# advanced basic

FLIP-1

2 FOR Y=1 TO 10

APPLICATIONS AND PROBLEMS

```
5"LET C=0
            FUR X=1 TU 50
1.0
20
            LET F=INT(2*RND(1))
                                                                                                                  JAMES S. COAN
            IF F=1 THEN 60
30
            PRINT
                                "T";
40
            GØ TØ 100
50
                             C COUNTS THE NUMBER OF HEADS
58
60
            LET C=C+1
            PRINT "H"3:
70
100
           NEXT X
110
             PRINT
120
            PRINT "HEADS "; C; "ØUT ØF
125
            NEXT Y
 130
              END
RUN
 FLIP-1
TTHETTERRIBERTETTTTTHERREPTETTTTTTTTTHETERTTETTTT
                                                                  50 FLIPS
 HHTTI HHT HHTHTT HHHHTTTTTTTHHHHTT HTH HHHHT HHTHHHH
 HEADS
 TIHHTTTTHTHH!THTHTHHHHTTHHTHHTTTTTTTHT<del>HHHHTTH</del>THHHTT
 HEADS
                           26
 THITTI HI HI THI HI THE HAHAT HAHAT HI HAHAT THAT I THITTI TH
 HEADS
                                                                   50 FLIPS
 50 FLIPS
 THT HET TEREBERT HET TEREST TEREST STATES TO STATES TO THE TEREST TEREST TEREST TEREST TO THE TEREST TEREST
 HEADS
```

HEADS

## advanced BASIC

#### **Hayden Computer Programming Series**

COMPREHENSIVE STANDARD FORTRAN PROGRAMMING

James N. Haag

BASICS OF DIGITAL COMPUTER PROGRAMMING (Second Ed.)

John S. Murphy

BASIC BASIC: An Introduction to Computer Programming in BASIC Language (Second Ed.)

James S. Coan

ADVANCED BASIC: Applications and Problems

James S. Coan

DISCOVERING BASIC: A Problem Solving Approach

Robert E. Smith

ASSEMBLY LANGUAGE BASICS: An Annotated Program Book

Irving A. Dodes

PROGRAMMING PROVERBS

Henry F. Ledgard

PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS

Henry F. Ledgard

FORTRAN WITH STYLE

Henry F. Ledgard and Louis J. Chmura

COBOL WITH STYLE: Programming Proverbs

Louis J. Chmura and Henry F. Ledgard

SNOBOL: An Introduction to Programming

Peter R. Newsted

FORTRAN FUNDAMENTALS: A Short Course

Jack Steingraber

THE BASIC WORKBOOK: Creative Techniques for Beginning Programmers

Kenneth E. Schoman, Jr.

BASIC FROM THE GROUND UP

David E. Simon

# advanced BASIC

#### APPLICATIONS AND PROBLEMS

JAMES S. COAN

Community Computer Corporation Germantown Friends School



Library of Congress Cataloging in Publication Data

Coan, James S Advanced BASIC.

> (Hayden computer programming series) Bibliography: p. Includes index.

 Basic (Computer program language).
 Mathematics--Data processing. I. Title. QA76.73, B3C6 001.6'425 76-7435

ISBN 0-8104-5856-X

ISBN 0-8104-5855-1 pbk.

Copyright © 1977 by HAYDEN BOOK COMPANY, INC. All rights reserved. No part of this book may be reprinted, or reproduced, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

6 7 8 9 PRINTING

#### **PREFACE**

Students are finding that after they have been through the introductory texts presenting BASIC they are pretty much on their own. They may get additional bits and pieces of assistance from other texts, finding that each adds something to their repertoire, but there is still all that introductory material to sort through. The present text is intended for those who have been introduced to the BASIC language and want to go further with the language. It is also intended for those who have already learned another language (such as FORTRAN or COBOL) and need only a brief introduction to what is for them a second or third programming language.

A review chapter is placed at the beginning of the book for those whose coverage of BASIC may have been somewhat limited or distant in time, and for those who come to it with competence in one or more other programming languages. In fact, this text can even be used by students with no former programming experience, if tutorial assistance is available, by a more extensive use of the review chapter.

Some extended features of BASIC are presented so that students working on systems providing extensions will have an opportunity to experiment with or master new techniques. Strings and files are introduced in Chapters 3 and 4. Due to the variety of implementations for use of both strings and files, two systems are presented in each area: General Electric and Hewlett Packard.

In addition to other topics, the applications chapters cover coordinate geometry, area, sequences and series, polynomials, graphing, simulation, and games. These chapters may be studied independently and in any order, although, where appropriate, the student may occasionally be referred to another section in the text. Generally these topics evolve from dr build on the ground of a second course in algebra and beyond.

The topic of efficiency is treated explicitly on several occasions, though not necessarily to the point of optimizing execution time. The topic of structured programming is treated implicitly in that all example programs incorporate a clear programming style with minimal un-

conditional branching and maximal use of appropriate data and control structures. These two topics provide good stepping-off points in a computer science course.

Appendix A presents an abbreviation of the ASCII character codes. Appendices B and C summarize flowchart shapes and program statements in BASIC. Appendix D is an index of the nearly 100 demonstration programs in the text. Some solution programs for selected problems in the text follow these appendices.

I wish to thank Community Computer Corporation for computer time, General Electric Information Services for assistance, and those who commented on the first draft for invaluable suggestions.

James S. Coan

Philadelphia

### CONTENTS

| 1       | 1 Review of BASIC |                                                 |    |  |
|---------|-------------------|-------------------------------------------------|----|--|
|         | 1-1               | Introduction, 1                                 |    |  |
|         | 1-2               | Some Simple Programs, 1                         |    |  |
|         | 1-3               | , zeops, and ziots, /                           |    |  |
|         | 1-4               | Third I directions, Buotoutines, and Arrays, 12 |    |  |
|         | 1-5               | MAT Statements in BASIC, 18                     |    |  |
| 2       | Son               | ne Extended Features of BASIC                   | 23 |  |
|         | 2-1               | Introduction, 23                                |    |  |
|         | 2-2               | TAB, 23                                         |    |  |
|         | 2-3               | Print Using, 25                                 |    |  |
|         | 2-4               | - State of State of the Country, 27             |    |  |
|         | 2-5               | Multiple Line Defined Function, 29              |    |  |
| 3       | Stri              | ngs                                             | 31 |  |
|         | 3-1               | Introduction, 31                                |    |  |
|         | 3-2               | The String Simple Variable, 31                  |    |  |
|         | 3-3               | The String Subscripted Variable, 34             |    |  |
|         | 3-4               | The Substring Scheme, 35                        |    |  |
|         | 3-5               | The String Array Scheme, 40                     |    |  |
| 4 Files |                   | s                                               | 46 |  |
|         | 4-1               | Introduction, 46                                |    |  |
|         | 4-2               | Hewlett Packard Files, 46                       |    |  |
|         | 4-3               | General Electric Files, 54                      |    |  |
| 5       | Plot              | ting on the Terminal                            | 64 |  |
|         | 5-1               | Introduction, 64                                | •  |  |
|         | 5-2               | Plotting a Function, 64                         |    |  |
|         | 5-3               | Plotting Using Data Stored in an Array, 68      |    |  |
| 6       | Area              | ea Under a Curve                                |    |  |
|         | 6-1               | Introduction, 72                                | 72 |  |
| 7       | Coo               | rdinate Geometry                                | 78 |  |
|         | 7-1               | Points in a Plane, 78                           |    |  |
|         |                   | Pairs of Points, 78                             |    |  |
|         | 7-3               | Parallel and Perpendicular Lines, 84            |    |  |
|         | 7-4               | Point of Intersection of Two Lines, 88          |    |  |
|         | 7-5               | Three Points in a Plane, 93                     |    |  |

| 8   | Polynomials                                                                                                         | 101               |
|-----|---------------------------------------------------------------------------------------------------------------------|-------------------|
| 9   | Sequences and Series 9-1 Sequences, 115 9-2 Convergence and Divergence, 119 9-3 Series, 122 9-4 More on Series, 125 | 115               |
| 10  | Matrices                                                                                                            | 127               |
| 11  | Some Topics of Statistics                                                                                           | 137               |
| 12  | Simulation and Games                                                                                                | 147               |
| App | pendix A ASCII Character Set Printable on Model 33                                                                  | 161               |
| App | pendix B Summary of Flowchart Shapes                                                                                | 162               |
| App | pendix C Summary of Statements in BASIC                                                                             | 163               |
| App | pendix D Index of Programs in Text                                                                                  | 169               |
| Ans |                                                                                                                     | 171<br>172<br>182 |
|     |                                                                                                                     |                   |

## 1 REVIEW OF BASIC

#### 1-1 Introduction

This chapter is intended to serve several purposes. The student who is already competent in BASIC will move quickly through the chapter and perhaps write a few programs. The student who has studied BASIC, but not recently or not extensively, will want to move more slowly and write more programs. The student who comes to BASIC with competence in another language will be mainly interested in the differences between the language with which he or she is familiar and BASIC.

There are numerous implementations of BASIC available in schools, colleges, and businesses today. These implementations have many common features and some differences. This chapter will concentrate primarily on those features which are almost universally available. We will mention some of the more common variations (you can usually determine which features are part of your system by writing very short programs to see what works), but beyond that the student should obtain the specific features for his system from the BASIC reference manuals supplied by the computer center or the vendor.

It is also true that the specifications sometimes change as the people responsible for maintaining the computer update its language capabilities. Since these changes tend to be additions, however, programs previously tested will usually still run.

#### 1-2 Some Simple Programs

We can demonstrate many features of BASIC by writing a program that will compare two numbers to determine whether the first is greater than, less than, or equal to the second. See program COMPAR.

1

```
LIST
CCMPAR
     REM * THIS IS A SAMPLE PROGRAM TO
    REM COMPARE TWO NUMBERS FOR ORDER READ A.8
95
100
110
      IF A = .01 THEN 220
        IF A = B THEN 160
120
       IF A < B THEN 180
130
    PRINT A; "IS GREATER THAN"; 8
140
150
    G0T0 100
    PRINT A; "IS EQUAL TO"; B
160
    GOTC 100
170
    PRINT A; "IS LESS THAN"; B
180
    GO TO 100
190
192
194
    REM
200
    DATA
          3,4, 1.7,1.1, 31,31, -3,2, 0,0
510
    DATA
          .01.0
550
    END
RHN
COMPAR
 3 IS LESS THAN 4
1.7 IS GREATER THAN 1.1
 31 IS EQUAL TC 31
-3 IS LESS THAN 2
O IS EQUAL TO 0
```

The first item shown is LIST. This is a system command rather than a program statement, and we type it to instruct the computer to print out the program exactly as it stands. Next the computer automatically prints COMPAR, which is the program name. Some computers also print the time of day and date along with the program name. On some systems we assign program names with the system command NAME-COMPAR. On others, to name a new program, NEW COMPAR is typed before the program itself is. Having typed the program name, the computer goes on to list the program itself. Let us examine the program statements.

#### Read-Data

Line 100 is a READ statement. In this case we want the computer to READ two numbers into two variables A and B. Those numbers must come from one or more DATA statements. We provide data in lines 200 and 210.

#### Conditional Transfer

Lines 110, 120, and 130 are all examples of the conditional transfer in BASIC. Line 110 is used to terminate the execution of the program itself. We send the computer to the END statement only if the value of A is .01. This is an example of the use of dummy data to control program execution. Lines 120 and 130 direct the computer to the appropriate PRINT statement according to the relation between the values of A and B. BASIC also allows "greater than" (>), "greater than or equal to" (>=) and "less than or equal to" (<=). To test for "not equal to" use (<>). Some systems also allow "#" for "not equal to."

In place of the algebraic symbols just mentioned, some systems require special symbols as relational operators. They are (\LT) or (LT) for 'less than,"

(\LE) or (LE) for "less than or equal to," (\GT) or (GT) for "greater than," (\GE) or (GE) for "greater than or equal to," (\EQ) or (EQ) for "equal to" and (\NE) or (NE) for "not equal to." The paired relational operators listed above are not generally interchangable. The first is for certain systems, and the second is for others. So there are three sets of possible relational operators. You can quickly tell which works on your computer by consulting the vendor-supplied manual or by trial and error.

Another conditional transfer is available on many systems. It is called the computed  $G\phi T\phi$ . It takes the form,

100 ØN K GØTØ 
$$n_1, n_2, n_3$$
, etc.

or

100 
$$G\phi T\phi K \phi F n_1, n_2, n_3$$
, etc.

or

100 
$$G \phi T \phi n_1, n_2, n_3, \text{ etc. } \phi N K$$

At line 100 computer control passes to line  $n_1$  if  $K = 1, 1_2$  if K = 2, etc. If K is not in the range from one to the number of line numbers named, some systems terminate with an error message, while others simply pass control to the line after 100.

#### Print

Lines 140, 160, and 180 result in printed output to the terminal for the operator to see. We may mix literal output with numeric results by enclosing literal messages in quotation marks. Replacing semicolons in the PRINT statement with commas would result in wider spacing of printed output. On many systems, using commas to separate printed results causes the page to be divided into five columns of 15 characters each. For terminals with only 72 character spaces, the fifth column is 12 characters wide. Generally speaking, use of a semicolon to separate printed output results in closer spacing than with a comma.

#### Unconditional Transfer

Lines 150, 170, and 190 are examples of unconditional transfer. The  $G\phi T\phi$  statement in BASIC serves to name the number of the next line to be executed. When the computer gets to line 150, the next line the computer executes is 100. The same is true for lines 170 and 190. Generally speaking, good programs try to minimize the number of  $G\phi T\phi$  statements. We shall see ways to do this later.

#### End

The final statement in our example is the END statement. On most systems the highest numbered statement must be an END statement. After the END statement we see the system command RUN, which is typed by us to cause the computer to actually carry out the instructions of the program. In response to the RUN command, the computer has printed the program name,  $C\phi$ MPAR (some systems will also print the date and time), followed by the printed output

specified by the instructions of our program. (Some systems will follow program results with information about the computer resources used by this RUN of the program.)

#### Variables

In program C $\phi$ MPAR we used A and B as variables to name stored numeric values. BASIC allows us to use every letter of the alphabet and also every letter of the alphabet followed by a single digit. (Some systems also provide additional symbols as variables.) Every letter or letter plus digit allows us to store a single number at any one time in a program. However, variables may be used over and over again to store new values as long as we have no further need for a particular old value. In C $\phi$ MPAR, the variables A and B were each used for six different numbers.

#### Prettyprinting

Note the overall appearance of program CØMPAR. An attempt has been made to provide spacing within the program statements to facilitate readability and therefore clarity of thought. The practice of indenting and spacing to achieve this goal is called "prettyprinting." In program CØMPAR, the IF statements have been indented three spaces. Spaces have been inserted in the PRINT statements to avoid a crowded appearance. The blank REM in line 194 is used to offset the DATA portion of the program, and the data has been grouped in the DATA statements to show just how the values will be read in the READ statement. Some systems do not allow prettyprinting. However, if your system does allow prettyprinting, you should work on developing a style of spacing to enhance program readability. Prettyprinting becomes more and more worthwhile as programs become longer and more complex.

#### Arithmetic Operations

The computer is often used to perform arithmetic operations on numbers. The operations allowed are exponentiation (\*\*) or (†), multiplication (\*), division (/), addition (+) and subtraction (-). The priorities assigned these operators are the same as those assigned in conventional algebra, that is, first exponentiation followed by multiplication and division followed by addition and subtraction. Program  $\phi$ PRATN shows a use of each of the arithmetic operators.

```
CPRATN
   REM * THIS IS A SAMPLE PROGRAM TO DEMONSTRATE
95 REM "USE OF ARITHMETIC OPERATORS IN BASIC
100 PRINT "A+R", "A*B", "AZB", "A+B", "A-B"
110 READ A.B
       IF A <> 0 THEN 150
120
        IF B <> 0 THEN 150
130
140 STOP
                     A ="; A; "B ="; B
150 PRINT
            A+B, A+B, A/B, A+B, A-B
    PRINT
160
    PRINT
170
180 GGTO 110
182
    REM
184
190 DATA 1,2, 3,4, 2,40, 1.4,65.2
500
    DATA 0.0
210 END
```

| NUN<br>OPRATI | V                                |            |      |       |
|---------------|----------------------------------|------------|------|-------|
| A†B           | A*B                              | A/B        | A+B  | A-8   |
| 1             | A = 1 B = 2<br>2                 | 0.5        | 3    | -1    |
| 81            | A = 3 B = 4<br>12                | 0.75       | 7    | -1    |
| 1 • 099       | A = 2 B = 40<br>951E+12 80       | 0.05       | 42   | - 38  |
| 3 • 36 9      | A = 1.4 B = 65.2<br>936E+9 91.28 | 2.14724E-2 | 66+6 | -63.8 |

The RUN of  $\phi$ PRATN produces three examples of what is called E-format. For A = 2 and B = 40, A\*\*B results in 1.09951E+12. That means 1.09951 times 10 to the twelfth power, or 1.09951  $\times$  10<sup>12</sup>. Systems vary, but many provide from six to nine significant digits of numeric output.

In  $\phi$ PRATN, line 140 is equivalent to  $G\phi$ T $\phi$  210. The ST $\phi$ P statement in BASIC is used to terminate execution of a program at some point other than the highest numbered line. This line of the program is called a "logical end" to differentiate it from the physical end.

#### Assignment

Thus far, the way that we have gotten numeric values to be stored in variables has been to READ values from DATA. We can also assign values directly as follows:

100 X = 3 or 100 LET X = 3  
200 Y = 
$$3*X+5$$
 or 200 LET T =  $3*X+5$ 

These are examples of the assignment statement in BASIC. (On some systems the LET is required. On others it is optional.) Used in this way, the equals sign is called the assignment operator. The assignment capability greatly enhances the power of any programming language since it permits us to retain values for later use. For example, we can sum up any number of data items as in program ADD.

```
ADD
 94
      REM * THIS PROCRAM ADDS NUMBERS FROM DATA
<del>-</del> 100
     LET S = 0
 110 READ A
         IF A = -.01 THEN 160
 150
     LET S = S + A
 140
     GOTC 110
 150
     PRINT "SUM IS"; S
 160
 172
     REM
 174
 IRO DATA 21, 39, 11.3, 24.4, 91.3
 190
      DATA -.01
 200
     END
 RUN
 SUM IS 187.2
```

In line 100 of ADD the summing variable S is initialized at zero. (Some implementations of BASIC automatically initialize all variables to zero when the program is run.) We now generalize program ADD to count the number of numbers in the previous program. See lines 100, 130, and 140 of ADD1.

```
ADD 1
 94
       REM * THIS PROGRAM ADDS AND COUNTS
 95
      REM NUMBERS FROM DATA
-100 LET S = C = 0
 110 READ A
         IF A = -.01 THEN 160
 120
+130 LET C = C+1
-- 140 LET S = S+A
 150 GOTO 110
160 PRINT "SUM IS"; S
170 PRINT "THERE ARE"; C; "NUMBERS"
 172
 174
       REM
 180 DATA 21, 39, 11.3, 24.6, 91.3
 190
      DATA -.01
 200
      END
 RUN
 ADD 1
  SUM IS 187.2
 THERE ARE 5 NUMBERS
```

Line 100 of ADD1 is an example of a multiple assignment statement. It allows us to assign the rightmost value to all of the variables separated by equals signs. (Some systems require commas instead of equals signs for all but the rightmost equals signs. Our statement 100 would be 100 LET S,C = 0 on such a system. You may be able to assign different values to different variables on one line, for example, 100 LET H = 4, Y = 9\*K, B = 81, or even 100 LET H,I,J = 3, T = -32.)

#### Input

The final statement of this review section which results in variables containing numeric values is the INPUT statement. It is this statement which allows the operator to interact with a program during execution. When the computer executes an input statement, it prints a question mark at the terminal and awaits information from the keyboard. If we replace READ A with INPUT A in program ADD and remove the DATA statement, we have a program that behaves a little like an adding machine. By printing a marker such as # followed by a semicolon in line 130 we can type our selected numbers on the same line as the marker, as in program ADD2.

```
ADD2

94 REM * THIS PROGRAM WORKS A LITTLE

95 REM LIKE AN ADDING MACHINE

100 PRINT "INPUT # = -.01 TC OBTAIN TOTAL"

110 PRINT

120 LET S = 0

130 PRINT "#";

140 INPUT A

150 IF A = -.01 THEN 180

160 LET S = S+A
```

```
170 GOTO 130
180 PRINT "SUM IS"; S
190 END
RUN
ADD2

INPUT # = -.01 TC CSTAIN TCTAL
#?45
#?78
#?34
#?98.12
#?43
#?-.01
SUM IS 298.12
```

Note that input statements may be used to call for several values. 100 IN-PUT X,Y,B9 calls for three numbers to be typed, separated by commas at the keyboard.

#### Summary of Sec. 1-2

We have looked at three system commands to give a program a name, instruct the computer to RUN a program, and to LIST a program. We have used the following eight statements in programs; READ, DATA, IF-THEN, PRINT, END, ST $\phi$ P, LET, and INPUT. With just these statements we are able to write substantial programs (nevertheless, the language does contain tremendous additional power in other statements to come in the next sections). The concepts of variable and program control have been discussed. We have looked at three kinds of operators: arithmetic, relational, and assignment.

#### Problems for Sec. 1-2

- 1) Write a program to average numbers entered as DATA or on INPUT.
- Write a program to find the largest and/or smallest number of a set of DATA.
- 3) Write a program to repeatedly average groups of numbers.
- 4) Write a program to add all positive integers from 1 to n, where n is an item of DATA.
- 5) Write a program to calculate n factorial. Be sure to make the value of 0! equal 1.
- 6) Write a program to solve equations of the form, ax + b = cx + d.
- 7) Write a program to solve quadratic equations,  $ax^2 + bx + c = 0$ .
- 8) Write a program to find the sum of the reciprocals of the first n positive integers.

#### 1-3 Functions, Loops and Lists

BASIC provides computer functions or subroutines for special purposes. INT(X), SGN(X), ABS(X), and SQR(X) are among them. On some systems the INT(X) function takes the greatest integer not greater than X, such as 4 for 4.3 and -2 for -1.6. Other systems simply give the integral part of X, such as 4 for 4.3 and -1 for -1.6, by removing the decimal part. For non-negative numbers, the two are equivalent. SGN(X) becomes +1 if X is positive, zero if X is zero, and -1 if X is negative. ABS(X) becomes X if X is non-negative and becomes -X if X is negative. SQR(X) becomes the principle square root of X so long as X is

non-negative. Each of these functions is useful. However, it is likely that of the four, INT(X) is most frequently used.

One use of INT(X) is to round off numeric results. For example, to round to the nearest integer, use INT(X+.5). To round to the nearest hundredth, use INT(100\*X+.5)/100, etc. See line 150 of program R $\phi$ UND.

```
ROUND
     REM * THIS PROGRAM DEMONSTRATES A USE OF THE
94
     REM INT( ) FUNCTION IN BASIC FOR ROUNDING
95
     REM NUMBERS
96
100 LET E = 0
110 LET X = 1.82564
120 PRINT
           "ROUND"; X
130
     PRINT
140 PRINT "POWER OF TENTHS", " ROUNDS TO"
+150 LET R = INT( X*10+E+.5 )/10+E
     PRINT E. R
160
162
    REM * LINE 170 INCREMENTS THE EXPONENT OF 10
164
170 LET E = E+1
180
        IF E <= 5 THEN 150
190 END
RHN
ROUND
ROUND 1.82564
POWER OF TENTHS ROUNDS TO
                2
                1.8
 1
                1.83
                1.826
 3
                1.8256
 4
                1.82564
```

INT(X) is also used frequently to test numbers for divisibility by other numbers. For example:

```
100 IF X/10 = INT(X/10) THEN 200
```

transfers the computer to line 200 if X is divisible by 10, but the computer goes to the line immediately following 100 if X is not divisible by 10. One problem solution that uses this is that of finding all factors of a certain number. We simply try all integers from 2 to the number and test for divisibility. If the divisor goes evenly, we print it; if not, we go to the next divisor. This is left as an exercise.

#### Random Numbers

BASIC provides a routine to generate pseudo-random numbers. These are very useful as a source of data for simulating random events. The procedure varies somewhat from system to system. All systems provide decimal numbers in the range, 0 to 1. One procedure introduces random numbers by using RND(X) in a statement such as 100 LET A = RND(X). The particular random numbers are duplicated or different from one run to the next according to the value of X. If X is negative, then you get a different set of random numbers from run to run. If X is X, then each run of the program produces the same succession of random numbers. And if X is positive, then the set of random

numbers is based on the value of X. A second procedure does not require an argument for RND. The statement 100 LET A = RND selects a random number and assigns it to A. However, used alone it generates the same set of random numbers from one run to the next. To obtain a different set of random numbers from run to run, simply introduce the companion statement  $10 \text{ RAND} \phi$ -MIZE into the program. The ability to reproduce the same set of random numbers is useful for finding errors in the program debugging process. Once the program has been perfected, it can then be modified to produce different results for each run.

Most of the uses for random numbers are for numbers in some range other than 0 to 1. So we have to do the appropriate calculations to change the range. For example, to "roll a die" we would use 100 LET R = INT(6\*RND(-1)+1) or 100 LET R = INT(6\*RND+1). This would give integers in the range 1 to 6 inclusive. In the statement, 200 LET N = INT(A\*RND+B), A specifies the possible number of random integers and B specifies the smallest possible random integer.

#### Loops

Suppose we place ten slips of paper numbered 1 to 10 into a hat and have five people draw one slip of paper, note the number on it, and return the slip to the hat. This we can easily do with a program, as in program DRAW.

Program DRAW and several other programs we have looked at contain examples of repetitive steps. This is a computer loop, and BASIC provides the F $\phi$ R-NEXT statement pair to set up loops. Program DRAW01 uses F $\phi$ R-NEXT to accomplish the same purpose as program DRAW. Note that both programs simulate returning the slips to the hat.

```
DRAW
 94
      REM * THIS PROGRAM SIMULATES RANDOM DRAWING
      REM FIVE NUMBERS FROM AMONG 10 WITH REPLACEMENT
 95
 100 RANDOMIZE
 110
     LET X = 1
     LET R = INT(RND*10+1)
 120
 130 PRINT R;
 140 LET X = X+1
 150
        IF X <= 5 THEN 120
 160
 RUN
 DRAW
 6 9 6 10 8
 DRAWO1
      REM * THIS PROGRAM DIFFERS FROM DRAW
 94
 95
      REM IN THAT FOR-NEXT IS NOW INTRODUCED
 100
      RANDOMIZE
+110 FOR X = 1 TO 5
        LET R = INT(RND*10+1)
 120
 130
        PRINT R;
 140 NEXT X
 142
 150
     END
 RIIN
 DRAWO1
 2 9 5 2 10
```

Lists

Now suppose that the five people who drew slips of paper from the hat did not replace them. We must make sure that no number is drawn twice. In order to achieve this goal we need to be able to keep track of what numbers have been drawn and what numbers are left. This can be done rather nicely using a subscripted variable called a "list." A list, designated by a single letter, reserves space for more than one number. At the time that we first designate a list variable, the computer automatically reserves 10 locations (some computers reserve 11 by allowing zero as a subscript). We can simulate the numbered slips of paper in the hat by establishing a 10-item list with the integers 1 through 10 stored in locations 1 through 10. This is done by the following routine:

Line 110 sets up the subscripted variable L() so that L(1) = 1, L(2) = 2, etc., through L(10) = 10. If we need more than 10, we can get them by using the DIMension statement. This is usually placed at the very beginning of the program. For example, if we want 25 slips of paper in our hat, we would begin with 10 DIM L(25), and 25 locations would be available. Note that we could dimension for 25 and then use only 10 of them, but we cannot use more than the DIM statement specifies. Any number of lists may be dimensioned on the same line as: 10 DIM L(36), L(36), L(36). Systems allow a maximum number of storage locations from a few thousand to many thousands.

Now we can develop a procedure to select five numbers at random without replacement. For the first draw there will be 10 numbers from which to draw; for the second draw one has been removed, leaving nine. The process is repeated until there remain only six from which to draw for the last draw. This can be done with another FØR-NEXT pair. We can step backwards with FØR  $J=10\ TØ\ 6\ STEP-1$ . We may specify all three numbers on the right of the equals sign by variable or formula.

If we design a program that merely checks to see if the latest number has already been drawn, then we get into a trial and error situation. And if we try to draw 10 numbers from among 10, or worse yet, 100 from 100, the drawing gets slower and slower as we get nearer and nearer to the last draw (adding suspense and expense). For efficiency's sake we should avoid this pure trial and error scheme. Thus consider the following procedure for eliminating trial and error entirely.

For the first draw we may select a number R at random from one to 10. We may use the value of L(R) as the number on our randomly selected slip of paper. If we draw the same value of R later on, we need a method that does not require testing to see if L(R) has been used. We can acheive this by simply replacing the value of L(R) with the value of L(J) where J is the number of slips from which the drawing is being made after each drawn number has been printed. The important consideration here is that this scheme allows us to use every number that is drawn. We have taken care here to develop an efficient algorithm to solve the problem submitted to us. See in particular line 160 in program DRAW02.

```
DRAWNS
      REM * THIS PROGRAM SIMULATES RANDOM DRAWING WITHOUT
      REM REPLACEMENT AND WITHOUT TRIAL AND ERROR
 95
 96
 97
      REM * LINES 100-120 SIMULATE 10 SLIPS
 98
      REM OF PAPER IN A HAT
 99
      RANDOMIZE
 100 FOR I = 1 TO 10
 110
        LET L(I) = I
 120 NEXT I
 122
 124 REM * NOW DRAW FIVE NUMBERS AT RANDOM
 130 FOR J = 10 TO 6 STEP -1
140 LET R = INT( RND*J+1 )
 150
         PRINT L(R);
 152
 154
         REM * NOW REPLACE THE NUMBER JUST PRINTED
 155
         REM WITH THE LAST NUMBER IN THE LIST
-160
         LET L(R) = L(J)
 170
    NEXT J
 172
 180
     END
 RUN
 DRAW02
  9 7 3 4 5
```

We can see from a run of DRAW02 that no number has been drawn more than once, but one run is not a certainty. A further check can be made by drawing all 10. We leave this as an exercise.

#### More Functions

In addition to the functions already described, the following are universally available: SIN,  $C\phi S$ , ATN,  $L\phi G$ , and EXP. SIN(X),  $C\phi S(X)$  and TAN(X) give the sine, cosine, and tangent of X, where X is taken as an abstract dimensionless number or the measure of an angle in radians. ATN(X) gives the principle arctangent in radians, where X is the tangent of the required number.  $L\phi G(X)$  gives the natural logarithm of a non-negative X and EXP(X) gives  $e^X$ . Besides these there are other functions which may or may not be available on a particular system. Among these will be log base 10, secant, cosecant, etc. On some systems CLK(X) gives the present time using a 24-hour clock, and TIM(X) gives the elapsed time of program run in seconds. It is best to consult the manual for your system to determine the full extent of function capabilities.

#### Summary of Sec. 1-3

BASIC generally provides INT, SQR, SGN, ABS, SIN, C $\phi$ S, TAN, ATN, EXP, and L $\phi$ G as standard functions, where trigonometric functions are based on radian measure and exponentials use e as the base. The routine RND is available to provide random numbers. The language created loop is F $\phi$ R A = B T $\phi$  C STEP D, where the loop variable A first takes on the value of B and increments by D until A passes C and control passes to the next line following NEXT A which closes the BASIC loop. The default STEP value is always 1. The list is available as a subscripted variable to allow block storage of several numbers attached to a single letter. The DIM statement is required for subscripts exceeding 10.

#### Problems for Sec. 1-3

- 1) Write a program to find the absolute value without using any of the functions introduced in this section.
- 2) Write a program to find the greatest integer in X without using the INT function. Be certain it works for negative numbers.
- 3) Write a program to roll two dice.
- 4) Write an efficient program to deal four 13 card hands from a standard 52 card bridge deck.
- 5) Write a program to store 25 random numbers in a list, print them all, and print the largest and the smallest along with their respective positions in the list.
- 6) Write a program to print all factors of an integer entered on INPUT.
- 7) Write a program to print prime integers in the range 2001 to 2501.
- 8) Find the greatest common factor for pairs of integers.
- 9) Find the least common multiple for pairs of integers.
- 10) Generate 100 integers at random from one to 10. Use a list to tabulate their frequency of occurrence.
- 11) Write a program to print a table of trigonometric values in a 10 degree range by intervals of 20 minutes. Pick any one function.
- 12) Modify DRAW02 to draw all 10 slips of paper.
- 13) Write a program to produce the results of CØMPAR using SGN(A-B) and the computed GØTØ statement.

#### 1-4 User Defined Functions, Subroutines, and Arrays

#### User Defined Functions

Another kind of computer function is available in BASIC. It is called the "user defined function" and has the following form:

100 DEF 
$$FNA(X) = [formula]$$

If the A is positioned in FNA(X), you may use instead any letter of the alphabet as the identifier, thus designating up to 26 functions in any one program. For example, we might want to round off results to the nearest hundredth in several places in a program. We would then use

100 DEF FNH(X) = INT(
$$X*100+.5$$
)/100

and then use FNH(), placing whatever variable we want rounded off in the parentheses. Generally speaking, programmers place DEF statements near the beginning of the program, and some systems require that this be done. Some systems allow only a single argument; some allow two or more; some allow none. We may use any variable or legal BASIC expression, including a defined function, as an argument.

Suppose we define a polynomial function, select a few values of X between -10 and 10 at random and round the results to the nearest tenth. See program PRT.

Defined functions are useful whenever we wish the computer to return a single value.

```
PRT
      REM * THIS PROGRAM DEMONSTRATES THE SINGLE
 94
 95
      REM LINE DEFINED FUNCTION IN BASIC
 99
      RANDOMIZE
→100
      DEF FNP(K) = 3.41*K*3 + 4.32*K*2 - 11.2*K + 16.73
+110 DEF FNR(K) = INT( K*RND+1 )
+120 DEF FNT(K) = INT( K*10+.5 )/10
 130 PRINT "X", "FNP(X)", "FNT(FNP(X))"
 140 FOR C = 1 TO 5
         LET X = FNR(21)-11
 150
          PRINT X, FNP(X), FNT(FNP(X))
 160
 170 NEXT C
 172
 180
      END
 RUN
 PRT
               FNP(X)
                               FNT(FNP(X))
 Х
                                1949.5
 8
                 1949.53
                 841.61
                                 841.6
                                -245.5
                 -245.52
  10
                 3746.73
                                 3746.7
 - B
                -1363.11
                                -1363.1
```

#### Subroutines

If we want the computer to return with two or more values, we cannot use a defined function. Also, in the unlikely case that we want more than 26 functions, we need a new capability. In such cases we use a subroutine. A subroutine amounts to a detour in the program that returns to the statement immediately following the one that caused the detour in the first place. This capability permits a set of program statements to be accessed from more than one point in a program. The statement pair  $G\phi$ SUB-RETURN accomplishes this.

One significant use of the subroutine is to improve the flow of control through a program. A subroutine may be used to eliminate the proliferation of  $G\phi T\phi$  statements by replacing them with RETURN statements where appropriate. This technique often simplifies the writing of programs. Programs written in this way are also easier to read and thus easier to correct or modify later (see, for example, programs GRAPH2 and GRAPH3 of Chap. 5).

Suppose that we want the product and the sum of two numbers modulo M. We can write a subroutine that calculates and prints both values. Then we can "call" the subroutine from anywhere in the program with  $G\phi SUB$  n where n is the first line of the subroutine. See lines 140 and 210 in program  $M\phi D$ .

```
MØĐ
      REM * THIS PROGRAM DEMONSTRATES GOSUB
 94
      REM WITH MODULAR ARITHMETIC
 95
      RANDOMIZE
 99
 100
      DEF FNR(X) = INT( RND*X+1 )
 110 PRINT "FIND A*B AND A+B MOD M"
            "A,B,M";
 120 PRINT
 130
     INPUT A. B. M
         GØSUB 500
-140
 150 PRINT
160 PRINT
            "NOW DO FOUR MANDOM CALCULATIONS"
 170 FØR I = 1 TO 4
         LET M = FNR(9)+1
 180
```

```
190
          LET A = FNR(M-1)
          LET B = FNR(M-1)
  200
--- 210
            GØSUB 500
  550
       NEXT I
  555
       REM * THE STOP STATEMENT PREVENTS
  224
       REM ILLEGAL SUBROUTINE ENTRY
  225
  230
  492
  494
       REM * MODULAR ARITHMETIC SUBROUTINE .
  500
      LET P = A*B
         IF P < M THEN 540
  510
       LET P = P-M
  520
  530 G0T0 510
  540 LET S = A+B
          IF S < M THEN 580
  550
  560 LET S = S-M
      GØT0 550
  570
       PRINT A; "*"; B; "="; P; A; "+"; B; "="; S; "MOD"; M
  580
  590
      RETURN
  592
  999
       END
  RUN
  MOD
  FIND A*B AND A+B MOD M
  A,B,M? 2,5,6
   2 * 5 = 4 2 + 5 = 1 MCD 6
  NOW DO FOUR RANDOM CALCULATIONS
   3 * 2 = 2 3 + 2 = 1 MOD 4
   2 * 1 = 2 2 + 1 = 3 MCD 5
              1 + 3 = 4 \text{ MOD } 8
   1 * 3 = 3
   2 * 4 = 8 2 + 4 = 6 MCD 9
```

Subroutines may in turn call other subroutines as in both lines 510 and 550 of M $\phi$ D1. One thing to avoid in subroutines is inadvertent use of variables that have been used elsewhere in the program. Subroutines called from other subroutines are called "nested subroutines." (What else?) In our example M $\phi$ D1 we have nested them two deep. Systems vary, but many have a limit on how deep subroutines may be nested.

```
MØ D 1
     REM * THIS PROGRAM INTRODUCES A NESTED
0.4
     REM GØSUB INTØ PRØGRAM MOD
95
     RANDOMIZE
99
100
    DEF FNR(X) = INT(RND*X+1)
    PRINT "FIND A*B AND A+B MOD M"
PRINT "A,B,M";
110
120
130 INPUT A. B. M
        GØ SUB 500
140
150 PRINT
    PRINT "NOW DO FOUR RANDOM CALCULATIONS"
160
     FØR I = 1 TO 4
170
       LET M = FNR(9)+1
180
        LET A = FNR(M-1)
190
        LET B = FNR(M-1)
200
210
           GOSIJB 500
220 NEXT I
555
224
     REM * THE STOP STATEMENT PREVENTS
     REM ILLEGAL SUBROUTINE ENTRY
225
230
     STOP
492
     REM * MODULAR ARITHMETIC SUBROUTINE
494
500 LET N = A*B
```

```
--- 510
          GØSUB 700
  520 LET P = N
  540 LET N = A+B
 → 550
          G0 SUB 700
  560
      LET S = N
  580 PRINT A; "*"; B; "="; P; A; "+"; B; "="; S; "MOD"; N
  590
      RETURN
  592
  694 REM * REM REDUCES N TO A NUMBER MOD M
         IF N < M THEN 730
  700
  710 LET N = N-M
  720 GOTO 700
  730
      RETURN
  732
  999
       END
  RUN
  MODI
  FIND A*B AND A+B MOD M
  A.B.M? 3.4.5
   3 * 4 = 2 3 + 4 = 2 MOD 5
  NOW DO FOUR RANDOM CALCULATIONS
   2 * 3 = 6   2 + 3 = 5  MCD  8
   4 * 1 = 4
             4 + 1 = 5 MCD 9
   2 * 2 = 4 2 + 2 = 4 MOD 6
   6 * 8 = 8 6 + 8 = 4 MOD 10
```

Some systems have a computed G $\phi$ SUB statement similar in format to the computed G $\phi$ T $\phi$ . The format is:

```
100 \phiN K G\phiSUB n_1, n_2, n_3, etc.
```

or

100 GØSUB K ØF  $n_1, n_2, n_3$ , etc.

or

100 G $\phi$ SUB  $n_1, n_2, n_3, \phi$ N K

#### Arravs

An array is simply a two dimensional list. For this we use two subscripts separated by a comma and enclosed in parentheses. The first subscript designates the row and the second subscript designates the column. As with lists, we can use a subscript as high as 10 without the need for a DIM statement.

Suppose you recorded the temperature at 6AM, 12NOON and 6PM for one week. This data could easily be stored in an array to enable a program to carry out various calculations, for example, see program WETHR.

```
REM * CALCULATE AVERAGE EACH DAY
154
160
    FOR D = 1 TO 5
      LET T = 0
170
       FOR I = 1 TC 3
180
          LET T = T+A(D, I)
190
       NEXT I
200
210
       LET A(D,4) = T/3
220 NEXT D
222
224 REM * CALCULATE AVERAGE EACH READING
230 FOR I = 1 TO 3
       LET T = 0
240
250
        FOR D = 1 TO 5
          LET T = T + A(D, I)
260
270
       NEXT D
280
        LET A(6,1) = T/5
290 NEXT I
292
           "DAYNTIME", "6AM", "12NOCN", "6PM", "DAILY AVG"
300
    PRINT
310
    PRINT
320 FOR D = 1 TC 5
322
324
        REM * KEEP TERMINAL ON THIS LINE
325
        REM FOR THE NEXT PRINTED RESULT
        REM WITH TRAILING COMMA IN LINE 330
326
        PRINT "DAY"; D.
330
       FOR I = 1 TO 3
340
350
           PRINT A(D, I),
360
        NEXT I
       PRINT A(D.4)
370
380 NEXT D
382
390 FOR I = 1 TO 50
       PRINT "-";
400
410
    NEXT I
420 PRINT
422
    PRINT "AVERAGES",
430
440 FCR I = 1 TO 3
450
        PRINT A(6, I);
460
    NEXT I
470 PRINT
472
474
     REM
          27, 36, 34, 40, 50, 55, 50, 52, 48
    DATA
480
490
    DATA 43,41,37, 30,33,28
500
    END
RHN
WEITHR
```

| DAYNTIME | 6 AM | 1 SN00N | 6 PM   | DAILY AVG |
|----------|------|---------|--------|-----------|
| DAY 1    | 27   | 36      | 34     | 32.3333   |
| DAY 2    | 40   | 50      | 55     | 48.3333   |
| DAY 3    | 50   | 52      | 48     | 50        |
| DAY 4    | 43   | 41      | 37     | 40.3333   |
| DAY 5    | 30   | 33      | 28     | 30.3333   |
| AVERAGES | 38   | 42 • 4  | 40 • 4 |           |

Even though the computer permits a subscript as high as 10 for rows and for columns, it does not require that we use them all. In WETHR we used only six rows and four columns.

Note that we used loops within loops, or nested loops, several times in WETHR. The requirement here is that the loops must be nested entirely within

other loops. If a program contains  $F \phi R X = A T \phi B$  followed by  $F \phi R Y = C T \phi D$ , the NEXT Y statement must appear before the NEXT X statement.

Once the data is stored, it is a simple matter to obtain other information. For example, we can find the highest temperature reading for the week as in WETHR1.

```
WETHR1
     REM * THIS PRØGRAM FINDS HIGHEST TEMPERATURE
95
     REM IN A FIVE DAY PERIOD USING ARRAYS
100
     DIM A(6,4)
102
104
     REM * READ DATA
     FØR D = 1 TØ 5
110
120
       FOR I = 1 TO 3
           READ A(D,1)
130
140
        NEXT I
150 NEXT D
152
154
     REM * THE FIRST ENTRY IS THE HIGHEST SO FAR
    LET H = A(1,1)
160
170 LET R = C = 1
    FØR D = 1 TØ 5
180
       FØR I = 1 TØ 3
190
200
              IF A(D.I) <= H THEN 240
202
           REM * IF THE CURRENT ENTRY IS HIGHER THEN
204
205
           REM SAVE DATA IN H, R, AND C
210
           LET H = A(D, I)
220
           LET R = D
230
           LET C = I
240
       NEXT I
250 NEXT D
252
260 PRINT "HIGHEST TEMPERATURE ="; H
262
    REM * USE OF 24-HOUR CLOCK SIMPLIFIES
264
265
    REM PRINTING THE TIME
    PRINT "OCCURS AT"; C*600; "HOURS ON DAY"; R
270
474
    REM
480
    DATA 27,36,34,
                      40,50,55,
                                 50,52,48
490
    DATA 43,41,37,
                     30,33,28
500
    END
RUN
WETHR1
HIGHEST TEMPERATURE = 55
OCCURS AT 1800 HOURS ON DAY 2
```

#### Summary of Sec. 1-4

BASIC allows tremendous flexibility in the user defined functions. We may have up to 26 functions defined with DEF FNA(X) followed by an equals sign and any legal BASIC formula.

For calculations that don't lend themselves to function definition, such as calculations requiring more than one value in the result, the subroutine entered with  $G\phi$ SUB is available. The end of a subroutine is indicated by the RETURN statement.

Two dimensional variables are available in BASIC. A(I,J) designates the Ith row and the Jth column of A. For subscripts greater than 10, a DIM statement is required.

#### Problems for Sec. 1-4

- 1) Write a program to read six test scores for each of five students into an array, one student to a row. Find the test average by student and by test, and print the scores and the results in easily readable form.
- 2) Write a program to locate the maximum and the minimum point of any function in a domain specified as input. Also specify the increments as input.
- 3) Write a program to set up a tic-tac-toe board and keep track of the play of two external players.
- 4) Write a program to fill a square array with zeros except along the diagonal from the upper left to the lower right corners, which should contain ones. Print this array (called the "identity array").
- 5) Write a program to produce the results of program C $\phi$ MPAR in Sec. 1-1 using a simple G $\phi$ SUB and only one G $\phi$ T $\phi$ .
- Write a program to produce the results of program CΦMPAR in Sec. 1-1 using SGN(A - B) and the computed GΦSUB.
- 7) If your system allows two arguments in user defined functions, write a single function to allow rounding off numbers to any desired precision. Try the same thing with a single argument function. Write a program to verify your functions.

#### 1-5 MAT Statements in BASIC

Arrays and lists are used so routinely in programming and in mathematics applications that most implementations of BASIC include a group of special statements to handle them. Note that since BASIC treats lists as special arrays, we may not use the same letter for a one-dimensional list that we use for a two-dimensional array. Instead of reading values into the elements of an array entry by entry with loops, we may simply use MAT READ A or MAT READ A, B,C as long as the array or the arrays are dimensioned to be compatible with the data. BASIC also allows us to alter the dimensions of arrays in the MAT READ statement. MAT READ A,B(3,7),C(N,M) reads mat A according to previously set dimensions; dimensions B to three rows and seven columns; reads the array and dimensions C to N rows and M columns, N and M having been previously defined; and reads that array.

MAT PRINT A prints the complete array with comma format. To get semicolon format, MAT PRINT A; must be used. A single statement may specify printing of more than one array, as in MAT PRINT A,B;C, which will result in A being printed with comma spacing, followed by B printed with semicolon spacing, followed by C printed with comma spacing (see program MAT01).

MAT INPUT allows us to type entries from the keyboard of our terminal with all of the dimensioning options of MAT READ. MAT INPUT A has one additional option in some implementations of BASIC. If A is a list, you may not know the number of entries required when the program is written. In some systems, the function NUM takes on the number of elements entered in the most recent MAT INPUT statement in the program.

```
MATOI
 94
      REM * THIS PROGRAM DEMONSTRATES
      REM MAT READ AND MAT PRINT
 100
      DIM A(3,4), B(6,10), C(8,9)
 110
      READ R.C
- 120
      MAT READ
                 A, B(2,5), C(R,C)
- 130
      MAT PRINT A, B; C
 132
      REM
 140
      DATA
            4.3
 150
      DATA
            1,2,3,4,5,6,7,8,9,10,11,12
 160
      DATA
             13, 14, 15, 16, 17, 18, 19, 20, 21, 22
 170
      DATA
            23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
 180
      END
 RUN
MATOI
  1
                                                     4
  5
                   6
                                    7
                                                     8
                   10
                                    11
                                                     18
  13
         14
               15
                      16
                             17
  18
         19
               20
                      21
                             22
  23
                   24
                                    25
 26
                   27
                                    28
 29
                   30
                                    31
  32
                   33
                                    34
```

Other statements that may be used to assign values to the elements of arrays are as follows:

| MAT A = | ZER       | Fills array A with zeros according to   |
|---------|-----------|-----------------------------------------|
|         |           | previously specified dimensions.        |
| MAT A = | ZER(2,3)  | Redimensions A and fills it with zeros. |
| MAT A = | ZER (B,C) | Redimensions A and fills it with zeros. |
| MAT A = | ZER(5)    | Redimensions A and fills it with zeros. |
| MAT A = | ZER(X)    | Redimensions A and fills it with zeros. |

MAT A =  $C\emptyset N$  fills the array A with ones. As shown, the dimensions must have been previously determined.  $C\emptyset N$  has all of the redimensioning options shown for ZER.

MAT A = IDN is used only for a square array (where the number of rows is equal to the number of columns). A is filled with ones where the row number and the column number are equal and all other locations are set equal to zero. IDN may be redimensioned with IDN(X,X) or IDN(5,5). This is called the "identity matrix" in matrix algebra.

In matrix algebra, addition and subtraction are defined for like-dimensioned arrays as the sum or difference, respectively, of elements having the same location. That is, if array X is the sum or difference of Y and Z, then for all I,J we have  $X(I,J) = Y(I,J) \pm Z(I,J)$ . This could be done with nested loops; in BASIC, however, we merely type:

```
100 MAT X = Y + Z for addition
100 MAT X = Y - Z for subtraction
```

Matrix multiplication has a more complicated definition. For arrays Y and Z, the number of columns in Y must equal the number of rows in Z. The (R,C)th entry of X is the sum of the products Y(R,T)\*Z(T,C), where T goes from one to the number of columns in Y, which is also the number of rows in Z. The product matrix will have the same number of columns as X and the same number of rows as Y. A BASIC program for matrix multiplication requires triple nested loops.

The following statement accomplishes the same result:

$$100 \quad MAT X = Y*Z$$

Note that if multiplication works for  $Y^*Z$ , it will work for  $Z^*Y$  only if the arrays are square. In any case, the product has the number of rows of the left multiplier and the number of columns of the right multiplier (see program MAT02).

In matrix algebra, instead of dividing Y by Z, we first find the inverse of Z. The inverse of Z, written  $Z^{-1}$ , is the matrix such that  $Z^*Z^{-1}$  equals the

```
MAT02
    DIM X(10,10), Y(10,10), Z(10,10), P(10,10)
100
102
104
     REM * READ MATRIX DIMENSIONS
110
     READ I.J. K.L
     IF J = K THEN 150
PRINT "PRODUCT UNDEFINED"
120
130
140
     STØP
142
     REM * READ MATRIX ELEMENTS
144
    MAT READ Y(I,J), Z(K,L)
150
152
154
     REM * INITIALIZE PRODUCT MATRIX
160
     MAT X = ZER(I,L)
162
164
     REM * MULTIPLY USING NESTED LOOPS
170
     FØR T = 1 TØ J
180
       FOR R = 1 TO I
190
          FØR C = 1 TO L.
              LET X(R,C) = X(R,C)+Y(R,T)*Z(T,C)
200
210
          NEXT C
        NEXT R
550
230
    NEXT T
232
240
     PRINT "USING TRIPLE NESTED LOOPS"
250
     MAT PRINT X;
260
     PRINT
262
    REM * DEMONSTRATE MAT PRODUCT IN BASIC
264
270
     MAT P = ZER(I,L)
     MAT P = Y*Z
280
     PRINT "USING MAT MULTIPLY STATEMENT"
290
300
     MAT
         PRINT P;
302
304
     REM
     DATA 2,3, 3,4
310
320 DATA
          1,2,3,4,5,6
330
    DATA
          1,2,3,4,5,6,7,8,9,10,11,12
340 END
```

RIIN SOTAM USING TRIPLE NESTED LOOPS 38 44 50 83 98 113 128 USING MAT MULTIPLY STATEMENT 50 98 128 83 113

identity matrix. Having found the inverse of Z, we multiply Y by it. The inverse (if it exists) is obtained with the following statement:

$$100 \quad MAT X = INV(Z)$$

BASIC allows us to find the transpose of a matrix with the following statement:

$$100 \quad MAT X = TRN(Z)$$

The transpose consists of an array X such that the columns of X are the rows of Z and the rows of X are the columns of Z. Note that if the dimensions of Z are (R,C), then the dimensions of X must be (C,R).

We can duplicate an array with

$$100 \quad MAT X = Z$$

and can multiply every entry of an array by the same number with

$$100 \quad MAT X = (C)*Z$$

where C is any legal BASIC formula.

In the last seven cases just presented, some systems use the statement itself to dimension or redimension X, whereas others require that the program make the dimensions of X compatible in advance.

#### Summary

MAT X = (C)\*Y

BASIC provides a number of MAT statements that greatly simplify programs which deal with arrays. They are as follows:

MAT READ Reads data into a variable list. MAT INPUT Enters data from the keyboard into a variable list. MAT X = ZERFills X with zeros. MAT X = CONFills X with ones. MAT X = IDNCreates the identity matrix. Prints the contents of a variable list to the terminal. MAT PRINT MAT X = YCopies the contents of Y into X. MAT X = Y + ZEnters the sum of Y and Z into X. MAT X = Y - ZEnters the difference of Y and Z into X. MAT X = Y\*ZEnters the product of Y and Z into X.

Multiplies each entry of Y by C and enters result in X.

```
MAT X = INV(Y) Enters the inverse of Y into X.

MAT X = TRN(Y) Enters the transpose of Y into X.
```

The first five statements above have optional redimensioning capabilities.

#### Problems For 1-5

- 1) Write a program to add or subtract two arrays without using matrix statements from this section.
- 2) Write a program to enter 25 random integers into a five by five array and print it. Now find the largest number in each row and its column number, and find the largest number in each column and its row number.
- 3) Write a program to print a times table modulo six.
- 4) Write a program to print a times table modulo five.
- 5) MAT READ the integers one through nine into a three by three array. Copy this into the upper left corner of a four by four array. Use the fourth row to enter the column sums, and use the fourth column to enter the row sums. Print the resulting array.
- 6) Write a program to create the transpose of a given matrix without using the TRN function.

# SOME EXTENDED FEATURES OF BASIC

#### 2-1 Introduction

None of the features to be discussed in this chapter is absolutely necessary to writing programs in BASIC. Other language statements may be assembled to achieve the same effect of each one. Some of them may not even be available on the computer you are using. However, if your system does provide any of the features presented here, you are encouraged to experiment since they save programming effort and storage space and make programs more readable.

