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Preface

This book might have been titled Introduction to Electromagnetic Shielding, since

every chapter, that is to say, every section, could well be the subject of a book. Thus

the goal of this book is to provide a first roadmap toward a full understanding of the

phenomena at the core of the complex and fascinating world of electromagnetic

shielding.

The book is organized in twelve chapters and three appendixes. A word of

explanation about this choice is due. Consistent with the title of the Series to which

this book belongs, electrostatic and magnetic shielding are relegated to Appendixes

A and B, respectively. While these discussions could possibly have merited being

presented in the first chapters, our final decision about their collocation in the

appendixes was also influenced by the fact that they could be sufficiently contracted

and are familiar to most readers approaching a book on electromagnetic shielding.

The third appendix covers standards and measurement procedures. Its location at the

end of the book is due to the rapid obsolescence of any material covering a subject of

this type. Standards proliferation is a real problem for almost any engineer, and the

field of electromagnetic shielding does not represent an exception to this modern-

day ‘‘disease.’’

The chapters are organized as follows: First some introductory remarks are

presented on the electromagnetics of shielding (Chapter 1), followed by a descri-

ption of the arsenal of conventional and less-conventional materials (Chapter 2). A

brief review of the figures of merit suitable for a quantitative and comparative

analysis of shielding performance is offered in Chapter 3, and this chapter forms

the initial point of an ongoing (and possibly endless) discussion on crucial issues at

the root of a number of further considerations. The core of the analysis methods

available for electromagnetic shielding starts at Chapter 4, where the subject of a

stratified medium illuminated by a plane wave and the analogy between governing

equations and transmission-line equations are covered at some length. Chapter 5

deals with numerical methods suitable for the analysis of actual shielding problems.

Its content follows from both the number of numerical techniques available to solve

xi



this class of configurations and the need of presenting, for each of them, pros and

cons and examples. Chapter 6 is entirely devoted to apertures and to their effects on

shielding performance, since apertures are generally considered to be the most

important coupling path between the shielded and source regions. The book

continues with a thorough analysis of enclosures, since the shielded volume is often

a closed region. The special case of cables is considered in Chapter 8. Cables are the

subject of excellent textbooks. Although, at least in principle, a possible choice was

to refer to the existing literature without any attempt of inclusion, their omission

would have been a serious deficiency. So our compromise was to present the very

basics of shielded cables.

Conceptually cables can be viewed as systems to be shielded as well as

components of a shielding configuration, which are the subject of Chapter 9. These

details are much more important than might appear at a first glance and are often

decisive in the achieved level of performance. The reader should always refer to

manufacturers’ specifications, bearing in mind that shielding components are often

not directly comparable, because different test fixtures can yield different measured

data.

The last three chapters cover some distinctive issues in frequency-selective

shielding, shielding design procedures, and uncommon ways of shielding. The

interested readers will find there several starting points for fields that are still subject

to much exploration.

Before acknowledgments, apologies: we are perfectly aware that not all the

contributors to this research and technical field have been mentioned. Space

limitations have further imposed some omissions reflecting our different personal

views. The authors will be grateful to anybody who will bring to their attention any

relevant omission. We are ready to include also in a future edition references worthy

of being cited.

The authors are indebted to all those who nurtured their education, to ancestors

who instilled the value of education, parents and relatives, to fathers of today’s

philosophical and scientific culture, to pioneers in electromagnetics, to their very

special educators and colleagues. In particular, they wish to acknowledge the

patience and the competence of Dr. Paolo Burghignoli. The first author is

particularly grateful to the late Dr. Motohisa Kanda, whose friendship and

encouragement in focusing on the specific topic of electromagnetic shielding

ultimately led to the writing of this book.

Final thanks go to Dr. Chang, Editor of this Series, for having encouraged us to

contribute to this prestigious Series and to the editorial staff at Wiley for their

definitive merit in the improvement of the quality of the original manuscript.

Salvatore Celozzi

Rodolfo Araneo

Giampiero Lovat

Rome, Italy

July 2007
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CHAPTER ONE

Electromagnetics behind
Shielding

Shielding an electromagnetic field is a complex and sometimes formidable task. The

reasons are many, since the effectiveness of any strategy or technique aimed at the

reduction of the electromagnetic field levels in a prescribed region depends largely

upon the source(s) characteristics, the shield topology, and materials. Moreover, as it

often happens, when common terms are adopted in a technical context, different

definitions exist. In electromagnetics shielding effectiveness (SE) is a concise

parameter generally applied to quantify shielding performance. However, a variety

of standards are adopted for the measurement or the assessment of the performance

of a given shielding structure. Unfortunately, they all call for very specific conditions

in the measurement setup. The results therefore are often useless if the source or

system configurations differ even slightly. Last among the difficulties that arise in the

solution of actual shielding problems are the difficulties inherent in both the solution

of the boundary value problem and the description of the electromagnetic problem in

mathematical form.

1.1 DEFINITIONS

To establish a common ground, we will begin with some useful definitions. An

electromagnetic shield can be defined as [1]:

[A] housing, screen, or other object, usually conducting, that substantially reduces the

effect of electric or magnetic fields on one side thereof, upon devices or circuits on the

other side.

Electromagnetic Shielding by Salvatore Celozzi, Rodolfo Araneo and Giampiero Lovat
Copyright # 2008 John Wiley & Sons, Inc.
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This definition is restrictive because it implicitly assumes the presence of a

‘‘victim.’’ The definition is also based on a misconception that the source and

observation points are in opposite positions with respect to the shield, and it includes

the word ‘‘substantially’’ whose meaning is obscure and introduces an unacceptable

level of arbitrariness.

Another definition [2] of electromagnetic shielding that is even more restrictive

is:

[A] means of preventing two circuits from electromagnetic coupling by placing at least

one of the circuits in a grounded enclosure of magnetic conductive material.

The most appropriate definition entails a broad view of the phenomenon:

[A]ny means used for the reduction of the electromagnetic field in a prescribed region.

Notice that no reference to shape, material, and grounding of the shield is necessary

to define its purpose.

In general, electromagnetic shielding represents a way toward the improvement

of the electromagnetic compatibility (EMC, defined as the capability of electronic

equipment or systems to be operated in the intended electromagnetic environment at

design levels of efficiency) performance of single devices, apparatus, or systems.

Biological systems are included, for which it is correct to talk about health rather

than EMC. Electromagnetic shielding also is used to prevent sensitive information

from being intercepted, that is, to guarantee communication security.

Electromagnetic shielding is not the only remedy for such purposes. Some sort of

electromagnetic shielding is almost always used in apparatus systems to reduce their

electromagnetic emissions and to increase their electromagnetic immunity against

external fields. In cases where the two methodologies for reducing the source levels

of electromagnetic emission or strengthening the victim immunity are not available

or are not sufficient to ensure the correct operation of devices or systems, a reduction

of the coupling between the source and the victim (present or only potentially

present) is often the preferred choice.

The immunity of the victims is generally obtained by means of filters that are

analogous to electromagnetic shielding with respect to conducted emissions and

immunity. The main advantage of filters is that they are ‘‘local’’ devices. Thus,

where the number of sensitive components to be protected is limited, the cost of

filtering may be much lower than that of shielding. The main disadvantage of using a

filter is that it is able to arrest only interferences whose characteristics (e.g., level or

mode of transmission) are different from that of the device, so the correct operation

in the presence of some types of interference is not guaranteed. Another serious

disadvantage of the filter is its inadequacy or its low efficiency for the prevention of

data detection.

In general, the design of a filter is much simpler than that of a shield. The filter’s

designer has only to consider the waveform of the interference (in terms of voltage

or current) and the values of the input and output impedance [3], whereas the shield’s
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designer must include a large amount of input information and constraints, as it will

be discussed in the next chapters.

Any shielding analysis begins by an accurate examination of the shield

topology [4–6]. Although the identification of the coupling paths between the main

space regions is often trivial, sometimes it deserves more care, especially in

complex configurations. A shield’s complexity is associated with its shape,

apertures, the components identified as the most susceptible, the source

characteristics, and so forth. Decomposition of its configuration into several

subsystems (each simpler than the original and interacting with the others in a

definite way) is always a useful approach to identify critical problems and find

ways to fix and improve the overall performance. This approach is based on the

assumption that each subsystem can be analyzed and its behavior characterized

independently of the others components/subsystems. For instance, in the

frequency domain and for a linear subsystem, for each coupling path and for

each susceptible element, it is possible to investigate the transfer function TðvÞ
relating the external source input SðvÞ and the victim output VðvÞ characteristics
as VðvÞ ¼ UðvÞ þ TðvÞSðvÞ, where UðvÞ represents the subsystem output in the

absence of external-source excitation. In the presence of multilevel barriers, the

transfer function TðvÞ may ensue from the product of the transfer functions

associated with each barrier level.

The foregoing approach can be generalized for a better understanding of the

shielding problem in complex configurations. However, it is often sufficient for

attention to be given to the most critical subsystems and components, on one hand,

and the most important coupling paths, on the other hand, for the fixing of major

shielding problems and the improvement of performance [7]. The general approach

is obviously opportune in a design context. The complete analysis of the relations

between shielding and grounding is left to the specific literature.

1.2 NOTATION, SYMBOLOGY, AND ACRONYMS

The abbreviations and symbols used throughout the book are briefly summarized

here in order to make clear the standard we have chosen to adopt. Of course, we will

warn the reader anytime an exception occurs.

Scalar quantities are shown in italic type (e.g., V and t), while vectors are shown

in boldface (e.g., e and HÞ; dyadics are shown in boldface with an underbar (e.g., e
and G). A physical quantity that depends on time and space variables is indicated

with a lowercase letter (e.g., eðr; tÞ for the electric field). The Fourier transform with

respect to the time variable is indicated with the corresponding uppercase letter (e.g.,

Eðr;vÞ), while the Fourier transform with respect to the spatial variables is indicated

by a tilde (e.g.,~eðk; tÞ); when the Fourier transform with respect to both time and

spatial variables is considered, the two symbologies are combined (e.g.,
~
Eðk;vÞ).

The sets of spatial variables in rectangular, cylindrical, and spherical coordinates

are denoted by ðx; y; zÞ, ðr;f; zÞ, and ðr;f; uÞ, respectively. The boldface latin letter

u is used to indicate a unit vector and a subscript is used to indicate its direction: for
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instance, ðux; uy;uzÞ, ður; uf; uzÞ, and ður; uf; uuÞ denote the unit vectors in the

rectangular, cylindrical, and spherical coordinate system, respectively.

We will use the ‘‘del’’ operator notation r with the suitable product type to

indicate gradient (r½��), curl (r� ½��), and divergence operators (r � ½��); the

Laplacian operator is indicated as r2½��. The imaginary unit is denoted with

j ¼ ffiffiffiffiffiffiffi�1
p

and the asterisk * as a superscript of a complex quantity denotes its

complex conjugate. The real and imaginary parts of a complex quantity are indicated

by Re[ �] and Im[ �], respectively, while the principal argument is indicated by the

function Arg[ � ]. The base-10 logarithm and the natural logarithm are indicated by

means of the log( �) and ln( � ) functions, respectively.
Finally, throughout the book, the international system of units SI is adopted,

electromagnetic is abbreviated as EM, and shielding effectiveness as SE.

1.3 BASIC ELECTROMAGNETICS

1.3.1 Macroscopic Electromagnetism and Maxwell’s Equations

A complete description of the macroscopic electromagnetism is provided by

Maxwell’s equations whose validity is taken as a postulate. Maxwell’s equations can

be used either in a differential (local) form or in an integral (global) form, and there

has been a long debate over which is the best representation (e.g., David Hilbert

preferred the integral form but Arnold Sommerfeld found more suitable the

differential form, from which the special relativity follows more naturally [8]).

When stationary media are considered, the main difference between the two

representations consists in how they account for discontinuities of materials and/or

sources. Basically, if one adopts the differential form, some boundary conditions at

surface discontinuities must be postulated; on the other hand, if the integral forms

are chosen, one must postulate their validity across such discontinuities [9,10].

Maxwell’s equations can be expressed in scalar, vector, or tensor form, and

different vector fields can be considered as fundamental. A full description of all

these details can be found in [8]. In this book we assume the following differential

form of the Maxwell equations:

r� eðr; tÞ ¼ � @

@t
bðr; tÞ;

r� hðr; tÞ ¼ jðr; tÞ þ @

@t
dðr; tÞ;

r � dðr; tÞ ¼ reðr; tÞ;
r � bðr; tÞ ¼ 0:

ð1:1Þ

From these equations the continuity equation can be derived as

r � jðr; tÞ ¼ � @

@t
reðr; tÞ: ð1:2Þ
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In this framework the EM field—described by vectors e (electric field, unit of

measure V/m), h (magnetic field, unit of measure A/m), d (electric

displacement, unit of measure C/m2), and b (magnetic induction, unit of

measure Wb/m2 or T)—arises from sources j (electric current density, unit of

measure A/m2) and re (electric charge density, unit of measure C/m3). Further,

except for static fields, if a time can be found before which all the fields and

sources are identically zero, the divergence equations in (1.1) are a consequence

of the curl equations [8], so under this assumption the curl equations can be

taken as independent.

It can be useful to make the Maxwell equations symmetric by introducing

fictitious magnetic current and charge densities m and rm (units of measure V/m2

and Wb/m3, respectively) which satisfy a continuity equation similar to (1.2) so that

(1.1) can be rewritten as

r� eðr; tÞ ¼ � @

@t
bðr; tÞ �mðr; tÞ;

r� hðr; tÞ ¼ jðr; tÞ þ @

@t
dðr; tÞ;

r � dðr; tÞ ¼ reðr; tÞ;
r � bðr; tÞ ¼ rmðr; tÞ:

ð1:3Þ

As it will be shown later, the equivalence principle indeed requires the introduction

of such fictitious quantities.

It is also useful to identify in Maxwell’s equations some ‘‘impressed’’ source

terms, which are independent of the unknown fields and are instead due to other

external sources (magnetic sources can be only of this type). Such ‘‘impressed’’

sources are considered as known terms in Maxwell’s differential equations and

indicated by the subscript ‘‘i.’’ In this connections, (1.3) can be expressed as

r� eðr; tÞ ¼ � @

@t
bðr; tÞ �miðr; tÞ;

r� hðr; tÞ ¼ jðr; tÞ þ @

@t
dðr; tÞ þ jiðr; tÞ;

r � dðr; tÞ ¼ reðr; tÞ þ reiðr; tÞ;
r � bðr; tÞ ¼ rmiðr; tÞ:

ð1:4Þ

The impressed-source concept is well known in circuit theory. For example,

independent voltage sources are voltage excitations that are independent of possible

loads.

Although both the sources and the fields cannot have true spatial discontinuities,

from a modeling point of view, it is useful to consider additionally sources in one or

two dimensions. In this connection, surface- and line-source densities can be

introduced in terms of the Dirac delta distribution d, as (singular) idealizations of
actual continuous volume densities [8,11].
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Finally, in the frequency domain, Maxwell’s curl equations are expressed as

r� Eðr;vÞ ¼ �jvBðr;vÞ �Miðr;vÞ;
r�Hðr;vÞ ¼ Jðr;vÞ þ jvDðr;vÞ þ Jiðr;vÞ;

ð1:5Þ

where the uppercase quantities indicate either the Fourier transform or the phasors

associated with the corresponding time-domain fields.

1.3.2 Constitutive Relations

By direct inspection of Maxwell’s curl equations in (1.1), it is immediately clear that

they represent 6 scalar equations with 15 unknown quantities. With fewer equations

than unknowns no unique solution can be identified (the problem is said to be

indefinite). The additional equations required to make the problem definite are those

that describe the relations among the field quantities e, h, d, b, and j, enforced by the

medium filling the region where the EM phenomena occur. Such relations are called

constitutive relations, and they depend on the properties of the medium supporting

the EM field.

In nonmoving media, with the exclusion of bianisotropic materials, the d field

depends only on the e field, b depends only on h, and j depends only on e. These

dependences are expressed as constitutive relations, with the e and h fields regarded

as causes and the d, b, and j fields as effects.

If a linear combination of causes (with given coefficients) produces a linear

combination of effects (with the same coefficients), the medium is said to be linear

(otherwise nonlinear). In general, the constitutive relations are described by a set of

constitutive parameters and a set of constitutive operators that relate the above-

mentioned fields inside a region of space. The constitutive parameters can be

constants of proportionality between the fields (the medium is thus said isotropic), or

they can be components in a tensor relationship (the medium is said anisotropic). If

the constitutive parameters are constant within a certain region of space, the medium

is said homogeneous in that region (otherwise, the medium is inhomogeneous). If the

constitutive parameters are constant with time, the medium is said stationary

(otherwise, the medium is nonstationary).

If the constitutive operators are expressed in terms of time integrals, the medium

is said to be temporally dispersive. If these operators involve space integrals, the

medium is said spatially dispersive. Finally, we note what is usually neglected, that

the constitutive parameters may depend on other nonelectromagnetic properties of

the material and external conditions (temperature, pressure, etc.).

The simplest medium is vacuum. In vacuum the following constitutive relations

hold:

dðr; tÞ ¼ e0eðr; tÞ;
bðr; tÞ ¼ m0hðr; tÞ;
jðr; tÞ ¼ 0:

ð1:6Þ
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The quantities m0 ¼ 4p � 10�7 H/m and e0 ¼ 8:854 � 10�12 F/m are the free-space

magnetic permeability and dielectric permittivity, respectively. Their values are

related to the speed of light in free space c through c ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
m0e0

p
(in deriving the

value of e0, the value of c is assumed to be c ¼ 2:998 � 108 m/s).

For a linear, homogeneous, isotropic, and nondispersive material the constitutive

relations can be expressed as

dðr; tÞ ¼ eeðr; tÞ;
bðr; tÞ ¼ mhðr; tÞ;
jðr; tÞ ¼ seðr; tÞ;

ð1:7Þ

where m and e are the magnetic permeability and dielectric permittivity of the

medium, respectively. These quantities can be related to the corresponding free-

space quantities through the dimensionless relative permeability mr and relative

permittivity er, such that m ¼ mrm0 and e ¼ ere0. The dimensionless quantities

xm ¼ mr � 1 and xe ¼ er � 1 (known as magnetic and electric susceptibilities,

respectively) are also used. The third equation of (1.7) expresses Ohm’s law, and s is

the conductivity of the medium (unit of measure S/m). If the medium is

inhomogeneous, m, e; or s are quantities that depend on the vector position r. If

the medium is anisotropic (but still linear and nondispersive) the constitutive

relations can be written as

dðr; tÞ ¼ e � eðr; tÞ;
bðr; tÞ ¼ m � hðr; tÞ;
jðr; tÞ ¼ s � eðr; tÞ;

ð1:8Þ

where e, m, and s are called the permittivity tensor, the permeability tensor, and the

conductivity tensor, respectively (they are space-dependent quantities for inhomo-

geneous media).

For linear, inhomogeneous, anisotropic, stationary, and temporally dispersive

materials, the constitutive relation between d and e is expressed by a convolution

integral as

dðr; tÞ ¼
Z t

�1
eðr; t � t0Þ � eðr; t0Þdt0: ð1:9Þ

The constitutive relations for other field quantities have similar expressions.

Causality is implied by the upper limit t in the integrals (this means that the effect

cannot depend on future values of the cause). If the medium is nonstationary,

eðr; t; t0Þ has to be used instead of eðr; t � t0Þ. The important concept expressed by

(1.9) is that the behavior of d at the time t depends not only on the value of e at the

same time t but also on its values at all past times, thus giving rise to a time-lag
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between cause and effect. In the frequency domain the constitutive relation (1.9) is

expressed as

Dðr;vÞ ¼ eðr;vÞ � Eðr;vÞ; ð1:10Þ

where, with a little abuse of notation, eðr;vÞ indicates the Fourier transform of the

corresponding quantity in the time domain. The important point to note here is that,

in the frequency domain, temporal dispersion is associated with complex values of

the constitutive parameters; causality establishes a relationship between their real

and imaginary parts (known as the Kramers–Kronig relation) [8] for which neither

part can be constant with frequency. In addition it can be shown that the nonzero

imaginary part of the constitutive parameters is related to dissipation of EM energy

in the form of heat.

Finally, if the medium is also spatially dispersive (and nonstationary), the

constitutive relation takes the form

dðr; tÞ ¼
ZZZ
V

Z t

�1
eðr; r0; t; t0Þ � eðr; r0; t0Þdt0

2
4

3
5dV 0; ð1:11Þ

where V indicates the whole three-dimensional space; as before, similar expressions

hold for the constitutive relations of other field quantities as well. The integral over

the volume V in (1.11) expresses the physical phenomenon for which the effect at

the point r depends on the value of the cause in all the neighboring points r0. An
important point is that if the medium is spatially dispersive but homogeneous, the

constitutive relations involve a convolution integral in the space domain. Therefore

the constitutive relations in a linear, homogeneous, and stationary medium for the

Fourier transforms of the fields with respect to both time and space can be written as

~
Dðk;vÞ ¼ ~eðk;vÞ �~Eðk;vÞ: ð1:12Þ

Very often, in the frequency domain, the contributions in Maxwell’s equa-

tions (1.5) from the conductivity current and the electric displacement are combined

in a unique term by introducing an equivalent complex permittivity. For simplicity,

we consider isotropic materials for which complex permittivity is a scalar quantity,

defined as eC ¼ e� js=v. Thus we can rewrite (1.5) in a dual form as

r� Eðr;vÞ ¼ �jvmðr;vÞHðr;vÞ �Miðr;vÞ;
r�Hðr;vÞ ¼ jveCðr;vÞEðr;vÞ þ Jiðr;vÞ:

ð1:13Þ

Finally, it is important to note that for the study of electromagnetism in matter, the

EM field can be represented by four vectors other than e, h, d, and b (provided that the

new vectors are a linear mapping of these vectors). In particular, the common

alternative is to use vectors e, b, p, andm (not to be confused with the magnetic current
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density), where the new vectors p and m are called polarization and magnetization

vectors, respectively, and Maxwell’s equations are consequently written as

r� eðr; tÞ ¼ � @

@t
bðr; tÞ;

r� bðr; tÞ
m0

�mðr; tÞ
� �

¼ jðr; tÞ þ @

@t
½e0eðr; tÞ þ pðr; tÞ�;

r � ½e0eðr; tÞ þ pðr; tÞ� ¼ reðr; tÞ;
r � bðr; tÞ ¼ 0:

ð1:14Þ

From (1.1) and (1.14), it follows that

pðr; tÞ ¼ dðr; tÞ � e0eðr; tÞ;

mðr; tÞ ¼ bðr; tÞ
m0

� hðr; tÞ; ð1:15Þ

or, in the frequency domain,

Pðr;vÞ ¼ Dðr;vÞ � e0Eðr;vÞ;

Mðr;vÞ ¼ Bðr;vÞ
m0

�Hðr;vÞ: ð1:16Þ

Next we introduce the equivalent polarization current density jP ¼ @p=@t, the

equivalent magnetization current density jM ¼ r�m, and the equivalent polariza-

tion charge density rP ¼ �r � p so that the Maxwell equations take the form

r� eðr; tÞ ¼ � @

@t
bðr; tÞ;

r� bðr; tÞ
m0

¼ jðr; tÞ þ jPðr; tÞ þ jMðr; tÞ þ e0
@eðr; tÞ

@t
;

e0r � eðr; tÞ ¼ reðr; tÞ þ rPðr; tÞ;
r � bðr; tÞ ¼ 0:

ð1:17Þ

1.3.3 Discontinuities and Singularities

As was mentioned in the previous section, in the absence of discontinuities,

Maxwell’s equations in differential form are valid everywhere in space; nevertheless,

for modeling purposes, discontinuities of material parameters or singular sources are

often considered. In such cases other field relationships must be postulated

(alternatively, they can be derived from Maxwell’s equations in the integral form if

such integral forms are postulated to be valid also across the discontinuities).

Let us consider the presence of either (singular) electric and magnetic source

densities (electric jS and reS and magnetic mS and rmS) distributed over a surface S,
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which separates two regions (region 1 and region 2, respectively), or discontinuities in

the material parameters across the surface S; the EM field in each region is indicated

by the subscript 1 or 2. Let un be the unit vector normal to the surface S directed from

region 2 to region 1. In such conditions the following jump conditions hold:

un � ðh1 � h2Þ ¼ jS;

un � ðe1 � e2Þ ¼ �mS;

un � ðd1 � d2Þ ¼ reS;

un � ðb1 � b2Þ ¼ rmS;

ð1:18Þ

and

un � ðj1 � j2Þ ¼ �rS � jS �
@reS
@t

;

un � ðm1 �m2Þ ¼ �rS �mS � @rmS

@t
;

ð1:19Þ

where rS½�� ¼ r½�� � un@½��=@n. It is clear that when jS and mS are zero,

the tangential components of both electric and magnetic fields are continuous

across the surface S. In particular, if discontinuities in the material parameters are

present, the electric surface current density jS may be different from zero at the

boundary of a perfect electric conductor (PEC, within which e2 ¼ 0), and the

magnetic surface current densitymS may be different from zero at the boundary of a

perfect magnetic conductor (PMC, within which h2 ¼ 0). Then the jump conditions

at the interface between the conventional medium and the PEC are written as

un � h ¼ jS;

un � e ¼ 0;

un � d ¼ reS;

un � b ¼ 0;

un � j ¼ �rS � jS �
@reS
@t

;

un �m ¼ 0:

ð1:20Þ

Likewise, at the interface between a conventional medium and a PMC, the results are

un � h ¼ 0;

un � e ¼ �mS;

un � d ¼ 0;

un � b ¼ rmS;

un � j ¼ 0;

un �m ¼ �rS �mS � @rmS

@t
:

ð1:21Þ

In these jump conditions the un unit vector points outside the conductors.
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Finally, some other singular behaviors of fields and currents worth mentioning

occur in correspondence to the edge of a dielectric or conducting wedge and

to the tip of a dielectric or conducting cone. The solution of the EM problem

in such cases is not unique, unless the singular behavior is specified. The order

of singularity can be determined by requiring that the energy stored in the

proximity of the edge or of the tip remains finite. Further details can be found in

[11] and [12].

1.3.4 Initial and Boundary Conditions

As was noted earlier Maxwell’s equations together with the constitutive relations

represent a set of partial differential equations. However, it is well known that in

order to obtain a solution for this set of equations, both initial and boundary

conditions must be specified. The initial conditions are represented by the

constraints that the EM field must satisfy at a given time, while boundary conditions

are, in general, constraints that the EM field must satisfy over certain surfaces of the

three-dimensional space, usually surfaces that separate regions of space filled with

different materials. In these cases the boundary conditions coincide with the jump

conditions illustrated in the previous section. Other important examples of boundary

conditions that can easily be formulated in the frequency domain are the impedance

boundary condition and radiation condition at infinity. The impedance boundary

condition relates the component Et of the electric field tangential to a surface S with

the magnetic field as

Et ¼ ZSðun �HÞ; ð1:22Þ

where ZS (surface impedance) is a complex scalar quantity. The radiation condition

at infinity (also known as the Sommerfeld radiation condition or the Silver–Müller

radiation condition) postulates that in free space, in the absence of sources at infinity,

there results

lim
r!þ1 r E�

ffiffiffiffiffiffi
m0

e0

r
ðH� urÞ

� �
¼ 0: ð1:23Þ

1.3.5 Poynting’s Theorem and Energy Considerations

For simplicity, in what follows we will refer to time-harmonic fields and sources,

and we will use the phasor notation in the frequency domain. It is understood that

this is an idealization, since true monochromatic fields cannot exist. However, the

simplicity of the formalism and the fact that a monochromatic wave is an

elemental component of the complete frequency-domain spectrum of an arbitrary

time-varying field make the assumption of monochromatic fields an invaluable tool

for the investigation of the EM-field theory. Nevertheless, great care must be given

to the use of such an assumption because it can lead to nonphysical consequences:

BASIC ELECTROMAGNETICS 11



a classical example consists in determining the energy stored in a lossless cavity.

An infinite value is actually obtained, since the cavity stores energy starting from a

remote instant t ¼ �1. The problem can be overcome by considering time-

averaged quantities, but some other problems can arise when the filling material is

dispersive.

A fundamental consequence of Maxwell’s equations is the Poynting theorem by

which an energetic interpretation is made of some field quantities. In particular, it

can be shown that given a region V bounded by a surface S, from Maxwell’s

equations the following identity holds:

ðð
�
S

un �PdSþ
ZZZ
V

pddV þ
ZZZ
V

ðpH þ pEÞdV ¼
ZZZ
V

ðpi þ pmiÞdV : ð1:24Þ

Equation (1.24) expresses the Poynting theorem. The real part of the right-hand side

of (1.24) (where pi ¼ �J�i � E=2 and pmi ¼ �Mi �H�=2) represents the time-

averaged power furnished by the impressed sources to the EM field, and the left-

hand side of (1.24) represents the destination of such a power. The Poynting vector

P is defined as

P ¼ 1

2
E�H�: ð1:25Þ

The real part of its flux across the surface S (first addend in equation (1.24))

represents the time-averaged power radiated through the surface S. The second

addend in (1.24) (where pd ¼ J� � E=2) represents the time-averaged dissipated

Joule power. The terms pH ¼ jvH� � B=2 and pE ¼ �jvE � D�=2 have a clear

physical meaning only for nondispersive media. In particular, for simple isotropic

materials (with complex constitutive parameters m and eC), the Poynting theorem

can also be expressed as

r �RefPg�vImfeCg jEj
2

2
�v Imfmg jHj2

2
¼�Re

J�i �E
2

þMi �H�

2

� �
;

r � ImfPgþ 2vðRefmg jHj2
4

�RefeCg jEj
2

4
Þ ¼ �Im

J�i �E
2

þMi �H�

2

� �
:

ð1:26Þ

In the first equation of (1.26) the terms involving the imaginary parts of m and eC
correspond to time-averaged power densities dissipated through a conduction

current or for different mechanisms (magnetic and dielectric hysteresys); moreover

for media that cannot transfer energy (mechanical or chemical) into the field (i.e.,

passive media) such imaginary parts must be nonpositive. In general, we will refer to

lossless isotropic media as those materials having the imaginary parts of m and eC
identically zero. It can be shown that lossless anisotropic media are characterized by

complex tensor permeability and permittivity which are both Hermitian.
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For nondispersive media the term into the brackets in the second equation of

(1.26) represents the difference between the time-averaged magnetic and electric

energy densities. The right-hand side is called reactive power density. As the second

equation of (1.26) shows, such reactive power density (divided by 2v) represents a
sort of energy exchange between the external and the internal region.

1.3.6 Fundamental Theorems

Three fundamental theorems with applications to EM theory are briefly recalled in

this section. They are the uniqueness, reciprocity, and equivalence theorems.

Uniqueness Theorem As in any other problem of mathematical physics, the

uniqueness property is a fundamental condition for a problem to be well-posed.

First of all, a uniqueness theorem establishes the mandatory information that one

needs to obtain the solution of the problem. Second, it is of critical importance to

know that the solution that one can obtain through different techniques is also

unique. Third, the uniqueness theorem is a fundamental tool for the develop-

ment of other important theorems, such as the equivalence theorem and the reci-

procity theorem. In the rest of the chapter we will refer to frequency-domain

problems.

The uniqueness theorem can be formulated as follows: There exists a unique EM

field that satisfies Maxwell’s equations and constitutive relations in a lossy region

provided that the tangential component of E over the boundary, or the tangential

component of H over the boundary, or the former over part of the boundary and the

latter over the remaining part of the boundary, are specified. In the case of regions of

infinite extent, the boundary conditions for the tangential components of the field are

replaced by the radiation condition at infinity.

It is important to know that the proof of the theorem is strictly valid only for lossy

media (and, in turn, this restriction is a consequence of the ideal time-harmonic

assumption). However, the lossless case can be obtained in the limit of vanishing

losses [13].

Reciprocity Theorem Another important theorem of electromagnetism is the

reciprocity theorem, which follows directly fromMaxwell’s equations. In fact, given

a set of sources fJi1;Mi1g that produce the fields fE1;H1;D1;B1g and a second set

of sources fJi2;Mi2g that produce the fields fE2;H2;D2;B2g, from (1.6) the follow-

ing identity can be obtained

r � ðE1 �H2 � E2 �H1Þ ¼ jvðH1 �B2 �H2 � B1 � E1 �D2 þ E2 �D1Þ
þ ðH1 �Mi2 �H2 �Mi1 � E1 � Ji2 þE2 � Ji1Þ:

ð1:27Þ

The media for which the first term in the right-hand side of (1.27) is zero are

called reciprocal. It can be shown that this is the case for isotropic media and

also for anisotropic media provided that both the tensor permittivity and
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permeability are symmetric; examples of nonreciprocal media are lossless

gyrotropic materials (for which the tensor constitutive parameters are Hermitian

but not symmetric). Therefore, from (1.27), for reciprocal media there

results

r � ðE1 �H2 � E2 �H1Þ ¼ ðH1 �Mi2 �H2 �Mi1 � E1 � Ji2 þ E2 � Ji1Þ: ð1:28Þ

By integrating (1.28) over a finite volume V bounded by a closed surface S, we

obtain the Lorentz reciprocity theorem, that is,

ZZ
�
s

ðE1�H2 �E2 �H1Þ�undS ¼
ZZZ
V

ðH1 �Mi2 �H2 �Mi1 � E1 � Ji2 þ E2 � Ji1ÞdV :

ð1:29Þ

A system for which the integral at the left-hand side of (1.29) vanishes is said to be

reciprocal. It can be shown that this is the case if the region V is source free or if an

impedance boundary condition holds over the surface S. In such cases, from (1.29),

the reaction theorem can be obtained, which is expressed by

ZZZ
V

ðH1 �Mi2 � E1 � Ji2ÞdV ¼
ZZZ
V

ðH2 �Mi1 � E2 � Ji1ÞdV : ð1:30Þ

These results can be extended to infinite regions if the impedance boundary

condition is replaced by the radiation condition at infinity.

The usefulness of the reciprocity theorem can be understood by considering the

EM problem of an elemental electric dipole Ji1 ¼ u1dðr� r1Þ placed in free space

and a second elemental electric dipole Ji2 ¼ u2dðr� r2Þ placed inside a metallic

enclosure having an aperture in one of its walls (u1 and u2 are the unit vectors along

two arbitrary directions). According to the discussion above, the system is

reciprocal, and from (1.30) we obtain

u2 � E1ðr2Þ ¼ u1 � E2ðr1Þ: ð1:31Þ

Equation (1.31) expresses the fact that the component along u2 of the electric

field radiated by the dipole (placed in free space) at the point r2 inside the cavity is

equal to the component along u1 of the electric field radiated by the dipole (placed

inside the enclosure) at the point r1 in free space.

The reciprocity theorem can also be used to show that the EM field produced by

an electric surface current density distributed over a PEC surface is identically zero

(and, dually, that produced by a magnetic surface current density distributed over a

PMC surface). Other applications of the reciprocity theorem regard the mode

excitation in waveguides and cavities and receiving and transmitting properties of

antennas [13].
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Equivalence Principle The equivalence principle is a consequence of Maxwell’s

equations and the uniqueness theorem. Basically, it allows the original EM problem

to be replaced with an equivalent problem whose solution coincides with that of the

original problem in a finite region of space. To be effective, the equivalent problem

should be easier to solve than the original one.

The first form of the equivalence principle (also known as the Love equivalence

principle) establishes that the EM field fE;Hg outside a region V bounded by a

surface S enclosing the sources fJi;Mig is equal to that produced by the equivalent

sources fJS;MSg distributed over the surface S and given by

JS ¼ un �HS;

MS ¼ �un � ES;
ð1:32Þ

where fES;HSg is the EM field fE;Hg in correspondence of the surface S and un is

the unit vector normal to S pointing outside the region V . It can be shown that the

field produced by the equivalent sources inside V is identically zero. The equivalent

sources are considered as known terms in the formulation of the problem. However,

they depend on the field fE;Hg, which is unknown. In practice, there are many

problems for which approximate expressions can be found for the equivalent

currents, and in any case they are extensively used to formulate exact integral

equations for the considered problem.

A second form of the equivalence principle is known as the Schelkunoff

equivalence principle. It is based on the fact that, according to the Love equivalence

principle, the field produced by the equivalent sources inside V is identically zero. It

differs from the Love equivalence principle since the medium filling the region V is

replaced with a PEC (the boundary conditions on S are not changed). This way, the

equivalent magnetic current MS is the only radiating source. Dually, the region V

could be replaced with a PMC; in this case, JS would be the only radiating source.

However, it must be pointed out that the two situations considered by Love and

Schelkunoff are different: in the latter, the presence of a PEC (or PMC) body must be

explicitly taken into account.

1.3.7 Wave Equations, Helmholtz Equations, Electromagnetic Potentials,
and Green’s Functions

In linear, homogeneous, and isotropic media, we can take the curl of Maxwell’s

equations in (1.13) and obtain the electric field and the magnetic field wave

equations as

r�r� EðrÞ � k2EðrÞ ¼ �jvmJiðrÞ � r �MiðrÞ;
r�r�HðrÞ � k2HðrÞ ¼ �jveCMiðrÞ þ r � JiðrÞ;

ð1:33Þ

where k2 ¼ v2meC is called medium wavenumber and the dependence on fre-

quency of the fields is assumed and suppressed. From the vector identity
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r�r� ½�� ¼ rr � ½�� � r2½�� applied to (1.33), the Maxwell divergence equa-

tions, and the equation of continuity, the vector Helmholtz equations for the electric

and magnetic fields can be derived as

r2EðrÞ þ k2EðrÞ ¼ jvmJiðrÞ � rr � JiðrÞ
jveC

þr�MiðrÞ;

r2HðrÞ þ k2HðrÞ ¼ jveCMiðrÞ � rr �MiðrÞ
jveC

�r� JiðrÞ:
ð1:34Þ

Both the vector wave equations and the vector Helmholtz equations are

inhomogeneous differential equations whose forcing terms can be quite complicated

functions. Therefore auxiliary quantities (known as potentials) are usually

introduced to simplify the analysis. Different choices are possible, although the

most common are the magnetic and electric (vector and scalar) potentials

fA;F;V;Wg in the Lorentz gauge, which are defined as solutions of the following

equations:

r2AðrÞ þ k2AðrÞ ¼ �mJiðrÞ;
r2FðrÞ þ k2FðrÞ ¼ �eCMiðrÞ;

r2VðrÞ þ k2VðrÞ ¼ � reðrÞ
eC

;

r2WðrÞ þ k2WðrÞ ¼ � rmðrÞ
m

:

ð1:35Þ

The Lorentz gauge implies that r � A ¼ �jvmeCV and r � F ¼ �jvmeCW . The

electric and magnetic fields are expressed in terms of the potentials as

EðrÞ ¼ �jvAðrÞ � rVðrÞ � 1

eC
r� FðrÞ;

HðrÞ ¼ �jvFðrÞ � rWðrÞ þ 1

m
r� AðrÞ:

ð1:36Þ

All the equations in (1.35) are again inhomogeneous (vector or scalar) Helmholtz

equations, but now with a simple forcing term. They can be solved by means of the

Green function method. Basically the scalar Helmholtz equation can be written as an

operator equation of the kind

L½f ðrÞ� ¼ hðrÞ; ð1:37Þ

where L½�� ¼ r2½�� þ k2½��, f is the unknown function, and h is the forcing term (and

appropriate boundary conditions must be specified). The scalar Green function
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Gðr; r0Þ is thus defined as the solution of the equation

L½Gðr; r0Þ� ¼ �dðr� r0Þ ð1:38Þ

subjected to the same boundary conditions. This way it can be shown that the

function f (r) can be expressed through a superposition integral in terms of the Green

function and the forcing term as

f ðrÞ ¼
Z
V

Gðr; r0Þhðr0ÞdV 0: ð1:39Þ

In particular, for a scalar Helmholtz equation in free space (subjected to the radiation

condition at infinity) it results

Gðr; r0Þ ¼ e�jkjr�r0j

4pjr� r0j ð1:40Þ

If vacuum is considered, k ¼ k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
m0e0

p
is the free-space wavenumber.

In free space the vector Helmholtz equations in (1.35) can be easily separated

in three scalar Helmholtz equations, each characterized by the same scalar Green

function (1.40). The electric and magnetic fields can be expressed by using the

scalar Green function for the potentials in terms of electric and magn-etic

sources:

EðrÞ ¼ jvm

Z
V

Geðr; r0Þ � Jiðr0ÞdV 0 þ
Z
V

Gmðr; r0Þ �Miðr0ÞdV 0;

HðrÞ ¼
Z
V

Gmðr; r0Þ � Jiðr0ÞdV 0 � jveC

Z
V

Geðr; r0Þ �Miðr0ÞdV 0:
ð1:41Þ

The free-space electric dyadic Green function Ge is

Geðr; r0Þ ¼ Iþrr
k2

� �
Gðr; r0Þ; ð1:42Þ

and the free-space magnetic dyadic Green function Gm is

Gmðr; r0Þ ¼ rGðr; r0Þ � I; ð1:43Þ

where I is the identity 3� 3 tensor.
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1.4 BASIC SHIELDING MECHANISMS

EM shielding may be pursued by any of the following main strategies, or by a

combination of them:

� Interposition of a ‘‘barrier’’ between the source and the area (volume) where

the EM field has to be reduced.

� Introduction of a mean capable of diverging the EM field from the area of

interest.

� Introduction of an additional source whose effect is the reduction of the EM

field levels in the prescribed area with respect to a situation involving the

original source or source system.

The choice of strategy is made according to the characteristics of the source

(electromagnetic or physical) and to the characteristics of the area to be protected.

Of course, several other factors such as costs or insensitivity to source variations

must be accounted for as well.

The interposition of a barrier is particularly effective in reducing the EM field

levels when the shield material is highly conducting or when it is characterized by

constitutive parameters such that the level of attenuation of the field propagating

through the shield is high. A simple situation, which will be studied in detail in

Chapter 4, may help clarify this point. A uniform plane wave propagating in a

medium with permeability m, permittivity e, and conductivity s, has a propagation

constant expressed by g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm ðs þ jveÞp ¼ aþ jb, where a is the attenuation

constant and b the phase constant. Any combination of the values m, e, and s

giving rise to a high value of the attenuation constant a is suitable for shielding

purposes.

An EM field can be diverted by means of an alternative path, not necessarily

enclosing the area to be shielded. Such a path may offer better propagation

characteristics to the electric field (by means of highly conducting materials), the

electric induction (by means of high permittivity materials), the magnetic induction

(high permeability materials).

Generally speaking, at relatively low frequencies (e.g., below tens of MHz) the

dominant coupling mechanism is related to pass-through cables and connectors.

Above such an approximate threshold the propagation of EM waves through

apertures and shield discontinuities becomes more and more important.

Discontinuities treatment is a major issue in shielding theory and practice.

Chapters 6 and 9 provide a sound approach and practical solutions, respectively, to

this very special key point around which the whole shielding problem turns.

1.5 SOURCE INSIDE OR OUTSIDE THE SHIELDING STRUCTURE
AND RECIPROCITY

In general, the techniques for introducing a shield that excludes EM interference

from a certain region are identical to those used for confining an EM field in the
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neighborhood of the source. This is an immediate consequence of the reciprocity

theorem as formulated in (1.30) or (1.31). The simplest shield consists in an infinite

planar screen that divides two regions of space, region 1 and region 2. When a source

is placed in r1 (in region 1), it produces a certain field at r2 (in region 2). If the

assumptions of the reciprocity theorem are fulfilled, it is easy to see that such a field

is the same as that produced at r1 by the same source placed at r2. There is no

difficulty in generalizing these considerations to the more involved case of a source

in the presence of an enclosure. In this case region 1 is the interior of the enclosure

while region 2 is the external region: thus the field radiated at r2 by a source placed

in r1 is the same as that radiated at r1 by the same source placed at r2. This also

means, for example, that the shielding performance of a shielding structure can be

calculated (or measured) either by placing the source outside the structure and

determining the field inside it or by placing the source inside the structure and

determining the field outside it.

Although the previous considerations are quite simple, the basic assumptions

must be clear. First of all, the reciprocity theorem (or some of its modifications that

account also for nonreciprocal media [12]) must hold: this implies, for example, that

the above described conclusions for linear media are not valid in the presence of

nonlinear media. The two considered situations (with source inside and outside the

shielding structure) must be identical. In particular, the same source must be used in

both situations (i.e., same orientation, same amplitude, and same frequency).

Finally, from a practical point of view, since a sensor is always used to measure the

field at a point, its interactions with the rest of the system (and, in particular, with the

field source) must be negligible (at least, within the accuracy limits of

measurements).
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CHAPTER TWO

Shielding Materials

Today, because the synthesis of new materials is a very active field of research and

industrial development, the arsenal of materials available for the realization of

shielding structures is always increasing. This chapter provides a review of the

properties of materials whose technology is mature enough that they may be

considered almost on the shelf. Materials that are still ongoing development or

whose present costs discourage widespread use are considered in the last section,

with the caution that can be inferred when a situation is destined to change over time.

2.1 STANDARD METALLIC AND FERROMAGNETIC MATERIALS

Most shielding structures are fabricated by means of standard (i.e., nonmagnetic),

conductive materials or by means of ferromagnetic materials, which are often

preferred for their mechanical properties rather than their ferromagnetic behavior.

Moreover it is noteworthy that in most ferromagnetic materials the magnetic

permeability decreases with frequency, generally for values close to one at frequencies

exceeding a few tens of kHz. Thus, in the frequency range dealt with in the following

chapters (electrostatic, magnetostatic, and low-frequency shielding are discussed in

Appendixes A and B) and with the purpose of shielding considerations, the main

characteristic is represented by the conductivity, whichmay be strongly affected by the

temperature and oxidation of material surfaces. A cautionary word is necessary on the

fact that commercial materials are not pure and any variation in their chemical

composition is able to modify their conductivity. In addition the most popular

reference handbook on materials’ properties [1] highlights some slight differences

even for pure bulk materials, which are generally (but not always) negligible from an

engineering point of view. Moreover anomalous conductive behavior can occur in the
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TABLE 2.1 Electrical Conductivity of the Most
Common Conductive Materials

Conductive Material Conductivity s [S/m]

Silver 6.3 �107
Copper 5.9 �107
Industrial copper 5.8 �107
Gold 4.5 �107
Aluminum 3.8 �107
Industrial aluminum 3.7 �107
Lead 4.8 �106
Phosphor bronze 4 �106
Aluminum nickel bronze 2 �106
Tin 9.2 �106
Brass 1.5 �107–3 �107
Steel 5 �106–107

frequency range from a few tens of GHz to the THz level [2–3]. Table 2.1 lists the

conductivity of commonly used shielding materials at room temperature (20	C).
Ferromagnetic materials are paramagnetic materials. Below the Curie tempera-

ture ferromagnetic materials show spontaneous magnetization, and this means that

the spin moments of neighboring atoms in a microscopically large region (called

domain) result in a parallel alignment of moments. The application of an external

magnetic field changes the domains, and the moments of different domains then tend

to line up together. When the applied field is removed, most of the moments remain

aligned, which gives rise to significant permanent magnetization. It is notable that

other paramagnetic materials show antiparallel aligment of moments (antiferro-

magnetic materials): if the net magnetic moment is different from zero, the material

is called ferrimagnetic.

For a review of ferromagnetism beyond the scope of this book, the reader is

referred to references in [4,5]. The following discussion recalls some basic concepts

about the hysteresis loop.

Hysteresis loops can take different shapes, but a few parameters allow the

properties of loops to be characterized. The first type of loop encountered is the

major hysteresis loop, which is obtained by applying to a specimen a cyclic

magnetic field H (with amplitude H) with values large enough to saturate the

material. The ensuing change of the magnetization vector M, or the magnetic flux

density B ¼ m0ðHþMÞ, is recorded along the field direction (components B and

M, respectively). The section of the loop from the negative to the positive

saturation is called the ascending major curve; the other half is called the

descending major curve. The largest achievable amplitude of magnetization (in the

limit H ! 1) is called saturation magnetization, MS. The magnetization

amplitude that remains in the specimen after a large field is applied and then

reduced to zero is the remanence, Mr. The coercive field (or coercitivity) HC is the

magnetic-field amplitude needed to bring the magnetization from the remanence

value Mr to zero; it measures the strength of the field that must be applied to a
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material in order to cancel out its magnetization. While saturation inductions are

comparable in almost all the common materials, coercitivities span an astonish-

ingly wide interval, varying from between 0.2 and 100 A/m for soft magnetic

materials to between 200 and 2000 kA/m for hard magnetic materials [6]. The

differential susceptibility x ¼ @M=@H is defined by the slope of the hysteresis

curve at the considered point (i.e., for a certain value of H).

Because of hysteresis, a given point in theH–M plane (as shown in Figure 2.1) can

be reached in an infinite number of different ways, depending on the previous field

history. Two ways of particular importance are via the return branch and the minor

loop. If at some point of the major loop the field is reversed, the locus of points on the

H–M plane will enter into the hysteresis loop. Such a point is called the turning point,

and the new curve is called the first-order return branch. Another reversal from this

curve will originate a second-order return branch, and so on. When a cyclic field of

variable amplitude is applied to the demagnetized specimen, a set of minor loops is

obtained. Roughly speaking, a minor loop is formed by any pair of higher order return

branches. The line obtained by starting from the demagnetized state and going

directly to saturation is termed the initial magnetization curve. The curve is not

unique because it depends on how the material was previously demagnetized. The

initial magnetization curve allows us to compute the initial susceptibility xin as its

slope at the origin and, consequently, the initial permeability min ¼ m0ð1þ xinÞ. The
simplest way to model a ferromagnetic material is by treating it as linear with a

constant permeability equal to the initial permeability.

The wrong impression that the hysteresis loop might give is that it constitutes a

unique distinctive feature of a ferromagnetic material. On the contrary, hysteresis

entails a more complex structure. The hysteresis-loop representation is incomplete

for anisotropic materials. This is because only the magnetization component along

the field is represented as a function of the applied-field intensity and nothing is
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FIGURE 2.1 Example of a hysteresis loop.
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said about the behavior of the magnetization components transverse to the field.

Thus no anisotropy is identified. Because the magnetization vector is the result of

an average process over many domains that depends on the scale of the specimen,

the hysteresis loop is affected by the geometry and the dimensions of the specimen,

even though the material is the same. Finally, the hysteresis shows a nonlocal

memory. This is because H and M alone are not sufficient to give a complete

characterization of the system, so the past time history is needed. The conclusion is

that there exists nothing that can be straightforwardly called the hysteresis loop of

a material [5].

Magnetic materials can be divided in soft materials (low-coercive field) and hard

materials (high-coercive field), which are primarily used for permanent magnets. Soft

magnetic materials may be further divided into four broad families: electrical steels,

iron-nickel (FeNi) or iron-cobalt (FeCo) alloys, ferrites, and amorphous metals. In the

shielding of power-frequency magnetic fields, Fe–(Ni, Co) are generally used;

noticeable commercial members of the family are Mumetal, Permalloy, and

Permendur.

The hysteretic behavior of ferromagnetic materials is described by separating the

linear part of the BðHÞ characteristic from the magnetization MðHÞ as

BðHÞ ¼ m0½H þMðHÞ�; ð2:1aÞ
dBðHÞ
dH

¼ m0 1þ dMðHÞ
dH

� �
: ð2:1bÞ

The main topic when dealing with ferromagnetic materials is the correct modeling of

their nonlinear hysteretic behavior.

A first way to proceed is to model only the first magnetization characteristic.

This allows us to account for the nonlinear behavior of the material, but it

neglects the hysteretic one. The following approximate relations hold for

the differential permeability and the first magnetization characteristic,

respectively [7]:

mðHÞ ¼ dBðHÞ
dH

¼ mS þ
BS

HC

e�jHj=HC ; ð2:2aÞ

BðHÞ ¼ mSH þ BSð1� e�jHj=HCÞ; ð2:2bÞ

where BS is the saturation induction, HC is the coercive field, and mS is the value of

the permeability at saturation.

To account for hysteresis, several models have been proposed in the literature

[8–10]; these models are mainly based on the classical Preisach model [11] and on

the Jiles–Atherton model [12].

The classical Preisach model is based on the assumption that a ferromagnetic

material consists of a collection of an infinite number of elementary interacting

fragments, called ‘‘hysteron,’’ each of them being represented by an elementary
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rectangular hysteresis loop of two statistically distributed parameters (switching up

hA and switching down hB fields, with hA 
 hB). All the hysterons are assumed to

have the same saturation magnetization, MS. If an external magnetic field is

increased up to H1, all the fragments whose up-switching fields hA are smaller than

or equal to the external field switch their magnetization up, whereas if the magnetic

field is decreased to H2 all the hysterons whose down-switching fields hB are larger

than the external field are switched down. A Preisach plane can be constructed by the

switching fields ðhA; hBÞ, and each hysteron has its own exclusive point on the plane.
The plane is divided into two parts (a part with switched-up hysterons and a part with

switched-down hysterons) by a staircase line that gives the prehistory of the

material. It is assumed that for each material a distribution of hysterons exists that

does not change during the magnetization process. The distribution is characterized

by the Preisach probability distribution function PðhA; hBÞ whose values are

nonnegative on the whole plane and shows even symmetry, meaning

PðhA; hBÞ ¼ Pð�hA;�hBÞ. The knowledge of the distribution function gives the

full description of the magnetization process. The total magnetization of the system

with hysteresis can in fact be computed as

M ¼ MS

Zþ1

�1
dhA

ZhA
�1

PðhA; hBÞQðhA; hBÞdhB; ð2:3Þ

where QðhA; hBÞ is the Preisach state function equal to þ1 or �1, depending on the

applied field. The mathematical expressions for the differential susceptibility are

dM

dH
¼ 2

ZH
H1

P H; hBð ÞdhB; ð2:4aÞ

dM

dH
¼ 2

ZH2

H

PðH; hBÞdhB; ð2:4bÞ

where H1 and H2 are the largest previous minimum and the largest previous

maximum, respectively. The first equation holds when the applied field increases

ðdH=dt > 0Þ, and the second one when it decreases ðdH=dt < 0Þ. In order to give

the complete description of the hysteresis process, two conditions are necessary to

be fulfilled: the delation property (erasing the history of the material) and the

congruency property (all the minor loops calculated between the same field limits

must be congruent). It is known that the congruency property is usually not obeyed

by real systems. Consequently a huge literature has tried to assess how far the real

magnetization process of materials is from that predicted by the classical Preisach

model and has proposed improved modifications of this classical model.

The Jiles–Atherton model is a physically based phenomenological model. The

model starts from the definition of the anhysteretic magnetizationMan of a material,
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which represents a global energy minimum toward which the magnetization M

strives but cannot reach because of the impedance to domain wall motion. The

anhysteretic magnetization curve corresponds to the constitutive law of the material

when no losses (i.e., no hysteresis) are considered, and it can be described by a

modified Langevin function:

ManðHeÞ ¼ MS coth
He

a

� �
� a

He

� �
; ð2:5Þ

where He ¼ H þ aMðHÞ is the effective magnetic field experienced by the domains,

H is the external applied magnetic field, a is the domain density, and a describes the

domain coupling (the latter are two parameters of the model). The magnetization

process is the sum of the contributions from the irreversible magnetization Mirr and

the reversible magnetizationMrev. The reversible component represents the reversible

domain wall bowing and translation and the reversible rotation of the magnetic

domain. The irreversible component represents the processes in thewall domains and,

consequently, the energy loss in the hysteresis material. Their equations are

Mirr ¼ Man þ kd
dMirr

dHe

; ð2:6aÞ
Mrev ¼ cðMan �MirrÞ; ð2:6bÞ

where k is a parameter related to the hysteresis losses, c is the reversibility

coefficient that belongs to the interval ½0; 1�, and d isþ1 when dH=dt > 0, otherwise

�1. By recalling that M ¼ Mrev þMirr, from (2.6), it is easy to obtain

dM

dH
¼ ð1� cÞ Man �Mirr

kd� aðMan �MirrÞ þ c
dMan

dH
: ð2:7Þ

From this expression, after differentiating (2.5) with respect to H and noting

that Mirr ¼ ðM � cManÞ=ð1� cÞ, the final nonlinear differential equation can be

written as

dM

dH
¼ ð1� cÞ½ManðHÞ �MðHÞ�
kð1� cÞd� a½ManðHÞ �MðHÞ�

� cMS

a
cosech2½HeðHÞ� þ caMS

½HeðHÞ�2 :
ð2:8Þ

In Table 2.2, the conductivity at room temperature (20	C) and the range of the static
relative magnetic permeability of basic ferromagnetic materials are reported [4,13].

Since most of the commercially available ferromagnetic materials are patented, a

number of commercial names denote similar materials with slightly different

compositions and properties.
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2.2 FERRIMAGNETIC MATERIALS

Ferrimagnetic materials represent a class of ceramic materials that are widely used

in high-frequency applications. They are divided in garnets and ferrites, the latter

being much more important in shielding applications because of their larger values

of the relative magnetic permeability and of their larger losses. Ferrites have a

crystal structure and are sintered by means of various metal oxides, obtaining high

values of the magnetic permeability (up to 5000 in absence of saturation), of the

resistivity (up to 10�6 �m at 20	C), and a relative dielectric permittivity up to 15.

Different choices for the units of the relevant parameters characterizing the

ferrimagnetic behavior of these materials are possible, and care is necessary in

dealing with them. In the absence of an applied static field, demagnetized ferrites are

isotropic materials exhibiting a magnetic permeability that is a scalar frequency-

dependent quantity. In the presence of an applied static magnetic field, ferrites are

nonreciprocal materials, exhibiting an anisotropic magnetic behavior, described by

the magnetic-permeability tensor m. In particular, if the ferrite is magnetized to

saturation by a static magnetic field H0 (e.g., directed along the z axis of a Cartesian

coordinate system so that H0 ¼ H0uz), in the presence of a small sinusoidal field H

(such that jHj � H0Þ, it exhibits gyromagnetic properties and the magnetic-

permeability tensor can be expressed as [14,15]

m ¼
m1 jk 0

�jk m1 0

0 0 m2

2
4

3
5; ð2:9Þ

where

m1 ¼ m0ð1þ xmÞ; ð2:10aÞ

xm ¼ m2
0g

2H0M0

m2
0g

2H2
0 � v2

; ð2:10bÞ

k ¼ � vm2
0gM0

m2
0g

2H2
0 � v2

; ð2:10cÞ

m2 ¼ m0: ð2:10dÞ

TABLE 2.2 Conductivity and Range of the Relative Magnetic Permeability
of the Three Most Common Ferromagnetic Materials

Range of Relative

Ferromagnetic Material Conductivity [S/m] Magnetic Permeability

Cobalt 1.6 �107 70–250

Nickel �1.2 �107 110–600

Iron �1 �107 150–200000
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The gyromagnetic ratio g is a quantity typical of each ferrite chemical composition,

v is the angular frequency of the applied sinusoidal field H, andM0 is related to H0.

It appears that the entries of the magnetic-permeability tensor may diverge for a

specific value of the angular frequency; the introduction of a damping factor a
accounts for losses and is adequate for macroscopic analyses. Various models have

been proposed for its inclusion and one possibility is [14]

xm ¼ m0gM0ðm0gH0 þ jvaÞ
ðm0gH0 þ jvaÞ2 � v2

; ð2:11aÞ

k ¼ � vm0gM0

ðm0gH0 þ jvaÞ2 � v2
: ð2:11bÞ

In shielding applications, ferrites find their primary application for absorbing an

incident EM field in consideration of their large values of losses: this is very useful in

reducing the reflected field inside cavity-like structures once the field is penetrated

through them.

2.3 FERROELECTRIC MATERIALS

Properties of ferroelectric materials have been known since the seventeenth century

(in the form called Rochelle salt), although they were named in this way only around

1940. The industrial development and use of ferroelectric materials is even more

recent and often limited to electronic devices. These materials present three main

characteristics:

� Anisotropy

� Power losses

� Sensitivity to temperature variations of the main parameters

From a chemical point of view, ferroelectric materials may be ceramic, monomeric,

or polymeric metallophthalocyanines. Depending on their structure, composition,

and on the process used for their synthesis, the tensor er representing the relative

permittivity is often diagonal, possibly exhibiting two entries with the same value

(typically very large, in the range up to 3000). The frequency dependence of each

entry may be accounted for by means of various models. The most adopted of them

gives the electric susceptibility xeðvÞ, which is related to the relative permittivity by

the known expression:

"riiðvÞ ¼ 1þ xeiiðvÞ; i ¼ x; y; z ð2:12Þ

as a function of frequency and are due to Debye [16], Cole–Cole [17], Davidson–

Cole [18], and Havriliak–Negami [19]. The relevant expressions for the components

of the susceptibility are
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xeðvÞ /
1

1þ ðjv=vpÞ ðDebyeÞ; ð2:13aÞ

xeðvÞ /
1

1þ ðjv=vpÞ1�a
ðCole--ColeÞ; ð2:13bÞ

xeðvÞ /
1

1þ ðjv=vpÞ
	 
b ðDavidson--ColeÞ; ð2:13cÞ

xeðvÞ /
1

1þ ðjv=vpÞ1�a
h ib ðHavriliak--NegamiÞ; ð2:13dÞ

where vp, a, and b are characteristic parameters of each material. These parameters

can be determined by starting from the chemical composition of the material but,

more often, through measurements. Other adopted models can be found in [20].

Power losses are usually expressed in terms of a loss angle d, or its tangent tan d,

or by means of its reciprocal, also called the quality factor, Q:

QðvÞ ¼ 1

tan dðvÞ ð2:14Þ

being

tan dðvÞ ¼ "r
00ðvÞ

"r0ðvÞ ; ð2:15Þ

where "r
0ðvÞ and "r

00ðvÞ represent the real and imaginary parts of each entry of the

permittivity tensor, respectively. It is important recognizing that the Kramers–

Kronig relationships [21,22] establish the link between the real and the imaginary

parts of each entry of the permittivity tensor, that is,

Re
"ðvÞ
"0

� �
¼ 1þ 1

p
PV

Zþ1

�1

Im½"ðv0Þ="0�
v0 � v

dv0; ð2:16aÞ

Im
"ðvÞ
"0

� �
¼ � 1

p
PV

Zþ1

�1

Re½"ðv0Þ="0� � 1

v0 � v
dv0; ð2:16bÞ

where PV stands for the principal value of the improper integral.

Another important parameter is represented by the temperature sensitivity.

Temperature can considerably affect the practical use of some ferroelectric materials

for some specific applications.
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In shielding problems, ferroelectric materials may be used to diverge the electric-

displacement vector from an assigned region. Their use exploiting this chara-

cteristic is limited to very special applications, especially when weight consi-

derations make metals unsuitable for shielding purposes. More often ferroeletric

materials are used for the absorption of the incident EM energy, in consideration of

the large values of the permittivity. In this case losses can contribute favorably to

the attenuation of the EM field propagating through the material, the same as for

ferrites [23].

The data on presently available ferroelectric materials are reported in Table 2.3.

The range for the relative permittivity accounts for the minimum–maximum values

exhibited by the various entries of the permittivity tensor.

2.4 THIN FILMS AND CONDUCTIVE COATINGS

Present technology has made available for shielding purposes materials that may

be formed as thin films. The thicknesses of these materials range from about 1 mm
to tens of mm and thus offer great advantages in terms of weight and often of cost,

in comparison with thick barriers. Sometimes this shielding solution is chosen

because it facilitates grounding or offers conductive paths to electrostatic

discharges. The shielding performance of thin conductive layers is generally

acceptable only at frequencies higher than tens of MHz. A thin film may take the

shape of a conductive coating applied in various ways on a housing, internally or

externally with respect to the expected source position. An important parameter for

shielding considerations is the conductive layer’s surface resistivity RS, expressed

in � and defined as

RS ¼ 1

s t
; ð2:17Þ

TABLE 2.3 Real Part of the Permittivity and Losses of Common Ferroelectric
Materials

Ferroelectric Material Range for Real Part of Typical Loss

Relative Permittivity Tangent (tan d)

Barium titanate (BaTiO3) 2500–3000 < 0.015

Barium strontium titanate(Ba1-xSrx)TiO3 150–400 0.001–0.003

Ammonium dihydrogen

phosphate (ADP) (NH4H2PO4) 20–35

Lead titanate (PbTiO3) 100–200 0.045

Lead zirconate (PbZrO3) 100–150 0.01–0.03

Sodium niobate (NaNbO3) 200–1700 0.025–0.2

Terbium molybdate (TMO)(Tb2(MoO4)3) 100 0.0007–0.001

Triglycine sulfate (TGS)(NH2CH2COOH)3.H2SO4 200–300 0.00002–0.004

Boracite (Mg3B7O13Cl) 20–50 0.0003–0.0012
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where t denotes the thickness of the considered material layer. Often, in order to

clearly indicate that the conductive layer has surface resistivity, technical units are

adopted, and this parameter is given in terms of �/sq or �/&.

Another parameter used for thin layers is the point-to-point resistance, expressed

in �, which can be easily measured also in nonflat configurations. Point-to-point

resistance may be useful to place in evidence continuity problems at junctions,

corners, and similar situations where the definition of surface resistivity is not

applicable. However, it should be noted that measurement of the point-to-point

resistance is prone to be strongly sensitive to contact pressure.

Four main technologies are currently used:

� Electroless plating

� Conductive painting

� Vacuum metallizing

� Electrolytic deposition

Electroless coatings are generally deposited on plastic housings or enclosures in the

form of a double substrate. The first substrate (adherent to the structure) is often

copper, and the second substrate (external) is usually nickel; its function is to prevent

the oxidation of the copper layer and to provide mechanical protection. The

thicknesses range between 1 and 5 mm for the copper layer and are generally less

than 1 mm for the nickel one. This technology presents the main advantages of a very

low weight increase and of a very uniform and continuous coating deposition.

Further it does not require any particular treatment of the surface before the

application. Electroless nickel coating has also been applied to wood particles in the

production of wooden particleboards [24].

Conductive paints are the most diffuse coating technology for shielding

applications, at least when only one layer is applied. The most common types of

paint are based on silver, silver-coated copper, or a hybrid of the two types; the diluent

may be a solvent or water. The thickness of the paint is easily varied and typically

ranges between few mm and few tens of mm. The versatility as concerns thickness,

shape, and the advantages of uniformity and low cost is counterbalanced by the need

of a preliminary base treatment and by the presence of some limitations in the line-of-

sight characteristics of the housing or enclosure to be painted. Some applications of

this technique exist for coating [25], for instance, a concrete wall with a colloidal

graphite powder, allowing for a moderate shielding performance at low cost.

Vacuum metallizing is generally applied by using aluminum or copper (in the

latter case possibly coated with a chromium, nickel, or tin layer). This technology

allows for the deposition of thin layers whose thickness is of the order of few mm.

The main limitation in its use is represented by penetration issues in deep recesses

such as those typical of ventilation ducts and apertures.

Electroplated coatings, usually in copper, are suitable for shielding applications

requiring thicknesses up to 25 mm. Electroplating offers better shielding

performance with respect to the other three techniques. The availability of various
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decorative finishes adds a degree of freedom that may enlarge the field of application

of electrolytic deposition.

In Table 2.4 the main features of the different coating techniques are summarized.

2.5 OTHER MATERIALS SUITABLE FOR EM SHIELDING
APPLICATIONS

Materials whose main function is not that of shielding EM fields have also been

modified in their chemical composition or structure in order to provide them some

EM performance while maintaining their original features. The most prevalent

classes are as follows:

� Structural materials (concrete, plastics, etc.)

� Conductive polymers

� Conductive glasses and transparent materials

� Conductive (and ferromagnetic or ferrimagnetic) papers

2.5.1 Structural Materials

Various types of carbon or metallic (generally steel or nickel) fibers or filaments

have been added to cement without varying the mechanical properties of the

concrete but considerably improving the shielding performance, especially at

frequencies above 1 GHz. Moreover the inclusion of filaments or fibers in various

types of thermoplastic matrices has been shown to be effective against EM waves. In

both cases (i.e., cement and thermoplastic matrices) the lengths of the fibers or

filaments are of the order of few millimeters, and the volume fraction of material

added to the basic component is typically in the range between 1% and 4% in cement

pastes [26] and up to 20% in plastic pastes [27].

2.5.2 Conductive Polymers

Conducting polymers are promising materials to shield EM radiation. They can

reduce or eliminate electromagnetic interference (EMI) because of their relatively

TABLE 2.4 Surface Resistivity and Thickness of Coatings

Typical Range for the Typical Thickness

Coating Technique Resistivity, r (� �m) Range (mm)

Electroless plating 0.01–0.03 1–100

Conductive painting 0.02–0.05 10–75

Vacuum metallizing 0.05–0.1 5–10

Electrolytic deposition 0.007–0.02 10–25
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large values of conductivity and dielectric permittivity and ease of control of these

parameters through chemical processing [28]. Recently a high shielding efficiency of

highly conducting doped polyaniline, polypyrrole, and polyacetylene in comparison

with that of copper has been reported [29]. Very thin conductive polymer samples

have high and weakly temperature-dependent shielding efficiencies. The easy tuning

of intrinsic properties by chemical processing suggests that such polymers, especially

polyaniline, are good candidates for low-frequency shielding applications. Con-

ductivity depends on doping and on the geometry of the polymer, which can be

shaped in spun fibers, especially for the polyaniline [30]. The use of this class of

materials is frequent, such as in shielding gaskets, as described in Chapter 9.

2.5.3 Conductive Glasses and Transparent Materials

Different types of optically transparent sheets (i.e., transparent at frequencies having

a wavelength in the range between 400 and 700 nm), obtained by using either glasses

or plastics, are suitable for EM shielding. The main alternatives consist in a very thin

metallic or semiconductor film over a transparent medium, or in a chemical

composition capable of preserving the light transmittance and offering some level of

attenuation toward the incident EM field. Metallic arrays of conductive shapes

embedded in dielectric media are generally included in the classes of artificial

materials (e.g., metamaterials) or composites.

Transparency to light spectrum can also be achieved by means of thin metallic

films. Thin films are formed from various metals or semiconductors, such as gold

[31], silver alloys [32], and indium zinc or tin or cerium oxides [33,34]. Typical

thicknesses range between 10 and 100 nm, although values outside this interval are

also possible. Typical values of surface resistivity range between 0.5 �/& and 10

�/&. The light transmittance is generally higher than 70% and often close to the

threshold of 90%.

2.5.4 Conductive (and Ferromagnetic or Ferrimagnetic) Papers

Conductive papers are obtained by mixing wood or synthetic pulp with metallized

polyester fibers whose surfaces are coated with nickel or copper and nickel [35].

This way, by means of an amount of metal up to 15 g/m2, acceptable performance

are obtained at frequencies above 30 MHz [36]. Ferromagnetic or ferrimagnetic

paper can be obtained by similar formation processes [37].

2.6 SPECIAL MATERIALS

2.6.1 Metamaterials and Chiral Materials

Artificial materials are composite structures consisting of inclusions periodically

embedded in a host matrix. When the size of the inclusions and the spatial periods

are small compared with the wavelength of the EM field generated by a source, such
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artificial materials can be homogenized; that is, they can be described as

homogeneous materials with effective constitutive parameters that depend on the

geometrical and physical properties of the inclusions and of the host medium, and on

how the inclusions are placed in the host matrix. If the homogenized artificial

materials present EM properties that conventional materials do not possess, they are

also called metamaterials [38–40]. Other artificial materials based on periodic

structures, such as electromagnetic-band-gap (EBG) structured materials and

complex surfaces (e.g., high-impedance ground planes and artificial magnetic

conductors), involve distances and dimensions of the order of the wavelength or

more; they are strongly inhomogeneous and need to be described by the periodic-

media formalism (e.g., see Chapter 10).

The most popular class of metamaterials includes structures for which the values

of the (effective) permittivity and permeability are simultaneously negative, as

considered in [41]. A material having this property can be used to obtain a series of

surprising effects, such as backward-wave propagation in the material, a negative

index of refraction, or a reversed Doppler effect. The most famous application

suggests the possibility of fabricating a superlens providing spatial resolution

beyond the diffraction limit [42]. Up to now there is not a common terminology used

to designate such metamaterials. Some of the various terms used instead are as

follows:

� Left-handed (LH) materials

� Backward-wave (BW) materials

� Negative-index (NI) or negative-refractive index (NRI) materials

� Double-negative (DNG) materials

The term ‘‘left-handed’’ was used in the groundbreaking paper by Veselago [41],

and has been widely used since. It highlights a difference with respect to the well-

known ‘‘right-hand rule’’ for the direction of the Poynting vector as a function of the

electric and magnetic fields’ directions. An objection to its use is that ‘‘LH’’ is also

used in classifying chiral media. The term BW is not as much used because

backward waves can be excited in other types of structures. The NRI term seems to

be appropriate when dealing with two- or three-dimensional structures, but it is not

meaningful for one-dimensional structures where propagation angles are not

involved.

The terms above represent in each case a property resulting from a wave

propagating within the metamaterial structure. The term DNG is instead a

consequence of the properties of the (effective) constitutive parameters of the

material itself (whose permittivity and permeability have both negative values). For

ordinary materials these values are both positive, with the noticeable exception

represented by ferrimagnetic materials (although usually negative values of the

permeability occur in a very narrow band) and plasma. Moreover the reason behind

the acronym DNG can be used to define double-positive (DPS) or single-negative

(SNG) materials, as only-"-negative (ENG) and only-m-negative (MNG).
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Many metamaterial structures have been designed and fabricated over the last

few years, and their performances have been verified by measurements. However,

this topic is still relatively new and in so rapid development that any attempt at

giving limits of applicability, quantitative orders of magnitude of the characteristic

parameters, and so forth, is prone to be surpassed by new discoveries, technologies,

or applications.

The first DNG metamaterial structure was proposed, built, and measured in [43]

for microwave applications, by suitably combining the ENG and MNG structures

proposed in [33] and [34] (although it was not obvious at all that the resulting

material were DNG). The ENG structure consists of a periodic arrangement of

parallel metal wires with spatial periods much smaller than the operating

wavelength; if the incident electric field is polarized along the wire axis, the

relative effective permittivity is a purely scalar frequency-dependent quantity and

takes the form

"rðvÞ ¼ 1� v2
pe

v2 þ jvze
; ð2:18Þ

where vpe depends on the spatial period and on the wire radius, whereas ze depends
also on the wire conductivity (the relative effective permeability of the structure is

mr ¼ 1Þ [44].
The MNG structure consists of a periodic arrangement of split rings (still with the

dimensions and period much smaller than the operating wavelength). If the incident

magnetic field is orthogonal to the rings plane, the relative effective permeability is a

purely scalar frequency-dependent quantity and takes the form

mrðvÞ ¼ 1� Fv2

v2 � v2
0m þ jvzm

; ð2:19Þ

where F and v0m depend on the geometrical parameters of the structure, whereas zm
depends also on the metal losses (the relative effective permittivity of the structure is

"r ¼ 1 if the rings are in air) [45]. From equations (2.18) and (2.19) it is immediate to

see that the real part of the effective permittivity is negative for v2 < v2
pe � z2e, while

the real part of the effective permeability is negative inside a frequency range that in

the lossless case reduces to v2
0m < v2 < v2

0m=ð1� FÞ. Of course, for arbitrarily

polarized fields the effective constitutive parameters are anisotropic (or bianiso-

tropic), although much effort is being spent in order to obtain a fully isotropic

metamaterial. It is worth mentioning that both the ENG and the MNG structures

described above are known since 1950s and 1960s (e.g., [46] and [47], respectively).

So far several metamaterial applications have been developed (especially for

guided-wave and antenna applications), and although EM shielding has not yet been

fully explored, some properties useful for shielding purposes have already become

apparent, such as its selectivity with respect to the frequency (e.g., see Chapter 12).

Chiral media are special metamaterials whose internal structure causes macro-

scopic effects. The most important of these effects is rotation of the polarization of the
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propagating field plane [48]. In the optical frequency range there are natural chiral

materials that are also recognized to be optically active materials. Moreover chiral

materials can be artificially obtained, for example, by randomly embedding a large

number of small helices in a host medium. The constitutive relations of isotropic (or

bi-isotropic) chiral materials are

DðrÞ ¼ "EðrÞ � jk
ffiffiffiffiffiffiffiffiffiffi
m0"0

p
HðrÞ;

BðrÞ ¼ mHðrÞ þ jk
ffiffiffiffiffiffiffiffiffiffi
m0"0

p
EðrÞ;

ð2:20Þ

where k is an adimensional real parameter (the so-called Pasteur parameter) that

accounts for the chirality. Some possible applications of chiral materials to EM

shielding are demonstrated in [49] and [50]; bi-anisotropic structures (in particular,

omega media) that have additional degrees of freedom are discussed in [51] for the

design of antireflection coverings.

2.6.2 Composite Materials

Composite materials (especially the widely adopted fiber-reinforced composites) are

generally laid up with several plies with fibers with different orientations. The aim is

to provide high structural strength and mechanical behavior that is close to isotropy.

For EM shielding performance, the fibers or filaments are usually made with

materials exhibiting high conductivity, such as conductive carbon fibers [52,53]. The

graphite structure’s conductivity is achieved by lowering the electrical resistivity of

highly crystalline carbon fibers through intercalation, that is, by insertion of guest

atoms and molecules between single carbon layers of the graphite structure. The

class of intercalates that has been proved to form the most stable compounds with

graphite fibers are the alogens, bromine (Br2), chlorine iodide (ICl), and bromine

iodide (BrCl). Graphite fibers are usually embedded in isocyanate or epoxy matrices,

although cyanate esters and polyimides have also been attempted. Because the

orientation patterns influence the transmission and reflection properties of the

composite materials, the continuous carbon fiber (CCF) composites are woven in

pre-designed patterns to provide a continuously conductive network before being

laminated into composites.

Casey [54] provides a detailed study of the shielding properties of both graphite-

epoxy and screened boron-epoxy composite laminates. Interestingly, although

anisotropic, the graphite-epoxy composite is modeled as an isotropic, homogeneous,

nonmagnetic, and conductive medium (the anisotropy is assumed to have minor

effects in the material characterization). The screened boron-epoxy composite is, on

the other hand, modeled as an isotropic and homogeneous dielectric layer with a

bonded wire-mesh screen in one surface (both bonded and unbonded wire meshes

are studied in detail by Wait [55]). Casey’s study shows that the two composites

behave very differently as EM shielding devices: the graphite-epoxy composite

proved to be a low-pass filter, whereas the screened boron-epoxy composite proved

to be a high-pass filter.
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The most frequently used materials for the wires are stainless steel, phosphor

bronze, and copper; the wire diameters are generally in the range of 10 to 100 mm.

Often the shielding properties are given in terms of the number of wires per unit

length, with the number of openings per inch (OPI) being the most used measure

(see also Chapter 9).

