

DONALD E. KNUTH Stanford University

A
vy ADDISON-WESLEY
An Imprint of Addison Wesley Longman, Inc.

Volume 2 / Seminumerical Algorithms

THE ART OF
COMPUTER PROGRAMMING

THIRD EDITION

Reading, Massachusetts - Harlow, England - Menlo Park, California
Berkeley, California - Don Mills, Ontario - Sydney
Bonn - Amsterdam - Tokyo - Mexico City

TEX is a trademark of the American Mathematical Society
METAFONT is a trademark of Addison—Wesley

The quotation on page 61 is reprinted by permission of Grove Press, Inc.

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming / Donald Ervin Knuth. -- 3rd ed.
xiv,762 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical
algorithms.

ISBN 0-201-89683-4 (v. 1)
ISBN 0-201-89684-2 (v. 2)
1. Electronic digital computers--Programming. 2. Computer
algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147
CIP

Internet page http://www-cs-faculty.stanford.edu/ "knuth/taocp.html contains
current information about this book and related books.

Copyright (© 1998 by Addison Wesley Longman

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher. Printed
in the United States of America. Published simultaneously in Canada.

ISBN 0-201-89684-2

Text printed on acid-free paper
123456789 MA 00999897
First printing, September 1997

PREFACE

O dear Ophelia!
I am ill at these numbers:
| have not art to reckon my groans.

— Hamlet (Act Il, Scene 2, Line 120)

THE ALGORITHMS discussed in this book deal directly with numbers; yet I
believe they are properly called seminumerical, because they lie on the borderline
between numeric and symbolic calculation. Each algorithm not only computes
the desired answers to a numerical problem, it also is intended to blend well
with the internal operations of a digital computer. In many cases people are
not able to appreciate the full beauty of such an algorithm unless they also
have some knowledge of a computer’s machine language; the efficiency of the
corresponding machine program is a vital factor that cannot be divorced from
the algorithm itself. The problem is to find the best ways to make computers
deal with numbers, and this involves tactical as well as numerical considerations.
Therefore the subject matter of this book is unmistakably a part of computer
science, as well as of numerical mathematics.

Some people working in “higher levels” of numerical analysis will regard the
topics treated here as the domain of system programmers. Other people working
in “higher levels” of system programming will regard the topics treated here as
the domain of numerical analysts. But I hope that there are a few people left who
will want to look carefully at these basic methods. Although the methods reside
perhaps on a low level, they underlie all of the more grandiose applications of
computers to numerical problems, so it is important to know them well. We are
concerned here with the interface between numerical mathematics and computer
programming, and it is the mating of both types of skills that makes the subject
so interesting.

There is a noticeably higher percentage of mathematical material in this
book than in other volumes of this series, because of the nature of the subjects
treated. In most cases the necessary mathematical topics are developed here
starting almost from scratch (or from results proved in Volume 1), but in several
easily recognizable sections a knowledge of calculus has been assumed.

This volume comprises Chapters 3 and 4 of the complete series. Chapter 3
is concerned with “random numbers”: It is not only a study of various ways to
generate random sequences, it also investigates statistical tests for randomness,

A\

vi PREFACE

as well as the transformation of uniform random numbers into other types of
random quantities; the latter subject illustrates how random numbers are used
in practice. I have also included a section about the nature of randomness
itself. Chapter 4 is my attempt to tell the fascinating story of what people
have discovered about the processes of arithmetic, after centuries of progress. It
discusses various systems for representing numbers, and how to convert between
them; and it treats arithmetic on floating point numbers, high-precision integers,
rational fractions, polynomials, and power series, including the questions of
factoring and finding greatest common divisors.

Each of Chapters 3 and 4 can be used as the basis of a one-semester college
course at the junior to graduate level. Although courses on “Random Numbers”
and on “Arithmetic” are not presently a part of many college curricula, I be-
lieve the reader will find that the subject matter of these chapters lends itself
nicely to a unified treatment of material that has real educational value. My
own experience has been that these courses are a good means of introducing
elementary probability theory and number theory to college students. Nearly
all of the topics usually treated in such introductory courses arise naturally
in connection with applications, and the presence of these applications can be
an important motivation that helps the student to learn and to appreciate the
theory. Furthermore, each chapter gives a few hints of more advanced topics
that will whet the appetite of many students for further mathematical study.

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Third Edition

When the second edition of this book was completed in 1980, it represented the
first major test case for prototype systems of electronic publishing called TEX
and METAFONT. I am now pleased to celebrate the full development of those
systems by returning to the book that inspired and shaped them. At last I am
able to have all volumes of The Art of Computer Programming in a consistent
format that will make them readily adaptable to future changes in printing and
display technology. The new setup has allowed me to make many thousands of
improvements that I have been wanting to incorporate for a long time.

In this new edition I have gone over every word of the text, trying to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear ev-
erywhere, but most significantly in Sections 3.5 (about theoretical guarantees of
randomness), 3.6 (about portable random-number generators), 4.5.2 (about the
binary ged algorithm), and 4.7 (about composition and iteration of power series).

PREFACE vii
> The Art of Computer Programming is, however, still a work in progress.
 Research on seminumerical algorithms continues to grow at a phenomenal
rate. Therefore some parts of this book are headed by an “under construction”
icon, to apologize for the fact that the material is not up-to-date. My files are
bursting with important material that I plan to include in the final, glorious,
fourth edition of Volume 2, perhaps 16 years from now; but I must finish
Volumes 4 and 5 first, and I do not want to delay their publication any more
than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and refine this material during the past 35 years. Most of the hard
work of preparing the new edition was accomplished by Silvio Levy, who expertly
edited the electronic text, and by Jeffrey Oldham, who converted nearly all of
the original illustrations to METAPOST format. I have corrected every error that
alert readers detected in the second edition (as well as some mistakes that, alas,
nobody noticed); and I have tried to avoid introducing new errors in the new
material. However, I suppose some defects still remain, and I want to fix them
as soon as possible. Therefore I will cheerfully pay $2.56 to the first finder of
each technical, typographical, or historical error. The webpage cited on page iv
contains a current listing of all corrections that have been reported to me.

Stanford, California D. E K
July 1997

When a book has been eight years in the making,

there are too many colleagues, typists, students,

teachers, and friends to thank.

Besides, | have no intention of giving such people

the usual exoneration from responsibility for errors which remain.
They should have corrected me!

And sometimes they are even responsible for ideas

which may turn out in the long run to be wrong.

Anyway, to such fellow explorers, my thanks.

— EDWARD F. CAMPBELL, JR. (1975)

‘Defendit numerus,’ {there is safety in numbers]
is the maxim of the foolish;

‘Deperdit numerus,’ {there is ruin in numbers]
of the wise.

— C. C. COLTON (1820)

NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well as
classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. This is sometimes unfortunate because readers like to know in
advance how long a problem ought to take — otherwise they may just skip over
all the problems. A classic example of such a situation is the book Dynamic
Programming by Richard Bellman; this is an important, pioneering work in
which a group of problems is collected together at the end of some chapters
under the heading “Exercises and Research Problems,” with extremely trivial
questions appearing in the midst of deep, unsolved problems. It is rumored that
someone once asked Dr. Bellman how to tell the exercises apart from the research
problems, and he replied, “If you can solve it, it is an exercise; otherwise it’s a
research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely.

ix

X NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV 1s on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a /5 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 2/ may take longer to solve than
an exercise that is rated 25, but the latter will require more creativity.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “»”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to be
the most valuable have been singled out. (This is not meant to detract from the
other exercises!) Each reader should at least make an attempt to solve all of the
problems whose rating is 10 or less; and the arrows may help to indicate which
of the problems with a higher rating should be given priority.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to

NOTES ON THE EXERCISES X1

solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later editions of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise 7 + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 30 Moderately hard

M Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

1. [00] What does the rating “M20” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?

3. [84] Leonhard Euler conjectured in 1772 that the equation w* 4+ z* +4* = 2* has
no solution in positive integers, but Noam FElkies proved in 1987 that infinitely many
solutions exist [see Math. Comp. 51 (1988), 825-835|. Find all integer solutions such
that 0 < w <z <'y < z < 10°.

4. [M50] Prove that when n is an integer, n > 4, the equation w™ + z" + y" = 2"
has no solution in positive integers w, z, y, z.

Exercise is the beste instrument in learnyng.
— ROBERT RECORDE, The Whetstone of Witte (1557)

Chapter 3— Random Numbers

3.1.
3.2.

3.3.

3.4.

*3.5.
3.6.

Introduction . . .

Generating Uniform Random Numbers

3.2.1. The Linear Congruential Method .
3.2.1.1. Choice of modulus .
3.2.1.2. Choice of multiplier
3.2.1.3. Potency

3.2.2. Other Methods .

Statistical Tests

3.3.1. General Test Procedures for Studymg Random Data

3.3.2. Empirical Tests

*3.3.3. Theoretical Tests .
3.3.4. The Spectral Test -
Other Types of Random Quantities .
3.4.1. Numerical Distributions . .
3.4.2. Random Sampling and Shuffling
What Is a Random Sequence?
Summary

Chapter 4 — Arithmetic .

4.1.

4.2.

4.3.

4.4.
4.5.

Positional Number Systems
Floating Point Arithmetic . .
4.2.1. Single-Precision Calculations . .
4.2.2. Accuracy of Floating Point Arlthmetlc
*4.2.3. Double-Precision Calculations
4.2.4. Distribution of Floating Point Numbers
Multiple Precision Arithmetic
4.3.1. The Classical Algorithms
*4.3.2. Modular Arithmetic o
*4.3.3. How Fast Can We Multiply? .
Radix Conversion .
Rational Arithmetic
4.5.1. Fractions . .
4.5.2. The Greatest Common D1v1sor .
*4.5.3. Analysis of Euclid’s Algorithm .
4.5.4. Factoring into Primes .

xil

CONTENTS

10
10
12
16
23
26
41
41
61
80
93
119
119
142
149
184

194

195
214
214
229
246
253
265
265
284
294
319
330
330
333
356
379

CONTENTS

4.6. Polynomial Arithmetic
4.6.1. Division of Polynomials
*4.6.2. Factorization of Polynomials .
4.6.3. Evaluation of Powers
4.6.4. Evaluation of Polynomials .
*4.7. Manipulation of Power Series .

Answers to Exercises

Appendix A — Tables of Numerical Quantities .

1. Fundamental Constants (decimal)
2. Fundamental Constants (octal) . Ce
3. Harmonic Numbers, Bernoulli Numbers Fibonacci Numbers .

Appendix B —Index to Notations .

Index and Glossary

x1il

418
420
439
461
485
925

938

726

726
727
728
730

735

CHAPTER THREE

RANDOM NUMBERS

Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

— JOHN VON NEUMANN (1951)

Lest men suspect your tale untrue,
Keep probability in view.

— JOHN GAY (1727)

There wanted not some beams of light
to guide men in the exercise of their Stocastick faculty.

— JOHN OWEN (1662)

3.1. INTRODUCTION

NUMBERS that are “chosen at random” are useful in many different kinds of
applications. For example:

a) Simulation. When a computer is being used to simulate natural phenomena,
random numbers are required to make things realistic. Simulation covers many
fields, from the study of nuclear physics (where particles are subject to random
collisions) to operations research (where people come into, say, an airport at
random intervals).

b) Sampling. 1t is often impractical to examine all possible cases, but a random
sample will provide insight into what constitutes “typical” behavior.

c¢) Numerical analysis. Ingenious techniques for solving complicated numerical
problems have been devised using random numbers. Several books have been
written on this subject.

d) Computer programming. Random values make a good source of data for
testing the effectiveness of computer algorithms. More importantly, they are
crucial to the operation of randomized algorithms, which are often far superior
to their deterministic counterparts. This use of random numbers is the primary
application of interest to us in this series of books; it accounts for the fact that

1

2 RANDOM NUMBERS 3.1

random numbers are already being considered here in Chapter 3, before most of
the other computer algorithms have appeared.

e) Decision making. There are reports that many executives make their deci-
sions by flipping a coin or by throwing darts, etc. It is also rumored that some
college professors prepare their grades on such a basis. Sometimes it is important
to make a completely “unbiased” decision. Randomness is also an essential part
of optimal strategies in the theory of matrix games.

f) Aesthetics. A little bit of randomness makes computer-generated graphics
and music seem more lively. For example, a pattern like

00000000 e wwe 00000000
0o0000oc 000000ooC
00000000 DO00000ooc

in certain contexts. [See D. E. Knuth, Bull. Amer. Math. Soc. 1 (1979), 369.]

g) Recreation. Rolling dice, shuffling decks of cards, spinning roulette wheels,
etc., are fascinating pastimes for just about everybody. These traditional uses
of random numbers have suggested the name “Monte Carlo method,” a general
term used to describe any algorithm that employs random numbers.

more appealing than

People who think about this topic almost invariably get into philosophical
discussions about what the word “random” means. In a sense, there is no such
thing as a random number; for example, is 2 a random number? Rather, we speak
of a sequence of independent random numbers with a specified distribution, and
this means loosely that each number was obtained merely by chance, having
nothing to do with other numbers of the sequence, and that each number has a
specified probability of falling in any given range of values.

A uniform distribution on a finite set of numbers is one in which each
possible number is equally probable. A distribution is generally understood
to be uniform unless some other distribution is specifically- mentioned.

Each of the ten digits 0 through 9 will occur about 1L0 of the time in a
(uniform) sequence of random digits. Each pair of two successive digits should
occur about ﬁ of the time, and so on. Yet if we take a truly random sequence
of a million digits, it will not always have exactly 100,000 zeros, 100,000 ones,
etc. In fact, chances of this are quite slim; a sequence of such sequences will have
this character on the average.

Any specified sequence of a million digits is as probable as any other. Thus,
if we are choosing a million digits at random and if the first 999,999 of them
happen to come out to be zero, the chance that the final digit is zero is still
exactly 1—10, in a truly random situation. These statements seem paradoxical to
many people, yet no contradiction is really involved.

There are several ways to formulate decent abstract definitions of random-
ness, and we will return to this interesting subject in Section 3.5; but for the

moment, let us content ourselves with an intuitive understanding of the concept.

Many years ago, people who needed random numbers in their scientific work
would draw balls out of a “well-stirred urn,” or they would roll dice or deal out

3.1 INTRODUCTION 3

cards. A table of over 40,000 random digits, “taken at random from census
reports,” was published in 1927 by L. H. C. Tippett. Since then, a number of
devices have been built to generate random numbers mechanically. The first such
machine was used in 1939 by M. G. Kendall and B. Babington-Smith to produce
a table of 100,000 random digits. The Ferranti Mark I computer, first installed
in 1951, had a built-in instruction that put 20 random bits into the accumulator
using a resistance noise generator; this feature had been recommended by A. M.
Turing. In 1955, the RAND Corporation published a widely used table of a
million random digits obtained with the help of another special device. A famous
random-number machine called ERNIE has been used for many years to pick the
winning numbers in the British Premium Savings Bonds lottery. [See the articles
by Kendall and Babington-Smith in J. Royal Stat. Soc. A101 (1938), 147-166;
B6 (1939), 51-61. See also S. H. Lavington’s discussion of the Mark I in CACM
21 (1978), 4-12; the review of the RAND table in Math. Comp. 10 (1956), 39—
43; and the discussion of ERNIE by W. E. Thomson, J. Royal Stat. Soc. A122
(1959), 301-333.]

Shortly after computers were introduced, people began to search for efficient
ways to obtain random numbers within computer programs. A table could be
used, but this method is of limited utility because of the memory space and
input time requirement, because the table may be too short, and because it
is a bit of a nuisance to prepare and maintain the table. A machine such as
ERNIE might be attached to the computer, as in the Ferranti Mark I, but this
has proved to be unsatisfactory since it is impossible to reproduce calculations
exactly a second time when checking out a program; moreover, such machines
have tended to suffer from malfunctions that are extremely difficult to detect.
Advances in technology made tables useful again during the 1990s, because
a billion well-tested random bytes could be distributed on CDROM. George
Marsaglia helped resuscitate random tables in 1995 by preparing a demonstration
disk that contained 650 random megabytes, generated by combining the output
of a noise-diode circuit with deterministically scrambled rap music. (He called
it “white and black noise.”)

The inadequacy of mechanical methods in the early days led to an interest
in the production of random numbers using a computer’s ordinary arithmetic
operations. John von Neumann first suggested this approach in about 1946;
his idea was to take the square of the previous random number and to extract
the middle digits. For example, if we are generating 10-digit numbers and the
previous value was 5772156649, we square it to get

33317792380594909201,

the next number is therefore 7923805949.

There is a fairly obvious objection to this technique: How can a sequence
generated in such a way be random, since each number is completely determined
by its predecessor? (See von Neumann’s comment at the beginning of this
chapter.) The answer is that the sequence isn’t random, but it appears to
be. In typical applications the actual relationship between one number and

4 RANDOM NUMBERS 3.1

its successor has no physical significance; hence the nonrandom character is
not really undesirable. Intuitively, the middle square seems to be a fairly good
scrambling of the previous number.

Sequences generated in a deterministic way such as this are often called
pseudorandom or quasirandom sequences in the highbrow technical literature,
but in most places of this*book we shall simply call them random sequences,
with the understanding that they only appear to be random. Being “apparently
random” is perhaps all that can be said about any random sequence anyway.
Random numbers generated deterministically on computers have worked quite
well in nearly every application, provided that a suitable method has been
carefully selected. Of course, deterministic sequences aren’t always the answer;
they certainly shouldn’t replace ERNIE for the lotteries.

Von Neumann'’s original “middle-square method” has actually proved to be a
comparatively poor source of random numbers. The danger is that the sequence
tends to get into a rut, a short cycle of repeating elements. For example, if zero
ever appears as a number of the sequence, it will continually perpetuate itself.

Several people experimented with the middle-square method in the early
1950s. Working with numbers that have four digits instead of ten, G. E. Forsythe
tried 16 different starting values and found that 12 of them led to sequences
ending with the cycle 6100, 2100, 4100, 8100, 6100, ..., while two of them
degenerated to zero. More extensive tests were carried out by N. Metropolis,
mostly in the binary number system. He showed that when 20-bit numbers are
being used, there are 13 different cycles into which the middle-square sequence
might degenerate, the longest of which has a period of length 142.

It is fairly easy to restart the middle-square method on a new value when
zero has been detected, but long cycles are somewhat harder to avoid. Exercises 6
and 7 discuss some interesting ways to determine the cycles of periodic sequences,
using very little memory space.

A theoretical disadvantage of the middle-square method is given in exercises
9 and 10. On the other hand, working with 38-bit numbers, Metropolis obtained
a sequence of about 750,000 numbers before degeneracy occurred, and the re-
sulting 750,000 x 38 bits satisfactorily passed statistical tests for randomness.
[Symp. on Monte Carlo Methods (Wiley, 1956), 29-36.] This experience showed
that the middle-square method can give usable results, but it is rather dangerous
to put much faith in it until after elaborate computations have been performed.

Many random number generators in use when this chapter was first written
were not very good. People have traditionally tended to avoid learning about
such subroutines; old methods that were comparatively unsatisfactory have been
passed down blindly from one programmer to another, until the users have no
understanding of the original limitations. We shall see in this chapter that the
most important facts about random number generators are not difficult to learn,
although prudence is necessary to avoid common pitfalls.

It is not easy to invent a foolproof source of random numbers. This fact was
convincingly impressed upon the author in 1959, when he attempted to create a
fantastically good generator using the following peculiar approach:

3.1 INTRODUCTION 5

Algorithm K (“Super-random” number generator). Given a 10-digit decimal
number X, this algorithm may be used to change X to the number that should
come next in a supposedly random sequence. Although the algorithm might be
expected to yield quite a random sequence, reasons given below show that it
is not, in fact, very good at all. (The reader need not study this algorithm in
great detail except to observe how complicated it is; note, in particular, steps
K1 and K2.)

K1. [Choose number of iterations.] Set ¥ <« [X/10°| , the most significant
digit of X. (We will execute steps K2 through K13 exactly Y + 1 times;
that is, we will apply randomizing transformations a random number of
times.)

K2. [Choose random step.] Set Z « | X/10®| mod 10, the second most signifi-
cant digit of X. Go to step K(3+ Z). (That is, we now jump to a random
step in the program.)

K3. [Ensure > 5 x 10°.] If X < 5000000000, set X «+ X + 5000000000.

K4. [Middle square.] Replace X by | X?/10°] mod 10'?, that is, by the middle
of the square of X.

K5. [Multiply.] Replace X by (1001001001 X) mod 10'°.

K6. [Pseudo-complement.] If X < 100000000, then set X + X + 9814055677,
otherwise set X « 10'° — X.

K7. [Interchange halves.] Interchange the low-order five digits of X with the
high-order five digits; that is, set X « 10°(X mod 10°) + [X/10°], the
middle 10 digits of (10'° + 1) X.

K8. [Multiply.] Same as step K5.

K?9. [Decrease digits.] Decrease each nonzero digit of the decimal representation
of X by one.

K10. [99999 modify.] If X < 10°, set X + X? 4 99999; otherwise set X «
X — 99999.

K11. [Normalize.] (At this point X cannot be zero.) If X < 10%, set X + 10X
and repeat this step.

K12. [Modified middle square.] Replace X by | X(X — 1)/10°| mod 10'°, that
is, by the middle 10 digits of X (X — 1).

K13. [Repeat?] If Y > 0, decrease Y by 1 and return to step K2. If Y = 0, the
‘algorithm terminates with X as the desired “random” value. |

(The machine-language program corresponding to this algorithm was intended
to be so complicated that a person reading a listing of it without explanatory
comments wouldn’t know what the program was doing.)

Considering all the contortions of Algorithm K, doesn’t it seem plausible that
it should produce almost an infinite supply of unbelievably random numbers?
No! In fact, when this algorithm was first put onto a computer, it almost im-
mediately converged to the 10-digit value 6065038420, which — by extraordinary

6 RANDOM NUMBERS 3.1

Table 1

A COLOSSAL COINCIDENCE: THE NUMBER 6065038420
IS TRANSFORMED INTO ITSELF BY ALGORITHM K.

Step X (after) Step X (after)

K9 1107855700
K10 1107755701

K1 6065038420

K3 6065038420

K11 1107755701
K4 6910360760

K12 1226919902 Y =3
K5 8031120760

K5 0048821902
K6 1968879240

K6 9862877579
K7 7924019688

K7 7757998628
K8 9631707688
K9 8520606577 K8 2384626628

K9 1273515517

K10 8520506578
K11 8520506578
K12 0323372207 Y =6

K10 1273415518
K11 1273415518
K12 5870802097 Y =2

K6 9676627793

K11 5870802097
K7 2779396766

K12 3172562687 Y =1
K8 4942162766

K4 1540029446
K9 3831051655

K5 7015475446
K10 3830951656

K6 2984524554
K11 3830951656

K7 2455429845
K12 1905867781 Y =5
K12 3319967479 Y =4 K8 2730274845

K9 1620163734

K6 6680032521
K7 3252166800
K8 2218966800

K10 1620063735
K11 1620063735
K12 6065038420 Y =0

coincidence —is transformed into itself by the algorithm (see Table 1). With
another starting number, the sequence began to repeat after 7401 values, in a
cyclic period of length 3178.

The moral of this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.

In the following sections we shall consider random number generators that
are superior to the middle-square method and to Algorithm K. The correspond-
ing sequences are guaranteed to have certain desirable random properties, and
no degeneracy will occur. We shall explore the reasons for this random-like
behavior in some detail, and we shall also consider techniques for manipulating
random numbers. For example, one of our investigations will be the shuffling of
a simulated deck of cards within a computer program.

Section 3.6 summarizes this chapter and lists several bibliographic sources.

EXERCISES

» 1. [20] Suppose that you wish to obtain a decimal digit at random, not using a
computer. Which of the following methods would be suitable?

3.1 INTRODUCTION 7

a) Open a telephone directory to a random place by sticking your finger in it some-
where, and use the units digit of the first number found on the selected page.

b) Same as (a), but use the units digit of the page number.

c) Roll a die that is in the shape of a regular icosahedron, whose twenty faces have
been labeled with the digits 0,0,1,1,...,9,9. Use the digit that appears on
top, when the die comes to rest. (A felt-covered table with a hard surface is
recommended for rolling dice.)

d) Expose a geiger counter to a source of radioactivity for one minute (shielding
yourself) and use the units digit of the resulting count. Assume that the geiger
counter displays the number of counts in decimal notation, and that the count is
initially zero.

e) Glance at your wristwatch; and if the position of the second-hand is between 6n
and 6(n + 1) seconds, choose the digit n.

f) Ask a friend to think of a random digit, and use the digit he names.

g) Ask an enemy to think of a random digit, and use the digit he names.

h) Assume that 10 horses are entered in a race and that you know nothing whatever
about their qualifications. Assign to these horses the digits 0 to 9, in arbitrary
fashion, and after the race use the winner’s digit.

2. [M22] In a random sequence of a million decimal digits, what is the probability
that there are exactly 100,000 of each possible digit?

3. [10] What number follows 1010101010 in the middle-square method?

4. [20] (a) Why can’t the value of X be zero when step K11 of Algorithm K is
performed? What would be wrong with the algorithm if X could be zero? (b) Use
Table 1 to deduce what happens when Algorithm K is applied repeatedly with the
starting value X = 3830951656.

5. [15] Explain why, in any case, Algorithm K should not be expected to provide
infinitely many random numbers, in the sense that (even if the coincidence given in
Table 1 had not occurred) one knows in advance that any sequence generated by
Algorithm K will eventually be periodic.

6. [M21] Suppose that we want to generate a sequence of integers Xo, X1, Xo, ...,
in the range 0 < X,, < m. Let f(z) be any function such that 0 < z < m implies
0 < f(z) < m. Consider a sequence formed by the rule X,1+1 = f(X,). (Examples are
the middle-square method and Algorithm K.)

a) Show that the sequence is ultimately periodic, in the sense that there exist numbers
A and p for which the values

Xoy X1y ooy Xy ooy Xpgact

are distinct, but X,,» = X, when n > pu. Find the maximum and minimum
possible values of p and A.

b) (R. W. Floyd.) Show that there exists an n > 0 such that X, = Xs,; and the
smallest such value of n lies in the range p < n < p+ A. Furthermore the value of
X, is unique in the sense that if X,, = X, and X, = X5, then X, = X,,.

c) Use the idea of part (b) to design an algorithm that calculates y and X for any
given function f and any given Xy, using only O(u + A) steps and only a bounded
number of memory locations.

8 RANDOM NUMBERS 3.1

» 7. [M21] (R.P. Brent, 1977.) Let £(n) be the greatest power of 2 that is less than
or equal to n; thus, for example, £(15) = 8 and £(4(n)) = £(n).

a) Show that, in terms of the notation in exercise 6, there exists an n > 0 such that
X, = Xgyn)—1. Find a formula that expresses the least such n in terms of the
periodicity numbers p and A.

b) Apply this result to design an algorithm that can be used in conjunction with any
random number generator of the type Xn41 = f(X,), to prevent it from cycling
indefinitely. Your algorithm should calculate the period length A, and it should
use only a small amount of memory space —you must not simply store all of the
computed sequence values!

8. [23] Make a complete examination of the middle-square method in the case of

two-digit decimal numbers.

a) We might start the process out with any of the 100 possible values 00, 01, ...,
99. How many of these values lead ultimately to the repeating cycle 00, 00, ...?
[Ezample: Starting with 43, we obtain the sequence 43, 84, 05, 02, 00, 00, 00,]

b) How many possible final cycles are there? How long is the longest cycle?

c) What starting value or values will give the largest number of distinct elements
before the sequence repeats?

9. [M14] Prove that the middle-square method using 2n-digit numbers to the base b
has the following disadvantage: If the sequence includes any number whose most
significant n digits are zero, the succeeding numbers will get smaller and smaller until
zero occurs repeatedly.

10. [M16] Under the assumptions of the preceding exercise, what can you say about
the sequence of numbers following X if the least significant n digits of X are zero?
What if the least significant n + 1 digits are zero?

» 11. [M26] Consider sequences of random number generators having the form de-
scribed in exercise 6. If we choose f(r) and X, at random—in other words, if we
assume that each of the m™ possible functions f(z) is equally probable and that
each of the m possible values of X is equally probable— what is the probability
that the sequence will eventually degenerate into a cycle of length A = 1?7 (Note:
The assumptions of this problem give a natural way to think of a “random” random
number generator of this type. A method such as Algorithm K may be expected to
behave somewhat like the generator considered here; the answer to this problem gives
a measure of how colossal the coincidence of Table 1 really is.)

» 12. [M31] Under the assumptions of the preceding exercise, what is the average length
of the final cycle? What is the average length of the sequence before it begins to cycle?
(In the notation of exercise 6, we wish to examine the average values of A and of p+\.)

13. [M42] If f(z) is chosen at random in the sense of exercise 11, what is the average
length of the longest cycle obtainable by varying the starting value Xo? (Note: We
have already considered the analogous problem in the case that f(z) is a random
permutation; see exercise 1.3.3-23.)

14. [M38] If f(z) is chosen at random in the sense of exercise 11, what is the av-
erage number of distinct final cycles obtainable by varying the starting value? [See
exercise 8(b).]

15. [M15] If f(z) is chosen at random in the sense of exercise 11, what is the proba-
bility that none of the final cycles has length 1, regardless of the choice of X7

3.1 INTRODUCTION 9

16. [15] A sequence generated as in exercise 6 must begin to repeat after at most m
values have been generated. Suppose we generalize the method so that X, ; depends
on X,_1 as well as on X,; formally, let f(z,y) be a function such that 0 < z,y <m
implies 0 < f(z,y) < m. The sequence is constructed by selecting X, and X;
arbitrarily, and then letting

Xn+1 = f(Xn, Xn._]_), for n > 0.

What is the maximum period conceivably attainable in this case?

17. [10] Generalize the situation in the previous exercise so that X,;: depends on
the preceding k values of the sequence.

18. [M20] Invent a method analogous to that of exercise 7 for finding cycles in the
general form of random number generator discussed in exercise 17.
19. [M48] Solve the problems of exercises 11 through 15 for the more general case that
Xn+1 depends on the preceding k values of the sequence; each of the m™* functions
f(z1,...,zx) is to be considered equally probable. (Note: The number of functions
that yield the mazimum period is analyzed in exercise 2.3.4.2-23.)

20. [30] Find all nonnegative X < 10'° that lead ultimately via Algorithm K to the
self-reproducing number in Table 1.

21. [42] Prove or disprove: The mapping X — f(X) defined by Algorithm K has
exactly five cycles, of lengths 3178, 1606, 1024, 943, and 1.

22. [21] (H. Rolletschek.) Would it be a good idea to generate random numbers by
using the sequence f(0), (1), f(2), ..., where f is a random function, instead of using
zo, f(z0), f(f(z0)), etc.?

23. [M26] (D. Foata and A. Fuchs, 1970.) Show that each of the m™ functions f(z)
considered in exercise 6 can be represented as a sequence (zo, Z1,...,Zm—1) having the
following properties:

i) (zo,Z1,...,Zm—1) is a permutation of (f(0), f(1),..., f(m — 1)).

ii) (f(0),...,f(m — 1)) can be uniquely reconstructed from (zo,1,...,Tm—1)-

iii) The elements that appear in cycles of f are {zo,z1,...,Tk—-1}, where k is the
largest subscript such that these k elements are distinct.

iv) z; ¢ {zo,z1,...,z;-1} implies z;—1 = f(x;), unless z; is the smallest element in
a cycle of f.

v) (£(0), f(1),..., f(m — 1)) is a permutation of (0,1,...,m — 1) if and only if
(zo,Z1,...,Tm—1) represents the inverse of that permutation by the “unusual
correspondence” of Section 1.3.3.

vi) o = x1 if and only if (21, ..., Zm-1) represents an oriented tree by the construction

of exercise 2.3.4.4-18, with f(z) the parent of z.

10 RANDOM NUMBERS 3.2

3.2. GENERATING UNIFORM RANDOM NUMBERS

IN THIS SECTION we shall consider methods for generating a sequence of random
fractions — random real numbers U,,, uniformly distributed between zero and one.
Since a computer can represent a real number with only finite accuracy, we
shall actually be generating integers X, between zero and some number m; the
fraction

U, =Xn/m

will then lie between zero and one. Usually m is the word size of the computer,
so X, may be regarded (conservatively) as the integer contents of a computer
word with the radix point assumed at the extreme right, and U, may be regarded
(liberally) as the contents of the same word with the radix point assumed at the
extreme left.

3.2.1. The Linear Congruential Method

By far the most popular random number generators in use today are special
cases of the following scheme, introduced by D. H. Lehmer in 1949. [See Proc.
2nd Symp. on Large-Scale Digital Calculating Machinery (Cambridge, Mass.:
Harvard University Press, 1951), 141-146.] We choose four magic integers:

m, the modulus; 0<m.
a, the multiplier; 0<a<m. (1)
¢, the increment; 0<c<m. !

Xo, the starting value; 0 < Xo < m.
The desired sequence of random numbers (X,) is then obtained by setting
Xn+1 = (aXn + c) mod m, n > 0. (2)

This is called a linear congruential sequence. Taking the remainder mod m is
somewhat like determining where a ball will land in a spinning roulette wheel.
For example, the sequence obtained when m =10 and Xg =a=c=71s

7,6,9,0 7,690, (3)

As this example shows, the sequence is not always “random” for all choices of
m, a, ¢, and Xo; the principles of choosing the magic numbers appropriately will
be investigated carefully in later parts of this chapter.

Example (3) illustrates the fact that the congruential sequences always get
into a loop: There is ultimately a cycle of numbers that is repeated endlessly.
This property is common to all sequences having the general form X, =
f(X,.), when f transforms a finite set into itself; see exercise 3.1-6. The repeating
cycle is called the period; sequence (3) has a period of length 4. A useful sequence
will of course have a relatively long period.

The special case ¢ = 0 deserves explicit mention, since the number generation
process is a little faster when ¢ = 0 than it is when ¢ # 0. We shall see later
that the restriction ¢ = 0 cuts down the length of the period of the sequence,
but it is still possible to make the period reasonably long. Lehmer’s original

3.2.1 THE LINEAR CONGRUENTIAL METHOD 11

generation method had ¢ = 0, although he mentioned c # 0 as a possibility; the
fact that ¢ # 0 can lead to longer periods is due to Thomson [Comp. J. 1 (1958),
83, 86] and, independently, to Rotenberg [JACM 7 (1960), 75-77]. The terms
multiplicative congruential method and mized congruential method are used by
many authors to denote linear congruential sequences with ¢ = 0 and ¢ # 0,
respectively.

The letters m, a, ¢, and X will be used throughout this chapter in the sense
described above. Furthermore, we will find it useful to define

b=a—1, (4)

in order to simplify many of our formulas.

We can immediately reject the case a = 1, for this would mean that X, =
(Xo + nc) mod m, and the sequence would certainly not behave as a random
sequence. The case a = 0 is even worse. Hence for practical purposes we may
assume that

a>2, b>1. (5)
Now we can prove a generalization of Eq. (2),
Xnik = (aF X, + (a* — 1)¢/b) mod m, k>0, n>0, (6)

which expresses the (n+k)th term directly in terms of the nth term. (The special
case n = 0 in this equation is worthy of note.) It follows that the subsequence
consisting of every kth term of (X,) is another linear congruential sequence,
having the multiplier a* mod m and the increment ((a* — 1)c/b) mod m.

An important corollary of (6) is that the general sequence defined by m, a,
¢, and X can be expressed very simply in terms of the special case where ¢ =1
and Xy = 0. Let

Yo =0, Yot+1 = (aYn + 1) mod m. (7)

According to Eq. (6) we will have Y}, = (a¥ —1)/b (modulo m), hence the general
sequence defined in (2) satisfies

X, = (AY, + Xo) mod m, where A = (Xob + ¢) mod m. (8)

EXERCISES

1. [10] Example (3) shows a situation in which X4 = Xo, so the sequence begins
again from the beginning. Give an example of a linear congruential sequence with
m = 10 for which X, never appears again in the sequence.

2. [M20] Show that if a and m are relatively prime, the number X, will always
appear in the period.

3. [M10] If a and m are not relatively prime, explain why the sequence will be
somewhat handicapped and probably not very random; hence we will generally want
the multiplier a to be relatively prime to the modulus m.

4. [11] Prove Eq. (6).

5. [M20] Equation (6) holds for k > 0. If possible, give a formula that expresses
Xn+k in terms of X, for negative values of k.

12 RANDOM NUMBERS 3.2.1.1

3.2.1.1. Choice of modulus. Our current goal is to find good values for the
parameters that define a linear congruential sequence. Let us first consider the
proper choice of the number m. We want m to be rather large, since the period
cannot have more than m elements. (Even if we intend to generate only random
zeros and ones, we should not take m = 2, for then the sequence would at best
have the form ...,0,1,0,1,0,1,...! Methods for getting random zeros and ones
from linear congruential sequences are discussed in Section 3.4.)

Another factor that influences our choice of m is speed of generation: We
want to pick a value so that the computation of (aX,, + ¢) mod m is fast.

Consider MIX as an example. We can compute y mod m by putting y in
registers A and X and dividing by m; assuming that y and m are positive, we
see that y mod m will then appear in register X. But division is a comparatively
slow operation, and it can be avoided if we take m to be a value that is especially
convenient, such as the word size of our computer.

Let w be the computer’s word size, namely 2° on an e-bit binary computer or
10° on an e-digit decimal machine. (In this book we shall often use the letter e to
denote an arbitrary integer exponent, instead of the base of natural logarithms,
hoping that the context will make our notation unambiguous. Physicists have a
similar problem when they use e for the charge on an electron.) The result of
an addition operation is usually given modulo w, except on ones’-complement
machines; and multiplication mod w is also quite simple, since the desired result
is the lower half of the product. Thus, the following program computes the
quantity (aX + c¢) mod w efficiently:

LDA A TA < a.

MUL X rAX « (rA) - X.

SLAX 5 rA «— rAX modw. (1)
ADD C rA« (rA+c)modw. |

The result appears in register A. The overflow toggle might be on at the conclu-
sion of these instructions; if that is undesirable, the code should be followed by,
say, “JOV *+1” to turn it off.

A clever technique that is less commonly known can be used to perform
computations modulo w+ 1. For reasons to be explained later, we will generally
want ¢ = 0 when m = w + 1, so we merely need to compute (aX) mod (w + 1).
The following program does this:

01 LDAN X rA «+ —X.

02 MUL A rAX «+ (rA) - a.

03 STX TEMP

0/ SUB TEMP rA « 1A — X (2)
05 JANN *+3 Exit if rA > 0.

06 1INCA 2 rA «rA 4+ 2.

07 ADD =w—1= rA+rA+w—1. (See exercise 3) 1

Register A now contains the value (aX) mod (w+1). Of course, this value might
lie anywhere between 0 and w, inclusive, so the reader may legitimately wonder
how we can represent so many values in the A-register! (The register obviously

3.2.1.1 CHOICE OF MODULUS 13

cannot hold a number larger than w — 1.) The answer is that overflow will be
on after program (2) if and only if the result equals w, assuming that overflow
was initially off. We could represent w by 0, since (2) will not normally be used
when X = 0: but it is most convenient simply to reject the value w if it appears
in the congruential sequence modulo w + 1. Then we can also avoid overflow,
simply by changing lines 05 and 06 of (2) to “JANN *+4; INCA 2; JAP *-5”.

To prove that code (2) actually does determine (aX) mod (w + 1), note that
in line 04 we are subtracting the lower half of the product from the upper half.
No overflow can occur at this step; and if aX = qw +r, with 0 <r < w, we will
have the quantity r — ¢ in register A after line 04. Now

aX = qlw+1)+(r —q),

and we have —w < r — g < w since ¢ < w; hence (aX) mod (w + 1) equals either
r—qorr—q+ (w+ 1), depending on whether r — ¢ >0 or r — ¢ <0.

A similar technique can be used to get the product of two numbers modulo
(w — 1); see exercise 8.

In later sections we shall require a knowledge of the prime factors of m in
order to choose the multiplier a correctly. Table 1 lists the complete factorization
of w + 1 into primes for nearly every known computer word size; the methods of
Section 4.5.4 can be used to extend this table if desired.

The reader may well ask why we bother to consider using m = w £+ 1, when
the choice m = w is so manifestly convenient. The reason is that when m = w,
the right-hand digits of X,, are much less random than the left-hand digits. If
d is a divisor of m, and if

Y, = X, mod d, (3)

we can easily show that
Y41 = (aY, + ¢) mod d. (4)

(For Xn41 = aX, + ¢ — gm for some integer ¢, and taking both sides mod d
causes the quantity gm to drop out when d is a factor of m.)

To illustrate the significance of Eq. (4), let us suppose, for example, that
we have a binary computer. If m = w = 2¢, the low-order four bits of X, are
the numbers ¥,, = X, mod 2*. The gist of Eq. (4) is that the low-order four
bits of (X,) form a congruential sequence that has a period of length 16 or less.
Similarly, the low-order five bits are periodic with a period of at most 32; and
the least significant bit of X, is either constant or strictly alternating.

This situation does not occur when m = w =+ 1; in such a case, the low-order
bits of X,, will behave just as randomly as the high-order bits do. If, for example,
w = 235 and m = 235 — 1, the numbers of the sequence will not be very random if
we consider only their remainders mod 31, 71, 127, or 122921 (see Table 1); but
the low-order bit, which represents the numbers of the sequence taken mod 2,
should be satisfactorily random.

Another alternative is to let m be the largest prime number less than w.
This prime may be found by using the techniques of Section 4.5.4, and a table
of suitably large primes appears in that section.

14 RANDOM NUMBERS

3.2.1.1

Table 1
PRIME FACTORIZATIONS OF w + 1
2¢ — 1 e 2 41
7-31-151 15 32.11-331
3.5-17-257 16 65537
. 131071 17 343691
33.7.19-73 18 5-.13-37-109
524287 19 3.174763
3-52.11-31-41 20 17 - 61681
72.127 - 337 21 32.43.5419
3.23.89-683 22 5-397.2113
47 -178481 23 3. 2796203
32.5.7.13-17-241 24 97-257-673
31-601 -1801 25 3-11-251-4051
3.2731-8191 26 5-53-157-1613
773262657 27 34.19-87211
3.5-20-43-113-127 28 17 - 15790321
233 -1103 - 2089 29 3-59-3033169
32.7.11-31-151-331 30 52.13-41-61-1321
2147483647 31 3- 715827883
3.5-17-257-65537 32 641 - 6700417
7.23-89-599479 33 32.67- 68320857
3-43691- 131071 34 5-137-953 - 26317
31-71-127-122921 35 3.11-43.281-86171
33.5.7-13-19-37-73-109 36 17 -241 - 433 - 38737
223 - 616318177 37 3.1777 - 25781083
3-174763 - 524287 38 5.229 457 - 525313
7-79-8191 - 121369 39 32.2731 - 22366891
3.52.11-17-31-41-61681 40 257 - 4278255361
13367 - 164511353 41 3-83- 8831418697
32.72.43.127-337-5419 42 5-13-29-113-1429 - 14449
431-9719 - 2099863 43 3.2932031007403
3.5.23.89-397-683-2113 44 17 - 353 - 2931542417
7.31-73.151-631-23311 45 3%.11-19- 33118837001
3.47-178481 - 2796203 46 5.277-1013 - 1657 - 30269
2351 - 4513 - 13264529 47 3.283- 165768537521
32.5.7-13-17-97-241-257-673 48 193 - 65537 - 22253377
179951 - 3203431780337 59 3.2833- 37171 - 1824726041
32.52.7.11-13-31-41-61-151-331-1321 60 17 - 241 - 61681 - 4562284561
72 .73 .127 - 337 - 92737 - 649657 63 3%.19-43-5419 - 77158673929
3.5.17-257- 64165537 - 6700417 64 274177 - 7280421310721
10 — 1 e 108 +1
33.7.11-13-37 6 101 - 9901
32.239 - 4649 7 11 - 909091
32.11-73-101-137 8 17 - 5882353
34.37-333667 9 7-11-13-19- 52579
32.11-41-271-9091 10 101 - 3541 - 27961
32.21649 - 513239 11 112 - 23 - 4093 - 8779
33.7-.11-13-37-101-9901 12 73 - 137 - 99990001
32.11.17-73-101- 1375882353 16 353 - 449 - 641 - 1409 - 69857

3.2.1.1 CHOICE OF MODULUS 15

In most applications, the low-order bits are insignificant, and the choice
m = w is quite satisfactory — provided that the programmer using the random
numbers does so wisely.

Our discussion so far has been based on a “signed magnitude” computer like
MIX. Similar ideas apply to machines that use complement notations, although
there are some instructive variations. For example, a DECsystem 20 computer
has 36 bits with two’s complement arithmetic; when it computes the product of
two nonnegative integers, the lower half contains the least significant 35 bits with
a plus sign. On this machine we should therefore take w = 235, not 2¢. The
32-bit two’s complement arithmetic on IBM System/370 computers is different:
The lower half of a product contains a full 32 bits. Some programmers have
felt that this is a disadvantage, since the lower half can be negative when the
operands are positive, and it is a nuisance to correct this; but actually it is a
distinct advantage from the standpoint of random number generation, since we
can take m = 232 instead of 23! (see exercise 4).

EXERCISES

1. [M12] In exercise 3.2.1-3 we concluded that the best congruential generators will
have the multiplier a relatively prime to m. Show that when m = w in this case it is
possible to compute (aX +c¢) mod w in just three MIX instructions, rather than the four
in (1), with the result appearing in register X.

2. [16] Write a MIX subroutine having the following characteristics:
Calling sequence: JMP RANDM
Entry conditions: Location XRAND contains an integer X.
Exit conditions: X 1A + (aX + ¢) mod w, rX + 0, overflow off.

(Thus a call on this subroutine will produce the next random number of a linear
congruential sequence.)

3. [M25] Many computers do not provide the ability to divide a two-word number
by a one-word number; they provide only operations on single-word numbers, such as
himult(z,y) = |zy/w| and lomult(z,y) = vy mod w, when z and y are nonnegative
integers less than the word size w. Explain how to evaluate az mod m in terms of
himult and lomult, assuming that 0 < @, £ < m < w and that m L w. You may use
precomputed constants that depend on a, m, and w.

4. [21] Discuss the calculation of linear congruential sequences with m = 2%% on
two’s-complement machines such as the System/370 series.

5. [20] Given that m is less than the word size, and that z and y are nonnegative
integers less than m, show that the difference (z — y) mod m may be computed in just
four MIX instructions, without requiring any division. What is the best code for the
sum (z + y) mod m?

6. [20] The previous exercise suggests that subtraction mod m is easier to perform
than addition mod m. Discuss sequences generated by the rule

Xn+1 = (X, — ¢) mod m.

Are these sequences essentially different from linear congruential sequences as defined
in the text? Are they more suited to efficient computer calculation?

16 RANDOM NUMBERS 3.2.1.1

7. [M24] What patterns can you spot in Table 17

8. [20] Write a MIX program analogous to (2) that computes (aX) mod (w—1). The
values 0 and w — 1 are to be treated as equivalent in the input and output of your
program.

9. [M25] Most high-level programming languages do not to provide a good way
to divide a two-word integér by a one-word integer, nor do they provide the himult
operation of exercise 3. The purpose of this exercise is to find a reasonable way to
cope with such limitations when we wish to evaluate az mod m for variable z and for
constants 0 < a < m.

a) Prove that if ¢ = [m/a|, we have a(z — (z mod q)) = |z/q|(m — (m mod a)).
b) Use the identity of (a) to evaluate ax mod m without computing any numbers that
exceed m in absolute value, assuming that a2 < m.

10. [M26] The solution to exercise 9(b) sometimes works also when a® > m. Exactly
how many multipliers a are there for which the intermediate results in that method
never exceed m, for all z between 0 and m?

11. [M30] Continuing exercise 9, show that it is possible to evaluate az mod m using
only the following basic operations:

i) u x v, where u > 0, v > 0, and uv < m;

ii) |u/v], where 0 < v < u < m;
iii) (u — v) mod m, where 0 < u,v < m.
In fact, it is always possible to do this with at most 12 operations of types (i) and (ii),
and with a bounded number of operations of type (iii), not counting the precomputation
of constants that depend on a and m. For example, explain how to proceed when a is
62089911 and m is 2°! — 1. (These constants appear in Table 3.3.4-1.)

12. [M28] Consider computations by pencil and paper or an abacus.

a) What’s a good way to multiply a given 10-digit number by 10, modulo 99999989997

b) Same question, but multiply instead by 999999900 (modulo 9999998999).

c) Explain how to compute the powers 999999900™ mod 9999998999, for n = 1, 2,
3,

d) Relate such computations to the decimal expansion of 1/9999998999.

e) Show that these ideas make it possible to implement certain kinds of linear con-
gruential generators that have extremely large moduli, using only a few operations
per generated number.

13. [M24] Repeat the previous exercise, but with modulus 9999999001 and with
multipliers 10 and 8999999101.

14. [M25] Generalize the ideas of the previous two exercises, obtaining a large family
of linear congruential generators with extremely large moduli.

3.2.1.2. Choice of multiplier. In this section we shall consider how to choose
the multiplier a so as to produce a period of mazimum length. A long period
is essential for any sequence that is to be used as a source of random numbers;
indeed, we would hope that the period contains considerably more numbers than
will ever be used in a single application. Therefore we shall concern ourselves in
this section with the question of period length. The reader should keep in mind,
however, that a long period is only one desirable criterion for the randomness of

3.2.1.2 CHOICE OF MULTIPLIER 17

a linear congruential sequence. For example, when a = ¢ = 1, the sequence is
simply Xn4+1 = (Xn + 1) mod m, and this obviously has a period of length m,
yet it is anything but random. Other considerations affecting the choice of a
multiplier will be given later in this chapter.

Since only m different values are possible, the period surely cannot be longer
than m. Can we achieve the maximum length, m? The example above shows that
it is always possible, although the choice a = ¢ = 1 does not yield a desirable
sequence. Let us investigate all possible choices of a, ¢, and X that give a
period of length m. It turns out that all such values of the parameters can be
characterized very simply; when m is the product of distinct primes, only a =1
will produce the full period, but when m is divisible by a high power of some
prime there is considerable latitude in the choice of a. The following theorem
makes it easy to tell if the maximum period is achieved.

Theorem A. The linear congruential sequence defined by m, a, ¢, and X, has
period length m if and only if

i) c is relatively prime to m;
ii) b=a — 1 is a multiple of p, for every prime p dividing m;
iii) b is a multiple of 4, if m is a multiple of 4.

The ideas used in the proof of this theorem go back at least a hundred
years. But the first proof of the theorem in this particular form was given by
M. Greenberger in the special case m = 2¢ [see JACM 8 (1961), 383-389], and
the sufficiency of conditions (i), (ii), and (iii) in the general case was shown by
Hull and Dobell [see SIAM Review 4 (1962), 230-254]. To prove the theorem
we will first consider some auxiliary number-theoretic results that are of interest
in themselves.

Lemma P. Let p be a prime number, and let e be a positive integer, where
p¢ > 2. If
r =1 (modulo p¢), z #1 (modulo pet?), (1)
then
2P = 1 (modulo p¢*!), zP # 1 (modulo p*+?). (2)

Proof. We have £ = 1 + gp® for some integer g that is not a multiple of p. By
the binomial formula

P =1+ (Z;) qpe 4.4 (p pi 1) qp—lp(P—l)e + qpppe

1 1 1

-1+ qpe+1 (1 + _(p)qpe + _(p)qZPZe 4.t _(p)qp—-lp(p—-l)e))
p\2 p\3 p\p

The quantity in parentheses is an integer, and, in fact, every term inside the

parentheses is a multiple of p except the first term. For if 1 < k < p, the

binomial coefficient (ﬁ) is divisible by p (see exercise 1.2.6-10); hence

L/P\ k-1 _(k—1)e
p(k)q P

18 RANDOM NUMBERS 3.2.1.2

is divisible by p(*~1¢. And the last term is ¢P~!p(P~1e=1 which is divisible by p
since (p — 1)e > 1 when p®* > 2. So 2P = 1 + gp**! (modulo p**+?%), and this
completes the proof. (Note: A generalization of this result appears in exercise
3.2.2-11(a).) 1

Lemma Q. Let the decomposition of m into prime factors be

m=pi...p;. (3)

The length X of the period of the linear congruential sequence determined by
(Xo, a,c,m) is the least common multiple of the lengths A; of the periods of the
linear congruential sequences (Xo mod pjj, a mod p;j, cmod p;j, pjj), 1<j<t.

Proof. By induction on t, it suffices to prove that if m; and ms, are relatively
prime, the length X of the linear congruential sequence determined by the param-
eters (Xo, a,c, myma) is the least common multiple of the lengths A\; and A; of the
periods of the sequences determined by (Xo mod m;, a mod my, ¢ mod mq, m;)
and (Xo mod m2, a mod my, cmod ma, mz). We observed in the previous sec-
tion, Eq. (4), that if the elements of these three sequences are respectively
denoted by X,,, Y,,, and Z,, we will have

Y, =X, modm; and Zn = X mod mg, for all n > 0.
Therefore, by Law D of Section 1.2.4, we find that
X, =X if and only if Y,=Y, and Z,=7. (4)

Let X be the least common multiple of A\; and)A3; we wish to prove that
X' = \. Since X, = X, for all suitably large n, we have Y;, = Y, (hence
A is a multiple of A\;) and Z, = Z, 1 (hence X is a multiple of X2), so we must
have A >). Furthermore, we know that Y¥,, = Y,y and Z, = Z, for all
suitably large n; therefore, by (4), Xn = X,4+x. This proves A < XN. |

Now we are ready to prove Theorem A. Lemma Q tells us that it suffices to
prove the theorem when m is a power of a prime number, because

pil...pgt :)\:lcm()\l,...,)\t) S)\1>\t Spil...pgt

will be true if and only if A\; = pjj for1 <j<t.

Assume therefore that m = p®, where p is prime and e is a positive integer.
The theorem is obviously true when a = 1, so we may take a > 1. The period
can be of length m if and only if each possible integer 0 < z < m occurs in
the period, since no value occurs in the period more than once. Therefore the
period is of length m if and only if the period of the sequence with Xy = 0 is of
length m, and we are justified in supposing that Xy = 0. By formula 3.2.1—(6)
we have

"—1
Xn = <a 7)c mod m. (5)

If ¢ is not relatively prime to m, this value X, could never be equal to 1, so
condition (i) of the theorem is necessary. The period has length m if and only

3.2.1.2 CHOICE OF MULTIPLIER 19

if the smallest positive value of n for which X, = Xo = 0is n =m. By (5) and
condition (i), our theorem now reduces to proving the following fact:

Lemma R. Assume that 1 < a < p®, where p is prime. If A is the smallest
positive integer for which (a* —1)/(a — 1) = 0 (modulo p*), then
a = 1 (modulo p) when p > 2,

=p° if and only if
A=p I and only 1 {azl(modulo4) when p=2.

Proof. Assume that A = p®. If a # 1 (modulo p), then (a” —1)/(a —1) =0
(modulo p¢) if and only if a™ — 1 = 0 (modulo p°®). The condition a?® —1 =0
(modulo p®) then implies that a?® = 1 (modulo p); but by Theorem 1.2.4F we
have aP® = a (modulo p), hence a # 1 (modulo p) leads to a contradiction. And
if p = 2 and a = 3 (modulo 4), we have

(a® =1)/(a—1) =0 (modulo 2¢)

by exercise 8. These arguments show that it is necessary in general to have
a =1+ gpf, where pf > 2 and ¢ is not a multiple of p, whenever \ = p®.

It remains to be shown that this condition is sufficient to make A = p°. By
repeated application of Lemma P, we find that

a”’ =1 (modulo p/*9), a?’ # 1 (modulo pf*9+1),
for all g > 0, and therefore
1)/(a — 1) = 0 (modulo p9),
1)/(a — 1) # 0 (modulo p9*1).
)

(a”
Ca
In particular, (a?"—1)/(a — 1) = 0 (modulo p¢). Now the congruential sequence
(0,a,1,p%) has X,, = (a™ —1)/(a—1) mod p®; therefore it has a period of length A,
that is, X, = 0 if and only if n is a multiple of A. Hence p® is a multiple of .

This can happen only if A = p9 for some g, and the relations in (6) imply that
A = p®, completing the proof. | :

(6)

The proof of Theorem A is now complete. |

We will conclude this section by considering the special case of pure mul-
tiplicative generators, when ¢ = 0. Although the random number generation
process is slightly faster in this case, Theorem A shows us that the maximum
period length cannot be achieved. In fact, this is quite obvious, since the sequence
now satisfies the relation

Xn+1 = aX, modm, (7)

and the value X,, = 0 should never appear, lest the sequence degenerate to zero.
In general, if d is any divisor of m and if X, is a multiple of d, all succeeding
elements X, 11, X2, ... of the multiplicative sequence will be multiples of d.
So when ¢ = 0, we will want X,, to be relatively prime to m for all n, and this
limits the length of the period to at most ¢(m), the number of integers between
0 and m that are relatively prime to m.

20 RANDOM NUMBERS 3.2.1.2

It may be possible to achieve an acceptably long period even if we stipulate
that ¢ = 0. Let us now try to find conditions on the multiplier so that the period
is as long as possible in this special case.

According to Lemma Q, the period of the sequence depends entirely on the
periods of the sequences when m = p°, so let us consider that situation. We
have X,, = a® X, mod p®, and it is clear that the period will be of length 1 if a is
a multiple of p, so we take a to be relatively prime to p. Then the period is the
smallest integer A such that X, = a™ X mod p¢. If the greatest common divisor
of Xo and p¢ is pf, this condition is equivalent to

a* =1 (modulo p*~). (8)

By Euler’s theorem (exercise 1.2.4-28), a?®) =1 (modulo p*~f); hence X is
a divisor of

o) =" p-1).
When a is relatively prime to m, the smallest integer A for which ad =1
(modulo m) is conventionally called the order of a modulo m. Any such value
of @ that has the mazimum possible order modulo m is called a primitive element
modulo m.

Let A(m) denote the order of a primitive element, namely the maximum
possible order, modulo m. The remarks above show that A(p®) is a divisor of
p*1(p — 1); with a little care (see exercises 11 through 16 below) we can give
the precise value of A(m) in all cases as follows:

A2) =1, AM4)=2 A2)=27% if e>3;
Ape)=p"p-1), if p>2 (9)
Ap ... pt) = lem(A(PT), - MBEY))-
Our remarks may be summarized in the following theorem:
Theorem B. [C. F. Gauss, Disquisitiones Arithmeticze (1801), §90-92.] The

maximum period possible when ¢ = 0 is A(m), where A\(m) is defined in (g).
This period is achieved if

i) Xy is relatively prime to m;

ii) a is a primitive element modulo m. 1|

Notice that we can obtain a period of length m — 1 if m is prime; this is just one
less than the maximum length, so for all practical purposes such a period is as
long as we want.

The question now is, how can we find primitive elements modulo m? The
exercises at the close of this section tell us that there is a fairly simple answer
when m is prime or a power of a prime, namely the results stated in our next
theorem.

Theorem C. The number a is a primitive element modulo p® if and only if one
of the following cases applies:

i) p=2,e=1, and a is odd;

3.2.1.2 CHOICE OF MULTIPLIER 21

i) p=2,e=2, and amod 4 = 3;

b v

p=2,e>4 and amod 8 = 3 or 5;

v) pisodd, e =1, a # 0 (modulo p), and a®1/9 £ 1 (modulo p) for any
prime divisor q of p — 1,

)

ili) p=2,e=3,andamod 8 =3, 5, or 7,
)
)

vi) p is odd, e > 1, a satisfies the conditions of (v), and a?~! # 1 (modulo p?).
1

Conditions (v) and (vi) of this theorem are readily tested on a computer for
large values of p, by using the efficient methods for evaluating powers discussed
in Section 4.6.3, if we know the factors of p — 1.

Theorem C applies to powers of primes only. But if we are given values a;
that are primitive modulo p;j , it is possible to find a single value a such that
a = a; (modulo p;j), for 1 < j < t, using the Chinese remainder algorithm
discussed in Section 4.3.2; this number a will be a primitive element modulo
p7t...p;t. Hence there is a reasonably efficient way to construct multipliers
satisfying the condition of Theorem B, for any modulus m of moderate size,
although the calculations can be somewhat lengthy in the general case.

In the common case m = 2¢, with e > 4, the conditions above simplify to
the single requirement that a = 3 or 5 (modulo 8). In this case, one-fourth of all
possible multipliers will make the period length equal to m/4, and m/4 is the
maximum possible when ¢ = 0.

The second most common case is when m = 10°. Using Lemmas P and Q, it
is not difficult to obtain necessary and sufficient conditions for the achievement
of the maximum period in the case of a decimal computer (see exercise 18):

Theorem D. Ifm = 10°% e > 5, ¢ = 0, and X is not a multiple of 2 or 5, the
period of the linear congruential sequence is 5 x 10°~2 if and only if @ mod 200
equals one of the following 32 values:

3,11, 13, 19, 21, 27, 29, 37, 53, 59, 61, 67, 69, 77, 83, 91, 109, 117,)
193, 131, 133, 139, 141, 147, 163, 171, 173, 179, 181, 187, 189, 197, J *°

EXERCISES

1. [10] What is the length of the period of the linear congruential sequence with
Xo = 5772156648, a = 3141592621, ¢ = 2718281829, and m = 100000000007

2. [10] Are the following two conditions sufficient to guarantee the maximum length
period, when m is a power of 27 “(i) c is odd; (ii) amod 4 = 1.”

3. [18] Suppose that m = 10°, where e > 2, and suppose further that ¢ is odd and
not a multiple of 5. Show that the linear congruential sequence will have the maximum
length period if and only if ¢ mod 20 = 1.

4. [M20] Assume that m = 2° and Xo = 0. If the numbers a and c satisfy the
conditions of Theorem A, what is the value of X,e-17

5. [14] Find all multipliers a that satisfy the conditions of Theorem A when m =
2%% + 1. (The prime factors of m may be found in Table 3.2.1.1-1.)

22 RANDOM NUMBERS 3.2.1.2

» 6. [20] Find all multipliers a that satisfy the conditions of Theorem A when m =
10% — 1. (See Table 3.2.1.1-1.)

» 7. [M23] The period of a congruential sequence need not start with Xo, but we can
always find indices p > 0 and A > 0 such that X, = X, whenever n > p, and for
which p and X are the smallest possible values with this property. (See exercises 3.1-6
and 3.2.1-1.) If u; and \; are the indices corresponding to the sequences

(Xo mod p;’, amod p;’, cmod p’, p;’),

and if g and X correspond to the composite sequence (Xo,a,c,py* ... p;*), Lemma Q
states that) is the least common multiple of A1,...,\;. What is the value of p in
terms of the values of p1, ..., 7 What is the maximum possible value of p obtainable
by varying Xo, a, and ¢, when m = pi*...p" is fixed?

8. [M20] Show that if a mod 4 = 3, we have (aze_1 —1)/(a — 1) = 0 (modulo 2°)
when e > 1. (Use Lemma P.)

» 9. [M22] (W.E. Thomson.) When ¢ = 0 and m = 2° > 16, Theorems B and C say
that the period has length 2°72 if and only if the multiplier a satisfies a mod 8 = 3
or amod 8 = 5. Show that every such sequence is essentially a linear congruential
sequence with m = 2°7%, having full period, in the following sense:

a) If X,y1 = (4c + 1) X, mod 2°, and X, = 4Y, + 1, then
Yni1 = ((4c+ 1)V, + ¢) mod 2°72.

b) If X1 = (4c — 1)Xn mod 2°, and X, = ((—=1)"(4Ys + 1)) mod 2°, then
Y1 = ((1 — 4¢)Yn — ¢) mod 2°72.

[Note: In these formulas, c is an odd integer. The literature contains several
statements to the effect that sequences with ¢ = 0 satisfying Theorem B are somehow
more random than sequences satisfying Theorem A, in spite of the fact that the period is
only one-fourth as long in the case of Theorem B. This exercise refutes such statements;
in essence, we must give up two bits of the word length in order to save the addition
of ¢, when m is a power of 2.]

10. [M21] For what values of m is A(m) = p(m)?

» 11. [M28] Let z be an odd integer greater than 1. (a) Show that there exists a unique
integer f > 1 such that z = 2/ £ 1 (modulo 2/%1). (b) Given that 1 < z < 2°—1 and
that f is the corresponding integer from part (a), show that the order of z modulo 2°
is 277, (c) In particular, this proves parts (i)-(iv) of Theorem C.

12. [M26] Let p be an odd prime. If e > 1, prove that a is a primitive element
modulo p¢ if and only if a is a primitive element modulo p and aP~! # 1 (modulo p?).
(For the purposes of this exercise, assume that A(p®) = p®~!(p—1). This fact is proved
in exercises 14 and 16 below.)

13. [M22] Let p be prime. Given that a is not a primitive element modulo p, show
that either a is a multiple of p or a®1/9 = 1 (modulo p) for some prime number g
that divides p — 1.

14. [M18] If e > 1 and p is an odd prime, and if a is a primitive element modulo p,
prove that either a or a + p is a primitive element modulo p°. [Hint: See exercise 12/]

3.2.1.3 POTENCY 23

15. [M29] (a) Let a1 and a2 be relatively prime to m, and let their orders modulo m
be A1 and)z, respectively. If A is the least common multiple of A\; and Az, prove that
aFla5? has order A modulo m, for suitable integers x1 and k2. [Hint: Consider first
the case that A; is relatively prime to Az.] (b) Let A(m) be the maximum order of
any element modulo m. Prove that A(m) is a multiple of the order of each element
modulo m; that is, prove that a*™ = 1 (modulo m) whenever a is relatively prime
to m. (Do not use Theorem B.)

16. [M24] (Ewistence of primitive roots.) Let p be a prime number.
a) Consider the polynomial f(x) = 2™ +c12™ 4 -+ cn, where the c's are integers.
Given that a is an integer for which f(a) = 0 (modulo p), show that there exists
a polynomial
gz) ="+ quz" i+ 4 gnt

with integer coefficients such that f(z) = (z —a)q(z) (modulo p) for all integers z.
b) Let f(z) be a polynomial as in (a). Show that f(z) has at most n distinct “roots”
modulo p; that is, there are at most n integers a, with 0 < a < p, such that
f(a) = 0 (modulo p).
c) Because of exercise 15(b), the polynomial f(z) = 2*(®) —1 has p—1 distinct roots;
hence there is an integer a with order p — 1.

17. [M26] Not all of the values listed in Theorem D would be found by the text’s
construction; for example, 11 is not primitive modulo 5°. How can this be possible,
when 11 is primitive modulo 10°, according to Theorem D? Which of the values listed
in Theorem D are primitive elements modulo both 2° and 5°7

18. [M25] Prove Theorem D. (See the previous exercise.)

19. [40] Make a table of some suitable multipliers, a, for each of the values of m listed
in Table 3.2.1.1-1, assuming that ¢ = 0.

20. [M24] (G. Marsaglia.) The purpose of this exercise is to study the period length
of an arbitrary linear congruential sequence. Let Y, = 14+ a + --- 4+ a™ !, so that
Xrn = (AY, + Xo) mod m for some constant A by Eq. 3.2.1-(8).

a) Prove that the period length of (X,) is the period length of (Y, mod m'), where
m' = m/gcd(4,m).

b) Prove that the period length of (Y, mod p°®) satisfies the following when p is prime:
(i) f amodp = 0, it is 1. (ii) If amod p = 1, it is p°, except when p = 2 and
e>2and amod4 = 3. (iii) If p = 2, e > 2, and amod 4 = 3, it is twice the order
of a modulo p® (see exercise 11), unless a = —1 (modulo 2°) when it is 2. (iv) If
amod p > 1, it is the order of a modulo p°.

21. [M25] In a linear congruential sequence of maximum period, let Xo = 0 and let s
be the least positive integer such that a® =1 (modulo m). Prove that ged(X,,m) = s.

22. [M25] Discuss the problem of finding moduli m = b* £4' £ 1 so that the subtract-
with-borrow and add-with-carry generators of exercise 3.2.1.1-14 will have very long
periods.

3.2.1.3. Potency. In the preceding section, we showed that the maximum
period can be obtained when b = a — 1 is a multiple of each prime dividing m;
and b must also be a multiple of 4 if m is a multiple of 4. If z is the radix of
the machine being used —so that 2z = 2 for a binary computer, and z = 10 for a

24 RANDOM NUMBERS 3.2.1.3

decimal computer —and if m is the word size z°, the multiplier
a=z"F+1, 2<k<e (1)

satisfies these conditions. Theorem 3.2.1.2A also says that we may take ¢ = 1.
The recurrence relation now has the form

X1 = ((zF +1)X, +1) mod 2°, (2)

and this equation suggests that we can avoid the multiplication; merely shifting
and adding will suffice.
For example, suppose we choose a = B2+ 1, where B is the byte size of MIX.
The code
LDA X; SLA 2; ADD X; INCA 1 (3)

can be used in place of the instructions given in Section 3.2.1.1, and the execution
time decreases from 16u to 7u.

For this reason, multipliers having form (1) have been widely discussed in the
literature, and indeed they have been recommended by many authors. However,
the early years of experimentation with this method showed conclusively that
multipliers having the simple form in (1) should be avoided. The generated
numbers just aren’t random enough.

Later in this chapter we shall be discussing some rather sophisticated theory
that accounts for the badness of all the linear congruential random number gen-
erators known to be bad. However, some generators (such as (2)) are sufficiently
awful that a comparatively simple theory can be used to rule them out. This
simple theory is related to the concept of “potency,” which we shall now discuss.

The potency of a linear congruential sequence with maximum period is
defined to be the least integer s such that

b° =0 (modulo m). (4)

(Such an integer s will always exist when the multiplier satisfies the conditions
of Theorem 3.2.1.2A, since b is a multiple of every prime dividing m.)

We may analyze the randomness of the sequence by taking Xy = 0, since 0
occurs somewhere in the period. With this assumption, Eq. 3.2.1-(6) reduces to

X, = ((a™ — 1)¢/b) mod m;
and if we expand a™ — 1 = (b+ 1)" — 1 by the binomial theorem, we find that

anc(n+(727’)b+...+(7:)bs‘l) mod m. (5)

All terms in b°, b°T!, etc., may be ignored, since they are multiples of m.
Equation (5) can be instructive, so we shall consider some special cases.
If a = 1, the potency is 1; and X, = cn (modulo m), as we have already
observed, so the sequence is surely not random. If the potency is 2, we have
Xp=cn+cb (’2‘), and again the sequence is not very random; indeed,

Xpr1—Xn=c+chn

3.2.1.3 POTENCY 25

in this case, so the differences between consecutively generated numbers change
in a simple way from one value of n to the next. The point (Xn, Xnt1, Xn42)
always lies on one of the four planes

x—2y+z2=d+m, x—2y+z=d-—m,
x—2y+z=d, z—2y+z=d-—2m,

in three-dimensional space, where d = cb mod m.

If the potency is 3, the sequence begins to look somewhat more random,
but there is a high degree of dependency between X,, X,.1, and X, ,o; tests
show that sequences with potency 3 are still not sufficiently good. Reasonable
results have been reported when the potency is 4 or more, but they have been
disputed by other people. A potency of at least 5 would seem to be required for
sufficiently random values.

Suppose, for example, that m = 23° and a = 2¥ + 1. Then b = 2%, so
we find that the value b2 = 2%* is a multiple of m when k& > 18: The potency
is 2. If k = 17,16,...,12, the potency is 3, and a potency of 4 is achieved for
k = 11,10,9. The only acceptable multipliers, from the standpoint of potency,
therefore have £ < 8. This means a < 257, and we shall see later that small
multipliers are also to be avoided. We have now eliminated all multipliers of the
form 2% + 1 when m = 235,

When m is equal to w &+ 1, where w is the word size, m is generally not
divisible by high powers of primes, and a high potency is impossible (see exer-
cise 6). So in this case, the maximum-period method should not be used; the
pure-multiplication method with ¢ = 0 should be applied instead.

It must be emphasized that high potency is necessary but not sufficient
for randomness; we use the concept of potency only to reject impotent genera-
tors, not to accept the potent ones. Linear congruential sequences should pass
the “spectral test” discussed in Section 3.3.4 before they are considered to be
acceptably random.

EXERCISES

1. [M10] Show that, no matter what the byte size B of MIX happens to be, the code
(3) yields a random number generator of maximum period.

2. [10] What is the potency of the generator represented by the MIX code (3)?

3. [11] When m = 2°°, what is the potency of the linear congruential sequence with
a = 31415926217 What is the potency if the multiplier is a = 223 4+ 213 + 22 + 17

4. [15] Show that if m = 2° > 8, maximum potency is achieved when a mod 8 = 5.

5. [M20] Given that m = pi*...p{* and a =1 + kpft...pft, where a satisfies the
conditions of Theorem 3.2.1.2A and k is relatively prime to m, show that the potency

is max({e1/fil,..., [e:/ f:])-

6. [20] Which of the values of m = w £ 1 in Table 3.2.1.1-1 can be used in a linear
congruential sequence of maximum period whose potency is 4 or more? (Use the result
of exercise 5.)

26 RANDOM NUMBERS 3.2.1.3

7. [M20] When a satisfies the conditions of Theorem 3.2.1.2A, it is relatively prime
to m; hence there is a number a’ such that aa’ = 1 (modulo m). Show that a’ can be
expressed simply in terms of b.

8. [M26] A random number generator defined by Xn41 = (2'" + 3)X,, mod 2% and
Xo = 1 was subjected to the following test: Let Y, = [10X,./2° |; then Y, should be a
random digit between 0 and 9, and the triples (Y3n, Yan+1, Y3n+2) should take on each
of the 1000 possible values from (0, 0, 0) to (9, 9, 9) with nearly equal frequency. But
with 30000 values of n tested, some triples hardly ever occurred, and others occurred
much more often than they should have. Can you account for this failure?

3.2.2. Other Methods

Of course, linear congruential sequences are not the only sources of random num-
bers that have been proposed for computer use. In this section we shall review
the most significant alternatives. Some of these methods are quite important,
while others are interesting chiefly because they are not as good as a person
might expect.

One of the common fallacies encountered in connection with random number
generation is the idea that we can take a good generator and modify it a little, in
order to get an “even more random” sequence. This is often false. For example,
we know that

Xny1 = (X, + c)modm (1)

leads to reasonably good random numbers; wouldn’t the sequence produced by
Xny1 = ((aXn) mod (m + 1) + ¢) mod m (2)

be even more random? The answer is, the new sequence is probably a great deal
less random. For the whole theory breaks down, and in the absence of any theory
about the behavior of the sequence (2), we come into the area of generators of
the type X,+1 = f(X,) with the function f chosen at random; exercises 3.1-11
through 3.1-15 show that these sequences probably behave much more poorly
than the sequences obtained from the more disciplined function (1).

Let us consider another approach, in an attempt to obtain a genuine im-
provement of sequence (1). The linear congruential method can be generalized
to, say, a quadratic congruential method:

Xpt1 = (dX2 + aX,, + c) mod m. (3)

Exercise 8 generalizes Theorem 3.2.1.2A to obtain necessary and sufficient con-
ditions on a, ¢, and d such that the sequence defined by (3) has a period of the
maximum length m; the restrictions are not much more severe than in the linear
method.

An interesting quadratic method has been proposed by R. R. Coveyou when
m is a power of two: Let

Xomod4 =2, Xny1 = Xn(Xn + 1) mod 2°, n > 0. (4)

This sequence can be computed with about the same efficiency as (1), without
any worries of overflow. It has an interesting connection with von Neumann'’s

3.2.2 OTHER METHODS 27

original middle-square method: If we let Y, be 2°X,, so that ¥, is a double-
precision number obtained by placing e zeros to the right of the binary represen-
tation of X,, then Y, consists of precisely the middle 2e digits of Y2 + 2¢Y,!
In other words, Coveyou’s method is almost identical to a somewhat degenerate
double-precision middle-square method, yet it is guaranteed to have a long
period; further evidence of its randomness is proved in Coveyou'’s paper cited
in the answer to exercise 8.

Other generalizations of Eq. (1) also suggest themselves; for example, we
might try to extend the period length of the sequence. The period of a linear
congruential sequence is fairly long; when m is approximately the word size of
the computer, we usually get periods on the order of 10° or more, and typical
calculations will use only a very small portion of the sequence. On the other hand,
when we discuss the idea of “accuracy” in Section 3.3.4 we will see that the period
length influences the degree of randomness achievable in a sequence. Therefore it
can be desirable to seek a longer period, and several methods are available for this
purpose. One technique is to make X,,.; depend on both X,, and X,,_,, instead
of just on X,; then the period length can be as high as m?, since the sequence will
not begin to repeat until we have (X, 12, Xn+ar+1) = (Xn, Xn+1). John Mauchly,
in an unpublished paper presented to a statistics conference in 1949, extended
the middle square method by using the recurrence X,, = middle (X,,_; - Xn_s).

The simplest sequence in which X, .+; depends on more than one of the
preceding values is the Fibonacci sequence,

Xn+1 = (Xn + Xn__]_) mod m. (5)

This generator was considered in the early 1950s, and it usually gives a period
length greater than m. But tests have shown that the numbers produced by
the Fibonacci recurrence are definitely not satisfactorily random, and so our
main interest in (5) as a source of random numbers is that it makes a nice “bad
example.” We may also consider generators of the form

Xn.+_]_ = (Xn + Xn—k) mod m, (6)

when k is a comparatively large value. This recurrence was introduced by Green,
Smith, and Klem [JACM 6 (1959), 527-537], who reported that, when k < 15,
the sequence fails to pass the “gap test” described in Section 3.3.2, although
when k£ = 16 the test was satisfactory. '

A much better type of additive generator was devised in 1958 by G. J.
Mitchell and D. P. Moore [unpublished|, who suggested the somewhat unusual
sequence defined by

Xn = (Xn—24 + Xn—55) mod m, n Z 557 (7)

where m is even, and where Xy, ..., X54 are arbitrary integers not all even. The
constants 24 and 55 in this definition were not chosen at random; they are special
values that happen to define a sequence whose least significant bits, (X, mod 2),
will have a period of length 2°° — 1. Therefore the sequence (X,) must have

28 RANDOM NUMBERS 3.2.2

a period at least this long. Exercise 30 proves that (7) has a period of length
exactly 2°71(2° — 1) when m = 2°.

At first glance Eq. (7) may not seem to be extremely well suited to machine
implementation, but in fact there is a very efficient way to generate the sequence
using a cyclic list:

Algorithm A (Additive number generator). Memory cells Y[1], Y[2], ..., Y[55]
are initially set to the values Xs4, Xs3, ..., Xo, respectively; j is initially equal
to 24 and k is 55. Successive performances of this algorithm will produce the
numbers X555, X56, . . . as output.

A1.[Add.] (If we are about to output X, at this point, Y[j] now equals Xn_24
and Y[k] equals X,,_s5.) Set Y[k] + (Y [k]+Y[]) mod 2°, and output Y'[k].

A2. [Advance.] Decrease j and k by 1. If now j = 0, set j < 55; otherwise if
k=0,set k<< 55 1

This algorithm in MIX is simply the following:

Program A (Additive number generator). Assuming that index registers 5
and 6, representing j and k, are not touched by the remainder of the program in
which this routine is embedded, the following code performs Algorithm A and
leaves the result in register A.

LDA Y,6 Al. Add.
ADD Y,5 Yi +Y; (overflow possible)

STA Y,6 — Y.

DEC5 1 A2. Advance. j + 7 — 1.
DEC6 1 k+—k—1.

JEP k+2

ENTS 55 If j =0, set j « 55.

J6P k+2

ENT6 55 Ifk=0,set k<55 |

This generator is usually faster than the other methods we have been dis-
cussing, since it does not require any multiplication. Besides its speed, it has
the longest period we have seen yet, except in exercise 3.2.1.2-22. Furthermore,
as Richard Brent has observed, it can be made to work correctly with floating
point numbers, avoiding the need to convert between integers and fractions (see
exercise 23). Therefore it may well prove to be the very best source of random
numbers for practical purposes. The main reason it is difficult to recommend
sequences like (7) wholeheartedly is that there is still very little theory to prove
that they do or do not have desirable randomness properties; essentially all
we know for sure is that the period is very long, and this is not enough. John
Reiser (Ph.D. thesis, Stanford Univ., 1977) has shown, however, that an additive
sequence like (7) will be well distributed in high dimensions, provided that a
certain plausible conjecture is true (see exercise 26).

The numbers 24 and 55 in (7) are commonly called lags, and the numbers
X, defined by (7) are said to form a lagged Fibonacci sequence. Lags like
(24, 55) work well because of theoretical results developed in some of the exercises

3.2.2 OTHER METHODS 29

Table 1
LAGS THAT YIELD LONG PERIODS MOD 2

(24,55) (37,100) (83,258) (273,607) (576,3217) (7083, 19937)
(38,89) (30,127) (107,378) (1029,2281) (4187,9689) (9739,23209)

For extensions of this table, see N. Zierler and J. Brillhart, Information and Control 13 (1968),
541-554, 14 (1969), 566-569, 15 (1969), 67—69; Y. Kurita and M. Matsumoto, Math. Comp.
56 (1991), 817-821; Heringa, Blote, and Compagner, Int. J. Mod. Phys. C3 (1992), 561-564.

below. It is of course better to use somewhat larger lags when an application
happens to use, say, groups of 55 values at a time; the numbers generated by (7)
will never have X, lying strictly between X,_24 and X, _55 (see exercise 2).
J.-M. Normand, H. J. Herrmann, and M. Hajjar detected slight biases in the
numbers generated by (7) when they did extensive high-precision Monte Carlo
studies requiring 10'! random numbers [J. Statistical Physics 52 (1988), 441-
446]; but larger values of k decreased the bad effects. Table 1 lists several useful
pairs (I,k) for which the sequence X, = (X,—i + X,—r) mod 2° has period
length 2°71(2% — 1). The case (I,k) = (30,127) should be large enough for
most applications, especially in combination with other randomness-enhancing
techniques that we will discuss later.

George Marsaglia [Comp. Sci. and Statistics: Symposium on the Interface
16 (1984), 3-10] has suggested replacing (7) by

Xn = (Xn—24 . Xn—55) mod m, n Z 55, (7,)

where m is a multiple of 4 and where Xy through X554 are odd, not all congruent
to 1 (modulo 4). Then the second-least significant bits have a period of 2%° — 1,
while the most significant bits are more thoroughly mixed than before since they
depend on all bits of X,,_24 and X, _s55 in an essential way. Exercise 31 shows
that the period length of sequence (7') is only slightly less than that of (7).

Lagged Fibonacci generators have been used successfully in many situations
since 1958, so it came as shock to discover in the 1990s that they actually fail
an extremely simple, non-contrived test for randomness (see exercise 3.3.2-31).
A workaround that avoids such problems by discarding appropriate elements of
the sequence is described near the end of this section.

Instead of considering purely additive or purely multiplicative sequences,
we can construct useful random number generators by taking general linear
combinations of X,,_1, ..., Xn—x for small k. In this case the best results
occur when the modulus m is a large prime; for example, m can be chosen to be
the largest prime number that fits in a single computer word (see Table 4.5.4-2).
When m = p is prime, the theory of finite fields tells us that it is possible to find
multipliers ay, ..., ax such that the sequence defined by

Xn= (aan—l + aan—k) mOdp (8)

has period length p* — 1; here Xy, ..., Xx_; may be chosen arbitrarily but not
all zero. (The special case k = 1 corresponds to a multiplicative congruential se-
quence with prime modulus, with which we are already familiar.) The constants

30 RANDOM NUMBERS 3.2.2

ai,...,ak in (8) have the desired property if and only if the polynomial
flz)=2* —az" 1 —- —ay (9)

is a “primitive polynomial modulo p,” that is, if and only if this polynomial
has a root that is a primitive element of the field with p* elements (see exercise
4.6.2-16).)

Of course, the mere fact that suitable constants ay, ..., ax exist giving a
period of length p* — 1 is not enough for practical purposes; we must be able to
find them, and we can’t simply try all p* possibilities, since p is on the order
of the computer’s word size. Fortunately there are exactly ¢(p* — 1)/k suitable
choices of (ay, ..., ax), so there is a fairly good chance of hitting one after making
a few random tries. But we also need a way to tell quickly whether or not (9)
is a primitive polynomial modulo p; it is certainly unthinkable to generate up to
p* — 1 elements of the sequence and wait for a repetition! Methods of testing
for primitivity modulo p are discussed by Alanen and Knuth in Sankhya A26
(1964), 305-328. The following criteria can be used: Let r = (p* — 1)/(p — 1).

i) (—=1)*"lax must be a primitive root modulo p. (See Section 3.2.1.2.)
ii) The polynomial " must be congruent to (—1)*~!az, modulo f(z) and p.
iii) The degree of 7/ mod f(z), using polynomial arithmetic modulo p, must
be positive, for each prime divisor q of r.

Efficient ways to compute the polynomial z™ mod f(z), using polynomial
arithmetic modulo a given prime p, are discussed in Section 4.6.2.

In order to carry out this test, we need to know the prime factorization of
r = (pF —1)/(p — 1), and this is the limiting factor in the calculation; r can
be factored in a reasonable amount of time when k£ = 2, 3, and perhaps 4, but
higher values of k are difficult to handle when p is large. Even k = 2 essentially
doubles the number of “significant random digits” over what is achievable with

=1, so larger values of k will rarely be necessary.

An adaptation of the spectral test (Section 3.3.4) can be used to rate the
sequence of numbers generated by (8); see exercise 3.3.4-24. The considerations
of that section show that we should not make the obvious choice of a; = +1 or
—1 when a primitive polynomial of that form exists; it is better to pick large,
essentially “random” values of ai, ..., ax that satisfy the conditions, and to verify
the choice by applying the spectral test. A significant amount of computation
is involved in finding a4, ..., ak, but all known evidence indicates that the result
will be a very satisfactory source of random numbers. We essentially achieve the
randomness of a linear congruential generator with k-tuple precision, using only
single precision operations.

The special case p = 2 is of independent interest. Sometimes a random
number generator is desired that merely produces a random sequence of bits—
zeros and ones — instead of fractions between zero and one. There is a simple way
to generate a highly random bit sequence on a binary computer, manipulating
k-bit words: Start with an arbitrary nonzero binary word X. To get the next
random bit of the sequence, do the following operations, shown in MIX’s language

3.2.2 OTHER METHODS 31

(see exercise 16):

LDA X (Assume that overflow is now “off.”)
ADD X Shift left one bit.

JNOV *+2 Jump if the high bit was originally zero. (10)
XOR A Otherwise adjust the number with “exclusive or.”
STA X I

The fourth instruction here is the “exclusive or” operation found on nearly all
binary computers (see exercise 2.5-28 and Section 7.1); it changes each bit
position of rA in which location A has a “1” bit. The value in location A is
the binary constant (aj...ag)2, where k¢ —a;zF~! — ... — q; is a primitive
polynomial modulo 2 as above. After the code (10) has been executed, the next
bit of the generated sequence may be taken as the least significant bit of word X.
Alternatively, we could consistently use the most significant bit of X, if the most

significant bit is more convenient.

1011
0101
1010
0111
1110
1111
1101
1001
0001
0010
0100

(1)8(1)(1) Fig. 1. Successive contents of the computer word X in the binary

0110 method, assuming that £ = 4 and CONTENTS (A) = (0011)s,.

1100
1011

For example, consider Fig. 1, which illustrates the sequence generated for
k = 4 and CONTENTS(A) = (0011)s. This is, of course, an unusually small value
for k. The right-hand column shows the sequence of bits of the sequence, namely
1101011110001001.. ., repeating in a period of length 2¥ —1 = 15. This sequence
is quite random, considering that it was generated with only four bits of memory;
to see this, consider the adjacent sets of four bits occurring in the period, namely
1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000, 0001, 0010, 0100, 1001,
0011, 0110. In general, every possible adjacent set of k bits occurs exactly once
in the period, except the set of all zeros, since the period length is 2% — 1; thus,
adjacent sets of k bits are essentially independent. We shall see in Section 3.5
that this is a very strong criterion for randomness when k is, say, 30 or more.
Theoretical results illustrating the randomness of this sequence are given in an
article by R. C. Tausworthe, Math. Comp. 19 (1965), 201-209.

Primitive polynomials modulo 2 of degree < 168 have been tabulated by
W. Stahnke, Math. Comp. 27 (1973), 977-980. When k = 35, we may take

CONTENTS (A) = (00000000000000000000000000000000101)3,

but the considerations of exercises 18 and 3.3.4-24 imply that it would be better
to find “random” constants that define primitive polynomials modulo 2.

32 RANDOM NUMBERS 3.2.2

Caution: Several people have been trapped into believing that this random
bit-generation technique can be used to generate random whole-word fractions
(XoX1...Xk—1)2, (XeXgs1...-Xok—1)2, ---; but it is actually a poor source
of random fractions, even though the bits are individually quite random. Exer-
cise 18 explains why.

Mitchell and Moore’s additive generator (7) is essentially based on the
concept of primitive polynomials: The polynomial z% 4+ 224 4 1 is primitive,
and Table 1 is essentially a listing of certain primitive trinomials modulo 2.
A generator almost identical to that of Mitchell and Moore was independently
discovered in 1971 by T. G. Lewis and W. H. Payne [JACM 20 (1973), 456-468],
but using “exclusive or” instead of addition; this makes the period length exactly
255 _ 1. Each bit position in the sequence of Lewis and Payne runs through the
same periodic sequence, but has its own starting point. Experience has shown
that (7) gives better results.

We have now seen that sequences with 0 < X, < m and period mk — 1
can be constructed without great difficulty, when X, is a suitable function of
Xn_1,-..,Xn_r and when m is prime. The highest conceivable period for any
sequence defined by a relation of the form

Xn:f(Xn—l,-'-,Xn—k), OSXTL <m, (11)

is easily seen to be m*. M. H. Martin [Bull. Amer. Math. Soc. 40 (1934), 859-
864] was the first person to show that functions achieving this maximum period
are possible for all m and k. His method is easy to state (exercise 17) and
reasonably efficient to program (exercise 29), but it is unsuitable for random
number generation because it changes the value of X,y + --- + X, _§ very
slowly: All k-tuples occur, but not in a very random order. A better class of
functions f that yield the maximum period m* is considered in exercise 21.
The corresponding programs are, in general, not as efficient for random number
generation as other methods we have described, but they do give demonstrable
randomness when the period as a whole is considered.

Many other schemes have been proposed for random number generation.
The most interesting of these alternative methods may well be the inversive
congruential sequences suggested by Eichenauer and Lehn [Statistische Hefte 27
(1986), 315-326):

Xpi1 = (aX; '+ c)modp. (12)

Here p is prime, X, ranges over the set {0,1,..., p — 1, oo}, and inverses are
defined by 07! = oo, co™! = 0, otherwise X7'X = 1 (modulo p). Since
0 is always followed by oo and then by c in this sequence, we could simply
define 0~! = 0 for purposes of implementation; but the theory is cleaner and
easier to develop when 07! = oo. Efficient algorithms suitable for hardware
implementation are available for computing X ™! modulo p; see, for example,
exercise 4.5.2-39. Unfortunately, however, this operation is not in the repertoire
of most computers. Exercise 35 shows that many choices of a and c¢ yield the
maximum period length p + 1. Exercise 37 demonstrates the most important

3.2.2 OTHER METHODS 33

property: Inversive congruential sequences are completely free of the lattice
structure that is characteristic of linear congruential sequences.

Another important class of techniques deals with the combination of random
number generators. There will always be people who feel that the linear con-
gruential methods, additive methods, etc., are all too simple to give sufficiently
random sequences; and it may never be possible to prove that their skepticism
is unjustified —indeed, they may be right —so it is pretty useless to argue the
point. There are reasonably efficient ways to combine two sequences into a third
one that should be haphazard enough to satisfy all but the most hardened skeptic.

Suppose we have two sequences Xy, X, ... and Yy, Y7, ... of random numbers
between 0 and m — 1, preferably generated by two unrelated methods. Then we
can, for example, use one random sequence to permute the elements of another,
as suggested by M. D. MacLaren and G. Marsaglia [JACM 12 (1965), 83-89;
see also Marsaglia and Bray, CACM 11 (1968), 757-759]:

Algorithmm M (Randomizing by shuffling). Given methods for generating two
sequences (X,) and (Y,), this algorithm will successively output the terms of
a “considerably more random” sequence. We use an auxiliary table V[0], V1],
..., V[k — 1], where k is some number chosen for convenience, usually in the
neighborhood of 100. Initially, the V-table is filled with the first & values of the
X-sequence.

Ma1. [Generate X,Y.] Set X and Y equal to the next members of the sequences
X,) and (Y,), respectively.

{
M2. [Extract j.] Set j + |kY/m]|, where m is the modulus used in the sequence
(Y,); that is, 7 is a random value, 0 < j < k, determined by Y.

Ma3. [Exchange.] Output V[j] and then set V[j] «+ X. |

As an example, assume that Algorithm M is applied to the following two
sequences, with k = 64:

Xo = 5772156649, X,41 = (3141592653X,, + 2718281829) mod 2°°:

{1
Yy = 1781072418, Y1 = (2718281829Y,, + 3141592653) mod 23°. (13)

On intuitive grounds it appears safe to predict that the sequence obtained by
applying Algorithm M to (13) will satisfy virtually anyone’s requirements for
randomness in a computer-generated sequence, because the relationship between
nearby terms of the output has been almost entirely obliterated. Furthermore,
the time required to generate this sequence is only slightly more than twice as
long as it takes to generate the sequence (X,) alone.