(Note about problems: The author has not attempted to contrive problems which would require the reader to use the various features presented in this chapter. Rather it is recommended that you be alert to possibilities for using the material of this chapter in programs you will be writing throughout the rest of the book.)

#### 2-2 TAB

The TAB(X) function is available on many BASIC systems. TAB(X) placed in a PRINT statement causes the printing mechanism of the terminal to be located in the x<sup>th</sup> space of the current line, provided it has not already passed that point. Note that on most systems the leftmost space is numbered zero and the counting is modular, with the mod being typically 72 or 75, but sometimes more. Some systems are not modular but start on a new line when the TAB argument exceeds the system line length. An explicit number or BASIC formula may be entered as the argument of the TAB function. If the value of the argument is not an integer, most systems use only the integer part. See program TAB01.

```
TAB01
      REM * PRINT SCALE TO AID COUNTING SPACES
  100 FOR I = 1 TO 5
       FOR J = 1 TO 9
  110
  120
           PRINT "-";
         NEXT J
PRINT "!";
  130
  140
  150 NEXT I
  160
      PRINT
  162
  164 REM * PRINT IN LOCATIONS READ FROM DATA
  170 FOR K = 1 TO 5
       READ T
  180
→ 190
         PRINT TAB(T); "X";
  200 NEXT K
  210 PRINT
  212
  214 REM * SHOW TAB MORE THAN ONCE IN
215 REM THE SAME PRINT STATEMENT
 220 READ A, B, C
-230 PRINT TAB(A); "A"; TAB(B); "B"; TAB(C); "C"
-- 230
  234 REM
  240 DATA 3, 8, 12, 28, 48
250 DATA 2, 7, 15
  260 END
  RUN
  TABO1
```

Examining the output of program TAB01 and counting the leftmost space as zero, we see that the X's are printed in the spaces numbered 3, 8, 12, 28, and 48, as designated in the DATA of line 240.

The uses of the TAB function are not limited to literal output. We may also format numeric output or a mixture of numeric and literal output. See program TAB02.

```
TARO2
94
     REM * TAB DEMONSTRATION PROGRAM
100 DIM A(4)
102
104
    REM * READ FOUR ITEM A LIST
110 FOR I = 1 TC 4
150
       READ A(I)
130
    NEXT I
132
140 PRINT TAB(15); "COMMA SPACING"
150 FOR I = 1 TC 4
160
       PRINT A(I),
    NEXT I
170
180
    PRINT
182
    PRINT TAB(10); "USING TAB FOR 10 CHARACTER PRINT ZONE
190
500
    FOR I = 1 TO 4
      PRINT TAB( 10*(I-1) ); A(I);
210
SSO NEXT I
230
    PRINT
535
240 PRINT TAB(6); "SEMICOLON SPACING"
250 FOR I = 1 TO 4
       PRINT A(I);
260
270 NEXT I
280 PRINT
```

```
282
290
    REM
300 DATA
         -3.11.0.406
310 END
RHN
TAROS
              COMMA SPACING
                              Ω
                                             406
         USING TAB FOR 10 CHARACTER PRINT ZONES
- 3
          1.1
                   0
                             406
     SEMICOLON SPACING
-3 11 0 406
```

Note that systems differ in the number of spaces generated by the comma and semicolon delimiters.

#### 2-3 Print Using

While it is possible with the string facilities available in BASIC (see Chapter 3) to print output in any desired form, formatting can require tedious programming. It is for this reason that many systems provide PRINT USING and image statements.

PRINT USING permits the format for printing output for the current line to be specified in yet another line. The specifications for printing are called the image. The image can be defined in an image statement, which begins with a colon. Very simply, a pound sign is used to specify where we want digits printed. For pound signs placed to the right of the decimal point, zeros to the right of the last nonzero digit are printed. For pound signs placed to the left of the decimal point, zeros to the left of the leading nonzero digit are not printed.

One of the common uses of PRINT USING is to obtain zeros to the right of the decimal point in printed output, since as a numeric the trailing zero is dropped in BASIC. If we want \$3.10 printed, we may use an image to force the printing of the zero, as shown in our first demonstration program, IMAGE01.

```
IMAGE 01
94
    REM * DEMONSTRATES ELEMENTARY
95
     REM EXAMPLE FOR PRINT USING
100 LET D = 3.1
110 PRINT "THIS IS WITHOUT IMAGE"
120 PRINT "THE AMOUNT IS S". P
130 PRINT
140 PRINT "THIS IS WITH IMAGE"
150 :THE AMCUNT IS S##.##
160 PRINT USING 150, D
170
     END
RHA
IMAGE 01
THIS IS WITHOUT IMAGE
THE AMOUNT IS $ 3.1
THIS IS WITH IMAGE
THE AMOUNT IS $ 3.10
```

Next we present program IMAGE02 to show a variety of numbers printed in a variety of images.

```
IMAGE 02
94
    REM * DEMONSTRATES A VARIETY OF IMAGES
100
    : $$$##.### ###.##
102
110
    FOR I = 1 TO 5
120
       READ X
       PRINT "THE NUMBER IS"; X
130
140
       PRINT USING 100, X, X, X, X, X, X
150
       PRINT
    NEXT I
160
162
164
    REM
170
    DATA 1, 12, 12.3, 1234.56, .01
180
    FND
RUN
IMAGE 02
THE NUMBER IS I
             1.00
  $ 1.000
THE NUMBER IS 12
  $12.000
            12.00
                       12.
                                 12
                                       12
                                               *12
THE NUMBER IS 12.3
  $12.300
           12.30
                       12.
                                 12
                                       12
                                               *12
THE NUMBER IS 1234.56
$1234.560 *1234.56 1235.
                             1234
                                       *1234
                                              *1234
THE NUMBER IS 0.01
  $ .010
                        0.
                                 0
                                       0
             • 01
                                               0
```

Note that where several dollar signs appear only one of them gets printed. The one that is printed is as far right as possible in a space that has a dollar sign in the image. When there is not room to the right of the decimal point in the image to print all of the digits, the excess is dropped. No rounding off is done. Where there is not room to the left, all digits get printed anyway, and an asterisk is printed to call attention to the fact that the number did not fit the image.

The image can be a string. In this case, the line number which calls the image in the PRINT USING statement is replaced by the string variable that contains the image, as in program IMAGE03.

```
IMAGE 03
    REM * DEMONSTRATES IMAGE STORED
95
$$$#.##"
110 LET N = 23.4
120 PRINT N; " IS THE NUMBER"
130 PRINT IS; " IS THE IMAGE"
140 PRINT USING IS, N. N
150
    END
RUN
IMAGE 03
23.4 IS THE NUMBER
###.## $$$#.## IS THE IMAGE
23.40
           $23.40
```

We can force the computer to print numeric output using E-format. Four up arrows are used for this, as shown in program IMAGE04.

```
IMAGE 04
     REM * PRINTS E-FØRMAT
94
100
    : ##.##***
110
    LET N = 24.3
    PRINT USING 100, N
120
130 PRINT N; "IS THE NUMBER"
140
    END
RIIN
IMAGE 04
 2.43E+01
24.3 IS THE NUMBER
```

Strings may be formatted with images also. An apostrophe must be used to begin the printing for a string image. Then control letters E, L, R, and C may be used to indicate fields of specific characteristics. Control character E calls for left justification and allows the string to overflow, whereas L calls for left justification but truncates on the right. Control character R calls for right justification and truncates any excess, and C calls for centering the string output and truncates on the right if there is an excess. The apostrophe is needed to delimit the control characters because any other alphabetic characters will be printed just as they appear in the image. See program IMAGE05 for a demonstration of formatting string output in the image.

```
IMAGE 05
     REM * DEMONSTRATES PRINTING STRINGS
95 REM USING AN IMAGE STRING
100 LET IS = " 'LLLL 'RRRRF
110 PRINT IS
                                                        'EE"
                              * RRRRR
                                           'CCCCC
120 FOR I = 1 TO 5
130
        READ SS
140
        PRINT USING IS, SS, SS, SS, SS
150 NEXT I
152
154
     REM
160
     DATA
           THIS, IS, A, SAMPLE, PROGRAM
170
     END
RUN
IMAGE 05
 11111
            'RRRRR
                         'ccccc
                                      *EE
 THIS
              THIS
                          THIS
                                      THIS
 IS
               IS
                           LS
                                      T.S
 Α
                  Α
                           Α
                                      Α
            SAMPLE
                         SAMPLE
                                      SAMPLE
 SAMPI
 PRØGR
                         PRØGRA
                                      PRØGRAM
            PRØGRA
```

#### 2-4 Logical Operations, MAX and MIN

#### Truth Values

Some BASIC implementations include a set of logical operations. Let's look at the already familiar IF-THEN statement. The statement IF X=1 THEN 200 transfers control to line 200 only if X=1 is true. If X=1 is true, BASIC assigns the statement X=1 a value of 1 to designate 'true.' If X=1 is false, then BASIC assigns it a value of 0 to designate 'false.' So we could replace our pro-

gram statement with IF X THEN 200, and when X=1 the computer goes to 200; otherwise control passes to the next line in sequence, provided X can be only 0 or 1.

We may even print the logical value of statements. If we print the value of N/X=INT(N/X), we should get a one when X is a factor of N and a zero when X is not a factor of N (see line 150 of program  $L\phi$ GIC1).

```
LØGICI
 94 REM * THIS PROGRAM DEMONSTRATES THE TRUTH VALUE
95 REM OF THE STATEMENT N/X = INI(N/X)
 100 PRINT "INPUT N";
 110
      INPUT N
 114
      REM * PRINT HEADINGS
      PRINT "X", "N/X", "INT(N/X)", "TRUTH VALUE OF"
 120
      PRINT TAB(45); "N/X = INT(N/X)"
 130
 140 FØR X=1 TØ N
      PRINT X,N/X,INT(N/X),N/X=INT(N/X)
→ 150
      NEXT X
 160
 170 END
 RIIN
 LØGICI
 INPUT N?6
                  N/X
                                    INT(N/X)
                                                     TRUTH VALUE OF
                                                     N/X = INT(N/X)
  1
                   6
                                                      - 1
  2
                   3
                                    3
                                                      1
  3
                                                      1
                   1.5
  4
                                     1
                                                      0
  5
                                                      0
                   1.2
```

The fourth column prints the logical value of N/X=INT(N/X). As we expected, that value is one whenever X is a factor of N and zero whenever X is not a factor of N. This gives us a novel approach for counting factors of N. See line 140 of program L $\phi$ GIC2. Where available, all of the relational operators may be used in a similar manner.

```
F001C5
     REM * THIS PROGRAM COUNTS FACTORS OF INTEGERS
 95 REM USING THE TRUTH VALUE OF N/X = INT(N/X)
      PRINT "INPUT AN INTEGER";
 100
      INPUT N
 110
 120 LET T=0
      FOR X=1 TO N
LET T=T+(N/X=INT(N/X))
 130
<del>--- 1</del>40
 150 NEXT X
 160
      PRINT T;"FACTORS"
 170
      END
 RUN
 FOGIC5
 INPUT AN INTEGER?240
       FACTORS
  20
 RHN
 LØGIC2
 INPUT AN INTEGER? 1949
  2 FACTORS
```

# Logical Operators

The logical operators AND,  $\phi R$ , and  $N\phi T$  are available on some BASIC systems and may be used in a wide variety of applications. One rather straightforward application is an extension of IF-THEN statements. We may often combine several IF-THEN's into one statement. For example, the pair,

100 IF X=3 THEN 200 110 IF Y<2 THEN 200

becomes

100 IF X=3 OR Y<2 THEN 200

Or the four statements,

100 IF X <> 3 THEN 130 110 IF Y >= 2 THEN 130 120 G0T0 510 130 PRINT "MESSAGE"

become

100 IF X=3 AND Y<2 THEN 510 110 PRINT "MESSAGE"

We can negate a statement with N $\phi$ T. That is, X<>3 and N $\phi$ T(X=3) are equivalent. (When you are unsure of the order of operations, it may be best to use parentheses if only to make the statement easier to read.) What about X and N $\phi$ T X? In this case, X is either equal to zero or it isn't. So in the case IF N $\phi$ T X THEN 200, control passes to line 200 for X=0 (because N $\phi$ T 0 equals 1) and passes to the next statement in sequence for all other values.

#### MAX and MIN

For a system which provides MAX and MIN functions, the value of A MAX B becomes the larger of the two numbers. The value of A MIN B becomes the smaller of the two numbers. If you don't have these functions, then you may use

.5\*(A+B-ABS(A-B)) for A MIN B and .5\*(A+B+ABS(A-B)) for A MAX B

# 2-5 Multiple Line Defined Function

Some versions of BASIC provide multiple line user-defined functions that permit defining of functions that require two or more program statements to define. The first line must be DEF FN followed by the function identifying letter and the function argument or arguments in parentheses. The last statement must be FNEND, and in between there must be at least one assignment statement with FN and the same letter specified in the DEF statement on the left of the equals sign.

For example, we may write a multiple line function that will do modular multiplication. The function of lines 100 through 160 in program FUNCTIØN does just that.

As with other user defined functions, the multiple line function may be

accessed at any point of the program. In this way we may often save program space, just as  $G \phi SUB$  is often used to avoid repeating a set of program statements. However, the defined function is accessed directly whenever its name is used and thus it does not require a special statement to transfer control to it. The defined function may be used in all situations where a single value is required for each parameter or set of parameters, whereas a subroutine is more appropriate if two or more variables must be returned.

```
FUNCTION
      REM * THIS PROGRAM DEMONSTRATES A USE OF THE
 94
     REM MULTIPLE LINE USER DEFINED FUNCTION
 95
 96
     REM * THE FUNCTION IS DEFINED IN LINES 100 THROUGH 160
 97
-100 DEF FNM(X,Y,Z)
110 LET P = X*Y
         IF P < Z THEN 150
 120
(130 LET P = P-Z
 140 GOTG 120
150 LET FNM = P
LIGO FNEND
 192
     PRINT "MULTIPLY A TIMES B MOD M TO GET"
 200
 210 READ A, B, M
220 IF M = 0 THEN 260
     PRINT TAB(8); A; TAB(16); B; TAB(22); M; TAB(27); FNM(A,
 230
 240 GOTO 210
 242
      REM
 244
     DATA 1,2,3, 3,2,4, 3,3,4, 0,0,0
 250
 260
     END
 RUN
 FUNCTION
 MULTIPLY A TIMES B MCD M TO GET
                2 3
                              2
           1
                  5
                         4
                              S
           3
           7
```

# 3 STRINGS

#### 3-1 Introduction

A string is simply any set of characters that is not to be treated as a number but is to be otherwise manipulated by the computer. The characters are referred to as alphameric or alphanumeric, since both alphabetic and numeric symbols may be used, as are most other symbols permitted by your terminal, even including the nonprinting characters. It is the purpose of this chapter to outline a few of the possible uses of strings and string variables in BASIC even though the specifications are not uniform from system to system. The user should determine the capabilities of his or her own system before planning extensive programming activity.

# 3-2 The String Simple Variable

To distinguish the string variable from the numeric variable, virtually all systems use a trailing dollar sign (\$) in the variable name for a string. Legal simple string variable names are A\$, K\$, B3\$, and C8\$. Some systems are restricted to the 26 letters of the alphabet, not permitting such variables as B3\$. Others allow additional variables such as &\$. The number of characters you are allowed to store in one simple string varies typically from 18 to thousands. Most of the manipulations allowed for numeric variables are allowed for string variables except for arithmetic operations. String variables can be READ, INPUT, assigned, printed, and compared for order. Order comparison is accomplished according to ASCII (American Standard Code for Information Interchange) specifications, which place the digits in order 0 through 9 ahead of the letters of the alphabet in alphabetical order. (See Appendix A for relevant parts of the code.)

One of the uses of strings is to permit person-computer "conversation." We do not need to numerically code our answers to questions put to the program user. If we wish to give the program operator options, the answers can be words which the computer processes directly. If for example, we write a program that will require a lot of yes-no answers from the keyboard, we may write

a subroutine that prints the question, checks the answer to be sure that it is either a "YES" or a " $N\phi$ ," and rerequests the answer for all other responses.

Program DECIDE uses such a subroutine repeatedly as the computer assembles the information fed into it by the user. The subroutine outlined above begins in line 800.

```
DECIDE
  94
       REM * DEMONSTRATION PROGRAM INTRODUCING STRINGS
       REM SHOWS ASSIGNMENT, INPUT, COMPARISION AND REM PRINTING OF STRINGS
  95
  96
  100 GOSUB 200
  110 LET XS = OS
  120
       GØ SUB 400
  130 LET YS = QS
  140 PRINT "PROGRAM NAME";
150 INPUT NS
  160 PRINT
- 170 PRINT XS; YS; " - "; NS
  180
       STOP
  192
  194 REM * LANGUAGE DECISION SUBROUTINE
200 LET 0S = "FORTRAN"
210 GOSUB 800
  240 G0 SUB 800
  250
           IF AS = "YES" THEN 310
  260 LET QS = "BASIC"
  270 GØSUB 800
  280
           IF AS = "YES" THEN 310
  290 PRINT "FORTRAN, COBOL OR BASIC ONLY"
  300 GOTO 200
       RETURN
  310
  392
  394 REM * MAKE 'OLD - NEW' DECISION HERE
  400 LET QS = " OLD"
410 GOSUB 800
  420 IF AS = "YES" THEN 480
430 LET G$ = " NEW"
440 G0 SUB 800
  450 IF A$ = "YES" THEN 480
460 PRINT "OLD OR NEW ONLY"
470 GØTØ 400
  480 RETURN
  782
  784 REM * YES-NØ DECISION SUBROUTINE
  785 REM ENTER WITH GOSUB 800 790 PRINT "YES OR NO"
-800 PRINT 0$;
       INPUT AS
  810
        IF A$ = "YES" THEN 850
  820
          IF AS = "NO" THEN 850
  830
       GO TØ 790
  840
  850
       RETURN
  999
       END
  RHN
  DECIDE
  FORTRAN?NO
  COBOL?NO
  BASIC? YES
   ØLD? YES
  PROGRAM NAME? DECIDE
  BASIC ØLD - DECIDE
```

Strings 33

Strings are read from data in exactly the same manner that numerics are read from data. String and numeric data may be intermixed. Some systems require that string data be enclosed in quotes. On systems that do not require quotes, any expression that contains a comma will have to be enclosed in quotes anyway, since the comma will otherwise be interpreted as the end of the string.

Look at line 170 of program DECIDE. Note that the string variables are separated by semicolon delimiters in that PRINT statement. You should see that the printed output has no spaces other than those actually placed in string Y\$ and the literal expression "-" by the program itself. When printing numeric values, the computer always provides some space automatically when using semicolons as delimiters. When printing strings, the computer does not provide any space automatically. We can print string characters right next to each other by using semicolons. We can print strings in 15-character columns using commas, or we can use the TAB function for other spacing. Some systems also provide PRINT USING for yet another formatting capability.

We can easily construct a program to do for two strings exactly what program  $C\phi$ MPAR in Sec. 1-2 did for two numerics, as shown in program  $C\phi$ MPR\$. All we want is to determine if A\$ is less than, greater than, or equal to B\$. Look carefully to see what happens to the leading and trailing blanks in the strings. In this case, the leading blank makes "ALPHA" less than "ALPHA", but the trailing blank in "BETA" has no effect. Some systems will not ignore trailing blanks. Also note that the string 0123456789 is placed in quotes. When calling for a string read, some computers will ignore such a string unless it is in quotes because it 'looks like' a numeric.

```
COMPRS
       REM * THIS PROGRAM COMPARES TWO
  95
       REM STRINGS FOR ORDER
  100 READ AS, BS
          IF AS = "STOP" THEN 260
  110
  120
           IF AS = BS THEN 160
  130
           IF AS < B$ THEN 180
  140 PRINT
              AS; " IS GREATER THAN "; BS
  150
       GØTØ 100
       PRINT AS: " IS FOULL TO "; BS
  160
  170
       GO TO 100
       PRINT AS; " IS LESS THAN "; BS
  180
       GCTC 100
  190
  192
  194
       RFM
       DATA NUMERIC, ALPHABETIC
  200
  510
       DATA
             "0123456789", ABCDEFGHIJK
             "ALPHA", "ALPHA"
"BETA", "BETA"
 + 520
       DATA
+230
       DATA
             END, END
  240
       DATA
  250
       DATA
             STOP, STOP
  260
       END
  RUN
  COMPRS
  NUMERIC IS GREATER THAN ALPHABETIC
  0123456789 IS LESS THAN ABCDEFGHIJK
→ ALPHA IS LESS THAN ALPHA

→ BETA IS EQUAL TO BETA
  END IS EQUAL TO END
```

# Summary of Sec. 3-2

We have seen that the simple string variable can be used in BASIC programs in many of the same ways that simple numeric variables can. We may use simple string variables in READ, DATA, INPUT, PRINT, and IF-THEN statements. In DATA and INPUT statements, some systems require quotes to delimit strings under certain conditions.

#### Problems for Sec. 3-2

- Write a program to find the highest and lowest ranking strings in a set of data.
- 2) Write a program that reads two strings and then prints them in ascending order.
- 3) Write a program that will read three strings from data and print them in ascending order (more on ordering strings later).
- 4) How many print statements would be required to print n strings in alphabetical order using only the methods of this section?
- 5) Write a program to request two peoples' names in two strings for each person, first name first. Then have the names printed in alphabetical order. Be sure to handle William Smith and George Smith properly.

# 3-3 The String Subscripted Variable

It is at this point that we must distinguish the ways in which various systems treat subscripted string variables. There are two fundamentally distinct ways to deal with A\$(I,J) and B\$(I). (Some systems don't even permit the double subscript.)

One concept, as shown in demonstration program ARRAY\$, considers A\$(I,J) as an element of a string array just as A(I,J) is an element of a numeric

```
ARRAYS
94
     REM * THIS PROGRAM IS A DEMONSTRATION OF
95
    REM A STRING ARRAY
96
97
     REM * HERE THE DIMENSION SPECIFIES THE NUMBER
     REM OF STRINGS THAT MAY BE STORED IN A LIST
98
100 DIM A$(3)
102
104
     REM * READ THE STRING LIST FROM DATA
110 FOR I = 1 TO 3
        READ AS(I)
120
130 NEXT 1
132
    REM * NOW PRINT THE STRING LIST
134
    FCR I = 1 TC 3
140
       PRINT "AS("; I; ") = "; AS(I)
150
160
    NEXT I
172
174
    REM
    DATA FIRST, SECOND, THIRD
180
190
    END
RUN
ARRAYS
A$(1) = FIRST
A$(2) = SECOND
AS( 3 ) = THIRD
```

Strings 35

array. This makes B\$(I) the Ith element of a string list called B\$ which may contain up to 11 strings before the DIMension statement is required.

The other concept, as shown in program SUBSTR, considers A\$(I,J) as a substring having J-I+1 characters going from the Ith to the Jth character inclusive. So A\$(I,I) is the single Ith character. Using this concept, B\$(I) is the substring beginning with the Ith character and continuing to the end of the string.

The next two sections will treat these two concepts separately.

```
SUBSTR
94 REM * THIS PROGRAM IS A DEMONSTRATION
95 REM OF AS(I,J) AS A SUBSTRING
96
    REM
97 REM * IN THIS CASE THE DIMENSION SPECIFIES THE
98 REM NUMBER OF CHARACTERS IN THE STRING VARIABLE AS
100
     DIM AS[14]
110 LET AS="THIS IS A TEST"
120 PRINT "AS = "; AS
     FOR I=1 TO 14 STEP 4
130
     LET J=I+INT(RND(-1)*4+1)
140
     PRINT "AS("; I; ", "; J; ") = '"; AS[ I, J]; "'"
150
160
     NEXT I
164
     REM
170
     END
RUN
SUBSTR
AS = THIS IS A TEST
AS( 1 , 4 ) = 'THIS'
AS( 5 , 6 ) = 'I'
AS( 5 , 6 ) = 'I'
AS( 9 , 12 ) = 'A TE'
AS( 13 , 17 ) = 'ST
```

# 3-4 The Substring Scheme\*

One advantage in the substring concept is that we can deal with any part or parts of the string directly. One disadvantage is that we cannot deal with hundreds or thousands of strings without the use of files. Strings may be read from data. When placed in data, strings must be enclosed in quotes. The same is true if we type more than one string to the keyboard in response to an INPUT statement.

Generally speaking, the DIMension statement is required for string variables to permit the computer to allocate space. For example, 100 DIM A\$(10), B\$(58),A(15) provides for 10 characters in A\$, 58 characters in B\$, and 15 numerics in the A list, the latter showing that string and numeric dimensioning may be intermixed.

A program to arrange the letters of a string in alphabetical order is shown in program ALPHA. Line 100 provides for up to 72 characters in the string variable A\$. Line 120 uses the LEN() function. This function measures the actual number of characters in the string. Note that lines 160, 170, and 180 exchange two characters which are not in the proper order. Since B\$ is used for only a single character, it need not appear in the DIMension statement. Note that spaces have a lower ASCII code than the letter A and so appear first in the result of program ALPHA.

<sup>\*</sup>The programs of Sec. 3-4 were run on a Hewlett Packard Computer.

```
ALPHA
  94 REM * THIS PROGRAM ALPHABETIZES THE
95 REM CHARACTERS OF A STRING
 -100 DIM AS[72]
         INPUT AS
  110
- 120 LET L=LEN(AS)
  122 REM
  124 REM * LINE 150 TESTS ALL POSSIBLE PAIRS OF
125 REM CHARACTERS TO SEE IF THEY ARE IN ORDER
  130 FOR I=1 TO L-1
140 FOR J=1+1 TO L
150 IF AS(I,I) <= AS(J,J) THEN 190
  152 REM
  154 REM * IF AS(I,I) IS NOT LESS THAN AS(J,J) THEN
155 REM WE EXCHANGE THOSE CHARACTERS
-160 LET BS=AS[I,I]
-170 LET AS[I,I]=AS[J,J]
-180 LET AS[J,J]=BS
  190 NEXT J
  200
        NEXT I
  204
        REM
  210 PRINT AS
  220
        END
  RUN
  ALPHA
  ?THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
             ABCDEEEFGHHIJKLMN0000PORRSTTUUVWXYZ
```

Program REVRS simply prints the characters of a string in reverse order but keeps the string intact. Program END shows the printing of A\$(I) for a sample string.

```
REVRS
94 REM * THIS PROGRAM DEMONSTRATES PRINTING THE
95 REM CHARACTERS OF A STRING IN REVERSE ORDER
95 REM CHARACTERS OF A STRING IN REVERSE ORDER
96 REM WITHOUT MODIFYING THE CONTENTS OF
97 REM THE STRING
100 DIM AS[72]
     INPUT AS
110
120
    PRINT "
130
                 THE STRING CONTENTS IN REVERSE ORDER:"
134 REM
140 FOR I=LEN(AS) TO 1 STEP -1
150
     PRINT AS(I, I);
160 NEXT I
164
     REM
170
     PRINT
180
     PRINT
     PRINT "
190
                 THE CONTENTS PRINTED IN TACT:"
200
     PRINT AS
210
     END
RUN
REVRS
?THIS PROGRAM PRINTS IN REVERSE
   THE STRING CONTENTS IN REVERSE CRDER:
ESREVER NI STNIRP MARGORP SIHT
   THE CONTENTS PRINTED IN TACT:
THIS PROGRAM PRINTS IN REVERSE
```

Strings 37

```
END
    REM * THIS PROGRAM DEMONSTRATES THE USE OF
95 REM PRINT AS(I) IN THE SUBSTRING SCHEME
100 DIM AS[72]
110 INPUT AS
120 FØR I=LEN(A$) TØ 1 STEP -1
130 PRINT "A$(";I;") = ";A$[I]
140 NEXT I
142 REM
150
      END
RUN
END
?THIS IS IT
A$( 10
           ) = T
AS( 9
            ) = IT
A$( 8
A$( 7
            ) =
                 ΙT
          ) = S IT
A$( 6
A$( 5
          ) = IS IT
           ) =
                  IS IT
AS( 3 ) = 13 11

AS( 4 ) = S IS IT

AS( 3 ) = IS IS IT

AS( 2 ) = HIS IS IT

AS( 1 ) = THIS IS IT
```

The ability to compare strings and substrings allows us to pack several items of information into a single string. For example, we might want to work with the days of the week. As shown in program WEEKA, we could use

## 110 LET A\$ = "SUNMØNTUEWEDTHUFRISAT"

```
WEEKA
  94 REM * THIS PROGRAM DEMONSTRATES COMPARING A
  95 REM STRING AGAINST A SUBSTRING
 →100 DIM DS[15],AS[21]
110 LET AS="SUNMONTUEWEDTHUFRISAT"
  120 INPUT DS
130 LET D=0

→140 FOR I=1 TO 19 STEP 3
 150 LET D=D+1
-- 160 IF DS <> AS(I,I+2) THEN 190
170 PRINT "DAY #"D
  180
       STOP
  190 NEXT I
  194
       REM
  200 PRINT "DAY NOT FCUND"
  210
       END
  RUN
  WEEKA
  ?TUE
  DAY # 3
```

Then we could step through the string with

```
140 FØR I = 1 TØ 19 STEP 3
```

comparing some test string with A\$(I,I+2) to see if the test string matches those three characters of A\$.

We can even test parts of two strings. We could test the first three characters of D\$ successively against groups of three characters in A\$ looking for a match by changing line 160 to

160 IF 
$$D$(1,3) \le A$(I,I+2)$$
 THEN 190

This is left for the reader to try.

It should be clear that by the use of strings we can control what is printed in every space of the paper on our terminal. If we convert numeric values to string variables, then we gain some added flexibility for the printing of numeric results since these can be printed imbedded in strings to avoid extra spaces. If you have PRINT USING, this step is not necessary.

We shall develop here the beginnings of a routine to convert a numeric to a string. The fundamental idea is simply to pick off the digits one at a time as numbers and use the numbers to store string equivalents in the correct positions of a string variable. The way to get the string equivalent is to use what is called a dummy string. In this case the dummy string to use contains all the digits. As shown in program CONVRT, it is  $D^{*}(123456789)$ . The string  $A^{*}$  in program WEEKA is another example of a dummy string. If we want a "3" stored in the sixth position of string  $S^{*}$ , we use the following statement:

100 LET 
$$S$(6,6) = D$(4,4)$$

since the "3" is really in the fourth position of D\$. To get the digit "I" in the Jth position of S\$, we use:

200 LET 
$$S_{J,J} = D_{I+1,I+1}$$

as shown in line 200 of program CØNVRT.

```
CONVET
94 REM * THIS PROGRAM CONVERTS A NUMERIC
95 REM TO A STRING
100 DIM SS[6], DS[10]
110 LET DS="0123456789"
120 INPUT N
130 IF N=INT(N) THEN 160
140 PRINT "INTEGERS CNLY"
150 GOTO 120
160 PRINT "*";N;"*"
170 FOR E=5 TO 0 STEP -1
180 LF.T J=6-E
190 LET I=INT(N/10+E)
500
     LET SS[J,J]=DS[I+1,I+1]
210 LET N=N-I*10+E
220 NEXT E
     PRINT "5"; SS; "S"
240
     END
RUN
CONVRT
2975310
* 975310.
$975310$
```

To append a string onto the end of another string, use the technique of program CONCAT.

Strings 39

```
CONCAT
94 REM * THIS PROGRAM DEMONSTRATES CONCATENATION
100 DIM A$(501,B$(501
110 INPUT AS, BS
120 PRINT "BEFORE CONCATENATION",
130 PRINT AS, BS
140 LET AS[LEN(AS)+1]=BS
150
    PRINT
160 PRINT "AFTER CONCATENATION",
    PRINT AS.BS
170
180
    END
RUN
CONCAT
?"CONCAT", "ENATION"
                             CONCAT
                                             FNATION
BEFORE CONCATENATION
                              CONCATENATION ENATION
AFTER CONCATENATION
```

# Summary of Sec. 3-4

The substring scheme permits us to look at string variables in one of the following four ways:

| A\$      | The whole string.                                           |  |  |
|----------|-------------------------------------------------------------|--|--|
| A\$(I,J) | The substring from the Ith to the Jth characters inclusive. |  |  |
| A\$(I,I) | The single Ith character of the string A\$.                 |  |  |
| A\$(I)   | The substring beginning at the Ith character and continu-   |  |  |
|          | ing to the end. To obtain the beginning of the string, use  |  |  |
|          | A\$(1,I).                                                   |  |  |

We can build up new strings from parts of old ones. We can compare strings and substrings for equality and for order.

#### Problems for Sec. 3-4

- 1) Modify ALPHA to eliminate duplicates.
- Write a program to accept abbreviations for the days of the week and respond with the full correct spelling.
- 3) As written, CØNVRT will print \$000001\$ if we input 1 for N. Eliminate these leading zeros and end up with a string only as long as needed.
- Modify CΦNVRT to accept negative numbers and insert the minus sign in the string.
- Modify CØNVRT to accept decimal numbers representing dollars and cents.
- 6) Write a program to convert a numeric string to a true numeric stored in a numeric variable.
- Write a program to multiply two six-digit integers and print the answer exactly.
- 8) Write a program like that for problem 7, but not limited to six-digit integers. (Allow 10- or 20-digit integers).
- 9) Write a program to encode and decode messages using a keyword.
- 10) Modify program WEEKA to test the first three characters of the input string from line 120 against successive sets of three characters from A\$.
- 11) In comparing strings for order, BASIC compares the two strings one

character at a time. So for nonequal strings, the first nonequal characters determine order. Therefore when comparing such strings as '60' and '100', BASIC will evaluate '60' as greater than '100'. Write a program to overcome this flaw. Be sure to also provide for proper ordering of strings like 'A6' and 'A10.'

# 3-5 The String Array Scheme\*

Even where systems use the same general scheme, we will find differences. Therefore we present programs here which use features found on many timesharing systems. Strings and string arrays may be manipulated in many of the same ways that numerics and numeric arrays may be. That is, we may use INPUT, READ, PRINT, assignment, and comparison for order. We generally may not use arithmetic operations with the possible exception of addition since some computers allow LET A\$ = "ABC" + "DEF" to assign "ABCDEF" to string variable A\$. Generally speaking, we find the same dimensioning requirements for string arrays as for numeric arrays. So 10 DIM A\$(15),B\$(3.47). C(3,8) provides for up to 16 strings in A\$ (generally zero subscripts are allowed). up to 192 strings in B\$, and up to 36 numerics in C. Note that we may intermix strings and numerics in the dimension statement. Some systems allow only onedimensional string arrays. The number of characters allowed in each string will vary from system to system. The LEN() function, if available, evaluates the number of characters actually stored in a string. An alternative approach uses the CHANGE statement. CHANGE A\$ T\$\phi\$ A places the ASCII numeric code for the characters in the string in the list positions of A. So if A\$ = "XYZ," then list A carries in position 1 the ASCII code for X, in position 2 the code for Y, and in position 3 the code for Z. Moreover, A(0) will contain the number of characters in the string A\$. CHANGE also works in the other direction. Change A TØ A\$ takes the codes stored in list A and enters the equivalent string character in A\$. With this information, we can write some sample programs.

To arrange the letters of a string in alphabetical order we may first store the coded values in a list. We then arrange the coded values in numeric order and convert the numeric list back to a string for printing, as shown in program ALPHA1.

Similarly, we can reverse the order of the letters in a string with the procedure of program REVRS1. Look particularly at line 150 to see that the B list is filled in the reverse order from the contents of the A list.

We can compare strings as a means of coding information. For instance, we can number the days of the week by storing their names as the elements of a list—the first day stored in the first element, the second day in the second element, and so on. We then know which number belongs to a particular string by which subscript we use to obtain a match, as shown in program WEEKA1.

We can compare parts of strings by proper use of the CHANGE statement and a list for each string being compared. Program WEEKB1 looks at only the first three letters of two strings in lines 190, 200, and 210.

<sup>\*</sup>The programs of Sec. 3-5 were run on the General Electric Information Services time sharing system.

Strings 41

```
AL PHA 1
       REM * THIS PROGRAM ORDERS THE CHARACTERS
  94
       REM OF A STRING
  95
  100
       DIM A(75)
  110
       INPUT AS
  120
       CHANGE AS TO A
  122
  130 LET L = A(0)
  140 FOR I = 1 TO L-1
150 FOR J = I+1 TO L
160 IF A(I) <= A(J) THEN 200
  162
             REM * IF OUT OF ORDER THEN EXCHANGE
  164
  170
             LET X = A(I)
  180
              LET A(I) = A(J)
             LET A(J) = X
  190
  200
          NEXT J
  210
      NEXT I
  212
  220 CHANGE A TC AS
  230
       PRINT AS
  240
      END
  RUN
  AL PHA 1
  ? THE OUICK BROWN FCX JUMPED OVER THE LAZY DOGS
          ABCDDEEEEFGHHIJKLMNCOCCPORRSTTUUVWXYZ
  REVRS1
       REM * THIS PROGRAM REVERSES THE REM CHARACTERS OF A STRING
  94
  95
  100 DIM A(75), B(75)
       INPUT AS
  110
       CHANGE AS TO A
  120
  155
      REM * STORE THE NUMBER OF CHARACTERS IN L AND 8(0)
  124
  130 LET L = B(0) = A(0)
  140
     FOR I = 1 TO L
-- 150
         LET B(L-I+1) = A(I)
  160
      NEXT I
  162
  170
      CHANGE B TC AS
     PRINT AS
  180
  190
      END
  RUN
  REVRS1
  ? GOOD THINGS COME IN SMALL PACKAGES
  SEGAKCAP LLAMS NI EMOC SGNIHT DCCG
  WEEKAI
       REM * THIS PROGRAM FINDS THE DAY NUMBER
  94
       REM FROM THE DAY NAME
  95
  100 DIM AS(7)
  110 FOR D = 1 TC 7
  120
          READ AS(D)
  130 NEXT D
      PRINT "DAY";
  140
  150
       INPUT BS
  160
       FOR D = 1 TC 7
  170
             IF BS <> AS(D) THEN 200
  180
          PRINT "DAY # "; D
  190
          STCP
  200 NEXT D
```

210 PRINT BS; "NCT FOUND"

```
212
  214
       REM
             SUNDAY, MONDAY, TUESDAY, WEDNESDAY
  ATAC 0SS
      DATA THURSDAY, FRIDAY, SATURDAY
  230
  240 END
  RUN
  WEEKAI
  DAY? TUESDAY
  DAY # 3
  WEEKB1
       REM * THIS PROGRAM DIFFERS FROM VEEKAL BECAUSE
  94
       REM IT CHECKS ONLY THE FIRST THREE CHARACTERS REM OF TWO STRINGS. SEE LINES 190 TO 210
  95
  96
  100 DIM A5(7), A(9), B(9)
  102
  104 REM * READ DAYS OF THE WEEK INTO AS LIST
  110 FOR D = 1 TC 7
         READ AS(D)
  120
  130 NEXT D
  132
       PRINT "DAY";
<del>→</del> 140
       INPUT BS
  150
  160 CHANGE BS TC B
  170 FOR I = 1 TO 7
          CHANGE AS(I) TO A
  180
  182
  184
          REM * TEST FIRST THREE CHARACTERS
       FOR K = 1 TO 3
-- 190
                IF A(K) <> B(K) THEN 240
\rightarrow 800
          NEXT K
-- 210
         PRINT AS(I); " IS DAY #"; I
  220
  230
          STOP
       NEXT I
  240
  250 PRINT BS; " NOT FOUND"
  252
  254
  260 DATA SUNDAY, MONDAY, TUFSDAY, WEDNESDAY
  270 DATA THURSDAY, FRIDAY, SATURDAY
  280
       END
  RIIN
  WEEKBI
  DAY? SUNDAE
  SUNDAY IS DAY # 1
```

We can easily construct a program to alphabetize strings by using exactly the same approach that we use for sorting numbers except that we use subscripted string arrays instead of subscripted numeric arrays, as shown in program  $\phi$ RDER\$. (For more about sorting see Sec. 11-3). Note that this program stops comparing as soon as the list is in order, an optimizing feature which obviously leads to shorter execution time.

```
ORDER$

94 REM * THIS PROGRAM ALPHABETIZES

95 REM A LIST OF STRINGS

96 REM THE CURRENT LIMIT IS 200 STRINGS

100 DIM LS(200)

102

104 REM * READ DATA
```

Strings 43

```
110 FOR I = 1 TO 200
    READ LS(I)
120
          IF LS(I) = "STOP" THEN 150
130
    NEXT I
140
142
150
    LET N = I = I - I
152
154
    REM * TURN SWITCH OFF, INCREMENT N AND SORT
160
    LET S = 0
170 LET N = N -1
180 FOR J = 1 TO N
190
           IF LS(J) <= LS(J+1) THEN 240
192
194
       REM * EXCHANGE ELEMENTS AND TURN ON SMITCH
       LET SS = LS(J)
200
210
       LET LS(J) = LS(J+1)
      LET LS(J+1) = SS
LET S = 1
220
230
240 NEXT J
242
244
    REM * CHECK SWITCH O=OFF, 1=ON
250
      IF S = 1 THEN 160
252
254
       REM * THE SWITCH IS OFF - LIST IS CROERED
260 FCR X = 1 TC I
270
       PRINT LS(X)
280
    NEXT X
282
284
    REM
290
    DATA WILLIAMS, JONES, SMITH
300 DATA YOUNGMAN, STOP
310
    FND
RHN
ORDER$
JONES
SMITH
WILLIAMS
YØUNGMAN
```

Since strings in the scheme we are now considering may be treated as array variables, we should realize that we may MAT READ and MAT PRINT string arrays with all of the same options that these two statements allow for numerics. That is, we may MAT READ A\$(M,N) to redimension the array in the MAT READ statement. And we may MAT PRINT with semicolon or comma spacing. Use semicolon spacing with care, however, as this will result in strings being printed with no spaces. For most systems, quotes are not required when placing strings in DATA statements unless the string contains a comma or is a numeral.

```
MAT $
     REM * THIS PROGRAM DEMONSTRATES MAT READ
95
    REM AND MAT PRINT FOR STRING ARRAYS
100 DIM A$(5,10)
110
    READ R.C
120
    MAT READ
              AS(R.C)
130 MAT PRINT AS;
140
    PRINT
150
    MAT PRINT AS,
152
154
    REM
    DATA
160
          2,5
170
    DATA THIS, IS, A, SAMPLE, PROGRAM
180 DATA WITH, STRING, MAT READ, AND, MAT PRINT
190 END
```

```
RUN MATS

THISISASAMPLEPROGRAM WITHSTRINGMAT READANDMAT PRINT

THIS IS A SAMPLE PROGRAM WITH STRING MAT READ AND MAT PRINT
```

Generally speaking, you need not be intimately familiar with the ASCII code because the ASC() function gives the numeric code for the character in parentheses. Alternatively, we may write a program to print the ASCII code for alphanumeric characters stored in a string variable, as shown in program ASC. Note that lines 130, 150, and 160 are used to store single characters from A\$ in the string variable B\$. Some time sharing systems provide the EXT\$ function. The statement B\$ = EXT\$(A\$,I,I) would result in the Ith character of A\$ being stored in B\$. Some systems use SEG\$ for this. You may find numerous other functions for working with string data available in your system.

```
ASC
       REM * THIS PROGRAM PRINTS SAMPLE
  94
       REM ASCII CODE VALUES
  95
  100 DIM A(9)
 110 LET AS = "6 :/([ABZ"
120 CHANGE AS TO A
      CHANGE AS TO A
-130 LET B(0) = 1
 140 FOR X = 1 TO A(0)
+150
          LET B(1) = A(X)
-- 160
          CHANGE B TO B$
          PRINT """; B$; """; B(1)
  170
  180 NEXT X
  190 END
  RUN
 ASC
  '6' 54
  ·: 58
  ·/· 47
  10 40
  ·[ • 91
  'A' 65
  'B' 66
  'Z' 90
```

# Summary of Sec. 3-5

Where strings may be stored in arrays, A\$(I,J) specifies a string stored in row I, column J of a string array. We may consider individual characters of the string by using CHANGE, which places equivalent numeric codes for the characters of the string in the positions of a numeric list corresponding to the position of the character in the string. In addition, the zero position of the list contains the number of characters in the string.

Strings 45

## Problems for Sec. 3-5

- 1) Modify program ALPHA1 to eliminate duplications.
- 2) Suppose you have typed a large quantity of data consisting of peoples names, first name first, and you suddenly find that you should have typed them last name first and in alphabetical order. Write a program to make the change. Your program should work whether or not you used middle initials.
- 3) Write a program to convert a string to a numeric (even though your computer may provide a function for this).
- 4) Write a program to accept two six-digit integers, multiply them digit by digit, and print the exact product.
- 5) Write a program to accept two numbers as strings not limited to six digits, find the exact product, and print it.
- 6) Write a program to generate license plate number and letter combinations. Establish a pattern, such as six characters with the first three alphabetic and the last three numeric. Select a few at random to print.
- 7) Write a program to generate 'words' where vowels and consonants alternate. Print a few at random.
- 8) In comparing strings for order, BASIC compares the two strings one character at a time. So for nonequal strings, the first nonequal characters determine order. Therefore, when comparing such strings as '60' and '100,' BASIC will evaluate '60' as greater then '100.' Write a program to overcome this flaw. Be sure to also provide for proper ordering of strings like 'A6' and 'A10.'

# 4 FILES

## 4-1 Introduction

There are tremendous differences in file handling from system to system. Files give a tremendous extension of power to the BASIC language in two significant ways. First, the use of files allows us to handle far more data than we could ever store in DATA statements of a single program because of computer space limitations. Second, the use of files allows us to process the same data using several different programs. We might use one program only to enter data into a file. Another program might be used to make corrections. Another might be used to extract a particular piece of information, and yet another might be used to modify the data in the files. And so on and so on. There is no limit to the number of programs which may work on the data in a single file or group of files.

We have chosen to present here file programs on two different systems. You will want to determine which one resembles your system before attempting to write programs. The systems chosen here are Hewlett Packard and General Electric since both are in common use and differ in many ways.

## 4-2 Hewlett Packard Files

## Serial Data Files

Serial files have the advantage that they are quite efficient in the use of computer storage space. We simply print entry after entry until all desired entries are in the file or files. Serial files have the disadvantage that we cannot easily go into the file to change an existing entry or insert a new entry. To do this to a serial file, we must copy the entire contents into another file making the changes on the way and then copy the corrected data back into the original file. Naturally, this is a serious problem only if we are working with a large amount of data.

Let us construct an inventory file and work on it. Suppose that for each item of inventory we have a part name, a part number, a price, and a quantity.

Program ENTER1 will enter an initial set of inventory data into a file called INVO1.

```
ENTER1
94 REM * THIS PROGRAM ENTERS DATA IN AN EMPTY FILE
100 FILES INVOL
110 DIM PS(251
120 READ PS,N,P,0
130
     IF N=0 THEN 240
134 REM * LINE 140 PRINTS ITEM AFTER ITEM CLOSE PACKED
     REM IN THE FILE MAKING IT SERIAL IN STRUCTURE
135 REM IN THE FILE !
140 PRINT #1:PS.N.P.O
150 GOTO 120
194
     REM
    DATA "FRAMIS", 1001, 2.3, 1800, "WIDGET", 1002, 4.4, 1100
200
210 DATA "REGULATOR", 1003, 3, 48, 900, "SLICNEP", 1004, 004, 9000
220 DATA "FRASMALATOR", 1005, 18.49, 800, ""HATSIT", 1006, 10.98, 3000
    DATA "STOP",0,0,0
530
240 END
NI 'S
ENTER1
DONE
```

Line 100 is necessary to make file INVO1 available to the present program. The file must be in existence at the time the program is run. (Some HP systems provide for ASSIGNing files during program execution.) In this case, we typed the executive command  $\phi$ PEN-INVO1,50 to create the file. That command specified 50 discrete storage blocks referred to as "sectors" or "records." Each of our 50 records will hold as many as 32 numerics, where one numeric occupies the same space as 4 string characters. We must add one string character each for delimiters at the beginning and end of a string and add one if the number of characters in the string is odd. The record size varies from computer to computer, and some computers allow the user to specify its length. The maximum number of records allowed varies also.

Line 120 reads from program data statements in the usual way.

Line 130 checks for dummy data.

Line 140 prints the data as read in line 120 but to the external file instead of to the paper on the terminal in front of us. The #1 is used because the file we use is the first named in the files statement. If we want to print to the second file named in a files statement, then we use PRINT #2. We can also use PRINT #F where F is the file number. File names are separated by commas in the FILES statement. For example,

## 100 FILES FILE1, FILE2, FILE3

makes three files available to the program in which this statement appears. Systems vary as to the number of files that may be named in a files statement. Most allow at least 8

This is the very first time that we have run a program which failed to print anything and yet did something useful. Generally speaking, we should print something to the terminal. To prove that the data really is in that file, we present program READ to read the data out of file INVO1.

```
READ
  94 REM * READS INVENTORY DATA FROM A FILE
  100 FILES INVOI
110 DIM PSE 251
  120 PRINT "PART NAME", "PART #", "PRICE", "DJANTITY"
        REM * READ DATA FROM THE FILE
  124
-- 130 READ #1; PS, N. P.O
  134 REM * PRINT THE DATA TO THE TERMINAL
  140 PRINT PS,N,P,0
150 GOTO 130
→ 150
       END
  3.17
  2F 4D
  PART NAME PART #
FRAMIS 1001
VIDGET 1002
                                 PRICE
                                                    O JAHTITY
                                                        1300
                                      2.3
                                      4.4
3.43
.04
18.49
10.98
                                                        1100
900
                    1005
  SIDGET
  RECHLATOR
SLICNEP
FRASMALATOR
WHATSIT
                   1003
1004
1005
                                                        9000
                                                        3000
3000
                    1006
  END-OF-FILE/END OF RECORD IN LINE 130
```

We get all of the information from the file and an error message to boot.

We may avoid the error message by inserting an IF END statement. We will use 105 IF END #1 THEN 160. This statement, executed just once, sets a flag so that if line 130 tries to read nonexistent data or tries to read past the physical end of the file, the computer will next execute line 160. Alternatively, of course, we could have placed our own flag in the file by printing dummy data into the file at the end of the real data.

```
→ 105
        IF END #1 THEN 160
  RUN
  READ I
                                       PRICE
  PART NAME PART #
FRAMIS 1001
                                                        O'JANTITY
                                                           1800
                                        2.3
                                         4 • 4
3 • 48
  WIDGET
REGULATOR 1003
SLICNEP 1004
FRASMALATOR 1005
                                                             1100
                                                             900
                                         .04
18.49
10.98
                                                            9000
800
                                                            3000
```

We can now sit down and dream up little programs to process the data in file INVO1. We might want to know the number of parts in inventory. You can easily verify that program READ2 does that.

```
READ2

94 REM * THIS PROGRAM FINDS THE TOTAL
95 REM NUMBER OF PARTS IN FILE INVO!
100 FILES INVO!
110 DIM P$(25)
120 LET T=0
130 IF END #1 THEN 170
140 READ #1)P$,N,P,0
144 REM * RUNNING TOTAL CALCULATED IN LINE 150
150 LET T=T+0
160 GGT0 140
```

```
170 PRINT T;"PARTS"
180 END
RUN
READ2
```

It is left as an exercise for the reader to find the total value of inventory with a program.

Now suppose we want to add inventory to INVO1. Using ENTER1 again with different data will simply replace what is in INVO1 with new data. (Actually, the new data might replace only part of what is already in there, and this result has other complications.) What we must do is read out to the end of the data already in the file and then begin printing new data to the file at that point, as shown in program ENTER2.

Note that program ENTER2 may also be used to enter data into an empty file. We do not need a different program for this purpose. It is a good practice to provide for printed output to the terminal in a program of this kind. We run READ1 again to make sure that the new data was properly added to the end of the file.

```
ENTER2
 94 REM * THIS PROGRAM ENTERS DATA INTO AN EMPTY OR
 95 REM PARTIALLY FILLED SERIAL FILE
 100 FILES INVOI
 110 DIM P$[25], Q$[25]
 114 REM * READ TO THE END OF EXISTING DATA
      IF END #1 THEN 150
-120
 130 READ #1; P$.N.P.Q
 140 GOTO 130
     REM * ENTER NEW DATA INTO THE FILE
 144
-150 READ P$,N.P.Q
 160 IF N=0 THEN 200
 170
     LET QS=PS
 180
     PRINT #1:PS.N.P.O
 190
     GØTØ 150
 500
     PRINT "LAST ITEM IS "; Q$
 204
     RFM
 210 DATA "LIFTER",1007,.29,10000,"DR0PPER",1008,.89,1500
     DATA "WHO SIT", 1009, 16, 12, "HOLDER", 1010, .47, 1141
 220
     DATA "STOP",0,0,0
 230
 240
     END
 RUN
 ENTER2
 LAST ITEM IS HOLDER
 READI
                               PRICE
                                               YTITMALID
 PART NAME
                PART #
                                                1800
                 1001
 FRAMIS
                                2.3
 WIDGET
                 1002
                                 4.4
                                                1100
 REGULATOR
                 1003
                                3.48
                                                900
                 1004
                                 .04
                                                9000
 SLICNEP
 FRASMALATOR
                 1005
                                18.49
                                                800
 WHATSIT
                 1006
                                10.98
                                                3000
                                .29
                                                10000
 LIFTER
                 1007
 DROPPER
                 1008
                                 .89
                                                1500
 WHOSIT
                 1009
                                16
                                                12
                                 . 47
 HOLDER
                 1010
                                                1141
```

The next area we might get into is that of making changes in file INVO1 according to business activity. We can do this with the procedures mentioned earlier, that is, by copying the entire contents of the file into another file, making changes on the way. However, if the amount of data becomes very great, the time lost by this method tends to be more important than the space saved by using serial files. Furthermore, there are many devices for utilizing random access files more efficiently. So let's talk about random access files.

#### Random Access Files

Files are serial or random access according to the structure the programmer creates for them. In fact, the same file may be treated as serial by one program and random access by another. File INVO1 was serial because we printed the data in serially. We may instead use the discrete records of the file for specifically arranged data.