2.6.3 Nanomaterials

Nanomaterials are materials constituted by particles or fibers with dimensions

typically smaller than 100 nm. Nanomaterials have shown some promise as

shielding materials. In particular, carbon nanotubes (CNTs, an allotrope form of

carbon, taking the form of cylindrical carbon molecules) exhibit extraordinary

strength and unique electrical properties, besides being efficient heat conductors

[56]. Because of the symmetry and unique electronic structure of the graphite

layers, defined as graphene, the structure of a nanotube strongly determines its

electrical properties. Each nanotube must be treated as a distinct molecule with a

unique structure. The so-called chiral indexes n and m are used to specify the

unique manner in which the single layer of graphite is rolled up in a seamless

carbon nanotube. For example, if 2nþ m ¼ 3q (where q is an integer), the

nanotube is metallic but with electric current densities higher than those of metals

such as silver and copper; otherwise, the nanotube is a semiconductor. Therefore

variations of nanotube diameters less than 0.1% can considerably change their

electrical behavior.

Nanomaterials are being studied for possible EM applications, by way of

exploiting their tunable constitutive parameters and/or selective properties. An

important class of nanomaterials consists of periodic nanostructures (which may be

periodic in one, two, or three dimensions). Their main application is in the design of

metallo-dielectric multilayers that act as opaque screens in the radio-frequency

range and as transparent screens in the optical range [57], in the development of

plasmonic devices, and in the design of nanocorrugated screens that allow an

extraordinary transmission of EM radiation through apertures with dimensions

smaller than the operating wavelength [58]. Other nanomaterials are the so-called

nano-mixtures, formed by a random arrangement of inclusions with dimensions of

the order of nm embedded in a host matrix. These materials could be employed in

the design of frequency-selective materials or EM absorbers with dimensions much

smaller than those of conventional ones [59].

2.6.4 High-Temperature Superconductors

High-temperature superconductors (HTSCs) were discovered in 1986 by Georg

Bednorz and Alex Muller while studying the conductivity of a lanthanum–barium–

copper oxide ceramic, whose critical temperature (30 K) was the highest measured

to date. However, this discovery started a surge of activity that unraveled

superconducting behavior at temperatures as high as 135 K. The HTSC is formed

as layers of copper oxide interspaced by layers containing barium and other atoms.

SPECIAL MATERIALS 37



While the yttrium compound has a regular crystal structure, the lanthanum

compound is classified as a solid solution. Very effective shielding has been

observed for HTSC materials compared with the above-mentioned conventional

materials, especially at very low frequencies down to DC applications [60,61].

However, some dependence of the shielding properties of these materials on the

surface properties has also been observed; in particular, the use of HTSC in the form

of thin films prepared by laser ablation has shown better performance compared with

powdered HTSC material [62].
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CHAPTER THREE

Figures of Merit for Shielding
Configurations

Before entering into the complex mathematical world that is inherent in almost any

actual shielding problem, it is worth to embark on a detailed, thorough consideration

about the purposes of shielding structures, and consequently about theways to quantify

how much the goal has been achieved by means of a given configuration. In other

words, in this chapter priority is given to the definition of adequate figures ofmerit used

in setting up an analysis or design problem and in comparing the performance of

existing shielding structures. Unfortunately, there is not a consensus [1] on themethods

used to measure the effectiveness of shielding configurations or even that of single

shielding components, such as panels and films, gaskets, and shielded windows. We

leave to Chapter 9 the subject of single, commonly used components perfomance.

Henceforth attention is focused on the figures ofmerit adopted or adoptable to quantify

the shielding effects of ideal situations (e.g., planar panels of infinite extent or

cylindrical tubes) and of actual configurations (especially enclosures).

In a broad sense, the shielding effectiveness is a measure of the reduction or

attenuation of the EM field at a given point in space caused by the insertion of a

shield between the source and that point. Several subtleties are hidden in such a

generic definition, as it will be discussed in this chapter. Starting from the generally

adopted parameters, the key issues and the current trends toward the definition of

more meaningful figures of merit are presented and discussed.

3.1 (LOCAL) SHIELDING EFFECTIVENESS

The shielding effectiveness (SE) of any configuration is defined as a ratio, usually

expressed in decibels, between two suitable EMpower, electric-field, or magnetic-field
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values. The three ratios—the ratio involving the power and the two ratios concerning

the electric and magnetic fields—are numerically coincident only under very special

circumstances. Other definitions will be presented and discussed in the next sections.

The most popular choices are described in the following:

First and preferred choice [2]. The SE is defined as the ratio between the absolute

value of the electric (or magnetic) field EðrÞ (orHðrÞ) that is present at a given
point r beyond the shield and the absolute value of the electric (or magnetic)

field that would have been present at the same point in the absence of the shield

itself. By definition, the latter is the incident fieldEincðrÞ (orHincðrÞ). The SE is

very often expressed in dB. Moreover, in order to obtain positive values in

normal situations, the reciprocal of the previous definition is considered, namely

SEE ¼ 20 log
jEincðrÞj
jEðrÞj ð3:1aÞ

for the electric shielding effectiveness and

SEH ¼ 20 log
jHincðrÞj
jHðrÞj ð3:1bÞ

for the magnetic shielding effectiveness.

The third possibility involving the power before and after the shield installa-

tion reads as

SEP ¼ 10 log
jRefPincðrÞgj
jRefPðrÞgj ð3:1cÞ

wherePinc andP are the Poynting vectors of the field in the absence and in the

presence of the shield, respectively. Figures 3.1 shows the configurations

leading to the three evaluation of SE.

FIGURE 3.1 Configuration with (a) and without (b) the shield for the evaluation of the SE.
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Second and less used choice. In this case the SE is obtained considering the ratio

between the absolute values of the electric (or magnetic) field at two different

points r1 and r2, placed just above and just below the screen, respectively,

SEE ¼ jEðr1Þj
jEðr2Þj ð3:2aÞ

or, in terms of magnetic fields and power, respectively,

SEH ¼ jHðr1Þj
jHðr2Þj ; ð3:2bÞ

SEP ¼ jRefPðr1Þgj
jRefPðr2Þgj

: ð3:2cÞ

Sometimes the name shielding factor (or field attenuation [3]) instead of

shielding effectiveness is adopted, although the term shielding factor is used

to indicate expressions (3.1) as well. Usually the quantities (3.2) are

expressed in dB units.

Another local figure of merit is the special shielding measure, aP: This term was

introduced by Klinkenbusch for the time-harmonic case [4] and defined as the ratio

between the time-averaged EM power received by a load in the absence of the shield,

Punsh, and the EM power received by the same load when the shield is present, Psh.

Therefore, in dB units, at any given position r, ap is defined as

aP ¼ 10 log
PunshðrÞ
PshðrÞ : ð3:3Þ

It is evident that any standard for the measurement of the shielding performance

conforms better to such a definition rather than to the classical definition.

Nevertheless, in both cases there is a contrast between the finite physical dimensions

of the load (i.e., the receiving antenna) and the single point of reference for aP in the

expression (3.3).

Unfortunately, the special shielding measure depends on the load shape and its

constitutive characteristics and parameters. So it has been shown that for a spherical

load centered on r and in the limit of vanishing radius, aP becomes a quantity

independent of the load. Such a quantity, called electromagnetic shielding

effectiveness (with some confusion between the existing, well-known definition

and the new one), for an incident plane wave is expressed as

SEaP ¼ 10 log
2

½jEshðrÞj=jEunshðrÞj�2 þ ½jHshðrÞj=jHunshðrÞj�2 : ð3:4Þ
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The figures of merit described above can be generalized also to transient incident

plane waves [4] by considering the energy delivered, in a prescribed time interval, to

a load located in r in the absence,Wunsh, or in the presence,W sh, of a given shielding

configuration. The relevant expression for the special shielding measure is

aW ¼ 10 log
WunshðrÞ
W shðrÞ : ð3:5Þ

Again, in the limit of vanishing load dimensions, when a transient plane wave

with spectral density distribution SðvÞ is considered as incident field, the following

expression for the transient electromagnetic shielding effectiveness is obtained:

SEaP ¼ 10 log
2
R1
0

jSðvÞj2v dvR1
0

jSðvÞj2f½jEshðrÞj=jEunshðrÞj�2 þ f½jHshðrÞj=jHunshðrÞj�2gv dv
;

ð3:6Þ

which is clearly independent of the load.

It should be noted that all the previous definitions are local in the sense that they

provide an information only at a specific point and nothing can be said about the

remaining of the shielded volume. In particular, when in the volume there are spatial

resonances due to standing waves or when the field penetrating through the various

paths behaves in an unpredicted or unpredictable way, the definitions above can

provide useless and even misleading information. In fact the position and the spatial

orientation of sensitive equipment are generally not known in advance, neither is it

known what their sensitivity to EM-field levels and to the power delivered to them

are. Moreover all the definitions, when applied to closed shielded volumes, require

an empty enclosure to be tested, while it is recognized that the load can considerably

influence the EM-field distribution and intensity. Despite such drawbacks, the great

advantages of the definitions above are their simplicity and intuitiveness.

3.2 THE GLOBAL POINT OF VIEW

For practical purposes, reference will be made henceforth to closed shielded

volumes, generally delimited by a shielding enclosure. Two fundamentally different

philosophies are available to characterize the global performance of a given

shielding structure. The first is among the recommended practices for measurement

of SE, and it suggests that the average and minimum values be given on the basis of

measured data at several different positions [5]. The aim is to assess the worst-case

performance. But such a conservative approach can be misleading (or yield

meaningless data) in the presence of resonances. The second approach is aimed at

gathering a more fruitful information, preserving the synthetic form of a figure of

merit. In this connection it should be noted that complex configurations, such as

those dealt with in shielding problems, must be described under a number of
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different perspective angles, thus requiring a lot of information. The search for

figures of merit capable of retaining both a synthetic form and significant

information could be futile if the compromise between the two opposite

requirements is not judiciously addressed. Unfortunately, any increase in the quality

or in the quantity of information calls for additional work at both the design stage (in

terms of computational complexity) and the experimental stage (necessary for

validation or compliance purposes).

At least in principle the search for the maximum value of the field in a shielded

volume is not a trivial task, and the conservative approach has relevance from an

engineering point of view (opening interesting scenarios about the first philosophy).

As regards the second approach, the main issues that will concern us are basically two:

� Which are the most important quantities that qualify a shielding configuration.

� How to account for the field distribution in the shielded volume.

As to the first point, classical and recent definitions are based on the assumption

(both implicit and explicit) that the delivery of power or energy is the major concern

in shielding problems. This assumption is adequate only in a limited set of

circumstances, where there exist a number of induced effects that are related to the

flux over a surface, or to a line integral, according to Maxwell’s equations. In our

information technology society it is more likely for undesired effects to be

associated with spatial variations in these quantities rather than with the power

(energy) transferred to susceptible components.

As to the second point, Maxwell’s equations offer the way to obtain meaningful

parameters: although some spatial derivatives of the field components are directly

linked with induced, undesired effects, the characterization of the influence of the

shielding enclosure on field uniformity provides useful information about the real

effectiveness of the structure.

3.3 OTHER PROPOSALS OF FIGURES OF MERIT

Figures of merit corresponding to the last two comments have been introduced as

global shielding efficiency (GSE) and disuniformity reduction efficiency (DRE),

respectively [6,7].

Because both surface dimensions and shape as well as its orientation in space are

arbitrary, the information on the reduction of the EM field at one specific position is

not adequate to represent the actual behavior of an enclosure and, in particular, its

performance, which is interpreted as its capability in reducing the coupling between

the EM sources and the environment (closed or open) to be protected. Thus a

parameter adequate for a general characterization could be represented by a suitable

integral of the field quantities over the protected/shielded volume. This way the

possible presence of small regions where the shielding performances are poor (‘‘hot

spots’’) is not revealed. However a partial recovery of this information is enabled by

the second proposed parameter, DRE.
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For the reasons above the comparison of the shielding performance of different

enclosures may be facilitated by the introduction of a new parameter named global

shielding efficiency (GSE) and defined as the integral, performed over the whole

volume protected by the structure under test, of the considered field quantity:

GSEE
dB ¼ 20 log

RRR
Uencl

EincðrÞ�� ��dVRRR
Uencl

EðrÞj jdV ð3:7aÞ

and

GSEH
dB ¼ 20 log

RRR
Uencl

HincðrÞ�� ��dVRRR
Uencl

HðrÞj jdV ; ð3:7bÞ

where Uencl is the internal volume of the enclosure, and Einc (or Hinc) and E (or H)

are the electric (magnetic) field in the absence and in the presence of the shield,

respectively. Although the motivation of GSE is not due to the assessment of the

power inside the enclosure volume, the factor 20 is retained for an easier comparison

with traditional and widely used standards.

In the expressions above it has been assumed that the source of the EM field is

outside the enclosure while the sensitive devices to be protected are inside. Of

course, the reverse is often true, and additionally compliance with standards of many

products requires the dual configuration. The reciprocity theorem (when applicable)

can help in studying such a configuration, when the GSE is treated as the

contribution in a point outside the enclosure due to a source placed inside at all the

possible locations. Other subtleties should be fully analyzed as well, especially as

concerns the practical measurements of the proposed quantities. In the following,

reference is made to configurations with sources located outside the enclosure.

Several observations are noted below about some further relevant aspects

concerning measurements:

� Measurement of the integral quantity (3.7a) and/or (3.7b)

� Measurement or evaluation of the field in the absence of the shielding enclosure

� Antenna configurations in the various frequency bands of interest

About the first issue, it should be clear that the output of real EM antennas is generally

related to an integral of the field quantity to be measured and the antenna factor

accounts for the conversion from the integral to the local quantity. However, in the

case of GSE such a consideration cannot be the key for measurement; the simplest

solution resides in resorting to classical expressions [8] for the approximation of an

integral when the function is to be integrated at several discrete points. The regular

shape of commonly used enclosures considerably simplifies this task.

The second issue concerns a well-known critical fact about shielding

measurement, especially for ‘‘large’’ enclosures (i.e., those falling into the field of
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application of IEEE Std 299–1997): the fields are measured not in the absence of the

enclosure, but with doors and apertures open. This implies that in the numerators of

(3.7a) and (3.7b) an incorrect reference value is used because of the effects of the

shielding walls.

The usual care should be given to the constancy of the power driven to the

transmitting antenna in the presence and in the absence of the shield. Antennas of

small dimensions are recommended because enclosures of physical dimensions

smaller than those to which IEEE Std 299 is applicable are frequently encountered

and the revision of the above-mentioned standard is under preparation. A small loop

for the LF range and a tunable microstrip antenna may be appropriate for such a

measurement. The location of antennas will depend on both the dimensions of the

enclosure and the number and locations of discontinuities on the shield surfaces

(apertures, seams, etc.).

Again, Maxwell’s equations can mitigate the loss of information on the presence

of local ‘‘hot spots’’ inherent in the definition of the GSE. Induced effects are due

also to spatial variations of EM-field components. Thus the influence of the shielding

enclosure on field uniformity can provide useful information about the real

effectiveness of the structure. The proposed coefficient accounting for this aspect of

the shield behavior is the disuniformity reduction efficiency (DRE):

DREdB ¼ 20 log

RRR
Uencl

f incðrÞdVRRR
Uencl

f ðrÞdV ; ð3:8Þ

where

f inc ¼ @Hinc
x

@y

����
����þ @Hinc

x

@z

����
����þ @Hinc

y

@x

�����
�����þ @Hinc

y

@z

�����
�����þ @Hinc

z

@x

����
����þ @Hinc

z

@y

����
���� ð3:9aÞ

and

f ¼ @Hx

@y

����
����þ @Hx

@z

����
����þ @Hy

@x

����
����þ @Hx

@z

����
����þ @Hz

@x

����
����þ @Hz

@y

����
����; ð3:9bÞ

or similar spatial derivatives of the electric field components. All the relevant spatial

derivatives have been included because of the degrees of freedom existing in the

placement of sensitive components and equipment inside the enclosure.

Note that only the spatial variations in Maxwell’s curl equations appear in (3.9).

This is because they are expected to be the causes of induced effects when a possible

loading is inserted inside the enclosure. The properties of the new integral

parameters are shown in Figure 3.2. Figure 3.2a shows the enclosure under test with

a rectangular aperture on one side illuminated by a plane wave impinging

perpendicularly on the aperture, with the electric field directed along the shortest

side of the aperture. The results concerning the GSE are shown in Figure 3.2b where
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FIGURE 3.2 Geometry of the enclosure with a rectangular aperture illuminated by a plane

wave (dimensions in cm) (a). Comparison among the electric and magnetic GSE and the

classical electric and magnetic SE (b). Electric and magnetic DRE (c).
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the electric and magnetic GSE are compared with the electric and magnetic SE

computed placing the receiving probe (RX) at the center of the enclosure. Finally, in

Figure 3.2c the DRE results are presented. It should be noted that the possible zeros

of the field do not affect the trends of the electric and magnetic GSE where

misleading positive peaks are absent. Moreover the DRE is capable to partially

resolve the resonant frequencies at which a reduction of the uniformity of the spatial

distribution of the interior fields takes place.

3.4 STATISTICAL METHODS

Statistical electromagnetics has received a strong boost from widespread interest in

the utility of reverberation chambers as test facilities designed to simulate an

‘‘expected’’ field in a controlled environment. Thus, the perspective angle and the

purpose of the analysis method have been a bit different from those necessary for

approaching shielding problems. In the past, analysis of the interaction between an

arbitrary field and an arbitrarily oriented load system also received some interest

[9,10]. Recently the same analysis approach proved to be promising for gathering

useful information from data on actual shielding configurations. The high spectral

density of modes for a cavity with dimensions larger than the wavelength is at the

root of such a probabilistic approach; in particular, it is well known that the number

N of modes that can be excited in a void, regular volume V in the frequency interval

½ f1; f2� is given by the integer part of

N ¼ 8pV

3 c3
ðf 32 � f 31 Þ; ð3:10Þ

which depends only on the volume and not on the shape. Many modes can in effect

be excited simultaneously in real cavities. Any attempt, analytical or numerical, to

accurately determine the EM-field distribution can require considerable computa-

tional effort. Statistical methods can be applied to estimate the EM field in the

volume of interest [11], or to compute or measure significant data, in order to gather

some more general information about the real field distribution [12].

A very simple and effective method is based on a power balance approach [13].

This approach stems from the assumption that the average power density is uniform

throughout the enclosure, so the relationship between the incident and the

transmitted power densities is computed as a function of the cavity quality factor

Q, defined as

Q ¼ vUS

Pd

; ð3:11Þ

where v is the angular frequency of the excitation, US denotes the steady-state

energy in the cavity, and Pd represents the dissipated power. By the main assumption
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of power-density uniformity, the steady-state energy US is proportional to the

volume of the cavity V through the average energy density W, that is,

US ¼ W V: ð3:12Þ

The dissipated power Pd is related to four terms,

Pd ¼ Pd1 þ Pd2 þ Pd3 þ Pd4; ð3:13Þ

expressing the power dissipated in the walls of the enclosure, the power absorbed by

the objects loading the enclosure, the power exiting from apertures and leakage

paths, and that delivered to receiving antennas, respectively. It follows immediately

that four partial quality factors can be introduced:

Q�1 ¼ Q�1
1 þ Q�1

2 þ Q�1
3 þ Q�1

4 : ð3:14Þ

The following approximate expressions for the four partial quality factors have

been derived [13]:

Q1 ¼ 3V

2mrw S dw
; ð3:15aÞ

Q2 ¼ 2pV

l0hsoi ; ð3:15bÞ

Q3 ¼ 4pV

l0hsai ; ð3:15cÞ

Q3 ¼ 16p2V

ml30
; ð3:15dÞ

where mrw is the relative magnetic permeability of the enclosure walls, S is the

inner cavity surface, dw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðvm0mrwswÞ

p
is the penetration depth of the EM

field in the wall material (and sw is the conductivity of the enclosure walls), l0 is

the free-space wavelength, hsoi is the sum of the absorption cross sections of the

lossy objects averaged over all the angles of incidence and over all

the polarizations, and hsai is the sum of the transmission cross sections of the

apertures averaged over all the angles of incidence and over all the polarizations.

Finally, m is the impedance mismatch factor defined as m ¼ 4RRL=jZ þ ZLj2,
where Z ¼ Rþ jX and ZL ¼ RL þ jXL are the receiving-antenna and load

impedances, respectively. By assuming that the main penetration of the EM field

is through an aperture (whose total transmission cross section is st), the power

transmitted into the enclosure Pt can be obtained as a function of the incident

power density pinc. In particular,

Pt ¼ stpinc: ð3:16Þ
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The total transmission cross section st is a function of frequency, polarization,

angle of incidence, and shape of the aperture. Moreover, in case of multiple

apertures, st is assumed to be given by the sum of the individual contributions. For

steady-state conditions, the power penetrating into the enclosure must be equal to the

total dissipated power, and the power density in the enclosure pencl is

pencl ¼ stlQ

2pV
pinc: ð3:17Þ

The assumption of power-density uniformity inside the enclosure allows for the

SE evaluation as

SE ¼ 10 log
2pV

st lQ
: ð3:18Þ

An electrically small circular aperture has a total transmission cross section,

averaged for all the angles of incidence and polarizations, given by

hsti ¼ 16

9p
k4a6; ð3:19Þ

where k ¼ v=c is the wavenumber and a is the aperture radius.

The methods for the determination of the statistical distribution of the EM field

in regular enclosures are rather complex and beyond the purposes of this book

[11,14–16]. Various approximations may be introduced that lead to much simpler

formulations. Research is presently still in progress to avoid, for example, the

failure of the Kolmogorov-Smirnov goodness-of-fit test occurring with most of

the various cumulative distribution functions that have been adopted.

3.5 ENERGY-BASED, CONTENT-ORIENTED DEFINITION

Recently another figure of merit has been proposed for the measurement of the

shielding performance of enclosures [17]. It is based on the ratio between the power

absorbed by a shielded load PA (expressed in W), and the incident power density pinc
(in W/m2). This figure of merit, which has the dimensions of a surface area, has been

called the shielding aperture (SA) of the enclosure under test, that is,

SA ¼ PA

pinc
: ð3:20Þ

Although the approach is not far from that proposed by Klinkenbusch, the

solution to the issue concerning the representative content (RC) (i.e., the load to be

considered) is very different; while in [4] the limit for vanishing load dimensions is
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considered, in [17] the adoption of a standard RC is proposed. In particular, a thin

block of a special foam is considered and investigated and compared with an actual

printed circuit board. The key issue appears to be the selection of RCs representative

of actual configurations, and in practice, the assessment of their characteristics, in

order to account for possible differences in the EM behavior of RCs used in different

test facilities. A second less important issue concerns the effective measurement/

evaluation of the power delivered to each RC.

3.6 PERFORMANCE OF SHIELDED CABLES

Definition (3.1) can be applied to shielded cables but with some difficulty because

of the actual dimensions of common cables, which make difficult the insertion of

field probes inside the shield: the wire(s) inside the shield could be considered

antennas capable of detecting the EM field. Further the measurement suffers from

several drawbacks: the two setups (with and without the shield) will differ in their

terminal conditions because of the influence of the shield on the line

characteristics, namely the propagation constant and the characteristic impedance.

The two configurations must be identical, and this requirement is not easy to

achieve; therefore one is always left with uncertainty as to its degree of fulfilment.

For the reasons above, wide use is made of the transfer impedance for the

comparison of shielded cables. This is an absolute per unit length parameter

representing the ratio between the voltage appearing on the internal side of the

shield when a given current is flowing on the external shield surface and the current

itself, or viceversa. Shielded cables are the subject of Chapter 8, where the

influence of constructive parameters on the shielding performance is discussed in

some detail.
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CHAPTER FOUR

Shielding Effectiveness
of Stratified Media

Electromagnetic plane waves are the simplest solution of the time-harmonic

Maxwell equations in a homogeneous and source-free spatial region. The study of

their properties is useful for better understanding the behavior of more complex

fields. For instance, the far field radiated by an arbitrary source has, locally and

sufficiently far from the source, the characteristics of a plane wave (this usually

allows an EM field impinging on a given structure to be approximated as a plane

wave). In addition the exact field produced by any source can be expressed in terms

of a continuous superposition of elemental plane-wave components (plane-wave

spectrum representation). On the other hand, stratified media (in planar, cylindrical,

and spherical configurations) are the simplest example of inhomogeneous media and

are often considered as models of many shields.

4.1 ELECTROMAGNETIC PLANE WAVES: DEFINITIONS
AND PROPERTIES

A plane wave (with a time-harmonic behavior e jvt, suppressed for the sake of

conciseness) is a frequency-domain EM field mathematically expressed as

Eðx; y; zÞ ¼ E0e
�jðkxxþkyyþkzzÞ ¼ E0e

�jk�r;

Hðx; y; zÞ ¼ H0e
�jðkxxþkyyþkzzÞ ¼ H0e

�jk�r;
ð4:1Þ

where E0 andH0 are constant complex vectors, and kx, ky, and kz are complex scalars

that define the wavevector k ¼ kxux þ kyuy þ kzuz. The vectors E0 andH0 define the
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polarization of the plane wave, namely the temporal evolution of the vector direction

in the plane on which the vector lies. In particular, according to the locus described

by the tip of the vector, polarization can be linear, circular, or, in the most general

case, elliptic. For circular and elliptic polarizations, the sense of rotation for

increasing time can be clockwise or counterclockwise with respect to a fixed

direction. The real and (the opposite of) the imaginary part of the wavevector k are

the so-called phase vector b and attenuation vector a, respectively, so that

k ¼ b� ja (note that b and a are real vectors). Alternatively, the propagation

vector g ¼ aþ jb can be used (i.e., k ¼ �jg). In any case, the magnitude of b
gives the phase shift per unit length along the direction of b, while the magnitude of

a determines the rate of attenuation along the direction of a. From Maxwell’s

equations it follows that the wavevector must satisfy the ‘‘separation equation’’

k � k ¼ k2x þ k2y þ k2z ¼ k2; ð4:2Þ

where k is the wavenumber of the medium defined as

k ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m "� j

s

v

� 
r
¼ v

ffiffiffiffiffiffiffiffi
m"c

p ð4:3Þ

(the principal branch of the square root is chosen so that the imaginary part of k is

nonpositive). Recall that in the frequency domain the complex electric permittivity

"c is introduced to account for conductive losses, meaning "c ¼ "� js=v. From
Maxwell’sequations, it follows that the wavevector is related to the electric and

magnetic field vectors through

k� E ¼ vmH;

k�H ¼ v"cE:
ð4:4Þ

Equations (4.4) imply that E �H ¼ 0, k � E ¼ 0, and k �H ¼ 0. From (4.4) it also

follows that E � E ¼ h2H �H, where h is the intrinsic impedance of the medium

defined as

h ¼
ffiffiffiffi
m

"c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

"� j s
v

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm

s þ jv"

s
ð4:5Þ

(in this case the principal branch of the square root is chosen so that the real part of h

is nonnegative [2]).

A characterization of a plane wave can be obtained by introducing the direction

angles ðf; uÞ. Such direction angles (which are in general complex) are defined as

kx ¼ k cosf sin u;

ky ¼ k sinf sin u;

kz ¼ k cos u :

ð4:6Þ
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Uniform (or homogeneous) plane waves are an important subset of plane waves. A

uniform plane wave is defined as a plane wave for which both the direction angles

ðf; uÞ are real. Therefore, for a uniform plane wave, the wavevector can be written as

k ¼ k ur, where ur is a real unit vector given by

ur ¼ cosf sin uux þ sinf sin uuy þ cos uuz: ð4:7Þ

For a uniform plane wave, the phase and attenuation vectors point in the same

direction of the unit vector ur. It can easily be shown that inside an isotropic

medium this is also the direction of the time-averaged power-flow vector (i.e., the

real part of the Poynting vector P). Therefore, for a uniform plane wave, all the

vectors b, a, and P point in the same direction: such a direction can be uniquely

defined as the direction of propagation of the uniform plane wave. Since

ur � E ¼ ur �H ¼ 0 (i.e., Er ¼ Hr ¼ 0), a uniform plane wave is said to be

transverse electromagnetic (or TEM) to the direction of propagation ur;
furthermore we have jEj ¼ jhjjHj:

It is worth noting that for lossless media the wavenumber k is real, so the

attenuation vector is zero. Moreover it is important to note that since for non-

uniform plane waves the direction angles are complex, their attenuation vector is

never zero and cannot be parallel to the phase vector, so a more involved relation

exists among the b, a, andP vectors. Therefore the direction of propagation cannot

be uniquely defined for non-uniform plane waves.

As is well known [1], an EM field in a source-free homogeneous region can be

represented as the sum of two types of fields, a field that is transverse magnetic to

an arbitrary direction x (TMx, for which Hx ¼ 0) and a field that is transverse

electric to x (TEx, for which Ex ¼ 0). A general plane wave can thus be written as

the sum of a TMx plane wave and a TEx plane wave. By defining the plane of

incidence as the plane containing the phase vector b and the unit vector ux, the

TMx plane wave has the electric field lying in the plane of incidence (and it is also

called E wave, vertically polarized wave, or p-polarized wave), while the TEx

plane wave has the magnetic field lying in the plane of incidence (and it is also

called H wave, horizontally polarized wave, or s-polarized wave). Actual sources

generally give rise to EM fields that are not uniform TEM (or TE, TM) plane

waves. However, as already mentioned above, at distances far enough from the

sources (i.e., for distances much larger than the longest significant wavelength

associated with the frequency spectrum of the source and than its largest

dimension), the assumption of a uniform plane wave is often a reasonable

approximation.

In the following, we will first consider the problem of plane-wave incidence

on a planar shield. The convenient formalism of the so-called equivalent

transmission line will next be introduced. Such a formalism has the advantage

of automatically including the boundary conditions for the fields. Last, the

analysis of shielding in the presence of curved surfaces and near-field sources

will be discussed.
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4.2 UNIFORM PLANE WAVES INCIDENT ON A PLANAR SHIELD

The simplest shielding configuration is that depicted in Figure 4.1 where a uniform

plane wave is impinging with an angle uinc on a single planar shield of infinite

extension in the transverse y and z directions (i.e., whose dimensions are large

enough to neglect edge effects) with a finite thickness d in the x direction. Although

this configuration is almost not realizable and far from usual actual conditions, some

basic ideas on shielding are based on this problem. For this reason it has been kept as

a starting point of any further and deeper analysis.

The most useful way to solve the problem is based on the analogy existing

between uniform plane-wave propagation in a stratified medium and the propagation

of voltages and currents in a uniform transmission line. In the next subsection we

briefly summarize the key steps in proving such analogy.

4.2.1 Transmission-Line Approach

We thus start with a plane wave propagating in a medium that is linear,

homogeneous, stationary, isotropic, and possibly lossy and dispersive. Linearity

and stationarity of the constitutive relations characterizing the EM behavior of the

shield material guarantee that the boundary value problem may be conveniently

posed in the frequency domain, by introducing the magnetic permeability m and

electric permittivity "c that, under the assumptions above, are complex frequency-

dependent scalar quantities, meaning m ¼ m0 � jm
00
(with m0 > 0 and m

00
> 0) and

"c ¼ "0c � j "
00
c (with "0c > 0 and "

00
c > 0). The possible occurrence of negative values

of "0c and/or m
0 will be discussed in Chapter 12. It should be noted that the hypothesis

of linearity is often fulfilled in consideration of the reduced values of the incident

high-frequency fields, while the stationarity assumption is often reasonable because

of the different order of magnitude existing between the time scales of EM

phenomena and typical changes (e.g., for thermal or corrosion issues) occurring in

the materials characteristics.

As was mentioned above, a general plane wave can be written as the sum of a TMx

and a TEx plane wave. The TMx propagation in the ith region of a stratified medium

μ     ε3 c3

 ,μ    ε

x

inc

1 c1

θ

, 

d

1

2

3

2       c2
μ    ε ,

FIGURE 4.1 Uniform plane wave impinging on a shield of finite thickness d and of infinite

transverse dimensions.
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characterized by its relative permittivity "cri and permeability mri is considered first.

In such a case the magnetic field of the plane wave can be expressed as

HTMðx; y; zÞ ¼ ðuyHTM
y þ uzH

TM
z Þe�jð
kxixþkyiyþkzizÞ; ð4:8Þ

where k2xi þ k2yi þ k2zi ¼ k2i ¼ v2mi"ci ¼ v2m0"0mri"cri ¼ k20mri"cri. In equation (4.8)

the plus sign is chosen for plane waves propagating or decaying in the positive x

direction, while the negative sign is for propagation or decay in the minus x

direction.

From Maxwell’s equations, we can easily derive the expression of the electric

field. In particular, for the components of the electric field normal to the x direction,

Eyðx; y; zÞ ¼ 1

jv"ci
uy � r �Hðx; y; zÞ ¼ 
 kxi

v"ci
Hzðx; y; zÞ;

Ezðx; y; zÞ ¼ 1

jv"ci
uz � r �Hðx; y; zÞ ¼ � kxi

v"ci
Hyðx; y; zÞ:

ð4:9Þ

These expressions can be recast in the form

ETM
t ðx; y; zÞ ¼ �ZTM

i ½ux �HTM
t ðx; y; zÞ�; ð4:10Þ

where the subscript t indicates the vector component transverse to the x direction

and the TMx characteristic impedance ZTM
i is defined as

ZTM
i ¼ kxi

v"ci
: ð4:11Þ

With similar steps it can be shown that the transverse components of the TEx fields

are related by

ETE
t ðx; y; zÞ ¼ �ZTE

i ½ux �HTE
t ðx; y; zÞ�; ð4:12Þ

where the TEx characteristic impedance ZTE
i is defined as

ZTE
i ¼ vmi

kxi
: ð4:13Þ

It can immediately be seen that the transverse electric and magnetic fields in

(4.10) and (4.12) correspond to the voltage and current, respectively, of an

equivalent transmission line (TL) with propagation constant kxi and characteristic

impedance Z
TM=TE
i . In particular, the correspondence is such that

ETM=TE
t ðx; y; zÞ ¼ VTM=TEðxÞe�jðkyiyþkzizÞuE;

HTM=TE
t ðx; y; zÞ ¼ ITM=TEðxÞe�jðkyiyþkzizÞuH

ð4:14Þ
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(where the relation uE � uH ¼ 
ux occurs among the unit vectors for propagation

in the 
x direction). In addition, starting from Maxwell’s equations, it can be

shown that the functions VTM=TE and ITM=TE are solutions of TL-like equations.

When dealing with planar stratified media (i.e., in which material discontinuities

occur only along the x axis) the considerations above are still valid inside each

layer.

In the case of a discontinuity between two half-spaces (region 1 and 2), the

fulfilment of the boundary conditions at the interface (i.e., continuity of the

transverse component of the fields) implies the presence of a reflected wave (in

the same half-space where the incident plane wave originates) and a transmitted

wave (in the other half-space). The continuity conditions also imply that the

transverse dependence of the incident, reflected, and transmitted waves must be

the same (i.e., ky1 ¼ ky2 and kz1 ¼ kz2). The fact that the transverse wavenumbers

are the same in all regions leads to the well-known law of reflection, by which the

direction angles of the incident and reflected waves are equal, (i.e., uinc ¼ ur) and

also to Snell’s law, by which the direction angles inside each of the regions are

related to each other:

k1 sin u
inc ¼ k2 sin ut: ð4:15Þ

In addition, from (4.14), the continuity of the transverse components of the field

at the material interfaces implies the continuity of voltage and current at the junction

between the two semi-infinite TLs. In general, when a number of layers is

considered, voltages and currents are continuous at each material interface. In

Figure 4.2 the analogy between a plane-wave transmission problem and propagation

along the equivalent TL is sketched. In the figure, the incident, reflected, and

transmitted wavevectors are assumed to be real (as the corresponding direction

angles, i.e., uniform plane waves are assumed), but the analysis is general and valid

also for non-uniform plane waves.
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FIGURE 4.2 Uniform plane wave impinging on a planar multilayer shield and equivalent

TL model.
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It is possible to express the TMx and TEx characteristic impedances of the ith layer of

a stratified medium in terms of the intrinsic impedance of the medium. In particular,

this results in

ZTM
i ¼ hi cos ui and ZTE

i ¼ hi
sin ui

; ð4:16Þ

or

ZTM
i ¼ hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

ki
sin u1

� �2
s

and ZTE
i ¼ hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k1

ki
sin u1

� �2
s ; ð4:17Þ

where u1 is the direction angle of the incident wave in the first region (i.e., the

incidence angle).

One might ask why, among all the possible choices, the TMx-TEx decomposition

has been adopted. As stated above, the functions VTM=TE and ITM=TE behave as

voltage and current on different TLs, with characteristic impedances Z
TM=TE
i .

Therefore any plane-wave reflection and transmission problem reduces to a TL

problem, giving the exact solution that satisfies all the boundary conditions. One

consequence is that TMx and TEx plane waves do not couple at a boundary.

Therefore, if an incident plane wave is expressed as a combination of both TMx and

TEx waves, the two problems are solved separately, and the solutions are eventually

summed to obtain the total reflected or transmitted field.

4.2.2 The Single Planar Shield

In general, the two media surrounding the single planar shield of thickness d can be

different. In what follows we assume that each material occupying the region i

(i ¼ 1; 2; 3) is characterized by its relative permittivity "cri and permeability mri,

although in practical configurations media 1 and 3 are equal (usually air, i.e.,

"cr1 ¼ "cr3 ¼ mr1 ¼ mr3 ¼ 1). In the latter, for uniform plane-wave incidence, the

electric and magnetic shielding effectivenesses SEE and SEH coincide. Both the

incident and the transmitted waves in medium 3 are in fact uniform plane waves, for

which jEj ¼ jhjjHj (so that the ratio of the magnitudes of the electric and magnetic

fields is the same in the presence and in the absence of the screen). In particular, with

reference to Figure 4.1, the SE of the screen (in dB) is defined as

SEE ¼ SEH ¼ SE ¼ 20 log
jE0

3j
jES

3 j
; ð4:18Þ

where E3 indicates the electric field in the region 3, while the superscripts 0 and S

indicate the absence and the presence of the shield, respectively.

For TEx-polarized plane waves, it is immediate to see that the ratio between the

amplitudes of the total electric fields occurring in (4.18) coincides with the ratio of

the amplitudes of the relevant tangential components (no normal component of the
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electric field is present in this TEx case). On the other hand, for TMx-polarized

waves, the amplitude of the normal component of the electric field is proportional to

the amplitude of the transverse component through the factor tan u3, where u3
indicates the angle of transmission in medium 3. However, such an angle is

independent of the presence of the screen, so also in this TMx case we have��E0
3

����ES
3

�� ¼
��E0

3tð1þ tan2 u3Þ
����ES

3tð1þ tan2 u3Þ
�� ¼

��E0
3t

����ES
3t

�� ð4:19Þ

meaning the ratio of the amplitudes of the total electric fields is equal to the ratio of

the amplitudes of the relevant transverse components.

Now, by means of a straightforward TL analysis based on the analogy illustrated

in the previous subsection, it is simple to show that for a TMx or TEx uniform plane

wave impinging on the shield with an angle uinc, the result is

jES
3 j

jE0
3j
¼ 4Z2Z3

ðZ1 þ Z2ÞðZ2 þ Z3Þeþjkx2d þ ðZ1 � Z2ÞðZ2 � Z3Þe�jkx2d

����
����; ð4:20Þ

where kxi ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mri"cri � mr1"cr1 sin

2 uinc
p

and Zi (i ¼ 1; 2; 3) are the TMx or TEx

characteristic impedances.

When region 1 and 3 are air, by letting Z1 ¼ Z3 ¼ Z0, Z2 ¼ ZS, and kx2 ¼ kxS, we

reduce (4.20) to

jES
3 j

jE0
3j
¼ 4Z0ZS

ðZ0 þ ZSÞ2
e�jkxSd

ðZ0 þ ZSÞ2
ðZ0 þ ZSÞ2 � ðZ0 � ZSÞ2e�j2kxSd

�����
�����: ð4:21Þ

Thus the SE is readily obtained as

SE ¼ �20 log
4Z0ZS

ðZ0 þ ZSÞ2
e�jkxSd

ðZ0 þ ZSÞ2
ðZ0 þ ZSÞ2 � ðZ0 � ZSÞ2e�j2kxSd

�����
����� ¼ Rþ AþM;

ð4:22Þ
where

R ¼ 20 log
ðZ0 þ ZSÞ2
4Z0ZS

�����
����� ¼ 20 log

ðz þ 1Þ2
4z

�����
�����; ð4:23aÞ

A ¼ 20 log jejkxSdj ¼ 8:686axSd; ð4:23bÞ

M ¼ 20 log
ðZ0 þ ZSÞ2 � ðZ0 � ZSÞ2e�j2kxSd

ðZ0 þ ZSÞ2
�����

�����
¼ 20 log 1� z � 1ð Þ2

z þ 1ð Þ2 e
�j2kxSd

�����
�����; ð4:23cÞ

and z ¼ Z0=ZS.
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The first term, R, in equation (4.22) depends only on the free-space impedance Z0
and the impedance of the shield medium ZS, and it accounts for the first field

reflection at the two shield interfaces that is due to the mismatch between the two

impedances at both the interfaces. R is called the reflection-loss term, and it is

always positive or null.

The second term, A, is a function of the shield characteristics only, and it accounts

for the attenuation that a plane wave undergoes in traveling through an electrical

depth equal to kxSd=k0 in the shield material. A is called the absorption-loss term,

and it is always positive.

The last term, M, is associated with the wave that undergoes multiple reflections

and consequent attenuation before passing through the shield. M is called the

multiple-reflection-loss term, and it may be positive, null, or negative. M is often

negligible with respect to the other two terms, especially in the high-frequency

range.

To illustrate how the TL approach behaves, the typical values of the intrinsic

impedance h ¼ ZTEðkx ¼ kÞ ¼ ZTMðkx ¼ kÞ of shielding materials can be compared

with the free-space impedance. Three typical shielding materials are selected: a

copper casting alloy having relative permeability mr ¼ 1 and conductivity

s ¼ 11:8 � 106 S/m, a Duranickel with mr ¼ 10:58 (considered independent of

frequency) and s ¼ 2:3 � 106 S/m, and a commercial stainless steel having mr ¼ 95

and s ¼ 1:3 � 106 S/m. The behavior of the intrinsic impedance of these media is

plotted in Figure 4.3 in relation to their frequency. It is clearly evident that the intrinsic

impedance of these shielding materials is much smaller than the free space impedance

which is h0 ’ 377 W. In Figure 4.4, the frequency-dependences of the reflection loss

R and of the absorption loss A terms are reported for the same materials as in Figure

4.3, for a planar shield that is 0.25 mm thick under normal (TEMx) plane-wave

incidence. In Figure 4.5, the trend of the multiple-reflection loss termM is also shown;

it can be observed thatM becomes negligible in comparison with the other two terms

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Frequency [Hz]

In
tr

in
si

c 
im

p
ed

an
ce

 |η
| [

Ω
] 

Copper casting alloy
Duranickel
Stainless steel

10 
-1    

10 
-2    

10 
-3    

10 
-4    

FIGURE 4.3 Intrinsic impedance jhj of three typical shielding materials.
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above a frequency that depends on the material characteristics and on the shield

thickness and that is generally lower than 1MHz for typical shielding materials.

It is obvious that shielding effectiveness levels in excess of 120 dB are generally

not achievable and also not measurable without extraordinary efforts. The preceding

figures represent the trends of R and A, and they should be interpreted in the sense

that above certain frequencies such quantities exceed any reasonable threshold of

shielding level.
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For the common case of sufficiently thick metals, the contribution of the multiple-

reflection-loss term M can usually be neglected because of the high penetration loss

inside the shielding material. In fact, we can assume jzj � 1, and rewrite (4.23c) as

M ¼ 20 log 1� ðz � 1Þ2
ðz þ 1Þ2 e

�j2kxSd

�����
����� ffi 20 log j1� e�2dð1þjÞ=dj; ð4:24Þ

where the frequency-dependent skin depth d, defined as

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

vm0mrs

s
ð4:25Þ

has been introduced. From (4.25) it is evident that M is almost zero when d=d � 1.

It should be noted that when lossy media are considered in the problem of plane-

wave transmission, if uinc 6¼ 0 the transmitted plane wave is necessarily non-

uniform. Equation (4.15) is still valid, but the direction angle ut assumes complex

values. This is also what happens in the well-known case of total reflection at

the interface between two lossless media. In the latter case, medium 1 (from which

the incident wave comes) is denser than medium 2 (i.e., k1 > k2). The incidence

angle uinc is greater than the critical angle uc ¼ sin�1
ffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
, and it can

immediately be seen that the wavenumber kx2 in medium 2 is purely imaginary.

This gives rises to a non-uniform transmitted wave whose fields exponentially decay

in medium 2 and whose power flow is in the transverse direction only. The case

where three-layered regions are considered is still different. For instance, consider a

plane wave propagating in medium 1 with k1 > k0 and impinging on a planar air gap

(region 2) that separates two regions filled with medium 1 (regions 1 and 3). If the

incidence angle in region 1 is greater than the critical angle uc, the plane waves in the

air gap will be non-uniform and, in particular, exponentially decaying (evanescent or

reactive fields). However, although individually the backward and forward waves are

evanescent, their sum is a standing wave with a power flow in the x direction

different from zero. A uniform transmitted wave in fact exists in region 3

(electromagnetic tunneling).

Now consider the problem of oblique incidence (for a uniform plane wave) at the

interface with an half-space made of a lossy material. Again, the transmitted wave is a

non-uniform plane wave. However, it can easily be shown that the attenuation vector

a is directed as �ux, while, if sufficiently high values of the conductivity s are

considered, the angle ub between �ux and the phase vector b is very small, namely

ub ’ 0. Therefore the transmitted wave can be approximately considered as a

uniform plane wave propagating in a direction that is almost normal to the interface,

independently of the angle of incidence uinc. This is also what usually happens in

metallic shields. The propagation inside the shield can be approximately considered

in a direction that is almost normal to the shield plane in the whole frequency

spectrum of interest for shielding applications [4]. Moreover the EM field transmitted
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through the shield and propagating in region 3 (always considered as having the same

electrical properties as region 1) will have the same direction of propagation it would

have in the absence of the shield itself, which is that of the incident field. This will not

be true in dealing with anisotropic materials, that is when the permittivity or the

permeability of the shield material is expressed by means of a dyadic.

4.2.3 Multiple (or Laminated) Shields

Multiple or laminated shields are obtained by a stratification of two or more sheets of

different materials. They are used because of the advantages of shielding

performance or for other technical reasons occurring, for instance, when a shielded

component is placed into a metallic enclosure. Between adjacent sheets a dielectric

(air) gap may or may be not present; such a gap can considerably affect the overall

performance of the shield. The simplest configuration consisting of a pair of planar

shields separated by an air gap is usually called a double shield [6] in the shielding

community, as will be discussed later.

The equivalent circuit of a multiple shield is that already reported in Figure 4.2.

The analysis of that configuration is straightforward and can be simply carried out by

means of the TL analogy. However, it may be useful to make explicit the equivalence

between each shielding layer and a two-port network for which

V1

I1

� �
¼ A B

C D

� �
V2

I2

� �
¼ T

V2

I2

� �
: ð4:26Þ

where T is the transmission matrix. In particular, for a stratified planar structure

made of N layers it results

Vi�1

Ii�1

� �
¼ cos kxidið Þ �jZi sin kxidið Þ

� j
Zi
sin kxidið Þ cos kxidið Þ

� �
Vi

Ii

� �
¼ T i

Vi

Ii

� �
; ð4:27Þ

where di is the thickness of the i-th layer, while Vi and Ii are the equivalent voltage

and current (corresponding to the transverse electric and magnetic field, respe-

ctively) at the interface between the i-th and the iþ 1-th layer. Thus, the input–

output relationship reads

V1

I1

� �
¼

Y
i¼2;3...N�1

T i

VN�1

IN�1

� �
ð4:28Þ

to be completed with the two boundary conditions at the first and last interfaces.

Using the input–output relationship of the transmission coefficient, and considering

the practical case for which region 1 and N are air (i.e., Z1 ¼ ZN ¼ Z0), we can

express the SE of a multilayer shield as

SE ¼ 20 log
1

p

YN�1

n¼2

ejkxndnð1� qne
�j2kxndnÞ

�����
����� ð4:29Þ
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where

p ¼
2Z0

QN�1

i¼2

2Zi

ðZ0 þ Z2ÞðZN�1 þ Z0Þ
QN�2

i¼2

ðZi þ Ziþ1Þ
; ð4:30aÞ

qi ¼ Zi � Zi�1ð Þ Zi � Z dið Þ½ �
Zi þ Zi�1ð Þ Zi þ Z dið Þ½ � ; ð4:30bÞ

Z di�1ð Þ ¼ Zi
Z dið Þ cos kxidið Þ þ jZi sin kxidið Þ
Ziþ1 cos kxidið Þ þ jZ dið Þ sin kxidið Þ ; ð4:30cÞ

Z dN�1ð Þ ¼ Z0:

In the case of a planar multilayered shield, the TL formalism allows one to easily

determine under which conditions maximum transmission (i.e., absence of

reflection) occurs. For instance, in considering a planar shield (region 2) placed

between two half-spaces filled with different materials (regions 1 and 3), it is simple

to show that when the parameters of the media are chosen so that Z2 ¼
ffiffiffiffiffiffiffiffiffiffi
Z1Z3

p
, the

EM energy is totally transmitted from one half-space to the other; the role of the

second layer is right that of a quarter-wave transformer matching two lengths of TLs

[2]. In addition to the classical work of Schulz et al. [3], some considerations about

shielding of planar multilayer structures are presented in [4] and [5].

The explicit SE expression for a laminated shield of two different materials

(N ¼ 4) can be found in [3]. In [3] the SE expression for a double shield is also

reported; the double shield is a practical case of considerable importance constituted

by two sheets separated by an air gap (N ¼ 5, Z1 ¼ Z3 ¼ ZN ¼ Z0). When the two

metallic sheets consist of the same material (i.e., Z2 ¼ Z4) and of the same thickness

(i.e., d2 ¼ d4), it can be shown that the absorption- and reflection-loss terms are

exactly twice those of a single sheet, while the multiple-reflection-loss term is more

than twice that of a single sheet; because of the two new interior interfaces between

air and the metallic material, the multiple-reflection shielding mechanism is exalted.

Figure 4.6 shows the SE of double shields of copper casting alloy

(d2 ¼ d4 ¼ D ¼ 0:25 mm) with d3 ¼ D and d3 ¼ 10D, compared with the SE of

a single layer shield with a double thickness (d2 ¼ 2D ¼ 0:5 mm). It can be seen

that the larger the air gap, the more effective is the screen; this is true when the shield

is electrically thin. When the shield is electrically thick, the double shield is

considerably less effective than the single shield with a double thickness, except at

the shielding inter-space resonances. More details on the subject can be found in [3].

4.3 PLANE WAVES NORMALLY INCIDENT ON CYLINDRICAL
SHIELDING SURFACES

The EM problem is depicted schematically in Figure 4.7, where a uniform plane

wave impinges on an infinitely long cylindrical shield, normally with respect to its
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axis (i.e., the z axis). The cylindrical shield is characterized by its inner and outer

radius r1 and r2, respectively, and by its constitutive parameters "c and m (in

particular, the material is assumed linear, stationary, isotropic, and homogeneous).

The most convenient decomposition for the incident uniform plane wave is in the

linearly polarized TMz and TEz uniform plane waves. In the case of normal

incidence (i.e., kincz ¼ 0), the TMz and TEz waves in fact do not couple, although in

the more general case of oblique incidence (i.e., kincz 6¼ 0) they do. The three regions

corresponding to the interior of the shield, to the shield itself, and to the outer space

are denoted as region 1, 2, and 3, respectively:

r < r1 ðRegion 1Þ;
r1 � r < r2 ðRegion 2Þ;
r2 � r ðRegion 3Þ:

FIGURE 4.7 Uniform plane wave incident on an infinitely long cylindrical shield, normally

with respect to its axis.
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Since both the incident field and the structure are invariant along z, the problem

is essentially a two-dimensional (2D) problem. Let us first consider a uniform

TMz-polarized plane wave normally incident on the shield, as illustrated in

Figure 4.8.

Without loss of generality, we can assume that the wave propagates along the x

axis of a Cartesian coordinate system having the z axis along the cylindrical shield

axis. The electric and magnetic fields are expressed as

Eincðx; y; zÞ ¼ Einc
z ðxÞuz ¼ Einc

0 e�jk0xuz;

Hincðx; y; zÞ ¼ Hinc
y ðxÞuy ¼ Hinc

0 e�jk0xuy ¼ �Einc
0

h0
e�jk0xuy;

ð4:31Þ

or, in cylindrical coordinates, as

Eincðr;f; zÞ ¼ Einc
z ðr;fÞuz ¼ Einc

0 e�jk0r cosfuz;

Hincðr;f; zÞ ¼ Hinc
r ðr;fÞur þHinc

f ðr;fÞuf ¼ �Einc
0

h0
ður sinfþ uf cosfÞe�jk0r cosf:

ð4:32Þ

Because of the cylindrical symmetry, the problem may be conveniently studied

representing the incident fields in cylindrical harmonic functions through a Fourier

series expansion of the fields in (4.32). In particular, the components of the fields

tangential to the cylindrical surfaces can be expressed as

Einc
z ðr;fÞ ¼ Einc

0

X1
n¼�1

j�nJnðk0rÞ e jnf;

Hinc
f ðr;fÞ ¼ 1

jvm0

@Einc
z

@r
¼ �j

Einc
0

h0

X1
n¼�1

j�nJ0nðk0rÞ ejnf;
ð4:33Þ
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FIGURE 4.8 TMz and TEz uniform plane waves normally incident on an infinitely long

cylindrical shield.
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where Jnð�Þ represents the nth-order Bessel function of the first kind and the

prime symbol means a derivative with respect to the argument, meaning J0nðjÞ ¼
dJnðjÞ=dj.

An analogous representation in terms of cylindrical harmonic functions may be

considered for the scattered- and transmitted-field components in all the three

regions. As is well known, cylindrical wave functions are solutions of the three-

dimensional (3D) homogeneous Helmholtz equation in cylindrical coordinates [2].

In particular, the single cylindrical wave �Cðr;f; zÞ takes the form

�Cðr;f; zÞ ¼ PðrÞ�ðfÞZðzÞ, where

ZðzÞ ¼ az cosðkzzÞ þ bz sinðkzzÞ;
�ðfÞ¼ af cosðkffÞ þ bf sinðkffÞ;
PðrÞ¼ arC

ð1Þ
kf
ðkrÞ þ brC

ð2Þ
kf
ðkrÞ :

ð4:34Þ

The functions C
ð1Þ
n and C

ð2Þ
n in (4.34) are any two independent cylindrical Bessel

functions chosen among Jn, Yn, H
ð1Þ
n , and H

ð2Þ
n . In bounded regions, oscillatory

Bessel functions of the first and second kind (Jn and Yn, respectively) are usually

adopted to represent standing waves, whereas in unbounded regions, the Hankel

functions of the first and second kind (H
ð1Þ
n and H

ð2Þ
n ) are used to represent inward

and outward propagating waves, respectively. For z-independent problems (i.e.,

kz ¼ 0), it is assumed ZðzÞ ¼ 1 and the cylindrical wave is simply �Cðr;fÞ ¼
PðrÞ�ðfÞ.

For the considered problem of Figure 4.8, periodicity in f enforces kf to be an

integer, meaning kf ¼ n. The reflected field in region 3, being an outward wave,

requires the representation of its radial dependence through Hankel functions of the

second kind H
ð2Þ
n . The transmitted field inside the shield (region 2) will be instead

represented in terms of both Bessel functions of the first and second kind Jn and Yn,

whereas the transmitted field inside the region 1 will be expressed in terms of the

only Jn functions (since all the other functions are singular at the origin). It is

immediate to see that it is not possible to satisfy the boundary conditions (i.e.,

continuity of the components of the fields tangential to the shield-air interfaces) with

a single cylindrical wave function (each cylindrical wave function in fact cannot

match the more complicated dependence on the spatial coordinates of the fields in

(4.33)). However, since the set of cylindrical functions is complete, an infinite linear

combination of �C functions with unknown coefficients can be used to represent the

reflected and transmitted fields in regions 1, 2, and 3. After recognizing that the

series of sinusoidal functions is a Fourier series, one can rewrite the components of

the fields tangential to the cylindrical surfaces as

Eð1Þ
z ðr;fÞ ¼

X1
n¼�1

an j
�nJnðk0rÞ e jnf;

H
ð1Þ
f ðr;fÞ ¼ 1

jvm0

@Eð1Þ
z

@r
¼ �j

1

h0

X1
n¼�1

anj
�nJ0nðk0rÞ e jnf;

ð4:35aÞ
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Eð2Þ
z ðr;fÞ ¼

X1
n¼�1

j�n½bnJnðkrÞ þ cnYnðkrÞ�e jnf;

H
ð2Þ
f ðr;fÞ ¼ �j

1

h

X1
n¼�1

j�n½bnJ0nðkrÞ þ cnY
0
nðkrÞ�e jnf;

ð4:35bÞ

Eð3Þ
z ðr;fÞ ¼

X1
n¼�1

j�n½Einc
0 Jnðk0rÞ þ dnH

ð2Þ
n ðk0rÞ�e jnf;

H
ð3Þ
f ðr;fÞ ¼ �j

1

h0

X1
n¼�1

j�n½Einc
0 J0nðk0rÞ þ dnH

ð2Þ0
n ðk0rÞ�e jnf;

ð4:35cÞ

where the prime symbol means again a derivative with respect to the argument

C0
nðjÞ ¼ dCnðjÞ=dj. The unknown coefficients an, bn, cn, dn, can be determined by

enforcing the continuity of the tangential components of the electric and magnetic

field at the shield-air interfaces (i.e., r ¼ r1 and r ¼ r2). By using the orthogonality

relation among exponential functions, the following linear system is obtained:

Jnðk0r1Þ �Jnðkr1Þ �Ynðkr1Þ 0
1
h0
J0nðk0r1Þ � 1

h
J0nðkr1Þ � 1

h
Y 0
nðkr1Þ 0

0 Jnðkr2Þ Ynðkr2Þ �H
ð2Þ
n ðk0r2Þ

0 1
h
J0nðkr2Þ 1

h
Y 0
nðkr2Þ � 1

h0
H

ð2Þ0
n ðk0r2Þ

2
6664

3
7775

an
bn
cn
dn

2
664

3
775¼

0

0

Einc
0 Jnðk0r2Þ

Einc
0

h0
J0nðk0r2Þ

2
6664

3
7775:

ð4:36Þ
Once the system (4.36) is solved for each n, (4.35) gives the fields everywhere in

space. However, in order to obtain the value of the electric SE on the cylinder axis,

r ¼ 0, only one coefficient is required (though this is not always the point of

maximum field). For r ¼ 0, all the functions in (4.35a) but the one corresponding to

the coefficient a0 are in fact identically zero. Therefore the total electric field on the

cylinder axis in the presence of the shield ES
z is E

S
z ð0;fÞ ¼ a0; on the other hand, the

electric field in the absence of the screen E0
z is simply the incident field, meaning

E0
z ð0;fÞ ¼ Einc

0 . The electric SE on the cylinder axis is thus

SEEðdBÞ ¼ 20 log
jE0j
jESj ¼ 20 log

E0
z

ES
z

����
���� ¼ 20 log

Einc
0

a0

����
����; ð4:37Þ

where from (4.36),

a0 ¼
4jEinc

0

ðpk0h0Þ2mrr1r2
J0ðk0r1Þ �J0ðkr1Þ �Y0ðkr1Þ 0
1
h0
J00ðk0r1Þ � 1

h
J00ðkr1Þ � 1

h
Y 0
0ðkr1Þ 0

0 J0ðkr2Þ Y0ðkr2Þ �H
ð2Þ
0 ðk0r2Þ

0 1
h
J00ðkr2Þ 1

h
Y 0
0ðkr2Þ � 1

h0
H

ð2Þ0
0 ðk0r2Þ

���������

���������

: ð4:38Þ
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In order to obtain the magnetic SE, also the radial component of the magnetic

field is needed. In particular, it simply results

Hð1Þ
r ðr;fÞ ¼ 1

jvm0

1

r

@Eð1Þ
z

@f
¼ � 1

h0

X1
n¼�1

nan j
�n Jnðk0rÞ

k0r
e jnf: ð4:39Þ

From (4.35a) and (4.36) and by using the properties of Bessel functions, it can

thus be seen that jHð1Þð0;fÞj ¼ ja1j=h0 (in particular, from C�nðjÞ ¼ ð�1ÞnCnðjÞ, it
follows that a�n ¼ an). Therefore, by taking into account that jHincð0;fÞj ¼
jEinc

0 =h0j, one can obtain the magnetic SE as

SEHðdBÞ ¼ 20 log
jH0j
jHSj ¼ 20 log

Einc
0

a1

����
����: ð4:40Þ

It should be noted that in this cylindrical configuration, contrary to what happens

for uniform plane waves incident on a planar shield, the electric and magnetic SE are

in general dramatically different.

The case of TEz normal incidence can be studied in a similar way starting from

Hincðx; y; zÞ ¼ Hinc
z ðxÞuz ¼ Hinc

0 e�jk0xuz;

Eincðx; y; zÞ ¼ Einc
y ðxÞuy ¼ Einc

0 e�jk0xuy ¼ h0H
inc
0 e�jk0xuy:

ð4:41Þ

In a still simpler way one can apply duality to obtain

SEEðdBÞ ¼ 20 log
jE0j
jESj ¼ 20 log

Hinc
0

A1

����
���� ð4:42Þ

and

SEHðdBÞ ¼ 20 log
jH0j
jHSj ¼ 20 log

H0
z

HS
z

����
���� ¼ 20 log

Hinc
0

A0

����
����; ð4:43Þ

where the unknown coefficients can be obtained by solving the linear system

Jnðk0r1Þ �Jnðkr1Þ �Ynðkr1Þ 0

h0J
0
nðk0r1Þ �hJ0nðkr1Þ �hY 0

nðkr1Þ 0

0 Jnðkr2Þ Ynðkr2Þ �H
ð2Þ
n ðk0r2Þ

0 hJ0nðkr2Þ hY 0
nðkr2Þ �h0H

ð2Þ0
n ðk0r2Þ

2
664

3
775

An

Bn

Cn

Dn

2
664

3
775¼

0

0

Hinc
0 Jnðk0r2Þ

h0H
inc
0 J0nðk0r2Þ

2
664

3
775:

ð4:44Þ

Figure 4.9 shows the SE versus frequency of a glass cylindrical surface with

"r ¼ 3:8, r1 ¼ 10 cm, and r2 ¼ 10:1 cm. It is possible to note that for both the TMz
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and TEz normal incidence, the electric and magnetic SE are very different. In

addition negative values of SE can be observed.

The problem of EM plane-wave transmission through a hollow metallic cylinder

has been studied in [6], where the shield thickness was assumed electrically small,

and next, for arbitrary thickness values, in [7].

A numerical study of the normal plane-wave incidence on a circular cylindrical

shield consisting of a single dielectric layer is reported in [8], and results for

multilayer circular cylindrical structures appear in [9]. The oblique plane-wave
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FIGURE 4.9 SE of a glass cylindrical surface with "r ¼ 3:8, r1 ¼ 10 cm, and

r2 ¼ 10:1 cm under TMz and TEz normal incidence.

PLANE WAVES NORMALLY INCIDENT ON CYLINDRICAL SHIELDING SURFACES 73



incidence on a single dielectric cylinder (which couples TMz and TEz fields) was first

studied in [10], and the cylindrical shell was considered in [11]. The case of

anisotropic multilayer cylinders is studied in [12] and [13], while in [14] both

anisotropy and nonlinearity are taken into account. An extension of the formalism to

deal with elliptical shields (which involves the use of Mathieu functions) is reported

in [15]. An interesting optimization procedure, based on a genetic-algorithm

approach, has been developed in [16] in order to determine the optimal thicknesses

and type of materials of a multilayer cylindrical shell to obtain a given SE in a

particular range of frequencies and of incidence angles.

Finally, it is worth noting that cylindrical shields may act (especially in the high-

frequency region) as cavity resonators, and at the resonant frequencies the shielding

performance can dramatically get worse. A study of such resonance effects has been

carried out in [17] for the general case of oblique incidence.

4.4 PLANE WAVES AGAINST SPHERICAL SHIELDS

The scattering from a sphere is one of the few 3D problems that can be solved in a

closed form, and also the simplest. In fact, the problem of plane-wave incidence on a

multilayered spherical shield is formally equivalent to the one involving normal

incidence on a multilayer cylindrical shield, except that spherical-wave expansions

are used instead of cylindrical-wave expansions. Spherical-wave functions are

solutions of the 3D homogeneous Helmholtz equation in spherical coordinates [2].

In particular, the single spherical wave �Sðr;f; uÞ takes the form

�Sðr;f; uÞ ¼ RðrÞ�ðfÞ�ðuÞ where

�ðfÞ ¼ af cosðmfÞ þ bf sinðmfÞ;
�ðuÞ ¼ auP

m
n ðcos uÞ þ buQ

m
n ðcos uÞ;

RðrÞ ¼ arS
ð1Þ
n ðkrÞ þ brS

ð2Þ
n ðkrÞ :

ð4:45Þ

The functions Pm
v and Qm

v (with m2 ¼ nðnþ 1Þ) are the associated Legendre

functions of the first and second kinds, respectively, and S
ð1Þ
n and S

ð2Þ
n are two

independent spherical Bessel functions chosen among jn, yn, h
ð1Þ
n , and h

ð2Þ
n . It should

be noted that in problems containing the z axis, the bu coefficient must be considered

zero in order to avoid singularities; moreover n and m are restricted to be integers

(n ¼ n and m ¼ m). The product of the functions � and � are usually called

spherical harmonics (Ymnðf; uÞ ¼ �ðfÞ�ðuÞ). In problems involving spherical

waves, the TE-TM decomposition of a given EM field in spherical coordinates is

usually performed with respect to the r direction.

Several papers in the literature analyze scattering from a multilayered sphere as

shown in Figure 4.10a. Aden and Kerker were first to investigate the incidence of a

uniform plane wave on a concentric spherical shell [18], and shortly after, in [19],

approximate results were obtained in the limit of very thin shells. Multilayered

spherical shields were studied in [20–22], and the possible anisotropy of the
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materials was taken into account in [23] for a single sphere and in [24] for a

multilayered spherical structure. Resonance effects in a spherical shell were studied

in [25], and, more recently, in [26] the use of lossy dielectrics was suggested to

mitigate such undesired effects, determining (for a double-layered spherical shield)

an approximate value for the optimum conductivity of a metal layer that minimizes

the Q factor at the fundamental resonant frequency of the structure.

Other 3D shielding problems solvable in closed form involve shields of

ellipsoidal shape, as shown in Figure 4.10b. The mathematical formalism requires

the use of spheroidal wavefunctions [27], and analyses of different configurations

(involving a single spheroid, a spheroidal shell, and a multilayer spheroid) can be

found in [28–30].

4.5 LIMITS TO THE EXTENSION OF THE TL ANALOGY TO
NEAR-FIELD SOURCES

Since the analytical solution of the field equations is complicated, even for simple

shield configurations, the TL approach has been widely used for evaluating the

performances of shields also against near-field sources, because of its inherent

formal simplicity. However, impinging fields are different from plane waves, and so

require that the TL analogy be carefully used to avoid incorrect results.

Generally, when a planar screen is placed in the near-field region of a finite

source, the incident EM field produced by the source can be represented by an

integral superposition of plane waves having all the possible directions of

propagation and polarizations. In principle, one could apply the TL approach to

each of these elemental plane waves, and then reconstruct the field beyond the screen

by summing up the contributions of all the transmitted elemental plane waves.

However, the TL parameters would be different for different plane waves and hence

a unique TL cannot be defined for the total field.

Despite these considerations, an approximate TL approach does exist for the

evaluation of the SE of an infinite highly conductive planar screen in the presence of

FIGURE 4.10 Plane-wave incidence on a multilayer spherical shield (a) and on a

multilayer spheroidal shield (b).
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a near-field source, and it has been widely used through the years [31–32]. As shown

in Section 4.2.2, when the planar screen is highly conductive, the EM field inside it is

(with very good approximation) that of a uniform plane wave propagating in a

direction normal to the screen, independently of the incident field. Therefore a TL in

the direction normal to the screen can be introduced to model the field propagation

inside it.

However, it is not clear how to establish a TL model for the field outside the

screen, since, as explained above, each elemental plane wave in the spectrum of the

incident field is modeled by a different TL. In order to overcome this difficulty, it

may be noted that for a single plane wave, the characteristic impedance of its

equivalent TL coincides with its wave impedance in the TL direction. According to

[33], the wave impedance along an arbitrary direction u is defined as the ratio of the

transverse (with respect to u) electric-field component to the mutually perpendicular

transverse magnetic-field component. Therefore the idea is to use the wave

impedances of the incident field at the screen interfaces as the characteristic

impedances of the TLs modeling the field outside the screen.

It should be noted that the wave impedances of the incident field actually depend

on the observation point on the screen interface. For instance, let us consider an

infinitesimal electric or magnetic dipole, which can be used as a first approximation

to model finite sources of small dimensions. With respect to the arbitrarily oriented

reference system ðx0; y0; z0Þ, the electric- and magnetic-field components produced

by an infinitesimal electric dipole (ED) of moment Iluz0 can be expressed in

spherical coordinates as

Erðr0; u0Þ ¼ h0
Il

2p
cos u0

1

r02
þ 1

jkðr0Þ3
" #

e�jkr0 ;

Euðr0; u0Þ ¼ h0
Il

4p
sin u0

jk

r0
þ 1

ðr0Þ2 þ
1

jkðr0Þ3
" #

e�jkr0 ;

Hfðr0; u0Þ ¼ Il

4p
sin u0

jk

r0
þ 1

ðr0Þ2
" #

e�jkr0 ;

ð4:46Þ

while an infinitesimal magnetic dipole (MD) of moment IS uz0 produces a field

Efðr0; u0Þ ¼ jvm0IS

4p
sin u0

jk

r0
þ 1

ðr0Þ2
" #

e�jkr0 ;

Hrðr0; u0Þ ¼ jvm0IS

2ph0
cos u0

1

ðr0Þ2 þ
1

jkðr0Þ3
" #

e�jkr0 ;

Huðr0; u0Þ ¼ jvm0IS

4ph0
sin u0

jk

r0
þ 1

ðr0Þ2 þ
1

jkðr0Þ3
" #

e�jkr0 :

ð4:47Þ
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With respect to the reference system ðx; y; zÞ shown in Figure 4.11, two wave

impedances Zw1 and Zw2 can be defined as

Zw1 ¼ þ Einc
y

Hinc
z

; ð4:48aÞ

Zw2 ¼ � Einc
z

Hinc
y

: ð4:48bÞ

It is possible to move from the unprimed reference system to the primed one by a

rotation around the z axis of an angle g and then around the new rotated x axis of an

angle a. The wave impedances are then given by

ZED
w1 ðr;f; uÞ ¼ þ s22Erðr0; u0Þ þ s23Euðr0; u0Þ

s21H’ðr0; u0Þ ;

ZED
w2 ðr;f; uÞ ¼ � s12Erðr0; u0Þ þ s13Euðr0; u0Þ

s11H’ðr0; u0Þ ;

ð4:49aÞ

FIGURE 4.11 Infinitesimal dipole source arbitrarily oriented illuminating an infinite planar

shield.
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ZMD
w1 ðr;f; uÞ ¼ þ s11Efðr0; u0Þ

s12Hrðr0; u0Þ þ s13Huðr0; u0Þ ;

ZMD
w2 ðr;f; uÞ ¼ � s21Efðr0; u0Þ

s22Hrðr0; u0Þ þ s23Huðr0; u0Þ;

ð4:49bÞ

for an electric and a magnetic dipole, respectively. Here

s11 ¼ cosa cos g cos ’0 � sin g sin ’0;
s12 ¼ cosa cos u0 þ sina sin u0 sin ’0;
s13 ¼ cosa sin u � sina cos u0 sin ’0;
s21 ¼ sina cos ’0;
s22 ¼ � sina cos g cos u0 þ sin g sin u0 cos ’0 þ cosa cos g sin u0 sin ’0;
s23 ¼ sin g cos u0 cos ’þ sina cos g sin u0 þ cosa cos g cos u0 sin ’0 :

ð4:50Þ

From (4.49) and (4.50), it can be seen that the wave impedances strongly depend on

the observation point. In the TL analogy, the SE is the sum of three terms: the

reflection-loss term R, the absorption-loss term A, and the multiple-reflection-loss

term M. However, both R and M depend on the mismatch between the wave

impedance and the intrinsic impedance of the shield medium h. It is clear that the SE

of the screen cannot be fully evaluated if only the shield characteristics are known

(i.e., its geometrical and physical properties), since the SE strictly depends also on

the size, location, and orientation of the source with respect to the shield. It should be

noted that the source identification is a necessary prerequisite to any shielding

analysis. A first fundamental step in the source-identification process when dealing

with near fields is the distinction between high- and low-impedance field sources.

High-impedance sources produce a near field dominated by the electric field E (i.e.,

jZw1;2j � h0), while low-impedance field sources are characterized by a near field

dominated by the magnetic field H (i.e., jZw1;2j � h0).

In practice, when the TL analogy is applied to evaluate the SE of an infinite planar

conducting screen, the impedances of the impinging field are computed along the

axis drawn from the source orthogonally to the shield (x axis in Figure 4.11). Two

significant configurations are those in which a dipole is normal to the shield (i.e.,

g ¼ 0 and a ¼ p=2) or parallel to the shield (i.e., g ¼ 0 and a ¼ 0). From equations

(4.46) through (4.50), by assuming u0 ¼ 0 for orthogonal dipoles (?) and u0 ¼ p=2
for parallel dipoles (k), respectively, the following expressions for the wave

impedances can be obtained:

ZED?
w2 ðx;vÞ ¼ h0

j2 þ jþ 1

j2 þ j
; ð4:51aÞ

ZMD?
w1;2 ðx;vÞ ¼ h0

j2 þ j

j2 þ 3jþ 3
; ð4:51bÞ
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Z
EDk
w1;2ðx;vÞ ¼ h0

j2 þ 3jþ 3

j2 þ j
; ð4:51cÞ

Z
MDk
w1 ðx;vÞ ¼ h0

j2 þ j

j2 þ jþ 1
; ð4:51dÞ

where j ¼ jk0x. It should be noted that the wave impedances are both defined only

when the electric dipole is parallel to the shield or the magnetic dipole is

perpendicular to the screen.
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FIGURE 4.12 Magnitude of the normalized wave impedances as functions of the

normalized distance �x ¼ x=l0. Electric dipole (a) and magnetic dipole (b).
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The behavior of the wave impedances is illustrated in Figure 4.12, where

the normalized wave impedances j�ZED=MD
w1;2 j ¼ jZED=MD

w1;2 j=h0 are reported as functions
of the normalized distance �x ¼ x=l0. For normalized distances smaller than 1=ð2pÞ
(i.e., in the near-field region), the wave impedances of the field produced by the

electric dipole are larger than the free-space impedance h0, while those

corresponding to the magnetic dipole are smaller. It can be concluded that the

electric dipole is a high-impedance field source, while the magnetic dipole is a low-

impedance field source.

To illustrate how the TL approach behaves when it is extended to study near-

field sources, the typical values of the intrinsic impedance of shielding materials

are compared with the wave impedances of the impinging field produced by the

source. From Figure 4.3 it can be seen that the intrinsic impedance of shielding

materials is much smaller than the free-space impedance, also when the frequency

is increased up to 1 GHz. In the case of high-impedance field sources, the ratio

z ¼ jZED=MD
w1;2 =hj is so large that the reflection-loss term R always gives a

remarkable contribution to the overall SE. Furthermore this type of sources usually

works at high frequencies (VHF, UHF, and SHF) where the screen is electrically

thick and the absorption-loss term A gives a significant contribution as well. The

values of the SE are so large that the approximations due to the extension of the TL

analogy to near-field sources and to the small-dipole approximation of the actual

sources do not affect the overall accuracy of the results. The TL approach is

particularly convenient here because it provides accurate results, even if the actual

source is modeled as a small dipole. The effect of the main quantities on the SE is

shown in Figure 4.13. A copper planar screen (s ¼ 11:8 � 106 S/m, d ¼ 0:5mm) of

infinite extent is assumed to be placed 30 cm far from an electric dipole parallel to

the shield. In the low-frequency range the reflection-loss term R is the dominant
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FIGURE 4.13 Magnitude of the contributions to the SE of an infinite copper planar screen

of thickness d¼ 0.5mm illuminated by a parallel electric dipole as a function of frequency.
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contribution to the SE, due to the several orders of mismatch between the incident-

wave impedances jZED
w1;2j and the intrinsic characteristic impedance of copper jhj

(the multiple-reflection-loss term M is practically zero). As the frequency is

increased, the screen becomes more and more electrically distant from the source;

the values jZED
w1;2j of the wave impedances decrease toward that of the free-space

impedance of a normally incident plane wave h0, the characteristic impedance jhj
of copper increases, and the contribution of R to the SE reduces while the

contribution of A increases. The SE always assumes large values, varying from 150

to 1000 dB. In this range of values, the errors introduced by the TL analogy are

negligible.

On the other hand, in the case of low-impedance field sources, the TL analogy

needs to be applied with several attentions to avoid incorrect results. Low-

impedance field sources (e.g., loops or straight conductors carrying an electric

current) are mainly source of magnetic field in the low-frequency range (e.g.,

ULF and VLF). At low frequencies the conducting shield is electrically small

(d � l0), and the contribution of the absorption-loss term A is almost negligible.

For the materials shown in Figure 4.3, the magnitude of the wave impedances is

from one to three orders of magnitude larger than that of their intrinsic

impedance jhj: the reflection-loss term is the dominant contribution to the SE,

although its values are much smaller than those attained in the case of high-

impedance field sources. Moreover the multiple-reflection-loss term M can

assume negative values, further reducing the SE values. This behavior is

illustrated in Figure 4.14, where a copper planar screen (s ¼ 11:8 � 106 S/m,

d ¼ 0:5mm) of infinite extent is assumed to be placed 30 cm far from a magnetic

dipole parallel to the screen. Below 200 Hz, the SE is practically zero and the R

and M terms are almost equal but opposite in sign. From 200 up to 200 kHz,
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FIGURE 4.14 Magnitude of the contributions to the SE of an infinite copper planar screen

illuminated by a parallel magnetic dipole as a function of frequency.
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the main contribution to the SE is mainly due to the reflection-loss term R;
since the mismatch between the wave impedances and the copper intrinsic

impedance increases. Above 200 kHz, the absorption-loss term A starts to

contribute to the overall SE while the contribution of the M term drops to zero.

A comparison of Figures 4.13 and 4.14 shows that a difference of about one order

of magnitude exists between the SE of the screen when it is illuminated by the high-

impedance field source and by the low-impedance field source. From a physical

point of view, the main difference is the role played by the eddy-current cancellation

mechanism (see Appendix B), which is practically negligible at very low

frequencies, and the different weight of the reflection- and multiple-reflection-loss

terms. For low-impedance field sources these two terms are the dominant

contributions to the SE. Hence any small error in the computation of these terms

deeply affects the accuracy of the final results provided by the TL analogy. For this

reason it is important to compute the wave impedances of the field produced by

actual sources as accurately as possible.