Exercise 15 proves that the period length of Algorithm M’s output will be the
least common multiple of the period lengths of (X,,) and (Y},), in most situations
of practical interest. In particular, if we reject the value 0 when it occurs in the
Y-sequence, so that (Y;,) has period length 23° — 1, the numbers generated by
Algorithm M from (12) will have a period of length 270 — 235, [See J. Arthur
Greenwood, Comp. Sci. and Statistics: Symp. on the Interface 9 (1976), 222.]

34 RANDOM NUMBERS 3.2.2

However, there is an even better way to shuffle the elements of a sequence,
discovered by Carter Bays and S. D. Durham [ACM Trans. Math. Software 2
(1976), 59-64]. Their approach, although it appears to be superficially similar to
Algorithm M, can give surprisingly better performance even though it requires
only one input sequence (X,) instead of two:

Algorithm B (Randomizing by shuffling). Given a method for generating a
sequence {X,), this algorithm will successively output the terms of a “consider-
ably more random” sequence, using an auxiliary table V[0, V[1], ..., V[k — 1]
as in Algorithm M. Initially the V-table is filled with the first & values of the
X-sequence, and an auxiliary variable Y is set equal to the (k + 1)st value.

B1. [Extract j.] Set j « |kY/m], where m is the modulus used in the sequence
(X,); that is, j is a random value, 0 < j < k, determined by Y.

B2. [Exchange.] Set Y «+ V[j], output Y, and then set V'[5] to the next member
of the sequence (X,). |

The reader is urged to work exercises 3 and .5, in order to get a feeling for
the difference between Algorithms M and B.

On MIX we may implement Algorithm B by taking k equal to the byte size,
obtaining the following simple generation scheme once the initialization has been
done:

LD6 Y(1:1) j « high-order byte of Y.

LDA X rA « X,.

INCA 1 (see exercise 3.2.1.1-1)

MUL A rX Xn+1.

STX X “n—n+1." (14)
LbA V,6

STA Y Y « V[j].

STX V,6 V[j] < Xn. |

The output appears in register A. Notice that Algorithm B requires only
four instructions of overhead per generated number.

F. Gebhardt [Math. Comp. 21 (1967), 708-709] found that satisfactory
random sequences were produced by Algorithm M even when it was applied
to a sequence as nonrandom as the Fibonacci sequence, with X,, = F5, mod m
and Y,, = F5,+; mod m. However, it is also possible for Algorithm M to produce
a sequence less random than the original sequences, if (X,) and (Y,,) are strongly
related, as shown in exercise 3. Such problems do not seem to arise with
Algorithm B. Since Algorithm B won't make a sequence any less random,
and since it enhances the randomness with very little extra cost, it can be
recommended for use in combination with any other random number generator.

Shuffling methods have an inherent defect, however: They change only
the order of the generated numbers, not the numbers themselves. For most
purposes the order is the critical thing, but if a random number generator fails
the “birthday spacings” test discussed in Section 3.3.2 or the random-walk test of
exercise 3.3.2-31 it will not fare much better after it has been shuffled. Shuffling

3.2.2 OTHER METHODS 35

also has the comparative disadvantage that it does not allow us to start at a
given place in the period, or to skip quickly from X, to X, x for large k.

Many people have therefore suggested combining two sequences (X,) and
(Y,,) in a much simpler way, which avoids both of the defects of shuffling: We
can use a combination like

Zn =(Xn —Y,) modm (15)

when 0 < X,, <mand 0 <Y, <m’ <m. Exercises 13 and 14 discuss the period
length of such sequences; exercise 3.3.2-23 shows that (15) tends to enhance the
randomness when the seeds Xy and Y, are chosen independently.

An even simpler way to remove the structural biases of arithmetically gen-
erated numbers was proposed already in the early days of computing by J. Todd
and O. Taussky Todd [Symp. on Monte Carlo Methods (Wiley, 1956), 15-28]:
We can just throw away some numbers of the sequence. Their suggestion was of
little use with linear congruential generators, but it has become quite appropriate
nowadays in connection with generators like (7) that have extremely long periods,
because we have plenty of numbers to discard.

The simplest way to improve the randomness of (7) is to use only every jth
term, for some small j. But a better scheme, which may be even simpler, is to use
(7) to produce, say, 500 random numbers in an array and to use only the first 55 of
them. After those 55 have been consumed, we generate 500 more in the same way.
This idea was proposed by Martin Liischer [Computer Physics Communications
79 (1994), 100-110], motivated by the theory of chaos in dynamical systems: We
can regard (7) as a process that maps 55 values (X,—s5,..., Xn—1) into another
vector of 55 values (X, +1—55,..., Xnt+t—1). Suppose we generate ¢t > 55 values
and use the first 55 of them. Then if ¢ = 55 the new vector of values is rather close
to the old; but if ¢ & 500 there is almost no correlation between old and new (see
exercise 33). For the analogous case of add-with-carry or subtract-with-borrow
generators (exercise 3.2.1.1-14), the vectors are in fact known to be the radix-b
representation of numbers in a linear congruential generator, and the relevant
multiplier when we generate ¢t numbers at a time is b~*. Liischer’s theory for this
case can therefore be confirmed with the spectral test of Section 3.3.4. A portable
random number generator, based on a lagged Fibonacci sequence enhanced with
Lischer’s approach, appears in Section 3.6, together with further commentary.

Random number generators typically do only a few multiplications and/or
additions to get from one element of the sequence to the next. When such
generators are combined as suggested above, common sense tells us that the
resulting sequences ought to be indistinguishable from truly random numbers.
But intuitive hunches are no substitute for rigorous mathematical proof. If we are
willing to do more work—say 1000 or 1000000 times as much— we can obtain
sequences for which substantially better theoretical guarantees of randomness
are available.

For example, consider the sequence of bits B;, Bs, ... generated by

Xni1 = X2mod M, B, = X, mod 2, (16)

36 RANDOM NUMBERS 3.2.2

[Blum, Blum, and Shub, SICOMP 15 (1986), 364-383], or the more elaborate
sequence generated by

Xp11 = X2mod M, B, =X, -Zmod2, (17)

where the dot product of r-bit binary numbers (z,_1...Z)2 and (z,_1...20)2
is ,_12,—1 + - -+ + To2o; here Z is an r-bit “mask,” and r is the number of bits
in M. The modulus M should be the product of two large primes of the form
4k + 3, and the starting value X, should be relatively prime to M. Rule (17),
suggested by Leonid Levin, is a take-off on von Neumann'’s original middle-square
method; we will call it the muddle-square method, because it jumbles the bits of
the squares. Rule (16) is, of course, the special case Z = 1.

Section 3.5F contains a proof that, when Xy, Z, and M are chosen at
random, the sequences generated by (16) and (17) pass all statistical tests for
randomness that require no more work than factoring large numbers. In other
words, the bits cannot be distinguished from truly random numbers by any
computation lasting less than 100 years on today’s fastest computers, when M
is suitably large, unless it is possible to find the factors of a nontrivial fraction of
such numbers much more rapidly than is presently known. Formula (16) is
simpler than (17), but the modulus M in (16) has to be somewhat larger than
it does in (17) if we want to achieve the same statistical guarantees.

EXERCISES

1. [12] In practice, we form random numbers using X, 1 = (aX, +c¢) mod m, where
the X's are integers, afterwards treating them as the fractions U, = Xn/m. The
recurrence relation for U, is actually

Un+1 = (aUpn + ¢/m) mod 1.

Discuss the generation of random sequences using this relation directly, by making use
of floating point arithmetic on the computer.

2. [M20] A good source of random numbers will have X,_1 < Xn41 < Xn about
one-sixth of the time, since each of the six possible relative orders of X,_1, X,, and
Xn41 should be equally probable. However, show that the ordering above never occurs
if the Fibonacci sequence (5) is used.

3. [23] (a) What sequence comes from Algorithm M if
Xo=0, Xns1=(5Xn+3)mod8, Yo=0, Ynp1 = (5Ys+1)modS8,

and k = 4?7 (Note that the potency is two, so (X,) and (Y5) aren’t extremely random
to start with.) (b) What happens if Algorithm B is applied to this same sequence (X,)
with k = 47

4. [00] Why is the most significant byte used in the first line of program (14), instead
of some other byte?

5. [20] Discuss using X, = Y, in Algorithm M, in order to improve the speed of
generation. Is the result analogous to Algorithm B?

6. [10] In the binary method (10), the text states that the low-order bit of X is
random, if the code is performed repeatedly. Why isn’t the entire word X random?

3.2.2 OTHER METHODS 37

7. [20] Show that a complete sequence of length 2° (that is, a sequence in which
each of the 2° possible sets of e adjacent bits occurs just once in the period) may be
obtained if program (10) is changed to the following:

LbA X LDA A JNOV *+3 XOR A
JANZ *+2 ADD X JAZ 42 STA X |

8. [M39] Prove that the quadratic congruential sequence (3) has period length m if
and only if the following conditions are satisfied:

i) c is relatively prime to m;
ii) d and a — 1 are both multiples of p, for all odd primes p dividing m;
iii) d is even, and d = a — 1 (modulo 4), if m is a multiple of 4;
d = a — 1 (modulo 2), if m is a multiple of 2;
iv) d # 3c (modulo 9), if m is a multiple of 9.

[Hint: The sequence defined by Xo =0, Xn41 = dX?2 +aX, +c modulo m has a period
of length m only if the same sequence modulo any divisor r of m has period length r.]

9. [M24] (R. R. Coveyou.) Use the result of exercise 8 to prove that the modified
middle-square method (4) has a period of length 2°72.

10. [M29] Show that if Xo and X, are not both even and if m = 2°, the period of
the Fibonacci sequence (5) is 3-2°7 .

11. [M36] The purpose of this exercise is to analyze certain properties of integer
sequences satisfying the recurrence relation

Xn:alxn—l+"'+aan—ky nZ k.

If we can calculate the period length of this sequence modulo m = p®, when p is prime,
the period length with respect to an arbitrary modulus m is the least common multiple
of the period lengths for the prime power factors of m.

a) If f(z), a(z), b(2) are polynomials with integer coefficients, let us write a(z) = b(2)
(modulo f(z) and m) if a(z) = b(z) + f(2)u(z) +mu(z) for some polynomials u(z)
and v(z) with integer coefficients. Prove that the following statement holds when
£(0) = 1 and p° > 2: If 2* = 1 (modulo f(2) and p°) and 2* # 1 (modulo
F(z) and p°*1), then zP* = 1 (modulo f(z) and p°™!) and 2P* # 1 (modulo f(2)
and p°t?).

b) Let f(z) =1—a1z—---— axz”, and let

G(z) =1/f(2) = Ao + A1z + A2 + -+ .

Let A(m) denote the period length of (A, mod m). Prove that A(m) is the smallest
positive integer A such that z* = 1 (modulo f(z) and m).

¢) Given that p is prime, p® > 2, and A(p®) # A(p®™!), prove that A(p°*t") = p"A(p®)
for all 7 > 0. (Thus, to find the period length of the sequence (A, mod 2°), we
can compute A(4), A(8), A(16), ... until we find the smallest e > 3 such that
A(2°) # A(4); then the period length is determined mod 2° for all e. Exercise
4.6.3-26 explains how to calculate X, for large n in O(logn) operations.)

d) Show that any sequence of integers satisfying the recurrence stated at the begin-
ning of this exercise has the generating function g(z)/f(z), for some polynomial
g(z) with integer coefficients.

e) Given that the polynomials f(z) and g(z) in part (d) are relatively prime modulo p
(see Section 4.6.1), prove that the sequence (X, mod p®) has exactly the same

38 RANDOM NUMBERS 3.2.2

period length as the special sequence (A, mod p®) in (b). (No longer period could
be obtained by any choice of Xo,...,Xk—1, since the general sequence is a linear
combination of “shifts” of the special sequence.) [Hint: By exercise 4.6.2-22
(Hensel’s lemma), there exist polynomials such that a(z)f(z) + b(2)g(z) = 1
(modulo p®).]

12. [M28] Find integers Xoy X1, a, b, and c such that the sequence
Xn+l = (aXn + bXn—l + C) mOd 26, n Z 1,

has the longest period length of all sequences of this type. [Hint: It follows that
Xpt2 = ((@+1)Xn41 + (b — a)Xn — bX,_1) mod 2°; see exercise 11(c).]

13. [M20] Let (X,) and (Y.) be sequences of integers mod m with periods of lengths
A1 and)g, and combine them by letting Z, = (X, + Y,) mod m. Show that if A
and A, are relatively prime, the sequence (Z,) has a period of length A1 .

14. [M24] Let Xn, Yn, Zn, A1, A2 be as in the previous exercise. Suppose that the
prime factorization of \; is 2°23°35° ..., and similarly suppose that Az = 2f23fagfs .
Let g, = (max(ep, fp) if ep # fp, otherwise 0), and let Ao = 2923725%® Show that
the period length)\ of the sequence (Z,) is a multiple of Ao, and it is a divisor of
A =lcm(A;, A2). In particular, N = X if (e, # fp or e, = fp = 0) for each prime p.
15. [M27] Let the sequence (X,) in Algorithm M have period length A1, and assume
that all elements of its period are distinct. Let g, = min{r | » > 0 and |kYn _/m| =
|kY,/m|}. Assume that gn < $A1 for all n > no, and that the sequence (gn) has
period length X2. Let A be the least common multiple of A1 and A2. Prove that the
output sequence (Z,) produced by Algorithm M has a period of length A.

16. [M28] Let CONTENTS(A) in method (10) be (a1az ... ak)2 in binary notation. Show

that the generated sequence of low-order bits Xo, X1, ... satisfies the relation
Xn=(a1Xn-1+a2Xn_2+ -+ arXn_) mod?2.

[This may be regarded as another way to define the sequence, although the connection

between this relation and the efficient code (10) is not apparent at first glance!]

17. [M33]) (M. H. Martin, 1934.) Let m and k be positive integers, and let X, =

Xo =---= X, =0. For all n > 0, set X,+r equal to the largest nonnegative value
y < m such that the k-tuple (Xn41,...,Xntk-1,y) has not already occurred in the
sequence; in other words, (Xn+1,---,Xn+k—1,y) must differ from (X,i1,..., Xrtk)

for 0 < r < n. In this way, each possible k-tuple will occur at most once in the
sequence. Eventually the process will terminate, when we reach a value of n such that
(Xn+1,-- -y Xntk—1,y) has already occurred in the sequence for all nonnegative y < m.
For example, if m = k = 3 the sequence is 00022212202112102012001110100, and the
process terminates at this point. (a) Prove that when the sequence terminates, we have
Xpn41 = -+ = Xnsk—1 = 0. (b) Prove that every k-tuple (a1,as,...,ax) of elements
with 0 < a; < m occurs in the sequence; hence the sequence terminates when n = m*.
[Hint: Prove that the k-tuple (ai1,...,as,0,...,0) appears, when a, # 0, by induction
on s.] Note that if we now define f(Xn, ..., Xntk—1) = Xnqx for 1 <n < mF, setting
X k4, = 0, we obtain a function of maximum possible period.

18. [M22] Let (X,) be the sequence of bits generated by method (10), with k = 35
and CONTENTS(A) = (OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO101)2. Let U, be the binary

fraction (.XnkXnk+1---Xnk+k—1)2; show that this sequence (Un) fails the serial test
on pairs (Section 3.3.2B) when d = 8.

3.2.2 OTHER METHODS 39

19. [M41] For each prime p specified in the first column of Table 2 in Section 4.5.4,
find suitable constants a; and as as suggested in the text, such that the period length
of (8), when k = 2, is p* — 1. (See Eq. 3.3.4~(39) for an example.)

20. [M40] Calculate constants suitable for use as CONTENTS(4) in method (10), having
approximately the same number of zeros as ones, for 2 < k < 64.

21. [M35] (D. Rees.) The text explains how to find functions f such that the sequence
(11) has period length m* — 1, provided that m is prime and Xo, ..., Xx_1 are not all
zero. Show that such functions can be modified to obtain sequences of type (11) with
period length m*, for all integers m. [Hints: Consider Lemma 3.2.1.2Q, the trick of
exercise 7, and sequences such as (pXon + Xont1):]

22. [M24] The text restricts discussion of the extended linear sequences (8) to the
case that m is prime. Prove that reasonably long periods can also be obtained when m
is “squarefree,” that is, the product of distinct primes. (Examination of Table 3.2.1.1-1
shows that m = w =+ 1 often satisfies this hypothesis; many of the results of the text
can therefore be carried over to that case, which is somewhat more convenient for
calculation.)

23. [20] Discuss the sequence defined by X, = (Xn_55 — Xn—24) mod m as an alter-
native to (7).

24. [M20] Let 0 < I < k. Prove that the sequence of bits defined by the recurrence
X, = (Xn—k+1 + Xn—r) mod 2 has period length 2% — 1 whenever the sequence defined
by Y, = (Yn—i + Yn_«) mod 2 does.

25. [26] Discuss the alternative to Program A that changes all 55 entries of the ¥’
table every 55th time a random number is required.

26. [M48] (J.F.Reiser.) Let p be prime and let k be a positive integer. Given integers
ai,...,ar and 1,...,Tk, let Ao be the period of the sequence (Xn) generated by the
recurrence

X, =zomodp®, 0<n<k; Xn=(a1Xn1+ +axXn_)modp®, n>k

and let N, be the number of Os that occur in the period (the number of indices j such
that po < j < fa + Ao and X; = 0). Prove or disprove the following conjecture:
There exists a constant ¢ (depending possibly on p and k and ay,...,ax) such that
N, < cp®*=2/(k=1) for all @ and all 4, ..., Tk.

[Notes: Reiser has proved that if the recurrence has maximum period length mod p
(that is, if A} = p®—1), and if the conjecture holds, then the k-dimensional discrepancy
of (X,) will be O(afp~®/*"1)} as o — oo; thus an additive generator like (7) would
be well distributed in 55 dimensions, when m = 2° and the entire period is considered.
(See Section 3.3.4 for the definition of discrepancy in k dimensions.) The conjecture
is a very weak condition, for if (X,) takes on each value about equally often and if
Ao = p* 1(p® — 1), the quantity No ~ (p* — 1)/p does not grow at all as « increases.
Reiser has verified the conjecture for £ = 3. On the other hand he has shown that it
is possible to find unusually bad starting values z1, ...,z (depending on «) so that
Nag > p%, provided that Ae = p®~'(p* — 1) and k > 3 and « is sufficiently large.]

27. [M30] Suppose Algorithm B is being applied to a sequence (X,) whose period
length is A, where A > k. Show that for fixed k and all sufficiently large A, the output
of the sequence will eventually be periodic with the same period length A, unless (Xn)
isn’t very random to start with. [Hint: Find a pattern of consecutive values of | kX, /m|
that causes Algorithm B to “synchronize” its subsequent behavior.]

40 RANDOM NUMBERS 3.2.2

28. [40] (A. G. Waterman.) Experiment with linear congruential sequences with m
the square or cube of the computer word size, while a and c are single-precision numbers.

29. [40] Find a good way to compute the function f(zi,...,zx) defined by Martin’s

sequence in exercise 17, given only the k-tuple (z1,...,Zk).
30. [M37] (R.P.Brent.) Let f(x) = 2" —a12""' —- .- — a) be a primitive polynomial
modulo 2, and suppose that X, ..., Xx—1 are integers not all even.

a) Prove that the period of the recurrence X, = (a1 Xn—1 + - + ax X, _x) mod 2°
is 2°71(2F — 1) for all e > 1 if and only if f(z)® + f(—x)® # 2f(2?) and f(z)® +
F(—z)* # 2(—1)*f(—2?) (modulo 8). [Hint: We have z2* = —z (modulo 4 and
f(z)) if and only if f(z)? + f(—=)* = 2f(z*) (modulo 8).]

b) Prove that this condition always holds when the polynomial f(z) = "+l +1is
primitive modulo 2 and k > 2.

31. [M30] (G. Marsaglia.) What is the period length of the sequence (7') when m =
2¢ > 8?7 Assume that Xo, ..., Xs4 are not all = &1 (modulo 8).

32. [M21] What recurrences are satisfied by the elements of the subsequences (X2n)
and <X3n>, when Xn = (Xn_.24 + Xn-—55) mod m7

33- [M23] (a) Let gn(z) = Xn+30 +Xn+29z+‘ ‘ '+an30+Xn+54z3l +' : '+Xn+3lz54,
where the X’s satisfy the lagged Fibonacci recurrence (7). Find a simple relation
between gn(z) and gn4:(2). (b) Express Xsoo in terms of Xo, ..., Xs4.

34. [M25] Prove that the inversive congruential sequence (12) has period p+ 1 if and
only if the polynomial f(z) = z®—cx —a has the following two properties: (i) z?*' mod
f(z) is a nonzero constant, when computed with polynomial arithmetic modulo p;
(ii) P/ mod f(z) has degree 1 for every prime g that divides p+1. [Hint: Consider

powers of the matrix (0 1)/]

35. [HM35] How many pairs (a,c) satisfy the conditions of exercise 34?
36. [M25] Prove that the inversive congruential sequence Xn11 = (aX," +¢) mod 2°,
Xo =1, e > 3, has period length 2°”! whenever amod4 = 1 and cmod 4 = 2.

37. [HM32] Let p be prime and assume that Xn41 = (aX,' + ¢) mod p defines an
inversive congruential sequence of period p+ 1. Also let 0 < b1 < --- < by < p, and
consider the set

V:{(X"+51?Xn+bz?-'-,Xn+bd) | 0 <n Sp and Xn+bj ?é oo for 1 S]S d}

This set contains p + 1 — d vectors, any d of which lie in some (d — 1)-dimensional
hyperplane H = {(v1,...,vq) | r1v1+--- +74va = 1o (modulo p)}, where (r1,...,74) &
(0,...,0). Prove that no d + 1 vectors of V' lie in the same hyperplane.

3.3 STATISTICAL TESTS 41

3.3. STATISTICAL TESTS

OUR MAIN PURPOSE is to obtain sequences that behave as if they are random. So
far we have seen how to make the period of a sequence so long that for practical
purposes it never will repeat; this is an important criterion, but it by no means
guarantees that the sequence will be useful in applications. How then are we to
decide whether a sequence is sufficiently random?

If we were to give some randomly chosen man a pencil and paper and ask him
to write down 100 random decimal digits, chances are very slim that he would
produce a satisfactory result. People tend to avoid things that seem nonrandom,
such as pairs of equal adjacent digits (although about one out of every 10 digits
should equal its predecessor). And if we would show that same man a table of
truly random digits, he would quite probably tell us they are not random at all;
his eye would spot certain apparent regularities.

According to Dr. I J. Matrix (as quoted by Martin Gardner in Scientific
American, January, 1965), “Mathematicians consider the decimal expansion
of = a random series, but to a modern numerologist it is rich with remarkable
patterns.” Dr. Matrix has pointed out, for example, that the first repeated two-
digit number in 7’s expansion is 26, and its second appearance comes in the
middle of a curious repetition pattern:

A~ A
3.14159265358979323846264338327950 (1)
Yy

After listing a dozen or so further properties of these digits, he observed that =,
when correctly interpreted, conveys the entire history of the human race!

We all notice patterns in our telephone numbers, license numbers, etc., as
aids to memory. The point of these remarks is that we cannot be trusted to judge
by ourselves whether a sequence of numbers is random or not. Some unbiased
mechanical tests must be applied. .

The theory of statistics provides us with some quantitative measures for
randomness. There is literally no end to the number of tests that can be
conceived; we will discuss the tests that have proved to be most useful, most
instructive, and most readily adapted to computer calculation.

If a sequence behaves randomly with respect to tests 11, T3, ..., Tn, we
cannot be sure in general that it will not be a miserable failure when it 1s
subjected to a further test T,,+,. Yet each test gives us more and more confidence
in the randomness of the sequence. In practice, we apply about half a dozen
different kinds of statistical tests to a sequence, and if it passes them satisfactorily
we consider it to be random —it is then presumed innocent until proven guilty.

Every sequence that is to be used extensively should be tested carefully, so
the following sections explain how to administer the tests in an appropriate way.
Two kinds of tests are distinguished: empirical tests, for which the computer
manipulates groups of numbers of the sequence and evaluates certain statistics;
and theoretical tests, for which we establish characteristics of the sequence by

42 RANDOM NUMBERS 3.3

using number-theoretic methods based on the recurrence rule used to form the
sequence.

If the evidence doesn’t come out as desired, the reader may wish to try the
techniques in How to Lie With Statistics by Darrell Huff (Norton, 1954).

3.3.1. General Test Procedures for Studying Random Data

A. “Chi-square” tests. The chi-square test (x? test) is perhaps the best
known of all statistical tests, and it is a basic method that is used in connection
with many other tests. Before considering the idea in general, let us consider a
particular example of the chi-square test as it might be applied to dice throwing.
Using two “true” dice (each of which, independently, is assumed to yield the
values 1, 2, 3, 4, 5, or 6 with equal probability), the following table gives the
probability of obtaining a given total, s, on a single throw:

valueofs= 2 3 4 5 6 7 8 9 10 11 12 ()
. 1
probability, ps= 55 {5 15 5 3 § 3% 5 13 W

For example, a value of 4 can be thrown in three ways: 1+ 3, 2+ 2, 3 + 1; this
constitutes §3€ = Tli = py4 of the 36 possible outcomes.

If we throw the dice n times, we should obtain the value s approximately
nps times on the average. For example, in 144 throws we should get the value 4
about 12 times. The following table shows what results were actually obtained

in a particular sequence of 144 throws of the dice:

valueofs=2 3 4 5 6 7 8 9 10 11 12
observed number, Y, = 2 4 10 12 22 29 21 15 14 9 6 (2)
expected number, np, = 4 8 12 16 20 24 20 16 12 8 4

Notice that the observed number was different from the expected number in all
cases; in fact, random throws of the dice will hardly ever come out with ezactly
the right frequencies. There are 3614 possible sequences of 144 throws, all of
which are equally likely. One of these sequences consists of all 2s (“snake eyes”),
and anyone throwing 144 snake eyes in a row would be convinced that the dice
were loaded. Yet the sequence of all 2s is just as probable as any other particular
sequence if we specify the outcome of each throw of each die.

In view of this, how can we test whether or not a given pair of dice is loaded?
The answer is that we can’t make a definite yes-no statement, but we can give
a probabilistic answer. We can say how probable or improbable certain types of
events are.

A fairly natural way to proceed in the example above is to consider the
squares of the differences between the observed numbers Y; and the expected
numbers np,. We can add these together, obtaining

V= (Y —nps)® + (Yz3 —np3)® + - + (Y12 — np12)2. (3)

A bad set of dice should result in a relatively high value of V; and for any given
value of V' we can ask, “What is the probability that V is this high, using true

3.3.1 GENERAL TEST PROCEDURES 43

dice?” If this probability is very small, say 1—36, we would know that only about
one time in 100 would true dice give results so far away from the expected num-
bers, and we would have definite grounds for suspicion. (Remember, however,
that even good dice would give such a high value of V about one time in a
hundred, so a cautious person would repeat the experiment to see if the high
value of V is repeated.)

The statistic V in (3) gives equal weight to (Y7 — np7)? and (Yz — np2)?,
although (Y7 — np7)? is likely to be a good deal higher than (Ys —np2)? since 7s
occur about six times as often as 2s. It turns out that the “right” statistic, at
least one that has proved to be most important, will give (Y7 — np7)? only % as
much weight as (Y2 — np;)?, and we should change (3) to the following formula:

Y, — nps)? Y3 — np3)? Yi2 —n 2
V:(z p2) +(3 P3) _*__.__*_(12 plz). (4)
np2 nps npi2
This is called the “chi-square” statistic of the observed quantities Y3,..., Y12 in

the dice-throwing experiment. For the data in (2), we find that

(2—4)2+(4—8)2+__'+(9—8)2 +(6—4)2 T

V= "y 2 3 YERITY (5)

The important question now is, of course, “Does 7275 constitute an improbably
high value for V to assume?” Before answering this question, let us consider the
general application of the chi-square method.

In general, suppose that every observation can fall into one of k categories.
We take n independent observations; this means that the outcome of one obser-
vation has absolutely no effect on the outcome of any of the others. Let ps be the
probability that each observation falls into category s, and let Y be the number
of observations that actually do fall into category s. We form the statistic

k
V = Z - nps (6)

In our example above, there are eleven possible outcomes of each throw of the
dice, so k = 11. (Eq. (6) is a slight change of notation from Eq. (4), since we
are numbering the possibilities from 1 to k instead of from 2 to 12.)
By expanding (Y; — nps)? = Y2 — 2np,Y, + n?p? in (6), and using the facts
that
Yi+Yo+ - +Y, =n,

pr+pet - +pr =1,

(7)

we arrive at the formula
k
1 Y2
=—§:<—S)—n, (8)
n —1 Ds

which often makes the computation of V somewhat easier.

44 RANDOM NUMBERS 3.3.1

Table 1
SELECTED PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION

p=1% | p=5% {p=25% | p=50% |p=75% | p=95% | p = 99%

v=1 | 0.00016 | 0.00393 | 0.1015 | 0.4549 | 1.323 3.841 6.635
v= 0.02010 | 0.1026 | 0.5754 | 1.386 2.773 5.991 9.210
v= 0.1148 | 0.3518 | 1.213 2.366 4.108 7.815 | 11.34
v=4 | 02971 | 07107 | 1.923 3.357 5.385 9.488 | 13.28
v=5 | 05543 | 1.1455 | 2.675 4.351 6.626 | 11.07 15.09
v=6 | 08721 | 1.635 3.455 5.348 7.841 | 12.59 16.81
v=7 | 1.239 2.167 4.255 6.346 9.037 | 14.07 18.48
v=8 | 1.646 2.733 5.071 7.344 | 10.22 15.51 20.09
v=9 | 2.088 3.325 5.899 8.343 | 11.39 16.92 21.67
v=10 | 2.558 3.940 6.737 | 9.342 | 12.55 18.31 23.21
v=11 | 3.053 4.575 7.584 | 10.34 13.70 19.68 24.72
v=12 | 3.571 5.226 8.438 | 11.34 14.85 21.03 26.22
v=15 | 5.229 7.261 | 11.04 14.34 18.25 25.00 30.58
v=20 | 8260 |10.85 15.45 19.34 23.83 31.41 37.57
v =30 |14.95 18.49 24.48 29.34 34.80 43.77 | 50.89
v =50 |29.71 34.76 42.94 49.33 56.33 67.50 76.15
v > 30 v+v2z, + 222 - 2+ 0 (/)

T, = | —233 | —164 | —.674 0.00 0.674 1.64 2.33

(For further values, see Handbook of Mathematical Functions, edited by M. Abramowitz and
I. A. Stegun (Washington, D.C.: U.S. Government Printing Office, 1964), Table 26.8. See also
Eq. (22) and exercise 16.)

Now we turn to the important question, “What constitutes a reasonable
value of V7”7 This is found by referring to a table such as Table 1, which gives val-
ues of “the chi-square distribution with v degrees of freedom” for various values
of v. The line of the table with v = k—1 is to be used; the number of “degrees of
freedom” is k—1, one less than the number of categories. (Intuitively, this means
that Y7,Y5,..., Y, are not completely independent, since Eq. (7) shows that Yj
can be computed if Y}, ..., Y;_, are known; hence, kK — 1 degrees of freedom are
present. This argument is not rigorous, but the theory below justifies it.)

If the table entry in row v under column p is z, it means, “The quantity V'
in Eq. (8) will be less than or equal to with approximate probability p, if n
is large enough.” For example, the 95 percent entry in row 10 is 18.31; we will
have V > 18.31 only about 5 percent of the time.

3.3.1 GENERAL TEST PROCEDURES 45

Let us assume that our dice-throwing experiment has been simulated on a
computer using some sequence of supposedly random numbers, with the following
results:

valueof s=2 3 4 5 6 7 8 9 10 11 12
Experiment 1, Y, =4 10 10 13 20 18 18 11 13 14 13 (9)
Experiment 2, Y, =3 7 11 15 19 24 21 17 13 9 5

We can compute the chi-square statistic in the first case, getting the value V; =
29152—90, and in the second case we get Vo = 1%. Referring to the table entries for
10 degrees of freedom, we see that Vi is much too high; V will be greater than
23.21 only about one percent of the time! (By using more extensive tables, we
find in fact that V' will be as high as V; only 0.1 percent of the time.) Therefore
Experiment 1 represents a significant departure from random behavior.

On the other hand, V5 is quite low, since the observed values Y; in Exper-
iment 2 are quite close to the expected values np, in (2). The chi-square table
tells us, in fact, that V5 is much too low: The observed values are so close to the
expected values, we cannot consider the result to be random! (Indeed, reference
to other tables shows that such a low value of V' occurs only 0.03 percent of
the time when there are 10 degrees of freedom.) Finally, the value V = 747—8
computed in (5) can also be checked with Table 1. It falls between the entries
for 25 percent and 50 percent, so we cannot consider it to be significantly high
or significantly low; thus the observations in (2) are satisfactorily random with
respect to this test.

It is somewhat remarkable that the same table entries are used no matter
what the value of n is, and no matter what the probabilities p; are. Only the
number v = k — 1 affects the results. In actual fact, however, the table entries
are not exactly correct: The chi-square distribution is an approximation that is
valid only for large enough values of n. How large should n be? A common rule
of thumb is to take n large enough so that each of the expected values nps is
five or more; preferably, however, take n much larger than this, to get a more
powerful test. In our examples above we took n = 144, so npy was only 4,
violating the stated rule of thumb. This was done only because the author
tired of throwing the dice; it makes the entries in Table 1 less accurate for our
application. Experiments run on a computer, with n = 1000, or 10000, or even
100000, would be much better than this. We could also combine the data for
s = 2 and s = 12; then the test would have only nine degrees of freedom but the
chi-square approximation would be more accurate.

We can get an idea of how crude an approximation is involved by considering
the case when there are only two categories, having probabilities p, and ps.
Suppose p; = % and ps = 2—. According to the stated rule of thumb, we should
have n > 20 to have a satisfactory approximation, so let’s check that out. When
n = 20, the possible values of V are (Y1 —5)%5 + (5 — ¥1)%/15 = <tr? for
-5 < r < 15; we wish to know how well the row v = 1 of Table 1 describes
the distribution of V. The chi-square distribution varies continuously, while the
actual distribution of V has rather big jumps, so we need some convention for

46 RANDOM NUMBERS 3.3.1

representing the exact distribution. If the distinct possible outcomes of the
experiment lead to the values Vo £ Vi £ .- <V, with respective proba-
bilities my, 71, ..., Tn, suppose that a given percentage p falls in the range
g+ o+ mi—1 < p<mo+--+ 71 + 7. We would like to represent p by a
“percentage point” z such that V' is less than z with probability < p and V is
greater than z with probability < 1—p. It is not difficult to see that the only such
number is ¢ = V. In our example for n = 20 and v = 1, it turns out that the
percentage points of the exact distribution, corresponding to the approximations
in Table 1 for p = 1%, 5%, 25%, 50%, 75%, 95%, and 99%, respectively, are

0, 0, .27, .27, 1.07, 427, 6.67

(to two decimal places). For example, the percentage point for p = 95% is 4.27,
while Table 1 gives the estimate 3.841. The latter value is too low; it tells us
(incorrectly) to reject the value V' = 4.27 at the 95% level, while in fact the
probability that V > 4.27 is more than 6.5%. When n = 21, the situation
changes slightly because the expected values np; = 5.25 and nps = 15.75 can
never be obtained exactly; the percentage points for n = 21 are

02, .02, .14, .40, 1.29, 3.57, 5.73.

We would expect Table 1 to be a better approximation when n = 50, but
the corresponding tableau actually turns out to be further from Table 1 in some
respects than it was for n = 20:

.03, .03, .03, .67, 1.31, 3.23, 6.
Here are the values when n = 300:
0, 0, .07, .44, 1.44, 4, 6.42.

Even in this case, when np, is > 75 in each category, the entries in Table 1 are
good to only about one significant digit.

The proper choice of n is somewhat obscure. If the dice are actually biased,
the fact will be detected as n gets larger and larger. (See exercise 12.) But large
values of n will tend to smooth out locally nonrandom behavior, when blocks of
numbers with a strong bias are followed by blocks of numbers with the opposite
bias. Locally nonrandom behavior is not an issue when actual dice are rolled,
since the same dice are used throughout the test, but a sequence of numbers
generated by computer might very well display such anomalies. Perhaps a chi-
square test should be made for several different values of n. At any rate, n should
always be rather large.

We can summarize the chi-square test as follows. A fairly large number, n, of
independent observations is made. (It is important to avoid using the chi-square
method unless the observations are independent. See, for example, exercise 10,
which considers the case when half of the observations depend on the other
half.) We count the number of observations falling into each of k categories and
compute the quantity V given in Eqgs. (6) and (8). Then V is compared with the
numbers in Table 1, with v = k — 1. If V is less than the 1% entry or greater
than the 99% entry, we reject the numbers as not sufficiently random. If V lies

3.3.1 GENERAL TEST PROCEDURES 47

A B C D E F
- O | 00| ee
o O e alee
ol | | Q0 O ®
O 00
o] | | &0
Range of V Indication Code
0-1 percent, 99-100 percent Reject .
1-5 percent, 95-99 percent Suspect 0
5-10 percent, 90-95 percent Almost suspect O

Fig. 2. Indications of “significant” deviations in 90 chi-square tests (see also Fig. 5).

between the 1% and 5% entries or between the 95% and 99% entries, the numbers
are “suspect”; if (by interpolation in the table) V lies between the 5% and 10%
entries, or the 90% and 95% entries, the numbers might be “almost suspect.”
The chi-square test is often done at least three times on different sets of data,
and if at least two of the three results are suspect the numbers are regarded as
not sufficiently random.

For example, see Fig. 2, which shows schematically the results of apply-
ing five different types of chi-square tests on each of six sequences of random
numbers. FEach test in this illustration was applied to three different blocks
of numbers of the sequence. Generator A is the MacLaren—Marsaglia method
(Algorithm 3.2.2M applied to the sequences in 3.2.2—(13)); Generator E is the
Fibonacci method, 3.2.2—(5); and the other generators are linear congruential
sequences with the following parameters:

Generator B: Xy =0, a = 3141592653, c¢ = 2718281829, m = 23°,
Generator C: Xy =0, a=2"4+1, c=1, m=2%.

Generator D: Xy =47594118, =23, c=0, m=10%+1.
Generator F: X, = 314159265, a=2%+1, c=1, m =2%,

From Fig. 2 we conclude that (so far as these tests are concerned) Generators A,
B, D are satisfactory, Generator C is on the borderline and should probably
be rejected, Generators E and F are definitely unsatisfactory. Generator F
has, of course, low potency; Generators C and D have been discussed in the
literature, but their multipliers are too small. (Generator D is the original
multiplicative generator proposed by Lehmer in 1948; Generator C is the original
linear congruential generator with ¢ # 0 proposed by Rotenberg in 1960.)

Instead of using the “suspect,” “almost suspect,” etc., criteria for judging
the results of chi-square tests, one can employ a less ad hoc procedure discussed
later in this section.

48 RANDOM NUMBERS 3.3.1

y:]_ ————-y=1
1 _1
y=3 —1¥Tz2
z=0 =3 =z=1 z=0 z=3 z=1
(a) (b)
y=1 —
_3
y=1
_1
y=73
_ 1 :
y=1
-
z=39|x=9.3 r=18.3
z=6.7T t=12.6

()

Fig. 3. Examples of distribution functions.

B. The Kolmogorov—Smirnov test. As we have seen, the chi-square test
applies to the situation when observations can fall into a finite number of cate-
gories. It is not unusual, however, to consider random quantities that range over
infinitely many values, such as a random fracton (a random real number between
0 and 1). Even though only finitely many real numbers can be represented in a
computer, we want our random values to behave essentially as if all real numbers
in [0..1) were equally likely.

A general notation for specifying probability distributions, whether they
are finite or infinite, is commonly used in the study of probability and statistics.
Suppose we want to specify the distribution of the values of a random quantity, X;
we do this in terms of the distribution function F(x), where

F(z) = Pr(X < z) = probability that (X < z).

Three examples are shown in Fig. 3. First we see the distribution function for a
random bit, namely for the case when X takes on only the two values 0 and 1,
each with probability % Part (b) of the figure shows the distribution function
for a uniformly distributed random real number between zero and one; here the
probability that X < z is simply equal to £ when 0 < z < 1. For example,
the probability that X < % is, naturally, % And part (c) shows the limiting
distribution of the value V in the chi-square test (shown here with 10 degrees of
freedom); this is a distribution that we have already seen represented in another
way in Table 1. Notice that F(z) always increases from 0 to 1 as z increases

from —oo to 4+00.

3.3.1 GENERAL TEST PROCEDURES 49

If we make n independent observations of the random quantity X, thereby
obtaining the values X;, Xo, ..., X,,, we can form the empirical distribution
function Fy,(x), where

number of X, Xo,...,X, that are <z

F.(z) = - : (10)

Figure 4 illustrates three empirical distribution functions (shown as zigzag lines,
although strictly speaking the vertical lines are not part of the graph of Fn(:r)),
superimposed on a graph of the assumed actual distribution function F(z). As
n gets large, F,(x) should be a better and better approximation to F(z).

(a)

5% 25%50% 75% 95% 99%

;
-

5% 25%50% 75% 95% 99%

i

Fig. 4. Examples of rl_l‘r

empirical distributions. =
5% 25%50% 75% 95% 99%

The Kolmogorov—Smirnov test (KS test) may be used when F(z) has no
jumps. It is based on the difference between F(z) and F,(z). A bad source of
random numbers will give empirical distribution functions that do not approxi-
mate F(z) sufficiently well. Figure 4(b) shows an example in which the X; are
consistently too high, so the empirical distribution function is too low. Part (c)
of the figure shows an even worse example; it is plain that such great deviations
between F,(z) and F(x) are extremely improbable, and the KS test is used to
tell us how improbable they are.

50 RANDOM NUMBERS 3.3.1

To make the KS test, we form the following statistics:

K;=vyn max (Fu(z)-F(z));

—oco<l <400

K;=+vn max (F(z)—Fu(z)).

n —oo<lr<+oo

(11)

Here K} measures the greatest amount of deviation when Fj, is greater than F,
and K, measures the maximum deviation when F}, is less than F. The statistics
for the examples of Fig. 4 are

Fig. 4(a) Fig. 4(b) Fig. 4(c)
K, 0.492 0.134 0.313 (12)
K;, 0.536 1.027 2.101

(Note: The factor v/n that appears in Egs. (11) may seem puzzling at first.
Exercise 6 shows that, for fixed z, the standard deviation of F,,(z) is proportional
to 1/4/n; hence the factor v/n magnifies the statistics K} and K in such a way
that this standard deviation is independent of n.)

As in the chi-square test, we may now look up the values K, K- in a
percentile table to determine if they are significantly high or low. Table 2 may
be used for this purpose, both for K;} and K;. For example, the probability is
75 percent that K3, will be 0.7975 or less. Unlike the chi-square test, the table
entries are not merely approximations that hold for large values of n; Table 2
gives exact values (except, of course, for roundoff error), and the KS test may
be used reliably for any value of n.

As they stand, formulas (11) are not readily adapted to computer calcula-
tion, since we are asking for a maximum over infinitely many values of z. But
from the fact that F(x) is increasing and the fact that F,(x) increases only in
finite steps, we can derive a simple procedure for evaluating the statistics K
and K:

Step 1. Obtain independent observations Xi, Xo,..., X, .

Step 2. Rearrange the observations so that they are sorted into ascending order,
X, £ X2 <+ < X,. (Efficient sorting algorithms are the subject of Chapter 5.
But it is possible to avoid sorting in this case, as shown in exercise 23.)

Step 3. The desired statistics are now given by the formulas

v _ J_ _)
Kn - \/—ﬁlgl]a_%(n(n F(XJ))
i1 (13)
K = Vi e (PO5) =12

An appropriate choice of the number of observations, n, is slightly easier to
make for this test than it is for the x? test, although some of the considerations
are similar. If the random variables X; actually belong to the probability
distribution G(z), while they were assumed to belong to the distribution given
by F(z), we want n to be comparatively large, in order to reject the hypothesis
that G(z) = F(z); for we need n large enough that the empirical distributions

3.3.1 GENERAL TEST PROCEDURES 51
Table 2
SELECTED PERCENTAGE POINTS OF THE DISTRIBUTIONS K} AND K;
p=1% | p=5% | p=25% | p=50% | p=T75% | p=95% | p = 99%

n=1 0.01000 | 0.05000 | 0.2500 0.5000 0.7500 0.9500 0.9900
n=2 0.01400 | 0.06749 0.2929 0.5176 0.7071 1.0980 1.2728
n=23 0.01699 | 0.07919 | 0.3112 0.5147 0.7539 1.1017 1.3589
n=4 0.01943 | 0.08789 | 0.3202 0.5110 0.7642 1.1304 1.3777
n=>5 0.02152 | 0.09471 0.3249 0.5245 0.7674 1.1392 1.4024
n= 0.02336 | 0.1002 0.3272 0.5319 0.7703 1.1463 1.4144
n= 0.02501 | 0.1048 0.3280 0.5364 0.7755 1.1537 1.4246
n=2~8 0.02650 | 0.1086 [0.3280 0.5392 0.7797 1.1586 1.4327
n=29 0.02786 | 0.1119 0.3274 0.5411 0.7825 1.1624 1.4388
n =10 | 0.02912 | 0.1147 0.3297 0.5426 0.7845 1.1658 1.4440
n=11 | 0.03028 | 0.1172 0.3330 0.5439 0.7863 1.1688 1.4484
n =12 | 0.03137 | 0.1193 0.3357 0.5453 0.7880 1.1714 1.4521
n=15 | 0.03424 | 0.1244 0.3412 0.5500 0.7926 1.1773 1.4606
n =20 | 0.03807 | 0.1298 0.3461 0.5547 0.7975 1.1839 1.4698
n =30 | 0.04354 | 0.1351 0.3509 0.5605 0.8036 1.1916 1.4801
n > 30 Yp — %n_l/z + O(1/n), where y2 = 21In(1/(1 —p))

Yp = 0.07089 | 0.1601 0.3793 0.5887 0.8326 1.2239 1.5174

(To extend this table, see Egs. (25) and (26), and the answer to exercise 20.)

Gn(z) and F,(z) are expected to be observably different. On the other hand,
large values of n will tend to average out locally nonrandom behavior, and such
undesirable behavior is a significant danger in most computer applications of
random numbers; this makes a case for smaller values of n. A good compromise
would be to take n equal to, say, 1000, and to make a fairly large number of
calculations of Ky, on different parts of a random sequence, thereby obtaining
values

Ko00(1), Kio00(2), S Kiooo(r)- (14)
We can also apply the KS test again to these results: Let F(x) now be the
distribution function for Kjy,,, and determine the empirical distribution F,(x)
obtained from the observed values in (14). Fortunately, the function F(x) in this

case is very simple; for a large value of n like n = 1000, the distribution of K

is closely approximated by
Fo(z)=1- 6"2“”2, z > 0.

(15)

52 RANDOM NUMBERS 3.3.1

The same remarks apply to K, since K, and K, have the same expected
behavior. This method of using several tests for moderately large n, then
combining the observations later in another KS test, will tend to detect both
local and global nonrandom behavior.

For example, the author conducted the following simple experiment while
writing this chapter: The *maximum-of-5” test described in the next section was
applied to a set of 1000 uniform random numbers, yielding 200 observations X,
X, ..., Xo00 that were supposed to belong to the distribution F(z) = z° for
0 < z < 1. The observations were divided into 20 groups of 10 each, and the
statistic K7, was computed for each group. The 20 values of K7, thus obtained
led to the empirical distributions shown in Fig. 4. The smooth curve shown in
each of the diagrams in Fig. 4 is the actual distribution the statistic K, should
have. Figure 4(a) shows the empirical distribution of K{, obtained from the
sequence

Yoi1 = (3141592653Y;, 4 2718281829) mod 2°°, U, =Y,/2%,

and it is satisfactorily random. Part (b) of the figure came from the Fibonacci
method; this sequence has globally nonrandom behavior —that is, it can be
shown that the observations X,, in the maximum-of-5 test do not have the correct
distribution F(z) = z°. Part (c) came from the notorious and impotent linear
congruential sequence Y, 41 = ((2'® + 1)Y, + 1) mod 2%, U, = Y, /2%.

The KS test applied to the data in Fig. 4 gives the results shown in (12).
Referring to Table 2 for n = 20, we see that the values of KJ, and K3, for
Fig. 4(b) are almost suspect (they lie at about the 5 percent and 88 percent
levels), but they are not quite bad enough to be rejected outright. The value of
K, for Fig. 4(c) is, of course, completely out of line, so the maximum-of-5 test
shows a definite failure of that random number generator.

We would expect the KS test in this experiment to have more difficulty
locating global nonrandomness than local nonrandomness, since the basic obser-
vations in Fig. 4 were made on samples of only 10 numbers each. If we were
to take 20 groups of 1000 numbers each, part (b) would show a much more
significant deviation. To illustrate this point, a single KS test was applied to all
200 of the observations that led to Fig. 4, and the following results were obtained:

Fig. 4(a) Fig. 4(b) Fig. 4(c)
Ky, 0.477 1.537 2.819 (16)
K30 0.817 0.194 0.058
The global nonrandomness of the Fibonacci generator has definitely been de-
tected here.

We may summarize the Kolmogorov—Smirnov test as follows. We are given
n independent observations X,, ..., X, taken from some distribution specified
by a continuous function F(z). That is, F(z) must be like the functions shown
in Fig. 3(b) and 3(c), having no jumps like those in Fig. 3(a). The procedure
explained just before Egs. (13) is carried out on these observations, and we obtain

3.3.1 GENERAL TEST PROCEDURES 53

the statistics K} and K,;. These statistics should be distributed according to
Table 2.

Some comparisons between the KS test and the x? test can now be made.
In the first place, we should observe that the KS test may be used in conjunction
with the x2 test, to give a better procedure than the ad hoc method we mentioned
when summarizing the x? test. (That is, there is a better way to proceed than
to make three tests and to consider how many of the results were “suspect.”)
Suppose we have made, say, 10 independent x? tests on different parts of a
random sequence, so that values V7, V5, ..., V1o have been obtained. It is not a
good policy simply to count how many of the V'’s are suspiciously large or small.
This procedure will work in extreme cases, and very large or very small values
may mean that the sequence has too much local nonrandomness; but a better
general method would be to plot the empirical distribution of these 10 values and
to compare it to the correct distribution, which may be obtained from Table 1.
The empirical distribution gives a clearer picture of the results of the x? tests,
and in fact the statistics K|, and K7, could be determined from the empirical
x? values as an indication of success or failure. With only 10 values or even
as many as 100 this could all be done easily by hand, using graphical methods;
with a larger number of V'’s, a computer subroutine for calculating the chi-square
distribution would be necessary. Notice that all 20 of the observations in Fig. 4(c)
fall between the 5 and 95 percent levels, so we would not have regarded any of
them as suspicious, individually; yet collectively the empirical distribution shows
that these observations are not at all right.

An important difference between the KS test and the chi-square test is that
the KS test applies to distributions F(x) having no jumps, while the chi-square
test applies to distributions having nothing but jumps (since all observations
are divided into k categories). The two tests are thus intended for different
sorts of applications. Yet it is possible to apply the x? test even when F(x) is
continuous, if we divide the domain of F(z) into k parts and ignore all variations
within each part. For example, if we want to test whether or not Uy, Us, ..., U,
can be considered to come from the uniform distribution between zero and one,
we want to test if they have the distribution F(z) = « for 0 < z < 1. This is
a natural application for the KS test. But we might also divide up the interval
from 0 to 1 into k& = 100 equal parts, count how many U'’s fall into each part,
and apply the chi-square test with 99 degrees of freedom. There are not many
theoretical results available at the present time to compare the effectiveness of
the KS test versus the chi-square test. The author has found some examples in
which the KS test pointed out nonrandomness more clearly than the x? test, and
others in which the x? test gave a more significant result. If, for example, the
100 categories mentioned above are numbered 0, 1, ..., 99, and if the deviations
from the expected values are positive in compartments 0 to 49 but negative in
compartments 50 to 99, then the empirical distribution function will be much
further from F(z) than the x? value would indicate; but if the positive deviations
occur in compartments 0, 2, ..., 98 and the negative ones occurin 1, 3, ..., 99,
the empirical distribution function will tend to hug F(z) much more closely. The

54 RANDOM NUMBERS 3.3.1

Range of K g

A B C
[| |
i | { ®
| O] o | | o
| ® Ol | O
|| | O] o | e
Range of K,
A B C D E F
ol T [T 11 [0 | O
O | O] | |
| Ol O 20 |00e

Fig. 5. The KS tests applied to the same data as Fig. 2.

kinds of deviations measured are therefore somewhat different. A x? test was
applied to the 200 observations that led to Fig. 4, with k = 10, and the respective
values of V were 9.4, 17.7, and 39.3; so in this particular case the values were
quite comparable to the KS values given in (16). Since the x? test is intrinsically
less accurate, and since it requires comparatively large values of n, the KS test
has several advantages when a continuous distribution is to be tested.

A further example will also be of interest. The data that led to Fig. 2
were chi-square statistics based on n = 200 observations of the maximum-of-¢
criterion for 1 < ¢ < 5, with the range divided into 10 equally probable parts.
KS statistics K35, and K5, can be computed from exactly the same sets of 200
observations, and the results can be tabulated in just the same way as we did
in Fig. 2 (showing which KS values are beyond the 99-percent level, etc.); the
results in this case are shown in Fig. 5. Notice that Generator D (Lehmer’s
original method) shows up very badly in Fig. 5, while chi-square tests on the
very same data revealed no difficulty in Fig. 2; contrariwise, Generator E (the
Fibonacci method) does not look so bad in Fig. 5. The good generators, A
and B, passed all tests satisfactorily. The reasons for the discrepancies between
Fig. 2 and Fig. 5 are primarily that (a) the number of observations, 200, is really
not large enough for a powerful test, and (b) the “reject,” “suspect,” “almost
suspect” ranking criterion is itself suspect.

(Incidentally, it is not fair to blame Lehmer for using a “bad” random
number generator in the 1940s, since his actual use of Generator D was quite
valid. The ENIAC computer was a highly parallel machine, programmed by
means of a plugboard; Lehmer set it up so that one of its accumulators was
repeatedly multiplying its own contents by 23 (modulo 10® + 1), yielding a
new value every few microseconds. Since this multiplier 23 is too small, we

3.3.1 GENERAL TEST PROCEDURES 55

know that each value obtained by such a process is too strongly related to
the preceding value to be considered sufficiently random; but the durations
of time between actual uses of the values in the special accumulator by the
accompanying program were comparatively long and subject to some fluctuation.
So the effective multiplier was 23% for large, varying values of k.)

C. History, bibliography, and theory. The chi-square test was introduced by
Karl Pearson in 1900 [Philosophical Magazine, Series 5, 50, 157-175]. Pearson’s
important paper is regarded as one of the foundations of modern statistics, since
before that time people would simply plot experimental results graphically and
assert that they were correct. In his paper, Pearson gave several interesting
examples of the previous misuse of statistics; and he also proved that certain
runs at roulette (which he had experienced during two weeks at Monte Carlo in
1892) were so far from the expected frequencies that odds against the assumption
of an honest wheel were some 10?° to one! A general discussion of the chi-square
test and an extensive bibliography appear in the survey article by William G.
Cochran, Annals Math. Stat. 23 (1952), 315-345.

Let us now consider a brief derivation of the theory behind the chi-square
test. The exact probability that Y; = vy;,...,Yr = yx is easily seen to be

n!
mﬁl N (17)
If we assume that Y, has the value y, with the Poisson probability

e "Ds (nps)ys
Ys!

and that the Y's are independent, then (Y7,...,Y:) will equal (y,...,yx) with
probability

k ‘nps np
H 7

and Y7 + .- + Y} will equal n with probability

— N, T

Z H npsr%p :en!n'

y1+tyr=n s=1
Y1, ayk>0

If we assume that they are independent except for the condition Y1 +---+Y, = n,
the probability that (Y7,...,Yx) = (y1,..-,Yx) is the quotient

(=) /().

which equals (17). We may therefore regard the Y'’s as 1ndependent1y Poisson
distributed, except for the fact that they have a fixed sum.

56 RANDOM NUMBERS 3.3.1

It is convenient to make a change of variables,

yts - s
Z, = 5 _1Ps (18)
p;

so that V = Z2 + .- + Z2. The condition Y7 + --- + Y3 = n is equivalent to

requiring that
VP1Z1+ -+ Pk Zy = 0. (19)

Let us consider the (k — 1)-dimensional space S of all vectors (Z,...,Zk)
such that (19) holds. For large values of n, each Z; has approximately the
normal distribution (see exercise 1.2.10-15); therefore points in a differential
volume dzsy...dzx of S occur with probability approximately proportional to
exp (—(zf 4+ --- + 22)/2). (It is at this point in the derivation that the chi-square
method becomes only an approximation for large n.) The probability that V < v
is now

f(zla---azk)inS&ndZ%+---+ziSv eXp (_(2]2_ + tt + Z]%)/2) dZ2 . de
Jonyins &D(—(F + - +22)/2) dza ... dz

Since the hyperplane (19) passes through the origin of k-dimensional space, the
numerator in (20) is an integration over the interior of a (k — 1)-dimensional
hypersphere centered at the origin. An appropriate transformation to generalized
polar coordinates with radius x and angles wy, ..., wg_2 transforms (20) into

(20)

fXZSv e_X2/2Xk_2f(w17 e 7wk—2) dX dws ... dwk_g
f e_X2/2Xk_2f(wly s 7wk—2) dX dUJ]_ . dCL)k_Q

for some function f (see exercise 15); then integration over the angles wy, ...,
wk_o gives a constant factor that cancels from numerator and denominator. We
finally obtain the formula

Sy emX k2 iy
fooo e—x2/2xk—2 dx
for the approximate probability that V < v.
Our derivation of (21) uses the symbol x to stand for the radial length,
just as Pearson did in his original paper; this is how the x? test got its name.

Substituting ¢t = x?2/2, the integrals can be expressed in terms of the incomplete
gamma, function, which we discussed in Section 1.2.11.3:

meve (YR e

This is the definition of the chi-square distribution with £ —1 degrees of freedom.

(21)

We now turn to the KS test. In 1933, A. N. Kolmogorov proposed a test
based on the statistic

K,=+vn max |Fy(z)— F(z)| = max(K;,K;). (23)

—oo<Lr<l+oo

3.3.1 GENERAL TEST PROCEDURES 57

N. V. Smirnov discussed several modifications of this test in 1939, including the
individual examination of K} and K, as we have suggested above. There is
a large family of similar tests, but the K! and K statistics seem to be most
convenient for computer application. A comprehensive review of the literature
concerning KS tests and their generalizations, including an extensive bibliogra-
phy, appears in a monograph by J. Durbin, Regional Conf. Series on Applied
Math. 9 (SIAM, 1973).

To study the distribution of K} and K;, we begin with the following basic
fact: If X is a random variable with the continuous distribution F(x), then F(X)
is a uniformly distributed real number between 0 and 1. To prove this, we need
only verify that if 0 < y < 1 we have F(X) < y with probability y. Since F' is
continuous, F(zy) = y for some xp; thus the probability that F/(X) < y is the
probability that X < zy. By definition, the latter probability is F'(zo), that is,
it is y.

Let Y; = nF(Xj), for 1 < j < n, where the X’s have been sorted as in
Step 2 preceding Eq. (13). Then the variables Y; are essentially the same as
independent, uniformly distributed random numbers between 0 and n that have
been sorted into nondecreasing order, Y; < Y5 < --- <Y,; and the first equation
of (13) may be transformed into

1
K:z: = 7;11’18,)((1-Y1,2-Y2, ...,’I’L—Yn).
If 0 < t < n, the probability that K} < t/+/n is therefore the probability that

Y; > j—tfor1 <j<n. Thisis not hard to express in terms of n-dimensional
integrals,

f:n dyn 5:_1 dyn—l fgf dyl
fon dyn foyn AYn—1 - -- foyz dy1 ’

The denominator here is immediately evaluated: It is found to be n™/n!, which
makes sense since the hypercube of all vectors (y1,y2,...,yn) With 0 <y; <n
has volume n™, and it can be divided into n! equal parts corresponding to each
possible ordering of the y’s. The integral in the numerator is a little more
difficult, but it yields to the attack suggested in exercise 17, and we get the
general formulas

where o; = max(j — ¢, 0). (24)

Pr<K2' < 7%—) = ni“ (Z)(k —)t +n - k)t (25)

- ¥ (Z)(k—t)k(t+n—k)”_k_l. (26)

The distribution of K is exactly the same. Equation (26) was first obtained
by N. V. Smirnov [Uspekhi Mat. Nauk 10 (1944), 176-206]; see also Z. W.
Birnbaum and Fred H. Tingey, Annals Math. Stat. 22 (1951), 592-596. Smirnov

58 RANDOM NUMBERS 3.3.1

derived the asymptotic formula
2 2
Pr(Kf <s)=1-—e"2 (1- gs/\/ﬁ—l— O(1/n)) (27)

for all fixed s > 0; this yields the approximations for large n that appear in
Table 2. .

Abel’s binomial theorem, Eq. 1.2.6-(16), shows the equivalence of (25) and
(26). We can extend Table 2 using either formula, but there is an interesting
tradeoff: Although the sum in (25) has only about s/n terms, when s = t/y/n is
given, it must be evaluated with multiple-precision arithmetic, because the terms
are large and their leading digits cancel out. No such problem arises in (26), since
its terms are all positive; but (26) has n — s4/n terms.

EXERCISES

1. [00] What line of the chi-square table should be used to check whether or not the
value V = 7% of Eq. (5) is improbably high?

2. [20] If two dice are “loaded” so that, on one die, the value 1 will turn up exactly
twice as often as any of the other values, and the other die is similarly biased towards 6,

compute the probability ps that a total of exactly s will appear on the two dice, for
2< 5< 12.

3. [23] Some dice that were loaded as described in the previous exercise were rolled
144 times, and the following values were observed:

valueofs=2 3 4 5 6 7 8 9 10 11 12
observed number, Y, = 2 6 10 16 18 32 20 13 16 9 2

Apply the chi-square test to these values, using the probabilities in (1), pretending that
the dice are not in fact known to be faulty. Does the chi-square test detect the bad
dice? If not, explain why not.

4. [23] The author actually obtained the data in experiment 1 of (9) by simulating
dice in which one was normal, the other was loaded so that it always turned up 1 or 6.
(The latter two possibilities were equally probable.) Compute the probabilities that
replace (1) in this case, and by using a chi-square test decide if the results of that
experiment are consistent with the dice being loaded in this way.

5. [22] Let F(z) be the uniform distribution, Fig. 3(b). Find K3, and K5, for the
following 20 observations:

0414, 0.732, 0.236, 0.162, 0.259, 0.442, 0.189, 0.693, 0.098, 0.302,
0.442, 0.434, 0.141, 0.017, 0.318, 0.869, 0.772, 0.678, 0.354, 0.718,

and state whether these observations are significantly different from the expected
behavior with respect to either of these two tests.

6. [M20] Consider Fi.(z), as given in Eq. (10), for fixed z. What is the probability
that Fn(z) = s/n, given an integer s7 What is the mean value of F,,(z)? What is the
standard deviation?

7. [M15] Show that K} and K, can never be negative. What is the largest possible
value K} can have?

8. [00] The text describes an experiment in which 20 values of the statistic K
were obtained in the study of a random sequence. These values were plotted, to obtain

3.3.1 GENERAL TEST PROCEDURES 59

Fig. 4, and a KS statistic was computed from the resulting graph. Why were the table
entries for n = 20 used to study the resulting statistic, instead of the table entries for
n = 107

9. [20] The experiment described in the text consisted of plotting 20 values of K1,
computed from the maximum-of-5 test applied to different parts of a random sequence.
We could have computed also the corresponding 20 values of K ,; since K, has the
same distribution as K, we could lump together the 40 values thus obtained (that is,
20 of the K{y’s and 20 of the K ;'s), and a KS test could be applied so that we would
get new values K, K ;. Discuss the merits of this idea.

10. [20] Suppose a chi-square test is done by making n observations, and the value V
is obtained. Now we repeat the test on these same.n observations over again (getting,
of course, the same results), and we put together the data from both tests, regarding
it as a single chi-square test with 2n observations. (This procedure violates the text’s
stipulation that all of the observations must be independent of one another.) How is
the second value of V related to the first one?

11. [10] Solve exercise 10 substituting the KS test for the chi-square test.

12. [M28] Suppose a chi-square test is made on a set of n observations, assuming that
ps is the probability that each observation falls into category s; but suppose that in
actual fact the observations have probability g, # p, of falling into category s. (See
exercise 3.) We would, of course, like the chi-square test to detect the fact that the p;
assumption was incorrect. Show that this will happen, if n is large enough. Prove also
the analogous result for the KS test.

13. [M24] Prove that Eqgs. (13) are equivalent to Egs. (11).

14. [HM26] Let Z, be given by Eq. (18). Show directly by using Stirling’s approxi-
mation that the multinomial probability
nlplt. L pF /YL Y = e "2/ \/(2nm)k=1p; . pr + O(nF/?),

if Z1,23,...,2Z) are bounded as n — oo. (This idea leads to a proof of the chi-square
test that is much closer to “first principles,” and requires less handwaving, than the
derivation in the text.)

15. [HM24] Polar coordinates in two dimensions are conventionally defined by the
equations £ = rcosf and y = rsin 6. For the purposes of integration, we have dz dy =
rdr df. More generally, in n-dimensional space we can let

Tr =7sinf; ...sinfg_1cos0, 1<k <n, and Tp =7sinf1...sinl,_1.
Show that in this case
dzidzs...dz, = lfrn—l sin” 20, ...sin0,_2drdo; ... dbBrn—1].
16. [HM35] Generalize Theorem 1.2.11.3A to find the value of
Yz +1, x4+ 2v2z +y)/T(z + 1),

for large = and fixed y, z. Disregard terms of the answer that are O(1/z). Use this
result to find the approximate solution, ¢, to the equation

vt v
1(53) /F(§> =P
for large v and fixed p, thereby accounting for the asymptotic formulas indicated in
Table 1. [Hint: See exercise 1.2.11.3-8.]

60 RANDOM NUMBERS 3.3.1

17. [HM26] Let t be a fixed real number. For 0 < k < n, let

T Tn Tky2 Thy1 z2
Pi(x) :/ dmn/ dTp—1 ... / dmk+1/ dzy ... / dz1;
n—t n—1~t k+1~1 0 0

by convention, let Pyo(z) = 1. Prove the following relations:

T+t n Thi42 Tr41 z2
a) Pri(z) :/ dxnf drn,_1 / dmk+1/ dz / dz;.
n n—1 k+1 t t

b) Pno(z) = (z +t)*/n! — (z +)" !/(n — 1)L

¢) Pur(z) — Pre-1)(z) = (k_;Ft)_

d) Obtain a general formula for P,x(z), and apply it to the evaluation of Eq. (24).

P(n_k)o(a: — k), if 1 S k S n.

18. [M20] Give a “simple” reason why K, has the same probability distribution
as K.

19. [HM48] Develop tests, analogous to the Kolmogorov-Smirnov test, for use with
multivariate distributions F(z1,...,z-) = Pr(X1 < 1, ..., X; < z,). (Such proce-
dures could be used, for example, in place of the “serial test” in the next section.)

20. [HM41] Deduce further terms of the asymptotic behavior of the KS distribution,
extending (27).

21. [M40] Although the text states that the KS test should be applied only when
F(z) is a continuous distribution function, it is, of course, possible to try to compute
K+ and K, even when the distribution has jumps. Analyze the probable behavior of
K7 and K, for various discontinuous distributions F(z). Compare the effectiveness
of the resulting statistical test with the chi-square test on several samples of random
numbers.

22. [HM6] Investigate the “improved” KS test suggested in the answer to exercise 6.

23. [M22] (T. Gonzalez, S. Sahni, and W. R. Franta.) (a) Suppose that the maxi-
mum value in formula (13) for the KS statistic K, occurs at a given index j where
InF(X;)] = k. Prove that F(X;) = maxi<i<n{F(Xi) | [InF(X:)] = k}. (b) Design
an algorithm that calculates K} and K, in O(n) steps (without sorting).

24. [40] Experiment with various probability distributions (p, g, r) on three categories,
where p + ¢ +r = 1, by computing the exact distribution of the chi-square statistic V
for various n, thereby determining how accurate an approximation the chi-square
distribution with two degrees of freedom really is.

25. [HM26] Suppose Yi = > 7) ai; X; + pi for 1 <4 < m, where X1, ..., X, are
independent random variables with mean zero and unit variance, and the matrix A =

(aij) has rank n.

a) Express the covariance matrix C = (ci;), where ¢;; = E(Y; — p:)(Y; — p5), in
terms of the matrix A.
b) Prove that if C = (Cij;) is any matrix such that CCC = C, the statistic

W= (Yi— w) (Y5 — py)
i=1 j=1

is equal to X2 +--- + X2. [Consequently, if the X; have the normal distribution,
W has the chi-square distribution with n degrees of freedom.]

3.3.2 EMPIRICAL TESTS 61

The equanimity of your average tosser of coins
depends upon a law ... which ensures that

he will not upset himself by losing too much
nor upset his opponent by winning too often.

— TOM STOPPARD, Rosencrantz & Guildenstern are Dead (1966)

3.3.2. Empirical Tests

In this section we shall discuss eleven kinds of specific tests that have traditionally
been applied to sequences in order to investigate their randomness. The discus-
sion of each test has two parts: (a) a “plug-in” description of how to perform the
test; and (b) a study of the theoretical basis for the test. (Readers who lack math-
ematical training may wish to skip over the theoretical discussions. Conversely,
mathematically inclined readers may find the associated theory quite interesting,
even if they never intend to test random number generators, since some instruc-
tive combinatorial questions are involved here. Indeed, this section introduces
several topics that will be important to us later in quite different contexts.)
Each test is applied to a sequence

<Un>=U0,U1,U2,... (1)

of real numbers, which purports to be independently and uniformly distributed
between zero and one. Some of the tests are designed primarily for integer-valued
sequences, instead of the real-valued sequence (1). In this case, the auxiliary
sequence

<Yn> :YO,Y]_,Y2,... (2)

defined by the rule
Yo = [dUn] (3)

is used instead. This is a sequence of integers that purports to be independently
and uniformly distributed between 0 and d — 1. The number d is chosen for
convenience; for example, we might have d = 64 = 26 on a binary computer,
so that Y, represents the six most significant bits of the binary representation
of U,,. The value of d should be large enough so that the test is meaningful, but
not so large that the test becomes impracticably difficult to carry out.

The quantities Uy, Y5, and d will have the significance stated above through-
out this section, although the value of d will probably be different in different
tests.

A. Equidistribution test (Frequency test). The first requirement that
sequence (1) must meet is that its numbers are, in fact, uniformly distributed
between zero and one. There are two ways to make this test: (a) Use the
Kolmogorov—Smirnov test, with F(z) = z for 0 < z < 1. (b) Let d be a
convenient number, such as 100 on a decimal computer, 64 or 128 on a binary
computer, and use the sequence (2) instead of (1). For each integer 7, 0 < r < d,
count the number of times that ¥; = r for 0 < j < n, and then apply the
chi-square test using k = d and probability ps = 1/d for each category.
The theory behind this test has been covered in Section 3.3.1.

62 RANDOM NUMBERS 3.3.2

B. Serial test. More generally, we want pairs of successive numbers to be
uniformly distributed in an independent manner. The sun comes up just about as
often as it goes down, in the long run, but that doesn’t make its motion random.

To carry out the serial test, we simply count the number of times that the
pair (Y2j,Y2j+1) = (g,7) occurs, for 0 < j < n; these counts are to be made for
each pair of integers (g,7) with 0 < g,r < d, and the chi-square test is applied
to these k = d? categories with probability 1/d? in each category. As with the
equidistribution test, d may be any convenient number, but it will be somewhat
smaller than the values suggested above since a valid chi-square test should have
n large compared to k (say n > 5d? at least).

Clearly we can generalize this test to triples, quadruples, etc., instead of
pairs (see exercise 2); however, the value of d must then be severely reduced in
order to avoid having too many categories. When quadruples and larger numbers
of adjacent elements are considered, we therefore make use of less exact tests such
as the poker test or the maximum test described below.

Notice that 2n numbers of the sequence (2) are used in this test in order
to make m observations. It would be a mistake to perform the serial test
on the pairs (Yp, Y1), (Y1,Y2), ..., (Ya—1,Yn); can the reader see why? We
might perform another serial test on the pairs (Y3;+1,Y2;5+2), and expect the
sequence to pass both tests, remembering that the tests aren’t independent of
each other. Alternatively, George Marsaglia has proved that, if the pairs (Yo, Y1),
(Y1,Y3), ..., (Yn_1,Yn) are used, and if we use the usual chi-square method to
compute both the statistics V2 for the serial test and V; for the frequency test on
Yy, ..., Y,_1 with the same value of d, then V3 — Vi should have the chi-square
distribution with d(d — 1) degrees of freedom when n is large. (See exercise 24.)

C. Gap test. Another test is used to examine the length of “gaps” between
occurrences of U; in a certain range. If o and § are two real numbers with
0 < a < (<1, we want to consider the lengths of consecutive subsequences Uj,
Uj+1, - -+ Ujpr in which Uj,, lies between o and § but the other U’s do not.
(This subsequence of r + 1 numbers represents a gap of length r.)

Algorithm G (Data for gap test). The following algorithm, applied to the
sequence (1) for any given values of a and 3, counts the number of gaps of
lengths 0, 1, ..., t — 1 and the number of gaps of length > ¢, until n gaps have
been tabulated.

G1. [Initialize.] Set j +- —1, s <- 0, and set COUNT[r] <~ 0 for 0 <r < .
G2. [Set r zero.] Set r + 0.

G3. [a < U; < B7) Increase j by 1. If U; > o and U; < 3, go to step G5.
G4. [Increase r.] Increase r by one, and return to step G3.

G5. [Record the gap length.] (A gap of length r has now been found.) If r > ¢,
increase COUNT([t] by one, otherwise increase COUNT|[r] by one.

G6. [n gaps found?] Increase s by one. If s < n, return to step G2. |

3.3.2 EMPIRICAL TESTS 63

G1. Initialize G2. Set » zero —><G3‘ a<Uj <ﬁ§-% G4. Increase r

Yes

No

@6‘ n gaps foun@é——‘ G5. Record the gap length
lYes

Fig. 6. Gathering data for the gap test. (Algorithms for the “coupon-collector’s test”
and the “run test” are similar.)

After Algorithm G has been performed, the chi-square test is applied to
the k = ¢t 4+ 1 values of COUNT[0], COUNT[1], ..., COUNT[¢], using the following
probabilities: :

Pr:p(l—p)r, for0<r<t-—1; pt:(l—p)t. (4)

Here p = 8 — « is the probability that & < U; < 3. The values of n and ¢ are to
be chosen, as usual, so that each of the values of COUNT[r] is expected to be 5 or
more, preferably more.

The gap test is often applied with @ = 0 or § = 1 in order to omit one of
the comparisons in step G3. The special cases (a, 8) = (0, 1) or (3,1) give rise
to tests that are sometimes called “runs above the mean” and “runs below the
mean,” respectively.

The probabilities in Eq. (4) are easily deduced, so this derivation is left to
the reader. Notice that the gap test as described above observes the lengths of n
gaps; it does not observe the gap lengths among n numbers. If the sequence (Up,)
is sufficiently nonrandom, Algorithm G might not terminate. Other gap tests
that examine a fixed number of U’s have also been proposed (see exercise 5).

D. Poker test (Partition test). The “classical” poker test considers n groups
of five successive integers, {Ys;, Ys;+1,..., Y544} for 0 < j < n, and observes
which of the following seven patterns is matched by each (orderless) quintuple:

All different: abcde
One pair: aabed
Two pairs: aabbc
Three of a kind: aaabc
Full house: aaabb
Four of a kind: aaaab
Five of a kind: aaaaa
A chi-square test is based on the number of quintuples in each category.

It is reasonable to ask for a somewhat simpler version of this test, to facilitate
the programming involved. A good compromise would simply be to count the

64 RANDOM NUMBERS 3.3.2

number of distinct values in the set of five. We would then have five categories:

5 values = all different;
4 values = one pair;
3 values = two pairs, or three of a kind;
2 values = full house, or four of a kind,;
1 value = five of a kind.
This breakdown is easier to determine systematically, and the test is nearly
as good.
In general we can consider n groups of k successive numbers, and we can

count the number of k-tuples with r different values. A chi-square test is then
made, using the probability

d(d_l)"é,fd_r+1){]:} (5)

that there are r different. (The Stirling numbers {ff} are defined in Section 1.2.6,
and they can readily be computed using the formulas given there.) Since the
probability p, is very small when r = 1 or 2, we generally lump a few categories
of low probability together before the chi-square test is applied.

To derive the proper formula for p., we must count how many of the d*
k-tuples of numbers between 0 and d — 1 have exactly r different elements, and
divide the total by d*. Since d(d —1)...(d — r + 1) is the number of ordered
choices of r things from a set of d objects, we need only show that {f} is the
number of ways to partition a set of k elements into exactly r parts. Therefore
exercise 1.2.6-64 completes the derivation of Eq. (5).

br =

E. Coupon collector’s test. The next test is related to the poker test some-
what as the gap test is related to the frequency test. We use the sequence Yy,
Y1, ..., and we observe the lengths of segments Y; 1, Y;12, ..., Y4, that are
required to get a “complete set” of integers from 0 to d—1. Algorithm C describes

this precisely:

Algorithm C (Data for coupon collector’s test). Given a sequence of integers
Yo, Y1, ..., with 0 < Y; < d, this algorithm counts the lengths of n consecutive
“coupon collector” segments. At the conclusion of the algorithm, COUNT|r] is the
number of segments with length r, for d < r < ¢, and COUNT[¢] is the number of
segments with length > ¢.

C1. [Initialize.] Set j - —1, s < 0, and set COUNT[r] <- 0 for d <r < t.
C2. [Set q,r zero.] Set g + r 0, and set OCCURS[k] — 0 for 0 < k < d.

C3. [Next observation.] Increase r and j by 1. If OCCURS[Y;]| # 0, repeat this
step.

C4. [Complete set?] Set OCCURS[Y;] < 1 and ¢ + ¢ + 1. (The subsequence
observed so far contains ¢ distinct values; if ¢ = d, we therefore have a
complete set.) If ¢ < d, return to step C3.

3.3.2 EMPIRICAL TESTS 65

C5. [Record the length.] If r > ¢, increase COUNT[t] by one, otherwise increase
COUNT[r] by one.

C6. [n found?] Increase s by one. If s < n, return to step C2. |

For an example of this algorithm, see exercise 7. We may think of a boy col-
lecting d types of coupons, which are randomly distributed in his breakfast cereal
boxes; he must keep eating more cereal until he has one coupon of each type.

A chi-square test is to be applied to COUNT[d], COUNT[d + 1], ..., COUNT]¢],
with k = t —d+ 1, after Algorithm C has counted n lengths. The corresponding
probabilities are

da rr—1 d! t—1
= — d < : =1-)
Pr dr{d—l}’ sT<t P dt—l{ d } (6)

To derive these probabilities, we simply note that if g, denotes the probability
that a subsequence of length r is incomplete, then

dl (r
qr_l_d_r{d}

by Eq. (5); for this means we have an r-tuple of elements that do not have all d
different values. Then (6) follows from the relations p; = g;—; and

Dr = Qr—1 — Gr ford <r <t.

For formulas that arise in connection with generalizations of the coupon
collector’s test, see exercises 9 and 10 and also the papers by George Pdlya,
Zeitschrift fiir angewandte Math. und Mech. 10 (1930), 96-97; Hermann von
Schelling, AMM 61 (1954), 306-311.

F. Permutation test. Divide the input sequence into n groups of ¢ elements
each, that is, (Ujs, Ujt+1, - - -, Ujt4e—1) for 0 < j < n. The elements in each group
can have ¢! possible relative orderings; the number of times each ordering appears
is counted, and a chi-square test is applied with k = ¢! and with probability 1/¢!
for each ordering.

For example, if ¢t = 3 we would have six possible categories, according to
whether U3j < U3j+1 < U3j+2 or U3j < U3j+2 < U3j+1 or --- or U3j+2 <
Usj+1 < Us;. We assume in this test that equality between U’s does not occur;
such an assumption is justified, for the probability that two U’s are equal is zero.

A convenient way to perform the permutation test on a computer makes use
of the following algorithm, which is of interest in itself:

Algorithm P (Analyze a permutation). Given a sequence of distinct elements
(U1, - ..,Ut), we compute an integer f(Us,...,Us) such that

OSf(U17"'7Ut)<t!7
and f(Uy,...,U;) = f(Vi,..., V) if and only if (Uy,...,Us) and (V1,...,V4)

have the same relative ordering.

66 RANDOM NUMBERS 3.3.2

P1. [Initialize.] Set r < ¢, f - 0. (During this algorithm we will have 0 < f <
tl/rl)

P2. [Find maximum.] Find the maximum of {Uy,...,U,}, and suppose that U,
is the maximum. Set f «-r . f4+s—1.

P3. [Exchange.] Exchange U, < Us.
P4. [Decrease r.] Decrease r by one. If » > 1, return to step P2. |

The sequence (Ui, ..., U;) will have been sorted into ascending order when
this algorithm stops. To prove that the result f uniquely characterizes the initial
order of (Uy,...,U;), we note that Algorithm P can be run backwards:

Forr=2,3, ..., 1,
set s + fmodr, f«+ |f/r],
and exchange U, <> Ugy.

It is easy to see that this will undo the effects of steps P2-P4; hence no two
permutations can yield the same value of f, and Algorithm P performs as
advertised.

The essential idea that underlies Algorithm P is a mixed-radix representation
called the “factorial number system”: Every integer in the range 0 < f < ¢! can
be uniquely written in the form

fz(...(ct_l X(t—l)‘l‘ct__g)X(t—2)+-"+62) X24cc
=(t—1)!ct_1—I—(t—2)!ct_2-|--~~+2!62—|—1!cl (7)

where the “digits” c; are integers satisfying
0<¢; <13, for 1<j<t. (8)
In Algorithm P, ¢,_; = s — 1 when step P2 is performed for a given value of r.

G. Run test. A sequence may also be tested for “runs up” and “runs down.”
This means that we examine the length of monotone portions of the original
sequence (segments that are increasing or decreasing).

As an example of the precise definition of a run, consider the sequence of ten
digits “1298536704”. Putting a vertical line at the left and right and between
X; and X;; whenever X; > X;,, we obtain

|1 2 9]8]|5|3 6 7|0 4], (9)

which displays the “runs up”: There is a run of length 3, followed by two runs
of length 1, followed by another run of length 3, followed by a run of length 2.
The algorithm of exercise 12 shows how to tabulate the length of “runs up.”
Unlike the gap test and the coupon collector’s test (which are in many other
respects similar to this test), we should not apply a chi-square test to the run
counts, since adjacent runs are not independent. A long run will tend to be
followed by a short run, and conversely. This lack of independence is enough to

3.3.2 EMPIRICAL TESTS 67

invalidate a straightforward chi-square test. Instead, the following statistic may
be computed, when the run lengths have been determined as in exercise 12:

1

n —

V= >~ (COUNT[i] — nb;)(COUNT[5] — nb;) ay;, (10)

1<i,j<6

where n is the length of the sequence, and the matrices of coefficients A =
(@ij)1<i,5<6 and B = (bi)1<i<e are given by

(45204 00440 13568 18001 22615 27802\ (1 \

0044.9 18097 27139 36187 45234 55789 =

4 _ | 13568 27139 40721 54281 67852 83685 B 55
18091 36187 54281 72414 90470 111580 |’ A%
\22615 45234 67852 90470 113262 139476) =25
27892 55789 83685 111580 139476 172860 Kg}i—o

(11)
(The values of a;; shown here are approximate only; exact values can be obtained
from formulas derived below.) The statistic V' in (10) should have the chi-square
distribution with six, not five, degrees of freedom, when n is large. The value
of n should be, say, 4000 or more. The same test can be applied to “runs down.”

A vastly simpler and more practical run test appears in exercise 14, so
a reader who is interested only in testing random number generators should
skip the next few pages and go on to the “maximum-of-¢ test” after looking at
exercise 14. On the other hand it is instructive from a mathematical standpoint
to see how a complicated run test with interdependent runs can be treated, so
we shall now digress for a moment.

Given any permutation of n elements, let Z,; = 1 if position 7 is the
beginning of an ascending run of length p or more, and let Z,; = 0 otherwise.
For example, consider the permutation (g9) with n = 10; we have

Zy) =291 =231 = 214 = 215 = Zng = Zop = Z36 = Z19 = Zz9 = 1,
and all other Z’s are zero. With this notation,
R,=Zpn+Zp+ + Zpn (12)
is the number of runs of length > p, and
Ry = R, R, (13)

is the number of runs of length p exactly. Our goal is to compute the mean value
of Ry, and also the covariance

covar(R,, Ry) = mean((R, — mean(R,)) (R, — mean(Ry))),

which measures the interdependence of R, and R,. These mean values are to be
computed as the average over the set of all n! permutations.

68 RANDOM NUMBERS 3.3.2

Equations (12) and (13) show that the answers can be expressed in terms
of the mean values of Z,; and of Z,;Z,;, so as the first step of the derivation we
obtain the following results (assuming that 7 < j):

p+dn

1 , fi<n—p+1;
m}:@ﬁz (p+1)!
) 0, otherwise.
(.
(p+di1)q ifi+p<ji<n—g+1; (14)

] (p+D!g+ 1Y
Ezzpiij:4 p+da ptg+tia
' (p+1'g! (p+g+ 1)V
A 0, otherwise.

fi+p=7<n-—g+1;

The > -signs stand for summation over all possible permutations. To illustrate
the calculations involved here, we will work the most difficult case, when 7 +p =
Jj <n—g+1, and when ¢ > 1. The quantity Z,;Z,; is either zero or one,
so the summation consists of counting all permutations U U, ...U, for which
Zpi = Zg; =1, that is, all permutations such that

Ui > Ui <o <Ujppo1 > Uigp < -+ < Ujgptg-1. (15)

The number of such permutations may be enumerated as follows: There are

(1[J +Z +1) ways to choose the elements for the positions indicated in (15); there
are
p+q pt+g+1 p+ag+1
+qg+1 (> — (> — (> +1 16
prat D", p+1 1 (16)

ways to arrange them in the order (15), as shown in exercise 13; and there
are (n — p — g — 1)! ways to arrange the remaining elements. Thus there are
(p+z+1)(n —p—g— 1)! times (16) ways in all, and we divide by n! to get the
desired formula.

From relations (14) a rather lengthy calculation leads to

mean(R,) = (n+ Up/(p+ 1!~ (p-D/p!, 1<p<m (17)

covar(R,, R;) = mean(R,, R;) — mean(R,,) mean(R;)

1
- Z ~ Z Zpi Zy; — mean(R)) mean(R,)

1<i,j<n
_ [mean(R}) + f(p,q,n), if p+ g <n,
~ | mean(R}) — mean(R,) mean(R;), ifp+q>n, (18)

where t = max(p,q), s =p+ ¢, and
s(1 —pq) + pq 2s s—1
3 3 = 1 o 2 sl
f(prq,m) (”+)<@+1y@+nl @+&ﬂ)+ (s!)
(s —s—2)pg— s> —p?¢® + 1
(p+ 1)1 (g +1)!

(19)

3.3.2 EMPIRICAL TESTS 69

This expression for the covariance is unfortunately quite complicated, but it is
necessary for a successful run test as described above. From these formulas it is

easy to compute

mean(R,) = mean(R) — mean(R,),
covar(R,, R,) = covar(R,, R;) — covar(R,,, R}), (20)
covar(R,, R,) = covar(R,, R;) — covar(R,, R,).

In Annals Math. Stat. 15 (1944), 163-165, J. Wolfowitz proved that the quan-
tities R,, R,, ..., R,_,, R; become normally distributed as n — oo, subject to
the mean and covariance expressed above; this implies that the following test for
runs is valid: Given a sequence of n random numbers, compute the number of
runs R, of length p for 1 < p < t, and also the number of runs R; of length ¢ or
more. Let

Ql = R1 — mean(Rl), ceay Qt—l = Rt—l — mean(Rt_l),

Q; = R, — mean(R}).

Form the matrix C of the covariances of the R’s; for example, Ci3 =
covar(R,, Rs), while Cy; = covar(R,, R;). When t = 6, we have

(21)

C =nC; + Cy, (22)
where
23 -7 -5 —433 —13 —121
[150 360 336 60480 5670 181440 \
-7 2843 —989 —7159 —10019 —1303
360 20160 30160 362880 1814400 907200
-5 —989 54563 —21311 —62369 —7783
O, = 336 20160 907200 1814400 19958400 9979200
1= | _—433 _—m59 —21311 886657 —257699 —62611 ’
60480 362880 1814400 39916800 239500800 239500800
—13 —10019 _—62369 _—257699 20874811 —1407179
5670 ~ 1814400 19958400 239500800 5448643200 21794572800
—121 —1303 7783 —62611 —1407179 2134697
181440 907200 9979200 239500800 21794572800 1816214400
83 —29 -1 —41 91 41
[150 180 210 12096 35920 18144 \
—29 305 319 2557 10177 413
180 4032 20160 72576 604800 64800
—11 319 —58747 19703 239471 39517
C,= | 70 20160 507200 604800 19958400 9979200
—41 2557 19703 —220837 1196401 360989
12096 72576 604800 4435200 239500800 239500800
91 10177 239471 1196401 —139126639 4577641
25920 604800 19958400 239500800 7264857600 10897286400
41 413 39517 360989 4577641 —122953057

18144 64800 9979200 239500800 10897286400 21794572800
if n > 12. Now form A = (a;j;), the inverse of the matrix C, and compute
Zf =1 @iQ;ai;. The result for large n should have approximately the chi-square
distribution with ¢ degrees of freedom.
The matrix A given earlier in (11) is the inverse of C) to five significant fig-
ures. The true inverse, A, is n™2C; —n"2C['CoCy !t +n~3C1CoCT I C2C —
, and it turns out that C 1o, Cy ! is very nearly equal to —6C~!. Therefore
V = QTC'Q/(n —6).

70 RANDOM NUMBERS 3.3.2

H. Maximum-of-t test. For 0 < j < n, let V; = max(Uy;, Usj41,. .., Usjre—1).

Now apply the Kolmogorov—Smirnov test to the sequence Vj, Vi, ..., Vi1,
with the distribution function F(z) = z*, 0 < z < 1. Alternatively, apply the
equidistribution test to the sequence V¢, V{, ..., Vi_;.

To verify this test, we must show that the distribution function for the Vj is
F(z) = z*. The probability that max(Uy, Uz, ...,U;) < z is the probability that
U; <zand U <z and ... and U; < z, which is the product of the individual
probabilities, namely zz ...z = z*.

I. Collision test. Chi-square tests can be made only when a nontrivial number
of items are expected in each category. But another kind of test can be used
when the number of categories is much larger than the number of observations;
this test is related to “hashing,” an important method for information retrieval
that we shall study in Section 6.4.

Suppose we have m urns and we throw n balls at random into those urns,
where m is much greater than n. Most of the balls will land in urns that were
previously empty, but if a ball falls into an urn that already contains at least one
ball we say that a “collision” has occurred. The collision test counts the number
of collisions, and a generator passes this test if it doesn’t induce too many or too
few collisions.

To fix the ideas, suppose m = 22° and n = 2!%. Then each urn will receive
only one 64th of a ball, on the average. The probability that a given urn will
contain exactly k balls is px = (})m~%(1 —m™)""*, so the expected number of
collisions per urn is

Z(k—l)pk=2kpk—2pk=%—1+p0.

k>1 k>0 k>1

Since pgp = (1—m™)" =1 - nm~! + (g)m_2 — smaller terms, we find that
the average total number of collisions taken over all m urns is slightly less than
n?/(2m) = 128. (The actual value is ~ 127.33.)

We can use the collision test to rate a random number generator in a large
number of dimensions. For example, when m = 22° and n = 214 we can test the
20-dimensional randomness of a number generator by letting d = 2 and forming
20-dimensional vectors V; = (Y205, Y20j+1, - - - , Y20;419) for 0 < j <n. We keep
a table of m = 229 bits to determine collisions, one bit for each possible value of
the vector Vj; on a computer with 32 bits per word, this amounts to 2'* words.
Initially all 22° bits of this table are cleared to zero; then for each Vj, if the
corresponding bit is already 1 we record a collision, otherwise we set the bit to 1.
This test can also be used in 10 dimensions with d = 4, and so on.

To decide if the test is passed, we can use the following table of percentage
points when m = 220 and n = 24

collisions < 101 108 119 126 134 145 153
with probability .009 .043 .244 476 .742 .946 .989

The theory underlying these probabilities is the same we used in the poker test,
Eq. (5); the probability that c collisions occur is the probability that n — ¢ urns

3.3.2 EMPIRICAL TESTS 71

are occupied, namely

m(m—l)...(nz—n—{—c—{—l){ n }

n—c
Although m and n are very large, it is not difficult to compute these probabilities
using the following method:

Algorithm S (Percentage points for collision test). Given m and n, this

algorithm determines the distribution of the number of collisions that occur

when n balls are scattered into m urns. An auxiliary array A[0], A[1], ...,

A[n] of floating point numbers is used for the computation; actually A[j] will be

nonzero only for jo < j < j1, and j; — jo will be at most of order logn, so it

would be possible to get by with considerably less storage.