In our inventory example we might consider placing one inventory item on one record. Since most of our sample data are equivalent to about 5 numerics, this would be wasteful of computer space. However, in practice, an item of inventory will contain more data, and thus it is often wise to allow more file space than is needed at first. Then we will not have to restructure the entire storage plan as we might if we had placed several inventory items on a single record. In fact, if programmers anticipate that additional data may be required, they go one step further. They incorporate the extra variables into all programs, using zeros for numbers and empty or null strings for anticipated alphameric data. Then the existing programs will carry all of the variables needed and will not have to be rewritten to accommodate the new data structure. Of course, changes will have to be made to actually utilize the newly activated variables later. Moreover, in some situations we can use space more efficiently by storing numerics in one file and strings in another with a scheme to link the data from the two files to each other. That way numeric data may be MAT READ out of the file for very easy processing.

```
ENTER3
 94 REM * THIS PROGRAM ENTERS DATA INTO AN EMPTY
95 REM FILE IN RANDOM ACCESS FORMAT
100 FILES INVO2
 110 DIM P$[25]
-120 LET R=0
 130 READ P$,N,P,0
 140
       IF N=0 THEN 190
-- 150 LET R=R+1
-160 READ #1.R
       PRINT #1; PS, N, P, Q
-170
      GØTØ 130
 180
  190
       PRINT R; "RECORDS USED"
  194
       REM
       DATA "FRAMIS", 1001, 2. 3, 1800, "WIDGET", 1002, 4. 4, 1100
 200
 210 DATA "REGULATOR", 1003, 3.48, 900, "SLICNEP", 1004, .04, 9000
       DATA "FRASMALATOR", 1005, 18.49, 800, "WHATSIT", 1006, 10.98, 3000
 220
       DATA "STOP", 0, 0, 0
 230
 240
       END
  RUN
 ENTER3
```

RECORDS USED

To keep things simple, suppose that we look at a program to place one inventory item per record, such as program ENTER3, which PRINTs inventory data into file INVO2.

Note that we have the computer print the number of records used to assure us that the program has performed as expected. Lines 120 and 150 keep track of the record to which we are going to print. Statement 160 sets a pointer in the file to the beginning of record R. Statement 170 prints data to the file beginning at the pointer. The pair of statements 160 and 170 may be replaced with the single statement, PRINT #1,R;P\$,N,P,Q, the difference between the two being that if 170 attempts to print more than will fit on the record, the excess goes on the next record, whereas PRINT #1,R;P\$,N,P,Q will result in an error message if the data to be printed will not fit on record R.

Now program READ1 may still be used to read the contents of INVO2 by changing line 100 to FILES INVO2.

In order to add data to the end of file INVO2, we have several techniques available to us. One is exactly analogous to that for serial files. Another uses the TYP() function. The TYP() function 'looks' at the next item of information in a file and identifies it as follows:

```
TYP(N) = 1 Next item is a numeric

TYP(N) = 2 Next item is a string

TYP(N) = 3 Next item is end of file

TYP(N) = 4 Next item is end of record
```

where N is the position that the file name occupies in the FILES statement. If N is positive, the value 4 is never returned; to detect end of record, N must be negative.

The TYP() function is used in line 150 of program ENTER4 to determine

```
ENTER4
    REM * THIS PROGRAM ENTERS DATA IN A PARTIALLY FILLED
 95 REM FILE IN RANDOM ACCESS FORM
 100 FILES INVO2
 110
     DIM P$[25]
 120
     LET R=0
 130 LET R=R+1
 140
     READ #1.R
      REM * LINE 150 DIRECTS THE COMPUTER TO LINE
 144
145
      REM 130 IF WE ARE NOT AT THE END OF DATA
+150
     IF TYP(1) <> 3 THEN 130
160
     LET R=R-1
 170
     READ PS.N.P.Q
     IF N=0 THEN 230
 180
     LET R=R+1
 190
200
     READ #1.R
 210
     PRINT #11P$,N,P,Q
220
     GØ TØ 170
     PRINT R; "RECORDS USED"
230
234
240
     DATA "LIFTER", 1007, .29, 10000, "DROPPER", 1008, .89, 1500
     DATA "WHOSIT", 1009, 16, 12, "HOLDER", 1010, .47, 1141
250
     DATA "STOP", 0, 0, 0
260
270
     END
RIJN
ENTER4
```

10

RECORDS USED

the first record that has an end of file (sometimes referred to as EOF) marker and begin printing the new data on that record. Here again, as a check on the program, we have the computer tell us how many records have been used.

Now we are in a position to explore some possibilities for editing the random access file. Note that we selected part numbers, so that if we subtract 1000, we get the number of the record on which that part will be found. Often in data processing it is helpful to organize data so that something about the data tells us where to find it. This method is sometimes called "content addressing." It could consist of an extra item of data for file management purposes only.

Let's write a program that allows us to go into the inventory file and change anything but the part number. We do this with program UPDATE. The part number is requested in line 150, and the part is found in line 200. Line 210 prints the part name and offers to make a change possible. The same is done for the price in line 260 and for the quantity in line 310. When all information is correct, it is re-entered into the file in line 360. The IF END statement in line 130 provides for attempting to access a nonexistent record or for attempting to access a record that has no data on it.

```
UPDATE
  94 REM * THIS PROGRAM EDITS AN INVENTORY FILE
  100 FILES INVOS
  110 DIM P$[25], A$[3]
      PRINT "INPUT PART NUMBER ZERO TO QUIT"
  120
-- 130 IF END #1 THEN 380
 140 PRINT
      PRINT "PART #";
<del>---</del> 150
 160 INPUT N1
  170 IF N1 <> INT(N1) THEN 150
  180
       IF N1=0 THEN 860
  184 REM * CALCULATE RECORD FROM PART NUMBER
  190 LET R=N1-1000
-- 200
      READ #1,R;P$,N,P,0
  210 PRINT PS;
  220 GØ SUB 800
       IF AS="YES" THEN 260
  230
       PRINT "CHANGE TO";
  240
  250 INPUT P$
→ 260
       PRINT "PRICE = $";P;
  270 G0 SUB 800
       IF AS="YES" THEN 310
  280
       PRINT "CHANGE TO $";
  290
  300 INPUT P
-- 310 PRINT "OTY ="; 0;
      GOSUB 800
  320
  330 IF AS="YES" THEN 360
  340 PRINT "CHANGE TO";
       INPUT 0
  350
       REM * PRINT CORRECTED INFORMATION BACK TO THE FILE
  35.4
       PRINT #1.R; PS.N.P.Q
<del>---</del> 360
  370
       GØTØ 140
  380 PRINT "NO SUCH PART #"
       GØTØ 140
  390
  784
       REM # YES - NO SUBROUTINE
PRINT "YES OR NO"
  790
       PRINT " OK";
  800
       INPUT AS
  810
       IF AS="YES" THEN 850
  820
       IF AS="NO" THEN 850
  830
       G0T0 790
  840
  850 RETURN
  860 END
```

```
RUN
UPDATE
INPUT PART NUMBER ZERO TO QUIT
PART #?1001
FRAMIS OK?YES
PRICE = $ 2.3
                     OK?NØ
CHANGE TØ $?3.24
QTY = 1800
             OK?YES
PART #?1003
REGULATOR OK?YES
PRICE = $ 3.48
                     OK?YES
QTY = 900 ØK?NØ
CHANGE TØ?878
PART #?0
```

A run of READ1 confirms that the proper changes were indeed made in the file.

| 100 FILES I<br>RUN<br>READI | NV02   |        |          |
|-----------------------------|--------|--------|----------|
| PART NAME                   | PART # | PRICE  | YTITAAUQ |
| FRAMIS                      | 1001   | 3.24   | 1800     |
| WIDGET                      | 1002   | 4 • 4  | 1100     |
| REGULATOR                   | 1003   | 3 • 48 | 878      |
| SLICNEP                     | 1004   | • 0 4  | 9000     |
| FRASMAL ATOR                | 1005   | 18.49  | 800      |
| WHATSIT                     | 1006   | 10.98  | 3000     |
| LIFTER                      | 1007   | • 29   | 10000    |
| DROPPER                     | 1003   | •89    | 1500     |
| WHØSIT                      | 1009   | 16     | 12       |
| HØLDER                      | 1010   | • 47   | 1141     |
|                             |        |        |          |

# Summary of Sec. 4-2

We have seen that files are serial or random access depending only on the approach that a program takes in printing data to or reading data from the file. In order to treat a file as random access, the data must be placed so that its location within a record is known. Files are made available to a program with the FILES statement. We can detect the end of data or physical end of file with the IF END statement. Data is entered into a file with the PRINT # statement and read from a file with the READ # statement. In addition, we may determine the nature of the next information in the file through use of the TYP() function. A file pointer can be set to the beginning of record R of file F with READ #F,R without reading any data.

#### Problems for Sec. 4-2

- 1) Arrange 10 or more strings in alphabetical order by placing them one to a record in a file.
- 2) Write a program to print the contents of a file without knowing the structure of the file.
- 3) Write a program to copy the contents of one file into another. See if you can provide for copying 'holes' too.

4) Write a program to find the first empty record and determine the number of records in the file.

#### 4-3 General Electric Files

We actually are going to talk about external data files in this section, for in fact, programs are files too, and the data contained in DATA statements of a program are referred to as "internal files." The creation and use of data files can be a very complex business indeed. It is the purpose of this section to present some of the data file concepts and provide sufficient examples so that the reader will be able to use the power of files in future programming. (Our examples will of necessity handle only small amounts of data, as it would not be practical to print the entire contents of very large files.)

Files of two types are available to BASIC programs. They are called "ASCII files" and "BINARY files." ASCII files are also referred to as "Teletype files." This term reflects the fact that they may be created by typing data directly at the terminal using line numbers exactly as a program is typed at the terminal and that they may be listed directly to the terminal just as a program may be listed to the terminal. ASCII files may also be used by programs. Binary files may be used only under program control and may not be written to or read from the terminal.

## ASCII Files

Data may be typed directly to the terminal. All we have to do is create a file with the command NEW and begin typing our data as if it were a program. Each line must have a line number followed by a space followed by our data separated by commas. String and numeric data may be intermixed. Lines may be corrected by retyping them. Lines may be deleted by typing the line number followed by return. For an ASCII file to be usable at some later time, it must be saved by typing the command SAVE.

To demonstrate some of the uses of ASCII files, we have selected the names of the ten largest cities in the U.S. according to the 1960 census, their rank, and the percentage change in population from 1960 to 1970. File CITY has been created, the data typed to the terminal, and the file saved as described above. Since this is a listable file, we do so below.

We may now write programs to access the data in file CITY. Probably the simplest useful task we could perform would be to print the contents of the file under program control.

In order to make the file available to the program we use the FILES statement in line 100 of program READCITY. We may read data from the external file in a manner similar to that with which we read data from internal files. To read from the file named in the files statement, we use READ #1 followed by the list of variables we want. This is done in line 120 of the program. Every time such a statement is executed, a pointer is moved in the file so that the next read statement begins to read at the pointer. Initially, all file pointers are at the very beginning of the file. Note that we could use READ #0 to read from the data statement of the program. Since it is possible to attempt to read past the end of the data in the file, we use the IF MORE statement in line 140. As long as there is more data in the file, line 140 in our program will direct the computer to 120. When the data has all been read, line 140 will test false and control passes to line 150 in this case.

```
READCITY
  94
       REM * THIS PROGRAM READS THE CONTENTS OF FILE CITY
-- 100 FILES CITY
      PRINT "CITY"; TAB(20); "RANK"; TAB(25); "% GROWTH"
  110
 - 120
      READ #1, C$,R,G
 130
      PRINT C$; TAB(20); R; TAB(25); G
 -140
          IF MORE #1 THEN 120
  150
      END
 RUN
 READCITY
 CITY
                      RANK % GROWTH
 BALTIMORE MD
                          -4.7
 CHICAGØ ILL
                           -6.3
 CLEVELAND ØHIØ
                           -15.7
 DETROIT MICH
                           -10.6
 HOUSTON TEXAS
                       7
                            29.3
 LØS ANGELES CALIF
                       3
                            12.2
 NEW YORK N.Y.
                       1
                           -0.1
 PHILADELPHIA PA.
                       Δ
                           -3.8
 ST LOUIS MO
                       10
                          -19
 WASHINGTON D.C.
                           -4.8
```

It turns out that ASCII files are always sequential (serial) in format. This means that data must be accessed by reading from the first set of data step by step until the desired information is obtained. There is no way to begin at some intermediate point of the file. We can, however, add data to the end of the file with an append statement. APPEND #1 sets the file pointer to the end of data in the file and prepares the file for writing. For any data processing that requires tabulating information from each line of data, the sequential nature of ASCII files is ideal. Furthermore, ASCII files are very easy to edit from the keyboard, as described earlier. Having seen how to read an ASCII file, we will next see how to write to such a file with a program.

Let's write a program to transfer the data from file CITY to file CITY1, rearranging the data so that the order in which the cities appear in the new file will be according to decreasing percentage growth. One way to create the new file is with the NEW command. Once you have named the file, type 100, press the space bar, then the return key, and save the file. Now we have to provide access to two files in one program. This is done with the FILES statement. Up to eight files may be named in a FILES statement as long as they are separated

with semicolons. These files may then be designated by number according to the order in which they are named in the FILES statement, as shown by line 100 of program  $GR\phi WTH$ .

Since it is easy to sort numbers in a one-dimensional list, the strategy we will use here is to pass through the file once, entering the percentage growth for each city in the array A as we go. Thus A(1) becomes the percentage growth of

```
GROWTH
     REM * THIS PROGRAM ARRANGES TEN CITIES ACCORDING TO
         GROWTH RATE USING TWO SEQUENTIAL FILES
95
     REM
100 FILES CITY; CITY!
110 DIM A(10), B(10)
112
    REM * ENTER GROWTH DATA IN ARRAY A AND ORIGINAL
114
    REM POSITION IN FILE CITY IN ARRAY B
115
    FOR I = 1 TO 10
120
130
       READ #1, NS,R,G
     LET A(I) = G
140
150
       LET B(I) = I
160
    NEXT I
162
164
    REM * BEGINNING OF SORT
170
    LET N = 10
    LET S = 0
180
    FØR I = 1 TØ N-1
IF A(I) >= A(I+1) THEN 280
190
500
202
    REM * EXCHANGE OUT OF ORDER DATA
204
    REM AND TURN SWITCH ON
205
210
      LET S1 = A(I)
550
       LET A(I) = A(I+1)
       LET A(I+1) = SI
230
240
       LET S1 = B(I)
       LET B(I) = B(I+1)
250
       LET 8(I+1) = SI
260
       LET S = 1
270
280 NEXT I
282
290 LET N = N-1
        IF S = 1 THEN 180
300
302
    REM * GROWTH RATE IS IN ORDER NOW PRINT
304
    REM DATA IN FILE CITY1
305
310 SCRATCH #2
320 FØR I = 1 TØ 10
330
       RESTORE #1
       FOR J = 1 TO B(1)
340
           READ #1, NS,R,G
350
360
       NEXT J
362
        WRITE #2, N$,R,G
PRINT N$
370
380
    NEXT I
390
392
400
     END
RUN
GROWTH
HOUSTON TEXAS
LØS ANGELES CALIF
NEW YORK N.Y.
PHILADELPHIA PA.
BALTIMORE MD
WASHINGTON D.C.
CHICAGØ ILL
DETROIT MICH
CLEVELAND OHIO
ST LOUIS MO
```

the first city in the file and A(10) becomes the percentage growth of the tenth city in the file. Entering is done in lines 120 through 160. We store the original position in a B array.

Now that the list is in order we know that whatever city has the percentage growth stored in A(1) goes first in our second file and whatever city has the growth rate in A(I) goes in the Ith position of file CITY1. However, in order to prepare a file for printing, we must use the SCRATCH statement. That statement erases whatever is in a file, prepares it for write mode, and sets the file pointer at the beginning of the file. Since we want to write to the second file in our FILES statement, we use SCRATCH #2 in line 310. The next complication we face is that the pointer in file CITY is now at the end of the data. We move the pointer to the beginning of the file and keep the file in read mode with the RESTØRE statement in line 330. RESTØRE #N acts on the Nth file in the FILES statement. The RESTØRE statement must be executed every time we want to reread the file. The actual entry of the data to file CITY1 takes place in line 370 of program GRØWTH when we have found the city with the growth rate in the Ith location of the arranged list A by reading to that city's position in the original file as determined by list B.

We now run READCITY on file CITY1 to confirm the contents of that file.

| 100 41652 01141   |      |          |
|-------------------|------|----------|
| RUN               |      |          |
| READCITY          |      |          |
| CITY              | RANK | % GROWTH |
| HOUSTON TEXAS     | 7    | 29.3     |
| LØS ANGELES CALIF | 3    | 12.2     |
| NEW YORK N.Y.     | 1    | -0.1     |
| PHILADELPHIA PA.  | 4    | -3.8     |
| BALTIMORE MD      | 6    | -4.7     |
| WASHINGTON D.C.   | 9    | -4.8     |
| CHICAGO ILL       | 5    | -6.3     |
| DETRØIT MICH      | 5    | -10.6    |
| CLEVELAND OHIO    | 8    | -15.7    |
| ST LOUIS MO       | 10   | -19      |
|                   |      |          |

# Binary Files

Binary files are available only under program control. Whereas ASCII files may be only sequential, binary files may be either sequential or random access. Random access means that any data item may be accessed without reading all data from the beginning of the file up to that data item and that data may be written to any point in the file directly in the same manner.

An ASCII file or a binary file may be used as a sequential file as determined by the first WRITE statement which applies to that file after the file is made available for write mode by the SCRATCH statement. To work with a file as a sequential binary file simply use a colon (:) where the pound sign (#) occurs in the READ, RESTØRE, SCRATCH, IF MØRE and WRITE statements. The distinction between ASCII and binary files, regardless of sequentiality or randomness, has to do with the code that is used to store the data on some device peripheral to the computer, and does not generally effect the programmer at the level of programming in BASIC.

## Random Access Files

Thus far we have not been concerned with how much space our data has occupied because our files simply expanded to fit whatever we had written to the file. We are not likely to exceed the maximum space available in a single file for some time. However, since random access files must have a structure allowing data to be placed in physical locations that will be known to us for future access, space requirements for data storage become important. The structure of a random access file is a little like that of a two-dimensional array except that in a file we may intermix numeric and string data. In some situations, however, we may choose to place numeric data in one file or group of files and related string data in another file or group of files, with a scheme for relating the two structures.

Random access files may be segmented into components called "records." We may assign the amount of storage space in each record at the time we create the file. Storage space is measured in computer words, and storage is required for data as follows:

1 word per numeric

1 word per 4 string characters or fraction thereof

1 word for control per string for internal computer purposes.

For example we could store 120 numerics in any file in which the product of the number of records and the number of words per record is at least 120. Since we are going to have control over the space in each record, we generally select some record size that is appropriate to our data structure, just as we usually dimension an array to fit the structure of the data we intend to store in it.

Let us begin by writing 10 random numbers to a random access file, proving that the numbers are really there and then arranging them in increasing order by using the random accessibility of the file to do the sorting.

First, the file must exist. The system command CREATE is required here. Let's provide two records which will handle 10 words each. Then our ten numbers will all fit on the first record. The executive command,

## CRE RAND, (RAN(10,2))

accomplishes this. The numbers in parentheses specify the number of words per record first and the number of records second. Program RNDENTER is identical to a program that would write ten random numbers to an ASCII file except that a colon appears where a pound sign would appear in a program writing to a sequential file and no SCRATCH statement is required.

```
RNDENTER

94  REM * THIS PROGRAM WRITES 10 RANDOM NUMBERS
95  REM TO A RANDOM ACCESS FILE
100  FILES RAND
110  RANDOMIZE
120  FOR I = 1 TO 10
130  WRITE :1, RND
140  NEXT I
142
150  END
RND
RNDENTER
```

Note that the program generates no printed output. (It is not good general procedure to write programs with no visible output except to prove, as with program RNDENTER, that the program did in fact do something invisible.) We now need a program to read file RAND. Program RNDREAD does that.

```
RNDREAD
      REM * THIS PROGRAM READS NUMERICS FROM A REM RANDOM ACCESS FILE SEQUENTIALLY
 94
 95
 100 FILES RAND
      READ :1, A
IF A=0 THEN 150
 110
- 120
 130
      PRINT A
 140
      GØT0 110
 150
      END
 RUN
 RNDRSAD
  0.220289
  0.257207
  0.705748
  0.717468
  0.143835
  0.349935
  0.704994
  0.649726
  0.974231
  0.852828
```

RNDREAD is like a program to read a sequential file, with one important difference. Look at line 120. Since we didn't put any zero values into the file, why test for zero? We would have used the IF  $M\emptyset RE$  statement in an ASCII file. IF MØRE does not determine an end of data condition in a random access file effectively because the CREATE command filled the file with binary zeros. The SCRATCH statement will have the same effect. Thus we are able to terminate our little program by reading values of A until we come up with zero. IF  $M\emptyset RE$  does determine whether or not we have reached the physical end of the file, however. Thus in our file RAND, if we had read 20 numerics, then IF MØRE: 1 would test false. A companion statement IF END: 1 would test true in this condition. We should be beginning to see, and will soon see even more clearly, that the total structure of the data storage is the complete responsibility of the programmer. We must know when we have reached the end of our real data. We may want to count the number of data items or we may want to place dummy data at the end of the file just as we often do for data statements of a program.

Now let us arrange the numbers of file RAND in ascending order by operating on the data within the file as we go. The basic sorting scheme is exactly like that we just used for sorting cities and that we will use again in chapter eleven. The only difference is that we are now comparing numbers that have addresses in a file instead of in a list. In order to set the file pointer to the proper location of our file, we use the SETW statement. SETW N T $\phi$  X moves the pointer in file N to the beginning of the Xth word of storage counting from the beginning of the file. This operation is totally independent of the number of words per record. Thus if a file has nine words per record, then SETW N T $\phi$  12 moves the pointer to the beginning of the third word on the second record of

file number N. Once the pointer is set, the next read or write statement begins reading or writing from that point. In our problem we will be reading a single numeric value.

In program RNDS $\phi$ RT, line 130 sets the pointer to the Ith word of the file so that the Ith number may be read by line 140. Line 150 sets the pointer to the I+1st word so that the I+1st number may be read out. If they are in the desired order, line 170 directs the computer to line 230, which causes the next pair of adjacent numbers to be tested. Should the test in line 170 fail lines 180

```
RNDSORT
       REM * THIS PROGRAM ARRANGES 10 NUMBERS IN
  94
       REM ORDER IN A RANDOM ACCESS FILE
  95
  100 FILES RAND
  110 LET S = 0
120 FOR I = 1 TO 9
-130
          SETW 1 TO I
- 140
          READ : 1. A
→ 150
          SETW 1 TO I+1
 160
          READ : 1. B
             IF A <= 8 THEN 230
 -170
 172
  174
          REM * EXCHANGE OUT OF ORDER DATA
 - 180
          SETW 1 TO I
          WRITE : 1. B
 190
 200
          SETW 1 TO I+1
 -210
          WRITE : 1. A
 220
          LET S = 1
 -230 NEXT I
 232
       IF S = 1 THEN 110
PRINT "DONE"
+240
 250
 260
       END
 RUN
 RNDSØRT
 DØNE
```

through 210, exchange the positions that the two values occupied in the file. Then a switch is turned on by setting S equal to one. When the computer has passed through the list, we test in line 240 to see if any exchanges have been made. If there have been no exchanges, then the numbers are in order and we have the computer print "D $\phi$ NE". In the present situation, we rerun RNDREAD to verify that the program did in fact sort the file.

```
RUN
RNDREAD
0.143835
0.220289
0.257207
0.349935
0.649726
0.704994
0.705748
0.717468
0.852828
```

For our final example, let us take the data in the ASCII file CITY and enter it into a random access file. To do this we must plan very carefully, as we

must be able to specify the position of all data in the file exactly. It is usually convenient to group the data that belongs together on a single record. In our problem we have three variables: the city name, its rank, and its percentage growth. The rank and percentage growth are both numerics and so occupy one word of computer storage each. The city names are strings of different lengths and so require different amounts of space. A reasonable approach is to allow space for the largest string and dimension our file accordingly. Clearly  $L\Phi$ S ANGELES CALIF is the longest string we use. The string has four groups of four characters and one character left over. That requires five words. We must add one word for internal control plus the two for the numerics. That puts the required space at eight words of storage per city. So we must CREATE a file with at least 10 records at eight words per record. We do this with

## CRE CITY2,(RAN(8,10))

In order to set the file pointer to the beginning of the Ith record where the records contain eight words each, all we have to do is point 8(I-1)+1 words from the beginning of the file, as shown in line 140 of program XFER. This program transfers the data from ASCII file CITY to random access file CITY2. Notice that there is no difficulty whatever in accessing two different kinds of file with the same program.

```
XFER
94
    REM * THIS PROGRAM COPIES DATA FROM ASCII FILE CITY
    REM TO RANDOM ACCESS FILE CITY2
95
100 FILES CITY; CITY2
110
    LET I = 0
120 READ #1, CS,R,G
130 LET I = I+1
132
134 REM * THE FORMULA IN LINE 140 SETS THE
135 REM POINTER TO THE ITH RECORD IN THE FILE
    SETW 2 TØ 8*(I-1)+1
140
150 WRITE :2, CS,R,G
       IF MORE #1 THEN 120
160
    PRINT I; "ENTRIES"
170
180
    END
RUN
XFER
 10 ENTRIES
```

Our final task is to arrange the cities according to rank without using a second file and without using the technique of saving the numbers to be sorted in an array. This program, program RANK, is very similar to RNDS $\phi$ RT except that the pointer is a formula and the read and write statements work with three variables instead of one.

```
RANK

94 REM * THIS PRØGRAM ORDERS CITIES ACCORDING TO RANK
95 REM IN A RANDOM ACCESS FILE
100 FILES CITY2
110 LET NI = 0
120 LET N = 10
130 LET S = 0
140 FØR I = 1 TØ N-1
```

```
SETW 1 TØ 8*(I-1)+1
150
        READ : 1, CS,R,G
160
170
        SETW 1 TØ 8*I+1
        READ :1, C15,R1,G1
180
            IF R <= R1 THEN 250
190
192
194
       REM * EXCHANGE OUT OF ORDER DATA
500
        SETW 1 TO 8*(I-1)+1
        WRITE :1, C15,R1,G1
210
220
        SETW 1 TO 8*I+1
230
        WRITE :1, CS,R,G
240
        LET S = 1
250 NEXT I
252
260 LET N = N-1
270 LET N1 = N1+1
280
        IF S = 1 THEN 130
282
290 PRINT
    PRINT "CITIES ORDERED ON RANK"
PRINT "IN"; N1; "PASSES"
300
310
     END
RUN
RANK
CITIES ØRDERED ON RANK
IN 7 PASSES
```

Program REDCITY2 tabulates the results directly from the file.

```
REDCITY2
      REM * THIS PROGRAM READS THE CONTENTS OF FILE CITY2
      REM AND PRINTS TO THE TERMINAL
 100 FILES CITY2
      PRINT "CITY"; TAB(20); "RANK"; TAB(25); "% GROWTH"
 110
 120 FØR I = 1 TØ 10
 130
          SETW 1 TØ 8*(I-1)+1
          READ : 1. CS.R.G
-- 140
--- 150
         PRINT CS; TAB(20); R; TAB(26); G
      NEXT I
 160
 162
 170
      END
 RUN
 REDCITY2
                      RANK % GROWTH
 CITY
 NEW YORK N.Y.
                      1 -0-1
 CHICAGØ ILL
                            -6.3
                       2
 LØS ANGELES CALIF
                      3
4
                            12.2
 PHILADELPHIA PA.
                            -3.8
                      5
 DETRØIT MICH
                            -10.6
 BALTIMØRE MD
                            -4.7
 HØUSTØN TEXAS
                            29.3
 HØUSTØN TEXAS
CLEVELAND ØHIØ
WASHINGTØN D.C.
                            -15.7
                      8
                            -4.8
                            -19
 ST LØUIS MØ
```

# Summary of Sec. 4-3

ASCII and binary files are used to store and to arrange both string and numeric data. We have seen that ASCII files can be accessed either by the terminal directly or by a program, whereas binary files are available only under program control. Binary files may be either sequential or random access, but ASCII files are only sequential. In order to make any file available to a program, the

FILES statement must name the files we want, separated by semicolons. The files are numbered according to the order of appearance in the files statement. As many as eight files may be accessed by a single program simultaneously. (Provision may be made for substituting new files for previously named old ones within a program.)

The following special statements apply to ASCII files: RESTØRE #N moves the file pointer to the beginning of file N and places the file in read mode. READ #N,A,B,C\$ reads values from file N for variables A,B,C\$. WRITE #N,X,B\$ enters the contents of X and B\$ into file N. SCRATCH #N erases the contents of file N and places the file in write mode at its beginning. IF MØRE #N tests for more data in file N. IF END #N tests for the end of data condition in file N. All the above statements can be used for binary files by changing the pound sign (#) to a colon (:). There are some differences when it comes to random access files, however. SCRATCH :N, when applied to a random file, fills the file with zeros, sets the pointer to the beginning of the file, and places it in write mode. IF END and IF MØRE work only at the physical end of the file. In addition, there is a special statement for random files to place the file pointer under program control. SETW N TØ I may be used to place the file pointer of file N at the beginning of the Ith word of the file.

#### Problems for Sec. 4-3

- 1) Enter student names followed by a fixed number of test scores in a sequential file. Arrange the students by test average and write the results to another file.
- 2) Suppose you have entered a large number of names in a file, last name first, one name to a string for alphabetizing. Write a program to print a list of names in alphabetical order but first name first.
- 3) Write a program to read numerics from two ordered files and print a single merged and ordered list to the terminal.
- 4) Write a program that will insert an item of data into an already ordered random access file so that the new item is in order.
- 5) You have a random access file with unknown contents. Write a program to determine the number of words the file contains.
- 6) Write a program to enter inventory data into a random access file. The data should include, for every part, a number, name, price, quantity, low order point, and reorder quantity. The low order point is the quantity that should trigger reordering for that part, and the reorder quantity is the quantity that should be ordered. Write a program or programs to do any or all of the following: modify quantity and or price according to business activity, edit the low order point and reorder quantities, process the file to find the total dollar value of the inventory, and process the file to determine what parts must be reordered and the quantities to be ordered.

# PLOTTING ON THE TERMINAL

#### 5-1 Introduction

There are many sophisticated mechanical plotters on the market offered by a number of manufacturers. These generally use a pen which draws very short (0.01 inch is typical) straight line segments as determined by a program. The smaller the segments, the smoother the curve. However, this chapter is limited to using the terminal itself as a plotter. There are a number of disadvantages to using the terminal for this purpose. Plotting is slow and may therefore be expensive. The graphs we get are imprecise, and we can't easily use graph paper. Be all that as it may, if we have no other plotter, we can get very helpful plots from the terminal. The terminal has the advantage that it is conveniently available.

# 5-2 Plotting a Function

We can greatly simplify plotting by choosing a function, since functions have the feature that for any value of x there is exactly one value for y. So, if we think of y as increasing across the page from left to right and x increasing down the page from top to bottom, when the plot is completed, we just turn the paper ninety degrees counterclockwise to obtain the conventional orientation.

To plot a single function, we first locate the origin and then concern ourselves with having the terminal mark the axes. Let's plot  $y = \frac{1}{2} x + 3$ . The basic plotting is very simple. All that is necessary is to use the TAB(N) printing function to get the printing mechanism out to the proper location on the paper and then print some symbol. Since the TAB function begins counting at the left margin and we would like to have negative values available for y on the graph, it will be necessary to move the x axis to the right. How far we move it

will depend on the particular graph. We simply add some constant value to all TAB arguments. This value is set in line 110 of program GRAPH1. If your version of BASIC does not have a TAB(N) function, then you may put PRINT" "; in a loop to get the printing head to the proper spot on the paper. We print a plus sign to indicate the origin. We will therefore have to check to see if we are at x=0 and then determine whether the point of the graph is to the left or the right of zero.

```
GRAPH1
      REM * THIS IS A RUDIMENTARY PLOTTING PROGRAM
 100
      DEF FNF(X) = .5*X+3
 102
 104
      REM * K MOVES THE ØRIGIN K SPACES TO THE RIGHT
+ 110
      LET K = 10
 120
      FØR X = -7 TØ 7
 130
         LET Y = FNF(X)
+ 140
             IF X <> 0 THEN 210
             IF Y < -.5 THEN 180
 150
 152
         REM * X = 0 AND Y >= -.5 SØ PRINT ØRIGIN
PRINT TAB(K); "+";
 154
 160
             IF Y < .5 THEN 220
 170
         PRINT TABC INT(Y+.5)+K ); "*";
 180
            IF Y < -.5 THEN 160
 190
         GØTØ 220
200
                 TAB( INT(Y+.5)+K ); "*";
         PRINT
210
 220
         PRINT
230
      NEXT X
232
 240
      END
 RUN
 GRAPH1
```

GRAPH1 seems to do the job we set out to do. (Be sure to turn the results ninety degrees counterclockwise to view the graph.) However, there are many improvements that we can make. Let's put in a set of axes. Since the y-axis is the line where x = 0, the y-axis provision can go after line 140 of GRAPH1. In order to put the x-axis in, we have to check for each value of x whether or not the plotted point is below the x-axis. This is done in line 200 of GRAPH2. As long as we are working on the program, let's add a little flexibility by putting the position of the x-axis and the domain in as data. See lines 110, 130, and 600 of GRAPH2. Note that a distinguishing character is used to mark every tenth location in each of the axes. This greatly improves the readability of the plot. Lines 210 and 420 determine where those marks are printed.

```
GRAPH2
```

```
REM * THIS PROGRAM PLOTS GRAPHS OF FUNCTIONS
   94
        REM WITH AXES PRINTED
   100
        DEF FNF(X) = .5*X+3
   102
        REM * THE VALUE OF N DETERMINES LENGTH OF Y-AXIS
   104
        REM K MOVES THE GRAPH K SPACES TO THE RIGHT REM F IS THE FIRST VALUE OF X FOR THE PLOT
   105
   106
   107
        REM L IS THE LAST VALUE OF X FOR THE PLOT
        READ No Ko Fo L
  - 110
   120
        PRINT TAB(K-1); "X="; F
        FØR X = F TØ L
-130
           LET Y = FNF(X)
   140
   150
               IF X <> 0 THEN 200
   152
   154
            REM * X = 0 SØ THIS IS THE Y-AXIS
            FØR YI = -K TØ N-K
   160
   170
               GØ SUB 400
   180
            NEXT YI
            GØTØ 280
   190
   192
   194
            REM * POINTS OFF Y-AXIS ARE PRINTED
           REM IN LINES 200 TØ 280

IF Y < .5 THEN 260

IF X/10 <> INT(X/10) THEN 240
  195
 ~ 200
 +210
  220
           PRINT TAB(K); "-";
  230
            GØTØ 250
           PRINT TAB(K); "!";
  240
           IF Y < .5 THEN 280
PRINT TAB( INI(Y+.5)+K ); "*";
IF Y < -.5 THEN 210
  250
  260
  270
           PRINT
  280
       NEXT X
  290
  292
  300
        PRINT TAB(K-1); "X ="; L
  310
        STØP
  392
  394 REM * SUBROUTINE TO PRINT Y-AXIS
           IF Y1 = 0 THEN 490
  400
           IF ABS(Y-Y1) < .5 THEN 470
  410
           IF Y1/10 = INT(Y1/10) THEN 450
 + 420
       PRINT
  430
  440
       RETURN
                "1";
  450
       PRINT
  460
        RETURN
  470
       PRINT
  480
       RETURN
  490
       PRINT
  500
       RETURN
  502
  594
        REM
-- 600
       DATA 25, 10, -11, 12
  610 END
```

Three runs of GRAPH2 show a variety of results. For the first RUN of GRAPH2, we present the line  $y=\frac{1}{2}$  x+3 from program GRAPH1. For the second RUN, we re-define the function in line 100 to plot the parabola,  $y=-.4x^2-x+8$ . For the third RUN, we again re-define the function in line 100 to get the graph of  $y=.2x^3-2x^2+x+5$ .

We have in GRAPH2 a satisfactory basic graphing program, and the results may be enhanced by sketching a curve through the plotted points by hand. We can still improve on the program itself, though. Consider what the sine graph would look like using the program as it stands. The graph would show us little. Clearly we could do better by putting a scale capability in for both axes. This is left as an exercise.



# Summary of Sec. 5-2

We have developed a program to use the terminal as a plotter. This appears to give us rough but satisfactory graphs for a variety of functions.

# Problems for Sec. 5-2

- 1) Modify GRAPH2 to allow a change of scale. Allow for two different scales for the two axes. Use the new program to plot any of the following:
  - a)  $y = \sin x$
  - b)  $y = \cos x$

- c) y = x INT(x)
- d) y = x + INT(x)
- e)  $y = \sqrt{x}$
- 2) You may have noticed that the mechanics of your terminal are such that the vertical and horizontal scales are different. On many terminals there are 10 characters per inch on the horizontal line and six lines per inch on the vertical page. Use the scaling ability of problem 1 to provide equal scale for both axes relative to the graph.
- 3) Modify GRAPH2 to handle more than one function.

# 5-3 Plotting Using Data Stored in an Array

There are some other things we can do with plotting. For instance, we can plot a graph that does not have to be rotated to achieve standard orientation. And we might want to plot some nonfunction relation.

One way to achieve such a capability is to set up a computer array in such a way that each storage location of the array corresponds to a coordinate point of the graph. We will have some adjustment problems, however, because for an array the "starting point" is the upper left corner and for a graph the "starting point" is generally nearer the center of things. This difficulty can be handled by shifting the "starting point" of the graph to the left and up. Also for an array, row numbers increase from top to bottom, and the reverse is true for a graph. This problem can be handled by putting the graph into the array "upside down".

We can scan through the array inserting numbers which will later be interpreted to print specific characters. Let us make the graph cover an odd number of coordinate points in each direction and make the middle element of the array correspond to the origin of the graph. We can begin by setting every entry of the array to zero, to be ignored when the printing takes place. Then we use a '1' to signify the origin, a '2' to signify the horizontal axis, a '3' to signify the vertical axis, and a '4' to signify the plotted point. This scheme will allow more relations to be handled by using numbers greater than 4 for the additional graphs.

All these features are incorporated in program GRAPH3. The axes are shifted, and the y-axis is turned upside down by line 230. The y-axis is entered in line 160. The x-axis is entered in line 170. The origin is entered at line 190. The use of the variable L1 is to save program storage. It takes less computer storage to set L1 equal to L + 1 and then use L1 (rather than L + 1) as long as we need this value several times, and moreover it saves typing. On some systems, storage will not be a limitation for a program like this, but if it is, then such a procedure is worth using. Line 220 tests to see if the coordinate position of the array is on the graph. This depends on our choice for the value of t. If the value of t is .5, then we get a graph just like that of program GRAPH2. However, by increasing the value of t, we can have more points plotted. This tends to "fill in" the graph. Lines 110 and all other references to D are employed to limit the actual use to only that part of the array that seems necessary for the graph requested. This will save printing time. As written, the program causes the printing mechanism to scan the entire line. Considerable print-

```
GRAPH3
       REM * GRAPH FROM DATA ENTERED IN AN ARRAY
  94
       DIM A(48,48)
  100
  102
       REM * D SPECIFIES WIDTH AND HEIGHT OF GRAPH
  104
       REM L IS THE NUMBER OF SPACES EACH SIDE OF ZERO
  105
            T DETERMINES GRAPH RESOLUTION
  106
       REM
       REM LI IS USED TO SAVE TYPING L+1 REPEATEDLY
  107
       LET D = 21
  110
       LET L = (D-1)/2
  120
       LET T = .4
  130
       LET L1 = L+1
  140
  142
       REM * ENTER AXES AND ORIGIN IN THE ARRAY
  144
  150
       FOR I = 1 TO D
 + 160
          LET A(LI,I) = 3
→ 170
          LET A(I,L1) = 2
       NEXT I
  180
→ 190
       LET A(L1,L1) = 1
  192
       REM * NOW INSERT 4'S TO DESIGNATE PLOTTED POINTS
  194
       FOR Y = -L TO L
  200
  210
          FØR X = -L TØ L
             IF ABS( .5*X+3-Y ) > T THEN 300
LET A( X+L1 , D-(Y+L) ) = 4
 + 550
→ 230
          NEXT X
  300
  310 NEXT Y
  312
       REM * THE VALUES ARE STORED NOW PRINT
  314
  320
       PRINT TAB(L1);
  330 FØR Y = 1 TØ D
          FØR X = 1 TØ D
  340
             PRINT TAB(X);
  350
                 IF A(X,Y) = 0 THEN 380
  360
             GØSUB 500
  370
          NEXT X
  380
          PRINT
  390
  400 NEXT Y
       PRINT TAB(L); "-Y"
  410
  420
       STØP
  492
       REM * PRINTING SUBROUTINE
  494
          IF A(X,Y) = 2 THEN 550
  500
           IF A(X,Y) = 3 THEN 580
  510
           IF A(X,Y) = 4 THEN 610
  520
  530 PRINT "+";
  540 RETURN
  550 IF (X-L1)/10 = INT( (X-L1)/10 ) THEN 590
560 PRINT "-";
  570 RETURN
       IF (Y-L1)/10 = INT( (Y-L1)/10 ) THEN 560 PRINT "!";
  580
  590
  600
        RETURN
        PRINT
  610
  620
       RETURN
  692
  700
        END
```

ing time could be saved by sending the printing head back to the beginning of the new line as soon as the last point is printed. This is left as an exercise.

Three runs of GRAPH3 are presented. The first RUN is the straight line of the first RUN of program GRAPH2; the second RUN is the parabola of the second RUN of GRAPH2; and the third RUN is a circle with radius 10 and center at the point (2,-3). Note that as with the graphs of Sec. 5-2, these graphs are distorted by the fact that the space occupied by a single character on the printed page is higher than it is wide.







## Summary of Sec. 5-3

GRAPH3 gives us the ability to deal with many kinds of graphs fairly easily. The graph can be oriented in the conventional manner, and we can see that the ability to graph more than one relation on one set of axes is a direct extension of the current program.

#### Problems for Sec. 5-3

- 1) Modify GRAPH3 to stop printing when the last character of the current line has been printed.
- 2) Modify GRAPH3 to permit two relations to be plotted. Use your program to find the approximate points of intersection of  $y = 2x^2 + x 1$  and y = 3x + 4.
- 3) Use the ideas of GRAPH3 to write your name. That is, store points to be printed in an array. If you have a long name, maybe you'd rather use the word BASIC. This exercise may be a little tedious, but fun.
- 4) Rewrite GRAPH3 so that the origin does not have to be the center point of the array.
- 5) We get an interesting effect if instead of plotting points, we plot spaces. That is, where there is no point on the graph, print an asterisk, and where there is a point, leave the location on the paper blank. Try this.
- 6) Modify GRAPH3 to allow different scales for the two axes. Then plot a large circle to see how well you can do.
- 7) On some systems, the array size allowed is limited enough to make some plots not practical if we use the methods of this section. One way to program around this is to notice that there is a tremendous amount of wasted storage in each element of the array itself. Note that for up to six relations GRAPH3 requires only a one digit number to store the information required for graphing. Since most computers provide at least six digits, by using each of those digits we can increase the storage by a factor of six. Write a graphing program to use this additional storage space.
- 8) One method for obtaining larger graphs is described in problem 7. Another procedure would be simply to analyze the graph one line at a time. Try this.

# 6 AREA UNDER A CURVE

#### 6-1 Introduction

Let us consider a moving object. At constant speed, the distance traveled is simply its speed multiplied by time. If an object travels 15 feet per second for 5 seconds, it will travel 75 feet. However, it is often true that the speed of an object is not constant. Suppose the graph of Fig. 6-1 represents an object in nonconstant motion. The distance the object has traveled at time t is the area under the graph from the origin to t. For Fig. 6-1 that area is a convenient geometric shape. We get Area =  $A = \frac{1}{2}*60*3 = 90$  ft.



Figure 6-1

Now suppose a graph does not provide such a convenient geometric shape, as in Fig. 6-2.



Figure 6-2

To find the total area of such a shape, we can subdivide the area into many smaller segments, find the area of each segment, and sum up the individual areas. All we have to do is decide what kind of smaller segments to use and how large they should be. Consider Fig. 6-3.



Figure 6-3 subdivides the area into rectangles so constructed that each one falls completely within the desired area. Thus we know that the sum of these areas will be less than the actual area. We could alternatively place the rectangles as shown in Fig. 6-4. But that would have the opposite effect on the accuracy. Another possibility is to construct the rectangles so that the midpoint of the top



Figure 6-4

side is a point of the curve, as shown in Fig. 6-5. Now we have some area included by the rectangles that is not included by the actual curve and some area included by the curve but excluded by the rectangles. Thus we expect some cancelling-out effect.



Figure 6-5

Let us begin by writing a program to sum up the area shown in Fig. 6-5. In order to test the program, we can make our first function contain a known area. We choose a semicircle derived from the circle  $(x-5)^2+y^2=25$ . This circle has a radius of 5 and its center at the point (5,0), as shown in Fig. 6-6A, and so the area we expect is  $\frac{1}{2} \pi r^2$  or  $(\pi^*5^2)/2$ .



The curve we are considering is in fact a function from 0 to 10 for x. Solving  $(x - 5)^2 + y^2 = 25$  for  $y^2$ , we get

$$y^2 = 25 - (x - 5)^2$$

and

$$y = \sqrt{25 - (x - 5)^2}$$

For the shaded area of Fig. 6-6A, the function is

$$y = f(x) = \sqrt{25 - (x - 5)^2}$$

Thus we can easily define a computer function as follows:

100 DEF FNS(X) = 
$$SQR(25 - (X-5)\uparrow 2)$$
)

For this problem we can begin by taking 10 intervals one unit wide. Then the midpoint of an interval will be x-.5, and the height of the rectangle will be FNS(X-.5). See Fig. 6-6B and program AREA1.



Figure 6-6B

```
AREA1
 94
       REM * THIS PROGRAM COMPARES THE AREA OF A
      REM SEMICIRCLE FOUND BY FORMULA AND BY REM SUMMING AREAS OF RECTANGLES.

DEF FNS(X) = SOR( 25-(X-5)+2 )
 95
 96
 100
      LET A = 3.14159*25*.5
PRINT "AREA OF SEMICIRCLE BY FORMULA ="; A
 110
 120
 130
      LET A = 0
132
134
      REM * THE LENGTH OF THE BASE IS B
140
      LET B = 1
150
      FØR X = 1 TØ 10
152
          REM * THE HEIGHT IS H
154
160
          LET H = FNS(X-.5)
162
164
          REM * THE AREA OF CURRENT RECTANGLE IS B*H
170
         LET A = A + B*H
180
      NEXT X
182
190
      PRINT TAB(3); "AREA BY SUMMING RECTANGLES ="; A
200
      END
RUN
AREA I
AREA OF SEMICIRCLE BY FORMULA = 39.2699
   AREA BY SUMMING RECTANGLES = 39.6499
```

The relative error is about .38 in 39 or about 1%. We can improve on this by taking smaller intervals within the accuracy of the computer.

Let's rewrite program AREA1 to allow varying widths of intervals. We can take the b=1 out of the x loop and allow the value of b to be read from data.

Now since the width of interval will change according to the value of b, the midpoint of the interval will be x - b/2, and the value of x must be successively incremented by b, the interval width. While we are at it, let us allow the value of x to have a variable range read as data. This is done in lines 140 and 160 of AREA2.

```
AREA2
  94
       REM * THIS PROGRAM SUMS RECTANGLES TO
       REM APPRØXIMATE AN AREA ALLØWING THE REM WIDTH OF THE RECTANGLES TO BE READ REM AS DATA.
  95
  96
  97
       PRINT "FROM", "INTERVAL", "TO", "AREA"
  100
  110
       READ B
  120
  130
           IF B = 0 THEN 250
-- 140
       READ F.T
  150 LET A = 0
       FØR X = F+B TØ T STEP B
+ 160
           LET H = FNS( X-B/2 )
  170
  180
           LET A = A + B#H
  190 NEXT X
  192
  200
       PRINT F. B. T. A
  210
       GØTØ 120
  212
  214
       REM
              1,0,10,
                          .5.0.10
  220
       DATA
       DATA .1,0,10,
                        .01.0.10
  230
       DATA 0
  240
  250
       END
  RUN
  ARE A2
                                    ΤØ
                                                     AREA
  FRØM
                   INTERVAL
                                     10
                                                      39.6499
   0
                    1
                                                      39.4051
   0
                    ۰5
                                     10
                                                      39.2115
                    • 1
                                     10
   0
                    .01
                                     10
                                                      39.2674
   O
```

The results of AREA2 do indeed give successively more accurate approximations of the area.

Now we run AREA2 for the function,

$$f(x) = 2x^3 - 2x^2 + x + 5$$

from -3 to 11 for x. For a graph of this function, see Sec. 5.2.

```
100 DEF FNS(X) = 2*X+3 - 2*X+2 + X + 5
220
    DATA 1,-3,11,
                    .5,-3,11
230
    DATA .05,-3,11
RUN
AREA2
FRAM
               INTERVAL
                              TØ
                                             AREA
-3
                1
                               11
                                              6475
                • 5
                               11
                                               6494.25
- 3
-3
                .05
                                              6500.62
```

## Summary of Chapter 6

We have developed a routine that approximates the area under a curve for functions. The method used is to sum up areas of rectangles whose heights are determined by the midpoint of the intervals. (There are several other methods, which are left as exercises.)

## **Problems for Chapter 6**

- 1) Find the area enclosed by y = x + 3 and  $y = x^2 8x + 17$ .
- 2) Find the area enclosed by  $y = -3x^2 + 4x + 2$  and the line y = -3.
- 3) Another procedure for finding area under a curve is called the trapezoid method. This is done by inscribing trapezoids instead of rectangles under the curve. Write a program to use the trapezoid method.
- 4) Write a program that begins with a specified width and automatically makes the subdivisions smaller until the new approximation does not differ from the old approximation by more than some percentage error, say .01%.
- 5) Write a program to approximate area by making the first interval the whole domain and each subsequent interval one half the previous interval. Have the computer stop when the percentage change is less than, say, .01%.
- 6) A method always as accurate and usually more accurate than the trapezoid method is Simpson's rule. Simpson's rule requires an even number of intervals and is given by the following (see Fig. 6-7):

$$A = \frac{W}{3} (f_1 + 4f_2 + 2f_3 + 4f_4 + \cdots + 2f_{n-2} + 4f_{n-1} + f_n)$$

Write a program to use Simpson's rule.



Figure 6-7

7) Use the ideas of this section to find the length of the graphed line of a continuous function instead of the area.

# 7 COORDINATE GEOMETRY

#### 7-1 Points in a Plane

In the Cartesian coordinate system, points in a plane are named by ordered pairs of real numbers. A point is labeled p(x,y), where the first number is called the x-coordinate and the second is called the y-coordinate. As we consider the ordered pairs of numbers associated with a point or set of points, many geometric relationships unfold. For two points in a plane, we can look at the distance between them or consider the straight line they determine. For three points in a plane, we may be interested in whether or not they fall on a straight line, that is, are collinear. If not collinear, then three points determine a triangle which has many properties of interest. We may examine many other common geometric figures such as quadrilaterals, circles, parabolas, etc. It is the purpose of this chapter to study some of these topics, using the computer to assist us.

#### 7-2 Pairs of Points

Consider the two points A(3,5) and B(3,-1), as shown in Fig. 7-1. Clearly the distance AB from A to B is six units, usually stated simply as 6. We define the distance between two points with the same x-coordinate as the absolute value of the difference in y-coordinates. (For two points with the same y-coordinate, the distance is defined as the absolute value of the difference in x-coordinates.) Thus in Fig. 7-1,

$$AB = |5 - (-1)| = |5 + 1| = 6.$$

Left only with this definition we would have a very limited ability to determine distance. We should, however, be interested in determining distance for any two points whatever their coordinates.



Figure 7-1

For the points A(3,5) and B(-1,2), we may find the distance by plotting the points and constructing a right triangle, as shown in Fig. 7-2.



Figure 7-2

Using the Pythagorean Theorem,

$$AB^2 = BC^2 + AC^2$$

or

$$AB = \sqrt{BC^2 + AC^2}$$

so that

$$AB = \sqrt{4^2 + 3^2}$$

$$AB = \sqrt{25}$$

$$AB = 5$$

It is evident that for any two points  $A(x_1, y_1)$  and  $B(x_2, y_2)$  we have the relationships shown in Fig. 7-3.



Figure 7-3

Using AB = 
$$\sqrt{BC^2 + AC^2}$$
, we get   
AB =  $\sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$ 

but since the square of a number equals the square of its absolute value, we get

AB = 
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

This is known as the distance formula.

We shall now find distances for pairs of points. The distance formula translates readily into the BASIC statement:

200 LET D = SQR ( 
$$(X2 - X1) \uparrow 2) + (Y2 - Y1) \uparrow 2$$
 )

All that remains is to get coordinate pairs read into the computer and results printed out. This is done in program DIST1.

```
DIST!
 94
       REM * THIS PROGRAM FINDS THE DISTANCE AB
REM FOR THE COORDINATES (X1,Y1) AND (X2,Y2)
 95
 100
       PRINT
               "TØ FIND THE DISTANCE BETWEEN TWØ PØINTS"
       PRINT
 150
               "PØINT A";
 160
       PRINT
 170
       INPUT
               XI,YI
               "PØINT B";
 180
       PRINT
 190
       INPUT
               X2, Y2
 192
 194
       REM * CALCULATE DISTANCE AND PRINT IT
       LET D = SQR( (X2-X1)+2 + (Y2-Y1)+2 )
PRINT "DISTANCE AB ="; D
- 200
 210
 555
 230
       END
 RUN
 DIST
 TØ FIND THE DISTANCE BETWEEN TWØ PØINTS
 PØINT A?3,5
 PØINT B?-1,2
 DISTANCE AB = 5
```

Program DIST1 works fine for a single pair of points. But suppose we had several pairs of points. We may simply request the number of calculations desired and use  $F\emptyset R$ -NEXT, as shown in DIST2.

```
DIST2
       REM * FINDS DISTANCE FOR PAIRS OF POINTS
 95
       REM PERMITS MORE THAN ONE SET OF DATA
 100
       PRINT "TØ FIND THE DISTANCE BETWEEN TWO PØINTS"
 110
       PRINT
 120
      PRINT
              "NØW MANY PAIRS";
 130
      INPUT N
 132
 140 FØR I = 1 TØ N
 150
          PRINT
 160
                  "PØINT A";
          PRINT
 170
          INPUT
                  XIJYI
 180
                 "PØINT B";
          PRINT
          INPUT X2.Y2
 190
 192
 194
          REM * CALCULATE DISTANCE AND PRINT IT
LET D = SQR( (X2-X1)+2 + (Y2-Y1)+2 )
PRINT "DISTANCE AB ="; D
- 200
 210
 220
      NEXT I
 222
 230
      END
RUN
DIST2
TØ FIND THE DISTANCE BETWEEN TWO POINTS
NØW MANY PAIRS?2
PØINT A?3,4
POINT B?O.O
DISTANCE AB = 5
PØINT A?-3.4, 5.75
PØINT B?3.125, 2
DISTANCE AB = 7.52583
```

For any two points A and B, it can be shown that the coordinates of the midpoint of segment AB are found by taking the average of the corresponding coordinates of A and B. Thus the midpoint of AB for  $A(x_1, y_1)$  and  $B(x_2, y_2)$  is

$$\frac{x_1 + x_2}{2}$$
,  $\frac{y_1 + y_2}{2}$ 

It is left as an exercise for the reader to write a program to give coordinates of midpoints.