In Appendix B some canonical problems of VLF magnetic shielding are

revised and the analytical solutions are provided. These problems deal with

typical sources of practical interest, as illustrated in Figure 4.15: the current loop

placed in a plane normal to the shield, the current loop placed in a plane parallel
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FIGURE 4.15 Basic low-frequency field sources.
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to the shield, the straight wire conductor parallel to the shield. Comparisons

between the results obtained through exact formulations and the approximate TL

analogy are also reported, showing that the latter can provide very accurate

results.

For these sources it is possible to compute the correct wave impedances along the

normal to the shield (x axis) as

Z
loop?
w1 ¼ �jvm0

R1
0
½R1

0
½I1ðbRÞ=b�e�

ffiffiffiffiffiffiffiffiffiffi
a2þb2

p
xda�dbR1

0
½R1

0
½bI1ðbRÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
�e�

ffiffiffiffiffiffiffiffiffiffi
a2þb2

p
xda�db

; ð4:52aÞ

Z
loopk
w1;2 ¼ �jvm0

R1
0

�
n=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � k20

p 

J1ðnRÞe�

ffiffiffiffiffiffiffiffiffi
n2�k2

0

p
xdnR1

0
nJ1ðnRÞe�

ffiffiffiffiffiffiffiffiffi
n2�k2

0

p
xdn

; ð4:52bÞ

Z
wirek
w2 ¼ h0

K0ðjk0xÞ
K1ðjk0xÞ ; ð4:52cÞ

where I1ð�Þ is the first-order modified Bessel functions of the first kind while K0ð�Þ
and K1ð�Þ are the zero- and first-order modified Bessel functions of the second kind,

respectively.

In Figure 4.16, a comparison among these wave impedances (radius of the loop

R ¼ 30 cm) and the wave impedances of an infinitesimal magnetic dipole for a

shield-to-source distance of 30 cm is shown. Even if the sources are all characterized

by very low values of the wave impedances, some differences are noticeable. Hence,

when a real source is replaced with a small magnetic dipole, the wave impedances
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must be accurately evaluated since small differences can provide inaccurate results

when the TL analogy is adopted.

In the low-frequency range, where the approach is more critical, the TL analogy

has been widely tested with high-permeability and high-conductivity materials [1,

31, 32, 37], showing results in reasonable agreement with those obtained through

measurements and those calculated with exact formulations [33–37].
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CHAPTER FIVE

Numerical Methods for
Shielding Analyses

The numerical approximation of Maxwell’s equations is known as computational

electromagnetics (CEM). Computational electromagnetics is the scientific discipline

that studies electric and magnetic fields and their interaction (electromagnetics)

using intrinsically and routinely a digital computer to obtain numerical results

(computational). Maxwell’s equations are the starting point for the study of any

electromagnetic (EM) problem. Nevertheless, their actual solution is generally

complex, and for realistic problems a numerical modeling is usually required. CEM

may be broadly defined as the branch of electromagnetics that develops and solves a

numerical model of physical EM phenomena, introducing approximations that are

an intrinsic part of any computer model. The main issues involved in developing a

computer model (i.e., classification of model types, steps involved in developing the

model, desirable attributes of the model, and role of approximations) are well

described in [1]. What is worth pointing out here is that numerical modeling is an

activity distinct from computation [2].

The adoption of any numerical technique always requires one to be familiar

with its basic formulation in order to apply it correctly and be aware of its

accuracy, efficiency, and utility with respect to the specific problem under analysis.

The widespread adoption of numerical modeling, boosted by the availability of

powerful commercial codes that are claimed to be general purpose, has frequently

led to the application of numerical techniques by unfamiliar users to problems for

which they are not designed, resulting in inefficient simulations and/or inaccurate

results.

A classification of the numerical methods is possible based on several criteria.

The formulation of any engineering model starts expressing the physical laws used
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in describing the observed phenomena in a functional form of the type L½f� ¼ g,

where L½�� is a functional operator, f is the unknown field function of the problem,

and g is a known source function.

A first characteristic to be used in the classification can be drawn from looking at

the domain (time or frequency) in which the operator, the field, and the source

functions are defined. This allows for a distinction to be made between the time-

domain (TD) methods and the frequency-domain (FD) methods. Several reasons can

be provided for modeling in one such domain rather than in the other. In general, the

TD formulation is suitable for studying transient phenomena, when broadband

information is sought or when problems involve nonlinear or time-varying media,

while the FD formulation is straightforward for studying the steady-state response,

when a single-frequency or a narrow-band response is sought, or when dealing with

high-resonant structures. In applying this reasoning, it is important to keep in mind

that no one method is capable of solving every problem. Identifying and developing

an approach that is best suited to a particular problem always involves trade-offs

among a variety of considerations and choices, such as the geometry of the problem,

the involved media, the requested output information, the efficiency and accuracy of

the method.

Another type of broad classification is possible about the nature of the functional

operator Lð�Þ. The functional operator may be expressed in a differential or in an

integral form, by way of differential-equation (DE) or integral-equations (IE)

methods, respectively. Since the DE methods call for physical laws to be enforced at

all points in space, they allow one to easily deal with complex materials with fine

features and irregular shapes, such as anisotropic or inhomogeneous materials, but

they require the discretization of the entire computational space and the enforcement

of an artificial numerical boundary to solve open-region problems. In contrast, the IE

methods call for physical laws to be enforced only at significant surfaces of the

scatterers involved in the problem, and hence IE methods are used to solve a certain

type of problems with fewer unknowns. Furthermore they allow open-boundary

problems to be treated rigorously. However, the equations are generally more

complex than those of the DE methods and cannot be easily applied to complex

media. Besides the broad classes of DE and IE methods, there are methods based on

operators of a particular type, such as optical methods based on ray tracing, physical

optics (PO), and the geometric theory of diffraction (GTD). However, they cannot be

considered full-wave methods (i.e., methods that approximate Maxwell’s equations

without any initial physical approximation), since they are based on optical

approximations.

Describing the whole field of CEM is a daunting task, and beyond the scope of

the present book. This chapter provides a short but comprehensive survey of

numerical methods that are usually applied in the field of the shielding theory.

The purpose is to enable the reader to gain a perspective on the variety of

techniques presently available or being developed. The overview nevertheless

will be selective and focused on the basic concepts, features, and proposed

improvements relevant for an application of the methods used to analyze

shielding problems.
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5.1 FINITE-ELEMENT METHOD

The finite-element method (FEM) [3–11] is a numerical technique capable of

obtaining approximate solutions to a wide variety of engineering problems.

Although the FEM is conceptually more complex and difficult to program than

other well-developed methods, it has matchless power for handling problems

involving complex geometries and inhomogeneous media. The distinguished

features of the method are its systematic generality, diversity and flexibility all of

which make it possible to solve a broad field of problems in different engineering

disciplines involving equilibrium, eigenvalue, and propagation problems, for

example, in civil, mechanical, aerospace, and electrical-electronic engineering,

and to construct general-purpose computer programs for solving coupled

multidiscipline problems involving, for example, thermomechanic or thermo-

electric properties.

Roughly, the FEM is a numerical technique used to solve the boundary-value

problems arising in the mathematical modeling of physical systems. These systems

are generally described by a governing equation of the form

L½f� ¼ g; ð5:1Þ

which has to be solved for the unknown function f in a domain O, together with the
boundary conditions B½f� ¼ 0 on the boundary G that encloses the domain. In

(5.1), L½�� is the operator (differential or integral) that describes the problem while

g is the known source term; of course, both f and g can be either scalar or vector

functions.

In electromagnetics the governing equation ranges from simple Poisson

equations to more complicated scalar and vector wave equations; the boundary

conditions range from simple Dirichlet or Neumann conditions to more

sophisticated impedance, radiation, and higher order conditions. The basic idea

of the finite-element analysis is to search an approximate solution of the whole

problem by envisioning the solution region O as built up of many small

interconnected subregions. The solutions are therefore expressed individually

before they are put together to approximate the entire problem. An example of

the possible original problem is sketched in Figure 5.1a, and its subregion

triangular model is shown in Figure 5.1b. In essence, a complex problem reduces

to considering a series of greatly simplified problems. Since the elements can be

put together in a variety of ways, they can be used to represent exceedingly

complex shapes. An approximate solution of the boundary-value problem can be

searched by using the Rayleigh-Ritz variational approach or the weighted

residual approach.

A place to start is with a review of the work of Mikhlin [12]. If L is a real self-

adjoint operator, the solution of (5.1) makes stationary the functional

I½f� ¼ 1

2
hLf;fi � 1

2
hf; gi � 1

2
hg;fi; ð5:2Þ
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where the brackets denote the inner product defined as

hf;ci ¼
Z
V

fc� dV: ð5:3Þ

If the operator L½�� is complex, the same functional can be retained, but the inner

product must be modified not considering the complex conjugate. The Rayleigh-Ritz

method yields an approximate solution to the variational problem (5.2) directly, that

is, without recourse to the associated differential equation (5.1). From an

appropriately selected set of linearly independent real expansion (or basis) functions

uj, an approximate solution ~f, satisfying the prescribed boundary conditions, is

constructed in the form of a finite series

~f ¼
XN
j¼1

xjuj; ð5:4Þ

where the coefficients xj can be complex. The procedure is said to converge to the

exact solution if ~f ! f as N tends to infinity. Introducing (5.4) into (5.2), and

minimizing the functional by forcing its partial derivatives with respect to the

coefficients xi to vanish, leads to

XN
j¼1

hLuj; uiixj ¼ hg; uii; i ¼ 1; 2; . . . ;N; ð5:5Þ

which can be cast in a matrix form as A � x ¼ b.

When the functional does not exist, it is possible to apply one of the techniques

referred to as the weighted residual methods. Use of the weighted residual is more

general and of wider application because this technique is not limited to the class of
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FIGURE 5.1 Electromagnetic sources in an inhomogeneous region V (a) and two
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variational problems. As the name indicates, the result sought is an approximate

solution in the same form as in the Rayleigh-Ritz method, obtained by weighting the

residual of the equation (5.1). Substitution of (5.4) in the functional equation (5.1)

results in a nonzero residual:

R ¼ L~f� g 6¼ 0: ð5:6Þ

Since the best approximation will reduce the residual R to the least value at all points

of the domain O, the weighted residual methods enforce to zero the integral

conditions

hwi;Ri ¼
Z
V

wiR dV ¼ 0; i ¼ 1; ::: ;N; ð5:7Þ

where fwigN are an appropriately selected set of weighting (testing) functions. By

enforcing the inner product to zero for each function wi, the final system is readily

obtained as

XN
j¼1

hwi; Lujixj ¼ hwi; gi: ð5:8Þ

Although several weighted residual methods result from different choices of the

testing functions (point-matching method, subdomain-collocation method, least-

squares method), the most common practice is to set the weighting functions equal to

the expansion functions uj. This particular choice is calledGalerkin’s method, which

reduces to the Rayleigh-Ritz method if the operator L is self-adjoint.

The solution of any continuum problem by means of the FEM always involves an

orderly step-by-step process. The first step consists in subdividing the solution

domain V into nonoverlapping subregions, called elements. A variety of element

shapes are available and different element shapes may be used in the same problem,

both in two and three dimensions. Nevertheless, the most common elements are

triangles and tetrahedra: they are in fact the simplest shape into which a 2D or 3D

region can be broken and are well-suited to automatic mesh generation, for which

efficient algorithms have been developed. Conforming elements with curved sides

have been proposed too, which reduce errors in modeling the region of interest,

especially when it has curved boundaries, but with an additional computational cost.

The next step is the choice of the real-valued independent expansion functions uj.

They are generally subdomain functions defined over a finite support comprising a

few number of adjacent elements where they approximate the variations of the

unknown function.

Once the finite-element model has been established, the third step requires one to

derive the governing matrix equations over a single element. Galerkin’s method or

the variational Rayleigh-Ritz method is generally used to produce weak forms of the

governing equations.
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To find the solution over the domain V, all the elements must be assembled in a

global matrix. The basis for the assembly procedure stems from the fact that all the

elements sharing the support of a basis function contribute to the weight of the basis

function. The step is usually done through a connectivity matrix that maps the local

numbers of the simplices of the mesh to the numbers corresponding to the whole

mesh.

Before being ready for solution, the system equations must be modified to

account for the boundary conditions of the problem. The boundary conditions can be

either of the essential or of the natural type [6]. The essential condition must be

explicitly built into the finite-element model in order to be satisfied by the solution,

even in the limit of an infinite number N of expansion functions; the natural

condition is satisfied by the model but only in an approximate weak sense, it being

exactly satisfied only in the limit case.

The last step requires one to solve the matrix system in order to obtain the

unknown coefficients of the expansion functions. The nature of the resulting set of

equations depends on the type of problem that is being solved: in particular, the

algebraic system is linear for a steady-state problem, whereas it is nonlinear for an

eigenvalue problem. Moreover a linear or nonlinear matrix differential equation

must be solved if the problem is unsteady (e.g., when the coefficients are time

dependent). Apart from the nature of the resulting matrix equations, the common

characteristic of them all that distinguishes finite-element analysis is that the

matrices are deeply sparse. This feature makes possible the use of special-purpose

methods that exploit the matrix sparsity to optimize the storage and the compu-

tational cost.

The FEM was first applied (in electromagnetics) in electrostatic problems and for

the computation of homogeneous waveguide modes in the frequency domain, where

the primary unknowns are scalar in nature (the electric voltage and the longitudinal

components of electric or magnetic field, respectively). Node-based elements

were developed and particular polynomial expressions (the Lagrangian functions)

were adopted to approximate the behavior of the field over the element, since they

are easy both to be integrated and to be differentiated. The scalar field f can be

approximated in the meshed region V by the weighted sum

fðx; y; zÞ ¼
XM
j¼1

ajðx; y; zÞFj; ð5:9Þ

whereFj are the unknown values of the variable f at theM nodes of the mesh and aj

are linearly independent scalar basis functions. The expansion function aj is a

subdomain function, meaning it is nonzero only on the elements around the node j,

whose space regions define the support of the function. The number of regularly

spaced nodes in the single element depends on the order k of the polynomial

functions, thus giving rise to first-order (k ¼ 1) and higher order (k > 1) elements.

Two-dimensional basis functions of first and second order are shown in Figure 5.2

for a triangular element. To achieve higher accuracy in the finite-element solution, it
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is possible to resort to finer subdivisions with lower order elements, at the price of

increasing computing time and memory due to the larger number of unknowns, or to

resort to higher order interpolation functions, at the price of more complex

formulations. A huge amount of literature exists on the systematic construction of

Lagrangian and general hierarchical scalar functions, which the interested reader is

referred to [6–11].

The scalar formulation was extended in the frequency domain to inhomoge-

neous waveguides and to three-dimensional (3D) problems. Although there are a

number of possible equations describing a general 3D EM scattering problem,

without any loss of generality it is possible to limit the attention to the use of

the vector wave equations in the double-curl form for the electric and magnetic

field as

r� 1

mr

r� E

� �
� k20erE ¼ �jk0h0J; ð5:10aÞ

r � 1

er
r�H

� �
� k20mrH ¼ 1

er
r� J: ð5:10bÞ

Scalar representation is employed so that each component of the vector field

quantities can be individually approximated on the finite-element scheme. By

applying the Galerkin method, we can derive the weak forms as

ZZZ
V

1

mr

ðr�EÞ �rai � k20erEai þ jk0h0Jai

� �
dV¼��

ZZ
G

1

mr

unr�Eai

� �
dG;

ð5:11aÞZZZ
V

1

er
ðr�HÞ �rai � k20mrHai � 1

er
r� Jai

� �
dV¼��

ZZ
G

1

er
unr�Hai

� �
dG;

ð5:11bÞ

where ai is a scalar basis function and un is the outward-pointing unit vector normal

to the closed boundary G of the volume V. It can be noted that the final matrix

system has dimension 3N, comprising complex 3� 3 submatrices of dimension N,

since three unknowns are placed at each node of the mesh. The application of

(a) (b) (c)

FIGURE 5.2 Subdomain triangular basis functions of the first (a) and second (b, c) order.
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equations (5.11) encounters several difficulties. At material interfaces the fields

exhibit jump discontinuities that can be difficult to enforce on a set of expansion

functions that enforce continuity between cells. Enforcing boundary conditions

requires that normal and tangential field components be separated at the interfaces

and at the boundaries of the problem domain, which makes an expansion in global

components impractical. The same difficulties hold for the enforcement of field

singular behaviors at edges and corners. Furthermore the Lagrangian discretization

of the wave equations produces spurious functions in the eigenspectrum of the curl

operator (known as spurious modes or vector parasites).

A body of literature exists on the issue of spurious modes, which at first were a

source of confusion in the EM community. Spurious modes are numerical

solutions of the vector wave equation, either in the double-curl or in the Helmholtz

form, that have no correspondence to physical reality. Largely influenced by the

first works on the subject [13,14], the early thinking attributed this problem to a

deficiency in enforcing the solenoidal nature of the field in the approximation

process. Consequently modified functionals and weak forms were proposed,

associated with the so-called penalty method [15], to constrain the magnetic and

electric flux vectors to be truly solenoidal. Successively, a body of literature has

shown that the true cause of spurious modes is the incorrect approximation of the

null-space of the curl operator [16–18]. The curl-curl operator admits eigenfunc-

tions that have a solenoidal flux r � D ¼ 0 and that correctly represent a time-

varying field in a source-free region, and irrotational eigenfunctions of the form

E ¼ �rF that form the null-space of the curl operator corresponding to the

eigenvalue k0 ¼ 0 and thus represent a static field. Unless the basis functions are

orthogonal to all the eigenfunctions in the null-space, the resulting matrix

representing the operator will have some eigenvectors approximating those

functions. The difficulty lies in the fact that Lagrangian basis functions cannot

adequately represent the null-space eigenfunctions (since the approximation is

very poor), the zero eigenvalues are approximated with large numbers, and the

eigenvectors corresponding to the poorly approximated eigenfunctions form the

spurious modes. The new philosophy that originated from these observations was

to represent the null-space eigenfunctions as accurately as possible, as opposed to

trying to suppress these eigenfunctions by making it impossible for the basis-

function set to model the irrotational solutions. Provided that the basis functions

are able to approximate the null-space of the curl operator, the eigenvalue k0 ¼ 0

will be computed exactly with its associated eigenfunctions, and it will be

necessary only to ignore these static solutions.

The spurious-mode problem was fully solved in the early 1980s [19–22] when a

new family of mixed-order subsectional vector basis functions was introduced

providing a spurious eigenvalue free discretization of the curl-curl operator. The

important properties of these functions are that they impose condition of tangential

continuity for the unknown vector between adjacent cells, without enforcing any

constraint on the normal component and that they exhibit identically zero

divergence. For these reasons they are referred to as curl-conforming tangential

vector elements or often edge elements because in the linear formulation (only) the
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bases are associated with edges. The success of these vector functions in eliminating

spurious modes is due to their providing a consistent representation of the field and

the associated scalar potential over an arbitrary mesh of elements, and not to their

solenoidal nature. A two-dimensional and a three-dimensional vector basis function

of the first-order are shown in Figure 5.3. It has been shown in [23] that the edge

elements are one of the several manifestations in electromagnetics of the differential

p-forms described by Whitney [24] that, more generally, assign degrees of freedom

to simplices of a given mesh. The 0-form is the classical linear polynomial

interpolant associated with the nodes of the mesh (potential function); the 1-form is

the edge element associated with an edge that ensures the continuity of the vector

components tangential to facets containing the edge (electric and magnetic fields);

the 2-form is the facet-element that maintains the continuity of the normal

component across a facet (currents and fluxes); the 3-form is a constant on

tetrahedron (divergence of currents and fluxes).

In the framework of the vector elements, the Helmholtz equations can be

converted into a weak form through the weighted residual method, thus obtainingZZZ
V

1

mr

r� T � r � E� k20erT � Eþ jk0h0T � J
� �

dV

¼ ��
ZZ
G

1

mr

T � un �r� E

� �
dG

ð5:12aÞ

ZZZ
V

1

er
r� T � r �H� k20mrT �H� T � r � 1

er
J

� �� �
dV

¼ ��
ZZ
G

1

er
T � un �r�H

� �
dG

ð5:12bÞ
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FIGURE 5.3 First-order two-dimensional triangular vector basis function (a) and three-

dimensional-tetrahedral-vector basis function (b).
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where T is a vector testing function. Setting the testing functions T equal to the basis

functions N, the finite-element procedure requires that for each element evaluation

be made of the stiffness and mass matrices. In the isotropic case these matrices,

respectively, reduce to [6–11],

Eij ¼
ZZZ
V

ðr � Ni � r � NjÞdV; ð5:13Þ

Fij ¼
ZZZ
V

ðNi � NjÞdV: ð5:14Þ

The same equations can be obtained through the variational principle by finding the

stationary point dF ¼ 0 of the following functionals:

F½E� ¼ 1

2

ZZZ
V

1

mr

r� E � r � E� k20erE � E
� �

dV

þ
ZZZ
V

ðjk0h0E � JÞdVþ�
ZZ
G

1

mr

E � un �r� E

� �
dG; ð5:15Þ

F½H� ¼ 1

2

ZZZ
V

1

er
r�H � r �H� k20mrH �H

� �
dV

þ
ZZZ
V

H � r � J

er

� �� �
dVþ�

ZZ
G

1

er
H � un �r�H

� �
dG: ð5:16Þ

With the use of edge elements (first-order continuous-tangent/linear-normal vector

elements), each edge is associated with a vector function that straddles all the

elements sharing the common edge. Hence, over each element there are six vector

functions, one per edge, and the elemental matrices are of dimension six. The

important feature of the vector finite-element formulation is that the unknowns are

generally associated with the Whitney p-forms (edges, faces, and cells) and not with

only the node as in the nodal formulation.

A potential disadvantage of the FEM, common to all those methods based on a

discrete form of partial differential equations (PDEs), arises when dealing with the

solution of open-region scattering problems, known as open-domain or open-

boundary problems. Since any PDE method is a finite-domain method by its own

nature (i.e., only a finite number of elements are used to discretize a bounded

domain), an artificial outer boundary must be introduced to bound the region of

interest that is subdivided into meshes. To avoid the error caused by a simple

truncation of the mesh, special techniques must be applied to represent the exact

asymptotic behavior of the fields in the infinite exterior domain (described by the

96 NUMERICAL METHODS FOR SHIELDING ANALYSES



regularity condition in the static case and the radiation condition in the dynamic one).

A very huge amount of literature exists on the finite-element open-boundary

techniques, both for static fields and traveling waves [25–27].

As concerns statics, among all the available techniques, the ballooning

technique [28] and the infinite-element method [29] have received more attention.

In the ballooning technique, the interior region is surrounded by an annular region

constituted of a mesh of super-finite elements. With a recursive process, new

annulus are added, with the inner nodes overlapping the outer nodes of the

previous annulus. This way the radius of the whole outer boundary increases in a

geometric progression and the system rapidly converges. The infinite-element

method attempts to represent the specific field decay in the exterior region by

modifying the interpolating functions or by mapping the infinite element onto a

finite region. In the first approach, the field variation in the infinite elements is

represented by means of a decay interpolation function that properly makes the

solution in the exterior region decay as a function of the radial distance. In the

second approach, a singular mapping function is used to map the finite domain of a

regular element into an infinite domain. The mapping function allows the classical

regular shape functions to be used on the infinite elements to describe the

asymptotic behavior of the field.

As regards the dynamic problems, appropriate radiation conditions are usually

enforced on the outer boundary in order to absorb the outgoing waves with minimum

nonphysical reflection, so as to represent a fictitious exterior region of infinite extent.

Basically two types of conditions can be used on the artificial outer boundary in

order to truncate the mesh: global and local conditions.

Global boundary conditions are exact within the numerical approximation, but

they result in a full matrix, at least insofar as the boundary nodes are concerned.

They mainly include the combined use of various types of boundary-integral

equations with the finite-element formulation, arising in hybrid methods that

retain the most efficient characteristics of both finite methods and integral-

equation methods. Integral methods (considered in the next sections) can in fact

handle unbounded problems very effectively, but they become computationally

intensive when complex inhomogeneous media are present. In contrast, FEM

easily handles nonhomogeneous media, requiring less computational effort for

its sparse and banded matrix, thus being more suitable for boundary-value

problems. Hence the basic recommended technique is to use FEM to treat the

bounded and inhomogeneous regions and to use a coupled integral-equation

method to treat the unbounded homogeneous region. Hybrid methods worthy

of note are the hybrid finite-element method and method of moments (FEM/

MoM) [30] and various formulations of the hybrid finite-element method and

boundary-integral method (FEM/BEM) [31]. By means of these techniques, a

closed (bounded) artificial surface separates an interior possibly nonhomoge-

neous region (where the differential equation is solved by means of the FEM)

from an unbounded homogeneous exterior region where the EM problem is

described by an integral equation (obtained from the Helmholtz equation through

the use of a suitable Green’s function). These hybrid methods can be effective
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in obtaining an exact solution for the field at infinity, but they have their

deficiencies, mainly in possible internal resonances, especially at high fre-

quencies, and in populated system matrices that corrupt the highly sparse and

banded nature of the finite-element system matrices, which is the distinctive

advantage of the FEM.

To retain the sparsity of the FEM matrices, a class of local absorbing boundary

conditions (ABCs) has been developed with more attractive numerical features.

However, because they are a truncated form of exact asymptotic expansions, the

local boundary conditions are inexact and errors can be introduced in the solution

by the presence at the outer boundary of reflected waves that are not totally

absorbed. The most popular ABC was derived by Bayliss, Gunzburger, and Turkel

(BGT) [32].

As an alternative to ABCs, Berenger [33,34] has introduced the concept of

a perfectly matched layer (PML), and this has led to new fervor in CEM as

well as in all the fields of computational physics. The innovation in this

approach is that instead of enforcing an approximate mathematical absorbing

condition on the outer boundary, the computational domain is surrounded with

a fictitious medium, having certain constitutive parameters, that can absorb

(without any reflection) EM plane waves of arbitrary polarization and angle

of incidence at all frequencies. This medium is consequently referred to as

perfectly matched to the medium of the interior computational domain. It was

shown that in the absorbing layers it is sufficient to ‘‘split’’ each vector-field

component into two orthogonal components in order to ‘‘split’’ the Maxwell

equations into two sets of (unphysical) first-order PDEs. By properly choosing

the constitutive and loss parameters of the medium, a perfectly matched planar

interface is derived. Within the PML medium, the transmitted wave propagates

with the same speed and direction as the impinging wave while simultaneously

undergoing exponential decay along the normal to the PML interface. Thus the

PML region can be terminated with a perfect electric conductor (PEC) and still

the reflections from this PEC that re-enter the interior computational space are

negligible.

Following the first Berenger works, a number of papers published on the topic

proposed several modifications and improvements to enhance the PML perfor-

mance. The original split-field formulation gave rise to more effective interpreta-

tions: the PML concept was restated in a stretched coordinate form and was shown to

behave as a uniaxial anisotropic medium (UPML) characterized by both magnetic

permeability and electric permittivity tensors; this also led to an attempt to realize a

physical PML based on a Maxwellian formulation.

In recent years the finite-element formulation has been extended in the time

domain [35,36] where it has received much attention because of the peculiar

potential to simulate transient phenomena and perform broadband characterizations.

Its discussion is beyond the scope of this chapter; for details, the reader is referred to

the appropriate literature (e.g., [8,9,11]), with the caveat that the method has not

been much applied in shielding applications. It is sufficient to remark that by

expanding the electric field with vector basis functions whose unknown coefficients
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are now time dependent as

Eðr; tÞ ¼
XN
j¼1

ujðtÞNjðrÞ; ð5:17Þ

the curl-curl equation for the electric field can be recast in the following weak form

through the classical Galerkin or variational method:

E � d
2u

dt2
þ F � du

dt
þ S � uþ f ¼ 0: ð5:18Þ

The ordinary differential equation (5.18) in the time domain can be integrated by

employing several time difference schemes; among them, the Newmark method is

generally preferred.

5.2 METHOD OF MOMENTS

The method of moments (MoM) [37–41] has been shown to be a very powerful

technique for solving EM problems involving radiation and scattering from

arbitrarily shaped objects. The method is originally based on the idea of taking a

linear functional equation for the unknown (in the frequency or time domain) and

representing it by a linear matrix equation. The idea is quite old, and can be traced

back to Galerkin who developed it around 1915, but it did not become popular before

the advent of high-speed computers because of the tedious computation of the

matrix required for its use. The method requires two steps: the development of an

appropriate integral equation describing the EM problem and the application of the

matrix-method procedure [42] to reduce the functional equation to a matrix one.

In solving boundary-value problems constituted by the wave equation plus

boundary conditions and radiation condition at infinity, it is possible to carry out a

surface functional equation. This way the 3D problem is reduced to a 2D one in which

the unknown is an appropriate equivalent surface current, electric or magnetic. The

introduction of any special spatial coordinate grid is unnecessary, and the only

condition on the desired unknown function is that it satisfies the integral equation.

In scattering problems from perfectly conducting bodies as the one depicted in

Figure 5.4, the electric-field integral equation (EFIE) and the magnetic-field integral

equation (MFIE) are stated as

un � EsðrÞjS ¼ �un � EincðrÞjS; ð5:19aÞ
un �HsðrÞ � JðrÞjS ¼ �un �HincðrÞjS; ð5:19bÞ

where S is the boundary of the conductive object and un is the unit vector normal to S

pointing outward from the body. In (5.19) the superscripts ‘inc’ and ‘S’ indicate the

incident and the scattered fields, respectively. The incident field is that produced by

the actual sources in the absence of any object, whereas the scattered field is that due

to the equivalent sources radiating in free space [37–41]. The EFIE is the most

popular integral equation because it can be applied to objects of arbitrary shape,

unlike the MFIE whose validity is limited only to closed surfaces.
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As regards the EFIE in (5.19a), the mixed-potential representation is usually

adopted, according to which

EsðrÞ ¼ �jvmAðrÞ � rFðrÞ;

AðrÞ ¼
ZZ
S

Gðr; r0ÞJSðr0ÞdS0;

FðrÞ ¼ 1

e

ZZ
S

Gðr; r0ÞreSðr0ÞdS0;

rS � JSðrÞ ¼ �jvreSðrÞ;

ð5:20Þ

where r is the observation point, r0 the source point, Gðr; r0Þ is the free-space scalar
Green function defined in (1.40), and JS is the unknown surface current density. By

inserting (5.20) in (5.19a), we can obtain a Fredholm integral equation of the first

kind in the original form derived by Maue [43] as

jkh

ZZ
S

½Gðr; r0ÞJSðr0Þ � un�dS0

þ h

jk

ZZ
S

f½r0Gðr; r0Þ � un� � JSðr0Þ dS0 ¼ EincðrÞ � un; r 2 S;

ð5:21Þ

where the integration spans the complete body surface S. Other forms of EFIEs are

possible [37–41], but the mixed-potential form has gained success because it

facilitates the explicit transfer of one derivative to the basis functions for JS and

another to the testing functions. This has proved to be very advantageous when

dealing with arbitrarily shaped objects.

As concerns the MFIE in (5.19b), for observation points on the surface of the

scatterer, it involves an improper integral that must be splitted into two definite parts
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FIGURE 5.4 Electromagnetic sources radiating in presence of a PEC surface.
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[39,44], leading to a Fredholm integral equation of the second kind, that is,

4p�V0ðrÞ
4p

JSðrÞ � PV

ZZ
S

f½r0Gðr; r0Þ � JSðr0Þ� � ung dS0 ¼ un �HincðrÞ; r 2 S;

ð5:22Þ

where the surface integral must be performed in the Cauchy principal value sense

and V0ðrÞ stands for the solid angle external to the scatterer surface. For the case of

planar surfaces, the equation reduces to that originally proposed by Maue.

The second step of the method of moments is the reduction of the linear field

functional equation to a matrix equation. As in the FEM, this may be accomplished

by applying the Rayleigh-Ritz variational method or Galerkin’s method [45,46]. The

mathematical details are the same as those described for the finite-element

formulation. So the functional equation can be cast in the following concise form:

L½f� ¼ g; ð5:23Þ

where L is the linear integro-differential operator, g is the excitation vector function

(e.g., the incident field), and f is the response vector function (e.g., the unknown

surface current). The unknown function is expanded in a series of basis functions as

f ¼
XN
n¼1

Fnfn; ð5:24Þ

where Fn are unknown constants (also calledmoments). When the number N of basis

functions tends to infinity (so that fn form a complete set of basis functions), the

expansion (5.24) converges to the exact solution. For approximate solutions, the

summation is over a finite number N. In order to determine the unknown coefficients

Fn, a matrix equation has to be obtained. In particular, a set of weighting functions

wn ¼ fn is introduced. Then the inner product of (5.23) with each wn is taken, thus

obtaining

XN
n¼1

Fn wm; L fnð Þh i ¼ wm; gh i for m ¼ 1; 2; 3; . . . ;N: ð5:25Þ

The set of equations (5.25) can be written in a matrix form as

Z � F ¼ G; ð5:26Þ

where Z is known as the impedance matrix. One of the main task of the MoM

discretization lies in the choice of the basis functions, which must be linearly

independent. Although a huge literature exists on this subject, the commonly used
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basis functions are of two types: entire-domain basis functions (which exist over the

full domain) and subdomain basis functions (which exist only on one of the N

nonoverlapping patches into which the computational domain is discretized). The

subdomain basis functions are the most used, especially when developing general-

purpose codes for the modeling of arbitrarily shaped objects, since they do not

require any prior knowledge of the nature of the unknown function to be represented.

Although both scalar and vector basis functions are available, vector basis

functions are generally preferred because they allow the required boundary and

continuity conditions to be enforced in a rather simple way. Among the most popular

ones are the linear triangular rooftop Rao–Wilton–Glisson (RWG) functions [47]

that were originally proposed for use with the EFIE and triangular patch modeling

(the most appropriate for modeling complex surfaces). The RWG function is defined

on two adjacent triangular patches as shown in Figure 5.5. On the common edge of

the two patches, the normal component of the basis function is equal on both

patches, so no nonphysical line charge appears at the element’s boundary. The

direction of the vector basis function on a triangle is radial with respect to its vertex,

and the intensity is a linear function of the edge–vertex distance. On each triangle

there are three basis functions associated with it (one for each edge), except for

patches at the boundary of the surface (no basis function is associated with such
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FIGURE 5.5 Triangular rooftop vector RWG basis function.
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edges). According to Figure 5.5 the RWG basis function associated with the edge n

between the triangles T�
n and Tþ

n is thus defined as

fnðr0Þ ¼
r�
h� ; r0 2 T�

n ;
rþ
hþ ; r0 2 Tþ

n ;
0; elsewhere;

8<
: ð5:27Þ

where h
 are the heights of the triangles T

n with respect to the edge n.

In summary, the RWG function is characterized by the presence of a constant

normal component across the common edge between two triangle patches, zero

normal components along the other four edges, and linear tangential components

along all the edges. Since RWG functions are divergence conforming (i.e., they have

continuous normal components across element boundaries), these functions do not

permit any fictitious charge accumulation at the edge between two cells. Thus the

nonphysical charge accumulation that was identified as a source of difficulty in the

first EFIE formulations is eliminated. The RWG functions are the lowest order

member (continuous normal-linear tangent CN/LT) of a general family of mixed-

order divergence-conforming functions [19,48]. Although applications of higher

order basis functions exist [37–41], RWG functions are widely used in all the

integral formulations because of their inherent simplicity.

When the weighting functions are used, the inner product is typically defined as

hw; gi ¼
ZZ
S

w��g dS: ð5:28Þ

The calculation of the MoM matrix elements consequently requires the computation

of two surface integrals, one over the source patch and one over the observation

patch. Simpler techniques may be applied to reduce the testing-procedure cost such

as point-matching techniques or testing razor-blade functions [38–41]. However, the

simplifications in testing an integral equation are often paid for with a lost of

symmetry in the impedance matrix Z.

Integral formulations require the computation of potential integrals involving the

Green function and its gradient. In this connection the most severe problem is the

singular behavior of the integral kernel, which can be hardly handled with classical

Gaussian-quadrature rules. Much research has been focused on the analytical

computation of free-space static and dynamic potential integrals that arise in EFIE

and MFIE formulations with triangular basis functions [49]. Usually the singular part

of the integrands, involving the free-space scalar Green function or its gradient, is

extracted and its contribution is then evaluated with the aid of analytical procedures.

The MoM solutions of EFIE and MFIE are among the most successful numerical

methods for the solution of EM radiation and scattering problems. Most important

are EFIE and MFIE’s robustness and insensitivity against dispersion errors.

However, in their simplest form, they suffer some major problems that must be

adequately treated.
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The EFIE and MFIE fail in the solution of EM scattering from bounded objects at

frequencies corresponding to the resonant frequencies of the cavities formed by

hollow conductors with the same shape of the scatterers. In being only based on the

tangential electric or magnetic field on the surface of the scatterer, the EFIE and

MFIE formulations do not contain enough information to distinguish the exterior

problem from the interior one. In correspondence of the resonant frequencies of the

interior problem, the eigenvalue of the integral equation becomes zero, and the

resulting homogeneous equation admits the interior resonant current as an

eigenfunction. This contaminates the physical surface current as a spurious solution,

causing the boundary conditions to be no longer satisfied. To circumvent internal

resonance difficulties, several remedies have been suggested. The most effective one

is the use of a linear combination of the EFIE and MFIE, which is widely known as

the combined-field integral equation (CFIE) [50]. The resulting equation can thus be

written as

a jkh

ZZ
S

½Gðr; r0ÞJSðr0Þ� � un�dS0 þ h

jk

ZZ
S

½r0Gðr; r0Þ � un�r � JSðr0ÞdS0
8<
:

9=
;

þ ð1� aÞh 4p�V0ðrÞ
4p

JSðrÞ � PV

ZZ
S

½r0Gðr; r0Þ � JSðr0Þ� � undS
0

8<
:

9=
;

¼ aEincðrÞ � un þ ð1� aÞhun �HincðrÞ; r 2 S;

ð5:29Þ

where the parameter a is a real number in the range 0 < a < 1 that is used to adjust

the relative weights of the EFIE and MFIE. Several studies on the optimum choice of

a have found that a value of 0.2 is adequate. This way the method yields always a

unique solution but at the expense of an additional computational overhead. Another

technique, known as the combined-source integral equation (CSIE) [51], considers

combined electric and magnetic sources on the surface of the conducting body and

enforces the tangential electric-field boundary condition. The final equation is

jkh

ZZ
S

½Gðr;r0ÞJSðr0Þ�un�dS0 þ h

jk

ZZ
S

�½r0Gðr;r0Þ�un�r �JSðr0Þ
�
dS0

þ4p�V0ðrÞ
4p

MSðrÞ�PV

ZZ
S

�½r0Gðr;r0Þ�MSðr0Þ��ungdS0 ¼EincðrÞ�un;

r2 S; ð5:30Þ

where MS ¼ hð1� aÞ un � JSð Þ=a is the equivalent surface magnetic current, and

again 0 < a < 1. This approach has the same degree of complexity and

computational effort as the CFIE, but the computed current is not the true one

induced on the surface. Many other techniques have been proposed through the years
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(the combined-Helmholtz integral-equation formulation, the extended boundary-

condition method, the parasitic-body technique, the correction-factor technique, and

methods based on iterative techniques and singular-value decompositions) and can

be applied more or less effectively to overcome the internal resonance problem.

It is worth noting that this kind of problem is usually encountered in the shielding

practice in the study of enclosures with small apertures near the resonant frequencies

of the cavity. It has been observed that when RWG basis functions are used in

conjunction with EFIE, very fine discretization is needed to obtain convergence in

the results. The problem is more evident when internal sources radiate inside the

enclosure; in this case discretizations up to l=100 may be needed for the radiated

fields near the resonant frequencies to be accurately computed.

Other difficulties arise with integral formulations when they are used in the low-

frequency limit, namely for electrically small conducting scatterers. The classical

EFIE with RWG basis functions is in fact ill posed at the dc limit: the problem arises

in the impedance matrix Z whose condition number approaches infinity as the

frequency tends to zero. Since the low-frequency limit is equivalent to considering

small-sized elements, a deteriorated condition number is obtained in the attempt to

obtain better accuracy when dealing with complex geometries that require fine mesh

refinements with smaller elements. By applying the Galerkin weighted residual

method, it is easy to reduce (5.21) in the dc limit as

ZZ
S

r � JSðrÞ
ZZ
S

1

jr� r0j r � JSðr0Þ
� �

dS0

8<
:

9=
;dS ¼ 2; ð5:31Þ

where it is evident that any solenoidal vector field can be a solution, resulting in a

singular impedance matrix Z. The instability is consequence of the decoupling of the

electric field and charge density from the magnetic field and current density in the

static limit in nonconductive media. This decoupling of fields manifests in the

current that undergoes a natural Helmholtz decomposition. It separates itself into a

solenoidal component that produces only a magnetic field and a complementary

irrotational component that vanishes as the frequency goes to zero, producing

through its divergence a finite electric charge re ¼ limv!0 r � Jirr=jvð Þ; which

is the source of the electric field. Near the dc limit the contribution of the magnetic

vector potential A is lost, and the remaining information from the electric scalar

potential termrF is not sufficient to determine the predominant solenoidal current.

To eliminate this instability, a loop-star formulation has been proposed [52,53]. The

rationale behind this formulation is to separate the solenoidal part of the current

(described by the loop-type basis functions fLi ) from the remaining nonsolenoidal

part (which is described by the star-type fSi basis functions). These functions are easy

to generate by rearranging the original RWG basis functions: for simply connected

structures, a loop basis function is associated with each interior vertex, while a star

basis function is always associated with each triangle. Since the RWG basis

functions are divergence conforming (ensuring continuity of the normal component
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of the current across all the edges and not of the parallel component), any resulting

basis function cannot be curl conforming (the curl of the current exhibits line delta

singularities along the edges). Therefore the Helmholtz splitting can be enforced

only in a weak sense, meaning the loop basis functions are solenoidal vector

functions (r � fLi ¼ 0), whereas the star basis functions are irrotational only

approximately (r� fSi ’ 0). The loop-star decomposition dramatically improves

the condition number of the EFIE matrix in the low-frequency range. Using loop-star

basis functions in (5.33) results in

ZZ
S

"
r� f Sm

X
n

JSn

ZZ
S

1

jr� r0jr � f Sn
� �

dS0
#
dS¼0 for m¼ 1;2;3; . . . ;N; ð5:32Þ

which gives the unique solution JSn ¼ 0, since the span of the star basis functions does

not include any solenoidal vector field. To solve the EFIE low-frequency instability,

other strategies have been proposed such as the loop-tree and loop-cotree decom-

positions. They are based on the same rationale of the loop-star decomposition and are

very similar to the tree-cotree decomposition in the vector finite-element methods.

As concerns the MFIE, it has been shown that this integral equation is free of any

breakdown problem and can be solved at an arbitrary low frequency by the

conventional MoM with the RWG basis. Being based on the magnetic field (which is

sufficient to determine the solenoidal current component), the resulting MoMmatrix

is always well conditioned, no matter how low the frequency is and is solvable if the

surface is closed.

A last difficulty arises in the solution of large-scale EM problems. The MoM

solution of integral equations in fact requires to solve a fully populated matrix

equation whose numerical complexity is OðN2Þ, where N denotes the number of

unknowns. The computational time and storage required by the numerical procedure

is too cumbersome for handling electrically large problems, so as to make the

solution of the problem impractical. Great effort has been devoted to reduce the

computational complexity of conventional MoM techniques, and many fast

algorithms have been proposed [54]. Among them, the fast multipole method

(FMM) [55–57] has found wide applications, due to its accuracy, flexibility, and

great efficiency, especially if integrated with parallel computing technology. The

FMM provides an efficient mechanism for the numerical convolution of the free-

space Green function with the source and test distribution, reducing the

computational complexity of the solution of the matrix system (5.26) to OðN3=2Þ
in the simple single-stage form. In its multilevel version (MLFMM), the complexity

is further reduced to OðN logNÞ.
The basic principle behind the FMM consists in decomposing the computation of

the matrix-vector products required by the iterative solver into two parts: one

involving the interaction between nearby sources and the other involving the

interaction between well separated ones:

ZNEAR � xþ ZFAR � x ¼ G: ð5:33Þ
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The idea is to perform the matrix-vector product for far-field terms indirectly,

without computing and storing the relevant matrix elements. Furthermore the near-

field matrix ZNEAR presents a sparse nature, leading to a further reduction of the

computational cost. The foundation of the whole computation is the subdivision of

the N basis functions intoM localized groups, each containing Gm functions, and the

identification for each group m of the bordering Bm groups that are in the near-field

region. By Gegenbauer’s addition theorem for spherical harmonics and a plane-wave

expansion in the k-space, the 3D free-space Green function can be expressed

approximately as

ejkjRþdj

jR� dj ’ � jk

4p

ZZ
� e�jk�dTLðkR; uk � uRÞduk; ð5:34Þ

where

TL kR; uk � uRð Þ ¼
XL
l¼0

ð�jÞlð2lþ 1Þhð1Þl ðkRÞPlðuk � uRÞ ð5:35Þ

is the so-called translation operator. In (5.34) the integration on the unit wave vector

uk is over the Ewald sphere, whereas in (5.35) h
ð1Þ
l ð�Þ is the lth spherical Hankel

function of the first kind and Plð�Þ is the lth order Legendre polynomial. The

expression is exact if the summation is performed over an infinite number of terms

(L ¼ 1). The FMM can be applied to all the integral equations. In the following

discussion, reference will be made to the EFIE that can be written as

un � jkh

ZZ
S

Geðr; r0Þ � JSðr0Þ dS0
2
4

3
5 ¼ un � EincðrÞ; r 2 S; ð5:36Þ

where Geðr; r0Þ is the electric dyadic Green function introduced in (1.42). The

expression of the generic impedance matrix term Zij is

Zij ¼
ZZ
S

tiðr0Þ
ZZ
S

Geðr; r0Þ � jjðr0ÞdS0
2
4

3
5 dS; ð5:37Þ

where ji and ti are the basis and testing vector functions, respectively. With the aid of

the expansion above, the far-field matrix can be expressed in the following form:

ZFAR
ij ¼ � jk

4p

ZZ
� VmiðukÞ � V�

m0jðukÞTLðkrmm0;uk � urmm0 Þ duk: ð5:38Þ

The notation mi stands for the ith testing function belonging to the observation group

m, while m0j for the jth basis function belonging to the source group m0. In the

expression aboveVmiðukÞ andVm0jðukÞ are the receiving and radiation patterns of the
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testing and basis functions, respectively, given by

VmiðukÞ ¼
ZZ
S

e�jk uk �rmiðI� ukukÞ � tiðr0ÞdS0;

Vm0jðukÞ ¼
ZZ
S

e�jk uk �rm0 jðI� ukukÞ � jjðr0ÞdS0:
ð5:39Þ

Finally the matrix-vector product can be performed as

XN
j¼1

Zijxj ¼
X
m02Bm

X
j2Gm0

ZNEAR
ij xj

� jk

4p

ZZ
� VmiðukÞ|fflfflfflffl{zfflfflfflffl}

DISAGGREGATION

�
X
m0=2Bm

TLðkrmm0 ;uk �urmm0 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TRANSLATION

X
j2Gm0

V�
m0jðukÞxj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

AGGREGATION

2
664

3
775duk�
ð5:40Þ

The product for the far-field terms requires three fundamental sweeps in the

transformed k-space as shown in Figure 5.6: aggregations of the functions belonging

to the source group, translation of the overall effect of the source group on the

observation group, and disaggregation to compute the convolution with the specific

testing function belonging to the observation group. For the full details of the

procedure together with its numerical aspects (i.e., number of multipoles and

number of directions for accurate integration over uk), the interested reader is

referred to the specific literature [54–57].

The FMM can be further generalized into a multilevel version (MLFMM) that

employs a recursive subdivision of the spatial domain and a corresponding

hierarchical tree structure. The sources are initially subdivided into groups; then

each group is recursively divided into smaller and smaller groups so as to establish

a tree structure made of fathers (coarse levels) and children (fine levels). The

MLFMM decomposes the matrix-vector product into two sweeps. For L levels of
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FIGURE 5.6 Domain decomposition according to the fast multipole method.
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decomposition (with L referring to the finest level) the first sweep consists in

constructing outer multipole expansions for each group from level L to level 2.

Progressing from the finest level to the coarsest one, the groups become larger and

larger, and the number of plane-wave directions needed to represent the radiation

patterns in the k-space should increase. Thus the outgoing expansions of each

group from level L� 1 to 2 are computed from the expansions of their children

groups using interpolation and shifting. The second sweep consists in constructing

local incoming multipole expansions contributed from well-separated groups from

level 2 to L. At the coarsest level 2, the local multipole expansions are constructed

by translating the outgoing-wave expansions from well-separated groups at the

same level. At the other levels (from 3 to L), the local expansions include the

contribution of incoming waves received by parent groups using anterpolation

(down-interpolation) with shifting and incoming waves from all the well-separated

groups at the same level whose parent groups are not well separated. For L levels of

decomposition, the far-field matrix-vector product is subdivided into summations

of L� 1 products among aggregation, translation, and disaggregation sparse

matrices, plus a full matrix containing the interaction between near elements.

The renewed vigor pursued in the development of efficient transient simulators in

recent years has led to a growing application of integral-equation methods in the time

domain. For analyzing surface scattering phenomena, integral-equation techniques

show unquestionable advantages over PDEmethods: they require discretization of the

scatterer surface as opposed to the volume surrounding the scatterer and do not call

for ABCs, but automatically enforce the radiation condition through the use of the

Green function. Notwithstanding their intrinsic qualities, historically two principal

hurdles has prevented their use in the time domain. One is that many traditionally

applied marching-on-in-time (MOT) schemes have been shown to be prone to late-

time instabilities, and another, that their computational cost scales unfavourably with

problem size, thus making the analysis of electrically large structures practically

impossible with currently available resources. The time schemes are nearly always

implicit, requiring the solution of a matrix equation at each time step. However,

recent developments (e.g., stabilized MOT schemes and the multilevel plane-wave

time-domain algorithm, PWTD) have cast new attention on the topic. The most

representative and widely used time-domain integral equations (TDIE) remain the

EFIE and MFIE. For problems in vacuum they can be recast in time domain as

un � Eincðr; tÞ ¼ un � m0

4p

@

@t

ZZ
S

JSðr0; tÞ
R

dS0

2
4

3
5

8<
:

� r
4pe0

ZZ
S

ðt
�1

r0 � JSðr0; tÞ
R

dt0

2
4

3
5dS0

)
; r 2 S; ð5:41aÞ

un �Hincðr; tÞ ¼ � 1

4p
un �

ZZ
S

1

cR

@

@t
Jðr0; tÞ

� �
þ 1

R2
Jðr0; tÞ

� �
� uRdS

0; r 2 S;

ð5:41bÞ
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where t ¼ t � R=c is the retarded time and R ¼ jr� r0j is the distance between the

source and the observation points. The unknown surface current JSðr; tÞ is then

represented by using spatial and temporal basis functions jnðrÞ and TjðtÞ such that

JSðr; tÞ ¼
XNt

j¼0

XN
n¼1

Jn;j jnðrÞ TjðtÞ ð5:42Þ

to obtain a matrix equation of the form:

a � Ij ¼ Fj �
Xj
l¼1

bl � Ij�l ð5:43Þ

that must be solved at each time step. For more details, the interested reader is

referred to the specific literature [58].

5.3 FINITE-DIFFERENCE TIME-DOMAIN METHOD

The finite-difference time-domain (FDTD) method is the most popular numerical

technique for the solution of problems in electromagnetics [58–62]. This is mainly

due to its inherent marking characteristics: the method is simple because it does not

make use of linear algebra, it is accurate and robust, it is a systematic direct approach

that does not require the solution of any linear system, it has wide modeling

capabilities that allow one simulate generally complex materials (dispersive,

nonlinear, anisotropic), it naturally treats impulse behavior as a time-domain

method, and it is an extensively computer-based method that can be parallelized

rather easily. Since its first appearance in 1966 when it was proposed by Yee [63], the

FDTD related research activity has been continuously running and enhancements of

the method have been presented over the years. The goal of the present survey, which

is necessarily incomplete, is to explain the most important features of the FDTD

method, in the light of its development up to the current state-of-the-art, highlighting

some of the most successful applications.

The method is a marching-in-time procedure that simulates the continuous

propagation of actual EM waves in a finite spatial region. Yee discretized in a simple

and elegant way the differential form of the time-dependent Maxwell curl equations

system for the lossless material case, originating a set of finite-difference equations

that yields the present fields throughout the computational domain in terms of the

past fields. These equations were based on volumetric-time sampling of the

unknown electric field E and magnetic field H within the space containing and

surrounding the structure of interest and over a finite period of time.

To carry out the finite-difference expressions for the complete Maxwell

equations, it is necessary to introduce the following notation: a grid point of the

space is denoted as ði; j; kÞ ¼ ðiDx; jDy; kDzÞ and any function of space and time

evaluated at a discrete point in the grid and at a discrete point in time is denoted as

F iDx; jDy; kDz; nDtð Þ ¼ Fn
i;j;k, where Dx;Dy;Dz; and Dt are the lattice space
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increments in the three coordinate directions and the time increment, respectively,

and i; j; k; and n are integers. Yee used an electric-field grid that was spatially offset

with respect to a magnetic-field grid: each magnetic (electric) field component is

surrounded by four circulating electric (magnetic) field components. Furthermore

the two grids are temporally interlaced, being offset of half the time increment.

Figure 5.7 illustrates the two grids.

Using central-difference expressions for the space and time derivatives, and semi-

implicit approximations for the non-time-collocated quantities [59], the following

explicit expressions can easily be obtained for the x components of the total electric

and magnetic fields:

Exjnþ1
iþ1=2;j;k ¼

1� ðse
iþ1=2;j;kDt=2eiþ1=2;j;kÞ

ð1þ se
iþ1=2;j;kDt=2eiþ1=2;j;kÞ

" #
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2
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�
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FIGURE 5.7 Spatial arrangement of field components in the Yee FDTD grid.
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where se and sm are the electric and magnetic conductivities, JS and MS are the

impressed electric and magnetic current densities, respectively, and all the

constitutive parameters have been supposed to be time independent. The time-

stepping expressions for the other components have similar expressions [59] that are

not reported here for the sake of conciseness. The update equations are used in a

leapfrog scheme to incrementally march both the fields forward in time. The

magnetic-field components at the time step nþ 1=2 are explicitly calculated in terms

of the adjacent electric-field components at the time step n. Then, the electric-field

components at time step nþ 1 are calculated in terms of the new computed

magnetic-field components.

The expressions (5.44) are used to calculate the total field. The FDTDmethod can

also be cast in a scattered-field formulation to explicitly compute only the scattered

fields. In this case the source of the fields is a function of the known incident field

and of the difference in material parameters from those of the background medium.

Through several studies it has been shown that the total-field formulation is superior

to the scattered-field formulation in terms of numerical dispersion and also because

it can easily accommodate nonlinear media. However, the scattered-field

formulation is used in the so-called total-field/scattered-field technique employed

to simulate an incident-wave source condition [64]. In this approach the total fields

are calculated only over an interior subsection of the computational domain, while

the scattered fields are calculated in the remaining exterior portion. Consistency

between the two schemes is preserved by specifying the incident field over the

boundary between the two regions. In this way the absorbing boundary conditions

are illuminated only with the scattered fields which are more readily absorbed.

The space-time-stepping algorithm persists in having great usefulness because of

its soundness and robustness. Unlike the FEM that solves for the electric or magnetic

field alone by means of the double-curl wave equation, the FDTD method solves for

both electric and magnetic fields in space and time by means of coupled Maxwell

curl equations. This way it is possible to model both electric and magnetic material

properties in an accurate and rather simple way and also some peculiar field

characteristics, such as singularities near corners and edges.

The original leapfrog algorithm is naturally second-order accurate in both space

and time. Continuity of the tangential field components is naturally maintained

across an interface between different materials parallel to one of the lattice

coordinate axes, as in the FEM vector formulation. The particular structure of the

space lattice (with a primal electric grid spatially interlaced with a dual magnetic

grid) implicitly enforces the two Gauss laws. Hence a key point of the method is that

unlike the FEM, it is not affected at all by spurious unphysical solutions, since all

four Maxwell equations are discretized in a consistent way. The leapfrog time-

stepping algorithm is fully explicit, thereby avoiding problems involved with matrix

inversion as in the FEM and MoM, and is nondissipative, allowing numerical wave

modes to propagate without any nonphysical artifact decay.

The FDTD method allows for the straightforward simulation of general complex

media (dispersive, anisotropic, nonlinear, and time varying). Direct integration

methods based on auxiliary differential equations, recursive convolution techniques,
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and the Z-transform method have been proposed for the analysis of Drude cold

plasma, multi-term Debye and Lorentz dispersive dielectrics [65], ferrites [66], and

nonlinear materials [67]. Furthermore surface-impedance boundary conditions

(SIBCs) have been well implemented in the FDTD technique (Maloney-Smith,

Beggs, Lee methods [59])—as in the FEM—for the analysis outside lossy

dielectrics, conducting structures, thin conducting shields, without having to model

their interiors. This avoids the need to resolve the decay of penetrating fields due to

the skin effect, which is a huge reduction in computer burden.

Notwithstanding the above-mentioned advantages, several critical aspects of the

FDTD method must be accounted for to understand its operation and its accuracy

limits, especially when dealing with electrically large structures or with fine

generally shaped details.

When using the explicit second-order accurate leapfrog scheme, the time

increment Dt must be bounded to ensure numerical stability. The stability analysis is

usually performed by standard von Neumann analysis [68]. In principle, the

procedure performs a spatial Fourier transform along all the dimensions, thereby

reducing the finite-difference scheme to a time recursion in terms of transformed

quantities, and verifies that no Fourier components are exponentially growing with

respect to time. Therefore instantaneous values of electric and magnetic fields Fajni;j;k
distributed in space across the grid are Fourier-transformed into waves in the

spectral domain to represent a spectrum of spatial sinusoidal modes, as

Fajni;j;k ¼ Fn
aexp �j kxiDxþ kyjDyþ kzkDz

� �	 

. With the vector that contains all the

six field transformed components ½En
x ; E

n
y ; E

n
z ; H

n
x ; H

n
y ; H

n
z � denoted byXn, the time-

marching recursive scheme can be cast in the following matrix form:

Xnþ1 ¼ L � Xn; ð5:45Þ

where L is a 6� 6 matrix depending on the particular space-time differential

scheme that contains kx; ky; kz;Dx;Dy;Dz; and Dt. By checking the eigenvalues of

the matrix L, it is possible to determine the stability conditions of the system. If the

magnitudes of all the eigenvalues are smaller than or equal to unity, the scheme is

stable. Otherwise, if the magnitude of only one eigenvalue is larger than one, the

scheme is unstable. The stability analysis for the uniform structured grid FDTD

method in a homogeneous lossless medium leads to the well-known explicit

Courant-Friedrich-Levy (CFL) condition for the maximum allowable time step:

Dt � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðDxÞ2 þ
1

ðDyÞ2 þ
1

ðDzÞ2
s" #�1

; ð5:46Þ

where v ¼ 1=
ffiffiffiffiffiffi
me

p
is the wave velocity in the medium. To derive the stability

condition for graded meshes with inhomogeneous materials, the updating scheme is

recast in a single recursive matrix equation Fnþ1 ¼ A � Fn þ Sn, where Fn and Sn are

vectors containing all the field unknowns and the impressed sources of the

computational space, respectively. From the maximum eigenvalue of the sparse
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system matrix A, it is possible to verify whether the scheme is stable. This

computation does not represent a serious drawback, since the eigenvalue calculation

of large sparse matrices is well developed. Other approaches are possible to derive

the stability conditions, such as the energy method [69] and the use of stability

polynomials [70].

The FDTD algorithm, as does any PDE method, causes dispersion of the

simulated waves in the computational lattice. The phase velocity of the numerical

wave modes can be different from the real velocity by an amount that depends on the

wavelength, direction of propagation, and grid discretization. The numerical

dispersion causes propagating waves to accumulate delay or phase errors that can

lead to nonphysical results, such as broadening and ringing pulsed waveforms,

imprecise cancellation of multiple-scattered waves, anisotropy, and pseudorefrac-

tion. The dispersion of the scheme is usually derived by the above-mentioned von

Neumann analysis. If the fields are assumed to be monochromatic waves with

angular frequency v (i.e., Fn
a ¼ FaexpðjvDtÞ), (5.45) reduces to

ejvnDt ejvDtI�L
� � � X ¼ 0, where X ¼ ½Ex; Ey; Ez; Hx; Hy; Hz�. For a nontrivial

solution, the determinant of the coefficient matrix should be zero, which leads, after

some manipulations, to the dispersion relationship. For 3D homogeneous lossless

media, the numerical dispersion relation results in

1

vDt
sin

vDt

2

� �� �2
¼ 1

Dx
sin

kxDx

2

� �� �2
þ 1

Dy
sin

kyDy

2

� �� �2
þ 1

Dz
sin

kzDz

2

� �� �2
:

ð5:47Þ

It is easy to show that (5.47) becomes identical to the dispersion relation for a

physical wave in the limit as Dx; Dy; Dz; and Dt approach zero. The key implication

of the dispersion relation is that the velocity of the numerical waves depends on the

direction of propagation (the space lattice represents an anisotropic medium). In

order to mitigate the effects of dispersion, a good resolution in space must be

employed, with the proviso that the choice of the spatial increments must represent a

trade-off between accuracy and computational resources required by the scheme,

dispersion, and numerical errors. Typically the resolution is set to properly sample

the highest near-field spatial frequencies, using 10 to 20 samples per wavelength.

However, when dealing with large structures or long time simulations (where the use

of a large number of samples is not always practical because of the consequent high

cost of computing), dispersion can cause significant errors to arise in the calculated

fields. Over the years several methods have been introduced with the goal of

reducing the numerical-dispersion error inherent in the original Yee algorithm.

These methods have typically relied on higher order approximations of the spatial or

temporal derivatives: second-/fourth-order accurate in time and fourth-order

accurate in space (2, 4)/(4, 4) FDTD algorithms have been proposed. However,

because of the problems associated with the increased spatial stencils, which require

special boundary conditions over material discontinuities, these algorithms have not

enjoyed widespread use. More sophisticated techniques have then been proposed,
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such as the pseudospectral time-domain (PSTD) method and techniques developed

from the theory of wavelets, such as the multiresolution time-domain method

(MRTD). For a review of these methods, the reader is referred to [71].

As for any PDE technique that relies on the discretization of the computational

space, the FDTD method requires special boundary conditions to truncate the

computational domain, since the tangential components of the fields along

the outer boundary cannot be updated. As previously explained when dealing with

the FEM, also in the FDTD method global and local boundary conditions have

been developed and the PML technique is well established. The PML approach has

been shown to provide significantly better accuracy and efficiency than other

techniques so as to become the standard. Thus the previous sizable literature on

radiation boundary conditions is obsolete by now. Anyway, research is still active

concerning the development of ABCs that are local, in the sense that the field at

any point on the boundary of the lattice is updated using the neighboring fields.

Mei and Fang have proposed a superabsorption technique that was applied to many

ABCs to improve their performance. More recently Ramahi has presented a grid-

termination scheme based on two complementary boundary operators whose

reflection coefficients are identically opposite and that can be concurrently used to

cancel out the errors associated with reflections from the ABCs. Meanwhile exact

grid-termination techniques are being developed. They are generally based on the

Kirchhoff integral formula and have proved to yield accurate results. However,

because they are nonlocal, they are computationally expensive. For more details on

analytical boundary conditions, the reader is referred to the literature [58–62].

As previously explained, an alternative approach to an ABC was suggested by

Berenger [33,34], who terminated the outer boundary of the space lattice with a

PML lossy material that dampens the outgoing fields, matching any plane wave of

arbitrary incidence, polarization, and frequency at the boundary. What explained for

the FEM holds for the FDTD method as well. Since the first publication very fervent

research activity has continued to make improvements and extensions of the PML

technique. All the numerical aspects of the simulation of the PML with the FDTD

method have been assessed: the best choice for the profile of conductivities,

thickness, maximum theoretical reflection coefficient, the best time-stepping within

the medium (exponential or central differencing), the accuracy in terms of the

computed reflection coefficient and numerical errors, the stability of the scheme, and

the dependence of the performance on spatial discretization.

The original field-splitting method, which can be considered just a mathematical

convenience, was replaced by more sophisticated formulations by introducing

complex coordinate stretching into Maxwell’s equations and by showing that the

PML is a particular passive lossy dielectric and magnetic medium with appropriate

conductivity and Debye dispersion characteristics. The original PML was matched

only to free space; successive works extended the PML formulation to allow for the

truncation of space filled with lossy media, Lorentz and Debye dispersive materials,

and anisotropic dielectrics. The original implementation of the PML only absorbed

propagating waves; modified versions of the technique were presented to absorb also

evanescent energy. A huge amount of literature exists on the subject of PML in the
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FDTD method. The interested reader is referred to [58–62] and to the chapter

‘‘Advances in the Theory of Perfectly Matched Layers’’ in [54].

A fundamental issue related with any grid-based numerical technique is that the

distance scale over which the physical processes or structural features must be

resolved can range over several orders of magnitude. When using a uniform

structured mesh (as that on which the FDTD method was originally formulated,

see Figure 5.8a), this issue makes a problem arise. The use of a globally fine grid

would lead to an excessively cumbersome simulation, in terms of both spatial

samplings and consequently needed time steps. Furthermore such an accurate global

simulation would be unnecessary since only few details can call for a fine resolving.

To address this shortcoming, several methods have been proposed over the years. The

concern ever-present to all the techniques that modify the original Yee algorithm is to

preserve the numerical stability of the explicit scheme: any modification, even local,

in the space discretization could lead to more or less fast instabilities in the time-

stepping.

A first method consists in using a graded mesh, as shown in Figure 5.8b, with

varying spatial increments along different coordinate directions, that permits finer

discretizations in areas of rapid field fluctuations. It has been shown that these grids

preserve the second-order accuracy of the original constant cell-size algorithm.

However, attention must be paid on the shape factor of the rectangular cells to avoid

to excessively stretch them, thus avoiding dispersion and numerical approximation

errors. The method allows to reduce the required space samples, but not the number

of time steps. In fact, the smallest distance existing in a mesh directly influences the

width of the time step usable in the simulation through the Courant stability criterion.

To alleviate this drawback, other methods have been proposed based on the

contour-path model. They obtain the updating equations from the integral form of

Faraday’s law rather than the differential form and result in modified equations only

for cells where the thin structures are present. These techniques work well only for

very fine subcellular features, such as thin narrow slots, wires, or joints in conducting

screens. Moreover stability issues arise on the modified time-stepping schemes. A

more general approach consists in using a grid finer than the rest of the problem

space only in those subdomains where a more accurate modelling is required

(Figure. 5.8c). Such a technique is called subgridding, and several schemes have

been put forward over the years [72–75]. Away from the boundary between these

two grids the standard FDTD update equations can be used.

(a) (b) (c)

FIGURE 5.8 Structured mesh (a); graded mesh (b); mesh with subgrid (c).
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The key issue common to all these techniques is the coupling of the coarse grid

with the fine grid, where smaller space increments and time steps are present.

The space increments in the base mesh must be an integer multiple N of those in the

coarse grid, so that each time step in the base grid corresponds to N time steps in

the submesh. To compute the fields on the boundaries, different spatial-interpolation

schemes have been proposed and also time-interpolation or extrapolation schemes

have been often used. In any subgridding technique, important numerical aspects

arise, such as long-term stability, energy and divergence conservation, dispersion,

and unphysical numerical reflections. To construct a consistent subgridding scheme,

it is necessary to maintain some important properties of continuous Maxwell

equations throughout the discretization process, as described in [75].

As originally formulated, the FDTD method makes use of structured mesh. This

dictates that for generally shaped objects whose surface does not conform to the

orthogonal lattice, the desired boundary conditions cannot be enforced directly on

the physical boundary but rather on a staircased approximation of it. It has been

observed that consequently, the solution does not converge to the correct one, no

matter how fine the mesh is made to better resolve the boundaries. To overcome this

problem, the contour-path concept was extended to obtain locally conformal models.

In a standard Cartesian grid, the original time-stepping scheme is used everywhere

except in the vicinity of the material boundaries, where special updating equations

are employed to account for their curved shape. These equations are based on the

standard integral form of Ampere’s and Faraday’s laws. Further generalizations have

led to locally unstructured mesh and, eventually, to globally unstructured mesh. The

development of a stable unstructured FDTD method is the subject of a research

activity that is very extensive and still continuing. The developments proposed

through the years have brought so many changes to Yee’s original scheme that it is

not possible anymore to strictly speak of the FDTD method but rather of new

improved methods, such as the finite integration technique (FIT), the finite-volume

time-domain method (FVTD), and the cell method. These approaches are well-

developed self-consistent methods and not just simple generalizations of the FDTD

technique. Nevertheless, they preserve several elements in common with FDTD

when applied to structured meshes.

For a full understanding of the method, a last problem needs to be addressed that

is related with its explicit nature. Because the FDTD method is based on a direct

explicit algorithm, it must always satisfy the CFL condition that dictates that the

maximum time-step size is limited by the minimum cell size. Therefore the FDTD

method turns out to be inefficient when dealing with the class of problems where the

cell size needed to resolve the fine-scale geometric details of the scatterer is much

smaller than the shortest wavelength of a significant spectral component of the

source. The small time step would create a significant increase in calculation time.

To circumvent the CFL constraint, the explicit leapfrog time-stepping scheme could

be replaced with the fully implicit Crank-Nicolson scheme, but it requires a system

of linear algebraic equations to be solved for each time level. An efficient alternative

that is being currently researched is to use an alternating-direction-implicit (ADI)

time-stepping algorithm [76–79].
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The basic concept of the ADI technique is to alternate an implicit

approximation of the space’s second derivatives with an explicit one. The original

technique alternated the two approximations with respect to the three coordinate

directions, requiring three implicit substep computations for each FDTD cycle,

and it has never been found to be completely stable. A different, newly developed

ADI technique alternates the two approximations with respect to the sequence of

the terms on the right-hand side (RHS) of the Maxwell equations, thus requiring

only two substeps. The calculation for a discrete time step is broken up into two

computational half-time steps. For the first substep, the first partial derivative on

the RHS is replaced with an implicit difference approximation of its unknown

values at the present time, while the second partial derivative is replaced with an

explicit finite-difference approximation of its known values at the past time. For

the second substep, the opposite is done. For example, the x component of the

electric field in a source-free isotropic medium is advanced as
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Similar equations hold for the other components of the electric and magnetic

fields. It is important to observe that no time lag appears between them in the

formulation, contrarily to the conventional leapfrog scheme. Through some

manipulations, the ADI-FDTD equations can be simplified to enable efficient

computation yielding an implicit tridiagonal scheme for the electric field and an

explicit updating scheme for the magnetic field at each substep. Further

simplification of the implicit scheme is possible by taking appropriate directional

scans of each component by which several separate tridiagonal systems may

be solved with a lower number of equations [80], or by exploiting appropriate

sequences of ascending indexes [81]. Care must be taken in interpreting the field

values at the half-time step, since these values are accurate only to first order. It is

useful to use them just as intermediate values. It has been shown that the ADI-

FDTD scheme is an OðDt2Þ perturbation of the implicit Crank–Nicolson

formulation and right the perturbation term allows factorization into the two-

step procedure.
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The ADI-FDTD scheme is second-order accurate in space and time, the same as

the standard FDTD. It forms tridiagonal matrices whose solution techniques are very

simple and efficient. Thus the method requires less memory, possesses faster solution

times than other implicit methods, while retaining the simplicity that is inherent in the

traditional FDTD technique. Furthermore the method is unconditionally stable

regardless of the time step, since the matrix A considered after (5.46) has always

eigenvalues smaller or equal to unity. The scheme uses two substep-marching

procedures, each having either numerical growth or dissipation; since the growth and

dissipation exactly cancel out each other, the overall ADI-FDTD scheme is

unconditionally stable. Hence the method removes the CFL stability constraint and

allows for any choice of Dt, which is therefore only dictated by sampling and

accuracy considerations. In fact, although the method is unconditionally stable, the

accuracy of the numerical results gets worse when the time step increases, because of

the numerical-dispersion error. The accuracy degrades quickly with increments of 10

to 20 in the time step beyond the Courant limit. In addition the method shows three

major drawbacks. First, the left-hand and right-hand sides of the original updating

equations of the scheme are not balanced with regard to the time steps, and certainly

the unbalanced effects limit the accuracy of this scheme. Second, the method has a

large numerical anisotropy error compared with Yee’s original FDTDmethod. This is

because the use of the ADI technique leads to asymmetric results, even for exactly

symmetric computational setups and symmetric sources. Finally, in the ADI-FDTD

scheme, three time steps are used to define the field components (one time step for

each component) and two sub-iterations are required for field advancement. It is

necessary to solve six tridiagonal matrices and six explicit updates for one full

advancement cycle, and therefore the scheme has low efficiency. Because these are

the main drawbacks to a wide application of the method, much research activity has

focused on improved schemes for ADI techniques.

5.4 FINITE INTEGRATION TECHNIQUE

Since the publication of Maxwell’s treatise, it has been standard practice to give a

mathematical formulation of the electromagnetic theory in terms of differential

formalism. However, the laws of EM phenomena, such as Faraday’s and Ampere’s

laws, were originally formulated using global quantities, such as charges, currents,

electric and magnetic fluxes, electromotive and magnetomotive forces, which, being

integral quantities, are directly measurable. A discrete direct formulation of

Maxwell’s equations in their integral form is also possible, and suitable for

numerical computation. This way the electromagnetism can be described in a finite

form from the beginning and the differential formalism can be deduced as a

consequence whenever it is necessary. The theoretical framework for solving

Maxwell’s equations in integral form was first described in [83], where an approach

called the finite integration technique (FIT) was applied, resulting in a set of matrix

equations (called Maxwell’s grid equations, MGEs) as an analogue to the continuous

ones. However, only recently the discrete formalism (along with the concepts of
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algebraic topology) has been widely used to study Maxwell’s equations in integral

form [84–88], leading to the development of a computational methodology (the cell

method [89,90]) that extends the FIT to many physical theories such as

electrodynamics, mechanics, and thermal conduction.

The starting point of the FIT is the use of a system of two computational grids, the

primary grid G and the dual grid ~G. This requires two steps:

1. The restriction of the EM problem to a simply connected and bounded 3D

space region.

2. The decomposition of the computational domain into a finite number of

simplicial cells to build up the primary spatial grid G, defined by the set of

primary elements G ¼ fP; L; S;Vg consisting of points P, lines L, surfaces S,

and volumes V , and the dual spatial grid ~G defined by the set of dual elements
~G ¼ ~P; ~L; ~S; ~V

� �
.

The method is a very general cell-based approach, since the generic primary cell

can take an hexahedron, a tetrahedron, or other geometric forms that maintain the

constraint that all the cells fit exactly to each other, meaning the intersection of two

different cells is empty or a surface or a line. Once the primary grid G is built up, the

dual grid ~G is defined by taking the primary cell barycenters as boundary vertices and

the dual lines as piece-lines made out of two separate straight lines connecting the dual

nodes and the barycenter of the common primary surface (barycentric grids). In the

simplest case of structured orthogonal Cartesian grids, these cell complexes reduce to

the electric and magnetic grids introduced by Yee in the FDTD method. Between the

elements of the primary and dual grids, the following bijective mapping holds:

P $ ~V; L $ ~S; S $ ~L;V $ ~P. The indexes are usually chosen such that the primary

element has the same index as the dual element. Each edge of the cells includes an

orientation, and each polygonal facet is associated with a direction [84,85].

After the definition of the two grid complexes, the state variables of the FIT are

introduced. They are the electric and magnetic grid voltages (Vi, ~Fi) and fluxes

( ~Ci,Fi), and the electric charge (~Qi) and the electric current (~Ii), which are defined as
the integrals of the electric- and magnetic-field vectors over elementary objects (line,

surfaces, volumes) of the computational grids. The electric voltages and the magnetic

fluxes are associated with the primary elements, while the magnetic voltages, the

electric fluxes, and the electric charges and currents are associated with dual elements

[84,85]. With these integral variables Maxwell’s equations can be rewritten into a set

of matrix-vector equations, which are referred to as Maxwell grid equations (MGEs):

G : C �V¼� d

dt
F ; S � F¼ 0

� �
; ~G : ~C � ~F¼� d

dt
~Cþ~I ; ~S � ~C¼ ~Q

� �
:

ð5:49Þ

The matrix C represents the discrete curl-operator on the grid G. It contains only

topological information on the incident relation of the cell edges within G and on
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their orientation. Therefore its entries Cij are 
1 if the edge Lj is contained in the

boundary of facet Ai, and zero otherwise. In terms of algebraic topology, the discrete

curl-operator is identical to the coboundary process operator d [84] that generates a

2-cochain (i.e., degrees of freedom connected to 2D cell surfaces) from a 1-cochain

(i.e., degrees of freedom allocated on 1D cell edges). Analogously, the matrix S is

the discrete div-operator of the primary grid G. Its entries Sij are 
1 if the facet Aj is

contained in the boundary of the cell Vi, and zero otherwise. It corresponds to the

coboundary operator applied to cochains of degree two yielding cochains of degree

three (i.e., degrees of freedom connected to cell volumes). The same applies to the

matrices ~C and ~S on the dual grid ~G.
Equations (5.49) are exact. The approximation of the method enters when the

voltage and flux state variables associated with the two different cell complexes are

related to each other. This is done through the material matrices, which are an

analogue of the constitutive relations of continuous fields. Without considering

permanent polarization vectors, the discrete constitutive relations are

C ¼ Me � V; I ¼ Mk � V; F ¼ Mm � F: ð5:50Þ

The material matrices are defined as Me ¼ ~DA � De � D�1
L , Mk ¼ ~DA � Dk � D�1

L , and

Mm ¼ DA � Dm � ~D�1

L , where the area matrices DA hold the areas of facets, the length

matrices DL hold the lengths of edges, and the central matrices contain a proper

volume average of the permittivity e, conductivity k, and permeability m,

respectively [86–90]. The material matrices can be dubbed discrete Hodge operators

because they couple edge degrees of freedom (called discrete 1-forms) with dual

facet degrees of freedom (called discrete 2-forms) [88]. The constitutive matrices

must be symmetric and positive definite in order to ensure stability of the numerical

scheme [86–88]. Furthermore they must ensure consistency of the numerical

method, which is related to the consistency of the algebraic constitutive relations

with the local constitutive relations D ¼ eE and B ¼ mH, respectively [90]. The

fulfilment of the consistency condition [91], together with stability, ensures the

convergence of the method when the grid is properly refined (fields uniform inside

the cell) [90].