S1. [Initialize.] Set A[j] ¢ 0 for 0 < j < n; then set A[1l] < 1 and jo « j; « 1.
Then do step S2 exactly n — 1 times and go on to step S3.

S2. [Update probabilities.] (Performing this step once corresponds to tossing a
ball into an urn; A[j] represents the probability that exactly j of the urns are
occupied.) Set j; « j1 + 1. Then for j « 71, 71 — 1, ..., jo (in this order),
set A[j] « (j/m)A[j] + ((1 +1/m) — (j/m))A[j — 1]. If A[j] has become
very small as a result of this calculation, say A[j] < 10729 set A[j] « 0;
and in such a case, decrease j; by 1 if j = 7;, or increase jy by 1 if j = jo.

S3. [Compute the answers.] In this step we make use of an auxiliary table
(Th, T, ..., Titmax) = (.01, .05, .25, .50, .75, .95, .99, 1.00) containing the
specified percentage points of interest. Set p + 0, ¢ + 1, and j + jo—1. Do
the following iteration until ¢ = tmax: Increase j by 1, and set p + p + A[j];
then if p > T}, output n — j — 1 and 1 — p (meaning that with probability
1 — p there are at most n — j — 1 collisions) and repeatedly increase ¢t by 1
until p < T;. 1

J. Birthday spacings test. George Marsaglia introduced a new kind of test in
1984: We throw n balls into m urns, asin the collision test, but now we think of
the urns as “days of a year” and the balls as “birthdays.” Suppose the birthdays
are (Y1,...,Yy,), where 0 <Y; < m. Sort them into nondecreasing order Y{;y <
+++ < Y(n); then define n “spacings” S1 = Y2y — Y1), - -+, Snc1 = ¥Y(n) — Y(n—1),
Sn = Y1) +m — Y{,,; finally sort the spacings into order, S(;y < --- < S(y). Let
R be the number of equal spacings, namely the number of indices j such that
1< j<mnandS; =S;_1)- When m = 2% and n = 512, we should have

R = 0 1 2 3 or more
with probability .368801577 .369035243 .183471182 .078691997

(The average number of equal spacings for this choice of m and n should be
approximately 1.) Repeat the test 1000 times, say, and do a chi-square test with
3 degrees of freedom to compare the empirical R’s with the correct distribution;
this will tell whether or not the generator produces reasonably random birthday
spacings. Exercises 28-30 develop the theory behind this test and formulas for
other values of m and n.

72 RANDOM NUMBERS 3.3.2

Such a test of birthday spacings is important primarily because of the
remarkable fact that lagged Fibonacci generators consistently fail it, although
they pass the other traditional tests quite nicely. [Dramatic examples of such
failures were reported by Marsaglia, Zaman, and Tsang in Stat. and Prob. Letters
8 (1990), 35-39.] Consider, for example, the sequence

Xn = (Xpn-24 + X5u_55) mod m
of Eq. 3.2.2—(7). The numbers of this sequence satisfy
X, + Xng86 = Xn_24 + Xn_31 (modulo m)

because both sides are congruent to X, o4 + Xpn_55 + Xn—gs. Therefore two
pairs of differences are equal:

Xn — Xn—24 = Xp—31 — Xn_ss,

and
Xn - Xn—-31 = Xn——24 - Xn—86-

Whenever X, is reasonably close to X, _24 or X,_3; (as it should be in a truly
random sequence), the difference has a good chance of showing up in two of
the spacings. So we get significantly more cases of equality —typically R ~ 2
on the average, not 1. But if we discount from R any equal spacings that
arise from the stated congruence, the resulting statistic R’ usually does pass
the birthday test. (One way to avoid failure is to discard certain elements of
the sequence, using for example only Xo, X2, X4, ... as random numbers; then
we never get all four elements of the set {Xn, Xn—24,Xn_31,Xn_s6}, and the
birthday spacings are no problem. An even better way to avoid the problem
is to discard consecutive batches of numbers, as suggested by Liischer; see
Section 3.2.2.) Similar remarks apply to the subtract-with-borrow and add-
with-carry generators of exercise 3.2.1.1-14.

K. Serial correlation test. We may also compute the following statistic:

n(U0U1+U1U2+' e+ Up_2Un_1+Un-1Up) —(U0+U1+' . '+Un_1)2
n(U¢+U2+--+U2_) —(Uo+ U+ +Upn-1)? '

”

C = (23)

This is the “serial correlation coefficient,” a measure of the extent to which U;1,
depends on Uj;.

Correlation coefficients appear frequently in statistical work. If we have n
quantities Uy, Uy, ..., Un—1 and n others Vp, Vi, ..., Vi1, the correlation
coefficient between them is defined to be

R (U;V) = (20) (T V)
JeZ U2 (D)) (D VE - (T V)

All summations in this formula are to be taken over the range 0 < 7 < n;
Eq. (23) is the special case V; = U(j+1) mod n- The denominator of (24) is zero
when Ug =U; = - = Uy 0or Vg =V = - = V,_1; we exclude that case
from discussion.

C =

: (24)

3.3.2 EMPIRICAL TESTS 73

A correlation coefficient always lies between —1 and +1. When it is zero or
very small, it indicates that the quantities U; and V; are (relatively speaking)
independent of each other, whereas a value of &1 indicates total linear depen-
dence. In fact, V; = a £ BU; for all j in the latter case, for some constants o
and (. (See exercise 17.)

Therefore it is desirable to have C in Eq. (23) close to zero. In actual
fact, since UplU; is not completely independent of U;U,, the serial correlation
coefficient is not expected to be ezactly zero. (See exercise 18.) A “good” value
of C' will be between y, — 20, and pu, + 20,, where

-1 2 n?

, o, = TR n > 2. (25)

We expect C to be between these limits about 95 percent of the time.

The formula for o2 in (25) is an upper bound, valid for serial correlations
between independent random variables from an arbitrary distribution. When
the U’s are uniformly distributed, the true variance is obtained by subtracting
2n=2+O(n""/3logn). (See exercise 20.)

Instead of simply computing the correlation coefficient between the obser-

vations (Up,Uy,...,Up—1) and their immediate successors (Ui, ...,Un—1,Up),
we can also compute it between (Up,Uy,...,U,—1) and any cyclically shifted
sequence (Ug,...,Un—1,Up,...,Us-1); the cyclic correlations should be small

for 0 < ¢ < n. A straightforward computation of Eq. (24) for all ¢ would
require about n? multiplications, but it is actually possible to compute all the
correlations in only O(nlogn) steps by using “fast Fourier transforms.” (See
Section 4.6.4; see also L. P. Schmid, CACM 8 (1965), 115.)

L. Tests on subsequences. External programs often call for random numbers
in batches. For example, if a program works with three random variables X, Y,
and Z, it may consistently invoke the generation of three random numbers at a
time. In such applications it is important that the subsequences consisting of
every third term of the original sequence be random. If the program requires
g numbers at a time, the sequences

Uo,Ug,Usg,...; U, Ugy1,Uzgs1,---5 .5 Ug—1,Uzq-1,Uszg-1,. .-

can each be put through the tests described above for the original sequence Uy,
Uy, Us, ...

Experience with linear congruential sequences has shown that these derived
sequences rarely if ever behave less randomly than the original sequence, unless g
has a large factor in common with the period length. On a binary computer with
m equal to the word size, for example, a test of the subsequences for ¢ = 8 will
tend to give the poorest randomness for all ¢ < 16; and on a decimal computer,
g = 10 yields the subsequences most likely to be unsatisfactory. (This can be
explained somewhat on the grounds of potency, since such values of g will tend
to lower the potency. Exercise 3.2.1.2-20 provides a more detailed explanation.)

74 RANDOM NUMBERS 3.3.2

M. Historical remarks and further discussion. Statistical tests arose
naturally in the course of scientists’ efforts to “prove” or “disprove” hypotheses
about various observed data. The best-known early papers dealing with the
testing of artificially generated numbers for randomness are two articles by M. G.
Kendall and B. Babington-Smith in the Journal of the Royal Statistical Society
101 (1938), 147-166, and*in the supplement to that journal, 6 (1939), 51-61.
Those papers were concerned with the testing of random digits between 0 and 9,
rather than random real numbers; for this purpose, the authors discussed the
frequency test, serial test, gap test, and poker test, although they misapplied
the serial test. Kendall and Babington-Smith also used a variant of the coupon
collector’s test; the method described in this section was introduced by R. E.
Greenwood in Math. Comp. 9 (1955), 1-5.

The run test has a rather interesting history. Originally, tests were made
on runs up and down at once: A run up would be followed by a run down, then
another run up, and so on. Note that the run test and the permutation test
do not depend on the uniform distribution of the U’s, but only on the fact that
U; = U; occurs with probability zero when i # j; therefore these tests can be
applied to many types of random sequences. The run test in primitive form was
originated by J. Bienaymé [Comptes Rendus Acad. Sci. Paris 81 (1875), 417~
423]. Some sixty years later, W. O. Kermack and A. G. McKendrick published
two extensive papers on the subject (Proc. Royal Society Edinburgh 57 (1937),
228-240, 332-376]; as an example they stated that Edinburgh rainfall between
the years 1785 and 1930 was “entirely random in character” with respect to the
run test (although they examined only the mean and standard deviation of the
run lengths). Several other people began using the test, but it was not until
1944 that the use of the chi-square method in connection with this test was
shown to be incorrect. A paper by H. Levene and J. Wolfowitz in Annals Math.
Stat. 15 (1944), 58-69, introduced the correct run test (for runs up and down,
alternately) and discussed the fallacies in earlier misuses of that test. Separate
tests for runs up and runs down, as proposed in the text above, are more suited
to computer application, so we have not given the more complex formulas for
the alternate-up-and-down case. See the survey paper by D. E. Barton and C. L.
Mallows, Annals Math. Stat. 36 (1965), 236-260.

Of all the tests we have discussed, the frequency test and the serial corre-
lation test seem to be the weakest, in the sense that nearly all random number
generators pass them. Theoretical grounds for the weakness of these tests are
discussed briefly in Section 3.5 (see exercise 3.5-26). The run test, on the other
hand, is rather strong: The results of exercises 3.3.3-23 and 24 suggest that
linear congruential generators tend to have runs somewhat longer than normal
if the multiplier is not large enough, so the run test of exercise 14 is definitely
to be recommended.

The collision test is also highly recommended, since it has been specially
designed to detect the deficiencies of many poor generators that have unfortu-
nately become widespread. Based on ideas of H. Delgas Christiansen [Inst. Math.
Stat. and Oper. Res., Tech. Univ. Denmark (October 1975), unpublished], this

3.3.2 EMPIRICAL TESTS 75

test was the first to be developed after the advent of computers; it is specifically
intended for computer use, and unsuitable for hand calculation.

The reader probably wonders, “Why are there so many tests?” It has been
said that more computer time is spent testing random numbers than using them
in applications! This is untrue, although it is possible to go overboard in testing.

The need for making several tests has been amply documented. People have
found, for example, that some numbers generated by a variant of the middle-
square method have passed the frequency test, gap test, and poker test, yet
flunked the serial test. Linear congruential sequences with small multipliers have
been known to pass many tests, yet fail on the run test because there are too
few runs of length one. The maximum-of-¢ test has also been used to ferret out
some bad generators that otherwise seemed to perform respectably. A subtract-
with-borrow generator fails the gap test when the maximum gap length exceeds
the largest lag; see Vattulainen, Kankaala, Saarinen, and Ala-Nissila, Computer
Physics Communications 86 (1995), 209-226, where a variety of other tests are
also reported. Lagged Fibonacci generators, which are theoretically guaranteed
to have equally distributed least-significant bits, still fail some simple variants of
the 1-bit equidistribution test (see exercises 31 and 35, also 3.6-14).

Perhaps the main reason for doing extensive testing on random number
generators is that people misusing Mr. X’s random number generator will hardly
ever admit that their programs are at fault: They will blame the generator, until
Mr. X can prove to them that his numbers are sufficiently random. On the other
hand, if the source of random numbers is only for Mr. X’s personal use, he might
decide not to bother to test them, since the techniques recommended in this
chapter have a high probability of being satisfactory.

As computers become faster, more random numbers are consumed than ever
before, and random number generators that once were satisfactory are no longer
good enough for sophisticated applications in physics, combinatorics, stochastic
geometry, etc. George Marsaglia has therefore introduced a number of stringent
tests, which go well beyond classical methods like the gap and poker tests, in
order to meet the new challenges. For example, he found that the sequence
Xnt1 = (62605X, -+ 113218009) mod 22° had a noticeable bias in the following
experiment: Generate 22! random numbers X,, and extract their 10 leading bits
Y, = | X,/2'%]. Count how many of the 22° possible pairs (y,y’) of 10-bit
numbers do not occur among (Y1,Y2), (Y2,Y3), ..., (Ya21_1, Y221). There ought
to be about 141909.33 missing pairs, with standard deviation =~ 290.46 (see
exercise 34). But six consecutive trials, starting with X; = 1234567, produced
counts that were all between 1.5 and 3.5 standard deviations too low. The
distribution was a bit too “fat” to be random — probably because 22! numbers
is a significant fraction, 1/256, of the entire period. A similar generator with
multiplier 69069 and modulus 23° proved to be better. Marsaglia and Zaman call
this procedure a “monkey test,” because it counts the number of two-character
combinations that a monkey will miss after typing randomly on a keyboard
with 1024 keys; see Computers and Math. 26,9 (November 1993), 1-10, for the
analysis of several monkey tests.

76 RANDOM NUMBERS 3.3.2

EXERCISES

1. [10] Why should the serial test described in part B be applied to (Yo,11), (Y2, ¥3),
., (Yan—2, Yan—1) instead of to (Yo, Y1), (Y1,Y2), ..., (Yaz1,Ya)?

2. [10] State an appropriate way to generalize the serial test to triples, quadruples,
etc., instead of pairs.

3. [M20] How many U’s need to be examined in the gap test (Algorithm G) before
n gaps have been found, on the average, assuming that the sequence is random? What
is the standard deviation of this quantity?

4. [M12] Prove that the probabilities in (4) are correct for the gap test.

5. [M23] The “classical” gap test used by Kendall and Babington-Smith considers
the numbers Uy, Uy, ..., Un-1 to be a cyclic sequence with Un; identified with Uj.
Here N is a fixed number of U’s that are to be subjected to the test. If n of the numbers
Us, ..., Un—1 fall into the range o < U; < (3, there are n gaps in the cyclic sequence.
Let Z. be the number of gaps of length r, for 0 < r < t, and let Z; be the number of
gaps of length > t; show that the quantity V = >, .,(Zr — np,)?/np, should have
the chi-square distribution with ¢ degrees of freedom, in the limit as N goes to infinity,
where p, is given in Eq. (4).

6. [{0] (H. Geiringer.) A frequency count of the first 2000 decimal digits in the
representation of e = 2.71828... gave a x? value of 1.06, indicating that the actual
frequencies of the digits 0, 1, ..., 9 are much too close to their expected values to be
considered randomly distributed. (In fact, x? > 1.15 with probability 99.9 percent.)
The same test applied to the first 10,000 digits of e gives the reasonable value x? = 8.61;
but the fact that the first 2000 digits are so evenly distributed is still surprising. Does
the same phenomenon occur in the representation of e to other bases? [See AMM 72
(1965), 483-500.]

7. [08] Apply the coupon collector’s test procedure (Algorithm C), with d = 3 and
n = 7, to the sequence 1101221022120202001212201010201121. What lengths do the
seven subsequences have?

8. [M22] How many U’s need to be examined in the coupon collector’s test, on the
average, before n complete sets have been found by Algorithm C, assuming that the
sequence is random? What is the standard deviation? [Hint: See Eq. 1.2.9-(28).]

9. [M21] Generalize the coupon collector’s test so that the search stops as soon as
w distinct values have been found, where w is a fixed positive integer less than or equal
to d. What probabilities should be used in place of (6)?

10. [M23] Solve exercise 8 for the more general coupon collector’s test described in
exercise 9.

11. [00] The “runs up” in a particular permutation are displayed in (g); what are the
“runs down” in that permutation?

12. [20] Let Uo, Ui, ..., Un_1 be n distinct numbers. Write an algorithm that
determines the lengths of all ascending runs in the sequence. When your algorithm
terminates, COUNT[r] should be the number of runs of length 7, for 1 < r < 5, and
COUNT[6] should be the number of runs of length 6 or more.

13. [M23] Show that (16) is the number of permutations of p+¢+1 distinct elements
having the pattern (15).

3.3.2 EMPIRICAL TESTS 7

» 14. [M15] If we “throw away” the element that immediately follows a run, so that
when X is greater than X;;1 we start the next run with X 2, the run lengths are
independent, and a simple chi-square test may be used (instead of the horribly compli-
cated method derived in the text). What are the appropriate run-length probabilities
for this simple run test?

15. [M10] In the maximum-of-t test, why are Vg, V{, ..., V;_, supposed to be uni-
formly distributed between zero and one?

» 16. [15] Mr. J. H. Quick (a student) wanted to perform the maximum-of-t test for
several different values of ¢.

a) Letting Z;; = max(U;,Uj41,...,Uj+t—1), he found a clever way to go from the
sequence Zo(:—1), Z1(t-1) - - -, t0 the sequence Zo, Z1t, ..., using very little time
and space. What was his bright idea?

b) He decided to modify the maximum-of-t method so that the jth observation would
be max(Uj,...,Ujt+¢—1); in other words, he took V; = Z;; instead of V; = Z;); as
the text says. He reasoned that all of the Z’s should have the same distribution,
so the test is even stronger if each Zj;, 0 < j < n, is used instead of just every tth
one. But when he tried a chi-square equidistribution test on the values of V}, he
got extremely high values of the statistic V, which got even higher as ¢ increased.
Why did this happen?

17. [M25] Given any numbers Uy,...,Un—1,Vo,...,Vn-1, let their mean values be
_ 1 o1
uzg ZU’“’ vzﬁ ZVk.
0<k<n 0<k<n

a) Let U, = U, — 4, Vi = V,, — 0. Show that the correlation coefficient C given in
Eq. (24) is equal to

> U,;V,;/\/ Sk > v

0<k<n 0<k<n 0<k<n

b) Let C = N/D, where N and D denote the numerator and denominator of the
expression in part (a). Show that N? < D?, hence —1 < C < 1; and obtain a
formula for the difference D> — N?. [Hint: See exercise 1.2.3~30.] 4

c) If C = £1, show that aUj + Vi =7, 0 < k < n, for some constants «, (3, and T,
not all zero.

18. [M20] (a) Show that if n = 2, the serial correlation coefficient (23) is always equal
to —1 (unless the denominator is zero). (b) Similarly, show that when n = 3, the serial
correlation coefficient always equals —3. (c) Show that the denominator in (23) is zero
if and only if Uo = U1 = =Un-1.

19. [M30] (J. P. Butler.) Let Uo, ..., Un-1 be independent random variables having

the same distribution. Prove that the expected value of the serial correlation coeffi-
cient (23), averaged over all cases with nonzero denominator, is —1/(n — 1),

20. [HM41] Continuing the previous exercise, prove that the variance of (23) is equal
to n?/(n—1)%(n—2) —n® E((Uo—U1)*/ D?)/2(n—2), where D is the denominator of (23)
and E denotes the expected value over all cases with D # 0. What is the asymptotic
value of E((Up — U1)*/D?) when each Uj is uniformly distributed?

21. [19] What value of f is computed by Algorithm P if it is presented with the
permutation (1,2,9,8,5,3,6,7,0,4)?

78 RANDOM NUMBERS 3.3.2

22. [18] For what permutation of {0, 1,2,3,4,5,6,7,8,9} will Algorithm P produce
the value f = 10247

23. [M22] Let (Y,) and (Y;) be integer sequences having period lengths A and N,
respectively, with 0 < Y,,Y! < d; also let Z, = (Y, +Y,,) mod d, where r is chosen
at random between 0 and A’ — 1. Show that (Z,) passes the t-dimensional serial test at
least as well as (Y;,) does, it the following sense: Let P(z1,...,z¢) and Q(z1,...,Tt)
be the probabilities that the t-tuple (z1,...,z:) occurs in (Yn) and (Zn):

1 A—-1

P(z1,...,T¢) = X;[(Yn,...,ym_l): (T1,...,24)];
1 A-1A'—1
Qz1s- @) = 1 ; ; [(Zny. .oy Zngea) = (1,5 21)].

Then Z (Q(z1,... o) — d—t)2 < Z (P(z1,...,%t) — d—t)z.

(T1,50005%¢) (T1,--%t)
24. [HMS35] (G. Marsaglia.) Show that the serial test on n overlapping t-tuples
(Y1,Ys,..., Y1), (Y2, Y3,..., Yeq1), .o, (Yn,Y1,...,Y;-1) can be carried out as follows:
For each string a = a1...am with 0 < a; < d, let N(c) be the number of times
o occurs as a substring of Y12 ... Y, Y1 ... Ymo1, and let P(a) = P(a1)... P(am) be
the probability that a occurs at any given position; individual digits may occur with

differing probabilities P(0), P(1), ..., P(d —1). Compute the statistic
1 N(a) 1 N(a)
V= g_:t Pl@) n |a|;—1 Pla)

Then V should have the chi-square distribution with d* —d*~" degrees of freedom when
n is large. [Hint: Use exercise 3.3.1-25.]

25. [M46] Why is C7'C2CT" &~ —6C; ", when Ci and C: are the matrices defined
after (22)7

26. [HM30] Let Uy, Ua, ..., Un be independent uniform deviates in [0..1), and let
Uny < Uy < -+ < Uy be their values after sorting; also define the spacings S1 =
Uz — Uy -y Snet = Uy = U1y, Sno= Uy +1 = Uy and sorted spacings

Sy < -+ < Sy as in the birthday spacings test. It is convenient in the following
calculations to use the notation z7 as an abbreviation for the expression z"[z > 0].

a) Given any real numbers s1, Sz, ..., Sn, Prove that the simultaneous inequalities
Si > s1, S2 > s2, ..., Sn > sn occur with probability (1 —s1 —s2— -+ — sn)’}:l.

b) Consequently the smallest spacing S(1) is < s with probability 1 — (1 — ns)’}r—l.

¢) What are the distribution functions Fi(s) = Pr(Sw) < s),for 1 <k <n?

d) Calculate the mean and variance of each Sx).

27. [HM26] (Iterated spacings.) In the notation of the previous exercise, show that
the numbers Si = nS(l), Sé = (TL - 1)(5(2) — S(l)), ey S;l = 1(S(n) — S(n—l)) have
the same joint probability distribution as the original spacings Si, ..., Sn of uniform
deviates. Therefore we can sort them into order, Sy < -+ < S(,, and repeat this
transformation to get yet another set of random spacings Sy, ..., Sy, etc. Each
successive set of spacings S l(k), ey 5% can be subjected to the Kolmogorov—-Smirnov

3.3.2 EMPIRICAL TESTS 79

test, using ‘
iy =va—T1 max (Lo -5 s,
1<j<n\n —1
v/ j—1
n-1=vVn-—1 max(Sl(k)+...+S§k)__]__).
1<j<n J n—1
Examine the transformation from (S1,...,5.) to (S1,...,S5,) in detail in the cases

n = 2 and n = 3; explain why continued repetition of this process will break down
eventually when it is applied to computer-generated numbers with finite precision.
(One way to compare random number generators is to see how long they can continue
to survive such a torture test.)

28. [M26] Let bnrs(m) be the number of n-tuples (y1,-..,Yn) with 0 < y; < m that
have exactly r equal spacings and s zero spacings. Thus, the probability that R = r
in the birthday spacings test is 3710 bnrs(m)/m™. Also let p,(m) be the number of
partitions of m into at most n parts (exercise 5.1.1-15). (a) Express bnoo(m) in terms
of partitions. [Hint: Consider cases with small m and n.] (b) Show that there is a
simple relation between bn,s(m) and b(n—s)(r+1-s)0(m) when s > 0. (c) Deduce an
explicit formula for the probability that no spacings are equal.

29. [M35] Continuing exercise 28, find simple expressions for the generating functions
bur(2) = 3., 50 bnro(m)2z™/m, when r =0, 1, and 2.

30. [HM41] Continuing the previous exercises, prove that if m = n®/a we have

mn—ter/4 13a2 169a* + 20160 — 17280 — 41472¢ 3
n =]_ —_ -
Pa(m) = ST =1 < 288n 16588802 +O(n))

for fixed a as n — co. Find a similar formula for g,(m), the number of partitions of m
into n distinct positive parts. Deduce the asymptotic probabilities that the birthday
spacings test finds R equal to 0, 1, and 2, to within O(1/n).

» 31. [M21] The recurrence Y, = (Yn_24 + Yn_55) mod 2, which describes the least
significant bits of the lagged Fibonacci generator 3.2.2—(7) as well as the second-least
significant bits of 3.2.2-(7'), is known to have period length 255 _1: hence every possible
nonzero pattern of bits (Y, Yn+1,. .., Yntssa) occurs equally often. Nevertheless, prove
that if we generate 79 consecutive random bits Y, ..., Ya47s starting at a random point
in the period, the probability is more than 51% that there are more 1s than 0Os. If we use
such bits to define a “random walk” that moves to the right when the bit is 1 and to the
left when the bit is 0, we’ll finish to the right of our starting point significantly more than
half of the time. [Hint: Find the generating function ST G Pr(Yu+ - +Yoyrs = k) 28]
32. [M20] True or false: If X and Y are independent, identically distributed random
variables with mean 0, and if they are more likely to be positive than negative, then
X +Y is more likely to be positive than negative.

33. [HM32] Find the asymptotic value of the probability that k + [consecutive bits
generated by the recurrence Y, = (Yn—; + Yn_) mod 2 have more 1s than 0s, when
k > 2l and the period length of this recurrence is 2% — 1, assuming that k is large.
34. [HM29] Explain how to estimate the mean and variance of the number of two-
letter combinations that do not occur consecutively in a random string of length n
on an m-letter alphabet. Assume that m is large and n = 2m?.

» 35. [HMS32] (J. H. Lindholm, 1968.) Suppose we generate random bits (Yn) using the
recurrence

Y, =(a1Yn-1 +a2Yn_2+ -+ arYn_x) mod 2,

80 RANDOM NUMBERS 3.3.2

for some choice of a1, ..., ax such that the period length is 2* — 1; start with Yy =1
and Y1 = - = Vi1 = 0. Let Z, = (=1)¥»*! = 2Y,, — 1 be a random sign, and
consider the statistic S;n = Zn + Znt1 + - + Zntm—-1, where n is a random point in
the period.

a) Prove that ES,, = m/N, where N = 2 — 1.

b) What is ES5,? Assume that m < N. Hint: See exercise 3.2.2-16.

¢) What would E S,,, and E S2, be if the Z’s were truly random?

d) Assuming that m < N, prove that ES2, = m*/N — 6B(N + 1)/N, where

B = Z [(Yit1Yitz .. . Yige—1)e = (Vi1 Yiqe ... Yige—1)2] (m — 7).

0<i<j<m

e) Evaluate B in the special case considered in exercise 31: m = 79 and Y,, =
(Yn_24 + Yn_s5) mod 2.

*3.3.3. Theoretical Tests

Although it is always possible to test a random number generator using the
methods in the previous section, it is far better to have a priori tests: theoretical
results that tell us in advance how well those tests will come out. Such theoretical
results give us much more understanding about the generation methods than
empirical, trial-and-error results do. In this section we shall study the linear
congruential sequences in more detail; if we know what the results of certain
tests will be before we actually generate the numbers, we have a better chance
- of choosing a, m, and c properly.

The development of this kind of theory is quite difficult, although some
progress has been made. The results obtained so far are generally for statistical
tests made over the entire period. Not all statistical tests make sense when they
are applied over a full period —for example, the equidistribution test will give
results that are too perfect—but the serial test, gap test, permutation test,
maximum test, etc., can be fruitfully analyzed in this way. Such studies will
detect global nonrandomness of a sequence, that is, improper behavior in very
large samples.

The theory we shall discuss is quite illuminating, but it does not eliminate
the need for testing local nonrandomness by the methods of Section 3.3.2. Indeed,
the task of proving anything useful about short subsequences appears to be very
hard. Only a few theoretical results are known about the behavior of linear
congruential sequences over less than a full period; they will be discussed at the
end of Section 3.3.4. (See also exercise 18.)

Let us begin with a proof of a simple a priori law, for the least complicated
case of the permutation test. The gist of our first theorem is that we have
Xnt1 < X, about half the time, provided that the sequence has high potency.

Theorem P. Let a, ¢, and m generate a linear congruential sequence with
maximum period; let b = a — 1 and let d be the greatest common divisor of m
and b. The probability that X,.1 < X, is equal to % + r, where

r = (2(cmod d) — d)/2m; (1)
hence |r| < d/2m.

3.3.3 THEORETICAL TESTS 81
Proof. The proof of this theorem involves some techniques that are of interest
in themselves. First we define

s(z) = (az + c) mod m. (2)

Thus, Xn4+1 = $(X,), and the theorem reduces to counting the number of
integers z such that 0 < z < m and s(x) < z, since every such integer occurs
somewhere in the period. We want to show that this number is

L(m +2(cmod d) — d). (3)

The function [(z — s(z))/m] is equal to 1 when z > s(z), and it is 0
otherwise; hence the count we wish to obtain can be written simply as

[g o (1)

o<z <m o<z <m

(=) w

o<z<m

(Recall that [—y] = —|yJ and b = @ — 1.) Such sums can be evaluated by the
method of exercise 1.2.4-37, where we have proved that
Z thj—i—cJ _(h=1D(k-1) g

- > + ;1+9LC/9J, g =ged(h,k), (5)

0<j<k

whenever h and k are integers and k£ > 0. Since a is relatively prime to m, this
formula yields

ar +c¢ a—1)(m—1
I e L B
o<Lz<m -
Z tbx;c :(b—l)ém_l)_+_dgl+c_(cmodd),

0<z<m
and (3) follows immediately. 1|

The proof of Theorem P indicates that a priori tests can indeed be carried
out, provided that we are able to deal satisfactorily with sums involving the | |
and [] functions. In many cases the most powerful technique for dealing with
floor and ceiling functions is to replace them by two somewhat more symmetrical
operations:

6(z) = |z] + 1 - [z] = [z is an integer];
() =z — |z] - } + 36(z) =2 — [zl + § — 38(z) =z — §(l=] + []). (D)

The latter function is a “sawtooth” function familiar in the study of Fourier
series: its graph is shown in Fig. 7. The reason for choosing to work with ((z))
rather than |z| or [z] is that ((x)) possesses several very useful properties:

((=2)) = -((=)); (8)

82 RANDOM NUMBERS 3.3.3

P
AV e

Fig. 7. The sawtooth function ((z)).

((z+n))=((z)), integer n; (9)
((nz)) =((z))+ <<x+ %)) +- <<x+ E—_—l)), integer n > 1. (10)

n
(See exercise 2.)

In order to get some practice working with these functions, let us prove
Theorem P again, this time without relying on exercise 1.2.4-37. With the help
of Egs. (7), (8), (9), we can show that

o] 2o (=) 1 h(==2)
1
T m 2

(11)

since (z — s(x))/m is never an integer. Now

y ol

o<z <m
since both z and s(z) take on each value of {0,1,...,m — 1} exactly once; hence
(11) yields
r—s(z)] bx + ¢ m
> = () oW
0<z<m 0<Lz<m

Let b = bpd, m = myd, where by and mg are relatively prime. We know that
(box) mod mg takes on the values {0, 1, ..., mg — 1} in some order as z varies
from 0 to mo — 1. By (9) and (10) and the fact that

(=) = (5))
Z (50) = = (55

0<z<myg

we have

3.3.3 THEORETICAL TESTS 83

s 3 (BB -a(@) o

0<x<mg

Theorem P follows immediately from (12) and (13).

One consequence of Theorem P is that practically any choice of a and ¢ will
give a reasonable probability that X,4+1 < X, at least over the entire period,
except those that have large d. A large value of d corresponds to low potency,
and we already know that generators of low potency are undesirable.

The next theorem gives us a more stringent condition for the choice of a
and c; we will consider the serial correlation test applied over the entire period.
The quantity C defined in Section 3.3.2, Eq. (23), is

o~ o (£ (2 ()

0<z<m 0<z<m

Let 2’ be the element such that s(z') = 0. We have

s(z) = m<<“x7: C)) + Do) (15)

The formulas we are about to derive can be expressed most easily in terms of
the sum

aromn 3 () w

an important function that arises in several mathematical problems. It is called
a generalized Dedekind sum, since Richard Dedekind introduced the function
o(h,k,0) in 1876 when commenting on one of Riemann’s incomplete manuscripts.
[See B. Riemann’s Gesammelte math. Werke, 2nd ed. (1892), 466-478.]

Using the well-known formulas

-1 m(m

g x:______m(m) and E 1 = (
2

0<z<m 0<z<m

3)(m—1)
3 bl

it is a straightforward matter to transform Eq. (14) into

mo(a,m,c) —3+6(m—2' —c)

C =
m?2 —1

(17)

(See exercise 5.) Since m is usually very large, we may discard terms of order
1/m, and we have the approximation

C =~ o(a,m,c)/m, (18)

with an error of less than 6/m in absolute value.

The serial correlation test now reduces to determining the value of the
Dedekind sum o(a,m,c). Evaluating o(a,m,c) directly from its definition (16)
is hardly any easier than evaluating the correlation coefficient itself directly, but
fortunately there are simple methods available for computing Dedekind sums
quite rapidly.

84 RANDOM NUMBERS 3.3.3

Lemma B (“Reciprocity law” for Dedekind sums). Let h, k, ¢ be integers. If
0<ec<k,0<h<k,andifh is relatively prime to k, then
k 1 6c2
h c 6 |~ c

o(h, k) + ol by Q) = 24 1 o+ - hJ —3e(hyc), (10)

where

e(h,c) = [c=0] + [cmod h #0]. (20)

Proof. We leave it to the reader to prove that, under these hypotheses,

6 2
o(h) + alh, by) = ok, 0) + 0k, h,0) + 5 — 6 L%

(See exercise 6.) The lemma now must be proved only in the case ¢ = 0.

The proof we will give, based on complex roots of unity, is essentially due
to L. Carlitz. There is actually a simpler proof that uses only elementary
manipulations of sums (see exercise 7) —but the following method reveals more
of the mathematical tools that are available for problems of this kind and it is
therefore much more instructive.

Let f(z) and g(z) be polynomials defined as follows:

fl@)=l+z+ - +2"1 =" -1)/(z - 1)
g(z)=z+22% + -+ (k— 1)z (22)
=zf'(zx) =kz"/(z — 1) —z(z* - 1)/(z — 1)2.
If w is the complex kth root of unity e?™/¥, we have by Eq. 1.2.9-(13)

J —3e(h,c) + 3. (21)

1 . .
Z Z wg(wz) =rz”, if0<r<k. (23)
0<i<k
Set z = 1; then g(w’z) = k/(w? — 1) if j # 0, otherwise it equals k(k — 1)/2.
Therefore
B w™IT 1 e .
rmod k = Z 1 + 5(k—1), if r is an integer.
0<j<k

(Eq. (23) shows that the right-hand side equals 7 when 0 < r < k, and it is
unchanged when multiples of k are added to r.) Hence

(D)=2.2 55w 2() g

0<ji<k

This important formula, which holds whenever r is an integer, allows us to reduce
many calculations involving ((r/k)) to sums involving kth roots of unity, and it
brings a whole new range of techniques into the picture. In particular, we get
the following formula when A L k:

—ir w—jh'r

a(h,k,0)+§(—]—ck;—1)=% > > Y o (2p)

O<r<k O<i<k O<i<k

3.3.3 THEORETICAL TESTS 85

The right-hand side of this formula may be simplified by carrying out the sum
on r; we have) ,w™ = f(w®) = 0 if smodk # 0. Equation (25) now
reduces to

3(k—1) 12 1

k F e I =D - 1)

o(h,k,0) +

(26)

A similar formula is obtained for o(k, h,0), with { = e?m/* replacing w.

It is not obvious what we can do with the sum in (26), but there is an elegant
way to proceed, based on the fact that each term of the sum is a function of w?,
where 0 < j < k; hence the sum is essentially taken over the kth roots of unity
other than 1. Whenever z,, z2, ..., z, are distinct complex numbers, we have
the identity

= 1
; (zj — 1) ... (25 — zj—1)(z — z5)(z; — Tj1) - - (5 — Zn)
1
= y 2
(z—z1)...(x — zn) (=7)
which follows from the usual method of expanding the right-hand side into partial
fractions. Moreover, if ¢(z) = (z —y1)(z — y2) ... (T — Ym), we have

qW) =y — 1) (W — Y1) — Yj+1) - - (Y5 — Um); (28)

this identity may often be used to simplify expressions like those in the left-
hand side of (27). When h and k are relatively prime, the numbers w, w?, ...,
wk=1 ¢, €2, ..., ("1 are all distinct; we can therefore consider formula (27) in
the special case of the polynomial (z — w)...(z —w* 1) (z - ¢)...(x - ¢* 1) =
(z* — 1)(z" — 1)/(z — 1)2, obtaining the following identity in z:

1 CI(¢7 —1)2 1 wl (w? —1)2 (x—1)2

B2 <<jk£1)<x—<j> e G @D
0<j<h . 0<j<k

This identity has many interesting consequences, and it leads to numerous reci-

procity formulas for sums of the type given in Eq. (26). For example, if we

differentiate (29) twice with respect to =z and let z — 1, we find that

2 G -1 2 wi(w? — 1)?
2 T D007 Tk, 2,

0<j<h

Replace j by h — j and by k& — j in these sums and use (26) to get

% (a(k,h, 0) + i(hT_l—)> + % (a(h,k,O) + ?’(kk—;l)

EYLINLINE S S S
~ 6\k h ' hk
which is equivalent to the desired result. |

86 RANDOM NUMBERS . 3.3.3

Lemma B gives us an explicit function f(h,k,c) such that
o(h,k,c) = f(h,k,c) — o(k,h,c) (30)

whenever 0 < h < k, 0 < ¢ < k, and h is relatively prime to k. From the
definition (16) it is clear that

o(k,h,c) = o(kmod h, h, cmod h). (31)

Therefore we can use (30) iteratively to evaluate o(h, k, c), using a process that
reduces the parameters as in Euclid’s algorithm.

Further simplifications occur when we examine this iterative procedure more
closely. Let us set m; = k, ma = h, 1 = ¢, and form the following tableau:

my = aymg + m3 ¢y =bymy + ¢
My = aymga + My c2 = bamz + c3 (32)
m3 = azmy + Ms c3 = bgmy + c4
R M4 = agamMs cq4 = byms + 5
Here
a; = |m;/mjn], bj = lcj/mjs1], (33)
miyo = My mod LUZEST Cj+1 = Cj mod mita,
and it follows that
0 <mj; < my, 0 <cj <my. (34)

We have assumed for convenience that Euclid’s algorithm terminates in (32)
after four iterations; this assumption will reveal the pattern that holds in the
general case. Since h and k were relatively prime to start with, we must have
ms =1 and ¢; = 0 in (32).

Let us assume also that c3 # 0 but ¢4 = 0, in order to get a feeling for the
effect this has on the recurrence. Equations (30) and (31) yield

o(h,k,c) = a(mg, my,c1)
= f(ma,m1,c1) — o(m3z, ma,C2)
= f(ma,my,c1) — f(m3,ma,c2) + f(ma, ms,c3) — f(ms, my, cs).
The first part, h/k + k/h, of the formula for f(h,k,c) in (19) contributes
m2 n m m3 Mg M4 M3 Mp My
my Me M M3 M3z Mg M4 Mg
to the total, and this simplifies to
h m; —m3 mg—m4+m3—m5 n h

-+ - —— =—=+4+a —az +asz — aq.
k mo ms3 my s k

The next part of (19), 1/hk, also leads to a simple contribution; according to
Eq. 4.5.3-(9) and other formulas in Section 4.5.3, we have

1 1 1 1 h'

- + — = — — 1’
mimsa main3 M3y M4y k (35)

3.3.3 THEORETICAL TESTS 87

where A’ is the unique integer satisfying
h'h =1 (modulo k), 0<h’' <k (36)

Adding up all the contributions, and remembering our assumption that ¢4 = 0
(so that e(my,cs) = 0, see (20)), we find that

h+h
O'(h,k),c) = T+(a1 — Qs +a3—a4)—6(bl —b2+b3—b4)

2 2 2 2
c c c c
1 2 3 4
+6 — + — + 2,
myma mam3 m3my Uz

in terms of the assumed tableau (32). Similar results hold in general:

Theorem D. Let h, k, ¢ be integers with 0 < h < k, 0 < ¢ < k, and h relatively
prime to k. Form the “Euclidean tableau” as defined in (33) above, and assume

that the process stops after t steps with my1 = 1. Let s be the smallest subscript
such that ¢c; = 0, and let h' be defined by (36). Then

2

h+h ; C;
o(h,k,c) = ——+k—— + Z (—1)7+! (aj — 6b; +6————z——)

1<t MMM+
+3((-1)° +6.1) =2+ (-1)% 1
Euclid’s algorithm is analyzed carefully in Section 4.5.3; the quantities a;,
az, ..., a; are called the partial quotients of h/k. Theorem 4.5.3F tells us that
the number of iterations, ¢, will never exceed log, k; hence Dedekind sums can

be evaluated rapidly. The terms 032- /mjm;y1 can be simplified further, and
an efficient algorithm for evaluating o(h, k,c) appears in exercise 17.

Now that we have analyzed generalized Dedekind sums, let us apply our
knowledge to the determination of serial correlation coefficients.

Example 1. Find the serial correlation when m = 23° a =234 + 1, c = 1.
Solution. We have

C=(2%0(2* +1,2%,1) =3 +6(2% — (2%* —1) - 1)) /(27 — 1),
by Eq. (17). To evaluate o(23% + 1, 235 1), we can form the tableau

m1:235 01:1

m2=234+1 a1 =1 =1 by =0
mg=2%-1 ay=1 cs=1 by=0
m4:2 a3:233—1 C4:1 b3:0
m5:1 a4:2 05:0 b4:1

Since A’ = 234 4+ 1, the value according to Theorem D comes to 232 — 3 4+ 2732,
Thus

C=(2%+5)/(20-1)=%+¢ | <27%. (37)

Such a correlation is much, much too high for randomness. Of course, this
generator has very low potency, and we have already rejected it as nonrandom.

88 RANDOM NUMBERS _ 3.3.3

Example 2. Find the approximate serial correlation when m = 10'°, ¢ = 10001,
c = 2113248653.

Solution. We have C = o(a, m,c)/m, and the computation proceeds as follows:

my = 10000000000 c1 = 2113248653

my = 10001 , a; =999900 ¢y = 7350 by = 211303

mg = 100 as = 100 C3 = 50 b2 = 73

nmy = 1 az = 100 Cq = 0 b3 = 50
o(ma,m,c1) = —31.6926653544; C~-3-107% (38)

This is a very respectable value of C' indeed. But the generator has a potency
of only 3, so it is not really a very good source of random numbers in spite of
the fact that it has low serial correlation. It is necessary to have a low serial
correlation, but not sufficient.

Example 3. Estimate the serial correlation for general a, m, and c.

Solution. If we consider just one application of (30), we have

C2

m c
o(a,m,c) ~ —+ 6a_m - 6; —o(m,a,c).

Now |o(m,a,c)| < a by exercise 12, and therefore

Cmmzl(l—6%+6<£)2>- (39)

m a m

The error in this approximation is less than (a 4+ 6)/m in absolute value.

The estimate in (39) was the first theoretical result known about the random-
ness of congruential generators. R. R. Coveyou [JACM 7 (1960), 72-74] obtained
it by averaging over all real numbers x between 0 and m instead of considering
only the integer values (see exercise 21); then Martin Greenberger [Math. Comp.
15 (1961), 383-389] gave a rigorous derivation including an estimate of the
error term.

So began one of the saddest chapters in the history of computer science!
Although the approximation above is quite correct, it has been grievously mis-
applied in practice; people abandoned the perfectly good generators they had
been using and replaced them by terrible generators that looked good from the
standpoint of (39). For more than a decade, the most common random number
generators in daily use were seriously deficient, solely because of a theoretical
advance.

A little Learning is a dang’rous Thing.
— ALEXANDER POPE, An Essay on Criticism, 215 (1711)

If we are to learn by past mistakes, we had better look carefully at how (39)
has been misused. In the first place people assumed uncritically that a small
serial correlation over the whole period would be a pretty good guarantee of

3.3.3 THEORETICAL TESTS 89

randomness; but in fact it doesn’t even ensure a small serial correlation for 1000
consecutive elements of the sequence (see exercise 14).

Secondly, (39) and its error term will ensure a relatively small value of C' only
when a & \/m; therefore people suggested choosing multipliers near v/m. In fact,
we shall see that nearly all multipliers give a value of C that is substantially less
than 1/4/m, hence (39) is not a very good approximation to the true behavior.
Minimizing a crude upper bound for C' does not minimize C'.

In the third place, people observed that (39) yields its best estimate when

c/m = % + %\/5, (40)

since these values are the roots of 1 — 6z + 622 = 0. “In the absence of any other
criterion for choosing ¢, we might as well use this one.” The latter statement
is not incorrect, but it is misleading at best, since experience has shown that
the value of ¢ has hardly any influence on the true value of the serial correlation
when a is a good multiplier; the choice (40) reduces C substantially only in cases
like Example 2 above. And we are fooling ourselves in such cases, since the bad
multiplier will reveal its deficiencies in other ways.

Clearly we need a better estimate than (39); and such an estimate is now
available thanks to Theorem D, which stems principally from the work of Ulrich
Dieter [Math. Comp. 25 (1971), 855-883]. Theorem D implies that o(a,m,c)
will be small if the partial quotients of a/m are small. Indeed, by analyzing
generalized Dedekind sums still more closely, it is possible to obtain quite a
sharp estimate:

Theorem K. Under the assumptions of Theorem D, we always have

1 1 1
—3 a; — E aj < o(h,k,c) < E aj+ 5 E a4~ 5 (41)
1<t 1<5<t 1<5<t 1<5<t
jodd jeven jodd jeven

Proof. See D. E. Knuth, Acta Arithmetica 33 (1978), 297-325, where it is

shown further that these bounds are essentially the best possible when large
partial quotients are present. |

Example 4. Estimate the serial correlation for a = 3141592621, m = 23°,
¢ odd.

Solution. The partial quotients of a/m are 10, 1, 14,1, 7,1, 1, 1, 3, 3, 3, 5, 2,
1,8,7,1,4,1, 2,4, 2; hence by Theorem K

-55 < o(a,m,c) < 67.5,

and the serial correlation is guaranteed to be extremely low for all c.

Note that this bound is considerably better than we could obtain from (39),
since the error in (39) is of order a/m; our “random” multiplier has turned out
to be much better than one specifically chosen to look good on the basis of (39).
In fact, it is possible to show that the average value of Z ._, a;, taken over all

90 RANDOM NUMBERS _ 3.3.3

multipliers a relatively prime to m, is

6
7—T—2—(1n m)? + O((log m)(log logm)*)
(see exercise 4.5.3-35). Therefore the probability that a random multiplier has
large Z;zl at, say larger than (logm)®*¢ for some fixed ¢ > 0, approaches
zero as m — oo. This substantiates the empirical evidence that almost all
linear congruential sequences have extremely low serial correlation over the entire
period.

The exercises below show that other a priori tests, such as the serial test over
the entire period, can also be expressed in terms of a few generalized Dedekind
sums. It follows from Theorem K that linear congruential sequences will pass
those tests provided that certain specified fractions (depending on a and m but
not on c¢) have small partial quotients. In particular, the result of exercise 19
implies that the serial test on pairs will be passed satisfactorily if and only if
a/m has no large partial quotients.

The book Dedekind Sums by Hans Rademacher and Emil Grosswald (Math.
Assoc. of America, Carus Monograph No. 16, 1972) discusses the history and
properties of Dedekind sums and their generalizations. Further theoretical tests,
including the serial test in higher dimensions, are discussed in Section 3.3.4.

EXERCISES — First Set
1. [M10] Express z mod y in terms of the sawtooth and ¢ functions.
2. [M20] Prove the “replicative law,” Eq. (10).

3. [HM22] What is the Fourier series expansion (in terms of sines and cosines) of
the function ((x))?

> 4. [M19] If m = 10", what is the highest possible value of d (in the notation of
Theorem P), given that the potency of the generator is 107

5. [M21] Carry out the derivation of Eq. (17).

6. [M27] Assume that hh' +kk' = 1.
a) Show, without using Lemma B, that

othko) =athk 0412 3 ((B2)) +6((52))

0<j<e
for all integers ¢ > 0.

hg E’l>>__2__l<l>- :
b) Showthat<<k>>+<<h = E 25 s if0<j<k.

¢) Under the assumptions of Lemma B, prove Eq. (21).

» 7. [M24] Give a proof of the reciprocity law (19), when ¢ = 0, by using the general
reciprocity law of exercise 1.2.4-45.

» 8. [M34] (L. Carlitz.) Let

san= 3 ((2)()

0<j<r

3.3.3 THEORETICAL TESTS 91

By generalizing the method of proof used in Lemma B, prove the following beautiful
identity due to H. Rademacher: If each of p,q,7 is relatively prime to the other two,

q T
44 3
p(p.q,m)+ p(q,r,p) + p(r,p,q) = - Ly p + s

(The reciprocity law for Dedekind sums, with ¢ = 0, is the special case r = 1.)

9. [M40] Is there a simple proof of Rademacher’s identity (exercise 8) along the lines
of the proof in exercise 7 of a special case?

10. [M20] Show that when 0 < h < k it is possible to express o(k — h, k, ¢) and
o(h,k,—c) easily in terms of o(h, k,c).
11. [M380] The formulas given in the text show us how to evaluate o(h,k,c) when h
and k are relatively prime and c is an integer. For the general case, prove that

a) o(dh,dk,dc) = o(h,k,c), for integer d > 0;

b) o(h, k, c+ 8) = o(h, k,c) + 6((h'c/k)), for integer c, real 0 < § < 1, h L k, and

hh' =1 (modulo k).

12. [M24] Show that if h is relatively prime to k and c is an integer, |o(h,k,c)| <
(k—1)(k —2)/k.
13. [M24] Generalize Eq. (26) so that it gives an expression for o(h, k, c).
14. [M20] The linear congruential generator that has m = 235 g =28 41 ¢=1,
was given the serial correlation test on three batches of 1000 consecutive numbers, and

the result was a very high correlation, between 0.2 and 0.3, in each case. What is the
serial correlation of this generator, taken over all 2°® numbers of the period?

15. [M21] Generalize Lemma B so that it applies to all real values of ¢, 0 < c¢ < k.

16. [M24] Given the Euclidean tableau defined in (33), let po = 1, p1 = a1, and
p; = a;jpj—1 + pj—2 for 1 < 7 < ¢t. Show that the complicated portion of the sum
in Theorem D can be rewritten as follows, making it possible to avoid noninteger
computations:

2

S I = S (1) (e +)P
1<;<t miMmi+1 M1 72

[Hint: Prove that lejgr(—l)j“/mjmjﬂ = (=1)"tpr1/mimeiq for 1 <7 <t]

17. [M22] Design an algorithm that evaluates o(h, k, c) for integers h, k, c satisfying
the hypotheses of Theorem D. Your algorithm should use only integer arithmetic (of
unlimited precision), and it should produce the answer in the form A + B/k where A
and B are integers. (See exercise 16.) If possible, use only a finite number of variables
for temporary storage, instead of maintaining arrays such as a1, a2, ..., a.

18. [M23] (U. Dieter.) Given positive integers h, k, z, let

S(h,k,c,2) = > ((hjljc»'

0<j<z=

Show that this sum can be evaluated in closed form, in terms of generalized Dedekind
sums and the sawtooth function. [Hint: When 2z < k, the quantity |j/k] — | (7 — z)/k]
equals 1 for 0 < j < z, and it equals 0 for z < 7 < k, so we can introduce this factor
and sum over 0 < j < k.|

92 RANDOM NUMBERS _ 3.3.3

» 19. [M23) Show that the serial test can be analyzed over the full period, in terms of
generalized Dedekind sums, by finding a formula for the probability that a < X, < 8
and o < Xnq1 < B when a, 8, o', 8’ are given integers with 0 < a <8 <m and
0< o < B < m. [Hint: Consider the quantity |(z — a)/m] — [(z — B8)/m] J
20. [M29] (U. Dieter.) Extend Theorem P by obtaining a formula for the probability
that X, > Xni1 > Xnoie, in terms of generalized Dedekind sums.

EXERCISES — Second Set

In many cases, exact computations with integers are quite difficult to carry out, but
we can attempt to study the probabilities that arise when we take the average over all
real values of z instead of restricting the calculation to integer values. Although these
results are only approximate, they shed some light on the subject.

It is convenient to deal with numbers U, between zero and one; for linear congru-
ential sequences, U, = Xn/m, and we have Uny1 = {aUn + 6}, where 6 = c¢/m and
{z} denotes mod 1. For example, the formula for serial correlation now becomes

C= (/le{axw}dx— (/ledx)2>/(/olm2dx—— (/ledx)2>.

» 21. [HM23] (R.R. Coveyou.) What is the value of C in the formula just given?

> 22. [M22] Let a be an integer, and let 0 < 6 < 1. If z is a real number between 0
and 1, and if s(z) = {az + 6}, what is the probability that s(z) < 7 (This is the “real
number” analog of Theorem P.)

23. [28] The previous exercise gives the probability that Uni1 < U,. What is the
probability that Uni2 < Uny1 < Un, assuming that Un is a random real number
between zero and one?

24. [M29] Under the assumptions of the preceding problem, except with 6§ = 0, show
that Up > Uny1 > -+ > Unqe—1 occurs with probability

o) (2

What is the average length of a descending run starting at Uy, assuming that Uy is
selected at random between zero and one?

» 25. [M25] Let a, 8, o', 8’ be real numbers with 0 < a << 1,0<d < g <1
Under the assumptions of exercise 22, what is the probability that « < z < § and
o < s(z) < #'? (This is the “real number” analog of exercise 19.)

26. [M21] Consider a “Fibonacci” generator, where Unt1 = {Un 4+ Un—1}. Assuming
that U; and U, are independently chosen at random between 0 and 1, find the proba-
bility that U; < Us < Us, Uy < Us < Uz, Uz < Ui < Us, etc. [Hint: Divide the unit
square {(z,y) | 0 < z,y < 1} into six parts, depending on the relative order of z, vy,
and {z + y}, and determine the area of each part.]

27. [M32] In the Fibonacci generator of the preceding exercise, let Uy and U; be cho-
sen independently in the unit square except that Up > Uy. Determine the probability
that U, is the beginning of an upward run of length k, so that Up > Uy < -+ < Ux >
Uks1. Compare this with the corresponding probabilities for a random sequence.

28. [M35] According to Eq. 3.2.1.3-(5), a linear congruential generator with potency 2
satisfies the condition Xn—1—2Xn+Xn+1 = (a—1)c (modulo m). Consider a generator

3.3.4 THE SPECTRAL TEST 93

that abstracts this situation: Let Un4+1 = {& + 2Un — Un—1}. As in exercise 26, divide
the unit square into parts that show the relative order of Ui, Uz, and Us; for each pair
(U1, Uz). Are there any values of a for which all six possible orders are achieved with
probability %, assuming that U; and U, are chosen at random in the unit square?

3.3.4. The Spectral Test

In this section we shall study an especially important way to check the quality of
linear congruential random number generators. Not only do all good generators
pass this test, all generators now known to be bad actually fail it. Thus it
is by far the most powerful test known, and it deserves particular attention.
Our discussion will also bring out some fundamental limitations on the degree
of randomness that we can expect from linear congruential sequences and their
generalizations.

The spectral test embodies aspects of both the empirical and theoretical
tests studied in previous sections: It is like the theoretical tests because it deals
with properties of the full period of the sequence, and it is like the empirical
tests because it requires a computer program to determine the results.

A. Ideas underlying the test. The most important randomness criteria seem
to rely on properties of the joint distribution of ¢ consecutive elements of the
sequence, and the spectral test deals directly with this distribution. If we have
a sequence (U,) of period m, the basic idea is to analyze the set of all m points

{(UnaUn+la"-aUn+t—1)|0Sn<m} (1)

in t-dimensional space.

For simplicity we shall assume that we have a linear congruential sequence
(Xo,a,c,m) of maximum period length m (so that ¢ # 0), or that m is prime
and ¢ = 0 and the period length is m — 1. In the latter case we shall add the
point (0,0,...,0) to the set (1), so that there are always m points in all; this
extra point has a negligible effect when m is large, and it makes the theory much
simpler. Under these assumptions, (1) can be rewritten as

{%(:c, s(z), s(s(x)), ..., st 1(z)) 1 0<z< m}, (2)

where
s(z) = (az + ¢) mod m (3)

is the successor of z. We are considering only the set of all such points in ¢
dimensions, not the order in which those points are actually generated. But the
order of generation is reflected in the dependence between components of the
vectors; and the spectral test studies such dependence for various dimensions ¢
by dealing with the totality of all points (2).

For example, Fig. 8 shows a typical small case in 2 and 3 dimensions, for
the generator with

s(z) = (1372 4 187) mod 256. (4)

94 RANDOM NUMBERS A 3.3.4

..o g e o - o
o-gb _o-pgB_o 0 o~
SDDDDSDDDDSDDSDDDmmi
DDDDDDDDDDDDDDDDDDDDDD: e
"0,0%08 8,0 0P8 0 e® @ & @
o O o 0 n o> @ @ g 9 .
Opo- o850 0P 0 0P, 0o 2 2e® P @ |
s - H
fDDDDDDDSDDDDDDDDDDDD @ﬁgf @@%@@®® @ @ N
.0 _gfg 0 DDDDDDDDDDD, ® 9¥0 g :®@®®@ﬁp éﬂ ©
%DDDDDDDDDDDDDDDDDD, s(z) ?® @@@@@@@@@Q%@@n@%
o o o al <2
o"g0 o500 0 0¥ @ @ 2.0 50999 % §
085950%,950%5050° o 02 %T%ThReb ¢b g ® @
DDDDDDDDDDDDDDDDDDD; _ @@ Dy BT @ @
" Bp0,0%:0,0%,0,0%0 s(s(z)) % ; o
0 g9 0% 8 08 0, . ?® 9.9 : g
'DD DDDD DDDD DD DD : ® @ :% %
o950 °7gP 0 g0 oym @ % f% B o
[T BN i W O = JONAY o, .- ROl . RO ® @@ %% q@ %? g ©
T 0 oge D T B ©
® T) @
@ T ' B g .
(a) ® g % g gég © @@
® , .
. . . ® 5 ® -
Fig. 8. (a) The two-dimensional ® ; W

grid formed by all pairs of suc- z e 78T (2)
cessive points (Xn, Xn+1), when (b) RRENUEN

Xnt1 = (137X, + 187) mod 256.

(b) The three-dimensional grid of triplets (Xn, Xn+1, Xny2)

Of course a generator with period length 256 will hardly be random, but 256 is
small enough that we can draw the diagram and gain some understanding before
we turn to the larger m’s that are of practical interest.

Perhaps the most striking thing about the pattern of boxes in Fig. 8(a) is
that we can cover them all by a fairly small number of parallel lines; indeed,
there are many different families of parallel lines that will hit all the points. For
example, a set of 20 nearly vertical lines will do the job, as will a set of 21 lines
that tilt upward at roughly a 30° angle. We commonly observe similar patterns
when driving past farmlands that have been planted in a systematic manner.

If the same generator is considered in three dimensions, we obtain 256 points
in a cube, obtained by appending a “height” component s(s(z)) to each of the
256 points (z, s(z)) in the plane of Fig. 8(a), as shown in Fig. 8(b). Let’s imagine
that this 3-D crystal structure has been made into a physical model, a cube that
we can turn in our hands; as we rotate it, we will notice various families of
parallel planes that encompass all of the points. In the words of Wallace Givens,
the random numbers stay “mainly in the planes.”

At first glance we might think that such systematic behavior is so nonrandom
as to make congruential generators quite worthless; but more careful reflection,
remembering that m is quite large in practice, provides a better insight. The
regular structure in Fig. 8 is essentially the “grain” we see when examining
our random numbers under a high-power microscope. If we take truly random
numbers between 0 and 1, and round or truncate them to finite accuracy so
that each is an integer multiple of 1/v for some given number v, then the t-
dimensional points (1) we obtain will have an extremely regular character when
viewed through a microscope.

Let 1/v, be the maximum distance between lines, taken over all families
of parallel straight lines that cover the points {(z/m, s(z)/m)} in two dimen-

3.3.4 THE SPECTRAL TEST 95

sions. We shall call v» the two-dimensional accuracy of the random number
generator, since the pairs of successive numbers have a fine structure that is
essentially good to one part in v. Similarly, let 1/v3 be the maximum distance
between planes, taken over all families of parallel planes that cover all points
{(z/m, s(zx)/m, s(s(z))/m)}; we shall call v3 the accuracy in three dimensions.
The t-dimensional accuracy v4 is the reciprocal of the maximum distance between
hyperplanes, taken over all families of parallel (¢ — 1)-dimensional hyperplanes
that cover all points {(z/m, s(z)/m, ..., stt=l(z)/m)}.

The essential difference between periodic sequences and truly random se-
quences that have been truncated to multiples of 1/v is that the accuracy of
truly random sequences is the same in all dimensions, while that of periodic
sequences decreases as t increases. Indeed, since there are only m points in the
t-dimensional cube when m is the period length, we can’t achieve a t-dimensional
accuracy of more than about ml/t.

When the independence of ¢t consecutive values is considered, computer-
generated random numbers will behave essentially as if we took truly random
numbers and truncated them to lgv; bits, where v; decreases with increasing t.
In practice, such varying accuracy is usually all we need. We don’t insist that the
10-dimensional accuracy be 232, in the sense that all (232)!% possible 10-tuples
(Upn,Unt1, - - - Unto) should be equally likely on a 32-bit machine; for such large
values of t we want only a few of the leading bits of (Upn,Unt1,- -, Unyt—1) t0
behave as if they were independently random.

On the other hand when an application demands high resolution of the
random number sequence, simple linear congruential sequences will necessarily
be inadequate. A generator with longer period should be used instead, even
though only a small fraction of the period will actually be generated. Squaring
the period length will essentially square the accuracy in higher dimensions; that
is, it will double the effective number of bits of precision.

The spectral test is based on the values of 14 for small ¢, say 2 < t < 6.
Dimensions 2, 3, and 4 seem to be adequate to detect important deficiencies
in a sequence, but since we are considering the entire period it is wise to be
somewhat cautious and go up into another dimension or two; on the other hand
the values of v, for t > 10 seem to be of no practical significance whatever. (This
is fortunate, because it appears to be rather difficult to calculate the accuracy v,
precisely when t > 10.)

There is a vague relation between the spectral test and the serial test; for
example, a special case of the serial test, taken over the entire period as in exercise
3.3.3-19, counts the number of boxes in each of 64 subsquares of Fig. 8(a). The
main difference is that the spectral test rotates the dots so as to discover the
least favorable orientation. We shall return to the serial test later in this section.

It may appear at first that we should apply the spectral test only for one
suitably high value of ¢; if a generator passes the test in three dimensions, it seems
plausible that it should also pass the 2-D test, hence we might as well omit the
latter. The fallacy in this reasoning occurs because we apply more stringent
conditions in lower dimensions. A similar situation occurs with the serial test:

96 RANDOM NUMBERS A 3.34

Consider a generator that (quite properly) has almost the same number of points
in each subcube of the unit cube, when the unit cube has been divided into 64
subcubes of size i X % X %; this same generator might yield completely empty
subsquares of the unit square, when the unit square has been divided into 64
subsquares of size % X %. Since we increase our expectations in lower dimensions,
a separate test for each dimension is required.

It is not always true that vy < mt/ ¢ although this upper bound is valid when
the points form a rectangular grid. For example, it turns out that vo = v/274 >
v/256 in Fig. 8, because a nearly hexagonal structure brings the m points closer
together than would be possible in a strictly rectangular arrangement.

In order to develop an algorithm that computes v; efficiently, we must look
more deeply at the associated mathematical theory. Therefore a reader who is
not mathematically inclined is advised to skip to part D of this section, where
the spectral test is presented as a “plug-in” method accompanied by several
examples. But the mathematics behind the spectral test requires only some

elementary manipulations of vectors.

Some authors have suggested using the minimum number N; of parallel
covering lines or hyperplanes as the criterion, instead of the maximum distance
1/v; between them. However, this number /V; does not appear to be as important
as the concept of accuracy defined above, because it is biased by how nearly
the slope of the lines or hyperplanes matches the coordinate axes of the cube.
For example, the 20 nearly vertical lines that cover all the points of Fig. 8(a)
are actually 1/\/_?;% units apart, according to Eq. (14) below with (u1,us) =
(18, —2); this might falsely imply an accuracy of one part in /328, or perhaps
even an accuracy of one part in 20. The true accuracy of only one part in v/274 is
realized only for the larger family of 21 lines with a slope of 7/15; another family
of 24 lines, with a slope of —11/13, also has a greater inter-line distance than
the 20-line family, since 1/ V290 > 1 / v/328. The precise way in which families
of lines act at the boundaries of the unit hypercube does not seem to be an
especially “clean” or significant criterion. However, for those people who prefer
to count hyperplanes, it is possible to compute /V; using a method quite similar
to the way in which we shall calculate 14 (see exercise 16).

*B. Theory behind the test. In order to analyze the basic set (2), we start
with the observation that

_ J j-—1
.l_sm(x) = (a zttaet - tea)c) mod 1. (5)

m m

We can get rid of the “mod 1” operation by extending the set periodically, making
infinitely many copies of the original ¢-dimensional hypercube, proceeding in all
directions. This gives us the set

[t—1]
L = {(E—i—kzl,f@ +k2,__,,8—-—£2 +kzt> integer :c,k:l,k:g,...,k:t}
m m m
at7lz

:{V0+(£+kl)a_x'+k2)"') +kt>
m m

integer x,kl,k2,---,kt}a

3.3.4 THE SPECTRAL TEST 97

where

Vo (0,¢, 1 +a)e, ..., (1+a+---+a""?)c) (6)

1
T m
is a constant vector. The variable k, is redundant in this representation of L,
because we can change (x, k1, ko, . . ., k¢) to (z+kim, 0, ko—aky, ..., ki—at~tky),
reducing k; to zero without loss of generality. Therefore we obtain the compara-
tively simple formula

L={Vo+wnuVi+yVa+ - +yV;|integer y1,v2,..., 4}, (7)
where
1
Vi=—(1,a,a%...,a""); 8
1 m(» 4, a4, , @)) ()
V2=(0,1,0,...,0), V3=(0,0,1,...,0), ey WZ(O,O,O,...,I). (9)

The points (1,2, ...,z) of L that satisfy 0 < z; < 1 for all j are precisely the
m points of our original set (2).

Notice that the increment ¢ appears only in Vp, and the effect of Vj is
merely to shift all elements of L without changing their relative distances; hence
¢ does not affect the spectral test in any way, and we might as well assume that
Vo = (0,0,...,0) when we are calculating v;. When Vj is the zero vector we
have a lattice of points

Lo ={y1Vi+y2Va+ -+ + vy Vi | integer y1,y2,..., Ut} (10)

and our goal is to study the distances between adjacent (¢ — 1)-dimensional
hyperplanes, in families of parallel hyperplanes that cover all the points of Ly.

A family of parallel (¢ — 1)-dimensional hyperplanes can be defined by a
nonzero vector U = (uy,...,us) that is perpendicular to all of them; and the set
of points on a particular hyperplane is then

{(z1,...,2:) | T1ug + - + Teue = g, (11)

where ¢ is a different constant for each hyperplane in the family. In other words,
each hyperplane is the set of all vectors X for which the dot product X-U has a
given value ¢. In our case the hyperplanes are all separated by a fixed distance,
and one of them contains (0,0,...,0); hence we can adjust the magnitude of U
so that the set of all integer values g gives all the hyperplanes in the family.
Then the distance between neighboring hyperplanes is the minimum distance
from (0,0,...,0) to the hyperplane for ¢ = 1, namely

min { x%—l—---—l—xf

real z1,...,2¢

xlul—l—----l—:ctut:l}. (12)

Cauchy’s inequality (see exercise 1.2.3-30) tells us that

(T1ug + - + zeu)? < (@3 + -+ 27) (Ul 4+ -+ uf), (13)

98 RANDOM NUMBERS _ 3.34

hence the minimum in (12) occurs when each z; = u;/(uf+- - -+u?); the distance
between neighboring hyperplanes is

1/\/u7%+---+uf = 1/length(U). (14)

In other words, the quantity v; that we seek is precisely the length of the shortest
vector U that defines a family of hyperplanes {X-U = ¢ | integer g} containing
all the elements of Lg.

Such a vector U = (u1, ..., us) must be nonzero, and it must satisfy V-U =
integer for all V in Lg. In particular, since the points (1,0,...,0), (0,1,...,0),
..., (0,0,...,1) are all in Ly, all of the u; must be integers. Furthermore since

V1 is in Ly, we must have %(ul + aug + -+ - + a*~luy) = integer, ie.,

uy +auz + -+ " lug =0 (modulo m). (15)

Conversely, any nonzero integer vector U = (u1, ..., us) satisfying (15) defines a
family of hyperplanes with the required properties, since all of Ly will be covered:
The dot product (yVi+---+v:V4) - U will be an integer for all integers v, - . ., ;.
We have proved that

v = min {4 +u] | uitaus+ - +a""tuy =0 (modulo m)}
(u1,...,ue)#(0,...,0)
: 2 t—1,3\2, .2 2 2
= min M) —arey—a“x3—---—a T¢) +xoTT3+ - +x;) .
(xla---azt)¢(0a"'a0)((' 2 ° t) 2 3 t)

(16)

C. Deriving a computational method. We have now reduced the spectral
test to the problem of finding the minimum value (16); but how on earth can we
determine that minimum value in a reasonable amount of time? A brute-force
search is out of the question, since m is very large in cases of practical interest.

It will be interesting and probably more useful if we develop a computational
method for solving an even more general problem: Find the minimum value of
the quantity

f(CCl, s ,:L‘t) = (ullxl + -t utlxt)2 + -+ (ult:cl + -+ Uttl't)2 (17)

over all nonzero integer vectors (zi,...,Z¢), given any nonsingular matrix of
coefficients U = (u;;). The expression (17) is called a “positive definite quadratic
form” in t variables. Since U is nonsingular, (17) cannot be zero unless the z;
are all zero.

Let us write Uy, ..., Us for the rows of U. Then (17) may be written

flze,...,ze) = (@ U + - -+ 2 Up) - (21U + - + 2 Uy), (18)

the square of the length of the vector z,U; + - - - + 2:U;. The nonsingular matrix
U has an inverse, which means that we can find uniquely determined vectors
Vi,...,V; such that

3.3.4 THE SPECTRAL TEST 99

For example, in the special form (16) that arises in the spectral test, we have

Ulz(m,0,0,...,O), Vlzi(l,a,aa...,at_l),
U2:(_a,l,O,-..,O), V2: (0,1, 0,..., 0),
U3 = (—CL2,0, 17' .- 70)7 V3 = (0707 17') 0)7 (20)
Ut = (_at_laoaoa“ '71)7 ‘/t = (0,0, 0,. <y 1)

These V; are precisely the vectors (8), (9) that we used to define our original
lattice Lo. As the reader may well suspect, this is not a coincidence —indeed, if
we had begun with an arbitrary lattice Ly, defined by any set of linearly inde-
pendent vectors Vi, ..., V4, the argument we have used above can be generalized
to show that the maximum separation between hyperplanes in a covering family
is equivalent to minimizing (17), where the coefficients u,; are defined by (19).
(See exercise 2.)

Our first step in minimizing (18) is to reduce it to a finite problem, namely

to show that we won’t need to test infinitely many vectors (z1,...,z;) when
finding the minimum. This is where the vectors Vi,...,V; come in handy; we
have

zk = (21U1 + -+ + 2,Uy) - Vi,
and Cauchy’s inequality tells us that
((CL‘lUl + -+ xtUt) : Vk)2 S f(:cl, e ,:ct)(Vk : Vk)

Hence we have derived a useful upper bound on each coordinate z:

Lemma A. Let (z1,...,7;) be a nonzero vector that minimizes (18) and let
(y1,--.,Y:) be any nonzero integer vector. Then

23 < flyr, .-, v0) (Vi - Vi), for 1 <k<t. (21)
In particular, letting y; = 6;; for all 1,

i < (U;-U;) (Vi - Vi), for 1 <j k<t 1| (22)

Lemma A reduces the problem to a finite search, but the right-hand side of
(21) is usually much too large to make an exhaustive search feasible; we need at
least one more idea. On such occasions, an old maxim provides sound advice: “If-
you can’t solve a problem as it is stated, change it into a simpler problem that
has the same answer.” For example, Euclid’s algorithm has this form; if we don’t
know the gcd of the input numbers, we change them into smaller numbers having
the same gcd. (In fact, a slightly more general approach probably underlies the
discovery of nearly all algorithms: “If you can’t solve a problem directly, change
1t into one or more simpler problems, from whose solution you can solve the
original one.”)

In our case, a simpler problem is one that requires less searching because the
right-hand side of (22) is smaller. The key idea we shall use is that it is possible
to change one quadratic form into another one that is equivalent for all practical

100 RANDOM NUMBERS : 3.3.4

purposes. Let j be any fixed subscript, 1 < j < ¢; let (q1,-..,¢j-1,q5+1,---,G)
be any sequence of t — 1 integers; and consider the following transformation of

the vectors:
V=V, - qV,

Vi=V,

J 3

T, =T; — 4%, U{:Uza for 1 # 7;

=z U =U;+ 5,40, (23)

!
(2
zj
It is easy to see that the new vectors Uj, ..., U; define a quadratic form f’
for which f'(z},...,z;) = f(z,,...,z,); furthermore the basic orthogonality
condition (19) remains valid, because it is easy to check that U; -V = &;;. As
(z1,...,x¢) runs through all nonzero integer vectors, so does (z7,...,}); hence
the new form f’ has the same minimum as f.

Our goal is to use transformation (23), replacing U; by U/ and V; by V. for
all 7, in order to make the right-hand side of (22) small; and the right-hand side
of (22) will be small when both U;-U; and Vi -V} are small. Therefore it is
natural to ask the following two questions about the transformation (23):

a) What choice of g; makes V-V, as small as possible?
b) What choice of g1, ..., gj—1, gj+1, - - - , ¢ makes U; - U} as small as possible?

It is easiest to solve these questions first for real values of the ¢;. Question (a)
is quite simple, since

(Vi—aiV;)-(Vi—aiV3) =Vi-Vi=24: Vi -V +] V-V
2
= (V;V3) (@ = (Ve V3 Vi V) 4 Vi Vi = (Ve V21 V; Vs,
and the minimum occurs when
a=V:i-V;/V;- V. (24)

Geometrically, we are asking what multiple of V; should be subtracted from V;
so that the resulting vector V' has minimum length, and the answer is to choose
g so that V' is perpendicular to V; (that is, to make V-V, = 0); the following
diagram makes this plain.

—q;Vj

— !
V=Y,

Turning to question (b), we want to choose the ¢; so that U; + Z# ;Ui has
minimum length; geometrically, we want to start with U; and add some vector
in the (¢ — 1)-dimensional hyperplane whose points are the sums of multiples
of {U; | i # j}. Again the best solution is to choose things so that Uj is
perpendicular to the hyperplane, making UJ’- ‘U, =0 for all k¥ # j:

Uj Ue+ > qi(Ui-Ux) =0, 1<k<t, k#j (26)
Iy

s e L) 5 St

3.34 THE SPECTRAL TEST 101

(See exercise 12 for a rigorous proof that a solution to question (b) must satisfy
these t — 1 equations.)

Now that we have answered questions (a) and (b), we are in a bit of a
quandary; should we choose the g; according to (24), so that the V;'-V; are
minimized, or according to (26), so that U -U; is minimized? Either of these
alternatives makes an improvement in the right-hand side of (22), so it is not
immediately clear which choice should get priority. Fortunately, there is a very
simple answer to this dilemma: Conditions (24) and (26) are exactly the same!
(See exercise 7.) Therefore questions (a) and (b) have the same answer; we have
a happy state of affairs in which we can reduce the length of both the U’s and
the V'’s simultaneously. Indeed, we have just rediscovered the Gram-Schmidt
orthogonalization process [see Crelle 94 (1883), 41-73].

Our joy must be tempered with the realization that we have dealt with
questions (a) and (b) only for real values of the g;. Our application restricts us
to integer values, so we cannot make V;' exactly perpendicular to V;. The best
we can do for question (a) is to let g; be the nearest integer to Vi -V; /V; -V
(see (25)). It turns out that this is not always the best solution to question (b);
in fact Uj may at times be longer than U;. However, the bound (21) is never
increased, since we can remember the smallest value of f(y1,...,¥:) found so
far. Thus a choice of g; based solely on question (a) is quite satisfactory.

If we apply transformation (23) repeatedly in such a way that none of the
vectors V; gets longer and at least one gets shorter, we can never get into a
loop; that is, we will never be considering the same quadratic form again after
a sequence of nontrivial transformations of this kind. But eventually we will
get stuck, in the sense that none of the transformations (23) for 1 < 5 <t
will be able to shorten any of the vectors Vi, ..., V;. At that point we can
revert to an exhaustive search, using the bounds of Lemma A, which will now
be quite small in most cases. Occasionally these bounds (21) will be poor, and
another type of transformation will usually get the algorithm unstuck again and
reduce the bounds (see exercise 18). However, transformation (23) by itself has
proved to be quite adequate for the spectral test; in fact, it has proved to be
amazingly powerful when the computations are arranged as in the algorithm
discussed below.

*D. How to perform the spectral test. Here now is an efficient computational
procedure that follows from our considerations. R. W. Gosper and U. Dieter
have observed that it is possible to use the results of lower dimensions to make
the spectral test significantly faster in higher dimensions. This refinement has
been incorporated into the following algorithm, together with Gauss’s significant
simplification of the two-dimensional case (exercise 5).

Algorithm S (The spectral test). This algorithm determines the value of

vy = min{\/xf ++2? |z +aze + -+ a2y =0 (modulo m)} (27)

for 2 < t < T, given a, m, and T, where 0 < a < m and a is relatively prime to
m. (The minimum is taken over all nonzero integer vectors (z1,... ,Z¢), and the

102 RANDOM NUMBERS : 3.3.4

number v; measures the t-dimensional accuracy of random number generators,
as discussed in the text above.) All arithmetic within this algorithm is done on
integers whose magnitudes rarely if ever exceed m?, except in step S7; in fact,
nearly all of the integer variables will be less than m in absolute value during
the computation.

When v, is being calculated for ¢ > 3, the algorithm works with two ¢ x ¢
matrices U and V, whose row vectors are denoted by U; = (us1,...,us) and
Vi = (vi1,...,v;) for 1 <@ <t. These vectors satisfy the conditions

us1 + auge + - - + at tug = 0 (modulo m), 1< <t (28)

(Thus the V; of our previous discussion have been multiplied by m, to ensure
that their components are integers.) There are three other auxiliary vectors,
X = (z1,...,%¢), Y = (y1,..-,4), and Z = (z1,...,2). During the entire
algorithm, r will denote a*~! mod m and s will denote the smallest upper bound
for v2 that has been discovered so far.
S1. [Initialize] Set t < 2, A« a, k' «<m,p 1,p' < 0,r < a,s< 1+ a’.
(The first steps of this algorithm handle the case ¢ = 2 by a special method,
very much like Euclid’s algorithm; we will have

h—ap=h —ap =0 (modulo m) and hp' —h'p=+m (30)

during this phase of the calculation.)

S2. [Euclidean step.] Set g < [h'/h], u + A —qh, v« p'—gp. If u? +v? < s,
set s < u2 +v%, B < h, h < u, p + p, p + v, and repeat step S2.

S3. [Compute v,.] Set u ~ u—h, v ¢ v—p; and if u2+v2 < s, set s < u? +v?,
h' + u, p' + v. Then output /s = v2. (The validity of this calculation for
the two-dimensional case is proved in exercise 5. Now we will set up the U
and V matrices satisfying (28) and (29), in preparation for calculations in
higher dimensions.) Set

—h p P’ h'
U(—(_h, p,), V(—i(_p —h)’

where the — sign is chosen for V' if and only if p’ > 0.

S4. [Advance t.] If t = T, the algorithm terminates. (Otherwise we want to
increase ¢t by 1. At this point U and V are t x t matrices satisfying (28)
and (29), and we must enlarge them by adding an appropriate new row
and column.) Set t + t+ 1 and r < (ar) mod m. Set U; to the new row
(—r,0,0,...,0,1) of t elements, and set u;; ¢~ 0 for 1 <1 < t. Set V; to the
new row (0,0,0,...,0,m). Finally, for 1 <i < t, set ¢ + round(vi;17/m),
vyt virr —gm, and Uy « Uy + qU;. (Here “round(x)” denotes the nearest
integer to z, e.g., |* + 1/2]. We are essentially setting v;; < v;ir and
immediately applying transformation (23) with j = ¢, since the numbers
|v;17r| are so large they ought to be reduced at once.) Finally set s «
min(s, U; - Uy), k < ¢, and j < 1. (In the following steps, j denotes the

3.3.4 THE SPECTRAL TEST 103

current row index for transformation (23), and k denotes the last such index
where the transformation shortened at least one of the V;.)

S5. [Transform.] For 1 < ¢ < t, do the following operations: If ¢ # j and
2|V1VJ| > VJVJ7 set g « round(Vi'Vj/Vj'Vj)v Vi < Vi _qu’ Uj =
U; + qU;, s < min(s, U;-U;), and k < j. (We omit the transformation
when 2|V; - V;| exactly equals Vj - Vj; exercise 19 shows that this precaution
keeps the algorithm from looping endlessly.)

S6. [Advance j.| If j =t, set j < 1; otherwise set j < j + 1. Now if j # &,
return to step S5. (If j = k, we have gone through ¢t — 1 consecutive cycles
of no transformation, so the transformation process is stuck.)

S7. [Prepare for search.] (Now the absolute minimum will be determined,
using an exhaustive search over all (zi,...,z:) satisfying condition (21)
of Lemma A.) Set X « Y « (0,...,0), set k < ¢, and set

5o VI Vs/m?] |, frigjst (31)

(We will examine all X = (z1,...,2¢) with |z;| < z; for 1 < j < t.
In hundreds of applications of this algorithm, no z; has yet turned out
to be greater than 1; but larger 2’s are probably possible in weird cases,
especially in higher dimensions. During the exhaustive search, the vector Y
will always be equal to ;U1 +- - -+ Uy, so that f(zy,...,2¢) = Y -Y. Since
f(=z1,...,—z¢) = f(x1,...,x¢), we shall examine only vectors whose first
nonzero component is positive. The method is essentially that of counting
in steps of one, regarding (z1,...,x:) as the digits in a balanced number
system with mixed radices (221 + 1, ..., 2z¢ + 1); see Section 4.1.)

S8. [Advance zx.] If zx = 2i, go to S10. Otherwise increase zx by 1 and set
Y «Y + U

S9. [Advance k.] Set k + k+1. Thenif k <t,set xx ¢ —2x, Y « Y — 22U,
and repeat step S9. But if k£ > ¢, set s < min(s, Y-Y).

S10. [Decrease k.| Set k «+ k — 1. If K > 1, return to S8. Otherwise output
vt = /5 (the exhaustive search is completed) and return to S4. |

In practice Algorithm S is applied for 7' = 5 or 6, say; it usually works reasonably
well when 7' = 7 or 8, but it can be terribly slow when 7' > 9 since the exhaustive
search tends to make the running time grow as 37. (If the minimum value 14
occurs at many different points, the exhaustive search will hit them all; hence
we typically find that all zx = 1 for large . As remarked above, the values of v;
are generally irrelevant for practical purposes when t is large.)

An example will help to make Algorithm S clear. Consider the linear
congruential sequence defined by

m = 101°, a = 3141592621, c=1, Xo=0. (32)

Six cycles of the Euclidean algorithm in steps S2 and S3 suffice to prove that the
minimum nonzero value of 2 + z2 with

T + 314159262122 = 0 (modulo 10°)

104 RANDOM NUMBERS : 3.3.4

occurs for z; = 67654, zo = 226; hence the two-dimensional accuracy of this
generator is

vy = /676542 + 2262 ~ 67654.37748.

Passing to three dimensions, we seek the minimum nonzero value of 22 + z3 + z3
such that .

1 + 3141592621z, + 3141592621223 = 0 (modulo 10%°). (33)
Step S4 sets up the matrices

—67654 —226 0 —191 —44190611 2564918569
U=|-44190611 1910}, V =|[-226 67654 1307181134 | .
5793866 331 0 0 10000000000

The first iteration of step S5, with ¢ = 1 for ¢ = 2 and q = 4 for ¢ = 3, changes
them to
<—21082801 97 4) <—191 —44190611 2564918569)
U= , V= .

—44190611 191 0 —35 44258265 —1257737435
5793866 33 1 764 176762444 —259674276

(The first row U; has actually gotten longer in this transformation, although
eventually the rows of U should get shorter.)

The next fourteen iterations of step S5 have (7, q1,q2,¢3) = (2, -2, %,0),
(3,0,3,%), (1,*,—10,-1), (2,-1,%,—6), (3,—1,0,%), (1,%,0,2), (2,0, *, —1),
(3,3,4,%), (1,%,0,0), (2,-5,%,0), (3,1,0,%), (1,* —3,—-1), (2,0, %,0), (3,0,0, *).
Now the transformation process is stuck, but the rows of the matrices have
become significantly shorter:

—1479 616 2777 —888874 601246 —2994234 '
U=|-3022 104 918 |, V = | —2809871 438109 1593689 | . (34)
—227 —983 -—-130 —854296 —9749816 —1707736

The search limits (z1, 22, 23) in step S7 turn out to be (0,0,1), so Us is the
shortest solution to (33); we have

vs = /2272 + 9832 + 1302 &~ 1017.21089.

Only a few iterations were needed to find this value, although condition (33)
looks quite formidable at first glance. Our computation has proved that all
points (Un, Un+1, Un+2) produced by the random number generator (32) lie on a
family of parallel planes about 0.001 units apart, but not on any family of planes
that differ by more than 0.001 units.

The exhaustive search in steps S8-S10 reduces the value of s only rarely.
One such case, found in 1982 by R. Carling and K. Levine, occurs when a =
464680339, m = 229, and t = 5; another case arose when the author calculated
v¢ for line 21 of Table 1, later in this section.

E. Ratings for various generators. So far we haven'’t really given a criterion
that tells us whether or not a particular random number generator passes or
flunks the spectral test. In fact, spectral success depends on the application,
since some applications demand higher resolution than others. It appears that

3.3.4 THE SPECTRAL TEST 105

ve > 230/t for 2 < t < 6 will be quite adequate for most purposes (although
the author must admit choosing this criterion partly because 30 is conveniently
divisible by 2, 3, 5, and 6).

For some purposes we would like a criterion that is relatively independent
of m, so we can say that a particular multiplier is good or bad with respect to
the set of all other multipliers for the given m, without examining any others.
A reasonable figure of merit for rating the goodness of a particular multiplier
seems to be the volume of the ellipsoid in ¢-space defined by the relation

(z1m — 2o — - — x40 D2+ 25+ + 27 < U2,
since this volume tends to indicate how likely it is that nonzero integer points
(z1,...,xs) —corresponding to solutions of (15) — are in the ellipsoid. We there-
fore propose to calculate this volume, namely
mt/2
Mt = W, (35)

as an indication of the effectiveness of the multiplier a for the given m. In this

formula,
(%)v _ (%) (% _ 1) (%)ﬁ for ¢ odd. (36)

Thus, in six or fewer dimensions the merit is computed as follows:
—)2 1.2 4
pe = Tvy /m, = gmv3/m, pa = 3mevi/m,
8 5 6
ps = 15T 1/5/m pe = sm3vg/m.

We might say that the multiplier a passes the spectral test if p; is 0.1 or more
for 2 <t <6, and it “passes with flying colors” if u; > 1 for all these t. A low
value of u; means that we have probably picked a very unfortunate multiplier,
since very few lattices will have integer points so close to the origin. Conversely,
a high value of y; means that we have found an unusually good multiplier for
the given m; but it does not mean that the random numbers are necessarily very
good, since m might be too small. Only the values v; truly indicate the degree
of randomness.

Table 1 shows what sorts of values occur in typical sequences. Each line of
the table considers a particular generator, and lists v2?, u;, and the “number of
bits of accuracy” 1g v;. Lines 1 through 4 show the generators that were the sub-
ject of Figs. 2 and 5 in Section 3.3.1. The generators in lines 1 and 2 suffer from
too small a multiplier; a diagram like Fig. 8 will have a nearly vertical “stripes”
when a is small. The terrible generator in line 3 has a good us but very poor us
and p4; like nearly all generators of potency 2, it has v3 = v/6 and vy = 2 (see
exercise 3). Line 4 shows a “random” multiplier; this generator has satisfactorily
passed numerous empirical tests for randomness, but it does not have especially
high values of us, ..., ue. In fact, the value of pus flunks our criterion.

Line 5 shows the generator of Fig. 8 It passes the spectral test with very
high-flying colors, when o through pg are considered, but of course m is so small
that the numbers can hardly be called random; the v; values are terribly low.

106 RANDOM NUMBERS : 3.34

Table 1
SAMPLE RESULTS OF THE SPECTRAL TEST
Line a m V2 l/g Vs v2 Vg
1 23 108 +1 530 530 530 530 447
2 2741 235 16642 16642 16642 15602 252
3 218 .41 235 434359738368 6 4 4 4
4 3141592653 235 2997222016 1026050 27822 1118 1118
5 137 256 274 30 14 6 4
6 3141592621 1010 4577114792 1034718 62454 1776 542
7 3141592221 1010 4293881050 276266 97450 3366 2382
8 4219755981 1010 110721093248 2595578 49362 5868 820
9 4160984121 1010 9183801602 4615650 16686 6840 1344
10 2244913 15 235 8364058 8364058 21476 16712 1496
11 513 235 33161885770 2025242 113374 13070 2256
12 21643 229 536936458 118 116 116 116
13 1812433253 232 4326934538 1462856 15082 4866 906
14 1566083941 232 4659748970 2079590 44902 4652 662
15 69069 232 4243209856 2072544 52804 6990 242
16 1664525 232 4938916874 2322494 63712 4092 1038
17 314159269 231_1 | 1432232969 899290 36985 3427 1144
18 62089911 231 _1 | 1977289717 1662317 48191 6101 1462
19 16807 2311 282475250 408197 21682 4439 895
20 48271 2311 | 1990735345 1433881 47418 4404 1402
21 40692 231_9249 | 1655838865 1403422 42475 6507 1438
22 | 44485709377909 246 5.6x 1013 1180915002 1882426 279928 26230
23 31167285 248 3.2x101% 4111841446 17341510 306326 59278
24 see (38) 2.4x10'8 47x101 1.9x10° 3194548 1611610
25 see (39) (231 —1)2 1.4x1012 643578623 12930027 837632
26 see the text 264 8.8x101% 6.4x1012 4.1x10° 45662836 1846368
27 see the text ~ 278 26211 4281084902 2.2x10° 1.8x10° 1862407
28 9—24-389 A 2576 1.8x 10173 3.5x 10115 4.4x10%¢ 2x10%° 5x10%7
29 | (232-5)400 | 21376 | 16x1041% 8.6x10%7% 1x10207 2x10!65 gx 10137

Line 6 is the generator discussed in (32) above. Line 7 is a similar example,
having an abnormally low value of p3. Line 8 shows a nonrandom multiplier
for the same modulus m; all of its partial quotients are 1, 2, or 3. Such
multipliers have been suggested by I. Borosh and H. Niederreiter because the
Dedekind sums are likely to be especially small and because they produce best
results in the two-dimensional serial test (see Section 3.3.3 and exercise 30). The
particular example in line 8 has only one ‘3’ as a partial quotient; there is no
multiplier congruent to 1 modulo 20 whose partial quotients with respect to 10°
are only 1s and 2s. The generator in line 9 shows another multiplier chosen with
malice aforethought, following a suggestion by A. G. Waterman that guarantees
a reasonably high value of ps (see exercise 11). Line 10 is interesting because it
has high p3 in spite of very low 2 (see exercise 8).