Where coordinates of two points are known, another property of interest is the slope of the line they determine. The slope is the ratio of the change in y-coordinates to the change in x-coordinates, or

Slope = 
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Thus for A(1,3) and B(5,6),

$$m = \frac{6-3}{5-1} = \frac{3}{4}$$

and for A(3, -4) and B(1,6),

$$m = \frac{6 - (-4)}{1 - 3} = \frac{10}{-2} = -5$$

Note that slopes up and to the right are positive and slopes up and to the left are negative. A short program can easily be written to make the above calculation, as shown by program  $SL\Phi PE$ .

```
SLØ PE
      PRINT
              "THIS PROGRAM FINDS THE SLOPE OF AB"
 100
     PRINT
 110
              "HOW MANY PROBLEMS";
 120
     PRINT
 130 INPUT N
140 FØR I = 1 TØ N
 142
 150
          PRINT
                 "PØINT A";
 160
         PRINT
 170
          INPUT
                  X1, Y1
 180
          PRINT
                 "PØINT B";
                X2,Y2
 190
          INPUT
 192
 194 REM * CALCULATE SLOPE AND PRINT IT
         LET M = (Y2-Y1)/(X2-X1)
PRINT "SLOPE ="; M
- 230
 240
     NEXT I
250
252
260
      END
 RIIN
 SLØPE
 THIS PROGRAM FINDS THE SLOPE OF AB
HØW MANY PRØBLEMS?2
 PØ INT A? 0 , 0
PØINT B?4,5
 SLØPE = 1.25
PØINT A?3,6
 PØ INT B?5, -3
 SLOPE =-4.5
```

Look at line 230 in program  $SL\emptyset PE$ . Note that we instruct the computer to perform division. When two points have the same x-coordinate, division by zero is required, which is a mathematically, and thus computationally, undefined condition. The program should be modified to test the value of  $x_2 - x_1$  before allowing division to take place. This is left as an exercise for the reader.

The idea that two points determine a line has been referred to several times. It can be shown that any line in a plane can be described by an equation of the form ax + by + c = 0, where a, b, and c are constants. This is called the general form of the equation. It can also be shown that all nonvertical lines can be described by an equation of the form y = mx + k, where m is the slope as defined earlier and k is the value of y when x = 0, that is, the value of y



Figure 7-4

where the line crosses the y-axis, called the y-intercept, as shown in Fig. 7-4. The form y = mx + k is called the slope-intercept form.

If we are given two points, we can find m in y = mx + k. Then we can get a value for k by solving y = mx + k for k to get k = y - mx. With a value for m and a value for k, we can write the equation of the line in slope-intercept form by using program LINE1.

```
LINEI
      REM * THIS PROGRAM PRODUCES THE EQUATION OF A LINE
95
      REM IN SLOPE-INTERCEPT FORM GIVEN COORDINATES FOR
96
      REM TWO POINTS ON THE LINE. THE PROGRAM USES X =
     REM A CONSTANT FOR VERTICAL LINES
PRINT "EQUATION OF A STRAIGHT LINE IN"
97
100
     PRINT "SLOPE-INTERCEPT FORM GIVEN TWO POINTS"
110
     READ X1, Y1, X2, Y2
120
        IF X1 = .001 THEN 250
130
140
     PRINT
150
            "("; X1; ","; Y1; "),("; X2; ","; Y2; ")"
152
154
     REM * TEST FOR DEFINED SLOPE
        IF X2-X1 <> 0 THEN 190
160
     PRINT "EQUATION IS: X ="; X1
170
180
     GØTØ 120
182
184
     REM * CALCULATE SLØPE AND INTERCEPT
     REM THEN PRINT SOLUTION EQUATION
185
     LET M = (Y2-Y1)/(X2-X1)
190
     LET K = Y1 - M*X1
PRINT "EQUATION IS: Y ="; M; "*X+("; K; ")"
200
210
220
     GØTØ 120
222
224
     REM
230
     DATA
            3,4, 5,6,
                       -1,6, -1,3
     DATA
           .001.0. 0.0
240
250
     END
RUN
LINE 1
EQUATION OF A STRAIGHT LINE IN
SLØPE-INTERCEPT FØRM GIVEN TWØ PØINTS
               ),(5
EQUATION IS: Y = 1
                       *X+( 1
               ) - (-1
                        , 3
EQUATION IS: X =-1
```

# Summary of Sec. 7-2

For two points we have found the coordinates of the midpoint of the segment they determine. We have found the distance, the slope, and the equation of the line in slope-intercept form.

#### Problems for Sec. 7-2

- Modify program SLΦPE to accommodate data for which the slope is undefined.
- Write a program to calculate the coordinates of the midpoint for pairs of points.
- 3) Modify program LINE1 to treat a horizontal line as a special case.
- 4) Modify program DIST1 or DIST2 to give the distance in simplified radical form.
- 5) Modify LINE1 to give the slope as a decimal, integer, or fraction reduced to lowest terms as appropriate.
- 6) For an equation in slope-intercept form, have the computer give a table of (x,y) values suitable for graphing.
- 7) For an equation in general form, have the computer give a table of (x,y) values suitable for graphing.
- 8) For a set of *n* points, write a program to give equations for all possible pairs of points. Enter the *n* points as DATA and store them in a 2 by *n* array or in a pair of lists.
- 9) For problem 8, have the computer eliminate duplicate points and therefore duplicate lines in the output.
- 10) Write a program to write the equation of a line, given two points, in ax + by + c = 0 form. Treat vertical and horizontal lines as special cases.
- 11) Modify program LINE1 to find the slope and y-intercept as fractions reduced to lowest terms, if appropriate.

#### 7-3 Parallel and Perpendicular Lines

What happens when we begin to think about more than one line in a plane? Lines either intersect or they don't. If they don't, then the lines are parallel, in which case their slopes are equal unless the lines are vertical, making both the slopes undefined. If the lines intersect, then they might be perpendicular. What about the situation for perpendicular lines? Consider Fig. 7-5.

Note that the slope of  $l_1$  is positive and the slope of  $l_2$  is negative. Thus,

$$m_1 = \frac{d_1}{t} \tag{7-1}$$

and

$$m_2 = -\frac{d_2}{t} (7-2)$$

Since  $l_1$  and  $l_2$  are perpendicular, right triangles ABC and AB'C are similar and

$$\frac{d_1}{t} = \frac{t}{d_2} \tag{7-3}$$



Figure 7-5

because ratios of lengths of corresponding sides of similar triangles are equal. Since

$$m_2 = -\frac{d_2}{t} \tag{7-4}$$

we get

$$\frac{t}{d_2} = -\frac{1}{m_2} \tag{7-5}$$

Substituting from (7-1) and (7-5) above into (7-3), we get

$$m_1 = -\frac{1}{m_2} \tag{7-6}$$

which gives

$$m_1 m_2 = -1 (7-7)$$

That is, for perpendicular lines having slopes  $m_1$  and  $m_2$ , the product of the slopes is -1, or the slopes are negative reciprocals of each other.

We can use the parallel and perpendicular properties for a variety of problems. We can test lines to see if they are either parallel or perpendicular. We can find the equation of a line through a fixed point parallel or perpendicular to another line. We can write the equation of a line which is the perpendicular bisector of a segment.

We shall now present a program to give an equation for the line through a given point perpendicular to the line determined by a pair of given points. There are many conditions that we must account for. Suppose the given points determine a vertical or a horizontal line? We might even be given the same point



Figure 7-6 Flowchart for finding the equation of a line given one point on the line and two points determining a line perpendicular to it.

twice. A flowchart should be helpful in organizing these conditions. See Fig. 7-6 and program PERP.

```
PERP
      REM * THIS PROGRAM ATTEMPTS TO WRITE AN EQUATION
94
95
      REM FOR A STRAIGHT LINE CONTAINING THE GIVEN POINT
96
            (XO, YO) AND PERPENDICULAR TO THE LINE
      REM DETERMINED BY THE GIVEN POINTS (X1, Y1)
QQ
      REM AND (X2, Y2).
     READ XO.YO
100
         IF XO = .001 THEN 800
110
120
     READ X1, Y1, X2, Y2
130
      PRINT
130 PRINT "LINE THROUGH ("; X0; ","; Y0; ")"
150 PRINT "PERPENDICULAR TO THE LINE THROUGH POINTS"
160 PRINT "("; X1; ","; Y1; "),("; X2; ","; Y2; ")"
170 PRINT " EQUATION IS: ";
     GØSUB 500
180
190
      GØTØ 100
492
494
      REM * SUBROUTINE TO DETERMINE AND PRINT EQUATION
500
      LET V = Y2-Y1
510
      LET H = X2-X1
       IF V <> 0 THEN 560
IF H <> 0 THEN 590
520
530
532
      REM * THE TWO GIVEN POINTS COINCIDE PRINT "NOT UNIQUE"
534
540
550
      RETURN
       IF H <> 0 THEN 610
560
562
564
     REM * SOLUTION LINE IS HORIZONTAL PRINT "Y ="; YO
570
580
     RETURN
582
584 REM * SØLUTIØN LINE IS VERTICAL
590 PRINT "X ="; XO
600 RETURN
602
604 REM * DEFINED NON-ZERO SLOPE
610 LET M = V/H
620
630
     LET MO = -1/M
630 LET K = Y0 - M0*X0
640 PRINT "Y ="; M0; "*X+("; K; ")"
650
     RETURN
652
704
     REM
710 DATA 1,2, 4,7,4,7, 4,3, -1,9,4,5
720 DATA 5,-2, 6,4,6,-8, 3,8, 18,5,-11,5
730 DATA .001,0
800 END
RIIN
PERP
LINE THROUGH ( 1 , 2 )
PERPENDICULAR TO THE LINE THROUGH POINTS ( 4 , 7 ), ( 4 , 7 )
   EQUATION IS: NOT UNIQUE
LINE THROUGH ( 4
PERPENDICULAR TO THE LINE THROUGH POINTS
(-1 , 9 ), (4 , 5 )
EQUATION IS: Y = 1.25
                                      *X+(-2
LINE THROUGH ( 5
                       ,-2
PERPENDICULAR TO THE LINE THROUGH POINTS
                          ,-8 )
(6,4
                ),(6
  EQUATION IS: Y =-2
```

```
LINE THROUGH ( 3 , 8 )
PERPENDICULAR TO THE LINE THROUGH POINTS
(18 , 5 ),(-11 , 5 )
EQUATION IS: X = 3
```

# Summary of Sec. 7-3

We have examined pairs of lines in a plane. If they are parallel and non-vertical, their slopes are equal. If two lines are perpendicular and neither is vertical, the product of their slopes is -1.

#### Problems for Sec. 7-3

- 1) Change program PERP to write the equation of the new line parallel to the line determined by the given pair of points.
- 2) Write a program to give the equation of the perpendicular bisector of a segment, given its endpoints.
- For two pairs of points entered as DATA, have the computer determine if the specified lines are parallel or perpendicular. Be sure to permit vertical lines.
- 4) For two lines given in ax + by + c = 0 form, have the computer determine whether the lines are parallel, perpendicular, or neither.

#### 7-4 Point of Intersection of Two Lines

We can define two lines to work with in several ways. One is to give a pair of points to define each line. Another is to give an equation in the form y = mx + k by specifying m and k for each line. Yet another is to give equations in the form ax + by + c = 0 by specifying (a,b,c) for each line. We may become more familiar with the general form by working with data for equations in the form (a,b,c).

Given two lines,

$$a_1 x + b_1 y + c_1 = 0 (7-8)$$

and

$$a_2x + b_2y + c_2 = 0 (7.9)$$

and the need to find the point of intersection, we must find a coordinate pair (x,y) that fits both equations. That is, we have to solve the equations simultaneously. Since the computer does not "do algebra," we will have to.

Rearranging the above equations, we get

$$a_1 x + b_1 y = -c_1 (7.10)$$

$$a_2x + b_2y = -c_2 (7-11)$$

Multiplying Eq. (7-10) through by  $-a_2$  and Eq. (7-11) by  $a_1$  gives

$$-a_2a_1x - a_2b_1y = a_2c_1 \tag{7-12}$$

$$a_2 a_1 x + a_1 b_2 y = -a_1 c_2 \tag{7.13}$$

Adding Eqs. (7-12) and (7-13) produces

$$a_1b_2y - a_2b_1y = a_2c_1 - a_1c_2 (7-14)$$

Factoring, we get

$$y(a_1b_2 - a_2b_1) = a_2c_1 - a_1c_2 \tag{7-15}$$

Dividing both sides by  $a_1b_2 - a_2b_1$  leaves

$$y = \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1} \tag{7-16}$$

Following a similar procedure to solve for x, we get

$$x = \frac{b_1 c_2 - b_2 c_1}{b_2 a_1 - b_1 a_2} \tag{7-17}$$

Let's write a program to use the above results to find the point of intersection, if it exists. Note that in Eqs. (7-16) and (7-17) the denominators are equal. So we may use the BASIC statement,

180 LET D = 
$$Al*B2 - A2*B1$$

This will allow us to divide the numerators from Eqs. (7-16) and (7-17) by D to obtain the values for y and x, respectively, unless D happens to equal zero. This situation would require division by zero, which means that the value is either indeterminant or undefined depending on whether the numerator is zero or not. Thus, if the value of D is not zero, we have a unique intersection, which we may calculate using Eqs. (7-16) and (7-17). If D equals zero, we may obtain more information about the two lines as outlined in the following discussion.

D = 0 means the following:

$$a_1b_2 - a_2b_1 = 0 (7.18)$$

and therefore

$$a_1b_2 = a_2b_1 \tag{7-19}$$

which may be written

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} \tag{7-20}$$

To see the significance of this, let's look at the original equations, (7-8) and (7-9). They are  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$ . Solving each for y we get:

$$y = -\frac{a_1 x}{b_1} - \frac{c_1}{b_1} \tag{7-21}$$

and

$$y = -\frac{a_2 x}{b_2} - \frac{c_2}{b_2} \tag{7.22}$$

Now the equations are in y = mx + k form. Notice that the slope of line 1 in Eq. (7-21) is  $-a_1/b_1$  and of line 2 in Eq (7-22) is  $-a_2/b_2$  unless  $b_1$  or  $b_2$  is zero. Clearly by multiplying both sides of Eq. (7-20) by -1 we get

$$-\frac{a_1}{b_1} = -\frac{a_2}{b_2} \tag{7-23}$$

Since the two sides of Eq. (7-23) are the slopes of the lines in Eqs. (7-21) and (7-22), that makes line 1 parallel to line 2. To sum up, if D = 0, then the lines are parallel and there is no solution unless  $b_1$  or  $b_2$  is zero.

Now suppose that either  $b_1$  or  $b_2$  is zero when D=0. Looking at Eq. (7-19), if  $b_1=0$  then either  $a_1$  or  $b_2$  is also zero. Now, if Eq. (7-8) is not meaningless, that means that  $b_2$  must also be zero. If  $b_1$  and  $b_2$  are both zero, we get

$$a_1x + c_1 = 0 \text{ or } x = -\frac{c_1}{a_1}$$
 (7-24)

$$a_2x + c_2 = 0 \text{ or } x = -\frac{c_2}{a_2}$$
 (7-25)

in which case both lines are vertical because x is constant. If what we are looking for is the point of intersection, there won't be any unless the two equations define the same line, in which case all points on one line will also lie on the other.

We really have three levels of information to test for. First we want to know if the lines intersect in a single point. If they do intersect in a single point, then we want the coordinates of that point. If they don't intersect in a single point, then it is useful to know whether or not they are vertical, because if one is, they both are. And finally, we can determine whether or not they coincide. If they coincide, the solution is indeterminant. If they do not coincide and are parallel, we say the equations are inconsistent. A flowchart should help to sort out all of the above considerations. See Fig. 7-7 and program PØINT.



Figure 7-7 Flowchart for program POINT (cont'd on next page)



```
Advanced BASIC
PØINT
      REM * THIS PROGRAM FINDS THE POINT OF INTERSECTION
94
     REM FOR TWO LINES GIVEN IN AX+BY+C=0 FORM. HANDLES REM INDETERMINANT AND INCONSISTENT CASES.
95
96
     READ T
100
110
        IF T = 0 THEN 500
112
     REM * READ COEFFICIENTS FOR BOTH LINES
114
120
     READ Al, Bl, Cl, A2, B2, C2
     PRINT
130
132
     REM # PRINT THE EQUATIONS
134
    PRINT TAB(10); "LINES"

PRINT A1; "*X+("; B1; ")+Y+("; C1; ") = 0"

PRINT TAB(10); "AND"
140
150
160
     PRINT A2; "*X+("; B2; ")*Y+("; C2; ") = 0"
170
172
174
     REM * IF A1*B2-A2*B1 <> 0 THEN THERE IS
175
     REM A UNIQUE SØLUTIØN
     LET D = A1*B2 - A2*B1
180
190
         IF D <> 0 THEN 300
192
194 REM * WE COULD TEST FOR B2 = 0 WITH THE SAME RESULT
         IF B1 = 0 THEN 240
200
             "NØN-VERTICAL ";
210 PRINT
         IF C1/B1 = C2/B2 THEN 280
220
230 GØTØ 260
240 PRINT "VERTICAL "3
250
        IF C1/A1 = C2/A2 THEN 280
260 PRINT "PARALLEL"
270 GØTØ 100
280 PRINT "CØINCIDENT"
290 GØTØ 100
292
294 REM * SØLUTIØN EXISTS - CALCULATE AND PRINT IT
300 LET N1 = A2*C1 - A1*C2
310 LET N2 = B1*C2 - B2*C1
320 LET X = N2/D
330 LET Y = N1/D
     PRINT "SOLUTION IS: ("; X; ","; Y; ")"
340
350 GØTØ 100
352
394
     REM
400 DATA 1.
                 1,1,1, 2,2,2
410 DATA 1,
420 DATA 1,
430 DATA 1,
440 DATA 0
                 1,2,3, 4,5,6
3,0,4, 7,0,-8
5,3,10, 10,6,-3
500 END
```

RUN POINT

```
)*Y+( 1
     *X+( 1
                         ) = 0
         AND
     *X+( 2
              )*Y+( 2
2
                          ) = 0
NON-VERTICAL COINCIDENT
         LINES
     *X+( 2
               )*Y+( 3
                         ) = 0
         AND
     *X+( 5
               )*Y+( 6
                          ) = 0
SØLUTIØN IS: ( 1
                  ,-2
```

LINES

#### Summary of Sec. 7-4

We have found the intersection of two lines for which the equations are given in standard form. Consideration has been given to the special cases of parallel and coincident lines.

#### Problems for Sec. 7-4

- 1) Write a program to find the intersection of two lines with equations given in slope-intercept form.
- 2) Write a program to find the intersection of two lines given two points on each line.
- 3) Write a program to find the distance from a point to a line, given the equation of the line in ax + by + c = 0 form. You may use

$$d = \frac{|ax + by + c|}{\sqrt{a^2 + b^2}}$$

4) Write a program to find the distance from a point to a line, given two points on the line.

#### 7-5 Three Points in a Plane

If we are given two points, we know that they lie on a straight line, but if we are given three points, they may or may not lie on a straight line, that is, they may or may not be collinear. If they are not collinear, there are many questions we may ask.

Let us look at three points,  $A(x_1, y_1)$ ,  $B(x_2, y_2)$  and  $C(x_3, y_3)$ , to determine if they are collinear. Suppose for the moment that if they are, the line containing them is not vertical. One way to see if they are collinear is to look at the slope of AB and the slope of BC. If the two slopes are equal, then the points are on a single line.

Now suppose that we select points (1, 2), (1, 4) and (2, 3) as DATA. Clearly the slope calculation will produce an undefined condition due to an attempt to divide by zero. We need to check for equal x-coordinates. We need only check  $x_1 = x_2$  and  $x_2 = x_3$ . If  $x_1 = x_2$ , what about  $x_1 - x_2$ ? Notice that  $x_1 - x_2$  would be zero. Now we see that if  $(x_1 - x_2)(x_2 - x_3) = 0$ , then either AB or BC, or both, are vertical segments. Or, to put it another way, if  $(x_1 - x_2)(x_2 - x_3)$  is not zero, then neither AB nor BC is vertical, and it is safe to instruct the computer to calculate the slopes of both segments. See especially line 190 in program  $C\emptyset$ LIN.

```
CØLIN
      REM * THIS PROGRAM DETERMINES WHETHER OR NOT
94
      REM THREE POINTS IN A PLANE ARE COLLINEAR.
      REM IT ALLOWS FOR POINTS IN A VERTICAL LINE.
96
     READ T
100
110
         IF T = 0 THEN 900
120
      PRINT
130 READ X1,Y1, X2,Y2, X3,Y3
140 PRINT "("; X1; ","; Y1; "),";
150 PRINI "("; X2; ","; Y2; ") AND ";
160 PRINT "("; X3; ","; Y3; ")"
     LET DI = X1-X2
170
180
      LET D2 = X2-X3
 182
 184
     REM * IF D1*D2 NØN-ZERØ THEN NEITHER
185
           SEGMENT IS VERTICAL
     REM
         IF D1*D2 <> 0 THEN 300
- 19n
200
         IF D1 <> 0 THEN 400
         IF D2 <> 0 THEN 400
210
212
     REM * AT THIS POINT BOTH SEGMENTS ARE VERTICAL
214
     PRINT
             "VERTICALLY COLLINEAR"
220
230
     GØTØ 100
292
     REM * CALCULATE BOTH SLOPES
294
300
     LET M1 = (Y1-Y2)/D1
310 LET M2 = (Y2-Y3)/D2
312
314
     REM # IF SLOPES NOT EQUAL THEN POINTS NON-COLLINEAR
     IF M1 <> M2 THEN 400
PRINT "CØLLINEAR"
320
330
340
     GØTØ 100
     PRINT "NON-COLLINEAR"
400
      GØ TØ 100
410
492
494
     REM
                         0.7. -9.
3.4. 5.7
1.4. 2.3
                  6,5,
500
      DATA 1.
                                -9,10
     DATA 1,
DATA 1,
DATA 1,
DATA 0
510
                  1.2.
520
                  1,2,
                  5,2,
                         5,-3, 5,50
530
540
900
      END
RUN
CØLIN
                         , 7
                ) ( 0
16
                                 ) AND (-9
                                                  . 10
                                                          )
COLLINEAR
                ),(3
                                                  , 7
( 1
       . 2
                           , 4
                                   ) AND ( 5
                                                          )
NON-COLLINEAR
                ),(1
                           , 4
                                   ) AND ( 2
                                                          )
NØN-CØLLINEAR
                ),(5
                           , - 3
                                   ) AND ( 5
                                                  . 50
(5,2),(5
VERTICALLY COLLINEAR
```

# Triangles (The Noncollinear Case)

It should be clear that if three points in a plane are noncollinear, they are vertices of a triangle. That being the case, we have a whole new collection of properties to consider. To name only a few possibilities, we can calculate the area using Hero's formula; we can test to see if the triangle is acute, right, or obtuse; we can find the centroid where the medians intersect; we can find the orthocenter where the altitudes intersect; and we can find the lengths of the altitudes.

Suppose we first look for a right triangle. There are at least two procedures we might use. One is to test the lengths of the three sides using the Pythagorean Theorem,  $c^2 = a^2 + b^2$ . Another is to test the slope of each pair of sides to see if their product is -1 or if one side is vertical and another is horizontal. Either procedure will be instructive. Let's first investigate Pythagoras with the aid of Fig. 7-8.



Figure 7-8

When we consider  $c^2 = a^2 + b^2$  we assume that the hypotenuse has length c. Suppose we find that a is the length of the hypotenuse or that b is. The only safe bet is to test them all. This could be done by putting the following in an IF-THEN statement to test if AB is the hypotenuse for points  $A(x_1, y_1)$ ,  $B(x_2, y_2)$  and  $C(x_3, y_3)$ :

$$(X1 - X2)^{\uparrow}2 + (Y1 - Y2)^{\uparrow}2 = ((X2 - X3)^{\uparrow}2 + (Y2 - Y3)^{\uparrow}2) + ((X3 - X1)^{\uparrow}2 + (Y3 - Y1)^{\uparrow}2)$$

and by then putting in two similar statements to see if BC or CA might be the hypotenuse. Such a procedure ought to work, but this statement is excessively long and cumbersome and we aren't really using the power of the computer to do repeated operations. It seems worthwhile to devise a way of storing the coordinates so that we can use computer loops to move around the triangle instead of writing new statements for each side being considered. That seems to suggest subscripts and lists. So instead of X1, X2, and X3 we are going to use X(1), X(2), and X(3). And for Y1, Y2, and Y3 we use Y(1), Y(2), and Y(3), as shown in Fig. 7-9.

Often when trying a new procedure on a new program, it is a good idea to do the work piecemeal. If we put a lot of new things into a program simultaneously, errors are harder to find than if we go in steps. Consider program PYTH1 for simply reading coordinates in and printing them out.



Figure 7-9

```
PYTH1
       REM * THIS IS A TRIAL PROGRAM TO SIMPLY READ REM COORDINATES FOR THE VERTICES OF A TRIANGLE
 94
 95
            AND PRINT THEM OUT AGAIN USING AN X LIST
 96
       REM
            FØR X CØØRDINATES AND A Y LIST FØR Y
 97
       REM
 98
       REM COORDINATES
 100
       DIM X(3), Y(3)
      READ T
IF T = 0 THEN 900
 110
 120
 130
       PRINT
 132
       REM * READ COORDINATES IN LINES 140 TO 160
 134
      FØR P = 1 TØ 3
 140
 150
          READ X(P), Y(P)
£ 160
      NEXT P
 162
 164
      REM * PRINT COORDINATES IN LINES 170 TO 190
             נ", נ" ניו (מ' ניו' ני" ני" ני") נ"י, נ"
-170
      PRINT
      PRINT
              "("; X(2); ","; Y(2); ") AND ";
 180
      PRINT "("; X(3); ","; Y(3); ")"
L 190
 200
      GØTØ 110
 792
 794
      REM
 800
                   1,2,
                           5,-1,
      DATA 1.
                                    6,15
 810
      DATA
                   0.0.
             1,
                           0,3,
                                    4,0
 820
      DATA
             0
 900
      END
 RUN
 PYTH!
 ( 1
         , 2
                 ),(5
                           o - 1
                                   ) AND ( 6
                                                  , 15
                                                          )
 ( 0
         , 0
                 ),(0
                           3 ء
                                   ) AND ( 4
                                                  0 و
                                                          )
```

To consider each side in turn as a possible hypotenuse, we want to work our way around the triangle. First we will use the distance from point 1 to point 2, then the distance from point 2 to point 3, and finally the distance from point 3 to point 1. See the columns labeled "Hypotenuse" in Table 7-1.

TABLE 7-1

| Hypotenuse |        | 1st Leg |        | 2nd Leg |        |
|------------|--------|---------|--------|---------|--------|
| Segment    | Points | Segment | Points | Segment | Points |
| AB         | 1,2    | BC      | 2,3    | CA      | 3,1    |
| вс         | 2,3    | CA      | 3,1    | AB      | 1,2    |
| CA         | 3,1    | АВ      | 1,2    | BC      | 2,3    |

Looking at Table 7-1, we see a progression across, from points 1 and 2 to points 2 and 3 and then to points 3 and 1 for hypotenuse AB. For hypotenuse BC, we go from points 2 and 3 to points 3 and 1 and then to points 1 and 2. This pattern is completed by considering CA as the hypotenuse. If we can simply go 1-2-3-1-2-3, we can get all of the pairs we need using loops and subscripts. Consider the following four lines of BASIC code:

```
200 FØR P = 1 TØ 3
210 LET X(P+3) = X(P)
220 LET Y(P+3) = Y(P)
230 NEXT P
```

These four lines have the effect of copying the three points 1, 2, and 3 into locations 4, 5, and 6, respectively, of the X and Y lists. This will enable us to organize the testing of each side in turn for being the hypotenuse of triangle ABC, as shown in TABLE 7-1. See lines 200 to 230 in PYTH2.

```
PYTH2
     REM * THIS PROGRAM STORES THE CORDINATES OF THE
94
95
     REM VERTICES OF A TRIANGLE IN THE FIRST THREE
96
     REM ELEMENTS OF X AND Y LISTS AND DUPLICATED
          IN THE NEXT THREE ELEMENTS OF THOSE LISTS TO FACILITATE USE OF SUBSCRIPTS AND LOOPS TO TEST PROPERTIES OF THE TRIANGLES.
97
     REM
98
     RFM
99
     REM
     DIM X(6), Y(6)
100
     READ T
110
120
         IF T = 0 THEN 900
130
     PRINT
132
     REM * READ COURDINATES IN LINES 140 TO 160
134
140
     FØR P = 1 TØ 3
150
        READ X(P), Y(P)
160 NEXT P
162
     REM * PRINT COORDINATES IN LINES 170 TO 190
164
     PRINT "("; X(1); ","; Y(1); "); PRINT "("; X(2); ","; Y(2); ") AN
170
             "(") X(2); ","; Y(2); ") AND ";
180
     PRINT "("; X(3); ","; Y(3); ")"
190
192
     REM * DUPLICATION TAKES PLACE IN LINES 200 TO 230
194
     FØR P = 1 TØ 3
200
         LET X(P+3) = X(P)
210
         LET Y(P+3) = Y(P)
220
230
    NEXT P
232
     REM * WE PRINT THE CONTENTS OF THE X AND Y LISTS
234
     REM FOR DEMONSTRATION PURPOSES ONLY
235
```

```
240
     PRINT "VALUES OF X LOOK LIKE THIS IN THE X LIST"
250 FØR P = 1 TØ 6
       PRINT X(P);
260
270
   NEXT P
280
    PRINT
282
290
     PRINT "VALUES OF Y LOOK LIKE THIS IN THE Y LIST"
300 FØR P = 1 TØ 6
       PRINT Y(P);
310
320
     NEXT P
330
    PRINT
332
340
    GØTØ 110
792
194
     REM
          1,
800
     DATA
                1,2,
                     5,-1,
                              6,15
810
     DATA 1,
                0.0. 0.3.
                              4.0
820
     DATA 0
900
     END
RUN
PYTH2
       . 2
             ),(5
                      , - 1
                              ) AND ( 6
                                          , 15
                                                  )
VALUES OF X LOOK LIKE THIS IN THE X LIST
      5
            6
                  1
                       5
VALUES OF Y LOOK LIKE THIS IN THE Y LIST
     ~ 1
            15
                  2
                       - 1
                              15
                                          , 0
       . 0
             ),(0
                              ) AND ( 4
                       . 3
                                                 )
VALUES OF X LOOK LIKE THIS IN THE X LIST
      0
            4
                  0
                        0
VALUES OF Y LOOK LIKE THIS IN THE Y LIST
      3
            n
                  0
                        3
                              O
```

Now all that remains is to calculate the lengths of the sides of the triangle and to store them in such a way that we may test in sequence around the triangle, trying each side as possible hypotenuse. This is accomplished by lines 300 to 350 in PYTH3. Note that line 340 does for the lengths of sides what 210 and 220 do for the coordinates of the vertices.

```
PYTH3
94
      REM * THIS PROGRAM DETERMINES FROM THE COORDINATES
95
      REM OF THE VERTICES OF A TRIANGLE WHETHER OR REM NOT IT IS A RIGHT TRIANGLE
96
      DIM X(6), Y(6), D(6)
100
110
      READ T
120
         IF T = 0 THEN 900
130
      PRINT
132
134
      REM * READ COORDINATES IN LINES 140 TO 160
140
      FØR P = 1 TØ 3
150
         READ X(P), Y(P)
160
     NEXT P
162
164
      REM * PRINT COORDINATES IN LINES 170 TO 190
     PRINT "("; X(1); ","; Y(1); "),";
PRINT "("; X(2); ","; Y(2); ") AND ";
PRINT "("; X(3); ","; Y(3); ")"
170
180
190
192
194
     REM * DUPLICATION TAKES PLACE IN LINES 200 TO 230
     FØR P = 1 TØ 3
200
210
         LET X(P+3) = X(P)
         LET Y(P+3) = Y(P)
220
     NEXT P
230
232
```

```
REM * ENTER LENGTHS IN THE D LIST IN THE REM SAME FORMAT AS USED FOR COORDINATES IN
294
 295
      REM THE X AND Y LISTS; THAT IS - DUPLICATED
 296
 300 FØR J = 1 TØ 3
          LET A = X(J) - X(J+1)
 310
 320
          LET B = Y(J)-Y(J+1)
          LET D(J) = SQR(A+2+B+2)
 330
          LET D(J+3) = D(J)
 340
L350 NEXT J
 352
 394 REM * NOW TEST EACH SIDE FOR BEING A HYPOTENUSE
 400 FØR P = 1 TØ 3
           IF D(P)+2 = D(P+1)+2 + D(P+2)+2 THEN 500
 410
 420 NEXT P
 422
 424 REM * IF THE TEST FAILS FOR ALL THREE SIDES THEN 425 REM WE HAVE A NØN-RIGHT TRIANGLE
      PRINT "NOT A RIGHT TRIANGLE"
 430
      GOTO 110
 440
 492
 PRINT "RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY"

510 PRINT "POINTS: ("; X(P); ","; Y(P); ") AND ";

520 PRINT "("; X(P+1); ","; Y(P+1); ")"
 530 GØTØ 110
 792
      REM
 794
 800 DATA 1, 1,2, 5,-1, 6,15
810 DATA 1, 0,0, 0,3, 4,0
820 DATA 0
 900 END
 RUN
 PYTH3
                            , <del>-</del> 1
                                                       , 15
                                                                )
                  ),(5
                                     ) AND ( 6
          . 2
 NOT A RIGHT TRIANGLE
                                                                )
                 ),(0
                              , 3
                                     ) AND ( 4
          . 0
 RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY
 PØINTS: ( 0 , 3
                            ) AND ( 4
                                            . 0
```

# Summary of Sec. 7-5

We have examined sets of three points for collinearity. We have looked at the triangle formed by noncollinear points to determine whether or not it is a right triangle. In order to do this, we have devised a technique of storing coordinates in lists to take advantage of repeatable program statements using loops.

#### Problems for Sec. 7-5

- 1) In program CØLIN, provide for treating points on a horizontal line as a special case.
- 2) Write a program to find the intersection of two altitudes of a triangle.
- 3) Write a program to find the intersection of two medians of a triangle.
- 4) Modify program PYTH3 to classify triangles as acute, equiangular, right, or obtuse.
- 5) Have the computer print all Pythagorean Triples for a hypotenuse less than 101. Pay particular attention to efficiency here.
- 6) Write a program to determine if four points are collinear.
- 7) Write a program to determine if n points are collinear.

8) Write a program to compute the area of a triangle given the coordinates of the three vertices and using Hero's formula:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
 where  $s = (a + b + c)/2$ 

- 9) Write a program to calculate the area of a triangle by finding the length of an altitude using the methods of Sec. 7-4.
- 10) Write a program to test triangles for right triangles by determining the slope of all three sides to see if the product is -1 for any pair. You will have to treat vertical lines as a special case.
- 11) Given three noncollinear points, find the center and radius of the circle they determine.

# 8 POLYNOMIALS

#### 8-1 Introduction

A real polynomial in x can be defined as any expression that can be written in the following form:

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

For a given value of x, n is a non-negative integer and the a's are constant values. Examples of polynomials are

$$2x$$
;  $3x^2 + 2$ ; 4;  $5x^{11} + 3x^3 - 2$ 

The highest exponent of x, called n, is the degree of the polynomial.

Polynomials are of interest to the mathematician and scientist alike. The distance an object travels in a gravitational field is described by a second degree polynomial, for example. We will now explore some ways in which the computer may be programmed to evaluate polynomials and make some comparisons.

Regardless of the final procedure to be used to evaluate a polynomial, we will probably want to store the coefficients in a list. If you have zero subscripts available, this is a perfect fit because the subscript of the coefficient is equal to the exponent on x in each term. If you don't use zero subscripts, simply adjust the variable used for exponents. We arbitrarily select  $3x^4 + 2x^3 - x^2 + 5x + 3$  for our first example. The degree of the example is four, and hence there are five coefficients. The coefficients and the degree of the polynomial may be entered as data.

One procedure for evaluating a polynomial is to use a BASIC language function such as

100 DEF FNP(X) = P(5)\*X+4+P(4)\*X+3+P(3)\*X+2+P(2)\*X+P(1)

This defined function will work fine for any fourth degree polynomial. For a

degree less than four we could fill in with zeros, but for degrees more than four, we would have to retype the line. We are also limited by line length when DEFining a function on some computer systems. Others allow multiple line DEFinitions. So while the DEF capability is very useful in some situations, we might give some thought to developing another procedure for evaluating a polynomial.

Note that the exponent of x is one less than the subscript of the list coefficient in each term of the DEF statement. (They are the same if you use zero subscripts.) Even p(2)\*x can be written  $p(2)*x\uparrow 1$  and p(1) can be written  $p(1)*x\uparrow 0$  (unless x=0). This suggests the following loop:

```
300 LET P2 = P(1)

310 F0R I = N+1 T0 2 STEP -1

320 LET P2 = P2 + P(1)*X*(I-1)

330 NFXT I
```

This four line routine has the desirable feature that it requires no change for handling polynomials of differing degree.

Suppose we give some thought to the number of operations we are instructing the computer to perform. Look at line 320. There we can see an addition and a multiplication and an exponentiation. For positive integers as exponents, exponentiation amounts to successive multiplication. That means for an exponent of I - 1 there will be I - 2 multiplications plus the multiplication of the coefficient. That makes I - 1 multiplications for that line. If we take another look at  $3x^4 + 2x^3 - x^2 + 4x + 3$  and count the number of operations, we get four additions and 10 multiplications for our fourth degree polynomial (not accounting for how the computer might handle the exponent one as a special case). For a  $10^{\rm th}$  degree polynomial there would be 10 additions and 55 multiplications.

Programmers often try to improve the efficiency of their programs because of the limitations of the computer and the size of the job to be done or purely for the challenge involved. Notice that in any polynomial, beginning with the second term, each term has x as a factor one less time than the previous term. This suggests some sort of successive factoring, as shown by the following:

$$3x^{4} + 2x^{3} = (3x + 2)x^{3}$$

$$(3x + 2)x^{3} - x^{2} = ((3x + 2)x - 1)x^{2}$$

$$((3x + 2)x - 1)x^{2} + 4x = (((3x + 2)x - 1)x + 4)x$$

$$(((3x + 2)x - 1)x + 4)x + 3 = (((3x + 2)x - 1)x + 4)x + 3$$

Thus our original polynomial  $3x^4 + 2x^3 - x^2 + 4x + 3$  can be written in the following form:

$$(((3x + 2)x - 1)x + 4)x + 3$$

This is called nested form.

Now there are only four multiplications and four additions called for in a fourth degree polynomial. Of course, a saving of six multiplications is not much to a computer, but the saving accumulates as the degree of the polynomial in-

creases and as the number of times we evaluate the polynomial increases. Consider the following routine:

```
400 LET P3 = P(N+1)
410 FØR I = N T0 1 STEP -1
420 LET P3 = P3*X + P(I)
430 NEXT I
```

We have another four-line routine that is more efficient than the first one.

We now have three procedures for evaluating polynomials. The first is a defined function, the second is a loop which evaluates the polynomial using exponents term by term, and the third is a loop which uses nested form. Let's assemble these three procedures into a program so that we can compare some values. As we expected, we see that all values do check out by looking at the output of program  $P\Phi$ LY01.

```
PØLY01
     REM * THIS PROGRAM EVALUATES POLYNOMIALS BY THREE
94
     REM METHODS; DEF, TERM BY TERM AND NESTING
95
96
97
     REM * SET UP DEFINED FUNCTION
     DEF FNP(X) = P(5)*X*4+P(4)*X*3+P(3)*X*2+P(2)*X+P(1)
100
102
     REM * READ DATA
104
110
     READ N
120 FØR I = N+1 TØ 1 STEP -1
130
        READ P(I)
140 NEXT I
142
    REM * PRINT HEADINGS
PRINT "X", "FNP(X)", "EXP L00P", "NESTING"
144
150
160 FØR X = 1 TØ 10
192
    REM * CALCULATE BY DEF
194
        LET PI = FNP(X)
200
292
        REM * CALCULATE UŞING EXPONENTS IN A LØOP
294
        REM TERM BY TERM
295
        LET P2 = P(1)
300
        FOR I = N+1 TO 2 STEP -1
310
           LET P2 = P2 + P(I)*X+(I-1)
320
        NEXT I
330
392
        REM * CALCULATE USING NESTING
394
        LET P3 = P(N+1)
400
        FØR I = N TØ 1 STEP -1
410
           LET P3 = P3*X + P(I)
420
        NEXT I
430
492
494
        REM * PRINT RESULTS
500
        PRINT X, P1, P2, P3
510 NEXT X
512
514
     DATA 4, 3, 2, -1, 5, 3
520
5.30
     END
RUN
PØL YO I
                                EXP LOOP
                                                NESTING
                FNP(X)
Χ
                                                 12
                                 12
                 12
                                                 7.3
                                 73
                 73
 2
                                                 306
                                 306
                 306
 3
                                                 903
                 903
                                 903
```

| 5  | 2128  | 2128  | 2128  |
|----|-------|-------|-------|
| 6  | 4317  | 4317  | 4317  |
| 7  | 7878  | 7878  | 7878  |
| 8  | 13291 | 13291 | 13291 |
| 9  | 21108 | 21108 | 21108 |
| 10 | 31953 | 31953 | 31953 |

### Problems for Sec. 8-1

- 1) Write a program to tabulate the number of additions and multiplications for varying degrees of polynomial in order to compare nesting with a one line DEF or with a loop which uses exponents.
- 2) Write a program to multiply two polynomials.
- Write a program to add polynomials. Be sure to avoid leading zero coefficients.
- 4) Do problem 3 for subtraction.
- 5) Write a program to give ordered pairs (x, p(x)) suitable for graphing the polynomial p(x).
- 6) Write a program to find zeros of a second-degree polynomial using the quadratic formula.

# 8-2 Finding a Real Zero of a Polynomial

Now that we are set up to evaluate a polynomial, we can explore some applications. One important consideration where polynomials are concerned is to find values of x for which the value of the polynomial is equal to zero. If we designate a polynomial as p(x) (read p of x) and set y equal to p(x), then we may think in terms of polynomial equations and their graphs. The zeros of a polynomial are the values of x where p(x) = 0. For real zeros they are the values of x where the graph of the polynomial equation crosses the x-axis. However, in the case of nonreal zeros, while the value of p(x) will be zero, the graph of the polynomial equation in the x-y plane will not cross the x-axis. Of course, we are familiar with special mathematical procedures for solving certain polynomials. For instance, all second-degree polynomials may be solved by the quadratic formula. We will look here at more general solutions.

It can be shown that every nth degree polynomial has exactly n complex zeros. So one approach to finding zeros is to simply try values of x until n are found which give p(x) = 0. Such a procedure is feasible only with the aid of a computer because of the tedious calculations required. Even so, the approach can be very complicated indeed. We will simplify our job for now if we begin by looking only for real zeros. A most valuable aid to finding zeros of any continuous function y = f(x) is the principle that if  $f(x_1)$  and  $f(x_2)$  are of different sign, then there are an odd number of zeros in the interval from  $x_1$  to  $x_2$ . For real values of x it should be clear that if  $f(x_1) > 0$ , the point  $(x_1, f(x_1))$  on the graph is above the x-axis, whereas  $f(x_1) < 0$  makes  $(x_2, f(x_2))$  below the x-axis, and the graph of a continuous function must cross the x-axis somewhere in between.

There is a variety of ways to isolate increments in which real zeros may be found. Let us set up a procedure whereby we have control over where the computer searches for intervals within which zeros may be found. We can store coefficients in a list, select limits within which to search, and have the computer

step through the specified region, trying pairs of values for x to see if  $f(x_1)*f(x_2)$  is positive. If it is not, then we have a zero between  $x_1$  and  $x_2$  or either  $x_1$  or  $x_2$  is a zero. If we always find  $f(x_1)*f(x_2)$  positive, there are numerous possible reasons. We may not have included the zeros in our limits, or we may have had the computer search such large increments that the graph crosses the x-axis an even number of times, or the graph may just touch the x-axis at a minimum or maximum point and never cross the x-axis (the point at which it touches, however, is still a zero of the polynomial), or there are no real zeros. We must bear all of these problems in mind as we construct and operate a program.

In program ZER $\phi$ 01, line 120 reads the degree of the polynomial and line 140 reads the coefficients. Line 280 tests for sign change. The subroutine which starts at line 800 evaluates the polynomial by nesting. Line 840 checks for exact zeros. The general procedure here is just as valid for any continuous function as it is for polynomial functions. Note that we could use the graphing of Chapter 5 to assist us in finding regions where we might expect to find zeros.

```
ZERØ01
       REM * THIS PROGRAM SEARCHES FOR A SIGN CHANGE
  94
       REM IN THE VALUE OF A POLYNOMIAL FUNCTION
  95
  100
       DIM
           P(15)
       PRINT
             "POLYNOMIAL IS";
  110
- 120
      READ N
      FØR I = N+1 TØ 1 STEP -1
  130
          READ P(I)
 - 140
  150
          PRINT P(I);
  160 NEXT I
  162
  170 PRINT
  180
      PRINT
             "FIRST, LAST, STEP";
  190
      PRINT
      INPUT F. L. S
  200
  210
       PRINT
  220 \text{ LET } X0 = F
  230
      G0 SUB 800
  240
      FØR X = F+S TØ L STEP S
  242
  244 REM * SAVE THE VALUE OF THE FUNCTION AT THE
  245
      REM BEGINNING OF THE INTERVAL
        LET YI = P3
 250
         LET XO = X
 260
         GØSUB 800
 270
            IF Y1*P3 > 0 THEN 320
-- 280
          PRINT
                 "SIGN CHANGE:"
  290
                "P("; X-S; ")="; Y1; "AND P("; X; ")="; P3
  300
          PRINT
          STOP
  310
  320 NEXT X
  322
      PRINT "NO SIGN CHANGE FOUND"
  330
  340
      STOP
  192
 794
      REM * LINES 800 TO 830 EVALUATE BY NESTING
-- 800
      LET P3 = P(N+1)
      FOR I = N TO 1 STEP -1
  810
         LET P3 = P3*X0 + P(I)
  820
 830 NEXT I
 832
 834
      REM * CHECK FOR EXACT ZERO
         IF P3 <> 0 THEN 880
 - 840
      PRINT
 850
 860 PRINT XO; "IS A ZERC"
 870
      STOP
 880
      RETURN
```

```
884 REM

890 DATA 3, 1,2,3,4

900 END

RUN

ZERØ01

PCLYNOMIAL IS 1 2 3 4

FIRST, LAST, STEP? -10,10,1

SIGN CHANGE:

P(-2 )=-2 AND P(-1 )= 2
```

# Interval Halving

Now we have an interval in which we expect to find a zero. We would like to make that interval smaller and smaller to get successively better approximations of a zero. We can simply evaluate the polynomial at the midpoint of the interval found in program ZER $\phi$ 01 and check for a change of sign against one endpoint. If a change in sign is found, we bisect and repeat. If a change in sign is not found, then the change must occur between the midpoint and the endpoint not tested above; therefore we bisect that interval and repeat. After each bisection the interval is smaller and the midpoint is a better approximation of the zero. This process is accomplished in lines 400 to 550 of program ZER $\phi$ 02.

The process needs a stopping place. We need a test of the accuracy of the current approximation that works for roots very close to zero and far away from zero, a test, moreover, that is compatible with the precision of the computer. We would like to get six significant digits in our results. We label the endpoints of the interval  $x_1$  and  $x_2$ . If we test  $|x_1 - x_2|$  against  $10^{-6}$ , we will not get six significant digits for  $x_1$  and  $x_2$  when they are very close to zero. For  $x_1$  and  $x_2$  large in magnitude, say 100,000, we would require a machine with 12-digit precision. These problems are avoided by using relative error and testing  $|x_1 - x_2|/(|x_1| + |x_2|)$  against  $10^{-6}$ . See line 450 in program ZER $\emptyset 02$ .

```
ZER002
94
     REM * THIS PROGRAM SEARCHES FOR APPROXIMATE ZEROS
     REM IN THE INTERVALS FOUND IN PROGRAM ZEROOI
100
    DIM P(15)
110
     PRINT "POLYNOMIAL IS";
120
    READ N
130 FOR I = N+1 TO 1 STEP -1
140
        READ P(I)
150
        PRINT P(I);
    NEXT I
160
162
170
    PRINT
180
     PRINT
            "FIRST, LAST, STEP";
190
     PRINT
200
     INPUT F. L. S
210
    PRINT
220
    LET XO = F
230
    GØSUB 800
240 FOR X = F+S TO L STEP S
       LET YI = P3
250
260
        LET XO = X
        GØSUB 800
270
           IF Y1*P3 > 0 THEN 320
280
```

```
PRINT "SIGN CHANGE:"
PRINT "P("; X-S; ")="; Y1; "AND P("; X; ")="; P3
290
300
        GØTØ 400
310
320 NEXT X
322
330
     PRINT "NØ SIGN CHANGE FØUND"
340
     STOP
392
394
     REM * LINES 400 THROUGH 550 CARRY OUT INTERVAL
          HALVING. INTERVAL BOUNDARIES ARE X1 AND X2
395
396
          EXACT ZEROS ARE FOUND IN LINE 840
     REM
400
     LET X1 = X-S
     LET X2 = X
410
420
    LET Y2 = P3
422
424
     REM * HALVING TAKES PLACE IN LINE 430
430 LET X0 = (X1+X2)/2
440 GØ SUB 800
450
        IF ABS(X1-X2)/(ABS(X1)+ABS(X2)) > 1E-6 THEN 500
460 PRINT
    PRINT "APPROXIMATE ZERO:"
PRINT "P("; XO; ")="; P3
             "APPROXIMATE ZERO:"
470
480
490
     STOP
500 IF Y1*P3 > 0 THEN 530
510 LET X2 = X0
520 GØTØ 420
530
    LET X1 = X0
LET Y1 = P3
540
550
    GØ TØ 430
792
794
     REM * EVALUATE BY NESTING
800 LET P3 = P(N+1)
810 FØR I = N TØ 1 STEP -1
      LET P3 = P3*X0 + P(1)
820
830 NEXT I
832
840
        IF P3 <> 0 THEN 880
850
    PRINT
860
     PRINT XO; "IS A ZERO"
     STØP
870
880
     RETURN
882
884
     RFM
890
     DATA 3, 1,2,3,4
900
     END
RUN
ZER0 02
POLYNOMIAL IS 1 2 3 4
FIRST, LAST, STEP? -2,-1,.1
SIGN CHANGE:
P(-1.7 )=-0.233 AND P(-1.6 )= 0.224
APPRØXIMATE ZERØ:
P(-1.65063 )=-4.7632E-6
```

# Summary of Sec. 8-2

We have used the principle that if  $f(x_1)$  and  $f(x_2)$  are of opposite signs, there must be a value of x between  $x_1$  and  $x_2$  such that f(x) = 0 if we are to find intervals within which zeros exist for polynomial functions. We have further reduced interval size by successive halving to obtain approximate zeros. All of the methods used here can easily be applied to other finite continuous functions as well.

#### Problems for Sec. 8-2

- 1) Find a zero for any or all of the following:

  - a)  $x^3 + 6x^2 49x + 66$ b)  $x^4 + 2x^3 13x^2 14x + 24$
  - c)  $x^3 + 11x^2 68x 672$
  - d)  $2x^3 + 3x^2 + 4x 5$
  - e)  $x^5 + 13x^4 37x^3 457x^2 + 492x + 2340$
  - f)  $x^3 + 2x^2 11x 12$
  - g)  $x^5 + 4.8x^4 4.2x^3 29.6x^2 + 7.2x + 28.8$
- 2) Modify ZER@02 to search for all real zeros automatically after the values of F, L, and S have been specified. Be sure to stop if all zeros have been found without further testing values of x.
- 3) Modify ZERØ02 to use linear interpolation instead of interval halving to obtain approximate zeros.
- 4) Modify ZERØ02 to find zeros for any continuous function rather than just a polynomial function.

## Synthetic Division to Get Further Zeros

We present the Remainder Theorem, Factor Theorem, and synthetic division as aids to finding zeros after a first zero is known.

#### The Remainder Theorem

If p(x) is divided by (x - z), the remainder is the value of the polynomial when z is substituted for x.

$$\frac{p(x)}{(x-z)}=q(x)+\frac{r}{(x-z)}$$

That is, p(x) divided by (x - z) yields a quotient polynomial plus a remainder. Multiplying through by (x - z) we get:

$$p(x) = (x - z)q(x) + r$$

and when z is substituted for x that produces:

$$p(z) = (z - z)q(z) + r$$

or simply

$$p(z) = r$$

#### Factor Theorem

We note that when the value of r is zero, we have p(z) = 0, and that makes z a solution of the equation p(x) = 0 or a zero of the polynomial. Since the remainder is zero after dividing by (x - z), it follows that (x - z) must be a factor of p(x), or

$$p(x) = (x - z)q(x)$$

Having found the first zero using the procedure of Sec. 8-2, we need only find

q(x) and then use the procedure of 8-2 on it, repeating until all real zeros are found.