In the simplest case of Yee’s dual-orthogonal grid system, the directions

associated with the facet and with the dual edge penetrating this facet are identical;

that is, the primary (dual) edges and dual (primary) facets intersect each other

with angles of 90 degrees. The two cell complexes represent a so-called Delaunay-

Voronoi grid doublet. For simple isotropic media the material matrices are

diagonal (with Me;ii ¼ e ~Ai=Li, Mm;ii ¼ mAi=~Li, Mk;ii ¼ k ~Ai=Li), Me and Mm

are positive definite, and Mk is positive semidefinite [86]. Only the material

matrices contain the metrical information on the discrete cell complexes.

Hence, the complete set of equations can be subdivided into two different groups:

metric-free equations (5.49), arising from grid topology, and metric-dependent

equations (5.50).

The outstanding feature of the discrete representation lies in the fact that the set of

matrix equations is a consistent discrete representation of the original field

FINITE INTEGRATION TECHNIQUE 121



equations, meaning that it maintains all the analytical properties of the EM fields

when moving from the continuous space R3 to the grid space doublet G� ~G. The
numerical solution no longer relates to only a sequence of numbers but to vectors

with exact algebraic properties enabling an independent cross-check of accuracy.

By simple topological considerations, the following key properties can be easily

proved [86]: C ¼ ~CT , S � C ¼ 0, and ~S � ~C ¼ 0. The first property is referred to as

the generalized symmetry or duality property of the curl-operator. It is also possible

to define a discrete grad-operator G with the following properties: G ¼ �~ST ,
~G ¼ �ST , C � G ¼ 0, and ~C � ~G ¼ 0.

The above-mentioned topological properties, together with the symmetry and

positive definiteness of the material matrices, are exploited to derive a number of

important theorems for the discrete electromagnetism. Some important properties

from a numerical point of view are reported below. For other theorems and

properties, the reader is referred to the literature.

The eigenvalue equation for the electric field in a lossless media

e�1r� ðm�1r� EÞ ¼ v2E can be rewritten on the two cell complexes as

ðM�1
e � ~C �M�1

m � CÞ � V ¼ v2V. Because of the duality property of the curl-

operator, and because the material matrices are symmetric and positive definite, the

system matrix of the algebraic eigenvalue problem can be transformed to a

symmetric and positive semi-definite matrix M�1=2
e � ðM�1=2

m � C � M�1=2
e ÞT �

ðM�1=2
m � C � M�1=2

e Þ � M1=2
e . Therefore all the eigenvalues li are real-valued and

nonnegative numbers and all the eigensolutions correspond either to static solutions

or to nondissipative and nongrowing oscillations with a real angular frequency

vi ¼
ffiffiffiffi
li

p
. This is the proof for the space stability of the MGEs.

From the double-curl equation it follows that, ~C �M�1
m � C � V ¼ v2Me � V. If

this is multiplied from the left by ~S and then the topological property ~S � ~C ¼ 0 is

applied, the relation v2~S �Me � V ¼ v2~S � W ¼ 0 is obtained. So we have only two

distinct cases for the solutions: static solutions with ~S �W 6¼ 0 or time-harmonic

solutions with ~S �W ¼ 0. The particular topological properties of the two cell

complexes enforce the solenoidal condition for time-harmonic fields, thus excluding

any irrotational spurious mode.

The discrete formulation of Maxwell’s equations can be used both for solving

problems in the frequency domain and, after a discretization of the time derivatives,

for simulations in the time domain. This is useful in many practical problems where

a pure time- or frequency-domain algorithm is not sufficient. Although several time-

marching schemes are available, the leapfrog scheme is usually applied, since it is

fully explicit in most of the cases. The values of the electric voltage V and of the

magnetic flux F are sampled at times separated by half a time step (as in space, a

primary and dual temporal grids are built up, and a bijective mapping exists between

time intervals and dual time instants [88]), and in a lossless medium the MGEs

reduce to

Vnþ1 ¼ Vn þ DtM�1
e � CT �M�1

m �Fnþ1=2 � Inþ1=2
� 


Fnþ1=2 ¼ Fn�1=2 � DtC � Vn�
ð5:51Þ
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Expression (5.51) can be recast in the compact recursive matrix form as

f iþ1 ¼ A � f i þ si ð5:52Þ

with

fn ¼ Fnþ1=2

Vn

� �
; A¼ I �DtC

DtM�1
e �CT �M�1

m I

� �
; s¼ 0

�DtM�1
e � Inþ1=2

� �
:

ð5:53Þ

It can be easily shown that in the standard case of Cartesian grids, the FIT scheme is

computationally equivalent to the FDTD method. The recursion is stable if all the

eigenvalues of the matrix A lie within the unit circle in the complex plane. This leads

to the necessary and sufficient condition that Dt � 2=
ffiffiffiffiffiffiffiffiffi
lmax

p
, where lmax is the

maximum eigenvalue of the matrix c2M�1
m � C �M�1

e � CT , where c is the speed of

light in vacuum. This is the generalized Courant criterion for the leapfrog algorithm,

which exactly describes the stability limit for unstructured meshes and inhomoge-

neous material distributions. It reduces to the CFL condition for the simplest case of

an homogeneous medium and constant mesh step. The FIT scheme (5.52) shows a

second-order convergence, as the classical FDTD method.

According to equations (5.51) the material matrices that directly appear in the

time-stepping scheme are M�1
e and M�1

m . As mentioned above, the necessary

features of the constitutive matrices, and consequently of their inverse, are

symmetry, positive definiteness, and consistency. However, for an algorithm to be

fully explicit, the inverse material matrices M�1
e and M�1

m should be known a priori

and should be sparse for efficiency; otherwise, the scheme would be implicit and a

linear system should be solved at each time step. For this purpose it is necessary to

make a crucial distinction for the numerical computation. In general, it is possible to

build up a sparse material matrix Ma from local considerations and derive, as a

consequence, the inverse matrix M�1
a , which is generally a full matrix. Inversely,

from similar local considerations, it is often desirable to build up directly the inverse

matrix denoted as Ma�1 , which in general is not equal to M�1
a . Thus the bottleneck

for the general application of the FIT to non-orthogonal grids is development of a

general way to directly build inverse constitutive matrices Me�1 and Mm�1 that are

symmetric, positive definite, consistent, and sparse. This is a subject that has sparked

much research interest, and several schemes have been proposed, such as the

microcell interpolation scheme [90] together with appropriate symmetrization

methods [92]. It has been recently shown that if it is possible to find a sparse matrix

Mm�1 satisfying all the criterions above on a tetrahedral grid, generally it is not

possible to find a sparse matrix Me�1 satisfying all the criterions on the dual grid

[91]. This implies that in the state-of-art, scheme (5.51) is implicit and comparable

to that of FEM in the time domain.

The FIT has been widely applied both in time and frequency domains and on

orthogonal meshes, where it maintains strong similarities to the FDTD method,
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where the latter is seen as an interlinked array of Faraday’s and Ampere’s law

contours in the 3D space. Over the years the FIT has been provided with the PML to

simulate open-boundary problems, with a perfectly boundary approximation (PBA)

technique to simulate rounded boundaries on orthogonal meshes with second-order

accuracy, with stable subgridding techniques to achieve accurate models of small

structure details, and with methods to include dispersive and anisotropic media.

Dispersion characteristics and numerical accuracy (second-order) have been widely

studied and are well assessed.

5.5 TRANSMISSION-LINE MATRIX METHOD

The transmission-line matrix (TLM) method [93] belongs to the wide class of time-

domain differential methods, although applications in the frequency domain also

exist. Its distinctive feature lies in the fact that it is a numerical technique for solving

field problems with reference to circuit analogies. It is based on the well-established

equivalence between Maxwell’s equations for the electric and magnetic fields of a

1D wave and the telegraphers’ equations for voltages and currents along

a continuous two-wire transmission line. Although the TLM method requires a

discretization process of the computational space, unlike others methods, this

discretization approach is physical and not mathematical: each constitutive block in

space is in fact replaced by a physical network of transmission lines suitably

connected to form a constitutive node.

The method was originally developed to study the propagation of transverse-

magnetic (TM) and transverse-electric (TE) waves in a 2D homogeneous medium

[94,95]. The computational space is divided into a Cartesian mesh of open two-wire

transverse-electromagnetic (TEM) transmission lines of equal length Dl that are

parallel to the coordinate axes. Each junction between a pair of transmission lines

forms a shunt node in the mesh, where an impedance discontinuity is lumped. Since

Dl is usually smaller than one-tenth of the wavelength at the highest frequency of

operation, the elementary length of the transmission line between two nodes is

represented by lumped inductors and capacitors, given the per unit length (p.u.l.)

inductance L and capacitance C of the line. A direct comparison between the

Kirchhoff voltage and current laws and the Maxwell equations for a 2D TM wave

allows equivalences to be established between electric field and voltage, magnetic

field and current, and to correlate the dielectric permittivity and the magnetic

permeability to the p.u.l. capacitance and inductance, respectively. When dealing with

a TE wave, the concept of duality may be applied to reverse the roles of electric and

magnetic fields or a dual mesh made with the connection of series nodesmay be used.

To carry out the solution of the wave propagation in the time domain, the

Huygens principle is applied, according to which a wavefront consists of a number

of secondary sources that radiate spherical waves, whose envelope forms a new

wavefront that, in turn, gives rise to new secondary sources, and so on. By assuming

a delta impulse incident at one port of a node, with unit-magnitude energy, the

energy is isotropically scattered in all the the four directions, giving rise at the four
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ports to three radiated and one reflected pulses, each one carrying one-forth of the

incident energy. By applying the superposition principle, the more general case of

four incident delta voltage impulses can be studied [94]. By subdividing the time

axis in discrete time steps Dt, it is possible to construct, for each node, a suitable

4� 4 local scattering matrix SL, relating the four reflected voltages Vr at the time

step nþ 1 to the four incident voltages Vinc at the previous time step n. By

rearranging all the local matrices into a single global matrix SG and ordering all the

unknown voltages into vectors, it is possible to formally write

Vnþ1
r ¼ SG � Vn

inc: ð5:54Þ

The computed reflected pulses become the new pulses incident into the adjacent

nodes at the new time step, that is,

Vnþ1
inc ¼ C � Vnþ1

r ; ð5:55Þ

where C is the connection matrix which describes pulse transmission between

nodes. The TLM algorithm is thus the repetition of these two steps as long as the

transient wave propagation is not extinguished. At each time step, the electric- and

magnetic-field components may be directly obtained from the voltages and currents

at each node.

The method was extended to 3D problems in [96,97]. In order to support all the

components of electric and magnetic fields, a new TLM cell is developed, consisting

of three shunt and three series nodes. The shunt and series nodes alternate along the

coordinate directions, spaced from each other by Dl=2. The voltages at the shunt

nodes represent the electric field, while the currents at the series nodes correspond to

the magnetic field. Since the nodes where different field components are calculated

are Dl=2 spatially separated (thus resulting in a half time step delay), the resulting

network is called an expanded-node (ExpN) network. To overcome the outstanding

disadvantages of this network approach (e.g., complicated graph, difficulties in

modeling of boundaries, and, consequently, liability to errors), the symmetrical

condensed-node (SCN) network was proposed in [98], where the scattering process

takes place at the same point in space and time for all the nodes. Along each

coordinate direction the two TM and TE polarizations are carried on two pairs of

transmission lines that do not intersect with each other. Consequently the new node

is formed by the intersection of six transmission lines, presenting two ports in each

coordinate direction. The scattering of a delta impulse voltage incident into a port is

studied by a direct comparison between Kirchhoff’s current and voltage laws written

for the condensed shunt and series nodes, respectively, and Maxwell’s equations.

The analogy is repeated to all the 12 ports so that a local 12� 12 scattering matrix

SL for the 3D case can be written and the previously described TLM algorithm can

be applied.

When dealing with inhomogeneous materials and/or graded meshes, extra

capacitances and inductances are required to model the EM properties of the block
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of space represented by the node and to ensure that the same propagation delay

occurs in all directions [99,100]. The stubbed SCN, illustrated in Figure 5.9,

maintains the line impedance of the 12 link lines equal to the free-space impedance

and introduces the required additional parameters in the form of stubs. Any

deficiency in capacitance (inductance), due to dielectric (magnetic) media or to

grading, is compensated by loading shunt nodes (series nodes) with open-circuited

(short-circuited) reactive stubs of suitable normalized characteristic admittance Y0
(reactance X0) and length equal to half the mesh spacing Dl. Similarly losses in a

dielectric (magnetic) medium are inserted by loading shunt (series) nodes with a

shunt (series) line of infinite length with suitable normalized characteristic

admittance G0 (impedance R0), which extracts energy at each time iteration. The

general local scattering matrix SL for the stubbed SCN has dimension 24� 18, since

no reflection occurs from the infinite matched transmission lines.

The numerical characteristics of the TLM method has been extensively

investigated. The mesh generally presents an upper cutoff frequency (at which the

propagation velocity drops to zero), slow-wave dispersion characteristics, and a

maximum allowable time step (which depends on the material properties and the

space discretization).

In the last decade further developments have stemmed from the first introduction

of the stubbed SCN, with the aim of always improving the numerical features (e.g.,

improving efficiency, increasing maximum permissible time step, and decreasing

numerical dispersion). By relaxing the condition that all the link lines should have

the same impedance, two hybrid symmetrical condensed nodes (HSCN) were

proposed, where the characteristic impedances of the lines are varied to account for

various mesh grading and to model some of the medium parameters. As a result the

number of required stubs is reduced if compared with the stubbed SCN, which

directly implies improved dispersive properties and generally a larger maximum

time step. A first hybrid method, called type-1 HSCN, was introduced in [101],

where the characteristic impedances of the 12 link lines are varied to model the

correct inductance required by the medium; the capacitance of the lines are then
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FIGURE 5.9 Stubbed SCN (a); shunt node (b); and series node (c).
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chosen to maintain synchronism in the three coordinate directions and three parallel

open-circuited stubs with suitable characteristic admittances are used to account for

deficiency in capacitance. A complement of the method, called type-II HSCN was

proposed in [102], where the characteristic admittances of the lines are varied to

model the correct capacitance required by the medium; the inductances are chosen to

achieve synchronism and inductance deficiencies are compensated through the use

of series short-circuited stubs. Later a completely stubless SCN, called symmetrical

supercondensed node (SSCN) was presented in [103], where all the effects due to

materials and grading are incorporated into the link lines. The SSCN has shown

substantial improvement in storage, efficiency, and maximum allowable time step.

The magnitude of the propagation error is larger than in the stubbed SCN but smaller

than in the graded HSCN meshes. Nevertheless, the method does not suffer of

bilateral dispersion, presenting a unique and unilateral dispersion characteristic.

Finally, further investigations have led to a general symmetrical condensed node

(GSCN) [104] where it is possible to select, with the maximum flexibility, a suitable

proportion of material and geometrical properties modeled separately by stubs and

by link lines, achieving nodes with optimum dispersion characteristics. These

schemes have been optimized through appropriate weighting functions leading to

the adaptable symmetrical condensed node (ASCN) [105].

Boundaries, such as electric and magnetic walls, are generally placed half way

between two adjacent nodes and modeled by enforcing appropriate reflection and

transmission coefficients to compute the impulses at the successive time step. In

modeling problems that involve wave propagation in an open space (e.g., radiation

and scattering problems) artificial boundaries are enforced to truncate the solution

domain while creating the numerical illusion of an infinite space. The ABCs

developed through the last two decades for the FDTD method have been

successfully applied in the TLM method as well, such as the PML technique

[106,107].

For extra flexibility and efficiency, multi-grid TLM [108] schemes have been

developed to overcome the usual limitations encountered when applying a uniform

mesh. As for the FDTD method, sub-cell models have been developed to account for

small geometric features such as thin wires, narrow slots, and thin panels [109].

5.6 PARTIAL ELEMENT EQUIVALENT CIRCUIT METHOD

The partial element equivalent circuit (PEEC) method [110] is a 3D full-wave

modeling method that has been proved to be very effective for combined EM and

circuit analysis for both the frequency and the time domain. The same as the MoM,

the PEEC method starts from an integral equation, but its distinguishing feature is

that the integral equation is reduced to an equivalent circuit for the basic PEEC cell,

which results in a complete equivalent circuit for 3D geometries. Thus the PEEC

method can be considered a circuit-based formulation of the integral equation that

provides a circuit interpretation of the integral equation governing the EM model,

thus enabling an intuitive understanding of the problem. The PEEC method is a
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full-wave and full-spectrum method; the full-wave aspect refers to the fact that up to

a high-frequency limit, all modes of propagation are calculated. The full-spectrum

label means that unlike the MoM, the method does not have a low-frequency limit;

the solution is valid from dc to the maximum frequency given by the meshing.

Once the EM problem is reduced to an equivalent circuit, additional circuit

elements can be easily included. The solution techniques available in most Spice-type

circuit solvers for both the time and frequency domain can be used. For these reasons

PEEC is a very flexible approach for solving mixed EM and circuit problems.

The PEEC formulation below is initially presented in the time domain only for

conductors. Then further extensions are introduced.

The goal of the PEEC approach is to build up an equivalent circuit for the 3D

geometry. The integral equation is interpreted as a Kirchhoff voltage law applied to

the basic PEEC cell, while the continuity equation is enforced by a Kirchhoff current

law at the level of the circuit solution. The starting point of the PEEC model is the

sum of all the sources of the electric field at any point on a conductor:

Eincðr; tÞ ¼ Jðr; tÞ
s

þ @

@t
Aðr; tÞ þ rFðr; tÞ; ð5:56Þ

where Einc is the incident electric field, J is the current density in a conductor, A and

F are the magnetic vector and electric scalar potentials, respectively. The magnetic

vector potential A and the electric scalar potential F at a point r are given by

Aðr; tÞ ¼ m0

ZZZ
Vb

Gðr; r0ÞJðr0; tdÞdV 0;

Fðr; tÞ ¼ 1

e0

ZZZ
Vb

Gðr; r0Þreðr0; tdÞdV 0;
ð5:57Þ

where Vb is the volume of the material in which the source current J and the charge

density re are localized and the delay time td ¼ t � jr� r0j=c is the free space travel
time between the source point r0 and the observation point r. Both the delay and the

Green function are free-space quantities, with Gðr; r0Þ ¼ 1= 4pjr� r0jð Þ. Finally, by
inserting the equations above into (5.56), an integral equation for the electric field at

a point r located on the conductor can be formulated as

Eincðr; tÞ¼ Jðr; tÞ
s

þ m0

ZZZ
Vb

Gðr; r0Þ @Jðr
0; tdÞ
@t

dV 0þ r
e0

ZZZ
Vb

Gðr; r0Þreðr0; tdÞdV 0

2
64

3
75:

ð5:58Þ

To numerically solve the integral equation, appropriate approximations for the

current and charge densities are chosen. Unlike the usual MoM solution, the
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continuity equationr � Jþ @re=@t ¼ 0 is not used to replace all the charge variables

with the current ones. Instead, the PEEC solution works with both current and charge

as unknowns to cover both the time and frequency domain. The continuity equation is

implemented in the form of a Kirchhoff current law in the circuit solution at each

node. When dealing with finite-thickness conductors, no high-frequency skin-effect

approximation is used, but a more accurate approximation of the internal current flow

is introduced. The finite-thickness conductor is subdivided in basic building blocks

(referred to as slabs) that are discretized into inductive cells, while neglecting any

capacitive effect since displacement currents are negligible in good conductors.

The vector quantities are discretized into orthogonal components in the

coordinate system as J ¼ Jxux þ Jyuy þ Jzuz. Since the free charge is restricted to

the outside surfaces of all the conductors, a surface layer charge density rS is

considered rather than a volume quantity. Substituting these relationships into (5.58)

results in a set of three coupled equations that are identical in form with the

exception of the space directions g ¼ x; y; z:

Einc
g ðr; tÞ¼ Jgðr; tÞ

s
þm0

ZZZ
Vb

Gðr; r0Þ @Jgðr
0; tdÞ

@t
dV 0þ 1

e0

@

@g

ZZ
�
Sb

Gðr; r0Þrsðr0; tdÞdS0
2
64

3
75:

ð5:59Þ

The structure under analysis is discretized into inductive-resistive cells and

capacitive cells as illustrated in Figure 5.10. This is accomplished by specifying

the number of nodes within the conductor that will be the network nodes of the

equivalent circuit, and by defining nonoverlapping rectangular bricks for the three

y

x

z

J
y

Jx

Node

Inductive-resistive cell

Capacitive portion

ρ

ρ

Jz

ρ

FIGURE 5.10 Volume cells for currents and surface cells for charges.
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components of the current and the surface charge. The unknowns J and rS are

expanded into a series of pulse basis functions over the cells with unknown

amplitudes, as Jg ¼PNg

k¼1 pig;kJg;k (where Ng is the number of cells for the g

component of the current) and rS ¼
PNq

k¼1 pq;krS;k.
Because of the pulse basis-function expansion, the geometry must be discretized

into small enough cells so that accurate results can be obtained. Pulse functions are

also selected as testing functions for a Galerkin formulation of the solution. The

inner product is formed with respect to a cell and is defined as

hf ðrÞ; gðrÞi ¼ 1

ag;a

ZZZ
Va

f ðrÞgðrÞ dV ; ð5:60Þ

where Va and ag;a are the volume and the cross section perpendicular to the current

flow of the testing cell, respectively, f ðrÞ is the integrand, and gðrÞ is the pulse

testing function.

As was already mentioned, the goal of the PEEC formulation is to convert the

field equations into an equivalent circuit, where I and Q (or the corresponding

potentials F) are the unknowns. Inserting the expansions for the unknowns in (5.59)

and performing the inner product with respect to an inductive cell a leads to

1

ag;a

ZZZ
Va

Einc
g ðra; tÞdV ¼ 1

ag;a

ZZZ
Va

Jg;aðra; tÞ
s

dV

þ
X
b

pig;b
m0

ag;a

ZZZ
Va

ZZZ
Vb

Gðra; r0bÞ
@Jg;bðr0b;td;abÞ

@t
dV 0

2
64

3
75dV

þ
X
b

pq;b
1

e0ag;a

ZZZ
Va

@

@g

ZZ
�
Sb

Gðra; r0bÞrbðr0b; td;abÞdS0
2
64

3
75dV ;
ð5:61Þ

where td;ab is the time retarded by the delay necessary to travel from cell a to cell b.
The current flow through the cells is supposed uniform and laminar. Once the

integration is applied to (5.61) using this approximation, an appropriate equivalent

lumped component can be associated with each term of the integral equation. So an

equivalent circuit can be built up between two neighboring nodes fulfilling the

Kirchhoff voltage law ei ¼ vR þ vL þ vC.

Thefirst termof the integral equation can be easily shown to be thevoltage vR across

the resistance Rg;a ¼ la= s ag;a
� �

of the cell a under the dc approximation. For

the second term, the assumption of uniform and laminar current flow leads to the

approximation@Jg=@g ¼ ð@Ig=@gÞ=ag ,withthederivativeoutsidetheintegral.Thusthe
second termrepresents thepartial self-inductanceof theconductor cellaplus thepartial
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mutual inductances between parallel cells a and b. The partial inductance is given by

Lpg;ab ¼ m

ag;aag;b

ZZZ
Va

ZZZ
Vb

1

4pjra � rbj dVb

2
64

3
75dVa: ð5:62Þ

For an orthogonal coordinate system all the nonparallel cells are perpendicular so

that the partial mutual inductances are zero. Hence the inductive term is simply

interpreted as vL ¼ Lpg;aadIaðtÞ=dt þ
P

b Lpg;ab dIb td;ab
� �

=dt where the first term is

the partial self-inductance of the cell a and the other terms represent the inductive

coupling to cell a from the current in cell b. This term is computed at the retarded

time td;ab ¼ t � Rab=c, which accounts for the delay between the two cells (given by
the time required by the field to travel along the center-to-center distance Rab

between cell a and b). An important fact to note is that the effect of the retardation

must be taken outside the integral in order to rewrite the contributions of the vector

potential in terms of the definition for partial inductance. The retarded time

corresponds to the time delay between the centers of the two cells, which is a valid

approximation when the dimensions of the cells are small compared to the minimum

wavelength. The partial inductances with retardation can be handled by introducing

a partial self-inductance Lpg;aa in series with a voltage-controlled voltage source

Vpg;aðtÞ ¼
P

b6¼a Lpg;ab=Lpg;bb
� �

vLg;bðtd;abÞ, where vLg;bðtd;abÞ is the voltage at the

partial self-inductance of the cell b computed at the retarded time [111].

As concerns the third term of the integral equation, it represents a pseudo-

capacitive coupling. By defining the inside integral as

FðrÞ ¼
ZZ
�
Sb

Gðra; r0bÞrb ðr0b; td;abÞdS0; ð5:63Þ
we can then approximate

1

ag;a

ZZZ
Va

@

@g
FðrÞdV ’ Fðrþ Dlg;a=2Þ � Fðrþ Dlg;a=2Þ; ð5:64Þ

where Dlg;a is the length of cell a in the g direction. Applying the preceding results

leads to

vC ¼
X
b

pq;bQb r0b; td;ab
� 
 1

e0Sb

ZZ
�
Sb

Gðrþa ; r0bÞdS0 �
1

e0Sb

ZZ
�
Sb

Gðr�a ; r0bÞ dS0
0
B@

1
CA;

ð5:65Þ
where Qb r0b; td;ab

� 

is the total charge on a capacitive cell, Sb is the surface of the

capacitive cell b over which the uniform charge density is located, rþa and r�a are the

positive and negative ends, respectively, of the testing inductive cell a in the g

direction. The ends of the cell are nodes of the mesh and will be nodes of the

equivalent network. Since the capacitive cells are shifted from the inductive cells by

half the size of a cell, these two points are at the centers of the neighboring
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capacitive cells along the g direction. Thus the potential coefficient between the

source node b and the testing node a can be computed as an average over the

capacitive testing cell a, resulting in the final expression for the retarded potential

coefficient as

ppab ¼ 1

e0SaSb

ZZ
�
Sa

ZZ
�
Sb

1

4pjra � rbj dSb

2
64

3
75dSa: ð5:66Þ

The capacitive term is interpreted as vC ¼ ppaa QaðtÞ þ P
b ppab Qbðtd;abÞ, where

ppab is the coefficient of the potential between cells a and b. Since the charges reside

on the conductor surfaces, the potentials are only due to nodes external to the

conductors.

A key issue in the PEEC modeling approach is to know how these capacitances

are included in the equivalent circuit model. The concept of capacitance in fact is

invalid for the case where retardation is not negligible, so the matrix of retarded

coefficients of potential P cannot be inverted into the short-circuit capacitance

matrix. In this case the retarded coefficients of potential need to be modeled as a

controlled source. The controlled sources are derived from the equation F ¼ P �Q
and from the constitutive relationship between current and charge, namely

i ¼ dq=dt. The formulation presented in [112] builds up the circuit in terms of

pseudocapacitances C
0
a ¼ 1=paa in series to voltage-controlled voltage sources

UaðtÞ ¼
P

b6¼a pab=pbb
� �

vC;bðtd;abÞ, where vC;bðtd;abÞ is the potential of pseudoca-

pacitance of cell b computed at the retarded time. Alternatively, the formulation

presented in [113] builds up the circuit in terms of pseudocapacitances in parallel to

current-controlled current sources IaðtÞ ¼
P

b6¼a pab=paa
� �

iC;b td;ab
� �

, where

iC;bðtd;abÞ is the total current flowing from node b toward earth at the retarded time.

The RHS of the integral equation is due to the incident electric field. An equivalent

induced voltage source is obtained by performing the inner product [114]. The induced

voltage source acts on each cell a with amplitude

Vpg;aðtaÞ ¼ 1

aa

ZZZ
Va

Einc
g ðra; taÞdV; ð5:67Þ

where ta is the time instant in which the impinging field arrives at cell a. The

resulting equivalent circuits are represented in Fig. 5.11. By the described procedure,

a complex network can be developed in the 3D space.

As concerns the inclusion of dielectrics into the PEEC formulation, any

displacement current due to the bound charges for the dielectrics with er > 1 is

treated separately from the conducting currents due to the free charges. Hence the

dielectrics are treated separately as an equivalent current in a free-space

environment. The computation is accomplished by adding and subtracting a term

e0@E=@t in Maxwell’s equation for H, by which there can be defined an equivalent

polarization current e0 er � 1ð Þ@E=@t due to the dielectrics. Consequently the total

current is defined as the sum of the conducting current plus this equivalent
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polarization current. The dielectric regions are discretized into cells as the

conductors and are represented with additional circuit elements [111]. The excess

capacitance of the dielectric cell is defined as Cg;a ¼ e0 er � 1ð Þ aa=la, where la is

the length of the cell, so the equivalent circuit is given by a partial inductance Lp;aa in

series to the capacitance Cg;a. The coupling to other cells is taken into account

through the partial mutual inductances Lp;ab, as done for the conductor cell.

Most of the early work in PEEC modeling was restricted to rectangular

Manhattan geometries, since the method made use of rectangular bricks. Recently a

nonorthogonal formulation has been developed, using quadrilateral and hexahedral

cells [115] to model more complex and generally shaped geometries. The method

can be applied in both the time and frequency domain. For performing a simulation

in the frequency domain, the equivalent circuit of the PEEC cell remains the same as

in the time domain. The retardation in time in the controlled voltage sources is

accounted for by a phase term exp �jkRab

� �
, where k is the free-space wavenumber.

Once the equivalent circuit model has been formed, the circuit equations can be set

up by a standard systematic network solution like the modified nodal analysis (MNA)

[116] or the modified loop analysis (MLA) [117]; this results in fewer unknowns but

is only valid for the frequency domain. The distinguishing feature of the resulting

equations of the PEEC method is that they are delay differential equations (DDEs),
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FIGURE 5.11 Equivalent PEEC circuits.
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since the model contains retardation in the mutual terms. These equations require

special solvers and MOT integration methods. Discarding delays in the PEEC model,

which then becomes a static model, leads to the development of a system of ordinary

differential equations (ODEs) that can be solved with conventional circuit solvers like

the Spice-type programs. The key problem of the retarded-PEEC method in the time

domain is that the solution of DDEs suffers from a fragile stability (the so-called late-

time instability). Instabilities may arise if the discretized model is unstable, due to the

impact of approximations in the computation of partial elements and retarded time

between elements, but the time integration method used for the integration of the

resulting DDEs can also cause instability. The same as for the TDIEs, the stability

issue of the PEEC method is still undergoing much research [118–120].

The PEEC method has been improved over the last few years. Special model-

reduction procedures have been suggested to reduce the complexity of the equivalent

circuit, and the fast multifunction (FMF) approach and the fast multipole method

(FMM) have been applied to speed up the partial element computation, fulfilling the

accuracy requirements at the same time.

5.7 CASE STUDY: SCATTERING FROM A PERFECTLY CONDUCTING
ENCLOSURE WITH A RECTANGULAR APERTURE

To illustrate the differences between the numerical methods previously described,

the problem of computing the SE of a metallic enclosure with an aperture is

considered. The test enclosure is an empty rectangular box of size

A� B� C ¼ 30� 12� 30 cm with a thin rectangular aperture of dimensions

a� b ¼ 10� 0:5 cm located at the center of one of its side walls, as shown in

Figure 5.12. A uniform plane wave is assumed to impinge orthogonally to the front

side containing the aperture, with the electric-field vector of amplitude 1 V/m

linearly polarized along the shortest side of the aperture. Being a worst case, this

configuration may be most suitable for an investigation of the shielding properties of

A

C

B

b a

y

x

z

O

FIGURE 5.12 Geometry of the test enclosure.
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the enclosure. The classical electric SE is computed in the frequency window from

100 MHz to 3 GHz, with the observation point at the center of the enclosure.

The FEM, MoM, FIT, and the TLM methods have been applied to predict the

electric SE of the test enclosure. The walls of the enclosure are modeled as PEC.

Because of the problem symmetry, only a quarter of the enclosure needs to be

simulated, with the electric and magnetic symmetry on the xz and yz plane,

respectively. In all the differential methods, the enclosure is surrounded by 30 cm

of vacuum and the computational domain is terminated with a perfectly matched

medium, to absorb the outgoing waves.

The FEM model uses first-order linear vector curl-conforming elements (edge

elements) defined on an unstructured tetrahedral mesh (60,841 tetrahedra) locally

refined inside the enclosure and near the aperture (refining edge factor 2). The

maximum allowable element length is set to lmin=10, where lmin is the minimum

wavelength of interest in free space (10 cm at 3 GHz). The solution is worked out in

the frequency domain, by a linear discrete sweep from 100MHz to 3 GHz with

291 points (frequency step equal to 10 MHz).

The FITmodel is based on a nonuniformly graded orthogonal structuredmesh. It is

thus equivalent to the classical FDTDmethod, except for its implementation based on

a finite technique. The used mesh is composed of 163,840 cells presenting at least 10

lines per wavelength lmin and a limit cell deformation factor of 10:1. The mesh is

locally refined near the aperture with an edge refinement factor of 2. The excitation

signal is a Gaussian modulated impulse with frequency content from 100MHz to

3 GHz. The time step is Dt ¼ 2:45 ps. To extinguish the transient inside the resonant

cavity, 982,832 time steps have been necessary. The results in the time domain are then

Fourier transformed in the frequency window of interest, using 1001 frequency points.

The TLMmodel uses the stubbed symmetrical condensed node (SCN). The mesh

is structured with a nonuniform grading, with characteristics similar to that of the

FIT model. The number of cells is 212,350, the time step is Dt ¼ 2:30 ps, and the

number of time steps required to reach the steady state is 1,054,350. The time-

domain results are Fourier transformed using again 1001 frequency points.

The MoM model uses first-order linear vector div-conforming elements (RWG

basis functions) defined on an unstructured surface triangular mesh (2980 triangles).

The maximum edge length for triangular patches is set to lmin=10 and the mesh is

refined in the neighborhood of the aperture with an edge-based refinement process,

in order to obtain triangles with maximum edge length of 5 mm on the border of the

aperture. The MoM code is based on the EFIE and makes full use of the electric and

magnetic symmetries of the problem. The solution is worked out in the frequency

domain, using a linear discrete sweep equal to that used in the FEM model.

The results are shown in Figure 5.13a. In Figure 5.13b the resonant frequencies

and modes of the box without the aperture are also reported (see Chapter 7). From

the results it can be seen that the electric SE values obtained with the different

methods show a good agreement in the frequency range of interest, generally within

3 dB of difference.

The main differences between the methods are in the required CPU time and

computational resources. The FIT takes about 13 hours to reach the steady state on
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a dual Xeon Workstation with 4 GB RAM (with parallelization module), while the

TLM method is a bit faster, saving two hours of computation. These long

simulations are mainly due to the high-resonant behavior of the enclosure whose

walls are considered lossless and to the fact that the aperture is very thin. The

memory requirement of the two codes is about 300 MB. The introduction of a

subgrid on the aperture in the FIT model with a volume refinement factor of 3 does

not substantially reduce the computational time but only the memory requirement,

since the cell number in the coarse mesh is reduced. Anyway, this is not a problem
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FIGURE 5.13 Comparison of electric SE results from different codes (a); resonant

frequencies and modes of the box (b).
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that can be classified as critical for the memory requirement. As concerns the FEM,

it takes about 14.5 hours to compute the span over 291 frequency points, which is

about 3 minutes for each frequency. This is the time necessary to build up the

banded matrix at each frequency and to solve it by means of the iterative conjugate

gradient method. In addition the memory required by the method is huge, around

1.25 GB, due to the banded matrix to be stored. The method is attractive for

simulating a structure at a single frequency, but it cannot be considered efficient

when a frequency sweep is needed, especially in a wideband. In this case special

techniques for a fast interpolating sweep in conjunction with a model-order

reduction should be used to speed up the simulation. As regards to the MoM, it

takes about 3.5 hours to compute a sweep on 291 frequency points (about 40

seconds for single frequency) and requires about 530 MB. The method cannot be

considered very efficient from the storage point of view: it needs to store a full-

populated matrix, but it is fast. In fact the calculation of the matrix elements only

requires the evaluation of the free-space Green function, and the final matrix can

be efficiently solved with the direct Gauss elimination method. It is necessary to

point out that the MoM is fast but computes the SE only on 291 frequencies, while

the time-domain methods allow practically any number of samples to be computed

from the time-domain results through the Fourier transform. The only limit is

given by the Nyquist criterion, but the sampling period of the time-domain

methods is usually much smaller than that required by the Nyquist rate, due to

stability and accuracy reasons.
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CHAPTER SIX

Apertures in Planar Metal
Screens

The transmission of the EMfield through an aperture in a planar conducting screen is a

canonical problem that has attracted a great attention in the EM community (see [1,2],

and references therein). This problem is in fact a first step in the study ofmany practical

issues arising in different areas of electromagnetics, and in particular, in EMC. In the

framework of EMC, such a classical problem is directly related to the design of an

efficient shielding metallic enclosure. Shielding enclosures are usually employed to

protect against radiation from external EM fields and leakage effects from interior

components. However, the efficiency of these enclosures is often compromised by

apertures and slots located on the walls of the enclosure; such apertures may be

intentional (e.g., necessary for ventilation purposes or access to interior equipments) or

not (e.g., cracks around plates covering access ports). In any case, such openings allow

coupling between external and internal fields, thus affecting and possibly deteriorating

the desired performance of the enclosure.Of course, realistic problems inEMCinvolve

apertures in finite, possibly nonplanar, screens and loaded by a cavity or other 3D

objects. However, very often, the consideration of an infinite flat screen in place of a

finite curved onemaynot considerably affect the accuracy of the solution. The problem

of loading is a very serious one andwill be treated in the next chapter. In this chapterwe

aimat studying the effects of apertures on the SEof an infinite planar conducting screen

subject to a time-harmonic EM field.

As it can be expected, even such a simple problem depends on a number of factors,

such as, the shape of the aperture, the size of the aperture, the frequency of operation,

and the characteristics of the incident EM field. After many years such a problem still

remains, in the most general case, a quite challenging one [3–5] whose analytical

solution is available only for an incident plane wave impinging on an infinitesimally
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thin circular aperture (in this case the solution is expressed as an expansion in terms of

oblate spheroidal vector wavefunctions [6]). An excellent discussion of this

fundamental problem and of its classical formulations is given in [2].

Usually apertures of interest in EMC are electrically small (i.e., the maximum

aperture dimension is small compared to the operating wavelength). The ‘‘small-

aperture problem’’ is quite well understood and, subject to a ‘‘low-frequency’’

approximation, some general conclusions can be drawn. However, as can be

guessed, the field penetration increases with increasing frequency, and it is

maximum at the resonant frequency of the aperture (i.e., when the aperture acts as a

resonant slot antenna).

6.1 HISTORICAL BACKGROUND

The problem of EM transmission through an aperture in an infinite planar

conducting screen is essentially a direct EM scattering (diffraction) problem. From a

mathematical point of view, such a problem is a well-posed boundary-value

problem; that is, it always admits a unique solution, and the involved operator is

continuous. As is well known, there is not a general procedure for solving a

boundary-value problem, so several numerical or approximate analytical methods

have been developed and used through the years. These methods can be usefully

classified by dividing the frequency domain into three ranges:

1. The high-frequency region, where the wavelength is small compared with the

aperture dimensions.

2. The intermediate- (resonance-) frequency region, where the wavelength is of

the same order as the aperture dimensions.

3. The low-frequency region, where the aperture dimensions are small with

respect to the wavelength.

In the high-frequency region (i.e., very large apertures), the first systematic

attempt to treat the aperture diffraction problem was made by Kirchhoff [7], based

on Huygens’s principle. Such an approach, although mathematically inconsistent in

its initial formulation, works pretty well in the frequency domain of interest; the

mathematical inconsistencies were then soon removed by Sommerfeld [8] and

Rayleigh [9]. However, since the theory is essentially scalar, Kirchhoff’s approach

cannot account for the polarization of the EM field. A vector equivalent of the scalar

Kirchhoff’s formulation was introduced by Stratton and Chu [10] and Schelkunoff

[11]; Smythe was then the first to obtain a solution for the diffracted electric field in

terms of the tangential electric field in the aperture of a perfectly conducting screen

[12]. Other techniques based on Kottler’s theory [13] introduce additional contour

integrals along the rim of the aperture (representing the effects of fictitious line

charges) to take into account the vectorial nature of the problem. Usually, in the

high-frequency region, asymptotic techniques are widely used (e.g., physical optics,
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geometric theory of diffraction [14], uniform theory of diffraction [15], and physical

theory of diffraction [16]).

In the low-frequency region (small apertures), Lord Rayleigh was the first to

propose a solution of the problem [17]: the solution procedure was based on a series

expansion in ascending powers of the wavenumber of certain quantities (the so-

called Rayleigh’s series) and it has been shown that it leads to a sequence of simple

integral equations with a kernel of the electrostatic type [2]. In a famous paper Bethe

studied the low-frequency EM scattering by a small circular hole cut in an infinite

perfectly conducting plane [18], and by using a scalar potential approach, he derived

the leading terms of the Rayleigh series. Bouwkamp studied the same problem in a

more rigorous way using a complicated system of integro-differential equations, and

he found some errors and incorrect results in Bethe’s solution [1]. An alternative use

of Rayleigh’s series expansion has been discussed by Stevenson [19], Kleinman

(who corrected and simplified Stevenson’s work) [20], and Eggimann [21]. An

interestingly elegant variational formulation of EM diffraction problems for planar

apertures, which allowed for approximate but accurate numerical evaluations of the

scattered fields in a wide range of frequencies, was provided by Levine and

Schwinger [22].

In the intermediate- (resonance-) frequency region, where a rigorous full-wave

analysis is needed, the integral-equation method is the most common approach since

both the radiation and the boundary conditions are implicitly taken into account in

the formulation. Usually most of the relevant numerical techniques are based on the

application of the method of moments [2].

6.2 STATEMENT OF THE PROBLEM

The basic EM problem that we refer to consists in finding the transmitted EM field

through a planar infinitesimally thin and perfectly conducting screen S of infinite

extent perforated with a finite aperture A, as shown in Figure 6.1, and due to

J i, M i  

x

y  

z 
Aperture A  

Screen S 

FIGURE 6.1 Transmission of the EM field through a finite aperture A cut in a planar

perfectly conducting screen S of infinite extent and zero thickness.
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time-harmonic electric and magnetic impressed sources (Ji andMi, respectively): in

particular, the screen S coincides with the xy plane of a Cartesian coordinate system

and the EM sources are assumed located in the half-space z < 0. It should be noted

that consideration of a perfectly conducting screen is not a limiting factor in the

analysis of the shielding properties of a planar metal screen; the field transmitted

through a small aperture is in fact usually much larger than the field penetrating the

screen due to a finite conductivity of the screen itself.

Electromagnetic theory requires that the solution of the scattering problem in

the half-space z > 0 (i.e., the transmitted EM field) satisfy Maxwell’s equations,

boundary conditions on the screen and on the aperture, and the radiation (Silver-

Müller) condition:

lim
r!1 rðE� ur þ h0HÞ ¼ 0 8ur: ð6:1Þ

6.3 LOW-FREQUENCY ANALYSIS: TRANSMISSION THROUGH
SMALL APERTURES

As mentioned above, the problem of EM transmission through a small circular

aperture in a planar screen was solved by Bethe by means of electrostatic and

magnetostatic approximations of the fields at the aperture [18]. In particular, in

Bethe’s theory for small apertures, the field scattered by the aperture (the first-order

diffracted field) can be represented as the superposition of an electric-dipole field

and a magnetic-dipole field due to electric and magnetic dipole sources, respectively,

both located at the center of the aperture; the electric dipole pe is proportional to the

component normal to the screen of the electric field, while the magnetic dipole pm is

proportional to the component parallel to the screen of the magnetic field through the

so-called electric and magnetic aperture polarizabilities, respectively.

In Bethe’s approximation, the dipole moments can be determined from the

knowledge of the incident field, and therefore the diffracted field due to the presence

of the small aperture can easily be determined. In particular, for the problem of

Figure 6.1, where A is a small aperture, the electric polarizability ae is defined by

pe ¼ uzpe ¼ uze0aeE
inc
z ð0Þ; ð6:2Þ

and the magnetic polarizability am by

pm ¼ �m0am �Hincð0Þ: ð6:3Þ

Note that while ae is a scalar quantity, am is, in general, a dyadic. If the aperture has

lines of symmetry, the magnetic-polarizability dyadic is diagonal. Polarizabilities

have been numerically studied for small apertures of different shapes [23,24]. In
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(6.2) and (6.3), the fields Einc and Hinc are the incident electric and magnetic field,

namely, those fields due to Ji andMi that would exist in the absence of the screen. It

should be pointed out that expressions (6.2) and (6.3) give moments of the equivalent

dipoles radiating in free space.

It should also be noted that Bethe’s theory does not provide a solution for the

radiation conductance of the aperture. When one tries to determine an equivalent

network to represent the small aperture, a physically meaningful representation

cannot be derived because power is not conserved; to overcome such difficulties, a

solution has been proposed by Collin [25] and by Harrington and Mautz [26].

As mentioned in Section 6.2, an exact solution for the circular-aperture case was

found by Flammer [6]. Bouwkamp [1] also showed that the approximate Bethe’s

solution gives correct results for the distant field. However, he also showed that

Bethe’s solution does not reproduce the correct behavior of the EM field at the edges

and does not provide a correct approximate field near the aperture.

According to Bethe’s theory, for observation points far from A (i.e., for distances

large compared to the aperture dimensions), the electric and magnetic fields in the

half-space z > 0 are approximately

E ¼ Ee þ Em; H ¼ He þHm; ð6:4Þ

where Ee and Em and He and Hm are the electric and magnetic fields due to the

equivalent electric and magnetic dipole moments, respectively, given by

EeðrÞ ¼ pe

4pe0
k20uz þr @

@z

� �
e�jk0r

r
ð6:5Þ

and

EmðrÞ ¼ � jv

4p
r e�jk0r

r

� �
� pm: ð6:6Þ

6.4 THE SMALL CIRCULAR-APERTURE CASE

To gain a physical insight into the penetration of the EM field through a small

aperture in a perfectly conducting planar screen, let us consider the particular case

where the small aperture has a circular shape. As mentioned above, such a problem

has been solved in an exact way by means of an expansion in spheroidal vector

wavefunctions [6]. Basically the complementary disk problem is first solved (the

disk is viewed as a limiting case of an ellipsoid), and next, by an application of

the Babinet principle [27], the solution for the circular aperture is obtained. The

circular aperture is the one with the most symmetric shape; in such a special case, the

magnetic-polarizability dyadic reduces to a simple scalar quantity. Moreover,
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expressions for the electric and magnetic polarizabilities are known in a simple

closed form. In particular, for a circular aperture of radius a the results are

ae ¼ 8

3
a3; amxx

¼ amyy
¼ 16

3
a3; amxy

¼ amyx
¼ 0: ð6:7Þ

We will consider a uniform plane wave impinging on a perfectly conducting

planar screen with a small circular aperture of radius a. As is well known, any

uniform plane wave can be decomposed into the sum of one TE and one TM uniform

plane wave (in this case the attributes TE and TM are referred to the normal to the

screen, i.e., the z axis). The problem is depicted in Figure 6.2a, with the relevant

physical and geometrical parameters.

According to Bethe’s theory, TE polarization gives rise to the presence of an

equivalent magnetic dipole only, whereas TM polarization produces both types of

equivalent dipole moments. From (6.2), (6.3), and (6.7) we have

pTEe ¼ 0; pTEm ¼ �m0

16

3
a3HTE

inc cosuTEincut;

pTMe ¼ �e0
8

3
a3ETM

inc sin uTMinc ; pTMm ¼ �m0

16

3
a3HTM

inc ;

ð6:8Þ

where ut is the unit vector along the direction of the magnetic-field component

tangential to the aperture plane.

From (6.5) and (6.6) (and the dual ones for the magnetic field), the EM field

transmitted through the small circular aperture in the half-space z > 0 can easily

be calculated, both in the near and in the far field. In particular, following

Jaggard [28], the ratio of the near-field transmitted energy density Wtr to the

FIGURE 6.2 TE and TM uniform plane-wave incidence on a perfectly conducting

infinitesimally thin planar screen of infinite extent with a small circular aperture. (a) Near-

field energy distribution for TE (b) and TM (c) plane-wave incidence. SE for TE (d) and TM

(e) plane-wave incidence.
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FIGURE 6.2 (Continued )
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FIGURE 6.2 (Continued )
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incident energy density Winc can be computed. The near-field energy density is

defined as W ¼ WE þWH , where WE ¼ e0jEj2=4 and WH ¼ m0jHj2=4 and with

fields expressions obtained from (6.5) and (6.6) in the limit of observation

distances r much smaller than a wavelength ðr � l0Þ. After some calculations

this results in

W tr

W inc

����TE ¼ 2

9p2

a

r

� 
6
f4cos2uinc½4 sin2 ucos2ðf� fincÞ

þ cos2ucos2ðf� fincÞ þ sin2ðf� fincÞ�g;
W tr

W inc

����TM ¼ 2

9p2

a

r

� 
6
f4½4 sin2 u sin2ðf� fincÞ

þ cos2u sin2ðf� fincÞ þ cos2ðf� fincÞ�
þ sin2 uincð4cos2u þ sin2 uÞg;

ð6:9Þ

where the incident and observation polar angles are those defined in Figure 6.2a. It

should be observed that most of the near-field energy is of magnetic type (for TE

incidence the near-field energy is only magnetic), as a consequence of the fact that

the magnetic-dipole contribution is the dominant one. We define the H-plane as the

plane containing the incident magnetic field Hinc and the normal to the screen z:

that is, for TE polarization the H-plane is the f ¼ finc plane (and it coincides with

the incidence plane), whereas for TM polarization is the f ¼ finc þ p=2 plane (and
it coincides with the plane orthogonal to the incidence plane). Analogously, the

E-plane is defined as the plane containing the incident electric field Einc and

the normal to the screen z: that is, for TE polarization the E-plane is the

f ¼ finc þ p=2 plane, whereas for TM polarization is the f ¼ finc plane. From

(6.9), by assuming a fixed distance r from the aperture, the following observations

can be made:

1. For TE incidence, maximum near-field energy transmission occurs for normal

incidence (i.e., uinc ¼ 0) and along a direction that is the intersection between

the H-plane and the screen (i.e., f ¼ finc and u ¼ 
p=2), as it can be seen in

Figure 6.2b.

2. For TM incidence, maximum near-field energy transmission occurs for

grazing incidence (i.e., uinc ¼ 
p=2) and along a direction that is still the

intersection between the H-plane and the screen (i.e., f ¼ finc þ p=2 and

u ¼ 
p=2), as it can be seen in Figure 6.2c. However, the near-field energy

transmission is quite independent of the incidence angle.

3. For TE incidence, minimum (zero) near-field energy transmission occurs for

grazing incidence (i.e., uinc ¼ 
p=2), independently of the observation

point.

4. For TM incidence, minimum near-field energy transmission occurs for normal

incidence (i.e., uinc ¼ 0) and along the normal to the screen (i.e., u ¼ 0).
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As was already pointed out, Bethe’s theory is not rigorously correct for points

too close to the aperture. However, Jaggard has shown that for observation

distances larger than the aperture diameter and in the normal-incidence case, the

approximate results above are in good agreement with the exact ones obtained

by Bouwkamp (in particular, the maximum error is less than 2% for r > 2a on

the E- and H-planes). Moreover the validity of the approximate expressions

holds also for arbitrary polarizations and angles of incidence [28].

The SE can be considered as a figure of merit to quantify the penetration of

the EM field through the aperture. In particular, it should be recalled that the SE

at a certain point of the space is defined as the ratio (in dB) of the incident

electric (or magnetic) field (i.e., the field in the absence of the screen) divided

by the electric (or magnetic) field in the presence of the perforated screen. Since

Bethe’s solution is certainly correct for large distances from the aperture (i.e.,

r � l0), accurate approximate expressions for the SE of the screen can be

derived. In particular, from (6.5) and (6.6), in the limit r � l0, after lengthy

calculations there results

SETE ¼�20 log
4k20a

3

3pr
cosuinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 u cos2ðf�fincÞ

q� �
;

SETM ¼�20 log

(
4k20a

3

3pr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 uþ sin2 u cos2ðf�fincÞþ

1

4
sin2 uinc

� �
� sin u cos2ðf�fincÞ sinuinc

s )
:

ð6:10Þ

Since a nonzero electric field beyond the screen (i.e., in the half-space z > 0) is due

only to the presence of the aperture, (6.10) can be taken as the expressions of the SE

of a small circular aperture. It is immediate to see that the opposites of (6.10)

represent the far-field energy distribution under TE and TM incidence, respectively.

Based on (6.10), the following observations can be made:

1. For TE incidence, the minimum SE (maximum energy transmission) occurs

for normal incidence (i.e., uinc ¼ 0) and along two main directions: normal to

the screen (i.e., u ¼ 0) or along the intersection between the E-plane and the

screen (i.e., f ¼ finc þ p=2 and u ¼ 
p=2).

2. For TM incidence, the minimum SE (maximum energy transmission) occurs

for grazing incidence (i.e., uinc ¼ p=2), on the E-plane (i.e., f ¼ finc), and

in a direction opposite to the direction of incidence (i.e.,

u ¼ �uinc ¼ �p=2).

3. For TE incidence, the maximum SE (minimum energy transmission) occurs

for grazing incidence (i.e., uinc ¼ p=2) independently of the observation
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point, as it can be seen in Figure 6.2d. In particular, for this case the energy

transmission is zero.

4. For TM incidence, the maximum SE (minimum energy transmission) occurs

for normal incidence (i.e., uinc ¼ 0) and along a direction that is the

intersection between the plane orthogonal to the incidence plane and the

screen (i.e., f ¼ finc þ p=2 and u ¼ p=2), as it can be seen in Figure 6.2e.

Also for this case the energy transmission is zero.

5. For both polarizations, the far-field energy distribution is dramatically

different from the near-field energy distribution.

6.5 SMALL NONCIRCULAR APERTURES

Expressions for the aperture polarizabilities of elliptical apertures have been derived

in closed form, although they involve elliptical integrals of first and second kind. The

relevant expressions are reported in Figure 6.3 together with the relevant geometrical

parameters.

Much simpler expressions can be obtained under the assumption of narrow

ellipses [2]. However, for other aperture shapes, simple expressions for the

magnetic and electric polarizabilities are not available and therefore numerical

evaluations are usually required [23,24]. In addition the magnetic polarizability

is in general a nondiagonal dyadic. In any case, it can be shown that minimum

shielding always occurs when the incident magnetic field is polarized along the

major axis of the aperture (i.e., for TM polarization) for grazing incidence and

in a direction opposite to that of the incident wave (i.e., u ¼ �uinc ¼ �p=2). For
unpolarized fields (i.e., EM waves in which the two perpendicular components

of the electric field have equal average magnitudes and a random relative phase

difference), lower and upper bounds for the polarizabilities can be derived [28]

that can be effectively used to study the influence of the aperture shape on the

SE of the perforated screen. In particular, it has been shown that for given area
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FIGURE 6.3 Electric and magnetic polarizabilities of an elliptical aperture.
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and eccentricity (which has to be suitably defined for non-elliptical shapes), the

aperture with the largest perimeter gives rise to the minimum SE [28]; the

circular shape is thus the one which provides maximum SE.

6.6 FINITE NUMBER OF SMALL APERTURES

Let us now consider the presence of more apertures on a planar metal screen.

Obviously the simplest treatment of a number of apertures is to consider them as

being independent. However, it is clear that apertures in close proximity interact

through a coupling mechanism. In particular, each aperture is actually excited not

only by the incident field but also by the field diffracted by all the other apertures.

As a first example, let us a consider a screen perforated with only two equal

and symmetrical closely spaced apertures (i.e., both characterized by the same

scalar electric polarizability and by the same diagonal magnetic-polarizability

dyadic, and placed at a distance d such that k0d � 1). Under suitable

assumptions several interesting conclusions can be drawn. These simplifying

assumptions are the following: First, the near fields of the aperture are assumed

to be dipole near fields (for circular apertures of radius a, this assumption is

adequate for d 
 3a, while for noncircular apertures the approximation holds for

d 
 1:5L, where L is the typical dimension of the aperture). Second, in

calculating the interaction fields, intermediate and far fields are neglected. Third,

the interaction is assumed to be small. Finally, the interaction field is assumed to

be constant over the aperture. It thus follows [28] that the problem can be

described by characterizing each aperture with noninteracting dipole moments

associated with polarizabilities slightly modified with respect to the case in

which only one aperture is present; in particular, the EM coupling produces

crossed magnetic polarizabilities (so that the magnetic-polarizability dyadic is

not diagonal anymore). Depending on the polarization of the incident field, the

coupling can either increase or decrease the components of the magnetic

polarizability dyadic, while it always increases the scalar electric polarizability.

The SE of each aperture can thus be either increased or decreased with respect

to its value when each aperture acts individually. In particular, when the incident

magnetic field is parallel to the line connecting the apertures, the SE of each

aperture decreases, whereas when the incident magnetic field is orthogonal to

the line connecting the apertures, the SE of each aperture increases.

The previous conclusions can be generalized to include the case of

transmission through many small apertures. In particular, a row of N identical

equidistant apertures can be considered, as shown in Figure 6.4a. When

considering this problem, two main differences arise with respect to the two-

aperture case. One is obvious, that the interaction among all the apertures has to

be taken into account. This gives rise to an additional modification of the

aperture polarizabilities. However, it should be noted that most of the coupling

is due to adjacent apertures. Therefore, with respect to the two-apertures case,

the coupling is approximately doubled. The further effect of all the other
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apertures can then be taken into account through an effective coupling

coefficient [28]. The second and most important difference lies in the fact that

the radiated far field is essentially due to an array of apertures, and this can lead

to dramatically different results with respect to the two-aperture case. In fact,

while in the presence of only two closely spaced apertures (i.e., k0d � 1), the

far-field energy distribution is similar to that of a single aperture, for a large

number N of apertures it can result k0Nd 
 1, so a crucial role can be played

by phase effects. In such a case the transmission pattern of the single

aperture (which already takes into account the presence of other apertures

through modified polarizabilities) needs to be multiplied by a suitable

array factor AF. For a large number N of apertures a simple array factor

AF ’ sin ðNc=2Þ= sinðc=2Þ can be introduced [28] to adapt the results of the

single aperture to the case of N apertures lying along a line that makes an angle

c with the observation vector r. A general observation can be made for arrays of

apertures:

1. For apertures with small eccentricity, the SE is minimum for grazing

incidence with the incident magnetic field polarized along the line of the

array.

2. For apertures with large eccentricity, the SE is minimum for grazing

incidence with the incident magnetic field polarized along the major axis

of the apertures.

A type of metal screen perforated with more than one aperture is the 2D

periodically perforated screen (i.e., a doubly periodic array of apertures) shown in

Figure 6.4b. For this problem a basic step is to use Bethe’s theory in the low-

frequency region to replace each aperture with the corresponding electric and

magnetic dipoles. As in the two-aperture case different approximations can be used

to estimate the coupling effect. As a very first approximation, interactions between

neighboring elements are simply neglected; for a more accurate analysis, in the case
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FIGURE 6.4 Row of N equidistant circular small apertures in a planar perfectly conducting

screen of infinite extent (a) and double periodic array of small circular apertures (b).
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of small aperture spacing, the interaction field can be approximated by a static field

[29]. A more refined model, useful when the aperture dimensions are an appreciable

fraction of the wavelength, requires to evaluate the dynamic interaction field, and

this needs the expression of higher order approximations for the aperture

polarizabilities [30]. Numerical methods are needed to investigate the properties

of periodically perforated screen in the intermediate- and high-frequency regions:

this is an important topic closely related to frequency selective surfaces, subject of

Chapter 10.

6.7 RIGOROUS ANALYSIS FOR APERTURES OF ARBITRARY SHAPE:
INTEGRAL EQUATION FORMULATION

This section illustrates a general procedure used to derive an integral equation whose

solution allows for the calculation of the EM field (due to time-harmonic sources)

penetrating an aperture of arbitrary shape in a planar perfectly conducting

infinitesimally thin screen of infinite extent in any frequency range [2]. The

transverse aperture electric field E
ap
t (i.e., the component parallel to the screen of the

total electric field at the aperture location) is chosen as the unknown of such an

integral equation. Based on the equivalence principle, equivalent magnetic current

densities MS (proportional to E
ap
t ) are introduced, and the problem is split into two

half-space problems (for z < 0 and z > 0, respectively). The magnetic field on both

sides of the screen can thus be expressed as a function of MS (and thus of E
ap
t )

through a superposition integral involving the half-space Green function of the

electric vector potential. Such a representation is particularly convenient because it

guarantees that Maxwell’s equations, radiation condition, and boundary conditions

on the screen are satisfied. Moreover the continuity of the tangential component of

the electric field through the aperture is also automatically fulfilled (the tangential

electric field at the aperture location is in fact E
ap
t for both the involved half-space

problems). Therefore the only condition that must be imposed is the continuity of the

magnetic field through the aperture: the sought-for integral equation follows directly

from such a constraint.

The original problem is sketched in Figure 6.5a; based on equivalence principle,

in Figure 6.5b, the aperture A is short-circuited (i.e., completely replaced by a

perfectly conducting plate), and it constitutes the domain for the equivalent surface

magnetic current density MS ¼ uz � E
ap
t , which accounts for a nonzero value of the

electric field at z ¼ 0þ. By means of image theory, the problem of Figure 6.5b is then

transformed into the one of Figure 6.5c. Since the problem of Figure 6.5c represents

currents that radiate in free space, the magnetic field Hþ in the half-space z > 0 can

be written as

HþðrÞ ¼
ð ð

A

GHMðr; r0Þ � 2MSðr0ÞdS0; z > 0; ð6:11Þ
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where GHM is the free-space dyadic Green function of the HM type (magnetic field

H due to magnetic current M). By means of a similar argument, the magnetic field

H� in the half-space z < 0 can be written as

H�ðrÞ ¼ HscðrÞ þ
ð ð

A

GHMðr; r0Þ � ½�2MSðr0Þ� dS0; z < 0; ð6:12Þ

where Hsc is the short-circuited magnetic field, which is the field (due to the sources

Ji and Mi) that would be present in the half-space z < 0 with the aperture short-

circuited; the current density �2MS is instead the equivalent magnetic current for

the half-space problem z < 0 (the normal to the aperture that defines the magnetic

current density is reversed with respect to the half-space problem z > 0).

As mentioned above, the key condition that has to be imposed is the continuity of

the tangential magnetic field through the aperture. This is accomplished by

enforcing

lim
z!0

� ½H�ðrÞ � uz� ¼ lim
z!0

þ
½HþðrÞ � uz� 8r 2 A; ð6:13Þ

which, from (6.11) and (6.12), can be expressed as

2

ð ð
A

GHMðr; r0Þ �MSðr0Þ dS0
2
4

3
5� uz ¼ HincðrÞ � uz 8r 2 A: ð6:14Þ

Note that the magnetic field in (6.14) is the incident magnetic field, since, by virtue

of image theory, Hsc � uz ¼ 2Hinc � uz. Equation (6.14) represents the sought-for
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FIGURE 6.5 Original problem (a); application of equivalence principle (b); an application

of image theory (c).
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integral equation whose solution allows for evaluating the EM field everywhere in

space.

An equivalent but more tractable integral equation can be derived by using the

convenient formalism of the mixed potentials, thus obtaining the so-called mixed

potential integral equation (MPIE) [31]. In this representation the magnetic field is

expressed in terms of an electric vector potential F and a scalar magnetic potential

W, associated with transverse magnetic current density MS and magnetic charge

density rmS ¼ �r �MS=ðjvÞ, respectively. Usually the MPIE formulation of the

problem is preferred because of the lower order singularity in the integral kernel. In

particular, there results

HðrÞ ¼
ð ð

A

GHMðr; r0Þ �MSðr0Þ dS0 ¼ �jve0FðrÞ � rWðrÞ

¼ �jve0

ð ð
A

GFðr; r0Þ �MSðr0Þ dS0 � r
ð ð

A

GWðr; r0Þ rmSðr
0Þ

m0

dS0:
ð6:15Þ

As is well known, the mixed-potential Green functions (see (1.40)) in free space are

[31]

GFðr; r0Þ ¼ IG ðr; r0Þ; GWðr; r0Þ ¼ G ðr; r0Þ; ð6:16Þ

where I is the identity dyadic andGðr; r0Þ is the scalar free-space Green function (see
(1.40)) given by

Gðr; r0Þ ¼ e�jk0jr�r0j

4pjr� r0j : ð6:17Þ

Equation (6.14) can thus be rewritten as

�jve0

ð ð
A

GFðr;r0Þ �MSðr0Þ dS0 þ 1

jvm0

r
ð ð
A

GWðr; r0Þr0 �MS ðr0ÞdS0
2
4

3
5�uz

¼HincðrÞ�uz; 8r2A

ð6:18Þ

which can be efficiently solved with standard MoM techniques. Recently a modified

version of this integral-equation technique proved to be efficient in dealing with

screens of finite thickness [4].

An important point to note is that edge conditions for the EM field require that

the component of MS normal to the aperture-screen edge approach zero as the

square root of the distance between the observation point and the edge. However,

the tangential component of MS diverges as the inverse of this square-root

distance, so suitable basis functions should be adopted to efficiently expand the

unknown MS [32].
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Finally, once MS has been determined from the solution of (6.14) or (6.18), the

transmitted electric field can be calculated as

EþðrÞ ¼ �r� FðrÞ ¼ r �
ð ð

A

GFðr; r0Þ �MSðr0Þ dS0; z > 0: ð6:19Þ

6.8 RULES OF THUMB

This section illustrates a qualitative way of seeing the aperture effects on the

shielding properties of a planar metal screen and also a way to obtain a rough

estimate of the SE of a perforated metal screen. As is well known, when an incident

field impinges on a perfectly conducting metal screen, electric currents are induced

on the screen that can be seen to be origin of the reflected field (the introduction of a

reflected field is necessary in order to satisfy the boundary conditions on the perfect

conductor). The more the induced currents are perturbed by the presence of an

aperture, the more the shielding performance of the screen will, of course, be

affected. In particular, if a slot is cut on the screen in a direction orthogonal to the

current flow, the current will be abruptly interrupted, causing radiation (as shown in

Figure 6.6a) and thus dramatically decreasing the SE of the screen. However, if the

slot is placed along a direction parallel to the current flow, its effect on the current

distribution (and therefore on the shielding) is greatly reduced (see Figure 6.6b).

Since, in general, it is not possible to determine a priori the direction of the induced

current (and therefore to choose the best slot orientation), a large number of small

holes are usually employed, as reported in Figure 6.6c. The use of small holes in fact

gives rise to a much less perturbing effect on the current distribution with respect to a

slot of equal area. As a consequence a large number of small holes can be expected

to cause less radiation than a large aperture of the same total area.

By Babinet’s principle [27], a narrow slot behaves like a thin dipole, so

maximum radiation (i.e., minimum shielding) occurs when its length is equal to a

 

(a) (b) (c) 

FIGURE 6.6 Qualitative effects of apertures on the surface electric current distributions.
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half-wavelength. For slots with a length d equal or less than half-wavelength, the

SE is approximately equal to

SE ¼ 20log
l0

2d

� �
: ð6:20Þ

In general, more than one aperture decreases the SE. The amount of reduction

depends on a variety of factors, such as the number of apertures, the apertures’ shape,

the apertures’ dimensions, the spacing between apertures, and frequency. However,

when N identical apertures are placed in sufficiently close proximity, the increasing

in the transmitted power (compared with the single-aperture case) can be regarded as

roughly proportional to the number of apertures. In other words, the reduction of the

SE is approximately proportional to the square root of the number of apertures N.

Therefore, from (6.20), the SE due to N slots of length d is roughly

SE ¼ 20log
l0

2d

� �
� 20log

ffiffiffiffi
N

p
: ð6:21Þ

Finally, when a finite thickness t of the screen needs to be considered, its effect on the

SE of a single slot can be accounted for by the ‘‘waveguide below cutoff’’ principle,

according to which a thick aperture behaves as a waveguide below cutoff. Therefore

the following approximation holds for the SE of the single slot in a thick screen:

SE ¼ 20log
l0

2d

� �
þ 20logepd=t: ð6:22Þ
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CHAPTER SEVEN

Enclosures

An analysis of the interaction between an EM field and an enclosure is particularly

relevant in shielding problems because metallic housings are necessary for the

reduction of the EM coupling between the internal apparatus and systems and the

external environment. The first important assessment concerns whether the solid

walls of the enclosure under consideration are penetrable by the EM field. If they are

not, the penetration of the EM field into the enclosure occurs through other coupling

paths, always present in actual enclosures.

Before attempting any systematic study of the coupling process between the

interior of the enclosure and the external environment, it is extremely important to

first understand the characteristics of the field inside uncoupled enclosures (i.e.,

perfectly conducting EM cavities) and then introduce coupling effects (e.g., lossy

walls and/or apertures) and small loadings. A metallic enclosure consists of an

empty cavity with metallic walls. Even in the absence of EM sources, oscillations

can take place at certain frequencies (resonant frequencies) and with certain spatial

distributions (resonant modes) that depend on the geometry of the enclosure. The

number of resonant frequencies and resonant modes is a countable infinity.

Similarly to what happens in any resonant system, when an enclosure is excited

by a time-harmonic source, the closer the operating frequency is to the resonant

frequency, the larger is the amplitude of the oscillations. Moreover the spatial

distribution of the EM field excited inside the enclosure resembles that of the

corresponding resonant mode. The resonant modes are part of a complete set of

vector functions for the expansion of an arbitrary EM field excited by an arbitrary

source inside the enclosure and thus provide an excellent tool to investigate the

properties of the considered enclosure.
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7.1 MODAL EXPANSION OF ELECTROMAGNETIC FIELDS
INSIDE A METALLIC ENCLOSURE

As is well known, for the expansion of functions in a region V enclosed by a surface

S, a complete set of orthogonal (or orthonormal) functions in V has to be determined.

In particular, the scalar eigenfunctions cm of the Laplace operator r2½�� with

Dirichlet boundary conditions, defined as

r2cmðrÞ þ k2cmcmðrÞ ¼ 0 inV;

cmðrÞ ¼ 0 on S;
ð7:1Þ

form a complete set of orthonormal functions in the Hilbert space L2ðVÞ, and kcm are

the associated eigenvalues. Another complete set of orthonormal functions in L2ðVÞ
consists of the scalar eigenfunctions fm of the Laplace operatorr2½�� with Neumann
boundary conditions and eigenvalues kfm, defined as

r2fmðrÞ þ k2fmfmðrÞ ¼ 0 inV ;

@fmðrÞ
@n

¼ 0 on S;
ð7:2Þ

where n indicates the direction normal to the boundary S. Therefore an arbitrary

scalar function belonging to L2ðVÞ can be expanded using either the set fc1;c2; . . .g
or the set ff1;f2; . . .g [1].

In an analogous way, two complete sets of orthonormal vector functions are

available for the expansion of an arbitrary vector function in L2ðVÞ. One set consists
of the solutions of the following boundary-value problem:

r2CmðrÞ þ K2
CmCmðrÞ ¼ 0 inV ;

un �CmðrÞ ¼ 0 on S;

r �CmðrÞ ¼ 0 on S;

ð7:3Þ

where un indicates the outward normal at the boundary S. The other set is formed by

the solutions of

r2FmðrÞ þ K2
FmFmðrÞ ¼ 0 inV;

un �r�FmðrÞ ¼ 0 on S;

un �FmðrÞ ¼ 0 on S:

ð7:4Þ

It should be noted that two boundary conditions are necessary to define the vector

eigenfunctions. Some of the eigenfunctions Cm and Fm have the same eigenvalues

KFm ¼ KCm ¼ km 6¼ 0 and are related to each other. They are also indicated as Em
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and Hm, respectively, for which

kmEmðrÞ ¼ r �HmðrÞ;
kmHmðrÞ ¼ r � EmðrÞ:

ð7:5Þ

From (7.5) it follows thatr � Em ¼ r �Hm ¼ 0 in V , meaning they are solenoidal

[1]. Such eigenfunctions are also called short-circuit modes, and in particular, the Em

eigenfunctions are the electric-fieldmodes (since they satisfy theboundaryconditionof

perfectly conducting wall un � Em ¼ 0 on S), while the Hm eigenfunctions are the

magnetic-field modes (since they satisfy the boundary condition un �Hm ¼ 0 on S) [2].

All the otherCm andFm eigenfunctions that are not solenoidal are indicated asFm and

Gm, respectively, and it can be shown that they are irrotational (or lamellar, i.e.,

r� Fm ¼ r�Gm ¼ 0).MoreoverFm andGmwith nonzero eigenvalues are givenby

Fm ¼ rcm

kcm
; Gm ¼ rfm

kfm
; ð7:6Þ

and their eigenvalues coincidewith kcm and kfm, respectively (the same eigenvalues of

the scalar eigenfunctionscm and fm). All the eigenfunctions Em,Hm, Fm, andGm can

be chosen to be real vector functions. It should be noted that Fm eigenfunctions with

zero eigenvalue can exist if the closed regionV hasmore than one boundary (e.g.,V is

the cavity between two concentric spheres; see Figure 7.1a), and in this case they can

be set equal to the gradient of a scalar function, meaningF0 ¼ rc. In particular, if the

enclosure is bounded byPþ 1 separate boundaries, there exist a numberP of different

F0 eigenfunctions (indicated as F
ð1Þ
0 ;F

ð2Þ
0 ; . . . ;F

ðPÞ
0 ). On the other hand, Gm

eigenfunctions with zero eigenvalue can exist if V is multiply connected (e.g., V is

the cavity between two closed coaxial cylinders; see Figure 7.1b), and in this case they

can be set equal to the curl of a vector function. Alternatively, alsoG0 can be set equal

to the gradient of a scalar function, but such a function must be multivalued. In

particular, if the volume V is a Qþ 1 connected region, there exists a number Q of

different G0 eigenfunctions (indicated as G
ð1Þ
0 ;G

ð2Þ
0 ; . . . ;G

ðQÞ
0 ) [3].

FIGURE 7.1 Examples of enclosures: Closed region with more than one boundary (a);

multiply connected enclosure (b); simply connected enclosure with only one boundary (c).
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The eigenfunctions F
p
0 and G

q
0 have both zero curl and zero divergence and are

called harmonic eigenfunctions. In a simply connected region with only one boundary

(e.g., a simple rectangular cavity; see Figure 7.1c), such eigenfunctions do not exist [2].

A general EM field in the presence of sources has an electric and a magnetic field

(E and H) with nonzero curl and nonzero divergence. Therefore both solenoidal and

irrotational vector functions have to be used in the eigenfunction expansion [3]. For

the expansion of the electric field E, the solenoidal eigenfunctions Em and the

irrotational eigenfunctions Fm are used, since they have boundary conditions similar

to those of the actual electric field E in a cavity (where the F
p
0 modes exist, they

represent the static electric field that may exist between conducting surfaces at

different potentials). Of course, nondegenerate Em and Fm modes (i.e., modes with

different eigenvalues) are orthogonal among themselves and with each other. For

degenerate modes, a Gram-Schmidt orthonormalization procedure can be used to

obtain a set of orthonormal modes. Analogously, for the expansion of the magnetic

fieldH, the solenoidal eigenfunctions Hm and the irrotational eigenfunctionsGm are

used (where the G
q
0 modes exist, they represent the static magnetic field due to dc

currents flowing along the boundaries). Again, nondegenerateHm andGm modes are

orthogonal among themselves and with each other [4].

An arbitrary EM field inside the enclosure can thus be represented as

EðrÞ ¼
X1
m¼1

emEmðrÞþ
X1
m¼1

fmFmðrÞ þ
XP
p¼1

f
p
0 F

p
0ðrÞ;

HðrÞ ¼
X1
m¼1

hmHmðrÞþ
X1
m¼1

gmGmðrÞ þ
XQ
q¼1

g
q
0G

q
0ðrÞ;

ð7:7Þ

where the zero-frequency modes F
p
0 and G

q
0 have to be taken into account only for

regions having more than one boundary and for multiply connected regions,

respectively. The coefficients of the expansion are given by

em ¼
ZZZ
V

E � EmdV
0; fm ¼

ZZZ
V

E � FmdV
0; f

p
0 ¼

ZZZ
V

E � Fp
0dV

0;

hm ¼
ZZZ
V

H �HmdV
0; gm ¼

ZZZ
V

H �GmdV
0; g

q
0 ¼

ZZZ
V

H �G dV 0:
ð7:8Þ

In this chapter only simply connected enclosures with a unique boundary will be

considered for simplicity. The contribution of the eigenfunctions F
p
0 and G

q
0 will

be thus disregarded so that the EM-field expansion takes the form

EðrÞ ¼
X1
m¼1

emEmðrÞþ
X1
m¼1

fmFmðrÞ;

HðrÞ ¼
X1
m¼1

hmHmðrÞþ
X1
m¼1

gmGmðrÞ;
ð7:9Þ

with the em, fm, hm, and gm coefficients still given by (7.8).
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The expansion (7.9) is especially important, and it will be used in a next section to

study the EM field excited inside an enclosure by a finite inner source or by a small

aperture that allows for the penetration of an external field.

7.2 OSCILLATIONS INSIDE AN IDEAL SOURCE-FREE ENCLOSURE

An ideal enclosure consists of a cavity with perfectly conducting walls and filled with

a linear, isotropic, homogeneous, stationary, and lossless medium (characterized by

its dielectric permittivity " ¼ "0"r and magnetic permeability m ¼ m0mr). The

volume of the enclosure is indicated with V, while its delimiting surface is indicated

with S. In the absence of sources, EM fields can exist inside the enclosure if, at certain

frequencies fm ¼ vm=ð2pÞ, the source-free Maxwell equations and boundary

conditions are satisfied:

r� Eðr;vmÞ ¼ �jvmmHðr;vmÞ inV;

r�Hðr;vmÞ ¼ jvm"Eðr;vmÞ inV ;

un � Eðr;vmÞ ¼ 0 on S;

ð7:10Þ

where un indicates the outward normal at the boundary S. It should be clear from

(7.10) that the sought-for EM field has both electric and magnetic fields that are

solenoidal (i.e., r � E ¼ 0 and r �H ¼ 0). It is useful to introduce the vector

Ĥ ¼ �jhH (being h ¼ ffiffiffiffiffiffiffiffi
m="

p
the intrinsic impedance of the medium filling the

cavity) so that the Maxwell equations in (7.10) can be modified to assume a

symmetric form:

r� Eðr;vmÞ ¼ kmĤðr;vmÞ inV ;

r� Ĥðr;vmÞ ¼ kmEðr;vmÞ inV;
ð7:11Þ

where km ¼ vm
ffiffiffiffiffiffi
m"

p
is a positive unknown parameter [3]. The existence of

oscillating fields is associated with the existence of positive values of km for which

the system (7.11) (together with the appropriate boundary conditions) admits

nontrivial solutions. Such nontrivial solutions are the solenoidal eigenfunctions

ðEm;HmÞ of the Laplace operatorr2½�� studied in the previous section. In particular,
there exists a sequence of real and positive eigenvalues fk1; k2; . . .g with two

associated sequences of real orthonormal vector eigenfunctions fE1;E2; . . .g and

fH1;H2; . . .g [3]. Therefore, at the frequency f ¼ fm, the solution of the EM problem

inside the source-free enclosure is given by

EðrÞ ¼ AmEmðrÞ; HðrÞ ¼ j
Am

h
HmðrÞ; ð7:12Þ

which represents a normal (resonant) mode of the cavity (Am is an arbitrary complex

number). So there exists a countable infinity of resonant modes, each associated with
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a pair of solenoidal eigenfunctions fEm;Hmg. Since the eigenfunctions are real

functions, in the time domain the EM field is given by

eðr; tÞ ¼ jAmjEmðrÞ cosðvmt þ Arg½Am�Þ;

hðr; tÞ ¼ � jAmj
h

HmðrÞ sinðvmt þ Arg½Am�Þ:
ð7:13Þ

From (7.13) it can be seen that the spatial distribution of both the electric and the

magnetic field of a resonant mode depends only on the solenoidal eigenfunctions

fEm;Hmg and does not vary with time. The electric and magnetic fields oscillate in

quadrature.