Line 11 of Table 1 is a reminder of the good old days—it once was used ex-
tensively, following a suggestion of O. Taussky in the early 1950s. But computers
for which 23° was an appropriate modulus began to fade in importance during

3.3.4 THE SPECTRAL TEST 107

(e= %)

lgvo lgvs lguvg lgvs lgue | po u3 pa K5 pe |Line

45 45 45 45 44| 28 B¢t 001 034 4.62 1
70 7.0 7.0 7.0 4.0 2% 3¢* 0.04 4.66 2 2
175 13 1.0 1.0 1.0]314 2 2 5€° €8 3
157 100 74 51 51027 0.13 011 0.01 0.21 4
40 25 1.9 13 1.01(336 269 378 1.81 1.29 5
16.0 100 80 5.4 45| 1.44 0.44 1.92 0.07 0.08 6
16.0 9.0 83 59 561|135 0.06 4.69 035 6.98 7
16.7 10.7 7.8 6.3 4.8 3.37 1.75 1.20 139 0.28 8
16.5 11.1 7.0 6.4 52289 4.15 0.14 2.04 1.25 9

11.5 11.5 7.2 7.0 5.3 | 8* 295 0.07 5.53 050 | 10
17.5 10.7 84 6.8 5.6 [3.03 0.61 1.85 299 173 | 11
145 34 3.4 34 34314 € €t €3 0.02 | 12
16.0 102 69 6.1 4.9 |3.16 1.73 0.26 2.02 0.89 | 13
16.1 10.5 7.7 6.1 471341 292 232 181 035 | 14
16.0 105 7.8 6.4 4.0|3.10 291 3.20 5.01 0.02 | 15
16.1 106 80 6.0 5.0|361 345 4.66 131 135 | 16
152 9.9 7.6 59 511|210 1.66 3.14 1.69 3.60 | 17
15.4 10.3 7.8 6.3 53289 4.18 534 7.13 752 | 18
140 93 72 6.1 49041 051 1.08 3.22 173 | 19
154 10.2 7.8 6.1 52291 335 517 3.15 6.63 | 20
15.3 102 7.7 6.3 52242 324 4.15 837 7.16 | 21
228 151 10.4 9.0 7.3.1248 242 0.25 3.10 133 | 22
241 16.0 12.0 9.1 7.9]3.60 3.92 5.27 0.97 3.82 | 23
30.5 19.4 15.4 10.8 10.3 | 1.65 0.29 3.88 0.02 4.69 | 24
31.0 20.2 15.6 11.8 9.813.14 149 0.44 0.69 0.66 | 25
31.5 21.3 16.0 12.7 10.4 | 1.50 3.68 4.52 4.02 1.76 | 26
31.0 16.0 155 154 104 | 565 4 85 2.56 et 27
288. 192, 144. 115. 959 | 2.27 3.46 3.92 249 298 | 28
688. 458. 344. 275. 229.]3.10 2.04 2.85 1.15 1.33 | 29

upper bounds from (40): 3.63 5.92 9.87 14.89 23.87

the late 60s, and they disappeared almost completely in the 80s, as machines
with 32-bit arithmetic began to proliferate. This change to a comparatively small
word size called for comparatively greater care. Line 12 was, alas, the generator
actually used on such machines in most of the world’s scientific computing centers
for more than a decade; its very name RANDU is enough to bring dismay into the
eyes and stomachs of many computer scientists! The actual generator is defined
by Xp odd, Xn41 = (65539X,,) mod 23, (37)
and exercise 20 indicates that 22° is the appropriate modulus for the spectral
test. Since 9X, — 6Xnt1 + Xnio = 0 (modulo 231), the generator fails most
three-dimensional criteria for randomness, and it should never have been used.
Almost any multiplier = 5 (modulo 8) would be better. (A curious fact about
RANDU, noticed by R. W. Gosper, is that v4 = vs = v =v7 =18 = Vg = V116,
hence pg is a spectacular 11.98.) Lines 13 and 14 are the Borosh—Niederreiter
and Waterman multipliers for modulus 232. Lines 16 and 23 were found by

108 RANDOM NUMBERS . 3.3.4

M. Lavaux and F. Janssens in a computer search for spectrally good multipliers
having a very high ps; line 22 is for the multiplier used with ¢ = 0 and m = 2*8 in
the Cray X-MP library; line 26 (whose excellent multiplier 6364136223846793005
is too big to fit in the column) is due to C. E. Haynes. Line 15 was nominated
by George Marsaglia as “a candidate for the best of all multipliers,” after a
computer search for nearly cubical lattices in dimensions 2 through 5, partly
because it is easy to remember [Applications of Number Theory to Numerical
Analysis, edited by S. K. Zaremba (New York: Academic Press, 1972), 275].

Line 17 uses a random primitive root, modulo the prime 23! —1, as multiplier.
Line 18 shows the spectrally best primitive root for 23! —1, found in an exhaustive
search by G. S. Fishman and L. R. Moore III [SIAM J. Sci. Stat. Comput. 7
(1986), 24-45]. The adequate but less outstanding multiplier 16807 = 7° in
line 19 is actually used most often for that modulus, after being proposed by
Lewis, Goodman, and Miller in IBM Systems J. 8 (1969), 136-146; it has been
one of the main generators in the popular IMSL subroutine library since 1971.
The main reason for continued use of a = 16807 is that a? is less than the
modulus m, hence ax mod m can be implemented with reasonable efficiency in
high-level languages using the technique of exercise 3.2.1.1-9. However, such
small multipliers have known defects. S. K. Park and K. W. Miller noticed that
the same implementation technique applies also to certain multipliers greater
than /m, so they asked G. S. Fishman to find the best “efficiently portable”
multiplier in this wider class; the result appears in line 20 [CACM 31 (1988),
1192-1201]. Line 21 shows another good multiplier, due to P. L’Ecuyer [CACM
31 (1988), 742-749, 774]; this one uses a slightly smaller prime modulus.

When the generators of lines 20 and 21 are combined by subtraction as
suggested in Eq. 3.2.2—(15), so that the generated numbers (Z,,) satisfy

Xpt1 = 48271X, mod (2°! — 1), Y,41 = 40692Y;, mod (23! — 249),
Zn = (Xn — Yn) mod (23! — 1),
exercise 32 shows that it is reasonable to rate (Z,) with the spectral test for
m = (231 —1)(23! - 249) and a = 1431853894371298687. (This value of a satisfies
amod (2%! — 1) = 48271 and a mod (23! — 249) = 40692.) The results appear on
line 24. We needn’t worry too much about the low value of us, since vs > 1000.
Generator (38) has a period of length (23! — 2)(23! — 250)/62 ~ 7 x 106.
Line 25 of the table represents the sequence

X, = (271828183 X,,—1 — 314159269X,,_3) mod (23! — 1), (39)

(38)

which can be shown to have period length (23! — 1)2 — 1; it has been analyzed
with the generalized spectral test of exercise 24.

The last three lines of Table 1 are based on add-with-carry and subtract-
with-borrow methods, which simulate linear congruential sequences that have
extremely large moduli (see exercise 3.2.1.1-14). Line 27 is for the generator

X, = (Xn-1+65430X,_2 + C,,) mod 2%,
Cnt1 = |(Xn—1+65430Xn_s + Cn) /2%,

3.34 THE SPECTRAL TEST 109

which corresponds to X,41 = (65430 - 23! + 1).X,, mod (65430 - 262 + 23! —1); the
numbers in the table refer to the “super-values”

X, = (65430 - 23! + 1) X,,_1 + 65430X,_2 + C,

rather than to the values X, actually computed and used as random numbers.
Line 28 represents a more typical subtract-with-borrow generator

Xn = (Xn—IO - Xn——24 - Cn) mod 2247 Cn+1 = {Xn—lo < Xn——24 + Cn])

but modified by generating 389 elements of the sequence and then using only the
first (or last) 24. This generator, called RANLUX, was recommended by Martin
Liischer after it passed many stringent tests that previous generators failed
[Computer Physics Communications 79 (1994), 100-110]. A similar sequence,

Xn = (Xn—22 - Xn——43 - Cn) mod (232 - 5)7 Cn+1 = [Xn—22 < Xn——43 + Cn];

with 43 elements used after 400 are generated, appears in line 29; this sequence is
discussed in the answer to exercise 3.2.1.2-22. In both cases the table entries refer
to the spectral test on multiprecision numbers X, instead of to the individual
“digits” X, but the high u values indicate that the process of generating 339 or
400 numbers before selecting 24 or 43 is an excellent way to remove biases due
to the extreme simplicity of the generation scheme.

Theoretical upper bounds on pu;, which can never be transcended for any m,
are shown just below Table 1; it is known that every lattice with m points per
unit volume has

vy < ’th/zml/t, (40)

where ; takes the respective values
(4/3)1/2, 2M3, 22 235 (64/3)1/6, 437, 2 (41)
for t = 2, ..., 8. [See exercise 9 and J. W. S. Cassels, Introduction to the

Geometry of Numbers (Berlin: Springer, 1959), p. 332; J. H. Conway and
N. J. A. Sloane, Sphere Packings, Lattices and Groups (New York: Springer,
1988), 20.] These bounds hold for lattices generated by vectors with arbitrary
real coordinates. For example, the optimum lattice for ¢ = 2 is hexagonal, and
it is generated by vectors of length 2/ v/3m that form two sides of an equilateral
triangle. In three dimensions the optimum lattice is generated by vectors Vi,
Vs, V3 that can be rotated into the form (v,v, —v), (v, —v,v), (—v,v,v), where

v=1/€/4_75.

*F. Relation to the serial test. In a series of important papers published
during the 1970s, Harald Niederreiter showed how to analyze the distribution of -
the t-dimensional vectors (1) by means of exponential sums. One of the main
consequences of his theory is that the serial test in several dimensions will be
passed by any generator that passes the spectral test, even when we consider
only a sufficiently large part of the period instead of the whole period. We
shall now turn briefly to a study of his interesting methods, in the case of linear
congruential sequences (Xg,a,c, m) of period length m.

110 RANDOM NUMBERS 3.3.4

The first idea we need is the notion of discrepancy in t dimensions, a
quantity that we shall define as the difference between the expected number
and the actual number of t-dimensional vectors (Tn,Zn41,--.,ZTntt—1) falling
into a hyper-rectangular region, maximized over all such regions. To be precise,
let (x,) be a sequence of integers in the range 0 < z, < m. We define

number of (Zp,...,Zntt—1) D Rfor 0 <n <N _ volume of R
N mt

DI(\?) = m}'c%x

(42)

where R ranges over all sets of points of the form

R={(y1, -y o1 <y1 <P,y ar Sy < Bi s (43)

here o; and @, are integers in the range 0 < a; < 8; < m, for 1 < j <t. The
volume of R is clearly (81 — a1)...(8: — o). To get the discrepancy D¢), we
imagine looking at all these sets R and finding the one with the greatest excess
or deficiency of points (Zn, - .-, Tntt—1)-

An upper bound for the discrepancy can be found by using exponential sums.
Let w = 2™/™ be a primitive mth root of unity. If (z1,...,2:) and (y1,...,¥s)
are two vectors with all components in the range 0 < z;,y; < m, we have

Z w(l'l—‘yl)u1+"'+(l't—‘yt)ut — {mt lf (xh .- 7xt) = (yh -. - 7yt)7
0 if (z1,...,2) # (Y1, Ye)-

0<uy,...,us <M

Therefore the number of vectors (Z,,...,Zntt—1) in R for 0 < n < N, when R
is defined by (43), can be expressed as

§ : § wxnu1+"'+$n+t—1ut E . E w—(y1u1+-~-+ytut).

0<n<N 0<uy,...,ug<m a1 <y1<B1 o <y <P

When u; = --- = us = 0 in this sum, we get N/m?® times the volume of R; hence
we can express DI(\?) as the maximum over R of

1 }: E: WERUL T T 1u §' E w— (vt tyrue)
Nmt .

0<n<N 0<Zuy,...,us<m a1<y1<Br <y <P
(u1,..-,ut)#(0,...,0)
Since complex numbers satisfy |w + z| < |w| + |z| and |wz| = |wl|z|, it follows

that

(t) 1 —(yrua e Hyeus)
Dy <m}%th Z Z Zw yiu1 y g(ug, ..., us)

0<ug,.ue<m a1 <y1<P1 ar <yt <P
(u1,-e,ut)#(0,...,0)

1 -
S W Z m}%x Z Z w (yrurtetyen) g(ul,...,ut)

0<uy,...,ut <m a1 <y1<Br ar Ly <Bt
(ul 7~‘~)ut)¢(0)"')0)

3.34 - THE SPECTRAL TEST 111

= E flug, . .yue) glur, ..., ue), (44)
0<uUy, e, ur <m
(ula"'yut)¢(0)"‘70)

where

1
J— n +'”+x’n —-1U .
gluy, ..., u) = |—= E wTn e-1te).
N
0<n<N

1 — e
f(ul,...,ut)zmgx—t— E E w (yrur+-+ysu)
m
a1<y1<B1 <y <P

1 _ 1 _
= max | — 5 w MY — 5 w vt
R |{m m

a1 <y1<61 oy Ly <P

Both f and g can be simplified further in order to get a good upper bound on
DI(\?). We have

1 w-—ﬁu ——ou

1 S W= |2
m m w—r —1
aly<p

< 2 _ ‘ 1
~ m|w* -1 msin(ru/m)

when u # 0, and the sum is < 1 when u = 0; hence

flur, .. ue) < r(ug, ... ue), (45)
where)
r(u .. uw) = H msin(mug/m) (46)
1<k<t
uk¢0

Furthermore, when (z,) is generated modulo m by a linear congruential se-
quence, we have

Toi+- + Tngio1U = Tour+ (aTn +)uz+- -+ (¢ Tzptelat 24 +1))u
= (u1+auz+-- +a T u) T+ h(ug, - u)

where h(uy,...,u;:) is independent of n; hence
1 a(ur,...ue)z

g(ulr-wut) = N Z w B (47)

0<n<N

where

g(ur, ..., ug) =uy + aug + -+ a* lug. (48)
Now here is where the connection to the spectral test comes in: We will show
that the sum g(uy,...,u;) is rather small unless g(ui,...,u:) = 0 (modulo m);
in other words, the contributions to (44) arise mainly from the solutions to (15).
Furthermore exercise 27 shows that r(uy, . .., u:) is rather small when (uy, ..., u;)

is a “large” solution to (15). Hence the discrepancy Dz(\?) will be rather small

112 RANDOM NUMBERS 3.34

when (15) has only “large” solutions, namely when the spectral test is passed.
Our remaining task is to quantify these qualitative statements by making careful
calculations.

In the first place, let’s consider the size of g(uy,...,u;). When N = m,

so that the sum (47) is over an entire period, we have g(u,,...,u;) = 0 except
when (uq, ..., u) satisfies (15), so the discrepancy is bounded above in this case
by the sum of 7(uy,...,u) taken over all the nonzero solutions of (15). But
let’s consider also what happens in a sum like (47) when N is less than m and
g(uy, ..., ut) is not a multiple of m. We have

1 Ty __ 1 1 —nk zi+jk

NZ“ —NZEZW Zw’

0<n<N 0<n<N 0<k<m 0<j<m
1 1 —nk
=5 2 (a d>ow ”)Sko, (49)
0<k<m 0<n<N

where

Se=) wiritik, (50)

0<j<m

Now Sk = w™*Sko, 50 |Ski| = |Sko| for all [, and we can calculate this common
value by further exponential-summery:

1
|Skol® = — > 18kl

o<l<m
N wx3+l+] w Tigl—?
m -
o<l<m 0Lj<m 0<i<m
— _]L_ E wlU—dk E WTiH T Titl
m —
0<i,5<m o<l<m
:i Z Z w(j“i)k Z w(aj_i—1)$i+z+(aj_i——l)c/(a——1).
m
0<i<m 1<j<m+i o<i<m

Let s be minimum such that a® =1 (modulo m), and let
s'=(a° —1)c/(a — 1) mod m.

Then s is a divisor of m (see Lemma 3.2.1.2P), and 45 = z,+js’ (modulo m).
The sum on [vanishes unless 7 — ¢ is a multiple of s, so we find that

. -
Seol?=m Y witkts
0<j<m/s

We have s’ = ¢'s where ¢’ is relatively prime to m (see exercise 3.2.1.2-21), so
it turns out that

(Siol = 0 if k 4+ ¢’ #Z 0 (modulo m/s),
LT A m/vE if k4 ¢ =0 (modulo m/s). (51)

3.3.4 THE SPECTRAL TEST 113

Putting this information back into (49), and recalling the derivation of (45),

shows that
1 T
N 2

0<n<N

< Frys k) (52)

where the sum is over 0 < k < m such that k+¢' = 0 (modulo m/s). Exercise 25
can now be used to estimate the remaining sum, and we find that

% Yo wen g%%lnwo(;\}g). (53)

0<n< N
The same bound can be used to estimate |[N ™' 35,y w®"| for any ¢ # 0
(modulo m), since the effect is to replace m in this derivation by a divisor of m.
In fact, the upper bound gets even smaller when ¢ has a factor in common
with m, since s and m/+/s generally become smaller. (See exercise 26.)

We have now proved that the g(u.,...,u;) part of our upper bound (44) on
the discrepancy is small, if IV is large enough and if (u1,...,u;) does not satisfy
the spectral test congruence (15). Exercise 27 proves that the f(uy,...,u;)
part of our upper bound is small, when summed over all the nonzero vectors
(ug,...,us) satisfying (15), provided that all such vectors are far away from
(0,...,0). Putting these results together leads to the following theorem of
Niederreiter:

Theorem N. Let (X,) be a linear congruential sequence (X, a,c, m) of period
length m, and let s be the least positive integer such that a®* = 1 (modulo m).
Then the t-dimensional discrepancy Dz(\?)

of (X,), as defined in (42), satisfies

D}(\?) -0 (\/glog -j\glog m)t) L0 (ﬂ(_}v?%/__gnz) + O((log m)* rmax); (54)

Dfﬁ) = O((log m)t 7“maX)- (55)

Here ry,x is the maximum value of the quantity r(ui,...,u;) defined in (46),
taken over all nonzero integer vectors (u1,...,u:) satisfying (15).

corresponding to the first N values

Proof. The first two O terms in (54) come from vectors (uj,...,us) in (44)
that do not satisfy (15), since exercise 25 proves that f(ui,...,u;) summed over
all (u1,...,us) is O(((2/7)Inm)*) and exercise 26 bounds each g(ui,...,us).
(These terms are missing from (55) since g(uy,...,us) = 0 in that case.) The
remaining O term in (54) and (55) comes from nonzero vectors (uy,...,us) that
do satisfy (15), using the bound derived in exercise 27. (By examining this
proof carefully, we could replace each O in these formulas by an explicit function
oft.) 1

Eq. (55) relates to the serial test in ¢ dimensions over the entire period,
while Eq. (54) gives us useful information about the distribution of the first N
generated values when N is less than m, provided that N is not too small.

114 RANDOM NUMBERS 3.34

Notice that (54) will guarantee low discrepancy only when s is sufficiently large,
otherwise the m/./s term will dominate. If m = pi*... p¢~ and ged(a — 1, m) =
p{l ...pfr, then s equals p‘{l"fl ...pf_’""f’" by Lemma 3.2.1.2P; thus, the largest

values of s correspond to high potency. In the common case m = 2¢ and a = 5

(modulo 8), we have s = $m, so Dj(\f) is O(y/m (logm)**tY/N) +O((log m)*rmax) -

It is not difficult to prove that
1

\/th

(see exercise 29). Therefore Eq. (54) says in particular that the discrepancy will
be low in t dimensions if the spectral test is passed and if /V is somewhat larger
than /m (logm)*+!.

In a sense Theorem N is almost too strong, for the result in exercise 30 shows
that linear congruential sequences like those in lines 8 and 13 of Table 1 have a
discrepancy of order (logm)?/m in two dimensions. The discrepancy in this case
is extremely small in spite of the fact that there are parallelogram-shaped regions
of area ~ 1/4/m containing no points (Up, Un+1). The fact that discrepancy can
change so drastically when the points are rotated warns us that the serial test
may not be as meaningful a measure of randomness as the rotation-invariant
spectral test.

<

(56)

Tmax

G. Historical remarks. In 1959, while deriving upper bounds for the error
in the evaluation of t-dimensional integrals by the Monte Carlo method, N. M.
Korobov devised a way to rate the multiplier of a linear congruential sequence.
His rather complicated formula is related to the spectral test, since it is strongly
influenced by “small” solutions to (15); but it is not quite the same. Korobov’s
test has been the subject of an extensive literature, surveyed by Kuipers and
Niederreiter in Uniform Distribution of Sequences (New York: Wiley, 1974), §2.5.

The spectral test was originally formulated by R. R. Coveyou and R. D.
MacPherson [JACM 14 (1967), 100-119], who introduced it in an interesting
indirect way. Instead of working with the grid structure of successive points,
they considered random number generators as sources of t-dimensional “waves.”
The numbers /z% +--- + z? such that z; + -+ + a*'z; = 0 (modulo m) in
their original treatment were the wave “frequencies,” or points in the “spectrum”
defined by the random number generator, with low-frequency waves being the
most damaging to randomness; hence the name spectral test. Coveyou and
MacPherson introduced a procedure analogous to Algorithm S for performing
their test, based on the principle of Lemma A. However, their original procedure
(which used matrices UU7 and VV7 instead of U and V) dealt with extremely
large numbers; the idea of working directly with U and V' was independently sug-
gested by F. Janssens and by U. Dieter. [See Math. Comp. 29 (1975), 827-833.]

Several other authors pointed out that the spectral test could be understood
in far more concrete terms; by introducing the study of the grid and lattice struc-
tures corresponding to linear congruential sequences, the fundamental limitations
on randomness became graphically clear. See G. Marsaglia, Proc. Nat. Acad. Sci.

3.34 THE SPECTRAL TEST 115

61 (1968), 25-28; W. W. Wood, J. Chem. Phys. 48 (1968), 427; R. R. Coveyou,
Studies in Applied Math. 3 (Philadelphia: SIAM, 1969), 70-111; W. A. Beyer,
R. B. Roof, and D. Williamson, Math. Comp. 25 (1971), 345-360; G. Marsaglia
and W. A. Beyer, Applications of Number Theory to Numerical Analysis, edited
by S. K. Zaremba (New York: Academic Press, 1972), 249-285, 361-370.

R. G. Stoneham showed, by using estimates of exponential sums, that p'/2+
or more elements of the sequence a*Xy mod p have asymptotically small dis-
crepancy, when a is a primitive root modulo the prime p [Acta Arithmetica 22
(1973), 371-389]. This work was extended as explained above in a number of
papers by Harald Niederreiter [Math. Comp. 28 (1974), 1117-1132; 30 (1976),
571-597; Advances in Math. 26 (1977), 99-181; Bull. Amer. Math. Soc. 84
(1978), 957-1041]. See also Niederreiter’s book Random Number Generation
and Quasi-Monte Carlo Methods (Philadelphia: SIAM, 1992).

EXERCISES

1. [M10] To what does the spectral test reduce in one dimension? (In other words,
what happens when ¢t = 17)

2. [HM20] Let Vi, ..., V; be linearly independent vectors in t-space, let Lo be the
lattice of points defined by (10), and let Un, ..., U; be defined by (19). Prove that the
maximum distance between (¢—1)-dimensional hyperplanes, over all families of parallel
hyperplanes that cover Lo, is 1/min{f(z1,... vz | (21, @) # (0, ..., 0)}, where
f is defined in (17).

3. [M24] Determine v and vy for all linear congruential generators of potency 2 and
period length m.

4. [M23] Let u1i, uiz, u21, u22 be elements of a 2 X 2 integer matrix such that
u11 + auis E_U21 + augz = 0 (modulo m) and U11U22 — U21U1I2 = TN.

a) Prove that all integer solutions (y1, y2) to the congruence y1 +ay2 = 0 (modulo m)
have the form (y1,¥2) = (£1u11 +T2u21, T1u12+T2uU22) for integer z1, z2.

b) If, in addition, 2Jui1us1 + uiause| < ul; +uly < u3; + u3y, prove that (yi,y2) =
(u11,u12) minimizes y: + y2 over all nonzero solutions to the congruence.

5. [M30] Prove that steps S1 through S3 of Algorithm S correctly perform the spec-

tral test in two dimensions. [Hint: See exercise 4, and prove that (A’ +h)*+(p' + p)* >
h? + p* at the beginning of step S2.]

6. [M30] Let ag, a1, ..., at—1 be the partial quotients of a/m as defined in Section
3.3.3, and let A = maxo<;j<: aj. Prove that uz > 2n/(A+ 1+ 1/A4).

7. [HM22] Prove that questions (a) and (b) following Eq. (23) have the same solution
for real values of qi, ..., @j—1, @j+1, ---, g+ (see (24) and (26)).

8. [M16] Line 18 of Table 1 has a very low value of pa, yet us is quite satisfactory.
What is the highest possible value of pus when puz = 107% and m = 101°?

9. [HM32] (C. Hermite, 1846.) Let f(z1,...,x:) be a positive definite quadratic
form, defined by the matrix U as in (17), and let 8 be the minimum value of f at
nonzero integer points. Prove that 6 < (?,:—)('5'1)/2 |det U|?/t. [Hints: If W is any integer
matrix of determinant 1, the matrix WU defines a form equivalent to f; and if S is
any orthogonal matrix (that is, if S 1=g T), the matrix US defines a form identically
equal to f. Show that there is an equivalent form g whose minimum 6 occurs at

116 RANDOM NUMBERS 3.3.4

(1,0,...,0). Then prove the general result by induction on ¢, writing g(zi,...,2:) =
O(z1 + Bexo + -+ + Bixe)® + h(xa, ..., x¢) where h is a positive definite quadratic form
in t — 1 variables.]

10. [M28] Let y1 and y2 be relatively prime integers such that y; +ay, =0 (modulo m)
and ¥ +y3 < \/4/_3m. Show that there exist integers u; and us such that u; +aus =0
(modulo m), u1ys — uays = m, 2|ury1 + u2yz| < min(ui+ul, yi+y2), and (vl + ul) x
(yi + v3) > m®. (Hence v3 = min(ul+u3,yi+y3) by exercise 4.)

» 11. [HM30] (Alan G. Waterman, 1974.) Invent a reasonably efficient procedure that
computes multipliers a = 1 (modulo 4) for which there exists a relatively prime solution
to the congruence y1 +ay2 = 0 (modulo m) with yi +y3 = \/4/_3m —¢, where e > 0 is
as small as possible, given m = 2°. (By exercise 10, this choice of a will guarantee that
v > m?/(y? +y2) > +/3/4m, and there is a chance that v will be near its optimum
value \/4/_3m. In practice we will compute several such multipliers having small e,
choosing the one with best spectral values vz, vs,)

12. [HM23] Prove, without geometrical handwaving, that any solution to question (b)
following Eq. (23) must also satisfy the set of equations (26).

13. [HM22] Lemma A uses the fact that U is nonsingular to prove that a positive
definite quadratic form attains a definite, nonzero minimum value at nonzero integer
points. Show that this hypothesis is necessary, by exhibiting a quadratic form (19)
whose matrix of coefficients is singular, and for which the values of f(zi1,...,z:) get
arbitrarily near zero (but never reach it) at nonzero integer points (z1,...,x¢).

14. [24] Perform Algorithm S by hand, for m = 100, a = 41, T = 3.

» 15. [M20] Let U be an integer vector satisfying (15). How many of the (¢t — 1)-
dimensional hyperplanes defined by U intersect the unit hypercube {(zi,...,z¢) |
0<zj<lforl < j < t}? (This is approximately the number of hyperplanes in
the family that will suffice to cover Ly.)

16. [M30] (U. Dieter.) Show how to modify Algorithm S in order to calculate the
minimum number N; of parallel hyperplanes intersecting the unit hypercube as in
exercise 15, over all U satisfying (15). [Hint: What are appropriate analogs to positive
definite quadratic forms and to Lemma A7?]

17. [20] Modify Algorithm S so that, in addition to computing the quantities vy, it
outputs all integer vectors (u1,...,u:) satisfying (15) such that uf + ... +u? = 2, for
2<t< T

18. [M30] This exercise is about the worst case of Algorithm S.

a) By considering “combinatorial matrices,” whose elements have the form y + z4;;
(see exercise 1.2.3-39), find 3 x 3 matrices of integers U and V satisfying (29) such
that the transformation of step S5 does nothing for any j, but the corresponding
values of z; in (31) are so huge that exhaustive search is out of the question. (The
matrix U need not satisfy (28); we are interested here in arbitrary positive definite
quadratic forms of determinant m.)

b) Although transformation (23) is of no use for the matrices constructed in (a), find
another transformation that does produce a substantial reduction.

» 19. [HM25] Suppose step S5 were changed slightly, so that a transformation with
g = 1 would be performed when 2V;-V; = V;-V;. (Thus, ¢ = [(V;-V; /V;-V;) + 2]
whenever i # j.) Would it be possible for Algorithm S to get into an infinite loop?

3.34 THE SPECTRAL TEST 117

20. [M23] Discuss how to carry out an appropriate spectral test for linear congruential
sequences having ¢ = 0, Xy odd, m = 2%, amod 8 = 3 or 5. (See exercise 3.2.1.2-9.)

21. [M20] (R. W. Gosper.) A certain application uses random numbers in batches of
four, but “throws away” the second of each set. How can we study the grid structure
of {%(X;;m, Xan+2, Xants) }, given a linear congruential generator of period m = 2°7

22. [M46] What is the best upper bound on us3, given that ps is very near its
maximum value /4/3 7?7 What is the best upper bound on pu2, given that us is very
near its maximum value %71'\/5?

23. [M46] Let U;, V; be vectors of real numbers with U; - V; = d;; for 1 < 4,5 < ¢,
and such that U,-U; = 1, 2|U;-U;| < 1, 2|V;-V;| < V;-V; for i # j. How large
can V;- Vi be? (This question relates to the bounds in step S7, if both (23) and the
transformation of exercise 18(b) fail to make any reductions. The maximum value
known to be achievable is (¢ + 2)/3, which occurs when U1 = I, U; = +I1 + 2V/3 I,
Vi=IL —(Ih+---+1)/V3, V; = 2I;/\/3, for 2 < j < t, where (I1,...,I;) is the
identity matrix; this construction is due to B. V. Alekseev.)

24. [M28] Generalize the spectral test to second-order sequences of the form X, =
(aXn-1+bXn—2) mod p, having period length p® —1. (See Eq. 3.2.2—(8).) How should
Algorithm S be modified?

25. [HM24] Let d be a divisor of m and let 0 < ¢ < d. Prove that) r(k), summed
over all 0 < k < m such that kmod d = ¢, is at most (2/dr)In(m/d) + O(1). (Here
r(k) is defined in Eq. (46) when t = 1.)

26. [M22] Explain why the derivation of (53) leads to a similar bound on

NT! Z wien

0<n<N

for 0 < g < m. Where does the derivation of (53) break down when m = 17
27. [HM39] (E. Hlawka, H. Niederreiter.) Let 7(u1,...,u¢) be the function defined

in (46). Prove that Y 7(u1,...,u:), summed over all 0 < uy,...,u; < m such that
(uiy...,us) # (0,...,0) and (15) holds, is at most 2((m + 27 lgm)* rmax), Where Tmax
is the maximum term r(ui,...,u:) in the sum.

28. [M28] (H. Niederreiter.) Find an analog of Theorem N for the case m = prime,
c = 0, a = primitive root modulo m, Xo # 0 (modulo m). [Hint: Your exponential
sums should involve ¢ = €2™/(™~1) a5 well as w.] Prove that in this case the “average”
primitive root has discrepancy Df,tl)_l = O (t(logm)‘/p(m — 1)), hence good primitive
roots exist for all m.

29. [HM22] Prove that the quantity rmax of exercise 27 is never larger than 1/v/8v;.

30. [M33] (S. K. Zaremba.) Prove that Tmax = O(max(a1,...,as)/m) in two dimen-
sions, where aj, ..., as are the partial quotients obtained when Euclid’s algorithm
is applied to m and a. [Hint: We have a/m = //ai1,...,as//, in the notation of
Section 4.5.3; apply exercise 4.5.3—42.]

31. [HM47] (I Borosh.) Prove that for all sufficiently large m there exists a number
a relatively prime to m such that all partial quotients of a/m are < 3. Furthermore
the set of all m satisfying this condition but with all partial quotients < 2 has positive
density.

118 RANDOM NUMBERS 3.3.4

> 32. [M21] Let mi =2*' —1 and my = 2%' — 249 be the moduli of generator (38).
a) Show that if U, = (X /m; — Y»/m2) mod 1, we have U, ~ Z,,/m,.
b) Let Wy = (Xom2 — Yomi) mod m and Wr41 = aW, mod m, where a and m have
the values stated in the text following (38). Prove that there is a simple relation
between W, and U,.

2\ In the next edition -of this book, I plan to introduce a new Section 3.3.5,

. entitled “The L3 Algorithm.” It will be a digression from the general topic of
Random Numbers, but it will continue the discussion of lattice basis reduction in
Section 3.3.4. Its main topic will be the now-classic algorithm of A. K. Lenstra,
H. W. Lenstra, Jr., and L. Lovdsz [Math. Annalen 261 (1982), 515-534] for
finding a near-optimum set of basis vectors, and improvements to that algorithm
made subsequently by other researchers. Examples of the latter can be found
in the following papers and their bibliographies: M. Seysen, Combinatorica 13
(1993), 363-375; C. P. Schnorr and H. H. Hérner, Lecture Notes in Comp. Sci.
921 (1995), 1-12.

3.4.1 NUMERICAL DISTRIBUTIONS 119

3.4. OTHER TYPES OF RANDOM QUANTITIES

WE HAVE NOW SEEN how to make a computer generate a sequence of numbers
Uy, Uy, Us, ... that behaves as if each number were independently selected
at random between zero and one with the uniform distribution. Applications of
random numbers often call for other kinds of distributions, however; for example,
if we want to make a random choice from among k alternatives, we want a
random integer between 1 and k. If some simulation process calls for a random
waiting time between occurrences of independent events, a random number with
the exponential distribution is desired. Sometimes we don’t even want random
numbers — we want a random permutation (a random arrangement of n objects)
or a random combination (a random choice of k objects from a collection of n).

In principle, any of these other random quantities can be obtained from the
uniform deviates Uy, Uy, Uz, ...; people have devised a number of important
“random tricks” for the efficient transformation of uniform deviates. A study of
these techniques also gives us insight into the proper use of random numbers in
any Monte Carlo application.

It is conceivable that someday somebody will invent a random number
generator that produces one of these other random quantities directly, instead of
getting it indirectly via the uniform distribution. But no direct methods have as
yet proved to be practical, except for the “random bit” generator described in
Section 3.2.2. (See also exercise 3.4.1-31, where the uniform distribution is used
primarily for initialization, after which the method is almost entirely direct.)

The discussion in the following section assumes the existence of a random
sequence of uniformly distributed real numbers between zero and one. A new
uniform deviate U is generated whenever we need it. These numbers are usually
represented in a computer word with the radix point assumed at the left.

3.4.1. Numerical Distributions

This section summarizes the best techniques known for producing numbers from
various important distributions. Many of the methods were originally suggested
by John von Neumann in the early 1950s, and they have gradually been improved
upon by other people, notably George Marsaglia, J. H. Ahrens, and U. Dieter.

A. Random choices from a finite set. The simplest and most common type
of distribution required in practice is a random integer. An integer between 0
and 7 can be extracted from three bits of U on a binary computer; in such a
case, these bits should be extracted from the most significant (left-hand) part
of the computer word, since the least significant bits produced by many random
number generators are not sufficiently random. (See the discussion in Section
3.2.1.1)

In general, to get a random integer X between O and k — 1, we can multiply
by k, and let X = |kU|. On MIX, we would write

LDA U (1)
MUL K

120 RANDOM NUMBERS 3.4.1

and after these two instructions have been executed the desired integer will
appear in register A. If a random integer between 1 and & is desired, we add one
to this result. (The instruction “INCA 1” would follow (1).)

This method gives each integer with nearly equal probability. There is a
slight error because the computer word size is finite (see exercise 2); but the
error is quite negligible if k is small, for example if k/m < 1/10000.

In a more general situation we might want to give different weights to
different integers. Suppose that the value X = 1z; is to be obtained with
probability p;, and X = z2 with probability p, ..., X = x, with probability py.
We can generate a uniform number U and let

x1, if0<U <py;

z2, ifp1 <U <p; +po;
X=X (2)

Tk, fpr+pe+--+pp1 <UL

(Note that py +ps +---+pr = 1.)

There is a “best possible” way to do the comparisons of U against various
values of p; + p2 + --- + ps, as implied in (2); this situation is discussed in
Section 2.3.4.5. Special cases can be handled by more efficient methods; for
example, to obtain one of the eleven values 2, 3, ,.., 12 with the respective “dice”

probabilities z, &, ..., 3%, ---, =, 35, We could compute two independent
random integers between 1 and 6 and add them together.
However, there is actually a faster way to select z1, ..., z) with arbitrarily

given probabilities, based on an ingenious approach introduced by A. J. Walker
[Electronics Letters 10,8 (1974), 127-128; ACM Trans. Math. Software 3 (1977),
253-256]. Suppose we form kU and consider the integer part K = [kU| and
fraction part V = (kU) mod 1 separately; for example, after the code (1) we will
have K in register A and V in register X. Then we can always obtain the desired
distribution by doing the operations

if V<Pg then X < xgy; otherwise X « Yk, (3)

for some appropriate tables (Pp, ..., Px_1) and (Yp,...,Yx_1). Exercise 7 shows
how such tables can be computed in general. Walker’s method is sometimes
called the method of “aliases.”

On a binary computer it is usually helpful to assume that k is a power of 2,
so that multiplication can be replaced by shifting; this can be done without loss
of generality by introducing additional z's that occur with probability zero. For
example, let’s consider dice again; suppose we want X = j to occur with the
following 16 probabilities:

Jj=01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 5 4 3 2 1

P; =0 0 35 36 36 36 36 36 36 36 36 36 36 0 0 O

3.4.1 NUMERICAL DISTRIBUTIONS 121

We can do this using (3), if ¥ = 16 and z;41 = j for 0 < 3 < 16, and if the P
and Y tables are set up as follows:

j=01 2 3 4 5 6 7 8 9 101112131415
7T 7T 8 4

Pp=003%%8 11 1113F ¢ 355000

Y;=5 9 7 4 x 6 x x x 8 4 7106 7 8

(When P; = 1, Y; is not used.) For example, the value 7 occurs with probability
- (1-P)+Pr+(1-Pu)+(1—Pu)) = = as required. It is a peculiar way
to throw dice, but the results are indistinguishable from the real thing.

The probabilities p; can be represented implicitly by nonnegative weights
wi, Ws, ..., wg; if we denote the sum of the weights by W, then p; = w;/W.
In many applications the individual weights vary dynamically. Matias, Vitter,
and Ni [SODA 4 (1993), 361-370] have shown how to update a weight and
generate X in constant expected time.

B. General methods for continuous distributions. The most general real-
valued distribution can be expressed in terms of its “distribution function” F(z),
which specifies the probability that a random quantity X will not exceed z:

F(z) =Pr(X < z). (4)
This function always increases monotonically from zero to one; that is,
F(z1) < F(z2), ifz <y F(—o0) =0, F(4o00) = 1. (5)

Examples of distribution functions are given in Section 3.3.1, Fig. 3. If F(z)
is continuous and strictly increasing (so that F(z;) < F(z3) when z; < z2),
it takes on all values between zero and one, and there is an inverse function
F=1(y) such that, for 0 < y < 1,

y = F(z) if and only if 2 = FI7l(y). (6)

In general, when F(z) is continuous and strictly increasing, we can compute a
random quantity X with distribution F'(z) by setting

X = FH(), (7)

where U is uniform. This works because the probability that X < z is the prob-
ability that F{-1(U) < x, namely the probability that U < F(z), namely F(z).

The problem now reduces to one of numerical analysis, namely to find good
methods for evaluating FIm(U) to the desired accuracy. Numerical analysis
lies outside the scope of this seminumerical book; yet a number of important
shortcuts are available to speed up the general approach of (7), and we will
consider them here.

In the first place, if X; is a random variable having the distribution F}(z)
and if X» is an independent random variable with the distribution F(z), then

max(X;, X2) has the distribution Fi(z)F>(z),)
min(X;, X3) has the distribution Fi(z) + Fa(z) — Fi(z)Fa(z).

122 RANDOM NUMBERS 3.4.1

(See exercise 4.) For example, a uniform deviate U has the distribution F(z) = z,
for 0 < z < 1; if Uy, Uy, ..., U; are independent uniform deviates, then
max(Uy,Us, ..., U;) has the distribution function F(z) = z*, for 0 < z < 1.
This formula is the basis of the “maximum-of-t¢ test” given in Section 3.3.2; the
inverse function is FI-U(y) = v/y. In the special case ¢t = 2, we see therefore
that the two formulas

X =VU and X = max (U, Us) (9)

will give equivalent distributions to the random variable X, although this is not
obvious at first glance. We need not take the square root of a uniform deviate.

The number of tricks like this is endless: Any algorithm that employs
random numbers as input will give a random quantity with some distribution as
output. The problem is to find general methods for constructing the algorithm,
given the distribution function of the output. Instead of discussing such methods
in purely abstract terms, we shall study how they can be applied in important
cases.

C. The normal distribution. Perhaps the most important nonuniform, con-
tinuous distribution is the normal distribution with mean zero and standard

deviation one:) .
Flx) = — e—t2/2 dt. 10
@=>=/ (10)

The significance of this distribution was indicated in Section 1.2.10. In this case
the inverse function FI=1 is not especially easy to compute; but we shall see
that several other techniques are available.

1) The polar method, due to G. E. P. Box, M. E. Muller, and G. Marsaglia.
(See Annals Math. Stat. 29 (1958), 610-611; and Boeing Scientific Res. Lab.
report D1-82-0203 (1962).)

Algorithm P (Polar method for normal deviates). This algorithm calculates
two independent normally distributed variables, X; and Xs.

P1. [Get uniform variables.] Generate two independent random variables, U;
and Us, uniformly distributed between zero and one. Set V; « 2U; — 1,
Vo « 2U; — 1. (Now V) and V; are uniformly distributed between —1 and
+1. On most computers it will be preferable to have V; and V5 represented
in floating point form.)

P2. [Compute S.] Set S « V2 + VZ£.

P3. [Is S > 17] If S > 1, return to step P1. (Steps P1 through P3 are executed
1.27 times on the average, with a standard deviation of 0.587; see exercise 6.)

P4. [Compute X, X2.] Set X;, X5 as follows:

—2InS —2InS
S y X2 = V2 S . (11)

These are the normally distributed variables desired. |

X1 =W

3.4.1 NUMERICAL DISTRIBUTIONS 123

To prove the validity of this method, we use elementary analytic geometry
and calculus: If S < 1 in step P3, the point in the plane with Cartesian
coordinates (V1, V) is a random point uniformly distributed inside the unit circle.
Transforming to polar coordinates V3, = Rcos ©, Vo = Rsin ©, we find

S=R?’ X,=v-2InScos®, X;=+/—2InSsin®.

Using also the polar coordinates X; = R’cos®’, X3 = R’sin®’, we find that
© =0 and R' = v-2InS. It is clear that R’ and ©’ are independent, since
R and © are independent inside the unit circle. Also, © is uniformly distributed
between 0 and 2m; and the probability that R’ < r is the probability that
—2In S < r2, namely the probability that S > e™" */2, This equals 1 —e™" gl 2
since S = R2 is uniformly distributed between zero and one. The probablhty
that R’ lies between r and r + dr is therefore the differential of 1 — e~/ 2
namely re™" /2 dp. Similarly, the probability that ©’ lies between 6 and 6 + d9
is (1/2m)df. The joint probability that X, < z; and that X, < z; now can be
computed; it is

1
/ e /2rdrdf
{(r,8) | rcos <z, rsin0<zq} 27‘(’

= i e~ (@ +y7)/2 dz dy

{(‘T,'y) | .’lf<.’131, 'y<$2}

(L) (o)

This proves that X; and X, are independent and normally distributed, as
desired.

2) The rectangle-wedge-tail method, introduced by G. Marsaglia. Here we use

the function
2 T
F(z) = erf(z/V2) = ,/;/ e 2dt, 1 >0, (12)
0

which gives the distribution of the absolute value of a normal deviate. After X
has been computed according to distribution (12), we will attach a random sign
to its value, and this will make it a true normal deviate.

The rectangle-wedge-tail approach is based on several important general
techniques that we shall explore as we develop the algorithm. The first key idea
is to regard F'(z) as a mizture of several other functions, namely to write

F(z) = p1 Fi() + p2 Fo(z) + - - + prFan(2), (13)

where Fy, F5, ..., F, are appropriate distributions and p;, p2, ..., p. are
nonnegative probabilities that sum to 1. If we generate a random variable X by
choosing distribution F; with probability p;, it is easy to see that X will have
distribution F overall. Some of the distributions F;(z) may be rather difficult to
handle, even harder than F itself, but we can usually arrange things so that the

124 RANDOM NUMBERS 3.4.1
oo
0.8 — 18
07 i$f19
' f20

0.6 —

0.5 i
0.4 A
0.3
0.2

0.1 —
0.0

filf2|fs|fa|fs
0

!
4

Fig. 9. The density function divided into 31 parts. The area of each part represents
the average number of times a random number with that density is to be computed.

probability p; is very small in that case. Most of the distributions Fj(z) will be
quite easy to accommodate, since they will be trivial modifications of the uniform
distribution. The resulting method yields an extremely efficient program, since
its average running time is very small.

It is easier to understand the method if we work with the derivatives of the
distributions instead of the distributions themselves. Let

f(@)=F'(z), fi(z) = Fj/(z)

be the density functions of the probability distributions. Equation (13) becomes

f(@) = p1fi(x) + p2afolz) + - - - + pr fu(x). - (14)

Each f;(z) is > 0, and the total area under the graph of f;(z) is 1; so there is
a convenient graphical way to display the relation (14): The area under f(z)
1s divided into n parts, with the part corresponding to f;(x) having area p;.
See Fig. 9, which illustrates the situation in the case of interest to us here, with
f(z) =F'(z) =/2/me™" "/2; the area under this curve has been divided into n =
31 parts. There are 15 rectangles, which represent p; fi(z), ..., pisfis(z); there
are 15 wedge-shaped pieces, which represent pi¢ fis(), ..., p3ofso(x); and the
remaining part ps1 f31(z) is the “tail,” namely the entire graph of f(z) for z > 3.

The rectangular parts fi(x), ..., fis(z) represent uniform distributions.
For example, f3(z) represents a random variable uniformly distributed between
2 and 2. The altitude of p; f;(z) is £(j/5), hence the area of the jth rectangle
1s

2 ,
j = —f(3/5) 5im 70 for1< <15 (15)

In order to generate such rectangular portions of the distribution, we simply
compute

X =3U+S5, (16)

3.4.1 NUMERICAL DISTRIBUTIONS 125

. . | 0) y
s s+h s s+h

Fig. 10. Density functions for which Algorithm L may be used to generate random
numbers.

where U is uniform and S takes the value (j —1)/5 with probability p;. Since
p1 + -+ p1s = .9183, we can use simple uniform deviates like this about 92
percent of the time. '

In the remaining 8 percent, we will usually have to generate one of the
wedge-shaped distributions Fig, ..., F3p. Typical examples of what we need to
do are shown in Fig. 10. When z < 1, the curved part is concave downward, and
when z > 1 it is concave upward, but in each case the curved part is reasonably
close to a straight line, and it can be enclosed in two parallel lines as shown.

To handle these wedge-shaped distributions, we will rely on yet another
general technique, von Neumann'’s rejection method for obtaining a complicated
density from another one that “encloses” it. The polar method described above is
a simple example of such an approach: Steps P1-P3 obtain a random point inside
the unit circle by first generating a random point in a larger square, rejecting it
and starting over again if the point was outside the circle.

The general rejection method is even more powerful than this. To generate a
random variable X with density f, let g be another probability density function
such that

f(t) < cg(t) (17)
for all ¢, where c is a constant. Now generate X according to density g, and also
generate an independent uniform deviate U. If U > f(X)/cg(X), reject X and
start again with another X and U. When the condition U < f(X)/cg(X) finally
occurs, the resulting X will have density f as desired. [Proof: X <z will occur

with probability p(z) = ffoo (g(t) dt - f(t)/cg(t)) + gp(z), where the quantity
g= [(g(t)dt-(1—f(t)/cg(t))) = 1—1/cis the probability of rejection; hence

-0
p(z) = [Z f(t)dt]

The rejection technique is most efficient when c is small, since there will be
c iterations on the average before a value is accepted. (See exercise 6.) In some
cases f(x)/cg(z) is always 0 or 1; then U need not be generated. In other cases
if f(z)/cg(x) is hard to compute, we may be able to “squeeze” it between two
bounding functions

r(z) < f(z)/cg(z) < s(z) (18)

126 RANDOM NUMBERS 3.4.1

0T ST @
Fig. 11. Region of “acceptance” in Algorithm L.

that are much simpler, and the exact value of f(z)/cg(x) need not be calculated
unless 7(z) < U < s(z). The following algorithm solves the wedge problem by
developing the rejection method still further.

Algorithm L (Nearly linear densities). This algorithm may be used to gen-
erate a random variable X for any distribution whose density f(z) satisfies the
following conditions (see Fig. 10):

f(z) =0, for x < s and for z > s + h;

o-bz-s)/h<f@) <b-bla-s)h, fors<s<sth 0

L1. [Get U < V.] Generate two independent random variables U and V, uni-
formly distributed between zero and one. If U > V, exchange U +> V.

L2. [Easy case?] If V < a/b, go to L4.

L3. [Try again?] If V > U + (1/b)f(s + hU), go back to step L1. (If a/b is close
to 1, this step of the algorithm will not be necessary very often.)

L4. [Compute X.] Set X < s+ hU. |

When step L4 is reached, the point (U, V) is a random point in the area
shaded in Fig. 11, namely, 0 < U <V < U + (1/b)f(s + hU). Conditions (19)
ensure that

a

b
Now the probability that X < s + hz, for 0 < z < 1, is the area that lies to the
left of the vertical line U = z in Fig. 11, divided by the total area, namely

T 1 s+hzx
| 56+ huydu / | 5 huydu = |

therefore X has the correct distribution.

With appropriate constants a;, b;, s;, Algorithm L will take care of the
wedge-shaped densities f;;15 of Fig. 9, for 1 < j < 15. The final distribution,
I31, needs to be treated only about one time in 370; it is used whenever a result
X > 3 is to be computed. Exercise 11 shows that a standard rejection scheme
can be used for this “tail.” We are ready to consider the procedure in its entirety:

1
SU+3f(s+hU) < 1.

3.4.1 NUMERICAL DISTRIBUTIONS 127

M1. Get U

\ Yes
M2. Rectangle?
C:__gJ

No

MS5. Easy case? Yes

Wed No
<M3. Wedge or tai@——e——ge—» M4. Get U<V
Tail Y\es@ﬁ. Another try@—l\li—}

MT7. Get supertail deviate MS8. Reject?

M9. Attach sign

v

Fig. 12. The “rectangle-wedge-tail” algorithm for generating normal deviates.

Algorithm M (Rectangle-wedge-tail method for normal deviates). For this
algorithm we use auxiliary tables (Po,...,Ps1), (Q1,...,Q15), (Yo,...,Y31),
(Z(), cen ,Z31), (51, ey 516)7 (D16; ey D30), (Els, ceey E30), constructed as ex-
plained in exercise 10; examples appear in Table 1. We assume that a binary
computer is being used; a similar procedure could be worked out for decimal
machines.

M1. [Get U] Generate a uniform random number U = (.bob1bz...b:)2. (Here
the b’s are the bits in the binary representation of U. For reasonable
accuracy, t should be at least 24.) Set ¥ « by. (Later, ¢ will be used
to determine the sign of the result.)

M2. [Rectangle?] Set j « (bib2bsbsbs)2, a binary number determined by the
leading bits of U, and set f « (.bgby...bs)2, the fraction determined by
the remaining bits. If f > P;, set X « Y; 4+ fZ; and go to M9. Otherwise
if j < 15 (that is, by = 0), set X « S; + fQ; and go to M9. (This is an
adaptation of Walker’s alias method (3).)

M3. [Wedge or tail?] (Now 15 < 5 < 31, and each particular value j occurs with
probability p;.) If j = 31, go to MT.

M4. [Get U < V.] Generate two new uniform deviates, U and V; if U > V,
exchange U < V. (We are now performing Algorithm L.) Set X « S,;_15+
1
U
=U.

MS5. [Easy case?] If V < D;, go to MO.

128 RANDOM NUMBERS 3.4.1

Table 1
EXAMPLE OF TABLES USED WITH ALGORITHM M*
P; Piyie Qj Y; Yivie Zj Zj+ie Sijt1 Djtis Ejyis
000 .067 000 059 020 021 0.0

849 161 236 — 0.92 0.96 1.32 024 0.2 .505 25.00
970 236 206 — 5.86 —0.06 6.66 0.26 0.4 773 12.50
.855 285 234 — 0.58 0.12 1.38 0.28 0.6 876 8.33
994 .308 201 —33.13 1.31 3493 0.29 0.8 939 6.25
995 .304 201 —39.55 0.31 41.35 0.29 1.0 .986 5.00
933 .280 214 - 2.57 1.12 297 0.28 1.2 .995 4.06
923 241 217 — 1.61 0.54 2.61 0.26 1.4 987 3.37
727 197 275 0.67 0.75 0.73 0.25 1.6 979 2.86
1.000 .152 200 0.00 0.56 0.00 0.24 1.8 972 2.47
10 .691 .112 289 0.35 0.17 0.65 0.23 2.0 .966 2.16
11 454 .079 440 - 0.17 0.38 037 0.22 2.2 .960 1.92
12 287 .052 .698 0.92 -0.01 0.28 0.21 2.4 954 1.71
13 174 033 1.150 0.36 0.39 024 0.21 2.6 948 1.54
14 101 .020 1974 — 0.02 0.20 0.22 0.20 2.8 942 1.40
15 .057 .086 3.526 0.19 0.78 0.21 0.22 3.0 936 1.27

OO IOO Utk WK K O|S.

*In practice, this data would be given with much greater precision; the table shows only enough
figures so that interested readers will be able to test their own algorithms for computing the
values more accurately.

MBS6. [Another try?] If V > U + Ej(e(‘ga?-14—x2)/2 — 1), go back to step M4;
otherwise go to M9. (This step is executed with low probability.)

MT7. [Get supertail deviate.] Generate two new independent uniform deviates,
UandV, and set X « +/9—-2InV.

MBS. [Reject?] If UX > 3, go back to step M7. (This will occur only about
one-twelfth as often as we reach step MS8.)

MO. [Attach sign.] If p =1, set X « -X. 1

This algorithm is a very pretty example of mathematical theory intimately
interwoven with programming ingenuity —a fine illustration of the art of com-
puter programming! Only steps M1, M2, and M9 need to be performed most
of the time, and the other steps aren’t terribly slow either. The first publica-
tions of the rectangle-wedge-tail method were by G. Marsaglia, Annals Math.
Stat. 32 (1961), 894-899; G. Marsaglia, M. D. MacLaren, and T. A. Bray,
CACM 7 (1964), 4-10. Further refinements of Algorithm M have been developed
by G. Marsaglia, K. Ananthanarayanan, and N. J. Paul, Inf Proc. Letters 5
(1976), 27-30.

3) The odd-even method, due to G. E. Forsythe. An amazingly simple technique
for generating random deviates with a density of the general exponential form

f(z) = Ce "® [a <z <b], (20)

when
0<h(z)<1 fora<z<b, (21)

was discovered by John von Neumann and G. E. Forsythe about 1950. The idea
is based on the rejection method described earlier, letting g(z) be the uniform

3.4.1 NUMERICAL DISTRIBUTIONS 129

distribution on [a..b): We set X <+ a+ (b— a)U, where U is a uniform deviate,
and then we want to accept X with probability e~"*). The latter operation
could be done by comparing e~*X) to V, or h(X) to —InV, when V is another
uniform deviate, but the job can be done without applying any transcendental
functions in the following interesting way. Set Vy < h(X), then generate uniform
deviates V1, V4, ... until finding some K > 1 with Vx_; < V. For fixed X and k,
the probability that h(X) > Vi > --- > Vi is 1/k! times the probability that
max(V1,..., Vi) < h(X), namely h(X)*/k!; hence the probability that K = k is
h(X)*=1/(k — 1)! — h(X)*/k!, and the probability that K is odd is

ROXORT ROFY
2 ((EC—)l)! - (k!))Ze . (22)

kodd, k>1

Therefore we reject X and try again if K is even; we accept X as a random
variable with density (20) if K is odd. We usually won’t have to generate
many V’s in order to determine K, since the average value of K (given X)
is Yo Pr(K > k) = 3 oo M(X)F/k! = ehX) <e.

Forsythe realized some years later that this approach leads to an efficient
method for calculating normal deviates, without the need for any auxiliary
routines to calculate square roots or logarithms as in Algorithms P and M. His
procedure, with an improved choice of intervals [a..b) due to J. H. Ahrens and
U. Dieter, can be summarized as follows.

Algorithm F (Odd-even method for normal deviates). This algorithm generates
normal deviates on a binary computer, assuming approximately ¢ + 1 bits of
accuracy. It requires a table of values d; = a; —a;_1, for 1 < j < ¢+ 1, where

a; is defined by the relation
2 [2 1
2 —=/2 gy —
- /aj e dz = 55" (23)

F1. [Get U.] Generate a uniform random number U = (.bgb; ... b;)2, where by,
b1, ..., by denote the bits in binary notation. Set ¢ < by, j « 1, and a « 0.

F2. [Find first zero b;.] If b; = 1, set a < a +d;, j < j + 1, and repeat this
step. (If j =t + 1, treat b; as zero.)

F3. [Generate candidate.] (Now a = a;_1, and the current value of j occurs with
probability ~ 277. We will generate X in the range [a;_; ..a;), using the
rejection method above, with h(z) = 22/2—a?/2 = y?/2+ay where y = z—a.
Exercise 12 proves that h(z) < 1 as required in (21).) Set Y « d; times
(:bjt1...bt)2 and V < (3Y +a)Y. (Since the average value of j is 2, there
will usually be enough significant bits in (.bj41...b:)2 to provide decent
accuracy. The calculations are readily done in fixed point arithmetic.)

F4. [Reject?] Generate a uniform deviate U. If V. < U, go on to step F5.
Otherwise set V to a new uniform deviate; and if now U < V (that is, if K
is even, in the discussion above), go back to F3, otherwise repeat step F4.

F5. [Return X.] Set X <~ a+ Y. Ifyp =1,set X < -X. |

130 RANDOM NUMBERS 3.4.1

(0, v/2/e)

Fig. 13. Region of “acceptance”
in the ratio-of-uniforms method
for normal deviates. Lengths of
lines with coordinate ratio x have
the normal distribution.

(07_\/ 2/6)

Values of d; for 1 < j <47 appear in a paper by Ahrens and Dieter, Math.
Comp. 27 (1973), 927-937; their paper discusses refinements of the algorithm
that improve its speed at the expense of more tables. Algorithm F is attractive
since it is almost as fast as Algorithm M and it is easier to implement. The
average number of uniform deviates per normal deviate is 2.53947; R. P. Brent
[CACM 17 (1974), 704-705] has shown how to reduce this number to 1.37446
at the expense of two subtractions and one division per uniform deviate saved.

4) Ratios of uniform deviates. There is yet another good way to generate
normal deviates, discovered by A. J. Kinderman and J. F. Monahan in 1976.
Their idea is to generate a random point (U, V') in the region defined by

0<u<l, —2uy/In(1/u) < v < 2uy/In(1/u), (24)

and then to output the ratio X « V/U. The shaded area of Fig. 13 is the magic
region (24) that makes this all work. Before we study the associated theory, let
us first state the algorithm so that its efficiency and simplicity are manifest:

Algorithm R (Ratio method for normal deviates). This algorithm generates

normal deviates X.

R1. [Get U,V.] Generate two independent uniform deviates U and V, where
U is nonzero, and set X « /8/e (V—-3) /U (Now X is the ratio of
the coordinates (U, /8/e (V — %)) of a random point in the rectangle that
encloses the shaded region in Fig. 13. We will accept X if the corresponding
point actually lies “in the shade,” otherwise we will try again.)

3.4.1 NUMERICAL DISTRIBUTIONS 131

R2. [Optional upper bound test.] If X2 < 5 — 4e}/4U, output X and terminate
the algorithm. (This step can be omitted if desired; it tests whether or not
the selected point is in the interior region of Fig. 13, making it unnecessary
to calculate a logarithm.)

R3. [Optional lower bound test.] If X2 > 4e=13%/U + 1.4, go back to R1. (This
step could also be omitted; it tests whether or not the selected point is
outside the exterior region of Fig. 13, making it unnecessary to calculate a
logarithm.)

R4. [Final test.] If X? < —4InU, output X and terminate the algorithm.
Otherwise go back to R1. |

Exercises 20 and 21 work out the timing analysis; four different algorithms
are analyzed, since steps R2 and R3 can be included or omitted depending on
one’s preference. The following table shows how many times each step will be
performed, on the average, depending on which of the optional tests is applied:

Step Neither R2 only R3 only Both

R1 1.369 1.369 1.369 1.369
R2 0 1.369 0 1.369 (25)
R3 0 0 1.369 0.467
R4 1.369 0.467 1.134 0.232

Thus it pays to omit the optional tests if there is a very fast logarithm operation,
but if the log routine is rather slow it pays to include them.

But why does it work? One reason is that we can calculate the probability
that X < z, and it turns out to be the correct value (10). But such a calculation
isn’t very easy unless one happens to hit on the right trick, and anyway it is
better to understand how the algorithm might have been discovered in the first
place. Kinderman and Monahan derived it by working out the following theory
that can be used with any well-behaved density function f(z) [see ACM Trans.
Math. Software 3 (1977), 257-260].

In general, suppose that a point (U, V') has been generated uniformly over
the region of the (u,v)-plane defined by

u >0, u? < g(v/u) (26)

for some nonnegative integrable function g. If we set X < V/U, the probability
that X < z can be calculated by integrating du dv over the region defined by the
two relations in (26) plus the auxiliary condition v/u < z, then dividing by the
same integral without this extra condition. Letting v = tu, so that dv = udt,
the integral becomes

R v g(t) 1 R
/ dt/ udu = 5/ g(t) dt.
—00 0

—o0
Hence the probability that X <z is

/ ;gm dt / / :° o(t) dt. (27)

132 RANDOM NUMBERS 3.4.1
The normal distribution comes out when g(t) = et/ 2, and the condition
u? < g(v/u) simplifies in this case to (v/u)? < —4Inwu. It is easy to see that the
set of all (u,v) satisfying this relation is entirely contained in the rectangle of
Fig. 13.
The bounds in steps R2 and R3 define interior and exterior regions with
simpler boundary equations. The well-known inequality

e* > 1+x,
which holds for all real numbers z, can be used to show that
l+lnc—cu < —lnu < 1/(cu) —1+1Inc (28)

for any constant ¢ > 0. Exercise 21 proves that ¢ = e!/* is the best possible
constant to use in step R2. The situation is more complicated in step R3, and
there doesn’t seem to be a simple expression for the optimum ¢ in that case, but
computational experiments show that the best value for R3 is approximately
el'35. The approximating curves (28) are tangent to the true boundary when
u=1/c

It is possible to obtain a faster method by partitioning the region into
subregions, most of which can be handled more quickly. Of course, this means
that auxiliary tables will be needed, as in Algorithms M and F. An interesting
alternative that requires fewer auxiliary table entries has been suggested by
Ahrens and Dieter in CACM 31 (1988), 1330-1337.

5) Normal deviates from normal deviates. Exercise 31 discusses an interesting
approach that saves time by working directly with normal deviates instead of
basing everything on uniform deviates. This method, introduced by C. S. Wallace
in 1996, has comparatively little theoretical support at the present time, but it
has successfully passed a number of empirical tests.

6) Variations of the normal distribution. So far we have considered the normal
distribution with mean zero and standard deviation one. If X has this distribu-
tion, then

Y=p+oX (29)

has the normal distribution with mean p and standard deviation o. Furthermore,
if X; and X, are independent normal deviates with mean zero and standard
deviation one, and if

Y1 = + 01Xy, Y =#2+02(PX1+\/1—P2X2), (30)

then Y7 and Y5 are dependent random variables, normally distributed with means
p1, p2 and standard deviations o1, o9, and with correlation coefficient p. (For a
generalization to n variables, see exercise 13.)

D. The exponential distribution. After uniform deviates and normal de-
viates, the next most important random quantity is an expomnential deviate.
Such numbers occur in “arrival time” situations; for example, if a radioactive
substance emits alpha particles at a rate such that one particle is emitted every

3.4.1 NUMERICAL DISTRIBUTIONS 133

1 seconds on the average, then the time between two successive emissions has
the exponential distribution with mean p. This distribution is defined by the
formula

Flz)=1- e 2/H x> 0. (31)

1) Logarithm method. Clearly, if y = F(z) = 1 - e~%/k then z = FImH(y) =
—uln(1—y). Therefore —plIn(1—U) has the exponential distribution by Eq. (7).
Since 1 — U is uniformly distributed when U is, we conclude that

X =-—phhU (32)

is exponentially distributed with mean p. (The case U = 0 must be treated
specially; we can substitute any convenient value € for 0, since the probability of
this case is extremely small.)

2) Random minimization method. We saw in Algorithm F that there are
simple and fast alternatives to calculating the logarithm of a uniform deviate.
The following especially efficient approach has been developed by G. Marsaglia,
M. Sibuya, and J. H. Ahrens [see CACM 15 (1972), 876-877]:

Algorithm S (Ezponential distribution with mean p). This algorithm produces
exponential deviates on a binary computer, using uniform deviates with (t + 1)-
bit accuracy. The constants

In2 In 2)2 In 2)*
_ 12 (ln) (1n2)

Qi =+ 5+ + 5 k21 (33)

should be precomputed, extending until Q[k] > 1 — 27%.

S1. [Get U and shift.] Generate a (¢ + 1)-bit uniform random binary fraction
U = (.bgb1bs .. . by)2; locate the first zero bit b;, and shift off the leading j+1

bits, setting U < (.bj4+1...b¢)2. (As in Algorithm F, the average number of
discarded bits is 2.)

S2. [Immediate acceptance?] If U < In2, set X < u(jln2 + U) and terminate
the algorithm. (Note that Q[1] =1n2.)

S3. [Minimize.] Find the least £ > 2 such that U < Q[k]. Generate k£ new
uniform deviates Uy, ..., Ux and set V « min(Uy, ..., Uk).

S4. [Deliver the answer.] Set X < u(j+V)In2. |

Alternative ways to generate exponential deviates (for example, a ratio of
uniforms as in Algorithm R) might also be used.

E. Other continuous distributions. Let us now consider briefly how to
handle some other distributions that arise reasonably often in practice.

1) The gamma distribution of order a > 0 is defined by

F@) =55 /03c t*"te7tdt, z>0. (34)

134 RANDOM NUMBERS 3.4.1

When a = 1, this is the exponential distribution with mean 1; when a = %,
it is the distribution of %Z 2" where Z has the normal distribution (mean O,
variance 1). If X and Y are independent gamma-distributed random variables,
of order a and b, respectively, then X + Y has the gamma distribution of order
a + b. Thus, for example, the sum of k¥ independent exponential deviates with
mean 1 has the gamma distribution of order k. If the logarithm method (32)
is being used to generate these exponential deviates, we need compute only one
logarithm: X <+ —In(U; ...Uy), where Uy, ..., Uy are nonzero uniform deviates.
This technique handles all integer orders a; to complete the picture, a suitable
method for 0 < a < 1 appears in exercise 16.

The simple logarithm method is much too slow when a is large, since it
requires |a] uniform deviates. Moreover, there is a substantial risk that the
product Uy ... U|,) will cause floating point underflow. For large a, the following
algorithm due to J. H. Ahrens is reasonably efficient, and it is easy to write in
terms of standard subroutines. [See Ann. Inst. Stat. Math. 13 (1962), 231-237.]

Algorithm A (Gamma distribution of order a > 1).

A1l. [Generate candidate.] Set Y « tan(nU), where U is a uniform deviate, and
set X < v/2a—-1Y +a— 1. (In place of tan(rU) we could use a polar
method, calculating a ratio V2/V; as in step P4 of Algorithm P.)

A2. [Accept?] If X <0, return to Al. Otherwise generate a uniform deviate V,
and return to ALif V > (1+Y?)exp((a — 1) In(X/(a — 1)) = v2a -1 Y).
Otherwise accept X. |

The average number of times step Al is performed is < 1.902 when a > 3.

There is also an attractive approach for large a based on the remarkable
fact that gamma deviates are approximately equal to aX 3, where X is normally
distributed with mean 1—1/(9a) and standard deviation 1/+/9a; see E. B. Wilson
and M. M. Hilferty, Proc. Nat. Acad. Sci. 17 (1931), 684-688; G. Marsaglia,
Computers and Math. 3 (1977), 321-325.*

For a somewhat complicated but significantly faster algorithm, which gener-
ates a gamma deviate in about twice the time to generate a normal deviate, see
J. H. Ahrens and U. Dieter, CACM 25 (1982), 47-54. This article contains an
instructive discussion of the design principles used to construct the algorithm.

2) The beta distribution with positive parameters a and b is defined by

F(x):-l?((a“—)lt(% /Ozta-la—t)b-ldt, 0<z<l - (35)

Let X; and X, be independent gamma deviates of order a and b, respectively,
and set X « X;/(X; + X2). Another method, useful for small a and b, is to set

Vi« UY* and Yo UR/

repeatedly until Y7 + Y2 < 1; then X + Y1/(Y1 + Y2). [See M. D. Johnk,
Metrika 8 (1964), 5-15.] Still another approach, if a and b are integers and not

* Change “+(3a — 1)” to “~(3a — 1)” in Step 3 of the algorithm on page 323.

3.4.1 NUMERICAL DISTRIBUTIONS 135

too large, is to set X to the bth largest of a +b—1 independent uniform deviates
(see exercise 9 at the beginning of Chapter 5). See also the more direct method
described by R. C. H. Cheng, CACM 21 (1978), 317-322.

3) The chi-square distribution with v degrees of freedom (Eq. 3.3.1-(22)) is
obtained by setting X < 2Y, where Y is a random variable having the gamma
distribution of order v/2.

4) The F-distribution (variance-ratio distribution) with v; and vy degrees of
freedom is defined by

1/’1/1/2 1/12/2/2 F((Vl + Uy

['(11/2)T(v2/2)
where z > 0. Let Y7 and Y3 be independent, having the chi-square distribution

with 11, and vy degrees of freedom, respectively; set X < Yivo /Yovq. Or set
X + 1nY/vi(1 = Y), where Y is a beta variate with parameters v1 /2 and v /2.

2 T
F(z) =)/)/ /2 (g 4 t) /22 2 gy (36)
0

5) The t-distribution with v degrees of freedom is defined by

(v + 1)/2) [° 2/ \—(v+1)/2
Let Y; be a normal deviate (mean 0, variance 1) and let Y> be independent
of Y1, having the chi-square distribution with v degrees of freedom; set X «
Y1/+/Y2/v. Alternatively, when v > 2, let ¥; be a normal deviate and let
Y> independently have the exponential distribution with mean 2/(v — 2); set
Z « YE/(v — 2) and reject (Y1,Y2) if e7¥27% > 1 — Z, otherwise set

X« /(1 -2w)(1-2).

The latter method is due to George Marsaglia, Math. Comp. 34 (1980), 235-236.
[See also A. J. Kinderman, J. F. Monahan, and J. G. Ramage, Math. Comp. 31
(1977), 1009-1018,

6) Random point on an n-dimensional sphere with radius one. Let X1, Xs,
..., X, be independent normal deviates (mean 0, variance 1); the desired point
on the unit sphere is

(Xy/r, XoJr, ..., Xn/T), Wherer:\/Xf-}—Xg-}—----{—X?L. (38)

If the X’s are calculated using the polar method, Algorithm P, we compute two
independent X’s each time, and we have X7 + X2 = —2In S in the notation
of that algorithm; this saves a little of the time needed to evaluate 7. The
validity of (38) comes from the fact that the distribution function for the point
(X1,...,X,) has a density that depends only on its distance from the origin, so
when it is projected onto the unit sphere it has the uniform distribution. This
method was first suggested by G. W. Brown, in Modern Mathematics for the
Engineer, First series, edited by E. F. Beckenbach (New York: McGraw-Hill,

136 RANDOM NUMBERS 3.4.1

1956), 302. To get a random point inside the n-sphere, R. P. Brent suggests
taking a point on the surface and multiplying it by uiin,

In three dimensions a significantly simpler method can be used, since each
individual coordinate is uniformly distributed between —1 and 1: Find V1, V3,
and S by steps P1-P3 of Algorithm P; then the desired random point on the
surface of a globe is (aV4, aVs, 25 — 1), where a = 2¢/1 — S. [Robert E. Knop,
CACM 13 (1970), 326.]

F. Important integer-valued distributions. A probability distribution that
consists only of integer values can essentially be handled by the techniques
described at the beginning of this section; but some of these distributions are so
important in practice, they deserve special mention here.

1) The geometric distribution. If some event occurs with probability p, the
number N of independent trials needed between occurrences of the event (or
until the event occurs for the first time) has the geometric distribution. We
have N = 1 with probability p, N = 2 with probability (1 —p)p, ..., N =n
with probability (1 — p)™~!p. This is essentially the situation we have already
considered in the gap test of Section 3.3.2; it is also directly related to the number
of times certain loops in the algorithms of this section are executed, like steps
P1-P3 of the polar method.

A convenient way to generate a variable with this distribution is to set

N « [InU/In(1 - p)]. (39)

To check this formula, we observe that [InU/In(1 — p)] = n if and only if
n—1<InU/In(l1-p) < n, thatis, (1—p)"~!' > U > (1-p)", and this happens
with probability (1 — p)"~!p as required. The quantity InU can optionally be
replaced by —Y, where Y has the exponential distribution with mean 1.

The special case p = % is quite simple on a binary computer, since for-
mula (39) reduces to setting N « [—lgU}; that is, N is one more than the

number of leading zero bits in the binary representation of U.

2) The binomial distribution (t,p). If some event occurs with probability p, and
if we carry out t independent trials, the total number N of occurrences equals n
with probability (:L) p™(1 — p)*™™. (See Section 1.2.10.) In other words if we
generate Uy, ..., U;, we want to count how many of these are < p. For small ¢
we can obtain N in exactly this way.

For large t, we can generate a beta variate X with integer parameters a
and b where a + b — 1 = t; this effectively gives us the bth largest of ¢ elements,
without bothering to generate the other elements. Now if X > p, weset N «+ N;
where N, has the binomial distribution (a—1, p/X), since this tells us how many
of a — 1 random numbers in the range [0..X) are < p; and if X < p, we set
N « a+ N; where N; has the binomial distribution (b—1, (p — X)/(1 — X)),
since N tells us how many of b—1 random numbers in the range [X .. 1) are < p.
By choosing a = 1 + [t/2], the parameter ¢ will be reduced to a reasonable size
after about lgt reductions of this kind. (This approach is due to J. H. Ahrens,
who has also suggested an alternative for medium-sized ¢; see exercise 27.)

3.4.1 NUMERICAL DISTRIBUTIONS 137

3) The Poisson distribution with mean p. The Poisson distribution is related
to the exponential distribution as the binomial distribution is related to the
geometric: It represents the number of occurrences, per unit time, of an event
that can occur at any instant of time. For example, the number of alpha particles
emitted by a radioactive substance in a single second has a Poisson distribution.

According to this principle, we can produce a Poisson deviate N by gener-
ating independent exponential deviates X;, X2, ... with mean 1/u, stopping
as soon as X; + ---+ X,, > 1; then N « m — 1. The probability that
X1+ -+ X, > 1 is the probability that a gamma deviate of order m is > p,
and this comes to f:o tm~le~tdt/(m — 1)!; hence the probability that N =n is

o] oo n
% the tdt — Z?z——l—l)'/ " lemtdt = e‘“i—', n>0. (40)
V. | V. !

If we generate exponential deviates by the logarithm method, the recipe above
tells us to stop when —(IlnUy + --- + In Uy,)/p > 1. Simplifying this expression,
we see that the desired Poisson deviate can be obtained by calculating e™#,
converting it to a fixed point representation, then generating one or more uniform
deviates Uy, Us, ... until the product satisfies Uy ...U,, < e™#, finally setting
N + m—1. On the average this requires the generation of z+1 uniform deviates,

so it is a very useful approach when p is not too large.

When p is large, we can obtain a method of order log i by using the fact that
we know how to handle the gamma and binomial distributions for large orders:
First generate X with the gamma distribution of order m = |au|, where o is a
suitable constant. (Since X is equivalent to —In(U...Uy), we are essentially
bypassing m steps of the previous method.) If X < u, set N < m + N;, where
N; is a Poisson deviate with mean u — X; and if X > u, set N < N;, where
N; has the binomial distribution (m — 1, x/X). This method is due to J. H.
Ahrens and U. Dieter, whose experiments suggest that % is a good choice for a.

The validity of the stated reduction when X > p is a consequence of the

following important principle: “Let X, ..., X, be independent exponential
deviates with the same mean; let S; = X; + --- + X; and let V; = S;/Sn,
for 1 < 5 < m. Then the distribution of V;, Vo, ..., Vi1 is the same as

the distribution of m — 1 independent uniform deviates sorted into increasing
order.” To establish this principle formally, we compute the probability that
Vi < v, ..., Vi1 < U1, given the value of S, = s, for arbitrary values
0<wv, < - <wvpmoy <1: Let f(v1,v2,...,9m—1) be the (m — 1)-fold integral

v1 8 vas—t,
/ ,ue_tl/“ dt, / ,ue_tZ/“ dty ...
0 0

’Um._ls—tl—"'—tm—2
" / pe Tttty - et i)
0

then o o s
f(’Ul,’UQ, e ,’Um_l) N fo dul ful d’LL2 o S o dum_l

fOL00) [du [dus.. . f, dumoy

138 RANDOM NUMBERS 3.4.1

by making the substitution t; = suj, t1 +l2 = suz, ..., 1 + - + lm-1 =
sum—1. The latter ratio is the corresponding probability that uniform deviates
Uy, ..., Up_y satisfy Uy < wvq, ..., Un—1 < Um-1, given that they also satisfy

Uy < SUm-1.
A more efficient but somewhat more complicated technique for binomial and
Poisson deviates is sketched in exercise 22.

G. For further reading. A facsimile of a letter from von Neumann dated May
21, 1947, in which the rejection method first saw the light of day, appears in
Stanislaw Ulam 1909-1984, a special issue of Los Alamos Science (Los Alamos
National Lab., 1987), 135-136. The book Non-Uniform Random Variate Gen-
eration by L. Devroye (Springer, 1986) discusses many more algorithms for the
generation of random variables with nonuniform distributions, together with a
careful consideration of the efficiency of each technique on typical computers.

W. Hérmann and G. Derflinger [ACM Trans. Math. Software 19 (1993),
489-495] have pointed out that it can be dangerous to use the rejection method
in connection with linear congruential generators that have small multipliers
a & \/m.

From a theoretical point of view it is interesting to consider optimal ways to
generate random variables with a given distribution, in the sense that the method
produces the desired result from the minimum possible number of random bits.
For the beginnings of a theory dealing with such questions, see D. E. Knuth
and A. C. Yao, Algorithms and Complexity, edited by J. F. Traub (New York:
Academic Press, 1976), 357-428.

Exercise 16 is recommended as a review of many of the techniques in this
section.

EXERCISES

1. [10] If o and B are real numbers with a < 3, how would you generate a random
real number uniformly distributed between o and 87

2. [M16] Assuming that mU is a random integer between 0 and m — 1, what is
the exact probability that |[kU| = r, if 0 < r < k? Compare this with the desired
probability 1/k.

» 3. [14] Discuss treating U as an integer and dividing by k to get a random integer
between 0 and k — 1, instead of multiplying as suggested in the text. Thus (1) would

be changed to
ENTA O0; LDX U; DIV K,

with the result appearing in register X. Is this a good method?
4. [M20] Prove the two relations in (8).

» 5. [21] Suggest an efficient way to compute a random variable with the distribution
F(z) = pxr + qz® + r2®, where p > 0,¢> 0,7 >0,andp+q+7r=1.

6. [HM21] A quantity X is computed by the following method:

Step 1. Generate two independent uniform deviates U and V.
Step 2. If U? + V2 > 1, return to step 1; otherwise set X « U.

3.4.1 NUMERICAL DISTRIBUTIONS 139

What is the distribution function of X? How many times will step 1 be performed?
(Give the mean and standard deviation.)

7. [20] (A.J. Walker.) Suppose we have a bunch of cubes of k different colors, say
n; cubes of color C; for 1 < j < k, and we also have k boxes {Bi,...,Bx} each of
which can hold exactly n cubes. Furthermore ni + -+ 4 nx = kn, so the cubes will
just fit in the boxes. Prove (constructively) that there is always a way to put the cubes
into the boxes so that each box contains at most two different colors of cubes; in fact,
there is a way to do it so that, whenever box B; contains two colors, one of those colors
is C;. Show how to use this principle to compute the P and Y’ tables required in (3),
given a probability distribution (p1,...,pk)-

8. [M15] Show that operation (3) could be changed to
if U<Pxg then X < zxy1 otherwise X < Yk

(thus using the original value of U instead of V') if this were more convenient, by
suitably modifying Po, Pi, ..., Pe_1.

9. [HM10] Why is the curve f(z) of Fig. 9 concave downward for z < 1, concave
upward for z > 17
10. [HM24] Explain how to calculate auxiliary constants Pj, Qj, Yj, Z;, Sj, Dj, E;
so that Algorithm M delivers answers with the correct distribution.
11. [HM27] Prove that steps M7-M8 of Algorithm M generate a random variable
with the appropriate tail of the normal distribution; in other words, the probability
that X < z should be exactly

/e_tz/zdt// e_tz/zdt, x> 3.
3 3

[Hint: Show that it is a special case of the rejection method, with g(t) = Cte*"/? for
some C'|
12. [HM23]) (R. P. Brent.) Prove that the numbers a; defined in (23) satisfy the
relation

a?—a§_1 <2In2 for all j > 1.

[Hint: If f(z) = e /2 I e~t"/2 dt, show that f(z) < f(y) for 0 < z < y.]
13. [HM25] Given a set of n independent normal deviates, X1, X, ..., Xn, with
mean 0 and variance 1, show how to find constants b; and a;5, 1 < j <14 < n, so that if

Yi =bi+anX1, Yo=br+anX1+axX: ..., Y,=bntamXi+- -+ annXn,

then Y1, Yz, ..., Y, are dependent normally distributed variables, Y; has mean puj;,
and the Y’s have a given covariance matrix (c;;). (The covariance, c;;, of Y; and Yj is
defined to be the average value of (Y; — p:)(Y; — p;). In particular, cj; is the variance
of Y;, the square of its standard deviation. Not all matrices (c;;) can be covariance
matrices, and your construction is, of course, only supposed to work whenever a solution
to the given conditions is possible.)

14. [M21] If X is a random variable with the continuous distribution F(z), and if c
is a (possibly negative) constant, what is the distribution of c¢X?

15. [HM21] If X: and X are independent random variables with the respective
distributions Fi(z) and Fz(x), and with densities fi(z) = Fi(z), f2(z) = F3(z), what
are the distribution and density functions of the quantity X; + X27?

140 RANDOM NUMBERS 3.4.1

» 16. [HM22] (J.H. Ahrens.) Develop an algorithm for gamma deviates of order a when
0 < a < 1, using the rejection method with cg(t) = t*~Y/I'(a) for 0 < t < 1, and with
cg(t) = e %/T(a) for t > 1.

> 17. [M24] What is the distribution function F(z) for the geometric distribution with
probability p? What is the generating function G(z)? What are the mean and standard
deviation of this distribution?

18. [M24] Suggest a method to compute a random integer IV for which N takes the
value n with probability np*(1 —p)™ ', n > 0. (The case of particular interest is when
p is rather small.)

19. [22] The negative binomial distribution (t,p) has integer values N = n with
probability (*777™)p*(1 — p)". (Unlike the ordinary binomial distribution, ¢ need not
be an integer, since this quantity is nonnegative for all n whenever ¢t > 0.) Generalizing
exercise 18, explain how to generate integers N with this distribution when ¢ is a small
positive integer. What method would you suggest if t =p = %?

20. [M20] Let A be the area of the shaded region in Fig. 13, and let R be the area of
the enclosing rectangle. Let I be the area of the interior region recognized by step R2,
and let E be the area between the exterior region rejected in step R3 and the outer
rectangle. Determine the number of times each step of Algorithm R is performed, for
each of its four variants as in (25), in terms of A, R, I, and E.

21. [HM29] Derive formulas for the quantities A, R, I, and E defined in exercise 20.
(For I and especially F you may wish to use an interactive computer algebra system.)

Show that ¢ = e!/* is the best possible constant in step R2 for tests of the form
“X? < 4(1+1Inc) — 4cU.”

22. [HM40] Can the exact Poisson distribution for large p be obtained by generating
an appropriate normal deviate, converting it to an integer in some convenient way, and
applying a (possibly complicated) correction a small percent of the time?

23. [HM23] (J. von Neumann.) Are the following two ways to generate a random
quantity X equivalent (that is, does the quantity X have the same distribution)?

Method 1: Set X < sin((7/2)U), where U is uniform.

Method 2: Generate two uniform deviates, U and V; if U2 + V2 > 1, repeat
until U2 + V2 < 1. Then set X « |U? — V?|/(U? + V?).

24. [HM40] (S. Ulam, J. von Neumann.) Let V4 be a randomly selected real number
between 0 and 1, and define the sequence (V) by the rule V11 = 4V,,(1 — V4,). If this
computation is done with perfect accuracy, the result should be a sequence with the
distribution sin® 7U, where U is uniform, that is, with distribution function F(z) =
f5 dz/v/2rz(1 —z) . For if we write V,, = sin® 7U,, we find that U,41 = (2U,) mod 1;
and by the fact that almost all real numbers have a random binary expansion (see
Section 3.5), this sequence U, is equidistributed. But if the computation of V,, is done
with only finite accuracy, the argument breaks down because we soon are dealing with
noise from the roundoff error. [See von Neumann’s Collected Works 5, 768-770.]
Analyze the sequence (V,,) defined in the preceding paragraph, when only finite ac-
curacy is present, both empirically (for various different choices of V4) and theoretically.

Does the sequence have a distribution resembling the expected distribution?
25. [M25] Let X1, X2, ..., X5 be binary words each of whose bits is independently
0 or 1 with probability % What is the probability that a given bit position of

X1V (X2 A (X3 V (XaAXs))) contains a 17 Generalize.

3.4.1 NUMERICAL DISTRIBUTIONS 141

26. [M18] Let N1 and N, be independent Poisson deviates with means p; and po,
where p1 > p2 > 0. Prove or disprove: (a) N1 + N2 has the Poisson distribution with
mean p; + p2. (b) N1 — N, has the Poisson distribution with mean p, — p2.

27. [22] (J. H. Ahrens.) On most binary computers there is an efficient way to count
the number of 1s in a binary word (see Section 7.1). Hence there is a nice way to obtain
the binomial distribution (¢,p) when p = %, simply by generating ¢ random bits and
counting the number of 1s.

Design an algorithm that produces the binomial distribution (¢, p) for arbitrary p,
using only a subroutine for the special case p = %— as a source of random data. [Hint:
Simulate a process that first looks at the most significant bits of ¢ uniform deviates,
then at the second bit of those deviates whose leading bit is not sufficient to determine

whether or not their value is < p, etc.]

28. [HM35] (R. P. Brent.) Develop a method to generate a random point on the
surface of the ellipsoid defined by 3" axz? = 1, where a; > -+ > a, > 0.

29. [M20] (J. L. Bentley and J. B. Saxe.) a simple way to generate n numbers X,
..., Xn that are uniform between 0 and 1 except for the fact that they are sorted:
X1 <--- < X,. Your algorithm should take only O(n) steps.

30. [M30] Explain how to generate a set of random points (X;,Y;) such that, if R is
any rectangle of area « contained in the unit square, the number of (X;,Y;) lying in R
has the Poisson distribution with mean ay.

31. [HM39] (Direct generation of normal deviates.)

a) Prove that if a3 +---+a? = 1 and if X3, ..., Xk are independent normal deviates
with mean 0 and variance 1, then a1 X; + -+ + ax Xk is a normal deviate with
mean 0 and variance 1.

b) The result of (a) suggests that we can generate new normal deviates from old ones,
just as we obtain new uniform deviates from old ones. For example, we might use
the idea of 3.2.2—(7), but with a recurrence like

Xn=(Xn-24+ Xn—55)/\/§ or Xn = an—24 + %Xn—ss,

after a set of normal deviates Xo, ..., Xs54 has been computed initially. Explain
why this is not a good idea.

c) Show, however, that there is a suitable way to generate normal deviates quickly
from other normal deviates, by using a refinement of the idea in (a) and (b). [Hint:
If X and Y are independent normal deviates, so are X' = X cosf + Y sin6 and
Y’ = —X sinf + Y cos §, for any angle 6.]

32. [HM30] (C. S. Wallace.) Let X and Y be independent exponential deviates with
mean 1. Show that X’ and Y’ are, likewise, independent exponential deviates with
mean 1, if we obtain them from X and Y in any of the following ways:

a) Given 0 < A < 1,

X' =1-XX-AXY+(X+Y)[(1-NX<AY], Y=X+Y-X.

b o [(2XY - X), fX<Y;
M(Xy)_{mxx—n,ﬁx>r

C) If X = (X210 X1 2 -3 ...)2 and ¥ = (S Y21Yo. Y-1Y—2Y-3 ...)2 in bi-
nary notation, then X’ and Y’ have the “shuffled” values

X' '=(..220120.y-1T—2Y-3...)2, Y =(..922190.2-1y-22_3...)2.

142 RANDOM NUMBERS 3.4.1

33. [20] Algorithms P, M, F, and R generate normal deviates by consuming an un-
known number of uniform random variables Ui, Uz, How can they be modified so
that the output is a function of just one U?

3.4.2. Random Sampling and Shuffling

Many data processing ai)plications call for an unbiased choice of n records at
random from a file containing NV records. This problem arises, for example, in
quality control or other statistical calculations where sampling is needed. Usually
N is very large, so that it is impossible to contain all the data in memory at once;
and the individual records themselves are often very large, so that we can’t even
hold n records in memory. Therefore we seek an efficient procedure for selecting
n records by deciding either to accept or to reject each record as it comes along,
writing the accepted records onto an output file.

Several methods have been devised for this problem. The most obvious
approach is to select each record with probability n/N; this may sometimes
be appropriate, but it gives only an average of n records in the sample. The
standard deviation is /n(1 — n/N), and the sample might turn out to be either
too large for the desired application or too small to give the necessary results.

Fortunately, a simple modification of the “obvious” procedure gives us what
we want: The (¢+1)st record should be selected with probability (n—m)/(N —t),
if m items have already been selected. This is the appropriate probability, since
of all the possible ways to choose n things from N such that m values occur in

the first ¢, exactly
(N—t—l) (N—t)_n—m
n—m-—1 n—m/) N-—t (1)

of them select the (¢ + 1)st element.
The idea developed in the preceding paragraph leads immediately to the
following algorithm: :

Algorithm S (Selection sampling technique). To select n records at random
from a set of N, where 0 < n < N.

S1. [Initialize.] Set t « 0, m < 0. (During this algorithm, m represents the
number of records selected so far, and ¢ is the total number of input records
that we have dealt with.)

S2. [Generate U.] Generate a random number U, uniformly distributed between
zero and one.

S3. [Test.] If (N — ¢t)U > n — m, go to step S5.

S4. [Select.] Select the next record for the sample, and increase m and t by 1.
If m < n, go to step S2; otherwise the sample is complete and the algorithm
terminates.

S5. [Skip.] Skip the next record (do not include it in the sample), increase t
by 1, and go back to step S2. |

3.4.2 RANDOM SAMPLING AND SHUFFLING 143

This algorithm may appear to be unreliable at first glance and, in fact, to
be incorrect; but a careful analysis (see the exercises below) shows that it is
completely trustworthy. It is not difficult to verify that

a) At most N records are input (we never run off the end of the file before
choosing n items).

b) The sample is completely unbiased. In particular, the probability that any
given element is selected, such as the last element of the file, is n/N.

Statement (b) is true in spite of the fact that we are not selecting the (¢+1)st
item with probability n/N, but rather with the probability in Eq. (1)! “This has
caused some confusion in the published literature. Can the reader explain this
seeming contradiction?

(Note: When using Algorithm S, one should be careful to use a different
source of random numbers U each time the program is run, to avoid connections
between the samples obtained on different days. This can be done, for example,
by choosing a different value of X for the linear congruential method each time.
The seed value X could be set to the current date, or to the last random
number X that was generated on the previous run of the program.)

We will usually not have to pass over all NV records. In fact, since (b) above
says that the last record is selected with probability n/N, we will terminate the
algorithm before considering the last record exactly (1 — n/N) of the time. The
average number of records considered when n = 2 is about %N, and the general
formulas are given in exercises 5 and 6.

Algorithm S and a number of other sampling techniques are discussed in a
paper by C. T. Fan, Mervin E. Muller, and Ivan Rezucha, J. Amer. Stat. Assoc.
57 (1962), 387-402. The method was independently discovered by T. G. Jones,
CACM 5 (1962), 343.

A problem arises if we don’t know the value of N in advance, since the
precise value of N is crucial in Algorithm S. Suppose we want to select n items
at random from a file, without knowing exactly how many are present in that
file. We could first go through and count the records, then take a second pass
to select them; but it is generally better to sample m > n of the original items
on the first pass, where m is much less than N, so that only m items must be
considered on the second pass. The trick, of course, is to do this in such a way
that the final result is a truly random sample of the original file.