## Synthetic Division

We now develop the synthetic division algorithm using  $x^4 + 5x^3 + 9x^2 + 8x + 4$  divided by x + 2 as an example. It is this division that will enable us to find q(x) above. We begin by performing the division "long hand":

$$\begin{array}{r}
x^{3} + 3x^{2} + 3x + 2 \\
x + 2)x^{4} + 5x^{3} + 9x^{2} + 8x + 4 \\
\underline{x^{4} + 2x^{3}} \\
3x^{3} + 9x^{2} \\
\underline{3x^{3} + 6x^{2}} \\
3x^{2} + 8x \\
\underline{3x^{2} + 6x} \\
2x + 4 \\
2x + 4
\end{array}$$

Notice that a great many things will always be written twice. We will always "bring down"  $9x^2$  and 8x and 4. For division by x + 2, we will always get  $x^4$  and  $3x^3$  and  $3x^2$  and 2x repeated. So let us eliminate these repetitions and compress the problem vertically:

$$\begin{array}{r}
x^3 + 3x^2 + 3x + 2 \\
x + 2)x^4 + 5x^3 + 9x^2 + 8x + 4 \\
\underline{2x^3 + 6x^2 + 6x + 4} \\
3x^3 + 3x^2 + 2x
\end{array}$$

Now if we line things up properly, there is no need to write the x's and their exponents. And there will always be an x in the divisor, so we don't need that. Let's condense again:

$$\begin{array}{r}
1 + 3 + 3 + 2 \\
+ 2)1 + 5 + 9 + 8 + 4 \\
2 + 6 + 6 + 4 \\
\hline
3 + 3 + 2
\end{array}$$

Since the coefficient of the first term of the quotient is always the same as the coefficient of the first term of the original polynomial, we can make the bottom line of figures exactly agree with the top line by simply bringing down the first figure. Now we eliminate the top line to get:

$$\begin{array}{r} +2)\overline{1 + 5 + 9 + 8 + 4} \\ 2 + 6 + 6 + 4 \\ \hline 1 + 3 + 3 + 2 \end{array}$$

DIVIDE

Recognizing that subtraction is the same as "changing the sign and adding," we can change the 2 to a -2 and add instead of subtracting. That leaves us with:

$$\begin{array}{r} -2)\overline{1 + 5 + 9 + 8 + 4} \\ -2 - 6 - 6 - 4 \\ \hline 1 + 3 + 3 + 2 \end{array}$$

The sequence of operations is as follows: Bring down the 1, multiply the 1 by -2, and write it under the 5. Add 5 and -2 to get 3. Multiply the 3 by -2 and write it down under the 9. Add 9 and -6 to get 3. Multiply 3 by -2 and write it down under the 8. Add 8 and -6 to get 2. Multiply 2 by -2 and write it down under the 4. Add 4 and -4 to get a remainder of 0. Division done by this algorithm is called "synthetic division."

Since synthetic division is an iterative process, it is especially suited to the computer. Notice that most of the process consists of multiplying and adding. Not only is that an iterative process, but it is the same iterative process used for evaluating polynomials by the nesting method. All that is required to adapt the subroutine 800 in program  $\text{ZER}\phi02$  to synthetic division is to store the subtotals along the way in an appropriate list element. This is done in line 820 of program DIVIDE. Look at program DIVIDE and compare subroutine 800 in it with the subroutine 800 in  $\text{ZER}\phi02$ .

```
REM * THIS PROGRAM USES SYNTHETIC DIVISION
94
100 DIM P(15), Q(15)
110 READ N
     PRINT "P(X)=";
120
130 FOR I = N+1 TO 1 STEP -1
        READ P(I)
140
        PRINT P(I);
150
160 NEXT I
162
170
     PRINT
180 PRINT
            "DIVIDE BY X-";
     INPUT XO
190
200
     PRINT
            "QUOTIENT ";
210
     GOSUB 800
220
     STØP
792
794 REM * THE DIVISION TAKES PLACE IN LINES 800 TO 830
795 REM * NOTE THE SIMILARITY TO NESTING
800 LET P3 = Q(N+1) = P(N+1)
810 FOR I = N TO 1 STEP -1
         LET Q(I) = P3 = P3*X0 + P(I)
- 820
830 NEXT I
832
834 REM * PRINT RESULTS
840 FØR I = N+1 TO 2 STEP -1
        PRINT O(I);
 850
 860 NEXT I
 862
     PRINT "REMAINDER ="; 0(1)
 870
 880
     RETURN
 882
 884
     RFM
 890
     DATA 4, 1,5,9,8,4
 900
     END
```

```
RIN
DIVIDE

P(X)= 1 5 9 8 4

DIVIDE BY X-? -2

QUOTIENT 1 3 3 2 REMAINDER = 0
```

Program DIVIDE works well, but why use a program to perform division in the first place? Why not simply use program ZER $\phi$ 02 to look for zeros until we find all of them? It is true that program ZER $\phi$ 02 would easily find -2 as a zero of  $f(x) = x^4 + 5x^3 + 9x^2 + 8x + 4$ , but then what? Program ZER $\phi$ 02 will find no further zeros. We may use the results of a run of program DIVIDE to see why.

The output of program DIVIDE above tells us that

$$x^4 + 5x^3 + 9x^2 + 8x + 4 = (x + 2)(x^3 + 3x^2 + 3x + 2)$$

So -2 is a zero of our function  $f(x) = x^4 + 5x^3 + 9x^2 + 8x + 4$ . Next we want a zero of  $q(x) = x^3 + 3x^2 + 3x + 2$ . Let's use program ZER $\phi$ 02 to find that zero.

```
890 DATA 3, 1,3,3,2
RUN
ZEROO2
POLYNOMIAL IS 1 3 3 2
FIRST, LAST, STEP? -5,5,1
```

A run of ZER $\phi$ 02 with the new data reveals why we could not have found one of the other zeros. We now see that -2 is a zero of the function f twice and our program had no way of determining that fact. Values that occur more than once as zeros are called multiple zeros. Why wouldn't ZER $\phi$ 02 find the other two zeros? Let's divide q(x) by (x + 2) and find out.

```
890 DATA 3, 1,3,3,2
RUN
DIVIDE

P(X)= 1 3 3 2
DIVIDE BY X-? -2
0U0TIENT 1 1 REMAINDER = 0
```

Thus one factored form of our original polynomial is

$$(x + 2)(x + 2)(x^2 + x + 1)$$

The first two factors tell us that -2 is a zero twice and analyzing the third factor using the quadratic formula tells us that the final two zeros are nonreal numbers. They are  $-\frac{1}{2} + \frac{1}{2}i\sqrt{3}$  and  $-\frac{1}{2} - \frac{1}{2}i\sqrt{3}$ .

Thus we see that the ability to divide polynomials by (x - z) where z is a zero of the polynomial function makes more information available to us than we would have if we limited ourselves to the procedures of program ZER $\emptyset$ 02. The ability to divide enables us to find multiple zeros and, where we are able to divide so that the quotient polynomial is a quadratic, we are able to determine nonreal zeros. We note that caution must be exercised when dividing by approximate zeros. Each succeeding division will be susceptible to additional error.

## Summary of Sec. 8-3

The Factor Theorem tells us that when we find a zero z, we may divide the polynomial by (x-z) to obtain a new polynomial with one less zero. Synthetic division has been shown to duplicate the steps of evaluating a polynomial by the nesting method and so enables us to easily perform the division indicated by the results of the factor theorem. This enables us to find multiple zeros and, in some cases, nonreal zeros.

#### Problems for Sec. 8-3

- Write a program to find the zeros of third-degree polynomials by finding the first zero and then finding the remaining zeros by using the quadratic formula.
- 2) Incorporate synthetic division into program ZER $\phi$ 02 so that whenever a zero is found, the division is performed and a search is begun for the next zero.
- 3) Use the methods of this section to find as many zeros as possible for the problems of problem 1 in Sec. 8-2.

#### 8-4 Miscellaneous Aids

## Integral Zeros

It can be shown that for an *n*th degree polynomial with zeros  $z_n$ ,  $z_{n-1}, \ldots, z_2, z_1$  that the following is true:

$$(x - z_n)(x - z_{n-1}) \dots (x - z_2)(x - z_1)$$
  
=  $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ 

Considering the product of n binomials on the left we can see that  $(-z_n)$   $(-z_{n-1})$  ...  $(-z_2)(-z_1)$  is the constant term in the product which must equal the constant term on the right, or  $a_0$ . If there is at least one integral zero and  $a_0$  is an integer, that means that all integral zeros of a polynomial must be factors of  $a_0$ . So we could write a program somewhat simpler than ZER $\phi$ 01 that would search only for integral zeros by first determining all integral factors of  $a_0$ . In program ZER $\phi$ 01 we used p(1) for  $a_0$ .

# Descartes' Rule of Signs

Consider the polynomial  $x^2 + 8x + 1$ . It should be clear that no matter what positive value we might try for x, we can never make  $x^2 + 8x + 1$  equal zero because  $x^2$  and 8x are both positive for x positive. Thus in searching for real zeros we need not consider any positive numbers. The same is true for  $-2x^2 - 5x - 1$ . Now, what about  $x^2 + 3x - 1$ ? Can there be more than one

positive value of x for which  $x^2 + 3x - 1 = 0$ ? No! Consider as another example  $x^2 + 1$ . There is no positive replacement for x to make  $x^2 + 1$  equal to zero, and likewise there is no negative replacement for x that makes  $x^2 + 1$  equal to zero since  $x^2$  would have to equal -1. That tells us that since  $x^2 + 1$  is a second-degree polynomial and has two complex zeros, they must both be nonreal. Descartes observed all this and more and left us with Descartes' Rule of Signs.

We may define the variation v in a sequence of numbers as the number of changes in sign found by comparing successive pairs of adjacent numbers. For example, for the sequence 1, 3, 4, -8, 2, the value of v is 2. There is no change for 1 to 3 or 3 to 4. There is one change for 4 to -8 and for -8 to 2. If zeros appear in the sequence, we drop them. The sequence -2, 8, 0, 5, -3, 6 becomes -2, 8, 5, -3, 6 in order to determine the number of variations, which is 3.

Descartes' Rule of Signs says that for

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

the number of positive zeros depends on the number of variations in the sequence,  $a_n$ ,  $a_{n-1}$ , ...,  $a_1$ ,  $a_0$ , in the following manner. If v is the number of variations, then the number of positive zeros is either v or v-2 or v-4, etc., but not less than zero. This may be written v-2i where i is a positive integer.

It turns out that we may find a corresponding number for negative zeros by finding positive zeros for p(-x). Substituting -x for x will change the sign of all terms which have an odd exponent for x. Thus if  $p(x) = -4x^5 - 3x^4 + 5x^3 - 2x^2 + x - 3$ , the value of v is 4 and there must be 4 or 2 or 0 positive zeros. Now we find that  $p(-x) = +4x^5 - 3x^4 - 5x^3 - 2x^2 - x - 3$  and that v is 1. Thus there must be exactly one negative zero. For example, in  $3x^6 - 2x^5 + x^4 - 2x^3 + 5x^2 - x + 1$ , we might expect to find as many as six positive zeros, but under no conditions would we look for negative zeros since  $p(-x) = 3x^6 + 2x^5 + x^4 + 2x^3 + 5x^2 + 1$ , which gives zero variations. All of this gives us a great deal of information. Sometimes the information is exact, as when we get 0 or 1 as the number of variations. At other times we get only a guide, as with  $x^3 + 2x^2 + 2x + 1$ , which has no positive real zeros and three variations for p(-x), which gives 3 or 1 negative real zeros. A solution of the problem will yield one negative zero and two nonreal zeros in this particular example.

#### Problems for Sec. 8-4

- 1) Write a program to produce polynomials of random degree when zeros are all random integral values.
- 2) Write a program to produce an *n*th degree polynomial given *n* integral zeros.
- 3) Modify program ZER $\phi$ 01 to find all integral zeros by having x go from  $-a_0$  to  $a_0$  STEP SGN  $(a_0)$ .
- 4) In problem 3, how many additions and multiplications would be required in  $a_0 = 100$  for nesting compared to the use of exponents, not counting the loop operations?
- 5) Modify program ZER $\phi$ 01 to find all integral zeros by having x take on only values which are factors of  $a_0$ .

- 6) Analyze the number of operations called for in problem 5 as compared to problem 3 for selected values of  $a_0$ .
- 7) Write a routine to use Descartes' Rule of Signs which merely prints the number of possible zeros in each of the following categories: complex, positive, negative, and zero. Be careful about zero coefficients.
- 8) Incorporate the routines of problem 7 in ZER\$\phi\$02 so that the computer stops searching if it has found enough positive zeros and if it has found enough negative zeros. Be sure to have the program check for both positive and negative possibilities.
- 9) An upper bound may be placed on zeros by finding a non-negative value of z such that after dividing by (x z), all nonzero terms in the third line of the synthetic division are of the same sign, provided the leading coefficient of p(x) is positive. A lower bound may be found by taking the negative of the upper bound for p(-x). Write a program to find upper and lower bounds.

# 9 SEQUENCES AND SERIES

## 9-1 Sequences

A sequence is simply a list of numbers. It is, of course, a natural for use in computers, although a computer list may not be essential for a particular application.

Sequences come in two kinds, finite and infinite. Obviously we will only be able to evaluate a finite number of terms for any sequence used in a computer.

We routinely work with sequences. The set of counting numbers is a sequence, as is the set of odd integers and the set of even integers. If we were to consider 10 random numbers, they could constitute a sequence. It is more usual that the numbers in a sequence follow some relatively simple pattern. One such sequence you've probably seen goes 1, 1, 2, 3, 5, 8, where every number from the third on is the sum of the previous two. This is called the Fibonacci sequence. The numbers in this sequence have widespread significance in mathematics, art, and nature. We can easily write a program to compute elements of this sequence, store them in a list, and print them, as shown in Program FIBO1. One can generate a Fibonacci type sequence by selecting any two integers for F(1) and F(2).

```
F1801
     REM * THIS PROGRAM PRINTS THE FIRST
     REM 30 FIBØNACCI NUMBERS
95
100
     DIM F(30)
102
     REM * STØRE THE NUMBERS IN A LIST
104
110
     LET F(1) = F(2) = 1
     FØR X = 3 TØ 30
120
        LET F(X) = F(X-1) + F(X-2)
1.30
140
     NEXT X
142
```

```
REM * NOW PRINT THE LIST
144
150
     FØR X = 1 TØ 30
        PRINT F(X),
160
170
     NEXT X
172
180
     END
RUN
FIBOI
 1
                 ł
                                                  3
                 13
                                                                   55
                                  21
                                                  34
 89
                 144
                                  233
                                                  377
                                                                   610
                 1597
 007
                                  2584
                                                  4181
                                                                   6765
 10946
                 17711
                                  28657
                                                  46368
                                                                   75025
 121393
                 196416
                                  317811
                                                  514229
                                                                   632040
```

Probably one of the simplest sequences is the set of counting numbers. It begins  $1, 2, 3, \ldots$  This is an example of an "arithmetic sequence." An arithmetic sequence is one in which we get from one term to the next by adding a constant, called the common difference. The general form for the nth term of such a sequence is  $t_n = t_1 + (n - 1)d$ , and we will discuss this later. For the counting sequence, d = 1.

Some sequences are motivated by physical problems. Suppose you are 200 feet from a fixed point. How long will it take to reach that point if you cover half the remaining distance every minute? It should be clear that you cannot ever reach that point, because at every minute along the way there is still a distance separating you from the point and half of that is still a nonzero distance. So there is always a distance remaining, and you can only cover half of it in the next minute. However, it is also clear that at some point you can reach out and touch the point. So we might ask how long it will take to be within six inches. Consider program HALF.

```
HALF
94
     REM * THIS PROGRAM HALVES DISTANCE
95
     REM * INITIAL CONDITIONS - 200 FEET AT TIME ZERO
96
100 LET D = 200
110
     LET T = 0
112
114
     REM * NOW COVER HALF THE REMAINING DISTANCE
115
     REM EVERY MINUTE
     LET T = T+1
120
130 LET D = D*(1/2)
     IF D > 6/12 THEN 120
PRINT "DISTANCE ="; D; "FEET"
140
150
     PRINT "IN"; T; "MINUTES"
160
170
     END
RUN
HALF
DISTANCE = 0.390625 FEET
IN 9 MINUTES
```

If we change HALF to look at the intermediate values of D, we get an example of another common type of sequence. Consider program HALF1.

```
135 PRINT T; D
RUN
HALF1
```

```
1 100
2 50
3 25
4 12.5
5 6.25
6 3.125
7 1.5625
8 0.78125
9 0.390625
DISTANCE = 0.390625 FEET
```

Each term in the sequence is calculated by multiplying the previous term by a constant. In our problem the constant is  $\frac{1}{2}$ . Such sequences are called "geometric sequences." The constant term is called the "common ratio." The nth term of a geometric sequence can be found by the formula  $t_n = t_1 r^{(n-1)}$ , where r is the common ratio.

A common situation described by a geometric sequence is compound interest. If you put money in a savings account, the bank adds interest to the account at regular intervals, and the amount becomes the principle for the next interest period. If the interest rate per interest period is r, we get the amount at the end of that period as p + pr, which equals p(1 + r), and at the end of n periods we get  $p(1 + r)^n$ . If you put \$100 in a bank for one year at 5% interest compounded monthly, the rate for each interest period would be .05/12, and the number of interest periods would be 12. Consider Program INT.

```
INT
94
     REM * THIS PROGRAM CALCULATES COMPOUND
95
     REM INTEREST BY FORMULA
100 READ N
110 FØR I = 1 TØ N
120
        READ P. RI. NI. Y
130
        LET R = RI/NI
140
        LET N = N1+Y
150
        LET A = P*(1+R/100)+N
              "$", P; "AT", R1; "% FØR"; Y; "YEARS"
160
        PRINT
170
        PRINT
              "COMPOUNDED"; NI; "TIMES ANNUALLY BECOMES S"; A
        PRINT
180
190 NEXT I
192
     REM
194
200 DATA
          100, 5, 4, 2
    DATA
210
220
    DATA
230
    DATA
          100, 5, 365, 2
240
    END
RIIN
INT
$ 100 AT 5 % FOR 2 YEARS
COMPOUNDED 4 TIMES ANNUALLY BECOMES $ 110.449
$ 100 AT 5 % FØR 2 YEARS
COMPOUNDED 12 TIMES ANNUALLY BECOMES $ 110.494
$ 100 AT 5 % FØR 2 YEARS
COMPOUNDED 365 TIMES ANNUALLY BECOMES $ 110.516
```

For some sequences we are merely given a formula. For example, consider the sequence for which the *n*th term is (2n - 1)/(2n + 1). We see the first 20 terms in program SEQO1.

```
SE 901
     REM * THIS PROGRAM PRINTS 20 TERMS OF THE
94
95
    REM SEQUENCE (2*N-1)/(2*N+1)
100 DEF FNS(N) = (2*N-1) / (2*N+1)
110 FØR I = 1 TØ 20
       PRINT FNS(I), 2*I-1; "/"; 2*I+1
120
130 NEXT I
132
140
    END
RUN
SE 001
0.333333
                1 / 3
                3 / 5
0.6
0.714286
                7/9
 0.777778
                9 / 11
 0.818182
 0.846154
                13 / 15
 0.866667
                15 / 17
17 / 19
 0.882353
 0.894737
                19 / 21
 0.904762
 0.913043
                21 / 23
 0.92
                23 / 25
 0.925926
                25 / 27
 0.931034
                27 / 29
                29 / 31
 0.935484
 0.939394
                31 / 33
                33 / 35
 0.942857
                35 / 37
 0.945946
 0.948718
                37 / 39
 0.95122
```

### Summary of Sec. 9-1

Sequences are defined as lists of numbers. Sequences may be motivated by a study of some natural phenomenon or simply an interest in the relationships of numbers.

#### Problems for Sec. 9-1

- Beginning with the second Fibonacci number, and continuing to the eighteenth term of the sequence find (a) the square of the term, (b) the product of the immediately preceding and the immediately following terms, and (c) the difference of the numbers obtained in (a) and (b).
- 2) For at least 25 Fibonacci numbers, find, for all possible pairs, the greatest common factor.
- 3) For at least 15 Fibonacci numbers, print the ratios of adjacent terms.
- 4) Have the computer print at least 20 elements of a general Fibonacci sequence making f(1) = 1 and f(2) = 3, or any f(1) and f(2) you prefer.
- 5) For a general Fibonacci sequence like that in problem 4, print the ratio of adjacent terms.
- 6) For a general Fibonacci sequence like that in problem 4, print the square of each term from the second to the next to last, the product of the one just before and the one just after, and the difference of these results.
- 7) Find the accrual to \$1000 after seven years at 6% interest compounded monthly and also compounded daily.

- 8) Find how many minutes it will take for you to get to within six inches of a point if you start 200 feet away and every minute you cover one-third of the remaining distance.
- 9) Suppose that a rubber ball is known to bounce to three-fourths of the height from which it is dropped. If the ball is dropped from 10 feet, how many bounces will it take to bounce back less than one inch?
- 10) If you were to place one grain of rice on the first square of a chess board, two grains on the second, four grains on the third, doubling the number from each square to the next, how many grains would you have to place on the 64th square? (Could you?)
- 11) Print a few terms of any of the following:

(a) 2n + 3(b)  $2n^2 - n + 1$ (c)  $2^n/n^2$ 

(d)  $n^n$ (e)  $n^{(1/n)}$ (f)  $(1 + 1/n)^n$ 

## Convergence and Divergence

Looking at the sequences of the last section and the results of the problems, we can see some differences. Note that for the Fibonacci sequence, the numbers get larger and larger, and for the sequence in which the distance is halved each minute, the terms get closer and closer to zero. For the sequence generated by (2n - 1)/(2n + 1), the terms seem to get closer and closer to one. The later two sequences are examples of converging sequences, and the Fibonacci sequence is an example of a diverging sequence.

If a sequence converges on some value, then that value is called the limit of the sequence. In the formal study of limits, methods are developed for determining whether or not a sequence has a limit and for finding the limit if it does exist. However, we will take a somewhat informal approach here.

The limit of a sequence of values  $s_1, s_2, \ldots s_n$  is denoted by

$$\lim_{n\to\infty} s_n$$

Thus for  $s_n = (2n - 1)/(2n + 1)$ , we write:

$$\lim_{n\to\infty}\frac{2n-1}{2n+1}=1$$

Note that there is no integer for which (2n-1)/(2n+1) actually equals one, but the larger n gets, the closer to one the value of (2n - 1)/(2n + 1) becomes. We can get some insight into the behavior of sequences by looking at a few terms, even if that insight is that we need to look at still more terms. In order to be certain about the properties of some sequences, you should pursue a formal study of limits. However, one clear benefit of using the computer is that we may look at hundreds or even thousands of terms without tedious hand calculations. Of course, one way to save computer time is to print only those values that we are interested in seeing. Sequences converge and diverge at vastly different rates. Therefore don't be too quick to infer too much from just a few terms.

We can look at  $\lim_{i\to\infty} \left(-\frac{3}{5}\right)^i$  by writing a very short program to print some terms. See program LIM01.

```
LIMOI
94
     REM * THIS PROGRAM PRINTS SAMPLE VALUES
95
     REM FOR THE SEQUENCE S = (-3/5)+H
100 DEF FNL(H) = (-3/5)+H
110 FOR I = 1 TØ 10
       PRINT I; FNL(I)
120
130 NEXT I
132
    PRINT 100; FNL(100)
PRINT 101; FNL(101)
140
150
160
     END
RUN
LIM01
 1 -0.6
2 0.36
 3 -0.216
 4 0.1296
 5 -0.07776
  0.046656
 7 -2.79936E-2
 8 1.67962E-2
 9 -1.00777E-2
 10 6.04662E-3
 100 6.53319E-23
 101 -3.91991E-23
```

Looking at just the first 10 terms we can see that each term is closer to zero than the one before and that the values alternate between positive and negative. For the one-hundredth term, we get  $6.5 \times 10^{-23}$  and for the one-hundred and first term we get  $-3.9 \times 10^{-23}$ , making us more and more confident that the limit is zero.

Not all converging sequences converge on zero. Consider  $\lim_{n\to\infty} (2 + \frac{1}{5}^n)$ .

We can see that  $(\frac{1}{5})^n$  converges on zero, and therefore  $2 + (\frac{1}{5})^n$  converges on 2 + 0, or 2. Look at program LIM02, and see how much faster it converges than program LIM01.

```
LIM02
      REM * THIS PROGRAM PRINTS SAMPLE VALUES
95 REM FOR THE SEQUENCE S = (2+(1/5)+H)
100 DEF FNL(H) = (2+(1/5)+H)
110 FOR I = 1 TO 10
120
         PRINT I; FNL(I)
130 NEXT I
132
140
      END
RUN
LIM02
     2.2
   2.04
    2.008
    2.0016
    2.00032
    2.00006
 7
     2.00001
   2.
     2.
 10
     2.
```

It should be clear that if any number n such that |n| < 1 is raised to higher and higher powers, the closer to zero n is, the faster the result approaches zero.

We will look at an example of divergence before we leave this section. Suppose that we have a magic ball that bounces to 110 percent of the height from which it is dropped. If we drop this ball from 10 feet, after one bounce it reaches 11 feet. After the second bounce, it reaches 12.1 feet, etc. How high will it go after 10 bounces? See program BØUNCE.

```
BOUNCE
    REM * THIS PROGRAM PRINTS HEIGHTS FOR A BALL
    REM RECOVERING 110% OF ITS HEIGHT EACH BOUNCE
100 LET H = 10
110 FØR I = 1 TØ 10
      LET H = H*1.10
120
       PRINT IJ H
130
140 NEXT I
142
150 END
RUN
BØUNCE
  11
2 12.1
 3 13.31
   14.641
   16 - 1051
   17.7156
   19.4872
   23.5795
 10 25.9374
```

# Summary of Sec. 9-2

We have been judging divergence and convergence of sequences by looking at successive terms.

#### Problems for Sec. 9-2

- 1) Compare the convergence of  $\left(-\frac{100}{101}\right)^n$  with  $\left(\frac{1}{10}\right)^n$ .
- 2) Print a few terms of  $1 + (\frac{2}{3})^n$  and  $(1 + (\frac{2}{3}))^n$ .
- 3) Write a program to give enough terms of  $(2 + (n 2)/n^2)$  to decide on convergence.
- 4) Write a program to examine any or all of the following:

(a) 
$$\frac{n^2 + 3n - 1}{n}$$

(b) 
$$\frac{n-1}{(n+1)(n-2)}$$

(c) 1/n!

(d) 
$$1 - 1/3! + 1/5! + \ldots + (-1)^{n+1}/(2n - 1)!$$

(e) 
$$(1 + (1/n)^n)$$

(f) 
$$\frac{\sin(n)}{n}$$

5) It can be shown for the Fibonacci sequence that the nth term is:

$$F_n = \frac{(1 + \sqrt{5})^2 - (1 - \sqrt{5})^2}{2^n \sqrt{5}}$$

Verify this for a reasonable number of terms.

## 9-3 Series

A series is what you get if you write the terms of a sequence with plus signs between them. In other words, a series is the sum of a sequence. Thus the series for the counting sequence is

$$1 + 2 + 3 + 4 + 5 + \cdots$$

The sum of the first five terms is 15. Note that if we look at successive sums, we can form yet another sequence called the sequence of partial sums. For the counting sequence, we get

We could look at the series associated with that sequence and so on without end.

For some series, we can evaluate the sum by formula, and for others, to do so is difficult. It is even possible to evaluate the sum by formula for certain infinite sequences.

Looking at an arithmetic series of n terms, we see that

$$s_n = t_1 + (t_1 + 1d) + (t_1 + 2d) + \ldots + (t_1 + (n-1)d)$$
 (8.1)

and looking at the same series in reverse order we see that

$$s_n = (t_1 + (n-1)d) + \ldots + (t_1 + 2d) + (t_1 + 1d) + t_1$$
 (8-2)

Adding (8-2) to (8-1) we get

$$2s_n = (2t_1 + (n-1)d) + \ldots + (2t_1 + (n-1)d) + (2t_1 + (n-1)d) + (2t_1 + (n-1)d)$$

which is therefore twice the sum  $s_n$ . Note that  $2t_1 + (n-1)d$  occurs n times. Thus we get  $2s_n = n(2t_1 + (n-1)d)$  or  $2s_n = n(t_1 + (t_1 + (n-1)d)$ . Since the nth term is  $t_1 + (n-1)d$ , we get  $2s_n = n(t_1 + t_n)$  or

$$s_n = (n/2)(t_1 + t_n)$$

This gives us a choice for finding the sum of an arithmetic series. We may use either the formula, or add terms as we generate them in a computer loop. For a geometric series we have

$$s_n = t_1 + t_1 r + t_1 r^2 + \ldots + t_1 r^{(n-1)}$$
 (8-3)

Multiplying both sides by r we get

$$rs_n = t_1 r + t_1 r^2 + t_1 r^3 + \ldots + t_1 r^n$$
 (8-4)

Subtracting (8-4) from (8-3) we get

$$s_n - rs_n = t_1 - t_1 r^n$$

which simplifies to

10

512

$$s_n = t_1 \left( \frac{1 - r^n}{1 - r} \right)$$

Again we have the choice of finding the sum by formula or by having the computer add terms as it generates them.

We can get some idea about how the arithmetic and geometric series behave by picking two terms and treating them as the first and second terms for both kinds of sequences. This is done for two pairs of terms in two runs of program  $GE \phi ARI$ .

Note that in both cases the sequence of sums for the arithmetic sequence seems to diverge. In fact, all arithmetic sequences for d <> 0 diverge and so do their associated sequences of sums. We can see that one of the geometric sequences diverges and the other seems to converge. All geometric sequences and their associated series for which |r| < 1 converge.

```
GEØARI
94
     REM * THIS PROGRAM PRINTS VALUES FOR GEOMETRIC AND
95
    REM ARITHMETIC SEQUENCES AND SERIES WITH THE SAME
    REM FIRST TWO TERMS
100 PRINT "FIRST TWO TERMS";
110
    INPUT A(1), A(2)
    LET S(1) = T(1) = G(1) = A(1)
120
130 LET G(2) = A(2)
132
    REM * FIND COMMON DIFFERENCE FOR ARITHMETIC SEQUENCE
134
140 LET D = A(2) - A(1)
142
    REM * FIND COMMON RATIO FOR GEOMETRIC SEQUENCE
144
150 LET R = G(2)/G(1)
    PRINT "TERM", "GEO SEO", "GEO SERIES",
160
170 PRINT "ARITH SEQ", "ARITH SERIES"
172
174
    REM * STORE SUCCESSIVE VALUES IN LISTS
180 FØR I = 2 TØ 10
190
       LET G(I) = G(I-1)*R
200
       LET S(I) = S(I-1) + G(I)
       LET A(I) = A(I-1) + D
210
220
       LET T(I) = T(I-1) + A(I)
230 NEXT I
232
234
    REM * PRINT RESULTS
240 FØR I = 1 TØ 10
      PRINT 1, G(1), S(1), A(1), T(1)
250
260 NEXT I
262
    FND
270
RUN
GEØARI
FIRST TWO TERMS? 1,2
TERM
              GEØ SEQ
                            GEØ SERIES
                                             ARITH SEQ
                                                            ARITH SERIES
                               3
 3
                4
                               7
                                              3
                8
                               15
                                                             10
                16
                              31
                                                             15
                32
                               63
                                                             21
                64
                               127
                                                             28
                128
                               255
                                                             36
                256
                               511
                                                             45
```

1023

10

55

RUN GEØARI

| FIRST | TWØ | TERMS?4,3 |            |           |              |
|-------|-----|-----------|------------|-----------|--------------|
| TERM  |     | GEØ SEQ   | GEO SERIES | ARITH SEQ | ARITH SERIES |
| 1     |     | 4         | 4          | 4         | 4            |
| 2     |     | 3         | 7          | 3         | 7            |
| 3     |     | 2.25      | 9 • 25     | 2         | 9            |
| 4     |     | 1.6875    | 10.9375    | 1         | 10           |
| 5     |     | 1.26562   | 12.2031    | 0         | 10           |
| 6     |     | • 949219  | 13.1523    | -1        | 9            |
| 7     |     | •711914   | 13.8643    | -2        | 7            |
| 8     |     | .533936   | 14.3982    | -3        | À            |
| 9     |     | • 400452  | 14.7986    | - 4       | o o          |
| 10    |     | .300339   | 15.099     | ~ S       | <b>-</b> 5   |

Looking at the formula for the sum of a geometric sequence.

$$s_n = t_1 \left( \frac{1 - r^n}{1 - r} \right)$$

we can see for |r| < 1 that  $r^n$  gets closer and closer to zero as n gets larger and larger. Thus  $1 - r^n$  gets closer and closer to one, that is,  $\lim_{n \to \infty} 1 - r^n = 1$ ,

and

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} t_1 \left( \frac{1 - r^n}{1 - r} \right) = t_1 \left( \frac{1}{1 - r} \right)$$

Thus for an infinite sequence with |r| < 1,

$$s = t_1 \left( \frac{1}{1 - r} \right)$$

Finally, we will look at some other series in the next section.

## Summary of Sec. 9-3

We have defined a series as what we get by replacing commas with plus signs in sequences. We can find the successive sums of a series, which is the sequence of partial sums. For an arithmetic series the *n*th sum is  $s_n = (n/2) \cdot (t_1 + t_n)$ , and for a geometric series the *n*th sum is  $s_n = t_1(1 - r^n)/(1 - r)$ .

Series either converge on some real number value or they diverge. All arithmetic series diverge, and geometric series diverge for a common ratio greater than or equal to 1 or less than or equal to -1.

#### Problems for Sec. 9-3

- 1) For the magic ball bounding to 110 percent of its height in Sec. 9-2, find the total distance traveled before reaching the height of the tenth bounce.
- 2) Find the sum of the first n positive integers for the following values of n: 10, 100, 1000, and 10000.
- 3) In the song "The Twelve Days of Christmas," gifts are bestowed upon the singer in the following pattern: the first day she receives a partridge in a pear tree; the second day two turtle doves and a partridge in a pear

tree; the third day three French hens, two turtle doves, and a partridge in a pear tree. This continues for 12 days. On the twelfth day she receives  $12 + 11 + \cdots + 2 + 1$  gifts. How many gifts were there altogether? Note that the figure asked for here is the twelfth term of the sequence of partial sums of the sequence of positive integers.

#### 9-4 More on Series

There are many series that have importance in the field of mathematics which are neither arithmetic nor geometric.

It can be shown that the cosine is the sum of an infinite sequence:

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + (-1)^{n+1} \frac{x^{2n-2}}{(2n-2)!} + \cdots$$

While this is a very tedious calculation by hand, it is relatively simple with the aid of a computer program. As with finding zeros for polynomials, we use a relative comparison to decide when to stop (see line 180 of program  $C\phi$ SINE). However, in the case of polynomial evaluation, we were using the value at the midpoint of an interval which we knew contained the true value. In that case we had a measure of relative error. In the present situation we have somewhat less information. We have only the sum of n terms to compare with the sum of n-1 terms. Thus we are saying that the magnitude of the most recent term is small enough to stop summing. When the magnitude of the most recent term is very small compared to the sum so far, we may expect the error to be small also, but not necessarily as small. We have not attempted to measure the cumulative effect of the remaining terms, although methods exist for evaluating it.

```
CØSINE
       REM * THIS PROGRAM APPROXIMATES COSINE X
 94
       REM USING TERMS OF A SERIES
 100 PRINT "FIND COSINE OF";
 110 INPUT X
120 LET S1 = S = N = F = 1
130 PRINT N; S
  140 LET N = N+1
  150
      LET S1 = S
  152
      REM * F IS THE VALUE OF FACTORIAL 2*N-2
  154
       LET F = F*(2*N-2)*(2*N-3)
  160
 170 LET S = S + ((-1)+(N+1) * X+( 2*N-2 )/F )
       IF ABS(S-S1)/(ABS(S)+ABS(S1)) > 1E-6 THEN 130 PRINT "BY COMPUTER COSINE FUNCTION"; COS(X)
- 180
  190
 200
 RIIN
 CØSINE
 FIND CØSINE ØF? 1.57
  2 -0.23245
  3 2.07055E-2
  4 -9.45914E-5
  5 8.20947E-4
     7.95873E-4
7.96341E-4
  8 7.96335E-4
 BY COMPUTER COSINE FUNCTION 7.96334E-4
```

Similarly it can be shown that

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$$

Evaluation of this is left as a problem.

#### Problems for Sec. 9-4

- 1) Write a program to calculate sin(x) using the series in this section.
- 2) Each of the following series approaches pi as n increases.

(a) 
$$4\left(1-\frac{1}{3}+\frac{1}{5}-\ldots+(-1)^{n-1}\frac{1}{(2n-1)}+\ldots\right)$$

(b) 
$$6\left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right)$$

(c) 
$$8\left(\frac{1}{1^2} + \frac{1}{3^2} + \ldots + \frac{1}{(2n-1)^2}\right)$$

Write a program to compare convergence for each of the above.

3) The constant e, whose value is approximately 2.718, is of importance in calculus. It can be shown that

$$\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$

and

$$\left(1+\frac{1}{n}\right)^n$$

both approach e as n increases. Compare convergence for the two different methods of calculating e.

4) One method of approximating pi is to select random points in a square and find how many of them fall within a quarter circle whose radius is a side of the square. The number of points that fall within the quarter circle should be proportional to the area. The area of the quarter circle is  $\frac{1}{4}\pi r^2$ , whereas the area of the square is  $r^2$ . Thus four times the ratio of circle to square should approximate pi. This is a variation of the Monte Carlo method. Write a program to select from 1,000 to 10,000 such points to obtain an approximate value for pi.

# 10 MATRICES

#### 10-1 Introduction

A matrix is simply a rectangular array of numbers. As such, an array is a set of numbers arranged in rows and columns. This is, of course, exactly the array we have been using whenever we have used subscripted numeric variables in BASIC. A matrix may also consist of a single row or a single column. Such arrays are sometimes called "row vectors" and "column vectors."

It is the purpose of this chapter to study some of the properties of matrices and see some applications. We will not concern ourselves with theorems and their proofs. A brief review of Sec. 1-5 at this time might be helpful.

Matrices may be studied in a totally abstract setting, but it is useful to have a concrete example. Suppose that we are operating the Framis Corporation, which employs three salesmen (it could be 300): Brown, Jones, and Smith. Brown, Jones, and Smith are selling clevises, hammer handles, shoehorns, and whipsockets. In a given week the three salesmen turn in orders for merchandise as shown in Table 10-1a.

One fundamental piece of information is the amount of money brought in by each salesman. To calculate that we need the prices as shown in Table 10-1b. We can find subtotals by multiplying the price of an item by the number of items. The subtotals are shown in Table 10-2a. Now to obtain each salesman's total, we simply add across the rows to get the figures shown in Table 10-2b.

TABLE 10-1a ARRAY S

| Salesman | Clevis | Hammer<br>handle | Shoehorn | Whipsocket |
|----------|--------|------------------|----------|------------|
| Brown    | 30     | 800              | 50       | 20         |
| Jones    | 50     | 31               | 40       | 10         |
| Smith    | 0      | 500              | 50       | 90         |

TABLE 10-2a

| Salesman | Clevis | Hammer<br>handle | Shoehorn | Whipsocket |  |
|----------|--------|------------------|----------|------------|--|
| Brown    | \$30   | \$312.00         | \$24.50  | \$ 75.80   |  |
| Jones    | 50     | 12.08            | 19.60    | 37.90      |  |
| Smith    | 0      | 195.00           | 24.50    | 341.10     |  |

#### TABLE 10-1b ARRAY P

TABLE 10-2b ARRAY M

| Salesman | Dollar sales |
|----------|--------------|
| Brown    | \$442.30     |
| Jones    | 119.59       |
| Smith    | 560.60       |
|          |              |

To make the discussion easier, we label the array of Table 10-1a as S, the array of Table 10-1b as P, and the array of Table 10-2b as M. M(1,1), we add the products S(1,I)\*P(I,1), for I going from one to four, and to get M(2,1), we sum the products S(2,I)\*P(I,1), for I going from one to four. That makes M(J,1) the sum of the products S(J,I)\*P(I,1) for J going from one to three and for I going from one to four. If the P array had had a second column, such as the salesmen's commission per item, we could carry out the above process for the second column, getting M(J,K) by summing up the products S(J,I)\*P(I,K), for K going from one to the number of columns in P, J going from one to the number of rows in S, and I going from one to the number of columns in S. Note that the number of columns in S must equal the number of rows in P and that the product array has the number of rows in S and the number of columns in P. This is exactly the definition for matrix multiplication. Therefore, instead of constructing triply-nested loops to perform the algorithm described above, we take advantage of the BASIC matrix multiplication statement (see line 290 of program SALES1). To make the run of the program more readable, we have used string lists to provide labeling.

#### SALES1

```
94
    REM * THIS PROGRAM CALCULATES SALES TOTALS
    REM USING MATRICES
100
    DIM S(3,4), P(4,1), M(3,1), IS(4), SS(3)
110
    MAT
        READ S, P, IS, S$
112
114
    REM * PRINT RAW DATA IN LINES 120 THROUGH 260
120
    PRINT "SALESMANNITEM",
    FØR I = 1 TØ 4
130
       PRINT IS(I),
140
150
    NEXT I
152
160
    FØR I = 1 TØ 3
170
       PRINT S$(I),
       FØR J = 1 TØ 4
180
```

Matrices 129

```
190
            PRINT S(I,J),
 200
        NEXT J
 202
 210
     NEXT I
 550
     PRINT
 222
     PRINT "ITEM", "PRICE"
 230
     FOR I = 1 TO 4
 240
 250
         PRINT IS(I), P(I,1)
 260
     NEXT I
 270
     PRINT
 272
 274
     REM * CALCULATE TOTALS IN LINE 290
 280 PRINT "SALESMAN", "DOLLAR SALES"
 282
- 290
     MAT M = S*P
     FØR I = 1 TØ 3
 300
        PRINT S$(1), M(1,1)
 310
 320
     NEXT I
 322
 324
      REM
     DATA 30, 800, 50; 20
 330
     DATA 50, 31, 40, 10
DATA 0, 500, 50, 90
 340
 350
 352
 360
     DATA 1, .39, .49, 3.79
 362
      DATA CLEVIS, HAMMER HANDLE
 370
 380
      DATA SHØE HØRN, WHIPSØCKET
 382
      DATA BROWN, JONES, SMITH
 390
 400
     END
 RUN
 SALES1
 SALESMANNITEM CLEVIS
                               HAMMER HANDLE SHOE HORN
                                                               WHIPSOCKET
 BRØWN
                 30
                                800
                                                5.0
                                                                20
                 50
                                 31
                                                40
                                                                10
 JONES
                                                50
                                                                90
                 n
                                 500
 SMITH
 ITEM
                PRICE
CLEVIS
                 1
 HAMMER HANDLE
                 0.39
 SHØE HØRN
                0.49
WHIPSOCKET
                 3.79
 SALESMAN
                DOLLAR SALES
 BRØWN
                 442.3
                 119.59
 JØNES
 SMITH
                 560.6
```

It may strike you that SALES1 is rather long, and indeed it is. However, most of the program is devoted to producing nicely formatted output. If all that is required is the three dollar amounts at the end of the printout, that can be done with an extremely short program having just one calculation statement and one print statement, as shown in program SALES2.

There are many properties of matrices which come to light through the process of just experimenting with different relationships. So it is recommended that you do as many problems as possible and that you work on problems of your own throughout this chapter.

# Summary of Sec. 10-1

Matrices are not only convenient as storage areas for data, they possess mathematical properties that are both interesting and of practical value. The mathematics of matrix algebra is fairly complex, containing numerous abstract, involved, and intricate theorems. The thrust of our work will be to use familiar properties to develop new facts.

#### Problems for Sec. 10-1

- As manager of the Framis Corporation of this section, you are interested only in total sales. Create a row vector T to contain the sales totals by item for the week. Then find T\*P and print it.
- 2) MAT READ the integers 1 through 12 into both a column vector C and a row vector R. Find R\*C and C\*R and print them both.
- 3) Write a program to print integer powers of an array. How must the number of rows and columns be related for this?
- 4) A light fixture manufacturer makes three different fixtures requiring parts as shown in the table and wishes to make 800 of fixture A, 200 of fixture B, and 1,500 of fixture C. Write a program to find how many bulbs, switches, meters of wire, and screws will be needed.

|                | A  | В | С  |
|----------------|----|---|----|
| Bulbs          | 3  | 1 | 4  |
| Switches       | 1  | 1 | 2  |
| Meters of wire | 9  | 2 | 3  |
| Screws         | 15 | 8 | 12 |

5) Find any or all of the following products:

Matrices 131

$$\begin{pmatrix}
c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}$$

6) Find the result:

$$\begin{bmatrix}
1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix}
30 & 800 & 50 & 20 \\
50 & 31 & 40 & 10 \\
0 & 500 & 50 & 90
\end{bmatrix} \cdot \begin{bmatrix}
1.00 \\
.39 \\
.49 \\
3.79
\end{bmatrix}$$

and compare with the results of problem 1.

# 10-2 Solving Simultaneous Linear Equations Using MAT INV

The matrix equation,

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
 (10-1)

can be multiplied out on the left side to obtain

$$\begin{bmatrix} a_1x + b_1y + c_1z \\ a_2x + b_2y + c_2z \\ a_3x + b_3y + c_3z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
 (10-2)

We say that two matrices are equal if each entry of one equals the corresponding entry of the other. (Each entry of a matrix is often referred to as an element of the matrix.) For MAT A = MAT B that means A(I,J) = B(I,J) for all values of I and J. Therefore, we may say that

$$a_1x + b_1y + c_1z = d_1$$

$$a_2x + b_2y + c_2z = d_2$$

$$a_3x + b_3y + c_3z = d_3$$
(10-3)

Equation (10-3) constitutes a system of three linear equations in three unknowns. Actually Eqs. (10-1), (10-2), and (10-3) are simply three different ways of writing the same equality.

We want to solve the set of equations (10-3). It will be easier to discuss the solution if we assign variables to the matrices of Eq. (10-1) as follows:

$$C = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \qquad S = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad K = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Matrix C may be referred to as the coefficient matrix, S the solution matrix, and K the matrix of constants. Now we may rewrite Eq. (10-1) in the form

$$C*S = K (10-4)$$

and proceed to solve for S.

It would be very convenient if we could just divide both sides by C. But it turns out that the division of one matrix by another is not an easily describable process. However, division by C is equivalent to multiplication by the inverse of C and the inverse of C, if it exists, is easily obtained in BASIC.

Before we use an inverse to solve simultaneous linear equations let's look more closely at just what the inverse of a matrix is. The inverse of a matrix C is the matrix  $C^{-1}$  such that the product of C and  $C^{-1}$  is the identity matrix. The identity matrix has the same number of rows as columns and is filled with zeros except for the upper left to lower right diagonal, which is filled with ones. Note that in order for a matrix to have an inverse, it must be square.

Let's find, for example, the inverse of

$$\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

We are looking for a matrix with entries a, b, c, and d such that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Finding the product on the left we get

$$\begin{bmatrix} 5a + 7b & 6a + 8b \\ 5c + 7d & 6c + 8d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

If two matrices are equal, then their corresponding entries are equal. So we get the following four equations with four unknowns:

$$5a + 7b = 1$$
  $6a + 8b = 0$   
 $5c + 7d = 0$   $6c + 8d = 1$ 

We can easily solve these equations to get a = -4, b = 3, c = 3.5, and d = -2.5. Therefore,

$$\begin{bmatrix} -4 & 3 \\ 3.5 & -2.5 \end{bmatrix} \cdot \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

or

$$\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}^{-1} = \begin{bmatrix} -4 & 3 \\ 3.5 & -2.5 \end{bmatrix}$$

We can easily verify this with the demonstration program MATINV. (Note that the computer in some cases, unlike our example here, is susceptible to slight roundoff errors when the MAT INV statement is used.)

Now to get back to solving simultaneous linear equations. We had the

Matrices 133

MATINU

```
REM * THIS IS A PROGRAM TO DEMONSTRATE MAT INV
94
100
     DIM X(2,2), A(2,2), P(2,2)
    MAT READ A
110
    MAT X = INV(A)
120
122
     PRINT "ORIGINAL MATRIX"
130
     MAT PRINT A
140
150
     PRINT
152
     PRINT "INVERSE MATRIX"
160
170
     MAT PRINT X
180
    PRINT
182
     PRINT "THE PRODUCT IS"
190
    MAT P = X*A
200
     MAT PRINT P
210
212
     REM
214
          5,6, 7,8
     DATA
220
230
     END
RUN
MATINV
ØRIGINAL MATRIX
                6
                R
INVERSE MATRIX
 3.5
                -2.5
THE PRØDUCT IS
                 0
 0
```

matrix equation, C \* S = K. Now

$$C^{-1} * C * S = C^{-1} * K (10-5)$$

and a matrix times its inverse gives the identity matrix, sometimes designated I. Thus  $C^{-1}*C = I$ . The identity matrix has the property that for any matrix M with dimensions compatible with the dimensions of I,

$$I*M = M*I = M$$

Thus Eq. (10-5) becomes

$$I*S = C^{-1}*K$$

or

$$S = C^{-1} * K$$

and we have solved Eq. (10-4) for S, which was our purpose. It is now a relatively simple matter to write a program (see program  $S\Phi LVE$ ) to solve the system,

$$x + 2y - z = 2$$
  
 $3x - 3y + 2z = 3$  (10-6)  
 $4x - y + 2z = 8$ 

```
SØLVE
94
     REM * THIS PROGRAM SOLVES SIMULTANEOUS LINEAR
95
     REM EQUATIONS USING THE MAT INV STATEMENT
100 DIM C(3,3), S(3,1), K(3,1), N(3,3)
110 MAT READ C, K
120 MAT N = INV(C)
130 MAT S = N*K
140 PRINT "SØLUTIØNS:"
150 MAT PRINT S
152
154
    DATA 1:2:-1: 3:-3:2: 4:-1:2
170
     DATA 2,3,8
180
     END
RUN
SØL.VE
SØLUTIØNS:
2.
```

In program SØLVE, the column vector,

$$S = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

translates back to x = 1, y = 2, and z = 3. We may now substitute these values in Eq. (10-6) to verify that they do in fact solve the system of equations.

# Summary of Sec. 10-2

We have seen that sets of simultaneous linear equations may be solved by considering an equivalent matrix equation C\*S = K, where C is the coefficient matrix, S is a column vector which contains the values of the variables in the original set of linear equations, and K is a column vector containing the constant terms in the original set of linear equations. We may solve for S by finding the inverse of matrix C, so that  $S = C^{-1}*K$ . The inverse may be found with the BASIC statement MAT I = INV(C). For systems of simultaneous linear equations having a unique solution, MAT C will always be square, which is one of the requirements for having an inverse.

#### Problems for Sec. 10-2

1) Let

$$A = \begin{bmatrix} 4 & -4 & 4 \\ 1 & 1 & 7 \\ -3 & 9 & -8 \end{bmatrix}$$

Find the print  $A^{-1}$ ,  $A*A^{-1}$ , and  $A^{-1}*A$ .

2) Let

$$B = \begin{bmatrix} -8 & -3 \\ 0 & -1 \end{bmatrix}$$

Matrices 135

Find  $B^{-1}$  and print it. Verify by hand-computing the inverse of B. Find and print  $B^*B^{-1}$  and  $B^{-1}*B$ .

3) Solve for x and y:

$$-2x - 5y = -16$$
  
 $-x + 4y = 31$ 

4) Solve for x, y, and z:

$$2x - 9y - 5z = 2$$
  
 $7x - 6y + 5z = -35$   
 $9x - 6y + 5z = -39$ 

5) Solve for x, y, and z:

$$3x + 4y + z = 7$$
  
 $5x - 6y + 3z = 8$   
 $3x + 4y + z = -3$ 

6) Solve for w, x, y, and z:

$$6w + 3x + 6y + 5z = -12$$

$$-7w + 5x - 7y - z = 77$$

$$-3w + x + 3y + 6z = 31$$

$$-2w - 4x + 4y - 7z = -76$$

7) Solve for w, x, y, and z:

$$-3w + 6x - 5y - z = -32$$

$$w + 9x - 5y - 2z = 9$$

$$w + 6y + 5z = 2$$

$$-7w + 4x - y + 5z = -86$$

8) Solve for x, y, and z:

$$2x + 4y - 3z = -11.9$$
  
 $-9x - 3y = 58.5$   
 $-9x + 8y + 5z = 66.6$ 

9) Solve for v, w, x, y, and z:

$$7v + 6w - 3x - y + 9z = 26.3$$

$$-9v + 2w + 9x + 5y + z = 91.1$$

$$-3v + 4w + 5x + 5z = 62.9$$

$$6v - 8x - 2y - 6z = -55.6$$

$$-3v - 9w + 5x + 7y + 3z = -25.9$$

10) Let

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 5 & -1 & -2 \\ 0 & 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -4 & 0 \\ -3 & 1 & 2 \\ 5 & 2 & -5 \end{bmatrix}$$

Find and print  $(A*B)^{-1}$  and  $B^{-1}*A^{-1}$ 

11) Write a program that can solve sets of simultaneous linear equations having different numbers of equations. Provide an item of data that is the number of equations and redimension all matrices accordingly.

# 11 SOME TOPICS OF STATISTICS

#### 11-1 Introduction

The possibilities for using the computer to analyze and summarize large amounts of data are virtually unlimited. This chapter will introduce just a few fundamental statistical calculations.