7.3 THE ENCLOSURE DYADIC GREEN FUNCTION

As is well known, the Green function is the response of a linear system to a point

source of unit strength. In electromagnetics, the linear system is usually described

either by the vector wave equation for the electric E and magnetic H fields or by the

vector (scalar) Helmholtz equation for the vector (A, F) and scalar (V, W) potentials.

The impressed source can be an electric current density Ji, an electric charge density

rei, a magnetic current density Mi, or a magnetic charge density rmi. Obviously, the

appropriate boundary conditions of the considered EM problem have also to be

taken into account. From a different point of view, the Green function is the kernel of

an integral operator that transforms the source and the boundary conditions into the

response of the system. Depending on the quantity of interest and on the type of

source, different types of Green functions can be defined. In what follows we will

refer to the electric and magnetic fields due to electric and magnetic current

densities. In these cases, since each component of the current gives rise to a vector

field, the general relation between the current and the field is a dyadic relation: the

involved Green function is thus a dyadic quantity [5].

Let us thus consider an enclosure filled with a medium with constitutive

parameters m ¼ m0mr and " ¼ "0"r and excited by a time-harmonic source. The

electric field EðrÞ inside the enclosure due to an electric current density JiðrÞ is

the solution of

r�r� EðrÞ � k2EðrÞ ¼ �jvmJiðrÞ; ð7:14Þ

where k2 ¼ v2m". This equation can be solved by using the expansion (7.9) for the

electric field. Substituting (7.9) into (7.14) one obtains

X1
m¼1

½ðk2m � k2ÞemEmðrÞ � k2fmFmðrÞ� ¼ �jvmJiðrÞ: ð7:15Þ
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The coefficients em and fm can be derived by scalar multiplying (7.15) by Em and Fm,

respectively, and by integrating over the volume V of the enclosure. Because of the

orthonormality of the eigenfunctions one in fact obtains

ðk2m � k2Þem ¼ �jvm

ZZZ
V

Emðr0Þ � Jiðr0Þ dV 0;

�k2fm ¼ �jvm

ZZZ
V

Fmðr0Þ � Jiðr0Þ dV 0:
ð7:16Þ

So, from (7.9) and (7.16), the electric field E can be finally expressed as

EðrÞ ¼ �jvm
X1
m¼1

ZZZ
V

EmðrÞEmðr0Þ
k2m � k2

� FmðrÞFmðr0Þ
k2

� �
� Jiðr0Þ dV 0: ð7:17Þ

From (7.17) it follows immediately that the EJ-type dyadic Green function GEJ

(electric field E due to electric current J) is given by

GEJðr; r0Þ ¼
X1
m¼1

EmðrÞEmðr0Þ
k2m � k2

� FmðrÞFmðr0Þ
k2

� �
: ð7:18Þ

The vector eigenfunctions Em and Fm can be determined analytically only for

enclosures of very simple shape (e.g., rectangular, cylindrical, and spherical

cavities), and in these cases the solenoidal electric-field modes Em can be split into

the usual Mm- and Nm-type modes types used in waveguide problems, as it will be

shown later. The irrotational Fm eigenfunctions correspond to the Lm-type modes

[4]. The explicit analytic determination of the vector eigenfunctions is based on the

method of separation of variables, and therefore the index m in the series above

actually represents a triple set of integers, by which the series becomes a triple

series, as it will be shown in the particular case of a rectangular enclosure treated in

Section 7.8. Finally, since for a cavity the unit dyadic source Idðr� r0Þ can be

represented as [4]

Idðr� r0Þ ¼
X1
m¼1

½EmðrÞEmðr0Þ þ FmðrÞFmðr0Þ�; ð7:19Þ

the GEJ Green function can also be represented in terms of the electric-field modes

only:

GEJðr; r0Þ ¼
X1
m¼1

k2m
k2ðk2m � k2ÞEmðrÞEmðr0Þ � 1

k2
Idðr� r0Þ; ð7:20Þ
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where I is the ð3� 3Þ identity dyadic. In (7.20) a singularity appears explicitly in

the Green function when the source ðr0Þ and observation ðrÞ points coincide whereas
in (7.18) the singularity is embedded in the irrotational term. Therefore, when

observation and source points coincide, the Green function series does not converge.

It should be pointed out that in general, several different representations of the

Green function exist, and depending on the problem, they may or may not be

computationally efficient. In addition to the eigenfunction-expansion method

presented here, the method of images (a special case of the method of multiple-

reflected waves) is widely used [4]. Other methods combine the eigenfunction

representation (or spectral series representation) and the method of images (leading

to the so-called spatial series representation) to obtain hybrid representations having

faster convergence properties. A review of such methods for enclosure problems can

be found in [6].

The magnetic field HðrÞ inside the enclosure due to a magnetic current density

MiðrÞ can be determined in a similar way. HðrÞ is in fact the solution of

r�r�HðrÞ � k2HðrÞ ¼ �jv"MiðrÞ; ð7:21Þ

which can be solved by using the expansion (7.9) for the magnetic field. In

particular, the coefficients hm and gm can be determined by the same steps used

above to determine the em and fm coefficients. Dually to (7.17), it turns out that

HðrÞ ¼ �jv"
X1
m¼1

ZZZ
V

HmðrÞHmðr0Þ
k2m � k2

�GmðrÞGmðr0Þ
k2

� �
�Miðr0Þ dV 0: ð7:22Þ

So the HM-type dyadic Green function GHM can be expressed as

GHMðr; r0Þ ¼
X1
m¼1

HmðrÞHmðr0Þ
k2m � k2

�GmðrÞGmðr0Þ
k2

� �
: ð7:23Þ

The magnetic field HðrÞ due to an electric current density JiðrÞ can be derived from

(7.17) and the Maxwell equation H ¼ �r� E=ðjvmÞ. Then from (7.5) and the fact

that the Fm eigenfunctions are irrotational, it follows that

HðrÞ ¼
X1
m¼1

ZZZ
V

kmHmðrÞEmðr0Þ
k2m � k2

� �
:Jiðr0Þ dV 0 ð7:24Þ

and the HJ-type dyadic Green function GHJðr; r0Þ is given by

GHJðr; r0Þ ¼
X1
m¼1

km

k2m � k2
HmðrÞEmðr0Þ: ð7:25Þ
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Similarly the electric field EðrÞ due to a magnetic current density MiðrÞ can be

derived from (7.22) and thus expressed as

EðrÞ ¼ �
X1
m¼1

ZZZ
V

kmEmðrÞHmðr0Þ
k2m � k2

� �
�Miðr0Þ dV 0: ð7:26Þ

The EM-type dyadic Green function GEMðr; r0Þ is given by

GEMðr; r0Þ ¼ �
X1
m¼1

km

k2m � k2
EmðrÞHmðr0Þ: ð7:27Þ

7.4 EXCITATION OF A METALLIC ENCLOSURE

Based on equations (7.17), (7.22), (7.24), and (7.26), a general expression can be

obtained for the EM field excited inside an ideal metallic enclosure by impressed

electric and magnetic current densities. In particular, by a comparison of the above-

mentioned equations with (7.9), the coefficients of the expansion (7.9) are found

to be as

em ¼ � km

k2m � k2

ZZZ
V

Hmðr0Þ �Miðr0Þ dV 0

2
4

3
5� jvm

k2m � k2

ZZZ
V

Emðr0Þ � Jiðr0Þ dV 0

2
4

3
5;

fm ¼ � 1

jv"

ZZZ
V

Fmðr0Þ � Jiðr0Þ dV 0; ð7:28Þ

and

hm ¼ km

k2m � k2

ZZZ
V

Emðr0Þ � Jiðr0Þ dV 0

2
4

3
5� jv"

k2m � k2

ZZZ
V

Hmðr0Þ �Miðr0Þ dV 0

2
4

3
5;

gm ¼ � 1

jvm

ZZZ
V

Gmðr0Þ �Miðr0Þ dV 0: ð7:29Þ

From equations (7.28) and (7.29) two important qualitative observations can now be

made:

1. The coefficients of the electric (magnetic) field modes Em ðHmÞ are propor-

tional to 1=ðk2m � k2Þ; that is, as the operating frequency f approaches the

resonant frequency fm ¼ ckm=ð2pÞ, the field amplitude becomes infinite. This
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behavior is clearly due to the assumption of ideal enclosure. In real enclosures,

such amplitudes are bounded by the losses due to the finite conductivity of the

walls or of the medium filling the cavity, as it can be seen in (7.28) and (7.29) if

complex values of the wavenumber k are considered (corresponding, e.g., to a

lossy filling material). However, for low-loss enclosures, in the neighborhood

of the resonant frequency fm, the contribution of the resonant mode ðEm;HmÞ is
clearly dominant (if excited), and it provides an accurate representation of the

actual excited EM field ðE;HÞ, independently of the source.

2. The amplitude of each resonant mode ðEm;HmÞ depends on the value of the

reaction integral between the source system ðJi;MiÞ and the resonant mode

itself. In particular, it can be seen that a resonant mode is not excited if

the electric-field mode Em is orthogonal to the electric source Ji and the

magnetic-field mode Hm is orthogonal to the magnetic source Mi.

7.5 DAMPED OSCILLATIONS INSIDE ENCLOSURES WITH LOSSY
WALLS AND QUALITY FACTOR

As is well known, when the walls of the enclosure are characterized by a finite

conductivity s, the approximate impedance boundary condition

un � E ¼ ZSHt on S ð7:30Þ

can be used, where ZS ¼ RS þ jXS ¼ ð1þ jÞ=ðsdÞ is the surface impedance of the

walls (and d ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pm0fs

p
is the skin depth), Ht is the component of the magnetic

field tangential to the surface S, and un is the corresponding normal unit vector

pointing outward.

As a consequence of the losses present in the walls, some differences arise with

respect to the ideal-enclosure results [7]. First of all, because of losses, the energy

associated with each resonant mode decreases by increasing time, and the mode

oscillations are damped. Second, the electric current induced in the walls is now a

volume current, which penetrates into the walls up to a depth of the order of the skin

depth d. Some of the energy is dissipated in the walls. Last, as noted in the previous

section, the field amplitude is not infinite at the resonances, since the finite

conductivity of the walls makes the eigenvalues km have a small imaginary part. In

any case, for not too low values of conductivity s, the field amplitude is still very

large and the resonant mode associated with the considered resonance still

accurately represents the total field. In what follows, these conclusions are quantified

by way of the energy-balance principle [4].

Let us consider a real enclosure. For highly conducting walls and low material

losses, we can assume that, near the resonant frequency fm, the field is essentially that

of the nondegenerate mth mode. Since the conductivity of the walls usually has large

values, the time-domain expression of the mth resonant mode can still be expressed

by (7.13), where jAmj and Arg½Am� are now slowly varying functions of time t. So in
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the time interval Tm ¼ 2p=vm, the resonant-mode time variation can be still

considered approximately sinusoidal. Because of the orthonormality of the

eigenfunctions, the time-averaged energy W stored in the cavity is

W ¼ 1

4

ZZZ
V

½"jEðrÞj2 þmjHðrÞj2�dV ’ 1

4

ZZZ
V

"jAmEmðrÞj2 þm
jAm

h
HmðrÞ

����
����2

" #
dV

¼ "

2
jAmj2 ¼Wm; ð7:31Þ

where Wm indicates the time-averaged energy associated with the mth resonant

mode. On the other hand, the power loss PL due to the finite conductivity of the walls

can be calculated as

PL ¼ 1

2
Re �

ðð
S

un � ½EðrÞ �H�ðrÞ�dS
8<
:

9=
;¼ 1

2
Re ZS�

ðð
S

jHtðrÞj2 dS
8<
:

9=
;

’ RSjAmj2
2h2

�
ðð
S

jHmtðrÞj2 dS¼ PLm; ð7:32Þ

where PLm indicates the power loss of the mth resonant mode.

From (7.31), it follows that jAmj2 ¼ 2Wm=". Therefore PLm ¼ 2amWm, where

am ¼ RS

2m
�
ðð
S

jHmtðrÞj2 dS: ð7:33Þ

By virtue of the energy-balance principle, the rate of decrease of the average stored

energy must be equal to the power loss:

� dWm

dt
¼ PLm ¼ 2amWm; ð7:34Þ

whose solution is WðtÞ ¼ Wð0Þ e�2amt. Consequently a free oscillation in the

enclosure has the time dependence Em / ejvmt�amt ¼ ejv
L
mt, where vL

m ¼ vm þ jam is

the perturbed resonant angular frequency.

The quality factor Qm of the enclosure for the mth resonant mode is defined as

Qm ¼ vm

average stored energy

energy loss per second
¼ vmWm

Pm

¼ vm

2am

¼ RS

vmm
�
ðð
S

jHmtðrÞj2 dS
0
@

1
A�1

:

ð7:35Þ

It can thus be seen that the larger Qm, the smaller is the power loss and the slower is

the field decay. In effect the quality factor gives a measure of how much a real
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enclosure resembles an ideal enclosure. The perturbed eigenvalue kLm of the mth

resonant mode can be expressed in terms of the quality factor as

kLm ¼ km 1þ j
1

2Qm

� �
: ð7:36Þ

A more refined analysis, based on a variational formulation [4], provides also a

small correction to the real part of the eigenvalues:

kLm ’ km 1þ j
1

2Qm

� 1

2Qm

� �
: ð7:37Þ

It can then be seen that at the resonant frequency fm of the lossless enclosure, the

amplitude of the excited mth resonant mode inside the lossy enclosure is no longer

infinity. In general, it is proportional to the ½ðkLmÞ2 � k2��1
factor, which has a finite

maximum at the perturbed resonant frequency f Lm ’ fm � 1=ð2QmÞ. In particular, at

f ¼ f Lm , the amplitude of the mth resonant mode is proportional to jQm=k
2
m, and in this

sense, the quality factor is also a measure of the excitation of the corresponding mode

near the resonant frequency. Moreover it can be shown that for frequencies close to

the resonant frequency, the larger the quality factor, the sharper is the resonance.

Additionally from (7.37) it can be seen that in the presence of losses, the resonant

frequency of a given mode slightly decreases with respect to that of the

corresponding ideal enclosure. This can be intuitively explained by taking into

account the virtual enlargement of the dimensions of the enclosure due to the

penetration of the EM field inside the metallic walls (alternatively, it can be viewed

as a consequence of the additional magnetic energy stored in the inductive reactance

of the surface impedance [4]).

7.6 APERTURES IN PERFECTLY CONDUCTING ENCLOSURES

Shielding enclosures are usually employed to protect against radiation from external

EM fields and leakage effects from interior components. However, as mentioned in

the previous chapter, the efficiency of these enclosures is often compromised by

apertures and slots located on the walls of the enclosure. Therefore it is extremely

important to include an evaluation of the aperture effects in determining the

shielding properties of an enclosure. In principle, both analytical and numerical

methods can be used to evaluate the SE of such ‘‘partially open’’ enclosures.

However, closed-form expressions are available only for apertures of simple shapes

and under certain limiting assumptions.

The first analytical approach, proposed by Mendez, is based essentially on

Bethe’s theory of small holes described in the previous chapter. Its validity is

therefore restricted to very small apertures in a suitable low-frequency range [8].
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A very simple, but effective and accurate method based on a TL analogy was

developed in [9], where the aperture (assumed to be rectangular) is represented as a

length of coplanar stripline shorted at each end. However, such an approach is also

subject to many severe limitations: only rectangular boxes with a centrally placed

narrow rectangular aperture can be studied, under normal plane-wave incidence, and

with the incident electric field parallel to the shortest aperture side. Only points in

front of the aperture can be considered, and moreover all the analysis is valid only

below the first resonance of the enclosure. This method has been further extended to

take into account general angles of incidence and polarizations and higher order

modes of the rectangular cavity [10,11].

The above-mentioned analytical investigations have been supplemented by a good

many numerical approaches. It is extremely important to have efficient, accurate, and

reliable codes, because a rigorous full-wave solution usually requires large

computation time. However, different numerical approaches have led, in critical

regions, to different results. Among the many methods proposed in the last few years

are finite-difference time-domain methods (e.g., [12,13]), finite-element methods

([14,15]), method of moments (e.g., [16–19]), and hybrid methods (e.g., [20]). This is

currently a hot topic of research.

7.6.1 Small-Aperture Approximation

As mentioned above, the first and simplest analytical approach for solving the

problem of a metallic enclosure with an aperture cut in its walls consists in applying

Bethe’s theory to represent the effects of such an aperture. Recall from the previous

chapter that the main assumption behind Bethe’s theory is that the aperture has to be

small (i.e., its maximum dimension has to be much smaller than the wavelength), so

that its validity is restricted to the low-frequency region. The small-aperture

approximation approach is very similar to that described in the previous chapter in

connection with an infinite perfectly conducting screen having a small hole.

Let us thus consider an ideal enclosure, having a small aperture A cut in one of its

walls that allows for coupling with the external environment (e.g., free space), and

let us assume that an EM source (e.g., an electric dipole) is placed inside the

enclosure, as shown in Figure 7.2a. In the absence of the aperture, the EM field

produced by the source would be confined inside the enclosure and (in the absence of

other excitations outside the cavity) be identically zero outside. However, the

presence of the small hole allows the source to produce a field that ‘‘escapes’’

through the hole, so it has nonzero values in the external environment. This external

field is the quantity of interest that needs to be evaluated.

By Bethe’s theory, the effects of the aperture can be represented by an electric and

a magnetic dipole moment pe ¼ "0ae � Einc and pm ¼ �m0am �Hinc, respectively,

where ae and am are the electric and magnetic polarizability ð2� 2Þ tensors

representing the small aperture, while Einc and Hinc are the electric and magnetic

fields incident upon the aperture (i.e., those fields that exist at the aperture location

when the aperture is short-circuited). It should be pointed out that another

fundamental approximation consists in assuming the wall where the aperture is cut
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to be of infinite extent (this is required in order to apply Bethe’s theory). The incident

fields can be obtained from (7.9), where the amplitude coefficients of each

eigenfunction are given by (7.28) and (7.29). For example, if the source is an ideal

infinitesimal electric dipole placed in r0 ¼ r0 and directed along an arbitrary unit

vector ud (i.e., Jiðr0Þ ¼ dðr0 � r0Þud), from (7.28) and (7.29) it simply results in

em ¼ jvm

k2m � k2
Emðr0Þ � ud;

fm ¼ � 1

jv"
Fmðr0Þ � ud;

hm ¼ km

k2m � k2
Emðr0Þ � ud;

gm ¼ 0:

ð7:38Þ

An example of closed-form expressions for the enclosure eigenfunctions will be

given in Section 7.8, where the rectangular enclosure will be studied in detail.

Finally, once the incident field and the aperture polarizabilities are known, the

corresponding electric and magnetic dipole moments can be used to evaluate the EM

field outside the enclosure by assuming that they radiate in free space (the obtained

results are thus valid only for the half-space that does not include the enclosure and

bounded by an infinite plane containing the aperture).

Another basic problem consists in evaluating the field inside the enclosure when

a small aperture in one of its walls is illuminated by an external incident plane

wave, as shown in Figure 7.2b. Also in this case the aperture effects can be

represented by the equivalent electric and magnetic dipole moments

pe ¼ "0ae � Einc and pm ¼ �m0am �Hinc. Differently from the previous situation

(source inside the enclosure) the incident field is now a plane-wave field. To

evaluate the field radiated by these dipoles inside the enclosure, the representation

FIGURE 7.2 Enclosure with an aperture excited by an internal source (a) and by an

external source (b).
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(7.9) is used. Again, the excitation coefficients can be calculated using (7.28) and

(7.29), where the impressed electric and magnetic currents are given by Ji ¼ jvpe
and Mi ¼ jvpm, respectively. In this case, however, we assume that the

polarizabilities of the aperture cut in a finite wall and loaded by the cavity are

the same as those of an aperture in an infinite planar screen placed in free space.

Moreover, such a representation of the field inside the cavity may be not rigorous,

since in general the observation point could not be in the far field of the equivalent

dipoles.

7.6.2 Rigorous Analysis: Integral-Equation Formulation

A general procedure can be derived that leads to the formulation of an integral

equation whose solution furnishes the exact field radiated by a finite source placed

inside an enclosure having an arbitrary aperture A cut in one of its walls (or the exact

field penetrating inside the enclosure and due to an external source). Such a

procedure is similar to that described in Chapter 6. In the general case, a system of

sources is placed inside the enclosure and another system of sources is placed in the

external environment. Then the transverse aperture electric field E
ap
t (i.e., the

component parallel to the aperture of the total electric field at the aperture location)

is chosen as the unknown of the integral equation. Based on the equivalence

principle, equivalent magnetic current densities MS (proportional to E
ap
t ) are

introduced, and the problem is split into two problems (inside V and outside V ,

respectively). The magnetic field inside and outside the enclosure can be expressed

as a function of MS (and thus of E
ap
t ) through a superposition integral involving

the Green function of the enclosure and of the external environment, respectively.

The integral equation is obtained by enforcing the continuity of the tangential

magnetic field through the aperture.

The original problem is sketched in Figure 7.3a, where Jinti ;Mint
i

� �
is the system

of sources placed inside the enclosure, whereas Jexti ;Mext
i

� �
is the system of sources

placed outside. Based on the equivalence principle, the aperture is short-circuited

and the equivalent surface magnetic current density MS ¼ �un � E
ap
t is introduced

ðun is the unit vector normal to the aperture pointing outwards, i.e., from the

enclosure to the external environment). This way the problem is transformed into

that of Figure 7.3b and Figure 7.3c, where two subproblems are considered: the

closed cavity excited by the sources Jinti ;Mint
i

� �
and �MS and the external

environment (i.e., the free space with the enclosure as an obstacle) excited by the

sources Jexti ;Mext
i

� �
and MS (the fact that the equivalent magnetic current has

opposite sign in the two regions ensures the continuity of the tangential component

of the electric field across the aperture).

By following the same steps as in Chapter 6 for the screen problem, the magnetic

field outside the enclosure Hext can be written as

HextðrÞ ¼ Hext
i ðrÞ þ

ZZ
A

GHM
ext ðr; r0Þ �MSðr0ÞdS0; r =2V ; ð7:39Þ
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where Hext
i is the magnetic field due to the external sources Jexti andMext

i that would

be present outside the enclosure with the aperture short-circuited, while GHM
ext is the

HM-type dyadic Green function of the external environment (when a plane wave is

considered as an external excitation,Hext
i is the magnetic field due to the plane-wave

excitation in the presence of the closed cavity). In the same way the magnetic field

inside the enclosure Hint can be expressed as

HintðrÞ ¼ Hint
i ðrÞ þ

ZZ
A

GHM
C ðr; r0Þ � ½�MSðr0Þ�dS0; r 2 V ; ð7:40Þ

where Hint
i is the magnetic field due to the internal sources Jinti and Mint

i that would

be present inside the enclosure with the aperture short-circuited, while GHM
C is the

HM-type dyadic Green function of the enclosure (see (7.23)).

From (7.39) and (7.40), by imposing the continuity of the tangential magnetic

field through the aperture, we obtain

un�
ZZ
A

GHM
C ðr;r0ÞþGHM

ext ðr;r0Þ� �MSðr0Þ dS0 ¼ un� Hext
i ðrÞ�Hint

i ðrÞ	 

; 8r2 A:

	
ð7:41Þ

FIGURE 7.3 Original problem (a) and application of the equivalence principle (b, c).
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The integral equation (7.41) can then be solved by numerical methods (e.g., the

method of moments), obtaining the unknown current densityMS. Finally, onceMS is

known, the magnetic field outside and inside the enclosure can be found through

(7.39) and (7.40); the electric field outside and inside the enclosure Eext and Eint can

be obtained by means of similar equations, namely by substitutingHext
i andHint

i with

Eext
i and Eint

i and GHM
ext and GHM

C with GEM
ext and GEM

C , respectively.

Recall from Section 6.8 that due to the lower order singularity in the integral

kernel, the formalism of the mixed potentials is widely used, thus yielding an

equivalent but more tractable integral equation [21], and moreover that other

simplifying assumptions can be introduced to reduce the possible numerical

challenges. Because the Green function of the external environment can be very

difficult to compute (even impossible), usually the outside region problem is

simplified by extending to infinity the wall of the enclosure containing the aperture

[17,18]. This approximation, together with image theory, allows for replacing

the Green function of the external environmentGHM
ext with twice the free-space Green

functionGHM
free (which is known in a simple closed form [4]). If the external excitation

is a plane-wave field, un �Hext
i in (7.41) is simply twice the tangential component of

the magnetic field of the incident plane wave traveling in free space.

Finally, as mentioned in Section 7.4, the convergence of the cavity Green

function can be dramatically improved by using hybrid representations [6,22,23].

7.6.3 Aperture-Cavity Resonances

So far two types of resonances have been considered. In the previous chapter, the

aperture resonance was studied, and in the present chapter enclosure resonances

have been analyzed in some detail. The characteristics of the involved phenomena

are, however, similar. Under resonant conditions it has been shown that in fact either

the amplitude of the equivalent magnetic current on the aperture cut in a perfectly

conducting screen or the amplitude of a resonant mode inside an enclosure becomes

very large. Of course, when an enclosure is coupled with the external environment

through an aperture cut in one of its walls, both phenomena (aperture and enclosure

resonances) are present, although they cannot be studied separately because the two

problems are coupled. The structure can be regarded either as an aperture loaded by

a cavity or as an enclosure perturbed by the presence of an aperture. In any case, we

have to consider (and to define) the resonances of the system as a whole. Such

resonances will be referred to as aperture-cavity resonances. In connection with the

formalism developed in the previous subsection, the aperture-cavity resonance

phenomenon occurs when the operating frequency is such that the amplitude of the

equivalent magnetic current representing the aperture becomes very large, so that

the amplitude of the field it radiates either inside or outside the enclosure is also very

large (if compared with that radiated at other frequencies). In these cases it is

obvious that the EM penetration is maximum and the SE can dramatically decrease.

In order to rigorously define such aperture-cavity resonances, the concept of aperture

admittance is introduced and the network formulation of Harrington and Mautz [24]

is briefly resumed.
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Let us consider the problem of Figure 7.3a, where an enclosure V is coupled with

the external environment through an aperture A cut in its boundary S. Electromagnetic

sources are present both inside ð Jinti ;Mint
i

� �Þ and outside ð Jexti ;Mext
i

� �Þ the

enclosure. By applying the equivalence principle and by introducing the equivalent

magnetic current density MS, the problem can be split into the two subproblems of

Figure 7.3b. As already expressed in detail in the previous subsection, the integral

equation (7.41) can be derived, which is rewritten here as

Hint
t ðMSÞ þHext

t ðMSÞ ¼ Hext
it

�Hint
it
; on A; ð7:42Þ

where the subscript t indicates the component of the magnetic fields tangential to the

aperture. The method of moments can be used to solve equation (7.42); in particular,

a set of expansion functions MS1;MS2; . . . ;MSNf g can be introduced so that

MS ¼
XN
n¼1

VnMSn; ð7:43Þ

where Vn are unknown coefficients to be determined. By substituting (7.43) in (7.42)

and by performing a Galerkin’s testing procedure, the following set of equations is

obtained:

XN
n¼1

Vn MSm;H
int
t ðMSnÞ

� �þ MSm;H
ext
t ðMSnÞ

� �	 
¼ MSm;H
ext
it

D E
� MSm;H

int
it

D E
;

ð7:44Þ

where m ¼ 1; 2; . . . ;N, and the inner product hu; vi is defined as

hu; vi ¼
ZZ
A

u � v� dS0: ð7:45Þ

The system (7.44) can be solved to determine the coefficients Vn; these

coefficients in turn are used to calculate the equivalent magnetic current MS, and

then the fields. The system (7.44) can also be concisely written as

Yint þ Yext
� � � V ¼ Ii; ð7:46Þ

where an admittance matrix Yint is defined for the enclosure

Y int
mn ¼ MSm;H

int
t ðMSnÞ

� �
; ð7:47Þ
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an admittance matrix Yext is defined for the external environment

Yext
mn ¼ MSm;H

ext
t ðMSnÞ

� �
; ð7:48Þ

and a source vector Ii and a coefficient vector V are introduced as

Ii ¼ MSm;H
ext
it

D E
� MSm;H

int
it

D Eh i
N�1

; V ¼ ½Vm�N�1: ð7:49Þ

The matrix equation (7.46) can thus be interpreted in terms of generalized networks

as two networks (described by the admittance matrices Yint andYext, respectively) in

parallel with the current source Ii.

To clarify the physics, let us assume to use only one basis function for the

equivalent magnetic current density, meaning MS ¼ V1MS1. The set of testing

functions also consists of the only testing function MS1 and the matrix equation

(7.46) reduces to the scalar equation

Y int þ Yext
� �

V1 ¼ Ii; ð7:50Þ

where

Ii ¼
ZZ
A

½MS1ðr0Þ �Hext
it
ðr0Þ �MS1ðr0Þ �Hint

it
ðr0Þ� dS0; ð7:51Þ

while the admittances are

Y int ¼
ZZ
A

½MS1 �Hint
t ðMS1Þ� dS0; Yext ¼

ZZ
A

½MS1 �Hext
t ðMS1Þ� dS0: ð7:52Þ

The total admittance seen by the current source is

Y1 ¼ Y int þ Yext ¼ Gint þ jBint
� �þ Gext þ jBextð Þ ¼ G1 þ jB1; ð7:53Þ

where G1 ¼ Gint þ Gext and B1 ¼ Bint þ Bext. It is immediate to see that the

magnitude of the magnetic current densityMS ¼ V1MS1 is at a maximum when jV1j
is at a maximum. The conductance G1 can be assumed to be mildly dependent on

frequency, so that the maxima occur when the condition ImfY1g ¼ B1 ¼ 0 is

satisfied; such a condition allows the aperture-cavity resonances to be defined.

According to the perturbation theory, if the aperture is not too large, such resonances

appear as small perturbations of the enclosure resonances. Finally, it should be noted

that the aperture resonance considered in the previous chapter is defined by the

condition ImfYextg ¼ 0. In fact there results Y int ¼ Yext when only an aperture in a

perfectly conducting screen is considered, so that from (7.53) ImfY1g ¼ 0 implies
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ImfYextg ¼ 0. Contrary to what happens for cavity resonances, the aperture

resonance can be greatly perturbed by the loading cavity [25]. A detailed description

of the aperture-cavity resonances, also in the presence of losses in the cavity walls,

can be found in [26] and [27].

7.7 SMALL LOADING EFFECTS

Another issue that certainly deserves some considerations consists in the effects

that the presence of some small object placed inside the enclosure can produce on

the resonant frequencies of the cavity, with respect to the completely empty

enclosure.

Let us consider an enclosure operating close to its mth resonant frequency that

contains a small object (dielectric, magnetic, or conducting) inside. The main

assumption of the following theory consists in considering the object small, so that

it can be characterized by its dielectric and magnetic dipole moments

pe ¼ "ae � Einc and pm ¼ �m0am �Hinc, respectively, similarly to what has been

shown in the previous section for a small aperture. However, for a small 3D object,

ae and am are the electric and magnetic polarizability ð3� 3Þ tensors,

respectively. For instance, the polarizabilities of a dielectric sphere of radius r0
and permittivity "S ¼ "0"Sr are

ae ¼ 4pr30
"Sr � 1

"Sr þ 2
I; am ¼ 0; ð7:54Þ

while if the sphere is perfectly conducting there results

ae ¼ 4pr30I; am ¼ 2pr30I; ð7:55Þ

where I is the ð3� 3Þ identity dyadic [4]. Expressions for the polarizabilities of

other objects can be found in [4].

Once the incident field Einc;Hinc
� �

(i.e., the field at the obstacle location in the

absence of the obstacle) is known, the polarizability tensors can be used to obtain

the electric and magnetic dipole moments of the obstacle (pe and pm), which in

turn are equivalent to electric and magnetic currents Job ¼ jvpe and Mob ¼ jvpm.

Such currents can then be used in (7.28) and (7.29) in place of Ji and Mi,

respectively, in order to obtain the field scattered by the object inside the cavity

(the incident field is assumed to be the mth resonant mode of the unloaded cavity).

In particular, it can be shown that a pair of homogeneous equations for the

coefficients em and hm can be derived [4]. By equating the determinant of such a

homogeneous system to zero, the perturbed resonant frequency of the mode is

obtained as a function of the perturbation terms De ¼ Em � ae � Em and
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Dm ¼ Em � am � Em [4]. In the general case of an enclosure with lossy walls, there

results

kpertm ’ km 1� 1� j

2Qm

� De þ Dm

2

� �
; ð7:56Þ

Since the perturbation terms are of order Vob=V (where Vob is the volume occupied

by the small obstacle), the change in the resonant frequency also is of order Vob=V.
Interestingly, however, if the small object is placed in a null of the unperturbed mth

resonant mode, the resonant frequency of the enclosure does not change, at least at

the first order of approximation.

7.8 THE RECTANGULAR ENCLOSURE

As mentioned above, the calculation of the resonant modes of a given cavity can be

performed analytically only in very few cases and for very simple geometries. In

general, numerical approaches are needed. In this section we aim at specializing

the cavity theory, deriving the expressions of the electric and magnetic fields of the

resonant modes for the most common enclosure, which is the rectangular

enclosure.

The rectangular enclosure is a particular type of cylindrical enclosure whose

cross section is a rectangle, as depicted in Figure 7.4. Without loss of generality it

is assumed that the edges of the cavity are directed along the axes x, y, and z,

having lengths lx, ly, and lz, respectively. In particular, a metallic uniform

cylindrical enclosure can be seen as a metallic uniform cylindrical waveguide

FIGURE 7.4 Rectangular enclosure.
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whose terminations along the longitudinal direction are closed off by two metallic

plates; in this case it is well known that the modes supported by the structure can be

split in TE and TM modes with respect to the longitudinal direction. For the

rectangular enclosure each edge can actually be considered as the longitudinal

direction of the original rectangular waveguide, so the modes of the rectangular

enclosure can be split in TEðxÞ;TMðxÞ� �
modes or in TEðyÞ;TMðyÞ� �

modes, or

even in TEðzÞ;TMðzÞ� �
modes.

For cylindrical enclosures the solenoidal vector eigenfunctions Em (i.e., the

resonant modes) can be divided into two classes of modes: theMm modes and the

Nm modes [4]. The Mm modes (which give rise to TE fields) are given by

Mm ¼ r � uifm (where i ¼ x; y; z is the direction with respect to which the field

is TE), while the Nm modes (which give rise to TM fields) are given by

Nm ¼ r � r � uicm. The functions cm and fm are the eigenfunctions of the

boundary-value problems (7.1) and (7.2), respectively. Because of the simple

geometry of the rectangular enclosure, such boundary-value problems can be

solved in a simple closed-form by means of the method of separation of variables

[4]. Without loss of generality we can choose ui ¼ uz, which results in

fmðrÞ ¼ fmx;my;mz
ðx;y; zÞ ¼Fmx;my;mz

cos
mxp

lx
x

� �
cos

myp

ly
y

� �
sin

mzp

lz
z

� �
ð7:57Þ

and

cmðrÞ ¼cmx;my;mz
ðx;y; zÞ ¼Cmx;my;mz

sin
mxp

lx
x

� �
sin

myp

ly
y

� �
cos

mzp

lz
z

� �
; ð7:58Þ

where m ¼ fmx;my;mzg is a triple set of nonnegative integers. The coefficients

Fmx;my;mz
and Cmx;my;mz

that ensure the correct normalization are

Fmx;my;mz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"0mx

"0my
"0mz

lxlylz

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðmxp=lxÞ2þðmyp=lyÞ2
s

; Cmx;my;mz
¼Fmx;my;mz

kmx;my;mz

;

ð7:59Þ

where "0j is the Neumann symbol (i.e., "0j ¼ 1 for j ¼ 0 and "0j ¼ 2 for j 6¼ 0Þ and

kmx;my;mz
¼ km ¼ kcm ¼ kfm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mxp

lx

� �2

þ myp

ly

� �2

þ mzp

lz

� �2
s

ð7:60Þ

are the corresponding eigenvalues. More precisely, to avoid trivial eigenfunctions,

for kfm, there has to be mz > 0 and either mx or my being zero but not both, whereas
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for kfm, there has to be mx > 0 and my > 0. The electric and magnetic fields of the

TEðzÞ
mx;my;mz

resonant mode are thus

ETE
mx;my;mz

ðrÞ ¼ Fmx;my;mz

myp

ly

� �
cos

mxp

lx
x

� �
sin

myp

ly
y

� �
sin

mzp

lz
z

� �
ux

�

� mxp

lx

� �
sin

mxp

lx
x

� �
cos

myp

ly
y

� �
sin

mzp

lz
z

� �
uy

� ð7:61Þ

and

HTE
mx;my;mz

ðrÞ¼ j
Cmx;my;mz

h
� mxp

lx

� �
mzp

lz

� �
sin

mxp

lx
x

� �
cos

myp

ly
y

� �
cos

mzp

lz
z

� �
ux

�

� myp

ly

� �
mzp

lz

� �
cos

mxp

lx
x

� �
sin

myp

ly
y

� �
cos

mzp

lz
z

� �
uy

þ mxp

lx

� �2

þ myp

ly

� �2
" #

cos
mxp

lx
x

� �
cos

myp

ly
y

� �
sin

mzp

lz
z

� �
uz

)
:

ð7:62Þ

The electric and magnetic fields of the TMðzÞ
mx;my;mz

resonant mode are instead

ETM
mx;my;mz

ðrÞ ¼Cmx;my;mz
� mxp

lx

� �
mzp

lz

� �
cos

mxp

lx
x

� �
sin

myp

ly
y

� �
sin

mzp

lz
z

� �
ux

�

� myp

ly

� �
mzp

lz

� �
sin

mxp

lx
x

� �
cos

myp

ly
y

� �
sin

mzp

lz
z

� �
uy

þ mxp

lx

� �2

þ myp

ly

� �2
" #

sin
mxp

lx
x

� �
sin

myp

ly
y

� �
cos

mzp

lz
z

� �
uz

)

ð7:63Þ

and

HTM
mx;my;mz

ðrÞ ¼ j
Fmx;my;mz

h

myp

ly

� �
sin

mxp

lx
x

� �
cos

myp

ly
y

� �
cos

mzp

lz
z

� �
ux

�

� mxp
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� �
cos
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lx
x

� �
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myp
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� �
cos

mzp

lz
z

� �
uy

�
;

ð7:64Þ

where mx, my, and mz are nonnegative integers. In particular, from (7.61) and (7.62) it

can be seen that in order to have a nontrivial solution, TEðzÞ resonant modes must be

characterized by a triple set of nonnegative integers fmx;my;mzg such that thatmz > 0

and either mx or my are zero, but not both. On the other hand, from (7.63) and (7.64),
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TMðzÞ nonzero resonant modes are characterized by a triple set of nonnegative integers

fmx;my;mzg such that mz may be zero, but mx and my must be greater than zero.

According to the formulas above, the integer mi ði ¼ x; y; zÞ indicates the number of

half-sinusoid variations of the standing-wave pattern of the field along the i direction.

From (7.60) it follows that the resonant frequencies of the rectangular enclosures

are

fmx;my;mz
¼ c

2p
kmx;my;mz

¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx

lx

� �2

þ my

ly

� �2

þ mz

lz

� �2
s

ð7:65Þ

for both TE and TM modes. Interestingly, except for those modes that have a zero

mi ði ¼ x; y; zÞ index, TE and TM modes corresponding to the same indexes

fmx;my;mzg are always degenerate. Moreover, if the edge lengths are in the ratio of

integers, many other different TE and TM modes can share the same resonant

frequency (degenerate modes), as it will be shown in detail in the next section.

Finally, the irrotational eigenfunctions Fm (corresponding to the longitudinal Lm

modes [4]) are given by Fm ¼ rxm, where

xmðrÞ ¼ xmx;my;mz
ðx;y; zÞ ¼ Xmx;my;mz

sin
mxp

lx
x

� �
sin

myp

ly
y

� �
sin

mzp

lz
z

� �
; ð7:66Þ

and the coefficient Xmx;my;mz
is

Xmx;my;mz
¼ 1

kmx;my;mz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"0mx

"0my
"0mz

lxlylz

r
: ð7:67Þ

7.8.1 Symmetry Considerations

To better understand the numerical results that will be presented in the next section, it

is useful to give some consideration to the symmetry of the modes of a rectangular

enclosure. Let us consider again the rectangular enclosure of Figure 7.4. The planes

i ¼ li=2 will be indicated here as pi planes ði ¼ x; y; zÞ. According to expressions

(7.61) to (7.64), both components of the electric field tangential to the pi plane vanish

on the pi plane if the index mi is an even integer, while both components of the

magnetic field tangential to the pi plane vanish on the pi plane if the indexmi is an odd

integer. This means that the pi planes are symmetry planes. In particular, they are PEC

planes if the mode has an even mi index, and PMC planes if the mode has an odd mi

index. Let us consider, for example, the TE101 mode. Based on the considerations

above, it can immediately be inferred that both the px and the pz planes are PMC

planes (i.e., Hy ¼ Hz ¼ 0 on px and Hx ¼ Hy ¼ 0 on pz), while the py plane is a PEC

plane (i.e., Ex ¼ Ez ¼ 0 on py). These considerations can be useful when we consider

the problem of the mode excitation. So let us consider an infinitesimal electric dipole

placed in the middle of the enclosure (i.e., at r0 ¼ ðlx=2; ly=2; lz=2ÞÞ and directed
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along one of the principal axes, for example, the x axis. Based on (7.28), such a dipole

can excite only modes having a nonzero component Ex of the electric field at r0, so all

the modes characterized by even indexesmy andmz will not be excited (TE102, TM120,

TE120, TE022, etc.). Analogously, let us consider an infinitesimal magnetic dipole (e.g.,

a very small loop) placed at r0 and directed along the z axis. Based on (7.29), such a

source can excite only modes having a nonzero component Hz of the magnetic field at

r0, so all the modes characterized by odd indexes mx and my will be not excited

(TE=TM110, TE=TM111, TE=TM130, etc.).

All these considerations still remain valid when an aperture is introduced in a wall

of the cavity or an external source is considered, provided that some geometrical

symmetry of the structure is maintained. For instance, suppose that a circular

aperture is cut in the center of the face lying on the z ¼ 0 plane and a uniform plane

wave impinges normally to the aperture with the electric field polarized along the x

axis. It can be immediately deduced that the px and pz planes are PEC and PMC

planes, respectively. This means that the resonant modes having different types of

symmetry planes (i.e., the modes having either even mx or odd my indexes) will not

be excited. Other examples will be shown in the next section.

7.9 SHIELDING EFFECTIVENESS OF A RECTANGULAR ENCLOSURE
WITH A CIRCULAR HOLE

In this section we provide numerical results for two typical situations in EM

shielding problems. In particular, we consider a perfectly conducting rectangular

enclosure with edges along the x, y, and z axes, having lengths lx, ly, and lz,

respectively. Such an enclosure has a circular aperture with radius R cut in the wall

z ¼ lz centered on this face; the px and pz planes are thus symmetry planes. Both

external sources (impinging uniform plane waves) and internal sources (elemental

electric and magnetic dipoles) will be considered. For external sources, the electric

SE is evaluated inside the enclosure, whereas for internal sources, it is evaluated

outside the enclosure. The dimensions of the enclosure under test are lx ¼ 20 cm,

ly ¼ 40 cm, and lz ¼ 60 cm, and the radius of the circular aperture is R ¼ 1:5 cm. In

the frequency range from dc to f ¼ 1 GHz, the closed cavity presents seven different

resonant frequencies associated with the different modes:

f TE011 ¼ 450:38MHz;

f TE012 ¼ 624:57MHz;

f TE101 ¼ f TE021 ¼ 790:02MHz;

f TE013 ¼ f TM110 ¼ 837:94MHz;

f TE111 ¼ f TM111 ¼ 874:39MHz;

f TE102 ¼ f TE022 ¼ 900:76MHz;

f TE112 ¼ f TM112 ¼ 975:56MHz:

ð7:68Þ
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In the next subsections the effects of such resonances on the shielding performance

of the perforated enclosure will be described.

7.9.1 External Sources: Plane-Wave Excitation

A uniform plane wave is assumed to impinge on the considered rectangular

enclosure with incident electric field

EincðrÞ ¼ uu cosaþ uf sina
� �

ej k
inc�r; ð7:69Þ

where a is the real polarization angle, r is the observation point, and kinc is the

incident wavevector. The latter has rectangular components kincx ¼ k0 sin u
inc cosfinc,

kincy ¼ k0 sin u
inc sinfinc, and kincz ¼ �k0 cos u

inc, while the incidence angles uinc and

finc also define the relevant unit vectors uu and uf. The relevant EM problem is

sketched in Figure 7.5. The electric SE calculated at the center of the enclosure (i.e.,

at r ¼ ðlx=2; ly=2; lz=2Þ) is reported in Figure 7.6 for different polarizations and

incident angles.

The plane of incidence is the f ¼ p=2 plane; the results for TEz polarizations

(i.e., a ¼ p=2Þ are shown in Figure 7.6a, while those for TMz polarizations (i.e.,

a ¼ 0Þ are reported in Figure 7.6b. From Figure 7.6a it can be seen in the shown

frequency range that the electric SE of the enclosure for TEz polarization improves

by increasing the incidence angle from uinc ¼ 0, whereas an almost opposite trend

can be observed from Figure 7.6b for TMz polarization. Interestingly, for rectangular
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FIGURE 7.5 Uniform plane wave impinging on a rectangular enclosure with a circular

aperture cut in one of its walls.
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apertures, uinc ¼ 0 is the worst case for shielding when the electric field is polarized

along the shortest side of the aperture, whereas it is the best case when the electric

field is polarized along the longest side of the aperture.

It can also be observed that for TEz polarization the effects of only two

resonances are visible. In particular, such resonances are those corresponding to

the TE011 and TE013 modes, which are the only excited resonant modes with a
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FIGURE 7.6 Electric SE at the center of the enclosure under test for plane-wave incidence

on the f ¼ p=2 plane for different angles of incidence as a function of frequency. (a) TEz

polarization; (b) TMz polarization.
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nonzero electric field at the observation point r ¼ ðlx=2; ly=2; lz=2Þ. Because the

incident electric field is directed along ux, for symmetry considerations the px

plane is in fact a PEC plane, so only modes with zero y and z components of the

electric field at x ¼ lx=2 can be excited (i.e., the TE011, TE012, TE021, TE013, and

TE022 modes; see (7.61)–(7.64)). However, at the observation point, the TE012,

TE021, and TE022 modes have a zero electric field, and their effect on the electric

SE at that point is zero (their effect would instead be visible in the magnetic SE,

since their magnetic field at r ¼ ðlx=2; ly=2; lz=2Þ is different from zero). Moreover

it is important that for observation points different from r ¼ ðlx=2; ly=2; lz=2Þ the
resonance effects of the other modes can be pronounced and the electric SE

dramatically reduced. It is thus evident that the evaluation of the SE at only one

point of the enclosure (especially if it lies on some symmetry plane) can give rise

to unreliable predictions.

It can be observed that for TMz polarization the effects of three resonances are

visible. In particular, such resonances are those corresponding to the TE101, TM110,

and TM112 modes, which are the only excited resonant modes with a nonzero

electric field at the observation point r ¼ ðlx=2; ly=2; lz=2Þ. Since the incident

magnetic field is directed along ux, for symmetry considerations the px plane is

now a PMC plane, so only modes with zero y and z components of the magnetic

field at x ¼ lx=2 can be excited, meaning the TE101, TM110, TE112, and TM112 (see

(7.61)–(7.64)). However, at the observation point, the TE112 mode has a zero

electric field, and its effect on the electric SE at that point is zero (its effect would

instead be significant in the magnetic SE, since its magnetic field at

r ¼ ðlx=2; ly=2; lz=2Þ is different from zero). Also in this case it is important to

note that for observation points different from r ¼ ðlx=2; ly=2; lz=2Þ the resonance
effects of the other modes could be clearly visible and the electric SE dramatically

reduced. The effects of mode resonances on the spatial distribution of the EM

field inside the enclosure can be clearly appreciated by comparing Figure 7.7 and

Figure 7.8.

In Figure 7.7 the spatial distribution of the absolute value of the electric field

excited inside the enclosure by an incident TEz plane wave at the resonant frequency

f TE011 ¼ 450:38MHz is reported in the planes px, py, and pz (Figure 7.7a, b, and c,

respectively). It can be seen that the field distribution is that of the TE011 mode, thus

revealing the dominant character of such a mode at its resonant frequency.

In Figure 7.8 the same spatial distribution as in Figure 7.7 is reported but at

f ¼ 200MHz, which is a frequency far below the first resonant frequency. Two

main differences can be noted: first, at f ¼ 200MHz the electric-field distribution

does not resemble any of the resonant modes of the cavity and, second, at

f ¼ 200MHz the peak-field values are much smaller than those found at

f TE011 ¼ 450:38MHz (by approximately three orders of magnitude). The former

difference is due to the fact that all the modes contribute to the field distribution,

none of them being dominant, and their superposition does not have a modal

configuration; the latter is a consequence of the nonresonant behavior of the field

whose amplitude is instead extremely large at the resonant frequency (ideally

infinite, for a closed cavity).
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7.9.2 Internal Sources: Electric and Magnetic Dipole Excitations

Elemental electric or magnetic dipoles can be assumed to be internal sources, each

having the mathematical representation

JiðrÞ ¼ uidðx� x0Þdðy� y0Þdðz� z0Þ;
MiðrÞ ¼ uidðx� x0Þdðy� y0Þdðz� z0Þ; ð7:70Þ
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FIGURE 7.7 Absolute value of the electric field inside the enclosure under TEz plane-wave

incidence at the frequency f TE011 ¼ 450:38MHz. (a) px plane; (b) py plane; (c) pz plane.
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where ui ði ¼ x; y; zÞ indicates the direction of the source. The relevant EM problem

is sketched in Figure 7.9. It is interesting to observe how the position and the

orientation of the dipoles affect the behavior of the electric field outside the

enclosure.

In Figure 7.10 the magnitude of the electric field radiated at the point

r ¼ ðlx=2; ly=2; lz þ DzÞ by an electric dipole placed at the center of the enclosure

(i.e., r0 ¼ ðlx=2; ly=2; lz=2ÞÞ is reported as a function of frequency. In particular, three
possible orientations along the principal axes are considered besides Dz ¼ 3 m. Let

us consider first the electric dipole directed along ux. The symmetry planes px and py

are PEC and PMC planes, respectively. So only the modes satisfying such boundary

conditions (i.e., zero y and z components of the electric field at x ¼ lx=2 and zero x
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FIGURE 7.8 Same distribution as in Figure 7.7 at the frequency f ¼ 200MHz.
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and z components of the magnetic field at y ¼ ly=2Þ can be excited at the

corresponding resonant frequencies, if, based on (7.69), the x component of the

electric field is different from zero at r0. Therefore from (7.61)–(7.64) it is clear that

only the resonance effects associated with the TE011 and TE013 modes will be

visible, and this can be checked by looking at Figure 7.10. With a similar reasoning

it can be shown that only the resonant mode TE101 is excited at the corresponding

resonant frequency when the electric dipole is directed along y. The dipole directed

along z (i.e., orthogonally to the aperture) will certainly not excite the TEz modes but
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FIGURE 7.9 Elemental electric or magnetic dipole radiating through a circular aperture cut

in one of the walls of a rectangular enclosure.
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FIGURE 7.10 Magnitude of the electric field radiated at the point r ¼ ðlx=2; ly=2; lz þ DzÞ
ðDz ¼ 3 m) by an elemental electric dipole located at the center of the metallic rectangular

enclosure under test r0 ¼ ðlx=2; ly=2; lz=2Þ. Three possible orientations of the dipole are

considered.
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rather, by the usual considerations, only the resonant modes TM110 and TM112 (in

this case both the px and py planes are PMC planes). Finally, from Figure 7.10, it can

be seen that according to Bethe’s theory, the best case for shielding at low

frequencies (before any resonance effect) is the electric-dipole orientation

orthogonal to the aperture (this configuration in fact gives rise to a zero incident

tangential magnetic field). Importantly, if the dipole source is moved off the center

of the enclosure, some symmetry properties will be lost, and this effect implies that

other modes can give rise to resonant effects, as shown in Figure 7.11. From (7.28)

and (7.29) it is evident that the presence of such resonances can be established by

observing whether the corresponding modes (expressed by (7.61) through (7.64))

have a nonzero component of the electric field along the dipole direction at the

source point.

In Figure 7.12 an elemental magnetic dipole placed at the center of the enclosure is

considered as a source and the magnitude of the electric field radiated at the point

r ¼ ðlx=2; ly=2; lz þ DzÞ (still with Dz ¼ 3 m) is reported as a function of frequency.

When themagnetic dipole is directed along x, the symmetry planespx andpy are PMC

and PEC planes, respectively, and among the modes that satisfy such boundary

conditions, only those having a nonzero x component of the magnetic field at

r0 ¼ ðlx=2; ly=2; lz=2Þwill be excited at the resonant frequencies. From (7.61)–(7.64) it

is clear that only the TE102 mode satisfies such conditions and its effect is visible in the

peak of the field at f TE102 ¼ 900:76MHz.On the other hand, when the centeredmagnetic

dipole is directed along y, the symmetry planes px and py are PEC and PMC planes,

respectively, and therefore,by(7.61)–(7.64), theonlyexcitedmode thatgivesa resonant

contributioninthefrequencyrangebetweendcand f ¼ 1GHzistheTE012mode(whose

effect is visible in Figure 7.11 when the peak of the field is at f TE012 ¼ 624:57MHzÞ.
Finally, if the centered magnetic dipole is orthogonal to the aperture (i.e., along the z

FIGURE 7.11 Same distribution as in Figure 7.10 but with the electric dipole placed off-

center in the enclosure.
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direction), both thepx andpy planes are PECplanes, so at the observation point (which

lies along the intersection between such planes) no electric field can be radiated.

Another important issue concerns the behavior of the electric field as a function of

the distance from the aperture outside the enclosure. Although in the far field only

the radiating contribution is present (so a monotonically decreasing field amplitude

can be expected by increasing the distance of the observation point from the

aperture), close to the aperture capacitive and inductive contributions can in fact give

rise to oscillations in the field amplitude. Then the determination of the worst point

for SE evaluations can become a difficult task.

In Figure 7.13 the behavior of the magnitude of the electric field produced by an

elemental electric dipole along the line orthogonal to the circular aperture and passing

through its center is reported. The electric dipole is located at the center of the

rectangular enclosure, and three different orientations of the source (i.e., along the

main axes) are considered. In Figure 7.13a, the operating frequency is f ¼ 200 MHz,

which is well below the first resonant frequency of the enclosure. It can be seen that

although the amplitude of the electric field produced by an x-directed dipole

decreases monotonically as the distance between the observation point and the

aperture increases, in the case of a z-directed dipole a slight oscillation occurs in

the near field. The oscillation becomes even more pronounced when the dipole is

directed along the y axis.

In Figure 7.13b, the operating frequency is the resonant frequency of the first

TE011 mode, namely f ¼ f TE011 ¼ 450:38MHz. All the three dipoles now give rise to

monotonic trends of the electric-field amplitude. From a comparison of Figure 7.13a

and 7.13b it can be observed that the x-directed dipole excites an electric field that at

f ¼ f TE011 ¼ 450:38MHz is much larger than that produced at f ¼ 200MHz, while

the fields produced by y- and z-directed dipoles in the two cases have values of the

same order of magnitude. This effect is consistent with the fact that only the centered

x-directed dipole can excite a resonant TE011 mode.
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FIGURE 7.12 Same distribution as in Figure 7.10 but with an elemental magnetic dipole

source.
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However, the presence of oscillations in the field amplitude close to the aperture

cannot be easily predicted. Figure 7.14 shows several curves that represent the

magnitude of the electric field excited by a y-directed dipole as a function of z along

the ðx ¼ lx=2; y ¼ ly=2Þ line at the operating frequency f ¼ 200 MHz, when the

dipole source is moved off the center of the enclosure. Note how the field behavior

depends on the source location, especially in the near-field region.
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FIGURE 7.13 Magnitude of the electric field as a function of z ðx ¼ lx=2; y ¼ ly=2Þ
produced by an elemental electric dipole located at the center of the metallic rectangular

enclosure under the test r0 ¼ ðlx=2; ly=2; lz=2Þ. Three possible orientations of the dipole are

considered. (a) f ¼ 200 MHz; (b) f ¼ f TE011 ¼ 450:38MHz.
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CHAPTER EIGHT

Cable Shielding

Shielded cables are so largely diffused components that they are entitled to

specific analysis. Moreover, their aspect ratio is very often potentially responsible

of an antenna-like behavior, and thus of the resulting emission and susceptibility

problems in almost all installations. Unfortunately, since shielded cables are

components of larger, more complex systems their EM performance is strongly

dependent not only on their own characteristics but also on those of the rest of the

system.

The roots of any work on cable shielding are in the pioneering researches

conducted by Schelkunoff [1], where the basic configuration of a driven coaxial

cable of infinite length is analyzed. The cable shield was considered solid, while the

effects on the coupling due to holes, defects, or braids have been the subject of

several Interaction Notes of the Air Force Research Laboratory [2,3]. From these

starting points stem a number of issues and configurations that have been deeply

analyzed, and several books devoted to the analysis of this very special component

have been published [4,5]. The interested reader should be aware that in the

following, for obvious reasons of conciseness, only some of the most important

aspects are pointed out. On this topic, the cited literature is representative but not

exhaustive of the large amount of research work and, unfortunately, neither updated,

because of the continuous progress in this field and consequently of the endless

updating of knowledge on cable-related phenomena.

The preliminary problems to be assessed in cable shielding are basically two:

whether the concern is emission or immunity and which type of shielded cable needs

analysis.

Emission or immunity shielding is directly related to the source characteristics.

When immunity is the primary goal of cable shielding, the external EM field may be

considered as a uniform plane wave, whereas when emission from the cable is of
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concern, the EM problem is that of a near-field source. As a consequence the same

shielded cable with the same installation characteristics may behave very differently

in immunity and emission tests.

The type of shielded cable has direct consequences on the mechanisms of

penetration of the EM field through the shield: apertures (e.g., typical of braided

shields) and number of shields strongly affect the performance. Other relevant

issues, not analyzed in the following, concern the number of wire conductors in the

shielded regions [6], the grounding conditions of the terminal ends of the cable

shield(s) [7], and the connectors and the junctions between them and the wires at the

wire ends [8,9]. The latter point is often the most serious and important coupling

mechanism between the inside and the outside of the shield. Obviously in immunity

problems the orientation and the path of the shielded cable with respect to the

external EM field is fundamental in a quantitative assessment of coupling, but the

worst case is usually considered, since in general the incident field is not predictable

with precision.

This chapter will be limited to single coaxial shields solid or braided; the

configurations with multiple shields [10] or multiple wires are left to the cited

references. Linear materials are considered because nonlinear shields are generally

of interest in low-frequency applications [11]. Moreover anisotropic materials will

be not considered, but an example of analysis in such conditions can be found in

[12].

8.1 TRANSFER IMPEDANCE IN TUBULAR SHIELDED CABLES
AND APERTURE EFFECTS

The most used shielding parameter in shielded-cable evaluation is represented by the

transfer impedance Zt, introduced by Schelkunoff. It is defined as the ratio between

the voltage, per unit length, arising on the internal surface of the shield when a

current flows on its external side, or by reciprocity, as the ratio between the voltage

appearing on the external side of the shield as a consequence of the current flowing

on the internal surface.

With reference to Figure 8.1, the equations describing the voltage on the two

surfaces of the cable shield may be written in the form:
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FIGURE 8.1 Coupling through the shield of a coaxial line.
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Vi ¼ ZintIi þ ZtIe;

Ve ¼ ZtIi þ ZextIe;
ð8:1Þ

where Vi and Ve are the longitudinal (i.e., parallel to the cable axis) per-unit-length

voltages along the internal and the external surface of the shield, respectively. The

per-unit-length impedances are

Zint ¼
ffiffiffiffiffiffiffiffiffiffi
jvms

ss

r
1

2pr1D
½I0ðgsr1ÞK1ðgsr2Þ þ I1ðgsr2ÞK0ðgsr1Þ�;

Zext ¼
ffiffiffiffiffiffiffiffiffiffi
jvms

ss

r
1

2pr2D
½I0ðgsr2ÞK1ðgsr1Þ þ I1ðgsr1ÞK0ðgsr2Þ�;

Zt ¼ 1

2pss r1r2 D
;

ð8:2Þ

where D ¼ ½I1ðgsr2ÞK1ðgsr1Þ � I1ðgsr1ÞK1ðgsr2Þ� and gs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvmsðss þ jv"sÞ

p
; the

subscript ‘‘s’’ stands for shield, while r1 and r2 are the inner and outer radius of the

shield, respectively. The functions In and Kn are the nth-order modified Bessel

functions of the first and second kind, respectively.

Equations (8.1) relate the voltages and the currents on the two shield surfaces. The

transfer impedance Zt thus represents a measure of the separation between the two

domains provided by the shield cable; the lower its value, the greater is the efficiency.

Of course, in such a TL approach, it is implicitly assumed that all the hypotheses at

the basis of the analysis of distributed-parameter circuits are satisfied.

In Figure 8.2 the frequency-dependence of the transfer impedance of various

shields is reported. As can be seen, for actual cables with tubular solid shields, the

transfer impedance tends to zero above a certain frequency belonging to the

Megahertz range. Various approximations (yielding errors between less than 1% [1]

up to 10% [13] and above) have been introduced in the past to avoid the use of Bessel

functions. Nowadays the exact expressions are easily handled, and there is no need

of approximate expressions in terms of hyperbolic trigonometric functions.

Apertures in the shield of cables cause three main effects that increase coupling

and thus worsen performance:

1. Reduction in the volume of the conductive material.

2. Perturbation of the linear path of the current-density distribution.

3. Creation of an alternative path for the EM coupling between the inside and

the outside of the shield.

As concerns the first effect, if the apertures are regularly spaced along the cable

shield and if the uncertainty on their dimensions is reasonably small (i.e., the amount

of conductive volume reduction can be estimated with the desired level of accuracy),

a simple correction on the transfer impedance may be introduced as

Zt ¼ 1

2pss r1r2ð1� tÞ
1

D
; ð8:3Þ
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where t, transparency of shield according to Vance [3] terminology, is a function of

the number n of apertures per unit length of the cable shield and of their cross section

Sa:

t ¼ nSa

r1 þ r2
: ð8:4Þ

Unfortunately, this correction works only if the apertures are realized in a solid

tubular shield, which is not the shape most adopted for such cables. Mainly because

of flexibility and weight considerations, the shield is generally realized by means of

a mesh or by means of multiple wires helicoidally woven in alternate clockwise and

counterclockwise way to form the so-called braided shield, a portion of which is

shown in Figure 8.3.

In mesh shields the increase in length of the current-density path is not easily

predicted because it depends on the shape of the apertures. In braided shields,

although the length of the paths can be estimated by assuming the woven wires to be

insulated from each other, an additional issue (uncertainty) arises about contacts
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between adjacent and porpoising wires. The contact impedance in fact is strongly

dependent on the pressure and on the operating frequency [5], and this random

parameter introduced in the model may be the dominant one. The same uncertainty

influences the behavior of foil shields with overlapping margins. Of course, in

compact spiral shields, the length of the conduction current-density path can easily

be computed, once the cable-shield diameter and the curvature of the helix are

known.

Determining the influence of apertures on the coupling between the interior and

the exterior of the cables calls for complex analyses for several reasons:

� Shapes of the apertures

� Their mutual coupling

� Their distance from the wires

Usually the overall effect of distributed apertures is accounted for by means of a

correction term in the transfer impedance represented by a mutual inductance and by

means of a mutual capacitance [3]. The mutual capacitance is due to the direct

coupling between the inner wire conductor and the external return path. Such a

mutual capacitance can be introduced into the equivalent circuit of an elemental

length of cable as shown in the pictorial sketch of Figure 8.4.

A number of expressions have been proposed for these two correction terms; their

validities, however, have not always been confirmed by experimental results. In

particular, for mesh shields, the mutual inductance and capacitance are given by

[3,4]:

M12 ¼ nm0

d3eq

6p2D2
; ð8:5aÞ

C12 ¼ n

"0"r

C1C2d
3
eq

6p2D2
; ð8:5bÞ

where deq is the equivalent diameter of the apertures, D is the cable shield diameter,

"r is the relative permittivity of the inner insulating material, and C1 and C2 are the

per-unit-length capacitance between the inner wire conductor and the shield and that

2
πb

α

FIGURE 8.3 Detail of a braided shield surface.
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between the shield and the outer return path for the current, respectively. It should be

noted that the mutual capacitance is not an intrinsic parameter of the cable; it

depends on C2, which is function of the cable installation. For this reason two

alternative intrinsic parameters are used in lieu of the transfer admittance

Yt ¼ jvC12; they are called through elastance KT [14] and radial electric coupling

coefficient jR [6], and defined as

KT ¼ C12

C1C2

; ð8:6aÞ

jR ¼ C12

C1

: ð8:6bÞ

For a braided shield the EM model is a bit more complex and the

approximations somewhat crude with respect to the phenomena actually

occurring in this shield arrangement [3]. Usually it is assumed that the wires

are isolated from each other (i.e., the current flowing in each wire is so well

confined that no proximity effect is taken into account) and that the apertures are

regularly spaced and rhomboidal. Another type of approximation involves

replacement of the rhomboidal apertures with elliptical ones having the same

values for the major and the minor axes. Expressions can be found in cited

references, where the influence of various geometrical and physical parameters

on the transfer impedance and admittance is also investigated. They are not

reported here because of their unpredictable accuracy in the absence of

experimental confirmation, which is a consequence of the several strict

assumptions necessary for their derivation. Comparisons between predicted and

measured data have been presented in the literature for a number of cable shield

types (e.g., see [5,15–18]).
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FIGURE 8.4 Equivalent circuit of an elemental length of coaxial cable.
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8.2 RELATIONSHIP BETWEEN TRANSFER IMPEDANCE
AND SHIELDING EFFECTIVENESS

Several attempts have been presented to establish an explicit relation between the

transfer impedance and admittance and the SE of a cable (e.g., [5,19–21]). However,

the EM field in the shielded region depends not only on the cable’s shield performance

but also on the cable installation conditions, namely the wire and shield terminations

and the cable layout with respect to the ground return path. The installation conditions

in fact directly affect the voltage and current distribution along the shield surface

exposed to the field source. Although a direct relation between the transfer impedance

and the SE might have invaluable technical usefulness, unfortunately, it is possible to

give an approximate relationship valid only for electrically short cables (i.e., cables

whose length is less than one-tenth of the shortest wavelength of interest). In the low-

frequency range the cable system can even be analyzed by use of lumped parameters

instead of distributed ones or, in more complex situations, by general field equations

and the consequent boundary-value problem. It should be obvious that a lumped-

parameter approximation calls for an upper frequency limit on the order of a few (tens

of) MHz in actual configurations.

If in immunity problems the induced voltage or current in the shielded wire are

taken as a measure of the penetrated EM field, then the lumped parameter

approximation provides very simple expressions for the shielding effectiveness SELP

provided that the incident electric field is parallel to the cable axis and the magnetic

field is transverse. If we assume that for a wire parallel to the ground the induced

voltage in the absence of the shield V0
i has the same value of that induced in the

shield when the latter is present, the lumped-parameter approximation leads to the

following expression for the SELP:

SELP ¼ 20 log
V0
i

VS
i

����
����; ð8:7Þ

where the induced voltage in the inner wire in the presence of the shield VS
i is a

function of the current IS flowing on the external shield surface:

VS
i ¼ Zt‘ IS ð8:8Þ

and

IS ¼ V0
i

Zext loop

; ð8:9Þ

where Zext loop is the total impedance of the current loop formed up by the shield and

the ground return path while ‘ is the length of the cable. From (8.8) and (8.9), it

follows that

SELP ¼ 20 log
Zext loop

Zt‘

����
����: ð8:10Þ
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A definition of SELP different from (8.8) is also possible, such as in terms of the

currents induced in the shield and in the internal wire, respectively [19].

Improvements in the accuracy of the relationship between the SE and the transfer

impedance have been shown to explicitly account for terminal conditions [20].

However, in all cases where the lumped-parameter approximation is still adopted,

the increase in the complexity of the expressions (which now take into account both

the reflection coefficients at the ends of the cable line and the diagonal terms of the

characteristic-impedance matrix of the shielded cable) makes them of little use.

Unfortunately, perfect matching at both ends is generally not achieved because of

both the frequency dependence of the characteristic-impedance matrix and the usual

choice for the cable shield ends, left open or short-circuited to the ground reference

[22]. Losses may contribute to damping possible resonances [23], but these

circumstances result in standing wave patterns of voltages and currents that impair

any effort toward a simple link between intrinsic cable parameters and emission or

susceptibility performance.

Finally, in emission analyses the boundary-value problem may be solved exactly

by resorting to the lengthy but straightforward procedure described in [24] both for a

shield of infinite length and for a shield of finite length.

8.3 ACTUAL CABLES AND HARNESSES

For the reasons above the measurement of the transfer impedance by line-injection

methods can become extremely difficult at frequencies above several hundreds

of MHz. So the measurement of the cable SE by means of a mode-stirred chamber

is generally preferred at frequencies above the cited practical threshold [25].

A simple relationship between the transfer impedance and the SE has been

also derived [26], indicating that the SE can decrease in frequency faster than

20 dB/decade, while the cautionary increase in the transfer impedance of coaxial

cables is 20 dB/decade [14].

A very important fact that has been reported is that unfortunately, cables suffer

from aging, exhibiting an increase in the transfer impedance values over a lifetime

that cannot easily be predicted and may reach one order of magnitude [20,27], in part

due to the porpoising effect in braided cables [28]. Furthermore a certain sensitivity

(a few dB) of measured performance has been observed with respect to handling

manipulations [29], like stretching before installation.

Multiconductor shielded cables have several peculiarities compared with coaxial

cables: not only, as mentioned earlier, do they present different coupling modes [6]

(thus requiring the introduction of specific parameters), they additionally exhibit an

appreciable increase (up to one order of magnitude) of the values of the transfer

impedance depending on the eccentricity of the considered conductors [30]. Apart

from the complexities associated with the multiconductor-cable configuration, other

issues may arise, such as in the evaluation of the response because of the mixing of

propagation modes. The mixing of modes calls for the use of sophisticated

algorithms for the assessment of the cable shielding performance [31].
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It should be noted that grounding and earthing the shielded cable is sometimes

mandatory for safety considerations: the effects are strongly dependent on several

factors, such as frequency and the p.u.l. cable parameters. Interestingly, on one hand,

grounding is responsible for ground loop emission; on the other hand, if left open,

the shield may demonstrate, at certain frequencies, an antenna-like behavior and

thus increase the EM radiation, which can be reduced by use of ferrites along the

cable’s length [5,7,20]. Periodic or multiple grounding and bondings can further

present advantages and disadvantages with respect to open or shorted-at-ends

solutions, depending on the circumstances and the frequency spectrum of interest.
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CHAPTER NINE

Components and Installation
Guidelines

Components’ adequacy and installation conditions are key to any successful

shielding installation, and these factors are in strict correlation. Components affect

shielding performance, and they can create a discontinuity in the shield’s integrity;

installation conditions are important for both the main shielding structures and the

components. Apart from functional apertures, such as those due to viewing needs,

air ventilation, or pass-through cables, the most important and tricky aspect is

represented by the joints between adjacent parts of the main shielding structure

and between the structure and the installed components (switches, lamps, etc.).

Joints are classified as permanent, semipermanent, or frequently operated joints

[1]. The last two types are usually provided with gaskets as described in the

following section; the permanent joints are often fabricated by means of soldering,

screws, or rivets. Continuous soldering should be preferred over (in order of

performance) spot welding, screws with cap nuts or in blind holes, and rivets. Any

protrusion of metallic parts that radiates toward the shielded region must be

absolutely avoided. If use of such parts is unavoidable, adequate grounding is

necessary [2].

For all the components briefly described in the following, the reader is invited to

analyze the huge amount of data available from manufacturers.

9.1 GASKETS

Electromagnetic-interference gaskets are an important class of components installed

in the joints between panels to reduce theEM-field penetration. They aremanufactured
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in a very wide variety of materials and shapes to meet their assigned levels of

performance. Gasket performance is usually specified in terms of their EM sealing

capability and their mechanical strength and resistance to chemical agents, depending

on the function and application. Several considerations need to be accounted for in the

choice of the most suitable version for any specific application, as follows (not in order

of importance):

� Severity of environmental conditions (temperature, presence of corrosive

agents, pressure conditions, vibrations, etc.)

� Amount of shielding required

� Uneveness of the mating surfaces to be joint

� Class of use (i.e., number and frequency of operation)

� Cost

Among the main types of constructive materials are conductive polymers or rubbers,

wire-mesh flexible fabrics, and finger-shaped gaskets. Beryllium-copper, steel, and

tin-coated phosphor bronze are among the most used metallic materials. Figure 9.1

shows several types of gaskets.

The EM performance of a gasket relates to its capability of restoring the electrical

continuity between the two adjacent mating surfaces. Therefore it is very useful to

have knowledge of the correct equivalent circuit and to understand the frequency

behavior of any gasket configuration. Additionally it is useful to be aware of

uncertainties in the values of components in an equivalent circuit (shown in

Figure 9.2) that are due to installation conditions, together with their degradation

over time. So a reliable approach depends mainly on graphs and measurement that

describe the EM performance of any gasket type. The IEEE Standard 1302 gives

guidelines for the EM characterization of conductive gaskets in the frequency range

of dc to 18 GHz [3].

FIGURE 9.1 Different types of shielded gaskets (courtesy of Chomerics).
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A very approximate method for a rough estimate of the gasket’s SE is based on the

TL approximation [1] and leads to the following approximate expression:

SE ’ R ¼ 20 log
h0
4hg

; ð9:1Þ

where a uniform plane wave normally incident onto the gasket is assumed as the

incident field, h0 is the free-space impedance, and hg is the intrinsic impedance of

the gasket, assumed to be equal to the total impedance (resistance, in the cited

reference) offered by the gasket to a current flowing through it from one surface to

the other:

hg ’ Rc1 þ Rg þ Rc2: ð9:2Þ

In (9.2), Rc1 and Rc2 are the contact resistance (impedance) existing between the

gasket and the twomating surfaces, whileRg is its internal resistance (impedance). The

modeling of inductive behavior is not a simple task, and in an oversimplifiedmethod it

is generally neglected. Two other flaws are present in such an approximation: first,

(9.1) has been deduced for a planar shield of infinite extension and second, the gasket

impedance given by (9.2) is generally different from the intrinsic impedance of the

gasket material to be used in (9.1), which does not depend on gasket shape and

dimensions. For all these reasons, the use of expression (9.1) is not recommended.
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FIGURE 9.2 Equivalent circuit for a portion of a shielded gasket.
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Another approximate approach is based on the introduction of a transfer

impedance that relates the per-unit-length current density JS on the gasket side

exposed to the incident uniform plane wave to the voltage drop V0 across the

gasketed seam on the opposite side:

Zt ¼ V0

JS
: ð9:3Þ

The units of Zt are ½V � m�. Because of the assumption of a normally incident plane

wave, the amplitude Hinc of the incident magnetic field is related to the amplitude

of the induced current density as JS ’ 2Hinc and to the amplitude Einc of the

incident electric field as Einc ¼ h0H
inc. On the other hand, the voltage drop on the

nonexposed side is almost equal to the product of the gasket thickness t by the

transmitted electric field Etr. For gasket lengths much smaller than the operating

wavelength, it can be assumed that the following approximation holds for the SE of

the gasket:

SE ¼ 20 log
Einc

Etr

����
���� ’ 20 log

h0 t

2 Zt

����
����: ð9:4Þ

If the incident EM field is not a plane wave and its wave impedance is known,

expression (9.4) can still be used by adopting the appropriate values Zw1;2 instead of

h0 (e.g., see Section 4.6). In most cases, however, the wave impedance is not unique

and/or is not known. Given this drawback, together with the limitation to the gasket

length in comparison with the wavelength, a more general method is called for to

characterize gasket behavior, namely a radiated testing technique performed by

means of different antenna types, like magnetic-field loop antennas, electric-field

monopole antennas, and plane-wave radiators. These antenna techniques usually

adopt a metal cavity for the EM power to penetrate through a gasketed seam; the

measurement performed in the absence of the gasket offers a reference value for the

evaluation of performance. It should be noted that such measurement methods based

on standardized apertures are strongly influenced by several factors such as the

mutual positions of the antennas-seam system and the surrounding environments on

the two sides of the gasketed aperture. The values of the aperture dimensions are

obviously also crucial.

Nested reverberation chambers can also be used to estimate the power beyond the

gasketed components ([4]; see also Appendix C) and that in the source region. More

sophisticated models of perforated gaskets (knitted-mesh type, finger-shaped, etc.)

are based on the evaluation (analytical or numerical) of the EM-field penetration

through the holes of the gasket [5]. This is an open field of research. The reader is

reminded to carefully check the conditions under which the gaskets have been tested

by manufacturers, and additionally not to neglect two especially important consi-

derations: the pressure agent on the gasket and its potentially evolutive performance

because of corrosion, galvanic action, and so forth.
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9.2 SHIELDED WINDOWS

Shielded windows are very common components in shielding applications. The

visibility of displays or status lamps and leds is needed but is often accompanied

by the introduction of a discontinuity in the shield, with the consequent detriment

of performance. Shielded windows are a way to reduce such performance

degradation and are usually applied through a gasket on their contour, although

other techniques are also available, such as those based on permanent soldering or

welding.