Since we don’t know when the input is going to end, we must keep track of
a random sample of the input records seen so far, thus always being prepared for
the end. As we read the input we will construct a “reservoir” that contains only
the records that have appeared among the previous samples. The first n records
always go into the reservoir. When the (¢ + 1)st record is being input, for ¢t > n,
we will have in memory a table of n indices pointing to the records that we have
chosen from among the first t. The problem is to maintain this situation with
t increased by one, namely to find a new random sample from among the t + 1
records now known to be present. It is not hard to see that we should include

144 RANDOM NUMBERS 3.4.2

the new record in the new sample with probability n/(t+ 1), and in such a case
it should replace a random element of the previous sample.
Thus, the following procedure does the job:

Algorithm R (Reservoir sampling). To select n records at random from a file of
unknown size > n, given n > 0. An auxiliary file called the “reservoir” contains
all records that are candidates for the final sample. The algorithm uses a table
of distinct indices I[j] for 1 < j < n, each of which points to one of the records
in the reservoir.

R1. [Initialize.] Input the first n records and copy them to the reservoir. Set
I[j] « j for 1 < j < n, and set t < m « n. (If the file being sampled has
fewer than n records, it will of course be necessary to abort the algorithm
and report failure. During this algorithm, indices I[1], ..., I[n] point to the
records in the current sample; m is the size of the reservoir; and ¢ is the
number of input records dealt with so far.)

R2. [End of file?] If there are no more records to be input, go to step R6.

R3. [Generate and test.] Increase ¢ by 1, then generate a random integer M
between 1 and ¢ (inclusive). If M > n, go to R5.

R4. [Add to reservoir.] Copy the next record of the input file to the reservoir,
increase m by 1, and set I[M] «+ m. (The record previously pointed to by
I[M] is being replaced in the sample by the new record.) Go back to R2.

R5. [Skip.] Skip over the next record of the input file (do not include it in the
reservoir), and return to step R2.

R6. [Second pass.] Sort the I table entries so that I[1] < --- < I[n]; then go
through the reservoir, copying the records with these indices into the output
file that is to hold the final sample. |

Algorithm R is due to Alan G. Waterman. The reader may wish to work
out the example of its operation that appears in exercise 9.

If the records are sufficiently short, it is of course unnecessary to have a
reservoir at all; we can keep the n records of the current sample in memory at
all times, and the algorithm becomes much simpler (see exercise 10).

The natural question to ask about Algorithm R is, “What is the expected
size of the reservoir?” Exercise 11 shows that the average value of m is exactly
n(1 + Hy — Hy); this is approximately n(1 + In(N/n)). So if N/n = 1000, the
reservoir will contain only about 1/125 as many items as the original file.

Notice that Algorithms S and R can be used to obtain samples for several
independent categories simultaneously. For example, if we have a large file of
names and addresses of U.S. residents, we could pick random samples of exactly
10 people from each of the 50 states without making 50 passes through the file,
and without first sorting the file by state.

Significant improvements to both Algorithms S and R are possible, when
n/N is small, if we generate a single random variable to tell us how many records
should be skipped instead of deciding whether or not to skip each record. (See
exercise 8.)

3.4.2 RANDOM SAMPLING AND SHUFFLING 145

The sampling problem can be regarded as the computation of a random
combination, according to the conventional definition of combinations of IV things
taken n at a time (see Section 1.2.6). Now let us consider the problem of
computing a random permutation of t objects; we will call this the shuffling
problem, since shuffling a deck of cards is nothing more than subjecting the deck
to a random permutation.

A moment’s reflection is enough to convince any card player that traditional
shuffling procedures are miserably inadequate. There is no hope of obtaining each
of the ¢! permutations with anywhere near equal probability by such methods.
Expert bridge players reportedly make use of this fact when deciding whether
or not to finesse. At least seven “riffle shuffles” of a 52-card deck are needed to
reach a distribution within 10% of uniform, and 14 random riffles are guaranteed
to do so [see Aldous and Diaconis, AMM 93 (1986), 333-348].

If ¢ is small, we can obtain a random permutation very quickly by generating
a random integer between 1 and t!. For example, when ¢ = 4, a random number
between 1 and 24 suffices to select a random permutation from a table of all
possibilities. But for large t, it is necessary to be more careful if we want to
claim that each permutation is equally likely, since ¢! is much larger than the
accuracy of individual random numbers.

A suitable shuffling procedure can be obtained by recalling Algorithm 3.3.2P,
which gives a simple correspondence between each of the t! possible permutations
and a sequence of numbers (c1,¢2,...,c—1), With 0 < ¢; < j. It is easy to
compute such a set of numbers at random, and we can use the correspondence
to produce a random permutation.

Algorithm P (Shuffling). Let X;, X, ..., X; be a set of ¢ numbers to be
shuffled.

P1. [Initialize.] Set j « t.

P2. [Generate U.] Generate a random number U, uniformly distributed between
zero and one.

P3. [Exchange.] Set k « |jU] + 1. (Now k is a random integer, between 1
and j. Exercise 3.4.1-3 explains that division by j should not be used to
determine k.) Exchange X + Xj.

P4. [Decrease j.] Decrease j by 1. If j > 1, return to step P2. |

This algorithm was first published by R. A. Fisher and F. Yates [Statistical
Tables (London, 1938), Example 12], in ordinary language, and by R. Durstenfeld
[CACM 7 (1964), 420] in computer language. If we merely wish to generate a ran-
dom permutation of {1,...,t} instead of shuffling a given sequence (X1, ..., X¢),
we can avoid the exchange operation Xj <> X; by letting j increase from 1 to ¢
and setting X; « Xy, Xy < j; see D. E. Knuth, The Stanford GraphBase (New
York: ACM Press, 1994), 104.

R. Salfi [COMPSTAT 1974 (Vienna: 1974), 28-35] has pointed out that
Algorithm P cannot possibly generate more than m distinct permutations when
we obtain the uniform U’s with a linear congruential sequence of modulus m,

146 RANDOM NUMBERS 3.4.2

or indeed whenever we use a recurrence Up41 = f(Uy,) for which U, can take
only m different values, because the final permutation in such cases is entirely
determined by the value of the first U that is generated. Thus, for example,
if m = 232 certain permutations of 13 elements will never occur, since 13! ~
1.45 x 232, In most applications we don’t really want to see all 13! permutations;
yet it is disconcerting to know that the excluded ones are determined by a fairly
simple mathematical rule such as a lattice structure (see Section 3.3.4).

This problem does not arise when we use a lagged Fibonacci generator like
3.2.2-(7) with a sufficiently long period. But even with such methods we cannot
get all permutations uniformly unless we are able to specify at least t! different
seed values to initialize the generator. In other words, we can’t get lgt! truly
random bits out unless we put lgt! truly random bits in. Section 3.5 shows that
we need not despair about this.

Algorithm S can easily be modified to yield a random permutation of a
random combination (see exercise 15). For a discussion of random combinatorial
objects of other kinds (e.g., partitions), see Section 7.2 and/or the book Combi-
natorial Algorithms by Nijenhuis and Wilf (New York: Academic Press, 1975).

EXERCISES
1. [M12] Explain Eq. (1).

2. [20] Prove that Algorithm S never tries to read more than N records of its
input file.

3. [22] The (t+1)st item in Algorithm S is selected with probability (n—m)/(N —t),
not n/N, yet the text claims that the sample is unbiased; thus each item should be
selected with the same probability. How can both of these statements be true?

4. [M23] Let p(m,t) be the probability that exactly m items are selected from among
the first ¢ in the selection sampling technique. Show directly from Algorithm S that

sma= (L) (/). erosisy

5. [M24] What is the average value of ¢t when Algorithm S terminates? (In other
words, how many of the N records have been passed, on the average, before the sample
is complete?)

6. [M2{] What is the standard deviation of the value computed in exercise 57

7. [M25] Prove that any given choice of n records from the set of IV is obtained by
Algorithm S with probability 1/ (JZ) Therefore the sample is completely unbiased.

8. [M39] (J.S. Vitter.) Algorithm S computes one uniform deviate for each input
record it handles. The purpose of this exercise is to consider a more efficient approach
in which we calculate more quickly the proper number X of input records to skip before
the first selection is made.

a) What is the probability that X > k, given k7

b) Show that the result of (a) allows us to calculate X by generating only one
uniform U and then doing O(X) other calculations.

c) Show that we may also set X - min(Yy,Yn_1,...,YN-nt1), where the Y’s are
independent and each Y; is a random integer in the range 0 < Y; < t.

3.4.2 RANDOM SAMPLING AND SHUFFLING 147

d) For maximum speed, show that X can also be calculated in O(1) steps, on the
average, using a “squeeze method” like Eq. 3.4.1-(18).

9. [12] Let n = 3. If Algorithm R is applied to a file containing 20 records numbered
1 thru 20, and if the random numbers generated in step R3 are respectively

4,1,6,7,5,3,5,11,11,3,7,9,3,11,4,5,4,

which records go into the reservoir? Which are in the final sample?

10. [15] Modify Algorithm R so that the reservoir is eliminated, assuming that the n
records of the current sample can be held in memory.

11. [M25] Let pm be the probability that exactly m elements are put into the reservoir
during the first pass of Algorithm R. Determine the generating function G(z) =
3. pmz™, and find the mean and standard deviation. (Use the ideas of Section 1.2.10.)

12. [M26] The gist of Algorithm P is that any permutation 7 can be uniquely written
as a product of transpositions in the form = = (ast)...(a33)(a22), where 1 < a; < j
for t > j > 1. Prove that there is also a unique representation of the form = =
(b22)(b33) ... (bst), where 1 < b; < j for 1 < j < t, and design an algorithm that
computes the b’s from the a’s in O(t) steps.

13. [M23] (S. W. Golomb.) One of the most common ways to shuffle cards is to divide
the deck into two parts as equal as possible, and to “riffie” them together. (According
to the discussion of card-playing etiquette in Hoyle’s rules of card games, “A shuffle of
this sort should be made about three times to mix the cards thoroughly.”) Consider

a deck of 2n — 1 cards X1, X2, ..., Xon—1; a “perfect shuffle” s divides this deck into
X1, X2, ..., Xn and Xny1, ..., Xon—1, then perfectly interleaves them to obtain X1,
Xni1, X2, Xnt2, -+-s Xon—1, Xn. The “cut” operation ¢’ changes X1, X2, ..., Xon-1
into X;4+1, ..., X2n-1, X1, ..., X;. Show that by combining perfect shuffles and cuts,

at most (2n — 1)(2n — 2) different arrangements of the deck are possible, if n > 1.
14. [22] A cut-and-riffle permutation of agai...an—1 changes it to sequence that
contains the subsequences

Qx Q(z+1)modn -+ -(y—1) modn and Ay G(y+1) modn +++&(z—1) mod n

intermixed in some way, for some z and y. Thus, 3890145267 is a cut-and-riffle of
0123456789, with x =3 and y = 8.

a) Beginning with 52 playing cards arranged in the standard order
2345678910JQKA23456789
AARRAARAARAAAREG000000O

Mr. J. H. Quick (a student) did a random cut-and-riffle; then he remove
leftmost card and inserted it in a random place, obtaining the sequence

10JQKA2314 10JQKA2345 10

J 45678910J 678910JQKA
CTOOVVVVVOVVVVOVVVOMNAANAAAAANAAAA
d

»?

the

10K JQAKA2Q3 2

9 45674895 10
ARAORROBBOTOMNAMAAASANSA

§K910J QA 3A42345656787910]8
AOROVVORROVOVOOADOO &
Which card did he move from the leftmost position?

b) Starting again with the deck in its original order, Quick now did three cut-and-
riffles before moving the leftmost card to a new place:
46KA23K4T756QATS5
AORARIAOROMNTRON
t

Which card did he move

~
.’X
<>3>

08108257 2910
COMROOOQ C? LI

-’000

his time?

148 RANDOM NUMBERS 3.4.2

» 15. [30] (Ole-Johan Dahl.) If X = k for 1 < k <t at the start of Algorithm P, and
if we terminate the algorithm when j reaches the value t — n, the sequence Xt-n41,
..., X; is a random permutation of a random combination of n elements. Show how
to simulate the effect of this procedure using only O(n) cells of memory.

» 16. [M25] Devise a way to compute a random sample of n records from N, given N
and n, based on the idea of hashing (Section 6.4). Your method should use O(n) storage
locations and an average of O(n) units of time, and it should present the sample as a
sorted set of integers 1 < X; < Xo <-.- < X, < N

17. [M22] (R. W. Floyd.) Prove that the following algorithm generates a random
sample S of n integers from {1,...,N}: Set S < @; thenfor j - N—n+1, N—n+2,
..., IV (in this order), set k + |jU| + 1 and

SuU{k}, ifk¢Ss;
S« {Su{j}, ifk e S.

3.5 WHAT IS A RANDOM SEQUENCE? 149

*3.5. WHAT IS A RANDOM SEQUENCE?

A. Introductory remarks. We have seen in this chapter how to generate
sequences

<Un> =U0, Ul, U2, (1)

of real numbers in the range 0 < U, < 1, and we have called them “random”
sequences even though they are completely deterministic in character. To justify
this terminology, we claimed that the numbers “behave as if they are truly
random.” Such a statement may be satisfactory for practical purposes (at the
present time), but it sidesteps a very important philosophical and theoretical
question: Precisely what do we mean by “random behavior”? A quantitative
definition is needed. It is undesirable to talk about concepts that we do not
really understand, especially since many apparently paradoxical statements can
be made about random numbers.

The mathematical theory of probability and statistics scrupulously avoids
the issue. It refrains from making absolute statements, and instead expresses
everything in terms of how much probability is to be attached to statements
involving random sequences of events. The axioms of probability theory are
set up so that abstract probabilities can be computed readily, but nothing is
said about what probability really signifies, or how this concept can be applied
meaningfully to the actual world. In the book Probability, Statistics, and Truth
(New York: Macmillan, 1957), R. von Mises discusses this situation in detail, and
presents the view that a proper definition of probability depends on obtaining a
proper definition of a random sequence.

Let us paraphrase here some statements made by two of the many authors
who have commented on the subject.

D. H. Lehmer (1951): “A random sequence is a vague notion embodying
the idea of a sequence in which each term is unpredictable to the uninitiated
and whose digits pass a certain number of tests, traditional with statisticians
and depending somewhat on the uses to which the sequence is to be put.”

J. N. Franklin (1962): “The sequence (1) is random if it has every property
that is shared by all infinite sequences of independent samples of random
variables from the uniform distribution.”

Franklin’s statement essentially generalizes Lehmer’s to say that the se-
quence must satisfy all statistical tests. His definition is not completely precise,
and we will see later that a reasonable interpretation of his statement leads us to
conclude that there is no such thing as a random sequence! So let us begin with
Lehmer’s less restrictive statement and attempt to make it precise. What we
really want is a relatively short list of mathematical properties, each of which is
satisfied by our intuitive notion of a random sequence; furthermore, the list is to
be complete enough so that we are willing to agree that any sequence satisfying
these properties is “random.” In this section, we will develop what seems to be
an adequate definition of randomness according to these criteria, although many
interesting questions remain to be answered.

150 RANDOM NUMBERS 3.5

Let v and v be real numbers, 0 < u < v < 1. If U is a random variable
that is uniformly distributed between 0 and 1, the probability that u < U < v
is equal to v — u. For example, the probability that ¢ < U < 2 is 2. How can
we translate this property of the single number U into a property of the infinite
sequence Up, Uy, U, ...7 The obvious answer is to count how many times Uy,
lies between v and v, and the average number of times should equal v — u. Our
intuitive idea of probability is based in this way on the frequency of occurrence.

More precisely, let v(n) be the number of values of j, 0 < 7 < n, such that
u < U; < v; we want the ratio v(n)/n to approach the value v—u as n approaches
infinity:

lim vin) _ v —u. (2)
n—r0o0 n
If this condition holds for all choices of u and v, the sequence is said to be
equidistributed.

Let S(n) be a statement about the integer n and the sequence Uy, Ui, .. .;
for example, S(n) might be the statement considered above, “u < U, < v.” We
can generalize the idea used in the preceding paragraph to define the probability
that S(n) is true with respect to a particular infinite sequence.

Definition A. Let v(n) be the number of values of j, 0 < j < n, such that S(j)
is true. We say that S(n) is true with probability A if the limit as n tends to
infinity of v(n)/n equals A\. Symbolically: Pr(S(n)) = A if lim, 0o v(n)/n = A.

In terms of this notation, the sequence Uy, Uy, ... is equidistributed if and
only if Pr(u < U, < v) = v —u, for all real numbers u, v with 0 <u <v < 1.

A sequence might be equidistributed without being random. For example,
if Uy, Uy, ... and Vp, V1, ... are equidistributed sequences, it is not hard to show
that the sequence

WO,W],W2,W3,...:%UO, %-l'%V(), %Ul, %—l—%Vl, (3)
is also equidistributed, since the subsequence 31Uy, iU, ... is equidistributed
between 0 and 1, while the alternate terms 3 + 3Vo, 3 + $Vi, ..., are equi-

distributed between 1 and 1. But in the sequence of W’s, a value less than 3 is
always followed by a value greater than or equal to %, and conversely; hence the
sequence is not random by any reasonable definition. A stronger property than
equidistribution is needed.

A natural generalization of the equidistribution property, which removes
the objection stated in the preceding paragraph, is to consider adjacent pairs of

numbers of our sequence. We can require the sequence to satisfy the condition
Pr(u; < U, <v1 and uz < Upp1 < v2) = (v1 — up)(v2 — ug) (4)

for any four numbers u1, v1, ug, v2 With 0 < u; <1 < 1,0 < upy < vy < 1.
And in general, for any positive integer £k we can require our sequence to be
k-distributed in the following sense:

3.5 WHAT IS A RANDOM SEQUENCE? 151

Definition B. The sequence (1) is said to be k-distributed if
Pr(uy <Up <y, ooy g SUpyk—1 <) =(v1 —u1)...(vk —uk) (5)
for all choices of real numbers uj, vj, with 0 <u; <v; <1forl <j <k,

An equidistributed sequence is a 1-distributed sequence. Notice that if & > 1,
a k-distributed sequence is always (k — 1)-distributed, since we may set ux = 0
and vy = 1 in Eq. (5). Thus, in particular, any sequence that is known to be
4-distributed must also be 3-distributed, 2-distributed, and equidistributed. We
can investigate the largest k for which a given sequence is k-distributed; and this
leads us to formulate a stronger property:

Definition C. A sequence is said to be oo-distributed if it is k-distributed for
all positive integers k.

So far we have considered “[0..1) sequences,” that is, sequences of real
numbers lying between zero and one. The same ideas apply to integer-valued
sequences; let us say that the sequence (X,) = Xo, X1, X2, ... is a b-ary sequence
if each X, is one of the integers 0, 1, ..., b—1. Thus, a 2-ary (binary) sequence
is a sequence of zeros and ones.

We also define a k-digit b-ary number as a string of k integers z,zs... 4,
where 0 < z; <bforl1 <j<k.

Definition D. A b-ary sequence is said to be k-distributed if
Pr(XpXnt1.. Xntk-1 = T1Zs...2g) = 1/b" (6)
for all b-ary numbers z,25. .. Tk.

It is clear from this definition that if Uy, Uy, ... is a k-distributed [0..1)
sequence, then the sequence [bUy|, [bU:], ... is a k-distributed b-ary sequence.
(If we set u; = z;/b, v; = (z; + 1)/b, Xn = [bUyn], Eq. (5) becomes Eq. (6).)
Furthermore, every k-distributed b-ary sequence is also (k — 1)-distributed, if
k > 1: We add together the probabilities for the b-ary numbers x,...xx_10,
ZTy...Zg—11, ..., 21...2k—1(b— 1) to obtain

PI‘(Xn. .. Xn+k—2 =x1... SL'k_.l) = 1/bk"1.

(Probabilities for disjoint events are additive; see exercise 5.) It therefore is
natural to speak of an oco-distributed b-ary sequence, as in Definition C above.

The representation of a positive real number in the radix-b number system
may be regarded as a b-ary sequence; for example, m corresponds to the 10-ary
sequence 3, 1, 4,1, 5,9, 2,6, 5, 3, 5, 8, 9, People have conjectured that
this sequence is co-distributed, but nobody has yet been able to prove that it is
even 1-distributed.

Let us analyze these concepts a little more closely in the case when k equals
a million. A binary sequence that is 1000000-distributed is going to have runs of
a million zeros in a row! Similarly, a [0..1) sequence that is 1000000-distributed

is going to have runs of a million consecutive values each of which is less than %

152 RANDOM NUMBERS 3.5
It is true that this will happen only (5)'9%9°% of the time, on the average, but
the fact is that it does happen. Indeed, this phenomenon will occur in any truly
random sequence, using our intuitive notion of “truly random.” One can easily
imagine that such a situation will have a drastic effect if this set of a million
“truly random” numbers is being used in a computer-simulation experiment;
there would be good reason to complain about the random number generator.
However, if we have a sequence of numbers that never has runs of a million
consecutive U’s less than %, the sequence is not random, and it will not be a
suitable source of numbers for other conceivable applications that use extremely
long blocks of U’s as input. In summary, a truly random sequence will exhibit
local nonrandomness. Local nonrandomness is necessary in some applications,
but it is disastrous in others. We are forced to conclude that no sequence of
“random” numbers can be adequate for every application.

In a similar vein, one may argue that it is impossible to judge whether a
finite sequence is random or not; any particular sequence is just as likely as any
other one. These facts are definitely stumbling blocks if we are ever to have a
useful definition of randomness, but they are not really cause for alarm. It is
still possible to give a definition for the randomness of infinite sequences of real
numbers in such a way that the corresponding theory (viewed properly) will give
us a great deal of insight concerning the ordinary finite sequences of rational
numbers that are actually generated on a computer. Furthermore, we shall see
later in this section that there are several plausible definitions of randomness for
finite sequences.

B. oo-distributed sequences. Let us now make a brief study of the theory
of sequences that are oco-distributed. To describe the theory adequately, we will
need to use a bit of higher mathematics, so we assume in the remainder of this
subsection that the reader knows the material ordinarily taught in an “advanced
calculus” course.

First it is convenient to generalize Definition A, since the limit appearing
there does not exist for all sequences. We define

-P_f(S(n)) = 1i1rlnsup @, _P_1;(S(n)) = liminf @ (7)

300 n n—00 n

Then Pr(S(n)), if it exists, is the common value of Pr(S(n)) and Pr(S(n)).

We have seen that a k-distributed [0..1) sequence leads to a k-distributed
b-ary sequence, if U is replaced by [bU]. Our first theorem shows that a converse
result is also true.

Theorem A. Let (U,) = Uy, U1, Us, ... be a[0..1) sequence. If the sequence
(165Un]) = [b5Uo], [b5U1], [B5U2], ..

is a k-distributed bj-ary sequence for all b; in an infinite sequence of integers
1 < by <by <bs <---, then the original sequence (U,) is k-distributed.

As an example of this theorem, suppose that b; = 27, The sequence
|27Us], |27U,], ... is essentially the sequence of the first j bits of the binary

3.5 WHAT IS A RANDOM SEQUENCE? 153

representations of Uy, Uy, If all these integer sequences are k-distributed,
in the sense of Definition D, then the real-valued sequence Uy, Uy, ... must also
be k-distributed in the sense of Definition B.

Proof of Theorem A. If the sequence [bUy], |bU,], ... is k-distributed, it follows
by the addition of probabilities that Eq. (5) holds whenever each u; and v, is a
rational number with denominator b. Now let u;, v; be any real numbers, and
let u’;, v} be rational numbers with denominator b such that

/
u; < uy < u;+41/b, v; <wv; <+ 1/b.
Let S(n) be the statement that vy < U, <1, ..., ug < Untk—1 < vx. We have

Pr(S(n)) < Pr(u'l <U, <v;+ PR up < Upppq <V + 5)

1 . 1
= (U'l—u'l—l—g)...(vfc—u;c—l-g);
/ 1 / / 1 7
Pr(S(n)) > Pr(ul T3S U, <y, ooy U+ 5 SUnjk—1 <o

Now 1(1); —u;+1/b) — (v; — uj)| < 2/b. Since our inequalities hold for all b = b;,
and since b; = oo as j — oo, we have

(v1 —w)...(vk —ug) < Pr(S(n)) <Pr(S(n)) < (vi—w1)...(vk —uk). 1

The next theorem is our main tool for proving things about k-distributed
sequences.

Theorem B. Suppose that (U,) is a k-distributed [0..1) sequence, and let

f(z1,x2,...,zk) be a Riemann-integrable function of k variables; then
1 1 1
lim — Z f(Uj,Uj+1,...,Uj+k__1)=/ / f(:cl,:c2,...,:ck)d:cl...d:ck.
0<j<n (8)

Proof. The definition of a k-distributed sequence states that this result is true
in the special case that

flxy,. . ze) =[w <z <v1, ...y Uk <z < Uk (9)

for some constants u;, vy, ..., uk, vg. Therefore Eq. (8) is true whenever f =
a1fi + azfa + -+ + amfm and when each f; is a function of type (9); in other
words, Eq. (8) holds whenever f is a “step-function” obtained by partitioning the
unit k-dimensional cube into subcells whose faces are parallel to the coordinate
axes, and assigning a constant value to f on each subcell.

Now let f be any Riemann-integrable function. If € is any positive number,
we know (by the definition of Riemann-integrability) that there exist step func-
tions f and f such that flzr, . ze) < flxn,. o 78) < f(z1,...,z), and such

154 RANDOM NUMBERS 3.5

that the difference of the integrals of f and f is less than €. Since Eq. (8) holds
for f and f, and since

— Z F(Uj, - Ujpi— 1)§— Z fUj, .. Ujti—1)

O<]<n O<]<n

S— Z FUjs - Ujpr—1),

O<]<n
we conclude that Eq. (8) is true also for f. |

Theorem B can be applied, for example, to the permutation test of Sec-
tion 3.3.2. Let (p1,p2, ..., px) be any permutation of the numbers {1,2,...,k};
we want to show that

PI‘(Un+p1__1 < Un+p2..1 < e < Un+pk~—l) = 1/k" (10)
To prove this, assume that the sequence (Uy) is k-distributed, and let
flzr,. .., zk) = [Zp, <Tp, <+ <Tp, .
We have

Pr(Un+p1_1 < Un+p2....1 < v < Un+pk_.1)

/ / f L1y, d.’L’l .dx Tk
Tpa 1
= ; d:clch ; ; d:cp2 A dzp, = h

Corollary P. Ifa[0..1) sequence is k-distributed, it satisfies the permutation
test of order k, in the sense of Eq. (10). 1

We can also show that the serial correlation test is satisfied:

Corollary S. Ifa[0..1) sequence is (k 4 1)-distributed, the serial correlation
coefficient between U, and U, tends to zero:

LY UiUire = (3 205) (lZUﬂk)

lim =0.
R - GEU)) GV - GEUw))
(All summations here are for 0 < j < n.)
Proof. By Theorem B, the quantities
LS UUjsk,s =22 U w2 Ul = LU, 2 Uit
tend to the respective limits %, %, 31,;, %, % asn —o0o. |

3.5 WHAT IS A RANDOM SEQUENCE? 155

Let us now consider some slightly more general distribution properties of
sequences. We have defined the notion of k-distribution by considering all of
the adjacent k-tuples; for example, a sequence is 2-distributed if and only if the
points

(UOaUl)a (U19U2)a (U29U3)9 (U39U4)9 (U49U5)9

are equidistributed in the unit square. It is quite possible, however, that this can
happen while alternate pairs of points (U,U2), (Us,Us), (Us,Us), ... are not
equidistributed; if the density of points (Uzn—1, U2y) is deficient in some area, the
other points (Usy,Usn+1) might compensate. For example, the periodic binary
sequence

<Xn> :0’0’0’1’ 0’0’0)1’ 1’1’0’ 17 1’170’1’ 070’0’17 R | (11)

with a period of length 16, is seen to be 3-distributed; yet the sequence of even-
numbered elements (X2,) =0, 0,0, 0, 1, 0, 1, 0, ... has three times as many
zeros as ones, while the subsequence of odd-numbered elements (Xan41) =0, 1,

0,1,1,1,1,1, ... has three times as many ones as zeros.
Suppose the sequence (U,) is co-distributed. Example (11) shows that the
subsequence of alternate terms (Uz,) = Uy, Us, Us, Us, ... is not obviously

guaranteed to be co-distributed or even l-distributed. But we shall see that
(Uzy) is, in fact, co-distributed, and much more is true.

Definition E. A [0‘. .1) sequence (Uy,) is said to be (m, k)-distributed if

Pr(u; < Umntj < v1, 2 < Umnntjrr <2, -y Uk < Unngjrr—1 < Uk)
= (’Ul —ul)...(vk ——uk)

for all choices of real numbers u,, v, with 0 < u, <v, <1 forl <r <k, and
for all integers j with 0 < 7 <m.

Thus a k-distributed sequence is the special case m = 1 in Definition E; the case
m = 2 means that the k-tuples starting in even positions must have the same
density as the k-tuples starting in odd positions, etc.

The following properties of Definition E are obvious:

An (m, k)-distributed sequence is (m, k)-distributed for 1 < x < k. (12)
An (m, k)-distributed sequence is (d, k)-distributed for all divisors d of m. (13)

(See exercise 8.) We can also define the concept of an (m, k)-distributed b-ary
sequence, as in Definition D; and the proof of Theorem A remains valid for
(m, k)-distributed sequences.

The next theorem, which is in many ways rather surprising, shows that the
property of being oco-distributed is very strong indeed, much stronger than we
imagined it to be when we first considered the definition of the concept.

Theorem C (Ivan Niven and H. S. Zuckerman). An oco-distributed sequence
is (m, k)-distributed for all positive integers m and k.

156 RANDOM NUMBERS 3.5

Proof. Tt suffices to prove the theorem for b-ary sequences, by using the general-
ization of Theorem A just mentioned. Furthermore, we may assume that m = k,
because (12) and (13) tell us that the sequence will be (m, k)-distributed if it is
(mk, mk)-distributed.

So we will prove that any co-distributed b-ary sequence Xg, X, ... 18 (m,m)-
distributed for all positive integers m. Our proof is a simplified version of the
original one given by Niven and Zuckerman in Pacific J. Math. 1 (1951), 103-109.

The key idea we shall use is an important technique that applies to many
situations in mathematics: “If the sum of m quantities and the sum of their
squares are both consistent with the hypothesis that the m quantities are equal,
then that hypothesis is true.” In a strong form, this principle may be stated as
follows:

Lemma E. Given m sequences of numbers (y;n) = Yjo, Yj1, --- for 1 < j <m,
suppose that

lim (Yin + Y2n + -+ + Ymn) = Mm@,

n—o0

. (14)
limsup (45, + Usn + -+ + Ymn) < ma.

n—>00

Then for each j, lim, o Yjn €xists and equals «.
An incredibly simple proof of this lemma is given in exercise 9. |

Resuming our proof of Theorem C, let = z17x2... Zm be a b-ary number,
and say that occurs at position p if Xp_my1Xp—m42... Xp = z. Let vj(n) be
the number of occurrences of z at position p when p < n and p modm = 3. Let
yjn = vj(n)/n; we wish to prove that '

, 1
i vin = 45)
First we know that
) 1
nlgrgo(y()n + Y1in + F Ymo1)n) = pm (16)

since the sequence is m-distributed. By Lemma E and Eq. (16), the theorem
will be proved if we can show that

(17)

This inequality is not obvious yet; some rather delicate maneuvering is
necessary before we can prove it. Let ¢ be a multiple of m, and consider

cmy= 3 <Vj(n)—;j(n—Q)>_ (18)

0<j<m

) 1
lim sup (ygn + y%n +-t y(2m~—l)n) <

n—00 mb2m

This is the number of pairs of occurrences of z in positions p; and ps for which
n—q<p <ps <n and ps — p; is a multiple of m. Consider now the sum

N+q

Sy =Y C(n). (19)

3.5 WHAT IS A RANDOM SEQUENCE? 157

Each pair of occurrences of z in positions p; and p2 with py < p2 <p1+4q, where
py — p1 is a multiple of m and p; < N, is counted exactly p; 4+ ¢ — p2 times in
the total Sy (namely, when p; < n < p1 + ¢); and the pairs of such occurrences
with N < p1 < pa < N + q are counted exactly N + g — pz times.

Let dy(n) be the number of pairs of occurrences of z in positions p1 and p2
with p1 +t = p2 < n. The analysis above shows that

S (g-mt)dm(N +9q) > Sy 2 > (g—mbt)dme(N). (20)
o<t<qg/m o<t<q/m

Since the original sequence is g-distributed,
1

1 -
Ny dme(N) = o (21)

for all ¢, 0 < t < g/m, and therefore by (20) we have

. SN - g—-mt q(qg—m)
1 — = = .
Ngnoo N Z p2m Imb2m (22)
0<t<g/m
This fact will prove the theorem, after some manipulation.
By definition,

N+q

25v =y Y (W) —vi(n—)* = (v(n) —vi(n -),

n=1 0<j<m _
and we can remove the unsquared terms by applying (16) to get

. Tn glg—m) ¢
I\Jh—];noo N mbm tpm (23)

where

(see exercise 1.2.3-30), we find that

e ‘2
lim sup]me—q—) < Z (Vj (TI,) —Vj (TI, — Q))>

n=1

IN
+
9
L

We also have

gri(N) < Y y(n) =) (v(n) —vi(n—q)) < qvs(N +),

158 RANDOM NUMBERS 3.5

and putting this into (24) gives

lim sup Z (Vj(N))2< - m + L . (25)

- qmb2m qu

This formula has been established whenever g is a multiple of m; and if we let
g — oo we obtain (17), completing the proof.

For a possibly simpler proof, see J. W. S. Cassels, Pacific J. Math. 2 (1952),
555-557. 1

Exercises 29 and 30 illustrate the nontriviality of this theorem, and they
also demonstrate the fact that a g-distributed sequence will have probabilities
deviating from the true (m,m)-distribution probabilities by essentially 1/4/q at
most. (See (25).) The full hypothesis of oo-distribution is necessary for the
proof of the theorem.

As a result of Theorem C, we can prove that an oco-distributed sequence
passes the serial test, the maximum-of-t test, the collision test, the birthday
spacings test, and the tests on subsequences mentioned in Section 3.3.2. It is not
hard to show that the gap test, the poker test, and the run test are also satisfied
(see exercises 12 through 14). The coupon collector’s test is considerably more
difficult to deal with, but it too is passed (see exercises 15 and 16).

The existence of co-distributed sequences of a rather simple type is guaran-
teed by the next theorem.

Theorem F (J. N. Franklin). The [0..1) sequence Uy, Uy, Us, ... with
| Up = 6"mod1 (26)
is oo-distributed for almost all real numbers 6 > 1. That is, the set
{6 |6 > 1 and (26) is not co-distributed}
is of measure zero.

The proofs of this theorem and some generalizations are given in Math. Comp.
17 (1963), 28-59. 1

Franklin has shown that # must be a transcendental number for (26) to
be oco-distributed. Early in the 1960s, the powers (7™ mod 1) were laboriously
computed for n < 10000 using multiple-precision arithmetic; and the most
significant 35 bits of each of these numbers, stored on a disk file, were used
successfully as a source of uniform deviates. According to Theorem F, the
probability that the powers (7™ mod 1) are co-distributed is equal to 1; yet there
are uncountably many real numbers, so the theorem gives us no information
about whether the sequence for 7 is really co-distributed or not. It is a fairly
safe bet that nobody in our lifetimes will ever prove that this particular sequence
is not oco-distributed; but it might not be. Because of these considerations, one
may legitimately wonder if there is any explicit sequence that is co-distributed:
Is there an algorithm to compute real numbers U, for all n > 0, such that

3.5 WHAT IS A RANDOM SEQUENCE? 159

the sequence (Uy,) is co-distributed? The answer is yes, as shown for example
by D. E. Knuth in BIT 5 (1965), 246-250. The sequence constructed there
consists entirely of rational numbers; in fact, each number U, has a terminating
representation in the binary number system. Another construction of an explicit
oo-distributed sequence, somewhat more complicated than the sequence just
cited, follows from Theorem W below. See also N. M. Korobov, Izv. Akad. Nauk
SSSR 20 (1956), 649-660.

C. Does oo-distributed = random? In view of all the theoretical results
about oo-distributed sequences, we can be sure of one thing: The concept of
an oo-distributed sequence is an important one in mathematics. There is also a
good deal of evidence that the following statement might be a valid formulation
of the intuitive idea of randomness:

Definition R1. A [0..1) sequence is defined to be “random” if it is an co-
distributed sequence.

We have seen that sequences meeting this definition will satisfy all the statistical
tests of Section 3.3.2 and many more.

Let us attempt to criticize this definition objectively. First of all, is every
“truly random” sequence oo-distributed? There are uncountably many sequences
Uy, Uy, ... of real numbers between zero and one. If a truly random number
generator is sampled to give values Uy, Ui, ..., any of the possible sequences may
be considered equally likely, and some of the sequences (indeed, uncountably
many of them) are not even equidistributed. On the other hand, using any
reasonable definition of probability on this space of all possible sequences leads
us to conclude that a random sequence is oo-distributed with probability one.
We are therefore led to formalize Franklin’s definition of randomness (as given
at the beginning of this section) in the following way:

Definition R2. A [0..1) sequence (Uy) is defined to be “random” if, whenever
P is a property such that P((V,)) holds with probability one for a sequence (V)

of independent samples of random variables from the uniform distribution, then
P(({U,)) is true.

Is it perhaps possible that Definition R1 is equivalent to Definition R2? Let
us try out some possible objections to Definition R1, and see whether these
criticisms are valid.

In the first place, Definition R1 deals only with limiting properties of the
sequence as n — 0. There are co-distributed sequences in which the first million
elements are all zero; should such a sequence be considered random?

This objection is not very substantial. If € is any positive number, there
is no reason why the first million elements of a sequence should not all be less
than €. With probability one, a truly random sequence contains infinitely many
runs of a million consecutive elements less than €, so why can’t this happen at
the beginning of the sequence?

160 RANDOM NUMBERS 3.5

On the other hand, consider Definition R2 and let P be the property that
all elements of the sequence are distinct; P is true with probability one, so any
sequence with a million zeros is not random by this criterion.

Now let P be the property that no element of the sequence is equal to
zero; again, P is true with probability one, so by Definition R2 any sequence
with a zero element is nonrandom. More generally, however, let zg be any fixed
number between zero and one, and let P be the property that no element of
the sequence is equal to zg; Definition R2 now says that no random sequence
may contain the element zo! We can now prove that no sequence satisfies the
condition of Definition R2. (For if Uy, Uy, ... is such a sequence, take zo = Up.)

Therefore if R1 is too weak a definition, R2 is certainly too strong. The
“right” definition must be less strict than R2. We have not really shown that R1
is too weak, however, so let us continue to attack it some more. As mentioned
above, an oo-distributed sequence of rational numbers has been constructed.
(Indeed, this is not so surprising; see exercise 18.) Almost all real numbers are
irrational; perhaps we should insist that

Pr(U, is rational) = 0

for a random sequence.

The definition of equidistribution, Eq. (2), says that Pr(u < U, < v) = v—u.
There is an obvious way to generalize this definition, using measure theory: “If
S C[0..1) is a set of measure p, then

Pr(U, € S) = p, (27)

»

for all random sequences (U,).” In particular, if S is the set of rationals,
it has measure zero, so no sequence of rational numbers is equidistributed in
this generalized sense. It is reasonable to expect that Theorem B could be
extended to Lebesgue integration instead of Riemann integration, if property (27)
is stipulated. However, once again we find that definition (27) is too strict,
for no sequence satisfies that property. If Uy, U;, ... is any sequence, the set
S = {Uy, Uy, ...} is of measure zero, yet Pr(U, € S) = 1. Thus, by the force of
the same argument we used to exclude rationals from random sequences, we can
exclude all random sequences.

So far Definition R1 has proved to be defensible. There are, however, some
quite valid objections to it. For example, if we have a random sequence in the
intuitive sense, the infinite subsequence

U(), Ul, U4, Ug, RN Unz, (28)

should also be a random sequence. This is not always true for an co-distributed
sequence. In fact, if we take any oo-distributed sequence and set U,2 + 0 for
all n, the counts vg(n) that appear in the test of k-distributivity are changed by
at most 1/n, so the limits of the ratios vx(n)/n remain unchanged. Definition R1
unfortunately fails to satisfy this randomness criterion.

Perhaps we should strengthen R1 as follows:

3.5 WHAT IS A RANDOM SEQUENCE? 161

Definition R3. A [0..1) sequence is said to be “random” if each of its infinite
subsequences is oo-distributed.

Once again, however, the definition turns out to be too strict; any equidistributed
sequence (U,) has a monotonic subsequence with Uy, < U, < U, < ---.

The secret is to restrict the subsequences so that they could be defined by
a person who does not look at U,, before deciding whether or not it is to be in
the subsequence. The following definition now suggests itself:

Definition R4. A [0..1) sequence (U,) is said to be “random” if, for every
effective algorithm that specifies an infinite sequence of distinct nonnegative
integers s, for n > 0, the subsequence Us,, Us,, Us,, ... corresponding to this
algorithm is oo-distributed.

The algorithms referred to in Definition R4 are effective procedures that
compute s,, given n. (See the discussion in Section 1.1.) Thus, for example,
the sequence (7™ mod 1) will not satisfy R4, since it is either not equidistributed
or there is an effective algorithm that determines an infinite subsequence s,
with (7 mod 1) < (m**mod 1) < (72 mod1) < ---. Similarly, no explicitly
defined sequence can satisfy Definition R4; this is appropriate, if we agree
that no explicitly defined sequence can really be random. The explicit-looking
sequence (™ mod 1) actually does, however, satisfy Definition R4, for almost
all real numbers # > 1; this is no contradiction, since almost all # are uncom-
putable by algorithms. J. F. Koksma proved that (#° mod 1) is 1-distributed
for almost all # > 1, if (s,) is any sequence of distinct positive integers [Com-
positio Math. 2 (1935), 250-258]; H. Niederreiter and R. F. Tichy strengthened
Koksma’s theorem, replacing “1-distributed” by “co-distributed” [Mathematika
32 (1985), 26-32]. Only countably many sequences (s,) are effectively definable,
so (8™ mod 1) almost always satisfies R4.

Definition R4 is much stronger than Definition R1; but it is still reasonable
to claim that Definition R4 is too weak. For example, let (U,) be a truly random
sequence, and define the subsequence (U) by the following rules: 'sg = 0; and if
n > 0, s, is the smallest integer > n for which U;_ 1, Us_ o, ..., Us, —pn are all
less than % Thus we are considering the subsequence of values following the first
consecutive run of n values less than —;— Suppose that “U, < %” corresponds to
the value “heads” in the flipping of a coin. Gamblers tend to feel that a long run
of “heads” makes the opposite condition, “tails,” more probable, assuming that
a true coin is being used; and the subsequence (U;_) just defined corresponds to a
gambling system for a man who places his nth bet on the coin toss following the
first run of n consecutive “heads.” The gambler may think that Pr(U;, >) is
more than %, but of course in a truly random sequence (Us,) will be completely
random. No gambling system will ever be able to beat the odds! Definition R4
says nothing about subsequences formed according to such a gambling system,
so apparently we need something more.

Let us define a “subsequence rule” R as an infinite sequence of functions
(fn(z1,...,2,)) where, for n > 0, f, is a function of n variables, and the

162 RANDOM NUMBERS 3.5

value of fn(Z1,...,%n) is either 0 or 1. Here z,, ..., z, are elements of some
set S. (Thus, in particular, fo is a constant function, either 0 or 1.) A sub-
sequence rule R defines a subsequence of any infinite sequence (X,,) of elements
of S as follows: The nth term X, is in the subsequence (X,)R if and only if
fn(Xo0,X1,...,Xn-1) = 1. Note that the subsequence (X,)R thus defined is
not necessarily infinite, and it may in fact contain no elements at all.

For example, the gambler’s subsequence just described corresponds to the

following subsequence rule: “fo = 1; and for n > 0, f,(z,,...,2,) = 1 if and
only if there is some k in the range 0 < k£ < n such that the k consecutive
parameters T, Tm-1, --., Tm—k+1 are all < % when m = n but not when
k<m<nJ

A subsequence rule R is said to be computable if there is an effective
algorithm that determines the value of f,.(z1,...,2z,), whenn and x4, ..., z, are

given as input. We had better restrict ourselves to computable subsequence rules
when trying to define randomness, lest we obtain an overly restrictive definition
like R3 above. But effective algorithms cannot deal nicely with arbitrary real
numbers as inputs; for example, if a real number z is specified by an infinite
radix-10 expansion, there is no algorithm to determine if z is < % or not, since
all digits of the number 0.333 ... have to be examined. Therefore computable
subsequence rules do not apply to all [0..1) sequences, and it is convenient to
base our next definition on b-ary sequences.

Definition R5. A b-ary sequence is said to be “random” if every infinite sub-
sequence defined by a computable subsequence rule is 1-distributed.

A [0..1) sequence (U,) is said to be “random” if the b-ary sequence (|bU,])
is “random” for all integers b > 2.

Note that Definition Rb5 says only “l-distributed,” not “oo-distributed.” It
is interesting to verify that this may be done without loss of generality. For we
may define an obviously computable subsequence rule R(a;...ax) as follows,
given any b-ary number a;...ax: Let fo(z1,...,2,) =1lifand onlyifn > k—1
and Tp_g+1 = a1, ---y Tno1 = Gg—1, Tn = ag. Now if (X,,) is a k-distributed
b-ary sequence, this rule R(a; ... ax) — which selects the subsequence consisting
of those terms just following an occurrence of a; ... ay — defines an infinite sub-
sequence; and if this subsequence is 1-distributed, each of the (k + 1)-tuples
a1...akak+ for 0 < agy1 < b occurs with probability 1/6F*! in (X,). Thus
we can prove that a sequence satisfying Definition R5 is k-distributed for all k,
by induction on k. Similarly, by considering the “composition” of subsequence
rules— if R, defines an infinite subsequence (X,)R1, then we can define R, R to
be the subsequence rule for which (X,)R;R2 = ((X,)R1)R2— we find that all
subsequences considered in Definition RS are oo-distributed. (See exercise 32.)

The fact that oo-distribution comes out of Definition R5 as a very special
case is encouraging, and it is a good indication that we may at last have found the
definition of randomness we have been seeking. But alas, there still is a problem.
It is not clear that sequences satisfying Definition R5 must satisfy Definition R4.
The “computable subsequence rules” we have just specified always enumerate

3.5 WHAT IS A RANDOM SEQUENCE? 163

subsequences (X,) for which sp < s1 < ---, but (s,) does not have to be
monotone in R4; it must only satisfy the condition s, # sm for n # m.
To meet this objection, we may combine Definitions R4 and R5 as follows:

Definition R6. A b-ary sequence (X,) is said to be “random” if, for every
effective algorithm that specifies an infinite sequence of distinct nonnegative
integers (s,) as a function of n and the values of X, ..., X5, _,, the subsequence
(X,) corresponding to this algorithm is “random” in the sense of Definition R5.

A [0..1) sequence (Uy,) is said to be “random” if the b-ary sequence ([bUy])
is “random” for all integers b > 2.

The author contends* that this definition surely meets all reasonable philo-
sophical requirements for randomness, so it provides an answer to the principal
question posed in this section.

D. Existence of random sequences. We have seen that Definition R3 is
too strong, in the sense that no sequence can satisfy that definition; and the
formulation of Definitions R4, R5, and R6 above was carried out in an attempt
to recapture the essential characteristics of Definition R3. In order to show that
Definition R6 is not overly restrictive, it is still necessary for us to prove that
sequences satisfying all these conditions exist. Intuitively, we feel quite sure that
there is no problem, because we believe that a truly random sequence exists
and satisfies R6; but a proof is really necessary to show that the definition is
consistent.

An interesting method for constructing sequences satisfying Definition R5
has been found by A. Wald, starting with a very simple 1-distributed sequence.

Lemma T. Let the sequence of real numbers (V,,) be defined in terms of the
binary system as follows: ’

Vo=0, Vi=.1, Va=.1 Vz=.1, V,=.001,
V,=.¢r...C11 fn=2"4+¢2" 4+ - +c,. (29)

Let I, ., denote the set of all real numbers in [0..1) whose binary representa-
tion begins with 0.b;...b,; thus

Iyt = [(0b1.. . br)2 .. (0.b1...br)2 +277). (30)
Then if v(n) denotes the number of Vi, in Iy, ..., for 0 < k < n, we have
lv(n)/n — 277 < 1/n. (31)

Proof. Since v(n) is the number of k for which £ mod 2" = (b,...b1)2, we have
v(n) =t or t + 1 when |n/2"] =t. Hence |v(n) —n/27| < 1. 1

It follows from (31) that the sequence (|2"V,]) is an equidistributed 27-
ary sequence; hence by Theorem A, (V,) is an equidistributed [0..1) sequence.
Indeed, it is pretty clear that (V,) is about as equidistributed as a [0..1)
sequence can be. (For further discussion of this and related sequences, see J. G.

* At least, he made such a contention when originally preparing this material in 1966.

164 RANDOM NUMBERS 3.5

van der Corput, Proc. Koninklijke Nederl. Akad. Wetenschappen 38 (1935),
813-821, 1058-1066; J. H. Halton, Numerische Math. 2 (1960), 84-90, 196;
S. Haber, J. Research National Bur. Standards B70 (1966), 127-136; R. Béjian
and H. Faure, Comptes Rendus Acad. Sci. Paris A285 (1977), 313-316; H. Faure,
J. Number Theory 22 (1986), 4-20; S. Tezuka, ACM Trans. Modeling and Comp.
Simul. 3 (1993), 99-107. L: H. Ramshaw has shown that the sequence (¢n mod 1)
is slightly more equally distributed than (V;,); see J. Number Theory 13 (1981),
138-175.)

Now let R1, Ra, ... be infinitely many subsequence rules; we seek a sequence
(U,) for which all the infinite subsequences (Uy,)R; are equidistributed.

Algorithm W (Wald sequence). Given an infinite sequence of subsequence rules
R1, R, ... that define subsequences of [0. . 1) sequences of rational numbers, this
procedure defines a [0..1) sequence (Un). The computation involves infinitely
many auxiliary variables Clai,...,ar], where r > 1 and where a; = 0 or 1 for
1 < j < r. These variables are initially all zero.

W 1. [Initialize n.] Set n + 0.
W2. [Initialize 7.] Set r + 1.

W3. [Test R,.] If the element Uy, is to be in the subsequence defined by R,
based on the values of Uy for 0 < k < n, set a, + 1; otherwise set a, <+ 0.

WA4. [Is case [a1, .. .,a,] unfinished?] If Clay,...,a,] <3-477', go to W6.
W5. [Increase 7.] Set r < 7 + 1 and return to W3.

W6. [Set U,.] Increase the value of C[ay,...,ar] by 1 and let k be its new value.
Set U,, + Vi, where Vj is defined in Lemma T above.

W7. [Advance n.] Increase n by 1 and return to W2. |

Strictly speaking, this is not an algorithm, since it doesn’t terminate; but
we could of course easily modify the procedure to make it stop when n reaches a
given value. In order to grasp the idea of the construction, the reader is advised
to try it out manually, replacing the number 3 - 47=1 of step W4 by 2" during
this exercise.

Algorithm W is not meant to be a practical source of random numbers. It
is intended to serve only a theoretical purpose:

Theorem W. Let (U,) be the sequence of rational numbers defined by Algo-
rithm W, and let k be a positive integer. If the subsequence (U,) Ry is infinite,
it is 1-distributed.

Proof. Let Alai,...,a,] denote the (possibly empty) subsequence of (U,) con-
taining precisely those elements U, that, for all j < 7, belong to subsequence
(Un)R; if a; = 1 and do not belong to subsequence (U,)R; if a; = 0.

It suffices to prove, for all 7 > 1 and all pairs of binary numbers a;... a,
and by...b,, that Pr(U, € Iy,..p.) = 277 with respect to the subsequence
Alay,...,a,], whenever the latter is infinite. (See Eq. (30).) For if » > k,
the infinite sequence (U,)Ry is the finite union of the disjoint subsequences

3.5 WHAT IS A RANDOM SEQUENCE? 165

Alay,...,ar] forap = land a;j =0or 1for1 <j <r, j+#k;and it follows
that Pr(Un, € Ip,..».) = 277 with respect to (Un)Rk- (See exercise 33.) This is
enough to show that the sequence is 1-distributed, by Theorem A.

Let Blay,...,a,| denote the subsequence of (U,) that consists of the values
for those n in which Cla,,...,a,] is increased by one in step W6 of the algo-
rithm. By the algorithm, Blai,...,a,] is a finite sequence with at most 3 - 47!
elements. All but a finite number of the members of Afay,...,a,| come from the
subsequences Blai,...,ar,...,as], wherea; =0or 1 forr <j <t

Now assume that Alai,...,a,.] is infinite, and let Afa1,...,a,] = (Us,),
where 5o < s; < 89 < ---. If N is a large integer, with 4™ < 49 < N < 49+1 it

follows that the number of values of k < N for which U, is in I, is (except
for finitely many elements at the beginning of the subsequence)

V(N)=v(N1) + -+ v(Nn).

Here m is the number of subsequences Blay,...,a] listed above in which Us,
appears for some k < N; N; is the number of values of k with U;, in the
corresponding subsequence; and v(NN;) is the number of such values that are also
in I, .. Therefore by Lemma T,

[V(N) = 27"N| = |v(N1) =27 "N1 + -+ - + ¥(Np) — 27" Npy|
< 1V(N1) — Q_T'N11 44]V(Nm) - 2""Nm]
<m<14+2444..-4207FL <9911

The inequality on m follows here from the fact that, by our choice of NNV, the
element U, is in Blay,...,a4] for some ¢t < g+ 1.
We have proved that [v(N)/N — 277 < 29tYN < 2//N. 1

To show finally that sequences satisfying Definition R5 exist, we note first
that if (U,)is a [0..1) sequence of rational numbers and if R is a computable sub-
sequence rule for a b-ary sequence, we can make R into a computable subsequence
rule R’ for (U,) by letting f!(z1,...,2,) in R’ equal f,(|bz1],...,[bz,]) in
R. If the [0..1) sequence (U,)R' is equidistributed, so is the b-ary sequence
([bUrn])R. Now the set of all computable subsequence rules for b-ary sequences,
for all values of b, is countable (since only countably many effective algorithms
are possible), so they may be listed in some sequence Ry, R, ...; therefore
Algorithm W defines a [0..1) sequence that is random in the sense of Defini-
tion R5.

This brings us to a somewhat paradoxical situation. As we mentioned earlier,
no effective algorithm can define a sequence that satisfies Definition R4, and for
the same reason there is no effective algorithm that defines a sequence satisfying
Definition R5. A proof of the existence of such random sequences is necessarily
nonconstructive; how then can Algorithm W construct such a sequence?

There is no contradiction here; we have merely stumbled on the fact that the
set of all effective algorithms cannot be enumerated by an effective algorithm.
In other words, there is no effective algorithm to select the jth computable

166 RANDOM NUMBERS 3.5

subsequence rule R;; this happens because there is no effective algorithm to de-
termine if a computational method ever terminates. But important large classes
of algorithms can be systematically enumerated; thus, for example, Algorithm W
shows that it is possible to construct, with an effective algorithm, a sequence that
satisfies Definition R5 if we restrict consideration to subsequence rules that are
“primitive recursive.”

By modifying step W6 of Algorithm W, so that it sets U, < Vi instead
of Vi, where ¢ is any nonnegative integer depending on ay, ..., ar, we can show
that there are uncountably many [0..1) sequences satisfying Definition R5.

The following theorem shows still another way to prove the existence of
uncountably many random sequences, using a less direct argument based on
measure theory, even if the strong definition R6 is used:

Theorem M. Let the real number z, 0 < z < 1, correspond to the binary
sequence (X,) if the binary representation of £ is (0.XoX1...)2. Under this
correspondence, almost all z correspond to binary sequences that are random in
the sense of Definition R6. (In other words, the set of all real x that correspond
to a binary sequence that is nonrandom by Definition R6 has measure zero.)

Proof. Let S be an effective algorithm that determines an infinite sequence of
distinct nonnegative integers (s,), where the choice of s,, depends only on n and
X,, for 0 < k < n; and let R be a computable subsequence rule. Then any
binary sequence (X,) leads to a subsequence (X,)R, and Definition R6 says
this subsequence must either be finite or 1-distributed. It suffices to prove that
for fixed R and S the set N(R,S) of all real = corresponding to (X,), such
that (X,)R is infinite and not 1-distributed, has measure zero. For z has a
nonrandom binary representation if and only if z is in | JN(R,S), taken over
the countably many choices of R and S.

Therefore let R and S be fixed. Consider the set T'(a1asz... a,) defined for
all binary numbers ajas...a, as the set of all z corresponding to (X,), such
that (X,)R has > r elements whose first r elements are respectively equal to
a1, a2, ..., ar. Our first result is that

T(ayas...ar) has measure < 277, (32)

To prove this, we start by observing that T'(a1as. .. a,) is a measurable set: Each
element of T(ajaz...a,) is a real number = (0.XoX; ...)2 for which there
exists an integer m such that algorithm S determines distinct values so, s1, ...,
Sm, and rule R determines a subsequence of Xy, X;,, ..., X,,, such that X,
is the rth element of this subsequence. The set of all real y = (0.YyY] ...)2 such
that Y5, = X, for 0 < k < m also belongs to T(a1az...a,), and this is a mea-
surable set consisting of the finite union of dyadic subintervals I, . ,. Since there
are only countably many such dyadic intervals, we see that T'(a1a2...4a,) is a
countable union of dyadic intervals, and it is therefore measurable. Furthermore,
this argument can be extended to show that the measure of T'(a; . .. ar—10) equals
the measure of T(ay...ar—11), since the latter is a union of dyadic intervals

3.5 WHAT IS A RANDOM SEQUENCE? 167

obtained from the former by requiring that Y;, = X, for 0 < k < m and
Y, # X,,.. Now since

T(al.. LAr_ 0) U T((ll.. L Qr— 1) Q T((ll.. . (17-_1),

the measure of T(ajaz...a,) is at most one-half the measure of T(a;... ar—1).
The inequality (32) follows by induction on r.

Now that (32) has been established, the remainder of the proof is essentially
to show that the binary representations of almost all real numbers are equidis-
tributed. For 0 < € < 1, let B(r,€) be | JT(a; .. .a,), where the union is taken
over all binary strings a; ... a, for which the number v(r) of ones among a; . .. a,
satisfies

lv(r) — &r| > er.

T

The number of such binary strings is C(r,e) = 3 (k) summed over all values of k
with |k — 37| > er. Exercise 1.2.10-21 proves that C(r,¢) < 2r+1e=€: hence
by (32),

2

B(r, €) has measure < 277C(r,e) < 2e™°". (33)
The next step is to define
B*(r,e) = B(r,e) UB(r+1,e) UB(r+2,e) U---.

. 2 . .
The measure of B*(r,€) is at most Y, 2~ ¥, and this is the remainder of a
convergent series, so

lim (measure of B*(r,¢)) = 0. (34)

00

Now if z is a real number whose binary expansion (0.XyX;...)2 leads to an
infinite sequence (X,)R that is not 1-distributed, and if v(r) denotes the number
of ones in the first r elements of the latter sequence, then

]V(r)/r — %] > €,

for some € > 0 and infinitely many r. This means z is in B*(r,¢) for all 7. So
finally we find that
N(R,8) =] (] B*(r,1/t);
t>2 r>1
and, by (34), (\,>; B*(r,1/t) has measure zero for all t. Hence N(R,S) has
measure zero. |

From the existence of binary sequences satisfying Definition R6, we can show
the existence of [0.. 1) sequences that are random in this sense. For details, see
exercise 36. The consistency of Definition R6 is thereby established.

E. Random finite sequences. An argument was given above to indicate that
it is impossible to define the concept of randomness for finite sequences: Any
given finite sequence is as likely as any other. Still, nearly everyone would agree
that the sequence 011101001 is “more random” than 101010101, and even the
latter sequence is “more random” than 000000000. Although it is true that truly

3.5

168 RANDOM NUMBERS

random sequences will exhibit locally nonrandom behavior, we would expect such
behavior only in a long finite sequence, not in a short one.

Several ways to define the randomness of a finite sequence have been pro-
posed, and only a few of the ideas will be sketched here. For simplicity, we shall
restrict our consideration to the case of b-ary sequences.

Given a b-ary sequente Xo, X1, ..., Xn—1, We can say that

Pr(S(n)) ~ P, if 1V(N)/N —P1 < 1/\/N> (35)

where v(n) is the quantity appearing in Definition A at the beginning of this
section. The sequence above can be called “k-distributed” if

Pr(XnXni1- Xntk—1 = T1T2... T) = 1/b* (36)

for all b-ary numbers ;2. .. - (Compare with Definition D. Unfortunately
a sequence might turn out to be k-distributed by this new definition when it is
not (k — 1)-distributed.)

A definition of randomness may now be given analogous to Definition R1,
as follows:

Definition Q1. A b-ary sequence of length N is “random” if it is k-distributed
(in the sense above) for all positive integers k < log, V.

According to this definition, for example, there are 178 nonrandom binary
sequences of length 11:

00000001111 10000000111 11000000011 11100000001 11110000000
00000001110 10000000110 11000000010 11100000000 11010000000
00000001101 10000000101 11000000001 10100000001 10110000000
00000001011 10000000011 01000000011 01100000001 01110000000
00000000111

plus 01010101010 and all sequences with nine or more zeros, plus all sequences
obtained from the preceding sequences by interchanging ones and zeros.
Similarly, we can formulate a definition for finite sequences analogous to
Definition R6. Let A be a set of algorithms, each of which is a selection-and-
choice procedure that gives a subsequence (X,)R as in the proof of Theorem M.

Definition Q2. The b-ary sequence Xo, X1, ..., Xn-1 is (n,€)-random with
respect to a set of algorithms A, if for every subsequence X, Xi,, ..., Xi
determined by an algorithm of A we have either m < n or

m

1 1
Va(th)---)Xtm)— <e for 0§a<b
m b
Here v,(x1,...,Tm) is the number of a’s in the sequence x1, ..., Tn.

(In other words, every sufficiently long subsequence determined by an algo-
rithm of A must be approximately equidistributed.) The basic idea in this case
is to let A be a set of “simple” algorithms; the number (and the complexity) of
the algorithms in A can grow as N grows.

3.5 WHAT IS A RANDOM SEQUENCE? 169

As an example of Definition Q2, let us consider binary sequences, and let A
be just the following four algorithms:

a) Take the whole sequence.
Take alternate terms of the sequence, starting with the first.
Take the terms of the sequence following a zero.

Take the terms of the sequence following a one.

)
b)
c)
d)

Now a sequence Xo, X1, ..., X7 is (4, g)-random with respect to A if:

by (a), |3(Xo+ X1+ -+ X7) — 3| < §, that is, if there are 3, 4, or 5 ones;
by (b), |3(Xo+ Xz + Xa+ Xe) — 5| < 5, that is, if there are exactly 2 ones in

even-numbered positions;

by (c), there are three possibilities depending on how many zeros occupy posi-
tions X, ..., Xg: If there are 2 or 3 zeros here, there is no condition
to test (since n = 4); if there are 4 zeros, they must respectively be
followed by two zeros and two ones; and if there are 5 zeros, they must
respectively be followed by two or three zeros;

by (d), we get conditions similar to those implied by (c).

It turns out that only the following binary sequences of length 8 are (4, %)—
random with respect to these rules:

00001011 00101001 01001110 01101000
00011010 00101100 01011011 01101100
00011011 00110010 01011110 01101101
00100011 00110011 01100010 01110010
00100110 00110110 01100011 01110110
00100111 00111001 01100110

plus those obtained by interchanging 0 and 1 consistently.

It is clear that we could make the set of algorithms so large that no sequences
satisfy the definition, when n and e are reasonably small. A. N. Kolmogorov has
proved that an (n,¢)-random binary sequence will always exist, for any given N,
if the number of algorithms in A does not exceed

%e2ne2(1—e). (37)
This result is not nearly strong enough to show that sequences satisfying Defi-
nition Q1 will exist, but the latter can be constructed efficiently using the
procedure of Rees in exercise 3.2.2-21. A generalized spectral test, based on
discrete Fourier transforms, can be used to test how well a sequence measures
up to Definition Q1 [see A. Compagner, Physical Rev. E52 (1995), 5634-5645].

Still another interesting approach to a definition of randomness has been
taken by Per Martin-Lof [Information and Control 9 (1966), 602-619]. Given
a finite b-ary sequence Xi, ..., Xn, let {(Xi,...,Xn~) be the length of the
shortest Turing machine program that generates this sequence. (Alternatively,
we could use other classes of effective algorithms, such as those discussed in

Section 1.1.) Then [(X),...,Xn) is a measure of the “patternlessness” of

170 RANDOM NUMBERS 3.9

the sequence, and we may equate this idea with randomness. The sequences
of length N that maximize {(X;,...,Xy) may be called random. (From the
standpoint of practical random number generation by computer, this is, of course,
the worst definition of “randomness” that can be imagined!)

Essentially the same definition of randomness was given independently by
G. Chaitin at about the same time; see JACM 16 (1969), 145-159. It is interest-
ing to note that even though this definition makes no reference to equidistribution
properties as our other definitions have, Martin-L6f and Chaitin have proved that
random sequences of this type also have the expected equidistribution properties.
In fact, Martin-Lo6f has demonstrated that such sequences satisfy all computable
statistical tests for randomness, in an appropriate sense.

For further developments in the definition of random finite sequences, see
A. K. Zvonkin and L. A. Levin, Uspekhi Mat. Nauk 25,6 (November 1970),
85-127 [English translation in Russian Math. Surveys 25,6 (November 1970),
83-124]; L. A. Levin, Doklady Akad. Nauk SSSR 212 (1973), 548-550; L. A.
Levin, Information and Control 61 (1984), 15-37.

F. Pseudorandom numbers. It is comforting from a theoretical standpoint
to know that random finite sequences of various flavors exist, but such theorems
don’t answer the questions faced by real-world programmers. More recent devel-
opments have led to a more relevant theory, based on the study of sets of finite
sequences. More precisely, we consider multisets in which sequences may appear
more than once.

Let S be a multiset containing bit strings (binary sequences) of length N;
we call S an N-source. Let $5 denote the special N-source that contains all 2%
possible N-bit strings. Each element of S represents a sequence that we might
use as a source of pseudorandom bits; choosing different “seed” values leads to
different elements of S. For example, S might be

{B1B:...Bn | Bj is the most significant bit of X} (38)

in the linear congruential sequence defined by X;1; = (aX; + ¢) mod 2¢, where
there is one string By Bz ... By for each of the 2¢ starting values Xj.

The basic idea of pseudorandom sequences, as we have seen throughout this
chapter, is to get IV bits that appear to be random, although we rely only on
a few “truly random” bits when we choose the seed value. In the example just
considered, we need e truly random bits to select Xy; in general, selecting a
member of S amounts to using 1g |S| truly random bits, after which we proceed
deterministically. If N = 10° and |S| = 232, we are getting more than 30,000
“apparently random” bits for each truly random bit expended. With $5 instead
of S, we get no such amplification, because lg|$n| = V.

What does it mean to be “apparently random”? A. C. Yao proposed a
good definition in 1982: Consider any algorithm A that looks at a bit string
B = B,;... By and outputs the value A(B) = 0 or 1. We may think of A as a
test for randomness; for example, A might compute the distribution of runs of
consecutive Os and 1s, outputting 1 if the run lengths differ significantly from

3.5 WHAT IS A RANDOM SEQUENCE? 171

the expected distribution. Whatever A does, we can consider the probability
P(A,S) that A(B) = 1 when B is a randomly chosen element of S, and we
can compare it to the probability P(A,$n) that A(B) = 1 when B is a truly
random bit string of length N. If P(A4,S) is extremely close to P(A, $y) for all
statistical tests A, we cannot tell the difference between the sequences of S and
truly random binary sequences.

Definition P. We say that an N-source S passes statistical test A with toler-
ance € if |P(A,S)— P(4, $n)| < e. It fails the test if |P(A,5)— P(A,8n)] > e

The algorithm A need not be designed by statisticians. Any algorithm can be
considered a statistical test for randomness, according to Definition P. We allow
A to flip coins (that is, to use truly random bits) as it performs its calculations.
The only requirement is that A must output 0 or 1.

Well, actually there is another requirement: We insist that A must deliver
its output in a reasonable time, at least on the average. We're not interested in
algorithms that will take many years to run, because we will never notice any
disparities between S and $y if our computers cannot detect them during our
lifetime. The sequences of S contain only lg|S| bits of information, so there
surely are algorithms that will eventually detect the redundancy; but we don’t
care, as long as S is able to pass all the tests that really matter.

These qualitative ideas can be quantified, as we will now see. The theory
is rather subtle, but it is sufficiently beautiful and important that readers who
take the time to study the details carefully will be amply rewarded.

In the following discussion, the running time T(A) of an algorithm A on
N-bit strings is defined to be the maximum of the expected number of steps
needed to output A(B), maximized over all B € $y; the expected number is
averaged over all coin flips made by the algorithm.

The first step in our quantitative analysis is to show that we may restrict
the tests to be of a very special kind. Let Ay be an algorithm that depends only
on the first k bits of the input string B = B ... By, where 0 < k < N, and let
AP(B) = (Ax(B) + Bis1 + 1) mod 2. Thus A} outputs 1 if and only if A has
successfully predicted By1; we call Akp a prediction test.

Lemma P1. Let S be an N-source. If S fails test A with tolerance ¢, there is an
integer k € {0,1,..., N—1} and a prediction test Af with T(AP) < T(A)+O(N)
such that S fails AY with tolerance €/N.

Proof. By complementing the output of A, if necessary, we may assume that
P(A,S)—P(A, $x) > e. Consider the algorithms F}, that begin by flipping N —k
coins and replacing By41... By by random bits B}, ... By before executing A.
Algorithm Fy is the same as A, while Fy acts on S as if A were acting on $y. Let
pe = P(Fy, S). Since Sr—y (Pe+1 — Pr) = pnv — po = P(A,8) — P(A, 8n) > ¢,
there is some k such that py+1 — pr > €/N.

Let AL be the algorithm that performs the computations of F} and predicts
the value (F,(B) + B}, + 1) mod 2; in other words, it outputs

AP(B) = (Fi(B) + By, + Biyy) mod 2. (39)

172 RANDOM NUMBERS 3.5

A careful analysis of probabilities shows that P(Af,S) — P(Af, 8n) = Pr+1— Pk
(See exercise 40.) 1

Most N-sources S of practical interest are shift-symmetric in the sense that
every substring B ... By, B2. ..Bri1, ..., BN_g+1... By of length k has the
same probability distribution. This holds, for example, when S corresponds
to a linear congruential sequence as in (38). In such cases we can improve on
Lemma P1 by taking k = N — 1:

Lemma P2. IfS is a shift-symmetric N-source that fails test A with tolerance e,
there is an algorithm A’ with T(A') < T(A) + O(N) that predicts By from
B, ... Bn_1 with probability at least 3 + €/N. ‘

Proof. If P(A,S) > P(A,$xn), let A’ be the AY in the proof of Lemma P1,
but applied to By_... BN_10...0 instead of B;... By. Then A’ has the same
- average behavior, because of shift-symmetry. If P(A,S) < P(A,$y), let A’ be
1 — AP in the same fashion. Clearly P(A',$x) =3. 1

Now let’s specialize S even more, by supposing that each of the sequences
B1B,...By has the form f(g(Xo))f(9(9(X0))) ... f(¢™"(Xo)) as X, ranges
over some set X, where g is a permutation of X and f(z) is 0 or 1 for all
z € X. Our linear congruential example satisfies this restriction, with X =
{0,1,...,2¢ — 1}, g¢(z) = (ax + ¢) mod 2°, and f(z) = most significant bit of z.
Such N-sources will be called iterative.

Lemma P3. IfS is an iterative N-source that fails test A with tolerance e, there
is an algorithm A’ with T(A') < T(A) + O(N) that predicts B, from B; ... Bn
with probability at least % + ¢/N.

Proof. An iterative N-source is shift-symmetric, and so is its reflection SE =
{Bn...By| By... By € S}. Therefore Lemma P2 applies to S%. |

The permutation g(z) = (ax + ¢) mod 2° is easy to invert, in the sense that
we can determine z from g(z) whenever a is odd. But many easily computed
permutation functions are “one-way” —hard to invert —and we will see that
this makes them provably good sources of pseudorandom numbers.

Lemma P4. Let S be an iterative N-source corresponding to f, g, and X. If S
fails test A with tolerance e, there is an algorithm G that correctly guesses f(z),
given g(x), with probability > % + ¢/N, when z is a random element of X. The
running time T(G) is at most T(A) + O(N)(T(f) + T(g))-

Proof. Given y = g(x), the desired algorithm G computes By = f(g(z)), Bs =
f(9(g(z)), ..., Bn = f(g¥"¥~Y(z)) and applies the algorithm A’ of Lemma P3.
It guesses f(z) = B; with probability > % + €/N, because g is a permutation
of X, and B,... By is the element of S corresponding to the seed value X, for
which we have g(Xo) =z. 1

In order to use Lemma P4, we need to amplify the ability to guess a single
bit f(z) to an ability to guess z itself, given only the value of g(z). There is

3.5 WHAT IS A RANDOM SEQUENCE? 173

a nice general way to do this, using the properties of Boolean functions, if we
extend S so that many different functions f(z) need to be guessed. (However,
the method is somewhat technical, so the first-time reader may want to skip
down to Theorem G before looking closely at the details that follow.)

Suppose G(z1...zg) is a binary-valued function on R-bit strings that is
good at guessing a function of the form f(z:...2r) = (T121 + -+ zr2r) mod 2
for some fixed z = z,...zg It is convenient to measure the success of G by
computing the expected value

, (40)

averaged over all possibilities for z)...zg. This is the sum of correct guesses
minus incorrect guesses, divided by 2%; so if p is the probability that G is correct,
we have s =p — (1 —p), or p = 3 + $s.

For example, suppose R = 4 and G(z1222324) = [21 # 22][23 + 24 <2]. This
function has success rate s = 2 (and p = %) if = 1100, because it equals
z-zmod 2 = (2 + z2) mod 2 for all 4-bit strings z except 0111 or 1011. It also
has success rate i when z = 0000, 0001, 1101, or 1110; so there are five plausible
possibilities for z. The other eleven z’s make s < 0.

The following algorithm magically discovers z in most cases when G is a
successful guesser in the sense just described. More precisely, the algorithm
constructs a short list that has a good chance of containing z.

s = E((_l)G(Zl---ZR)+13121+"'+1:RzR)

Algorithm L (Amplification of linear guesses). Given a binary-valued function
G(z, ...zg) and a positive integer k, this algorithm outputs a list of 2% binary
sequences £ = T... T with the property that z is likely to be output when
G(z1...2R) is a good approximation to the function (z121 +---+ zrzg) mod 2.

L1. [Construct a random matrix.] Generate random bits B;; for 1 <14 < k and
1<j< R

L2. [Compute signs.] For 1 <i < R, and for all bit strings b = b;. . . bx, compute

hz(b) — Z(_l)b-c-l-(}'(cB-l-ei) (41)

c#0

where e; is the R-bit string 0...010...0 having 1 in position ¢, and where cB
is the string d; . ..dg with d; = (By1jc1+- -+ Bgjckg) mod 2. (In other words
the binary vector c; ... cx is multiplied by the k x R binary matrix B.) The
sum is taken over all 2 — 1 bit strings ¢;...cx # 0...0. It can be evaluated
for each 7 with k - 2¢ additions and subtractions, using Yates’s method for
the Walsh transform; see the remarks following Eq. 4.6.4—-(38).

L3. [Output the guesses.] For all 2% choices of b = b;... by, output the string
z(b) = [h1(b) <0]...[hgr(b) <0]. 1

To prove that Algorithm L works properly, we must show that a given
string x will probably be output whenever it deserves to be. Notice first that
if we change G to G’, where G'(z) = (G(z) + z;) mod 2, the original G(z) is
a good approximation to z - z mod 2 if and only if the new G’(z) is a good

174 RANDOM NUMBERS 3.5

approximation to (z + ;) - 2 mod 2, where ¢; is the unit-vector string defined in
step L2. Moreover, if we apply the algorithm to G’ instead of G, we get

h;(b) _ Z(_1)b-C+G(CB+€i)+(CB+€i)-ej — (_1)&‘1‘ h; ((b + Bj) mod 2) ,
c#0

where B; is column j of B. Therefore step L3 outputs the vectors z'(b) =
x((b + B;) mod 2) + e;, modulo 2. As b runs through all k-bit strings, so does
(b+ Bj) mod 2, and the effect is to complement bit j of every z in the output.
We need therefore prove only that the vector z = 0...0 is likely to be
output whenever G(2) is a good approximation to the constant function 0. We
will show, in fact, that z(0...0) equals 0...0 in step L3 with high probability,
whenever G(z) is a lot more likely to be 0 than 1 and k is sufficiently large. More

precisely, the condition
Z(_l)G(CB-l-ei) >0

c#0

holds for 1 < ¢ < R with probability > %, if s = E((—l)G(Z)) is positive when
averaged over all 2% possibilities for z and if k is large enough.

The key observation is that, for each fixed ¢ = ¢;...cx # 0...0, the string
d = ¢B is uniformly distributed: Every value of d occurs with probability 1/ 28
because the bits of B are random. Furthermore, when ¢ # ¢ = c}...cy,
the strings d = ¢B and d' = ¢'B are independent: Every value of the pair
(d,d") occurs with probability 1 /222, Therefore we can argue as in the proof
of Chebyshev’s inequality that, for any fixed 4, the sum }_ ?éo(—l)G(CB"'ei) is
negative with probability at most 1/((2® — 1)s?). (Exercise 42 contains the
details.) It follows that R/((2¥ —1)s?) is an upper bound on the probability
that z(0) is nonzero in step L3. -

Theorem G. If s = E((-1)9®)%®%) > 0 and 2* > [2R/s?], Algorithm L
outputs x with probability > % The running time is O(k2* R) plus the time to
make 2F R evaluations of G. |

Now we are ready to prove that the muddle-square sequence of Eq. 3.2.2—(17)
is a good source of (pseudo)random numbers. Suppose 2771 < M = PQ < 27,
where P and Q are prime numbers of the form 4k + 3 in the respective ranges
9(R=2)/2 < p <« 2AR-1/2 9R/2 < @ < 2BFD/2 We will call M an R-bit
Blum integer, because the importance of such numbers for cryptography was first
pointed out by Manuel Blum [COMPCON 24 (Spring 1982), 133-137]. Blum
originally suggested that P and @ both have R/2 bits, but Algorithm 4.5.4D
shows that it is better to choose P and () as stated here so that Q—P > .29x 2R/2,

Choose X, at random in the range 0 < Xy < M, with Xo L M, also
let Z be a random R-bit mask. We can construct an iterative N-source S
by letting X be the set of all (z,z,m) that are possibilities for (Xo, Z, M),
with the further restriction that z = a2 (modulo m) for some a. The function
g(z, z,m) = (2 mod m, z,m) is easily shown to be a permutation of X (see, for
example, exercise 4.5.4-35). The function f(z,z,m) that extracts bits in this

3.5 WHAT IS A RANDOM SEQUENCE? 175

iterative source is x - zmod 2. Our starting value (Xo,Z, M) isn’t necessarily
in X, but g(Xo, Z, M) is uniformly distributed in X, because exactly four values
of Xy have a given square X2 mod M.

Theorem P. Let S be the N-source defined by the muddle-square method on
R-bit moduli, and suppose S fails some statistical test A with tolerancee > 1/ 2N,
Then we can construct an algorithm F' that finds factors of random R-bit Blum

integers M = P(Q having the form described above, with success probability at
least ¢/(4N) and with running time T(F) = O(N?R?¢ 2T (A) + N3R*¢2).

Proof. Multiplication mod M can be done in O(R?) steps; hence T(f) +T(g) =
O(R?). Lemma P4 therefore asserts the existence of a guessing algorithm G
with success rate ¢/N and T(G) < T(A) + O(NR?). We can construct G from A
using the method of exercise 41. This algorithm G has the property that s =
E((-1)6Ww=mitze) > (1 4 ¢/N)— (1 —€/N) = 2¢/N, where the expected value
is taken over all (z, 2z, m) € X, and where (y, z,m) = g(z, z,m).

The desired algorithm F' proceeds as follows. Given a random M = PQ
with unknown P and @, it computes a random X, between 0 and M, and stops
immediately with a known factorization if gcd(Xo, M) # 1. Otherwise it applies
Algorithm L with G(2) = G(X& mod M, 2, M) and k = [lg(1 + 2N2R/e?)]. If
one of the 2% values z output by that algorithm satisfies z2 = X2 (modulo M),
there is a 50:50 chance that Z +Xj; then ged(Xo —z, M) and ged(Xo +z, M)
are the prime factors of M. (See Rabin’s “SQRT box” in Section 4.5.4.)

The running time of this algorithm is clearly O(N2R2%e 2T (A) + N3R*e~2),
since € > 27N, The probability that it succeeds in factoring M can be esti-
mated as follows. Let n = |X|/2® be the number of choices of (z,m), and
let szm = 2783 (=1)¢®:#m)+22 summed over all R-bit numbers z; thus s =
Y z.m Szm/n > 2¢/N. Let t be the number of (x,m) such that s;m, > ¢/N. The
proi)ability that our algorithm deals with such a pair (z,m) is

Sz

t m 5:z:m
-2 zm> N == 1- Tm N
5 2 D loem 2 /NI = 3 (1 = s < /M)
>26 [< /N]Szm> €
— — Sgm < € —.
- N — n — N

And in such a case it finds z with probability > %, by Theorem G, since we have
2F > [2R/s2..1; so it finds a factor with probability > 1. |

What does Theorem P imply, from a practical standpoint? Our proof shows
that the constant implied by the O is small; let us assume that the running
time for factoring is at most 10(N2R2¢ 2T (A) + N3R*e~2). Many of the world’s
greatest mathematicians have worked on the problem of factoring large numbers,
especially after factoring was shown to be highly relevant to cryptography in the
late 1970s. Since they haven’t found a good solution, we have excellent reason
to believe that factoring is hard; hence Theorem P will show that T(A) must be
large on all algorithms that detect nonrandomness of muddle-square bits.

176 RANDOM NUMBERS 3.5

Long computations are conveniently measured in MIP-years, the number of
instructions executed per year by a machine that performs a million instructions
per second —namely 31,556,952,000,000 ~ 3.16 x 10'3. In 1995, the time to
factor a number of 120 decimal digits (400 bits), using the most highly tuned
algorithms, was more than 250 MIP-years. The most optimistic researchers who
have worked on factorization would be astonished if an algorithm were discovered
that requires only exp(R/4(In R)3/*) instructions as R — oo. But let us assume
that such a breakthrough has been achieved, for at least a not-too-small fraction
of the R-bit Blum integers M. Then we could factor many numbers of about
50000 bits (15000 digits) in 2 x 102> MIP-years. If we generate N = 1000 random
bits by muddle-square with R = 50000, and if we assume that all algorithms that
are good enough to factor at least g5 of the 50000-bit Blum integers must
run at least 2 x 102° MIP-years, Theorem P tells us that every such set of 1000
bits will pass all statistical tests for randomness whose running time 7'(A) is less
than 70000 MIP-years: No such algorithm A will be able to distinguish such bits
from a truly random sequence with probability > € = 5.

Impressive? No. Such a result is hardly surprising, since we need to specify
about 150000 truly random bits just to start up the muddle-square method with
Xo, Z, and M when R = 50000. Of course we should be able to get 1000 random
bits back from such an investment!

But in general, the formula becomes

1
100000

T(A) > N72R 2exp(RY*(In R)*/*) — NR?,

under our conservative assumptions, when € = ITl)’d; the NR? term is negligible
when R is large. So let’s set R = 200000 and N = 10'°. Then we get ten billion
pseudorandom muddle-bits from 3R ~ 600000 truly random bits, passing all
statistical tests that require fewer than 7.486 x 10° MIP-years = 74.86 gigaMIP-
years. With N = 10'® and R = 333333 the computation time needed to detect
any statistical bias increases to 53.5 teraMIP-years.

The simple pseudorandom generator 3.2.2—(16), which avoids the random
mask Z, can also be shown to pass all polynomial-time tests for randomness if fac-
toring is intractable. (See exercise 4.5.4-43.) But the known performance guar-
antees for the simpler method are somewhat weaker than for muddle-square; cur-
rently they are O(N*Re~*log(NRe™!)) versus the O(N?R?¢~?) of Theorem P.

Everyone believes that there is no factoring algorithm for R-bit numbers
whose running time is polynomial in R. If that conjecture is true in a stronger
form, so that we cannot even factor 1/RF of the R-bit Blum integers in poly-
nomial time for any fixed k, Theorem P proves that the muddle-square method
generates pseudorandom numbers that pass all polynomial-time statistical tests
for randomness.

Stating this another way: If you generate random bits with the muddle-
square method for suitably chosen N and R, you either get numbers that pass
all reasonable statistical tests, or you get fame and fortune for discovering a new
factorization algorithm.

3.9 WHAT IS A RANDOM SEQUENCE? 177

G. Summary, history, and bibliography. We have defined several degrees
of randomness that a sequence might possess.

An infinite sequence that is co-distributed satisfies a great many useful
properties that are expected of random sequences, and there is a rich theory con-
cerning oo-distributed sequences. (The exercises below develop several important
properties of such sequences that have not been mentioned in the text.) Defini-
tion R1 is therefore an appropriate basis for theoretical studies of randomness.

The concept of an co-distributed b-ary sequence was introduced in 1909 by
Emile Borel. He essentially defined the concept of an (m, k)-distributed sequence,
and showed that the b-ary representations of almost all real numbers are (m, k)-
distributed for all m and k. He called such numbers normal to base b. An
excellent discussion of this topic appears in his well-known book, Legons sur la
Théorie des Fonctions, 2nd edition (1914), 182-216.

The notion of an oo-distributed sequence of real numbers, also called a
completely equidistributed sequence, first appeared in a note by N. M. Korobov
in Doklady Akad. Nauk SSSR 62 (1948), 21-22. Korobov and several of his
colleagues developed the theory of such sequences quite extensively in a series
of papers during the 1950s. Completely equidistributed sequences were inde-
pendently studied by Joel N. Franklin, Math. Comp. 17 (1963), 28-59, in a
paper that is particularly noteworthy because it was inspired by the problem
of random number generation. The book Uniform Distribution of Sequences by
L. Kuipers and H. Niederreiter (New York: Wiley, 1974) is an extraordinarily
complete source of information about the rich mathematical literature concerning
k-distributed sequences of all kinds.

We have seen, however, that oco-distributed sequences need not be suffi-
ciently haphazard to qualify completely as “random.” Three definitions, R4,
R5, and R6, were formulated above to provide the additional conditions; and
Definition R6, in particular, seems to be an appropriate way to define the concept
of an infinite random sequence. It is a precise, quantitative statement that may
well coincide with the intuitive idea of true randomness.

Historically, the development of these definitions was primarily influenced
by the quest of R. von Mises for a good definition of “probability.” In Math.
Zeitschrift 5 (1919), 52-99, von Mises proposed a definition similar in spirit
to Definition R5, although stated too strongly (like our Definition R3) so that
no sequences satisfying the conditions could possibly exist. Many people no-
ticed this discrepancy, and A. H. Copeland [Amer. J. Math. 50 (1928), 535-
552] suggested weakening von Mises’s definition by substituting what he called
“admissible numbers” (or Bernoulli sequences). These are equivalent to oo-
distributed [0..1) sequences in which all entries U, have been replaced by 1
if U, < p or by 0if U, > p, for a given probability p. Thus Copeland was
essentially suggesting a return to Definition R1. Then Abraham Wald showed
that it is not necessary to weaken von Mises’s definition so drastically, and he
proposed substituting a countable set of subsequence rules. In an important
paper [Ergebnisse eines math. Kolloquiums 8 (Vienna: 1937), 38-72], Wald
essentially proved Theorem W, although he made the erroneous assertion that

178 RANDOM NUMBERS 3.9

the sequence constructed by Algorithm W also satisfies the stronger condition
that Pr(U, € A) = measure of A, for all Lebesgue mecasurable ACI[0..1). We
have observed that no sequence can satisfy this property.

The concept of “computability” was still very much in its infancy when
Wald wrote his paper, and A. Church [Bull. Amer. Math. Soc. 46 (1940), 130~
135] showed how the precise notion of “effective algorithm” could be added to
Wald’s theory to make his definitions completely rigorous. The extension to
Definition R6 was due essentially to A. N. Kolmogorov [Sankhya A25 (1963),
369-376], who proposed Definition Q2 for finite sequences at the same time.
Another definition of randomness for finite sequences, somewhere “between” Def-
initions Q1 and Q2, had been formulated many years earlier by A. S. Besicovitch
[Math. Zeitschrift 39 (1934), 146-156].

The publications of Church and Kolmogorov considered only binary se-
quences for which Pr(X, = 1) = p for a given probability p. Our discussion
in this section has been slightly more general, since a [0.. 1) sequence essentially
represents all p at once. The von Mises—Wald-Church definition has been refined
in yet another interesting way by J. V. Howard, Zeitschr. fiir math. Logik und
Grundlagen der Math. 21 (1975), 215-224.

Another important contribution was made by Donald W. Loveland [Zeitschr.
fiir math. Logik und Grundlagen der Math. 12 (1966), 279-294], who discussed
Definitions R4, R5, R6, and several intermediate concepts. Loveland proved that
there are R5-random sequences that do not satisfy R4, thereby establishing the
need for a stronger definition such as R6. In fact, he defined a rather simple
permutation (f(n)) of the nonnegative integers, and an Algorithm W’ analogous
to Algorithm W, such that

Pr(Usny > 3) —Pr(Usmy > 3) > 3

for every R5-random sequence (U,) produced by Algorithm W' when it is given
an infinite set of subsequence rules Ry.

Although Definition R6 is intuitively much stronger than R4, it is apparently
not a simple matter to prove this rigorously, and for several years it was an open
question whether or not R4 implies R6. Finally Thomas Herzog and James C.
Owings, Jr., discovered how to construct a large family of sequences that satisfy
R4 but not R6. [See Zeitschr. fiir math. Logik und Grundlagen der Math. 22
(1976), 385-389.]

Kolmogorov wrote another significant paper [Problemy Peredaci Informatsii
1 (1965), 3-11] in which he considered the problem of defining the “information
content” of a sequence, and this work led to Chaitin and Martin-Lo6f’s interesting
definition of finite random sequences via “patternlessness.” [See IEEE Trans.
IT-14 (1968), 662-664.] The ideas can also be traced to R. J. Solomonoff,
Information and Control 7 (1964), 1-22, 224-254; IEEE Trans. IT-24 (1978),
422-432: J. Comp. System Sci. 55 (1997), 73-88.

For a philosophical discussion of random sequences, see K. R. Popper, The
Logic of Scientific Discovery (London, 1959), especially the interesting construc-
tion on pages 162-163, which he first published in 1934.

3.5 WHAT IS A RANDOM SEQUENCE? 179

Further connections between random sequences and recursive function the-
ory have been explored by D. W. Loveland, Trans. Amer. Math. Soc. 125
(1966), 497-510. See also C.-P. Schnorr [Zeitschr. Wahr. verw. Geb. 14 (1969),
27-35], who found strong relations between random sequences and the “species
of measure zero” defined by L. E. J. Brouwer in 1919. Schnorr’s subsequent
book Zufilligkeit und Wahrscheinlichkeit [Lecture Notes in Math. 218 (Berlin:
Springer, 1971)] gives a detailed treatment of the entire subject of randomness
and makes an excellent introduction to the ever-growing advanced literature on
the topic. Important developments during the next two decades are surveyed
in An Introduction to Kolmogorov Complexity and Its Applications (Springer,
1993), by Ming Li and Paul M. B. Vitanyi.

The foundations of the theory of pseudorandom sequences and effective
information were laid by Manuel Blum, Silvio Micali, and Andrew Yao [FOCS
23 (1982), 80-91, 112-117; SICOMP 13 (1984), 850-864], who constructed the
first explicit sequences that pass all feasible statistical tests. Blum and Micali
introduced the notion of a “hard-core bit,” a Boolean function f such that f(z)
and g(z) are easily computed although f (g[_l](a:)) is not; their paper was the
origin of Lemma P4. Leonid Levin developed the theory further [Combinatorica
7 (1987), 357-363], then he and Oded Goldreich [STOC 21 (1989), 25-32| ana-
lyzed algorithms such as the muddle-square method and showed that similar use
of a mask yields hard-core bits in many further cases. Finally Levin [J. Symbolic
Logic 58 (1993), 1102-1103] refined the methods of that paper by introducing
and analyzing Algorithm L.

Many other authors have contributed to the theory —notably Impagliazzo,
Levin, Luby, and Hastad, who showed [STOC 21 (1989), 12-24; 22 (1990),
395-404] that pseudorandom sequences can be constructed from any one-way
function — but such results are not surveyed here because they apply primarily to
abstract complexity theory rather than to practical random number generation.
The practical implications of theoretical work on pseudorandomness were first
investigated empirically by P. L’Ecuyer and R. Proulx, Proc. Winter Simulation
Conf. 22 (1989), 467-476.