# 11-2 Average, Variance, and Standard Deviation

One of the most common measures of statistical information is the average or arithmetic mean. The average is the sum of the measures divided by the number of measures. In some cases the mere task of counting the number of measurements may be a job in itself. So we can even use the computer to do the counting for us. All that is necessary is to append an item of artificial data as a flag to stop counting and calculate the average, as shown in program AVG.

```
AVG
      REM * THIS PROGRAM COUNTS DATA AND
 94
     REM CALCULATES AVERAGE
 95 REM CALCULAT
100 LET N = T = 0
 110 READ D
        IF D = .01 THEN 160
- 120
 130
     LET N = N+1
 140 LET T = T+D
     GØTO 110
 150
 160
     PRINT "
                MEASUREMENTS"; N
 170
     LET A = T/N
     PRINT "AVERAGE MEASURE"; A
 190
 492
 494
     REM
500
           98, 80, 73, 92, 77, 84, 83, 79, 87, 73
     DATA
            99, 63, 63, 92, 81, 93, 47, 53, 89, 100
510
     DATA
     DATA 98, 71, 73, .01
 520
530 END
```

RUN AVG

> MEASUREMENTS 23 AVERAGE MEASURE 80.3478

The average for a set of data gives no idea of the spread or dispersion of the data. The average of zero and 100 is 50, and the average of 49 and 51 is also 50. We could get some idea by having the computer find for us the largest and the smallest measures. Even that information could be misleading, since the largest measure could be much larger than the next largest, or the smallest could be much smaller than the next smallest. One way to gain some insight into the distribution of the measures is to find the average of the amount by which each measurement differs or deviates from the average of the measures. There is a flaw here, however, as some will deviate by a positive amount and some will deviate by a negative amount, thus cancelling each other out. Using mean absolute deviation would avoid this difficulty. However, expressions involving absolute value are difficult to work with algebraically, and statisticians thus find the average of the squares of the deviations. This figure is called the "sample variance." In order to write a formula for variance, we use the Greek letter sigma,  $\sum$ , which indicates summation. Defining average using summation notation looks like this:

$$A = \frac{\sum_{i=1}^{n} x_i}{n}$$

The average A is the sum of all values of  $x_i$  for i going from 1 to the number of measurements, which is n, divided by the number of measurements. We define variance in terms of the average as follows:

$$V = \frac{\sum_{i=1}^{n} (x_i - A)^2}{n}$$

Even the variance, which gives an indication of how measurements are distributed, doesn't indicate actual dispersion. It indicates the square of dispersion. Thus we take the square root of V, getting a number called "standard deviation":

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - A)^2}{n}$$

and

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - A)^2}{n}}$$

Now if we try to apply a computer program directly to the formula for  $S^2$ , we soon find that we will have to READ the DATA twice, once to find the average, and again to get each value of  $x_i - A$ . This is not a problem for small amounts of data, but since it can be avoided, let's do so.

It can be shown that

$$\frac{\sum_{i=1}^{n} (x_i - A)^2}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - A^2$$

This means that we can, alternatively, have the computer sum up the squares of the measures rather than the squares of the deviations. This can easily be incorporated into program AVG. See lines 150 and 210 of program VAR.

```
VAR
       REM * THIS PROGRAM COUNTS DATA AND CALCULATES
REM THE AVERAGE, VARIANCE AND STANDARD DEVIATION
 94
 100 LET N = T = T1 = 0
 110 READ D
 120
         IF D = .01 THEN 170
 130 LET N = N+1
 140 LET T = T+D
150 LET T1 = T1 + D+2
- 150
 160 GØTØ 110
 170 PRINT
                        MEASUREMENTS": N
 172
 180 LET A = T/N
190 PRINT " AVERAGE MEASURE"; A
 192
 200 LET A1 = T1/N
-210 LET V = A1 - A+2
220 PRINT "
                              VARIANCE"; V
 222
       LET S = SQR(V)
PRINT "STANDARD DEVIATION"; S
 230
 240
 492
 494
       REM
       DATA 98, 80, 73, 92, 77, 84, 83, 79, 87, 73
 500
 510 DATA 99, 63, 63, 92, 81, 93, 47, 53, 89, 100
520 DATA 98, 71, 73, •01
 530
       END
 RUN
 VAR
         MEASUREMENTS 23
     AVERAGE MEASURE 80.3478
VARIANCE 202.314
 STANDARD DEVIATION 14.2237
```

# Summary of Sec. 11-2

In this section, the average, or arithmetic mean, variance, and standard deviation have all been defined. We have written programs to calculate the average and standard deviation.

#### Problems for Sec. 11-2

 Modify program AVG so that the computer tells us the highest and the lowest measures.

- 2) Modify program VAR so that we get the deviations of the largest and smallest measures from average in terms of the number of standard deviations. (If the largest measure is 91 for an average of 70 and the standard deviation is 7, then the largest measure would be three standard deviations from average.)
- 3) Often in practice we use what is called the "weighted average." Suppose that tests count three quizzes and that the final exam counts two tests. Find the weighted average for quiz marks 70, 80, and 73, test marks 63, 82, and 91, and a final exam of 83.
- 4) Generate 100 random numbers from 1 to 201. Calculate the average and standard deviation.
- 5) Generate 100 random numbers from -100 to 100 and calculate the average and standard deviation.
- 6) Devise a scheme without reading data twice for finding accurately the average and standard deviation for the following data: 9999.12, 9999.36, 9999.64, 10000.03, 10000.41, 9999.83, 9999.51, 9999.13 and 10000.08. Due to roundoff error, many programs will give a large standard deviation for the above data. (Hint: we can simply measure differences from 10000 instead of from zero.)

## 11-3 Median

The median is the middle value. Sometimes the median is presented as an item of statistical information, such as median income or median weight. If there are an even number of data items, then the median is the average of the middle two values. One reason for using the median is that it tends to be less affected by a few widely dispersed items of data than the average. There are no particularly difficult calculations required to find the median. What does have to be done, though, is to first arrange the data in numerical order. Thus let us develop an ordering routine.

There are many, many ways of ordering. Some ordering procedures are very elaborate and some are very simple. As the number of items to be sorted increases, the need for efficiency increases. The study of sorting is a fascinating and intriguing one. However, we hesitate to become too involved at this time. We will instead develop an ordering routine that works with only a little attention to efficiency and defer a more sophisticated study of ordering for another time and place.

If we test every adjacent pair of numbers in a list and find that they are in order, then we know that the entire list is in order. This is called a "bubble sort." If we find any adjacent pair that is not in order, then we can direct the computer to exchange those two elements so that they are in order. If every time that we make such an exchange, we turn a switch on by letting S=1, then we can determine at the end of checking through the list that an exchange has been made and that the list might not be in order yet. If after scanning the entire list we find that switch S is still zero, then we know that no exchange has been made and the list must be in order. After the first scan through the list, we know that the number at the end of the list is the highest or lowest depending on which order we specify. That is, it is the number that will be there when the list is finally ordered. Thus we do not need to check the entire list the next time; we can check one less item. See program  $\emptyset RDER$ .

```
ØRDER
       REM * THIS PROGRAM ØRDERS UP TØ 200 NUMBERS
 100
      DIM L(200)
 102
 104
      REM * READ AND COUNT DATA
 110
      LET I = 0
 120
      LET I = I+1
 130
         IF I <= 200 THEN 160
      PRINT
              "CURRENT LIMIT IS 200 NUMBERS"
 140
 150
      STØP
 160
      READ L(I)
 170
         IF L(I) <> .01 THEN 120
 180
      LET N = I = I - I
 184
      REM * TURN SWITCH ØFF AND BEGIN SØRT
 190
      LET S = 0
LET N = N-1
 200
 210 FØR J = 1 TØ N
+ 220
            IF L(J) >= L(J+1) THEN 270
 222
 224
         REM * EXCHANGE ELEMENTS AND TURN SWITCH ØN
         LET S1 = L(J)
LET L(J) = L(J+1)
 230
 240
 250
         LET L(J+1) = S1
         LET S = 1
~ 260
 270 NEXT J
 272
 274
      REM * CHECK SWITCH
 275
      REM S = 0 SØRT CØMPLETE
REM S = 1 SØRT NØT CØMPLETE
 276
         IF S = 1 THEN 190
- 280
 282
 284
      REM * THE LIST IS IN ØRDER - PRINT IT
      FØR X = 1 TØ I
 290
 300
         PRINT L(X);
 310
      NEXT X
 492
 494
      REM
            98, 80, 73, 92, 77, 84, 83, 79, 87, 73
99, 63, 63, 92, 81, 93, 47, 53, 89, 100
 500
      DATA
DATA
 510
      DATA 98, 71, 73, .01
 520
 530
      END
 RIIN
 ØRDER
  100 99 98 98 93 92 92 89 87 84 83 81 80 79 77 73 73 73
  71 63 63 53 47
```

Note that in line 220 we check for greater than or equal to. What would happen if we only checked for greater than? If there are two equal numbers in the list, the switch will always get turned on and cause the routine to be repeated endlessly. In program  $\phi$ RDER we have done two things in the interest of efficiency. We do not scan that part of the list that we know to be in order, and we quit when we know the entire list is in order.

There are other things that may be done to improve the efficiency of program ØRDER. One is to sort "up" the list as well as "down." However, in spite of these precautions, the general procedure here is satisfactory only for relatively small amounts of data. If we are to order thousands or hundreds of thousands of data items, then there are far more efficient algorithms which we would have to use. The fundamental weakness in the procedure we have used is that on each pass the computer checks only one less pair of data items than on the previous pass. Much can be gained by partitioning the data to be ordered in such a way that only a small fraction of the data need be scanned each time an item is placed in its final spot in the list. However, such procedures generally require much more programming effort.

If all we want is the median, then there is no need to actually print the data in order. The middle number for I odd is L(INT(I/2)+1) or L(INT((I+1)/2)). See line 320 of program MEDIAN.

```
MEDIAN
      REM * THIS PROGRAM FINDS THE MEDIAN FOR
 94
     REM AN ODD NUMBER OF DATA ITEMS
 100 DIM L(200)
 110
      LET I = 0
 120 LET I = I+1
 130 IF I <= 200 THEN 160
140 PRINT "CURRENT LIMIT IS 200 NUMBERS"
 150 STØP
 160 READ L(I)
 170
         IF L(I) <> .01 THEN 120
 180 LET N = I = I-1
         IF N/2 <> INT(N/2) THEN 220
 190
      PRINT
              "N EVEN"
 200
 210
      STOP
 220 LET S = 0
 230
      LET N = N-1
 240 FOR J = 1 TO N
 250
             IF L(J) >= L(J+1) THEN 300
         LET S1 = L(J)
 260
          LET L(J) = L(J+1)
 270
         LET L(J+1) = S1
LET S = 1
 280
 290
 300 NEXT J
         IF S = 1 THEN 220
 310
 312
- 320 PRINT "MEDIAN"; L( INT((I+1)/2) )
 492
 494
      REM
      DATA 98, 80, 73, 92, 77, 84, 83, 79, 87, 73
DATA 99, 63, 63, 92, 81, 93, 47, 53, 89, 100
DATA 98, 71, 73, 01
 500
 510
 520
 530
      END
 RUN
 MEDIAN
 MEDIAN 81
```

As written, MEDIAN does not properly account for an even number of data items.

#### Problems for Sec. 11-3

- Modify program MEDIAN to allow for both even and odd numbers of data items.
- 2) Modify  $\phi$ RDER so that it can be used to arrange in either ascending or descending order determined by an INPUT request.
- 3) Modify MEDIAN as in problem 1 and print the largest, smallest, and average value.
- 4) Generate 100 random numbers from 1 to 100 and find the median.
- 5) As written, program  $\emptyset$ RDER is efficient for a set of numbers in which only the first number in the list is out of order. But suppose only the last number is out of order. Then the program is slow. We can improve it by inserting an upward sort, taking the number that belongs at the top of the list up to the top in one pass and then not scanning that element again. Incorporate this step into the program.

#### 11-4 Coefficient of Linear Correlation

Very often people have a set of data consisting of two or more figures for each object of the study and would like to know if there is a relation between them. For example, suppose we have test scores for five people for whom we also have IQ scores, as shown in Table 11-1. We would like to know if one score is a good predictor of the other score.

| TABLE | 11-1 | IQ's and Test Scores |
|-------|------|----------------------|
|       | for  | Five People          |

|     | •    |
|-----|------|
| IΩ  | TEST |
| 110 | 80   |
| 105 | 84   |
| 134 | 92   |
| 128 | 71   |
| 92  | 83   |

There is a variety of formula and techniques for finding correlations. We present here a computational formula for finding the degree of linear correlation between two sets of data, X and Y.

$$r_{XY} = \frac{n \sum_{i=1}^{n} X_1 Y_1 - \sum_{i=1}^{n} X_1 \sum_{i=1}^{n} Y_1}{n^2 V_X V_Y}$$
(11-1)

where  $r_{XY}$  is the linear correlation coefficient,  $V_X$  is the variance of the X data, and  $V_Y$  is the variance of the Y data.

Let's look at the correlation coefficient for the data of Table 11-1. See program CØRREL. The correlation is about .03. That may safely be taken to indicate that there is no correlation between these two sets of data. That is, IQ is unrelated to the test score. We can see by inspection that no obvious pattern is present.

We can get some idea of how the value of r is affected by various patterns in the data by simply using  $C\Phi$ RREL with a variety of data. We present two additional runs for your observation.

#### CØRREL

```
REM * THIS PROGRAM CALCULATES CORRELATION COEFFICIENT
94
100 LET N = S = S1 = S2 = T1 = T2 = 0
110 PRINT "19 TEST SCORE"
120 READ X,Y
130 IF X = 0 THEN 220
140 PRINT X; TAB(6); Y
150 LET N = N+1
152
154
      REM * SUMMATIONS DONE IN LINES 160 THROUGH 200
     LET S = S + X*Y
160
     LET SI = SI+X
170
180
     LET S2 = S2+Y
     LET T1 = T1 + X+2
190
     LET T2 = T2 + Y+2
200
210
      GØTØ 120
212
```

```
REM * VARIANCES CALCULATED IN LINES 220 THROUGH 270
214
550
     LET A1 = SI/N
     LET A2 = S2/N
230
240
     LET B1 = T1/N
     LET B2 = T2/N
250
     LET V1 = SQR( B1 - A1+2 )
LET V2 = SQR( B2 - A2+2 )
260
270
272
     LET R = ( N*S - S1*S2 )/( (N+2)*V1*V2 )
280
290
     PRINT
300: CØRRELATIØN = #.###
     PRINT USING 300, R
310
312
314
            110,60,
                      105,84,
                                 134,92
     DATA
320
     DATA
           128,71,
                       92,83,
                                  0,0
330
340
     END
RUN
CORREL.
       TEST SCORE
10
 110
        80
 105
        84
 134
        92
 128
        71
 92
        83
 CORRELATION =
                 .027
RUN
CORREL.
       TEST SCORE
ΙQ
 134
        92
 128
        84
        83
 110
 105
        80
 CORRELATION = .930
RUN
CORREL
10
       TEST SCORE
       -2
 1
 2
       - 3
       -5
 4
 5
       -6
 CORRELATION = #-1.000
```

We can see that correlation coefficients range from -1 to .930 in the sample of runs. It turns out that -1 to 1 is the true maximum range. A coefficient of one indicates perfect correlation. A coefficient of zero indicates no correlation, and a coefficient of negative one indicates perfect negative correlation. Generally, values between -.40 and .40 are considered to indicate that the variables are unrelated, whereas for -1 to -.9 and for .9 to 1 the variables are considered to be extremely closely related in a linear fashion. The larger the number of data items we use to calculate the value of r, the more reliable its value. For a small amount of data, the coefficient is more likely to be affected by a single stray or inaccurate item of data.

Often it may happen that we have more than two sets of data with which to work. With a slight modification of  $C\emptyset RREL$ , we can easily find the linear

correlation coefficient for columns 1 and 2, 1 and 3, and 2 and 3 for the data shown in Table 11-2. See program runs labelled WEATHER. The program is actually CØRREL with the READ statement modified as shown in each run. An alternative approach would be to RESTØRE the data and use the entire program as a subroutine three times.

TABLE 11-2 Run Table Showing Normal, Record High, and Record Low Temperatures for 24 Selected Dates of the Year

| Normal | High | Low | Normal | High | Low |
|--------|------|-----|--------|------|-----|
| 32     | 61   | 4   | 32     | 63   | 5   |
| 46     | 81   | 14  | 53     | 91   | 27  |
| 33     | 61   | 2   | 34     | 63   | -2  |
| 58     | 90   | 35  | 63     | 90   | 37  |
| 36     | 68   | 11  | 41     | 86   | 10  |
| 68     | 97   | 44  | 72     | 98   | 44  |
| 74     | 102  | 52  | 76     | 98   | 56  |
| 62     | 89   | 34  | 55     | 89   | 34  |
| 76     | 97   | 56  | 74     | 94   | 56  |
| 50     | 84   | 30  | 44     | 72   | 21  |
| 71     | 97   | 49  | 67     | 93   | 44  |
| 39     | 68   | 11  | 33     | 60   | 7   |

| 120  | READ X,Y,Z    | 120 REA      | D X.Z.Y     | 120   | READ Z.X.Y      |
|------|---------------|--------------|-------------|-------|-----------------|
| RUN  |               | RUN          |             | RUN   |                 |
| WEAT | HER           | WEATHER      |             | WEATH | 1ER             |
|      |               |              |             |       |                 |
| X    | Υ             | X Y          |             | Х     | Y               |
| 32   | 61            | 32 4         |             | 61    | 4               |
| 32   | 63            | 32 5         |             | 63    | 5               |
| 46   | 81            | 46 1         | 4           | 81    | 14              |
| 53   | 91            | 53 2         | 7           | 91    | 27              |
| 33   | 61            | 33 2         |             | 61    | 2               |
| 34   | 63            | 34 -2        |             | 63    | -2              |
| 58   | 90            | 58 3         | 5           | 90    | 35              |
| 63   | 90            | 63 3         | 7           | 90    | 37              |
| 36   | 68            | 36 1         | 1           | 68    | 11              |
| 41   | 86            | 41 1         | )           | 86    | 10              |
| 68   | 97            | 68 4         | 4           | 97    | 44              |
| 72   | 98            | 72 4         | 4           | 98    | 44              |
| 74   | 102           | 74 5         | 2           | 102   | 52              |
| 76   | 98            | <b>7</b> 6 5 | 5           | 98    | 56              |
| 62   | 89            | 62 3         | 4           | 89    | 34              |
| 55   | 89            | 55 3         | 4           | 89    | 34              |
| 76   | 97            | 76 5         | 5           | 97    | 56              |
| 74   | 94            | 74 5         | 5           | 94    | 56              |
| 50   | 84            | 50 3         | 0           | 84    | 30              |
| 44   | 72            | 44 2         | 1           | 72    | 21              |
| 71   | 97            | 71 4         | 9           | 97    | 49              |
| 67   | 93            | 67 4         | 4           | 93    | 44              |
| 39   | 68            | 39 1         | 1           | 68    | 11              |
| 33   | 60            | 33 7         |             | 60    | 7               |
| COR  | RELATION = .9 | 44 CØRRELA   | TIØN = •984 | CORF  | RELATION = .920 |

For correlation normal to high, we get .944; for normal to low, we get .984; and for high to low, we get .920. These all indicate a high degree of linear correlation.

If we were to require the correlation coefficients for all pairs of columns for more than three columns, it is a bit awkward to use the method we used in program WEATHER. It would be a lot cleaner to read all the data into an array and manipulate the column subscripts to get all possible pairs. This is left as an exercise.

### Summary of Sec. 11-4

We have presented a computational formula for obtaining the linear correlation coefficient. This is also referred to as the Pearson r. Values close to zero indicate a low degree of linear correlation, whereas values with absolute value close to one indicate a high degree of linear correlation.

#### Problems for Sec. 11-4

- 1) Write a program to generate 25 pairs of random numbers and compute the correlation coefficient. What value do you expect? Run the program several times.
- 2) Write a program to calculate the correlation coefficient for the integers 2 through 100 and the number of factors.
- 3) Do problem 2 for prime factors not including 1.
- 4) Write a program to find correlation coefficients for all pairs of columns by first reading the data into a single array as described in the section. Use the following data:

| $\boldsymbol{a}$ | b  | c  | d    |
|------------------|----|----|------|
| 39               | 12 | 2  | 1978 |
| 43               | 8  | 5  | 1749 |
| 25               | 4  | 1  | 1462 |
| 22               | 4  | 1  | 1288 |
| 21               | 11 | 11 | 1241 |
| 21               | 7  | 3  | 1176 |
| 32               | 10 | 2  | 1086 |
| 37               | 7  | 12 | 1026 |
| 18               | 2  | 1  | 1003 |
| 30               | 10 | 3  | 971  |

5) For the data given, find any or all of the following linear correlations: b

> 1.0463116.5958 84.0632 266,206 651.343 1353.51 2512.56 4294.3 6890.5 10519 15424

a

11

| (b) $a^2$ an | $\mathbf{d} b$ | 1  |
|--------------|----------------|----|
| (c) $a^3$ an | $\mathbf{d} b$ |    |
| $(d) a^4$ an | id b           | 2  |
| (e) $a$ and  |                | 3  |
| (e) a and    | riog (0)       | 4  |
|              |                | 5  |
|              |                | 6  |
|              |                | 7  |
|              |                | 8  |
|              |                | 9  |
|              |                | 10 |

(a) a and b

# 12 SIMULATION AND GAMES

#### 12-1 Introduction

The ability of the computer to store information, generate random numbers, and make decisions makes it well suited for simulations of all kinds. Computers can be programmed to play games. Programs can be written to simulate business activity, social phenomena, and numerous activities in the physical sciences. Computers can be used to conduct gambling enterprises, schedule classes, and manage production schedules. Some situations are dealt with by having the computer investigate all possible alternatives. Other situations are so complex that a procedure must be found that enables the computer to make a best reasonable decision which may not be the best possible decision. For example, it is possible to write an unbeatable tic-tac-toe program. However, the game of chess allows so many possible sequences of moves that it is impossible to write a program for existing computers to investigate them all.

The purpose of this chapter is to present a few examples of simulation and to suggest areas for further investigation.

### 12-2 Lines at the Bank

As the manager of a new bank branch, you are interested in knowing what to expect in the way of teller requirements. You are presented a bank that has five windows. As a preliminary trial, you make the following estimates and assumptions:

- 1. Assume that there is always a customer waiting with a four-minute transaction when the bank opens at  $9\ {\rm AM}$ .
  - 2. Always open two windows at 9 AM.
- 3. Customers will tolerate only as many as 10 persons per line; thus when all lines are full, a new window must be opened.

- 4. During every minute of the day one or two or no customers will enter with equal probability.
- 5. Every customer after the first has transactions that will last one, two, or three munutes with equal probability.
- 6. A new customer upon entering the bank goes to the line with the fewest persons. In case of a tie, the customer takes the line closest to the door.
  - 7. The bank closes at 3 PM.

Our job now is to write a computer program that reacts to each of the restrictions above and keeps track of the day's business. One possible simulation is to use two arrays—one from the customer's point of view and one from the window's point of view. Both arrays have five columns, one per window. The customer array has 10 rows to allow as many as 10 people in line. The window array has four rows. The first row contains a '1' to signify that the window is open and a '0' to signify that the window is closed. The second row contains the number of people in line for that window. The third row contains the number of people served since the run began. The fourth row contains the number of minutes that the window has been open. The customer array contains the number of minutes each customer in line will take.

In program LINES, all loops  $F \phi R$  W1 = 1 T  $\phi$  5 scan all five windows. Lines 200 and 210 open two loops to keep track of time. H stands for hours and M1 stands for minutes of that hour. Line 240 looks to see if a window is open, and line 250 adds one minute to open time for the window. Line 260 looks to see if anyone is in line at the open window. Lines 390 through 500 search for the line having the fewest people. Numerous other relevant comments appear in the REM statements of program LINES.

```
LINES
94
     REM * THIS PROGRAM SIMULATES LINES AT
95
     REM TELLER WINDOWS OF A BANK
96
     REM * ARRAY L IS THE CUSTOMER ARRAY
97
     REM ARRAY R IS THE WINDOW ARRAY
98
100
     DIM L(10,5), R(4,5), AS(4)
105
     RANDØMIZE
110
     MAT READ AS
     MAT R = ZER
120
130
     MAT L = ZER
132
    REM * ØPEN WINDOWS I AND 2 BY PLACING A
REM I IN ROW I OF COLUMNS I AND 2 IN ARRAY R
134
135
140
     LET R(1,1) = R(1,2) = 1
142
144
     REM * THE FIRST CUSTOMER ENTERS WITH A
     REM FOUR MINUTE TRANSACTION
145
150 LET L(1,1) = 4
160
     LET R(2,1) = 1
162
164
     REM * SET UP LOOPS TO KEEP TRACK OF TIME
200
    FØR H = 0 TØ 5
        FØR M1 = 1 TØ 60
210
220
           LET T = 60*H + M1
555
224
           REM * THIS LOOP ADJUSTS TIME FOR
225
           REM CUSTOMERS AND WINDOWS
           FØR W1 = 1 TØ 5
230
                 IF R(1,W1) = 0 THEN 350
240
250
               LET R(4,W1) = R(4,W1)+1
```

```
260
                   IF R(2.W1) = 0 THEN 350
262
264
               REM * THERE IS A LINE
               REM REDUCE FIRST PERSON'S TIME
265
270
               LET L(1,W1) = L(1,W1)-1
280
                  IF L(1,W1) <> 0 THEN 350
282
                REM * END OF TRANSACTION - MOVE PEOPLE UP IN LINE
284
               FOR P= 1 TO R(2,W1)-1
290
                 LET L(P,W1) = L(P+1,W1)
300
310
               NEXT P
320
               LET L( R(2,W1),W1 ) = 0
322
324
               REM * ONE MORE TRANSACTION - ONE LESS PERSON
               LET R(3,W1) = R(3,W1)+1
LET R(2,W1) = R(2,W1)-1
330
340
350
            NEXT WI
352
354
           REM * ENTER O. 1 ØR 2 CUSTOMERS
360
            LET C = INT(RND(-1)*3)
            FOR C1 = 1 TO C
370
372
                REM * SELECT TRANSACTION TIME
374
               LET T1 = INT( RND(-1)*3+1 )
380
382
384
               REM * NOW FIND THE SHORTEST LINE WITH
385
               REM LESS THAN TEN PEOPLE
390
               LET N = R(2,1)
               LET N1 = 1
400
               FOR W1 = 2 TO 5
410
420
                      IF R(1,W1) = 0 THEN 460
                      IF R(2,W1) >= N THEN 460
430
432
434
                   REM * CURRENT LINE IS SHORTER
                   REM SAVE WINDOW # AND # OF PEOPLE
435
                   LET N = R(2,W1)
440
450
                  LET NI = WI
               NEXT WI
460
462
500
                   IF N <= 9 THEN 590
510
               FOR W1 = 1 TO 5
520
                  IF R(1,W1) = 0 THEN 570
530
               NEXT WI
5.32
540
               PRINT "ALL WINDOWS FULL AT"; T; "MINUTES"
               MAT PRINT R;
STØP
550
560
562
               REM * ØPEN ANØTHER WINDOW
LET R(1,W1) = 1
564
570
580
               LET N1 = WI
               LET R(2,N1) = R(2,N1)+1
590
               LET L( R(2,N1),N1 ) = T1
600
            NEXT CI
610
        NEXT MI
620
622
630
        GØ SUB 800
640 NEXT H
650 STØP
652
800 PRINT TAB(11); "AT THE END 0F"; T/60; "HOURS"
810 PRINT " WINDOW NO. ONE TWO THREE FOUL
                              ONE TWO THREE FOUR FIVE"
820 FØR I = 1 TØ 4
        PRINT A$(1);
FOR J = 1 TO 5
830
840
850
           PRINT TAB(15+(J-1)*6); R(I,J);
        NEXT J
860
870
         PRINT
880 NEXT I
890 PRINT
900 RETURN
972
```

```
974
     REM
980
           "1=0PEN 0=CL0SED".
                                 " PEOPLE IN LINE"
     DATA
             PEOPLE SERVED",
                                 " MINUTES OPENED"
990
     DATA
     END
999
RIIN
LINES
           AT THE END OF 1 HOURS
                ØNE
 WINDOW NO.
                       TWØ
                             THREE FOUR
                                          FIVE
1=ØPEN O=CLØSED 1
                       1
                              0
                                    0
                                          0
PEOPLE IN LINE 4
                       4
                              0
                                    0
                                          G
  PEOPLE SERVED 31
                       25
                              n
                                    n
                                          n
MINUTES @PENED 60
                       60
                              n
                                    0
                                          Ω
           AT THE END OF 2 HOURS
 WINDOW NO.
                             THREE FOUR
                ØNE
                       TWØ
                                          FIVE
1=0PEN O=CL0SED 1
                       1
                                    0
                                          0
PEOPLE IN LINE 8
                              n
                       Я
                                    n
                                          n
  PEØPLE SERVED 59
                       52
                              0
                                    n
                                          0
MINUTES ØPENED 120
                       150
                              0
                                    0
                                          0
           AT THE END OF 3 HOURS
 WINDOW NO.
                       TWO
                             THREE FØUR
                                          FIVE
               ONE
1=0PEN 0=CL0SED 1
                              O
                                    0
                                          0
PEOPLE IN LINE 9
PEOPLE SERVED 92
                             0
                                    0
                                          0
                       79
                                          n
                              n
                                    n
MINUTES ØPENED 180
                       180
           AT THE END OF 4 HOURS
 WINDOW NO.
                       TWØ
                             THREE FOUR
                ØNE
                                          FIVE
1=ØPEN O=CLØSED 1
                              1
                                    0
                                          0
PEOPLE IN LINE 1
                       0
                             0
                                    0
                                          0
 PEØPLE SERVED 122
                       108
                             23
                                    O
                                          0
MINUTES OPENED 240
                       240
                             50
                                    n
                                          0
           AT THE END OF 5 HOURS
 WINDOW NO.
                ØNE
                       TWO
                             THREE FOUR
                                          FIVE
1=0PEN O=CL0SED 1
                       1
                              1
                                    Λ
                                          Λ
PEOPLE IN LINE 1
                                    n
                                          0
 PEØPLE SERVED 148
                       131
                                    0
                                          0
                              36
MINUTES ØPENED 300
                       300
                              110
                                    0
                                          0
           AT THE END OF 6 HOURS
 WINDOW NO.
                ONE
                       TWØ
                             THREE FOUR
                                          FIVE
1=0PEN 0=CL0SED 1
                       1
                                    0
                                          0
                             1
PEOPLE IN LINE 1
                             0
                                    0
                                          0
                       1
 PEOPLE SERVED 178
                       153
                             51
                                    0
                                          0
MINUTES ØPENED 360
                             170
```

The run shows that ten minutes into the fourth hour the third window was opened. We can see that at the end of the day there was one person waiting at window 1, which had served 178 people during the day. Window 2 also had one person in line, but had served only 153 customers. Similarly, the third window had served 51 customers and left none in line at the end of the day's business.

While the results of LINES provide some interesting information, there are virtually unlimited possibilities for extracting more information and for testing changes in the original list of assumptions and estimates.

There have been no provisions for closing a window. We might want to close a window due to lack of activity or to allow employees time to lunch. In practice, bank tellers close windows but service those customers already in line.

Program LINES does not provide for having a window closed with people standing in line. We could use a "-1" in the window array to signify this condition.

It is fairly obvious that the assumption of random arrival of customers is an oversimplification of the true pattern. Clearly, large numbers of people conduct bank business during their lunch hour. Not only does the arrival of customers vary during the day, but it varies with the days of the week and of the month. Fridays tend to be heavier, and the first of the month is heavy.

The limit of 10 persons per line was thus arbitrary and perhaps unreasonable as an absolute limit. The program could be modified to open a new window when all the lines contain 10 customers, but when all windows are open and all lines contain 10, then we should allow the lines to grow.

In practice, a new customer generally steps into the shortest line, but the customer is not obligated to stay there. Thus we could make provision in our simulator for customers to move to a faster moving line. (We know from experience that fast-moving lines immediately become slow-moving lines when we step into them and slow-moving lines immediately become fast-moving lines when we step out of them.) This points up the fact that although a customer enters a line based on the number of customers in it, what he really cares about is how long he has to wait. We could add a row to the window array giving maximum waiting time so far. We could cause a certain waiting time to trigger opening a new window.

As the program is written, when a new window opens only new customers may enter that line. Generally when a new window opens, a whole bunch of people swarm into the new line. Sometimes the new line quickly exceeds the old lines in length. We could modify the simulation of LINES to allow an orderly shift of customers from all lines to a newly opened window.

It is easy to see that we could go on and on at great length, making our simulation program more and more like what we believe to be the real life activity. What about drive-in windows, automatic tellers, etc.?

Based on many runs of simulations like this, a business person is in a better position to make decisions about hiring, opening hours, business procedures, and other aspects of management than he would be without the computer. Once we are convinced that a simulation is realistic, then we can experiment with innovative procedures using computer results to warn us of poor changes without actually having to use customers as guinea pigs.

Similar simulations could be set up for toll booths, grocery store checkouts, post offices, gas stations, and stores and businesses of all kinds.

## Summary of Sec. 12-2

We have looked at a much simplified set of rules for lines at the tellers' windows of a bank and written a program to imitate the activities of bank customers for a sample business day. Random numbers are used to simulate the random nature of the arrival of people at the bank and the random nature of transactions. Arrays have proved very useful for keeping track of many of the activities of our banking model. We recognize that simulations usually must be simplifications of the real activity under study.

### Problems for Sec. 12-2

The possibilities for making changes in program LINES and developing other models are so varied and so numerous that no attempt will be made to enumerate a specific set of problems. Instead you should select one or more of the improvements outlined in this section and implement them, along with any changes not mentioned that you would like to make. You should obtain several runs of your final program to get a range of results. Experiment with differing transaction times, differing rates of arrival of customers, and so forth.

## 12-3 Magic Squares

Magic squares have provided entertainment and been the source of wonder for more than a thousand years. They have been considered to have magic powers and therefore have been used to keep away evil spirits. Magic squares are square arrays of numbers (usually integers) so arranged that all row sums equal all column sums and these equal each of the sums of the elements of the two main diagonals.

Of course, this feat can be accomplished by simply entering the same number in each position of the array, but this is trivial and of little interest. The simplest magic square of real interest is the following three-by-three magic square:

Note that all integers from 1 through 9 have been used and that the magic sum is 15. It turns out that while we can rotate this to get a total of eight different positions, there is no other arrangement of these integers that will produce a magic square, even though there are 45,360 possible different arrangements. The magic sum can be found for integers 1 through  $n^2$  by the formula,

$$s = \frac{n^3 + n}{2}$$

An odd order magic square from 3 up can be generated by a procedure called the De la Loubere method. For a  $5 \times 5$  magic square, this method produces only one magic square, but millions are possible. The De la Loubere method uses the integers 1 to  $n^2$  for an nth-order magic square and may be described with the following set of rules:

- 1. Begin by entering a "1" in the center column of the first row.
- 2. Always move diagonally up one and to the right one and enter the next larger integer there unless the move (a) is the move immediately following an entry that is a multiple of the order of the magic square, in which case the new number goes directly beneath the previous one, or, (b) takes us out the side of the square, in which case the new number goes to the extreme left of the new row, or, (c) takes us out the top of the square, in which case the new number goes to the bottom of the new column.
- 3. Proceeding in this way,  $n^2$  should always be placed in the middle column of the bottom row, and we know it is time to stop.

In program MAGIC for n=5, the middle column is determined in line 160, and the row is set to 1 in line 170 so that the first entry in line 190 follows rule 1 above. Line 210 checks to see if the condition in rule 2a has occurred. Line 250 checks for the condition of rule 2b, and line 300 checks on rule 2c. Line 200 determines the stopping point as per rule 3.

```
MAGIC
       REM * THIS PRØGRAM GENERATES ØDD ØRDER
  94
       REM MAGIC SQUARES BY THE DE LA LØUBERE
  95
       REM METHØD
  96
      DIM M(47,47)
  100
      PRINT "WHAT ODD SIZE";
  110
       INPUT N
  120
          IF N/2 = INT(N/2) THEN 110
  130
      MAT M = ZER(N.N)
  140
       LET CI = 0
  150
       LET C = INT(N/2)+1
 + 160
 + 170
      LET R = 1
      LET C1 = C1+1
LET M(R,C) = C1
  180
 - 190
       IF C1 = N+2 THEN 330
-- 200
          IF CI/N <> INT(CI/N) THEN 240
 - 210
  220 LET R = R+1
  230 GØTØ 180
       LET C = C+1
  240
 + 250
          IF C <= N THEN 290
  260 LET C = 1
  270
       LET R = R-1
  280
       GØTØ 180
       LET R = R-1
  290
          IF R > 0 THEN 180
 <del>-</del> 300
       LET R = N
  310
       GØTØ 180
  320
       PRINT
  330
       LET T = 0
  340
  342
       REM * ADD ONE COLUMN TO FIND MAGIC NUMBER
  344
       FØR I = 1 TØ N
  350
          LET T = T+M(I,1)
  360
  370
       NEXT I
  372
              "MAGIC NUMBER IS"; T
       PRINT
  380
       PRINT
  390
       MAT PRINT MI
  400
  410
       END
  RUN
  MAGIC
  WHAT ØDD SIZE?5
  MAGIC NUMBER IS 65
   17
          24
                1
                      8
                             15
                7
                      14
                             16
   23
          5
                      50
                             22
                13
   4
          6
    10
          12
                19
                      21
                             3
                25
          18
    1 1
```

As written, this program will arrange and print magic squares up to 47 by 47. Of course, we can't print 47 numbers across the page. So we would have to do some rearranging to make the results easy to read.

#### Problems for Sec. 12-3

- The magic squares of this section used 1 as the first number. It is easy to show that beginning with any integer will also produce a magic square. Modify program MAGIC to allow beginning with any integer. Be careful about rule 2a.
- 2) Another way to generate odd order magic squares may be described as follows. Place the first number in the array position directly beneath the central element, and proceed down one row and to the right one column unless this move: (a) takes you both out the bottom and out the right side of the square, in which case the new entry goes in position (2,n), or (b) takes you out the bottom of the square, in which case the new entry goes to the top of the new column, or (c) takes you out the right side of the square, in which case the new entry goes to the extreme left in the new row, or (d) the new location is already occupied, in which case the new entry goes in the second row directly below the previous entry. (Note that this may take you out the bottom.) Write a program to generate this type of odd-order magic square.
- Squares of the type described in problem 2 can also be generated by beginning with any integer. Modify your program for problem 2 to do this.
- 4) There are 880 different 4-by-4 magic squares using the integers 1 through 16. One of them can be generated by the following simple procedures: MAT READ the integers 1 through 16 into a 4-by-4 array and then make these exchanges:

$$A(1,1) \Longrightarrow A(4,4)$$

$$A(2,2) \Longrightarrow A(3,3)$$

$$A(3,2) \Longrightarrow A(2,3)$$

$$A(4,1) \Longrightarrow A(1,4)$$

Write a program to do this.

#### 12-4 Games

There are hundreds of games which may be played with computers. There are games played with cards, dice, dominoes, and numbers. There are board games and two- and three-dimensional tic-tac-toe. Programs have been written to play casino gambling games and to simulate slot machines. There are programs which simulate horse races. Programs can be written to play word games such as Hangman or Geography using strings and files. Using computer files, game-playing programs can be devised which modify strategy depending on consequences of previous decisions. It is not the purpose of this section to present any comprehensive or systematic study of games or game strategy. Rather, it is the purpose of this section to arouse the sleeping giant of gamesmanship that may lie within the reader by exploring two examples.

#### Battle of Numbers

The game, Battle of Numbers, begins with two integers, such as 63 and 11, where one should always be somewhat larger than the other. Two players take turns subtracting an integer in the range 1 to 11 from 63 and subsequent new remainders. The last player to subtract loses. The feature that makes this game intriguing is that usually the first player may assure a win by applying proper strategy on the very first move. Working out the strategy is fairly straightforward if we look at the last few moves. Suppose it is your turn, and you may subtract up to 11 from 15. If you subtract 2 leaving 13, you win because your opponent must leave you a number in the range of 2 to 12, subtracting in the range 11 to 1. Now it is your turn again and you can be assured of leaving your opponent a "1," which he must subtract, thereby losing. Now one pair of plays earlier you can assure yourself of leaving your opponent with 13 by leaving 25 and before that 37, and so forth. That is, you want to leave (11 + 1)i + 1, or one more than an integral multiple of one more than the largest number you are allowed to subtract. For subtracting in the range 1 to a, then leave (a + 1) i + 1. This means that if the human player goes first in competition with the computer, the human can always win except when the original larger number is one more than an integral multiple of the largest subtractable number. However, one slip-up, and the computer can always win.

Thus in our game with 63 as the starting total and 11 as the maximum subtractable integer, divide 63 by 12 to get 5 as the integral quotient. Since 5 times 12 is 60, if we are faced with 61 we can't win and should subtract some random integer. But since we are not faced with 61, we want to leave our opponent with 61 by subtracting 2. No matter what our opponent does, we will leave 49, then 37, then 13, then 1. The calculations and testing here are done in lines 370 through 410 of program BATTLE. Note that lines 280 through 320 assure that the human player inputs a number in the range 1 to a. If you would like to play the game, but don't want to type the program, many timesharing systems include the game under the name BATNUM.

```
BATTLE
```

```
REM * THIS PROGRAM PLAYS BATTLE OF NUMBERS
94
    PRINT TAB(15); "BATTLE OF NUMBERS"
100
105 RANDØMIZE
    PRINT "DØ YØU KNØW THE RULES";
110
    INPUT AS
120
       IF AS = "YES" THEN 180
130
    PRINT "WE TAKE TURNS SUBTRACTING AN INTEGER IN THE"
140
           "INTERVAL 1 TO SOME NUMBER A FROM ANOTHER NUMBER"
    PRINT
150
           "B WITH THE DIFFERENCE LEAVING B FOR THE NEXT"
    PRINT
160
           "TURN. THE LAST PERSON TO TAKE LOSES."
170
    PRINT
           "HERE WE GØ. ***"
180
    PRINT
182
    REM * SELECT RANGE AND STARTING NUMBER
184
    REM THE RESTRICTING CONSTANTS HERE ARE ARBITRARY
185
    LET A = INT( RND(-1)*14+7 )
190
200
    LET B = INT( RND(-1)*77+41 )
    PRINT
210
            "INTERVAL = 1 T0"; A
220
    PRINT
230
    PRINT
            "STARTING TOTAL IS"; B
    PRINT
240
250 PRINT
```

```
260 PRINT "YOU GO";
270
     INPUT P
272
         REM * CHECK FOR AN INTEGER IN THE LEGAL RANGE
274
         REM LESS IHAN OR EQUAL TO THE REMAINING TOTAL IF P <> INT(P) IHEN 310
275
280
290
         IF INT((P-1)/A) <> 0 THEN 310
300
     IF P <= B THEN 330
PRINT "ILLEGAL MOVE"
310
320
     GØ TØ 250
330
     LET B = B-P
        IF B > 0 THEN 370
340
            ..*** [ M]N ***..
     PRINT
350
360
     STOP
370
     LET I = INT( (8-1)/(A:1) )
380
     LET C = B - ((A+1)*I+1)
390
        IF C > 0 THEN 420
     LET C = INT(RND(-1)*A+1)
400
410
        IF B-C < 0 THEN 400
420
     LET B = B-C
     PRINT "I TAKE"; C
430
440
        IF B = 0 THEN 470
     PRINT
             "LEAVING A TOTAL OF"; B
450
460
     GØTØ 250
     PRINT "*** YOU WIN ***"
470
     END
480
RUN
BATTLE
                BATTLE OF NUMBERS
DO YOU KNOW THE RULES? YES
HERE WE GO. ***
INTERVAL = 1 TO 20
STARTING TOTAL IS 68
YOU GO? 4
I TAKE 6
LEAVING A TOTAL OF 58
YOU GO? 15
I TAKE 7
LEAVING A TOTAL OF 36
YOU GO? 14
I TAKE 6
LEAVING A TOTAL OF 16
YØU GØ? 15
I TAKE 1
*** YOU WIN ***
```

# The Knight's Tour

The game of chess is played on a square board having 64 smaller squares, eight on a side. The various pieces belonging to the two sides are assigned specific moves. The knight moves in an L-shaped path, moving one square in any direction and two squares in a direction perpendicular to the first move. Thus from a position near the center of the chess board, a knight may move to any of eight possible positions. If the knight occupies position (3, 4), then he may move to any one of the following: (4, 6), (4, 2), (2, 6), (2, 2), (5, 5), (5, 3), (1, 5) or (1, 3). In general, if the knight occupies position (r, c), then he may move to

any of the following: (r + 1, c + 2), (r + 1, c - 2), (r - 1, c + 2), (r - 1, c - 2), (r + 2, c + 1), (r + 2, c - 1), (r - 2, c + 1), or (r - 2, c - 1), unless the new position is off the board. An ancient and intriguing challenge is to move the knight about the board in such a way that it visits all 64 squares of the chess board exactly once.

This is a difficult feat, known as the Knight's Tour, but it can be done. We will here contrive only to select moves randomly until the knight reaches a dead end due to the fact that all reachable squares have already been visited. We use an 8-by-8 array B to simulate the board. Initially all entries are zero to indicate open positions. We will place the move numbers in the squares as the knight moves about the board. The 8-by-2 array U stores all eight possible moves from the present position as described in the previous paragraph. These eight moves are scanned for legal use in lines 220, 230, and 240 of program  $T\phi UR$ . Note that INT ((R1 - 1)/8) = 0 in line 220 is equivalent to (0<R1

```
TØUR
     REM * THIS PROGRAM CARRIES OUT A RANDOM
94
95
     REM KNIGHT'S TOUR TO DEAD END
100 DIM B(8,8),T(2,8),U(8,2)
110
    MAT B = ZER
    MAT READ U
120
     LET M = 1
130
     PRINT "BEGIN WHERE"
140
150
     INPUT R. C
160 LET B(R,C) = M
170
     MAT T = ZER
172
    REM * K1 COUNTS THE NUMBER OF LEGAL MOVES
174
180 LET K1 = 0
182
184 REM * ENTER ALL LEGAL MOVES IN T ARRAY
190 FØR T = 1 TØ 8
        LET R1 = R + U(T.1)
200
        LET C1 = C + U(T,2)
210
           IF INT( (R1-1)/8 ) <> 0 THEN 280
220
           IF INT( (C1-1)/8 ) <> 0 THEN 280
230
           IF B(R1,C1) <> 0 THEN 280
240
        LET K1 = K1+1
LET T(1,K1) = R1
250
260
        LET T(2,K1) = C1
270
280 NEXT T
282
290
        IF KI = 0 THEN 350
292
     REM * SELECT A LEGAL MOVE AT RANDOM
294
     LET T = INT(RND(-1)*K1+1)
300
     LET R = T(1,T)
310
     LET C = T(2,T)
320
330
     LET M = M+1
340
     GØTØ 160
342
            "GØT TØ"; M
350
     PRINT
           "PRINT IT"
360
    PRINT
370
     INPUT AS
        IF A$ <> "YES" THEN 420
380
     MAT PRINT BJ
390
392
394
     REM
400
     DATA
           1,2, 1,-2, -1,2, -1,-2
     DATA 2,1, 2,-1, -2,1, -2,-1
410
420
     END
RUN
TOUR
```

| BEGIN |     | E? 4. 4 |    |    |    |    |    |
|-------|-----|---------|----|----|----|----|----|
| PRINT |     | ES      |    |    |    |    |    |
| 0     | 8   | 15      | 0  | 0  | 24 | 39 | 0  |
| 14    | 1 1 | 0       | 7  | 38 | 0  | 0  | 25 |
| 0     | 16  | 9       | 12 | 0  | 26 | 23 | 40 |
| 10    | 13  | 18      | 1  | 6  | 37 | 0  | 0  |
| 17    | 0   | 5       | 36 | 27 | 55 | 41 | 0  |
| 0     | 0   | 5       | 19 | 32 | 35 | 58 | 0  |
| 0     | 0   | 0       | 4  | 0  | 30 | 21 | 34 |
| 0     | 3   | 0       | 31 | 20 | 33 | 0  | 29 |

AND R1<9). If a move is found to be legal, then we enter it into the T array. When all legal moves are in the Array T, K1 is the number of legal moves. If K1 is zero, then the knight has reached a dead end and we may print the tour or not. We present a flowchart in two parts. Figure 12-1 details the sorting out of legal next moves. Figure 12-2 shows where a legal move chosen at random is incorporated into the tour.

## Summary of Sec. 12-4

We have seen programs to play Battle of Numbers and simulate the Knight's Tour. In the first case there is a guaranteed strategy which we exploit in our program. In the second case we have not employed strategy of any kind but merely progress from step to legal step at random with no procedure for maximizing results.

## Projects for Sec. 12-4

Some of the projects listed will require considerable study and planning before the actual coding of the program takes place. Be sure to allow a reasonable amount of time should you attempt any of the longer projects. Some of the solution programs can be very long indeed. The reader needn't feel limited to projects proposed here.

- 1) Modify the game of Battle of Numbers so that the last person to take away wins. Be sure to change the computer's strategy.
- 2) Write a program to play the game of Nim.
- 3) Write a program to play Tic-Tac-Toe. First decide whether or not you want an unbeatable program.
- 4) Write a program to play three-dimensional Tic-Tac-Toe.
- 5) Write a program to lengthen the knight's tour by backing up every time the knight hits a dead end.
- 6) Write a program to play the game of Geography using strings and files. In this game two players take turns naming places where the first letter of the new place must be the last letter of the last place named.
- 7) Write a program to make the computer the dealer in a blackjack game.
- 8) Write a program to play craps.
- 9) Write a program to simulate a Roulette-wheel.



Figure 12-1 Flowchart for keeping track of Knight's Tour.



Figure 12-2 Flowchart for selecting moves at random for Knight's Tour.

# APPENDIX A

# ASCII Character Set Printable on Model 33

| CØDE | CHARACTER | CØDE | CHARACTER |
|------|-----------|------|-----------|
| 32   |           | 64   | 0         |
| 33   | 1         | 65   | Α         |
| 34   | **        | 66   | В         |
| 35   | #         | 67   | С         |
| 36   | \$        | 68   | D         |
| 37   | 7.        | 69   | Ε         |
| 38   | &         | 70   | F         |
| 39   | •         | 71   | G         |
| 40   | (         | 72   | Н         |
| 41   | )         | 73   | I         |
| 42   | *         | 74   | J         |
| 43   | +         | 75   | ĸ         |
| 44   | ,         | 76   | L         |
| 45   | -         | 77   | М         |
| 46   | •         | 78   | N         |
| 47   | /         | 79   | Ø         |
| 48   | 0         | 80   | P         |
| 49   | 1         | 81   | Q         |
| 50   | 2         | 82   | R         |
| 51   | 3         | 83   | S         |
| 52   | 4         | 84   | т         |
| 53   | 5         | 85   | υ         |
| 54   | 6         | 86   | V         |
| 55   | 7         | 87   | W         |
| 56   | 8         | 88   | х         |
| 57   | 9         | 89   | Y         |
| 58   | 1         | 90   | Z         |
| 59   | 3         | 91   | £         |
| 60   | <         | 92   | \         |
| 61   | x         | 93   | 3         |
| 62   | >         | 94   | •         |
| 63   | ?         | 95   | •         |

## NØTE SPECIAL CHARACTERS:

| LINEFEED 0 | IR CTRL | J | 10 |
|------------|---------|---|----|
| FØRMFEED @ | R CTRL  | L | 12 |
| RETURN ØR  | CTRL M  |   | 13 |
| SPACE      |         |   | 32 |

# APPENDIX B

# **Summary of Flowchart Shapes**



Used for beginning and ending of program.



Indicates data entered into the computer or results returned by the computer.





Indicates that a decision is being made.

IF XXXXXX THEN

Predefined process

Indicates a sequence of program statements not included in the flowchart. May be used for GØSUB statement.

YYY



Connector. Indicates transfer from one statement to another other than the next higher numbered statement in the program. N matches another N elsewhere in the same flowchart.

Operation Opens loop Closes loop Used for anything not already specified.

NEXT X LET RETURN STØP

# APPENDIX C

# Summary of Statements in BASIC

NOTE: Not all statements which appear in this appendix will run on all systems and the list here does not cover every statement for some systems.

It is the highest numbered statement of every BASIC END program. It is optional on a few systems and re-

quired on most.

Prints values of variables, calculated values, and literal expressions inside quotes. Spacing is con-

trolled by commas, semicolons, and TAB. More spacing functions are available on some systems.

Prints according to format specified in line n. PRINT USING n

Specifies printing for PRINT USING statements. Enters values stored in DATA statements into vari-

ables named in the READ statement. All legal BASIC variables (string and numeric) may be read in a single READ statement by separating them with commas.

Stores values for READ statements. Items of data must be separated by commas. Some systems require that strings be in quotes.

Names n as the next line number to be executed by the computer.

Computed  $G\Phi T\Phi$  goes to the line number in the xth position in the list of line numbers  $n_1, n_2, n_3$ , etc. If available, one of these should work. They are not interchangeable.

Assignment statement. The word LET is optional on many systems. Stores the value on the right of an equals sign in the variable named on the left. May be used to assign string variables. Multiple assignment is available on most systems.