Various nonelectromagnetic constraints are critical to the choice of shielded

windows: transparency in the frequency spectrum corresponding to wavelengths

between 400 and 700 nm, anti-glare and anti-scratch tractability, mechanical and

thermal properties, resistance to chemical agents, and physical dimensions of the

window. Other elements that influence the choice are the refractive index of the

transparent material and the conductive busbar and gasketing available or necessary

for the termination of the shielded window.

Unfortunately, window dimensions affect performance measurements. Therefore

all the manufacturers’ data can be compared only when the sample dimensions are

equal. In general, the smaller the dimensions of the sample under test, the higher is

the performance that it exhibits.

Materials available for shielded windows range from conductive glasses or

plastics (conductivity is achieved through embedded metallic particles or thin films

on the surfaces; see also Chapter 2) to composites, frequently in the form of wire

grids, woven or knitted, embedded in an optically transparent host.

Performance is strongly dependent on frequency, so reference should be made to

manufacturers’ data. Additionally some general expressions suitable for a rough

estimation of the expected capabilities exist, usually based on the assumption of

infinite extension of the structure. For instance, a shielded window realized by

means of a woven wire grid and excited by a plane-wave field offers a SE given by

the expression [1]

SE ’ 164� 20 logðdf Þ; ð9:5Þ

where d is the distance between adjacent wires and f is the operating frequency.

However, this expression is useful only for an idea about the most important

quantities affecting performance; it is not adequate for an accurate prediction, which

involves dimensions of the shielded window, material characteristics, wires

diameter, and so forth. Typically 80 to 200 openings per inch (OPI) are considered

for woven grid meshes, consisting of wires whose diameter is in the range of

20 to 100 mm. The SE that can be achieved (as per manufacturers’ declarations) is

generally between 50 and 80 dB under plane-wave excitation at the frequency of

1 GHz. Sample dimensions are usually between 50� 50mm and 300� 300mm,

and the optical transparency is often between 60% and 90%.

Knitted wire meshes generally offer worse SE performance than woven grids,

with a typical SE ranging between 20 and 40 dB under plane-wave excitation at the
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frequency of 1 GHz. The number of OPI is generally between 10 and 30 for wire

diameters being the same as those adopted in woven wire grids.

For a conductive glass or plastic, the expressions given in Chapter 4 may be

considered. Typical values (i.e., those declared bymanufacturers) of SE achievable by

means of conductive glasses or plastics are in the range of 40 and 60 dB under plane-

wave excitation at the frequency of 1 GHz. The thickness of the compact thin films is

often in the range of 50 to 200 nm, with an optical transparency in the order of 90%.

9.3 ELECTROMAGNETIC ABSORBERS

Electromagnetic absorbers are used for a number of applications. Most common

are the anechoic chambers used in compliance testing of apparatus and systems in

lieu of open area test sites. Other applications range from the reduction of radar

cross sections of objects to the improvement of the radiation pattern of antennas, to

resonances damping in shielding applications. Of course, in the framework of EM

shielding, the last application is of evident usefulness in the improvement of the

enclosure’s performance. The high conductivity of shield walls works to trap the

EM energy penetrated through the shield discontinuities (which may be viewed as

traveling back and forth within the shielded volume). Materials capable of

effectively dissipating such energy in the shielded region can considerably help in

the improvement of shielding performance.

The shape and material of EM absorbers vary according to EM constraints,

environmental peculiarities, and manufacturer design. Generally, they are used to

cover a metallic surface in such a way that:

1. the reflected field is as low as possible;

2. the reflected field phase is opposite, as much as possible, to that of the

incident field;

3. the transmitted field is attenuated as much as possible while traveling through

the absorber material and before being reflected by the conductive surface

over which the EM absorber has been installed.

The first and third conditions are those that offer the best opportunities in broadband

unknown polarization situations. The second is more suitable for frequency and

polarization selective performance because of its resonant nature.

The most common shapes for EM absorbers are pyramidal cones, possibly

truncated or twisted, whose dimensions may range between few centimeters and few

meters, and tiles of homogeneous or multilayer material whose thickness is in the

order of few millimeters. Material compositions are often not fully publicized by

manufacturers, but graphites, iron oxides, ferrites, urethanes, and conductive foams

are among the most used.

The prediction of absorber performance is rather complex [6–7], depending on

the geometrical shape and on the physical parameters of the materials adopted.
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Approximations based on equivalent TLs or homogenization approaches have been

considered to circumvent the need of a numerical analysis for accurate predictions.

Information on the frequency dependence of permittivity and permeability of

materials is generally not available from manufacturers, and for this reason

prediction of EM absorber behavior under conditions different from those used to

test it could be tricky.

Under plane-wave illumination the comparison of EM absorber performance is

generally based on the reflection coefficientG (which is a complex quantity), defined as

G ¼ E r

Einc
; ð9:6Þ

where E r is the (complex) amplitude of the (linearly polarized) reflected electric field.

Alternatively, the reflectivity Ra (sometimes termed in other ways) can be used:

Ra ¼ 20 logðjGjÞ: ð9:7Þ

Typical values of reflectivity of commercially available absorbers range between

�10 and �50 (or better) dB for normally incident plane waves, at frequencies

between about 30 MHz and well above the GHz. For oblique incidence, performance

is generally worse.

9.4 SHIELDED CONNECTORS

Connectors are generally installed to allow the entrance of cables and optic fibers into

the shielded region. They are especially important in determining the shielding

performance. Several types of shielded connectors are commercially available, and

the reader will find plentiful information frommanufacturers. The best connectors for

EMC purposes are those with a shielded backshell. The use of a shielded cable whose

shield is adequately terminated at the connector input is often advisable as well as the

installation of a filter to limit the antenna behavior of the portion of cable present in

the shielded region. Ways of properly grounding the cable shield are found in [2].

9.5 AIR-VENTILATION SYSTEMS

Almost all the electric and electronic systems present some thermal requirements,

generally satisfied by means of air-ventilation ducts with or without fans. Such

apertures represent serious shield discontinuities if not adequately shielded. They

are usually of two types: those obtained by covering the apertures by means of

meshed panels and those obtained by the use of honeycomb apertures exploiting the

waveguide below cut-off attenuation. The first solution has the advantage of keeping

out dust at the cost of an extra resistance to the air flow, while the second has better

performance in terms of SE and drop of air pressure, but it presents the drawback of
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requiring an adequate dust filter. Typical performance (at the frequency of 1 GHz)

range between 50 and 75 dB against a uniform plane-wave field for the first type, and

between 75 and over 100 dB for the second one. Various shapes of honeycomb

openings have been designed for the improvement of performance, and their

description is beyond the scope of this chapter. The interested reader will find all the

relevant information in manufacturers’ data sheets. Various models exist for the

estimation of the SE provided by a metallic honeycomb, either approximate [1,9],

such as

SE ¼ 27
‘

a
� 20 logN; ð9:8Þ

where ‘ is the length of the waveguide (i.e., the thickness of the honeycomb cell) and

a is the radius of the N apertures. Or, more accurate [10], is

SE ¼ 27:3
‘

a
� 20 log

2ka

p
cosf; ð9:9Þ

which accounts also for the angle of incidence f of the external TM-polarized plane-

wave field.

9.6 FUSES, SWITCHES, AND OTHER SIMILAR COMPONENTS

Control and protection devices directly accessible from the exterior of the shielded

housing represent another class of coupling paths that may deteriorate shielding

performance. Actual shielded components for control, protection, and operation are

generally reliable as concerns their performance. However, a gasket between the

main body of the component and the internal side of the panel and an adequate nut

are usually recommended to limit the discontinuity in the shield integrity. Moreover

nonconductive shafts for switches, potentiometers, and the like are useful to avoid a

guided path between the source region and the shielded one.
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CHAPTER TEN

Frequency Selective Surfaces

As was mentioned in Chapter 4, a planar screen can be designed to present certain

selective properties. Ideally the screen should be completely transparent to the EM

radiation in a part of the frequency range and completely opaque in the remaining

part of the frequency spectrum. Alternatively, the screen might be designed to reflect

the EM field in a given frequency interval only. The screens that are able to perform a

frequency discrimination through their reflecting/transmitting properties are known

as frequency selective surfaces (FSSs), and basically they work as EM filters. As a

consequence they are usually designed to provide four standard spectral responses:

high pass, low pass, band stop, and band pass [1–3].

Historically Rittenhouse is believed to have been the first, at the end of 1700, to

observe that a noncontinuous surface can present different reflecting/transmitting

properties for different operating frequencies. The first patent, however, was not

issued until 1919, to Marconi and Franklin. They built a parabolic reflector

consisting of a noncontinuous surface made of horizontal wires. Later, in the 1960s,

FSSs started to become the subject of intensive research for military applications.

Today applications of FSSs can be found in the design of radomes, dichroic

subreflectors, and reflect-array lenses, and more recently, in RFID tags, collision

avoidance systems, RCS augmentation, EMI protection, selective EM shielding, and

EM absorbers.

The required frequency-selective behavior of a screen is usually obtained bymeans

of periodic structures in either one or two dimensions that, thanks to their particular

geometry, provide a filter operation. These array structures mainly consist of thin

conducting elements periodically arranged on a given lattice forming a rectangular

array or, more in general, a triangular array, as depicted in Figure 10.1a. The

conducting elements may be printed on a dielectric support either for practical reasons

or for a desired performance. Alternatively to conducting elements, such arrays can
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instead be designed to consist of periodic apertures (cut in a conducting plane, as

shown in Figure 10.1b), to obtain reflecting/transmitting properties that are in some

way complementary to the conducting-elements array, as it will be discussed later.

In general, more than one element (conducting or aperture) can be used to form

the unit cell, which is defined as the smallest portion of the structure that is

periodically repeated in space in order to form the entire periodic structure. More

than one layer of arrays can be used to further improve the filtering properties of an

FSS, possibly obtaining a more broadband behavior.

10.1 ANALYSIS OF PERIODIC STRUCTURES

The periodic nature of FSS structures allows for an enormous simplification of the

EM problem analysis. This is because the computational domain can be restricted to

only one period of the structure geometry (unit cell) by enforcing the so-called

periodic boundary conditions [4]. In addition to FSSs, periodic structures are

important in electromagnetics for a variety of applications that range from antenna

arrays to artificial materials. In what follows, a brief summary of the fundamentals of

the periodic-structure theory is presented.

10.1.1 Floquet’s Theorem and Spatial Harmonics

Let us consider, for simplicity, a one-dimensional periodic structure, whose

geometry is characterized by a spatial periodicity along one dimension, say x, with

spatial period px. The Floquet theorem states that in such a periodic structure, time-

harmonicmodal EM fieldsUðx; y; zÞ (which therefore are source-free fields) have the
property

Uðxþ px; y; zÞ ¼ Uðx; y; zÞe�jkx0px ; ð10:1Þ

where kx0 ¼ bx0 � jax is a complex wavenumber (fundamental propagation constant)

that describes the phase shift and the attenuation of the field between different cells of

(b)

FIGURE 10.1 Example of 2D array structures of metallic elements (a) and of apertures in a

conducting plane (b).
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the periodic structure. The Floquet theorem can also be expressed by stating that such

modal fields Uðx; y; zÞ have the property

Uðx; y; zÞ ¼ Pðx; y; zÞe�jkx0x; ð10:2Þ

where P is a periodic vector function such that

Pðx
 mpx; y; zÞ ¼ Pðx; y; zÞ ð10:3Þ

and m is an integer. A function Uðx; y; zÞ having the property (10.1) (or (10.2) and

(10.3)) is also called pseudoperiodic or Floquet periodic. According to (10.1), the

field distribution in the yz plane remains unchanged under an axial translation of the

observation point along x through a period px; the only change is in the (complex)

amplitude of the field, which is multiplied by a factor e�jkx0px. On the other hand,

(10.2) and (10.3) express the fact that based on the knowledge of the field inside a

unit cell and of the fundamental propagation constant, the field distribution in the

whole space is uniquely determined. Moreover it can be shown that in the presence

of a Floquet-periodic source (e.g., a plane wave) the excited EM field is Floquet

periodic and has therefore a representation as in (10.1) [4]. The complex

wavenumber kx0 can then be an unknown of the problem (e.g., in the absence of

sources, when the modes of the periodic structures need to be determined) or can be

impressed by the external source (e.g., by an impinging plane wave, as it will be

discussed later).

Since the vector function P is periodic, it can be expanded in a Fourier series,

Pðx; y; zÞ ¼
Xþ1

m¼�1
amðy; zÞe�jð2pm=pxÞx; ð10:4Þ

where the coefficients am are given by

amðy; zÞ ¼ 1

px

Zþpx=2

�px=2

Pðx; y; zÞe jð2pm=pxÞxdx: ð10:5Þ

By inserting (10.4) into (10.2), we obtain

Uðx; y; zÞ ¼
Xþ1

m¼�1
amðy; zÞe�jkxmx; ð10:6Þ

where

kxm ¼ kx0 þ 2pm

px
¼ bx0 þ

2pm

px

� �
� jax ¼ bxm � jax: ð10:7Þ
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Therefore the considered EM field U can be expressed as a sum of an infinite

number of traveling waves of the form amðy; zÞe�jkxmx, called spatial (Floquet)

harmonics. It should be mentioned that because of the convergence properties of the

Fourier series, the amplitude of the coefficients jamj tends to zero as jmj tends to
infinity. Moreover a single spatial harmonic does not satisfy the boundary conditions

of the structure and therefore cannot constitute, by itself, a mode of the periodic

structure; rather, an infinite superposition of spatial harmonics can represents a mode

(called Floquet mode or Bloch wave).

To calculate the coefficients am, we need to solve the problem in the unit cell by

treating the unit cell as a parallel-plate waveguide of width px with phase-shift walls

(i.e., walls defined by the boundary conditions that the Floquet expansion dictates;

see (10.1)) and choosing a direction of propagation transverse to x.

10.1.2 Plane-Wave Incidence on a Planar 1D Periodic Structure

The simplest periodic structure is perhaps the strip grating. Its 2D geometry consists

of a planar periodic arrangement of infinitely long and infinitesimally thin

conducting strips standing in free space, as shown in Figure 10.2a with the relevant

coordinate system. Let us assume that the structure is excited by a uniform plane

wave of the form

Eincðx; y; zÞ ¼ uyE
inc
y ðx; zÞ ¼ uyE0e

jk0ðx sin uincþz cos uincÞ: ð10:8Þ

As can be seen, the incident field satisfies (10.1). This means that it can be considered

as a particular case of the Floquet field having the only nonzero fundamental

harmonic characterized by the real propagation constant kx0 ¼ �k0 sin u
inc. Since the

structure is periodic in the x direction and uniform in the y direction and the excitation

is Floquet periodic and independent of y, the scattered field Es ¼ uyE
s
y can be

expressed as a superposition of Floquet harmonics independent of y:

Es
yðx; zÞ ¼

Xþ1

m¼�1
emðzÞe�jkxmx: ð10:9Þ

(a) (b)

z

x

y

incE

inck
incH

xp

incθ

xp

yp

z

x

y

incE

inck
incH

incθ

incφ

FIGURE 10.2 1D (a) and 2D (b) periodic structures under plane-wave incidence.
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Because each Floquet harmonic is a solution of the Helmholtz equation, there results

emðzÞ ¼ Eme

jkzmz; ð10:10Þ

where

kzm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2xm

q
: ð10:11Þ

It can thus be seen that for k2xm < k20, the mth Floquet harmonic propagates away

from the strip grating, whereas for k2xm > k20, it decays exponentially in the z

direction (the branch of the square root is chosen accordingly, i.e., Im½kzm� < 0,

while the plus or minus sign in (10.10) is used for z < 0 or z > 0, respectively).

Therefore in the Floquet expansion (10.6) only few harmonics are propagating plane

waves in the xz plane; all the others are evanescent plane waves. As it can be seen

from (10.9)–(10.11) and (10.6), the number of how many harmonics propagate

depends on frequency and on incidence angle. In particular, as long as k2x1 > k20, only

the fundamental harmonic can propagate; therefore, the frequency at which the first-

order harmonic starts to propagate is such that

kx0 þ 2p

px

����
���� ¼ 2p

l0
) px ¼ l0

1þ sin uinc
: ð10:12Þ

The onset of the first-order harmonic thus occurs for grazing incidence when the

spatial period is half-wavelength and for normal incidence when the spatial period is

a wavelength long.

10.1.3 Plane-Wave Incidence on a Planar 2D Periodic Structure

The previous discussion can easily be extended to planar structures that are periodic

in two dimensions, say along x and y, with spatial periods px and py, respectively, and

excited by arbitrary uniform plane waves, as shown in Figure 10.2b. As is well

known, an arbitrary uniform plane wave can be decomposed into the sum of a TEz

and a TMz plane wave, and the scattering problem solved for each of these waves. In

general, the scattered field can be expressed in terms of Floquet harmonics as

Esðx; y; zÞ ¼
Xþ1

n¼�1

Xþ1

m¼�1
emnðzÞe�jkxmxe�jkyny: ð10:13Þ

By setting kx0 ¼ �k0 cos f sin u and ky0 ¼ �k0 sinf sin u for the wavenumber of the

incident plane wave along x and y, respectively, we can write the phasing along x

(kxm) and y (kyn) of each Floquet harmonic as

kxm ¼ kx0 þ 2pm

px
; kyn ¼ ky0 þ 2pn

py
: ð10:14Þ
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The scattered field can then be expressed as

Esðx; y; zÞ ¼
Xþ1

n¼�1

Xþ1

m¼�1
Emne

�jkxmxe�jkynye
jkzmnz; ð10:15Þ

where

kzmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2xm � k2yn

q
: ð10:16Þ

The branch of the square root is chosen so that Im½kzmn� < 0 (the plus or minus sign

in (10.15) is used for z < 0 or z > 0, respectively). Therefore, for two-dimensional

periodic screens, the field can be written as a superposition of Floquet harmonics,

which are TEz or TMz plane waves either propagating or evanescent in the direction

normal to the screen.

This way it is possible to associate an equivalent transmission line with each of

these plane waves, the same as shown in Chapter 4, with the FSS represented by a

multiport network (see Figure 10.3a). However, for sufficiently low frequencies

(e.g., for minfpx; pyg < l0=2) only the fundamental harmonic (m ¼ n ¼ 0) can

propagate. The combined effect of all higher order harmonics can be lumped

together in a 2� 2 equivalent network (represented by a dyadic admittance YFSS)

that couples the transmission lines associated with the TEz and TMz components of

the fundamental harmonic (see Figure 10.3b). If we assume that no TEz–TMz

coupling occurs and that the FSS is infinitesimally thin, this process will lead to the

network representation of the FSS in terms of the homogenized admittance YFSS (see

Figure 10.3c), which is generally dependent on frequency, polarization, and the

angle of incidence [5].

(a) (b) (c) 

0

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩  ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩  

m n=    = =        =m n0, 1

TE z

TE z
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TMz TMz
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FSSY
0m n=    =

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩  

FIGURE 10.3 Multiport network representing a 2D periodic structure under plane-wave

incidence (a), equivalent circuits at low frequencies (b) and (c).
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By simple geometric considerations, the Floquet expansion theory can be

generalized to handle 2D periodic structures whose axes of periodicity are not

necessarily orthogonal [2].

10.2 HIGH- AND LOW-PASS FSSs

An example of high-pass FSS consists of a periodic arrangement of infinitely long

conducting elements (e.g., infinitesimally thin and perfectly conducting narrow

strips), as shown in Figure 10.4a. This screen in fact behaves as a shunt inductance

for the incident plane waves with the electric field polarized along the conductive

elements (the y direction in Figure 10.4a). This can be established in a simple

manner. As described in the previous section, a uniform plane wave impinging on a

periodic structure excites a countable infinity of plane waves (Floquet harmonics).

However, for sufficiently low frequencies only one of such harmonics (the

fundamental harmonic) can propagate, the others being evanescent. It is thus

possible to associate an equivalent transmission line with this propagating plane

wave. In this framework the periodic structure is represented by means of a shunt

reactance in which all higher order harmonics effects are lumped. The shunt nature

of the discontinuity (i.e., the screen) is due to the assumption of infinitesimally thin

conducting elements which leads to a continuous transverse electric field (if the

elements were assumed to have a finite thickness the proper network representation

of the discontinuity would be a T or P network); the absence of a resistive part is

due to the assumption of lossless elements. Independently of the reactance value

(which can be obtained, e.g., by a variational method or by a full-wave analysis), the

capacitive or inductive nature of the discontinuity can be simply predicted. For

instance, the uniform plane wave with the electric field polarized along y of

Figure 10.4a is a TEz uniform plane wave that induces an electric current on the strip

that is y directed and independent of y; the field scattered by the strip grating is thus a

z

x

y

Einc

θinc

φinc

inck
incH

(a) (b) 

FSS

j
Y

Lω
= −

FIGURE 10.4 Periodical arrangement of infinitely long conducting elements under TEz

plane-wave incidence (a) and its equivalent circuit (b).
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TEz field, as well (i.e., all the harmonics are TEz plane waves). It is well known that

the magnitude of the reactance is inversely proportional to the difference WH �WE

between the stored magnetic and electric energies in the neighborhood of the

discontinuity. As can be seen from the formulas derived in Chapter 4, the impedance

associated with an evanescent TEz plane wave has an inductive nature, and the stored

energy will be predominantly magnetic. This means that the susceptance

representing the periodic screen has a negative sign, and the screen consequently

acts as a shunt inductance for the incident uniform plane wave with the electric field

polarized along the conductive elements. The equivalent network is represented in

Figure 10.4b.

At sufficiently low frequencies an inductor in parallel to the load of a

transmission line acts like a short circuit, and at high frequencies like an open

circuit. More precisely, at sufficiently low frequencies, the strip grating reflects

almost totally the y-polarized uniform plane wave, whereas at high frequencies

almost no reflection occurs (at high frequencies other harmonics may, however,

propagate, and the monomodal network representation will then lose its validity).

By similar reasoning it can be shown that at sufficiently low frequencies, the same

strip grating is transparent for incident plane waves with the electric field polarized

along the x direction. Therefore, in order to achieve a high-pass behavior also for

x-polarized uniform plane waves, a grid of strips must be directed also along the x

direction. This is done by way of the wire mesh shown in Figure 10.5a. The wire

mesh appears as a conducting screen periodically perforated with square apertures: a

more refined network representation of such a screen would require as well the

presence of a capacitance element in parallel with the inductor, whereby any

adjacent pair of wires acts as a shunt capacitance for waves with the electric field

polarized in the direction orthogonal to the wires on the screen plane. A more correct

network representation for the 2D array of square apertures is then that of

Figure 10.5b. With this model it is apparent that the structure no longer behaves as

a high-pass filter because the network representation is an LC parallel that behaves

as a band-pass filter when it resonates. Nevertheless, the distance between the

wires (i.e., the aperture length) is so large that the equivalent capacitance is too

small to produce a resonance (at least for sufficiently low frequencies where

the monomodal network representation of Figure 10.5b is valid) [3]. So it is possible

to obtain a larger value of the capacitance (and thus a resonant FSS that behaves

as a band-pass FSS) by suitably modifying the structure, as it will be shown

later.

The typical behavior of the considered high-pass FSS is sketched in Figure 10.5c,

where the amplitude of the transmission coefficient for the fundamental harmonic is

reported as a function of frequency. Because of the inductive nature of this high-pass

screen, this kind of FSS is also known as inductive FSS. Besides FSSs with square

apertures, the other type of inductive FSSs that have been studied are those with a

planar conducting screen periodically perforated with rectangular, hexagonal, or

circular apertures.

In the literature a reference to complementary FSSs is often encountered.

Basically complementary arrays are patch or slot arrays (consisting of elements
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having an arbitrary shape) such that if the complementary FSSs are superimposed,

an infinitesimally thin perfectly conducting plane is obtained, as shown in Figure

10.1 for complementary arrays of slots and patches. An important consequence of

complementarity is that, based on the Babinet principle, the transmission coefficient

for one FSS is equal to the reflection coefficient of the complementary FSS, when

dual polarizations of the incident plane waves are considered. Therefore, based on

the concept of complementary FSSs, a low-pass FSS can be easily imagined as being

simply the complementary FSS of a high-pass FSS. An example is illustrated in

Figure 10.6, where a bidimensional array of perfectly conducting square patches is

shown (Figure 10.6a), together with its network representation (Figure 10.6b), and

with the typical behavior of its transmission coefficient (Figure 10.6c). Because of

the capacitive nature of this low-pass screen, this kind of FSS is also known as

capacitive FSS. It should be noted that if the screen is not perfectly conducting, or it

has a finite thickness, or it is loaded with a thin layer of dielectric, the transmission

and reflection coefficients of complementary FSSs are no longer equal (the definition
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FIGURE 10.5 Wire-mesh (a), its equivalent circuit (b), and its transmission coefficient (c).
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‘‘complementary FSSs’’ is no longer correct either); they show different resonant

frequencies and different bandwidths.

10.3 BAND-PASS AND BAND-STOP FSSs

For the FSS to perform as a band-pass or a band-stop filter, it needs to possess

resonant properties, meaning both an inductor and a capacitor must be present in its

equivalent network representation and the inductance and capacitance values must be

such that the resonant frequency be smaller than the frequency at which the first

higher order Floquet harmonic starts to propagate. Such values can be obtained by

suitably choosing the elements of the considered FSS. In general, when presenting

resonance (at frequency fR), the conducting-element arrays present band-stop

behavior. Band-stop behavior occurs when the induced electric currents values are

high enough to make a structure act as a conducting plate. However, when presenting
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FIGURE 10.6 Array of square patches (a), its equivalent circuit (b), and its transmission

coefficient (c).
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resonance (at frequency fR), the aperture-element arrays present band-pass behavior

rising from the high values of the equivalent magnetic currents in the apertures that

make the structure transparent to the incident field. The bandwidth performances are

usually defined by a �10 dB level for the band-stop FSSs and by a �0:5 dB level for

the band-pass FSSs [2]. In general, an FSS presents an infinite number of alternating

stop and pass bands, but only the first bands can be used because of the onset of

higher order harmonics that dramatically deteriorate the spectral performance.

One parameter that is critical to determining the bandwidth of an FSS is the

interelement spacing. In general, larger spacing obtains a narrower bandwidth,

earlier onset of higher order harmonics, and greater sensitivity of the resonant

frequency on the angle of incidence and on polarization [3].

Of course, the geometry (shape and dimensions) of the elements characterizing

the unit cell of the periodic screen can also dramatically influence the spectral

properties of an FSS. For simplicity, the elements of the FSS are supposed to consist

of straight conducting sections (plates) and straight conducting segments (dipoles

having widths much smaller than their lengths) with or without round corners. Their

complementary aperture elements should also be considered. A possible classifica-

tion of elements based on their geometry, as suggested and analyzed in [3], is

described below.

10.3.1 Center-Connected Elements or N-Pole Elements

In this category are elements consisting in a connected union of dipoles. Examples

of such elements are the simple dipole (usually arranged in the so-called Gangbuster

surface [3]), the tripole, the anchor, the Jerusalem cross, and the square spiral

[3].

The dipole (shown in Figure 10.7a) is perhaps the simplest element. All other

elements (also those belonging to categories other than the center connected) can be

regarded as dipole combinations (with the exception of curved elements). As is well

known, dipoles are resonant elements with very small bandwidths. However, when

dipoles are arranged in a periodic fashion, the bandwidth of the corresponding FSS is

much larger than that of the single element and can be made very large by packing

the elements very close together [6]. A possible drawback is that the reflecting/

transmitting properties greatly depend on the polarization of the incident plane-wave

field. In particular, in the case of conducting dipoles, the electric field has to be

polarized along the dipole length, whereas for the corresponding aperture element,

(a) (b)  (c)  (d)  (e)  

FIGURE 10.7 Examples of center-connected elements.
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the polarization is along the slot width. Therefore dipole arrays can handle only a

particular type of linear polarization.

The tripole consists of three dipoles connected through one of their endings and

rotated one to the other by 120	, as shown in Figure 10.7b. In general, the tripole FSS
has lower cross-polarization levels and a larger bandwidth compared to the dipole

FSS [7,8].

The anchor element can be obtained from the tripole by adding a capacitance at

the end of each arm, as it is shown in Figure 10.7c. This provides a larger bandwidth

and a delayed onset of the first higher order harmonic with respect to other center-

connected designs [3].

The Jerusalem cross (Figure 10.7d) is one of the oldest considered elements to

form an FSS. It consists of two crossed dipoles with end loadings [9,10]. The

Jerusalem cross is mainly used for narrowband applications.

Finally, the square-spiral (Figure 10.7e) can have a very large bandwidth. The

square-spiral is claimed to be the best element for many applications, likely because

of the very small interelement spacing [3].

10.3.2 Loop-Type Elements

A number of elements consists of closed loops. Examples are the four-legged loaded

element [3], the three-legged loaded element [3], the square loop (single and

concentric) [11,12], the ring (single and concentric) [13–18], and the hexagonal

element [3], shown in Figure 10.8a–e. This kind of elements seems to be the most

used, and it can provide a wide range of bandwidths, depending on the element (e.g.,

narrow bandwidths with three- and four-legged loaded elements and large

bandwidths with hexagonal elements). Because they resonate when their total

length is approximately equal to one wavelength, their size is often smaller than one-

third the wavelength, which allows for the small interelement spacings.

10.3.3 Solid-Interior-Type Elements

Elements that consist of plates of simple shapes (squares, rectangles, hexagons,

circles, etc.) have been considered in previous sections where low-pass and high-

pass FSSs were described. In particular, it was shown how difficult it is to make the

structure resonate because of the usually intrinsically low values of shunt

(a) (b) (c) (d) (e) 

FIGURE 10.8 Examples of loop-type elements.
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capacitance or inductance in the equivalent network model. However, such

structures can be modified to increase such values. For instance equivalent

capacitance in the square aperture FSS can be increased by adding a square patch

inside the aperture (this way the larger value of the capacitance is due to the smaller

distance between the conductors). Eventually this element resembles the square loop

aperture element, in that the final element belongs to the loop-type category. Despite

their drawbacks as resonant FSSs, this kind of periodic structure was the first to be

analyzed in detail [19–21] and still remains the classic example of both high-pass

and low-pass surfaces.

10.3.4 Combinations and Fractal Elements

As can be expected, all the above-mentioned elements have been suitably combined

to form a new element in order to improve the performance of the purely center-

connected element, loop-type element, and solid-interior-type element FSSs.

Examples of such combinations are shown in Figure 10.9a–e.

Attempts have been made to reduce the dimension of the unit cell maintaining

fixed the resonant frequency (and thus the length of the element) in order to

implement combined elements on curved structures and reduce the possible effects

of a finite curvature. To this aim, convoluted [22,23] and fractal [24–26] elements

have been recently proposed that show additionally the possibility of multi-band

frequency operation.

10.4 DEGREES OF FREEDOM IN DESIGNING FSSs

As described in the previous section, the performance of an FSS can be evaluated in

terms of bandwidth, sensitivity to angle of incidence and polarization, and onset of

higher order harmonics. Other quality factors include the cross-polarization level,

the band spacing ratio, and, when shields of finite extent are considered, edge

diffraction effects.

The so-called angular stability can be improved by a suitable choice of the

element of the array, of the lattice type, and of the lattice spacings (i.e., the spatial

periods) [3]. Moreover the resonant curve of a transmission or reflection coefficient

is usually desired to present a top part as flat as possible and steep descents. Starting

(a) (b) (c) (d) (e) 

FIGURE 10.9 Examples of various combined elements.
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from a standard FSS, this effect can be achieved in different ways. For instance, it

can be obtained by using more than one FSS (i.e., a cascade of FSSs with a suitable

spacing, as sketched in Figure 10.10a) with equal [27–29] or different periodicities

and elements [30]; alternatively, the single FSS can be loaded on each side with a

dielectric slab of suitable thickness, as shown in Figure 10.10b, [31]. The first choice

(cascading FSSs) shows a greater sensitivity of the bandwidth to the incidence angle

and polarization, while the second (loaded FSSs) can furnish also a larger bandwidth

(but with a less flat resonant curve near the resonant frequency). However, it should

be mentioned that the presence of a dielectric loading can significantly affect the

performance of an FSS, especially in terms of resonant frequencies, resonant curve

shape, and sensitivity to incidence angle [3,32]. Finally a multilayer FSS can be

considered that combines the advantages of the two approaches, whereby several

cascading FSSs having two or more dielectric slabs are sandwiched between two

surfaces [33–36].

Besides all the above-mentioned parameters (element type, type of periodic

arrangement, spatial periods, number of cascading FSSs, their spacing, and slab

thicknesses), there are some other important factors that determine the characteristic

of an FSS. These are the conductivity of the conductors (important especially for the

design of EM absorbers), their thickness, and the permittivity of the slabs. Because

of the numbers of degrees of freedom, recently many optimization procedures have

been proposed to make the design of the FSSs as effective as possible for the desired

application [37–40].

10.5 RECONFIGURABLE AND ACTIVE FSSs

Over the last few years much of the research on FSSs has been devoted to tuning or

reconfiguring an FSS, that is, to identifying efficient ways to shift or change its

frequency behavior during operation. Basically this reconfigurable screen can be

FIGURE 10.10 Cascade of FSSs (a) and FSSs loaded by dielectric slabs (b).
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obtained in three ways: by changing the EM properties of the substrate of the FSS,

by altering the geometry of the FSS, or by using circuit components with the

possibility of varying the current distribution on the conducting elements of the

FSS.

Some proposed reconfigurable FSSs (RFSSs) have at the base of their

reconfigurable operation the use of a ferrite substrate [41,42]. It is well known

that the constitutive parameters (in particular, the permeability) of ferrite can be

changed by applying an external dc magnetic bias field. As already mentioned in the

previous section, the spectral behavior of an FSS loaded with a substrate can

strongly depend on the values of such constitutive parameters [32]; in particular, by

changing the dc magnetic bias, the frequency response of a ferrite FSS can be shifted

to higher or lower frequencies. However, because of some practical problems

associated with the use of ferrite substrates (power requirements, complex bias

network, etc.), other RFSSs based on substrates capable of changing their EM

properties under an external control have also been proposed, such as liquid

dielectric FSSs [43], ferroelectric FSSs [44], and silicon FSSs [45]. Indeed, in [43]

and [44], the permittivity of the substrate is electronically controlled, while in [45],

the silicon substrate behaves like a conductor when illuminated by an optical source.

The second type of RFSSs has at its operational core a change of geometry of the

considered FSS. In [46] and [47], two cascaded periodic surfaces are suitably shifted

horizontally or vertically to change both the resonant frequency and the bandwidth.

Other structures based on microelectromechanical systems (MEMS) technology

have been proposed as well [48,49].

Finally, the use of lumped-circuit elements on the periodic screen to vary the

current distribution along the conducting elements of the FSS seems to provide the

most promising candidate for the RFSSs. In particular, the use of variable reactive

components [50], varactor diodes [51], or PIN diodes [52,53] has been proposed. In

particular, when PIN diodes are used as switches among the conducting elements of

an FSS (see Figure 10.11), the frequency response of the screen can dramatically

change, depending on the voltage across the diodes. Additionally this kind of RFSS,

x

z

y

FIGURE 10.11 Reconfigurable FSS with PIN diodes.
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along with same other FSSs, has been proposed [54,55] as walls to provide a

selective shielding of enclosures.

10.6 FSSs AND CIRCUIT ANALOG ABSORBERS

Lossy FSSs have been used as well in the improvement of classical resonant

absorbers, such as Jaumann layers and Salisbury screens. As is well known, such

classical resonant absorbers mainly consist of purely resistive sheets and are very

narrowband. Nevertheless with the addition of some capacitance and inductance they

can become broadband absorbers (also called circuit analog, CA, absorbers) required

in many applications. Although there are some bulk artificial materials that present

filtering behavior [56], periodic surfaces made of lossy materials can also effectively

act as broadband absorbers. Depicted in Figure 10.12a is a classic design that has an

equivalent circuit representation reported in Figure 10.12b. In these representations

the inductance is related to the straight part of the conductive elements, and the

capacitance is associated with the gaps between the conductive elements. The

resistance represents the lossy contribution of the conductive elements (characterized

by a finite conductivity). Although the circuit representation is only a rough

approximation, it provides useful insight into the working principle [3].

The CA absorber is in fact designed in such a way that at the resonant frequency

fR of the RLC circuit the distance between the ground plane and the FSS is a quarter

wavelength (as for the Salisbury screen [57], the quarter wavelength transmission

line transforms the short circuit corresponding to the ground plane into an open

circuit at the FSS position). For frequencies lower than fR, the input admittance YG is

inductive, but the FSS admittance YFSS is capacitive, so their imaginary parts tend to

cancel out each other in the total admittance of the CA absorber YCA ¼ YG þ YFSS.

The same reasoning holds for frequencies higher than fR, for which broadband

behavior can be obtained with respect to the classic Salisbury screen. It should be

noted that in the case of CA absorbers, the choice of the real part of YCA slightly
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FIGURE 10.12 Circuit analog absorber (a) and its equivalent circuit (b).
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larger than Y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
"0=m0

p
gives rise to a larger bandwidth with respect to the

RefYCAg ¼ Y0 case [3]. Like the Jaumann layers, to further improve the bandwidth

performance, a CA absorber can be designed with more than one FSS [58]. Other

designs of FSSs as EM absorbers, based on optimization techniques, can be found in

[59–61].

10.7 MODELING AND DESIGN OF FSSs

The techniques adopted to model and analyze FSSs have their roots in past research

on phased array antennas [62]. Many numerical approaches have been used to

perform full-wave analyses of FSSs, based on finite-difference methods (FDTD)

[63], finite-element methods (FEM) [64], the mode-matching method (MMM) [65],

and hybrid methods combining the previous ones [66]. The FDTD and the FEM

methods can handle arbitrary structures, but they are typically slow, and take up too

much CPU time and memory. The circuit theory approach can be used under quasi-

static assumptions by which to obtain the equivalent network of the considered FSS.

Iterative techniques are being used to study realistic truncated structures with a finite

number of elements (in this case the problem is the thousands of unknowns) [67].

However, the method of moments (MoM) is the most common approach, with

infinite planar FSSs. Particularly efficient is the hybrid MoM approach presented in

[68], which is based on the numerical determination of problem-matched entire-

domain basis functions through the boundary–integral resonant–mode expansion

method (BI-RME).

In general, most of the methods are based on the Floquet representation of the

fields in the unit cell. Below we briefly summarize the method proposed by Chen in

[20,21] and reviewed also in [2].

Basically the incident plane wave is decomposed into a sum of zeroth order TE

and TM Floquet waves, and the scattered fields (reflected and transmitted) are

expanded in a set of Floquet waves with unknown (reflection and transmission)

coefficients. Then the components of the electric and magnetic fields tangential to

the FSS are matched on a unit cell of the periodic surface, and an integral

representation for the reflection and transmission coefficients is derived. At this

stage, two different procedures can be followed, depending on the nature of the

elements forming the periodic structure. In particular, by enforcing the tangential

electric field to vanish on the conducting elements an electric field integral equation

(EFIE) is obtained, where the unknown is the electric current on the conducting

elements of the unit cell. Alternatively, by enforcing the continuity of the tangential

magnetic field on the aperture elements, a magnetic field integral equation (MFIE) is

derived, where the unknown is the aperture electric field on the aperture elements of

the unit cell.

In both cases the EFIE and the MFIE can be solved by expanding the unknowns

(electric current or aperture field, respectively) in a complete set of basis functions

and performing a Galerkin testing procedure. When possible, the set of basis

functions is chosen of the entire-domain type [69], and this set coincides with the set

MODELING AND DESIGN OF FSS 235



of modal functions of the waveguide having the aperture element (or the conducting

element) as cross section [20,21]. The subdomain basis functions can also be used,

but many hundreds may be needed [69]. For this reason the MoM-BI-RME method

mentioned above [68] can be really effective.

Alternatively to the field approach described above, a modal transmission-line

approach is used, as described by Orta and Tascone in [2]. In this approach an

FSS with a finite number of elements is viewed as a planar discontinuity in a

waveguide of infinite cross section, and an FSS with an infinite number of

elements is viewed as a planar discontinuity in a waveguide having the unit cell

as cross section and periodic boundary conditions. In the scattering problem the

fields are expanded in terms of the modes of such a waveguide, and an equivalent

transmission line is associated with each of these modes (in particular, voltages

and currents are related to the Fourier transforms of the transverse electric and

magnetic field, respectively, while the sources are represented by voltage and

current generators). This way a generalized scattering matrix can be introduced,

which is the basic tool to study the discontinuities in a waveguide and, for the

present problem, allows to derive a functional equation solved by the method of

moments.

Once an efficient and accurate numerical method is available for the study of an

FSS, the problem of designing the periodic surface to provide a given frequency

response is usually solved by means of optimization techniques; among them,

evolutionary algorithms (e.g., genetic algorithms [37–39] and particle swarm

optimization schemes [40]) are the most used.
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CHAPTER ELEVEN

Shielding Design Guidelines

As is usual in engineering, the design stage is much more difficult than the analysis

stage, and shielding does not represent an exception for this rule. The reason is

manifold: on one hand, the solution of a shielding design problem is generally not

unique, and therefore a number of choices has to be made involving very different

aspects, often very far from electromagnetics. On the other hand, the concurrence of

several coupling paths calls for some wise assumptions in order to simplify the

procedure. The uncertainty as to the figures of merit to be selected and met to

guarantee the correct operation of the shielding structure (i.e., the shielded devices

and systems) is another delicate point (as pointed out in Chapter 3) that is often

by-passed when compliance with standards is assumed to be sufficient for the

achievement of EMC and EMI protection or information security objectives.

In general, any procedure aimed at designing a shielding structure consists of the

following main steps:

1. Establishment of the shielding requirements, in terms of SE values or other

figures of merit.

2. Assessment of type and number of functional discontinuities.

3. Assessment of dimensional constraints and nonelectromagnetic characteris-

tics of the materials.

4. Formulation of a hypothesis of shielding configuration with all the details

defined.

5. Estimation of the shielding performance.

6. Check on specs fulfillment and, if necessary, modification of the character-

istics of the most relevant coupling paths responsible for the failure in the

design.

Electromagnetic Shielding by Salvatore Celozzi, Rodolfo Araneo and Giampiero Lovat
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Of course, steps 4 to 6 should be repeated until the check guarantees that a

reasonable probability of success is achieved by the shielding configuration, once it

is realized. It is important to observe the core of the design procedure that is in steps

4 and 5: experience will be of fundamental guidance in the choice of the structure

(e.g., single shield or multilevel), the components, and the materials. The first step is

also critical because it may lead to an over- or underestimation of the required

shielding levels.

The way in which the steps of the above-outlined procedure are dealt with can be

very different in the two typical situations of susceptibility-oriented or emission-

oriented design. In the former, the frequency-spectrum of the EM field is assumed to

be known, the immunity levels of the various components (in-band and out-of-band)

are often known by manufacturers, and attention is paid to two key points: coupling

paths and internal emissions (possibly adding to external threats). On the other hand,

in emission-driven design procedures the EM field levels of the various subsystems

and components are strongly dependent on assembly characteristics, while the

emission level masks not to be exceeded are usually known and established by

standards.

11.1 ESTABLISHMENT OF THE SHIELDING REQUIREMENTS

The frequency mask of the EM requirements is usually obtained by taking into

account three terms that are then combined in different ways in case of emission or

susceptibility problems:

� Levels of or limits for the environmental EM field, EL

� Margin, M

� Intrinsic and installation-dependent levels of EM susceptibility, S, and radiated

emission of the involved components and systems, RE.

Each of the three terms calls for specific analysis and will be briefly considered in the

following discussion by leaving to references a deeper treatment.

The margin M is often fixed between 10 and 30 dB, depending on the known

accuracy of the adopted prediction methods and on the uncertainty existing on

external field or radiated-emission levels and possible evolution in the system (system

upgrade, time evolution of performance, etc.). However, a marginM ¼ 20 dB is often

chosen [1].

When the susceptibility problem is considered, an upper bound has to be selected

between the predetermined frequency masks and the possible application-oriented

EM levels of external fields due to interfering sources. For instance, the mask may be

that considered in MIL-Std. 461E [2] and the frequency spectrum that ensuing from

an EM pulse [3]. Furthermore the presence of sources in the interior of the shielded

volume should also be carefully considered; depending on the field levels and on the

frequencies they may generate, this aspect will in fact be of guidance in the choice of
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the number of shield levels necessary to guarantee the correct operation of the

system and the compliance with standards. In general, the most difficult task is that

concerning the inventory of the susceptibility levels S of all the components or

subsystems. A careful analysis must be conducted not only on the in-band and out-

of-band susceptibility of each component but also on their functional connection and

on the influence that an external threat may have on nonexposed components

through the exposed adjacent ones. In susceptibility-oriented shielding design, the

required level of reduction is

SE ¼ ELþM � S: ð11:1Þ

The design of shielding configurations aimed at limiting the unwanted emission

from devices, apparatus, and systems requires a careful analysis of the characteristics

of the sources, since the radiating elements and mechanisms are manifold, and

moreover near-field problems are often encountered. Their identification may be not

as trivial as it might be expected at a first glance. The listing of all the radiating

components within the shielding structure will not circumvent the task; for each of

them it is necessary to estimate the voltage and the current spectra, taking into

account that, for most components, only the maximum time response is declared and

guaranteed by manufacturers, leaving an important uncertainty on the maximum

involved frequency. After this operation is completed, the geometry of the subsystem

connections should be considered to account for the radiating components’ additional

radiation at prescribed distances where limits are fixed. The shielding requirements

are evaluated as

SE ¼ RE þM � EL: ð11:2Þ

When both susceptibility and radiated emission are of concern, the selection

between values ensuing from (11.1) and (11.2) is not automatically the largest. The

source type involved in the two situations is generally different, and the a priori

choice of the most critical SE is as difficult as the separate verification for the two

cases. Thus the values ensuing from (11.1) and (11.2) must be compared with the

shielding effectiveness (in a broad meaning) of the designed structure under both the

test conditions.

11.2 ASSESSMENT OF THE NUMBER AND TYPES OF FUNCTIONAL
DISCONTINUITIES

There are several types of functional discontinuities. The main and most frequently

encountered discontinuities are junctions and seams, cable pass-throughs, visua-

lization apertures, air vents, operational devices, and connectors.

As described in Chapter 9, some functional discontinuities are dealt with by

means of solutions enabling an adequate level of SE, whereas others can be rather

critical. Shielded windows are probably the components with the lowest level of SE
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because they may achieve performance levels on the order of 40 to 50 dB (typical

values for windows whose dimensions are up to few tens of centimeters in the

maximum dimension), while levels up to and even above 100 dB are achieved with

correctly designed air vents and shielded connectors. Windows of large dimensions

can be expensive, so the use of multiple apertures for visualization is often preferred

with respect to a unique large aperture. Very serious concern is generally directed to

nonshielded operational devices (e.g., fuses, lamps, and switches) whose apertures

offer an additional coupling path of large impact on the shielding performance of the

overall system. Also the signal or power lines that connect the shielded region to the

source region can be an efficient vehicle of coupling. However, the adoption of

shielded operational devices and of proper grounding [4,5] of cable sheaths is

usually sufficient to prevent any appreciable performance deterioration or to reduce

to a minimum the undesired effects.

Junctions between panels are often sealed by gaskets, as described in Chapter 9.

When gaskets are correctly selected andmaintained, they guarantee adequate levels of

SE in almost all the applications. Much more critical situations occur in dealing with

permanent or semipermanent joints, typicallywelded, screwed, or bolted.At thedesign

stage noncontinuously sealed joints are worthy of a careful analysis. For instance, the

improvement in the SE achieved by subdividing a large aperture, whose length and

height are Ltot and h, respectively, into Na smaller apertures of length La is [1]

DSE ¼ 20 log
Ltot

La
� 20 log

1þ lnðLtot=hÞ
1þ lnðLa=hÞ
� �

: ð11:3Þ

It should be noted that adding screws or other types of contact points will reduce the

height of the apertures with respect to the original one, thus further improving

the shielding performance.

11.3 ASSESSMENT OF DIMENSIONAL CONSTRAINTS
AND NONELECTROMAGNETIC CHARACTERISTICS OF MATERIALS

Dimensional constraints and other nonelectromagnetic considerations (corrosion,

weight, cost, etc.) will influence the choice of materials and the shape of the

shielding structure, which is closely related to the content’s dimensions and to its

emission and immunity characteristics. On the other hand, the shape and the

geometrical dimensions of the shielded volume determine the frequency and

the number of internal resonances. A preliminary and approximate analysis aimed at

verifying whether or not the enclosure will work in an overmoded region of the

frequency spectrum is useful to have as guidance on the importance that some

aspects (e.g., the internal position of the most sensitive or radiating elements) can

assume in the design.

Unfortunately, loading and apertures dimensions and positions can considerably

affect the value of the resonant frequencies, so a careful numerical analysis is needed
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for a wise arrangement of components and subsystems in the shielded volume.

However, in most cases the arrangement of such components and subsystems is

determined on the basis of nonelectromagnetic considerations, such as those due to

accessibility, ventilation, or visualization.

When compatible with costs and weight considerations, the use of partial internal

shields is always recommended to protect the most susceptible components or to

prevent the most radiating from causing both internal problems and emission levels

larger than those admissible. Such a double level of shielding structure can also

alleviate the requirements for the external shield with an overall advantage in terms

of functionality and costs.

11.4 ESTIMATION OF SHIELDING PERFORMANCE

It should be recognized that shielding performance of actual configurations is very

difficult to accurately predict. A rough estimation can be achieved by use of numerical

simulations. These are generally accurate enough for prototyping purposes, provided

that the constructive details are described with sufficient accuracy. However,

depending on both system complexity and software/hardware characteristics, the

input of details of an actual configuration, even in user-friendly commercial software,

may require a lot of work and the output may be available after a long computational

time. Therefore a preliminary approximate estimation can be very useful. Such an

estimation of the SE can be obtained from the ‘‘ideal’’ SE achievable by means of a

barrier of homogeneousmaterial corrected by two terms: aworst-case term accounting

for leakages and a rule-of-thumb term representing resonance deterioration. The

consequent estimation of the SE is therefore

SE0 ’ SEbarrier � DSEtot leakage � DSEstanding waves: ð11:4Þ

The terms SEbarrier and DSEleakage (due to one aperture) were presented in Chapters 4,

6, and 7. Often, in a first attempt of shielding design, the deterioration effects due to

internal resonances are taken into account by means of a 6� 10 factor (in dB) [1].

If the leakage is due to several effects, their worst-case combination (i.e., the sum

of in-phase field contributions arising from different coupling paths) is expressed as

DSEtot leakage ¼ �20 log
Xn
i¼1

10�LiðdBÞ=20

" #
; ð11:5Þ

where LiðdBÞ is the leakage (in dB) of the ith coupling path. Thus the general

expression for a first performance estimation could be

SE ¼ �20 log 10�SEbarrier=20 þ
Xn
i¼1

10�LiðdBÞ=20

" #
� ð6� 10Þ: ð11:6Þ
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CHAPTER TWELVE

Uncommon Ways of Shielding

Some rather uncommon ways of shielding are briefly described in this chapter. They

are based on different principles that call for such means as resorting to an active

compensation, applying partial shields, or exploiting special material properties.

12.1 ACTIVE SHIELDING

Active shielding is the process of reducing the EM field in a region of interest by

driving an active circuit that generates an EM reaction field characterized by the

same frequency and amplitude as the incident field but in the opposite direction [1].

If the incident field presents a wide bandwidth, the final aim is to generate a reaction

field in the same frequency range, or at least in a range as large as possible. Active

shielding is sometimes termed active ‘‘cancellation’’ but this term seems to be not

very appropriate because complete elimination of the incident field is never

achieved, but rather field-cancellation efficiencies of 65% to 90% are typical

(SE ranging from 10 to 25 dB).

To understand the true nature of the active shielding, this technique must be

regarded as an alternative method to the basic passive shielding practice that limits

an EM field (in both emission and susceptibility problems) by means of a barrier

made of materials with high conductivity or permeability. Active shielding has

remained an interesting way to attenuate mainly low-frequency magnetic fields. As

explained in Appendix B, magnetic fields at extremely low frequencies are in fact

attenuated with much difficulty via passive shields made of common materials

(obtaining SE typically lower than 5 dB); alternatively, high-performance and

expensive ferromagnetic materials can be used, such as permalloy, mumetal, or

factory custom alloys. In addition it should be noted that passive shields can be used
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only for single rooms because their use at the level of whole buildings would be

impractical.

In this framework it should be clear that active shielding represents a practical

and cost-effective approach when the mitigation of a power-frequency magnetic

field is required in wide areas, such as for buildings placed near overhead

power transmission lines or buried cables [2,3]. Similar technologies are often used

also at the room level for the mitigation of a field produced by many different

sources, such as stray fields from power transformers [4], bus bars, service panels

[1], and inductions heaters [5,6], or to protect sensitive electron-beam devices,

such as scanning electron microscopes and computer monitors, from possible

interference.

The mitigation of the power-frequency magnetic fields in a wide region of space,

as a building floor or a whole building, is mainly motivated by health issues. In the

last 30 years the health effects of low-intensity power-frequency magnetic fields

have become a subject of controversy. Several in vitro testing as well as in vivo

studies on animals have not been able to show a clear correlation between certain

cancer forms and domestic or work exposure to magnetic fields at levels normally

existing near power lines. However, it is still under debate whether an interrelation

between magnetic fields and human health can be confirmed in some way by the

International Agency for Research on Cancer (IARC). This debate has generated so

much concern about possible adverse health effects of power-frequency magnetic

fields that many countries have adopted precautionary principles aimed at reducing

magnetic-field exposure in existing installations and also at the preliminary planning

stage in upcoming buildings.

Even if the mitigation of the magnetic field through the active shielding may be

approached in a number of ways, the opposite field is generally produced by currents

injected into adequately designed (round or square) active coils. A field-controlled

configuration consists mainly of three basic elements: a sensor to monitor the

incident field, a control and power unit, and a network of driven coils [1]. The system

tracks the incident field and instantaneously adjusts to compensate for changes that

can occur in the emitting source. Despite the rather simplicity of the configuration,

several issues are critical, and in the past they precluded effective deployment of

active shielding on a large scale. The first challenge in obtaining good performance

is the proper design of the driven coil network that surrounds the treated area and

produces the counterfield. The active shielding technique is more effective on those

fields that are uniform in direction, intensity, and polarity.

However, the fields emitted by a real source can be very complex, showing

elliptical polarization, strong field gradients, inductive delay, and spatial phase

variance. In order to make the active shielding really effective, an accurate design

procedure must be carried out in each location, to which the design is completely

unique, choosing the optimal values of geometrical parameters (number, position,

and dimensions of coils) and currents. Depending on the incident field, the values of

current required to obtain a significant value of SE may be large (from several to

hundred of amperes), making the system complex from a technical and safety point

of view. In addition active shielding in its basic form works only at a given frequency
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(usually at power frequencies) so that it cannot be effective in reducing higher order

harmonic fields as those radiated by power electronic equipment or high-voltage

direct-current systems. To overcome this problem, it is necessary to construct the

waveform of the coil currents as a function of the incident magnetic induction bðtÞ.
An effective and simple idea consists in obtaining instant by instant a current

proportional to the field measured by a field sensor through an appropriate analog or

discrete time controller.

Finally, there is the problem of finding where to place the active coils given an

adequate free space surrounding the area to be protected or the source to be confined.

When dealing with the fields emitted by three-phase power lines, these coils are

usually buried in proximity of the lines. However, for complex elliptically polarized

fields, as those emitted by high-voltage overhead lines, auxiliary conductors become

necessary in addition to coils and these may be difficult to be installed for space and

aesthetical reasons.

To overcome these problems, the mitigation of the magnetic field near power

lines is usually obtained by means of auxiliary conductors whose currents exert a

compensating influence on the primary field [2,3]. These wires can be driven, or not,

by an active source. In the first case, in order to form a loop, the number of wires

(which are passive components) is at least two, and the mitigation current flowing

along the conductors is driven by the voltage induced by the currents of the

transmission line. This way the mitigating field is always proportional to the incident

field of the line, and the unaltered mitigation is achieved for any value of the load

carried by the line. The mitigating wires are usually located near the conductors of

the transmission line, such as under each outer phase of the line, or above the two

outer phases but at a height lower than the guard wires, or at ground level;

alternatively, they could be even constituted by the two guard wires, if already

present on the line. To increase the versatility of this approach, an active source can

be included into the mitigating loop. Hence, in order to establish the optimal

mitigation that causes the minimum resultant field in a specified area, and in addition

to choose the best position for the auxiliary conductors, it is also possible to use

suitable values for the current amplitudes and phases.

The final generalization of this approach is to make all the currents of the active

wires independent of each other, allowing them to return through the earth. Losses

associated with the return current may be tolerated, since usually the mitigation

needs to be achieved only for short lengths, that is, where human exposure is

foreseen. For simple high-voltage overhead lines, it is generally possible to create in

a given region a magnetic field almost opposite to that produced by the primary

source by driving the guard-wire, while for three-phase cable sources or complex

balanced or unbalanced three-phase systems, additional buried active conductors are

necessary.

Examples of power-line mitigation can be found in [2,3], and an application of a

three-phase line near a building is shown in Figure 12.1. Mitigation is often required

on only one side of a line, at distances between 10 and 50 meters. An adequate

choice of the equivalent height of the line conductors needs to be made to account

for their sag, so the magnetic induction can be assumed to lie in a plane transverse to
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the line direction, denoted as the z axis; the rms value of the magnetic induction is

used as a measure of human exposure conditions.

The goal of the mitigation is the determination of the currents to be driven

through the additional wires, whose position is also to be determined in such a way

that a reduction of the magnetic induction is observed in the area of interest. In

particular, the following inequality has to be satisfied:

Bðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBxj2 þ jByj2

q
� Bthres with ðx; yÞ 2 f½x1; x2�; ½y1; y2�g; ð12:1Þ

where Bðx; yÞ is the total field due to the source conductors and to the compensation

wires, Bthres is the threshold value of the magnetic flux density, and the point ðx; yÞ
belongs to the target area defined by the two intervals ½x1; x2� and ½y1; y2� along the x
and y axis, respectively. The optimal solution may be sought by introducing a global

parameter to be minimized, which is usually defined as

Cðx1; x2; y1; y2Þ ¼
Z x2

x1

Z y2

y1

Bðx; yÞ dx dy: ð12:2Þ

The considered optimization problem is nonlinear, since the rms of the magnetic

induction B has a nonlinear dependence on the distance R (which is also a parameter
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FIGURE 12.1 Three-phase line (conductor 1: x ¼ 2:3m, y ¼ 23m; conductor 2: x ¼ 2:3,
y ¼ 24:8m; conductor 3: x ¼ �2:3m, y ¼ 27:8m; guard-wire conductor 4: x ¼ 0m,

y ¼ 32:9m) near a building with a target area defined by the coordinates x1 ¼ 20m,

y1 ¼ 0m, x2 ¼ 30m, and y2 ¼ 6m.
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to be optimized). This means that linear methods such as the standard Simplex are

not suitable tools to solve the problem. In this case, genetic algorithms (GAs) find an

optimal application, and they are usually chosen to search for the global minimum of

the objective function (12.2). In fact GAs have been proved to be efficient and

accurate in the solution of such a multidimensional optimization problem exhibiting

several local minima [7].

The magnetic-induction profiles with and without active shielding for the

configuration of Figure 12.1 are shown in Figure 12.2 with the line carrying a

balanced system of currents at I ¼ 400 A. As can be seen, the threshold of 0.4 mT is

surpassed in a two-floor building located at 20 to 30 meters from the line axis.

However, by means of an active compensation through a current driven in the guard-

wire (I ¼ 60 A), the threshold goal is attained.

Unfortunately, after the mitigation is achieved, an increase in the magnetic

induction could be observed on the opposite side with respect to the line (as shown in

Figure 12.2). To prevent this inconvenience, a passive partial shield is usually

introduced to alter the field distribution on one side without affecting the other side.

This technique, which combines active (wires and/or coils) and passive shielding,

has general applicability and is also used to reduce stray fields from secondary

transformer substations [4], induction heaters [5,6], and electric panels [1]. It is

considered to be the most effective way to reduce extremely-low-frequency

magnetic fields. An example of active/passive shielding is shown in Figure 12.3. To

mitigate the magnetic field in the target, an active shielding is first applied; it drives a

current of 212 A in guard wire 5 and a current of 98 A in the additional buried wire

(x ¼ 0m, y ¼ �1m) as shown in Figure 12.4a. Next, since an increase of 12 mT
above the buried wire is observed, a partial passive shield is introduced from

x ¼ �1:5m to x ¼ 1:5m, buried at a depth of 0.5 m below the ground level. In
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FIGURE 12.2 Magnetic-induction profiles with and without active shielding at 1 and 4 m

above the ground for a system as in Figure 12.1.
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Figure 12.4b the magnetic-induction profiles are reported for different thicknesses t

of the shield and for different materials (e.g., aluminium with mr ¼ 1 and

s ¼ 3:5 � 107 S/m and steel with mr ¼ 5 � 104 and s ¼ 7:5 � 105 S/m); two-layer

configurations are considered too.

12.2 PARTIAL SHIELDS

Open shielding topologies, namely, those where the shielded volume is not

completely encircled by a shielding structure, allow a significant leakage at their

edges, and are also called partial shields. They are realized by means of a finite-size

barrier placed between the source and the observation point (victim). Such structures

present worse shielding properties with respect to closed configurations (i.e.,

enclosures) and their performance is also strongly dependent on the source

characteristics. Partial shields, however, are much simpler to install, as well as

lighter, cheaper, and more effective as concerns heat dissipation. Because of their

effectiveness in dissipating heat, they are frequently applied to shield electronic

components and printed circuits.

Approximate analytical studies have been carried out on this subject in the

presence of low-frequency sources, while a numerical analysis is appropriate in
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FIGURE 12.3 Three-phase line (conductor 1: x ¼ �7:2m, y ¼ 24:4m; conductor 2:

x ¼ 0m, y ¼ 24:4m; conductor 3: x ¼ 7:2m, y ¼ 24:4m; guard-wire 4: x ¼ �4:9m,

y ¼ 26:7m; guard-wire 5: x ¼ 4:9m, y ¼ 26:7m) near a building with a target area defined

by the coordinates x1 ¼ 20m, y1 ¼ 0m, x2 ¼ 30m, y2 ¼ 6m.
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dealing with high-frequency problems. Nevertheless, some of the analytical

considerations ensuing from low-frequency approximations may be valid when

the distance between the source (or the victim) and the shield is much shorter than

the wavelength.

Conformal mapping techniques have been used to evaluate the low-frequency

magnetic field beyond a finite-width perfectly conducting (PEC) shield. Also

problems concerning perfect magnetic conductor (PMC) shields and double-layer

(PEC-PMC) shields have been studied [8]. Here only the main results are

summarized.

In particular, the original problem is converted by means of a conformal

transformation into a much simpler one, whose solution is achievable through the
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FIGURE 12.4 Magnetic-induction profiles with and without active shielding at 1 m above

the ground plane (a); magnetic-induction profiles with and without passive shielding (b).

PARTIAL SHIELDS 253



method of images, as shown in Figure 12.5. The point z0 ¼ x0 þ jy0 in Figure 12.5

indicates the source location in the z plane; z ¼ xþ jy is the observation point, and

the width of the finite-size shield is 2L. By means of the transformation

z ¼ L
1� t2

1þ t2
ð12:3Þ

and

t ¼
ffiffiffiffiffiffi
L�z
Lþz

q
if y < 0;

�
ffiffiffiffiffiffi
L�z
Lþz

q
if y > 0;

8<
: ð12:4Þ

the following solutions are achieved [8]:

PMC Case

Hx ¼ �Im
I

2p

1

t � t0
þ 1

t � t�0
� 1

t � j
� 1

t þ j

� �
�ð1þ t2Þ2

4Lt

 !" #
; ð12:5aÞ

Hy ¼ �Re
I

2p

1

t � t0
þ 1

t � t�0
� 1

t � j
� 1

t þ j

� �
�ð1þ t2Þ2

4Lt

 !" #
: ð12:5bÞ
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FIGURE 12.5 Wire current near a PEC or PMC shield (a) and configuration obtained after

a conformal mapping transformation (b).
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This procedure may be extended to a double-layer shield [8]; a procedure that

accounts for field penetration through the penetrable shield material is reported

in [9].

12.3 CHIRAL SHIELDING

As described in Chapter 2, chiral media are natural or artificial materials whose

constitutive relations relate both the electric displacement D and the magnetic

induction B to the electric E and magnetic H fields, through (for simplicity, scalar)

permittivity ", permeability m, and chirality parameter k (see Section 2.7.1). These

constitutive relations can also be cast in the form [10]

D ¼ "E� jjcB;

H ¼ jjcEþ 1

m
B;

ð12:7Þ

where jc is the so-called chiral admittance that quantifies the strength of chirality

and the handedness of the material. Chiral media have received considerable

attention over the last few decades because, with respect to conventional materials,

the chirality parameter provides an additional degree of freedom in the design of

materials with specific EM characteristics.

In particular, chiral shields made of layered chiral structures have been studied to

obtain efficient absorbers and reflectors. A layered chiral structure mainly consists of

a layered structure (in a planar, cylindrical, or spherical fashion) in which one or

more layers present chiral characteristics. In [11] a so-called chiroshield was

proposed (and also patented) for shielding a region of space (or a scatterer) from EM

radiation. In source-free chiral media the general time-harmonic field vector V

satisfies the chiral wave equation

r�r� V� 2vmjcr� V� k2V ¼ 0: ð12:8Þ
Two eigenmodes exist, corresponding to a right-circular (RCP) and a left-circular

polarized (LCP) plane wave, respectively. Their eigenvalues (wavenumbers) are

kRCP;LCP ¼ k½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2j2c

q

 hjc�; ð12:9Þ

where k ¼ v
ffiffiffiffiffiffi
m"

p
and h ¼ ffiffiffiffiffiffiffiffi

m="
p

. Moreover it turns out that

kRCP;LCP

kRCP;LCP
� E ¼ hchH; ð12:10Þ

where kRCP;LCP is the wavevector associated with the wavenumber kRCP;LCP and

hch ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2j2c

q
is the so-called chiral impedance (which is independent of the

handedness of the medium).
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The planar chiroshield has been shown to be more efficient than the classical

Dallenbach and Salisbury screens [12,13]. In particular, the magnetic chiroshield

(consisting of a metal plate covered with a thin chiral layer of thickness t) has been

proposed as an alternative to the Dallenbach screen, while the electric chiroshield

(consisting of a thin chiral layer a quarter-wavelength spaced with respect to the

metal plate) as an alternative to the Salisbury screen. The better performance of such

chiral screens is likely due to enhanced impedance matching, larger absorptions, and

larger bandwidths.

Similar advantages have been found for curved metallic surfaces coated with

chiral materials. In particular, in [14] it has been shown how a dramatic decrease of

the radar cross section (RCS) of a metallic sphere can be obtained with a chiral

superstrate when the radius of curvature is larger than a half-wavelength.

The role of chirality in low-frequency shielding was investigated in [15], where it

has been shown that chiral shields may offer a larger electric and magnetic SE with

respect to conventional dielectric and magnetic coatings. In particular, the electric

SE is affected also by the magnetic permeability of the medium, and a magnetic SE

is present also with nonmagnetic coatings. Such properties are clearly a consequence

of a crosscoupling of the electric and magnetic quantities.

More recently a state-equation approach has been presented in a study of the

shielding properties of chiral-coated fiber-reinforced plastic composite cylinders.

The influence of the chiral layer thickness and of the chiral admittance on possible

invisible characteristics of the object was also investigated [16]. Bi-anisotropic

structures (in particular, omega media) with additional degrees of freedom in order

to design antireflection coverings were suggested in [17].

12.4 METAMATERIAL SHIELDING

The issue of invisibility by means of metamaterial coatings has continued to

be studied, and a large number of papers are being published on this topic (e.g., see

[18–23]). Invisibility means that an object is made nearly transparent to an external

observer; that is, its scattering cross section is dramatically reduced, at least in a

narrow frequency range. Much effort is directed toward the design of metamaterial

structures that operate as cloaks of invisibility in the microwave and in the

optical frequency range. Different ideas and techniques are being tried. On one

hand, the use of anisotropic and/or inhomogeneous metamaterials has seemed to

allow for a control of field distribution [19]. That is to roughly say, the EM field is

swept around the coated scatterer, and it appears as if it had passed there through an

empty volume of space; experimental results are already available [21]. On the other

hand, similar effects have been theoretically predicted using isotropic and

homogeneous metamaterials as coatings [18–23]. In any case, the progress on this

topic is impressive but following it in the literature is beyond the scope of this

section.

Another issue regarding metamaterial shielding is the design of metamaterial

screens, which can present some advantages over conventional screens. In general,
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the metamaterial screen consists of a periodic arrangement of small dielectric and/

or metallic inclusions in a host medium (with spatial period much smaller than the

operating wavelength). The periodic structure can thus be homogenized and des-

cribed by effective constitutive parameters.

In [24] the shielding performance of a planar metamaterial wire-medium (WM)

screen under plane-wave illumination is studied. Such a screen consists of a finite

number N of periodic layers of thin lossy metallic wires embedded in a dielectric

host medium of finite thickness with relative dielectric permittivity "rh. The structure
is sketched in Figure 12.6.

With respect to other one- and two-dimensional periodic structures studied in the

past, such as wire grids [25], the proposed structure contains more than a single row

of conducting wires, so the usually applied equivalent shunt-impedance model

cannot be employed. The cylinders are assumed to be infinitely long in the z

direction; the spatial period along the y direction is dy, and the diameter of the

cylinders is 2r0. The distance dx between each row of cylinders is assumed to be

equal to the spatial period, meaning dx ¼ dy ¼ d. The main assumption that has to

be made in order to correctly perform a homogenization of the periodic structure

consists in considering the spatial period d suitably smaller than the operating

wavelength l0. In such a case it can be shown that the periodic structure can be

represented from the effective-medium-theory viewpoint as a homogeneous

nonmagnetic medium characterized by an effective diagonal permittivity tensor.

The two elements of such a tensor corresponding to directions orthogonal to the

wires ("xx and "yy) are simply equal to the dielectric permittivity of the host medium,

whereas the remaining element "zz is characterized by both temporal and spatial

dispersion [26].

However, the propagation of EM waves with an electric field polarized along

the wire direction z is unaffected by the anisotropy and the spatial dispersion.

The medium can thus be represented by a simple scalar frequency-dependent
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FIGURE 12.6 (a) Metamaterial wire-medium screen; (b) transverse view with geometrical

parameters.
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permittivity, whose behavior resembles that of a cold nonmagnetized collisionless

plasma:

"ðf Þ ¼ "0"rh 1� f 2p

"rhf 2

 !
; ð12:11Þ

where fp=
ffiffiffiffiffiffi
"rh

p
is the plasma frequency at which the effective permittivity of the

wire medium is equal to zero. The frequency fp mainly depends on the geom-

etrical parameters of the structure. In the limit of small radius (i.e., r0 � d), there

results [27]

fp ¼ c

d

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p½lnðd=2pr0Þ þ 0:5275�p ; ð12:12Þ

where c is the speed of light in vacuum. Clearly, for frequencies smaller than

fp=
ffiffiffiffiffiffi
"rh

p
, the effective permittivity is negative and increases in absolute value by

lowering frequency. To derive (12.11), perfectly conducting wires were assumed. In

general, a finite conductivity s gives rise to a nonzero imaginary part of the effective

permittivity, as it will be shown shortly.

In general, for arbitrarily polarized waves, the effective permittivity tensor is

given by [26]

e ¼ "0"rh uxux þ uyuy þ 1� f 2p

"rhf 2 � ðc2k2z =4p2Þ

" #
uzuz

" #
; ð12:13Þ

where kz is the wavenumber along the wire axis. It is immediate to see that (12.13)

reduces to (12.11) for E-polarized waves propagating orthogonally to the wires. In

what follows, we will limit ourselves to the study of normal incidence of E-polarized

waves so that we can simply adopt the model (12.11) for the effective permittivity of

the medium.

As mentioned above, when considering lossy wires (i.e., when a finite

conductivity s has to be taken into account), the expression (12.11) for the effective

permittivity has to be suitably modified. Following a reasoning similar to that

proposed in [28], it is simple to show that a correct model for the scalar effective

permittivity is

"rðf Þ ¼ "rh � c

2pfd2½f lnðd=4r0Þ þ ½ð1� jÞ=2pr0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpf=ch0sÞ

p ðI0ðjÞ=I1ðjÞÞ�
;

ð12:14Þ

where h0 is the free-space impedance, I0ð�Þ and I1ð�Þ are the zero- and first-order

modified Bessel functions of the first kind, respectively, and

j ¼ ð1þ jÞr0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ph0sf

c

r
: ð12:15Þ
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Finally, in the homogenization process a finite thickness heff has to be associated

to the homogeneous slab equivalent to the periodic structure, which takes into

account the fringing fields at the top and bottom layers of the structure. In particular,

an equivalent thickness equal to Nd has been adopted in [24], in order to best match

the reflection performance of the actual periodic structure and that of its

homogenized model. At this point the calculation of the SE can easily be performed

by means of the usual TL analogy illustrated in Chapter 4. It has been shown in [24]

that the results obtained by means of the homogeneous model are in perfect

agreement with those obtained through full-wave simulations of the actual periodic

structure. An example is shown in Figure 12.7, where a comparison is reported

between full-wave and homogenized results for the SE of a WM screen in air,

constituted by N¼ 4 layers of perfectly conducting wires with spacing d¼100 mm

and radius r0¼ 0.1 mm. The operating frequency is f¼100MHz, and the SE is

reported as a function of the normalized abscissa x/d in the plane y¼ 0 (see Figure

12.6b). A remarkable agreement is found between approximate and full-wave results

also in the proximity of the air-screen interfaces and inside the WM screen. Such an

agreement is maintained for all the frequencies below the plasma frequency.

Also in [24] the performance of the metamaterial WM screen is compared with

the performance of a lossy solid metal screen to seek out any advantages of the

metamaterial structure over the conventional one. To compare the performances of

the two structures, the screens had to have the same volume occupancy of their metal

constituents. Therefore, for a WM screen with N periodic layers of lossy wires with

radius r0 and spatial period d, the equivalent solid metal screen has a thickness hm
given by

hm ¼ Npr20
d

: ð12:16Þ

FIGURE 12.7 Comparison between homogenized and full-wave MoM results for the SE

of a lossless WM screen in vacuum as a function of the normalized abscissa x/d in the

plane y ¼ 0, at the frequency f ¼ 100 MHz. The WM screen has the following parameters:

N¼ 4, d ¼ 100 mm, and r0 ¼ 0.1 mm.
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It is thus shown that there exists a frequency below which the performance of

the lossy WM screen is superior to that of the solid metal screen. Such a frequency

depends on the relevant physical and geometrical parameters of the actual periodic

structure, and it can be estimated in planning an effective design for the WM

screen. Furthermore a dramatically different behavior of the SE is observed as a

function of frequency in the solid and WM screens. In particular, while the SE

monotonically increases with the frequency for the solid screen, it first increases

and then decreases in the WM case, thus showing a possibly desirable selective

property. It is speculated that, by suitably modifying the internal geometry of the

metamaterial, such frequency selectivity can be controlled and possibly further

enhanced.

On the other hand, the considered WM screen was observed to be completely

transparent to waves with the electric field orthogonal to the wires. For this reason,

to enhance its effectiveness against arbitrarily polarized plane waves, a second

WM screen was introduced in [24], with wires orthogonal to those of the first

screen (as shown in Figure 12.8), and this setup was studied under normal

incidence. The analysis of single- or double-layer WM screens illuminated by

arbitrarily polarized plane waves at oblique incidence nevertheless requires a more

sophisticated description of the equivalent homogenized metamaterial and a

considerably more involved transmission-line model. So work is still in progress,

as well as an analysis of other planar metamaterial screens based on different

inclusions.
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APPENDIX A

Electrostatic Shielding

Although most of the shielding techniques refer to radio-frequency (RF) and

microwave ranges, also static and stationary applications deserve special attention.

In this appendix, we focus on electrostatic shielding. Several electrostatic effects can

in fact damage or cause failure in electronic components and assemblies. High-

speed and high-density electronic devices are especially vulnerable because of their

high static sensitivity. In general, the presence of even one very static sensitive

device on a printed-circuit board requires that the entire assembly be handled with

static protective precaution. The usual low-level static damages (such as component

assembly) can increase leakages, alter functional characteristics, and, in general,

weaken the devices performance.

The most typical example of electrostatic damage consists of a charged object

that comes into contact with an electronic device. This causes a transient discharge

to pass directly through the device (electrostatic discharge, ESD). Furthermore many

devices can be damaged even without direct contact. For instance, one of the most

basic semiconductor structures—the dielectric layer between the two conductive

layers of a capacitor—can be completely spoiled by the presence of an electrostatic

field. The dielectric breakdown in fact occurs when the field across the structure

exceeds its dielectric strength. As is well known, such a problem is common to all

the MOS devices.

Electrostatic shielding protects components and assemblies from damage and

failure caused by external electrostatic fields. Clearly, the level of the required

shielding is determined by the level of electric field that causes the failure.

Since the earliest age of electricity, the electrostatic effects that could be created

within a volume by an external electrostatic field were known to be prevented by

using a highly conductive enclosure that would act as an electrostatic shield. The

fundamental principles of electrostatic shielding can easily be derived from basic
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electrostatic knowledge. In Section A.1, the laws of electrostatics are briefly

recalled, and in Section A.2, the basic concepts and tools are introduced. Finally, in

Section A.3, several electrostatic shields are quantitatively analyzed and discussed.

For a more extensive discussion of electrostatic problems, the interested reader is

encouraged to consult the classic textbooks (e.g., [1,2]).

A.1 BASICS LAWS OF ELECTROSTATICS

In statics the field equations are decoupled into two independent sets of equations in

terms of two independent sets of fields. In particular, the static electric field is

described by the following equations written in differential form:

r� EðrÞ ¼ 0;

r � DðrÞ ¼ reðrÞ;
D ¼ DðEÞ:

ðA:1Þ

The second equation in (A.1) is the differential form of the Gauss law, and the third

equation expresses the constitutive relationship in an operatorial form. For

simplicity, in what follows we will assume that the dielectric media are linear,

homogeneous, and isotropic so that

DðrÞ ¼ "EðrÞ: ðA:2Þ

As is well known, the connection between electromagnetics and mechanics is

established by Lorentz’s force equation, for which a charge qmoving at velocity v in

the presence of an EM field experiences a force given by F ¼ qEþ qv� B. Clearly,

in electrostatics the Lorentz force is due only to the electric field and is thus given by

F ¼ qE (which also expresses Coulomb’s law).