If the numbers are not random,
they are at least higgledy-piggledy.

— GEORGE MARSAGLIA (1984)

EXERCISES

1. [10] Can a periodic sequence be equidistributed?

2. [10] Consider the periodic binary sequence 0, 0, 1, 1, 0, 0, 1, 1, Is it
1-distributed? Is it 2-distributed? Is it 3-distributed?

3. [M22] Construct a periodic ternary sequence that is 3-distributed.

4. [HM14] Prove that Pr(S(n)and T(n)) +Pr(S(n) or T(n)) = Pr(S(n)) + Pr(T(n)),
for any two statements S(n) and T'(n), provided that at least three of the limits exist.
For example, if a sequence is 2-distributed, we would find that

Pr(uy < Un <1 or ug < Upg1 < v2) =v1 —u1 +v2 —uz — (v1 — ug){ve — u2).

180 RANDOM NUMBERS 3.5

> 5. [HM22] Let U, = (2'8("*11/3) mod 1. What is Pr(Un < 3)?

6. [HM23] Let Si(n), S2(n), ... be an infinite sequence of statements about mutually
disjoint events; that is, S;(n) and S;(n) cannot simultaneously be true if i # j. Assume
that Pr(S;(n)) exists for each j > 1. Show that Pr(S;(n) is true for some j > 1) >
pIP Pr(S;(n)), and give an example to show that equality need not hold.

7. [HM27] Let {Si;(n)} bé a family of statements such that Pr(S;;(n)) exists for all
i,7 > 1. Assume that for all n > 0, S;;(n) is true for exactly one pair of integers 1, j.
If 30 s Pr(S;;(n)) = 1, does it follow that “Pr(S;;(n) is true for some j > 1)” exists
for all > 1, and that it equals 3 -, Pr(Si;(n))?

8. [M15] Prove (13).
9. [HM20] Prove Lemma E. [Hint: Consider 3 7", (yjn — a)?]
» 10. [HM22] Where was the fact that m divides ¢ used in the proof of Theorem C?

11. [M10] Use Theorem C to prove that if a sequence (Ux) is co-distributed, so is the
subsequence (Uzy,).

12. [HM20] Show that a k-distributed sequence passes the “maximum-of-k test,” in

the following sense: Pr(u <max(Un,Un+1,- -+, Untk-1) < v) =oF — k.

» 13. [HM27] Show that an oco-distributed [0..1) sequence passes the “gap test” in the
following sense: If 0 < a< f<land p=pF—a,let f(0) =0, and for n > 1 let f(n)
be the smallest integer m > f(n — 1) such that a < U,, < (; then

Pr(f(n) — f(n—1)=k) = p(1—p)*~".

14. [HM25] Show that an co-distributed sequence passes the “run test” in the follow-
ing sense: If f(0) = 0 and if, for n > 1, f(n) is the smallest integer m > f(n — 1) such
that Upm—1 > Up,, then

Pr(f(n) — f(n—1) =k) = 2k/(k+ 1)! — 2(k+1)/(k + 2)!.

» 15. [HM30] Show that an co-distributed sequence passes the “coupon-collector’s test”
when there are only two kinds of coupons, in the following sense: Let X1, X, ... be
an oo-distributed binary sequence. Let f(0) = 0, and for n > 1 let f(n) be the smallest
integer m > f(n — 1) such that {Xsmn—1)+1,...,Xm} is the set {0,1}. Prove that
Pr(f(n) — f(n—1) =k) = 2'7F, for k > 2. (See exercise 7.)

16. [HMS38] Does the coupon-collector’s test hold for co-distributed sequences when
there are more than two kinds of coupons? (See the previous exercise.)

17. [HM50] If r is any given rational number, Franklin has proved that the sequence
(r" mod 1) is not 2-distributed. But is there any rational number r for which this
sequence is equidistributed? In particular, is the sequence equidistributed when r = 132—?
[See K. Mahler, Mathematika 4 (1957), 122-124.]

» 18. [HM22] Prove that if Up, Ui, ... is k-distributed, so is the sequence Vo, V1, ..
where V,, = |nUyn|/n.

i

19. [HMS35] Consider a modification of Definition R4 that requires the subsequences
to be only 1-distributed instead of oco-distributed. Is there a sequence that satisfies
this weaker definition, but that is not co-distributed? (Is the weaker definition really
weaker?)

3.5 WHAT IS A RANDOM SEQUENCE? 181

» 20. [HM36] (N. G. de Bruijn and P. Erdés.) The first n points of any [0..1) sequence
(U,) with Up = 0 divide the interval [0..1) into n subintervals; let those subintervals
have lengths lr(Ll) > 13 > 2> l,(Ln). Clearly l,(Ll) > % > l,(Ln), because l,(Ll)-i-- . -+l§L") =1.
One way to measure the equitability of the distribution of (U,) is to consider

L = limsup nlY and L = liminfni{™.
n—+00 00

a) What are L and L for van der Corput’s sequence (29)?
b) Show that lflllk_l > 1 for 1 < k < n. Use this result to prove that L > 1/In?2.

c) Prove that L < 1/1n4. [Hint: For each n there are numbers a1, ..., a2, such that
lélfl) > lT(LT;Z") for 1 < k < 2n. Moreover, each integer 2, ..., n occurs at most
twice in {a1,...,a2n}.] '

d) Show that the sequence (W,) defined by W, = 1g(2n 4+ 1) mod 1 satisfies 1/1n2 >
nlr(Ll) > nl{™ > 1 /1n4 for all n; hence it achieves the optimum L and L.
21. [HM40] (L. H. Ramshaw.)
a) Continuing the previous exercise, is the sequence (Wy) equidistributed?

b) Show that (W,) is the only [0..1) sequence for which we have Z;c:l 19 <
lg(1 + k/n) whenever 1 <k < n.

c) Let (fn(l1,...,ln)) be any sequence of continuous functions on the sets of n-tuples
{(la,.. ;) | 4 > --- > 1, and |y + -+ + I, = 1}, satisfying the following two
properties:

Y O 8 e & Ty Y

if S L>Yr Lifor1<k<n then fa(l,...,la) > fa(lh,. ., 10).
[Examples are: nl{; —nl$™; 18157 n(18? + - + 18%)] Let

F =limsup £ (I, . .., 1™)

n—ro0

for the sequence (Wy). Show that f,(I5",...,1™) < F for all n, with respect to
(Wo); also limsup, _, ., fa(l8, -+, 1) > F with respect to every other [0..1)
sequence.

» 22. [HM30] (Hermann Weyl.) Show that the [0..1) sequence (U,) is k-distributed if
and only if

. 1 ;
Nll_{nuJ N Z exp(2mi(ciUn + - + ckUnsk—1)) =0
0<n<N
for every set of integers c1, c2, ..., ¢k not all zero.

23. [M32] (a) Show that a [0..1) sequence (U,) is k-distributed if and only if all of
the sequences ((c1Un+c2Un+1+- -+ cxUntk—1) mod 1) are 1-distributed, whenever c;,

c2, ..., Ck are integers not all zero. (b) Show that a b-ary sequence (X,) is k-distributed
if and only if all of the sequences ((c1Xn + c2Xnt1 + -+ + ¢k Xntk—1) mod b) are 1-
distributed, whenever ci, ¢z, ..., ¢k are integers with ged(ci,...,cx) = 1.

» 24, [M35] (J. G.van der Corput.) (a) Prove that the [0..1) sequence (U,) is equidis-
tributed whenever the sequences {(Un+x — Un) mod 1) are equidistributed for all & > 0.
(b) Consequently ((agn® +--- 4+ a1n + ap) mod 1) is equidistributed, when d > 0 and
ag is irrational.

182 RANDOM NUMBERS 3.5

25. [HM20] A sequence is called a “white sequence” if all serial correlations are zero;
that is, if the equation in Corollary S is true for all £ > 1. (By Corollary S, an oco-
distributed sequence is white.) Show that if a [0..1) sequence is equidistributed, it is
white if and only if

) 1
lim =~ Zl@%—%ﬂ%w—%)=ﬁ for all k > 1.
0<j<n
26. [HM34] (J. Franklin.) A white sequence, as defined in the previous exercise, can
definitely fail to be random. Let Uy, Ui, ... be an oo-distributed sequence, and define

the sequence V5, Vi, ... as follows:

(Van—1, Van) = (U2n-1,U2n) if (U2n—1,U2,) € G,
(Van—1, Van) = (Uz2n, U2n-1) if (Uzn—1,U2n) ¢ G,

where GG is the set
{zy) |z -2 <y<zorz+i <y}

Show that (a) Vo, Vi, ... is equidistributed and white; (b) Pr(V, > Vai1) = 2. (This
points out the weakness of the serial correlation test.)

27. [HM48) What is the highest possible value for Pr(V, > V,41) in an equidistrib-
uted, white sequence? (D. Coppersmith has constructed such a sequence achieving the
7 C.

value 3.)

» 28. [HM21] Use the sequence (11) to construct a [0..1) sequence that is 3-distributed,
for which Pr(Usz, > 1) = 3.

29. [HM34] Let Xo, X1, ... be a (2k)-distributed binary sequence. Show that

» 30. [M39] Construct a binary sequence that is (2k)-distributed, and for which

PI‘(XQn :0) _ % + <2kk— 1)/22k

(Therefore the inequality in the previous exercise is the best possible.)

31. [M30] Show that [0..1) sequences exist that satisfy Definition R5, yet vn/n > 1
for all n > 0, where v, is the number of j < n for which U, < ;. (This might be
considered a nonrandom property of the sequence.)

32. [M24] Given that (X,) is a “random” b-ary sequence according to Definition R5,
and that R is a computable subsequence rule that specifies an infinite subsequence
(Xn)R, show that the latter subsequence is not only 1-distributed, it is “random” by
Definition R5.

33. [HM22] Let (Ur,) and (Us,) be infinite disjoint subsequences of a sequence (U,).
(Thus, 7o < r1 <7 < ---and sp < 81 < s2 < --- are increasing sequences of integers
and 7, # s, for any m,n.) Let (U;,) be the combined subsequence, so that ty < t; <
t2 < --- and the set {t,} = {rn}U{sn}. Show that if Pr(U,, € A) = Pr(U,, € A) = p,
then Pr(U;, € A) = p.

» 34. [M25] Define subsequence rules Ri, Rz, R, ... Sl‘ICh that Algorithm W can be
used with these rules to give an effective algorithm to construct a [0..1) sequence
satisfying Definition R1.

3.5 WHAT IS A RANDOM SEQUENCE? 183

» 35. [HM35] (D. W. Loveland.) Show that if a binary sequence (Xn) is R5-random,
and if (s,) is any computable sequence as in Definition R4, then Pr(X,, =1) > 3 and
E-I-(X-sn =]‘) S %

36. [HM30] Let (X,) be a binary sequence that is “random” according to Defini-
tion R6. Show that the [0..1) sequence (Un) defined in binary notation by the scheme

Uo = (0.X0)2, Ur=(0.X1X2)2, Us=(0.X3XaXs)2, Us=(0.X6X7XsXo),

is random in the sense of Definition R6.

37. [M37] (D. Coppersmith.) Define a sequence that satisfies Definition R4 but
not Definition R5. [Hint: Consider changing Ug, Ui, Us, Us, ... in a truly random
sequence. |

38. [M49] (A. N. Kolmogorov.) Given N, n and ¢, what is the smallest number of
algorithms in a set A such that no (n,¢)-random binary sequences of length N exist
with respect to A? (If exact formulas cannot be given, can asymptotic formulas be
found? The point of this problem is to discover how close the bound (37) comes to
being “best possible.”)

39. [HM45] (W. M. Schmidt.) Let U, be a [0..1) sequence, and let v,(u) be the
number of nonnegative integers j < n such that 0 < U; < u. Prove that there is a
positive constant ¢ such that, for any N and for any [0..1) sequence (U,), we have

|Un(u) —un| > cln N

for some n and u with 0 <n < N, 0 < u < 1. (In other words, no [0..1) sequence can
be too equidistributed.)

40. [M28] Complete the proof of Lemma P1.

41. [M21] Lemma P2 shows the existence of a prediction test, but its proof relies on
the existence of a suitable k& without explaining how we could find & constructively
from A. Show that any algorithm A can be converted into an algorithm A’ with
T(A") < T(A) + O(N) that predicts By from Bj... By-1 with probability at least
2 +(P(A,S) — P(A, $n))/N on any shift-symmetric N-source S.
> 42. [M28] (Pairwise independence.)
a) Let X1, ..., X, be random variables having mean value 4 = E X; and variance
0> =EX: — (EXj)? for 1 < j < n. Prove Chebyshev’s inequality

Pr((X1+-- +Xn— nu)? > tna2) <1/t

under the additional assumption that E(X;X;) = (E X;)(E X;) whenever 7 # j.
b) Let B be a random k X R binary matrix. Prove that if ¢ and ¢’ are fixed nonzero
k-bit vectors, the vectors ¢B and ¢’B are independent random R-bit vectors
(modulo 2).
c) Apply (a) and (b) to the analysis of Algorithm L.

43. [20] Tt seems just as difficult to find the factors of any fized R-bit Blum integer M
as to find the factors of a random R-bit integer. Why then is Theorem P stated for
random M instead of fixed M?

» 44. [16] (I. J. Good.) Can a valid table of random digits contain just one misprint?

184 RANDOM NUMBERS 3.6

3.6. SUMMARY

WE HAVE COVERED a fairly large number of topics in this chapter: How to
generate random numbers, how to test them, how to modify them in applications,
and how to derive theoretical facts about them. Perhaps the main question in
many readers’ minds will be, “What is the result of all this theory? What is
a simple, virtuous generator that I can use in my programs in order to have a
reliable source of random numbers?”

The detailed investigations in this chapter suggest that the following proce-
dure gives the simplest random number generator for the machine language of
most computers: At the beginning of the program, set an integer variable X to
some value X,. This variable X is to be used only for the purpose of random
number generation. Whenever a new random number is required by the program,
set

X + (aX +c)modm (1)

and use the new value of X as the random value. It is necessary to choose X,
a, ¢, and m properly, and to use the random numbers wisely, according to the
following principles:

i) The “seed” number X, may be chosen arbitrarily. If the program is run
several times and a different source of random numbers is desired each
time, set X, to the last value attained by X on the preceding run; or (if
more convenient) set X to the current date and time. If the program may
need to be rerun later with the same random numbers (for example, when
debugging), be sure to print out Xj if it isn’t otherwise known.

ii) The number m should be large, say at least 230 Tt may conveniently be
taken as the computer’s word size, since this makes the computation of
(aX + ¢) mod m quite efficient. Section 3.2.1.1 discusses the choice of m
in more detail. The computation of (aX + ¢) mod m must be done ezactly,
with no roundoff error.

iii) If m is a power of 2 (that is, if a binary computer is being used), pick a
so that a mod 8 = 5. If m is a power of 10 (that is, if a decimal computer
is being used), choose a so that a mod 200 = 21. This choice of a together
with the choice of ¢ given below ensures that the random number generator
will produce all m different possible values of X before it starts to repeat
(see Section 3.2.1.2) and ensures high “potency” (see Section 3.2.1.3).

iv) The multiplier a should preferably be chosen between .01m and .99m, and
its binary or decimal digits should not have a simple, regular pattern. By
choosing some haphazard constant like a = 3141592621 (which satisfies
both of the conditions in (iii)), one almost always obtains a reasonably good
multiplier. Further testing should of course be done if the random number
generator is to be used extensively; for example, there should be no large
quotients when Euclid’s algorithm is used to find the gcd of a and m (see
Section 3.3.3). The multiplier should pass the spectral test (Section 3.3.4)

3.6 SUMMARY 185

and several tests of Section 3.3.2, before it is considered to have a truly clean
bill of health.

v) The value of ¢ is immaterial when a is a good multiplier, except that ¢ must
have no factor in common with m when m is the computer’s word size.
Thus we may choose ¢ = 1 or ¢ = a. Many people have used ¢ = 0 together
with m = 2°, but they are sacrificing two bits of accuracy and half of the
seed values just to save a few nanoseconds of running time (see exercise
3.2.1.2-9).

vi) The least significant (right-hand) digits of X are not very random, so de-
cisions based on the number X should always be influenced primarily by
the most significant digits. It is generally best to think of X as a random
fraction X/m between 0 and 1, that is, to visualize X with a radix point at
its left, rather than to regard X as a random integer between 0 and m — 1.
To compute a random integer between 0 and k£ — 1, one should multiply by &
and truncate the result. (Don’t divide by k; see exercise 3.4.1-3.)

vil) An important limitation on the randomness of sequence (1) is discussed in
Section 3.3.4, where it is shown that the “accuracy” in ¢ dimensions will
be only about one part in /m. Monte Carlo applications requiring higher
resolution can improve the randomness by employing techniques discussed
in Section 3.2.2.

viii) At most about m /1000 numbers should be generated; otherwise the future
will behave more and more like the past. If m = 232, this means that a new
scheme (for example, a new multiplier a) should be adopted after every few
million random numbers are consumed.

The comments above apply primarily to machine-language coding. Some of
the ideas work fine also in higher-level languages for programming; for example,
(1) becomes just ‘K=a*X+c’ in the C language, if X is of type unsigned long and
if m is the modulus of unsigned long arithmetic (usually 232 or 2%4). But C
gives us no good way to regard X as a fraction, as required in (vi) above, unless
we convert to double-precision floating point numbers.

Another variant of (1) is therefore often used in languages like C: We choose
m to be a prime number near the largest easily computed integer, and we let a
be a primitive root of m; the appropriate increment ¢ for this case is zero. Then
(1) can be implemented entirely with simple arithmetic on numbers that remain
between —m and +m, using the technique of exercise 3.2.1.1-9. For example,
when a = 48271 and m = 231 — 1 (see line 20 of Table 3.3.4-1), we can compute
X + aX mod m with the C code

#define MM 2147483647 /* a Mersenne prime */
#define AA 48271 /* this does well in the spectral test */
#define QQ 44488 /* (long) (MM/AA) */

#define RR 3399 /* MM 9, AA; it is important that RR<QQ */
X=AA*(X%QQ) -RR*(long) (X/QQ) ;

if (X<0) X+=MM;

186 RANDOM NUMBERS 3.6

here X is type long, and X should be initialized to a nonzero seed value less
than MM. Since MM is prime, the least-significant bits of X are just as random as
the most-significant bits, so the precautions of (vi) no longer need to be taken.
If you need millions and millions of random numbers, you can combine that
routine with another, as in Eq. 3.3.4—(38), by writing some additional code:

#define MMM 2147483399 /* a non-Mersenne prime */
#define AAA 40692 /* another spectral success story */
#define QQQ 52774 /* (long) (MMM/AAA) */

#define RRR 3791 /* MMM % AAA; again less than QQQ */

Y=AAA*(Y%QQQ) -RRR* (1ong) (Y/QQQ) ;
if (Y<0) Y+=MMM;
Z=X-Y; if (Z<=0) Z+=MM;

Like X, the variable Y needs to be initially nonzero. This code deviates slightly
from 3.3.4-(38) so that the output, Z, is never zero; Z always lies strictly between
0 and 23!. The period length of the Z sequence is about 74 quadrillion, and its
numbers now have about twice as many bits of accuracy as the X numbers do.

This method is portable and fairly simple, but not very fast. An alternative
scheme based on lagged Fibonacci sequences with subtraction (exercise 3.2.2—
23) is even more attractive, because it not only allows easy portability between
computers, it is considerably faster, and it delivers random numbers of better
quality because the ¢t-dimensional accuracy is probably good for ¢ < 100. Here
is a C subroutine ran_array(long aa[], int n) that generates n new random
numbers and places them into a given array aa, using the recurrence

X; = (X;-100 — X;_37) mod 2°°. (2)

This recurrence is particularly well suited to modern computers. The value of n
must be at least 100; larger values like 1000 are recommended.

#define KK 100 /* the long lag */
#define LL 37 /* the short lag */
#define MM (1L<<30) /* the modulus */
#define mod_diff(x,y) (((x)-(y))&MM-1)) /* (x-y) mod MM */
long ran_x[KK]; /* the generator state */

void ran_array(long aa[],int n) {
register int 1i,j;
for (j=0;j<KK;j++) aaljl=ran_x[j];
for (;j<n;j++) aaljl=mod_diff (aal[j-KK],aa[j-LL]);
for (i=0;i<LL;i++,j++) ran_x[il=mod_diff (aa[j-KK],aa[j-LL]);
for (;i<KK;i++,j++) ran_x[i]l=mod_diff(aa[j-KK],ran_x[i-LL]);
}

All information about numbers that will be generated by future calls to
ran_array appears in ran_z, so you can make a copy of that array in the midst
of a computation if you want to restart at the same point later without going

3.6 SUMMARY 187

all the way back to the beginning of the sequence. The tricky thing about using
a recurrence like (2) is, of course, to get everything started properly in the first
place, by setting up suitable values of Xg, ..., Xg9. The following subroutine
ran_start (long seed) initializes the generator nicely when given any seed number
between 0 and 23° — 3 = 1,073,741,821 inclusive:

#define TT 70 /* guaranteed separation between streams */
#define is_odd(x) ((x)&1) /* the units bit of x */
#define evenize(x) ((x)&(MM-2)) /* make x even */

void ran_start(long seed) { /* use this to set up ran_array */
register int t,j;
long x[KK+KK-1]; /* the preparation buffer */
register long ss=evenize(seed+2);
for (j=0;j<KK;j++) {
x[jl=ss; /* bootstrap the buffer */
ss<<=1; if (ss>=MM) ss—=MM-2; /* cyclic shift 29 bits */

+
for (;j<KK+KK-1;j++) x[j]1=0;
x[1]++; /* make x[1] (and only x[1]) odd */
ss=seed& (MM-1); t=TT-1; while (t) {
for (j=KK-1;3j>0;j--) x[j+jl=x[jl; /* "square" */
for (j=KK+KK-2;j>KK-LL;j-=2) x[KK+KK-1-jl=evenize(x[jl);
for (j=KK+KK-2;j>=KK;j--) if(is_odd(x[j1)) {
x[j- (KK-LL) 1=mod_diff (x[j- (KK-LL)1,x[§1);
x[j-KK]=mod_diff (x[j-KK],x[j1);
+
if (is_odd(ss)) { /* "multiply by z" */
for (j=KK;j>0;j--) =x[jl=x[j-11;
x [0]=x[KK]; /* shift the buffer cyclically */
if (is_odd(x[XK])) x[LL]=mod_diff (x[LL],x[KK]);
+
if (ss) ss>>=1; else t——;
+

for (j=0;j<LL;j++) ran_x[j+KK-LL1=x[j];
for (;j<KK;j++) ran_x[j-LLI=x[j];
}

The somewhat curious maneuverings of ran_start are explained in exercise 9,
which proves that the sequences of numbers generated from different starting
seeds are independent of each other: Every block of 100 consecutive values Xy,
Xni1, -+, Xntoo in the subsequent output of ran_array will be distinct from the
blocks that occur with another seed. (Strictly speaking, this is known to be true
only when n < 27%: but there are fewer than 2°° nanoseconds in a year.) Several
processes can therefore start in parallel with different seeds and be sure that they
are doing independent calculations; different groups of scientists working on a
problem in different computer centers can be sure that they are not duplicating

188 RANDOM NUMBERS 3.6

the work of others if they restrict themselves to different sets of seeds. Thus, more
than one billion essentially disjoint batches of random numbers are provided by
the single routines ran_array and ran_start. And if that is not enough, you can
replace the program parameters 100 and 37 by other values from Table 3.2.2-1.

These C routines use the bitwise-and operation ‘&’ for efficiency, so they are
not strictly portable unless the computer uses two’s complement representation
for integers. Almost all modern computers are based on two’s complement
arithmetic, but ‘&’ is not really necessary for this algorithm. Exercise 10 shows
how to get exactly the same sequences of numbers in FORTRAN, using no such
tricks. Although the programs illustrated here are designed to generate 30-bit
integers, they are easily modified to generate random 52-bit fractions between 0
and 1, on computers that have reliable floating point arithmetic; see exercise 11.

You may wish to include ran_array in a library of subroutines, or you may
find that somebody else has already done so. One way to check whether an
implementation of ran_array and ran.start conforms with the code above is to
run the following rudimentary test program:

void main() { register int m; long a[2009];
ran_start (310952) ;
for (m=0;m<2009;m++) ran_array(a,1009);
printf ("%1d\n", ran_x[0]);
ran_start(310952);
for (m=0;m<1009;m++) ran_array(a,2009);
printf ("%1d\n", ran_x[0]);

}

The printed output should be 461390032 (twice).

Caution: The numbers generated by ran_array fail the birthday spacings
test of Section 3.3.2J, and they have other deficiencies that sometimes show up
in high-resolution simulations (see exercises 3.3.2-31 and 3.3.2-35). One way to
avoid the birthday spacings problem is simply to use only half of the numbers
(skipping the odd-numbered elements); but that doesn’t cure the other problems.
An even better procedure is to follow Martin Liischer’s suggestion, discussed in
Section 3.2.2: Use ran_array to generate, say, 1009 numbers, but use only the first
100 of these. (See exercise 15.) This method has modest theoretical support and
no known defects. Most users will not need such a precaution, but it is definitely
less risky, and it allows a convenient tradeoff between randomness and speed.

A great deal is known about linear congruential sequences like (1), but
comparatively little has yet been proved about the randomness properties of
lagged Fibonacci sequences like (2). Both approaches seem to be reliable in
practice, if they are used with the caveats already stated.

When this chapter was first written in the late 1960s, a truly horrible random
number generator called RANDU was commonly used on most of the world’s
computers (see Section 3.3.4). The authors of many contributions to the science
of random number generation have often been unaware that particular methods
they were advocating would prove to be inadequate. A particularly noteworthy

3.6 SUMMARY 189

example was the experience of Alan M. Ferrenberg and his colleagues, reported
in Physical Review Letters 69 (1992), 3382-3384: They tested their algorithms
for a three-dimensional problem by considering first a related two-dimensional
problem with a known answer, and discovered that supposedly super-quality
modern random number generators gave wrong results in the fifth decimal place.
By contrast, an old-fashioned run-of-the-mill linear congruential generator, X
16807X mod (23! — 1), worked fine. Perhaps further research will show that even
the random number generators recommended here are unsatisfactory; we hope
this is not the case, but the history of the subject warns us to be cautious. The
most prudent policy for a person to follow is to run each Monte Carlo program
at least twice using quite different sources of random numbers, before taking
the answers of the program seriously; this will not only give an indication of
the stability of the results, it also will guard against the danger of trusting in a
generator with hidden deficiencies. (Every random number generator will fail in
at least one application.)

Excellent bibliographies of the pre-1972 literature on random number gen-
eration have been compiled by Richard E. Nance and Claude Overstreet, Jr.,
Computing Reviews 13 (1972), 495-508, and by E. R. Sowey, International
Stat. Review 40 (1972), 355-371. The period 1972-1984 is covered by Sowey
in International Stat. Review 46 (1978), 89-102; J. Royal Stat. Soc. A149
(1986), 83-107. Subsequent developments are discussed by Shu Tezuka, Uniform
Random Numbers (Boston: Kluwer, 1995).

For a detailed study of the use of random numbers in numerical analysis,
see J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (London:
Methuen, 1964). This book shows that some numerical methods are enhanced
by using numbers that are “quasirandom,” designed specifically for a certain
purpose (not necessarily satisfying the statistical tests we have discussed). The
origins of Monte Carlo methods for computers are discussed by N. Metropolis
and R. Eckhardt in Stanislaw Ulam 1909-1984, a special issue of Los Alamos
Science 15 (1987), 125-136.

Every reader is urged to work exercise 6 in the following set of problems.

EXERCISES
1. [21) Write a MIX subroutine with the following characteristics, using method (1):
Calling sequence: JMP RANDI
Entry conditions: rA = k, a positive integer < 5000.

Exit conditions: rA < arandom integer Y, 1 <Y < k, with each integer
about equally probable; rX =?7; overflow off.

2. [15] Some people have been afraid that computers will someday take over the
world; but they are reassured by the statement that a machine cannot do anything
really new, since it is only obeying the commands of its master, the programmer.
Lady Lovelace wrote in 1844, “The Analytical Engine has no pretensions to originate
anything. It can do whatever we know how to order it to perform.” Her statement
has been elaborated further by many philosophers. Discuss this topic, with random
number generators in mind.

3.6

190 RANDOM NUMBERS

3. [32] (A dice game.) Write a program that simulates a roll of two dice, each of
which takes on the values 1, 2, ..., 6 with equal probability. If the total is 7 or 11 on
the first roll, the game is won; a total of 2, 3, or 12 loses; and on any other total, call
that total the “point” and continue rolling dice until either a 7 occurs (a loss) or the
point occurs again (a win).

Play ten games. The result of each roll of the dice should be printed in the form
mn, where m and n are the contents of the two dice, followed by some appropriate
comment (like “snake eyes” or “little Joe” or “the hard way”, etc.).

4. [40] (Solitaire or patience.) Some people spend a lot of valuable time playing card
games of solitaire, and perhaps automation will make an important inroad in this area.
Write a program that (i) shuffles a simulated deck of cards; (ii) plays some common
game of solitaire based on the order of the cards in the deck; and (iii) displays the result
of the game, showing how close the program came to winning. Cumulative statistics
should be kept. The program might be set up to “cheat” upon request.

5. [46] (Creative writing by computer.) A television program entitled “The Thinking
Machine,” broadcast by the CBS television network on October 26, 1960, featured
(among other things) two Western-style playlets that were written by a computer
program. Here are the two scripts as they were printed out by the computer:

Saga #1. (The gun is in the right hand; the money is in the left hand; the glass is
on the table; the bottle is on the table; the holster is on the robber; the sheriff's gun
is in the sheriff’'s right hand; the sheriff's holster is on the sheriff.)

ROBBER: (The robber is at the window.) Go to door; open door; go thru door; close
door; go to corner; put money down at corner; go to table; put gun on
table; sit and fidget; sit at table; pick up glass with right hand (empty);
put glass on table; pick up bottle with right hand; pour; put bottle on
table; pick up glass with right hand; take a drink from glass; put glass on
table; pick up bottle with right hand; sit at table; sit at table; go to corner;
go to window; go to table; put bottle on table; sit and fidget; sit at table;
sit and fidget; go to window; go to table; pick up glass with right hand.

(The sheriff is at the window.) See robber; (robber sees sheriff); go to
door.

Put glass on table; pick up gun with right hand; check gun.
Wait; open door; see robber; (robber sees sheriff); go thru door.
Go to window; aim; fire; SHERIFF NICKED.

SHERIFF;

ROBBER:
SHERIFF:
ROBBER:

SHERIFF:
ROBBER:
SHERIFF:
ROBBER:
SHERIFF:
ROBBER:
SHERIFF:
ROBBER:
SHERIFF:
ROBBER:
SHERIFF:

Go to window; aim; fire; MISSED; go to door; go to window.

Go to door; aim; aim.

Aim; fire; MISSED.

Fire; SHERIFF NICKED.,

Go to door; aim; fire; MISSED; go thru door; aim.

Aim: fire; MISSED; aim; fire; MISSED.

Fire; MISSED; go to window; aim; fire; MISSED.

Aim: fire; MISSED; aim; fire; MISSED; aim; fire; SHERIFF NICKED.
Aim; fire; ROBBER HIT.

Drop gun; robber dies.

Put gun in holster; go to table; pick up glass with right hand (empty); take
glass from right hand with left hand; pick up bottle with right hand; pour;
put bottle on table; take glass from left hand with right hand; take a drink
from glass; take glass from right hand with left hand; pick up bottle with
right hand; pour; put bottle on table; take glass from left hand with right
hand; take a drink from glass; put glass on table; go to corner; pick up
money with right hand; go to door; go thru door; close door. CURTAIN.

3.6

Saga #2.

SUMMARY 191

(The gun is in the right hand; the money is in the left hand; the glass is

on the table; the bottle is on the table; the holster is on the robber; the sheriff's gun
is in the sheriff’s right hand; the sheriff's holster is on the sheriff.)

ROBBER:

SHERIFF:

ROBBER:

SHERIFF:

ROBBER:

SHERIFF:

ROBBER:

SHERIFF:

ROBBER:

(The robber is at the window.) Go to door; open door; go thru door;
close door; go to corner; put money down at corner; go to window; put
gun down at window; lean on window and look; lean on window and look;
go to corner; count money; go to table; pick up glass with right hand
(empty); take glass from right hand with left hand; pick up bottle with
right hand; pour; put bottle on table; take glass from left hand with right
hand; take a drink from glass; put glass on table; pick up bottle with right
hand; pour; go to corner; put bottle down at corner; go to window: pick
up gun with right hand; check gun; put gun in holster; go to table; pick
up glass with right hand; take a drink from glass; go to window; put glass
down at window.

(The sheriff is at the window.) See robber; (robber sees sheriff); go to
door.

Take gun from holster with right hand; check gun; go to door; check gun;
put gun down at door.

Open door; see robber; (robber sees sheriff); go thru door; go to window.
Pick up gun with right hand.
Go to table.

Aim: fire; MISSED: aim: fire; SHERIFF HIT; blow out barrel; put gun in
holster.

Drop gun; sheriff dies.

Go to corner; pick up money with right hand; go to door; go thru door,;
close door. CURTAIN.

A careful reading of these scripts reveals the highly intense drama present here.
The computer program was careful to keep track of the locations of each player, the
contents of his hands, etc. Actions taken by the players were random, governed by
certain probabilities; the probability of a foolish action was increased depending on
how much that player had had to drink and on how often he had been nicked in a shot.
The reader will be able to deduce further properties of the program by studying the
sample scripts.

192 RANDOM NUMBERS 3.6

Of course, even the best scripts are rewritten before they are produced, and this
is especially true when an inexperienced writer has prepared the original draft. Here
are the scripts just as they were actually used in the show:

Saga #1. Music up.

MS Robber peering thru window of shack.

CU Robber’s face. ’

MS Robber entering shack.

CU Robber sees whiskey bottle on table.

CU Sheriff outside shack.

MS Robber sees sheriff.

LS Sheriff in doorway over shoulder of robber, both draw.

MS Sheriff drawing gun.

LS Shooting it out. Robber gets shot.

MS Sheriff picking up money bags.

MS Robber staggering.

MS Robber dying. Falls across table, after trying to take last shot at sheriff.
MS Sheriff walking thru doorway with money.

MS of robber's body, now still, lying across table top. Camera dollies back. (Laughter)

Saga #2. Music up.

CU of window. Robber appears.

MS Robber entering shack with two sacks of money.

MS Robber puts money bags on barrel.

CU Robber—sees whiskey on table.

MS Robber pouring himself a drink at table. Goes to count money. Laughs.
MS Sheriff outside shack.

MS thru window.

MS Robber sees sheriff thru window.

LS Sheriff entering shack. Draw. Shoot it out.

CU Sheriff. Writhing from shot.

M/2 shot Sheriff staggering to table for a drink . . . falls dead.
MS Robber leaves shack with money bags.*

[Note: CU = “close up”, MS = “medium shot”, etc. The details above were kindly
furnished to the author by Thomas H. Wolf, producer of the television show, who sug-
gested the idea of a computer-written playlet in the first place, and also by Douglas T.
Ross and Harrison R. Morse who produced the computer program.]

In the summer of 1952, Christopher Strachey had used the hardware random
number generator of the Ferranti Mark I to compose the following letter:

Honey Dear
My sympathetic affection beautifully attracts your affectionate enthusi-
asm. You are my loving adoration: my breathless adoration. My fellow
feeling breathlessly hopes for your dear eagerness. My lovesick adoration
cherishes your avid ardour.
Yours wistfully,
M. U. C.

[Encounter 3 (1954), 4, 25-31; another example appears in the article on Electronic
Computers in the 64th edition of Pears Cyclopedia (London, 1955), 190-191.]

* (© 1962 by Columbia Broadcasting System, Inc. All Rights Reserved. Used by permission.
For further information, see J. E. Pfeiffer, The Thinking Machine (New York: J. B. Lippin-
cott, 1962).

3.6 SUMMARY 193

The reader will undoubtedly have many ideas about how to teach a computer to
do creative writing; and that is the point of this exercise.

6. [40] Look at the subroutine library of each computer installation in your organi-
zation, and replace the random number generators by good ones. Try to avoid being
too shocked at what you find.

7. [M40] A programmer decided to encipher his files by using a linear congruential
sequence (X,) of period 2°? generated by (1) with m = 232, He took the most significant
bits | X»/2'®] and exclusive-or’ed them onto his data, but kept the parameters q, c,
and X secret.

Show that this isn’t a very secure scheme, by devising a method that deduces the
multiplier a and the first difference X1 — X in a reasonable amount of time, given only
the values of | X, /2] for 0 < n < 150.

8. [M15] Suggest a good way to test whether an implementation of linear congruen-
tial generators is working properly.

9. [HM32] Let Xo, X1, ... be the numbers produced by ran_array after ran_start
has initialized the generation process with seed s, and consider the polynomials

Pu(2) = Xnte22”® + Xnye12°0 + -+ 4+ Xn2® + Xntooz b 4+ -+ + Xnteaz + Xnves.

a) Prove that P,(z) = zM*)™" (modulo 2 and 2% + 237 4+ 1), for some exponent h(s).

b) Express h(s) in terms of the binary representation of s.

c) Prove that if X{, X1, ... is the sequence of numbers produced by the same routines
from the seed s’ # s, we have X, = X, (modulo 2) for 0 < k < 100 only if
ln—n'| > 27 ~1.

10. [22] Convert the C code for ran-array and ran_start to FORTRAN 77 subroutines
that generate exactly the same sequences of numbers.

11. [M25] Assuming that floating point arithmetic on numbers of type double is
properly rounded in the sense of Section 4.2.2 (hence exact when the values are suitably
restricted), convert the C routines ran-array and ran-start to similar programs that
deliver double-precision random fractions in the range [0.. 1), instead of 30-bit integers.

12. [M21] What random number generator would be suitable for a minicomputer that
does arithmetic only on integers in the range [—32768..32767]?

13. [M25] Compare the subtract-with-borrow generators of exercise 3.2.1.1-12 to the
lagged Fibonacci generators implemented in the programs of this section.

14. [M35] (The future versus the past.) Let X, = (Xn_37 + Xn_100) mod 2 and
consider the sequence

<Y0,Y1, . > = <X0,X1, Cee ,ng,X200,X201, .. ,X299,X400,X401, e ,X499,X600,. >

(This sequence corresponds to calling ran.array(a,200) repeatedly and looking only
at the least significant bits, after discarding half of the elements.) The following
experiment was repeated one million times using the sequence (Y,): “Generate 100
random bits; then if 60 or more of them were 0, generate one more bit and print it.”
The result was to print 14527 0s and 13955 1s; but the probability that 28482 random
bits contain at most 13955 1s is only about .000358.

Give a mathematical explanation why so many Os were output.

15. [25] Write C code that makes it convenient to generate the random integers
obtained from ran.array by discarding all but the first 100 of every 1009 elements,
as recommended in the text.

CHAPTER FOUR

' | ARITHMETIC

Seeing there is nothing (right well beloued Students in the Mathematickes)
that is so troublesome to Mathematicall practise, nor that doth more molest
and hinder Calculators, then the Multiplications, Diuisions, square and
cubical Extractions of great numbers, which besides the tedious

expence of time, are for the most part subiect to many slippery errors.

| began therefore to consider in my minde, by what certaine and

ready Art | might remoue those hindrances.

— JOHN NEPAIR [NAPIER] (1616)

| do hate sums. There is no greater mistake than to call arithmetic an exact
science. There are . . . hidden laws of Number which it requires a mind
like mine to perceive. For instance, if you add a sum from the bottom up,
and then again from the top down, the result is always different.

— M. P. LA TOUCHE (1878)

| cannot conceive that anybody will require multiplications at the rate
of 40,000, or even 4,000 per hour; such a revolutionary change as the
octonary scale should not be imposed upon mankind in general

for the sake of a few individuals.

— F. H. WALES (1936)

Most numerical analysts have no interest in arithmetic.
— B. PARLETT (1979)

THE CHIEF PURPOSE of this chapter is to make a careful study of the four
basic processes of arithmetic: addition, subtraction, multiplication, and divi-
sion. Many people regard arithmetic as a trivial thing that children learn and
computers do, but we will see that arithmetic is a fascinating topic with many
interesting facets. It is important to make a thorough study of efficient meth-
ods for calculating with numbers, since arithmetic underlies so many computer
applications.

Arithmetic is, in fact, a lively subject that has played an important part in
the history of the world, and it still is undergoing rapid development. In this
chapter, we shall analyze algorithms for doing arithmetic operations on many
types of quantities, such as “floating point” numbers, extremely large numbers,
fractions (rational numbers), polynomials, and power series; and we will also
discuss related topics such as radix conversion, factoring of numbers, and the
evaluation of polynomials.

194

4.1 POSITIONAL NUMBER SYSTEMS 195

4.1. POSITIONAL NUMBER SYSTEMS

THE WAY WE DO ARITHMETIC is intimately related to the way we represent the
numbers we deal with, so it is appropriate to begin our study of the subject with
a discussion of the principal means for representing numbers.

Positional notation using base b (or radiz b) is defined by the rule

(...asza2a100.a_10_2 ...)p
= tazb®+ab®+abt +ap+a bt Fa b P4 (1)

for example, (520.3) = 5-624+2-6' + 0+ 3671 = 1922. Our conventional
decimal number system is, of course, the special case when b is ten, and when
the a’s are chosen from the “decimal digits” 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; in this
case the subscript b in (1) may be omitted.

The simplest generalizations of the decimal number system are obtained
when we take b to be an integer greater than 1 and when we require the a’s to
be integers in the range 0 < ay < b. This gives us the standard binary (b = 2),
ternary (b = 3), quaternary (b = 4), quinary (b = 5), ... number systems. In
general, we could take b to be any nonzero number, and we could choose the a’s
from any specified set of numbers; this leads to some interesting situations, as
we shall see.

The dot that appears between ag and a_; in (1) is called the radix point.
(When b = 10, it is also called the decimal point, and when b = 2, it is sometimes
called the binary point, etc.) Continental Europeans often use a comma instead
of a dot to denote the radix point; the English formerly used a raised dot.

The a’s in (1) are called the digits of the representation. A digit ay for large k
is often said to be “more significant” than the digits a; for small k; accordingly,
the leftmost or “leading” digit is referred to as the most significant digit and the
rightmost or “trailing” digit is referred to as the least significant digit. In the
standard binary system the binary digits are often called bits; in the standard
hexadecimal system (radix sixteen) the hexadecimal digits zero through fifteen
are usually denoted by

0,1,2,3,4,5,6,7,8,9, A B,CD,E,F.

The historical development of number representations is a fascinating story,
since it parallels the development of civilization itself. We would be going far
afield if we were to examine this history in minute detail, but it will be instructive
to look at its main features here.

The earliest forms of number representations, still found in primitive cul-
tures, are generally based on groups of fingers, piles of stones, etc., usually with
special conventions about replacing a larger pile or group of, say, five or ten
objects by one object of a special kind or in a special place. Such systems lead
naturally to the earliest ways of representing numbers in written form, as in
the systems of Babylonian, Egyptian, Greek, Chinese, and Roman numerals;
but such notations are comparatively inconvenient for performing arithmetic
operations except in the simplest cases.

196 ARITHMETIC 4.1

During the twentieth century, historians of mathematics have made exten-
sive studies of early cuneiform tablets found by archaeologists in the Middle
East. These studies show that the Babylonian people actually had two distinct
systems of number representation: The numbers used in everyday business
transactions were written in a notation based on grouping by tens, hundreds, etc.;
this notation was inheritéd from earlier Mesopotamian civilizations, and large
numbers were seldom required. When more difficult mathematical problems
were considered, however, Babylonian mathematicians made extensive use of a
sexagesimal (radix sixty) positional notation that was highly developed at least
as early as 1750 B.C. This notation was unique in that it was actually a floating
point form of representation with exponents omitted; the proper scale factor
or power of sixty was to be supplied by the context, so that, for example,
the numbers 2, 120, 7200, and 3L0 were all written in an identical manner.
The notation was especially convenient for multiplication and division, using
auxiliary tables, since radix-point alignment had no effect on the answer. As
examples of this Babylonian notation, consider the following excerpts from early
tables: The square of 30 is 15 (which may also be read, “The square of is 17);
the reciprocal of 81 = (1 21)gg is (44 26 40)60; and the square of the latter is
(32 55 18 31 6 40)60. The Babylonians had a symbol for zero, but because of
their “floating point” philosophy, it was used only within numbers, not at the
right end to denote a scale factor. For the interesting story of early Babylonian
mathematics, see O. Neugebauer, The Exact Sciences in Antiquity (Princeton,
N. J.: Princeton University Press, 1952), and B. L. van der Waerden, Science
Awakening, translated by A. Dresden (Groningen: P. Noordhoff, 1954); see also
D. E. Knuth, CACM 15 (1972), 671-677; 19 (1976), 108.

Fixed point positional notation was apparently first conceived by the Maya
Indians in central America some 2000 years ago; their radix-20 system was highly
developed, especially in connection with astronomical records and calendar dates.
They began to use a written sign for zero about A.D. 200. But the Spanish con-
querors destroyed nearly all of the Maya books on history and science, so we have
comparatively little knowledge about the degree of sophistication that native
Americans had reached in arithmetic. Special-purpose multiplication tables have
been found, but no examples of division are known. [See J. Eric S. Thompson,
Contributions to Amer. Anthropology and History 7 (Carnegie Inst. of Wash-
ington, 1942), 37-62; J. Justeson, “Ancient Mesoamerican computing practices,”
History of Science 3 (Rome: Istituto della Enciclopedia Italiana), to appear.]

Several centuries before Christ, the Greek people employed an early form
of the abacus to do their arithmetical calculations, using sand and/or pebbles
on a board that had rows or columns corresponding in a natural way to our
decimal system. It is perhaps surprising to us that the same positional notation
was never adapted to written forms of numbers, since we are so accustomed to
decimal reckoning with pencil and paper; but the greater ease of calculating by
abacus (since handwriting was not a common skill, and since abacus users need
not memorize addition and multiplication tables) probably made the Greeks feel
it would be silly even to suggest that computing could be done better on “scratch

4.1 POSITIONAL NUMBER SYSTEMS 197

paper.” At the same time Greek astronomers did make use of a sexagesimal
positional notation for fractions, which they had learned from the Babylonians.

Our decimal notation, which differs from the more ancient forms primarily
because of its fixed radix point, together with its symbol for zero to mark an
empty position, was developed first in India within the Hindu culture. The exact
date when this notation first appeared is quite uncertain; about A.D. 600 seems
to be a good guess. Hindu science was highly developed at that time, particularly
in astronomy. The earliest known Hindu manuscripts that show decimal notation
have numbers written backwards (with the most significant digit at the right),
but soon it became standard to put the most significant digit at the left.

The Hindu principles of decimal arithmetic were brought to Persia about
A.D. 750, as several important works were translated into Arabic; a picturesque
account of this development is given in a Hebrew document by Abraham Ibn
Ezra, which has been translated into English in AMM 25 (1918), 99-108. Not
long after this, al-Khwarizmi wrote his Arabic textbook on the subject. (As
noted in Chapter 1, our word “algorithm” comes from al-Khwarizmi’s name.)
His work was translated into Latin and was a strong influence on Leonardo
Pisano (Fibonacci), whose book on arithmetic (A.D. 1202) played a major role
in the spreading of Hindu-Arabic numerals into Europe. It is interesting to note
that the left-to-right order of writing numbers was unchanged during these two
transitions, although Arabic is written from right to left while Hindu and Latin
scholars generally wrote from left to right. A detailed account of the subsequent
propagation of decimal numeration and arithmetic into all parts of Europe during
the period 1200-1600 has been given by David Eugene Smith in his History of
Mathematics 1 (Boston: Ginn and Co., 1923), Chapters 6 and 8.

Decimal notation was applied at first only to integer numbers, not to frac-
tions. Arabic astronomers, who required fractions in their star charts and other
tables, continued to use the notation of Ptolemy (the famous Greek astronomer),
a notation based on sexagesimal fractions. This system still survives today in
our trigonometric units of degrees, minutes, and seconds, and also in our units
of time, as a remnant of the original Babylonian sexagesimal notation. Early
European mathematicians also used sexagesimal fractions when dealing with
noninteger numbers; for example, Fibonacci gave the value

10 22/ 7// 42/// 33IV 4V 4OVI

as an approximation to the root of the equation z® + 2z? + 10z = 20. (The
correct answer is 1° 22" 7" 42" 33 4V 38Y" 30" 50V 157X 43%)

The use of decimal notation also for tenths, hundredths, etc., in a similar
way seems to be a comparatively minor change; but, of course, it is hard to
break with tradition, and sexagesimal fractions have an advantage over decimal
fractions because numbers such as % can be expressed exactly, in a simple way.

Chinese mathematicians — who never used sexagesimals — were apparently
the first people to work with the equivalent of decimal fractions, although their
numeral system (lacking zero) was not originally a positional number system in

the strict sense. Chinese units of weights and measures were decimal, so that

198 ARITHMETIC 4.1

Tsu Ch’ung-Chih (who died in A.D. 501) was able to express an approximation
to 7 in the following form:

3 chang, 1 ch’in, 4 ts’un, 1 fen, 5 li, 9 hao, 2 miao, 7 hu.

Here chang, ..., hu are units of length; 1 hu (the diameter of a silk thread) equals
1/10 miao, etc. The use of such decimal-like fractions was fairly widespread in
China after about 1250.

An embryonic form of truly positional decimal fractions appeared in a 10th-
century arithmetic text, written in Damascus by an obscure mathematician
named al-Uqlidisi (“the Euclidean”). He occasionally marked the place of a
decimal point, for example in connection with a problem about compound in-
terest, the computation of 135 times (1.1)" for 1 < n < 5. [See A. S. Saidan,
The Arithmetic of al-Uqlidis1 (Dordrecht: D. Reidel, 1975), 110, 114, 343, 355,
481-485.] But he did not develop the idea very fully, and his trick was soon
forgotten. Al-Samaw’al of Baghdad and Baku, writing in 1172, understood that
V10 = 3.162277. .., but he had no convenient way to write such approximations
down. Several centuries passed before decimal fractions were reinvented by a Per-
sian mathematician, al-Kashi, who died in 1429. Al-Kashi was a highly skillful
calculator, who gave the value of 27 as follows, correct to 16 decimal places:

integer fractions

O |6 2831853071 |7[9]|58(6]5

This was by far the best approximation to 7 known until Ludolph van Ceulen
laboriously calculated 35 decimal places during the period 1596-1610.

The earliest known example of decimal fractions in Europe occurs in a 15th-
century text where, for example, 153.5 is multiplied by 16.25 to get 2494.375; this
was referred to as a “Turkish method.” In 1525, Christof Rudolff of Germany
discovered decimal fractions for himself; but like al-Uqlidisi, his work seems to
have had little influence. Frangois Viete suggested the idea again in 1579. Finally,
an arithmetic text by Simon Stevin of Belgium, who independently hit on the idea
of decimal fractions in 1585, became popular. Stevin’s work, and the discovery
of logarithms soon afterwards, made decimal fractions commonplace in Europe
during the 17th century. [See D. E. Smith, History of Mathematics 2 (Boston:
Ginn and Co., 1925), 228-247, and V. J. Katz, A History of Mathematics (New
York: HarperCollins, 1993), for further remarks and references.]

The binary system of notation has its own interesting history. Many prim-
itive tribes in existence today are known to use a binary or “pair” system of
counting (making groups of two instead of five or ten), but they do not count in
a true radix-2 system, since they do not treat powers of 2 in a special manner.
See The Diffusion of Counting Practices by Abraham Seidenberg, Univ. of Calif.
Publ. in Math. 3 (1960), 215-300, for interesting details about primitive number
systems. Another “primitive” example of an essentially binary system is the
conventional musical notation for expressing rhythms and durations of time.

Nondecimal number systems were discussed in Europe during the seven-
teenth century. For many years astronomers had occasionally used sexagesimal

4.1 POSITIONAL NUMBER SYSTEMS 199

arithmetic both for the integer and the fractional parts of numbers, primarily
when performing multiplication [see John Wallis, Treatise of Algebra (Oxford:
1685), 18-22, 30]. The fact that any integer greater than 1 could serve as radix
was apparently first stated in print by Blaise Pascal in De Numeris Multiplicibus,
which was written about 1658 [see Pascal’s (Euvres Compleétes (Paris: Editions
de Seuil, 1963), 84-89]. Pascal wrote, “Denaria enim ex instituto hominum,
non ex necessitate nature ut vulgus arbitratur, et sane satis inepte, posita est”;

e., “The decimal system has been established, somewhat foolishly to be sure,
according to man’s custom, not from a natural necessity as most people would
think.” He stated that the duodecimal (radix twelve) system would be a welcome
change, and he gave a rule for testing a duodecimal number for divisibility by
nine. Erhard Weigel tried to drum up enthusiasm for the quaternary (radix four)
system in a series of publications beginning in 1673. A detailed discussion of
radix-twelve arithmetic was given by Joshua Jordaine, Duodecimal Arithmetick
(London, 1687).

Although decimal notation was almost exclusively used for arithmetic during
that era, other systems of weights and measures were rarely if ever based on
multiples of 10, and business transactions required a good deal of skill in adding
quantities such as pounds, shillings, and pence. For centuries merchants had
therefore learned to compute sums and differences of quantities expressed in pe-
culiar units of currency, weights, and measures; thus they were doing arithmetic
in nondecimal number systems. The common units of liquid measure in England,
dating from the 13th century or earlier, are particularly noteworthy:

2 gills = 1 chopin
2 chopins = 1 pint
2 pints = 1 quart
2 quarts = 1 pottle
2 pottles = 1 gallon
2 gallons = 1 peck
2 pecks = 1 demibushel

2 demibushels = 1 bushel or firkin
2 firkins = 1 kilderkin
2 kilderkins = 1 barrel
2 barrels = 1 hogshead
2 hogsheads = 1 pipe
2 pipes =1 tun

Quantities of liquid expressed in gallons, pottles, quarts, pints, etc. were essen-
tially written in binary notation. Perhaps the true inventors of binary arithmetic
were British wine merchants!

The first known appearance of pure binary notation was about 1605 in some
unpublished manuscripts of Thomas Harriot (1560-1621). Harriot was a creative
man who first became famous by coming to America as a representative of Sir
Walter Raleigh. He invented (among other things) a notation like that now used
for “less than” and “greater than” relations; but for some reason he chose not
to publish many of his discoveries. Excerpts from his notes on binary arithmetic
have been reproduced by John W. Shirley, Amer. J. Physics 19 (1951), 452-454;
Harriot’s discovery of binary notation was first cited by Frank Morley in The
Scientific Monthly 14 (1922), 60-66.

The first published treatment of the binary system appeared in the work of
a prominent Cistercian bishop, Juan de Caramuel Lobkowitz, Mathesis Biceps 1

200 ARITHMETIC 4.1

(Campaniz: 1670), 45-48. Caramuel discussed the representation of numbers in
radices 2, 3,4, 5,6, 7, 8,9, 10, 12, and 60 at some length, but gave no examples
of arithmetic operations in nondecimal systems except in the sexagesimal case.

Ultimately, an article by G. W. Leibniz [Mémoires de I’Académie Royale des
Sciences (Paris: 1703), 110-116], which illustrated binary addition, subtraction,
multiplication, and division, really brought binary notation into the limelight,
and his article is usually referred to as the birth of radix-2 arithmetic. Leibniz
later referred to the binary system quite frequently. He did not recommend it for
practical calculations, but he stressed its importance in number-theoretical inves-
tigations, since patterns in number sequences are often more apparent in binary
notation than they are in decimal; he also saw a mystical significance in the fact
that everything is expressible in terms of zero and one. Leibniz’s unpublished
manuscripts show that he had been interested in binary notation as early as
1679, when he referred to it as a “bimal” system (analogous to “decimal”).

A careful study of Leibniz’s early work with binary numbers has been
made by Hans J. Zacher, Die Hauptschriften zur Dyadik von G. W. Leibniz
(Frankfurt am Main: Klostermann, 1973). Zacher points out that Leibniz was
familiar with John Napier’s so-called “local arithmetic,” a way for calculating
with stones that amounts to using a radix-2 abacus. [Napier had published the
idea of local arithmetic as an appendix to his little book Rhabdologia in 1617;
it may be called the world’s first “binary computer,” and it is surely the world’s
cheapest, although Napier felt that it was more amusing than practical. See
Martin Gardner’s discussion in Knotted Doughnuts and Other Mathematical
Entertainments (New York: Freeman, 1986), Chapter 8.]

It is interesting to note that the important concept of negative powers to the
right of the radix point was not yet well understood at that time. Leibniz asked
James Bernoulli to calculate 7 in the binary system, and Bernoulli “solved” the
problem by taking a 35-digit approximation to 7, multiplying it by 1035, and then
expressing this integer in the binary system as his answer. On a smaller scale
this would be like saying that 7 ~ 3.14, and (314)10 = (100111010); hence =
in binary is 100111010! [See Leibniz, Math. Schriften, edited by K. Gehrhardt,
3 (Halle: 1855), 97; two of the 118 bits in the answer are incorrect, due to
computational errors.] The motive for Bernoulli’s calculation was apparently to
see whether any simple pattern could be observed in this representation of 7.

Charles XII of Sweden, whose talent for mathematics perhaps exceeded that
of all other kings in the history of the world, hit on the idea of radix-8 arithmetic
about 1717. This was probably his own invention, although he had met Leibniz
briefly in 1707. Charles felt that radix 8 or 64 would be more convenient
for calculation than the decimal system, and he considered introducing octal
arithmetic into Sweden; but he died in battle before decreeing such a change.
[See The Works of Voltaire 21 (Paris: E. R. DuMont, 1901), 49; E. Swedenborg,
Gentleman’s Magazine 24 (1754), 423-424]

Octal notation was proposed also in colonial America before 1750, by the
Rev. Hugh Jones, professor at the College of William and Mary [see Gentleman’s
Magazine 15 (1745), 377-379; H. R. Phalen, AMM 56 (1949), 461-465].

4.1 POSITIONAL NUMBER SYSTEMS 201

More than a century later, a prominent Swedish-American civil engineer
named John W. Nystrom decided to carry Charles XII's plans a step further,
by devising a complete system of numeration, weights, and measures based on
radix-16 arithmetic. He wrote, “I am not afraid, or do not hesitate, to advocate a
binary system of arithmetic and metrology. I know I have nature on my side; if I
do not succeed to impress upon you its utility and great importance to mankind,
it will reflect that much less credit upon our generation, upon our scientific men
and philosophers.” Nystrom devised special means for pronouncing hexadecimal
numbers; for example, (C0160)16 was to be read “vybong, bysanton.” His entire
system was called the Tonal System, and it is described in J. Franklin Inst. 46
(1863), 263-275, 337-348, 402-407. A similar system, but using radix 8, was
worked out by Alfred B. Taylor [Proc. Amer. Pharmaceutical Assoc. 8 (1859),
115-216; Proc. Amer. Philosophical Soc. 24 (1887), 296-366]. Increased use of
the French (metric) system of weights and measures prompted extensive debate
about the merits of decimal arithmetic during that era; indeed, octal arithmetic
was even being proposed in France [J. D. Colenne, Le Systéme Octaval (Paris:
1845); Aimé Mariage, Numération par Huit (Paris: Le Nonnant, 1857)].

The binary system was well known as a curiosity ever since Leibniz’s time,
and about 20 early references to it have been compiled by R. C. Archibald
[AMM 25 (1918), 139-142]. It was applied chiefly to the calculation of powers,
as explained in Section 4.6.3, and to the analysis of certain games and puzzles.
Giuseppe Peano [Atti della R. Accademia delle Scienze di Torino 34 (1898), 47—
55] used binary notation as the basis of a “logical” character set of 256 symbols.
Joseph Bowden [Special Topics in Theoretical Arithmetic (Garden City: 1936),
49] gave his own system of nomenclature for hexadecimal numbers.

The book History of Binary and Other Nondecimal Numeration by Anton
Glaser (Los Angeles: Tomash, 1981) contains an informative and nearly complete
discussion of the development of binary notation, including English translations
of many of the works cited above [see Historia Math. 10 (1983), 236-243].

Much of the recent history of number systems is connected with the develop-
ment of calculating machines. Charles Babbage’s notebooks for 1838 show that
he considered using nondecimal numbers in his Analytical Engine [see M. V.
Wilkes, Historia Math. 4 (1977), 421]. Increased interest in mechanical devices
for arithmetic, especially for multiplication, led several people in the 1930s to
consider the binary system for this purpose. A particularly delightful account of
such activity appears in the article “Binary Calculation” by E. William Phillips
[Journal of the Institute of Actuaries 67 (1936), 187-221] together with a record
of the discussion that followed a lecture he gave on the subject. Phillips began by
saying, “The ultimate aim [of this paper] is to persuade the whole civilized world
to abandon decimal numeration and to use octonal [that is, radix 8] numeration
in its place.”

Modern readers of Phillips’s article will perhaps be surprised to discover that
a radix-8 number system was properly referred to as “octonary” or “octonal,”
according to all dictionaries of the English language at that time, just as the
radix-10 number system is properly called either “denary” or “decimal”; the

202 ARITHMETIC 4.1

word “octal” did not appear in English language dictionaries until 1961, and it
apparently originated as a term for the base of a certain class of vacuum tubes.
The word “hexadecimal,” which has crept into our language even more recently,
is a mixture of Greek and Latin stems; more proper terms would be “senidenary”
or “sedecimal” or even “sexadecimal,” but the latter is perhaps too risqué for
computer programimers.

The comment by Mr. Wales that is quoted at the beginning of this chapter
has been taken from the discussion printed with Phillips’s paper. Another man
who attended the same lecture objected to the octal system for business purposes:
“5% becomes 3.1463 per 64, which sounds rather horrible.”

Phillips got the inspiration for his proposals from an electronic circuit that
was capable of counting in binary [C. E. Wynn-Williams, Proc. Roy. Soc. London
A136 (1932), 312-324]. Electromechanical and electronic circuitry for general
arithmetic operations was developed during the late 1930s, notably by John V.
Atanasoff and George R. Stibitz in the U.S.A., L. Couffignal and R. Valtat in
France, Helmut Schreyer and Konrad Zuse in Germany. All of these inventors
used the binary system, although Stibitz later developed excess-3 binary-coded-
decimal notation. A fascinating account of these early developments, including
reprints and translations of important contemporary documents, appears in
Brian Randell’s book The Origins of Digital Computers (Berlin: Springer, 1973).

The first American high-speed computers, built in the early 1940s, used
decimal arithmetic. But in 1946, an important memorandum by A. W. Burks,
H. H. Goldstine, and J. von Neumann, in connection with the design of the first
stored-program computers, gave detailed reasons for making a radical departure
from tradition and using base-two notation [see John von Neumann, Collected
Works 5, 41-65]. Since then binary computers have multiplied. After a dozen
years of experience with binary machines, a discussion of the relative advantages
and disadvantages of radix-2 notation was given by W. Buchholz in his paper
“Fingers or Fists?” [CACM 2 (December 1959), 3-11].

The MIX computer used in this book has been defined so that it can be
either binary or decimal. It is interesting to note that nearly all MIX programs
can be expressed without knowing whether binary or decimal notation is being
used —even when we are doing calculations involving multiple-precision arith-
metic. Thus we find that the choice of radix does not significantly influence
computer programming. (Noteworthy exceptions to this statement, however, are
the “Boolean” algorithms discussed in Section 7.1; see also Algorithm 4.5.2B.)

There are several different ways to represent negative numbers in a computer,
and this sometimes influences the way arithmetic is done. In order to understand
these notations, let us first consider MIX as if it were a decimal computer; then
each word contains 10 digits and a sign, for example

—12345 67890. (2)

This is called the signed-magnitude representation. Such a representation agrees
with common notational conventions, so it is preferred by many programmers. A
potential disadvantage is that minus zero and plus zero can both be represented,

4.1 POSITIONAL NUMBER SYSTEMS 203

while they usually should mean the same number; this possibility requires some
care in practice, although it turns out to be useful at times.

Most mechanical calculators that do decimal arithmetic use another system
called ten’s complement notation. If we subtract 1 from 00000 00000, we get
99999 99999 in this notation; in other words, no explicit sign is attached to the
number, and calculation is done modulo 10'°. The number —12345 67890 would
appear as

87654 32110 (3)

in ten’s complement notation. It is conventional to regard any number whose
leading digit is 5, 6, 7, 8, or 9 as a negative value in this notation, although
with respect to addition and subtraction there is no harm in regarding (3) as
the number +87654 32110 if it is convenient to do so. Notice that there is no
problem of minus zero in such a system.

The major difference between signed magnitude and ten’s complement no-
tations in practice is that shifting right does not divide the magnitude by ten;
for example, the number —11 = ... 99989, shifted right one, gives ...99998 = -2
(assuming that a shift to the right inserts “9” as the leading digit when the num-
ber shifted is negative). In general, z shifted right one digit in ten’s complement
notation will give |2/10], whether z is positive or negative.

A possible disadvantage of the ten’s complement system is the fact that it is
not symmetric about zero; the largest negative number representable in p digits
is 500...0, and it is not the negative of any p-digit positive number. Thus it is
possible that changing x to —z will cause overflow. (See exercises 7 and 31 for
a discussion of radix-complement notation with infinite precision.)

Another notation that has been used since the earliest days of high-speed
computers is called nines’ complement representation. In this case the number
—12345 67890 would appear as

87654 32109. (4)

Each digit of a negative number (—z) is equal to 9 minus the corresponding digit
of z. It is not difficult to see that the nines’ complement notation for a negative
number is always one less than the corresponding ten’s complement notation.
Addition and subtraction are done modulo 10'°® — 1, which means that a carry
off the left end is to be added at the right end. (See the discussion of arithmetic
modulo w — 1 in Section 3.2.1.1.) Again there is a potential problem with minus
zero, since 99999 99999 and 00000 00000 denote the same value.

The ideas just explained for radix-10 arithmetic apply in a similar way to
radix-2 arithmetic, where we have signed magnitude, two’s complement, and
ones’ complement notations. Two’s complement arithmetic on n-bit numbers
is arithmetic modulo 2"; ones’ complement arithmetic is modulo 2™ — 1. The
MIX computer, as used in the examples of this chapter, deals only with signed-
magnitude arithmetic; however, alternative procedures for complement notations
are discussed in the accompanying text when it is important to do so.

Detail-oriented readers and copy editors should notice the position of the
apostrophe in terms like “two’s complement” and “ones’ complement”: A two’s

204 ARITHMETIC 4.1

complement number is complemented with respect to a single power of 2, while
a ones’ complement number is complemented with respect to a long sequence
of 1s. Indeed, there is also a “twos’ complement notation,” which has radix 3
and complementation with respect to (2...22)3.

Descriptions of machine language often tell us that a computer’s circuitry
is set up with the radix point at a particular place within each numeric word.
Such statements should usually be disregarded. It is better to learn the rules
concerning where the radix point will appear in the result of an instruction if
we assume that it lies in a certain place beforehand. For example, in the case
of MIX we could regard our operands either as integers with the radix point at
the extreme right, or as fractions with the radix point at the extreme left, or as
some mixture of these two extremes; the rules for the appearance of the radix
point after addition, subtraction, multiplication, or division are straightforward.

It is easy to see that there is a simple relation between radix b and radix b*:
(. ..Qa3020100.0_1G_2 .. -)b = (.. A3A2A1A0.A_1A__2 - .)bk, (5)

where

Aj = (Gkj+h—1- - Qkj+1Ck;)b;
see exercise 8. Thus we have simple techniques for converting at sight between,
say, binary and hexadecimal notation.

Many interesting variations on positional number systems are possible in
addition to the standard b-ary systems discussed so far. For example, we might
have numbers in base (—10), so that

(. ..a3082a100.0a-1A_2 . ..)__10
= ..+ a3(—10)3 + az(—10)2 + al(—10)1 + ap + -
= ---—1000a3 + 100ay — 10a; + ap — 1—1()-(1__1 + 1—(1)0'(1__2 — e

Here the individual digits satisfy 0 < ar < 9 just as in the decimal system. The
number 12345 67890 appears in the “negadecimal” system as

(1 93755 73910)_1o, (6)

since the latter represents 10305070900 — 9070503010. It is interesting to note
that the negative of this number, —12345 67890, would be written

(28466 48290)_ 10, (7)

and, in fact, every real number whether positive or negative can be represented
without a sign in the —10 system.

Negative-base systems were first considered by Vittorio Griinwald [Giornale
di Matematiche di Battaglini 23 (1885), 203-221, 367], who explained how to
perform the four arithmetic operations in such systems; Griinwald also discussed
root extraction, divisibility tests, and radix conversion. However, his work seems
to have had no effect on other research, since it was published in a rather
obscure journal, and it was soon forgotten. The next publication about negative-
base systems was apparently by A. J. Kempner [AMM 43 (1936), 610-617],

4.1 POSITIONAL NUMBER SYSTEMS 205

who discussed the properties of noninteger radices and remarked in a footnote
that negative radices would be feasible too. After twenty more years the idea
was rediscovered again, this time by Z. Pawlak and A. Wakulicz [Bulletin de
I’Académie Polonaise des Sciences, Classe III, 5 (1957), 233-236; Série des
sciences techniques 7 (1959), 713-721], and also by L. Wadel [IRE Transactions
EC-6 (1957), 123]. Experimental computers called SKRZAT 1 and BINEG, which
used —2 as the radix of arithmetic, were built in Poland in the late 1950s; see
N. M. Blachman, CACM 4 (1961), 257; R. W. Marczinski, Ann. Hist. Computing
2 (1980), 37-48. For further references see IEEE Transactions EC-12 (1963),
274-276; Computer Design 6 (May 1967), 52-63. There is evidence that the idea
of negative bases occurred independently to quite a few people. For example,
D. E. Knuth had discussed negative-radix systems in 1955, together with a
further generalization to complex-valued bases, in a short paper submitted to
a “science talent search” contest for high-school seniors.

The base 2¢ gives rise to a system called the “quater-imaginary” number
system (by analogy with “quaternary”), which has the unusual feature that
every complex number can be represented with the digits 0, 1, 2, and 3 without
a sign. [See D. E. Knuth, CACM 3 (1960), 245-247.] For example,

(11210.31)9; = 1-16+1- (—=81) +2- (—=4) +1-(2) +3- (—37) + 1(—3) = 72 — 731
Here the number (agy, ...a100.a—1 ... a_2k)2; is equal to
(agn ...a200.0_2...a_2k) 4 + 2i(Q2p—1...Q23Q1.G_1 . .. G—2k+1) 4,

so conversion to and from quater-imaginary notation reduces to conversion to and
from negative quaternary representation of the real and imaginary parts. The
interesting property of this system is that it allows multiplication and division
of complex numbers to be done in a fairly unified manner without treating real
and imaginary parts separately. For example, we can multiply two numbers in
this system much as we do with any base, merely using a different carry rule:
Whenever a digit exceeds 3 we subtract 4 and carry —1 two columns to the left;

when a digit is negative, we add 4 to it and carry +1 two columns to the left.
The following example shows this peculiar carry rule at work:

12231 [9—104]
12231 [9—103]
12231

10320213

13022

13022

12231

021333121 [-19— 180

A similar system that uses just the digits 0 and 1 may be based on /21,
but this requires an infinite nonrepeating expansion for the simple number “;”
itself. Vittorio Griinwald proposed using the digits 0 and 1/+/2 in odd-numbered
positions, to avoid such a problem; but that actually spoils the whole system [see
Commentari dell’Ateneo di Brescia (1886), 43-54].

206 ARITHMETIC 4.1

-

T+ i +1+44

+1

—1— —1 +1—d
Fig. 1. The fractal set S called the “twindragon.”

Another “binary” complex number system may be obtained by using the
base i — 1, as suggested by W. Penney [JACM 12 (1965), 247-248]:

(. .. a40302010p.0-7 ...)i—l
= —dag + (2+2i)as — 2iaz + (i—1)a1 + ag — (t+1)a_y + .

In this system, only the digits 0 and 1 are needed. One way to demonstrate that
every complex number has such a representation is to consider the interesting
set S shown in Fig. 1; this set is, by definition, all points that can be written as
Y ok>10k(t — 1)_’“, for an infinite sequence a1, a9, as, ... of zeros and ones. It is
also known as the “twindragon fractal” [see M. F. Barnsley, Fractals Everywhere,
second edition (Academic Press, 1993), 306, 310]. Figure 1 shows that S can be
decomposed into 256 pieces congruent to 1—165. Notice that if the diagram of S
is rotated counterclockwise by 135°, we obtain two adjacent sets congruent to
(1/4/2) S, because (i —1)S = SU (S +1). For details of a proof that S contains

all complex numbers that are of sufficiently small magnitude, see exercise 18.

4.1 POSITIONAL NUMBER SYSTEMS 207

Perhaps the prettiest number system of all is the balanced ternary notation,
which consists of radix-3 representation using —1, 0, and +1 as “trits” (ternary
digits) instead of 0, 1, and 2. If we let the symbol 1 stand for —1, we have the
following examples of balanced ternary numbers:

Balanced ternary Decimal
101 8
111011 325
1110.11 —322
1110 -33

0.11111... 3

One way to find the representation of a number in the balanced ternary
system is to start by representing it in ordinary ternary notation; for example,

208.3 = (21201.022002200220 ...)s.

(A very simple pencil-and-paper method for converting to ternary notation is
given in exercise 4.4-12.) Now add the infinite number ...11111.11111... in
ternary notation; we obtain, in the example above, the infinite number

(...11111210012.210121012101)s.
Finally, subtract ...11111.11111... by decrementing each digit; we get
208.3 = (101101.101010101010. ..)s. (8)

This process may clearly be made rigorous if we replace the artificial infinite
number ...11111.11111... by a number with suitably many ones.
The balanced ternary number system has many pleasant properties:

a) The negative of a number is obtained by interchanging 1 and 1.

b) The sign of a number is given by its most significant nonzero trit, and in
general we can compare any two numbers by reading them from left to right
and using lexicographic order, as in the decimal system.

¢) The operation of rounding to the nearest integer is identical to truncation;
in other words, we simply delete everything to the right of the radix point.

Addition in the balanced ternary system is quite simple, using the table

111111111000000O0O0O0O111111111
11100011111 1000111111000111
1011011011011 01101101101101

(The three inputs to the addition are the digits of the numbers to be added and
the carry digit.) Subtraction is negation followed by addition. Multiplication

208 ARITHMETIC 4.1

also reduces to negation and addition, as in the following example:

1101 [17]
1101 [17]
1101
. 11010
1101
0111101 [289]

Representation of numbers in the balanced ternary system is implicitly
present in a famous mathematical puzzle, commonly called “Bachet’s problem of
weights” although it was already stated by Fibonacci four centuries before Bachet
wrote his book, and by Tabart in Persia more than 100 years before Fibonacci.
[See W. Ahrens, Mathematische Unterhaltungen und Spiele 1 (Leipzig: Teubner,
1910), Section 3.4; H. Hermelink, Janus 65 (1978), 105-117.] Positional number
systems with negative digits were invented by J. Colson [Philos. Trans. 34 (1726),
161-173], then forgotten and rediscovered about 100 years later by Sir John Leslie
(The Philosophy of Arithmetic (Edinburgh: 1817); see pages 33-34, 54, 64-65,
117, 150}, and A. Cauchy [Comptes Rendus Acad. Sci. Paris 11 (1840), 789-798].
Cauchy pointed out that negative digits make it unnecessary for a person to
memorize the multiplication table past 5 x 5. A claim that such number systems
were known in India long ago [J. Bharati, Vedic Mathematics (Delhi: Motilal
Banarsidass, 1965)] has been refuted by K. S. Shukla [Mathematical Education
5,3 (1989), 129-133]. The first true appearance of “pure” balanced ternary
notation was in an article by Léon Lalanne {Comptes Rendus Acad. Sci. Paris 11
(1840), 903-905], who was a designer of mechanical devices for arithmetic. The
system was mentioned only rarely for 100 years after Lalanne’s paper, until the
development of the first electronic computers at the Moore School of Electrical
Engineering in 1945-1946; at that time it was given serious consideration along
with the binary system as a possible replacement for the decimal system. The
complexity of arithmetic circuitry for balanced ternary arithmetic is not much
greater than it is for the binary system, and a given number requires- only
In2/In3 ~ 63% as many digit positions for its representation. Discussions of
the balanced ternary number system appear in AMM 57 (1950), 90-93, and
in High-speed Computing Devices, Engineering Research Associates (McGraw—
Hill, 1950), 287-289. The experimental Russian computer SETUN was based on
balanced ternary notation [see CACM 3 (1960), 149-150], and perhaps the sym-
metric properties and simple arithmetic of this number system will prove to be
quite important some day — when the “flip-flop” is replaced by a “flip-flap-flop.”

Positional notation generalizes in another important way to a mized-radiz
system. Given a sequence of numbers (b,) (where n may be negative), we define

...,0Q3,02,01,0p; A1, Q-2,...
Ceey b3, bz, b17 bo; b_l, b_z,. ..
= -4 asgbybibo + azbibp + a1bp +ao+a-1/b1+a_2/b_1b_o+---. (9)

4.1 POSITIONAL NUMBER SYSTEMS 209

In the simplest mixed-radix systems, we work only with integers; we let bg, by,
by, ... be integers greater than one, and deal only with numbers that have no
radix point, where a,, is required to lie in the range 0 < a,, < b,,.

One of the most important mixed-radix systems is the factorial number
system, where b, = n + 2. Using this system, we can represent every positive
integer uniquely in the form

cpnl+ ey (n—D 4+ 22l +cy, (10)

where 0 < ¢ < k for 1 <k <n, and ¢, # 0. (See Algorithm 3.3.2P.)

Mixed-radix systems are familiar in everyday life, when we deal with units
of measure. For example, the quantity “3 weeks, 2 days, 9 hours, 22 minutes, 57
seconds, and 492 milliseconds” is equal to

3,2, 9,22 57; 492

7. 94, 60, 60; 1000| S€CORdS:

The quantity “10 pounds, 6 shillings, and thruppence ha’penny” was once equal
to [10’ 23: 13 ;] pence in British currency, before Great Britain changed to a
purely decimal monetary system.

It is possible to add and subtract mixed-radix numbers by using a straight-
forward generalization of the usual addition and subtraction algorithms, provided
of course that the same mixed-radix system is being used for both operands
(see exercise 4.3.1-9). Similarly, we can easily multiply or divide a mixed-radix
number by small integer constants, using simple extensions of the familiar pencil-
and-paper methods.

Mixed-radix systems were first discussed in full generality by Georg Cantor
[Zeitschrift fiir Math. und Physik 14 (1869), 121-128). Exercises 26 and 29 give
further information about them.

Several questions concerning irrational radices have been investigated by
W. Parry, Acta Math. Acad. Sci. Hung. 11 (1960), 401-416.

Besides the systems described in this section, several other ways to represent
numbers are mentioned elsewhere in this series of books: the combinatorial num-
ber system (exercise 1.2.6-56); the Fibonacci number system (exercises 1.2.8-34,
5.4.2-10); the phi number system (exercise 1.2.8-35); modular representations
(Section 4.3.2); Gray code (Section 7.2.1); and Roman numerals (Section 9.1).

EXERCISES
1. [15] Express —10, =9, ..., 9, 10 in the number system whose radix is —2.

2. [24] Consider the following four number systems: (a) binary (signed magnitude);
(b) negabinary (radix —2); (c) balanced ternary; and (d) radix b = 5. Use each of
these four number systems to express each of the following three numbers: (i) —49;

(ii) —37 (show the repeating cycle); (iii) 7 (to a few significant figures).
3. [20] Express —49 + ¢ in the quater-imaginary system.

4. [15] Assume that we have a MIX program in which location A contains a number
for which the radix point lies between bytes 3 and 4, while location B contains a number

210 ARITHMETIC 4.1

whose radix point lies between bytes 2 and 3. (The leftmost byte is number 1). Where
will the radix point be, in registers A and X, after the following instructions?

(a) LDA A; MUL B (b) LDA A; SRAX 5; DIV B

5. [00] Explain why a negative integer in nines’ complement notation has a represen-
tation in ten’s complement notation that is always one greater, if the representations
are regarded as positive.

6. [16] What are the largest and smallest p-bit integers that can be represented
in (a) signed-magnitude binary notation (including one bit for the sign), (b) two’s
complement notation, (c) ones’ complement notation?

7. [M20] The text defines ten’s complement notation only for integers represented
in a single computer word. Is there a way to define a ten’s complement notation for all
real numbers, having “infinite precision,” analogous to the text’s definition? Is there a
similar way to define a nines’ complement notation for all real numbers?

8. [M10] Prove Eq. (5).

9. [15] Change the following octal numbers to hezadecimal notation, using the hexa-
decimal digits 0, 1, ..., 9, A, B, C, D, E, F: 12; 5655; 2550276, 76545336, 3726755.
10. [M22] Generalize Eq. (5) to mixed-radix notation as in (g).

11. [22] Design an algorithm that uses the —2 number system to compute the sum
of (an...a1a0)—2 and (b, ...b1by)—2, obtaining the answer (cn42...c1¢0)—2.

12. [23] Specify algorithms that convert (a) the binary signed magnitude number
+(an...ap)2 to its negabinary form (bn41...bo)—2; and (b) the negabinary number
(bn+1...bo)—2 to its signed magnitude form £(an41...a0)2.

13. [M21] In the decimal system there are some numbers with two infinite decimal
expansions; for example, 2.3599999 ... = 2.3600000.... Does the negadecimal (base
—10) system have unique expansions, or are there real numbers with two different
infinite expansions in this base also?

14. [14] Multiply (11321)2; by itself in the quater-imaginary system using the method
illustrated in the text.

15. [M24] What are the sets S = {)., axb™" | ax an allowable digit}, analogous
to Fig. 1, for the negative decimal and for the quater-imaginary number systems?

16. [M24] Design an algorithm to add 1 to (an ...@160):—1 in the i—1 number system.

17. [M30] It may seem peculiar that ¢« — 1 has been suggested as a number-system
base, instead of the similar but intuitively simpler number ¢ + 1. Can every complex
number a+bi, where a and b are integers, be represented in a positional number system
to base i + 1, using only the digits 0 and 17

18. [HM32] Show that the twindragon of Fig. 1 is a closed set that contains a neighbor-
hood of the origin. (Consequently, every complex number has a binary representation
with radix ¢ — 1.)

19. (23] (David W. Matula.) Let D be a set of b integers, containing exactly one
solution to the congruence z = j (modulo b) for 0 < j < b. Prove that all integers m
(positive, negative, or zero) can be represented in the form m = (a, ...ao)s, where all
the a; are in D, if and only if all integers in the range [< m < u can be so represented,
where | = —max{a |a € D}/(b—1) and u = —min{a | a € D}/(b —1). For example,
D ={-1,0,...,b— 2} satisfies the conditions for all b > 3. [Hint: Design an algorithm
that constructs a suitable representation.]

4.1 POSITIONAL NUMBER SYSTEMS 211

20. [HM28] (David W. Matula.) Consider a decimal number system that uses the
digits D = {-1,0,8,17, 26, 35,44, 53,62, 71} instead of {0,1,...,9}. The result of
exercise 19 implies (as in exercise 18) that all real numbers have an infinite decimal
expansion using digits from D.

In the usual decimal system, exercise 13 points out that some numbers have two
representations. (a) Find a real number that has more than two D-decimal represen-
tations. (b) Show that no real number has infinitely many D-decimal representations.
(c) Show that uncountably many numbers have two or more D-decimal representations.

- 21. [M22] (C. E. Shannon.) Can every real number (positive, negative, or zero)
be expressed in a “balanced decimal” system, that is, in the form stnaklo’“, for

some integer n and some sequence an, Gn-1, an 2, ..., where each ax is one of the
ten numbers { 4— —3— —2— —1%,—5, 55 11 2 %,4%}? (Although zero is not one
of the allowed dlglts we 1mphcltly assume that Gn+1, Ant2, .. are zero.) Find all

representations of zero in this number system, and find all representations of unity.

22. [HM25] Let a = — Zm>1 10-™", Given € > 0 and any real number z, prove that
there is a “decimal” representation such that 0 < |z —Y_7_, ax10¥| < €, where each ax

is allowed to be only one of the three values 0, 1, or a. (No negative powers of 10 are
used in this representation!)

23. [HM30] Let D be a set of b real numbers such that every positive real number
has a representation ., . arb® with all ax € D. Exercise 20 shows that there may
be many numbers without unique representations; but prove that the set T' of all such
numbers has measure zero, if 0 € D. Show that this conclusion need not be true if
0¢D.

24. [M35] Find infinitely many different sets D of ten nonnegative integers satisfying
the following three conditions: (i) ged(D) = 1; (ii) 0 € D; (iii) every positive real
number can be represented in the form Y, ., ax10* with all ax € D.

25. [M25] (S. A. Cook.) Let b, u, and v be positive integers, where b > 2 and
0 < v < b™. Show that the radix-b representation of u/v does not contain a run of
m consecutive digits equal to b — 1, anywhere to the right of the radix point. (By

convention, no runs of infinitely many (b — 1)’s are permitted in the standard radix-b
representation.)

- 26. [HM30] (N. S. Mendelsohn.) Let (8.) be a sequence of real numbers defined for
all integers n, —oo < n < oo, such that

Bn < Bn+1; lim G, = oc; lim G, =0.
n—o0 n—— 00

Let {c,) be an arbitrary sequence of positive integers that is defined for all integers n,
—00 < n < oo. Let us say that a number = has a “generalized representation” if
there is an integer n and an infinite sequence of integers an, Gn_1, Gn-2, ... such that
T =23, arBk, where an # 0,0 < ar < ck, and ax < ¢k for infinitely many k.
Show that every positive real number x has exactly one generalized representation
if and only if
Brn+1 = Z ckBr for all n.

k<n

(Consequently, the mixed-radix systems with integer bases all have this property; and

mixed-radix systems with 81 = (co+1)B0, B2 = (c1 +1)(co+1)Bo, ..., B-1 = Bo/(c1+
1), ... are the most general number systems of this type.)

212 ARITHMETIC 4.1

27. [M21] Show that every nonzero integer has a unique “reversing binary representa-
tion”
260 _ 261 4. + (_1)t2et,

where eg < e1 < -+ < es.

28. [M24] Show that every nonzero complex number of the form a + b where a and b
are integers has a unique “révolving binary representation”

(14+4)% +i(1+0) — (1+0)2 i1+ +--- +"(1+9)*,

where eg < €1 < --- < e;. (Compare with exercise 27.)

29. [M35] (N. G. de Bruijn.) Let So, Si, S2, ... be sets of nonnegative integers;
we will say that the collection {So,S1,Sz,...} has Property B if every nonnegative
integer n can be written in the form

n==s +8 +38+- -, s; € Sy,

in exactly one way. (Property B implies that 0 € S; for all j, since n = 0 can only
be represented as 0 + 0 + 0 + ---.) Any mixed-radix number system with radices bo,
b, ba, ... provides an example of a collection of sets satisfying Property B, if we let
S; = {0, B;,...,(bj — 1)B;}, where B; = boby ...bj_1; here the representation of n =
So+$1+8o+- - - corresponds in an obvious manner to its mixed-radix representation (9g).
Furthermore, if the collection {So,S1,S2,...} has Property B, and if Ao, A1, A2, ...
is any partition of the nonnegative integers (so that we have Ao U Ay U A2 U -+ =
{0,1,2,...} and A; N Aj = 0 for i # j; some A;’s may be empty), then the “collapsed”
collection {Ty, Ty, Tz, .. .} also has Property B, where T} is the set of all sums ZieAj 8
taken over all possible choices of s; € S;.

Prove that any collection {To, T, T, . . .} that satisfies Property B may be obtained
by collapsing some collection {So, S1, Sz, ...} that corresponds to a mixed-radix number
system.

30. [M39] (N. G. de Bruijn.) The negabinary number system shows us that every
integer (positive, negative, or zero) has a unique representation of the form

(=2) +(=2)2 4+ (-2)", e >e>-->e >0, 20

The purpose of this exercise is to explore generalizations of this phenomenon.
a) Let b, b1, be, ... be a sequence of integers such that every integer n has a unique
representation of the form
n:bel+b62+"'+b6t) el>e2>"'>et20, tZO-
(Such a sequence (b,) is called a “binary basis.”) Show that there is an index j
such that b; is odd, but bx is even for all k # j.

b) Prove that a binary basis (bn) can always be rearranged into the form do, 2d;,
4ds, ... = (2"d,), where each di is odd.

c) If each of do, d1, da, ... in (b) is &1, prove that (b,) is a binary basis if and only
if there are infinitely many +1’s and infinitely many -1’s.

d) Prove that 7, —13-2, 7-22, —13-2%, ..., 7-2%%, —13.2%%*! s a binary basis,
and find the representation of n = 1.

4.1 POSITIONAL NUMBER SYSTEMS 213

» 31. [M35] A generalization of two’s complement arithmetic, called “2-adic numbers,”
was introduced by K. Hensel in Crelle 127 (1904), 51-84. (In fact he treated p-adic
numbers, for any prime p.) A 2-adic number may be regarded as a binary number

u= (... U3UUIUO- U1 - - - U—n)2,

whose representation extends infinitely far to the left of the binary point, but only
finitely many places to the right. Addition, subtraction, and multiplication of 2-adic
numbers are done according to the ordinary procedures of arithmetic, which can in
principle be extended indefinitely to the left. For example,

7 = (...000000000000111)2 3 =(...110110110110111)2
—7 =(...111111111111001)2 —3% =(...001001001001001);
T = (...000000000000001.11), L = (...110011001100110.1)

V=7 = (...100000010110101)2 or (...011111101001011).

Here 7 appears as the ordinary binary integer seven, while —7 is its two’s comple-
ment (extending infinitely to the left); it is easy to verify that the ordinary procedure
for addition of binary numbers will give —7+7 = (...00000)2 = 0, when the procedure
is continued indefinitely. The values of = and —% are the unique 2-adic numbers that,
when formally multiplied by 7, give 1 and —1, respectively. The values of 7 and 1
are examples of 2-adic numbers that are not 2-adic “integers,” since they have nonzero
bits to the right of the binary point. The two values of /=7, which are negatives of
each other, are the only 2-adic numbers that, when formally squared, yield the value
(... 111111111111001)s,.

a) Prove that any 2-adic number u can be divided by any nonzero 2-adic number v
to obtain a unique 2-adic number w satisfying u = vw. (Hence the set of 2-adic
numbers forms a “field”; see Section 4.6.1.)

b) Prove that the 2-adic representation of the rational number —1/(2n + 1) may be
obtained as follows, when n is a positive integer: First find the ordinary binary
expansion of +1/(2n+1), which has the periodic form (0.aaa ...)2 for some string
a of 0s and 1s. Then —1/(2n + 1) is the 2-adic number (... aaq)s.

c) Prove that the representation of a 2-adic number u is ultimately periodic (that is,
unsa = un for all large N, for some A > 1) if and only if u is rational (that is,
u = m/n, for some integers m and n).

d) Prove that, when n is an integer, 4/n is a 2-adic number if and only if it satisfies
n mod 22513 = 22* for some nonnegative integer k. (Thus, the possibilities are
either n mod 8 = 1, or n mod 32 = 4, etc.)

32. [M40] (L. Z. Ruzsa.) Construct infinitely many integers whose ternary represen-
tation uses only 0s and 1s and whose quinary representation uses only 0s, 1s, and 2s.

33. [M40] (D. A.Klarner.) Let D be any set of integers, let b be any positive integer,
and let k,, be the number of distinct integers that can be written as n-digit numbers
(Gn_1...a100)p to base b with digits a; in D. Prove that the sequence (k) satisfies
a linear recurrence relation, and explain how to compute the generating function
>, knz™. Illustrate your algorithm by showing that k, is a Fibonacci number in
the case b= 3 and D = {-1,0, 3}.

» 34. [22] (G.W. Reitwiesner, 1960.) Explain how to represent a given integer n in the
form (...a2a1a0)2, where each a; is —1, 0, or 1, using the fewest nonzero digits.

214 ARITHMETIC 4.2

4.2. FLOATING POINT ARITHMETIC

IN THIS SECTION we shall study the basic principles of arithmetic operations on
“floating point” numbers, by analyzing the internal mechanisms underlying such
calculations. Perhaps many readers will have little interest in this subject, since
their computers either have built-in floating point instructions or their operating
systems include suitable .subroutines. But, in fact, the material of this section
should not merely be the concern of computer-design engineers or of a small
clique of people who write library subroutines for new machines; every well-
rounded programmer ought to have a knowledge of what goes on during the ele-
mentary steps of floating point arithmetic. This subject is not at all as trivial as
most people think, and it involves a surprising amount of interesting information.

4.2.1. Single-Precision Calculations

A. Floating point notation. We have discussed “fixed point” notation for
numbers in Section 4.1; in such a case the programmer knows where the radix
point is assumed to lie in the numbers being manipulated. For many purposes,
however, it is considerably more convenient to let the position of the radix point
be dynamically variable or “floating” as a program is running, and to carry with
each number an indication of its current radix point position. This idea has been
used for many years in scientific calculations, especially for expressing very large
numbers like Avogadro’s number N = 6.02252 x 1022, or very small numbers like
Planck’s constant h = 6.6256 x 10727 erg sec.

