46. Moheeb Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A multifaceted ap-

proach to understanding the botnet phenomenon. In Proceedings of the 6th ACM SIG-

COMM on Internet Measurement (IMC), pages 41–52, 2006.

47. Moheeb Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. My botnet is big-

ger than yours (maybe, better than yours): Why size estimates remain challenging. In

USENIX Workshop on Hot Topics in Understanding Botnets (HotBots’07), 2007.

48. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In Proceedings of the ACM Conference of the Special Interest Group

on Data Communication (SIGCOMM), pages 161–172, August 2001.

49. M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella network: Properties of

large-scale peer-to-peer systems and implications for system design. IEEE Internet Com-

puting Journal, 6(1), 2002.

50. Colleen Shannon and David Moore. The spread of the witty worm. Security & Privacy

Magazine, 2(4):46–50, 2004.

51. Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan Wallach. Eclipse attacks on over-

lay networks: Threats and defenses. In Proceedings of INFOCOM’06, April 2006.

52. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings

of the ACM SIGCOMM ’01 Conference, San Diego, California, August 2001.

53. Ryan Vogt and John Aycock. Attack of the 50 foot botnet. Technical report, Department

of Computer Science, University of Calgary, August 2006.

54. Ryan Vogt, John Aycock, and Michael Jacobson. Army of botnets. In Proceedings of

NDSS’07, 2007.

55. Ping Wang, Sherri Sparks, and Cliff C. Zou. An advanced hybrid peer-to-peer botnet. In

USENIX Workshop on Hot Topics in Understanding Botnets (HotBots’07), 2007.

56. D.J. Watts and S.H. Strogatz. Nature, 393(440), 1998.

57. N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer worms.

In 2003 ACM Workshop on Rapid Malcode (WORM’03). ACM SIGSAC, October 2003.

58. Yinglian Xie, Hyang-Ah Kim, David R. O’Hallaron, Michael K. Reiter, and Hui Zhang.

Seurat: A pointillist approach to network security, 2004.

59. Y. Zhang and V. Paxson. Detecting stepping stones. In Proceedings of the 9th USENIX

Security Symposium, August 2000.

60. C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for internet

worms. In Proceedings of 10th ACM Conference on Computer and Communications

Security (CCS’03), October 2003.

61. C. C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and analy-

sis. In Proceedings of 9th ACM Conference on Computer and Communications Security

(CCS’02), October 2002.

62. C. C. Zou, W. Gong, and D. Towsley. Worm propagation modeling and analysis under

dynamic quarantine defense. In Proceedings of ACM CCS Workshop on Rapid Malcode

(WORM’03), October 2003.

63. C.C. Zou, D. Towsley, W. Gong, and S. Cai. Routing worm: A fast, selective attack worm

based on ip address information. Technical Report TR-03-CSE-06, Umass ECE Dept.,

November 2003.

164 David Dagon, Guofei Gu, and Christopher P. Lee

64. Cliff Zou and Ryan Cunningham. Honeypot-aware advanced botnet construction and

maintenance. In International Conference on Dependable Systems and Networks (DSN),

pages 199–208, June 2006.

Index

path predicates 71

arms race 92

attacks

botnet 1–3

denial of service 1

stepping stone 2

traceback 2

Bayesian Networks classification 10

BBN Technologies 6, 20, 22

behavior

complete list of 54

definition of 53

detection of 54

e.g.

binding tainted port 57

connecting to tainted IP 57, 58

connecting to tainted port 57, 58

derived send 53

sendto tainted IP 57

tainted open file 58

tainted send 53, 57, 58

exhibition of 54

false negative 54, 55

false positive 54, 56–58

flagging of 54

remote control 47, 49, 56, 57, 59

benchmark 95

binary analysis 66

blackhole 131, 132, 139

bot

capabilities 48, 52

family 46

agobot 46, 48, 57

definition of 48

DSNXbot 46, 48, 56, 57

evilbot 46, 48

G-SySbot 46, 48, 56, 57

sdbot 46, 48, 56, 57

Spybot 46, 48, 57

variant 46, 49, 57

definition of 48

packing transformations 48

bot command 45

candidate 49, 55

detected 54, 56, 57

DYN, C&E 55

STAT, CORR 55

detection

definition of 54

e.g.