Based on the above formulation, it is possible to derive the behavior of

conductors under the influence of an external electric field. By definition, a

conductor is a material having charges free to move under external influences, both

electric and nonelectric. In terms of a rough atomic model, the electrons can migrate

easily from one atom to another, moving through a background lattice. By definition,

an uncharged conductor is neutral: this means that the amount of negative charge

(associated with electrons) is equal to the positive one (associated with the

background lattice). In an uncharged conductor at equilibrium, all the charges

are distributed in such a way that the macroscopic electric field is zero inside and

outside the conductor (a macroscopic field is that obtained by averaging over

macroscopic dimensions). If it were not, a nonzero electric field would cause a

Lorentz force to act on the free electrons, and therefore would give rise to a

macroscopic motion of charges (in contrast with the assumed static equilibrium).

Similar reasoning can be applied to describe the state of equilibrium that is

reached in a conductor under the influence of an external field, as illustrated in
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Figure A.1. When a positive charge is placed in the proximity of a neutral conductor,

the created electric field pushes the electrons of the conductor toward the positive

charge, thus creating a conduction current. The relationship between the electric

field and the resulting current density is described by Ohm’s law, for which J ¼ sE

(the inverse of the conductivity s thus describes a sort of obstacle for the charge

motion through the background lattice). Therefore the negative charges continue to

accumulate near the surface of the conductor until the field that these charges are

creating becomes equal and opposite to the original one produced by the external

positive charge. (Clearly, a reaction force also attracts the external positive charge to

the conductor, but in this example we assume that both the outer charge and the

conductor body are fixed in space through an external mechanical force.)

The rate of the whole process mainly depends on the value of the conductivity s:

for conductors such as copper or aluminium the relaxation time of the volume charge

density is approximately 10�19 s. Therefore, when a conductor is subject to an

applied electric field, within a very short time the freely moving charges inside the

medium will rearrange themselves in such a way that they neutralize the effect of the

original electric field inside the conductive medium. Inside an isolated conductor at

equilibrium no electrostatic field can exist. As a consequence, inside a conductor, the

macroscopic charge density (re ¼ r � D) is zero, so a net charge can exist only at

the conductor surface (actually the charge will exist in a region near the surface of

the conductor, but this comes out only from a microscopic description of the

phenomenon). Finally, it can easily be shown that the electrostatic field at the

conductor surface is perpendicular to the surface, and by a simple application of

Gauss’s law, it turns out that its magnitude is equal to un � E ¼ reS=", where un is the
unit vector normal to the surface pointing outward from the conductor and reS is the

electric surface charge density.

Another situation that is important to describe in discussing electrostatic

shielding is the positively charged particle in the proximity of a conductor with the

conductor grounded, as shown in Figure A.2. A conductor is grounded when it is in

some way connected (e.g., via a grounding strap) to an ideal reservoir of charges (in

practical applications the earth acts as this charge reservoir, also known as ground).
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FIGURE A.1 Neutral conductor under an external electrostatic field.
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Because of the presence of an outer positive charge (and of its electric field), the

negative charges of the conductor move toward its surface (on the side of the outer

positive charge). However, in this situation the positive charges of the lattice can be

compensated by other negative charges coming from the ground. Unlike the

nongrounded conductor, the grounded conductor is now negatively charged, but in

both cases the total electric field inside the conductor is zero.

A.2 ELECTROSTATIC TOOLS: ELECTROSTATIC POTENTIAL AND
GREEN’S FUNCTION

From the first equation of (A.1), it follows that a scalar field VðrÞ (called the

electrostatic potential) can be introduced such that

EðrÞ ¼ �rVðrÞ: ðA:3Þ

The potential difference Vðr2Þ � Vðr1Þ represents the work per unit charge required
to move a particle from r1 to r2 against a given electric field. Actually the scalar field

VðrÞ in (A.3) is defined up to an arbitrary fixed constant. By arbitrarily choosing a

reference point r0, such a constant can be chosen as Vðr0Þ (usually r0 is chosen in

such a way that Vðr0Þ ¼ 0). In any case, it can be seen that the potential difference

between two points is unaffected by this choice.

At the interface between two different media (1 and 2) with dielectric permittivity

"1 and "2, respectively, the following boundary conditions hold:

un � ðE1 � E2Þ ¼ 0; ðA:4Þ
un � ð"1E1 � "2E2Þ ¼ reS; ðA:5Þ

where un is the unit vector normal to the interface pointing into region 1 from

region 2, the subscripts 1 and 2 label the fields just above and just below the
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FIGURE A.2 Grounded conductor under an external electrostatic field.
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interface, respectively, and reS is still the electric surface charge density. The

boundary conditions (A.4) and (A.5) can also be expressed in terms of the electro-

static potential as

V1ðrÞ ¼ V2ðrÞ;
"1

@V1

@n
� "2

@V2

@n
¼ �reS;

ðA:6Þ

where the normal derivative is taken in the un direction. Other properties of the

electrostatic potential can immediately be derived, based on the considerations of

the previous section. We already know, for instance, that at equilibrium, the

electrostatic field in the interior of a conductor is zero. From (A.3), it follows that the

electrostatic potential inside the conductor must have the same value at all the points,

meaning the conductor is equipotential, and in particular, its surface is an

equipotential surface. For the same reason also the ground (introduced in the

previous section) has to be equipotential.

In any problem of mathematical physics it is most important to identify

conditions under which the considered problem admits a unique solution. As

concerns electrostatics, it can be shown that the field within a regionV enclosed by a

surface SV is unique provided that either V; @V=@n, or some combination of the two

is specified over SV. This specifying of the normal derivative of the potential over a

conducting surface is equivalent to specifying the surface charge density. For

problems defined in an infinite region of space, a suitable condition has to be

imposed at infinity to guarantee the uniqueness of the solution. In particular, in

electrostatics the electrostatic potential has to behave as V � 1=r as r ! 1.

By combining (A.1) through (A.3), we immediately derive the differential

equation for the electrostatic potential, which turns out to be

r2VðrÞ ¼ � reSðrÞ
"

; ðA:7Þ

and this is known as Poisson’s equation. The corresponding homogeneous equation

is

r2VðrÞ ¼ 0; ðA:8Þ

known as Laplace’s equation. It can be shown that solving (A.7) (or (A.8)) or

directly the corresponding equation for E furnishes the same solution for the

electrostatic field E, provided that the scalar field VðrÞ is a twice-differentiable

function (actually this is a sufficient condition). Moreover the conditions for the

uniqueness of the solution of (A.7) (or (A.8)) are the same as those provided above.

In general, the Poisson and Laplace equations can be solved by several methods,

both analytical and numerical. Among the commonly used analytical techniques are

separation of variables, Fourier transform, and conformal mapping; on the other

hand, finite difference, finite elements, and moment methods are the most used
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numerical approaches. However, the so-called method of Green’s function is

probably the most useful technique to solve Poisson’s equation and to gain physical

insight into the electrostatic problem. Basically the solution for a single point source

is determined and then, by using the second Green identity, the solution for an

arbitrary charge distribution is expressed as a superposition integral.

Let us consider a region of space V. For simplicity, the medium filling the region

is assumed to be linear, homogeneous, and isotropic with permittivity ". In general,

the region V can be multiply connected, meaning it can be bounded by an outer

closed surface SV and a number m of closed surfaces S1; . . . ; Sm inside the volume

enclosed by SV (such inner surfaces can be used to exclude material bodies). The

potential VðrÞ within V produced by a point source located at r0 is called Green’s

function of the problem and is denoted Gðr; r0Þ. By definition, the static Green

function Gðr; r0Þ is a solution of the Poisson equation

r2Gðr; r0Þ ¼ �dðr� r0Þ: ðA:9Þ

As is well known, the second Green identity establishes that given two twice-

differentiable scalar functions f ðrÞ and gðrÞ defined in a region V enclosed by a

surface S, there results

ZZ
V

Z
½ f ðr0Þr02gðr0Þ � gðr0Þr02f ðr0Þ� dV0 ¼ ��

ZZ
S

f ðr0Þ @gðr
0Þ

@n0
� gðr0Þ @f ðr

0Þ
@n0

� �
dS 0

ðA:10Þ

where the normal derivative is taken in the normal direction to S, inward toV. By using

identity (A.10), with f ðr0Þ ¼ Vðr0Þ; gðr0Þ ¼ Gðr; r0Þ, and S ¼ SV [ S1 [ � � � [ Sm, we

obtain

VðrÞ ¼
ZZ
V

Z
Gðr; r0Þ reðr

0Þ
"

dV0 þ �
ZZ
SV

Vðr0Þ @Gðr; r
0Þ

@n0
� Gðr; r0Þ @Vðr

0Þ
@n0

� �
dS 0

þ
Xm
i¼1

�
ZZ
Si

Vðr0Þ @Gðr; r
0Þ

@n0
� Gðr; r0Þ @Vðr

0Þ
@n0

� �
dS 0:

ðA:11Þ
In the case of an unbounded region V, we choose points at infinity as zero-potential

points. Then, provided that the sources are of finite extent, (A.11) reduces to

VðrÞ ¼
ZZ
V

Z
Gðr; r0Þ reðr

0Þ
"

dV0 þ
Xm
i¼1

�
ZZ
Si

Vðr0Þ @Gðr; r
0Þ

@n0
� Gðr; r0Þ @Vðr

0Þ
@n0

� �
dS0:

ðA:12Þ
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It is well known that a solution of (A.9) is

Gðr; r0Þ ¼ 1

4pjr� r0j ; ðA:13Þ

which is known as the three-dimensional (3D) static free-space Green function.

Such a function is used to determine the potential due to a charge density in an

unbounded space. From (A.12) with m ¼ 0 there in fact follows

VðrÞ ¼ 1

4p"

ZZ
V

Z
reðr0Þ
jr� r0j dV

0: ðA:14Þ

It is immediate to see that the static free-space Green function is reciprocal,

meaning

Gðr1; r2Þ ¼ Gðr2; r1Þ: ðA:15Þ

Besides, the two-dimensional (2D) static free-space Green function (i.e., the

potential at a point r ¼ urrþ uzz due to a constant distribution of charge along the z

direction at r0 ¼ r0) is

Gðr; r0Þ ¼ 1

2p
ln

r0
jr� r0j ; ðA:16Þ

where r0 is the reference point for the potential (with r0 6¼ 0 and r0 6¼ 1).

In general, (A.9) has an infinite number of solutions that can be expressed as

Gðr; r0Þ ¼ 1

4pjr� r0j þ Fðr; r0Þ ðA:17Þ

where Fðr; r0Þ is an harmonic function, that is, by definition, it is a solution of the

Laplace equation

r2Fðr; r0Þ ¼ 0: ðA:18Þ

The free-space static the Green function is a particular case of (A.17) with

Fðr; r0Þ ¼ 0. However, it is not the more convenient the Green function to use to

express the potential VðrÞ within a region containing internal surfaces, since, in

force of (A.11) (or (A.12)), it requires the assignment of both VðrÞ and its normal

derivative over the boundaries. Based on the representation (A.11) (or (A.12)), the

best choice for Gðr; r0Þ is the one that requires less information about the values of

VðrÞ and its normal derivative over the boundaries. One possibility is to consider a

version of the Green function that satisfies
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GDðr; r0Þ ¼ 0; 8r0 2 S; ðA:19Þ

which is known as the Dirichlet Green function (since it satisfies a Dirichlet-type

boundary condition). This way (A.11) reduces to

VðrÞ¼
ZZ
V

Z
GDðr;r0Þreðr

0Þ
"

dV0 þ�
ZZ
SV

Vðr0Þ@GDðr;r0Þ
@n0

dS0þ
Xm
i¼1

�
ZZ
Si

Vðr0Þ@GDðr;r0Þ
@n0

dS0:

ðA:20Þ

Representation (A.20) requires only the assignment of VðrÞ over the boundary (but

not its normal derivative). It is worth noting that if SV; S1; . . . ; Sm are the boundaries

of conductors, the Dirichlet Green function corresponds to the potential due to a

point source in the presence of conductors when these are all kept at zero potential.

In such a case the specification of the values (constant) of the potential VðrÞ on the

conductors allows for the determination of VðrÞ everywhere in V (the potential

Fðr; r0Þ thus represents the potential due to the surface charges on the conductors).

Besides, it should be mentioned that another good choice for the static Green

function is one that satisfies the boundary condition

@GNðr; r0Þ
@n0

¼ � 1

areaðSÞ ; 8r0 2 S; ðA:21Þ

which is known as the Neumann Green function (since it satisfies a Neumann-type

boundary condition). Basically such a choice does not annul any term in (A.11) (or

A.12) but reduces the surface integrals involving VðrÞ to constants that leave the

values of the electrostatic field EðrÞ ¼ �rVðrÞ unaffected. Finally, by means of

the second Green identity, it can easily be shown that both the Dirichlet and the

Neumann Green functions are reciprocal (that is, they satisfy (A.15)).

A.3 ELECTROSTATIC SHIELDS

The goal of electrostatic shielding is the creation of a region of space in which the

electric field is independent of what happens outside this region. In practice, very

often a vanishingly small electric field inside the region of interest is required. As

discussed at the beginning of this appendix, such ‘‘field-free’’ regions are often

needed in experiments or for reliable operation of electronic devices.

A.3.1 Conductive Electrostatic Shields

As a first example of electrostatic shield, let us consider a conductive shell with no

free charges inside, as shown in Figure A.3a. The shell could be an empty metallic

rectangular box with finite-thickness walls, as shown in Figure A.3b.
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Let us assume that a certain number of charges producing an impressed electro-

static field are present outside and close to the shell as in Figure A.3. Whatever the

electrostatic field outside the cavity, the electric field inside is zero. This can easily be

proved by the uniqueness theorem. Since the shell (i.e., the cavity walls) is conductive,

the electrostatic potential has to be constant over the shell. In particular, it has to be

VðrÞ ¼ V0; 8r 2 Si ðA:22Þ

FIGURE A.3 Conductive shield with no charge inside (a), and empty metallic rectangular

enclosure (b). (Please note that the hole in Figure A.3b is present only to give a picture of the

enclosure’s inside.)
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where Si is the inner boundary of the shell. A solution of the Laplace equation inside

the cavity satisfying the boundary condition (A.22) is obviously VðrÞ ¼ V0, and by

virtue of the uniqueness theorem, this is also the only solution, which implies

EðrÞ ¼ 0 inside the cavity, as claimed above.

The reasoning above also allows us to conclude that whatever happens outside the

closed conductive cavity has no influence on what happens inside. This means that

the inner region is shielded from the effects of the external electrostatic field.

An alternative way to prove the result above is to use the representation (A.20) for

the electrostatic potential: the volume V is the region enclosed by the shell (i.e., the

cavity),m ¼ 0, and SV is the inner boundary of the shell. From (A.20) we thus obtain

VðrÞ ¼ �
ZZ
SV

Vðr0Þ @GDðr; r0Þ
@n0

dS0; r 2 V: ðA:23Þ
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FIGURE A.4 Conductive shield with a charge inside (a), and conductive grounded shield

with a charge inside (b).
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As before, the surface SV is an equipotential surface, so we are free to choose the

potential over this surface as the reference potential, which is VðrÞ ¼ 0 over SV
(clearly, according to this choice Vð1Þ 6¼ 0, but this is of no importance for the

present discussion). From (A.23), it immediately follows that VðrÞ ¼ 0 inside the

cavity, and therefore EðrÞ ¼ 0.

Let us consider now what happens in a symmetric situation, namely when a

charge q is present inside the metallic cavity. The electric field inside the conductive

shell is zero. Therefore, if we apply Gauss’s law to a closed surface inside the shell

(see Figure A.4a), it follows that the net charge inside the volume enclosed by such a

surface is zero. Because the charge q is present inside the conductive cavity, an equal

and opposite charge is induced on the inner surface Si of the shell. Such an induced

charge is distributed in such a way that it cancels the electric field produced by the

original charge q at points outside the region enclosed by the inner surface Si.

Moreover, because the shell was originally neutral and is not grounded, an equal

charge has to be present over its outer surface Se. However, it can easily be shown

that the distribution of this charge does depend only on external conditions, not on

what happens inside the cavity. For instance, if the enclosed charge q is moved inside

the cavity, then the charge distributed over the inner surface Si will change, but the

induced charge over the outer surface Se is unaffected. Its distribution has only to

ensure that its field inside Se is zero. In this sense, also the region outside the shell is

shielded. Clearly, this does not imply an absence of electric field in the region

outside the shell but rather that the fields in the inner and outer regions are

independent of each other (i.e., the redistribution of charge inside the shell does not

influence the field outside the shell).

Still there is a way to cancel out the field in the region outside the shell. This is

what happens if the conductive shell is grounded (as in Figure A.4b), and it can be

proved by using the representation (A.20) for the electrostatic potential. The volume

V is the region outside the shell, m ¼ 0, and SV is the outer boundary of the shell.

From (A.20), since there are no charges inside V, we have

VðrÞ ¼ �
ZZ
SV

Vðr0Þ @GDðr; r0Þ
@n0

dS0; r 2 V: ðA:24Þ

The surface SV is an equipotential surface, and we are free to choose the potential

over this surface as the reference potential, meaning VðrÞ ¼ 0 over SV (because of

the grounding it is also Vð1Þ ¼ 0). From (A.24) it immediately follows that

VðrÞ ¼ 0 in the region outside the shell, and therefore EðrÞ ¼ 0.

It is to be noted that in the presence of the grounded shell, the two cases (charge

outside or inside to the shell) are perfectly symmetric. This is because the outer and

the inner regions are ‘‘enclosed’’ by surfaces at the same potential (considered also

the ideal surface at infinity).

The assumption of an ideal ground is mandatory for the considerations above. In

particular, if the ground is of finite size, the charges will be distributed over both the

outer surface of the shell and the ground surface. The shell and the ground simply act
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like two connected conductors. With such a connection the initial charge on the outer

surface of the shell distributes also over the surface of the ground. Only in the case of

a very large ground will the surface charge density tend to zero (because of the very

large surface over which it has to be distributed).

The absence of electrostatic field inside a closed conductive cavity is of

fundamental importance for many practical applications of electric shielding. It is

not really necessary that the conductive shield be perfectly closed, and in general,

the shield can even have some small holes or apertures (which can be useful for

many purposes, such as access to interior or ventilation). For such a shield, the

electric field will not be exactly zero inside the cavity, but it can be made arbitrarily

small for suitably small apertures. This is the basic principle of the well-known

Faraday cage, usually constituted by a box whose walls consist of metallic grids.

A.3.2 Dielectric Electrostatic Shields

Another way to effectively shield a region of space consists of using screens made

with high-permittivity materials. In general, the analysis of dielectric enclosures of

arbitrary shape requires the use of numerical techniques. However, to gain some

physical insight, in what follows we will consider the cases of spherical and

cylindrical enclosures. This way, thanks to the particular geometry, a closed-form

expression for the electrostatic SE can be obtained.

Let us thus consider a spherical shell of relative permittivity "r, exposed to an

impressed uniform electrostatic field Ei ¼ uzE
i, as shown in Figure A.5, where the

three distinct regions are the cavity region 1 (r < ri), the shell region 2 (ri < r < re),

and the outer region 3 (r > re). Our goal is to determine the electric field inside the

cavity bounded by the shell. As happens in scattering problems, the solution in the

outer region is expressed as the sum of the impressed field and a scattered field: such

1
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r  
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(a) (b)

FIGURE A.5 Spherical dielectric shield under an external uniform electrostatic field. 3D

view (a); 2D view (b).
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a sum is known as the total field. While the potential corresponding to the scattered

field has to satisfy Laplace’s equation, the total field has to satisfy the boundary

conditions due to the presence of the shell, namely the continuity of the total

potential and of the product between its normal derivative and the relative

permittivity across the inner and outer surfaces of the shell. Because of the spherical

symmetry of the problem, it is convenient to use spherical coordinates. The

impressed electrostatic potential is therefore V iðrÞ ¼ �Eiz ¼ �Eir cos u (up to a

fixed constant). In the outer region 3 (r > re) the total electrostatic potential is thus

expressed as

V3ðrÞ ¼ V iðrÞ þ V sðrÞ; ðA:25Þ

where V sðrÞ represents the scattered potential. The VsðrÞ function is a solution of

Laplace’s equation, and because of the azimuthal symmetry, it can be expressed in

spherical harmonics as

V sðrÞ ¼ Vsðr; uÞ ¼
X1
n¼0

Vs
nðr; uÞ ¼

X1
n¼0

½Anr
n þ Bnr

�ðnþ1Þ�Pnðcos uÞ; ðA:26Þ

where Pnð�Þ is the Legendre polynomial of order n. For the potential to be zero at

infinity, the coefficients of the rn terms have to be zero when region 3 is considered,

meaning A
ð3Þ
n ¼ 0. So

V sðrÞ ¼
X1
n¼0

Bð3Þ
n r�ðnþ1ÞPnðcos uÞ; r > re: ðA:27Þ

The potential in region 1 also satisfies Laplace’s equation, and it can be expressed as

in (A.26). However, in order to be bounded at the origin, the coefficients of the

r�ðnþ1Þ terms have to be zero, meaning B
ð1Þ
n ¼ 0. So

VðrÞ ¼
X1
n¼0

Að1Þ
n rnPnðcos uÞ; r < ri: ðA:28Þ

Finally, because in region 2 there are no restrictions, for ri < r < re the potential

is

VðrÞ ¼
X1
n¼0

½Að2Þ
n rn þ Bð2Þ

n r�ðnþ1Þ�Pnðcos uÞ; ri < r < re: ðA:29Þ

The constants A
ð1Þ
n ;A

ð2Þ
n ;B

ð2Þ
n , and B

ð3Þ
n can be found by enforcing the continuity

of the electrostatic potential and of the product between its normal derivative

and the relative permittivity at the surfaces r ¼ ri and r ¼ re. Therefore, from (A.27)
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through (A.29), by taking into account that @=@n ¼ @=@r, we have

P1
n¼0

A
ð1Þ
n rni Pnðcos uÞ ¼

P1
n¼0

½Að2Þ
n rni þ B

ð2Þ
n r

�ðnþ1Þ
i �Pnðcos uÞ;

"0
P1
n¼0

A
ð1Þ
n nrn�1

i Pnðcos uÞ ¼ "0"r
P1
n¼0

½Að2Þ
n nrn�1

i � ðnþ 1ÞBð2Þ
n r

�ðnþ2Þ
i �Pnðcos uÞ;

8>><
>>: ðA:30Þ

P1
n¼0

½Að2Þ
n rne þ B

ð2Þ
n r

�ðnþ1Þ
e �Pnðcos uÞ ¼ �Eire cos u þ

P1
n¼0

B
ð3Þ
n r

�ðnþ1Þ
e Pnðcos uÞ;

"0"r
P1
n¼0

½nAð2Þ
n rn�1

e � ðnþ 1ÞBð2Þ
n r

�ðnþ2Þ
e �Pnðcos uÞ ¼

"0 �Ei cos u � P1
n¼0

ðnþ 1ÞBð3Þ
n r

�ðnþ2Þ
e Pnðcos uÞ

� �
:

8>>>>>>><
>>>>>>>:

ðA:31Þ

After multiplying (A.30) and (A.31) by sin u Pmðcos uÞ, integrating from u ¼ 0 to

u ¼ p, and using the orthogonality relationship

Z p

0

Pmðcos uÞPnðcos uÞ sin u du ¼ 2

2nþ 1
dmn; ðA:32Þ

where dmn is the Kronecker symbol, we obtain

A
ð1Þ
m rmi ¼ A

ð2Þ
m rmi þ B

ð2Þ
m r

�ðmþ1Þ
i ;

mA
ð1Þ
m rm�1

i ¼ "r½mAð2Þ
m rm�1

i � ðmþ 1ÞBð2Þ
m r

�ðmþ2Þ
i �;

(
ðA:33Þ

2
2mþ1

½Að2Þ
m rme þ B

ð2Þ
m r

�ðmþ1Þ
e � ¼ �Eire

Ð p
0
Pmðcos uÞ sin u cos u duþ

2
2mþ1

½Bð3Þ
m r

�ðmþ1Þ
e �; ðA:34Þ

"r
2m

2mþ1
A
ð2Þ
m rm�1

e � 2ðmþ1Þ
2mþ1

B
ð2Þ
m r

�ðmþ2Þ
e

h i
¼ �Ei

Ð p
0
Pmðcos uÞ sin u cos u du

� 2ðmþ1Þ
2mþ1

B
ð3Þ
m r

�ðmþ2Þ
e :

8>>>>>><
>>>>>>:
Since Z p

0

Pmðcos uÞ cos u sin u du ¼ 2=3 m ¼ 1

0 m 6¼ 1

�
ðA:35Þ

then (A.34) can be rewritten as

A
ð2Þ
1 re þ B

ð2Þ
1 r�2

e ¼ �Eire þ B
ð3Þ
1 r�2

e ;

"r A
ð2Þ
1 � 2B

ð2Þ
1 r�3

e

h i
¼ �Ei � 2B

ð3Þ
1 r�3

e ;

A
ð2Þ
m rme þ B

ð2Þ
m r

�ðmþ1Þ
e ¼ B

ð3Þ
m r

�ðmþ1Þ
e ; m 6¼ 1;

"r½mAð2Þ
m rm�1

e � ðmþ 1ÞBð2Þ
m r

�ðmþ2Þ
e � ¼ �ðmþ 1ÞBð3Þ

m r
�ðmþ2Þ
e ; m 6¼ 1:

8>>>><
>>>>:

ðA:36Þ
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By grouping (A.33) and (A.36), for m 6¼ 1 we obtain the system

rmi A
ð1Þ
m � rmi A

ð2Þ
m � r

�ðmþ1Þ
i B

ð2Þ
m ¼ 0;

mrm�1
i A

ð1Þ
m � "rmr

m�1
i A

ð2Þ
m þ "rðmþ 1Þr�ðmþ2Þ

i B
ð2Þ
m ¼ 0;

A
ð2Þ
m rme þ B

ð2Þ
m r

�ðmþ1Þ
e � B

ð3Þ
m r

�ðmþ1Þ
e ¼ 0;

"rmA
ð2Þ
m rm�1

e � "rðmþ 1ÞBð2Þ
m r

�ðmþ2Þ
e þ ðmþ 1ÞBð3Þ

m r
�ðmþ2Þ
e ¼ 0;

8>>><
>>>: ðA:37Þ

while for m ¼ 1 we have

riA
ð1Þ
1 � riA

ð2Þ
1 � r�2

i B
ð2Þ
1 ¼ 0;

A
ð1Þ
1 � "rA

ð2Þ
1 þ 2"rr

�3
i B

ð2Þ
1 ¼ 0;

reA
ð2Þ
1 þ r�2

e B
ð2Þ
1 � r�2

e B
ð3Þ
1 ¼ �Eire;

"rA
ð2Þ
1 � 2"rr

�3
e B

ð2Þ
1 þ 2r�3

e B
ð3Þ
1 ¼ �Ei :

8>>><
>>>: ðA:38Þ

It is easy to see that (A.37) cannot hold simultaneously unless

Að1Þ
m ¼ Að2Þ

m ¼ Bð2Þ
m ¼ Bð3Þ

m ¼ 0; ðA:39Þ

while solving for A
ð1Þ
1 the system in (A.38) obtains

A
ð1Þ
1 ¼ � 9"rE

i

DS

; ðA:40Þ

where

DS ¼ ð2þ "rÞð1þ 2"rÞ � ri

re

� �3

ð"r � 1Þ2: ðA:41Þ

Thus we have from (A.28), (A.39), and (A.40), and by taking into account that

P1ðcos uÞ ¼ cos u, the electrostatic potential within the enclosure:

VðrÞ ¼ � 9"rE
i

DS

r cos u; r < ri: ðA:42Þ

The electrostatic field is

EðrÞ ¼ �rVðrÞ ¼ aEiuz; r < ri; ðA:43Þ

where a ¼ 9"r=DS coincides with the inverse of the electrostatic SE. It is interesting

in this case that the electric field inside the enclosure is uniform and that, since a < 1

for "r > 1, it is certainly weaker than the impressed field. In particular, for "r � 1,

(A.41) can be approximated as

DS ’ 2"2r 1� ri

re

� �3
" #

: ðA:44Þ
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By indicating the shell thickness as d ¼ re � ri and assuming d � ri, we can write

the electrostatic SE approximately as

SE ¼ 20 log
1

a

����
���� ’ 20 log

2

3

"rd

ri

� �
: ðA:45Þ

It can thus be concluded that a good dielectric electrostatic shield has to be

characterized by a very large dielectric permittivity.

The cylindrical dielectric shield consists of an ideal uniform infinitely long

cylindrical shell made of a dielectric material with relative permittivity "r. The cross
sections of the surface boundaries of the shell are assumed to be circular and

concentric (with inner radius ri and outer radius re), with the axis coincident with

the z axis of the adopted reference system, as shown in Figure A.6. A uniform

impressed electric field of amplitude Ei and directed along ut (unit vector orthogonal
to the z axis) is assumed. The problem of determining the electric field inside the

cylindrical cavity bounded by the inner surface of the dielectric shell can be treated

in a way similar to that adopted for the spherical shell, except that the Laplace

equation has now to be solved in cylindrical coordinates (this implies that cylindrical

harmonics, instead of spherical harmonics, are involved). If we omit the details, the

electric field inside the cylindrical cavity turns out to be

EðrÞ ¼ �rVðrÞ ¼ aEiut; r < ri; ðA:46Þ

where a ¼ 4"r=DC and

DC ¼ ð"r þ 1Þ2 � ri
re

� �2

ð"r � 1Þ2: ðA:47Þ
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FIGURE A.6 Cylindrical dielectric shield under an external uniform electrostatic field

transverse to the cylinder axis.
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As in the spherical case, by indicating the shell thickness as d ¼ re � ri and

assuming both d � ri and "r � 1, we have from (A.46) and (A.47) the electrostatic

SE approximately as

SE ¼ 20 log
1

a

����
���� ’ 20 log

1

2

"rd

ri

� �
: ðA:48Þ

Again, in order to have a sufficiently high value of the electrostatic SE, dielectric

cylindrical shields with a large dielectric permittivity are required.

Last, it is important to note that when the cylindrical enclosure is exposed to a

uniform electric field directed along the axis of the cylinder, no shielding effect

occurs; that is, the dielectric shield is completely transparent to the external field.

The potential VðrÞ ¼ V iðrÞ ¼ �Eiz is in fact the solution of Laplace’s equation and

of the boundary conditions: by the uniqueness theorem this is also the only solution.

A.3.3 Aperture Effects in Conductive Shields

Recall from the previous discussion that a closed conductive box can offer a perfect

shield against electrostatic fields. Nevertheless, practical shields need some

openings in their walls for many purposes, so electrostatic penetration can occur.

In this section we illustrate the effects of such openings on the electrostatic SE of

conductive enclosures, by considering, for simplicity, canonical geometries.

The first considered case consists of a infinitely thin, grounded conductive plane

(i.e., a planar sheet) with a circular hole subject to a uniform electric field directed

orthogonally to the hole, as shown in Figure A.7. In particular, the plane is placed at

z ¼ 0, the hole of radius r0 is centered on the origin of the coordinates, and in the

absence of the hole it is assumed:

Eincðx; y; zÞ ¼ Eþuz; z > 0;
E�uz; z < 0 :

�
ðA:49Þ

The analytical solution of such a problem requires the solution of Laplace’s equation

in cylindrical coordinates and the use of mixed boundary conditions [2]. Since

z 

x

y 

ρφ

E ux y z Ei ( , , 0) z
−< =

E ux y z Ei ( , , 0) z
+> =

0

 

ρ0

 

FIGURE A.7 Infinitesimally thin, grounded conductive plane with a circular hole under an

external uniform electrostatic field that is orthogonal to the hole.
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mixed boundary conditions result in analytical challenging problems, an alternative

way to approach the problem is to separate Laplace’s equation in oblate spheroidal

coordinates and find the solution for the potential by an expansion in oblate

spheroidal harmonics. The circular hole is thus seen as the limiting form of an oblate

spheroidal surface.

By omitting the details (which can be found, e.g., in [1]), we find the solution for

the potential to be

Vðx; y; zÞ ¼ �Eþzþ Vpðr; zÞ z > 0;
�E�zþ Vpðr; zÞ z < 0;

�
ðA:50Þ

where

Vpðr; zÞ ¼ ðE� � EþÞr0
p

ffiffiffiffiffiffiffiffiffiffiffi
b� a

2

r
� jzj
r0

tan�1

ffiffiffiffiffiffiffiffiffiffiffi
2

aþ b

r !" #
ðA:51Þ

with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; a ¼ r2 þ z2 � r20

r20
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4z2

r20

s
: ðA:52Þ

As can be seen, the perturbation potential Vpðr; zÞ gives rise also to a radial

component of the electrostatic field, which nevertheless remains independent of the

azimuthal coordinate f. In particular, in correspondence of the hole (z ¼ 0 and

r < r0) there results

Eðr; 0Þ ¼ ðE� � EþÞ
p

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � r2

p ur þ E� þ Eþð Þ
2

uz: ðA:53Þ

It can also be numerically verified that when E� ¼ 0, the electric field in the half-

space z < 0 is less than 1% at distances from the hole larger than twice the radius.

Another interesting problem concerns the penetration of an impressed uniform

electrostatic field Ei through a circular aperture in a spherical conductive shell. With

regard to the previous problem, the shielded region has now a finite volume. The

geometry of the problem is sketched in Figure A.8. By adopting a spherical

coordinate system, we see that the spherical shell (of zero thickness) occupies the

surface r ¼ R, 0 � f < 2p, and 0 � u < u0, where the half-opening angle uop is

equal to p� u0. Different cases can be studied as well. For instance, the electrostatic

field can be polarized along the z direction or along a direction r parallel to the

aperture plane, and the shell may or may not be grounded. Actually all the problems

are solved by expanding the potential in spherical harmonics, imposing the

appropriate boundary conditions, and solving the resulting dual equations. The ratio

of the electric field at the center of the spherical shell and the applied uniform field is

usually taken as a measure of the electrostatic field penetration inside the shielded

280 ELECTROSTATIC SHIELDING



region. In particular, it turns out that for the grounded shell with a z-polarized field

the ratio is

Ezð0Þ
Ei

¼ 1

p
uop � 1

3
sin uop

� �
; ðA:54Þ

while for the ungrounded case

Ezð0Þ
Ei
z

¼ 1

p
uop � 1

3
sin 3uop þ

sin uop � 1
2
sin 2uop

p� uop þ sin uop

� �
: ðA:55Þ

Finally, the result for the transverse (radially) polarized impressed-field case is

Erð0Þ
Ei

¼ 1

p
uop � 1

2
sin uop � 1

2
sin 2uop þ 1

6
sin 3uop

� �
: ðA:56Þ
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FIGURE A.8 Spherical conductive shield with a circular aperture under an external

uniform electrostatic field.
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APPENDIX B

Magnetic Shielding

For almost a century the subject of shielding extremely low-frequency (ELF) and

very low-frequency (VLF) magnetic fields has been of interest [1]. The interest

originated from the design necessity to protect part of the circuit in radio-receiving

apparatus from the disturbing effect of the radiated field in its neighborhood [2–4].

Over the decades the awareness of possible interferences from radiated fields rapidly

increased. Apart from special applications, interference on electronic systems

became more and more evident with the widespread use of computers. Such

interference occurred mainly as frame disturbances on CRT displays when the

external magnetic flux density exceeded fixed values [5]. In the past decade a more

serious issue about the possible health hazards for persons being exposed to

magnetic fields at low frequencies has led to a renewed interest in the subject [6].

Nowadays, shielding of low-frequency magnetic fields is a topic of interest for a

number of applications, ranging from the mitigation of power-line sources to

protection of sensitive equipment, as schematically depicted in Figure B.1.

At low frequencies the magnetic field is due either to the electric current flowing

in conductors of various geometries or to the magnetization of surrounding

ferromagnetic materials. The classical strategy for reducing quasi-static magnetic

fields in a specific region consists in inserting a shield of appropriate material, whose

properties are used to alter the spatial distribution of the magnetic field emitted by

the source. The shield in fact causes a change in the behavior of the field, diverting

the lines of the magnetic induction away from the shielded region.

A quantitative measure of the effectiveness of a shield in reducing the magnetic-

field magnitude at a given point is the shielding effectiveness SEB, defined as

SEB ¼ jB0ðrÞj
jBSðrÞj ; ðB:1Þ
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where B0 is the magnetic induction at the observation point r when the shield is

absent and BS is the magnetic induction at the same point with the shield applied. In

general, the SE is a function of the position r at which it is calculated (or measured). If

the properties of a shield material are independent of field magnitudes, as it happens

for good conductors such as copper and aluminum, the SE is correspondingly

independent of the excitation amplitude. However, if the magnetic permeability of a

shield material depends on the magnetic induction within the material (as it happens

for ferromagnetic materials such as nickel alloys like Mumetal and Ultraperm or low-

carbon steels), the SE is also dependent on the excitation amplitude.

In addition to (B.1) the shielding effectiveness SEdB
B , defined as

SEdB
B ¼ 20 log SEB ¼ 20 log

jB0ðrÞj
jBSðrÞj ; ðB:2Þ

is also used.

B.1 MAGNETIC SHIELDING MECHANISM

When the shield is inserted between the source and the region where a reduction of

the field magnitude is desired, the resulting shape of the field is generally dependent

on the shield geometry, the material parameters, and the frequency of the emitted

field [7–9].

Shield geometries that completely divide the space into source and shielded

regions (e.g., infinite planar shields, infinite cylindrical shields, and spherical

shields) define closed topologies. Open topologies are defined as shield geometries

I

Iin

B

FIGURE B.1 Low-frequency shielding scenario.
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that do not completely separate source and shielded regions. For closed topologies,

the only mechanism by which magnetic fields appear in the shielded region is

penetration through the shield, while for open topologies, leakage may also occur.

Magnetic fields may leak through seams, holes, or around the edges of the shield as

well as penetrate through it. The extent of the shield is an important factor when

considering open shields: the more the shield is extended, the better the shielding.

However, if penetration exceeds leakage, an increase in the extent of the shield may

bring little improvement in the SE. The extent of the shield plays an important role

also for closed geometries, as it will be seen later. Besides, the shield thickness is

another key factor; if penetration is the dominant mechanism, a thicker shield results

in improved shielding.

The material parameters of the shield cause two different physical mechanisms in

the shielding of low-frequency magnetic fields: the flux shunting and the eddy-

current cancellation. The flux-shunting mechanism is determined by two conditions

that govern the behavior of the magnetic field and the magnetic induction at the

surface of the shield: Ampere’s and Gauss’s laws require the tangential component

of the magnetic field and the normal component of the magnetic induction to be

continuous across material discontinuities. Hence, in order to simultaneously satisfy

both conditions, the magnetic field and the magnetic induction can abruptly change

direction when crossing the interface between two different media. At the interface

between air and a ferromagnetic shield material having a large relative permeability,

the field and the induction on the air side of the interface are pulled toward the

ferromagnetic material nearly perpendicular to the surface, whereas on the

ferromagnetic side of the interface, they are led along the shield nearly tangential

to the surface. The resulting overall effect of the shielding structure is that the

magnetic induction produced by a source is diverted into the shield, then shunted

within the material in a direction nearly parallel to its surface, and finally released

back into the air. In Figure B.2a, the typical behavior of a cylindrical shield placed in

an external uniform magnetic field is reported.

The field map refers to a structure with internal radius a ¼ 0:1 m, thickness

D ¼ 1:5 cm, and mr ¼ 50 at dc (f ¼ 0 Hz). The SE is determined by the material

permeability and the geometry of the shield. The shield in fact gathers the flux over a

(a) (b)

FIGURE B.2 Magnetic-field distribution for cylindrical shields subjected to a uniform

impressed field: (a) ferromagnetic shield; (b) highly conductive shield.
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region whose size is determined by the large-scale dimension of the shield (i.e., the

diameter) and shunts it through the thickness of the ferromagnetic material.

Therefore the magnetic induction within the shield material is amplified by a factor

determined by the shield diameter–thickness ratio. Besides, the amount of the

magnetic induction pulled into the shield and the reduction of leakage into the

shielded region are determined by the relative permeability of the ferromagnetic

material. These effects combine to produce a SE that can be improved either by

increasing the material relative permeability or by increasing the material thickness

with respect to the shield diameter.

The eddy-current cancellation mechanism is determined by the eddy currents that

arise in the shield material due to the presence of a time-varying incident magnetic

field. When the shield is exposed to a time-varying magnetic field, an electric field is

induced within the material, as described by Faraday’s law, and when the shield is

highly conductive, an induced electric current density is driven as described by the

Ohm law. The induced current density gives rise to a magnetic field opposing the

incident one, which is therefore repulsed by the metal and forced to run parallel to

the surface of the shield, yielding a small magnetic induction inside the metal. In

Figure B.2b the typical SE behavior of the previously considered cylindrical shield

(but with s ¼ 5 � 108 S/m and f ¼ 50 Hz) placed in an external uniform ac magnetic

field is reported. Unlike the flux-shunting mechanism, the eddy-current cancellation

occurs only when the incident field is time-varying; it occurs in any electrically

conducting material, regardless of the values of the relative permeability.

A fundamental shielding parameter in determining the mechanism of the eddy-

current cancellation, but also in the flux-shunting mechanism when dealing with ac

fields, is the value of the shield thickness compared with the skin depth. The

propagation constant of a uniform plane wave in a conductive material is (see

Chapter 4)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm0mrðs þ jv"0"rÞ

p
: ðB:3Þ

If the shield is a good conductor (i.e., the product of the frequency and the dielectric

permittivity can be assumed to be small enough with respect to the conductivity,

v"0"r � s), then the propagation constant g can be expressed as

g ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm0mrs

p
¼ ð1þ jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vm0mrs

2

r
¼ ð1þ jÞ

d
; ðB:4Þ

where d is the frequency-dependent skin depth

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

vm0mrs

s
: ðB:5Þ

For an ac field the total magnetic induction decays exponentially into the

material, away from the air–shield interface, with a characteristic decay length equal

to the skin depth d. Therefore, when the shield thickness D is much larger than the
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skin depth d, large SE values can readily be obtained, whereas when d � D, the
induced currents flow uniformly over the shield thickness and the resultant shielding

is not as effective as in the previous case. Nevertheless, significant shielding can be

accomplished with highly conductive materials (e.g., copper and aluminum) when

the geometrical dimensions are suitably chosen. As concerns the induced-current

mechanism, improved shielding can be obtained by increasing the large-scale

dimension of the structure, for a fixed thickness. The inductive coupling with

the source is in fact proportional to the area that intercepts the source flux, while the

resistance presented to the induced current is proportional to the circumference of

the shield. Since the shielding mechanism is also governed by the ratio between the

inductive induced voltage and the resistance, highly conductive materials give larger

attenuations when the shield is large, even if the thickness is electrically small.

Interestingly an opposite behavior is obtained in the case of the flux-shunting

mechanism, where an increase in radius produces a poorer shielding because a larger

total flux has to be shunted through a fixed thickness.

It is now clear that the geometry of the shield (and of the source) and the material

parameters, together with the frequency of the source field, determine which

shielding mechanism is dominant (the flow of the eddy currents or the channeling of

the magnetic induction) and consequently determine the SE. Furthermore these two

shielding mechanisms are characterized by two different boundary conditions: in the

flux-shunting case, the tangential component of the magnetic field is nearly zero,

whereas in the eddy-current cancellation case, the normal component of the

magnetic field is nearly zero [9].

B.2 CALCULATION METHODS

Generally, theoretical analysis of low-frequency magnetic-field shielding can be

very trying to carry out. The major difficulties are the geometric complexity of both

shield and sources, as well as the possible nonlinearity of the materials (e.g.,

saturation and hysteresis) that call for more complex permeability modeling, thus

making the magnetic-field analysis less tractable. Although an analytic solution can

be achieved for simple idealized geometries and linear-medium configurations, the

solution might not be capable of giving practical shielding design guidelines.

Presently it is possible to identify several methods of analysis each involving various

degrees of approximation.

General complex geometries can be treated only by means of numerical methods.

However, the solution of complex shielding configurations is not a simple task. Since

the geometrical dimensions of the model vary from the shield thickness (order of

millimeters) up to the size of the ambient to be protected (order of meters), the FEM in

the frequency domain (see Section 5.1) has been chosen as themain tool of calculation

[10]. Because of its unstructured nature, the FEM is able to accurately model all the

geometrical features without additional cost. Furthermore it has beenwidely usedwith

good results for the calculation of eddy currents at low frequencies [11]. However,

nonlinear effects, such as saturation and hysteresis, naturally call for a time-domain
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analysis where they can be treated instead with plainness. From this point of view, the

FDTD technique (see Section 5.3) could be an alternative choice. However, one area

where FDTD encounters serious difficulties is in problems where the object under

analysis is electrically very small. In this case the CFL stability condition on the

maximum allowable time step can make direct application of the explicit Yee

algorithm infeasible. Implicit methods, subgridding techniques, or impedance type

boundary conditions can partially alleviate the problem, but they give arise to

additional issues concerning numerical accuracy and stability (e.g., see Chapter 5).

Beside numerical approaches, three analytical techniquesare available.Theyare the

more common methods of analysis based on the exact solution of the boundary-value

problem, on the transmission-line model, and on the equivalent lumped-circuit model.

The classical boundary-value problem method has been applied to very basic

shield structures such as uniform plates, cylinders, and spheres [1–4]. An exact

treatment of nonuniform shields is not available even for these idealized shapes. The

disadvantages of the analytical methods are usually the complexity of the expressions

involved and the oversimplification of the real structure. Nevertheless, such

disadvantages depend somewhat on the viewpoints, since it can be argued that the

analytical solutions are exact only for idealized geometries. Furthermore, although

most of the actual shields are not spherical, cylindrical, or planar with infinite length

or infinite extent, analytical expressions can provide some reasonable indications and

often a useful upper limit of what can be expected for shields of other shapes.

The uniform transmission-line method reduces the problem of predicting the SE

to computing the transmission of a plane wave through a uniform material of the

same thickness of the enclosure. The geometrical features of the source and enclosure

are simply estimated by considering a wave of appropriate impedance incident on

the structure (usually low-impedance field sources are considered). This method can

be seen as a natural extension of the Schelkunoff approach [12] (originally developed

for high-frequency traveling plane waves) to the near-field low-frequency limit.

Results show a reasonable accuracy of the method only when the appropriate wave

impedance for the source and enclosure orientation can be determined.

An alternative approach is the lumped-circuit approach based on circuit theory

[13,14]. An equivalent circuit model is constructed for both the enclosure and the

source and from its analysis the SE is determined. The circuit usually includes an

independent source and an equivalent resistance and inductance to model the shield.

The method gives accurate results only at low frequencies where the lumped-circuit

theory is reliable and is, in any case, limited by the need of closed-form expressions

for the equivalent parameters of the screen, which are available only for simple

geometries. An important feature is that it can provide some insight into the problem

of imperfect seams, provided that suitable mutual inductances can be determined.

In the following sections some important boundary-value problems will be revised

and important details on some peculiar aspects will be provided. In representing the

shielding materials, it will be assumed that their constitutive relations are linear; this

means that hysteresis effects will be neglected and magnetic materials will be

represented by their initial permeability. Only in the last section some details will be

given on shields with hysteresis.
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B.3 BOUNDARY-VALUE PROBLEMS

Expressions for the magnetic SE of spherical and cylindrical shields were originally

derived by King [4]. Next an extensive treatment based on an approximated

approach was presented by Kaden [15]. Later accurate analytical expressions were

derived by Wait [16] and Hoburg [7]. The SE of a planar shield, on the other hand,

has been studied by many authors considering as transmitting and receiving sources

two coaxial wire loops [3,17–27], arbitrarily oriented magnetic dipoles [28,29], or

parallel long straight current conductors [9,30,31]. To be consistent with the

published literature, in the following sections the inner and outer radii of the

spherical and cylindrical shields will be denoted by a and b, respectively, and the

thickness of the shield will be denoted by D.

B.3.1 Spherical Magnetic Conducting Shield

Let us consider a spherical shell made of a magnetic conducting material with inner

radius a, outer radius b, and wall thickness D (i.e., D ¼ b� a) placed in a uniform

incident magnetic field with amplitude H0, as shown in Figure B.3. The boundary-

value problem for the quasi-stationary EM field can be solved in a closed form in

terms of the magnetic vector potential A in a spherical reference coordinate system.

Because of the symmetry of the sphere’s geometry, the vector potential is in fact

f-directed and independent of the f coordinate. Under the magnetic quasi-stationary

approximation the vector potential in the free-space outside and inside the spherical

shield satisfies the Laplace equation, while inside the conducting magnetic material

it satisfies the diffusion equation [32].

r2Ae
f ¼ 0; r 
 b; ðB:6aÞ

r2Ash
f � g2Af ¼ 0; a < r < b; ðB:6bÞ

r2Ai
f ¼ 0; r � a; ðB:6cÞ
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FIGURE B.3 Spherical shell placed in a uniform external magnetic field.
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where r2Af can be written in spherical coordinates as

r2Af ¼ 1

r2
@

@r
r2

@

@r

� �
þ 1

r2 sin u

@

@u
sin u

@

@u

� �
� 1

r2 sin2 u

� �
Af: ðB:7Þ

Since the current density is proportional to sin u, it is reasonable to express Af as a

product of a radial function and sin u, that is,

Ae
fðr; uÞ ¼ m0H0 sin u

r

2
� c1

r2

� 

; r 
 b; ðB:8aÞ

Ash
f ðr; uÞ ¼ m0H0 sin u½c2i1ðgrÞ þ c3k1ðgrÞ�; a < r < b; ðB:8bÞ

Ai
fðr; uÞ ¼ m0H0c4r sin u; r � a; ðB:8cÞ

where i1ð�Þ and k1ð�Þ in (B.8b) are the first-order modified spherical Bessel functions

of the first and second kind, respectively [33]. The unknown constants c1, c2, c3, and

c4 can be determined by enforcing the boundary conditions on the outer and inner

surfaces of the shell, namely the continuity of the tangential component of the

magnetic field and the continuity of the normal component of the magnetic

induction:

Be
r jr¼b ¼ Bsh

r jr¼b; He
u jr¼b ¼ Hsh

u jr¼b; ðB:9aÞ
Bi
rjr¼a ¼ Bsh

r jr¼a; Hi
ujr¼a ¼ Hsh

u jr¼a: ðB:9bÞ

Once the unknown constants have been determined, the final expressions of the

magnetic vector potential in all the three regions of space are obtained. Hence the SE

can be expressed as

SE ¼
���� 1

3b3g2mr

f2Dm2
r þ mr½abð3b� DÞg2 � D� þ Dðabg2 � 1Þg coshðgDÞ

þ 1

3b3g3mr

½g2ða2b2g2 þ b2 � aDÞþð3b� DÞDmrg
2 þ 2ðabg2 � 1Þm2

r

þ mr þ 1� sinhðgDÞ
����; ðB:10Þ

where the expressions for positive arguments and nonnegative integer indexes of the

modified spherical Bessel functions of order zero, one, and two [33] have been used.

It is possible to note that the magnetic field is uniform inside the shell regardless of

the material and size. Expression (B.10) is the same as the one derived by

Hoburg [7].

By assuming very thin shells (i.e., a ’ b ¼ r0) and a; b � d, from (B.10) it is

possible to obtain the approximate solution [4,15]

SE ’ coshðgDÞ þ 1

3

gr0

mr

þ 2mr

gr0

� �
sinhðgDÞ

����
����: ðB:11Þ
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If a; b � d, instead of solving the exact eddy-current problem inside the shell to find

afterward the approximate expression, it is more convenient to neglect from the

beginning the terms with coefficients proportional to 1=r and 1=r2 in the diffusion

equation (B.6b), as done by Kaden [15]. In this case the approximate solution for the

magnetic vector potential inside the magnetic conducting material is

Ash
f ðr; uÞ ’ m0H0 sin uðc2egr þ c3e

�grÞ; a < r < b: ðB:12Þ

Expression (B.12) can be used instead of (B.8b) to solve the boundary-value

problem; the resulting SE is

SE¼ 1

3bgmr

fg½3mraþð2mr� 1ÞD�coshðgDÞþ ðg2abþmr� 1þ 2m2
r Þ sinhðgDÞg

����
����;

ðB:13Þ

which reduces to (B.11) for the very thin shell (i.e., a ’ b ¼ r0 and D ! 0) with

a; b � d.

To obtain a low-frequency approximation of (B.11), the shell thickness is

considered to be much thinner than the penetration depth (D � d). By use of the

approximations of the hyperbolic functions for small arguments with a first-order

accuracy, the SE can be expressed as

SE ’ 1þ 2mr

3r0
Dþ r0

3mr

Dg2

����
����: ðB:14Þ

On the other hand, in order to obtain a thick-shield approximation, the frequency is

considered sufficiently high so that jgDj � 1; that is, the shell is considered

electrically thick compared to the skin depth (D � d), and likewise the skin depth is

much smaller than the shell radius (r0 � d). Furthermore the shell is considered

geometrically thin so that a ’ b ¼ r0. With these assumptions, the hyperbolic

functions can be approximated as cosh gD ’ sinh gD ’ egD=2, and the SE is readily

obtained from (B.11) as

SE ’ r0g

6mr

egD
����

���� ¼ r0

3
ffiffiffi
2

p
mrd

eD=d: ðB:15Þ

This expression clearly indicates that in the high-frequency range a conducting shell

is effective in shielding magnetic fields due to the eddy currents induced on it (which

appears as the usual material attenuation factor eD=d). Moreover, under these

conditions, a larger shield will allow a larger radius for the eddy-current flow,

yielding a larger field attenuation. Thus, for practical shield dimensions, a large

closed highly conductive shield performs better than a small one.

The static problem of the dc shielding of a spherical shell in a uniform magnetic

field can be solved in terms of spherical-harmonic functions for the magnetic vector
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potential A with a procedure similar to that adopted in the electrostatic case (see

Appendix A). The magnetic-field problem in fact reduces to a potential problem

described throughout all the space by the Laplace equation [32]:

r2Af ¼ 0: ðB:16Þ

By using arguments similar to those of the electrostatic case, the dc SE is obtained

as [4,34]

SE ¼ 1

9mr

ð2mr þ 1Þðmr þ 2Þ � 2
a3

b3
ðmr � 1Þ2

� �
: ðB:17Þ

It can also be shown that (B.17) is merely the static limit of the exact solution of the

eddy-current problem (B.10) in the limit g ! 0.

If the shield thickness is small (D ! 0), (B.17) reduces to

SE ’ 1þ 2

3

ðmr � 1Þ2
mrr0

D ðB:18Þ

which, if the relative permeability is large (i.e., mr � 1), further reduces to

SE ’ 1þ 2mr

3r0
D: ðB:19Þ

This is the static limit of expression (B.11), which is valid for a thin spherical shell

with a large relative permeability. However, from (B.18) it is possible to obtain a

new low-frequency approximation for the SE of a thin spherical shell as

SE ’ 1þ 2

3

ðmr � 1Þ2
mrr0

Dþ r0

3mr

Dg2

�����
�����: ðB:20Þ

From the previous equations it can be seen that the magnetic bypass of the field is

more efficient with a large mrD factor or with a small shell radius r0. This result is

consistent with the observation that for practical shield dimensions, a smaller closed

ferromagnetic shield performs better than a larger one.

It is worth noting that under the assumption of a nonmagnetic spherical shell

(mr ¼ 1), (B.10) reduces to

SE ’ ðgaÞ2
3gb

3

gb
coshðgDÞ þ 1þ 3

ðgbÞ2
" #

sinhðgDÞ
( )�����

����� ðB:21Þ
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which is exactly the same expression as the one derived by Harrison [35] from the

expression given by King [4]

SE ¼ ðgaÞ5=2
3
ffiffiffiffiffiffi
gb

p ½I1=2ðgbÞK3=2ðgaÞ � K1=2ðgbÞI3=2ðgaÞ�j:
����� ðB:22Þ

where Iq and Kq are the qth-order modified Bessel functions of the first and second

kind, respectively. In the mr ¼ 1 case two different expressions could be obtained

by comparing (B.21) and (B.11). However, it should be noted that (B.21) is exact

(under the quasi-stationary approximation) but limited to nonmagnetic shells,

whereas (B.11) is an approximation of the exact solution (B.10) that is accurate

when r0 � d.

When dealing with N spherical concentric shells with large permeability

(mr � 1) and small thickness (jgDj � 1), the total SE can be expressed as [36]

SET ¼ 1þ
XN
i¼1

S0i þ S01
YN
i¼2

S0i 1� r3i�1

r3i

� �
; ðB:23Þ

where S0i is the individual modified SE of the ith sphere (with radius ri) and is defined

as S0i ¼ Si � 1, (Si is the relevant SE calculated with one of the previous

expressions).

The frequency behavior of the SE of a spherical shell with radius r0 ¼ 30 cm

is shown in Figure B.4. Different materials have been considered to investigate

the effects of the two shielding mechanisms (i.e., the flux shunting and the eddy-

current cancellation). The considered materials are Duranickel stainless steel

(mr ¼ 10:58, s ¼ 2:35 � 106 S/m) with thickness D ¼ 2 mm, a copper casting

alloy (mr ¼ 1:09, s ¼ 1:18 � 107 S/m) with thickness D ¼ 2 mm, and an iron-

nickel alloy (mr ¼ 75 � 103, s ¼ 2 � 106 S/m) with thickness D ¼ 0:15 mm. Note

in Figure B.4 the excellent agreement of the approximate expression (B.11) with

the exact solution and in addition the low- and high-frequency approximations.

To fully understand these curves, it is necessary to first evaluate the critical

frequency f0 at which the skin depth d is equal to the thickness D; such a

frequency is 2.7 kHz, 5.3 kHz, and 75 Hz, respectively, for the above-mentioned

structures. Figure B.5 compares the skin depth versus frequency trends for the

above-considered materials with respect to the two thicknesses of the shell.

In Figure B.4 it is possible to see that the low-frequency and high-frequency

approximations are sufficiently accurate below and above f0, respectively. Never-

theless, the high-frequency approximation accounts for only the eddy-current

cancellation; the flux-shunting mechanism (the third term in (B.11)) has been

neglected. Therefore, in the iron-nickel alloy, because of its large permeability, it is

necessary to operate at frequencies higher than those for the first two materials in

order to make the eddy-current cancellation mechanism prevail and have an accurate

high-frequency approximation.
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B.3.2 Cylindrical Magnetic Conducting Shield in a Transverse
Magnetic Field

Let us consider an infinitely long cylindrical shell with inner radius a, outer radius b,

and a wall thickness D (i.e., D ¼ b� a). The shell is placed in a transverse uniform

ac magnetic field (i.e., perpendicular to the axis of the cylindrical shell) of amplitude

H0, as shown in Figure B.6.
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FIGURE B.4 SE of a spherical shell (r0 ¼ 30 cm) compared using different approximations

and the exact expression for different materials: (a) Duranickel stainless steel (mr ¼ 10:58,
s ¼ 2:35 � 106 S/m, D ¼ 2 mm); (b) copper casting alloy (mr ¼ 1:09, s ¼ 1:18 � 107 S/m,

D ¼ 2 mm); (c) iron-nickel alloy (mr ¼ 75 � 103, s ¼ 2 � 106 S/m, D ¼ 0:15 mm).
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FIGURE B.5 Skin depth d as a function of frequency for the materials considered in Figure

B.4. The two thicknesses D considered in Figure B.4 are also shown.
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FIGURE B.6 Cylindrical shell placed in a uniform external ‘‘transverse’’ magnetic field.
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The problem can be solved in terms of the magnetic vector potential A in

a cylindrical reference coordinate system. Because of the symmetry of the

geometry, the vector potential is z directed and independent of the z coordinate.

Under the magnetic quasi-stationary approximation the vector potential in

the free space outside and inside the cylindrical shield satisfies the Laplace

equation, while inside the conducting magnetic material it satisfies the diffusion

equation. Therefore (B.6) hold for the z component of A, and r2Az can be written

in cylindrical coordinates as

r2Az ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@f2

� �
Az: ðB:24Þ

Since the current density is proportional to a cosf factor, Az is expressed as a

product of a radial function and cos f, that is,

Ae
zðr;fÞ ¼ m0H0 cosf r� c1

r

� �
; r 
 b; ðB:25aÞ

Ash
z ðr;fÞ ¼ m0H0 cosf½c2I1ðgrÞ þ c3K1ðgrÞ�; a < r < b; ðB:25bÞ
Ai
zðr;fÞ ¼ m0H0c4r cosf; r � a; ðB:25cÞ

where I1ð�Þ and K1ð�Þ in (B.25b) are the first-order modified Bessel functions of the

first and second kind, respectively. The unknown coefficients c1, c2, c3, and c4 can be

determined by enforcing the boundary conditions on the outer and inner surfaces of

the cylindrical shell, namely the continuity of the tangential component of the

magnetic field and the continuity of the normal component of the magnetic

induction. The resulting linear system must be solved to obtain the unknown

coefficients and to derive the final expressions of the magnetic vector potential in all

the three regions of space. Then the SE is found to be [7,16]

SE ¼
���� a

2bmr

f½mrK1ðgaÞ � gaK 0
1ðgaÞ�½mrI1ðgbÞ þ gbI01ðgbÞ�

�½mrI1ðgaÞ � gaI01ðgaÞ�½mrK1ðgbÞ þ gbK 0
1ðgbÞ�g

����; ðB:26Þ

where I01ð�Þ and K 0
1ð�Þ are the first derivative of the first-order modified Bessel

functions of the first and second kind, respectively. Inside the cylindrical shell the

magnetic field is uniform, the same as for the spherical one.

A substantial simplification of (B.26) can be obtained when the radius of the shell

is large compared to the skin depth (i.e., a; b � d), since approximations for the

large argument of the Bessel functions can be used [33], resulting in

SE ’
����

ffiffiffi
a

p

8mrgb
ffiffiffi
b

p ½gðbþ 8mraþ 8mrDÞ coshðgDÞ

þðgDþ 4g2a2 þ gaþ 4g2aDþ 4m2
r Þ sinhðgDÞ�

����: ðB:27Þ
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Now, for a magnetic conducting thin shell with a ’ b ¼ r0 (i.e., small thickness D),
the following approximate expression can be obtained [4,15]:

SE ’ coshðgDÞ þ 1

2

gr0
mr

þ mr

gr0

� �
sinhðgDÞ

����
����: ðB:28Þ

The same for the spherical shell, under the assumption a; b � d it is possible to

derive an approximate expression for the SE by expressing the magnetic vector

potential inside the conducting material as

Ash
z ðr;fÞ ’ m0H0 cosfðc2egr þ c3e

�grÞ; a < r < b: ðB:29Þ

From (B.25a), (B.29), and (B.25c), the following expression for the SE is

obtained:

SE ¼ aþ b

2b
coshðgDÞ þ 1

2

ga

mr

þ mr

g b

� �
sinhðgDÞ

����
����: ðB:30Þ

Expression (B.28) can be still derived by the assumption of a thin shell (i.e.,

a ’ b ¼ r0).

The low-frequency approximation (jgDj � 1) of (B.28) is readily obtained by

replacing the hyperbolic functions with their approximations for small arguments

with a first-order accuracy, that is,

SE ’ 1þ mr

2r0
Dþ r0

2mr

Dg2

����
����: ðB:31Þ

The thick-shield approximation for the magnetic conducting cylindrical shell can be

derived in a way similar to the spherical-shell case, after the usual approximations

(jgDj � 1, r0 � d, and a ’ b ¼ r0) are made. After simple algebraic manipula-

tions the SE is expressed as

SE ’ r0g

4mr

egD
����

���� ¼ r0

2
ffiffiffi
2

p
mrd

eD=d: ðB:32Þ

The static problem of dc shielding of a cylindrical shell in a uniform magnetic

field transverse to the axis can be solved in terms of cylindrical harmonic

functions for the magnetic scalar potential Fm [32]. If the magnetic field is

expressed as the gradient of a scalar potential (H ¼ �rFm), the magnetic-field

problem reduces to a potential problem described throughout all the space by the

Laplace equation

r2Fm ¼ 0: ðB:33Þ
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By arguments similar to those of the electrostatic case, the SE is expressed as [4,34]

SE ¼ 1

4mr

ðmr þ 1Þ2 � a2

b2
ðmr � 1Þ2

� �
: ðB:34Þ

When the shell is nonmagnetic (mr ¼ 1), the SE is 1, meaning there is no difference

between the field inside and outside the shell. It is also possible to show that (B.34)

is the static limit of the exact solution of the eddy-current problem (B.26) for

g ! 0.

If the shield thickness is small (D ! 0), then (B.34) reduces to

SE ’ 1þ 1

2

ðmr � 1Þ2
mrr0

D; ðB:35Þ

which, if the relative permeability is large (mr � 1), further reduces to

SE ’ 1þ mr

2r0
D: ðB:36Þ

This is the static limit of (B.28), which is valid for a thin cylindrical shell with a large

relative permeability. From (B.35), it is possible to obtain a new low-frequency

approximation for a thin shell as

SE ’ 1þ 1

2

ðmr � 1Þ2
mrr0

Dþ r0
2mr

Dg2

�����
�����; ðB:37Þ

which is more accurate than (B.31). Expression (B.37) can be obtained from the

exact solution (B.26) by making a second-order Taylor series expansion with respect

to g around zero and then a new second-order Taylor expansion with respect to D
around zero.

The SE of a cylindrical shell with radius r0 ¼ 30 cm under a uniform transverse

magnetic field is shown in Figure B.7. The material of the shell is an iron-nickel

alloy with mr ¼ 75 � 103 and s ¼ 2 � 106 S/m, and the shield thickness is D ¼ 0:15
mm. The same observations made for the spherical shell apply in this case.

B.3.3 Cylindrical Magnetic Conducting Shield in a Parallel
Magnetic Field

For an infinitely long cylindrical shell placed in a uniform magnetic field of

amplitude H0 parallel to the axis, as shown in Figure B.8, the final approximate

expression for the SE is close to that obtained for the spherical shield. The problem

can be solved directly in terms of the magnetic field. Because of the symmetry of the

problem, the magnetic field has only the z component, which depends only on the r
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coordinate in a cylindrical reference coordinate system. Under the magnetic quasi-

stationary approximation, Hz satisfies the magnetic diffusion equation inside the

conductor:

r2Hsh
z � g2Hsh

z ¼ 0; a < r < b; ðB:38Þ

where

r2Hz ¼ @2

@r2
þ 1

r

@

@r

� �
Hz: ðB:39Þ

The general exact solution is

Hsh
z ðrÞ ¼ H0½c1I0ðgrÞ þ c2K0ðgrÞ�; a < r < b; ðB:40Þ
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FIGURE B.7 SE of a cylindrical shell (r0 ¼ 30 cm, D ¼ 0:15 mm) under a uniform

transverse magnetic field. Various approximations are compared with the exact result of a

shell made of an iron-nickel alloy (mr ¼ 75 � 103, s ¼ 2 � 106 S/m).
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FIGURE B.8 Cylindrical shell placed in a uniform external ‘‘parallel’’ magnetic field.
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where I0ð�Þ and K0ð�Þ are the zero-order modified Bessel functions of the first and

second kind, respectively. The unknown coefficients c1 and c2 can be determined

by enforcing the boundary conditions on the surfaces of the cylinder. On the outer

surface the continuity of the tangential component of the magnetic field is

enforced,

Hsh
z

��
r¼b

¼ H0; ðB:41Þ

while on the inner surface the continuity of the tangential component of the electric

field is enforced, giving [32]

1

2
jvam0sH

sh
z

����
r¼a

¼ dHsh
z

dr

����
r¼a

: ðB:42Þ

By taking into account the relations

dI0ðzÞ
dz

¼ I1ðzÞ; dK0ðzÞ
dz

¼ �K1ðzÞ; ðB:43Þ

from (B.41) and (B.42), the uniform internal magnetic field can be obtained so that

the SE reads

SE ¼
����ðagÞ22

½I0ðgbÞK2ðgaÞ � K0ðgbÞI2ðgaÞ�

� ðagÞ2
2

ðmr � 1Þ
mr

½I0ðgbÞK0ðgaÞ � K0ðgbÞI0ðgaÞ�
����: ðB:44Þ

When mr ¼ 1, the previous expression is exactly the same as derived by King [4]. By

assuming a; b � d, the Bessel functions can be substituted with their approxima-

tions for large arguments yielding to

SE ’
ffiffiffi
a

pffiffiffi
b

p coshðgDÞ þ 1

2

ga

mr

sinhðgDÞ
� �����

����: ðB:45Þ

When the cylinder is thin (i.e., a ’ b ¼ r0), (B.44) reduces to [4,15,33]

SE ¼ coshðgDÞ þ 1

2

gr0
mr

sinhðgDÞ
����

����: ðB:46Þ

As was previously shown, instead of solving the exact eddy-current problem

inside the shell and then deriving the approximate expression, under the assumption

of a; b � d, it is more convenient to follow the approximate procedure proposed by

Kaden [15], neglecting the first-order derivative with respect to r in the diffusion
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equation (B.38) from the beginning. The approximate solution for the magnetic field

inside the conducting material is thus

Ash
z ðrÞ ’ H0ðc1egr þ c2e

�grÞ; a < r < b: ðB:47Þ

By solving again (B.41) and (B.42) for the unknown coefficients c1 and c2, the

following expression for the SE can easily be obtained:

SE ¼ coshðgDÞ þ 1

2

ga

mr

sinhðgDÞ
����

����; ðB:48Þ

which clearly reduces to (B.46) under the assumption of a thin shell (i.e.,

a ’ b ¼ r0).

The low-frequency approximation (i.e., jgDj � 1) of (B.46) is

SE ’ 1þ r0
2mr

Dg2

����
����; ðB:49Þ

which clearly shows that for magnetic fields parallel to the cylinder surface, a

magnetic shell does not distort the field at dc (f ¼ 0 Hz) and thus does not provide

any shielding of static magnetic fields. It is also possible to show that the high-

frequency approximation of (B.46) is the same as (B.32), after making the usual

approximations (jgDj � 1, r0 � d, and a ’ b ¼ r0) and using the above-described
approximations of the hyperbolic functions.

Interestingly, when mr ¼ 1, the two expressions (B.26) and (B.44) are the same,

giving [4]

SE ¼ ðagÞ2
2

½I0ðgbÞK2ðgaÞ � K0ðgbÞI2ðgaÞ�
�����

�����: ðB:50Þ

By a superposition of these two solutions it is possible to conclude that this

expression holds when the external magnetic field makes an arbitrary angle with the

axis of the cylindrical shell.

It is worth noting that the expressions obtained for a cylindrical shell can be used

for a first estimation of the SE of a rectangular enclosure with one predominant

dimension, by way of an equivalent radius defined as R ¼ ab=ðaþ bÞ, where a and b
are the transversal dimensions of the rectangular cross section.

The SE of a cylindrical shell, with radius r0 ¼ 30 cm under a uniform parallel

magnetic field, is shown in Figure B.9. The material of the shell is an iron-nickel

alloy with mr ¼ 75 � 103, s ¼ 2 � 106 S/m, and the shield thickness is D ¼ 0:15 mm.

Also in this case the same observations made for the spherical shell apply. This result

does not surprise because even if the geometry changes, the shielding mechanisms

remain always the same.
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B.3.4 Infinite Plane

The infinite planar shield has been studied as a canonical geometry for the design of

EM shields. The shield consists of an infinite planar sheet with thickness D, with
large values of the conductivity s, and/or of the relative magnetic permeability mr.

The sheet completely separates the shielded region from the source region where a

low-frequency low-impedance field is produced by magnetic sources (e.g., a wire

loop, a line current, or a magnetic dipole). Although the shield is of infinite extent,

some field lines penetrate through the shield as shown in Figure B.10, depending on

the material parameters and the operating frequency.

In the following discussion exact solutions of canonical problems will be briefly

presented together with some approximate solutions that are wieldier but often give

an insight into the shielding mechanisms.

Parallel Loop
The solution of the shielding problem when a current loop is parallel to the screen

(considered of infinite extent) is carried out through the use of the magnetic vector

potential A. The geometry of the problem, shown in Figure B.11, suggests that we

look for the solution in a cylindrical reference coordinate system whose origin is

placed at the center of the transmitting loop. Because of the symmetry of the

problem, the magnetic vector potential has only the f component, which is

independent of the coordinate f (at low frequencies the loop radius R is in fact

assumed to be much smaller than the operating wavelength). Consequently any

propagation of the current on the loop wire is neglected, and the current is

approximated as uniform with a constant value I along the loop. Furthermore for the
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FIGURE B.9 SE of a cylindrical shell (r0 ¼ 30 cm, D ¼ 0:15 mm) in a transverse uniform

magnetic field. Comparison among the exact expression and different approximations in the

case of a shell of an iron-nickel alloy (mr ¼ 75 � 103, s ¼ 2 � 106 S/m).
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FIGURE B.10 Magnetic-induction distribution in the presence of an infinite planar metallic

shield illuminated by the magnetic field of a current pair.

FIGURE B.11 Circular current loop parallel to an infinite plate.
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magnetic quasi-stationary approximation the displacement currents are neglected in

the highly conductive metallic shield.

By the foregoing assumptions, the wave equations that describe the problem in air

and inside the shield can be written as

r2Af þ k20Af ¼ 0;

r2Af � g2Af ¼ 0;
ðB:51Þ

where k0 is the free-space wavenumber, g ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm0mrs

p
is the propagation constant

inside the conductive plane, and

r2Af ¼ @2

@r2
þ 1

r

@

@r
þ @2

@z2

� �
Af: ðB:52Þ

After the separation of variables is applied, the general solution of (B.51) in the three

regions of space shown in Figure B.11 can be written as [17,18]

A
ð1Þ
f ðr; zÞ ¼ m0RI

2

Zþ1

0

l

t0
J1ðlRÞJ1ðlrÞ½e�t0jzj þ k1ðlÞeþt0z�dl; ðB:53aÞ

A
ð2Þ
f ðr; zÞ ¼ m0RI

2

Zþ1

0

l

t
J1ðlRÞJ1ðlrÞ½k2ðlÞe�tz þ k3ðlÞeþtz�dl; ðB:53bÞ

A
ð3Þ
f ðr; zÞ ¼ m0RI

2

Zþ1

0

l

t0
J1ðlRÞJ1ðlrÞk4ðlÞe�t0zdl; ðB:53cÞ

where J1ð�Þ is the first-order Bessel function of the first kind, while t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � k20

q
and t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � g2

p
. In (B.53a) the first term is the vector potential impressed by the

loop without the shield. By enforcing the boundary conditions on the two surfaces of

the sheet (i.e., continuity of the tangential electric field (Af) and continuity of the

tangential magnetic field (@Af=@z)), the four unknown coefficients kiðlÞ (which are

functions of l) can be obtained. Once the expressions of the magnetic vector

potential beyond the screen (i.e., in region 3), with and without the shield, have been

obtained, the z component of the magnetic induction can be obtained at the

observation point to evaluate the SE as

SE ¼ 1

4mr

Rþ1
0

l2t�1
0 J1ðlRÞJ0ðlrÞe�t0zdlRþ1

0
Kl2tt�2

0 J1ðlRÞJ0ðlrÞe�t0z�ðt�t0ÞDdl

�����;
����� ðB:54Þ

with

K ¼ t

t0
þ mr

� �2

� t

t0
� mr

� �2

e�2tD

" #�1

: ðB:55Þ
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Note the SE independence of the source-to-shield spacing. This is an interesting

result, and it has been shown to be consistent with experimental results [17–20].

When r ¼ 0, the numerator of (B.54) can be evaluated analytically, giving

jk0Rþ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
� �

e�jk0
ffiffiffiffiffiffiffiffiffi
R2þz2

p

R2 þ z2

�����
�����; ðB:56Þ

which can be simplified at very low frequencies (i.e., in the static limit) as

RðR2 þ z2Þ�3=2
.

Bannister [19,20] gave interesting approximate formulas for the SE of

coaxial loops for electrically thin and thick walls. In the low-frequency case, two

quasi–near approximations are introduced: when the measurement distance

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðz� DÞ2

q
is much smaller than the operating wavelength (i.e.,

L � l0), the propagation constant in air can be neglected in the computation of

t0, which thus coincides with the integration variable l; when the measurement

distance is much greater than the skin depth in the shield (i.e., L � d) and the shield

is thicker than twice the skin depth (i.e., D > 2d), the integration variable l can be

neglected in the computation of t, which becomes equal to the propagation constant

g. By these assumptions, (B.54) with r ¼ 0 can be analytically evaluated, resulting

in

SEdB ¼ 8:686
D

d
þ 20 log

L

8:485mrd

L

ðz� DÞ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
p
� �3

" #
ðB:57Þ

under the additional restriction L � dmr. On the other hand, by the assumption

L � dmr, it results in

SEdB ¼ 8:686
D

d
þ 20 log

mrdLðLþ z� DÞ
5:657ðR2 þ z2Þ3=2
" #

: ðB:58Þ

Interestingly the first term in the previous equations is exactly the absorption term

A in the TL theory of planar shields (see Chapter 4). Consequently the second term

can be identified as the reflection coefficient R, which depends on the mismatch

between the characteristic impedance of the impinging wave and the intrinsic

impedance of the wave inside the conducting material.

In the high-frequency range, the measurement distance L is comparable with the

operating wavelength, so the first quasi–near approximation is no longer valid.

However, the second quasi–near approximation can still be applied (i.e., L � d).

Furthermore the additional restriction L � dmr is assumed, which is valid in most

cases at high frequencies. By these assumptions, (B.54) reduces to

SEdB ¼ 8:686
D

d
þ 20 log

L

2:828mrd

L

ðz� DÞ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
p
� �3

1þ jk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p

3þ j3k0L� k20L
2

�����
�����:

ðB:59Þ
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Other approximate formulas have been obtained by Dahlberg [21,22]. Under the

restriction L � dmr and L � d2mr=D (i.e., when the eddy-current cancellation

mechanism is dominant), the SE is

SE ¼ jg
sinhðgDÞ

2mr

ðR2 þ z2Þ
3z

����
����: ðB:60Þ

When instead L � dmr and L � d2mr=D (i.e., when the flux-shunting mechanism is

dominant), the SE reduces to

SE ¼ mr

sinhðgDÞ
4g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=RÞ2

q
þ z=R

½1þ ðz=RÞ2�

������
������: ðB:61Þ

The SE in the parallel-loop configuration is reported in Figure B.12 for a

geometry with R ¼ 17:25 cm, h ¼ 30:5 cm, and z ¼ 61 cm. Three materials have

been selected for the analysis: one having mr ¼ 1 and s ¼ 54 � 106 S/m (annealed

copper), one having mr ¼ 1 and s ¼ 28 � 106 S/m (household foil aluminum), and

one with mr ¼ 200 (independent of frequency) and s ¼ 9 � 106 S/m (commercial

1010 low-carbon steel). All the shields are assumed to have a thickness D ¼ 0:5 mm.

The exact formulation has been compared with several approximations, some of

whichwill be presented next. First of all, there should be noted the excellent agreement

of the small-dipole approximation of the source (see equation (B.67) below). The

Bannister approximation is accurate only in the very high-frequency range, while

Dahlberg approximation shows a better accuracy in the whole frequency window. The

TL approach is accurate only if the correct wave impedance is used [23,24].