In this section we shall work with base b, excess q, floating point numbers
with p digits: Such numbers will be represented by pairs of values (e, f), denoting

(e, f) = fx b4 (1)

Here e is an integer having a specified range, and f is a signed fraction. We will
adopt the convention that

Ifl <1

in other words, the radix point appears at the left of the positional representation
of f. More precisely, the stipulation that we have p-digit numbers means that
b? f is an integer, and that

—bP < bP f < bP. (2)

The term “floating binary” implies that b = 2, “floating decimal” implies b = 10,
etc. Using excess-50 floating decimal numbers with 8 digits, we can write, for
example,

Avogadro’s number N = (74, +.60225200);

Planck’s constant h = (24, +.66256000). (3)

The two components e and f of a floating point number are called the
exponent and the fraction parts, respectively. (Other names are occasionally
used for this purpose, notably “characteristic” and “mantissa”; but it is an abuse
of terminology to call the fraction part a mantissa, since that term has quite a
different meaning in connection with logarithms. Furthermore the English word
mantissa means “a worthless addition.”)

4.2.1 SINGLE-PRECISION CALCULATIONS 215

The MIX computer assumes that its floating point numbers have the form

+te | fI I F | I (4)

Here we have base b, excess ¢, floating point notation with four bytes of precision,
where b is the byte size (e.g., b = 64 or b = 100), and ¢ is equal to L%b]
The fraction part is + f f f f, and e is the exponent, which lies in the range
0 < e < b. This internal representation is typical of the conventions in most
existing computers, although b is a much larger base than usual.

B. Normalized calculations. A floating point number (e, f) is normalized if
the most significant digit of the representation of f is nonzero, so that

1/b<|f] < 1; (5)

or if f = 0 and e has its smallest possible value. It is possible to tell which of
two normalized floating point numbers has a greater magnitude by comparing
the exponent parts first, and then testing the fraction parts only if the exponents
are equal.

Most floating point routines now in use deal almost entirely with normalized
numbers: Inputs to the routines are assumed to be normalized, and the outputs
are always normalized. Under these conventions we lose the ability to represent
a few numbers of very small magnitude — for example, the value (0,.00000001)
can’t be normalized without producing a negative exponent—but we gain in
speed, uniformity, and the ability to give relatively simple bounds on the relative
error in our computations. (Unnormalized floating point arithmetic is discussed
in Section 4.2.2.)

Let us now study the normalized floating point operations in detail. At the
same time we can consider the construction of subroutines for these operations,
assuming that we have a computer without built-in floating point hardware.

Machine-language subroutines for floating point arithmetic are usually writ-
ten in a very machine-dependent manner, using many of the wildest idiosyn-
crasies of the computer at hand. Therefore floating point addition subroutines
for two different machines usually bear little superficial resemblance to each
other. Yet a careful study of numerous subroutines for both binary and decimal
computers reveals that these programs actually have quite a lot in common, and
it is possible to discuss the topics in a machine-independent way.

The first (and by far the most difficult!) algorithm we shall discuss in this
section is a procedure for floating point addition,

(euafu)®(evafv):(ew,fw)' (6)

Since floating point arithmetic is inherently approximate, not exact, we will use
“round” symbols

697 67 ®7 @

to stand for floating point addition, subtraction, multiplication, and division,
respectively, in order to distinguish approximate operations from the true ones.

216 ARITHMETIC 4.2.1

|

Al. Unpack

A2. Assume e, > ey

A3. Set ey

€y > €y

@4. Test ey — € i A5. Scale right A6. Add A7. Normalize

}

Fig. 2. Floating point addition.

The basic idea involved in floating point addition is fairly simple: Assuming
that e, > e,, we take ey, = €y, fuw = fu + fu/b°* 7 (thereby aligning the
radix points for a meaningful addition), and normalize the result. But several
situations can arise that make this process nontrivial, and the following algorithm
explains the method more precisely.

Algorithm A (Floating point addition). Given base b, excess ¢, p-digit, nor-
malized floating point numbers u = (e, fu) and v = (e, fy), this algorithm
forms the sum w = u @ v. The same procedure may be used for floating point
subtraction, if —v is substituted for v.

A1l. [Unpack.] Separate the exponent and fraction parts of the representations
of u and v.

A2. [Assume e, > e,.] If e, < e,, interchange u and v. (In many cases, it is
best to combine step A2 with step Al or with some of the later steps.)

A3. [Set e,,.] Set ey — ey

A4. [Test e, —e,.) If ey —€y > p+2 (large difference in exponents), set fu, fu
and go to step A7. (Actually, since we are assuming that u is normalized,
we could terminate the algorithm; but it is occasionally useful to be able to
normalize a possibly unnormalized number by adding zero to it.)

A5. [Scale right.] Shift f, to the right e, —ey places; that is, divide it by b= 7°.
[Note: This will be a shift of up to p + 1 places, and the next step (which
adds f, to f,) thereby requires an accumulator capable of holding 2p + 1
base-b digits to the right of the radix point. If such a large accumulator
is not available, it is possible to shorten the requirement to p + 2 or p + 3
places if proper precautions are taken; the details are given in exercise 5.]

A6. [Add.] Set fu < fu+ fo.

4.2.1 SINGLE-PRECISION CALCULATIONS 217

Rounding overflow

Ifl>1 N4. Scale right

{ N1. Test f v N5. Round
es

N2. Is f normalized?

No N6. Check e }

eck e
— Overflow or
N3. Scale left underflow
N7. Pack

Fig. 3. Normalization of (e, f).

A7. [Normalize.] (At this point (e, fw) represents the sum of u and v, but | fu|
may have more than p digits, and it may be greater than unity or less than
1/b.) Perform Algorithm N below, to normalize and round (e, fw) into the
final answer. 1

Algorithm N (Normalization). A “raw exponent” e and a “raw fraction” f are
converted to normalized form, rounding if necessary to p digits. This algorithm
assumes that |f| < b.

N1. [Test f.] If |[f| > 1 (“fraction overflow”), go to step N4. If f =0, set e to
its lowest possible value and go to step N7.

N2. {Is f normalized?] If |f| > 1/b, go to step Nb.

N3. [Scale left.] Shift f to the left by one digit position (that is, multiply it
by b), and decrease e by 1. Return to step N2.

N4. [Scale right.] Shift f to the right by one digit position (that is, divide it
by b), and increase e by 1.

N5. [Round.] Round f to p places. (We take this to mean that f is changed to
the nearest multiple of 5. It is possible that (b? f) mod 1 = % so that there
are two nearest multiples; if b is even, we change f to the nearest multiple
f' of b~P such that b? f' + %b is odd. Further discussion of rounding appears
in Section 4.2.2.) It is important to note that this rounding operation can
make |f| = 1 (“rounding overflow”); in such a case, return to step N4.

N6. [Check e.] If e is too large, that is, greater than its allowed range, an
exponent overflow condition is sensed. If e is too small, an exponent under-
flow condition is sensed. (See the discussion below; since the result cannot
be expressed as a normalized floating point number in the required range,
special action is necessary.)

N7. [Pack.] Put e and f together into the desired output representation. |

Some simple examples of floating point addition are given in exercise 4.

218 ARITHMETIC 4.2.1

The following MIX subroutines, for addition and subtraction of numbers
having the form (4), show how Algorithms A and N can be expressed as computer
programs. The subroutines below are designed to take one input « from symbolic
location ACC, and the other input v comes from register A upon entrance to the
subroutine. The output w appears both in register A and location ACC. Thus, a
fixed point coding sequernrce

IDA A; ADD B; SUB C; STAD (7)

would correspond to the floating point coding sequence

LDA A, STA ACC; LDA B, JMP FADD; LDA C, JMP FSUB; STA D. (8)

Program A (Addition, subtraction, and normalization). The following program
is a subroutine for Algorithm A, and it is also designed so that the normalization
portion can be used by other subroutines that appear later in this section. In
this program and in many others throughout this chapter, OFLO stands for a
subroutine that prints out a message to the effect that MIX’s overflow toggle
was unexpectedly found to be on. The byte size b is assumed to be a multiple
of 4. The normalization routine NORM assumes that rI2 = e and rAX = f, where
rA = 0 implies rX = 0 and rI2 < b.

00 BYTE EQU 1(4:4) Byte size b

01 EXP EQU 1:1 Definition of exponent field

02 FSUB STA TEMP Floating point subtraction subroutine:
03 LDAN TEMP Change sign of operand.

04 FADD STJ EXITF Floating point addition subroutine:
05 JOv OFLO Ensure that overflow is off.

06 STA TEMP TEMP « v.

07 LDX ACC rX < u.

08 CMPA ACC(EXP) Steps Al, A2, A3 are combined here:
09 JGE 1F Jump if e, > e,.

10 STX FU(0:4) FU—=xffffo.

11 LD2 ACC(EXP) rl2 « e,

12 STA FV(0:4)

13 LDIN TEMP(EXP) rIl « —e,.

14 JMP 4F

15 1H STA FU(0:4) FU < £ f f ffO (u,v interchanged).
16 LD2 TEMP(EXP) rI2 « ey.

17 STX FV(0:4)

18 LD1N ACC(EXP) rIl « —e,.

19 4H INC1 0,2 rIl < ey — e,. (Step A4 unnecessary.)
20 b5H LDA FV AS5. Scale right.

21 ENTX O Clear rX.

22 SRAX 0,1 Shift right e, — e, places.

23 6H ADD FU A6. Add.

24 JOV N4 A7. Normalize. Jump if fraction overflow.
25 JXZ NORM Easy case?

4.2.1

26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
438
44
45
46
47
48
49
50
51
52
58
94
56
56
57
58
59
60
61
62
63
64
65
66
67

HALF
FU
FV

NORM
N2

N3
N3A

N4

Nb

5H

N6
N7

ZR0O
8H
EXITF
EXPOV
EXPUN
ACC

CMPA
JNE
SRC
DECX
STA
STA
LDAN
ADD
ADD
SRC
JMP
CON
CON
CON

JAZ
CMPA
JNE
SLAX
DEC2
JMP
ENTX
SRC
INC2
CMPA
JL
JG
JXNZ
STA
LDX
JX0
STA
INCA
Jov
J2N
ENTX
SRC
DEC2
STA
J2N
HLT
HLT
CON

=0=(1:1)
Nb

5

1

TEMP
HALF(0:0)
TEMP
HALF
HALF

4

N3A

1//2

=BYTE/2=(5:5)

N6

5F

5F

TEMP
TEMP(4:4)
N6
*+1(0:0)
BYTE

N4

EXPUN
0,2

1

BYTE

ACC

*

2

1

0

SINGLE-PRECISION CALCULATIONS

Is f normalized?
If so, round it.
[rX| > |rA].

(rX is positive.)

(The operands had opposite signs;

we must adjust the registers

before rounding and normalization.)

Complement the least significant portion.

Jump into normalization routine.

One half the word size (Sign varies)

Fraction part fu
Fraction part f,

NI1. Test f.

N2. Is f normalized?

To N5 if leading byte nonzero.
N3. Scale left.

Decrease e by 1.

Return to N2.

N4. Scale right.

Shift right, insert “1” with proper sign.

Increase e by 1.
N5. Round.
Is |tail| < £b7

Is |tail| > 3b?
|tail| = Zb; round to odd.

To N6 if rX is odd.

Store sign of rA.

Add b~* to |f|- (Sign varies)
Check for rounding overflow.

N6. Check e. Underflow if e < 0.
N7. Pack. tX «e.

rI2 « e —b.

Exit, unless e > b.

Exponent overflow detected
Exponent underflow detected
Floating point accumulator |

219

The rather long section of code from lines 25 to 37 is needed because MIX has
only a 5-byte accumulator for adding signed numbers while in general 2p+1 =9
places of accuracy are required by Algorithm A. The program could be shortened
to about half its present length if we were willing to sacrifice a little bit of its
accuracy, but we shall see in the next section that full accuracy is important.
Line 55 uses a nonstandard MIX instruction defined in Section 4.5.2. The running

220 ARITHMETIC 4.2.1

time for floating point addition and subtraction depends on several factors that
are analyzed in Section 4.2.4.

Now let us consider multiplication and division, which are simpler than
addition, and somewhat similar to each other.

Algorithm M (Floating point multiplication or division). Given base b, excess g,
p-digit, normalized floating point numbers u = (e, fu) and v = (ey, fy), this
algorithm forms the product w = u ® v or the quotient w =u @ v.

M1. [Unpack.] Separate the exponent and fraction parts of the representations
of u and v. (Sometimes it is convenient, but not necessary, to test the
operands for zero during this step.)

M2. [Operate.] Set
Ew — €y + €y — q, fw < fu fo for multiplication;
ey — €y — €y +q+1, fu (b71fu)/f, for division.

(9)

(Since the input numbers are assumed to be normalized, it follows that
either f, =0, or 1/b* < |fu| < 1, or a division-by-zero error has occurred.)
If necessary, the representation of f,, may be reduced to p+2 or p+ 3 digits
at this point, as in exercise 5.

M3. [Normalize.] Perform Algorithm N on (e, fw) to normalize, round, and
pack the result. (Note: Normalization is simpler in this case, since scaling
left occurs at most once, and since rounding overflow cannot occur after
division.) 1

The following MIX subroutines, intended to be used in connection with
Program A, illustrate the machine considerations that arise in Algorithm M.

Program M (Floating point multiplication and division).

01 Q EQU BYTE/2 q is half the byte size

02 FMUL STJ EXITF Floating point multiplication subroutine:
03 Jov OFLO Ensure that overflow is off.

04 STA TEMP TEMP « v.

05 LDX ACC X u.

06 STX FU(0:4) FU«—=xffffo0.

07 LD1 TEMP(EXP)

08 LD2 ACC(EXP)

09 INC2 -Q,1 rI2 «— e, +ey, —g.

10 SLA 1

11 MUL FU Multiply f, times f,.

12 JMP NORM Normalize, round, and exit.

13 FDIV STJ EXITF Floating point division subroutine:
14 JOV OFLO Ensure that overflow is off.

15 STA TEMP TEMP « v.

16 STA FV(0:4) FV—xffffo.

17 LD1 TEMP(EXP)

18 LD2 ACC(EXP)

19 DEC2 -Q,1 rI2 < e, — €, +gq.

4.2.1 SINGLE-PRECISION CALCULATIONS 221

20 ENTX O

21 LDA ACC

22 SLA 1 TA « fu.

23 CMPA FV(1:5)

24 JL *+3 Jump if |fu]| < |fol]-

25 SRA 1 Otherwise, scale f, right

26 INC2 1 and increase rI2 by 1.

27 DIV FV Divide.

28 JNOV NORM Normalize, round, and exit.

29 DVZRO HLT 3 Unnormalized or zero divisor |

The most noteworthy feature of this program is the provision for division
in lines 23-26, which is made in order to ensure enough accuracy to round the
answer. If |fu| < |fu|, straightforward application of Algorithm M would leave
a tesult of the form “£0f f ff” in register A, and this would not allow a
proper rounding without a careful analysis of the remainder (which appears in
register X). So the program computes f., < fu/fo in this case, ensuring that f,
is either zero or normalized in all cases; rounding can proceed with five significant
bytes, possibly testing whether the remainder is zero.

We occasionally need to convert values between fixed and floating point
representations. A “fix-to-float” routine is easily obtained with the help of the
normalization algorithm above; for example, in MIX, the following subroutine
converts an integer to floating point form:

01 FLOT STJ EXITF Assume that rA = u, an integer.

02 JOV OFLO Ensure that overflow is off.

03 ENT2 Q+5 Set raw exponent. (10)
04 ENTX O

05 JMP NORM Normalize, round, and exit. |

A “float-to-fix” subroutine is the subject of exercise 14.

The debugging of floating point subroutines is usually a difficult job, since
there are so many cases to consider. Here is a list of common pitfalls that often
trap a programmer or machine designer who is preparing floating point routines:

1) Losing the sign. On many machines (not MIX), shift instructions between
registers will affect the sign, and the shifting operations used in normalizing and
scaling numbers must be carefully analyzed. The sign is also lost frequently
when minus zero is present. (For example, Program A is careful to retain the
sign of register A in lines 30-34. See also exercise 6.)

2) Failure to treat exponent underflow or overflow properly. The size of ey
should not be checked until after the rounding and normalization, because
preliminary tests may give an erroneous indication. Exponent underflow and
overflow can occur on floating point addition and subtraction, not only during
multiplication and division; and even though this is a rather rare occurrence, it
must be tested each time. Enough information should be retained so that mean-
ingful corrective actions are possible after overflow or underflow has occurred.

222 ARITHMETIC 4.2.1

It has unfortunately become customary in many instances to ignore exponent
underflow and simply to set underflowed results to zero with no indication of
error. This causes a serious loss of accuracy in most cases (indeed, it is the
loss of all the significant digits), and the assumptions underlying floating point
arithmetic have broken down; so the programmer really must be told when
underflow has occurred. Setting the result to zero is appropriate only in certain
cases when the result is later to be added to a significantly larger quantity.
When exponent underflow is not detected, we find mysterious situations in which
(u®v)@w is zero, but u® (v®w) is not, since u@v results in exponent underflow
but v ® (v ® w) can be calculated without any exponents falling out of range.
Similarly, we can find positive numbers a, b, ¢, d, and y such that

(a®@y ® D)0 (cQ®yY & d) =
(a ®bOY)O(c ® dQy) =

3

(11)

=i

if exponent underflow is not detected. (See exercise 9.) Even though floating
point routines are not precisely accurate, such a disparity as (11) is certainly
unexpected when a, b, ¢, d, and y are all positive! Exponent underflow is usually
not anticipated by a programmer, so it needs to be reported.*

3) Inserted garbage. When scaling to the left it is important to keep from
introducing anything but zeros at the right. For example, note the “ENTX 0”
instruction in line 21 of Program A, and the all-too-easily-forgotten “ENTX 0”
instruction in line 04 of the FLOT subroutine (10). (But it would be a mistake to
clear register X after line 27 in the division subroutine.)

4) Unforeseen rounding overflow. When a number like .999999997 is rounded
to 8 digits, a carry will occur to the left of the decimal point, and the result must
be scaled to the right. Many people have mistakenly concluded that rounding
overflow is impossible during multiplication, since they look at the maximum
value of |fy f,|, which is 1 — 267 + b~??; and this cannot round up to 1. The
fallacy in this reasoning is exhibited in exercise 11. Curiously, it turns out that
the phenomenon of rounding overflow is impossible during floating point division
(see exercise 12).

* On the other hand, we must admit that today’s high-level programming languages give the
programmer little or no satisfactory way to make use of the information that a floating point
routine wants to provide; and the MIX programs in this section, which simply halt when errors
are detected, are even worse. There are numerous important applications in which exponent
underflow is relatively harmless, and it is desirable to find a way for programmers to cope
with such situations easily and safely. The practice of silently replacing underflows by zero has
been thoroughly discredited, but there is another alternative that has recently been gaining
much favor, namely to modify the definition that we have given for floating point numbers,
allowing an unnormalized fraction part when the exponent has its smallest possible value. This
idea of “gradual underflow,” which was first embodied in the hardware of the Electrologica X8
computer, adds only a small amount of complexity to the algorithms, and it makes exponent
underflow impossible during addition or subtraction. The simple formulas for relative error in
Section 4.2.2 no longer hold in the presence of gradual underflow, so the topic is beyond the
scope of this book. However, by using formulas like round(z) = z(1—8) +¢, where |§] < b'~P/2
and |e] < b~P~9/2, one can show that gradual underflow succeeds in many important cases.
See W. M. Kahan and J. Palmer, ACM SIGNUM Newsletter (October 1979), 13-21.

4.2.1 SINGLE-PRECISION CALCULATIONS 223

There is a school of thought that says it is harmless to “round” a value like
1999999997 to .99999999 instead of to 1.0000000, since this does not increase
the worst-case bounds on relative error. The floating decimal number 1.0000000
may be said to represent all real values in the interval

[1.0000000 — 5 x 1078 .. 1.0000000 + 5 x 1078],
while .99999999 represents all values in the much smaller interval
(.99999999 — 5 x 1079 .. .99999999 + 5 x 107°).

Even though the latter interval does not contain the original value .999999997,
each number of the second interval is contained in the first, so subsequent
calculations with the second interval are no less accurate than with the first. This
ingenious argument is, however, incompatible with the mathematical philosophy
of floating point arithmetic expressed in Section 4.2.2.

5) Rounding before normalizing. Inaccuracies are caused by premature round-
ing in the wrong digit position. This error is obvious when rounding is being done
to the left of the appropriate position; but it is also dangerous in the less obvious
cases where rounding is first done too far to the right, followed by rounding in the
true position. For this reason it is a mistake to round during the “scaling-right”
operation in step A5, except as prescribed in exercise 5. (The special case of
rounding in step N5, then rounding again after rounding overflow has occurred,
is harmless, however, because rounding overflow always yields £1.0000000 and
such values are unaffected by the subsequent rounding process.)

6) Failure to retain enough precision in intermediate calculations. Detailed
analyses of the accuracy of floating point arithmetic, made in the next section,
suggest strongly that normalizing floating point routines should always deliver
a properly rounded result to the maximum possible accuracy. There should
be no exceptions to this dictum, even in cases that occur with extremely low
probability; the appropriate number of significant digits should be retained
throughout the computations, as stated in Algorithms A and M.

C. Floating point hardware. Nearly every large computer intended for
scientific calculations includes floating point arithmetic as part of its repertoire of
built-in operations. Unfortunately, the design of such hardware usually includes
some anomalies that result in dismally poor behavior in certain circumstances,
and we hope that future computer designers will pay more attention to providing
the proper behavior than they have in the past. It costs only a little more
to build the machine right, and considerations in the following section show
that substantial benefits will be gained. Yesterday’s compromises are no longer
appropriate for modern machines, based on what we know now.

The MIX computer, which is being used as an example of a “typical” machine
in this series of books, has an optional “floating point attachment” (available at
extra cost) that includes the following seven operations:

e FADD, FSUB, FMUL, FDIV, FLOT, FCMP (C = 1, 2, 3, 4, 5, 56, respectively; F = 6).
The contents of rA after the operation “FADD V” are precisely the same as the

224 ARITHMETIC 4.2.1

contents of rA after the operations

STA ACC; LDA V; JMP FADD

where FADD is the subroutine that appears earlier in this section, except that both
operands are automatically normalized before entry to the subroutine if they
were not already in normalized form. (If exponent underflow occurs during this
pre-normalization, but not during the normalization of the answer, no underflow
is signalled.) Similar remarks apply to FSUB, FMUL, and FDIV. The contents of rA
after the operation “FLOT” are the contents after “JMP FLOT” in the subroutine
(10) above.

The contents of rA are unchanged by the operation “FCMP V”. This in-
struction sets the comparison indicator to LESS, EQUAL, or GREATER, depending
on whether the contents of rA are “definitely less than,” “approximately equal
to,” or “definitely greater than” V, as discussed in the next section. The precise
action is defined by the subroutine FCMP of exercise 4.2.2-17 with EPSILON in
location 0.

No register other than rA is affected by any of the floating point operations.
If exponent overflow or underflow occurs, the overflow toggle is turned on and
the exponent of the answer is given modulo the byte size. Division by zero leaves
undefined garbage in rA. Execution times: 4w, 4u, 9u, 11u, 3u, 4u, respectively.

e FIX (C =5; F =7). The contents of rA are replaced by the integer “round(rA)”,
rounding to the nearest integer as in step N5 of Algorithm N. However, if this
answer is too large to fit in the register, the overflow toggle is set on and the
result is undefined. Execution time: 3u.

Sometimes it is helpful to use floating point operators in a nonstandard
way. For example, if the operation FLOT had not been included as part of MIX’s
floating point attachment, we could easily achieve its effect on 4-byte numbers
by writing

FLOT STJ OF
SLA 1
ENTX Q+4
SRC 1 (12)
FADD =0=
OH JIMP * |

This routine is not strictly equivalent to the FLOT operator, since it assumes that
the 1:1 byte of rA is zero, and it destroys rX. The handling of more general
situations is a little tricky, because rounding overflow can occur even during a
FLOT operation.

Similarly, suppose MIX had a FADD operation but not FIX. If we wanted to
round a number u from floating point form to the nearest fixed point integer,
and if we knew that the number was nonnegative and would fit in at most three
bytes, we could write

FADD FUDGE

4.2.1 SINGLE-PRECISION CALCULATIONS 225

where location FUDGE contains the constant

+ |Q+4 | 1 0 0 0o |;

the result in rA would be

+ |Q+4 | 1 r(;und(;i) : (13)

] {

D. History and bibliography. The origins of floating point notation can
be traced back to Babylonian mathematicians (1800 B.C. or earlier), who made
extensive use of radix-60 floating point arithmetic but did not have a notation for
the exponents. The appropriate exponent was always somehow “understood” by
whoever was doing the calculations. At least one case has been found in which
the wrong answer was given because addition was performed with improper
alignment of the operands, but such examples are very rare; see O. Neugebauer,
The Exact Sciences in Antiquity (Princeton, N. J.: Princeton University Press,
1952), 26-27. Another early contribution to floating point notation is due to
the Greek mathematician Apollonius (3rd century B.C.), who apparently was
the first to explain how to simplify multiplication by collecting powers of 10
separately from their coefficients, at least in simple cases. [For a discussion of
Apollonius’s method, see Pappus, Mathematical Collections (4th century A.D.).]
After the Babylonian civilization died out, the first significant uses of floating
point notation for products and quotients did not emerge until much later, about
the time logarithms were invented (1600) and shortly afterwards when Oughtred
invented the slide rule (1630). The modern notation “z™” for exponents was
being introduced at about the same time; separate symbols for squared, z
cubed, etc., had been in use before this.

Floating point arithmetic was incorporated into the design of some of the ear-
liest computers. It was independently proposed by Leonardo Torres y Quevedo
in Madrid, 1914; by Konrad Zuse in Berlin, 1936; and by George Stibitz in
New Jersey, 1939. Zuse’s machines used a floating binary representation that he
called “semi-logarithmic notation”; he also incorporated conventions for dealing
with special quantities like “co” and “undefined.” The first American computers
to operate with floating point arithmetic hardware were the Bell Laboratories’
Model V and the Harvard Mark II, both of which were relay calculators designed
in 1944. [See B. Randell, The Origins of Digital Computers (Berlin: Springer,
1973), 100, 155, 163-164, 259-260; Proc. Symp. Large-Scale Digital Calculating
Machinery (Harvard, 1947), 41-68, 69-79; Datamation 13 (April 1967), 35-44
(May 1967), 45-49; Zeit. fiir angew. Math. und Physik 1 (1950), 345-346.]

The use of floating binary arithmetic was seriously considered in 1944-1946
by researchers at the Moore School in their plans for the first electronic digital
computers, but they found that floating point circuitry was much harder to
implement with tubes than with relays. The group realized that scaling was a
problem in programming; but they knew that it was only a very small part of a
total programming job in those days. Indeed, explicit fixed-point scaling seemed
to be well worth the time and trouble it took, since it tended to keep programmers

226 ARITHMETIC 4.2.1

aware of the numerical accuracy they were getting. Furthermore, the machine de-
signers argued that floating point representation would consume valuable mem-
ory space, since the exponents must be stored; and they noted that floating point
hardware was not readily adapted to multiple-precision calculations. [See von
Neumann’s Collected Works 5 (New York: Macmillan, 1963), 43, 73-74.] At that
time, of course, they were designing the first stored-program computer and the
second electronic computer, and their choice had to be either fixed point or float-
ing point arithmetic, not both. They anticipated the coding of floating binary
subroutines, and in fact “shift left” and “shift right” instructions were put into
their design primarily to make such routines more efficient. The first machine to
have both kinds of arithmetic in its hardware was apparently a computer devel-
oped at General Electric Company [see Proc. 2nd Symp. Large-Scale Digital Cal-
culating Machinery (Cambridge, Mass.: Harvard University Press, 1951), 65-69].

Floating point subroutines and interpretive systems for early machines were
coded by D. J. Wheeler and others, and the first publication of such routines
was in The Preparation of Programs for an Electronic Digital Computer by
Wilkes, Wheeler, and Gill (Reading, Mass.: Addison—Wesley, 1951), subroutines
A1-A11, pages 35-37 and 105-117. It is interesting to note that floating decimal
subroutines are described here, although a binary computer was being used; in
other words, the numbers were represented as 10°f, not 2°f, and therefore the
scaling operations required multiplication or division by 10. On this particular
machine such decimal scaling was almost as easy as shifting, and the decimal
approach greatly simplified input/output conversions.

Most published references to the details of floating point arithmetic rou-
tines are scattered in technical memorandums distributed by various computer
manufacturers, but there have been occasional appearances of these routines in
the open literature. Besides the reference above, the following are of historical
interest: R. H. Stark and D. B. MacMillan, Math. Comp. 5 (1951), 86-92,
where a plugboard-wired program is described; D. McCracken, Digital Computer
Programming (New York: Wiley, 1957), 121-131; J. W. Carr III, CACM 2,5
(May 1959), 10-15; W. G. Wadey, JACM 7 (1960), 129-139; D. E. Knuth, JACM
8 (1961), 119-128; O. Kesner, CACM 5 (1962), 269-271; F. P. Brooks and K. E.
Iverson, Automatic Data Processing (New York: Wiley, 1963), 184-199. For a
discussion of floating point arithmetic from a computer designer’s standpoint, see
“Floating point operation” by S. G. Campbell, in Planning a Computer System,
edited by W. Buchholz (New York: McGraw-Hill, 1962), 92-121; A. Padegs,
IBM Systems J. 7 (1968), 22-29. Additional references, which deal primarily
with the accuracy of floating point methods, are given in Section 4.2.2.

A revolutionary change in floating point hardware took place when most
manufacturers began to adopt ANSI/IEEE Standard 754 during the late 1980s.
Relevant references are: IEEE Micro 4 (1984), 86-100; W. J. Cody, Comp.
Sci. and Statistics: Symp. on the Interface 15 (1983), 133-139; W. M. Kahan,
Mini/Micro West-83 Conf. Record (1983), Paper 16/1; D. Goldberg, Computing
Surveys 23 (1991), 5-48, 413; W. J. Cody and J. T. Coonen, ACM Trans. Math.
Software 19 (1993), 443-451.

4.2.1 SINGLE-PRECISION CALCULATIONS 227

>\ The MMIX computer, which will replace MIX in the next edition of this book,
. will naturally conform to the new standard.

EXERCISES

1. [10] How would Avogadro’s number and Planck’s constant (3) be represented in
base 100, excess 50, four-digit floating point notation? (This would be the representa-
tion used by MIX, as in (4), when the byte size is 100.)

2. [12] Assume that the exponent e is constrained to lie in the range 0 < e < F;
what are the largest and smallest positive values that can be written as base b, excess g,
p-digit floating point numbers? What are the largest and smallest positive values that
can be written as normalized floating point numbers with these specifications?

3. [11] (K. Zuse, 1936.) Show that if we are using normalized floating binary
arithmetic, there is a way to increase the precision slightly without loss of memory
space: A p-bit fraction part can be represented using only p — 1 bit positions of a
computer word, if the range of exponent values is decreased very slightly.

4. [16] Assume that b = 10, p = 8. What result does Algorithm A give for
(50, +.98765432) & (49, +.33333333)7? For (53, —.99987654) & (54, +.10000000)7 For
(45, —.50000001) & (54, 4.10000000)?

5. [2{] Let us say that ¢ ~ y (with respect to a given radix b) if z and y are real
numbers satisfying the following conditions:

lz/b] = [y/bl;
rzmodb=0

<= ymodb=0;
0<zmodb< b <= 0<ymodb< }b;
=

wmodb:%b ymodb:%b;

%b<wmodb<b <= ib<ymodb<b.

Prove that if f, is replaced by b=P~2F, between steps A5 and A6 of Algorithm A, where
F, ~ bP™2 £, the result of that algorithm will be unchanged. (If F,, is an integer and b is
even, this operation essentially truncates f, to p+2 places while remembering whether
any nonzero digits have been dropped, thereby minimizing the length of register that
is needed for the addition in step A6.)

6. [20] If the result of a FADD instruction is zero, what will be the sign of rA, according
to the definitions of MIX’s floating point attachment given in this section?

7. [27] Discuss floating point arithmetic using balanced ternary notation.

8. [20] Give examples of normalized eight-digit floating decimal numbers u and v
for which addition yields (a) exponent underflow, (b) exponent overflow, assuming that
exponents must satisfy 0 < e < 100.

9. [M24] (W.M. Kahan.) Assume that the occurrence of exponent underflow causes
the result to be replaced by zero, with no error indication given. Using excess zero,
eight-digit floating decimal numbers with e in the range —50 < e < 50, find positive
values of a, b, ¢, d, and y such that (11) holds.

10. [12] Give an example of normalized eight-digit floating decimal numbers u and v
for which rounding overflow occurs in addition.

11. [M20] Give an example of normalized, excess 50, eight-digit floating decimal
numbers u and v for which rounding overflow occurs in multiplication.

228 ARITHMETIC 4.2.1

12. [M25] Prove that rounding overflow cannot occur during the normalization phase
of floating point division.

13. [30] When doing “interval arithmetic” we don’t want to round the results of a
floating point computation; we want rather to implement operations such as ¥ and A,
which give the tightest possible representable bounds on the true sum:

ugv < utv < ubo

How should the algorithms of this section be modified for such a purpose?

14. [25] Write a MIX subroutine that begins with an arbitrary floating point number
in register A, not necessarily normalized, and converts it to the nearest fixed point
integer (or determines that the number is too large in absolute value to make such a
conversion possible).

15. (28] Write a MIX subroutine, to be used in connection with the other subroutines
of this section, that calculates u 1, namely u— |u] rounded to the nearest floating
point number, given a floating point number u. Notice that when u is a very small
negative number, u 1 should be rounded so that the result is unity (even though
u mod 1 has been defined to be always less than unity, as a real number).

16. [HM21] (Robert L. Smith.) Design an algorithm to compute the real and imagi-
nary parts of the complex number (a+ bi)/(c+di), given real floating point values a, b,
¢, and d. Avoid the computation of ¢® 4 d?, since it would cause floating point overflow
even when |c| or |d| is approximately the square root of the maximum allowable floating
point value.

17. [40] (John Cocke.) Explore the idea of extending the range of floating point
numbers by defining a single-word representation in which the precision of the fraction
decreases as the magnitude of the exponent increases.

18. [25] Consider a binary computer with 36-bit words, on which positive floating
binary numbers are represented as (Oeiez...esfifa... for)2; here (e1ex...€5)2 is an
excess (10000000); exponent and (fif2... far)2 is a 27-bit fraction. Negative floating
point numbers are represented by the two’s complement of the corresponding positive
representation (see Section 4.1). Thus, 1.5 is 201|600000000 in octal notation, while
—1.5 is 576|200000000; the octal representations of 1.0 and —1.0 are 201400000000
and 576|400000000, respectively. (A vertical line is used here to show the boundary
between exponent and fraction.) Note that bit fi of a normalized positive number is
always 1, while it is almost always zero for negative numbers; the exceptional cases are
representations of —2*.

Suppose that the exact result of a floating point operation has the octal code
572|740000000|01; this (negative) 33-bit fraction must be normalized and rounded to
27 bits. If we shift left until the leading fraction bit is zero, we get 576000000000 20,
but this rounds to the illegal value 576|000000000; we have over-normalized, since
the correct answer is 575|400000000. On the other hand if we start (in some other
problem) with the value 572|740000000|05 and stop before over-normalizing it, we get
575|400000000|50, which rounds to the unnormalized number 575|400000001; subse-
quent normalization yields 576|000000002 while the correct answer is 576|000000001.

Give a simple, correct rounding rule that resolves this dilemma on such a machine
(without abandoning two’s complement notation).

19. [24] What is the running time for the FADD subroutine in Program A, in terms

of relevant characteristics of the data? What is the maximum running time, over all
inputs that do not cause exponent overflow or underfiow?

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 229

Round numbers are always false.
- SAMUEL JOHNSON (1750)

| shall speak in round numbers, not absolutely accurate,
yet not so wide from truth as to vary the result materially.

— THOMAS JEFFERSON (1824)

4.2.2. Accuracy of Floating Point Arithmetic

Floating point computation is by nature inexact, and programmers can easily
misuse it so that the computed answers consist almost entirely of “noise.” One
of the principal problems of numerical analysis is to determine how accurate
the results of certain numerical methods will be. There’s a credibility gap: We
don’t know how much of the computer’s answers to believe. Novice computer
users solve this problem by implicitly trusting in the computer as an infallible
authority; they tend to believe that all digits of a printed answer are significant.
Disillusioned computer users have just the opposite approach; they are constantly
afraid that their answers are almost meaningless. Many serious mathematicians
have attempted to analyze a sequence of floating point operations rigorously,
but have found the task so formidable that they have tried to be content with
plausibility arguments instead.

A thorough examination of error analysis techniques is beyond the scope
of this book, but in the present section we shall study some of the low-level
characteristics of floating point arithmetic errors. Our goal is to discover how
to perform floating point arithmetic in such a way that reasonable analyses of
error propagation are facilitated as much as possible.

A rough (but reasonably useful) way to express the behavior of floating
point arithmetic can be based on the concept of “significant figures” or relative
error. If we are representing an exact real number z inside a computer by
using the approximation # = z(1 + €), the quantity € = (£ — z)/z is called the
relative error of approximation. Roughly speaking, the operations of floating
point multiplication and division do not magnify the relative error by very
much; but floating point subtraction of nearly equal quantities (and floating
point addition, u @ v, where u is nearly equal to —v) can very greatly increase
the relative error. So we have a general rule of thumb, that a substantial loss
of accuracy is expected from such additions and subtractions, but not from
multiplications and divisions. On the other hand, the situation is somewhat
paradoxical and needs to be understood properly, since the “bad” additions and
subtractions are always performed with perfect accuracy! (See exercise 25.)

One of the consequences of the possible unreliability of floating point addi-
tion is that the associative law breaks down:

(uBv)Bw#ud (vew), for many u,v,w. (1)
For example,

(11111113. @ —11111111.) & 7.5111111 = 2.0000000 ¢ 7.5111111 = 9.5111111;
11111113. @ (—11111111. ¢ 7.5111111) = 11111113. ¢ —11111103. = 10.000000.

230 ARITHMETIC 4.2.2

(All examples in this section are given in eight-digit floating decimal arithmetic,
with exponents indicated by an explicit decimal point. Recall that, as in Section
4.2.1, the symbols &, ©, ®, @ are used to stand for floating point operations
that correspond to the exact operations +, —, X, /.)

In view of the failure of the associative law, the comment of Mrs. La Touche
that appears at the beginning of this chapter makes a good deal of sense with
respect to floating point arithmetic. Mathematical notations like “a; + a2 + a3”
or “>°y_,a;” are inherently based upon the assumption of associativity, so
a programmer must be especially careful not to assume implicitly that the
associative law is valid.

A. An axiomatic approach. Although the associative law is not valid, the
commutative law

udbv=vhu (2)

does hold, and this law can be a valuable conceptual asset in programming and
in the analysis of programs. Equation (2) suggests that we should look for
additional examples of important laws that are satisfied by @, ©, ®, and ©;
it is not unreasonable to say that floating point routines should be designed to
preserve as many of the ordinary mathematical laws as possible. If more axioms
are valid, it becomes easier to write good programs, and programs also become
more portable from machine to machine.

Let us therefore consider some of the other basic laws that are valid for
normalized floating point operations as described in the previous section. First
we have

uOv=ud-v; (3)
—(udv) =—-ud —v; (4)
udv=0 if and only if v = —u; (5)
u®d0=u. (6)
From these laws we can derive further identities; for example (exercise 1),
wev=—(veu). (7

Identities (2) to (6) are easily deduced from the algorithms in Section 4.2.1.
The following rule is slightly less obvious:

if u<v then utdw<vduw. (8)

Instead of attempting to prove this rule by analyzing Algorithm 4.2.1A, let us go
back to the basic principle by which that algorithm was designed. (Algorithmic
proofs aren’t always easier than mathematical ones.) Our idea was that the
floating point operations should satisfy

u ® v = round(u + v), u & v = round(u — v),

(9)

v ® v = round(u X v), u@v =round(u / v),

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 231

where round(z) denotes the best floating point approximation to z as defined in
Algorithm 4.2.1N. We have

round(—z) = —round(z), (10)

z <y implies round(z) < round(y), (11)

and these fundamental relations yield properties (2) through (8) immediately.
We can also write down several more identities:

L®U=vQu, (—u)®v=—(u®v), 1®v =v;
u®@v=0 if and only if u=0orv=0;
(~u)@v=u0(-v) = —(v0w);
0v =0, uQ1l=u, uQu=1.

Ifu<vandw >0, thenu@w<vwandu@w <vQw;also wQu 2> wov
whenv >u>0. Ifu@v=u+v, then (udv)Sv=u;and ifuv =uxv #0,
then (u ® v) @ v = u. We see that a good deal of regularity is present in spite of
the inexactness of the floating point operations, when things have been defined
properly.

Several familiar rules of algebra are still, of course, conspicuously absent
from the collection of identities above. The associative law for floating point
multiplication is not strictly true, as shown in exercise 3, and the distributive
law between ® and @ can fail rather badly: Let v = 20000.000, v = —6.0000000,
and w = 6.0000003; then

(u®v) ® (u®w) = -—120000.00 & 120000.01 = .010000000
v ® (v @ w) = 20000.000 ® .00000030000000 = .0060000000

u® (Vo w) #(uev)d (u®w). (12)

On the other hand we do have b® (v & w) = (b ® v) ® (b ® w), when b is the
floating point radix, since

round(bz) = bround(z). (13)

(Strictly speaking, the identities and inequalities we are considering in this
section implicitly assume that exponent underflow and overflow do not occur.
The function round(z) is undefined when |z| is too small or too large, and
equations such as (13) hold only when both sides are defined.)

The failure of Cauchy’s fundamental inequality

(224 4222+ 4+ 42) > (Tyn + - + Tayn)’

is another important example of the breakdown of traditional algebra in the
presence of floating point arithmetic. Exercise 7 shows that Cauchy’s inequality
can fail even in the simple case n = 2, z; = 3 = 1. Novice programmers who

232 ARITHMETIC 4.2.2

calculate the standard deviation of some observations by using the textbook

formula
o= (ani——(Zxk> >/n(n—1) (14)
1<k<n 1<k<n

often find themselves taking the square root of a negative number! A much better
way to calculate means and standard deviations with floating point arithmetic
is to use the recurrence formulas

My =z, M = M1 @ (2, © My—1) Qk, (15)
51 =0, Sk = Sk-1® (T © Mi_1) ® (21 © My), (16)

for 2 < k < n, where 0 = /S,/(n—1). [See B. P. Welford, Technometrics 4
(1962), 419-420.] With this method S, can never be negative, and we avoid
other serious problems encountered by the naive method of accumulating sums,
as shown in exercise 16. (See exercise 19 for a summation technique that provides
an even better guarantee on the accuracy.)

Although algebraic laws do not always hold exactly, we can often show that
they aren’t too far off base. When b~ < z < b® we have round(z) = z + p(z),
where |p(z)| < $b°7P; hence

round(z) = z(1 + 6(z)), (17)

where the relative error is bounded independently of z:

lpe—p
2l = b lp(@)] T bt Soe

< b7 (18)

We can use this inequality to estimate the relative error of normalized floating
point calculations in a simple way, since u @ v = (u + v) (1 + 6(u + v)), etc.

As an example of typical error-estimation procedures, let us consider the
associative law for multiplication. Exercise 3 shows that (v ® v) ® w is not in
general equal to u® (v ® w); but the situation in this case is much better than it
was with respect to the associative law of addition (1) and the distributive law
(12). In fact, we have

(Lv)R®w = ((uv)(l + 51)) ®w = uvw(l + 61)(1 + d2),
U (VW) =u® ((vw)(l + 53)) = wvw(l 4+ 63)(1 + d4),

for some 6;, d2, d3, 04, provided that no exponent underflow or overflow occurs,
where |§;] < 2b! 7P for each j. Hence
(u®v)@w (14 81)(1+ d2)

u® (vQw) - (14 63)(1 4 64) =1+,

where o
6] < 2627P/(1 — 1B 7P)". (19)

The number b ~? occurs so often in such analyses, it has been given a special
name, one ulp, meaning one unit in the last place of the fraction part. Floating

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 233

point operations are correct to within half an ulp, and the calculation of uvw by
two floating point multiplications will be correct within about one ulp (ignoring
second-order terms). Hence the associative law for multiplication holds to within
about two ulps of relative error.

We have shown that (u ® v) ® w is approximately equal to u ® (v ® w),
except when exponent overflow or underflow is a problem. It is worthwhile to
study this intuitive idea of approximate equality in more detail; can we make
such a statement more precise in a reasonable way?

Programmers who use floating point arithmetic almost never want to test
if two computed values are exactly equal to each other (or at least they hardly
ever should try to do so), because this is an extremely improbable occurrence.
For example, if a recurrence relation

Tn+l = f(mn)

is being used, where the theory in some textbook says that z, approaches a
limit as n — oo, it is usually a mistake to wait until z,4+; = z, for some n, since
the sequence z,, might be periodic with a longer period due to the rounding of
intermediate results. The proper procedure is to wait until |z,+, — z,| < §, for
some suitably chosen number §; but since we don’t necessarily know the order
of magnitude of z,, in advance, it is even better to wait until

Znt1 — Zn| < €lznl; (20)

now € is a number that is much easier to select. Relation (20) is another
way of saying that z,,; and z, are approximately equal; and our discussion
indicates that a relation of “approximately equal” would be more useful than the
traditional relation of equality, when floating point computations are involved,
if we could only define a suitable approximation relation.

In other words, the fact that strict equality of floating point values is of
little importance implies that we ought to have a new operation, floating point
comparison, which is intended to help assess the relative values of two floating
point quantities. The following definitions seem to be appropriate for base b,
excess g, floating point numbers u = (ey, fu) and v = (e,, fy):

u<v (€ if and only if v —u > emax(b® 79 b 9); (21)
ur~v (€ if and only if |v — u| < emax(b® 9, b 9); (22)
u>v (€ if and only if u —v > emax(b® 9, b7); (23)
umv (€ if and only if |v — u| < emin(b®=79,b%79). (24)

These definitions apply to unnormalized values as well as to normalized ones.
Notice that exactly one of the conditions v < v (definitely less than), u ~ v
(approximately equal to), or u > v (definitely greater than) must always hold
for any given pair of values u and v. The relation u ~ v is somewhat stronger
than u ~ v, and it might be read “u is essentially equal to v.” All of the relations
are specified in terms of a positive real number € that measures the degree of
approximation being considered.

234 ARITHMETIC 4.2.2

One way to view the definitions above is to associate a “neighborhood” set
Nw)={z||z—1u| < eb®+~9} with each floating point number w; thus, N(u)
represents a set of values near u based on the exponent of u’s floating point rep-
resentation. In these terms, we have u < v if and only if N(u) < v and u < N(v);
u ~ v if and only if u € N(v) or v € N(u); u > v if and only if « > N(v) and
N(u) > v; u ~ v if and only if u € N(v) and v € N(u). (Here we are assuming
that the parameter ¢, which measures the degree of approximation, is a constant;
a more complete notation would indicate the dependence of N(u) upon e.)

Here are some simple consequences of definitions (21)—(24):

if u<v (e then v>u (€); (25)
if umv (e then u~v (€); (26)
umu (o) (27)
if u<v (e then u <w; (28)
if wuwu<v (&) and € > € then u<v (e2); (29)
if wu~v () and € <e then u~v (e2); (30)
if wumv () and € <e then urv (€); (31)
if w=<v (&) and v<w (e) then uw<w (min(e,e2)); (32)
if uwu=mv () and vRw () then u~w (e1+€). (33)
Moreover, we can prove without difficulty that
lu—v| <elu| and |u—v| <€y implies umv (e); (34)
lu—v| <elul or |u—uv| <€y implies u~v (€); (35)
and conversely, for normalized floating point numbers v and v, when € < 1,
umv (€ implies |lu —v| < belu| and |u —v| < belv|; (36)
u~v () implies |lu—v| <belu] or |u—v| < belv|. (37)
Let €g = b'~P be one ulp. The derivation of (17) establishes the inequality
|z — round(z)| = |p(z)| < e min(|z], |[round(z)]), hence
z ~ round(z) (3€o); (38)

it follows that u v ~ u+ v (%eo), etc. The approximate associative law for

multiplication derived above can be recast as follows: We have

](u@v)@w—u@(v@w)|< 2€9)2|u®(v®w)|

(1 — %60

by (19), and the same inequality is valid with (v ® v) ® w and u ® (v ® w)
interchanged. Hence by (34),

(u@v)Qu~ru®(vw) (¢ (39)

whenever € > 2¢y/(1 — 3€0)?. For example, if b = 10 and p = 8 we may take
e = 0.00000021.

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 235

The relations <, ~, >, and ~ are useful within numerical algorithms, and it
is therefore a good idea to provide routines for comparing floating point numbers
as well as for doing arithmetic on them.

Let us now shift our attention back to the question of finding ezact relations
that are satisfied by the floating point operations. It is interesting to note that
floating point addition and subtraction are not completely intractable from an
axiomatic standpoint, since they do satisfy the nontrivial identities stated in the
following theorems.

Theorem A. Let u and v be normalized floating point numbers. Then
(vev)eu) +(uev)e(uev)eu))=uav, (40)
provided that no exponent overflow or underflow occurs.

This rather cumbersome-looking identity can be rewritten in a simpler manner:
Let
v =(udv)owv, v = (udv) Ou;
v =(udv)ov, V' =(udv)eu.

Intuitively, ' and «” should be approximations to u, and v’ and v” should be
approximations to v. Theorem A tells us that

(41)

udv=u +v" =u" +v. (42)
This is a stronger statement than the identity
udv=u @v =u" @, (43)
which follows by rounding (42).
Proof. Let us say that ¢ is a tail of z modulo b if
t =z (modulo b°), |t] < 3% (44)

thus, z — round(z) is always a tail of . The proof of Theorem A rests largely
on the following simple fact proved in exercise 11:

Lemma T. Ift is a tail of the floating point number x, thenzx 6t =z —t. |

Let w = u @ v. Theorem A holds trivially when w = 0. By multiplying all
variables by a suitable power of b, we may assume without loss of generality that
ew = p. Then u+ v = w + r, where r is a tail of v + v modulo 1. Furthermore
v = round(w —v) = round(u —r) = u—r —t, where t is a tail of u —r modulo b*
and e = e, — p.

If e <0, thent =u—r = —v (modulo b°), hence ¢ is a tail of —v and
v" = round(w — v') = round(v + t) = v + ¢; this proves (40). If e > 0, then
lu —r| > bP — 1; and since |r| < 3, we have |u| > b — 1. It follows that u is
an integer, so r is a tail of v modulo 1. If v’ = u, then ¢t = —r is a tail of —v.
Otherwise the relation round(u — r) # u implies that |u| = o — 1, |r| = 1

29
|u'| = bP, t = r; again t is a tail of —v. |

236 ARITHMETIC 4.2.2

Theorem A exhibits a regularity property of floating point addition, but it
doesn’t seem to be an especially useful result. The following identity is more
significant:

Theorem B. Under the hypotheses of Theorem A and (41),

utv=(wdv)+ (veu)a® (ver)). (45)

Proof. In fact, we can show that u6 v = u—v, vo v’ = v —v", and
(u—u)®(v—2v") = (u—u')+ (v—2"), hence (45) will follow from Theorem A.
Using the notation of the preceding proof, these relations are respectively equiv-
alent to

round(t +) =t+r, round(t) = t, round(r) = 7. (46)

Exercise 12 establishes the theorem in the special case |e, — e,| > p. Otherwise
u + v has at most 2p significant digits and it is easy to see that round(r) = r. If
now e > 0, the proof of Theorem A shows that t = —rort =7 =+3. Ife <0
we have t + r = u and t = —v (modulo b°); this is enough to prove that ¢t + r
and t round to themselves, provided that e, > e and e, > e. But either e, < 0
or e, < 0 would contradict our hypothesis that |e, — e,| < p, since e, = p. |

Theorem B gives an explicit formula for the difference between u 4+ v and
u® v, in terms of quantities that can be calculated directly using five operations
of floating point arithmetic. If the radix b is 2 or 3, we can improve on this
result, obtaining the exact value of the correction term with only two floating
point operations and one (fixed point) comparison of absolute values:

Theorem C. Ifb < 3 and |u| > |v|, then
utv=udv)+ (Lo (udv)) . (47)

Proof. TFollowing the conventions of preceding proofs again, we wish to show
that v © v’ = r. It suffices to show that v' = w — u, because (46) will then yield
v & v’ = round(v — v') = round(u + v — w) = round(r) = r.

We shall in fact prove (47) whenever b < 3 and e, > e,. If e, > p, then r
is a tail of v modulo 1, hence v = w8 u=vE8r =v—r = w — u as desired.
If e, < p, then we must have e, = p — 1, and w — u is a multiple of b™!; it will
therefore round to itself if its magnitude is less than b?~1 +b71. Since b < 3, we
have indeed |w — u| < |lw —u—v|+ |v| < 3+ PP —b~') < bP~! + b7, This
completes the proof. |

The proofs of Theorems A, B, and C do not rely on the precise definitions of
round(z) in the ambiguous cases when z is exactly midway between consecutive
floating point numbers; any way of resolving the ambiguity will suffice for the
validity of everything we have proved so far.

No rounding rule can be best for every application. For example, we gener-
ally want a special rule when computing our income tax. But for most numerical
calculations the best policy appears to be the rounding scheme specified in
Algorithm 4.2.1N, which insists that the least significant digit should always

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 237

be made even (or always odd) when an ambiguous value is rounded. This is not
a trivial technicality, of interest only to nit-pickers; it is an important practical
consideration, since the ambiguous case arises surprisingly often and a biased
rounding rule produces significantly poor results. For example, consider decimal
arithmetic and assume that remainders of 5 are always rounded upwards. Then if
u = 1.0000000 and v = 0.55555555 we have u®v = 1.5555556; and if we floating-
subtract v from this result we get u’ = 1.0000001. Adding and subtracting v
from v’ gives 1.0000002, and the next time we get 1.0000003, etc.; the result
keeps growing although we are adding and subtracting the same value.

This phenomenon, called drift, will not occur when we use a stable rounding
rule based on the parity of the least significant digit. More precisely:

Theorem D. ((u®v)6v)®v)Sv=(vdv)Sw.
For example, if u = 1.2345679 and v = —0.23456785, we find

u @ v = 1.0000000, (u @ v) ©v =1.2345678,
((u@v)©v) v =0.99999995, (v v)©ov)Bv) &v=1.2345678.

The proof for general u and v seems to require a case analysis even more detailed
than that in the theorems above; see the references below. |

Theorem D is valid both for “round to even” and “round to odd”; how should
we choose between these possibilities? When the radix b is odd, ambiguous cases
never arise except during floating point division, and the rounding in such cases
is comparatively unimportant. For even radices, there is reason to prefer the
following rule: “Round to even when b/2 is odd, round to odd when b/2 is
even.” The least significant digit of a floating point fraction occurs frequently
as a remainder to be rounded off in subsequent calculations, and this rule avoids
generating the digit b/2 in the least significant position whenever possible; its
effect is to provide some memory of an ambiguous rounding so that subsequent
rounding will tend to be unambiguous. For example, if we were to round to
odd in the decimal system, repeated rounding of the number 2.44445 to one less
place each time leads to the sequence 2.4445, 2.445, 2.45, 2.5, 3; if we round to
even, such situations do not occur, although repeated rounding of a number like
2.5454 will lead to almost as much error. [See Roy A. Keir, Inf. Proc. Letters
3 (1975), 188-189.] Some people prefer rounding to even in all cases, so that
the least significant digit will tend to be 0 more often. Exercise 23 demonstrates
this advantage of round-to-even. Neither alternative conclusively dominates the
other; fortunately the base is usually b = 2 or b = 10, when everyone agrees that
round-to-even is best.

A reader who has checked some of the details of the proofs above will realize
the immense simplification that has been afforded by the simple rule u ® v =
round(u + v). If our floating point addition routine would fail to give this result
even in a few rare cases, the proofs would become enormously more complicated
and perhaps they would even break down completely.

Theorem B fails if truncation arithmetic is used in place of rounding, that
is, if we let u ® v = trunc(u + v) and u © v = trunc(u — v), where trunc(z) for a

238 ARITHMETIC 4.2.2

positive real z is the largest floating point number < z. An exception to Theo-
rem B would then occur for cases such as (20, +.10000001) & (10, —.10000001) =
(20, 4.10000000), when the difference between u+v and u@v cannot be expressed
exactly as a floating point number; and also for cases such as 12345678 @
012345678, when it can be.

Many people feel that, since floating point arithmetic is inexact by nature,
there is no harm in making it just a little bit less exact in certain rather rare cases,
if it is convenient to do so. This policy saves a few cents in the design of computer
hardware, or a small percentage of the average running time of a subroutine. But
our discussion shows that such a policy is mistaken. We could save about five
percent of the running time of the FADD subroutine, Program 4.2.1A, and about
25 percent of its space, if we took the liberty of rounding incorrectly in a few
cases, but we are much better off leaving it as it is. The reason is not to glorify
“bit chasing”; a more fundamental issue is at stake here: Numerical subroutines
should deliver results that satisfy simple, useful mathematical laws whenever
possible. The crucial formula v @ v = round(u + v) is a regularity property
that makes a great deal of difference between whether mathematical analysis
of computational algorithms is worth doing or worth avoiding. Without any
underlying symmetry properties, the job of proving interesting results becomes
extremely unpleasant. The enjoyment of one’s tools is an essential ingredient of
successful work.

B. Unnormalized floating point arithmetic. The policy of normalizing all
floating point numbers may be construed in two ways: We may look on it favor-
ably by saying that it is an attempt to get the maximum possible accuracy ob-
tainable with a given degree of precision, or we may consider it to be potentially
dangerous since it tends to imply that the results are more accurate than they
really are. When we normalize the result of (1,+4.31428571) © (1,+.31415927)
to (—2,+.12644000), we are suppressing information about the possibly greater
inaccuracy of the latter quantity. Such information would be retained if the
answer were left as (1,+.00012644).

The input data to a problem is frequently not known as precisely as the
floating point representation allows. For example, the values of Avogadro’s
number and Planck’s constant are not known to eight significant digits, and
it might be more appropriate to denote them, respectively, by

(27, +.00060225) and (—23,4.00066256)

instead of by (24,+.60225200) and (—26,+.66256000). It would be nice if
we could give our input data for each problem in an unnormalized form that
expresses how much precision is assumed, and if the output would indicate just
how much precision is known in the answer. Unfortunately, this is a terribly
difficult problem, although the use of unnormalized arithmetic can help to give
some indication. For example, we can say with a fair degree of certainty that the
product of Avogadro’s number by Planck’s constant is (1, +.00039903), and that
their sum is (27, +.00060225). (The purpose of this example is not to suggest that

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 239

any important physical significance should be attached to the sum and product
of these fundamental constants; the point is that it is possible to preserve a little
of the information about precision in the result of calculations with imprecise
quantities, when the original operands are independent of each other.)

The rules for unnormalized arithmetic are simply this: Let [, be the number
of leading zeros in the fraction part of u = (e, fu), so that [, is the largest integer
< p with |f,| < b~'. Then addition and subtraction are performed just as in
Algorithm 4.2.1A, except that all scaling to the left is suppressed. Multiplication
and division are performed as in Algorithm 4.2.1M, except that the answer is
scaled right or left so that precisely max(l,,[,) leading zeros appear. Essentially
the same rules have been used in manual calculation for many years.

It follows that, for unnormalized computations,

Cugv, Eucv = Max(ey, e,) + (0 or 1) (48)
eugw = €u + €y, — q— min(l,, l,) — (0 or 1) (49)
Cuow = €y — €y +q — Uy + 1, + max(ly,l,) + (0 or 1). (50)

When the result of a calculation is zero, an unnormalized zero (often called an
“order of magnitude zero”) is given as the answer; this indicates that the answer
may not truly be zero, we just don’t know any of its significant digits.

Error analysis takes a somewhat different form with unnormalized floating
point arithmetic. Let us define

0, = %be”_q_p if u=(ey, fu) (51)

This quantity depends on the representation of u, not just on the value b¢=79f,.
Our rounding rule tells us that

IUGB’U—(U-I-’U)IS%@v,]u@v—(u—v)|§5uev,
]u@v—(uxv)|§5u®v, luov—(u/ v)| < bugw.

These inequalities apply to normalized as well as unnormalized arithmetic; the
main difference between the two types of error analysis is the definition of the
exponent of the result of each operation (Egs. (48) to (50)).

We have remarked that the relations <, ~, >, and & defined earlier in
this section are valid and meaningful for unnormalized numbers as well as for
normalized numbers. As an example of the use of these relations, let us prove
an approximate associative law for unnormalized addition, analogous to (39):

(uev)dwrud(vaw) (), (52)
for suitable . We have
(udv)dw—(u+v+w)| < |(udv)dw— (LdVv)+w)|+|udv— (utv)|
< 5(u€9v)€9w+5u€9v
< 26(u6}3v)6}3w-

A similar formula holds for |u @ (v @ w) — (u + v + w)|. Now since e(,gu)pw =
max(ey, €y, €w) + (0, 1, or 2), we have Suguyguw) < b25u®(v®w). Therefore we

240 ARITHMETIC 4.2.2

find that (52) is valid when € > b>~P 4+ b~P; unnormalized addition is not as
erratic as normalized addition with respect to the associative law.

It should be emphasized that unnormalized arithmetic is by no means a
panacea. There are examples where it indicates greater accuracy than is present
(for example, addition of a great many small quantities of about the same magni-
tude, or evaluation of z™ for large n); and there are many more examples when it
indicates poor accuracy while normalized arithmetic actually does produce good
results. There is an important reason why no straightforward one-operation-at-
a-time method of error analysis can be completely satisfactory, namely the fact
that operands are usually not independent of each other. This means that errors
tend to cancel or reinforce each other in strange ways. For example, suppose that
z is approximately 1/2, and suppose that we have an approximation y = z + ¢
with absolute error §. If we now wish to compute z(1—z), we can form y(1—y);
if £ = 24 € we find y(1 — y) = (1 — z) — 266 — 6%, so the absolute error has
decreased substantially: It has been multiplied by a factor of 2¢ + §. This is
just one case where multiplication of imprecise quantities can lead to a quite
accurate result when the operands are not independent of each other. A more
obvious example is the computation of z © z, which can be obtained with perfect
accuracy regardless of how bad an approximation to z we begin with.

The extra information that unnormalized arithmetic gives us can often be
more important than the information it destroys during an extended calcula-
tion, but (as usual) we must use it with care. Examples of the proper use of
unnormalized arithmetic are discussed by R. L. Ashenhurst and N. Metropolis
in Computers and Computing, AMM, Slaught Memorial Papers 10 (February
1965), 47-59; by N. Metropolis in Numer. Math. 7 (1965), 104-112; and by
R. L. Ashenhurst in Error in Digital Computation 2, edited by L. B. Rall
(New York: Wiley, 1965), 3-37. Appropriate methods for computing standard
mathematical functions with both input and output in unnormalized form are
given by R. L. Ashenhurst in JACM 11 (1964), 168-187. An extension of
unnormalized arithmetic, which remembers that certain values are known to
be exact, has been discussed by N. Metropolis in IEEE Trans. C-22 (1973),
573-576.

C. Interval arithmetic. Another approach to the problem of error determi-
nation is the so-called interval or range arithmetic, in which rigorous upper and
lower bounds on each number are maintained during the calculations. Thus, for
example, if we know that up < v < u; and vp < v < v1, we represent this by the
interval notation u = [ug .. u1], v = [vp..v1]. The sum udv is [ugFvo .. ug Avy],
where W denotes “lower floating point addition,” the greatest representable
number less than or equal to the true sum, and A is defined similarly (see
exercise 4.2.1-13). Furthermore u ©v = [uy ¥ v1 .. u1 A vp); and if ug and vy are
positive, we have u ® v = [up ¥ vo,u1 A 1], ¥ Qv = [ug ¥ v1..uy A vg]. For
example, we might represent Avogadro’s number and Planck’s constant as

N = [(24, +.60222400), (24, 4.60228000)],
h = [(—26, +.66252000), (—26,+.66261000)];

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 241

their sum and product would then turn out to be

N @ h = [(24,+.60222400) .. (24, +.60228001)],
N ® h = [(—2,+.39898544) . . (=2, +.39907676)].

If we try to divide by [vg..v;] when vy < 0 < vy, there is a possibility of
division by zero. Since the philosophy underlying interval arithmetic is to provide
rigorous error estimates, a divide-by-zero error should be signalled in this case.
However, overflow and underflow need not be treated as fatal errors in interval
arithmetic, if special conventions are introduced as discussed in exercise 24.

Interval arithmetic takes only about twice as long as ordinary arithmetic,
and it provides truly reliable error estimates. Considering the difficulty of
mathematical error analyses, this is indeed a small price to pay. Since the
intermediate values in a calculation often depend on each other, as explained
above, the final estimates obtained with interval arithmetic will tend to be
pessimistic; and iterative numerical methods often have to be redesigned if we
want to deal with intervals. However, the prospects for effective use of interval
arithmetic look very good, so efforts should be made to increase its availability
and to make it as user-friendly as possible.

D. History and bibliography. Jules Tannery’s classic treatise on decimal
calculations, Lecons d’Arithmétique (Paris: Colin, 1894), stated that positive
numbers should be rounded upwards if the first discarded digit is 5 or more;
since exactly half of the decimal digits are 5 or more, he felt that this rule would
round upwards exactly half of the time, on the average, so it would produce
compensating errors. The idea of “round to even” in the ambiguous cases seems
to have been mentioned first by James B. Scarborough in the first edition of his
pioneering book Numerical Mathematical Analysis (Baltimore: Johns Hopkins
Press, 1930), 2; in the second (1950) edition he amplified his earlier remarks,
stating that “It should be obvious to any thinking person that when a 5 is cut
off, the preceding digit should be increased by 1 in only half the cases,” and he
recommended round-to-even in order to achieve this.

The first analysis of floating point arithmetic was given by F. L. Bauer and K.
Samelson, Zeitschrift fiir angewandte Math. und Physik 4 (1953), 312-316. The
next publication was not until over five years later: J. W. Carr III, CACM 2,5
(May 1959), 10-15. See also P. C. Fischer, Proc. ACM Nat. Meeting 13 (1958),
Paper 39. The book Rounding Errors in Algebraic Processes (Englewood Cliffs:
Prentice-Hall, 1963), by J. H. Wilkinson, shows how to apply error analysis of
the individual arithmetic operations to the error analysis of large-scale problems;
see also his treatise on The Algebraic Eigenvalue Problem (Oxford: Clarendon
Press, 1965).

Additional early work on floating point accuracy is summarized in two
important papers that can be especially recommended for further study: W. M.
Kahan, Proc. IFIP Congress (1971), 2, 1214-1239; R. P. Brent, IEEE Trans.
C-22 (1973), 601-607. Both papers include useful theory and demonstrate that
it pays off in practice.

242 ARITHMETIC 4.2.2

The relations <, ~, >, ~ introduced in this section are similar to ideas
published by A. van Wijngaarden in BIT 6 (1966), 66-81. Theorems A and B
above were inspired by some related work of Ole Mgller, BIT 5 (1965), 37-50,
251-255; Theorem C is due to T. J. Dekker, Numer. Math. 18 (1971), 224~
242. Extensions and refinements of all three theorems have been published by
S. Linnainmaa, BIT 14 ¢1974), 167-202. W. M. Kahan introduced Theorem D
in some unpublished notes; for a complete proof and further commentary, see
J. F. Reiser and D. E. Knuth, Inf. Proc. Letters 3 (1975), 84-87, 164.

Unnormalized floating point arithmetic was recommended by F. L. Bauer
and K. Samelson in the article cited above, and it was independently used by
J. W. Carr III at the University of Michigan in 1953. Several years later, the
MANIAC III computer was designed to include both kinds of arithmetic in its
hardware; see R. L. Ashenhurst and N. Metropolis, JACM 6 (1959), 415-428,
IEEE Trans. EC-12 (1963), 896-901; R. L. Ashenhurst, Proc. Spring Joint Com-
puter Conf. 21 (1962), 195-202. See also H. L. Gray and C. Harrison, Jr., Proc.
Eastern Joint Computer Conf. 16 (1959), 244-248, and W. G. Wadey, JACM 7
(1960), 129-139, for further early discussions of unnormalized arithmetic.

For early developments in interval arithmetic, and some modifications, see
A. Gibb, CACM 4 (1961), 319-320; B. A. Chartres, JACM 13 (1966), 386—
403; and the book Interval Analysis by Ramon E. Moore (Prentice-Hall, 1966).
The subsequent flourishing of this subject is described in Moore’s later book,
Methods and Applications of Interval Analysis (SIAM, 1979).

An extension of the Pascal language that allows variables to be of type
“interval” was developed at the University of Karlsruhe in the early 1980s. For
a description of this language, which also includes numerous other features for
scientific computing, see Pascal-SC by Bohlender, Ullrich, Wolff von Gudenberg,
and Rall (Academic Press, 1987).

The book Grundlagen des numerischen Rechnens: Mathematische Begriin-
dung der Rechnerarithmetik by Ulrich Kulisch (Mannheim: Bibl. Inst., 1976)
is entirely devoted to the study of floating point arithmetic systems. See also
Kulisch’s article in IEEE Trans. C-26 (1977), 610-621, and his more recent book
written jointly with W. L. Miranker, entitled Computer Arithmetic in Theory
and Practice (New York: Academic Press, 1981).

An excellent summary of more recent work on floating point error analysis
appears in the book Accuracy and Stability of Numerical Algorithms by N. J.
Higham (Philadelphia: SIAM, 1996).

EXERCISES
Note: Normalized floating point arithmetic is assumed unless the contrary is specified.
1. [M18] Prove that identity (7) is a consequence of (2) through (6).

2. [M20] Use identities (2) through (8) to prove that (u @ z)® (VDY) > ud v
whenever £ > 0 and y > 0.

3. [M20] Find eight-digit floating decimal numbers u, v, and w such that
u® WO w) # (LR V) dw,
and such that no exponent overflow or underflow occurs during the computations.

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 243

4. [10] Is it possible to have floating point numbers u, v, and w for which exponent
overflow occurs during the calculation of © ® (v ® w) but not during the calculation of
(u®v) @ w?

5. [M20] Isu@v=u®(1Qv) an identity, for all floating point numbers u and v # 0
such that no exponent overflow or underflow occurs?

6. [M22] Are either of the following two identities valid for all floating point num-
bers u? (a) 06 (06 u)=u; (b) 10 (1Qu) =u.

7. [M21] Let u® stand for u ® u. Find floating binary numbers v and v such that
(udv)® > 2(u® + @),

8. [20] Let e = 0.0001; which of the relations

u<v (), u~v (9 uxv (9, umv (¢

hold for the following pairs of base 10, excess 0, eight-digit floating point numbers?

a) u=(1,+.31415927), v = (1, +.31416000);
) u = (0, +.99997000), v = (1, +.10000039);
) u= (24, +.60225200), v = (27, +.00060225);
) u = (24, +.60225200), v = (31, +.00000006);
e) u = (24, +.60225200), v = (32, +.00000000).

9. [M22] Prove (33), and explain why the conclusion cannot be strengthened to the
relation u &~ w (€1 + €2).

b
c
d

10. [M25] (W. M. Kahan.) A certain computer performs floating point arithmetic
without proper rounding, and, in fact, its floating point multiplication routine ignores
all but the first p most significant digits of the 2p-digit product f.f,. (Thus when
fufv < 1/b, the least-significant digit of u ® v always comes out to be zero, due to
subsequent normalization.) Show that this causes the monotonicity of multiplication
to fail; in other words, exhibit positive normalized floating point numbers u, v, and w
such that u < v but ¥ ® w > v ® w on this machine.

11. [M20] Prove Lemma T.
12. [M24] Carry out the proof of Theorem B and (46) when |ey — ey > p.

13. [M25] Some programming languages (and even some computers) make use of
floating point arithmetic only, with no provision for exact calculations with integers. If
operations on integers are desired, we can, of course, represent an integer as a floating
point number; and when the floating point operations satisfy the basic definitions in
(9), we know that all floating point operations will be exact, provided that the operands
and the answer can each be represented exactly with p significant digits. Therefore —so
long as we know that the numbers aren’t too large — we can add, subtract, or multiply
integers with no inaccuracy due to rounding errors.

But suppose that a programmer wants to determine if m is an exact multiple of n,
when m and n # 0 are integers. Suppose further that a subroutine is available to
calculate the quantity round(umod 1) = u 1 for any given floating point num-
ber u, as in exercise 4.2.1-15. One good way to determine whether or not m is a
multiple of n might be to test whether or not (m @ n) 1 = 0, using the assumed
subroutine; but perhaps rounding errors in the floating point calculations will invalidate
this test in certain cases.

Find suitable conditions on the range of integer values n # 0 and m, such that m
is a multiple of n if and only if (m @ n) 1 = 0. In other words, show that if m
and n are not too large, this test is valid.

244 ARITHMETIC 4.2.2

14. [M27] Find a suitable € such that (u®v)@w = u® (v®w) (€), when unnormalized
multiplication is being used. (This generalizes (39), since unnormalized multiplication
is exactly the same as normalized multiplication when the input operands u, v, and w
are normalized.)

15. [M24] (H. Bjérk.) Does the computed midpoint of an interval always lie between
the endpoints? (In other words, does u < v imply that u < (u @ v) @ 2 < v7)

16. [M28] (a) Whatis (--- ((z1®22)®zs)®- - -®n) whenn = 10° and x5 = 1.1111111
for all k, using eight-digit floating decimal arithmetic? (b) What happens when Eq. (14)
is used to calculate the standard deviation of these particular values 7 What happens
when Egs. (15) and (16) are used instead? (c) Prove that Sx > 0 in (16), for all choices
OfZEl, ooy Lo

17. [28] Write a MIX subroutine, FCMP, that compares the floating point number « in
location ACC with the floating point number v in register A, setting the comparison
indicator to LESS, EQUAL, or GREATER according as u < v, u ~ v, or u > v (€); here € is
stored in location EPSILON as a nonnegative fixed point quantity with the radix point
assumed at the left of the word. Assume normalized inputs.

18. [M40] In unnormalized arithmetic is there a suitable number € such that
U VOw) 2 (uu)d(u®w) ()7

19. [M30] (W. M. Kahan.) Consider the following procedure for floating point sum-
mation of z1,...,Tn:

Sg = Co = 0;
Y = Tk © Che1, Sk =5Sk—1DYrk, Ck = (kO Sk—1) O Yk, for1<k<n.
Let the relative errors in these operations be defined by the equations

ye = (z& — ck—1)(1 + mx), Sk = (k=1 + yr)(1 + ok),
cr = ((sk — sk=1)(1 4+ v&) — yr) (1 + 8&),

where |nx|, |0k, |Ykl, |0x] < €. Prove that s, = >0 _ (1 + 0k)zk, where |0x| < 2e +
O(ne®). [Theorem C says that if b = 2 and [sk—1| > |yx| we have sp—1 +yx = sk — ¢k
exactly. But in this exercise we want to obtain an estimate that is valid even when
floating point operations are not carefully rounded, assuming only that each operation
has bounded relative error.|

20. [25] (S. Linnainmaa.) Find all u and v for which |u| > |v| and (47) fails.

21. [M35] (T. J. Dekker.) Theorem C shows how to do exact addition of floating
binary numbers. Explain how to do eract multiplication: Express the product uv in
the form w+w’, where w and w’ are computed from two given floating binary numbers
u and v, using only the operations @, O, and ®.

22. [M30] Can drift occur in floating point multiplication/division? Consider the
sequence To = U, Tan+1 = T2n ® U, T2n4+2 = Tan+1 @ U, given u and v # 0; what is the
largest subscript k such that zx # Tr42 is possible?

23. [M26] Prove or disprove: u © (u 1) = |u], for all floating point u.

24. [M27) Consider the set of all intervals [u; .. u-], where u; and u, are either nonzero
floating point numbers or the special symbols 40, ~0, 400, —o0; each interval must

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 245

have u; < u,, and w; = u, is allowed only when is finite and nonzero. The interval
[ui .. ur] stands for all floating point z such that u; < z < u,, where we agree that

—0 < —z < —-0<4+0< +x < +00

for all positive z. (Thus, [1..2] means 1 < z < 2; [+0..1] means 0 < z < 1;
[—0..1] means 0 < z < 1; [~0..+0] denotes the single value 0; and [—o0.. +o0] stands
for everything.) Show how to define appropriate arithmetic operations on all such
intervals, without resorting to overflow or underflow or other anomalous indications
except when dividing by an interval that includes zero.

25. [15] When people speak about inaccuracy in floating point arithmetic they often
ascribe errors to “cancellation” that occurs during the subtraction of nearly equal
quantities. But when u and v are approximately equal, the difference u©wv is obtained
exactly, with no error. What do these people really mean?

26. [M21] Given that u, u', v, and v’ are positive floating point numbers with u ~
" () and v ~ v (€), prove that there’s a small ¢ such that u ® v ~ u ®v (),
assuming normalized arithmetic.

27. [M27] (W. M. Kahan.) Prove that 19 (10 (1@ u)) =1Qu for all u # 0.

28. [HM30] (H. G. Diamond.) Suppose f(z) is a strictly increasing function on some
interval [zo..z1], and let g(z) be the inverse function. (For example, f and g might
be “exp” and “In”, or “tan” and “arctan”.) If « is a floating point number such that
zo < z < z1, let f(z) = round(f(x)), and if y is another such that f(zo) <y < f(z1),
let §(y) = round(g(y)); furthermore, let h(x) = §(f(z)), whenever this is defined.
Although h(z) won’t always be equal to z, due to rounding, we expect h(z) to be fairly
near .

Prove that if the precision b? is at least 3, and if f is strictly concave or strictly
convex (that is, f” () has the same sign for all z in [zo .. 21]), then repeated application
of h will be stable in the sense that '

h(h(h(z))) = h(h(z)),

for all z such that both sides of this equation are defined. In other words, there will
be no “drift” if the subroutines are properly implemented.

29. [M25] Give an example to show that the condition b? > 3 is necessary in the
previous exercise.

30. [M30] (W. M. Kahan) Let f(z) =1+z+---+2'% = (1-2'°)/(1 —2) for
z < 1, and let g(y) = f((3 — 2)(3 4 3.45y%)) for 0 < y < 1. Evaluate g(y) on one or
more pocket calculators, for y = 1073, 1074, 107°%, 107®, and explain all inaccuracies
in the results you obtain. (Since most present-day calculators do not round correctly,
the results are often surprlslng Note that g(e) = 107 — 10491. 3562 + 659749.9625¢* —
30141386.26625€° + O(€®).)

31. [M25] (U. Kulisch.) When the polynomial 2¢% + 9z* — y* is evaluated for z =
408855776 and y = 708158977 using standard 53-bit double-precision floating pomt
arithmetic, the result is & —3.7 x 10'°. Evaluating it in the alternative form 2y® +
(32% — y?)(32 + ¢°) gives ~ +1.0 x 10'®. The true answer, however, is 1.0 (exactly).
Explain how to construct similar examples of numerical instability.

246 ARITHMETIC 4.2.3

*4.2.3. Double-Precision Calculations

Up to now we have considered “single-precision” floating point arithmetic, which
essentially means that the floating point values we have dealt with can be stored
in a single machine word. When single-precision floating point arithmetic does
not yield sufficient accuracy for a given application, the precision can be increased
by suitable programming techniques that use two or more words of memory to
represent each number.

Although we shall discuss the general question of high-precision calculations
in Section 4.3, it is appropriate to give a separate discussion of double-precision
here. Special techniques apply to double precision that are comparatively inap-
propriate for higher precisions; and double precision is a reasonably important
topic in its own right, since it is the first step beyond single precision and it is
applicable to many problems that do not require extremely high precision.

> Well that paragraph was true when the author wrote the first edition of -

(' this book in the 1960s. But computers have evolved in such a way that the
old motivations for double-precision floating point have mostly disappeared; the
present section is therefore primarily of historical interest. In the planned fourth
edition of this book, Section 4.2.1 will be renamed “Normalized Calculations,”
and the present Section 4.2.3 will be replaced by a discussion of “Exceptional
Numbers.” The new material will focus on special aspects of ANSI/IEEE Stan-
dard 754: denormal numbers, and the so-called NaNs that represent infinite,
undefined, or otherwise unusual quantities. (See the references at the end of
Section 4.2.1.) Meanwhile, let us take one last look at the older ideas, in order
to see what lessons they can still teach us.

Double-precision calculations are almost always required for floating point
rather than fixed point arithmetic, except perhaps in statistical work where fixed
point double-precision is commonly used to calculate sums of squares and cross
products; since fixed point versions of double-precision arithmetic are simpler
than floating point versions, we shall confine our discussion here to the latter.

Double precision is quite frequently desired not only to extend the precision
of the fraction parts of floating point numbers, but also to increase the range of
the exponent part. Thus we shall deal in this section with the following two-word
format for double-precision floating point numbers in the MIX computer:

tlele | f|f] fFLEVF LT (1)

Here two bytes are used for the exponent and eight bytes are used for the fraction.
The exponent is “excess b?/2,” where b is the byte size. The sign will appear in
the most significant word; it is convenient to ignore the sign of the other word
completely.

Our discussion of double-precision arithmetic will be quite machine-oriented,
because it is only by studying the problems involved in coding these routines
that a person can properly appreciate the subject. A careful study of the MIX
programs below is therefore essential to the understanding of the material.

4.2.3 DOUBLE-PRECISION CALCULATIONS 247

In this section we shall depart from the idealistic goals of accuracy stated
in the previous two sections; our double-precision routines will not round their
results, and a little bit of error will sometimes be allowed to creep in. Users dare
not trust these routines too much. There was ample reason to squeeze out every
possible drop of accuracy in the single-precision case, but now we face a different
situation: (a) The extra programming required to ensure true double-precision
rounding in all cases is considerable; fully accurate routines would take, say,
twice as much space and half again as much more time. It was comparatively
easy to make our single-precision routines perfect, but double precision brings
us face to face with our machine’s limitations. A similar situation occurs with
respect to other floating point subroutines; we can’t expect the cosine routine
to compute round(cos z) exactly for all z, since that turns out to be virtually
impossible. Instead, the cosine routine should provide the best relative error it
can achieve with reasonable speed, for all reasonable values of x. Of course, the
designer of the routine should try to make the computed function satisfy simple
mathematical laws whenever possible — for example,

C (—z)= C®O7; [CDz[<]; COHz> CHyfor0<z<y<m

(b) Single-precision arithmetic is a “staple food” that everybody who wants to
employ floating point arithmetic must use, but double precision is usually for
situations where such clean results aren’t as important. The difference between
seven- and eight-place accuracy can be noticeable, but we rarely care about the
difference between 15- and 16-place accuracy. Double precision is most often
used for intermediate steps during the calculation of single-precision results; its
full potential isn’t needed. (c) It will be instructive for us to analyze these
procedures in order to see how inaccurate they can be, since they typify the
types of short cuts generally taken in bad single-precision routines (see exercises
7 and 8).

Let us now consider addition and subtraction operations from this stand-
point. Subtraction is, of course, converted to addition by changing the sign of
the second operand. Addition is performed by separately adding together the
least-significant halves and the most-significant halves, propagating “carries”
appropriately.

A difficulty arises, however, since we are doing signed-magnitude arithmetic:
it is possible to add the least-significant halves and to get the wrong sign (namely,
when the signs of the operands are opposite and the least-significant half of the
smaller operand is bigger than the least-significant half of the larger operand).
The simplest solution is to anticipate the correct sign; so in step A2 of Algorithm
4.2.1A we will now assume not only that e, > e, but also that |u| > |v|. Then
we can be sure that the final sign will be the sign of u. In other respects, double-
precision addition is very much like its single-precision counterpart, except that
everything needs to be done twice.

Program A (Double-precision addition). The subroutine DFADD adds a double-
precision floating point number v, having the form (1), to a double-precision

4.2.3

248 ARITHMETIC

floating point number u, assuming that v is initially in rAX (registers A and X),
and that u is initially stored in locations ACC and ACCX. The answer appears both
in rAX and in (ACC, ACCX). The subroutine DFSUB subtracts v from u under the
same conventions.

Both input operands are assumed to be normalized, and the answer is
normalized. The last portion of this program is a double-precision normalization
procedure that is used by other subroutines of this section. Exercise 5 shows
how to improve the program significantly.

01 ABS EQU 1:5 Field definition for absolute value
02 SIGN EQU 0:0 Field definition for sign

03 EXPD EQU 1:2 Double-precision exponent field
04/ DFSUB STA TEMP Double-precision subtraction:

05 LDAN TEMP Change sign of v.

06 DFADD STJ EXITDF Double-precision addition:

07 CMPA ACC(ABS) Compare |v| with |u].

08 JG 1F

09 JL 2F

10 CMPX ACCX(ABS)

11 JLE 2F

12 1H STA ARG If |v] > |u|, interchange u «> v.
13 STX ARGX

14 LDA ACC

15 LDX ACCX

16 ENT1 ACC (ACC and ACCX are in consecutive
17 MOVE ARG(2) locations.)

18 2H STA TEMP

19 LDIN TEMP(EXPD) rIl « —e,.

20 LD2 ACC(EXPD) rI2 « e,.

21 INC1 0,2 rll « e, — ey.

22 SLAX 2 Remove exponent.

23 SRAX 1,1 Scale right.

24 STA ARG 0 vy v2 U3 v4

25 STX ARGX Us Vg U7 Vs Vg

26 STA ARGX(SIGN) Store true sign of v in both halves.
27 LDA ACC (We know that u has the sign of the answer.)
28 LDX ACCX rAX « u.

29 SLAX 2 Remove exponent.

30 STA ACC U1 U2 U3 Ug Us

31 SLAX 4

32 ENTX 1

33 STX EXPO EXPO « 1 (see below).

34 SRC 1 1 us ug U7 Us

35 STA 1F(SIGN) A trick, see comments in text.

36 ADD ARGX(0:4) Add 0 vs ve v7 vs.

37 SRAX 4

38 1H DECA 1 Recover from inserted 1. (Sign varies)
39 ADD ACC(0:4) Add most significant halves.

40 ADD ARG (Overflow cannot occur)

4.2.3 DOUBLE-PRECISION CALCULATIONS 249

41 DNORM JANZ 1F Normalization routine:

42 JXNZ 1F fw in tAX e, = EXPO +rl2.
43 DZERQ STA ACC If fu =0, set ey + 0.

44 JMP 9F

45 2H SLAX 1 Normalize to the left.

46 DEC2 1

47 1H CMPA =0=(1:1) Is the leading byte zero?
48 JE 2B

49 SRAX 2 (Rounding omitted)

50 STA ACC

51 LDA EXPO Compute final exponent.
52 INCA 0,2

53 JAN EXPUND Is it negative?

54 STA ACC(EXPD)

55 CMPA =1(3:3)= Is it more than two bytes?
56 JL 8F

57 EXPOVD HLT 20
58 EXPUND HLT 10

59 8H LDA ACC Bring answer into rA.

60 9H STX ACCX

61 EXITDF JMP = Exit from subroutine.

62 ARG CON O

63 ARGX CON O

64 ACC CON O Floating point accumulator
65 ACCX CON O

66 EXPO CON O Part of “raw exponent” |

When the least-significant halves are added together in this program, an
extra digit “1” is inserted at the left of the word that is known to have the
correct sign. After the addition, this byte can be 0, 1, or 2, depending on
the circumstances, and all three cases are handled simultaneously in this way.
(Compare this with the rather cumbersome method of complementation that is
used in Program 4.2.1A.)

It is worth noting that register A can be zero after the instruction on line 40
has been performed; and, because of the way MIX defines the sign of a zero result,
the accumulator contains the correct sign that is to be attached to the result if
register X is nonzero. If lines 39 and 40 were interchanged, the program would
be incorrect, even though both instructions are “ADD”!

Now let us consider double-precision multiplication. The product has four
components, shown schematically in Fig. 4. Since we need only the leftmost
eight bytes, it is convenient to ignore the digits to the right of the vertical line
in the diagram; in particular, we need not even compute the product of the two
least-significant halves.

Program M (Double-precision multiplication). The input and output conven-
tions for this subroutine are the same as for Program A.

01 BYTE EQU 1(4:4) Byte size
02 QQ EQU BYTE*BYTE/2 Excess of double-precision exponent

250

ARITHMETIC
vuuvuu uuuldld=u,+ey
vvvvev vvv 00 =v,+ey
zzxzzzxzzx 0000 =€y xuy
zzxzzxzzlz zzxzz00 = €Um X U;
zzzzlxr zzz00 = €U X U
ITTTT TTTT|T = Uy X Um
wwwww wwwww wwwww w0000

Fig. 4. Double-precision multiplication of eight-byte fraction parts.

03 DFMUL STJ

04
05
06
07
08
09
10
11
12
18
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

STA
SLAX
STA
STX
LDA
ADD
STA
ENT2
LDA
LDX
SLAX
STA
STX
MUL
STA
LDA
MUL
SRA
ADD
STA
LDA
MUL
STA
STA
STX
LDA
ADD
SRAX
ADD
JMP

EXITDF
TEMP

2

ARG

ARGX

TEMP (EXPD)
ACC(EXPD)
EXPO

-QQ

ACC

Accx

2

AcCC

ACCX
ARGX
TEMP

ARG (ABS)
ACCX (ABS)
1
TEMP(1:4)
TEMP

ARG

ACC

TEMP (SIGN)
ACC

ACCX
ACCX(0:4)
TEMP

4

ACC
DNORM

Double-precision multiplication:

Remove exponent.
Um
(%

EXPO « €y, + €.
rI2 +— —QQ.

Remove exponent.
Um

Ug

Um X Vg

|vm X ui]
Ozzzz
(Overflow cannot occur)

Um X Um

Store true sign of result.

Now prepare to add all the
partial products together.

Ozzzz

(Overflow cannot occur)

(Overflow cannot occur)
Normalize and exit. |

4.2.3

Notice the careful treatment of signs in this program, and note also the fact

that the range of exponents makes it impossible to compute the final exponent
using an index register. Program M is perhaps too slipshod in accuracy, since it
uses only the information to the left of the vertical line in Fig. 4; this can make
the least significant byte as much as 2 in error. A little more accuracy can be
achieved as discussed in exercise 4.

4.2.3 DOUBLE-PRECISION CALCULATIONS 251

Double-precision floating division is the most difficult routine, or at least the
most frightening prospect we have encountered so far in this chapter. Actually,
it is not terribly complicated, once we see how to do it; let us write the numbers
to be divided in the form (u,, + eu;)/(vm + €vi), where € is the reciprocal of
the word size of the computer, and where v, is assumed to be normalized. The
fraction can now be expanded as follows:

um—l—eul_um—l—eul(1)
Um + €U Umn 1+ e(v/vm)

:w(l_e(ﬂ>+€2(ﬂ>2_...>_ (2)
Um U U,
Since 0 < |u| < 1 and 1/b < |vm| < 1, we have |v;/vy| < b, and the error
from dropping terms involving €? can be disregarded. Our method therefore is
to compute Wy, + ew; = (U, + €u;)/vm, and then to subtract € times Wi U/ Vm
from the result.

In the following program, lines 27-32 do the lower half of a double-precision

addition, using another method for forcing the appropriate sign as an alternative
to the trick of Program A.

Program D (Double-precision division). This program adheres to the same
conventions as Programs A and M.

01 DFDIV STJ EXITDF Double-precision division:

02 JOV OFLO Ensure that overflow is off.

03 STA TEMP

04 SLAX 2 Remove exponent.

05 STA ARG Um,

06 STX ARGX o

07 LDA ACC(EXPD)

08 SUB TEMP(EXPD)

09 STA EXPO EXPO <+ €, — €.

10 ENT2 QQ+1 ri2 +QQ + 1.

11 LDA ACC

12 LDX ACCX

13 SLAX 2 Remove exponent.

14 SRAX 1 (See Algorithm 4.2.1M)

15 DIV ARG If overflow, it is detected below.
16 STA ACC W

17 SLAX 5 Use remainder in further division.
18 DIV ARG

19 STA ACCX +w;

20 LDA ARGX(1:4)

21 ENTX O

22 DIV ARG(ABS) rA « ||p*u/um]|]/b°.

23 JOV DVZROD Did division cause overflow?

2/ MUL ACC(ABS) rAX + |wmvi/bum|, approximately.
25 SRAX 4 Multiply by b, and save

26 SLC b the leading byte in rX.

252 ARITHMETIC 4.2.3

27 SUB ACCX(ABS) Subtract |wi|.

28 DECA 1 Force minus sign.

29 SUB WM1

30 JOV *+2 If no overflow, carry one more
31 INCX 1 to upper half.

32 SLC 5 . (Now rA <0)

33 ADD ACC(ABS) rA « |wm| — [rA].

34 STA ACC(ABS) (Now rA > 0)

35 LDA ACC rA « w,, with correct sign.
36 JMP DNORM Normalize and exit.

37 DVZROD HLT 30 Unnormalized or zero divisor
38 1H EQU 1(1:1)

39 WM1 CON 1B-1,BYTE-1(1:1) Word size minus one |

Here is a table of the approximate average computation times for these
double-precision subroutines, compared to the single-precision subroutines that
appear in Section 4.2.1:

Single precision Double precision
Addition 45.5u 84u
Subtraction 49.5u 88u
Multiplication 48u 109u
Division 52u 126.5u

For extension of the methods of this section to triple-precision floating point
fraction parts, see Y. Ikebe, CACM 8 (1965), 175-177.