Permits the programmer to remark upon the program in the program itself without affecting the pro-

PRINT

READ

DATA

GØTØ n

 $\emptyset$ N X G $\emptyset$ T $\emptyset$   $n_1, n_2, n_3,$ etc., or

 $GØTØ X ØF n_1, n_2, n_3,$ etc., or

 $GOTO n_1, n_2, n_3$ , etc., ØN X

LET

REM

|                                                     | gram operation. Some systems allow 'to serve the                                                      |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| IF THEN n                                           | same purpose.  Tests the truth of an algebraic sentence placed be-                                    |
| 11 11111111                                         | tween the IF and the THEN. Sends the computer                                                         |
|                                                     | to line n if the sentence is true. Control passes to the next line if the sentence is false.          |
| $F \emptyset R X = A T \emptyset B$                 | Opens a machine loop with first value for X at A, last                                                |
| STEP C                                              | number B, and increment C. If C is omitted, the step defaults to an increment of 1.                   |
| NEXT X                                              | Closes machine loop. Sends the computer to the                                                        |
|                                                     | corresponding $F \emptyset R$ statement to increment and test X.                                      |
| GØSUB n                                             | Sends the computer to a subroutine beginning at line                                                  |
|                                                     | n. Upon executing a RETURN statement, the                                                             |
|                                                     | computer returns to the line immediately following $G\phi SUB$ n.                                     |
| $\emptyset$ N X G $\emptyset$ SUB $n_1, n_2, n_3$ , | Computed G $\phi$ SUB goes to the subroutine beginning                                                |
| etc., or                                            | at the xth line number in the list. Upon executing                                                    |
| GØSUB X ØF $n_1, n_2, n_3$ , etc., or               | a RETURN statement, control goes to the line immediately following this statement. If avail-          |
| GØSUB X ØN $n_1, n_2, n_3$ ,                        | able, one of these should work. They are not                                                          |
| etc.                                                | interchangeable.                                                                                      |
| RETURN                                              | Closes all subroutines.                                                                               |
| DEF FNA(X) =                                        | Program-defined function. The letter pair FN designates that a function is called for FN designation. |
|                                                     | nates that a function is called for. The function name is A, and the argument is X. Any letter of     |
|                                                     | the alphabet may be used. Some systems permit                                                         |
|                                                     | multiple arguments separated by commas.                                                               |
| DEF FNA(X)                                          | Opening line of a multiple-line program-defined                                                       |
|                                                     | function. Several arguments may be permitted,                                                         |
|                                                     | separated by commas. A value must be assigned to FNA in the lines to follow.                          |
| FNEND                                               | Closing statement of a multiple-line, program-defined                                                 |
|                                                     | function.                                                                                             |
| STØP                                                | Execution of the ST $\phi$ P statement causes termination                                             |
| DIM A( ),B\$( )                                     | of the RUN at that point.  Declares dimensions for one- or two-dimensional                            |
| Σιπ π ( ),υφ ( )                                    | numeric arrays or string arrays or both. One                                                          |
|                                                     | number is required in the parentheses for a list                                                      |
|                                                     | and two numbers separated by a comma are                                                              |
| INPUT                                               | required for a two-dimensional array.                                                                 |
| INIOI                                               | Same as READ except that data is to be typed on the keyboard of the remote terminal.                  |
| RESTØRE                                             | Restores all data in the program. The next item of                                                    |
|                                                     | data to be read will be the very first data item in the program.                                      |
| RESTØRE*                                            | Restores numeric data only.                                                                           |
| RESTØRE\$                                           | Restores string data only.                                                                            |
|                                                     |                                                                                                       |

| RESTØRE n<br>CHANGE A\$ TØ A     | Restores all data from line n on.  Stores the ASCII code of the characters of the string  A\$ in the array A with the length of the string in  characters stored in A(0).                              |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CHANGE A TØ A\$                  | Stores a string in A\$ with length specified in A(0) and characters determined by the ASCII code stored in the array elements of the A list.                                                           |  |  |
| RANDØMIZE                        | Causes the random numbers generated in successive runs of the same program to vary.                                                                                                                    |  |  |
|                                  | MATRIX INSTRUCTIONS                                                                                                                                                                                    |  |  |
| MAT READ                         | Enters data into numeric and string arrays. Several arrays can be read in the same MAT READ statement by separating the array names with commas.                                                       |  |  |
| MAT PRINT                        | Prints the array(s) listed, separated by commas or semicolons. The delimiter used specifies spacing for the preceding array. Numeric and string arrays are allowed.                                    |  |  |
| MAT INPUT                        | Enters data into an array (string or numeric) from the keyboard. Some systems allow more than one array listed here; others do not.                                                                    |  |  |
| MAT C = A * B                    | Enters the product of A and B into array C.                                                                                                                                                            |  |  |
| MAT A = B + C                    | Enters the sum of B and C into array A.                                                                                                                                                                |  |  |
| MAT A = B - C                    | Enters the difference of B and C into array A.                                                                                                                                                         |  |  |
| MAT A = (K)*B                    | Multiplies each entry of B by the scalar K and enters the result into A.                                                                                                                               |  |  |
| MAT A = ZER                      | Creates the zero matrix (fills each entry of A with zero). ZER may be followed by redimensioning specifications in parentheses.                                                                        |  |  |
| $MAT A = C \phi N$               | Fills each element of A with 1. CON may be followed by redimensioning specifications in parentheses.                                                                                                   |  |  |
| MAT E = IDN                      | Forms the identity matrix E. E must be square. All elements with equal row and column numbers are 1 and all other elements are 0. IDN may be followed by redimensioning specifications in parentheses. |  |  |
| MAT X = INV(A)<br>MAT A = TRN(B) | Finds the inverse of A and enters it in X (if it exists). Fills A with the transpose of B.                                                                                                             |  |  |
| FUNCTIONS                        |                                                                                                                                                                                                        |  |  |
| SQR(X)                           | Computes the non-negative square root of X. X must                                                                                                                                                     |  |  |

be non-negative.

ABS(X)

SGN(X)

Computes the absolute value of X.

zero, and -1 for X negative.

Returns the value 1 for X positive, 0 for X equals

| INT(X)                       | Returns integer part of X. For some systems this is the mathematically greatest integer function. For others, the computer simply chops off the digits to the right of the decimal point. (The results                                                                                                                        |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RND(X)                       | are the same for non-negative numbers.)  Generates a random number. In some systems the set of random numbers accessed is determined by the value of X. Some systems generate the same set of numbers each time the program is run, whereas others provide a different set and still others provide an option. See RND below. |
| $SIN(X), C\phi S(X), TAN(X)$ | Computes the sin, cos, or tan of X, where X must be in radians.                                                                                                                                                                                                                                                               |
| ATN(X)                       | Computes the arctan of X. ATN(X) is in radians. The program must be written to determine the correct quadrant for the result.                                                                                                                                                                                                 |
| $L \phi G(X)$                | Computes the logarithm of X using base e.                                                                                                                                                                                                                                                                                     |
| EXP(X)                       | Computes the number whose LØG base e is X.                                                                                                                                                                                                                                                                                    |
| TAB(X)                       | Moves the printing mechanism to the (X + 1)st position of the carriage unless the printing mechanism                                                                                                                                                                                                                          |
|                              | is already past that point, in which case there is no effect.                                                                                                                                                                                                                                                                 |
| ASC( )                       | Returns the ASCII code for the character placed in parentheses.                                                                                                                                                                                                                                                               |
| LEN(A\$)                     | Returns the number of characters in the string A\$.                                                                                                                                                                                                                                                                           |
| EXT\$(A\$,I,J)               | String extract function. Isolates a substring in A\$ from the Ith to the Jth character inclusive.                                                                                                                                                                                                                             |
| NUM                          | Returns the number of elements typed in response to the most recent MAT INPUT statement executed in the program.                                                                                                                                                                                                              |
| DET                          | Returns the determinant of the most recent matrix for which the inverse has been found with the MAT INV ( ) statement. No argument required.                                                                                                                                                                                  |
| RND                          | Returns a random number. The numbers will be the same on successive runs of the program if the RANDØMIZE statement is not present in the program and different on successive runs if the RANDØMIZE statement is present.                                                                                                      |
|                              | FILES                                                                                                                                                                                                                                                                                                                         |
|                              | Hewlett Packard Files                                                                                                                                                                                                                                                                                                         |

## Hewlett Packard Files

| FILES     | Names files to be used by the present program and |
|-----------|---------------------------------------------------|
|           | makes them available for access. File names are   |
|           | separated by commas.                              |
| READ #N,R | Sets the file pointer to the beginning of the Rth |

record of the Nth file named in the files statement.
In addition, when followed by a semicolon and

|                  | variable list, this statement reads values from the                                                                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | file to the variables.                                                                                                                                                                                                                                                                        |
| READ #N;         | When followed by a variable list, this statement reads from the file at a point previously established.                                                                                                                                                                                       |
| MAT READ #       | Reads values from a file with the same options allowed for READ #.                                                                                                                                                                                                                            |
| PRINT #N,R       | Sets the file pointer in the Nth file named in the files statement to the beginning of the Rth record and erases the contents of that record. In addition, when followed by a semicolon and a variable list, this statement causes the contents of the variables to be printed into the file. |
| PRINT #N;        | When followed by a variable list this statement causes the contents of the variables to be printed wherever the file pointer has been previously set.                                                                                                                                         |
| MAT PRINT #      | Prints values from a matrix to a file with the same options as for PRINT #.                                                                                                                                                                                                                   |
| IF END #N THEN n | When executed, this statement sets a flag. If at any later time an attempt is made to read past the end of data or past the physical end of the file or to print past the physical end of the file, control passes to line n.                                                                 |
| TYP(N)           | The TYP (N) function takes on values from 1 to 4, depending on the nature of the next information in the file. TYP(N) becomes 1 for number, 2 for string, and 3 for end of file. If the argument is negative, the value 4 will be returned for end of record.                                 |
|                  | General Electric Files                                                                                                                                                                                                                                                                        |
| FILES            | Names files to be used by the current program and makes them available for access. File names are separated by semicolons.                                                                                                                                                                    |
|                  | ASCII Files                                                                                                                                                                                                                                                                                   |
| READ #N,         | Reads data from the Nth file named in the program into the variables of the variable list following the                                                                                                                                                                                       |

WRITE #N,

Writes data from the variable list following the comma to the file. The variables in the list may be separated by semicolons or commas to achieve corresponding spacing in the file.

IF MØRE #N

Determines whether or not there is more data in the

file.

Determines whether or not the end of the file has been reached.

APPEND #N Allows additional data to be written to an existing

IF END #N

RESTORE #N

file by setting the file pointer to the end of the

Nth file and placing the file in write mode.

SCRATCH #N Sets the pointer of the Nth file to the beginning of the file, erases the file, and places it in write mode.

Sets the pointer of the Nth file to the beginning of

the file and places it in the read mode.

### **Binary Sequential Files**

Binary sequential files may be processed by all of the above statements by substituting a colon (:) for the pound sign (#). Binary files should be less expensive to work with; however, ASCII files are very convenient due to the fact that they may be listed at the terminal.

#### Random Access Files

READ:N, Same as ASCII.

WRITE:N, Same as ASCII.

IF  $M \phi RE:N$  Tests true, except when the file pointer is at the

physical end of file.

IF END:N Tests false, except when the file pointer is at the physical end of file.

SCRATCH:N Places the file pointer at the beginning of the file and fills the file with binary zeros.

RESTØRE:N Places the file pointer at the beginning of the file

without altering the contents of the file.

SETW N T $\phi$  X Places the file pointer to the Xth word of file N. To access a random file by record, the formula W\*(R - 1) + 1 places the pointer at the beginning of the Rth record if there are W words per record.

# APPENDIX D

# Index of Programs in Text

| Program                               | Description                                | Section  |
|---------------------------------------|--------------------------------------------|----------|
| ADD                                   | Adds Numbers from Data                     | 1-2      |
| ADD1                                  | Adds and Counts Numbers from Data          | 1-2      |
| ADD2                                  | Adds Numbers from Input                    | 1-2      |
| ALPHA                                 | Arranges Characters of String              | 3-3A     |
| ALPHA1                                | First Use of Change Statement              | 3-3B     |
| AREA1                                 | Area by Summing Rectangles                 | 6        |
| AREA2                                 | Areal with Variable Interval Width         | 6        |
| ARRAY\$                               | Demonstrates a String Array                | 3-3      |
| ASC                                   | Prints Sample ASCII Codes                  | 3-3B     |
| AVG                                   | Averages Numbers from Data                 | 11-2     |
| BATTLE                                | Plays Battle of Numbers                    | 12-4     |
| BOUNCE                                | Prints Successive Heights for a Magic Ball | 9-2      |
| CITY                                  | First GE Data File                         | 4-3      |
| CØLIN                                 | Determines Colinearity of Three Points     |          |
| 0 4 2221                              | in a Plane                                 | 7-5      |
| CØMPAR                                | Compares Two Numerics                      | 1-2      |
| CØMPR\$                               | Program COMPAR with Strings                | 3-2      |
| CONCAT                                | Appends One String on Another              | 3-3A     |
| CØNVRT                                | Converts Numeric to String                 | 3-3A     |
| CORREL                                | Calculates Linear Correlation Coefficient  | 11-4     |
| COSINE                                | Compares Computer cos(x) Function and      |          |
| · · · · · · · · · · · · · · · · · · · | Series Evaluation                          | 9-4      |
| DECIDE                                | First Demonstration of Strings             | 3-2      |
| DIST1                                 | Uses Distance Formula for Two Points       | 7-2      |
| DIST2                                 | Finds Distance for Several Pairs of Points | . 7-2    |
| DIVIDE                                | Demonstrates Synthetic Division            | . 8-3    |
| DRAW                                  | Draws 5 Numbers at Random from 10 with     |          |
|                                       | Replacement                                | . 1-3    |
| DRAW01                                | Draws with FOR-NEXT                        | . 1-3    |
| DRAW02                                | Draws Numbers from 10 Without              |          |
|                                       | Replacement                                | . 1-3    |
| END                                   | Prints A\$(I) in Substring Scheme          | . 3-3A   |
| ENTER1                                | Prints Data Serially in File INV01 (HP)    | . 4-2    |
| ENTER2                                | Adds Data to File INV01 (HP)               | $4^{-2}$ |
| ENTER3                                | Prints Data to Random Access File          |          |
|                                       | INV02 (HP)                                 | 4-2      |
| ENTER4                                | Adds Data to File INV02 (HP)               | 4-2      |
| FIBØ1                                 | Prints the First 30 Fibonacci Numbers      |          |
| FUNCTION                              | Demonstrates Multiple Line Defined         |          |
| •                                     | Function                                   | . 2-5    |
| GEØARI                                | Compares Geometric and Arithmetic          |          |
|                                       | Sequences and Series                       | . 9-3    |
| GRAPH1                                | Bare Plot, No Axes, Origin Only            | . 5-2    |
| GRAPH2                                | Graph1 with Axes                           | . 5-2    |
| GRAPH3                                | Plotting from an Array with Axes           | . 5-3    |
| GRØWTH                                | Orders Contents of City into File          |          |
|                                       | CITY1 (GE)                                 | . 4-3    |
| HALF                                  | Halves Remaining Distance of Separation    | . 9-1    |
| IMAGE01-                              |                                            |          |
| IMAGE05                               | Demonstrates Print Using                   |          |
| INT                                   | Computes Compound Interest by Formula      |          |
| LIM01                                 | Prints Powers of $(-3/5)$                  | . 9-2    |
| LIM02                                 | Prints Terms of $(2+(1/5)\uparrow H)$      | . 9-2    |
| LINE1                                 | Gives Equation of Line Given Two Points .  | . 7-2    |

| Program         | Description                                        | Section |
|-----------------|----------------------------------------------------|---------|
| LINES<br>LØGIC1 | Simulates Bank Teller Window Activity              | 12-2    |
|                 | Prints Truth Values                                | 2-4     |
| LQGIC2          | Gets Factors Using Truth of                        | 0.4     |
| MAGIC           | N/X=INT(N/X)                                       | 2-4     |
|                 | Squares                                            | 12-3    |
| MAT\$           | Demonstrates MAT READ and MAT PRINT                |         |
|                 | for String Arrays                                  | 3-3B    |
| MAT01           | Demonstration MAT READ and MAT PRINT               | 1-5     |
| MAT02           | Demonstrates Matrix Product                        | 1-5     |
| MATINV          | Demonstrates MAT INV                               | 10-2    |
| MEDIAN          | Finds Median for Odd Number of Data                | 11-3    |
| MØD             | Modular Arithmetic with One Subroutine             | 1-4     |
| MØD1            | Modular Arithmetic with Nested                     | 1 1     |
|                 | Subroutines                                        | 1-4     |
| <b>ØPRATN</b>   | Uses ↑,*,/,+,                                      | 1-2     |
| ØRDER           | Orders Numbers from Data                           | 11-3    |
| ØRDER\$         | Alphabetizes Names in a String Array               | 3-3B    |
| PERP            | Equation of Line Given Point and Points            | 0 02    |
|                 | on Perpendicular Line                              | 7-3     |
| PØINT           | Finds Intersection of Two Lines in                 |         |
|                 | AX+BY+C=0 Form                                     | 7 - 4   |
| PØLY01          | Compares Values of $F(X)$ by Three Methods         | 8-1     |
| PRT             | Demonstration of User Defined Function             | 1-4     |
| PYTH1           | Reads and Prints Coordinates of Three              |         |
| TATIONTA        | Points                                             | 7-5     |
| PYTH2           | Sets Up Three Points in Six List Positions         | 7-5     |
| PYTH3           | Checks Three Points for Vertices of                |         |
|                 | Right Triangle                                     | 7-5     |
| RANK            | Arranges the Contents of File CITY2 (GE).          | 4-3     |
| READ            | Reads File INV01 (HP)                              | 4-2     |
| READ1           | Reads with IF END Trap (HP)                        | 4-2     |
| READ2           | Finds Number of Parts in Inventory File INV01 (HP) | 4-2     |
| READCITY        | Reads File CITY (GE)                               | 4-2     |
| REDCITY2        | Reads Contents of File CITY2 (GE)                  | 4-3     |
| REVRS           | Prints String in Reverse Order                     | 3-3A    |
| REVRS1          | Reverses Characters of a String Using Change       | 3-3B    |
| RNDENTER        | Writes 10 Random Numbers to Binary File            | 0 015   |
|                 | RAND (GE)                                          | 4-3     |
| RNDREAD         | Reads File RAND (GE)                               | 4-3     |
| RNDSØRT         | Arranges Contents of File RAND (GE)                | 4.3     |
| RQUND           | Rounds to Various Precisions                       | 1-3     |
| SALES1          | Matrix Demonstration                               | 10-1    |
| SALES2          | Sales1 Stripped to Bare Essentials                 | 10-1    |
| SEQ01           | Prints Ratios of Successive Odd Integers           | 9-1     |
| SLQPE           | Finds Slope of Lines Given Two Points              | 7-2     |
| SØLVE           | Solves Simultaneous Linear Equations Using         |         |
| ,               | MAT INV                                            | 10-2    |
| SUBSTR          | Demonstrates A\$(I,J) As a Substring               | 3-3     |
| TAB01           | Demonstrates Tab Printing of String                | 0.0     |
| m A D O O       | Characters                                         |         |
| TAB02           | Prints Numerics Using the Tab Function             | 2-2     |
| TØUR            | Knight's Tour—Prints at Dead End                   | 12-4    |
| UPDATE          | Edits Inventory File INV02 (HP)                    | 4-2     |
| VAR             | Calculates Variance and Standard Deviation         | 11-2    |
| WEATHER         | Calculates Linear Correlation for                  | 11-4    |
|                 | Temperature Data                                   | T T -4  |

| Program | Description                               | Section |
|---------|-------------------------------------------|---------|
| WEEKA   | Matches String and Substring              | 3-3A    |
| WEEKA1  | Finds Day Number from String Day          |         |
| WEEKB1  | WEEKA1 Checking Only First Three          |         |
|         | Letters of Input String                   | 3-3B    |
| WETHR   | Array Demonstration with Weather Data     | 1-4     |
| WETHR1  | Array Demonstration with Weather Data     |         |
| XFER    | Transfers Contents of City to Random      |         |
|         | File CITY2 (GE)                           | 4-3     |
| ZERØ01  | Search for Change of Sign in Polynomial   |         |
|         | Function                                  | 8-2     |
| ZERØ02  | Uses Interval Halving to Find an Approxi- |         |
|         | mate Zero                                 | 8-2     |

# **BIBLIOGRAPHY**

- Albrecht, Robert L., LeRoy Finkel and Jerold R. Brown, BASIC, Wiley, 1973. Programmed instruction is used to introduce BASIC.
- Coan, James S., Basic BASIC, Hayden, 1970. An introduction to BASIC in a mathematics setting.
- Gateley, Wilson Y., and Gary G. Bitter, BASIC for Beginners, McGraw-Hill Book Company, 1970. Brief introduction to the rudiments of BASIC.
- Gruenberger, Fred, and George Jaffray, Problems for Computer Solution, Wiley, 1965. A book of problems from a wide variety of topics.
- Kemeny, John G., and Thomas E. Kurtz, BASIC Programming, 2nd Ed., Wiley, 1971. BASIC programming presented by the originators of the language.
- Knuth, Donald E., The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, 1973. A comprehensive treatment on arranging data in order and locating items in an ordered data structure.
- Ledgard, Henry F., Programming Proverbs, Hayden, 1975. Writing programs that work the first time.
- Nolan, Richard L., Introduction to Computing Through the BASIC Language, Holt, Rinehart and Winston, 1969. Introduction to computers and computing as well as BASIC.
- Pavlovich, Joseph P. and Thomas E. Tahan, Computer Programming in BASIC, Holden-Day, 1971. An introduction to BASIC assuming a traditional background in high-school mathematics.
- Pegels, C. Carl, BASIC A computer Programming Language, Holden-Day, 1973. With business and management applications.
- Sage, Edwin R., Problem Solving with the Computer, Entlek, 1969. An introduction to BASIC using mathematics problems.
- Smith, Robert E., *Discovering BASIC*, Hayden, 1970. Introduces BASIC using a wide variety of interesting problems.
- Spencer, Donald D., A Guide to BASIC Programming; A Time-Sharing Language, Addison-Wesley, 1970. Introduces the language, solves problems from general interest topics, and presents problems for reader solution.
- Spencer, Donald D., Game Playing with Computers, Rev. 2nd Ed., Hayden, 1975. Mostly Fortran with some BASIC. Detailed analysis of a wide variety of games.

#### ANSWERS TO SELECTED PROBLEMS

Each two-page spread should be read from top to bottom as an individual page.

```
Chapter 1
Section 1-2
Number 1
    REM . FIND LARGEST AND SMALLEST NUMBER FROM DATA
     REM . READ FIRST NUMBER
    READ N
104 REM * FIRST VALUE IS LARGEST AND SMALLEST SO FAR
110 LET S = L = N
120 READ N
      IF N = -.01 THEN 200
130
       IF S <= N THEN 170
144 REM . CURRENT NUMBER SMALLER SC SAVE
150 LET S = N
160 GOTO 120
170
       IF L >= N THEN 120
174 REM * CURRENT NUMBER LARGER SO SAVE
180 LET L = N
190 GOTO 120
200 PRINT " LARGEST =": L
210 PRINT "SMALLEST =" | S
214 REM
    DATA 83, 54, 71, 92, -3, --01
230 END
NC - 2
LARGEST = 92
SMALLEST =-3
Ni mber 4
9" REM * SUM INTEGERS FROM I 10 N
100 PRINT "SUM I TO";
110 INPUT N
120 LET T = I = 0
130 LET ( = (+1
140 LET T = T+T
150 IF ( < N THEN 130
160 PRINT T
```

```
Number 2
94 REM * FIND GREATEST INTEGER WITHOUT INT FUNCTION
    IF X = -.001 THEN 290
120 PRINT "INT("; X; ") 15 ";
       IF X <> 0 THEN 160
140 PRINT X
150 GOTO 100
    IF X > 0 THEN 230
180 LET C = C-1
190 LET X = X+1
       IF X < 0 THEN 180
210 PRINT C
220 GO TO 100
240 LET X = X-1
      IF X >= 1 THEN 230
    PRINT C
260
270 6070 100
272
280 DATA 2, 1.23456, -2.8712, 1, 0, -4, -.001
RUN
NO.2
INT( 2 1 15 2
INT( 1.23456 ) 15 1
INT(-2.8712
               15 -3
INT( ) ) IS 1
INT( 0 : IS 0
INT(-4 : IS -4
Number 4
94 REM * TO DEAL FOUR 13 CARD HANDS
100 DIM D(52)
110 PRINT " HANDS"
120 PRINT "ONE", "TWO", "THREE", "FOUR"
130 FOR 1 = 1 TO 52
      LET D(I) = I
1.40
150 NEXT I
160 LET N = 52
170 FOR R = 1 TO 13
180 FOR H = 1 TO 4
```

```
230 DATA 1001,1300, 0,0
234 REM * THE EUCLIDEAN ALGORITHM
    REM WOULD BE MORE EFFICIENT
240 END
RUN
NC - 8
FIRST #
              SECOND #
                            G.C.F.
 50
               35
                             5
 28
               39
 1001
               1300
Number 10
94 REM * COUNT FREQUENCY OF OCCURANCE FOR RANDOM INTEGERS
100 DIM S(10)
102
104 REM * INITIALIZE COUNTING LIST
110 FOR 1 = 1 TO 10
    LET S(I) = 0
130 NEXT I
134 REM * GENERATE 100 RANDOM INTEGERS COUNT IN LINE 160
140 FOR I = 1 TO 100
    LET N = INT( FND(-1)+10+1 +
       LET S(N) = S(N) + 1
170 NEXT 1
    REM . PRINT RESULTS
180 FOR I = 1 TO 10
       PRINT I; S(I)
200
    NEXT I
510
NO - 10
s
      15
      10
      8
      В
 10
      14
```

```
170 END
                                                                         182
                                                                                                                                                 Chapter 1
                                                                                   REM . SELECT A CARD AT RANDOM
RUN
                                                                         184
                                                                         190
                                                                                   LET C = INT( RND(-1)+N+1 )
                                                                                                                                                 Section 1-4
NO. 4
                                                                         200
                                                                                   LET CI = D(C)
                                                                                                                                                 Number 2
                                                                         202
SUM 1 T0?5
                                                                                    REM * FIND SUIT
15
                                                                         204
                                                                                   LET S = INT( (C1-1)/13 +1 )
                                                                                                                                                  94 RFM * FINDS MAX AND MIN FOR DEFINED FUNCTION
                                                                         210
                                                                                                                                                  100 DEF FNR(X) = 13*X+3 - 2*SIN(X+2) - LOG(ABS(15*X))
                                                                         212
Number 5
                                                                                    REM * FIND CARD IN SUIT
                                                                                                                                                  110 PRINT "F.L.1":
                                                                         214
                                                                                   LET C2 = C1 - (S-1)+13
                                                                                                                                                  120 INPUT F.L.I
                                                                         220
94 REM * FIND FACTORIAL N
                                                                                      IF C2 > 10 THEN 270
                                                                                                                                                  130 LET M = M1 = FNR(F)
                                                                         230
100 PRINT "FACTORIAL";
                                                                                                                                                  140 LET P = P1 = F
                                                                         240
                                                                                      1F C2 = 1 THEN 560
110 INPUT N
                                                                         250
                                                                                    PRINT C21
                                                                                                                                                  150 FOR X = F+1 TO L STEP 1
120 LET F = 1
                                                                                   GOTO 280
                                                                                                                                                           IF M <= FNR(X) THEN 200
                                                                         260
130 LET I = 0
                                                                         270
                                                                                   GOTO C2-10 OF 500,520,540
                                                                                                                                                  170
                                                                                                                                                         LET P = X
                                                                                                                                                         LET M = FNR(X)
140 LET I = I+1
                                                                                   GOTO S OF 600,620,640,660
                                                                                                                                                  180
                                                                         280
150 LET F = F*I
                                                                                                                                                         G0T0 230
                                                                         290
                                                                                   LET D(C) = D(N)
                                                                                                                                                  190
                                                                                                                                                           IF M1 >= FNR(X) THEN 230
160
       IF I < N THEN 140
                                                                         300
                                                                                   LET N = N-1
                                                                                                                                                  200
    PRINT F
                                                                                                                                                 210
                                                                                                                                                         LET P1 = X
170
                                                                                NEXT H
                                                                                                                                                         LET M1 = FNR(X)
180
    END
                                                                         320
                                                                                PRINT
                                                                                                                                                  220
                                                                                                                                                  230 NEXT X
RUN
                                                                         330 NEXT R
NO.5
                                                                                                                                                 232
                                                                         332
                                                                                                                                                      PRINT My "MINIMUM AT"; P
                                                                         340 STOP
                                                                                                                                                 240
FACTORIAL?5
                                                                                                                                                  250
                                                                                                                                                      PRINT MI; "MAXIMUM AT"; PI
                                                                         342
                                                                                                                                                 260 FND
120
                                                                         500 PRINT "JACK "J
                                                                         510 GOTO 280
                                                                                                                                                  RUN
                                                                         520 PRINT "OUFFN "I
                                                                                                                                                 ND - 2
Number 6
                                                                         530 G0T0 280
                                                                                                                                                 Fala 171,22,.5
                                                                         540 PRINT "KING "J
    REM . TO SOLVE EQUATIONS OF THE FORM
                                                                                                                                                            MINIMUM AT I
                                                                                                                                                  8.60901
                                                                         550 GOTO 280
     REM AX+B = CX+D
                                                                             PRINT "ACE ";
                                                                                                                                                  138418.
                                                                                                                                                             MAXIMUM AT 22
                                                                         560
    READ A. B. C. D
100
                                                                         570 GDTD 280
       IF A <> 0 THEN 140
110
                                                                         572
120
       IF B <> 0 THEN 140
                                                                         600 PRINT "CLUBS".
                                                                                                                                                 Number 3
130
    STOP
                                                                         610 GOTO 290
140
    PRINT A: "X+(": B: ") = (": C: ")X+(": D: ") ";
                                                                                                                                                 94 REM * KEEPS SCORE IN A GAME OF TIC TAC TOE
                                                                         620 PRINT "DIAMONDS",
       IF A-C <> 0 THEN 180
                                                                                                                                                 100 DIM A(3,3), P(2), W(4)
                                                                         630 G0TO 290
    PRINT " NO SOLUTION"
                                                                                                                                                  110 PRINT "THE BOARD"
                                                                         640 PRINT "HEARTS"
    GOTO 100
170
                                                                         650 GOTO 290
                                                                                                                                                  120 FOR 1 = 1 TO 3
                                                                         660 PRINT "SPADES",
                                                                                                                                                        FOR J = 1 TO 3
180
    PRINT " SOLUTION X = ": (D-B)/(A-C)
                                                                         670 GOTO 290
                                                                                                                                                           READ A(I,J)
                                                                                                                                                  140
    G0T0 100
100
                                                                                                                                                         NEXT J
                                                                         679
                                                                                                                                                  150
192
                                                                                                                                                  160 NEXT I
                                                                         700 END
194
                                                                         RUN
                                                                                                                                                  162
200
    DATA 1,3,2,-1, 3,2,1,-3
                                                                         NO - 4
                                                                                                                                                  170 LET P1 = 0
210
    DATA 2,-1,2,-3, 0,0,0,0
                                                                                                                                                  180
                                                                                                                                                      G0 SUB 400
SSO END
                                                                            HANDS
                                                                                                                                                      FOR Z = 1 TO 2
RIIN
                                                                                       TWO
                                                                                                      THREE
                                                                                                                                                        LET P1 = P1 + 1
                                                                         ONE
NO - 6
                                                                                                            SPADES
                                                                                                                    QUEEN CLUBS
                                                                                                                                                           IF P1 < 10 THEN 250
                                                                              CLUBS
                                                                                             DIAMONDS 3
                                                                                                                                                 210
                                                                         3
                                                                                        9
                                                                                             SPADES
                                                                                                            HEARTS
                                                                                                                          CLUBS
                                                                                                                                                         PRINT "IT'S A DRAW"
                                                                         JACK
                                                                              CLUBS
                                                                                                       R
                                                                                                                                                 220
 1 X+( 3 ) = : 2 )X+(-1 ) SOLUTION X = 4
                                                                               SPADES
                                                                                             SPADES
                                                                                                            SPARES
                                                                                                                          CLUBS
                                                                                                                                                 230
                                                                                                                                                         G0.5UB 400
 3 X+( 2 ) = ( 1 )X+(-3 ) SOLUTION X = -2.5
                                                                              DIAMBNOS
                                                                                             CLUBS
                                                                                                      QUEEN SPADES
                                                                                                                          DIAMONDS
                                                                                                                                                  240
                                                                                                                                                         STOP
                                                                         ACE
 2 X+(-1 ) = ( 2 )X+(-3 ) NO SOLUTION
                                                                                                                                                         60 SUB 500
                                                                         2
                                                                              DIAMONDS
                                                                                             HEARTS
                                                                                                      ACE
                                                                                                           CLUBS
                                                                                                                          CLUBS
                                                                                                                                                  250
                                                                                                                          SPADES
                                                                                                                                                         G0 SUB 600
                                                                              SPADES
                                                                                        10
                                                                                             CLUBS
                                                                                                      KING
                                                                                                           CLUBS
                                                                                                                                                 260
                                                                         KING
                                                                                             SPADES
                                                                                                      JACK
                                                                                                           DIAMONDS
                                                                                                                          HEARTS
                                                                                                                                                  270
                                                                                                                                                      NEXT Z
                                                                          10
                                                                               SPARES
                                                                                             CLUBS
                                                                                                      ACF
                                                                                                           HEARTS 2
                                                                                                                          SPADES
                                                                                                                                                 272
Chapter 1
                                                                         JACK
                                                                              HEARTS
                                                                                                      QUEEN DIAMONDS 3
                                                                                                                          HEARTS
                                                                               CLUBS
                                                                                             HEARTS
                                                                                                                                                  280
                                                                                                                                                      G0 T0 180
Section 1-3
                                                                               DIAMONDS KING
                                                                                             HEARTS
                                                                                                      QUEEN HEARTS ACE
                                                                                                                          SPADES
                                                                                                                                                  392
                                                                          8
                                                                                                            DIAMONDS 2
                                                                                                                          CLUBS
                                                                                                                                                      REM * PRINT THE BOARD
                                                                               HEARTS
                                                                                             DIAMONDS 6
                                                                                                                                                  394
                                                                                        5
                                                                                                            HEARTS JACK
                                                                                                                          SPADES
                                                                                                                                                      FOR 1 = 1 TO 3
Number 1
                                                                         KING
                                                                              DIAMONDS 10
                                                                                             HEARTS
                                                                                                                                                  400
                                                                              DIAMONDS 10
                                                                                             DIAMONDS 4
                                                                                                            DIAMONDS 6
                                                                                                                          HEARTS
                                                                                                                                                  410
                                                                                                                                                         FOR J = 1 TO 3
                                                                                                                                                           PRINT A(L,J);
94 REM * FIND ABS(X) WITHOUT COMPUTER FUNCTIONS
                                                                                                                                                  420
                                                                                                                                                         NEXT J
100 READ X
                                                                                                                                                  430
       IF X = -. 001 THEN 190
                                                                                                                                                  440
                                                                                                                                                         PRINT
110
                                                                         Number 8
120 PRINT "ABS("; X; ") = ";
                                                                                                                                                      NEXT I
                                                                                                                                                  450
       IF X < 0 THEN 160
                                                                             REM * FIND GREATEST COMMON FACTOR
                                                                                                                                                  452
    PRINT X
                                                                         100 PRINT "FIRST #", "SECOND #", "G.C.F."
                                                                                                                                                  460
                                                                                                                                                      RETURN
                                                                                                                                                      PRINT "ILLEGAL MOVE"
150 GOTO 100
                                                                             READ A. B
                                                                                                                                                  490
                                                                                IF A = 0 THEN 240
                                                                         150
152
                                                                                                                                                      REM * INPUT MOVES AND CHECK FOR 1 TO 9
160 PRINT -X
                                                                                                                                                  494
                                                                         130
                                                                             PRINT A. B.
170 6070 100
                                                                             FOR I = A TO 2 STEP -1
                                                                                                                                                  500
                                                                                                                                                      PRINT "" Z)
                                                                         140
                                                                                   IF A/J <> INT(A/I) THEN 170
                                                                                                                                                      INPUT P(Z)
                                                                         150
                                                                                                                                                  510
                                                                                                                                                        IF INT( (P(Z)-1)/9 ) <> 0 THEN 490
                                                                                                                                                  520
174
                                                                         160
                                                                                   IF B/I = INT(8/I) THEN 200
                                                                                                                                                      LET P = -Z
    DATA -5, 0, 3, -2, 2.4, -.001
                                                                         170 NEXT I
                                                                                                                                                  530
                                                                         172
                                                                                                                                                  540
                                                                                                                                                      RETHEN
190
    END
RIIN
                                                                         180
                                                                             PRINT 1
                                                                                                                                                  594
                                                                                                                                                      REM * ENTER NEW MOVE AND CHECK FOR WIN
NO. I
                                                                         190 GOTO 110
                                                                                                                                                  600 LET C = 0
                                                                         192
                                                                                                                                                  610 FOR I = 1 TO 3
ABS(-5 ) = 5
                                                                         200
                                                                             PRINT )
                                                                             G0TO 110
                                                                                                                                                  620
                                                                                                                                                         FOR J = 1 TO 3
A95( 0 ) = 0
                                                                         210
       1 = 3
                                                                                                                                                  630
                                                                                                                                                            LET C = C + 1
ARSE 3
                                                                         212
                                                                         214 REM
                                                                                                                                                  640
                                                                                                                                                               IF C < P(Z) THEN 710
ABS(-2 ) = 2
                                                                                                                                                               IF A(I, J) = P(Z) THEN 690
                                                                                                                                                  650
ABS( 2.4
                                                                         220 DATA 50,35, 28,39
```

Section 1-4 (cont'd) Number 3 (cont'd) PRINT "SPACE TAKEN" 670 GD SUB 500 680 G0T0 600 682 REM \* ENTER NEW MOVE 684 690 LET A(I,J) = P 60TO 730 700 710 NEXT J 720 NEXT ! 722 REM \* CHECK FOR WIN 72.4 730 FOR 1 = 1 TO 4 LET W(I) = D 740 750 NEXT 1 752 760 FOR I = 1 TO 3 76.2 REM \* CHECK DIAGONALS 764 IF A(I, I) -> P THEN 790 770 LET W(1) = W(1) + 1 760 IF A(1.4-1) +> P THEN 810 790 LET W(2) = W(2) + 1 BOD R(12 REM \* CHECK ROWS AND COLUMNS 804 LET W(3) = W(4) = 0 810 820 FOR J = 1 TO 3 IF A(I, J) <> P THEN 850 830 LET W(3) = W(3) + 1 840 IF A(J.1) <> P THEN 870 850 LET W(4) = W(4) + 1 840 NEXT J 870 872 FOR K = 1 TO 4 IF W(K) 4 3 THEN 730 870 PRINT "YOU WIN #"; : 9/10 G0 SUB 400 910 STOP 920 9 30 NEXT K 940 NEXT I 9.12 950 RETURN 952 954 950 DATA 1,2,3,4,5,6,7,8,9 970 END RUN No.3 THE BOARD . 1 ?3 . 2 2.5 5 25 71 -2 -2 - 1 g 27 YOU WIN ! I -2 -5 - 1 . - t 6 - 1 Number 6 94 REM \* COMPAR WITH COMPUTED GOSUB 100 READ A.B IF A = .01 THEN 320 120 GOSUB SGN(A-B)+2 OF 240,220,200 130 GOTO 100 200 PRINT AF "IS GREATER THAN" | B 210 RETURN 220 PRINT A; "IS EQUAL TO"; E 230 RETURN 240 PRINT A; "IS LESS THAN"; B

```
RUN
Chapter 3
                                                                           NO.11
Section 3-2
                                                                           A5?10
                                                                           C$?6
                                                                           6 10
Number 1
94 REM * HIGHEST AND LOWEST STRINGS IN DATA
                                                                           C5?10
100 READ DS
                                                                           6 10
110 LET HS=DS
120 LET LS=DS
                                                                           A5? A100
122 REM
                                                                           C5? A60
130 PRINT DS
                                                                           A50 A103
140 READ DS
150 IF DS="LAST" THEN 220
                                                                           A$? A50
    IF LS 4= DS THEN 190
                                                                           CS?A100
170 LET LS=DS
                                                                           A50 A100
180 GOTO 130
182 REM
                                                                           AS? STOP
190 IF HS >= DS THEN 130
200 LET HS=DS
210 G0T0 130
212
                                                                           Chapter 3
     PRINT
220
     PRINT " LOWEST = "ILS
230
                                                                           Section 3-5
     PRINT "HIGHEST = "JHS
240
242
                                                                           Number 1
    DATA "ONE", "TWO", "THREE", "FOUR", "FIVE", "LAST"
250
250
     END
                                                                            100 DIM A(75)
RUN
                                                                            110 INPUT AS
NO - 1
                                                                            120 CHANGE AS TO A
                                                                           130 LET L = A(1))
ONE
                                                                            132
TWO
                                                                            140
                                                                                FOR t = 1 TO L-1
THREE
                                                                                  FOR J = I+1 TO L
                                                                            150
FOUR
                                                                            160
                                                                                         IF A(1) <= A(J) THEN 200
FIVE
                                                                                      LET C = ACL)
                                                                           170
                                                                                      LET ACID = ACJ)
                                                                            180
 LOWEST = FIVE
                                                                            190
                                                                                      X = (L)A T3J
HIGHEST = TWO
                                                                           500
                                                                                   NEXT J
                                                                           210 NEXT I
                                                                           515
Number 5
                                                                           220 LET X = 1
                                                                                   IF A(X) <> A(X+1) THEN 290
100 PRINT
110 READ AS, BS, CS, DS
                                                                           234
                                                                                   REM * IF A(X) = A(X+1) THEN MOVE EACH
120 IF AS="STOP" THEN 250
                                                                                   REM ITSM UP 3NE POSITION
                                                                           235
130 IF BS<DS THEN 190
                                                                           240 FOR ( = X+1 TO L-1
140 IF BS>DS THEN 160
                                                                           250
                                                                                  LET A(1) = A(1+1)
150
    IF AS<CS THEN 190
                                                                            260 NEXT 1
152 REM
                                                                           270
                                                                                LET L = L-1
160 PRINT DSI", ":CS
                                                                            280 GOTO 230
170 PRINT BS;", "; AS
                                                                            282
180 GOTO 100
                                                                           290 LET X = X+1
182
     REH
                                                                                  IF X < 1-1 THEN 230
    PRINT BS1", ":AS
                                                                            310
                                                                                LET A(O) = L
     PRINT DS:". "ICS
                                                                            312
210 6070 100
                                                                            320
                                                                                CHANGE A TJ AS
     DEM
212
                                                                                PRINT AS
                                                                            330
220 DATA "WILLIAM", "SMITH", "GEORGE", "SMITH"
230 DATA "ALICE","JONES", "ROBERTA", "JONES"
240 DATA "STOP","","",""
                                                                            340
                                                                                END
                                                                            RUN
                                                                            NO - 1
250 END
RUN
                                                                            ? THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
NO . 5
                                                                            ABCDEFGHIJKLMN3PGRSTUVWXYZ
SMITH, GEORGE
                                                                           Number 2
SMITH, WILLIAM
                                                                            100 DIM NS(100), N(30)
JONES, ALICE
                                                                            110 READ N
JONES, ROBERTA
                                                                            120 MAT READ HS(N)
                                                                            130 FOR 1 = 1 TO N
                                                                                    PRINT VS(I); TAB(20);
                                                                            150
                                                                                    CHANGE VS(I) TO N
Chapter 3
                                                                            152
                                                                                    REM * SEARCH FOR FIRST SPACE
                                                                            154
Section 3-4
                                                                                    FOR J = N(0) TO 1 STEP -1
                                                                            160
                                                                            170
                                                                                         IF N(J) = 32 THEN 190
Number 8
                                                                            180
                                                                            190
                                                                                    LET NS(1) = EXTS(NS(1),J+1,N(0)) + ", " + EXTS(NS(1),1,J)
94 REM * MULTIPLIES TWO INTEGERS UP TO 20 DIGITS EACH
                                                                                    PRINT VS(1)
                                                                            200
100 DIM AS(201, BS(201, DS(101, A(201, B(201, C(401
```