Perpendicular Loop
The perpendicular-loop shielding problem, shown in Figure B.13, is solved by

means of the magnetic vector potential of the second-orderW, which is related to the

magnetic vector potential A through A ¼ r�W. The complete expression ofW is

W ¼ uW1 þ u�rW2; ðB:62Þ

where W1 and W2 are two scalar functions and u is an arbitrary vector that is set

equal to the unit vector uy (according to the adopted reference system, it is in fact

easy to show that the magnetic induction in air does not depend on the x and z

components of W). Equation (B.62) describes a field that is the sum of two terms,

one transverse electric and the other transverse magnetic with respect to the unit

vector u. Under the quasi-stationary approximation, with r � A ¼ 0 assumed, the

two scalar functions Wi (i ¼ 1; 2) satisfy the following two differential equations:

r2Wi ¼ 0; ðB:63aÞ
r2Wi ¼ g2Wi; ðB:63bÞ
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FIGURE B.12 Theoretical SE as a function of frequency of an infinite planar metallic

shield when a current loop source parallel to the screen is considered. Comparison among

exact results and different approximations for a screen of thickness D ¼ 0:5 mm: (a) copper

screen; (b) aluminum screen; (c) low-carbon steel. Other parameters: R ¼ 17:25 cm,

h ¼ 30:5 cm, z ¼ 61 cm.
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in free space and in the conducting medium, respectively. As a consequence the

magnetic induction is defined as

B ¼ r� ðr�WÞ ¼ @2W1

@x@y
þ jvm0mrs

@W2

@z

� �
ux

þ @2W1

@y2
þ jvm0mrsW2

� �
uy þ @2W1

@y@z
� jvm0mrs

@W2

@x

� �
uz; ðB:64Þ

which clearly shows that W2 does not contribute to the magnetic induction in free

space and therefore can be removed from there. The field radiated by a loop is in fact

transverse electric with respect to its axis so that onlyW1 is required, butW2 must be

accounted for in the conducting medium.

As for the coaxial shielding problem, the current I in the source antenna is assumed

to be independent on the angular position and constant. Moreover an important

simplification in the mathematical analysis is obtained in the very low-frequency

range, where it can be assumed that expð�jk0rÞ ’ 1. By these assumptions and with

use of the double Fourier integral [25], the following expressions for the second-order

potential in the three regions of space can be obtained:

W
ð1Þ
1 ðx; y; zÞ ¼ m0IR

p

Zþ1

0

Zþ1

0

� I1ðbRÞ
bD1

e�D1jzþdj þ kð1Þða;bÞeþD1z

� �

� cosðaxÞ cosðbyÞdadb; ðB:65aÞ

h

z

x

O

Δ

μ σ

R

I

y

1 32

FIGURE B.13 Circular current loop perpendicular to an infinite plate.
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W
ð2Þ
i ðx; y; zÞ ¼ m0IR

p

Zþ1

0

Zþ1

0

½kð2Þi ða;bÞe�D2z þ k0i
ð2Þða;bÞeþD2z�

� cosðaxÞ cosðbyÞdadb; ðB:65bÞ

W
ð3Þ
1 ðx; y; zÞ ¼ m0IR

p

Zþ1

0

Zþ1

0

kð3Þða;bÞe�D1z cosðaxÞ cosðbyÞdadb; ðB:65cÞ

where D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and D2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ jvms

p
. In (B.65a) the first term is the

second-order potential impressed by the loop without the shield. By enforcing the

continuity of the normal component of the magnetic induction and of the tangential

component of the magnetic field at the two air-shield interfaces of the plane screen,

six equations can be found for the six unknown coefficients kð1Þ, kð2Þ1 , k
ð2Þ
2 , k01

ð2Þ, k02
ð2Þ

and kð3Þ. Once the coefficients have been determined, the magnetic induction in the

presence and in the absence of the screen can be computed, and the SE is obtained as

[26,27]

SE ¼
Rþ1
0

Rþ1
0

½bI1ðbRÞ=D1� cosðaxÞ cosðbyÞe�D1jz�hj dadbRþ1
0

Rþ1
0

½4bI1ðbRÞD3e�ðD2�D1ÞD=D4� cosðaxÞ cosðbyÞe�D1jz�hj dadb

�����
�����;

ðB:66Þ

where D3 ¼ D2=mr and D4 ¼ ðD3 þ D1Þ2 � ðD3 � D1Þ2e�2D2D. Note that unlike the

SE of the coaxial-loop configuration, the SE is here a function of the shield distance

d from the transmitting loop. Further details and discussions on the low-frequency

coplanar-loop shielding configuration can be found in [26,27].

By the small-dipole approximation the transmitting loop can be modeled as a

small dipole whose magnetic moment vector is M ¼ m0pR
2Iu. By representing the

fields produced by the elemental dipole source in the spectral domain [28,29], the SE

in the parallel-loop configuration can be computed as

SE ¼
Rþ1
0

j3z�1e�zk0ðzþdÞJ0ðjk0rÞdjRþ1
0

TTEðjÞj3z�1e�zk0ðzþdÞJ0ðjk0rÞdj

�����;
����� ðB:67Þ

while in the perpendicular-loop configuration there results

SE ¼
Rþ1
0

jz�1Jþðjk0rÞ � jzJ�ðjk0rÞ½ �e�zk0ðzþdÞdjRþ1
0

TTMðjÞjz�1Jþðjk0rÞ � TTEðjÞjzJ�ðjk0rÞ½ �e�zk0ðzþdÞdj

�����
�����; ðB:68Þ

where J
ð�Þ ¼ ½J0ð�Þ 
 J2ð�Þ�=2. A cylindrical coordinate system has been adopted

in both (B.67) and (B.68); in each case the z axis is perpendicular to the plane in

which the loop lies and r indicates the distance of the observation point from the
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origin (placed at the center of the loop) on the plane of the loop. In the previous

expressions the plane-wave TM and TE transmission coefficients were defined as

TTMðjÞ ¼ eðz�zmÞk0D

1� ½ð _"rz � zmÞ2=4 _"rzzm�ðe�2zmk0D � 1Þ ; ðB:69aÞ

TTEðjÞ ¼ eðz�zmÞk0D

1� ½ðmrz � zmÞ2=4mrzzm�ðe�2zmk0D � 1Þ ; ðB:69bÞ

with z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1

p
, zm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � mr"r

p
, and _"r ffi ð�jsÞ=ðv"0Þ under the quasi-static

assumption.

The SE in the perpendicular-loop configuration is reported in Figure B.14 for a

geometry with R ¼ 17:25 cm, h ¼ 30:5 cm, and z ¼ h. The same materials as those

used for the parallel-loop configuration were considered. The exact formulation was

compared with several approximations; the results obtained through the small-

dipole approximation turned out to be in this case also in excellent agreement with

the exact ones, whereas the TL approach is reasonably accurate only if the correct

wave impedance is used.

Horizontal Current Line
The shield is illuminated by the magnetic field radiated by a single infinitely long

line current that runs parallel to the shield, as shown in Figure B.15. The line carries

a constant current I that is independent of the z coordinate because no propagation
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FIGURE B.14 Theoretical SE as a function of frequency of an infinite planar metallic

shield when a current loop source perpendicular to the shield is considered. Comparison

among the exact formulation and different approximations for a screen with thickness

D ¼ 0:5 mm: (a) copper screen; (b) aluminum screen; (c) low-carbon steel. Other

parameters: R ¼ 17:25 cm, h ¼ 30:5 cm, and z ¼ h.
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effect is accounted for in the extremely low-frequency range. The problem can

be solved in terms of the magnetic vector potential A. Since the source current is

z-directed, the magnetic vector potential has only the z component.

The displacement currents can be neglected inside the shield so that the vector

potential A satisfies the Laplace equation in free space and the diffusion equation

inside the shield:

r2Az ¼ 0; y < 0; y > D; ðB:70aÞ
r2Az � g2Az ¼ 0; 0 < y < D: ðB:70bÞ
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FIGURE B.14 (Continued )
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By applying the separation of variables and by introducing the Fourier spatial

transform with respect to the x variable [30], we obtain the following expressions for

the magnetic vector potential in the three regions:

Að1Þ
z ðx; yÞ ¼

Zþ1

0

m0I

2p
e�lðy�y0Þ þ k1ðlÞeþly

� �
cos½lðx� x0Þ� 1

l
dl; ðB:71aÞ

Að2Þ
z ðx; yÞ ¼

Zþ1

0

½k2ðlÞe�
ffiffiffiffiffiffiffiffiffiffi
g2þl2

p
y � k3ðlÞeþ

ffiffiffiffiffiffiffiffiffiffi
g2þl2

p
y� cos½lðx� x0Þ� 1

l
dl; ðB:71bÞ

Að3Þ
z ðx; yÞ ¼

Zþ1

0

k4ðlÞe�ly cos½lðx� x0Þ� 1
l
dl; ðB:71cÞ

where k1, k2, k3, and k4 are unknown coefficients. In (B.71a) the first term is the

magnetic vector potential impressed by the line current without the shield which

results in the well-know Biot-Savart’s expression B ¼ ufm0I=ð2prÞ. The four

unknown coefficients can be obtained by enforcing the boundary conditions on the

two interfaces of the shield (i.e., the continuity of the tangent x component of the

magnetic field vector and of the normal y component of the magnetic induction).

Once the coefficients have been obtained, the components of the magnetic induction

FIGURE B.15 Horizontal current wire parallel to an infinite plate.
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in the shielded region are computed as

Bð3Þ
x ðx; yÞ ¼ �m0I

2p

Zþ1

0

4WðlÞ
FðlÞ e�lðy�y0�DÞ cos½lðx� x0Þ� dl; ðB:72aÞ

Bð3Þ
y ðx; yÞ ¼ m0I

2p

Zþ1

0

4WðlÞ
FðlÞ e�lðy�y0�DÞ sin½lðx� x0Þ�dl; ðB:72bÞ

where WðlÞ¼ðmrlÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þg2

p
and FðlÞ¼ð1þWÞ2e

ffiffiffiffiffiffiffiffiffi
l2þg2

p
D � ð1�WÞ2e�

ffiffiffiffiffiffiffiffiffi
l2þg2

p
D.

From the previous equations the resultant magnetic induction in the shielded region is

obtained as jBSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y

q
and the SE can be computed. A general expression can

also be derived for multiple-filament sources by simply applying the linear

superposition principle [31].

The exact integral solution obtained above is valid for arbitrary linear materials.

In [30,31] simplifications are proposed that result in a simpler formula, without

infinite integrals, for ELF shielding. The assumptions are the same as those

previously described for the parallel loop: the displacement currents in the metallic

shield are ignored, the distance L between the observation point and the wire is

much smaller than the wavelength (L � l0), and the distance between the wire and

the shield is much larger than the skin depth (y0 � d, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ g2

p
’ g).

For the case where the eddy-current shielding mechanism dominates (i.e., the

screen is highly conductive) Olsen [31] reduced the resultant magnetic-induction

expression to

Br ¼ m0I

2pre

2
ffiffiffi
2

p
mrd

ðegD � e�gDÞre
; ðB:73Þ

where re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~yþ DeÞ2 � ðx� x0Þ2

q
and De ¼ �jmrd

2=D is a complex distance that

becomes significant only when the distance ~y ¼ yþ y0 þ D between the source and

the observation point is small. Interestingly we have in (B.73) a magnetic induction

produced by a straight wire in the dc limit and corrected by a transmission coefficient

that accounts for the eddy-current shielding mechanism.

When the flux-shunting mechanism dominates, no simple closed formula is

available. A nearly exact formula that uses exponential integrals can be found in

[31]. It is simpler than (B.72) from a computation point of view, but it does not lead

to any physical interpretation of the result.

The SE of an infinite metallic plane exposed to a parallel current pair is reported

in Figure B.16; the current is assumed along the y axis, the spacing between the

wires is s ¼ 0:4 m, the distance of both the wires from the shield is y0 ¼ 1 m, and

y ¼ 0:3 m. The same shield materials previously introduced for the loop

configurations have been considered again. The exact formulation is compared

with several approximations. The Olsen approximation is fairly accurate, except at
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very low frequencies where the complex distance factor is no longer able to account

for the effects induced in the screen due to the small electrical distance of the source.

The TL approach is reasonably accurate only if the correct wave impedance is used.

It is interesting that if the wave impedance Zw2 ¼ h0y
0=2 (proposed by Olsen [31]

through an analogy between the exact solution and the TL theory, see Section 4.5) is

used, the accuracy of the TL approach is greatly improved.
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FIGURE B.16 Theoretical SE as a function of frequency for an infinite planar metallic

shield in the presence of two infinitely long current-line sources placed along the y axis.

Comparison among exact results and different approximations for a screen of thickness

D ¼ 0:5 mm: (a) copper screen; (b) aluminum screen; (c) low-carbon steel. Other

parameters: s ¼ 0:4 m, y0 ¼ 1 m, and y ¼ 0:3 m.
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B.4 FERROMAGNETIC SHIELDS WITH HYSTERESIS

The models for ferromagnetic materials described in Chapter 2 have been used to

study the propagation of magnetic fields at ELF in both the time and frequency

domain [37–41]. Some observations can be made about the effects of the nonlinear

behavior of the material and about the hysteretic behavior.

The analyses show that the fields are heavily attenuated by passing through a sheet

made of nonlinear saturable material. However, when the field amplitude is increased

until the material is saturated, large reductions in the SE are observed. Since the level

needed to saturate the sheet is inversely proportional to the pulse width of the incident

field, thin shields of saturable material are effective against fast transients.

The hysteretic behavior with its losses gives rise to additional attenuation.

However, the transmitted fields present a significant distortion that dramatically

changes their harmonic content. The distortion is also present when the hysteretic

behavior is neglected and only the nonlinear first magnetization curve is considered,

but in this case it is much less prominent. The distortion effect generally gives rise to

a marked third harmonic that must be properly accounted for when the rise of a high-

frequency content in the transmitted spectrum can disturb protected equipments.
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APPENDIX C

Standards and Measurement
Methods

Over the last few decades the proliferation of electrical and electronic products with

their associated EMI problems have raised the necessity for the development and

enforcement of mandatory EMC standards in many countries around the world.

From an historical point of view, since World War II the defense sector pioneered in

this area because the success of military missions greatly depended, and still

depends, on the good performance of the adopted electronic/communication

equipment, which must be free of EMI/EMC related problems. The civilian sector

followed quickly, as many national governments understood the importance of

protecting the RF spectrum from the unwanted EM noise emission of systems.

Besides, the rapidly increasing use of radio services has led to dramatic increases in

the proliferation of high-level EMIs in urban areas where, nowadays, electric/

electronic equipment operate with levels of interfering fields of about 1 to 15 V/m or

higher. Consequently standards have been promulgated throughout the years to

ensure that the products marketed for use in residential, business, and industrial

environments have a sufficient immunity to external EMI to enable them to operate

as designed and have disturbing emissions sufficiently lower than a level that could

prevent other apparatus from working as intended.

Making a comprehensive survey of the existing standards is a daunting task. Even

if international organizations have brought out documents providing recommenda-

tions for implementation of EMC requirements, each country has its own

recommendations in its national standards, with its set of test instruments, test

procedures, and test limits, resulting in differences (sometimes unjustified).

The major international organizations are the International Standards Organiza-

tion (ISO) and the International Electrotechnical Commission (IEC). Anyway,
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besides their standards there are the standards published by the European Committee

for Electrotechnical Standardization (CENELEC) in Europe, the Federal Commu-

nications Commission (FCC) in the United States, the Voluntary Control Council for

Interference by Information Technology Equipment (VCCI) in Japan that are also

considered unique international standards in the civilian sector. Added to these

international standards are more or less international standards, civilian and military,

that are published by several other organizations like the American National

Standards Institute (ANSI), the Institute of Electric and Electronics Engineers

(IEEE), the US Department of Defense (DoD), the National Security Agency

(NSA), the International Telecommunication Union (ITU), the Society of Auto-

motive Engineers (SAE), the European Telecommunications Standards Institute

(ETSI), the Association for Electrical, Electronic and Information Technologies

(VDE), the National Electrical Manufacturers Association (NEMA), the Energy

Information Administration (EIA), the Radio Technical Commission for Aero-

nautics (RCTA), the American Society for Testing and Materials (ASTM), and the

Society of Cable Telecommunications Engineers (SCTE). The list makes no claim to

be exhaustive.

In addition, as mentioned above, each country has its own set of national

standards. The position of the manufacturer becomes more difficult when a

particular product is to be supplied to both civilian and military agencies. Different

EMC standards specifying a variety of tests and standards, with similar tests but with

different test instrumentation, have been bothering the industries by increasing the

duration of the product development cycle and the testing costs. Today the

harmonization of standards is being greatly demanded by many to reduce trade

barriers among countries, especially as many of the major world economies like

China, India, and Russia have started opening up.

Despite the plethora of standards it is possible to define some major classes of

standards. Broadly speaking, the standards can be divided as basic standards and

product standards.

Basic standards cover measurement methods for certain EMC phenomena and

they should be referenced by product committees. These standards sometimes

include a list of preferred test levels from which a product committee can choose the

level most applicable to its product. Product standards define the test levels or the

mandatory limits to be applied to a specific product in referring to the basic

standards for the test methodologies. The distinction is clearly evident in the

European Union (EU) where the norms are categorized as product/family product

standards, generic standards (to be used for product types that have not product/

product family standards), and basic standards.

The major EMC standards on subjects related to shielding mainly deal with three

subjects: shielding, radiated emission, and radiated immunity. On the whole, they

provide measurement test procedures and methods as well as performance levels and

maximum allowable limits. By the end of this appendix, the reader should have a

clear sense of the serious problems to be met for a harmonization of the standards.

There are differences among the large number of civilian standards from different

organizations as well as often within the same organizations; there are differences
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between military environments and civilian environments, particularly as concerns

prescribed levels and limits; there are differences in testing procedures and in the

used equipment (e.g., a peak detector is used in military standards while quasi-peak

or average detectors are used in civilian standards); and there are important

differences in the considered frequency ranges (e.g., radiated electric field

measurements start from 10 kHz in military standards while they usually start from

30 MHz in civilian standards).

C.1 MIL-STD 285 AND IEEE STD-299

The military standard MIL-STD 285 [1] was published in 1956 by the US

Department of Defense for evaluating SE for military purposes. It remained

unchanged until the Department canceled official support in 1997. Although the

specification was originally a set of test methods for evaluating shielding enclosures

of the mesh-screen variety, it has been quickly adopted for use on all types of

facilities, becoming probably the most frequently referenced standard in the RF

shielding industry. The document covers measurements within the frequency range

from 100 kHz to 10 GHz. It defines the frequencies and the EM-field components

that are subject to testing, and states the required antenna configuration and

equipment. Although nowadays the standard is obsolete, the basic procedures for

using the specified types of antennas and their separation distance are still adopted

and are the standard in all testing. The figure of merit of an enclosure is the SE

defined as the increase in the setting of the attenuator necessary to obtain the same

reference reading level in the detector as when the shielding enclosure wall is

removed. Thus the measurement consists of a reference and a shielding

measurement, leaving the relative positions of the antennas unchanged.

Briefly, the standard calls for the signal source to be placed outside the tested

enclosure, while the measurement device is located inside. The source may be driven

with continuous wave (CW), modulated CW, or pulsed CW signals. The standard

identifies three different field sources against which the SE may be defined, in accord

with the following specifications and requirements:

1. Low-impedance magnetic fields. Loops 12 inches in diameter are to be used as

transmitting and receiving antennas, spaced 12 inches from the shield walls.

The test frequency must be one in the range 150 to 200 kHz. The attenuation

provided by the enclosure must be at least 70 dB.

2. High-impedance electric fields. Monopole rod antennas, 41 inches long, are to

be used as both transmitting and receiving antennas, spaced 12 inches from

the shield walls. The test frequencies must be 200 kHz, 1 MHz, and 18 MHz.

The attenuation provided by the enclosure must be at least 100 dB.

3. Plane waves. Dipoles tuned at 400 MHz are to be used as both transmitting

and receiving antennas, and placed 72 and 2 inches from the shielding walls,

respectively. The test frequency must be 400 MHz and the provided attenua-

tion must be at least 100 dB.
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The standard suffers of some defects. The location and orientation of the antennas

are not defined and are left up to the tester. Although it can be assumed that the intent

is to find the orientation and location that produce the largest leakage, the standard

does not clearly state this, and it seems likely that different laboratories can obtain

different results by testing the same enclosure. The loop and monopole antennas

required by the standard do not appear suitable for measurements up to 10 GHz.

Finally, during the reference-level measurement, the antennas are inductively

coupled so that the antenna characteristics are quite different in the presence and in

the absence of the shield.

The IEEE Std-299 (published by the Institute of Electrical and Electronics

Engineers (IEEE)) originated in the late 1960s. It has served mainly as a detailed and

thorough testing procedure for high-performance shielding enclosures. Some

significant changes were made in 1991, but the standard still remains oriented

toward high-performance enclosure testing. The revision approved in the late 1997

made several significant changes in the document, incorporating the basic concepts

of MIL-STD 285 (which was withdrawn in that year). The 1997 version broadened

the applicability beyond high-performance enclosures, provided a procedure for

testing of smaller enclosures, and moved toward an economic testing. Nevertheless,

the thoroughness and accuracy of the testing were maintained, together with a

greater emphasis on assuring test-result repeatability. The latest revision of IEEE

Std-299 [2] does not introduce any major changes to the measurement methodology

but adds a section dealing with measurement uncertainty. In the future this standard

(a new revision is foreseen for 2010) is expected to include methods allowing for the

evaluation of small enclosures and shielding materials.

The present IEEE Std-299 describes uniform procedures for measuring SE for

enclosures at frequencies from 9 kHz to 18 GHz (extendable down to 50 Hz and up

to 100 GHz), although the smallest linear dimension of the enclosure is assumed to

be at least 2 m; the selection of 2 m as the smallest linear dimension was originally

based upon being able to fit a typical bicone-style antenna inside an enclosure to

perform plane-wave testing down to the range from 30 to 50 MHz. The document

does not give any limits for pass/fail, leaving to the owner of the shielding enclosure

to provide these limits. In addition, although the standard suggests a range of test

frequencies that can provide confidence in the effectiveness of the shield, it is clearly

stated that the actual test frequencies must be chosen according to a test plan

approved by the shield owner, the tester, and the shielding provider/vendor. The

measurement range in this method is divided into three subranges, and in each

subregion, some subgroups of testing frequencies are suggested:

1. A low-frequency range, from 9 kHz (50 Hz) to 20 MHz (a single frequency is

suggested within 9–16 kHz, 140–160 kHz, and 14–16 MHz) where the SE is

defined in terms of magnetic-field performance as

SEH ¼ 20 log
jH1j
jH2j ; ðC:1Þ
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where the subscripts 1 and 2 indicate the field measurement in the absence

and in the presence of the enclosure, respectively.

2. A resonant range, from 20 to 300 MHz, where the SE is expressed in terms of

either electric field or power, according to

SEE ¼ 20 log
jE1j
jE2j ; ðC:2Þ

SEP ¼ 10 log
jP1j
jP2j : ðC:3Þ

3. A high-frequency range from 300 MHz to 18 GHz (100 GHz) (a single

frequency is suggested within 300–600 MHz, 600–1000 MHz, 1–2 GHz, 2–

4 GHz, 4–8 GHz, and 8–18 GHz) where the shielding performance of the

enclosure is expressed in power terms according to (C.3).

In the low-frequency range the standard utilizes a small electrostatically shielded

loop, with a 0.3 m diameter, as the source of the magnetic field and as the receiving

antenna. The source loop is driven by an ordinary audio frequency generator, plus an

amplifier, that is usually adequate to supply the current if a suitable impedance

matching device is used. The receiving loop is connected to a field-strength meter, a

spectrum analyzer, or a similar device. A CW signal without modulation must be

used to drive the transmitting antenna.

The measurement of H2 is obtained as shown in Figure C.1a, with the

transmitting and receiving loops spaced 0.3 m from the respective shielding barrier

and in a coplanar position on a plane perpendicular to the surface being measured.

The document clarifies that small loops are used because their sizes allow for the

evaluation of the enclosure’s performance when it is exposed to magnetic-field

sources near the enclosure walls. Moreover the use of coplanar loops is advocated

(as opposed to coaxial loops) because of their precision in locating defects and the

facility in measuring their effects. The specification calls for the receiver to be

located inside the enclosure, with an external transmitter. The ancillary equipment

can remain in place during the test, while other equipment that is not a usual part of

the enclosure must be removed.

The reference field H1 is obtained by direct measurements with the receiving

antenna spaced from the transmitting loop by 0.6 m edge to edge to which is added

the thickness of the shielding barrier. This way the same total distance is maintained

between the loops in the reference and shielding measurements. During the

reference measurement the dynamic range (DR) of the equipment must be shown to

be adequate to the measurement, being at least 6 dB greater than the SE to be

measured. The DR of the receiving system is the range of amplitudes over which the

system operates linearly. For a shielding-effectiveness measurement the important

portion of the DR is from the reference level to the minimum discernable signal

above the noise floor, defined as that with an amplitude of at least 3 dB above the

test-system noise floor. The standard requires that during the demonstration the
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receiving equipment remain calibrated for all the levels of received and transmitted

signals being experienced and make use of an attenuator external to the receiver. It

should be noted that in the MIL-STD 285 calibration setup, the receiving antenna

was to be located outside the enclosure, leaving the receiving equipments inside, and

the connecting cable was to be run through a feed-through connector in the enclosure

wall. This setup had the advantage of protecting the sensitive receiver from the field

of the transmitting antenna and, since it is difficult to provide over 100 dB of SE with

the metal case of the receiver, of keeping it operating in the linear part of its DR.

The document recommends several loop positions to use in testing for the effects

of common electrical nonuniformities that allow penetration of the magnetic field:

single- and multiple-panel entry doors, seams, joints, accessible and not fully

accessible corners, air vents, access panels, and connector panels. In addition the

document indicates that the position be swept of the receiving loop, keeping fixed

the transmitting one, and that the maximum value indicated by the field detector be

looked for (i.e., the worst-case measurement). However, the final measurement must

be always made with the coplanar configuration.

Frequency source

Amplifier

TX antenna

(a)

(b)

Shielded enlcosure

Detector

Attenuator

0.3 m0.3 m

Signal generator

TX antenna RX antenna

Shielded enlcosure

Detector

Attenuator

>0.3 m1.7 m

Balun

FIGURE C.1 IEEE Std-299 measurement setup: (a) low-frequency range; (b) resonant and

high-frequency range.
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In the resonant range the standard calls for biconical antennas as the source and

detector of the electric field in the range 20 to 100MHz, and half-wavelength dipoles for

frequencies above 100MHz. The transmitting antenna is always placed outside the

enclosure, with the receiving antenna inside. The receiving antenna is connected to

the field-strength meter via a coaxial cable, through a balun transformer. To avoid false

resonances in themeasured SE, the cable must be perpendicular to the axis of the antenna

for a distance of at least 1 m and must be loaded with ferrite jacketing or ferrite beads. A

CW signal without modulation is still used to drive the transmitting antenna.

The document recommends that most enclosures have their fundamental

resonances in this frequency range, and consequently to avoid testing the enclosure

at these frequencies. In addition it states that SE measurements made at a single

frequency in this range may not be representative of measurements made at other

frequencies because there may be significant variations due to resonances. However,

when measurement at a single frequency is necessary, specifications are given to

verify if the measurement is acceptable or if additional tests are required because of

the proximity of the resonance.

The test of the enclosure is rather extensive in this frequency range. Several

positions of the transmitting antenna must be selected to cover the various parts of

the shield. A distance of about 1.7 m from the shield surface must be maintained, and

both horizontal and vertical polarizations are required. For each position/

polarization of the transmitting antenna the receiving antenna must be swept in

position throughout the interior of the enclosure, and in polarization, to search for

the largest detector response (i.e., the minimum SE), with a minimum distance of

0.3 m always maintained from the enclosure walls. The reference level is measured

by locating the receiving antenna outside the enclosure at a distance of 2 m from the

transmitting antenna, leaving the attenuator and the receiver inside the enclosure.

The connecting coaxial cable must be routed through the wall of the shield via a

bulkhead coaxial connector or an open shield door far enough to pass the cable.

The basic reference and shielding measurements in the high-frequency range are

similar to those in the resonant range. The noticeable differences are obviously in the

antennas: dipoles, biconical antenna, horns, Yagi, log-periodic and other linear

antennas can be used as sources; half-wavelength dipoles and horn antennas are

used as receiving antennas from 300MHz to 1 GHz and above 1 GHz, respectively.

An accurate sweep in the position and polarization of both the transmitting and

receiving antennas is still required to search for the worst-case measurement.

Further the IEEE Std-299 is not free from defects and shares some problems of

MIL-STD 285. During the calibration procedure the measurement in the absence of

the shield is made with a sensor having different characteristics from that used with

the shield in place during the measurement procedure. In fact the presence of the

shield undoubtedly alters the antenna characteristics. Three different SE ratios

are used, one for each frequency range, however a direct comparison among these

numbers is questionable. The low-frequency tests are not representative of the

typical environment of a shielded enclosure because external conductors, which

are usually the principal low-frequency magnetic-field sources, are only incidentally

excited by the test loops.
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The definitions, procedures, and methodologies described in the MIL-STD 285 /

IEEE Std-299 can be found in a number of military handbooks published by the US

Department of Defense. These handbooks provide basic information on applying

shielding theory and on usual practices. The MIL-HDBK 1195 [3] gives a brief

introduction to EMI shielding theory and presents basic criteria that are important to

observe during the planning, design, and construction of a typical facility containing

an EMI shielded enclosure. The MIL-HDBK 419A [4] is more general in its content.

It provides basic information on grounding, bonding, and shielding practices for

electronic equipment. The MIL-HDBK 1857 [5] is a version of the old MIL-STD-

1857, dated 1976, that has been re-designated as a handbook. Its purpose is to

provide guidance in the design of shielding.

C.2 NSA 65-6 AND NSA 94-106

The National Security Agency (NSA) is responsible for the analysis of foreign

communications (cryptanalysis), and for protecting US government communica-

tions from similar agencies elsewhere (cryptography). Through the years the NSA

has issued several standards concerning shielding performance of enclosures [6–9],

among which the most famous was the NSA 65-6 [8] today superseded by the NSA

94-106 [9].

In its scope the NSA 94-106 covers the general requirements for the

installation and performance of shielded enclosures that attenuate EM radiation.

The requirements apply to all the associated and auxiliary facilities furnished as a

part of the shielded enclosure as well. The document provides complete

instructions on the purchase and testing of modular enclosures’ housing and on

protecting communications equipment used in the transmission of intelligence

information.

The test methods are essentially the same as those in MIL-STD 285/IEEE Std-

299, with two noticeable exceptions. In the magnetic test, the loop-antenna

orientation is not collinear but planar and the receiver is located outside the

enclosure. The outside placement was chosen to simulate the classic model of

the emitter being inside the enclosure and the eavesdropping receiver being outside

the enclosure. The number of specified test frequencies is quite large: magnetic field

attenuation must be measured at 1 kHz, 10 kHz, 100 kHz, and 1 MHz; electric-field

attenuation must be measured at 1 kHz, 10 kHz, 100 kHz, 1 MHz, and 10 MHz; the

plane-wave attenuation must be measured at 100 MHz, 400 MHz, 1 GHz, and

10 GHz, with a transmitting antenna placed at least 6 m away from the shielded wall

and the receiving antenna set no closer than 5.1 cm. The SE requirements are shown

in Figure C.2.

The main difference between MIL-STD 285 and NSA 94-106 is in the low-

frequency magnetic-field shielding performance above 100 kHz. The former is

based on screen-wire performance at 150 kHz, whereas the latter is based on the

values of magnetic-field attenuation attainable by means of solid shield of

galvanized sheet metal.
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C.3 ASTM E1851

After a careful review of IEEE Std-299-1991 revealed that the standard developers

tailored the standard for a shielded enclosure installed in a building or large facility

and that the standard was not well suited for a transportable shielded enclosure,

some members of the Department of Defense organization (called Joint Committee

on Tactical Shelters (JOCOTAS)) asked the American Society for Testing and

Materials (ASTM) to publish a standard specifically intended for a transportable

enclosure or shelter. As a result ASTM Standard E1851 was published in February

1997.

In its latest version dated 2004 [10], the standard provides the test methods for the

determination of the electromagnetic SE of durable relocatable shielded enclosures

and shelters that do not have any equipment or equipment racks. The main text of the

standard is written for a first-article testing that assesses the adequacy of an

enclosure design and fabrication; the test requires a few days to be completed. An

appendix is provided to verify the construction quality of the shielded enclosure in

about half a day.

The standard is very similar to the IEEE Std-299. It requires the use of five

specific frequencies for testing: magnetic SE measurements between 140 and

160 kHz and between 14 and 16 MHz; far-field shielding measurements between

300 and 500 MHz, 900 and 1000 MHz, and 8.5 and 10.5 GHz. Use of high-

impedance electric fields is avoided because of the difficulties in making

measurements and in detecting leaks. For specific applications, the frequency range

may be extended from 50 Hz to 40 GHz. The test equipment has to provide a

dynamic range of at least 10 dB above the SE requirement at a test frequency. For

magnetic-field testing, circular-loop antennas that are 1 ft in diameter have to be

used; the shielded circular receiving antenna can have multiple turns. For
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plane-wave testing, any antenna that radiates at the prescribed frequencies may be

used. The receiving antenna must be connected to a balun and then to an attenuator.

A CW source is required to avoid any interference and equipment-coupling

problems. The test procedures are quite similar to those of the IEEE Std-299: a

calibration is necessary to measure the reference level and a SE measurement gives

the attenuation provided by the enclosure. The transmitting antenna is placed outside

the shielded enclosure and the receiving antenna inside; the antennas should be

coplanar.

C.4 ASTM D4935

Basing on a technical note from the National Bureau of Standards (NBS; today

National Institute of Standards and Technology, NIST), the ASTM developed and

issued the D4935 standard [11] in 1989. The most recent revision of this document

dates from 1999. As clearly specified at the beginning of the document, the scope of

the standard is to provide a test procedure for measuring the SE of planar materials

due to a plane EM wave. The claim is that from the measured data, the shielding

performance against near-field magnetic and electric sources can be computed, but

the validity of the results has never been established.

ASTM regulations lay claim to technical expertise in evaluating the current

standard every five years, in order to decide whether the standard should remain in

force or be withdrawn. Formerly under the jurisdiction of Committee D09 on

Electrical and Electronic Insulating Materials, the standard did not receive

acceptance in September 2005 and was withdrawn without replacement. The

rational given was that ‘‘Committee D09 cannot maintain a standard for which the

expertise may not lie within the current committee membership, or for which the

utilization of the standard is questionable.’’ Although the D4935 document is no

longer supported by the ASTM, it is still being supplied for information purposes. In

addition the method described in the standard is still widely used for measuring the

SE of planar materials against a plane wave.

The test procedure is based on the use of a specimen holder, shown in Figure C.3,

that is constructed with an enlarged coaxial transmission line (having an external-to-

internal diameter ratio of 76 mm to 33 mm) with special taper sections and notched

matching grooves to maintain a characteristic impedance of 50 V throughout the

entire length of the holder. The measurement method is valid over a frequency range

from 30 MHz to 1.5 GHz. The limits are not exact, but certain limitations arise

outside this range. At frequencies lower than 30 MHz, the capacitive coupling of

energy into the specimen through displacement currents decreases, and the dynamic

range of the measurement devices (or to be more precise, that of the network

analyzer used for these measurement) is not adequate. For frequencies above

1.5 GHz, the field inside the test adapter is no longer a TEM wave because of the

onset of higher order modes, the first of which is the TE11 mode whose cutoff

frequency is around 1.7 GHz. The specimen holder is equipped with a 133-mm

flange, which increases the capacitive coupling between its two halves. The
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measurement uncertainty usually does not exceed
2 dB with a properly established

test setup that generally provides a dynamic range of 100 dB. The measurement

device may consist of a network analyzer, which is capable of measuring both

insertion and return loss.

The SE is determined by comparing the difference in attenuation of a reference

sample to the test sample, taking into account the insertion and return power losses.

It is defined on a power ratio basis according to equation (C.3). With reference to

Figure C.4, the total power absorbed by the system can be computed, normalized

with respect to the power available from the source, as

Pabs ¼ 1� jS11j2 � jS21j2; ðC:4Þ

where S11 and S21 are the scattering parameters measured by means of the network

analyzer (as depicted in Figure C.4). The measurement procedure consists of two

stages: in the first stage, a reference sample is placed in the test adapter to

compensate for the coupling capacitance; the second stage uses the actual test

specimen. The sample is in the form of a 33-mm circle inside a 133/76-mm ring.

Several prerequisites and cautions are necessary to correctly apply the procedure

described in the standard. The thickness of the tested materials cannot exceed

l0=100, being l0 the free-space wavelength of the EM wave (2 mm for a test

frequency of 1500 MHz). It is necessary to guarantee a fixed distance between the

adapter elements to ensure identical pressure on the surface of the sample both for

the test and reference samples. For frequencies above 200 MHz, a calibration

procedure must be performed to compensate for any capacitive coupling between

the elements of the measuring adapter. In homogeneous materials with frequency-

independent permittivity and permeability, it is sufficient to perform the

measurements for just a few selected frequencies, whereas for frequency-dependent

materials or just thick materials (skin depth less than the specimen thickness), the

measurements must be performed for the entire frequency band.

FIGURE C.3 ASTM D4935 measurement setup.
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All the assumption have to be clearly understood to correctly treat the measured

results. The obtained measurements pertain to the far-field material parameters. The

results obtained for materials with properties depending on wave polarization will be

average results. The measurement uncertainty usually falls within 
5 dB.

C.5 MIL-STD 461E

The military’s concern for EMI began with the installation of the first radio in a

vehicle before World War I. However, it was only in 1934 that the US Army Signal

Corps published its first EMI standard (SCL-49—Electrical Shielding and Radio

Power Supply in Vehicles). From this simple beginning, military EMIs evolved and

changed as the complexity of the systems increased and the threats from

electromagnetic pulses (EMP) were documented. Eventually each branch of the

service defined specific requirements for their departments or platforms, and thus

forced manufacturers to comply with significantly different specifications. As a

result the Department of Defense formed a working group to consolidate and replace

approximately 20 requirements into three initial fundamental standards that were

published in 1967: MIL-STD 461 about the requirements, MIL-STD 462 about the

measurement methodology, and MIL-STD 463 concerning definitions and acronyms.

Through the years, revisions were required, resulting in MIL-STD 461A and MIL-

STD 462A being issued and then revised three times (from revision A to D). In 1993,

MIL-STD 463 was dropped, and its definitions referenced to the standard ANSI

C63.14, Standard Dictionary for Technologies of Electromagnetic Compatibility

(EMC), Electromagnetic Pulse (EMP) and Electrostatic Discharge (ESD), developed

by the Accredited Standards Committee C63 of the American National Standards

Institute (ANSI), which works on EMC standards. In 1999, 461 and 462 [12] were

combined in the currently enforced MIL-STD 461E [13].

The new document establishes the design requirements for the control of the EM

emission and susceptibility characteristics of equipments and subsystems used by

activities and agencies of the US Department of Defense, updating the previous

mandatory requirements. At the same time, in referring to the superseded MIL-STD

462D, it provides general guidance on the measurement and determination of such

characteristics. The requirements about conducted and radiated emissions and
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FIGURE C.4 Scheme for the determination of the scattering parameters (D.U.T. stands for

device under test).
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susceptibility are intended to serve a wide range of applications, from trucks to ships, to

aircraft, to fixed installations. In addition the document provides the opportunity to tailor

requirements to an application without having to issue exceptions to the standard.

As concerns the radiated emissions and susceptibility, five different requirements

are specified: RE101 for radiated magnetic-field emissions in the frequency range

from 30 Hz to 100 kHz; RE102 for radiated electric-field emissions in the frequency

range from 10 kHz to 18 GHz; RS101 for radiated magnetic-field susceptibility in

the frequency range from 30 Hz to 100 kHz; RS103 for radiated electric-field

susceptibility in the frequency range from 2MHz to 40 GHz; RS105 for radiated

susceptibility to transient EM fields, such as a pulsed electromagnetic interference

(EMI) or an electromagnetic pulse (EMP). Requirements are also presented for a

radiated-emission test RE103 that can be used to measure the spurious and harmonic

outputs from transmitters with their antennas in the range 10 kHz to 40 GHz as an

alternative to conducting emission tests.

Applicable sections are summarized in Table C.1 and cross referenced as to how

and where the equipments are intended to be installed in or on. If the equipment or

subsystem can be installed on more than one platform, the standard requires that it

comply with the most stringent requirement. An ‘‘A’’ entry in the table indicates that

the requirement is applicable and must be followed, and an ‘‘L’’ means that the

applicability of the requirement is limited, as specified in the relevant requirement

paragraphs of the standard. Absence of an entry means that the requirement is not

applicable for that application.

The standard provides four basic test setups (shown in Figure C.5) for the

equipment under test (EUT). These setups are representative of typical system

configurations: a general test setup (Figure C.5a), a test setup for nonconductive

surfaces EUTs (Figure C.5b), a test setup for free-standing EUTs in shielded

enclosures (Figure C.5c), and a test setup for free-standing EUTs (Figure C.5d). The

test environment has to make a trade-off between real-world evaluation and

laboratory repeatability. Except for the last setup, all the tests are performed in an

ordinary metal-box shielded enclosure to prevent external environment signals from

contaminating emission measurements and susceptibility test signals from

interfering with electrical and electronic items in the vicinity of the test facility.

TABLE C.1 MIL-STD 461E Applicable Sections

Equipment RE101 RE102 RE103 RS101 RS103 RS105

Surface ships A A L A A L

Submarines A A L A A L

Aircraft, Army A A L A A L

Aircraft, Navy L A L L A L

Aircraft, Air Force A L A

Space systems A L A

Ground, Army A L L A

Ground, Navy A L L A L

Ground, Air Force A L A
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Regardless of which setup is used, the test environment must have always conducted

and radiated RF ambient levels below the specification. When the EUT is not free-

standing, the EUT is placed on a table with a stationary copper ground plane, bonded

to the floor or to the wall of the shielded room via copper bonding straps.

The standard specifies that the shielded enclosure must be sufficiently large to

handle the EUTand the necessary test antennas. Since shielded enclosures introduce

errors into the measurements (resulting from multipath reflections, enclosure
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FIGURE C.5 MIL-STD 461E basic measurement setups: (a) general test setup; (b) test

setup for nonconductive surfaces mounted EUTs; (c) test setup for free-standing EUTs in

shielded enclosures; (d) test setup for free-standing EUTs.
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resonances, and antenna loads), the standard suggests that RF absorber materials be

used to reduce the reflections of EM energy and to improve accuracy and

repeatability in electric-field radiated emissions or radiated-susceptibility testing.

To standardize the radiated (and conducted) emission behavior of the line providing

input power to the EUT (so that measurements from different labs can be compared),

the line impedance is controlled by a line impedance stabilization network (LISN).

This is a combination of a voltage probe and a 50V filter that isolates the power source

from the test sample, standardizes the source impedance at 50 V, and allows the

measurement receiver to be capacitively coupled to the test-sample power line.

In all the test procedures the standard requires that the entire measurement system

be initially calibrated from the sensor to the display using standardized reference

signals for each procedure, in order to reduce systematic errors. Measurements are
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performed by using a peak detector. The measurement tolerance is severe: 
2 dB.

The 6 dB bandwidth of the receiver (100 kHz in the range 30 MHz–1 GHz) and the

measurement times are also specified.

The radiated-emission requirement RE101 calls for the magnetic field emissions

not to exceed the prescribed levels, shown in Figure C.6a, at a distance of 7 cm from

the EUT face. A loop sensor with a 13.3 cm diameter and 36 turns is used as the

detector. The EUT testing requirement is a worst-case measurement. At first, it is

necessary to identify the frequencies of maximum radiation keeping the sensor fixed

and by scanning the frequency range. Next, operating at such frequencies, the points
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of maximum radiation have to be identified; this is accomplished by moving the

sensor around the EUT and orienting the plane of the loop.

The RE102 requirement calls for the electric-field emissions not to exceed the

prescribed levels shown in Figure C.6b, at a distance of 1 m. Above 30 MHz, the

limits must be met for both horizontally and vertically polarized fields. Several

receiving electric-field antennas are used: a 104 cm rod antenna (10 kHz–30 MHz), a

biconical antenna (30 MHz–200 MHz), and a double-ridge antenna (200 MHz–

18 GHz). The test procedure calls for the maximum emissions to be located at

prescribed positions of the receiving antenna (which has to be placed at a distance of

1 m from the front edge of the EUT setup boundary) by scanning the measurement

receiver for each frequency range and by orienting the antenna for both horizontally

and vertically polarized fields.

The RS101, RS103, and RS105 requirements call for the EUT not to exhibit any

malfunction, degradation of performance, or deviation from specified indications

(beyond the tolerances indicated in the individual equipment or subsystem

specification) when subjected to prescribed low-frequency magnetic fields, high-

frequency electric fields, and transient EM fields, respectively. In the case of RS101,

the radiating antenna is a loop with 12 cm diameter and 20 turns, placed at 5 cm from

the EUT face. The test procedure involves scanning the considered frequency range

to identify those frequencies, if any, where significant susceptibility effects take

place. Then the transmitting loop is moved around the EUT to determine the

locations of susceptibility. In the case of RS103, the transmitting antenna is placed

1 m from the test setup boundary at prescribed positions, depending on the boundary

dimensions. The testing involves scanning the required frequency range to monitor

the EUT performance for susceptibility effects, with the transmitting antenna both

vertically and horizontally polarized. In the high-frequency range (200 MHz–

40 GHz) the standard suggests an optional test in a mode-stirred reverberation

chamber. The document calls for a number of prescribed tuner positions, minimizing

the need for rotating the test sample and moving the transmitting antenna for

monitoring susceptibility effects. The RS105 testing involves placing the EUT in a

transverse electromagnetic cell (TEM-cell; see Figure C.7a), where it is exposed to a

pulsed field with a prescribed waveform (shown in Figure C.7b).

MIL-STD 461E is a widely referenced standard. Through the years it has become

the de facto EMC standard used by NATO and by several defense departments in

countries around the globe. In any case some remarks about this standard are in

order. When calling for the use of a shielded enclosure, the standard does not

adequately address the problem of enclosure resonances: it only requires enough

spacing to contain the setup. Although the addition of absorber materials is

recommended, the semi-anechoic and anechoic chambers lead to some of the

problems of metal-box enclosures such that the same product when tested in

different-sized enclosures may yield different results. The LISN impedance is not

stable across the entire measurement frequency range and must be calibrated at the

test sample’s equivalent load current. In addition significant errors can be

encountered because of the impedance mismatch between the LISN and the

measurement receiver. The prescribed calibration procedures do an excellent job in
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minimizing the errors for conducted measurements, but the radiated measurements

are nevertheless prone to errors resulting from the interaction of the radiated field

with the surroundings. The standard calls for testing both a vertically and a

horizontally polarized field. However, the measured signals are not necessarily

polarized the same way as the antenna, so the arriving signal at the required

measurement distance may be cross-polarized with respect to the antenna.

The largest angular difference is 45	, which is equivalent to a �3 dB systematic

error.
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C.6 CODE OF FEDERAL REGULATIONS, TITLE 47, PART 15

Ever since the first poorly shielded home computers caused annoying herringbone

patterns on neighbors’ television screens, the Federal Communications Commission

(FCC) has issued strict limits to the levels of RF emissions that a digital-logic

product can spew into the environment. The requirements of the FCC are presently

contained in the Code of Federal Regulations, Title 47, Part 15, ‘‘Radio Frequency

Devices.’’ FCC Part 15 [14] rules cover both unintentional and intentional radiators:

the first are devices such as computers and television receivers, which may generate

radio signals as part of their operation, though they are not designed to transmit such

signals; the second are devices, such as garage-door openers, cordless telephones,

and wireless microphones that depend on deliberate radio signals to function. Digital

devices are categorized as class B devices (which are marketed for use in a

residential environment) and class A devices (which are marketed for use in a

commercial, industrial, or business environment). Examples of class B devices

include (but are not limited to) personal computers, calculators, and similar

electronic devices that are marketed for use by the general public.

For unintentional radiators, including digital devices, the FCC calls for

measurements over the frequency range from the lowest RF signal generated or

used in the device (without going below the lowest frequency for which a radiated-

emission limit is specified) to an upper frequency depending on the highest

frequency fu used in the device: in particular, such an upper frequency is 30 MHz if

fu < 1:705MHz, 1 GHz if 1:705MHz < fu < 108MHz, 2 GHz if 108MHz < fu
< 500MHz, 5 GHz if 500MHz < fu < 1GHz, and 5th harmonic of the highest

frequency or 40 GHz, whichever is lower, if fu is above 1 GHz. Additional

requirements are provided for inadvertent radiators, with the exception of digital

devices with fu less than 30 MHz and for receivers employing superheterodyne

techniques. In the case of intentional radiators, the FCC calls for measurements over

a frequency range from that of the lowest radio frequency (RF) used in the

equipment cabinet (without going below 9 kHz) to an upper frequency that depends

on the highest operating frequency of the used equipment. For equipments operating

below 10 GHz, such an upper frequency is the 5th harmonic of the highest

fundamental frequency or 10 GHz, whichever is lower; if the equipment operates

between 10 and 30 GHz, it is the 10th harmonic of the highest fundamental

frequency or 40 GHz, whichever is lower. If the equipment operates above 30 GHz,

the upper frequency limit is the 5th harmonic of the highest fundamental frequency

or 200 GHz, whichever is lower.

For unintentional radiators, except for class A digital devices, the field strength of

the radiated emissions at a distance of 3 m must not exceed the values in Table C.2.

Also for intentional radiators, the field strength of the radiated emissions at a

distance of 3 m must not exceed the values in Table C.2. For class A digital devices,

the field strength of the radiated emissions at a distance of 10 m must not exceed the

values in Table C.3.

As noted in Part 15, the testing can be according to the limits given either in the

text of the regulations or in CISPR 22 [29], with the following points applying: the
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limits CISPR 22 must be used in their entirety, and the test procedures must be those

specified in Part 15 and ANSI C63.4, not those in CISPR 22.

The measurements must be performed according to the measuring procedures

FCC/OETMP-4 [15] and ANSI C63.4 [16]. Measurements are suggested to be made

in an open area test site (OATS). However alternative test sites are possible, such as

RF absorber-lined, metal test chambers, office or factory buildings, provided that

they comply with the prescribed volumetric normalized site attenuation (NSA)

requirements. The test environment must have both conducted and radiated RF

ambient levels at least 6 dB below the specification. Radiation measurements made

in a shielded enclosure are adequate only for determining emission frequencies of

the EUT caused by multiple reflections, and such measurements can be used below

the resonant frequencies of the enclosure (usually under 30 MHz). For frequencies

below 1 GHz, the measurements are carried out using a CISPR quasi–peak detector

function, whereas for frequencies above 1 GHz an average detector function is used.

At radio frequencies, the prescribed 6 dB bandwidth of the measuring instrument is

equal to that of the MIL-STD-461E: not less than 100 kHz in the range 30MHz to

1 GHz and not less than 1 MHz for frequencies above 1 GHz. In the frequency range

30 to 1000 MHz, the receiving antenna must be a tuned half-wave dipole; other

linearly polarized antennas can be used, provided that the measurement can be

correlated with that made by means of a tuned dipole with an acceptable degree of

accuracy. In the range of 1 to 40 GHz, calibrated, linearly polarized antennas must be

used (double-ridged guide horns, rectangular waveguide horns, pyramidal horns,

optimum gain horns, etc). Tests must be made in both horizontal and vertical planes

of polarization over the frequency range. A reflecting ground plane must be installed

on the floor of the radiated electric-field emission test site to provide a uniform,

TABLE C.3 FCC-Part 15 Limits for Class A Unintentional Digital
Radiators

Frequency Radiated Radiated

(MHz) Distance (m) (dBmV/m) (mV/m)

30–88 10 39.08 90

88–216 10 43.5 150

216–960 10 46.44 210

Above 960 10 49.54 300

TABLE C.2 FCC-Part 15 Limits for Intentional and
Class B Unintentional Radiators

Frequency Radiated Radiated

(MHz) Distance (m) (dBmV/m) (mV/m)

30–88 3 40 100

88–216 3 43.5 150

216–960 3 46 200

Above 960 3 54 500
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predictable reflection of radiated emissions measured at the site. Unlike MIL-STD-

461E, the FCC tests are performed with the EUT placed on a turntable and rotated

through 360	, while simultaneously raising and lowering the receiving antenna

(from 1 to 4 m). For floor-standing EUTs, the turntable must be metal-covered and

flush with the ground plane; for tabletop EUTs, the turntable can be nonmetallic and

located on top of the reference ground plane.

It should be noted that acquiring a complete and exhaustive data set according to

FCC (and MIL-STD-461E) requirements can take a long time. In the RF range, for

each position of the turntable and each elevation of the receiving antenna, it is

necessary to make for both horizontal and vertical polarizations a frequency span in

the range 30 MHz to 1 GHz (970 MHz range) using a 100 kHz bandwidth.

C.7 ANSI\SCTE 48-3

The Society of Cable Telecommunications Engineers (SCTE), a nonprofit

professional association, is the cable telecommunications organization accredited

by the American National Standards Institute (ANSI). The International Tele-

communication Union (ITU) also recognizes SCTE, allowing SCTE standards to be

referenced by the ITU. SCTE submits standards to the ITU through the US

Department of State and works in cooperation with the European Telecommunica-

tions Standards Institute (ETSI).

The standard ANSI/SCTE 48-3 [17] details the procedure for measuring the SE

of a coaxial cable using a gigahertz transverse electro-magnetic (GTEM) cell (see

Figure C.8 for the measurement setup). No performance requirement is indicated. In

particular, this procedure applies to measuring the SE of the 75 V braided coaxial

drop cables presently used within the broadband communications industry. The SE

is calculated as the level difference (in dB) between the coupling-loss measurement

of the unshielded and shielded device under test (DUT); the coupling-loss

measurement is a measure of the voltage loss in dB between the RF voltage input

to the GTEM cell and the RF voltage coupled into the DUTand received at the point

where the cable exits from the GTEM cell. The measurements are conducted in the

frequency range of 5 to 1000 MHz, and the average value across the entire range is

considered as the SE of the DUT.

The unshielded calibration sample consists of a 1 m length of core (inner conductor

and dielectric insulation only), with the appropriate coaxial cable connectors fitted to

each end. The cable is installed within the GTEM cell, with the cable connectors

attached to the adapter interfaces on the feed-through panel located in the center of

the GTEM floor. One adapter is terminated with a 75 V load while the other

is connected to the receiving port of the spectrum analyzer. The shielded sample

consists of a 1 m length of cable; the coaxial connectors can be included or removed

from the measurement. When the connectors have to be removed, two inches of

jacket are removed from the cable in order to accommodate the feed-through adapters

in the GTEM floor. The measurements are typically performed with the use of an

amplifier.
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C.8 MIL-STD 1377

The MIL-STD 1377 [18], mandatory for use by the Department of the Navy, covers

the methods of measuring the SE of weapon enclosures, cables, and cable connectors

over the frequency ranges 100 kHz to 30 MHz and 1 GHz to 10 GHz. The document

clarifies that it is unnecessary to measure the SE between 30 MHz and 1 GHz, due to

the limited use that Navy makes of these frequencies. The standard provides the test

setup and the necessary apparatus to characterize the shielding performances only of

cables since it neglects weapon and connectors, which are very specific topics.

At frequencies below 30MHz, the surface transfer impedance (STI) of the cable

is measured according with the setup shown in Figure C.9a. With the output of a

signal source (any RF signal generator) applied to the test cable (through a cable

adapter), the center-conductor current and the voltage on the outer surface of the

shield between the ends of the test cable are measured with an ammeter and an RF

voltmeter, respectively. The STI is thus calculated by dividing the voltage

measurement by the current measurement.

Above 1 GHz, the setup for measuring the SE of the cable shield is more

complex, as shown in Figure C.9b. The main apparatus is a cabinet enclosure, with

sufficient space to accommodate the cable and with a SE greater than 60 dB. Inside

the enclosure, there are an input antenna and an output antenna, one opposite to the

other, connected to bulkhead connectors mounted on the walls of the cabinet: they

consist of a wire running from the connector to one corner of the cabinet, then

diagonally across the end of the cabinet, and then along the length of the cabinet

parallel to the edge. Inside the cabinet, a paddle wheel turner is installed too: it

consists of three dipoles 8, 6.5, and 5.25 inches long and each 1 inch wide. In

addition the setup requires a signal generator, impedance matching devices capable

of matching the input and output impedance of the test enclosure to 50 V, a

directional coupler capable of providing a signal proportional to the forward power,

and power meters. The measurement procedure involves two steps: first a calibration

GTEM cell

Back

DUT
half loop configuration

Front
Feed-thru panel

Spectrum analyzer

Amplifier IN

IN OUT

OUT
IN

75 Ω

FIGURE C.8 ANSI/SCTE 48-3 measurement setup.
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is made with the output antenna connected to the receiving power meter, and then a

measurement is made with the cable connected to the output bulkhead connector in

place of the output antenna. The technique to be applied is the same: with the signal

generator applied to the input of the cabinet, the matching devices are adjusted for

maximum power as measured by the output power meter; then the paddle wheel

tuner is rotated until the maximum output power is found; with the tuner fixed in this

position, the final matching is performed and the maximum output and input powers

are measured. The SE can be computed from the values of the forward input PIS and

output POS power for the shield-loss measurement and forward input PIC and output

POC powers for the calibration measurement, as SE ¼ 10 logðPISPOC=POSPICÞ.

C.9 IEC STANDARDS

The International Electrotechnical Commission (IEC) is an international organiza-

tion that develops standards on electrical, electronic, and related technologies,

sometimes jointly with the International Organization for Standardization (ISO). In

order to distinguish standards published by the IEC numerically from other
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international standards, the standards number range was shifted in 1997 by adding

60000: hence what used to be called IEC 1547 is now officially IEC 61547, and

so on.

The IEC relies on some 179 technical committees and subcommittees to carry out

the standards work. These working groups are mainly composed of people from all

around the world who are expert in electrotechnology, coming from industry,

commerce, government, test and research laboratories, academia, and consumer

groups. Among these committees, it is important to mention the Technical

Committee 77 concerning emission and immunity in the low-frequency range (i.e.,

below 9 kHz) and, in particular, the Special International Committee on Radio

Interference (abbreviated CISPR from the French name of the organization, Comité

International Spécial des Perturbations Radioélectriques) whose primary responsi-

bility is at the highest end of the IEC frequency range, starting at 9 kHz and

extending upward. CISPR develops norms for detecting, measuring, and comparing

EM interference in electric devices, such as electrical appliances of all types,

electricity-supply systems, industrial, scientific, and electromedical RF, broad-

casting receivers (radio and TV), and information technology equipment (ITE). The

CISPR is divided into six subcommittees (from SC-A to SC-I), plus a steering

committee (SC-S), each dealing with a different topic of the same matter: defining

equipment and methods for measuring interference, establishing limits and

immunity requirements, and prescribing, in liaison with other IEC technical

committees, methods of measuring immunity.

The IEC standards about limits and methods of measurement of conducted and

radiated disturbances are a huge number. Among them an immunity collection and

an emission collection can be identified. The better known standards worthy to be

mentioned are as follows:

Immunity Standards

� CISPR 14-2 [19], a product family standard about immunity requirements for

household appliances, electric tools, and similar apparatus.

� CISPR 20 [20], a product family standard about limits and methods of

measurement of immunity characteristics of sound and television broadcast

receivers and associated equipment.

� IEC 61547 [21], a product family standard about immunity requirements for

general-purpose lighting equipment.

� IEC 61000-6-1 [22], a generic standard about immunity requirements for

equipment to be installed in residential, commercial, and light-industry

environments.

� IEC 61000-6-2 [23], a generic standard about immunity requirements for

equipment to be installed in industrial environments.

� IEC 61000-4-3 [24], dealing with testing and measurement techniques to be

used in radiated RF immunity tests.
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Emission Standards

� CISPR 11 [25], a product family standard about emission requirements for

industrial, scientific, and medical (ISM) radio-frequency equipment.

� CISPR 13 [26], a product family standard about emission requirements for

sound and television broadcast receivers and associated equipment.

� CISPR 14-1 [27], a product family standard about emission requirements for

household appliances, electric tools, and similar apparatus.

� CISPR 15 [28], a product family standard about emission requirements for

electrical lighting and similar equipment.

� CISPR 22 [29], a product family standard about emission requirements for

information technology equipment.

� IEC 61000-6-3 [30], a generic standard about emission requirements for

equipment to be installed in residential, commercial, and light-industry

environments.

� IEC 61000-6-4 [31], a generic standard about emission requirements for

equipment to be installed in industrial environments.

It is no small task to relate all the referred IEC standards. Indeed the task is so

daunting that only the major characteristics will be described on the following pages.

As regards immunity, the specification IEC 61000-4-3 calls for monitoring a

DUT for continuous proper operation as it is subjected to a RF radiation level. It

identifies four test levels related to general-purpose devices: level 1 with a field

strength of 1 V/m, level 2 with 3 V/m, level 3 with 10 V/m, and level 4 with 30 V/m.

The standard does not provide any specification on which level has to be used

because it is up to the product committees to select the appropriate level; it only

instructs the technician not to use a single level over the entire frequency range. The

test frequency range is from 80MHz to 6 GHz: the tests are usually performed

without gaps in the frequency range 80 MHz to 1 GHz for general-purpose devices,

while in the ranges 80 MHz to 960 MHz and 1.4 to 6 GHz for RF emitting devices,

the tests are limited to those frequencies where the device actually operates. The

signal must have amplitude modulated by a 1 kHz sine wave with a modulation

depth of 80%. The specification IEC 61000-6-1 fixes the test levels of the RF EM

field (80 MHz–1 GHz) to 3 V/m for equipments to be used in residential and

commercial environments, while the specification IEC 61000-6-2 fixes it to 10 V/m

for industrial equipments (10 V/m 80–1000 MHz, 3 V/m 1.4–2 GHz, 1 V/m 2–

2.7 GHz). Three performance criteria are specified: criterion A, when the apparatus

continues to operate as intended during and after the test; criterion B, when the

apparatus continues to operate as intended after the test while during the test it shows

degradation of performance; criterion C, when the apparatus shows a temporary loss

of function, which is in fact self-recoverable.

RF signal generators, power amplifiers, and antennas are needed to generate the

required field strength. Any linearly polarized antenna (e.g., biconical, log-periodic,

and horn antennas) can be used as the transmitting antenna if it satisfies the
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frequency range and power requirements (circularly polarized antennas are not

allowable). The standard requires that the amplifier must be able to handle the

required modulation without saturating during the test. Field strength can be

monitored through field probes and field monitors. Forward power can be monitored

through dual-directional couplers and power meters with sensors. The test facility is

an anechoic or semi-anechoic chamber of a size adequate to EUT and test

equipments (partially lined screened rooms and open area test sites are not

alternative test facilities): the minimum distance between the antenna and the EUT is

3 m. A metallic ground plane is not required. The EUT can be floor-standing or

table-top-standing: in the latter, it must be placed on a nonconductive 0.8 m high

table. Wooden tables and supports that have been widely used in the test setups for

years (because they are affordable and easy to make) cannot be used anymore above

1 GHz where they can be reflective. A low-permittivity material, such as rigid

polystyrene, is necessary to satisfy the field-uniformity requirements for frequencies

greater than 1 GHz.

For the immunity test the standard depends on the concept of a uniform-field area

(UFA). The UFA is a hypothetical vertical plane whose field variations are

acceptably small. The calibration procedure is aimed at showing the capability of the

test facility and equipment to generate such a field, building at the same time a

database of field strengths. The size of the UFA is at least 1:5� 1:5m, with the

lowest edge at a height of 0.8 m above the floor. The calibration procedure is a

tedious process, and it is impractical to do it without a PC and calibration software.

The UFA is divided into 16 points on a 0.5 m grid. By choosing a point near the

center as the reference point, the RF source is set to the low end of the test range and

the power into the antenna is adjusted to produce the test level as monitored by a

field-strength meter. The frequency is stepped from the low end of the desired

spectrum to the high end, and the amplifier output is adjusted at each step to get the

same field strength as that at the reference frequency. The operator then proceeds

through the other 15 points, driving the antenna at the same level as before for each

frequency step and recording the field strength. From the results the field is

considered uniform if its magnitude at not less than 75% of all grid points (i.e., 12

points) is within the interval [0, þ6] dB of the nominal value. The standard states

that the level of any harmonic frequency generated by the power amplifier and

measured in the UFA must be at least 6 dB below that of the fundamental frequency.

The final setup is shown in Figure C.10.

As regards the emission, the measurement procedure is the same as that described

in several CISPR standards. The requirements are also close to those of the ANSI

C63.4 procedure. The measurements must be conducted with a quasi-peak

measuring receiver in the frequency range 30 MHz to 1 GHz. The receiving antenna

must be a balanced dipole resonant in length and must be adjusted between 1 and

4 m in height above the ground plane for a maximum meter reading at each

frequency. Both the horizontal and vertical polarizations must be considered. The

test site must be an open-area or an alternative site validated by an appropriate

measurement of the provided attenuation. A conductive ground plane is required.

The antenna-to-EUT azimuth must be varied during the measurement to find the
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maximum field-strength reading, either by rotating the EUT or by making the

measurements around the fixed EUT (alternative choice).

As in the FCC Part 15, the devices are divided in two categories: class B

equipment (for use in a domestic environment) and class A equipment (for use in an

industrial environment). The emission limits are given in standards IEC 61000-6-3

and IEC 61000-6-4, respectively, and are summarized in Table C.4. For class A

devices, the measurement can be conducted at a 10 m distance using the limits

increased by 10 dB (thus meeting the previsions of CISPR 11). This way it is

possible to see that the limits are very similar to those imposed by FCC Part 15.

Signal generator

RF amplifier

Directional

coupler

Power head

Field probe

monitor

Power meter

Incoming mains
power filter

Chamber penetration
cables

Interconnection filter

Anechoic material

UFA

Field probe

Transmitting
antenna

3 m

0.8 m

Test facility

FIGURE C.10 IEC 61000-4-3 measurement setup for immunity tests.

TABLE C.4 IEC Emission Limits

Frequency Radiated Radiated

(MHz) Distance (m) (dBmV/m) (mV/m)

Class B (IEC 61000-6-3)

30–230 10 30 31.6

230–1000 10 37 70.8

Class A (IEC 61000-6-4)

30–230 30 30 31.6

230–1000 30 37 70.8
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Last some reference must be made to the European Union (EU) standards. EU

agencies have been the most active in defining acceptable immunity levels for

products to be marketed on the Continent. The population density is high in most

European countries, and citizens have experienced the effects of unwanted

radiation for many years. The specifications for susceptibility and emission testing

that have the EN prefix come from the European Committee for Electrotechnical

Standardization (CENELEC). These specifications are identical to or derived from

standards developed by the IEC, because of the 1996 Dresden agreement between

the two organizations.

C.10 ITU-T RECOMMENDATIONS

The International Telecommunication Union (ITU) is the leading United Nations

agency for information and communication technology. ITU’s activity spans three

core sectors in the development of Information and Communications Technology

(ICT): radio-communications (ITU-R), standardization (ITU-T), and development

(ITU-D). The mission of the standardization sector ITU-T is to ensure an efficient

and on-time production of high-quality standards covering all the fields of

telecommunications. Its main products are normative recommendations, that is,

standards that define how telecommunication networks operate. ITU-T Recommen-

dations are nonbinding, but they are generally complied with because they guarantee

the interconnectivity of networks and enable telecommunication services to be

provided on a worldwide scale. Currently there are about 3100 Recommendations in

force on several topics, ranging from service definition to network architecture and

security, from dial-up modems to Gbit/s optical transmission systems. Here it is

worth reminding the K-series of the ITU-T Recommendations dealing with

‘‘protection against interference.’’ The K-series Recommendations are a huge

number; in the following the main recommendations dealing with topics related to

the content of the book will be reported.

Recommendation K.42 [32] explains the basic principles on which EMC

standardization is based in the ITU-T sector. It clearly states the need for

collaboration with other international organizations (ISO and IEC) whose EMC

standards must be considered as well. The above-mentioned IEC, ISO, and CISPR

standards and publications are cited and the document describes procedures that are

followed in the preparation of ITU-T Recommendations on EMC requirements

about telecommunications equipments: environmental classification, emission, and

immunity.

Recommendation K.34 [33] gives the details on the classification of EM

environmental classes for telecommunication equipments covering all the relevant

EM environmental parameters. It refers to the IEC 61000-2-5 [34]. The document

defines four classes of environments for telecommunication equipments: major

telecommunication centers, minor telecommunication centers, outdoor locations,

and customer premises. The characteristic severities and some characteristics of the

relevant parameters are stated for each environmental class. The parameters are
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given according to the coupling path: signal lines entering the building, signal lines

remaining within the building, ac power mains, dc power distribution and enclosure,

such as in the coupling of EM fields to the internal equipments. As concerns the last

parameter, the amplitude of the modulated RF EM field that can be expected in each

environmental class is as follows: 1 V/m for major telecommunication centers, 3 V/

m for minor telecommunication centers, 10 V/m for outdoor locations, and 3 V/m

for customer premises in the frequency range 9 kHz to 2 GHz.

Recommendation K.43 [35] specifies the essential immunity requirements for

equipments used within the public telecommunication networks and for terminal

equipments connected to such networks. The document refers to the IEC 61000-4-3

standard: the performance criteria (A, B, C) are the same. Table C.5 summarizes the

immunity requirements.

Emission from telecommunication networks are dealt with in Recommendation

K.60 [36]. The document applies to wire-line telecommunication networks (e.g., all

the telecommunication networks using telecommunication cables, their in-house

cabling extensions, and connected telecommunications terminal equipments), all the

telecommunication networks using the low-voltage ac mains network, and commu-

nity antenna TV distribution networks. The document provides the methodology to

measure in situ the disturbance emissions in the frequency ranges 9 kHz to 30MHz

and 30MHz to 3 GHz, providing also the prescribed limits. As for other standards, in

the low-frequency range a loop antenna must be used, whereas in the high-frequency

range broadband dipole, biconical, log-periodic, or horn antennas (linearly polarized)

are suggested. Emission from large systems can be accomplished according to

Recommendation K.38 [37].

The last Recommendation worthy to be mentioned is Recommendation K.48

[38], which is a family Recommendation about telecommunication equipments such

as switching, transmission, power, digital mobile base station, wireless LAN, and

digital radio relay system, digital subscriber line, and supervisory equipments. The

document specifies the emission and immunity requirements, mainly referring to

CISPR 22 and ITU-T Rec. K.43 for methodologies and limits. The emission limits

are the same as those of CISPR 22, while the immunity requirements are reported in

Table C.6.

TABLE C.5 ITU-T K.43 Immunity Requirements

Frequency Test Level Performance

(MHz) (V/m) Criterion

Equipment for telecom center

80–800 1 A

800–1000 10 A

1400–2000 10 A

Equipment for customer premises

80–800 3 A

800–1000 10 A

1400–2000 10 A
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C.11 AUTOMOTIVE STANDARDS

Today automotive EMC standards are very dynamic. This is mainly due to the fact

that the major companies and national standards bodies around the world are

working to harmonize their standards with the international ones. International

standards for automotive applications fall under two standards organizations: ISO

(Technical Committee 22, Subcommittee 3, Working Group 3 for immunity

concerns) and IEC (CISPR Subcommittee D for automotive and related products). In

the United States, the American National Standards Institute (ANSI, which is the

coordinating organization of US standards) has delegated the standards-writing

activity to the Society of Automotive Engineers (SAE), which is dedicated to

advancing mobility engineering worldwide, helping its members share information

and exchange ideas.

The SAE EMC standards deal with both ground and aerospace vehicles. As

concerns automotive regulations, the SAE carries out its work of standards-writing

through two primary EMC committees, the Electromagnetic Immunity (EMI) and the

Electromagnetic Radiation (EMR) Standards Committees, which have developed an

extensive collection of EMC standards. The SAE EMI Standards Committee

addresses immunity of automotive electrical and electronic systems in the vehicle and

the modules or components of the vehicle, whereas the SAE EMR Standards

Committee is primarily concerned with emissions from a vehicle and its modules or

components that may cause radio-reception interference. As concerns emission and

immunity of aerospace equipments, the EMC standards are written by the AE-4

Electromagnetic Environmental Effects Committee.

Now the main problem in the harmonization process is that SAE did not accept

some test methods proposed by ISO (e.g., the stripline test method), while ISO did

not adopt several of the long-accepted SAE test methods, because of much European

pressure to limit the number of test methods in international standards.

The standards are huge in number. The main standards are listed in Table C.7. As

regards ground automotive, the SAE standards (together with their corresponding

ISO/IEC standards) can be broadly divided into two classes: standards applicable to

vehicles or devices powered by an internal combustion engine or electric motor, and

standards applicable to components. The first class is mainly composed of the

standard family SAE J551 (with the counterpart family ISO 11451), and the second

TABLE C.6 ITU-T K.48 Immunity Requirements

Frequency Test Level Performance

(MHz) (V/m) Criterion

Equipment for telecom center and equipment for customer

80–800 3 A

800–960 10

960–1000 3 A

1400–2000 10 A
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TABLE C.7 SAE/ISO EMC Standards

SAE ISO

Number Title Number Title

J551-1 Performance Levels and

Methods of Measurement

of Electromagnetic

Compatibility of Vehicles,

Boats (up to 15 m), and

Machines (16.6 Hz to 18 GHz)

11451-1 Road Vehicles–Vehicle Test

Methods for Electrical

Disturbances from Narrowband

Radiated Electromagnetic

Energy—Part 1: General Principles

and Terminology

J551-5 Performance Levels and

Methods of Measurement

of Magnetic and Electric Field

Strength from Electric Vehicles,

Broadband (9 kHz to 30 MHz)

J551-11 Vehicle Electromagnetic

Immunity—Off-Vehicle Source

11451-2 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Vehicle Test Methods—Part 2: Off-

Vehicle Radiation Source

J551-12 Vehicle Electromagnetic

Immunity–On-Board

Transmitter Simulation

11451-3 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Vehicle Test Methods—Part 3: On-

Board Transmitter Simulation

J551-13 Vehicle Electromagnetic

Immunity–Bulk Current

Injection

11451-4 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Vehicle Test Methods—Part 4:

Bulk Current Injector (BCI)

J551-16 Electromagnetic Immunity–

Off-Vehicle Source

(Reverberation Chamber

Method)—Part 16: Immunity to

Radiated Electromagnetic

Fields

J551-17 Vehicle Electromagnetic

Immunity–Power Line

Magnetic Fields

J1113-1 Electromagnetic Compatibility

Measurement Procedures and

Limits for Components of

Vehicles, Boats (up to 15 m),

and Machines (Except Aircraft)

(16.6 Hz to 18 GHz)

11452-2 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Component Test Methods—Part 2:

Absorber-Lined Chamber

(continued)
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J1113-4 Immunity to Radiated

Electromagnetic Fields–Bulk

Current Injection (BCI) Method

11452-4 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Component Test Methods—Part 4:

Bulk Current Injection (BCI)

J1113-21 Electromagnetic Compatibility

Measurement Procedure for

Vehicle Components—Part 21:

Immunity to Electromagnetic

Fields (30 MHz to 18 GHz),

Absorber-Lined Chamber

11452-2 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Component Test Methods—Part 2:

Absorber-Lined Chamber

J1113-22 Electromagnetic Compatibility

Measurement Procedure for

Vehicle Components—Part 22:

Immunity to Radiated Magnetic

Fields

11452-8 Road Vehicles–Component Test

Methods for Electrical

Disturbances from Narrowband

Radiated Electromagnetic

Energy—Part 8: Immunity to

Magnetic Fields

J1113-24 Immunity to Radiated

Electromagnetic Fields; 10 kHz

to 200 MHz–Crawford TEM

Cell and 10 kHz to 5 GHz–

Wideband TEM Cell

11452-3 Road Vehicles–Electrical

Disturbances by Narrow-Band

Radiated Electromagnetic Energy–

Component Test Methods—Part 3:

Transverse Electromagnetic Mode

(TEM) Cell

J1113-27 Electromagnetic Compatibility

Measurements Procedure for

Vehicle Components—Part 27:

Immunity to Radiated

Electromagnetic Fields–Mode Stir

Reverberation Method

J1113-28 Electromagnetic Compatibility

Measurements Procedure for

Vehicle Components—Part 28:

Immunity to Radiated

Electromagnetic Fields–

Reverberation Method (Mode

Tuning)

ARP 1173 Test Procedure to Measure the RF,

Shielding Characteristics of EMI

Gaskets

ARP 1705A Coaxial Test Procedure to Measure

the RF Shielding Characteristics of

EMI Gasket Materials

ARP 5583 Guide to Certification of Aircraft in

a High Intensity Radiated Field

(HIRF) Environment

TABLE C.7 (Continued )

SAE ISO

Number Title Number Title
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class is composed of the standard family SAE J1113 (with the counterpart family

ISO 11452).

The details of the standards in Table C.7 are not given. For more specific topics,

the interested reader is referred to the mentioned standards. A point of interest to

note here is that the SAE standards cover reverberation-chamber radiated immunity

testing on vehicles and components, which is currently not covered by any ISO

standard. However, the reverberation-chamber test methods are covered by the IEC

61000-4-21 [39], whose general setup is shown in Figure C.11.

The reverberation chamber is a shielded room, with a high-quality factor Q whose

boundary conditions are changed via a rotating tuner. The tuner is a rotating metallic

reflector that, in changing the boundary conditions as it rotates, moves the location

of nulls and maximums of the field inside the reverberation chamber. The overall

effect is a time-averaged uniform electric field inside the chamber, or better, in a

portion of it (uniform-field volume). The IEC standard makes a detailed overview of

the reverberation-chamber theory, adding several details on the chamber selection.

For optimum chamber performance (especially at low frequencies), the volume of

the chamber should be as large as possible, the room dimensions should not be

integer multiples of one another (rooms with integer multiple dimensions will have

degenerate modes and may not reverberate at all frequencies), and the tuner should

be electrically large (greater than or equal to the wavelength at the lowest frequency

of operation) to ensure its effectiveness in redistributing the energy inside the
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FIGURE C.11 IEC 61000-4-21 reverberation chamber setup.
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chamber. As the tuner rotates, the difference of the maximum and minimum of the

RF electric field measured at a fixed location will change by 20 dB or more. If the

tuner operates in a intermittent way (step-stop step-stop), the chamber is known as

mode-tuned reverberation chamber, and if it is continuously rotated the chamber is

known as mode-stirred reverberation chamber. The standard gives the methodol-

ogies for calibration of mode-tuned and mode-stirred chambers, and for conducting

radiated immunity and emission measurements. It also gives the procedure to

measure the SE of planar materials by means of ‘‘nested chambers.’’
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