cloning 56

data-leaking 53

denial-of-service (DoS) 57

keylogging 48

port redirect 53, 57

scanning 55

web download 45, 47

encryption 47, 55

OpenSSL 47, 55

non-candidate 49

parameterized 46, 48

parameters 46

undetected 56

botherder 45

botmaster 131, 132, 134, 135, 139, 140

166 Index

botnet 131–133, 135–141

command-and-control (C&C) 45

Internet Relay Chat (IRC) 46

remotely programmable platform 46

topology 46

botnet detection 1

botnet network models 149

botnet taxonomy 144

botnets 66

bots 131, 132, 134–141

BotSwat 46

benign program testing 57

bot testing 54

flagging algorithm 52

gate functions 46, 52, 53

NtOpenFile 53

complete list of 54

labeling a bot 61

performance 59

sink arguments 52

C library functions 48

dynamically linked 53, 55

statically linked 47, 51, 53, 55

C2 see command and control (C2)

CERT 2

chat 2, see IRC

command and control (C2) 1

correlation

algorithms 13–15

counter-intelligence 132, 141

countermeasures 109

CRAWDAD Project, The 5, 22

Dartmouth 5, 22

DDoS see distributed denial of service

decision tree classification 10

Department of Defense see US Depart-

ment of Defense

detection 131–135, 137–141

distributed denial of service 1, 2

DNS 1–3

DNSBL 131–141

DoD see US Department of Defense

Domain Name Service see DNS

Dynamically Linked Library (DLL) 46

effectiveness of a botnet 145

efficiency of a botnet 147

Euclidean distance 17

flow

characteristics 1, 3, 10, 11, 13

classification 9

correlation 12

ground truth 8

honeynet 1, 2

Honeynet Project, The 2

intermediate representation 75

interposition 50, 53

detours library 50, 59

in-line function hooks 60

system call 60

IRC

botnets based on 10

bots 3, 8

channel 2

command and control 1, 2, 4, 13, 21

port 3, 10

server 2, 6, 7, 15, 19, 20

traffic 10

Kaiten bot 6

keylogger 82, 84

linked-in images 58, 59

machine learning classification 4, 10, 21,

22

mixed execution 67, 78

multi-dimensional flow correlation 15

multicast 12–15

MyDoom 82, 83

Naı̈ve Bayesian classification 9

NetSky 82, 83

NISCC 2

P2P see peer-to-peer applications

peer-to-peer applications 9

port scan 2, 8, 9

puppetnets 61

real-time analysis 22

reconnaissance 132–141

rendezvous point 2, 6, 12, 19–21

robustness of a botnet 149

rootkit 89

Index 167

sandbox see interposition

security analysis 109

spam 1, 2, 131, 134–136, 138–141

statistical measures 16

stepping stone 2, 12, 14

Symantec 2

symbolic execution 66

symbolic execution 75

system call 46, 49, 50, 52, 55

taint

address-based 51

content-based 46, 51, 53

content-matching 51

instantiation 50

out-of-band memory copies 46, 51

propagation 50

algorithm 51

assembly-level 59, 61

cause-and-effect (C&E) 51, 55, 59

correlative (CORR) 51, 55, 58, 59

evasion of 61

library-call-level 46, 47

performance penalty 61

propagation functions 47

property of 51

substring-based 46, 51, 53

tcpdump 7, 13

TFN 82, 84

timing attack 90

topological analysis 3, 5, 18, 19

traceback 2

trigger condition 66, 70

trigger types 73

trigger-based behavior 65, 70

trojan 2

US Department of Defense 2

user input 47, 50, 52, 57, 58, 61

application-defined 50, 52, 61

clean string 47, 52

DispatchMessage 52

keyboard 52

mouse 47, 50, 52

spoofing 61

virtual machine 91

virtual machine monitor 89

detection 89

virtual machine properties

efficiency 93

equivalence 93

exceptions 94

resource control 93

virus 2

VMBR 89

VMM 89

VMWare 90

WEKA 10

whitelist 61

Xen 90