| 250 RETURN 272 REM 272 REM 273 DATA 3.4, 1.7,1.1, 31,31, -3,2, 0,0 310 DATA .01,0 320 END RUN NO.5 3 IS LESS THAN 4 1.7 IS GREATER THAN 1.1 31 IS EQUAL TO 31 -3 IS LESS THAN 2 0 IS EQUAL TO 3 | 110   LET DS."012.456789"     20   READ AR.955     130   IF ASE"SIDE" THEN 530     140   PRINT AS!"**SIDE" THEN 530     142   REM | 210 NEXT I 212 220 FOR I = I TO N-1 230 FOR J = I * I TO N 240 FOR J = I * I TO N 240 FOR J = I * I TO N 250 LET AS = NS(I) * THEN 280 250 LET NS(I) = NS(J) 270 LET NS(I) = AS 280 NEXT J 290 PRINT 310 PRINT "ORDERED!" 320 PRINT 320 PRINT 320 PRINT 320 PRINT 320 OR I = I TO N |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 1                                                                                                                                                                                       | 224 REM * CONVERT BS TO LIST B<br>230 LET B=LEN(BS)                                                                               | 340 PRINT NS(I)<br>350 NEXT I                                                                                                                                                                                                                                                       |
| Section 1-5                                                                                                                                                                                     | 240 MAT B=ZER(8)                                                                                                                  | 352                                                                                                                                                                                                                                                                                 |
| Number 2                                                                                                                                                                                        | 250 FOR I=1 TO B<br>260 FOR J=1 TO 10                                                                                             | 360 DATA 3<br>370 DATA GEORGE WASHINGTON, JOHNNY APPLESEED, JOHN G. ADAMS                                                                                                                                                                                                           |
|                                                                                                                                                                                                 | 270 IF BS(I,I]=DS(J,J) THEN 290                                                                                                   | 380 END                                                                                                                                                                                                                                                                             |
| 94 REM * FIND LARGEST RANDOM INTEGER IN ROWS AND COLUMNS<br>100 DIM A(5,5)                                                                                                                      | 280 NEXT J<br>290 LET B(B+1-11=J-1                                                                                                | RUN<br>NO•2                                                                                                                                                                                                                                                                         |
| 102<br>104 REM * FILL ARRAY WITH RANDOM INTEGERS                                                                                                                                                | 300 NEXT /<br>302 REM                                                                                                             | GEORGE WASHINGTON WASHINGTON, GEORGE                                                                                                                                                                                                                                                |
| 110 FOR I = 1 TO 5                                                                                                                                                                              | 304 REM * MULTIPLY DIGIT BY DIGIT                                                                                                 | JOHNNY APPLESEED APPLESEED, JOHNNY JOHN Q. ADAMS ADAMS, JOHN Q.                                                                                                                                                                                                                     |
| 120 FOR J = 1 TO 5<br>130 LET A(1,J) = INT( RND(-1)+51-25 )                                                                                                                                     | 310 LET N=A+B<br>320 MAT C=ZER(N)                                                                                                 |                                                                                                                                                                                                                                                                                     |
| 140 NEXT J                                                                                                                                                                                      | 330 FOR 1=1 TO A                                                                                                                  | ORDERED:                                                                                                                                                                                                                                                                            |
| 150 NEXT I<br>152                                                                                                                                                                               | 340 FOR J=1 TO B<br>350 LET S=1+J+1                                                                                               | ADAMS, JDHN O.                                                                                                                                                                                                                                                                      |
| 160 MAT PRINT AJ                                                                                                                                                                                | 360 LET C(S)=C(S)+A(I)+B(J)<br>370 IF C(S)<10 THEN 410                                                                            | APPLESEED, JOHNNY<br>WASHINGTON, GEORGE                                                                                                                                                                                                                                             |
| 162<br>164 REM * FIND LARGEST INTEGER IN EACH ROW                                                                                                                                               | 380 LET C(S)=C(S)-10                                                                                                              |                                                                                                                                                                                                                                                                                     |
| 170 FOR R = 1 TO 5<br>180 LET C1 = 1                                                                                                                                                            | 390 LET C(S+1)=C(S+1)+1 400 GOTO 370                                                                                              | Number 5                                                                                                                                                                                                                                                                            |
| 190 LET L = A(R, 1)                                                                                                                                                                             | J TX3M OIA                                                                                                                        |                                                                                                                                                                                                                                                                                     |
| 200 FOR C = 2 TO 5<br>210 IF A(R,C) <= L THEN 240                                                                                                                                               | 420 NEXT  <br>422 REM                                                                                                             | 100 DIM D(10), A(15), B(15), P(30), O(30)<br>110 LET DS = "0123456789"                                                                                                                                                                                                              |
| 220 LET C1 = C                                                                                                                                                                                  | 424 REM * PRINT RESULTS                                                                                                           | 120 CHANGE DS TO D                                                                                                                                                                                                                                                                  |
| 230 LET L = A(R,C)<br>240 NEXT C                                                                                                                                                                | 430 IF C(N) <> 0 THEN 450 440 LET N=N-1                                                                                           | 130 READ AS, B5<br>140 PRINT AS; " * "; BS                                                                                                                                                                                                                                          |
| 250 PRINT "ROW"; R; "LARGEST IS"; L; "IN COLUMN"; C1                                                                                                                                            | 450 FOR I=N TO 1 STEP -1                                                                                                          | 150 CHANGE AS TO A                                                                                                                                                                                                                                                                  |
| 260 NEXT R<br>270 PRINT                                                                                                                                                                         | 460 PRINT DS[CEI]+1,CEI]+1];<br>470 NEXT J                                                                                        | 152<br>160 FOR I = ! TO A(O)                                                                                                                                                                                                                                                        |
| 272                                                                                                                                                                                             | 480 PRINT<br>490 PRINT                                                                                                            | 170 FOR J = 1 TO 10<br>180 IF A(1) <> D(J) THEN 210                                                                                                                                                                                                                                 |
| 274 REM * FIND LARGEST INTEGER IN EACH COLUMN<br>280 FOR C = 1 TO 5                                                                                                                             | 500 GOTO 120                                                                                                                      | 190 LET A(I) = J+1                                                                                                                                                                                                                                                                  |
| 290 LET RI = 1<br>300 LET L = A(1,C)                                                                                                                                                            | 502 REM<br>510 DATA "1000","1000","9999999","9999999"                                                                             | 200 GDTO 220<br>210 NEXT J                                                                                                                                                                                                                                                          |
| 310 FOR R = 2 TO 5                                                                                                                                                                              | 520 DATA "STOP", ""                                                                                                               | 220 NEXT I                                                                                                                                                                                                                                                                          |
| 320 IF A(R,C) <= L THEN 350<br>330 LET R1 = R                                                                                                                                                   | 530 END<br>RUN                                                                                                                    | 222<br>230 CHANGE BS TO B                                                                                                                                                                                                                                                           |
| 340 LET L = A(R,C)                                                                                                                                                                              | NO • B                                                                                                                            | 240 FOR I = I TO B(0)                                                                                                                                                                                                                                                               |
| 350 NEXT R 360 PRINT "COLUMN", C: "LARGEST IS"; L: "IN ROW"; RI                                                                                                                                 | 1000+1000 = 1000000                                                                                                               | 250 FOR J = 1 TO 10<br>260 IF B(1) <> D(J) THEN 290                                                                                                                                                                                                                                 |
| 370 NEXT C                                                                                                                                                                                      | 999999*999999 = 99999980000001                                                                                                    | 270 LET 8(1) = J-1<br>280 GDTD 300                                                                                                                                                                                                                                                  |
| 372<br>380 END                                                                                                                                                                                  |                                                                                                                                   | 290 NEXT J                                                                                                                                                                                                                                                                          |
| RUN<br>ND.2                                                                                                                                                                                     | Number 11                                                                                                                         | 300 NEXT 1<br>302                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                 |                                                                                                                                   | 310 MAT P = ZER(A(O)+B(O))                                                                                                                                                                                                                                                          |
| -15 -19 -14 3 1                                                                                                                                                                                 | 94 REM * DRDERS NUMERIC CHARACTERS IN STRING VARIABLES<br>100 DIM AS(25),CS(25)                                                   | 320 FOR 1 = B(0) TO 1 STEP -1<br>330 FOR J = A(0) TO 1 STEP -1                                                                                                                                                                                                                      |
| -1 -4 -17 23 17                                                                                                                                                                                 | 110 PRINT                                                                                                                         | 340 LET K = 1+J                                                                                                                                                                                                                                                                     |
| B 20 6 5 -10                                                                                                                                                                                    | 120 PRINT "AS";<br>130 INPUT AS                                                                                                   | 350 LET P(K) = P(K) + A(J)*B(I)<br>360 IF P(K) < 10 THEN 390                                                                                                                                                                                                                        |
| *                                                                                                                                                                                               | 140 IF AS="STOP" THEN 290<br>150 PRINT "CS")                                                                                      | 370 LET P(K-1) = P(K-1) + INT(P(K)/10)<br>380 LET P(K) = P(K) - INT(P(K)/10)*10                                                                                                                                                                                                     |
| 13 -9 23 15 -10                                                                                                                                                                                 | 160 INPUT CS                                                                                                                      | 390 NEXT J                                                                                                                                                                                                                                                                          |
| -8 3 8 25 23                                                                                                                                                                                    | 170 IF LEN(AS)=LEN(CS) THEN 260<br>180 FOR G=1 TO LEN(AS)                                                                         | 400 NEXT I<br>402                                                                                                                                                                                                                                                                   |
| ROW 1 LARGEST IS 3 IN COLUMN 4                                                                                                                                                                  | 190 IF AS(G,G) -> CS(G,G) THEN 210 200 NEXT G                                                                                     | 410 LET P(0) = A(0) + B(0)                                                                                                                                                                                                                                                          |
| ROW 2 LARGEST IS 23 IN COLUMN 4<br>ROW 3 LARGEST IS 20 IN COLUMN 2                                                                                                                              | 210 If ASEG, G1>"e" THEN 260                                                                                                      | 420                                                                                                                                                                                                                                                                                 |
| ROW 4 LARGEST IS 23 IN COLUMN 3                                                                                                                                                                 | 220 IF CS(G,G)>"0" THEN 260<br>230 IF LEN(AS) <len(cs) 270<="" td="" then=""><td>440 LET P(I) = P(I+1)</td></len(cs)>             | 440 LET P(I) = P(I+1)                                                                                                                                                                                                                                                               |
| ROW 5 LARGEST IS 25 IN COLUMN 4                                                                                                                                                                 | 240 PRINT CS;" ";AS                                                                                                               | 452                                                                                                                                                                                                                                                                                 |
| COLUMN 1 LARGEST IS 13 IN ROW 4                                                                                                                                                                 | 250 GOTO 110<br>260 IF AS>CS THEN 240                                                                                             | 460 LET P(0) = P(0) - 1<br>470 MAT 0 = ZER(P(0))                                                                                                                                                                                                                                    |
| COLUMN 2 LARGEST IS 20 IN ROW 3 COLUMN 3 LARGEST IS 23 IN ROW 4                                                                                                                                 | 270 PRINT ASI" "ICS                                                                                                               | 480 FBR I = 1 TO P(0)                                                                                                                                                                                                                                                               |
| COLUMN 4 LARGEST IS 25 IN ROW 5                                                                                                                                                                 | 280 G0T0 110<br>290 END                                                                                                           | 490 LET G(I) = D(P(I)+1)<br>500 NEXT I                                                                                                                                                                                                                                              |
| COLUMN 5 LARGEST IS 23 IN ROW 5                                                                                                                                                                 | W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-                                                                                            | *** ***** *                                                                                                                                                                                                                                                                         |

```
176
```

```
RUN
Section 3-5 (cont'd)
                                                                          12
                                                                               REM Y-AXIS.
                                                                               READ S1.52
                                                                                                                                                     NO - 6
                                                                           100
                                                                               DEF FNF(X) = (1/S2)*SIN(X)
Number 5t cont'd)
                                                                                                                                                     # OF INCREMENTS72
                                                                          115 LET K = K/S2
                                                                                                                                                     AREA IS: 6500-17
                                                                          117 LET N = N/S2
510 LET 0(0) = P(0)
                                                                          130 FOR X = F TO L STEP S1
520 CHANGE Q TO QS
                                                                                  FOR Y1 = -K*S2 TO (N-K)*S2 STEP 52
530 PRINT "THE PRODUCT IS ": OS
                                                                                  IF ABS(Y-Y1) < .5*52 THEN 470
                                                                                                                                                     Chapter 7
                                                                          410
                                                                          600 DATA .5..2
532
540 DATA "9999999", "9999999"
                                                                          610 DATA 8, 3, -4, 12
                                                                                                                                                     Section 7-2
                                                                          620 END
550 END
                                                                                                                                                     Number 4
N3.5
                                                                                                                                                     100 PRINT "TO FIND THE DISTANCE BETWEEN TWO POINTS"
9299999 * 9999999
                                                                                                                                                     150 PRINT
                                                                                                                                                         PRINT "POINT A"
THE PRODUCT IS 99999980000001
                                                                                                                                                     170 INPUT XIAYI
                                                                          RUN
                                                                                                                                                     180 PRINT "POINT B".
Number 8
                                                                          NB - I
                                                                                                                                                     190 INPUT X2,"2
                                                                                                                                                     200 LET D1 = : (X2-:(1)+2 + (Y2-Y1)+2 1
100 DIM A(10), B(10)
                                                                                                                                                     210 PRINT "DISTANCE AB ="1
110 PRINT
                                                                                                                                                     220 LET D = 50R ( DI 1
120 PRINT "AS"1
                                                                                                                                                            IF D = INT(0) THEN 320
                                                                                                                                                     230
130 INPUT AS
       IF AS = "STOP" THEN 320
                                                                                                                                                     232
140
                                                                                                                                                         FOR X = INT(D1/2) TO 2 STEP -1
                                                                                                                                                     240
142
                                                                                                                                                               IF SOR(X) - INT(SOR(X)) THEN 270
                                                                                                                                                     250
150 PRINT "85"1
                                                                                                                                                               IF DIXX = INTCDIXX) THEN 300
                                                                                                                                                     260
     INPUT BS
160
     CHANGE AS TO A
                                                                                                                                                     270
170
                                                                                                                                                     272
180 HANGE BS TO B
                                                                                                                                                     280 PRINT "SOR(": 31; ")"
        IF A(0) = B(0) THEN 270
190
                                                                                                                                                     290 GOTO 330
200
     FOR G = 1 TO A(0)
                                                                                                                                                     300 PRINT SOR:X)) "#SOR(") DI/X; ")"
210
           IF A(G) = B(G) THEN 260
                                                                                                                                                     310 GCTO 330
212
                                                                                                                                                     320
                                                                                                                                                         PRINT D
           REM * ASC(0) = 64 (SEE ASCII CODE)
214
                                                                                                                                                     330 END
           IF A(G) > 64 THEN 270
220
                                                                                                                                                     RUN
           IF B(G) > 64 THEN 270
230
                                                                                                                                                     NO - 4
240
           IF A(0) < B(0) THEN 300
242
                                                                                                                                                     TO FIND THE DISTANCE BETWEEN TWO POINTS
        GCT0 280
250
260 NEXT G
                                                                                                                                                     POINT A? 15.0
        IF AS < BS THEN 300
270
                                                                                                                                                     POINT B? 0,15
280 PRINT BS: "
                   "; A5
                                                                                                                                                     DISTANCE AB = 15 *SORC 2 #
290 GOTO 110
300 PRINT AS; " " BS
510 GOTO 110
                                                                                                                                                     Number 8
320 END
FIIN
                                                                                                                                                     100 DIM X(20)+ Y(20)
1.0 - 8
                                                                                                                                                     110 LET N = 0
                                                                                                                                                     120 READ A. B
657 100
                                                                                                                                                            IF A = -.001 THEN 180
ES? 60
                                                                                                                                                     140 LET N = N+1
60 100
                                                                                                                                                     150 LET X(N) : A
                                                                                                                                                     160 LET Y(N) : B
AS2 A60
                                                                                        X = 12
                                                                                                                                                     170
                                                                                                                                                         G0 T0 120
ES? A100
                                                                                                                                                     172
P60 A100
                                                                                                                                                     180
                                                                                                                                                          FOR P = 1 TO N+1
AST STOP
                                                                                                                                                     190
                                                                                                                                                            FOR P1 = P+1 TO N
                                                                                                                                                     200
                                                                                                                                                               PRINT "(": X(P); ",": Y(P); "),(":
                                                                                                                                                                PRINT XCPLDI "" YCPLDI """
                                                                                                                                                     210
Chapter 4
                                                                                                                                                                   IF X(P) <> X(P1) THEN 280
                                                                                                                                                     550
                                                                                                                                                     230
                                                                                                                                                                   IF Y(P) <> Y(PI) THEN 260
Section 4-2
                                                                                                                                                     240
                                                                                                                                                                PRINT "POINTS COINCIDE"
                                                                                                                                                     250
                                                                                                                                                                GDTH 340
Number 4
                                                                                                                                                               PRINT "EDJATION IS X ="; X(P)
                                                                                                                                                     260
                                                                                                                                                                6070 348
100 FILES TRY
                                                                          Chapter 5
                                                                                                                                                     270
                                                                                                                                                               LET M = (Y(P1)-Y(P))/(X(P1)-X(P))
110 IF END #1 THEN 200
                                                                                                                                                     280
120 LET 1=0
                                                                           Section 5-3
                                                                                                                                                     290
                                                                                                                                                               LET B = Y(P) - M+X(P)
                                                                                                                                                     300
                                                                                                                                                                   IF M <> 0 THEN 330
130 LET I=I+1
                                                                                                                                                                PRINT "EQUATION IS Y =" | B
                                                                                                                                                     310
140 READ #1.1
                                                                          Number 6
                                                                                                                                                     320
                                                                                                                                                                GDT 9 340
150 IF TYP(-1) <> 3 THEN 139
                                                                                                                                                               PRINT "EQUATION IS Y ="; M; "*X+("; B; ")"
                                                                                                                                                     330
160 PRINT "FIRST EMPTY RECORD 15")!
                                                                               REM * THESE CHANGES IN GRAPHS PROVIDE FOR SCALE
                                                                               REM FACTORS OF SI ON THE X-AXIS AND S2 ON THE
                                                                                                                                                     340
                                                                                                                                                               PRIUT
170 LET I=I+1
                                                                          11
                                                                                                                                                            NEXT PI
                                                                               REM Y-AXIS.
                                                                                                                                                     350
180 READ #1.1
                                                                          12
                                                                          110 LET D = 47
                                                                                                                                                     360
                                                                                                                                                         NEXT P
190 GOTO 170
                                                                                                                                                     362
200 PRINT "FILE SIZE IS": 1-1: "RECORDS"
                                                                           130 LET T = 5
                                                                                                                                                     495
210 END
                                                                           195
                                                                               READ SI, SZ
                                                                          215
                                                                                     LET X1 = X*SI
                                                                                                                                                     500
                                                                                                                                                         DATA 3,4, 5,5, -1,6
OPEN-TRY, 11
                                                                                     LET YI = Y+S2
                                                                                                                                                     510
                                                                                                                                                         DATA -1,3, 8,3, 5,6
                                                                          217
ELIN
                                                                                                                                                     520 DATA --031,0
                                                                                        IF ABS( X1+2+(Y1+1)+2 - 169 ) > T THEN 300
                                                                          220
10.4
                                                                                   IF ABS((X-L1)*S1/10-INT((X-L1)*S1/10)) < .05 THEN 590
                                                                                                                                                     530 END
                                                                          550
FIRST EMPTY RECORD IS 1
                                                                          580
                                                                                  IF ABS((Y-L1)*S2/10-INT((Y-L1)*S2/10)) < .05 THEN 560
                                                                                                                                                     RUN
FILE SIZE IS 11 RECORDS
                                                                          630 DATA -6, 1
                                                                                                                                                     NO . 8
```

```
RUN
                                                                                                                                                      13,43,(5,6)
Chapter 4
                                                                                                                                                      EQUATION IS Y = 1 *X+( ) )
                                                                           NO . 6
Section 4-3
                                                                                                                                                      ( 3 , 4 ),(-1 , 6 )
EQUATION IS Y =-0.5 *X+( 5.5 )
Number 3
                                                                                                                                                      (3,4),(-1,3)
100 FILES FILE! FILE2
110 PRINT "FIRST FILE:"
                                                                                                                                                      EQUATION IS Y = 0.25 *X+( 3.25 )
120 READ #1. A
                                                                                                                                                      13,43,68,33
130 PRINT A
                                                                                                                                                      EQUATION IS Y =-0.2 *X+( 4.6 )
       IF MORE #1 THEN 120
150 PRINT
                                                                                                                                                      13,43,(5:63
160 PRINT "SECOND FILE:"
                                                                                                                                                      EQUATION IS Y = 1 *X+( 1 )
    READ #2, A
180 PRINT A
                                                                                                ******
                                                                                                                                                      15,67,(-1,6)
       IF MORE #2 THEN 170
190
                                                                                                                                                      EQUATION IS Y = 6
    PRINT
200
    RESTORE #1
210
                                                                                                                                                      r S , 6 ),(-1 , 3 )
EQUATION IS Y = 0.5 *X+( 3.5 )
    RESTORE #2
    PRINT "MERGED LISTS:"
    READ #1. A
                                                                                                                                                      15,63,(8,3)
250
    READ #2, B
                                                                                                                                                      EQUATION IS Y =-1 *X+( 11 )
       IF A <= B THEN 340
260
270
    PRINT B
                                                                                                                                                      15,61,(5,6)
280
       IF MORE #2 THEN 250
                                                                                                                                                      POINTS COINCIDE
    PRINT A
       IF MORE #1 THEN 320
                                                                            1-1 . 6 ),(-1 . 3 )
310
    STOP
                                                                                                                                                      EQUATION IS X =-1
    READ #1, A
320
330
    GDTD 290
                                                                                                                                                      (-1 , 6 ), ( B , 3 )
340
    PRINT A
                                                                                                                                                      EQUATION IS Y =-0.333333 *X+( 5.66667 )
       IF MORE #1 THEN 410
350
    PRINT B
360
                                                                                                                                                      (-1 , 6 ), ( 5 , 6 )
       IF MORE #2 THEN 390
370
                                                                                                                                                      EQUATION IS Y = 6
360
    STOP
390
    READ #2. B
                                                                                                                                                      1-1 , 3 % ( 8 , 3 )
400
    G0T0 360
                                                                                                                                                      EQUATION IS Y = 3
    READ #1, A
420
    GOTO 260
                                                                                                                                                      (-1,3),(5,6)
430
    END
                                                                                                                                                      EQUATION IS Y = 0.5 *X+( 3.5 )
RUN
                                                                                                 ******
NG . 3
                                                                                                                                                      18,3),(5,6)
                                                                                                                                                      EQUATION IS Y =+1 *X+4 11 )
FIRST FILE:
                                                                                                                                                      Chapter 7
                                                                                                                                                      Section 7-3
                                                                                                                                                      Number 2
SECOND FILE:
                                                                                                                                                       110 READ X1, Y1, X2, Y2
2.2
                                                                                                                                                             IF X1 = .001 THEN 530
3.3
                                                                                                                                                       130 PRINT "PERPENDICULAR BISECTOR OF"
 4.4
                                                                                                                                                       130 PRINT "LINE SEGMENT - GIVEN TWO END POINTS"
150 PRINT ""; XI) ","; YI) ") AND ("; X2; ","; Y2; ")"
                                                                           Chapter 6
5.5
                                                                           Number 6
                                                                                                                                                       160 PRINT "EQUATION IS "J
MERGED LISTS:
                                                                                                                                                       170 LET X0 = (X1+X2)/2
                                                                                REM * SIMPSON'S RULE
                                                                                                                                                       180 LET YO = (Y1+Y2)/2
 1.1
                                                                                                                                                              IF X1-X2 <> 0 THEN 250
IF Y1-Y2 <> 0 THEN 230
                                                                           100 DEF FNS(X) = 2*X+3 - 2*X+2 + X + 5
                                                                                                                                                       190
                                                                           110 READ F.T
120 PRINT "# OF INCREMENTS";
                                                                                                                                                       200
2.2
                                                                                                                                                       202
                                                                                                                                                       204 REM * THE TWO GIVEN POINTS COINCIDE
                                                                           130 INPUT 1
 3.3
                                                                           140 LET W = (T-F)/I
                                                                                                                                                       210
                                                                                                                                                           PRINT "NOT UNIQUE"
                                                                            150
                                                                                LET AL = FNS(F)
                                                                                                                                                       220 GOTO 100
 4.4
                                                                                FOR C = 1 TO 1-1
                                                                                                                                                       222
                                                                            160
                                                                                                                                                      224 REM * HORIZONTAL LINE
                                                                                   LET X = F + C+W
                                                                            170
5.5
                                                                                                                                                           PRINT "Y ="J YO
                                                                            180
                                                                                      IF C/2 = INT(C/2) THEN 210
                                                                                                                                                      230
                                                                                   LET A1 = A1 + 4*FNS(X)
                                                                                                                                                      240
                                                                                                                                                           G0 TC 100
                                                                            190
                                                                           200
                                                                                   GOTO 220
                                                                                                                                                              IF Y1-Y2 <> 0 THEN 280
                                                                                   LET A1 = A1 + 2*FNS(X)
                                                                                                                                                       252
                                                                           210
                                                                                                                                                      254 REM * VERTICAL LINE
                                                                           220
                                                                                NEXT C
                                                                                                                                                       260 PRINT "X ="1 X0
Chapter 5
                                                                                LET A1 = A1 + FNS(T)
                                                                                                                                                       270 GDTD 100
                                                                           230
                                                                           240
                                                                                LET A = A1*(W/3)
                                                                                                                                                       SB0 LET M = (Y2-Y1)/(X2-X1)
Section 5-2
                                                                           250 PRINT "AREA IS:": A
                                                                                                                                                       290 LET MO = -1/H
                                                                                                                                                       300 LET B = Y0 - M0*X0
Number 1
                                                                           252
                                                                                                                                                       310 PRINT "Y =" 1 MO1 "*X+(" 1 B1 ")"
                                                                           254
    REM * THESE CHANGES IN GRAPH2 PROVIDE FOR SCALE
                                                                           260 DATA -3,11
                                                                                                                                                       320 GOTO 100
                                                                           270 END
```

REM FACTORS OF SI ON THE X-AXIS AND S2 ON THE

| Section 7-3 (cont'd)                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chapter 7                                                                                                                                                                                                                                                 | Chapter 8                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number 2 (cont'd)                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section 7-5                                                                                                                                                                                                                                               | Section 8-1                                                                                                                                                         |
| A94 REM 500 DATA 1,2,4,7,4,7,4,3 510 DATA -3,9,4,5,4,-7,4,-7 520 DATA -001,0,0,0 800 R00 R00 R00 R00                                                                                                                                                                                                                                                                                                                                                        | Number 4  422  424  425  426  426  427  427  428  428  429  429  429  420  420  420  420  420                                                                                                                                                             | Number 2  100 DIM P(20), F(10), S(10)  110 FOR W = 1 TO 10  120 LET F(W) = S(W) = P(W) = P(W+10) = 0  130 NEXT W  130 REM = READ AND PRINT COEFFICIENTS  140 READ A |
| PERPENDICULAR BISECTOR OF LINE SEGMENT - GIVEN TWO END POINTS (   , 2 \ AND ( 4 , 7 \ ECUATION IS Y =-0.6 *X*( 6 )                                                                                                                                                                                                                                                                                                                                          | AAS LET D = D(1) 450 FOR P = 2 TO 3 455 IF ABS(D-D(P)) > .000001 THEN 485 460 NEXT P 462 465 PRINT "EQUILATERAL AND EQUIANGULAR"                                                                                                                          | 150                                                                                                                                                                 |
| PERPENDICULAR BISECTOR OF<br>LINE SECMENT - GIVEN TWO END POINTS<br>(4,7) 4ND (4,3) (<br>ECUATION IS Y = 5                                                                                                                                                                                                                                                                                                                                                  | 470 COTO 110 475 PRINT "OBTUSE TRIANGLE WITH LONG SIDE DETERMINED BY" 480 GOTO 510 485 PRINT "ACUTE TRIANGLE"                                                                                                                                             | 210 READ B 220 FOR Y = B 10 ( SYEP - 1 230 READ S(1) 240 PRINT S(Y); 250 NEXT Y                                                                                     |
| PERPENDICULAR BISECTOR OF<br>LINE SEGMENT - GIVEN TWO END POINTS<br>(-3, 9) *AND (4, 5)<br>E(UATION IS Y = 1.75 *X*(6.125)                                                                                                                                                                                                                                                                                                                                  | 490 GGTU 110<br>492<br>494 HEM<br>800 DATA 1, 0,0, 2,0, 1,1,73205<br>810 DATA 1, 1,2, 5,-1, 6,15<br>820 DATA 1, 0,0, 0,3, 4,0                                                                                                                             | 250 PRINT 262 264 REM * FIND AND PRINT PRODUCT 270 PRINT "PRODUCT ""; 280 FOR I = 1 "O A                                                                            |
| PERPENDICULAR BISECTOR OF<br>LINE SEGMENT - GIVEN THO END POINTS<br>(4,-7) AND (4,-7)<br>ECUATION IS NOT UNIQUE                                                                                                                                                                                                                                                                                                                                             | 840 DATA 1, -2,6, 1,2, 9,8<br>840 DATA 0<br>RUN<br>NO.4                                                                                                                                                                                                   | 290 FOR J = 1 TO 0<br>300 LET P(I+J-1) = P(I+J-1) + F(I)*S(J)<br>310 NEXT J<br>320 NEXT I<br>330 FOR Z = A+B-1 TO 1 STEP -1                                         |
| Number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0 , 0 ),(2 , 0 ) AND (1 , 1.73205 )                                                                                                                                                                                                                      | 340 PRINT P(Z);<br>350 NEXT Z                                                                                                                                       |
| 100 PRINT 110 GOSUB 5000 120 LET KI = K 100 LET K = X 140 LET M2 = M 140 LET M2 = M 160 GOSUB 5000 | EQUILATERAL AND EQUIANGULAR  (1 , 2 ) (5 , -1 ) AND (6 , 15 )  GITUSE TRIANGLE WITH LONG SIDE DETERMINED BY  POINTS: (5 , -1 ) AND (6 , 15 )  (0 , 0 , (0 , 3 ) AND (4 , 0 )  RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY  POINTS: (0 , 3 ) AND (4 , 0 ) | 360 PRINT<br>370 PRINT<br>380 GGTO 110<br>382 RPM<br>390 DATA 5, 5,2,0,2,1, 3, 2,5,2<br>400 DATA 2, 5,2, 2,2,1, 3, 2,5,2<br>410 DATA 0<br>420 END                   |
| 502<br>600 ON KI 60T0 1100, 1000, 1200, 1300<br>700 ON KI 60T0 1000, 1200, 1200, 1300<br>800 ON KI 60T0 1200, 1200, 1400, 1300<br>902<br>1000 PRINT "PERPENDICULAR"                                                                                                                                                                                                                                                                                         | (-2 , 6 ),(! , 2 ) AND ( 9 , 8 ) RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY POINTS! ( 9 , 8 ) AND (-2 , 6 )                                                                                                                                             | RUN<br>NO.2<br>3 2 0 2 1<br>2 5 2<br>PRODUCT = 6 19 16 3 12 9 2                                                                                                     |
| 1010 GOTO 100 1:00 PRINT "PARALLEL" 1:10 GOTO 100 1:00 PRINT "NEITHER" 1:210 GOTO 100 1:00 PRINT "NEANINGLESS" 1:100 GOTO 100                                                                                                                                                                                                                                                                                                                               | Number 5  100 FOR A = 3 TO 98  100 FOR B = 4+1 TO 99  100 LET # 10 99  100 LET # 1 ** INTCKI ) THEN 100  140 IF KI ** INTCKI ) THEN 170  140 IF KI ** IO THEN 170                                                                                         | 3 2 2 3 PRODUCT = 6 13 6                                                                                                                                            |
| 1400 IF M*M2 = -1 THEN 1000<br>1410 IF M = M2 THEN 1100                                                                                                                                                                                                                                                                                                                                                                                                     | 150 PRINT AJ BJ KI<br>160 NEXT B                                                                                                                                                                                                                          | Chapter 9                                                                                                                                                           |
| 1420 G0T0 1200<br>1422                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170 NEXT A<br>180 END                                                                                                                                                                                                                                     | Section 9-1                                                                                                                                                         |
| 5900 READ A, B, C<br>5010                                                                                                                                                                                                                                                                                                                                                                                                                                   | RUN<br>NO.5                                                                                                                                                                                                                                               | Number I<br>100 - DIM F (50)                                                                                                                                        |
| S030 IF A = 0 THEN \$100 5340 IF B = 0 THEN \$200 5350 LET H = -A/B 5360 LET K = 3 5370 PRINT "SLOPE =" M 5370 PRINT "SLOPE =" M 5380 RETURN 5380 RETURN 5390 RETURN 540 PRINT "WERIZONTAL" 5510 PRINT "WERIZONTAL" 5520 RETURN 500 LET K = 1 5210 PRINT "WERIZONTAL" 5300 LET K = 2 5310 PRINT "WERIZONTAL" 5320 RETURN 5320 RETURN 5320 RETURN 5322 5335 REM 6000 DATA 1,1,1, 2,2,4, 0,1,2, (,0,2)                                                        | 3 4 5 5 12 13 6 8 10 17 7 24 25 8 15 12 15 9 10 41 10 24 26 11 60 61 12 16 20 12 15 37 13 84 85 14 48 50 15 20 25 15 30 30 16 30 34 16 63 65 18 24 30                                                                                                     | 102 104 105 106 107 108 108 108 109 108 109 109 109 109 109 109 109 109 109 109                                                                                     |

| 6010 DATA 1,2,3, 2,-1,-3, 3,4,5, 8,9,2                                  | 20 21 29                                                                                     | F(X)+2 F(X-1)*F(X+1) DIFFERENCE                 |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|
| 6020 DATA 0,0,1, 2,3,4<br>6030 DATA001,0,0                              | 20 48 52<br>21 28 35                                                                         | 1 2 -1<br>4 3 1                                 |
| 9999 END                                                                | 21 72 75                                                                                     | 9 10 -1                                         |
| RUN                                                                     | 24 32 40<br>24 45 51                                                                         | 25 24 1<br>64 65 -1                             |
| NO • 4                                                                  | 24 45 51<br>24 70 74                                                                         | 169 168 1                                       |
|                                                                         | 25 60 65                                                                                     | 442 -1                                          |
| 1 *X+( 1 )*Y+( 1 )=0 SLOPE =-1                                          | 27 36 45<br>28 45 53                                                                         | 1156 1155 1<br>3025 3026 -1                     |
| AND<br>2 *X+( 2 )*Y+( 4 )=0                                             | 28 96 100                                                                                    | 7921 7920 )                                     |
| PARALLEL                                                                | 30 40 50                                                                                     | 20736 20737 -1<br>54289• 54288• 1               |
| 0 *X+( ) *Y+( 2 )=0 HORIZONTAL                                          | 30 72 78<br>32 60 68                                                                         | 142129. 1421301                                 |
| AND                                                                     | 33 44 55                                                                                     | 372100. 372099. !                               |
| 1 *X+( 0 )*Y+( 2 )=0 VERTICAL                                           | 33 56 65<br>35 84 91                                                                         | 974169. 9741701<br>2.55041E+06 2.55041E+06 1    |
| PERPENDI CULAR                                                          | 36 48 60                                                                                     | ***************************************         |
| ! *X+( 2 )*Y+( 3 )=0 SLOPE =-0.5                                        | 36 77 85                                                                                     | Number 2                                        |
| AND<br>2 *X+(-1 )*Y+(-3 )=0 SLOPE = 2                                   | 39 52 65<br>39 80 89                                                                         | Number 2                                        |
| PERPENDICULAR                                                           | 40 42 56                                                                                     | 100 DIM F(25), L(20)                            |
|                                                                         | 40 75 85                                                                                     | 110 LET F(1) = F(2) = 1<br>120 FOR X = 3 TO 25  |
| 3 *X+( 4 )*Y+( 5 )=0                                                    | 42                                                                                           | 130 LET $F(X) = F(X-1) + F(X-2)$                |
| 8 *X+( 9 )*Y+( 2 )=0 SLOPE =-0.888889                                   | 48 55 73                                                                                     | 140 NEXT X                                      |
| NEITHER                                                                 | 48 64 80<br>51 68 85                                                                         | 142<br>150 FOR X = 2 TO 24                      |
| 0 *X+( 0 )*Y+( ) )=0 MEANINGLESS                                        | 54 72 90                                                                                     | 160 FOR Y = X+1 TO 25                           |
| AND                                                                     | 57 76 95<br>60 63 87                                                                         | 162<br>164 REM * USE THE EUCLIDEAN ALGORITHM TO |
| 2 *X+( 3 )*Y+( 4 )=0 SLDPE =-0.666667<br>MEANINGLESS                    | 60 63 87<br>60 80 100                                                                        | 165 REM FIND THE GCF                            |
| 114-117-1-44-4-4-4                                                      | 65 72 97                                                                                     | 170 LET N = F(X)<br>180 LET D = F(Y)            |
|                                                                         |                                                                                              | 180 LET D = F(Y)<br>190 LET I = INT(N/D)        |
|                                                                         | Number 7                                                                                     | 200 LET R = N - I*D                             |
|                                                                         | 94 REM * DOES NOT HANDLE PAIRS OF POINTS                                                     | 210                                             |
| Chapter 7                                                               | 95 REM ON A VERTICAL LINE                                                                    | 230 LET D = R                                   |
| Section 7-4                                                             | 100 DIM X(20), Y(20)                                                                         | 240 G0TD 190<br>242                             |
| Section 7-4                                                             | 110 PRINT<br>120 READ T                                                                      | 244 REM * ADD THE LATEST GCF TO THE L LIST      |
| Number 1                                                                | 130 IF T = 0 THEN 530                                                                        | 245 REM IF IT IS NOT ALREADY THERE.             |
| Tumber 7                                                                | 140 LET N = 0<br>150 READ XI, YI                                                             | 250 FOR Z = 1 TO N1<br>260 IF L(Z) = D THEN 300 |
| 100 PRINT                                                               | 160 IF XI =001 THEN 220                                                                      | 270 NEXT Z                                      |
| 110 READ MI. BI                                                         | 170 LET N ≈ N+1                                                                              | 280 LET N1 = N1 + 1<br>290 LET L(N1) = D        |
| 120                                                                     | 180 LET X(N) = X1<br>190 LET Y(N) = Y1                                                       | 300 NEXT Y                                      |
| 140 READ M2. B2                                                         | 200 PRINT "(") XI) ")"                                                                       | 310 NEXT X                                      |
| 150 PRINT "LINE 2 Y = (") M2; ")*X+("; B2; ")" 160 IF M1 <> M2 THEN 190 | 210 GOTO 150<br>220 LET H1 = (Y(2)-Y(1)) / (X(2)-X(1))                                       | 312<br>314 REM * NOW PRINT ALL DIFFERENT GCF'S: |
| 170 PRINT "THE LINES ARE PARALLEL"                                      | 230 FOR I = 2 TO N-1                                                                         | 320 FOR X = 1 TO N!                             |
| 180 GOTG 100<br>190 LET X = (B2-B1)/(M1-M2)                             | 240 LET M2 = (Y(1+1)-Y(1)) / (X(1+1)-X(1))<br>250 IF M1 <> M2 THEN 300                       | 330 PRINT L(X);<br>340 NEXT X                   |
| 200 LET Y = M1+X+81                                                     | 260 LET M1 = M2                                                                              | 342                                             |
| 210 PRINT "INTERSECT AT (") X; ","; Y; ")"                              | 270 NEXT I                                                                                   | 350 END<br>RUN                                  |
| 220 G0T0 100<br>222                                                     | 272<br>280 PRINT N; "POINTS COLLINEAR"                                                       | NO.5                                            |
| 224 REM                                                                 | 290 GOTS 110                                                                                 |                                                 |
| 230 DATA 3,-7, -4,14, 1,2, 3,4<br>240 DATA 5,3, 5,8, 2,-11, 5,-11       | 300 PRINT "POINTS NON-COLLINEAR" 310 GOTO 110                                                | 1 2 3 5 8 13 21 34 55 89 144                    |
| 250 DATA001:0                                                           | 320                                                                                          |                                                 |
| 260 END                                                                 | 494 REM<br>SOO DATA 999, 1,2, 3,4, 5,6, 7,8, 9,10,001,0                                      | Number 3                                        |
| RUN<br>NO • 1                                                           | 500 DATA 999, 1,2, 3,4, 5,6, 7,8, 9,10, -,001,0<br>510 DATA 999, 1,8, 3,9, 2,7, 3,2, -,001,0 | 100 DIM F(50)                                   |
|                                                                         | 520 DATA 0                                                                                   | 110 LET F(1) = F(2) = 1<br>120 FOR X = 3 TO 30  |
| LINE 1 Y = ( 3 )*X+(-7 )                                                | 530 END<br>RUN                                                                               | 130 LET F(X) = F(X-1) + F(X-2)                  |
| LINE 2 Y = (-4 )*X+( 14 )                                               | ND • 7                                                                                       | 140 NEXT X                                      |
| INTERSECT AT ( 3 , 2 )                                                  | (1,2)                                                                                        | 142<br>150 FOR X = 2 TO 20                      |
| LINE   Y = ( 1 )*X+( 2 )                                                | (3,4)                                                                                        | 160 PRINT F(X)/F(X-1),                          |
| LINE 2 Y = ( 3 ) *X+( 4 )                                               | (5,6)                                                                                        | 170 NEXT X                                      |
| INTERSECT AT (-1 , 1 )                                                  | (7,8)<br>(9,10)                                                                              | 172<br>180 END                                  |
| LINE 1 Y = ( 5 )*X+( 3 )                                                | 5 POINTS COLLINEAR                                                                           | RUN                                             |
| LINE 2 Y = r 5 )*X+r 8 ) THE LINES ARE PARALLEL                         | (1,8)                                                                                        | NO.3                                            |
| THE LINES ARE FARALLEL                                                  | 83,95                                                                                        | 1 2 1.5 1.66667 1.6                             |
| LINE 1 Y = 1 2 )*X+(-11 )                                               | (2,7)                                                                                        | 1.625 1.61538 1.61905 1.61765 1.61818           |
| LINE 2 Y = ( 5 )*X+(-11 ) INTERSECT AT ( 0 ,-11 )                       | ( 3 , 2 ) POINTS NON-COLLINEAR                                                               | 1.61798                                         |
| Intended of the Author                                                  |                                                                                              |                                                 |

| Section 9-1 (cont'd)  Number 4  100 DIM F(50)  110 LET F(1) = 1  120 LET F(2) = 3  130 FOR I = 3 TO 20  140 LET F(1) = F(1-15)  NEXT I  100 PRINT F(1),  100 PRINT F(1),  101 PRINT F(1),  102 FOR DEAD | () + F(:-2)                                              |                        |                            | 110 FOR 1 = 1 TO 12 120 LET S = S+1 130 LET S1 = S1+S 140 NEXT 1 142 150 PRINT S11 "GIFTS ALL TOGETHER" 160 END NO.3 364 GIFTS ALL TOGETHER  Chapter 9 Section 9-4                               | INV(A)  0.38587 -2.17391E-2 0.173913 7.0552E-2 0.103596 0.130435 -6.52174E-2 0.130435 -4.34783E-2  A*INV(A)  1 0 -3.72529E-9 7.45058E-9 1. 9.31323E-10 INV(A)*A  1 -9.31323E-9 1.  INV(A)*A  1 -9.31323E-9 5.58794E-9 3.72529E-9 1. 99.31323E-9                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN<br>110 + 4                                                                                                                                                                                          |                                                          |                        |                            | Number 4                                                                                                                                                                                         | 9.31323E-10 -2.79397E-9 i.                                                                                                                                                                                                                                                     |
| 1 3<br>18 29<br>199 322<br>2207 3571                                                                                                                                                                    | 4<br>47<br>521<br>5778                                   | 7<br>76<br>843<br>9349 | 11<br>123<br>1364<br>15127 | 100 PRINT "HOW MANY POINTS"; 110 INPUT NI 120 LET C = 0 130 RANDOMIZE 140 FOR N = 1 TO N1 150 LET X = RND 160 LET Y = RND                                                                        | Number 4  100 DIM C(3,3), K(3,1), S(3,1), I(3,3)  110 MAT READ C, K  120 MAT I = 1V4(C)  130 MAT S = 1**  140 MAT PAINT S                                                                                                                                                      |
| 100 LET D = 10 110 LET B = 0 120 LET D = 3*0/4 130 LET B = 8*1 140 IF D > 1/12 THEE 150 LET D = INT( 0*100 160 PRINT BJ "BOUNGES" RUN 90.9                                                              | 3 3/1003                                                 |                        |                            | 170 IF X*2 * Y*2 >= 1 THEN 190 180 LET C = C+1 190 NEXT N 192 200 PRINT C; "IN THE CIRCLE"; 4*C/N1 210 END RIN NO-4 HOW MANY POINTS? 2500                                                        | 142<br>145 REM<br>150 DATA 2,-9,-5, 7,-6,5, 9,-6,5<br>160 DATA 2,-35,-39<br>170 END<br>RUN<br>NO.4                                                                                                                                                                             |
| 17 BOUNCES 0.075 HEIGH                                                                                                                                                                                  |                                                          |                        |                            | 1968 IN THE CIRCLE 3-1498                                                                                                                                                                        | 1.<br>-3.                                                                                                                                                                                                                                                                      |
| Number 10                                                                                                                                                                                               |                                                          |                        |                            | RUN                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                |
| 100 LET A = 2+63                                                                                                                                                                                        |                                                          |                        |                            | NO - 4                                                                                                                                                                                           | Number 10                                                                                                                                                                                                                                                                      |
| TO PRINT A "GRAINS"  120 IF A 1000 TE A 1000 TE  130 PRINT "YES THEY WILL  140 STD*  150 PRINT "NO THEY WILL  150 END  150 END  9-22337E+18 GRAINS  100 THEY WILL NEVER FIT  Chapter 9                  | .L FIT"<br>. NEVER FIT IN TH                             |                        |                            | HOW MANY POINTS? 2500 1958 IN THE CIRCLE 3-1328  Chapter 10  Section 10-1  Number 1  100 DIM \$(3,4), P(4,1), M(3,1), T(1,4), A(1,1) 110 MAT READ \$(3, P) 120 FOR R = 1 TO 3 130 FOR C = 1 TO 4 | 100 DIM A(3,3), B(2,3), C(3,3), D(3,3), E(3,3) 110 MAT READ A, B 120 MAT C = A+B 130 MAT D = 14VC) 140 PRINT 150 PRINT "INV(A+B)" 160 MAT PRINT D 170 MAT C = 14VCA) 180 MAT D = 14VCB) 190 MAT D = 14VCB) 190 MAT E = D+C 200 PRINT 210 PRINT "INV(B)*INV(A)" 220 MAT PRINT E |
| Section 9-2                                                                                                                                                                                             |                                                          |                        |                            | 140                                                                                                                                                                                              | 222<br>224 REM                                                                                                                                                                                                                                                                 |
| Number 2<br>100 PRINT "N", "1+(2/3<br>110 FOR N = 1 TO 10<br>120 GOSUB 180                                                                                                                              | **************************************                   | 4"                     |                            | 160 NEXT R 162 170 MAT A = T • P 180 MAT PRINT A 182                                                                                                                                             | 230 DATA 1,-2,1, 5,-1,-2, 0,3,4<br>240 DATA 2,-4,0, -3,1,2, 5,2,-5<br>250 END<br>RUN<br>NO.10                                                                                                                                                                                  |
| 130 NEXT N<br>132<br>140 FOR N = 20 TO 70 S<br>150 GOSUB 180<br>160 NEXT N<br>162                                                                                                                       | TEP 10                                                   |                        |                            | 184 REM<br>190 DATA 30,800,50,20, 50,31,40,10, 0,500,50,70<br>200 DATA 1,.39,.49,3.79<br>210 END<br>RUN<br>NG.1                                                                                  | INV(A+B)  1.50575 -1.50115 -2.72989 0.747126 -0.649425 -1.38506 1.77012 -1.45-02 -3.3046                                                                                                                                                                                       |
| 170 STOP<br>172                                                                                                                                                                                         |                                                          |                        |                            | 1122.49                                                                                                                                                                                          | (A)VNI+(B)VNI                                                                                                                                                                                                                                                                  |
| 180 PRINT N. 1+(2/3)+N<br>190 RETURN<br>200 END<br>RUN<br>110+2                                                                                                                                         |                                                          |                        |                            | Number 4<br>100 DIM A(3,1), B(4,3), C(4,1), NS(4)<br>110 MAT READ A, B, NS                                                                                                                       | 1.50575 -1.2C115 -2.72989<br>0.747127 -0.647425 -1.38506<br>1.77012 -1.45402 -3.3046                                                                                                                                                                                           |
| 1 1+(2/3)†1<br>1 1-66667<br>2 11-44444<br>3 11-2963<br>4 11-19753                                                                                                                                       | 1 (1+(2/3))+<br>1.66667<br>2.77778<br>4.62963<br>7.71605 | N                      |                            | 120 MAT C = 8+A<br>122<br>130 FOR I = 1 TO 4<br>140 PRINT C(1,1); TAB(10); NS(1)<br>150 NEXT I                                                                                                   | Number 11<br>100 DIM C(10,10), K(10,1), I(10,10), S(10,1)<br>110 READ N                                                                                                                                                                                                        |
| 1.17130                                                                                                                                                                                                 |                                                          |                        |                            |                                                                                                                                                                                                  | ***************************************                                                                                                                                                                                                                                        |

```
1-13169
                               12.8601
                                                                                                                                                         120
                                                                                                                                                             IF N = 0 THEN 310
                1.08779
                               21.4335
                                                                             154 REM
                                                                                                                                                         130 MAT READ C(N,N), K(N,1)
                1.05853
                               35,7225
                                                                             160 DATA 800, 200, 1500
                                                                                                                                                         140 PRINT "COEFFICIENT MATRIX"
                                                                            170 DATA 3,1,4, 1,12, 9,2,3, 15,8,12
180 DATA BULBS, SWITCHES, METERS OF WIRE, SCREWS
                1.03902
                               59.5374
                                                                                                                                                         150 MAT PRINT C
                1.02601
                               99.2291
                                                                                                                                                         160 PRINT
10
                1.01734
                               165.382
                                                                            190 END
                                                                                                                                                         170 PRINT "CONSTANT TERMS"
30
                1.0003
                               27351.1
                                                                            RUN
                                                                                                                                                         180 MAT PRINT K
                1.00001
                               4.52338E+06
                                                                                                                                                        190 MAT ! = INV(C)
200 MAT S = I+K
                                                                            NO - 4
40
                               7 + 48 085E + 08
50
                               1-23720E+11
                                                                             8600
                                                                                      BULBS
                                                                                                                                                        210 PRINT
220 PRINT "SOLUTIONS"
60
                               2.04610E+13
                                                                             4000
                                                                                      SWITCHES
70
                               3+38388£+15
                                                                             12100
                                                                                      METERS OF WIRE
                                                                                                                                                        230 MAT PRINT S
                                                                                                                                                        240 PRINT
                                                                             31600
                                                                                      SCREWS
Number 5
                                                                                                                                                        250 GOTO 110
                                                                                                                                                        252
100 DIM F(20)
                                                                                                                                                        254 REM
                                                                            Number 6
110 LET F(1) = F(2) = 1
                                                                                                                                                        260 DATA 2, 3,1, 5,-3
120 FOR N = 3 TO 20
                                                                                                                                                        270 DATA 7,21
                                                                             100 DIM A(1,3),8(3,4),C(4,1),B(1,4),E(1,1)
                                                                                                                                                        280 DATA 3, 2,3,-1, 3,0,1, 1,-2,-5
290 DATA 20,0,6
     LET F(N) = F(N-1) + F(N-2)
                                                                             110 MAT READ A. B. C
140 NEXT N
                                                                             120 MAT D = A*B
                                                                                                                                                        300 DATA 0
142
                                                                             130 MAT E = D+C
150 PRINT "BY ADDITION", "BY FORMULA"
                                                                                                                                                        310 END
                                                                             140 MAT PRINT E
160 LET SO = SOR(5)
                                                                                                                                                        RUN
                                                                             142
170 FOR N = 1 TO 20
                                                                                                                                                        NO - 11
                                                                            145 REM
       LET S1 = ((1+50)+N-(1-S0)+N)/((2+N)+S0)
180
                                                                             150 DATA 1,1,1
190
       PRINT FIND, SI
                                                                            160 DATA 30,800,50,20, 50,31,40,10, 0,500,50,90
170 DATA 1,39,49,3.79
200 NEXT N
                                                                                                                                                        COEFFICIENT MATRIX
505
                                                                            180 END
210 END
                                                                            RUN
RIIN
                                                                                                                                                                        - 3
                                                                            NO - 6
NO - 5
                                                                             1122.49
BY ADDITION
               BY FORMULA
                                                                                                                                                         CONSTANT TERMS
                                                                                                                                                         21
                                                                            Chapter 10
                                                                                                                                                         SOLUTIONS
                                                                            Section 10-2
 13
                13.
 21
                21.
 34
55
                34.
                                                                            Number 1
                                                                                                                                                         -2.
                55.
 89
                89.
                                                                             100 DIM A(3,3), B(3,3), C(3,3)
                                                                                                                                                        COEFFICIENT MATRIX
 144
                144.
                                                                             110 MAT READ A
 233
                233.
                                                                            120 MAT B = INV(A)
 377
                377.
                                                                                                                                                                        0
 610
                610.
                                                                             140 MAT PRINT B
 937
                987.
                                                                             150 MAT C = A*B
 1597
                1597.
                                                                             160 PRINT
                2584.
                                                                             170 PRINT "A+INV(A)"
 2584
                                                                                                                                                        CONSTANT TERMS
 4181
                4181.
                                                                             180 MAT PRINT C
 6765
                6765.
                                                                             190 MAT C = B*A
                                                                                                                                                         20
                                                                            200 PRINT
                                                                                                                                                         0
                                                                            210 PRINT "INV(A)*A"
Chapter 9
                                                                                 MAT PRINT C
Section 9-3
                                                                            555
                                                                            224
                                                                                                                                                        SOLUTIONS
                                                                            230 DATA 4.-4,4, 1,1,7, -3,9,-8
Number 3
                                                                            240 END
94 REM * THE TWELVE DAYS OF CHRISTMAS
                                                                            RUN
                                                                                                                                                         5.
100 LET S = S1 = 0
                                                                            NO - 1
                                                                                                                                                         -3.
```

### INDEX

| ABS(X) function, 7<br>Algorithm, 10 | Computed G\PhiT\Phi state-<br>ment, 3 | De la Loubere, 152<br>Delimiter; comma, 3, 25, |
|-------------------------------------|---------------------------------------|------------------------------------------------|
| Alphabetization, 42                 | Computer functions:                   | 33                                             |
| AND, 29                             | ABS(X), 7                             | in a file, 47                                  |
| Append statement, 55                | ASC(I\$), 44                          | semicolon, $3, 25, 33$                         |
| Area, 72                            | ATN(X), 11                            | Descartes' Rule of Signs,                      |
| Arithmetic mean, 137                | CLK(X), 11                            | 112f                                           |
| Arithmetic operators, 4             | $C\phi S(X)$ , 11                     | DIM statement, 10, 35,                         |
| Arithmetic sequence,                | DEF, 12                               | 40                                             |
| 116                                 | EXP(X), 11                            | Dispersion, 138                                |
| Arithmetic series, 122              | EXT\$( ), 44                          | Distance, 72, 78f                              |
| Array; numeric, 15, 127             | INT(X), 7, 8                          | Distance formula, 80                           |
| string, 34                          | LEN(A\$), 35, 40                      | Divergence, 119                                |
| ASCII code, 31, 35, 40,             | LQG(X), 11                            | Dummy data, 2, 47, 48,                         |
| 44                                  | MAX, 29                               | 59, 137                                        |
| ASCII files, 54                     | MIN, 29                               | Dummy string, 38                               |
| Assignment operator, 5              | NUM, 18                               | Tigg: -: 10 49 46                              |
| Assignment statement, 5,            | RND, 9                                | Efficiency, 10, 42, 46,                        |
| 31, 40, 47                          | RND(X), 8                             | 102, 140                                       |
| ATN(X) function, 11                 | SEG\$( ), 44                          | E-format, 5, 26                                |
| Average, 137                        | SGN(X), 7                             | END statement, 2                               |
| Axes, 64, 68                        | SIN(X), 11                            | EOF, 52<br>Error, 75, 112, 125                 |
| Dattle of numbers 155f              | SQR(X), 7                             | Error message, 48, 51                          |
| Battle of numbers, 155f             | TAB(X), 23, 64                        | EXP(X) function, 11                            |
| Binary files, 54, 57                | TAN(X), 11<br>TIM(X), 11              | EXT\$( ) function, 44                          |
| Bubble sort, 140                    | TYP(N), 51                            | E221φ( ) Idilesion, 11                         |
| Cartesian coordinates, 78           | CØN, 19                               | Factor Theorem, 108                            |
| Census, 54                          | Concatenation, 39                     | Fibonacci sequence, 115                        |
| CHANGE statement, 40                | Constant matrix, 132                  | Files, 46, 54                                  |
| Chess, 156                          | Content addressing, 52                | ASCII, 54                                      |
| Circle, 74                          | Continuous function,                  | binary, 54, 57                                 |
| CLK(X) function, 11                 | 104                                   | random access, 50, 57f                         |
| Coefficient matrix, 132             | Convergence, 119                      | sequential, 57                                 |
| Coefficients, 101                   | Correlation coefficient,              | serial, 46, 55, 57                             |
| Coinciding lines, 90                | linear, 143, 146                      | teletype, 54                                   |
| Collinear points, 78                | CQS(X) function, 11                   | FILES statement, 47, 55                        |
| Column vector, 127                  | Cosine, 125                           | FNEND statement, 29                            |
| Comma delimiter, 3, 33              | CREATE command, 58,                   | Formatting, 25                                 |
| Common difference, 116              | 61                                    | FQR-NEXT statement, 9                          |
| Common ratio, 117                   | DAMA                                  | Functions, computer; see                       |
| Compound interest, 117              | DATA statement, 2, 43                 | Computer functions                             |
| Computed GØSUB state-               | Degree of a polynomial,               | Function, mathematical,                        |
| ment, 15                            | 101                                   | 64                                             |

Index 183

Games, 147, 154-159
Geometric sequence, 117
Geometric series, 122
GØSUB statement, 13
GØTØ statement, 3
Graph, 64
Hero's formula, 100
Hypotenuse, 95
Identity matrix, 19, 132
IDN, 19
IF END statement, 48, 59
IF MØRE statement, 55
IF-THEN statement, 27

Inconsistent equations, 90
Indeterminant solution 89f
Initialization, 6
INPUT statement, 6, 31, 40
Integral zeros, 112
Interest, compound, 117
Intersecting lines, 84
INT(X) function, 7, 8
INV, 21, 131
Inverse of a matrix, 132

Knight's tour, 156ff

LEN(A\$) function, 35, 40

LET statement, 5, 40

Limit of a sequence, 119

Linear correlation coefficient, 143, 146

List, 10

LIST command, 2

Logical operators:

AND, 29

QR, 29

NQT, 29

Logical value, 28

LQG(X) function, 11

Loops, 9

nested, 16

Magic squares, 152ff MAT equals, 21 MAT INPUT, 18 MAT PRINT, 18, 43 MAT READ, 18, 43 Matrix, 127 coefficient, 132 constant, 132 identity, 19, 132 Matrix algebra, 19
MAX function, 29
Median, 140
Midpoint, 75, 81
MIN function, 29
Monte Carlo, 126
Multiple assignment
statement, 6
Multiple zeros, 111

NAME command, 2
Nested form of a polynomial, 102, 110
Nested loops, 16
NEW command, 2, 54
Noncollinear points, 94
Nonreal zeros, 104
NØT, 29
NUM function, 18

Operators arithmetic, 4 assignment, 5 logical, 27 relational, 2, 3 ØR, 29 Ordering data, 140 Origin of a graph, 64

Parabola, 66 Parallel lines, 84 Pearson r, 146 Perpendicular bisector, Perpendicular lines, 84 Plot, 64 Plotters, 64 Pointer, 51, 55, 59 Polynomial, 12, 101 Polynomial equation, 104 Prettyprinting, 4 PRINT statement, 2, 40, 47,81PRINT USING statement, 25 Pseudo-random numbers, Pythagorean Theorem, 95

Quadratic formula, 104, 111 Quotes, 33, 35

Radians, 11 Random access files, 57, 58

Random numbers, 147 RANDOMIZE statement, READ statement, 2, 31, 40,55 Record of storage, 47, 58 Relational operators, 2f REM statement, 4 Remainder Theorem, 108RESTØRE statement, 57 RETURN statement, 13 Right triangle, 79, 84, 95 RND function, 9 RND(X) function, 8 Row vector, 127 RUN command, 3

SAVE command, 54 Scale, 66 SCRATCH statement, 57 Sectors of storage, 47 SEG\$() function, 44 Semicolon delimiter, 3, 33 Sequence; arithmetic, 116 defined, 115 Fibonacci, 115 geometric, 117 of partial sums, 122 Sequential files, 57 Serial files, 55 Series; arithmetic, 122 defined, 122 geometric, 122 SETW statement, 59 SGN(X) function, 7 Significant digits, 5 Similar triangles, 85 Simpsons' rule, 77 Simulation, 147 Simultaneous linear equations, 88, 131 SIN(X) function, 11 Slope, 81 positive, 82 negative, 82 Slope-intercept, 83 Solution matrix, 132 Spacing; comma, 43 semicolon, 43 Standard deviation, 137, 138 Statements: APPEND, 55 ASSIGN, 47

assignment, 5, 31, 40

184 Index

| Statements (continued)<br>CHANGE, 40<br>computed GØSUB, 15<br>DATA, 2, 43<br>DIM, 10, 35, 40<br>END, 2<br>FILES, 47, 55 | Storage, 59, 68 String, 25, 31 dummy, 38 null, 50 SQR(X) function, 7 Subroutine, 13 Subscripted variable, 10 | Undefined slope, 84, 97<br>Undefined solution, 89<br>User-defined function,<br>12<br>multiple line, 29<br>Variables, 4 |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| FNEND, 29                                                                                                               | Synthetic division, 109<br>System command, 2                                                                 | numeric, 31                                                                                                            |
| FØR-NEXT, 9<br>GØSUB, 13                                                                                                | CREATE, 58, 61                                                                                               | string, 31 subscripted numeric,                                                                                        |
| GQTQ, 3 IF END, 48, 59                                                                                                  | LIST, 2<br>NAME, 2                                                                                           | 10<br>subscripted string, 34                                                                                           |
| IF MØRE, 55                                                                                                             | NEW, 2, 54<br>ØPEN, 47                                                                                       | Variance, 138, 142                                                                                                     |
| IF-THEN, 27<br>image, 25                                                                                                | RUN, 3                                                                                                       | Variation, 113<br>Vector; column, 127                                                                                  |
| INPUT, 6, 31, 40                                                                                                        | SAVE, 54                                                                                                     | row, 127                                                                                                               |
| LET, 5, 40<br>MAT, 18, 19<br>multiple assignment, 6                                                                     | TAB(X) function, 23, 64<br>TAN(X) function, 11                                                               | WRITE statement, 57                                                                                                    |
| PRINT, 2, 31, 40<br>PRINT USING, 25<br>RANDØMIZE, 9                                                                     | Teletype files, 54 TIM(X) function, 11 Transfer; conditional, 2                                              | X-axis, 65, 68<br>X-coordinate, 78                                                                                     |
| READ, 2, 31, 40, 55<br>REM, 4<br>RESTØRE, 57                                                                            | unconditional, 3<br>Trapezoid method, 77<br>Trial and error, 10                                              | Y-axis, 65, 68<br>Y-coordinate, 78                                                                                     |
| RETURN, 13<br>SCRATCH, 57<br>SETW, 59<br>STOP, 5<br>WRITE, 57                                                           | Triangles, similar, 85<br>TRN, 21<br>Truth values, 27<br>TYP(N) function, 51                                 | ZER, 19<br>Zeros; integral, 112<br>multiple, 111<br>nonreal, 104                                                       |
| STOP statement, 5                                                                                                       | Undefined condition, 82                                                                                      | real, 104                                                                                                              |

## ADVANCED BASIC: Applications and Problems

James S. Coan

Now you can extend your expertise in the BASIC language with this book of advanced techniques and applications of the BASIC language. It allows you to gradually increase both your understanding of concepts and your ability to write programs. The development of each topic progresses from simple to more sophisticated problems and is accompanied by many sample programs to clarify the discussions.

ADVANCED BASIC opens with a review chapter on the elementary points of BASIC. Then, the book covers extended features, strings and files, and the applications of the BASIC language in such areas as: coordinate geometry, area, sequences and series, polynomials, graphing, simulations and games. Summaries and problem exercises end each section.

#### Other books of interest ...

# BASIC BASIC: An Introduction to Computer Programming in BASIC Language

James S. Coan

This popular text for high school and college students integrates programming in BASIC language and the teaching of mathematics. Each topic begins with a short, complete program and moves to more sophisticated problems. The use of flowcharts is encouraged as an aid in writing programs. Summaries and questions review important concepts. #5872-1, paper, #5873-X, cloth, 256 pages, 6 x 9, illus.

#### THE BASIC WORKBOOK:

#### Creative Techniques for Beginning Programmers

Kenneth E. Schoman, Jr.

A hands-on approach to learning BASIC and the fundamentals of problem-solving using a computer. Through many exercises, you develop a workable BASIC vocabulary, a feeling for the logic and intrigue of programming algorithms, and the self-confidence needed to use a computer in a variety of applications. #5104-2, paper, 128 pages, 8½ x 11, illus.



Rochelle Park, New Jersey