EXERCISES

1. [16] Try the double-precision division technique by hand, with € = 555, when di-
viding 180000 by 314159. (Thus, let (um,u:) = (.180,.000) and (vm,v) = (.314,.159),
and find the quotient using the method suggested in the text following (2).)

2. [20] Would it be a good idea to insert the instruction “ENTX 0” between lines 30
and 31 of Program M, in order to keep unwanted information left over in register X
from interfering with the accuracy of the results?

3. [M20] Explain why overflow cannot occur during Program M.

4. [22] How should Program M be changed so that extra accuracy is achieved,
essentially by moving the vertical line in Fig. 4 over to the right one position? Specify
all changes that are required, and determine the difference in execution time caused by
these changes.

5. [24] How should Program A be changed so that extra accuracy is achieved, essen-
tially by working with a nine-byte accumulator instead of an eight-byte accumulator
to the right of the radix point? Specify all changes that are required, and determine
the difference in execution time caused by these changes.

6. [28] Assume that the double-precision subroutines of this section and the single-
precision subroutines of Section 4.2.1 are being used in the same main program. Write a
subroutine that converts a single-precision floating point number into double-precision
form (1), and write another subroutine that converts a double-precision floating point

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 253

number into single-precision form (reporting exponent overflow or underflow if the
conversion is impossible).

7. [M30] Estimate the accuracy of the double-precision subroutines in this section,
by finding bounds 4;, d2, and §3 on the relative errors

(u@v) = (u+0)/(w+v)], [((u®v)=(uxv))/(uxv),
|((u @) = (w/v))/(u/v)].

8. [M28] Estimate the accuracy of the “improved” double-precision subroutines of
exercises 4 and 5, in the sense of exercise 7.

9. [M42] T. J. Dekker [Numer. Math. 18 (1971), 224-242] has suggested an alter-
native approach to double precision, based entirely on single-precision floating binary
calculations. For example, Theorem 4.2.2C states that u+v = w+r, where w = u v
and r = (u S w) B v, if |u| > |v| and the radix is 2; here |r| < |w|/2P, so the pair
(w,r) may be considered a double-precision version of v + v. To add two such pairs
(u,u') @ (v,v'), where |u'| < |u|/2P and |v'| £ |v|/2P and |u| > |v|, Dekker suggests
computing u +v = w +r (exactly), then s = (r ®v') ® v’ (an approximate remainder),
and finally returning the value (w @ s, (w 6 (w @ s)) D s).

Study the accuracy and efficiency of this approach when it is used recursively to
produce quadruple-precision calculations.

4.2.4. Distribution of Floating Point Numbers

In order to analyze the average behavior of floating point arithmetic algorithms
(and in particular to determine their average running time), we need some
statistical information that allows us to determine how often various cases arise.
The purpose of this section is to discuss the empirical and theoretical properties
of the distribution of floating point numbers.

A. Addition and subtraction routines. The execution time for a floating
point addition or subtraction depends largely on the initial difference of expo-
nents, and also on the number of normalization steps required (to the left or to
the right). No way is known to give a good theoretical model that tells what
characteristics to expect, but extensive empirical investigations have been made
by D. W. Sweeney [IBM Systems J. 4 (1965), 31-42].

By means of a special tracing routine, Sweeney ran six “typical” large-scale
numerical programs, selected from several different computing laboratories, and
examined each floating addition or subtraction operation very carefully. Over
250,000 floating point addition-subtractions were involved in gathering this data.
About one out of every ten instructions executed by the tested programs was
either FADD or FSUB.

Subtraction is the same as addition preceded by negating the second operand,
so we can give all the statistics as if we were merely doing addition. Sweeney’s
results can be summarized as follows:

One of the two operands to be added was found to be equal to zero about
9 percent of the time, and this was usually the accumulator (ACC). The other
91 percent of the cases split about equally between operands of the same or of

254 ARITHMETIC 4.2.4

Table 1
EMPIRICAL DATA FOR OPERAND ALIGNMENTS BEFORE ADDITION
lew—es] | b=2 b=10 b=16 b=64
0 0.33 0.47 0.47 0.56
1 0.12 0.23 0.26 0.27
2 0.09 0.11 0.10 0.04
3 0.07 0.03 0.02 0.02
4 0.07 0.01 0.01 0.02
5 0.04 0.01 0.02 0.00
over 5 0.28 0.13 0.11 0.09
average 3.1 0.9 0.8 0.5
Table 2

EMPIRICAL DATA FOR NORMALIZATION AFTER ADDITION

b=2 b=10 b=16 b=64
Shift right 1 0.20 0.07 0.06 0.03
No shift 0.59 0.80 0.82 0.87
Shift left 1 0.07 0.08 0.07 0.06
Shift left 2 0.03 0.02 0.01 0.01
Shift left 3 0.02 0.00 0.01 0.00
Shift left 4 0.02 0.01 0.00 0.01
Shift left > 4 0.06 0.02 0.02 0.02

opposite signs, and about equally between cases where |u| < |v| or |v| < |u|. The
computed answer was zero about 1.4 percent of the time.

The difference between exponents had a behavior approximately given by
the probabilities shown in Table 1, for various radices b. (The “over 5” line of
that table includes essentially all of the cases when one operand was zero, but
the “average” line does not include these cases.)

When u and v have the same sign and are normalized, then u + v either
requires one shift to the right (for fraction overflow), or no normalization shifts
whatever. When u and v have opposite signs, we have zero or more left shifts
during the normalization. Table 2 gives the observed number of shifts required;
the last line of that table includes all cases where the result was zero. The
average number of left shifts per normalization was about 0.9 when b = 2; about
0.2 when b = 10 or 16; and about 0.1 when b = 64.

B. The fraction parts. Further analysis of floating point routines can be based
on the statistical distribution of the fraction parts of randomly chosen normalized
floating point numbers. The facts are quite surprising, and there is an interesting
theory that accounts for the unusual phenomena that are observed.

For convenience let us assume temporarily that we are dealing with floating
decimal arithmetic (radix 10); modifications of the following discussion to any
other positive integer base b will be very straightforward. Suppose we are given
a “random” positive normalized number (e, f) = 10¢ - f. Since f is normalized,
we know that its leading digit is 1, 2, 3, 4, 5, 6, 7, 8, or 9, and we might naturally

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 255

expect each of these nine possible leading digits to occur about one-ninth of the
time. But, in fact, the behavior in practice is quite different. For example, the
leading digit tends to be equal to 1 more than 30 percent of the time!

One way to test the assertion just made is to take a table of physical con-
stants (like the speed of light or the acceleration of gravity) from some standard
reference. If we look at the Handbook of Mathematical Functions (U.S. Dept of
Commerce, 1964), for example, we find that 8 of the 28 different physical con-
stants given in Table 2.3, roughly 29 percent, have leading digit equal to 1. The
decimal values of n! for 1 < n < 100 include exactly 30 entries beginning with 1;
so do the decimal values of 2" and of F,,, for 1 < n < 100. We might also try look-
ing at census reports, or a Farmer’s Almanack (but not a telephone directory).

In the days before pocket calculators, the pages in well-used tables of loga-
rithms tended to get quite dirty in the front, while the last pages stayed relatively
clean and neat. This phenomenon was apparently first mentioned in print by
the astronomer Simon Newcomb [Amer. J. Math. 4 (1881), 39-40], who gave
good grounds for believing that the leading digit d occurs with probability
log,o(1 4+ 1/d). The same distribution was discovered empirically, many years
later, by Frank Benford, who reported the results of 20,229 observations taken
from different sources [Proc. Amer. Philosophical Soc. 78 (1938), 551-572].

In order to account for this leading-digit law, let’s take a closer look at
the way we write numbers in floating point notation. If we take any positive
number v, its fraction part is determined by the formula 10 f, = 10(!1°g10 %) mod 1.
hence its leading digit is less than d if and only if '

(log,ou) mod 1 < log,, d. (1)

Now if we have a “random” positive number U, chosen from some reasonable
distribution that might occur in nature, we might expect that (log;, U) mod 1
would be uniformly distributed between zero and one, at least to a very good
approximation. (Similarly, we expect U mod 1, U? mod 1, vU + 7 mod 1, etc.,
to be uniformly distributed. We expect a roulette wheel to be unbiased, for essen-
tially the same reason.) Therefore by (1) the leading digit will be 1 with probabil-
ity log,o 2 & 30.103 percent; it will be 2 with probability log,, 3—log;, 2 ~ 17.609
percent; and, in general, if r is any real value between 1 and 10, we ought to
have 10fy < r approximately log;, 7 of the time.

The fact that leading digits tend to be small makes the most obvious tech-
niques of “average error” estimation for floating point calculations invalid. The
relative error due to rounding is usually a little more than expected.

Of course, it may justly be said that the heuristic argument above does
not prove the stated law. It merely shows us a plausible reason why the leading
digits behave the way they do. An interesting approach to the analysis of leading
digits has been suggested by R. Hamming: Let p(r) be the probability that
10fy <r, where 1 <r <10 and fy is the normalized fraction part of a random
normalized floating point number U. If we think of random quantities in the real
world, we observe that they are measured in terms of arbitrary units; and if we
were to change the definition of a meter or a gram, many of the fundamental

256 ARITHMETIC 4.2.4

physical constants would have different values. Suppose then that all of the
numbers in the universe are suddenly multiplied by a constant factor ¢; our
universe of random floating point quantities should be essentially unchanged by
this transformation, so p(r) should not be affected.

Multiplying everything by ¢ has the effect of transforming (log; U) mod 1
into (log,o U + log;oc) mod 1. It is now time to set up formulas that describe
the desired behavior; we may assume that 1 < ¢ < 10. By definition,

p(r) = Pr((logyo U) mod 1 < logo 7).
By our assumption, we should also have
p(r) = Pr((logio U + log;o ¢) mod 1 < logy7)

Pr((log,o U mod 1) < log;o7 — logigc
or (log;oUmod1) >1—logyc), ife<mr;

Pr((logyo U mod 1) < logyor + 1 —logygc
and (log;o U mod 1) > 1 —log;oc), if ¢ >

_ {p(T/C) +1-p(10/c), ifc<r; 2)
| p(107/c) — p(10/c), ifc>T.

Let us now extend the function p(r) to values outside the range 1 < r < 10, by
defining p(10™r) = p(r) +n; then if we replace 10/c by d, the last equation of (2)
may be written

p(rd) = p(r) + p(d). (3)

If our assumption about invariance of the distribution under multiplication by
a constant factor is valid, then Eq. (3) must hold for all » > 0 and 1 < d < 10.
The facts that p(1) = 0 and p(10) = 1 now imply that

1 =p(10) = p((¥10)") = p(¥V10) + p((¥V10)" %) = --- = np(V10);
hence we deduce that p(10™/") = m/n for all positive integers m and n. If
we now decide to require that p is continuous, we are forced to conclude that
p(r) = log,, 7, and this is the desired law.

Although this argument may be more convincing than the first one, it doesn’t
really hold up under scrutiny if we stick to conventional notions of probability.
The traditional way to make the argument above rigorous is to assume that
there is some underlying distribution of numbers F'(u) such that a given positive
number U is < u with probability F'(u); then the probability of concern to us is

p(r) =Y (F(10™r) — F(10™)), (4)
summed over all values —co < m < oco. Our assumptions about scale invariance
and continuity have led us to conclude that

p(r) = logyo 7.

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 257

Using the same argument, we could “prove” that

S (F(mr) — FO™)) = log, . (5)
m
for each integer b > 2, when 1 < r < b. But there is no distribution function F'
that satisfies this equation for all such b and r! (See exercise 7.)

One way out of the difficulty is to regard the logarithm law p(r) = log,,r as
only a very close approzimation to the true distribution. The true distribution
itself may perhaps be changing as the universe expands, becoming a better and
better approximation as time goes on; and if we replace 10 by an arbitrary
base b, the approximation might be less accurate (at any given time) as b gets
larger. Another rather appealing way to resolve the dilemma, by abandoning the
traditional idea of a distribution function, has been suggested by R. A. Raimi,
AMM 76 (1969), 342-348.

The hedging in the last paragraph is probably a very unsatisfactory ex-
planation, and so the following further calculation (which sticks to rigorous
mathematics and avoids any intuitive, yet paradoxical, notions of probability)
should be welcome. Let us consider the distribution of the leading digits of
the positive integers, instead of the distribution for some imagined set of real
numbers. The investigation of this topic is quite interesting, not only because
it sheds some light on the probability distributions of floating point data, but
also because it makes a particularly instructive example of how to combine the
methods of discrete mathematics with the methods of infinitesimal calculus.

In the following discussion, let r be a fixed real number, 1 < r < 10; we
will attempt to make a reasonable definition of p(r), the “probability” that the
representation 10¢V - fx of a “random” positive integer NV has 10fy < 7, assuming
infinite precision.

To start, let us try to find the probability using a limiting method like the

definition of “Pr” in Section 3.5. One nice way to rephrase that definition is to
define

Po(n) = [n=10°- f where 10f <r] = [(logyyn) mod 1 < logy, r]. (6)

Now Py(1), Po(2), ... is an infinite sequence of zeros and ones, with ones to
represent the cases that contribute to the probability we are seeking. We can
try to “average out” this sequence, by defining

n .
Pi(n) == 3" Bolk) (7
k=1
Thus if we generate a random integer between 1 and n using the techniques of
Chapter 3, and convert it to floating decimal form (e, f), the probability that
10f < r is exactly Pj(n). It is natural to let lim,_, o, P;(n) be the “probability”
p(r) we are after, and that is just what we did in Definition 3.5A.
But in this case the limit does not exist. For example, let us consider the
subsequence

Pi(s), P1(10s), P1(100s), ..., P (10%s), ...,

258 ARITHMETIC 4.2.4

where s is a real number, 1 < s < 10. If s < r, we find that

Py(10™s) = Toms (M—1+[10r1—10+ + 10" 1r] — 10" + | 10™s] +1-107)
= Tom (r(l—l—lO.—I----—I—lOn_l)—I—O(n)—l— |10™s| —1—~10—---—10")
= 101% (1(10mr—10"*1)+ [107s] + O(n)). (8)

As n — oo, P1(10™s) therefore approaches the limiting value 1+ (r—10)/9s. The
same calculation is valid for the case s > r if we replace |10™s| + 1 by [10™r];
thus we obtain the limiting value 10(r — 1)/9s when s > r. [See J. Franel,
Naturforschende Gesellschaft, Vierteljahrsschrift 62 (Ziirich: 1917), 286-295.]

In other words, the sequence (P;(n)) has subsequences (P;(10"s)) whose
limit goes from (r — 1)/9 up to 10(r — 1)/9r and down again to (r — 1)/9, as
s goes from 1 to 7 to 10. We see that P;(n) has no limit as n — oo; and the values
of P1(n) for large n are not particularly good approximations to our conjectured
limit log,, r either!

Since P;(n) doesn’t approach a limit, we can try to use the same idea as (7)
once again, to “average out” the anomalous behavior. In general, let

Pps1(n Z Pp, (9)

Then P,,+1(n) will tend to be a more well-behaved sequence than P,,(n). Let us
try to confirm this with quantitative calculations; our experience with the special
case m = 0 indicates that it might be worthwhile to consider the subsequence
Ppry1(10™s). The following results can, in fact, be derived:

Lemma Q. For any integer m > 1 and any real number ¢ > 0, there are
functions Qm(s), Rm(s) and an integer Ny, (€), such that whenever n > Ny, (€)
and 1 < s <10, we have '

| P (10"8) — @m(s) — Rm(8)[s>7]| < e (10)
Furthermore the functions @Qm(s) and R, (s) satisfy the relations

1 10 10

Qm(s):—(§ - Qna dt—l—/ Qo dt—l—; : Rm_l(t)dt>;

=2 [s (1)

Qo(s) = 1, Ro(s) = —1.
Proof. Consider the functions @ (s) and R,,(s) defined by (11), and let
Sm(t) = Qm(t) + Rn(t)[t> 7). (12)

We will prove the lemma by induction on m.

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 259

First note that Q1(s) = (14 (s —1) — (10— r)/9)/s =14+ (r —10)/9s, and
Ri(s) = (r — s)/s. From (8) we find that |P,(10"s) — S1(s)| = O(n)/10™; this
establishes the lemma when m = 1.

Now for m > 1, we have

Pm(lonS) = % (Z 10711_3. Z I%‘;Pm—l(k)‘*' Z %;Pm—l(k)> 3

0<j<n 10 <k<10#t1 10n <k<10ms

and we want to approximate this quantity. By induc‘pion, the difference

1 1 k
> ghe- Y Se(5y)

10§ <k<10iq 10§ <k<10iq

(13)

is less than ge when 1 < ¢ < 10 and j > Npm—1(€). Since Sp,—1(t) is continuous,
it is a Riemann-integrable function; and the difference

1 k a
) 17)?9,,,_1(17)7)—/1 S (t) dt

107 <k<10iq

(14)

is less than € for all j greater than some number N, independent of g, by the
definition of integration. We may choose N to be > Ny,_1(€). Therefore for
n > N, the difference

1
P..(10"s) — = :
(0 8) S (Z 10n—j

0<j<n

(15)

S 1(t) dt + / TSt dt)

1

is bounded by Zj":O(M/m”—j) + 2 N<j<n(11€/10"77) + 1l¢, if M is an upper
bound for (13) + (14) that is valid for all positive integers j. Finally, the sum
> 0<j<n(1/10™77), which appears in (15), is equal to (1 —1/10™)/9; so

P (107s) — l(é ° S () dt—l—/s Sm_1(t) dt)

8 1

can be made smaller than, say, 20¢, if n is taken large enough. Comparing this
with (10) and (11) completes the proof. |

The gist of Lemma Q is that we have the limiting relationship
nlgr;o Pn(10"s) = Spu(s). (16)
Also, since Sp,(s) is not constant as s varies, the limit

w33, Fm()
(which would be our desired “probability”) does not exist for any m. The
situation is shown in Fig. 5, which shows the values of S,,(s) when m is small
and r = 2.

260 ARITHMETIC 4.2.4

RN U N NS TR N S S
00 3 9

Fig. 5. The probability that the leading digit is 1.

Even though S,,(s) is not a constant, so that we do not have a definite limit
for P,,.(n), notice that already for m = 3 in Fig. 5 the value of S,,(s) stays very
close to log;, 2 & 0.30103. Therefore we have good reason to suspect that S, (s)
is very close to log,, r for all large m, and, in fact, that the sequence of functions
(Sm(s)) converges uniformly to the constant function log,, 7.

It is interesting to prove this conjecture by explicitly calculating Q. (s) and
R, (s) for all m, as in the proof of the following theorem:

Theorem F. Let S;,(s) be the limit defined in (16). For all € > 0, there exists
a number N (e) such that

|Sm(s) —logqo 7| < €, for 1 < s <10, (17)
whenever m > N ().

Proof. In view of Lemma Q, we can prove this result if we can show that there
is a number M depending on € such that, for 1 < s <10 and for all m > M, we
have

|Qm(s) — log,o7| < € and |Rm(s)| < e. (18)

It is not difficult to solve the recurrence formula (11) for R,,: We have
Ro(s) = —1, Ri(s) = —1+7/s, Ra(s) = =1+ (r/s)(1 +1n(s/r)), and in general

8

Rm(s)=—1+§(1+%1n§+---+ﬁ(1n;>m_l). (19)

For the stated range of s, this converges uniformly to —1+(r/s) exp(ln(s/r)) = 0.
The recurrence (11) for @, takes the form

Qm(s) = % (cm +1+ /18 Qm-1(t) dt) , (20)

where
10

10
Cm — % (Q’m-—l(t) dt + Rm._l(t) dt) — 1. (21)
1

T

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 261

And the solution to recurrence (20) is easily found by trying out the first few
cases and guessing at a formula that can be proved by induction; we find that

1

Qm(s) =1+ % (cm + %cm_l Ins+---+ mcl(ln s)m_1> : (22)

It remains for us to calculate the coefficients ¢,,,, which by (19), (21), and
(22) satisfy the relations

C1 = (7‘ — 10)/9,

Cm+1 = 5 (Cm In10 + 5-'- Cm-—l(ln 10)2 + .4+ _T_n_Tcl(ln 10)’m (23)

1 10\™
+r 1+—1—lnm+---+———(ln—0> - 10 }.
1! r m! r

This sequence appears at first to be very complicated, but actually we can
analyze it without difficulty with the help of generating functions. Let

C(z)=crz+cp2® +c3z® +---;
then since 10° =1+ zIn 10+ (1/2!)(21n10)2 + - - -, we deduce that

9

Cm+1 = 5 Cm+1 + ToCmt1

1

1 m T 10\™
:E(cmﬂ—l-cmlnlo—l—---—I——n—?—!cl(lnlO) >+1—(1+---+—(1n—>)—1

m+1 in the function

1 . T (10N?/ =z z
7¢O +E(T> (1—z>_ 1— 2 (24)

This condition holds for all values of m, so (24) must equal C(z), and we obtain

the explicit formula
-z (Q0/r)*t-1
Clz) = 1—2(10—1-1) (25)

is the coefficient of z

We want to study asymptotic properties of the coefficients of C(z), to complete
our analysis. The large parenthesized factor in (25) approaches In(10/7)/In10 =
1 —log,or as z — 1, so we see that

C(z) + = R(z) (26)

1—-2
is an analytic function of the complex variable z in the circle

271

1_'_11110

2| <

262 ARITHMETIC 4.2.4

In particular, R(z) converges for z = 1, so its coefficients approach zero. This
proves that the coefficients of C(z) behave like those of (log,,r — 1)/(1 — 2),
that is,

lim ¢, =log;gr — 1.

m— o0

Finally, we may combine this with (22), to show that @,,(s) approaches

log,gr—1

1
1+ (1+ln8+5—'(1n3)2+---> = logoT

s
uniformly for 1 < s <10. |

Therefore we have established the logarithmic law for integers by direct
calculation, at the same time seeing that it is an extremely good approximation
to the average behavior although it is never precisely achieved.

The proofs of Lemma Q and Theorem F given above are slight simplifica-
tions and amplifications of methods due to B. J. Flehinger, AMM 73 (1966),
1056-1061. Many authors have written about the distribution of initial digits,
showing that the logarithmic law is a good approximation for many underlying
distributions; see the surveys by Ralph A. Raimi, AMM 83 (1976), 521-538, and
Peter Schatte, J. Information Processing and Cybernetics 24 (1988), 443-455,
for a comprehensive review of the literature.

Exercise 17 discusses an approach to the definition of probability under
which the logarithmic law holds exactly, over the integers. Furthermore, ex-
ercise 18 demonstrates that any reasonable definition of probability over the
integers must lead to the logarithmic law, if it assigns a value to the probability
of leading digits.

Floating point computations operate primarily on noninteger numbers, of
course; we have studied integers because of their familiarity and their simplic-
ity. When arbitrary real numbers are considered, theoretical results are more
difficult to obtain, but evidence is accumulating that the same statistics apply,
in the sense that repeated calculations with real numbers will nearly always
tend to yield better and better approximations to a logarithmic distribution of
fraction parts. For example, Peter Schatte [Zeitschrift fiir angewandte Math.
und Mechanik 53 (1973), 553-565] showed that, under mild restrictions, the
products of independent, identically distributed random real variables approach
the logarithmic distribution. The sums of such variables do too, but only in the
sense of repeated averaging. Similar results have been obtained by J. L. Barlow
and E. H. Bareiss, Computing 34 (1985), 325-347.

EXERCISES

1. [13] Given that u and v are nonzero floating decimal numbers with the same sign,
what is the approximate probability that fraction overflow occurs during the calculation
of u @ v, according to Tables 1 and 27

2. [42] Make further tests of floating point addition and subtraction, to confirm or
improve on the accuracy of Tables 1 and 2.

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 263

3. [15] What is the probability that the two leading digits of a floating decimal
number are “23”, according to the logarithmic law?

4. [M18] The text points out that the front pages of a well-used table of logarithms
get dirtier than the back pages do. What if we had an antilogarithm table instead,
namely a table that tells us the value of x when log,, = is given; which pages of such a
table would be the dirtiest?

5. [M20] Let U be a random real number that is uniformly distributed in the interval
0 < U < 1. What is the distribution of the leading digits of U?

6. [23] If we have binary computer words containing n + 1 bits, we might use p
bits for the fraction part of floating binary numbers, one bit for the sign, and n —p
bits for the exponent. This means that the range of values representable, namely the
ratio of the largest positive normalized value to the smallest, is essentially 22" The
same computer word could be used to represent floating hexadecimal numbers, that is,
floating point numbers with radix 16, with p + 2 bits for the fraction part ((p + 2)/4
hexadecimal digits) and n —p — 2 bits for the exponent; then the range of values would
be 162" 777 = 22" 7" the same as before, and with more bits in the fraction part. This
may sound as if we are getting something for nothing, but the normalization condition
for base 16 is weaker in that there may be up to three leading zero bits in the fraction
part; thus not all of the p + 2 bits are “significant.”

On the basis of the logarithmic law, what are the probabilities that the fraction
part of a positive normalized radix 16 floating point number has exactly 0, 1, 2, and 3
leading zero bits? Discuss the desirability of hexadecimal versus binary.

7. [HM28] Prove that there is no distribution function F(u) that satisfies (5) for
each integer b > 2, and for all real values r in the range 1 <r < b.

8. [HM23] Does (10) hold when m = 0 for suitable Ny(e)?

9. [HM25] (P. Diaconis.) Let Pi(n), P2(n), ... be any sequence of functions defined
by repeatedly averaging a given function Py(n) according to Eq. (g9). Prove that
limm 00 Pm(n) = Fy(1) for all fixed n.

10. [HM28] The text shows that ¢, =log,,7 — 1 + €m, where €, approaches zero as
m — oo. Obtain the next term in the asymptotic expansion of ¢,.

11. [M15] Given that U is a random variable distributed according to the logarithmic
law, prove that 1/U is also.

12. [HM25] (R. W. Hamming.) The purpose of this exercise is to show that the result
of floating point multiplication tends to obey the logarithmic law more perfectly than
the operands do. Let U and V be random, normalized, positive floating point numbers,
whose fraction parts are independently distributed with the respective density functions
f(z) and g(z). Thus, f, < r and f, < s with probability flr/b fls/b f(z)g(y) dy dz,
for 1/b < r,s < 1. Let h(x) be the density function of the fraction part of U x V
(unrounded). Define the abnormality A(f) of a density function f to be the maximum
relative error,

f(z) — (=)

I(z)

where I(z) = 1/(z Inb) is the density of the logarithmic distribution.

Prove that A(h) < min(A(f), A(g)). (In particular, if either factor has logarithmic
distribution the product does also.)

A(f) = max

1/b<z<1

]

264 ARITHMETIC 4.2.4

» 13. [M20] The floating point multiplication routine, Algorithm 4.2.1M, requires zero
or one left shifts during normalization, depending on whether f,f, > 1/b or not.
Assuming that the input operands are independently distributed according to the
logarithmic law, what is the probability that no left shift is needed for normalization
of the result?

» 14. [HMS30] Let U and V be random, normalized, positive floating point numbers
whose fraction parts are independently distributed according to the logarithmic law,
and let px be the probability that the difference in their exponents is k. Assuming that
the distribution of the exponents is independent of the fraction parts, give an equation
for the probability that “fraction overflow” occurs during the floating point addition of
U @V, in terms of the base b and the quantities po, p1, p2, Compare this result
with exercise 1. (Ignore rounding.)

15. [HM28] Let U, V, po, p1, -.. be as in exercise 14, and assume that radix 10
arithmetic is being used. Show that regardless of the values of pg, p1, p2, ..., the sum
U @V will not obey the logarithmic law exactly, and in fact the probability that U@V
has leading digit 1 is always strictly less than log, 2.

16. [HM28] (P. Diaconis.) Let Py(n) be 0 or 1 for each n, and define “probabilities”
P, t1(n) by repeated averaging, as in (9). Show that if lim,_, P1(n) does not exist,
neither does lim, 00 Pm(n) for any m. [Hint: Prove that an — 0 whenever we have
(a1 + -+ +an)/n— 0 and any1 < an + M/n, for some fixed constant M > 0.]

> 17. [HM25] (M. Tsuji.) Another way to define the value of Pr(S(n)) is to evaluate the
quantity limp—eo (Hy ' Sop_;[S(k)]/k); it can be shown that this harmonic probability
exists and is equal to Pr(S(n)), whenever the latter exists according to Definition 3.5A.
Prove that the harmonic probability of the statement “(log;,n) mod 1 < r” exists and
equals 7. (Thus, initial digits of integers satisfy the logarithmic law ezactly in this
sense.)

» 18. [HM30] Let P(S) be any real-valued function defined on sets S of positive integers,
but not necessarily on all such sets, satisfying the following rather weak axioms:
i) If P(S) and P(T) are defined and SNT = @, then P(SUT) = P(S) + P(T).
ii) If P(S) is defined, then P(S+ 1) = P(S), where S+1={n+1|n e S}.
iii) If P(S) is defined, then P(2S) = 1 P(S), where 25 = {2n | n € S}.
iv) If S is the set of all positive integers, then P(S) = 1.
v) If P(S) is defined, then P(S) > 0.
Assume furthermore that P(L,) is defined for all positive integers a, where L, is the
set of all integers whose decimal representation begins with a:

L, ={n |10™a <n < 10™(a + 1) for some integer m} .
(In this definition, m may be negative; for example, 1 is an element of Lo, but not
of L11.) Prove that P(L,) = log,,(1 + 1/a) for all integers a > 1.

19. [HM25] (R.L.Duncan.) Prove that the leading digits of Fibonacci numbers obey
the logarithmic law of fraction parts: Pr(10fr, < 1) =logq 7.

20. [HM/0] Sharpen (16) by finding the asymptotic behavior of P,,(10"s) — S;.(s) as
n — 0o.

4.3.1 THE CLASSICAL ALGORITHMS 265

4.3. MULTIPLE-PRECISION ARITHMETIC

LET US NOW consider operations on numbers that have arbitrarily high precision.
For simplicity in exposition, we shall assume that we are working with integers,
instead of with numbers that have an embedded radix point.

4.3.1. The Classical Algorithms
In this section we shall discuss algorithms for

a) addition or subtraction of n-place integers, giving an n-place answer and a
carry;
b) multiplication of an m-place integer by an n-place integer, giving an (m+n)-
place answer;
¢) division of an (m + n)-place integer by an n-place integer, giving an (m +1)-
place quotient and an n-place remainder.
These may be called the classical algorithms, since the word “algorithm” was
used only in connection with these processes for several centuries. The term
“n-place integer” means any nonnegative integer less than b™, where b is the
radix of ordinary positional notation in which the numbers are expressed; such
numbers can be written using at most n “places” in this notation.

It is a straightforward matter to apply the classical algorithms for integers
to numbers with embedded radix points or to extended-precision floating point
numbers, in the same way that arithmetic operations defined for integers in MIX
are applied to these more general problems.

In this section we shall study algorithms that do operations (a), (b), and (c)
above for integers expressed in radix b notation, where b is any given integer
that is 2 or more. Thus the algorithms are quite general definitions of arithmetic
processes, and as such they are unrelated to any particular computer. But the
discussion in this section will also be somewhat machine-oriented, since we are
chiefly concerned with efficient methods for doing high-precision calculations by
computer. Although our examples are based on the mythical MIX, essentially the
same considerations apply to nearly every other machine.

The most important fact to understand about extended-precision numbers
is that they may be regarded as numbers written in radix w notation, where
w is the computer’s word size. For example, an integer that fills 10 words on a
computer whose word size is w = 100 has 100 decimal digits; but we will consider
it to be a 10-place number to the base 101°. This viewpoint is justified for the
same reason that we may convert, say, from binary to hexadecimal notation,
simply by grouping the bits together. (See Eq. 4.1-(5).)

In these terms, we are given the following primitive operations to work with:
ap) addition or subtraction of one-place integers, giving a one-place answer and

a carry;
bo) multiplication of a one-place integer by another one-place integer, giving a

two-place answer;
co) division of a two-place integer by a one-place integer, provided that the

quotient is a one-place integer, and yielding also a one-place remainder.

266 ARITHMETIC 4.3.1

By adjusting the word size, if necessary, nearly all computers will have these three
operations available; so we will construct algorithms (a), (b), and (c¢) mentioned
above in terms of the primitive operations (ao), (bo), and (co).

Since we are visualizing extended-precision integers as base b numbers, it is
sometimes helpful to think of the situation when b = 10, and to imagine that
we are doing the arithmeti¢ by hand. Then operation (ap) is analogous to mem-
orizing the addition table; (bo) is analogous to memorizing the multiplication
table; and (co) is essentially memorizing the multiplication table in reverse. The
more complicated operations (a), (b), (c¢) on high-precision numbers can now
be done using the simple addition, subtraction, multiplication, and long-division
procedures that children are taught in elementary school. In fact, most of the
algorithms we shall discuss in this section are essentially nothing more than
mechanizations of familiar pencil-and-paper operations. Of course, we must
state the algorithms much more precisely than they have ever been stated in
the fifth grade, and we should also attempt to minimize computer memory and
running time requirements.

To avoid a tedious discussion and cumbersome notations, we shall assume
first that all the numbers we deal with are nonnegative. The additional work
of computing the signs, etc., is quite straightforward, although some care is
necessary when dealing with complemented numbers on computers that do not
use a signed-magnitude representation. Such issues are discussed near the end
of this section.

First comes addition, which of course is very simple, but it is worth careful
study since the same ideas occur also in the other algorithms.

Algorithm A (Addition of nonnegative integers). Given nonnegative n-place
integers (upn—1...uiup)p and (Vp—1...v1%0)s, this algorithm forms their radix-b
sum, (WnpWp—1 ... wW1wWo)p. Here wy is the carry, and it will always be equal to
0or 1.

A1l. [Initialize.] Set j - 0, k <= 0. (The variable j will run through the various
digit positions, and the variable k will keep track of carries at each step.)

A2. [Add digits.] Set w; < (u; +v; + k) mod b, and k < [(u; +v; +k)/b]. (By
induction on the computation, we will always have
Thus k is being set to 1 or 0, depending on whether a carry occurs or not;
equivalently, k « [uj + v; + k>b].)

A3. [Loop on j.] Increase j by one. Now if j < n, go back to step A2; otherwise
set w, ¢ k and terminate the algorithm. |

For a formal proof that Algorithm A is valid, see exercise 4.
A MIX program for this addition process might take the following form:

Program A (Addition of nonnegative integers). Let LOC(u;

) =U+j,L0C(v;) =
V+37,L0C(w;) =W+j,1Il=5—n,rA=k, word size = b, N

n.

4.3.1 THE CLASSICAL ALGORITHMS 267

01 ENN1 N 1 Al Initialize. j < 0.

02 JOV OFLD 1 Ensure that overflow is off.
03 1H ENTA O N+1—-—K k+0.

04 J1Z 3F N+1—K ToA3ifj=n.

05 2H ADD U+N,1 N A2. Add digits.
06 ADD V+N,1 N
07 STA W+N,1 N
08 INC1 1 N A3. Loopon j. j « j+1.
09 JNOV 1B N If no overflow, set k < 0.
10 ENTA 1 K Otherwise, set k + 1.
11 JIN 2B K To A2 if j < n.
1

12 3H STA W+N Store final carry in w,. |

The running time for this program is 10V 4 6 cycles, independent of the number
of carries, K. The quantity K is analyzed in detail at the close of this section.
Many modifications of Algorithm A are possible, and only a few of these are
mentioned in the exercises below. A chapter on generalizations of this algorithm
might be entitled “How to design addition circuits for a digital computer.”
The problem of subtraction is similar to addition, but the differences are
worth noting:

Algorithm S (Subtraction of nonnegative integers). Given nonnegative n-place
integers (Un—1...u1U0)p > (Un—1-..V100)s, this algorithm forms their nonneg-
ative radix-b difference, (wp—1 ... wiwo)s.

S1. [Initialize.] Set j < 0, k < 0.

S2. [Subtract digits.] Set w; < (u; —v; + k) mod b, and k « {(u; —v; + k)/b].
(In other words, k is set to —1 or 0, depending on whether a borrow occurs
or not, namely whether u; —v; + & < 0 or not. In the calculation of w;, we
must have -b=0—(b—1)+(-1) <wu; —v; +k < (b—1)—0+0 < b;
hence 0 < u; —v; + k + b < 2b, and this suggests the method of computer
implementation explained below.)

S3. [Loop on j.] Increase j by one. Now if j < n, go back to step S2; otherwise
terminate the algorithm. (When the algorithm terminates, we should have
k = 0; the condition k¥ = —1 will occur if and only if (vp—1...v100)p >
(Un—1...uUrUo)p, contrary to the given assumptions. See exercise 12.) |

In a MIX program to implement subtraction, it is most convenient to retain
the value 1 + & instead of k£ throughout the algorithm, so that we can calculate
u; —v; + (1 + k) + (b—1) in step S2. (Recall that b is the word size.) This is
illustrated in the following code.

Program S (Subtraction of nonnegative integers). This program is analogous
to the code in Program A, but with rA = 1 + k. Here, as in other programs of
this section, location WM1 contains the constant b — 1, the largest possible value
that can be stored in a MIX word; see Program 4.2.3D, lines 38-39.

01 ENN1 N 1 S1. Initialize. j < 0.
02 Jov OFLO 1 Ensure that overflow is off.

268 ARITHMETIC 4.3.1

08 1H J1Z DONE K +1 Terminate if j = n.

04 ENTA 1 K Set k « 0.

05 2H ADD U+N,1 N S2. Subtract digits.

06 SUB V+N,1 N Compute u; —v; + k+b.
07 ADD WM1 N

08 STA W,1 N (May be minus zero)

09 INC1 1 N S3. Loopon j. j« j+ 1
10 JoV 1B N If overflow, set k « 0.

11 ENTA O N — K Otherwise set k < —1.
12 JIN 2B N -~ K BacktoS2if j <n.

13 HLT 5 (Error, v > u) |

The running time for this program is 12N + 3 cycles, slightly longer than the
corresponding amount for Program A.

The reader may wonder if it would not be worthwhile to have a combined
addition-subtraction routine in place of the two algorithms A and S. But an
examination of the code shows that it is generally better to use two different
routines, so that the inner loops of the computations can be performed as rapidly
as possible, since the programs are so short.

Our next problem is multiplication, and here we carry the ideas used in
Algorithm A a little further:

Algorithm M (Multiplication of nonnegative integers). Given nonnegative
integers (Um_1-..uitp)p and (vp—1...v100)s, this algorithm forms their radix-b
product (Wmyn—1-..w1wo)p. (The conventional pencil-and-paper method is
based on forming the partial products (um—1...u1uo) X v; first, for 0 < j < n,
and then adding these products together with appropriate scale factors; but in
a computer it is best to do the addition concurrently with the multiplication, as
described in this algorithm.)

M1. [Initialize.] Set wm—1, Wm—2 ..., wo all to zero. Set j < 0. (If wm_1, ...,
wp were not cleared to zero in this step, it turns out that the steps below
would set

(Wrngn—1---w0)b ¢ (Um=1---%0)b X (Un—1---V0)b + (Wrn—1 .. -Wo)p-
This more general multiply-and-add operation is often useful.)

M2. [Zero multiplier?] If v; = 0, set w;im < 0 and go to step M6. (This test
might save time if there is a reasonable chance that v; is zero, but it may
be omitted without affecting the validity of the algorithm.)

Ma3. [Initialize i.] Set i <~ 0, k < 0.

M4. [Multiply and add.] Set t < u; X v; + wiy; + k; then set w;;; < t modb
and k < [t/b]. (Here the carry k will always be in the range 0 < k < b;
see below.)

MS5. [Loop on i.] Increase i by one. Now if i < m, go back to step M4; otherwise
set Wy m < k.

M. [Loop on j.] Increase j by one. Now if j < n, go back to step M2; otherwise
the algorithm terminates. |

4.3.1 THE CLASSICAL ALGORITHMS 269

Table 1
MULTIPLICATION OF 914 BY 84.
Step] us vy t ws w3 w2 w Wo
M5 0 0 4 4 16 0 0 6
M5 1 0 1 4 05 0 5 6
M5 2 0 9 4 36 . 6 5 6
M6 3 0 . 4 36 3 6 5 6
M5 0 1 4 8 37 3 6 7 6
M5 1 1 1 8 17 3 7 7 6
M5 2 1 9 8 76 . 6 7 7 6
M6 3 1 8 76 7 6 7 7 6

Algorithm M is illustrated in Table 1, assuming that b = 10, by showing
the states of the computation at the beginning of steps M5 and M6. A proof of
Algorithm M appears in the answer to exercise 14.

The two inequalities

0<t< b 0<k<b (1)

are crucial for an efficient implementation of this algorithm, since they point out
how large a register is needed for the computations. These inequalities may be
proved by induction as the algorithm proceeds, for if we have k < b at the start
of step M4, we have

U XV + Wi +E< (- x b=+ 0b-1)+(b-1) =0 -1<b.

The following MIX program shows the considerations that are necessary when
Algorithm M is implemented on a computer. The coding for step M4 would be a
little simpler if our computer had a “multiply-and-add” instruction, or if it had
a double-length accumulator for addition.

Program M. (Multiplication of nonnegative integers). This program is analo-
gous to Program A. rll = i—m, rI2 = j—n, rI3 =i+ j, CONTENTS (CARRY) = k.

01 ENT1 M-1 1 M1. Initialize.

02 JOV OFLO 1 Ensure that overflow is off.
03 STZ W,1 M wen < 0.

04 DEC1 1 M

05 JINN *-2 M Repeat for m > rI1 > 0.
06 ENN2 N 1 j+ 0.

07 1H LDX V+N,2 N M2. Zero multiplier?

08 JXZ 8F N If v; =0, set wjtm « 0 and go to MS.
09 ENN1 M N -7 Ma3. Initialize i. 7 + 0.

10 ENT3 N, 2 N-7 (i+7) «+ 7.

11 ENTX O N-7 k + 0.

12 2H STX CARRY (N —2Z)M M4. Multiply and add.
18 LDA U+M,1 (N-2)M

14 MUL V+N,2 (N —-2Z)M 1AX ¢ u X v;.

15 SLC b (N — Z)M Interchange rA < rX
16 ADD W,3 (N —Z)M Add wiy; to lower half.

270 ARITHMETIC 4.3.1

17 JNOV *+2 (N — Z)M Did overflow occur?

18 INCX 1 K If so, carry 1 into upper half.
19 ADD CARRY (N — Z)M Add k to lower half.

20 JNOV *+2 (N — Z)M Did overflow occur?

21 INCX 1 K’ If so, carry 1 into upper half.
22 STA W,3 (N —Z)M w;y; + tmodb.

28 INC1 1 (N—-2)M Mb>5. Looponi. i+ i+ 1.
24 INC3 1 (N—-2Z)M (i+j)«(E+7)+1.

25 JIN 2B (N — Z)M Back to M4 with rX = [¢/b] if i < m.
26 8H STX W+M+N,2 N Set wjtm — k.

27 INC2 1 N MS6. Loop on j. j + j + 1.
28 J2N 1B N Repeat until j =n. |

The execution time of Program M depends on the number of places, M, in
the multiplicand u; the number of places, N, in the multiplier v; the number
of zeros, Z, in the multiplier; and the number of carries, K and K’, that occur
during the addition to the lower half of the product in the computation of ¢. If we
approximate both K and K’ by the reasonable (although somewhat pessimistic)
values $(N — Z)M, we find that the total running time comes to 28 MN + 4M +
10N +3 — Z(28M + 3) cycles. If step M2 were deleted, the running time would
be 28 MN +4M + TN + 3 cycles, so that step is advantageous only if the density
of zero positions within the multiplier is Z/N > 3/(28 M + 3). If the multiplier
is chosen completely at random, the ratio Z/N is expected to be only about 1/b,
which is extremely small. We conclude that step M2 is usually not worthwhile,
unless b is small.

Algorithm M is not the fastest way to multiply when m and n are large,
although it has the advantage of simplicity. Speedier but more complicated
methods are discussed in Section 4.3.3; it is possible to multiply numbers faster
than Algorithm M even when m = n = 4.

The final algorithm of concern to us in this section is long division, in which
we want to divide (m + n)-place integers by n-place integers. Here the ordinary
pencil-and-paper method involves a certain amount of guesswork and ingenuity
on the part of the person doing the division; we must either eliminate this guess-
work from the algorithm or develop some theory to explain it more carefully.

A moment’s reflection about the ordinary process of long division shows that
the general problem breaks down into simpler steps, each of which is the division
of an (n + 1)-place dividend u by the n-place divisor v, where 0 < u/v < b
the remainder r after each step is less than v, so we may use the quantity
rb + (next place of dividend) as the new u in the succeeding step. For example,
if we are asked to divide 3142 by 53, we first divide 314 by 53, getting 5 and
a remainder of 49; then we divide 492 by 53, getting 9 and a remainder of 15;
thus we have a quotient of 59 and a remainder of 15. It is clear that this same
idea works in general, and so our search for an appropriate division algorithm
reduces to the following problem (Fig. 6):

Let u = (uptn—1...u1up)p andv = (vp_1...v1Vp)s be nonnegative integers in
radix-b notation, where u/v < b. Find an algorithm to determine q = |u/v].

4.3.1 THE CLASSICAL ALGORITHMS 271

q

Un—1...0100) UnUn_1 - .. UL1UQ

. ¢ qu >
Fig. 6. Wanted: a way to

determine g rapidly. —r—

We may observe that the condition u/v < b is equivalent to the condition that
u/b < v, which is the same as |u/b] < v. This is simply the condition that
(unUn—1...u1)p < (Vpn—1Un—2...vp)p. Furthermore, if we write r = u — gv, then
g is the unique integer such that 0 < r < wv.

The most obvious approach to this problem is to make a guess about g,
based on the most significant digits of v and v. It isn’t obvious that such a
method will be reliable enough, but it is worth investigating; let us therefore set

n—1

This formula says that § is obtained by dividing the two leading digits of u by
the leading digit of v; and if the result is b or more we can replace it by (b — 1).

It is a remarkable fact, which we will now investigate, that this value ¢ is
always a very good approximation to the desired answer ¢, so long as v, is
reasonably large. In order to analyze how close § comes to g, we will first prove
that § is never too small.

Theorem A. In the notation above, § > q.

Proof. Since g < b — 1, the theorem is certainly true if § = b — 1. Otherwise we
have § = |(unb+un—1)/vn-1], hence gup—1 > upb+up_1 —v,_1 + 1. It follows
that

U—Gu < u— Gua_1b™?
< upb™ + -+ up — (Und™ + up—1 6"t — vy 6 47T
= Uy b 4 ug =" vy BT < vy 67T <
Since u — §v < v, we must have § > q. |

We will now prove that ¢ cannot be much larger than ¢ in practical situa-
tions. Assume that § > g+ 3. We have

Unb+ Up—1 Upb™ +u,_ 17T u u

7 < <)
1= V-1 Up—1b71 T Up1b®l Ty —pnl

(The case v = b™ ! is impossible, for if v = (100...0), then ¢ = cj.) Furthermore,
the relation ¢ > (u/v) — 1 implies that

Therefore

272 ARITHMETIC 4.3.1

Finally, since b—4 > §— 3 > ¢ = |u/v] > 2(vp—1 — 1), we have v,_1 < [b/2].
This proves the result we seek:

Theorem B. Ifv, ;> |b/2]|,then§—2<qg<4q. |

The most important part of this theorem is that the conclusion is indepen-
dent of b; no matter how large the radix is, the trial quotient § will never be
more than 2 in error.

The condition that v,y > |b/2] is very much like a normalization require-
ment; in fact, it is exactly the condition of floating-binary normalization in a
binary computer. One simple way to ensure that v,_; is sufficiently large is to
multiply both u and v by [(b— 1)/vn—1]; this does not change the value of u/v,
nor does it increase the number of places in v, and exercise 23 proves that it will
always make the new value of v,_; large enough. (Another way to normalize
the divisor is discussed in exercise 28.)

Now that we have armed ourselves with all of these facts, we are in a
position to write the desired long-division algorithm. This algorithm uses a
slightly improved choice of § in step D3, which guarantees that ¢ = § or § — 1;
in fact, the improved choice of § made here is almost always accurate.

Algorithm D (Division of nonnegative integers). Given nonnegative integers
U= (Umtn—1---urug)p and v = (Vp_1...V100)p, Where v,_; # 0 and n > 1, we
form the radix-b quotient |u/v| = (gm@gm-1 - .- go)» and the remainder u mod v =
(rn—1...7170)p. (When n = 1, the simpler algorithm of exercise 16 should
be used.)

D1. [Normalize.] Set d < [(b— 1)/vn—1]. Then set (UmitnUmin—1...U1U0)b
equal to (Um+n—1 -- - U1Uo)p times d; similarly, set (v,_1...v1v0)p equal to
(Up—1...v10p)p times d. (Notice the introduction of a new digit position
Um+n at the left of u,1pn—1; if d = 1, all we need to do in this step is to set
Uman < 0. On a binary computer it may be preferable to choose d to be
a power of 2 instead of using the value suggested here; any value of d that
results in v, 1 > [b/2] will suffice. See also exercise 37.)

D2. [Initialize j.] Set j + m. (The loop on j, steps D2 through D7, will be
essentially a division of (Uj4n ... Uj+1U;)p by (Vn—1...v100)s tO get a single
quotient digit g;; see Fig. 6.)

D3. [Calculate §.] Set ¢ « L(Uj+nb+Uj+n—1)/vn_1J and let 7 be the remainder,
(Ujanb + Ujpn—1) mod vp_1. Now test if § = b or Gup—o > bF + ujyn_o; if
so, decrease ¢ by 1, increase 7 by v,_1, and repeat this test if # < b. (The
test on v,_o determines at high speed most of the cases in which the trial
value § is one too large, and it eliminates all cases where § is two too large;
see exercises 19, 20, 21.)

D4. [Multiply and subtract.] Replace (4j4ntjtn—1-..u;)p by

(Uj+nt+n_1 . ’I,Lj)b - (j(’l)n__l . 'Ul’vo)b.

This computation (analogous to steps M3, M4, and M5 of Algorithm M)
consists of a simple multiplication by a one-place number, combined with

4.3.1 THE CLASSICAL ALGORITHMS 273

D1. Normalize

D2. Initialize j q ;é(j/ D6. Add back
N

Ds5.

Deé.

D7.
Ds8.

- D4. Multiply D5. Test D7. L . .
D3. Calculate § >4 and subtract {maim@-} . Loop on j 1> D8. Unnormalize
J

= !

Fig. 7. Long division.

a subtraction. The digits (ujin,Uj4+n—-1,--.,u;) should be kept positive; if
the result of this step is actually negative, (Un+;Ujtn—1-..u;)p should be
left as the true value plus b"*!, namely as the b’s complement of the true
value, and a “borrow” to the left should be remembered.

[Test remainder.] Set g; + ¢. If the result of step D4 was negative, go to
step D6; otherwise go on to step D7.

[Add back.] (The probability that this step is necessary is very small, on
the order of only 2/b, as shown in exercise 21; test data to activate this
step should therefore be specifically contrived when debugging.) Decrease
g; by 1, and add (Ovp—1...v1%0)b tO (UntjUjrn—1-- Ujr1U;)p. (A carry
will occur to the left of u;,,, and it should be ignored since it cancels with
the borrow that occurred in D4.)

[Loop on j.] Decrease j by one. Now if j > 0, go back to D3.
[Unnormalize.] Now (gm ...q1go)s is the desired quotient, and the desired
remainder may be obtained by dividing (un,—1...u1u0)s by d. 1

The representation of Algorithm D as a MIX program has several points of

interest:

Program D (Division of nonnegative integers). The conventions of this program
are analogous to Program A;rll =i —n,rI2=j,1rI3 =171+ 7.

001
035
036
037
038
039
040
041
042
043

D1 JOV OFLO 1 D1. Normalize.
(See exercise 25)

D2 ENT2 M 1 D2. Initialize j. 7 < m.

STZ V+N 1 Set v, «+ 0, for convenience in D4.
D3 LDA U+N,2(1:5) M+1 D3. Calculate q.

LDX U+N-1,2 M+1 rAX < Ujinb+ Ujin—1.

DIV V+N-1 M+1 rA « [rAX/vn_1].

Jov 1F M+1 Jump if quotient = b.

STA QHAT M+1 G + rA.

STX RHAT M+1 7+ Uj+nb + Uj4+n—11 — (j’Un_l

JMP 2F M+1 = (Uj4nb + Ujtn—1) mod v, _1.

274

044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

ARITHMETIC

1H

3H

4H

2H

D4

2H

D5

D6

1H
2H

LDX
LDA
JMP
LDX
DECX
LDA
STX
ADD
Jov
STA
LDA
MUL
CMPA
JL
JG
CMPX
JG
ENTX
ENN1
ENT3
STX
LDAN
MUL
SLC
ADD
JNOV
DECX
ADD
ADD
JNOV
INCX
STA
INC1
INC3
J1NP
LDA
STA
JXP
DECA
STA
ENN1
ENT3
ENTA
ADD
ADD
STA
INC1
INC3
JNOV

WM1
U+B-1,2
4F
QHAT
1
RHAT
QHAT
V+N-1
D4
RHAT
QHAT
V+N-2
RHAT
D4

3B
U+N-2,2
3B

1

N

0,2
CARRY
V4N, 1
QHAT

CARRY
*+2

SEGEGRGNSRSRG N

M+FE+1

M+E+1

M+FE+1
E

M+1
M+1
M+1

(M +1)(N +1)

(M + 1)(N +1)

(M +1)(N +1)

(M +1)(N +1)

(M +1)(N +1)

(M +1)(N +1)

K

(M +1)(N +1)

(M +1)(N +1)

(M +1)(N +1)

KI

(M +1)(N +1)

(M +1)(N + 1)

(M +1)(N +1)

(M + 1)(N + 1)
M+1
M+1
M+1

4.3.1

X+ b—1.
TA « Ujtn—1- (Here Ujtn = Un—l-)

Decrease § by one.

Adjust 7 accordingly:

g < rX.

TA « 7 + Vn-1.

(If # will be > b, gun—_2 will be < 7b.)
7 rA.

Test lf dvn_z S 'I"Ab + Uj+n_2.

If not, g is too large.

D4. Multiply and subtract.
14 0.

(i+7) « 7.

(Here 1 —b < rX < +1.)

rAX « —(jvi.

Interchange rA < rX

Add the contribution from the
digit to the right, plus 1.

If sum is < —b, carry —1.

Add Uit i

Add b—1 to force + sign.

If no overflow, carry —1.

rX = carry + 1.

u;y; < rA (may be minus zero).

Repeat for 0 <7 < n.

D5. Test remainder.

Set g; + q.

(Here rX = 0 or 1, since v, = 0.)
Dé6. Add back.

Set g; +— ¢ — 1.

1+ 0.

(t+7) « 7.

(This is essentially Program A.)

4.3.1 THE CLASSICAL ALGORITHMS 275

093 ENTA 1

094 JINP 2B

095 D7 DEC2 1 M+1 D7. Loop on j.

096 J2NN D3 M+1 Repeat for m > j > 0.
097 D8 --- (See exercise 26) |

Note how easily the rather complex-appearing calculations and decisions of
step D3 can be handled inside the machine. Notice also that the program for
step D4 is analogous to Program M, except that the ideas of Program S have
also been incorporated.

The running time for Program D can be estimated by considering the quan-
tities M, N, E, K, and K’ shown in the program. (These quantities ignore several
situations that occur only with very low probability; for example, we may assume
that lines 044-046, 059-060, and step D6 are never executed.) Here M + 1 is
the number of words in the quotient; N is the number of words in the divisor;
E is the number of times § is adjusted downwards in step D3; K and K’ are
the number of times certain carry adjustments are made during the multiply-
subtract loop. If we assume that K + K’ is approximately (N + 1)(M + 1),
and that E is approximately %M , we get a total running time of approximately
30MN + 30N + 89M + 106 cycles, plus 67N + 235M + 4 more if d > 1. (The
program segments of exercises 25 and 26 are included in these totals.) When M
and N are large, this is only about seven percent longer than the time needed
by Program M to multiply the quotient by the divisor.

When the radix b is comparatively small, so that b2 is less than the com-
puter’s word size, multiprecision division can be speeded up by not reducing
individual digits of intermediate results to the range [0..b); see D. M. Smith,
Math. Comp. 65 (1996), 157-163. Further commentary on Algorithm D appears
in the exercises at the close of this section.

It is possible to debug programs for multiple-precision arithmetic by using
the multiplication and addition routines to check the result of the division
routine, etc. The following type of test data is occasionally useful:

(™ —D)(t" — 1) = ™ - — ™ 4 1L
If m < n, this number has the radix-t expansion

(t=1) ... (t-1) (t-2) (=1 ... (t-1) 0 ... 0 L

A\ " - "
g “ -~

m—1 places n—m places m—1 places

for example, (10° — 1)(10® — 1) = 99899999001. In the case of Program D, it is
also necessary to find some test cases that cause the rarely executed parts of the
program to be exercised; some portions of that program would probably never
get tested even if a million random test cases were tried. (See exercise 22.)

Now that we have seen how to operate with signed-magnitude numbers,
let us consider what approach should be taken to the same problems when a
computer with complement notation is being used. For two’s complement and
ones’ complement notations, it is usually best to let the radix b be one half of the

276 ARITHMETIC 4.3.1

word size; thus for a 32-bit computer word we would use b = 231 in the algorithms
above. The sign bit of all but the most significant word of a multiple-precision
number will be zero, so that no anomalous sign correction takes place during the
computer’s multiplication and division operations. In fact, the basic meaning of
complement notation requires that we consider all but the most significant word
to be nonnegative. For example, assuming an 8-bit word, the two’s complement
number
11011111 1111110 1101011

(where the sign bit is shown only in the most significant word) is properly thought
of as —221 4 (1011111)5 - 2'* + (1111110), - 27 + (1101011)s.

On the other hand, some binary computers that work with two’s complement
notation also provide true unsigned arithmetic as well. For example, let z
and y be 32-bit operands. A computer might regard them as two’s complement
numbers in the range —23! < z,y < 23!, or as unsigned numbers in the range
0 < z,y < 232. If we ignore overflow, the 32-bit sum (z +y) mod 232 is the same
under either interpretation; but overflow occurs in different circumstances when
we change the assumed range. If the computer allows easy computation of the
carry bit |(z + y)/23?| in the unsigned interpretation, and if it provides a full
64-bit product of unsigned 32-bit integers, we can use b = 232 instead of b = 231
in our high-precision algorithms.

Addition of signed numbers is slightly easier when complement notations
are being used, since the routine for adding n-place nonnegative integers can be
used for arbitrary n-place integers; the sign appears only in the first word, so
the less significant words may be added together irrespective of the actual sign.
(Special attention must be given to the leftmost carry when ones’ complement
notation is being used, however; it must be added into the least significant word,
and possibly propagated further to the left.) Similarly, we find that subtraction
of signed numbers is slightly simpler with complement notation. On the other
hand, multiplication and division seem to be done most easily by working with
nonnegative quantities and doing suitable complementation operations before-
hand to make sure that both operands are nonnegative. It may be possible to
avoid this complementation by devising some tricks for working directly with
negative numbers in a complement notation, and it is not hard to see how this
could be done in double-precision multiplication; but care should be taken not
to slow down the inner loops of the subroutines when high precision is required.

Let us now turn to an analysis of the quantity K that arises in Program A,
namely the number of carries that occur when two n-place numbers are being
added together. Although K has no effect on the total running time of Pro-
gram A, it does affect the running time of the Program A’s counterparts that
deal with complement notations, and its analysis is interesting in itself as a
significant application of generating functions.

Suppose that u and v are independent random n-place integers, uniformly
distributed in the range 0 < u,v < b™. Let p,; be the probability that exactly
k carries occur in the addition of u to v, and that one of these carries occurs

4.3.1 THE CLASSICAL ALGORITHMS 277

in the most significant position (so that u + v > b™). Similarly, let g,x be the
probability that exactly k carries occur, but that there is no carry in the most
significant position. Then it is not hard to see that, for all £ and n,

b+1 b—1
pok = 0, P(n+1)(k+1) = ~5p~ Pnk + —3p Ik

b-1 b+l (8)
gok = Ook; Un+1)k = 5 Prk T o= nk;

this happens because (b — 1)/2b is the probability that u,_1 + v,—1; > b and
(b+1)/2b is the probability that u,_1+vp—1+1 > b, when u,_; and v,_; arein-
dependently and uniformly distributed integers in the range 0 < u, _1,v,1 < b.

To obtain further information about these quantities p,, and g¢,, we set up
the generating functions

=Y o pu 2 Qe t) =Y guk 2 (2
k,n k’n

From (3) we have the basic relations

P(z,t) = 2t (bzb P(z,t) + b~_—Q(z t))

Q(z,t) =1+t (%—P(z t) + gil—Q(z t))

These two equations are readily solved for P(z,t) and Q(z t); and if we let
G(z,t) = P(2,t) + Q(z,1) ZG

where G,(z) is the generating function for the total number of carries when
n-place numbers are added, we find that
G(z,t) = (b — zt)/p(z,t), where p(z,t) =b— 5(1+b)(1 + 2)t + zt2. (5)

Note that G(1,t) = 1/(1 —t), and this checks with the fact that G, (1) must
equal 1 (it is the sum of all the possible probabilities). Taking partial derivatives
of (5) with respect to z, we find that

G o =t t(b—zt)(b+1-2t)
=2 G = S T
092G " —t2(b +1-2¢t) t3(b—2t)(b+1—2t)?
% Z Gl P 0E T 2p(z, 1)

Now let us put 2z = 1 and expand in partial fractions:
t 1 1 1
G, (H)th == -
2 ChDE" =5 (5 evas o=e=5)

1! n __ t2 1 1 1 1
2. G =3 ((1—03 T-DEI-h ' (-126-D <b—1><b—t>2> |

n

278 ARITHMETIC 4.3.1

It follows that the average number of carries, the mean value of K is
1 1 1\
! — o 1 _ - .
Gull) =3 (” b—l(>> ! (6)
the variance is

Gr(1) + Gr(1) — GR(1)*"
N ?i” <n+ bz—nl - (ibjl)12 * (ibjl?? (%) B ﬁf—lﬁf(%ﬁ) G

So the number of carries is just slightly less than %n under these assumptions.

History and bibliography. The early history of the classical algorithms
described in this section is left as an interesting project for the reader, and
only the history of their implementation on computers will be traced here.

The use of 10" as an assumed radix when multiplying large numbers on a
desk calculator was discussed by D. N. Lehmer and J. P. Ballantine, AMM 30
(1923), 67-69.

Double-precision arithmetic on digital computers was first treated by J. von
Neumann and H. H. Goldstine in their introductory notes on programming,
originally published in 1947 [J. von Neumann, Collected Works 5, 142-151].
Theorems A and B above are due to D. A. Pope and M. L. Stein [CACM 3
(1960), 652-654], whose paper also contains a bibliography of earlier work on
double-precision routines. Other ways of choosing the trial quotient § have been
discussed by A. G. Cox and H. A. Luther, CACM 4 (1961), 353 [divide by v,,_1+1
instead of v,,_1], and by M. L. Stein, CACM 7 (1964), 472-474 [divide by vn_1
or v,_1 + 1 according to the magnitude of v,—o}; E. V. Krishnamurthy [CACM
8 (1965), 179-181] showed that examination of the single-precision remainder in
the latter method leads to an improvement over Theorem B. Krishnamurthy and
Nandi [CACM 10 (1967), 809-813] suggested a way to replace the normalization
and unnormalization operations of Algorithm D by a calculation of § based on
several leading digits of the operands. G. E. Collins and D. R. Musser have
carried out an interesting analysis of the original Pope and Stein algorithm
[Information Processing Letters 6 (1977), 151-155].

Several alternative approaches to division have also been suggested:

1) “Fourier division” [J. Fourier, Analyse des Equations Déterminées (Paris:
1831), §2.21]. This method, which was often used on desk calculators, essentially
obtains each new quotient digit by increasing the precision of the divisor and the
dividend at each step. Some rather extensive tests by the author have indicated
that such a method is inferior to the divide-and-correct technique above, but
there may be some applications in which Fourier division is practical. See D. H.
Lehmer, AMM 33 (1926), 198-206; J. V. Uspensky, Theory of Equations (New
York: McGraw-Hill, 1948), 159-164.

2) “Newton’s method” for evaluating the reciprocal of a number was extensively
used in early computers when there was no single-precision division instruction.
The idea is to find some initial approximation zg to the number 1/v, then to let

4.3.1 THE CLASSICAL ALGORITHMS 279

Tni1 = 22n — vz2. This method converges rapidly to 1/v, since z, = (1 —€)/v
implies that z,.1 = (1 — €2)/v. Convergence to third order, with € replaced by
O(€3) at each step, can be obtained using the formula

Tntl = Tn + Tn(l —vTn) + zn(l - 'an)2

=2, (14 (1 —van) (1 + (1 —vzs))),

and similar formulas hold for fourth-order convergence, etc.; see P. Rabinowitz,
CACM 4 (1961), 98. For calculations on extremely large numbers, Newton’s
second-order method and subsequent multiplication by u can actually be consid-
erably faster than Algorithm D, if we increase the precision of z,, at each step and
if we also use the fast multiplication routines of Section 4.3.3. (See Algorithm
4.3.3R for details.) Some related iterative schemes have been discussed by E. V.
Krishnamurthy, IEEE Trans. C-19 (1970), 227-231.

3) Division methods have also been based on the evaluation of

U U € €\? €\3
vte w (1—)+ -G) +) -
See H. H. Laughlin, AMM 37 (1930), 287-293. We have used this idea in the
double-precision case (Eq. 4.2.3-(2)).

Besides the references just cited, the following early articles concerning
multiple-precision arithmetic are also of interest: High-precision routines for
floating point calculations using ones’ complement arithmetic were described
by A. H. Stroud and D. Secrest, Comp. J. 6 (1963), 62-66. Extended-precision
subroutines for use in FORTRAN programs were described by B. I. Blum, CACM
8 (1965), 318-320, and for use in ALGOL by M. Tienari and V. Suokonautio,
BIT 6 (1966), 332-338. Arithmetic on integers with unlimited precision, making
use of linked memory allocation techniques, was elegantly introduced by G. E.
Collins, CACM 9 (1966), 578-589. For a much larger repertoire of multiple-
precision operations, including logarithms and trigonometric functions, see R. P.
Brent, ACM Trans. Math. Software 4 (1978), 57-81; D. M. Smith, ACM Trans.
Math. Software 17 (1991), 273-283.

Human progress in calculation has traditionally been measured by the num-
ber of decimal digits of 7 that were known at a given point in history. Section 4.1
mentions some of the early developments; by 1719, Thomas Fantet de Lagny
had computed 7 to 127 decimal places [Mémoires Acad. Sci. Paris (1719), 135~
145; a typographical error affected the 113th digit]. After better formulas were
discovered, a famous mental calculator from Hamburg named Zacharias Dase
needed less than two months to calculate 200 decimal digits correctly in 1844
[Crelle 27 (1844), 198]. Then William Shanks published 607 decimals of 7 in
1853, and continued to extend his calculations until he had obtained 707 digits
in 1873. [See W. Shanks, Contributions to Mathematics (London: 1853); Proc.
Royal Soc. London 21 (1873), 318-319; 22 (1873), 45-46; J. C. V. Hoffmann,
Zeit. fiir math. und naturwiss. Unterricht 26 (1895), 261-264.] Shanks’s 707-
place value was widely quoted in mathematical reference books for many years,

280 ARITHMETIC 4.3.1

but D. F. Ferguson noticed in 1945 that it contained several mistakes beginning
at the 528th decimal place [Math. Gazette 30 (1946), 89-90]. G. Reitwiesner
and his colleagues used 70 hours of computing time on ENIAC during Labor
Day weekend in 1949 to obtain 2037 correct decimals [Math. Tables and Other
Aids to Comp. 4 (1950), 11-15]. F. Genuys reached 10,000 digits in 1958,
after 100 minutes on an IBM 704 [Chiffres 1 (1958), 17-22]; shortly afterwards,
the first 100,000 digits were published by D. Shanks [no relation to William]
and J. W. Wrench, Jr. [Math. Comp. 16 (1962), 76-99], after about 8 hours
on an IBM 7090 and another 4.5 hours for checking. Their check actually
revealed a transient hardware error, which went away when the computation
was repeated. One million digits of = were computed by Jean Guilloud and
Martine Bouyer of the French Atomic Energy Commission in 1973, after nearly
24 hours of computer time on a CDC 7600 [see A. Shibata, Surikagaku 20
(1982), 65-73]. Amazingly, Dr. I. J. Matrix had correctly predicted seven years
earlier that the millionth digit would turn out to be “5” [Martin Gardner, New
Mathematical Diversions (Simon and Schuster, 1966), addendum to Chapter 8].
The billion-digit barrier was passed in 1989 by Gregory V. Chudnovsky and
David V. Chudnovsky, and independently by Yasumasa Kanada and Yoshiaki
Tamura; the Chudnovskys extended their calculation to two billion digits in 1991,
after 250 hours of computation on a home-built parallel machine. [See Richard
Preston, The New Yorker 68,2 (2 March 1992), 36-67. The novel formula used
by the Chudnovskys is described in Proc. Nat. Acad. Sci. 86 (1989), 8178-8182.]
Yasumasa Kanada and Daisuke Takahashi obtained more than 51.5 billion digits
in July, 1997, using two independent methods that required respectively 29.0
and 37.1 hours on a HITACHI SR2201 computer with 1024 processing elements.
Stay tuned for new records as we move into a new millenium.

We have restricted our discussion in this section to arithmetic techniques for
- use in computer programming. Many algorithms for hardware implementation
of arithmetic operations are also quite interesting, but they appear to be inap-
plicable to high-precision software routines; see, for example, G. W. Reitwiesner,
“Binary Arithmetic,” Advances in Computers 1 (New York: Academic Press,
1960), 231-308; O. L. MacSorley, Proc. IRE 49 (1961), 67-91; G. Metze, IRE
Trans. EC-11 (1962), 761-764; H. L. Garner, “Number Systems and Arith-
metic,” Advances in Computers 6 (New York: Academic Press, 1965), 131-
194. An infamous but very instructive bug in the division routine of the 1994
Pentium chip is discussed by A. Edelman in STAM Review 39 (1997), 54-67. The
minimum achievable execution time for hardware addition and multiplication
operations has been investigated by S. Winograd, JACM 12 (1965), 277-285,
14 (1967), 793-802; by R. P. Brent, IEEE Trans. C-19 (1970), 758-759; and by
R. W. Floyd, FOCS 16 (1975), 3-5. See also Section 4.3.3E.

EXERCISES

1. [42] Study the early history of the classical algorithms for arithmetic by looking
up the writings of, say, Sun Tsi, al-Khwarizmi, al-Uqlidisi, Fibonacci, and Robert

4.3.1 THE CLASSICAL ALGORITHMS 281

Recorde, and by translating their methods as faithfully as possible into precise algo-
rithmic notation.

2. [15] Generalize Algorithm A so that it does “column addition,” obtaining the
sum of m nonnegative n-place integers. (Assume that m < b.)

3. [21] Write a MIX program for the algorithm of exercise 2, and estimate its running
time as a function of m and n.

4. [M21] Give a formal proof of the validity of Algorithm A, using the method of
inductive assertions explained in Section 1.2.1.

5. [21] Algorithm A adds the two inputs by going from right to left, but sometimes
the data is more readily accessible from left to right. Design an algorithm that produces
the same answer as Algorithm A, but that generates the digits of the answer from left
to right, going back to change previous values if a carry occurs to make a previous
value incorrect. [Note: Early Hindu and Arabic manuscripts dealt with addition from
left to right in this way, probably because it was customary to work from left to right
on an abacus; the right-to-left addition algorithm was a refinement due to al-Uqlidis,
perhaps because Arabic is written from right to left.]

6. [22] Design an algorithm that adds from left to right (as in exercise 5), but never
stores a digit of the answer until this digit cannot possibly be affected by future carries;
there is to be no changing of any answer digit once it has been stored. [Hint: Keep
track of the number of consecutive (b—1)’s that have not yet been stored in the answer.]
This sort of algorithm would be appropriate, for example, in a situation where the input
and output numbers are to be read and written from left to right on magnetic tapes,
or if they appear in straight linear lists.

7. [M26] Determine the average number of times the algorithm of exercise 5 will find
that a carry makes it necessary to go back and change k digits of the partial answer, for
k=1,2,...,n. (Assume that both inputs are independently and uniformly distributed
between 0 and ™ — 1.)

8. [M26] Write a MIX program for the algorithm of exercise 5, and determine its
average running time based on the expected number of carries as computed in the text.

9. [21] Generalize Algorithm A to obtain an algorithm that adds two n-place num-
bers in a mired-radiz number system, with bases bo, bi, ... (from right to left). Thus
the least significant digits lie between 0 and bp — 1, the next digits lie between 0 and
b1 — 1, etc.; see Eq. 4.1-(9).

10. [18] Would Program S work properly if the instructions on lines 06 and 07 were
interchanged? If the instructions on lines 05 and 06 were interchanged?

11. [10] Design an algorithm that compares two nonnegative n-place integers u =
(Un—1...u1u0)p and v = (Un—1...v10)s, to determine whether u < v, u = v, or u > v.

12. [16] Algorithm S assumes that we know which of the two input operands is the
larger; if this information is not known, we could go ahead and perform the subtraction
anyway, and we would find that an extra borrow is still present at the end of the
algorithm. Design another algorithm that could be used (if there is a borrow present
at the end of Algorithm S) to complement (wn—1...w1we), and therefore to obtain
the absolute value of the difference of v and wv.

13. [21] Write a MIX program that multiplies (un—1...u1uo)s by v, where v is a single-
precision number (that is, 0 < v < b), producing the answer (w, ... wi1wo)s. How much
running time is required?

282 ARITHMETIC 4.3.1

» 14. [M22] Give a formal proof of the validity of Algorithm M, using the method of
inductive assertions explained in Section 1.2.1. (See exercise 4.)

15. [M20] If we wish to form the product of two n-place fractions, (.uiuz ... Un)b X
(.v1v2 ... vn)s, and to obtain only an n-place approximation (wiws ... wn)s to the
result, Algorithm M could be used to obtain a 2n-place answer that is subsequently
rounded to the desired approximation. But this involves about twice as much work as
is necessary for reasonable accuracy, since the products u;v; for i4j > n+2 contribute
very little to the answer.

Give an estimate of the maximum error that can occur, if these products u;v; for
i+ 7 > n+ 2 are not computed during the multiplication, but are assumed to be zero.

» 16. [20] (Short division.) Design a algorithm that divides a nonnegative n-place
integer (Un—1...u1uo)s by v, where v is a single-precision number (that is, 0 < v < b),
producing the quotient (wn—1...wi1wo)s and remainder r.

17. [M20] Inthe notation of Fig. 6, assume that vn,—1 > |b/2]; show that if un = vn_1,
we must have g =b—1or b — 2.

18. [M20] In the notation of Fig. 6, show that if ¢’ = [(unb+un—1)/(vn-1+1)], then
7 <gq

» 19. [M21] In the notation of Fig. 6, let § be an approximation to g, and let 7+ =
Unb + Un—1 — GUn_1. Assume that v,_; > 0. Show that if Gua.—2 > bF + un—2, then
q < §. [Hint: Strengthen the proof of Theorem A by examining the influence of Un-2.)
20. [M22] Using the notation and assumptions of exercise 19, show that if qun—2 <
bf + Un_2,thenj=qorg=¢—1.

» 21. [M23] Show that if va—1 > |b/2], and if qua—2 < bFf + un—2 but § # ¢ in the
notation of exercises 19 and 20, then u modv > (1 — 2/b)v. (The latter event occurs

with approximate probability 2/b, so that when b is the word size of a computer we
must have g; = § in Algorithm D except in very rare circumstances.)

» 22. [24] Find an example of a four-digit number divided by a three-digit number for
_ which step D6 is necessary in Algorithm D, when the radix b is 10.

23. [M23] Given that v and b are integers, and that 1 < v <, prove that we always
have [b/2] <wv|(b—1)/v] <b.

24. [M20] Using the law of the distribution of leading digits explained in Section 4.2.4,
give an approximate formula for the probability that d = 1 in Algorithm D. (When
d =1, we can omit most of the calculation in steps D1 and D8.)

25. [26] Write a MIX routine for step D1, which is needed to complete Program D.
26. [21] Write a MIX routine for step D8, which is needed to complete Program D.

27. [M20] Prove that at the beginning of step D8 in Algorithm D, the unnormalized
remainder (Un—1...u1 up)s is always an exact multiple of d.

28. [M30] (A. Svoboda, Stroje na Zpracovani Informaci 9 (1963), 25-32.) Let v =
(Un—1-..v100)s be any radix b integer, where vn_1 7 0. Perform the following opera-
tions:

N1.If vp_1 < b/2, multiply v by |(b+1)/(vn-1 + 1)]. Let the result of this step
be (VnUn—1...V10)b-

N2.If v, =0, set v + v + (1/b)[b(b — vn-1)/(vn-1 + 1)]v; let the result of this
step be (UnUn—-1...v0.v~1...)s Repeat step N2 until v, # 0.

4.3.1 THE CLASSICAL ALGORITHMS 283

Prove that step N2 will be performed at most three times, and that we must always
have v, =1, vo—1 = 0 at the end of the calculations.

[Note: If u and v are both multiplied by the constants above, we do not change
the value of the quotient w/v, and the divisor has been converted into the form
(10vn—2...v0.v—1v-2v_3)p. This form of the divisor is very convenient because, in
the notation of Algorithm D, we may simply take § = uj+» as a trial divisor at the
beginning of step D3, or § = b — 1 when (uj4n+1,%j4+n) = (1,0).]

29. [15] Prove or disprove: At the beginning of step D7 of Algorithm D, we always
have u; ., = 0.

30. [22] If memory space is limited, it may be desirable to use the same storage
locations for both input and output during the performance of some of the algorithms

in this section. Is it possible to have wq, wi, ..., Wn—1 stored in the same respective
locations as ug, ..., Un—10r vg, ..., vn—1 during Algorithm A or S? Is it possible to have
the quotient qo, ..., gm occupy the same locations as un, ..., Um+n in Algorithm D?

Is there any permissible overlap of memory locations between input and output in
Algorithm M?

31. [28] Assume that b =3 and that v = (Um4n-1...81u0)3, v = (Un_1...v170)3 are
integers in balanced ternary notation (see Section 4.1), v,—1 # 0. Design a long-division
algorithm that divides u by v, obtaining a remainder whose absolute value does not
exceed %[’U[Try to find an algorithm that would be efficient if incorporated into the
arithmetic circuitry of a balanced ternary computer.

32. [M40] Assume that b = 2; and that v and v are complex numbers expressed in
the quater-imaginary number system. Design algorithms that divide u by v, perhaps
obtaining a suitable remainder of some sort, and compare their efficiency.

33. [M40] Design an algorithm for taking square roots, analogous to Algorithm D
and to the traditional pencil-and-paper method for extracting square roots.

34. [40] Develop a set of computer subroutines for doing the four arithmetic opera-
tions on arbitrary integers, putting no constraint on the size of the integers except for
the implicit assumption that the total memory capacity of the computer should not be
exceeded. (Use linked memory allocation, so that no time is wasted in finding room to
put the results.)

35. [40] Develop a set of computer subroutines for “decuple-precision floating point”
arithmetic, using excess 0, base b, nine-place floating point number representation,
where b is the computer word size, and allowing a full word for the exponent. (Thus
each floating point number is represented in 10 words of memory, and all scaling is
done by moving full words instead of by shifting within the words.)

36. [M25] Explain how to compute In¢ to high precision, given a suitably precise
approximation to ¢, using only multiprecision addition, subtraction, and division by
small numbers.

37. [20] (E. Salamin.) Explain how to avoid the normalization and unnormalization
steps of Algorithm D, when d is a power of 2 on a binary computer, without changing
the sequence of trial quotient digits computed by that algorithm. (How can 4 be
computed in step D3 if the normalization of step D1 hasn’t been done?)

38. [M35] Suppose u and v are integers in the range 0 < u,v < 2". Devise a way
to compute the geometric mean |v/uv + | by doing O(n) operations of addition,
subtraction, and comparison of (n+2)-bit numbers. [Hint: Use a “pipeline” to combine
the classical methods of multiplication and square rooting.]

284 ARITHMETIC 4.3.1

39. [25] (D. Bailey, P. Borwein, and S. Plouffe, 1996.) Explain how to compute the
nth bit of the binary representation of m without knowing the previous n — 1 bits, by
using the identity

7T_21(4_2_1_1>
T £~16F\8k+1 8k+4 8k+5 8k+6

and doing O(nlogn) arithmetic operations on O(logn)-bit integers. (Assume that the
binary digits of = do not have surprisingly long stretches of consecutive 0s or 1s.)

40. [M24] Sometimes we want to divide u by v when we know that the remainder
will be zero. Show that if u is a 2n-place number and v is an n-place number with
umod v = 0, we can save about 75% of the work of Algorithm D if we compute half of
the quotient from left to right and the other half from right to left.

» 41. [M26] Many applications of high-precision arithmetic require repeated calcula-
tions modulo a fixed n-place number w, where w is relatively prime to the base b. We
can speed up such calculations by using a trick due to Peter L. Montgomery [Math.
Comp. 44 (1985), 519-521}, which streamlines the remaindering process by essentially
working from right to left instead of left to right.

a) Given u = (Um4n—1...U1U0)b, W = (Wn—1...w1Wo)s, and a number w’ such
that wow’ mod b = 1, show how to compute v = F(vn_1...v100)s such that
b™v mod w = u mod w.

b) Given n-place signed integers u, v, w with |u, [v] < w, and given w’ as in (a), show
how to calculate an n-place integer t such that |t| < w and ™t = uv (modulo w).

c) How do the algorithms of (a) and (b) facilitate arithmetic mod w?

42. [HMS35] Given m and b, let P,x be the probability that | (u1 + -+ +um)/b™] = k,
when w1, ..., u, are random n-place integers in radix b. (This is the distribution of
wy in the column addition algorithm of exercise 2.) Show that Pnx = (7)) +0(b™ "),
where (') is an Eulerian number (see Section 5.1.3).

» 43. [22] Shades of gray or components of color values in digitized images are usually

. represented as 8-bit numbers u in the range [0..255], denoting the fraction u/255.
Given two such fractions u/255 and v/255, graphical algorithms often need to compute
their approximate product w/255, where w is the nearest integer to uv/255. Prove
that w can be obtained from the efficient formula

t = uv + 128, w = [([t/256] +t)/256].

*4.3.2. Modular Arithmetic

Another interesting alternative is available for doing arithmetic on large integer
numbers, based on some simple principles of number theory. The idea is to have
several moduli my, ms, ..., m, that contain no common factors, and to work
indirectly with residues u mod mi, u mod my, ..., u mod m, instead of directly
with the number w.

For convenience in notation throughout this section, let

u1 = umod my, ug = u mod mao, el ur = u mod m... (1)

It is easy to compute (u1,usg,...,ur) from an integer number u by means of
division; and it is important to note that no information is lost in this process (if

4.3.2 MODULAR ARITHMETIC 285

u isn't too large), since we can recompute u from (u1,us,...,u,). For example,
if 0 < u < v <1000, it is impossible to have (umod 7, umod 11, u mod 13)
equal to (vmod 7, vmod 11, v mod 13). This is a consequence of the “Chinese
remainder theorem” stated below.

We may therefore regard (uq,ug, ..., ur) as a new type of internal computer
representation, a “modular representation,” of the integer u.

The advantages of a modular representation are that addition, subtraction,
and multiplication are very simple:

(w1, ur) + (v1,...,0) = ((u1 +v1) mod my, ..., (ur +v,) modm;), (2)
(w1, up) = (v1,...,0) = ((ug —v1) mod my, ..., (up — vr) modm;), (3)
(w1, up) X (v1,...,0) = ((ug X v1) modmy, ..., (u, X v,) modm,). (4)

To derive (4), for example, we need to show that
uv mod m; = (u mod m;)(v mod m;) mod m;

for each modulus m;. But this is a basic fact of elementary number theory:
z mod m; = y mod m; if and only if z = y (modulo m;); furthermore if z = z’
and y = 3/, then 2y = z'y’ (modulo m;); hence (v mod m;)(v mod m;) = uv
(modulo m;).

The main disadvantage of a modular representation is that we cannot easily
test whether (uy,...,u,) is greater than (vq1,...,v,). It is also difficult to test
whether or not overflow has occurred as the result of an addition, subtraction,
or multiplication, and it is even more difficult to perform division. When such
operations are required frequently in conjunction with addition, subtraction, and
multiplication, the use of modular arithmetic can be justified only if fast means
of conversion to and from the modular representation are available. Therefore
conversion between modular and positional notation is one of the principal topics
of interest to us in this section. ,

The processes of addition, subtraction, and multiplication using (2), (3),
and (4) are called residue arithmetic or modular arithmetic. The range of num-
bers that can be handled by modular arithmetic is equal to m = mims ... m,,
the product of the moduli; and if each m; is near our computer’s word size
we can deal with n-place numbers when r = n. Therefore we see that the
amount of time required to add, subtract, or multiply n-place numbers using
modular arithmetic is essentially proportional to n (not counting the time to
convert in and out of modular representation). This is no advantage at all when
addition and subtraction are considered, but it can be a considerable advantage
with respect to multiplication since the conventional method of the Section 4.3.1
requires an execution time proportional to n?.

Moreover, on a computer that allows many operations to take place simul-
taneously, modular arithmetic can be a significant advantage even for addition
and subtraction; the operations with respect to different moduli can all be done
at the same time, so we obtain a substantial increase in speed. The same kind of
decrease in execution time could not be achieved by the conventional techniques

286 ARITHMETIC 4.3.2

discussed in the previous section, since carry propagation must be considered.
Perhaps some day highly parallel computers will make simultaneous operations
commonplace, so that modular arithmetic will be of significant importance in
“real-time” calculations when a quick answer to a single problem requiring high
precision is needed. (With highly parallel computers, it is often preferable to
run k separate programs simultaneously, instead of running a single program k
times as fast, since the latter alternative is more complicated but does not utilize
the machine any more efficiently. “Real-time” calculations are exceptions that
make the inherent parallelism of modular arithmetic more significant.)

Now let us examine the basic fact that underlies the modular representation
of numbers:

Theorem C (Chinese Remainder Theorem). Let mi, ma, ..., m, be positive
integers that are relatively prime in pairs; that is,

m; L mg when j # k. (5)

Let m = mimg...m,, and let a, u3, us2, ..., u, be integers. Then there is
exactly one integer u that satisfies the conditions

a<u<a+m, and u=u; (modulom;) forl1<j<r (6)

Proof. If u = v (modulo m;) for 1 < j <, then u — v is a multiple of m; for
all 7, so (5) implies that u — v is a multiple of m = mymg...m,. This argument
shows that there is at most one solution of (6). To complete the proof we must
now show the existence of at least one solution, and this can be done in two
simple ways:

Method 1 (“Nonconstructive” proof). As u runs through the m distinct values
. a < u < a+m, the r-tuples (v mod my,...,umod m,) must also run through
m distinct values, since (6) has at most one solution. But there are exactly
mims ... m, possible r-tuples (vi,...,v,) such that 0 < v; < m;. Therefore
each r-tuple must occur exactly once, and there must be some value of u for
which (u mod my, ..., umodm,) = (u1,-..,Ur).

Method 2 (“Constructive” proof). We can find numbers M; for 1 < j < r such
that

M; =1 (modulo m;) and M; =0 (modulo my) fork#3j. (7)

This follows because (5) implies that m; and m/m; are relatively prime, so we
may take

M; = (m/m;)* (™) (8)
by Euler’s theorem (exercise 1.2.4-28). Now the number
u=a+ ((vuM + uaMy + - + u. M, — a) mod m) (9)

satisfies all the conditions of (6). |

4.3.2 MODULAR ARITHMETIC 287

A very special case of this theorem was stated by the Chinese mathematician
Sun Tsi, who gave a rule called tdi-yen (“great generalization”). The date of
his writing is very uncertain; it is thought to be between A.D. 280 and 473.
Mathematicians in medizval India developed the techniques further, with their
methods of kuttaka (see Section 4.5.2), but Theorem C was first stated and
proved in its proper generality by Ch’in Chiu-Shao in his Shu Shu Chiu Chang
(1247); the latter work considers also the case where the moduli might have
common factors as in exercise 3. [See J. Needham, Science and Civilization
in China 3 (Cambridge University Press, 1959), 33-34, 119-120:; Y. Li and
S. Du, Chinese Mathematics (Oxford: Clarendon, 1987), 92-94, 105, 161-166;
K. Shen, Archive for History of Exact Sciences 38 (1988), 285-305.] Numerous
early contributions to this theory have been summarized by L. E. Dickson in his
History of the Theory of Numbers 2 (Carnegie Inst. of Washington, 1920), 57-64.

As a consequence of Theorem C, we may use modular representation for
numbers in any consecutive interval of m = mymg...m, integers. For example,
we could take @ = 0 in (6), and work only with nonnegative integers u less
than m. On the other hand, when addition and subtraction are being done, as
well as multiplication, it is usually most convenient to assume that all of the
moduli my, mo, ..., m, are odd numbers, so that m = myms ... m, is odd, and
to work with integers in the range

m_ e m
5 <u<g, (10)

which is completely symmetrical about zero.

In order to perform the basic operations listed in (2), (3), and (4), we
need to compute (u; + v;) mod mj, (u; — v;) mod m;, and u;v; mod m;, when
0 < uj,v; < my. If m; is a single-precision number, it is most convenient to
form u;v; mod m; by doing a multiplication and then a division operation. For
addition and subtraction, the situation is a little simpler, since no division is
necessary; the following formulas may conveniently be used:

(uj +v5) mod my = uj + v —m;u; + v; >my]. (12)
(uj —v;) mod my = u; — v +mjlu; <vj]. (12)

(See Section 3.2.1.1.) Since we want m to be as large as possible, it is easiest
to let m; be the largest odd number that fits in a computer word, to let ms be
the largest odd number < m; that is relatively prime to m;, to let ms be the
largest odd number < mg that is relatively prime to both m; and m,, and so on
until enough m;’s have been found to give the desired range m. Efficient ways
to determine whether or not two integers are relatively prime are discussed in
Section 4.5.2.

As a simple example, suppose that we have a decimal computer whose words
hold only two digits, so that the word size is 100. Then the procedure described
in the previous paragraph would give

m1; =99, me =97, m3=95 ma=91, ms5=289, mg=83, (13)

and so on.

288 ARITHMETIC 4.3.2

On binary computers it is sometimes desirable to choose the m; in a different
way, by selecting
m; = 2% — 1. (14)
In other words, each modulus is one less than a power of 2. Such a choice of
m; often makes the basig arithmetic operations simpler, because it is relatively
easy to work modulo 2% — 1, as in ones’ complement arithmetic. When the
moduli are chosen according to this strategy, it is helpful to relax the condition
0 < u; < mj; slightly, so that we require only

0 <wuy <29, u; = u (modulo 2% —1). (15)

Thus, the value u; = m; = 2% —1 is allowed as an optional alternative to u; = 0;
this does not affect the validity of Theorem C, and it means we are allowing u; to
be any e;-bit binary number. Under this assumption, the operations of addition
and multiplication modulo m; become the following:

u; Bv; = ((uj—l-’vj) mod 2ej) +[uj+’UjZ2ej]. (16)
u; @ vj = (ujv;mod 2%7) & |ujv;/2%]. (17)

(Here @ and ® refer to the operations done on the individual components of
(u1,...,ur) and (v1,...,v,) when adding or multiplying, respectively, using the
convention (15).) Equation (12) is still good for subtraction, or we can use

u; QU = ((uj — v;) mod 261') — [u; <vj]. (18)

These operations can be performed efficiently even when 2% is larger than the
computer’s word size, since it is a simple matter to compute the remainder of a
positive number modulo a power of 2, or to divide a number by a power of 2.
In (17) we have the sum of the “upper half” and the “lower half” of the product,
as discussed in exercise 3.2.1.1-8.

If moduli of the form 2% — 1 are to be used, we must know under what
conditions the number 2¢—1 is relatively prime to the number 2/ —1. Fortunately,
there is a very simple rule:

ged(2¢ — 1, 2F — 1) = 28cd(&f) _ 1, (19)

This formula states in particular that 2¢ — 1 and 2f — 1 are relatively prime if
and only if e and f are relatively prime. Equation (19) follows from Euclid’s
algorithm and the identity

(2¢ — 1) mod (2f — 1) = 2¢ ™4/ 1, (20)

(See exercise 6.) On a computer with word size 232, we could therefore choose

mp =282 -1, mo=2% -1 m3=2% -1 my =22 -1, ms = 225 — 1; this
would permit efficient addition, subtraction, and multiplication of integers in a
range of size mymomamams > 2143,

As we have already observed, the operations of conversion to and from
modular representation are very important. If we are given a number u, its
modular representation (ui,...,u,) may be obtained by simply dividing u by

4.3.2 MODULAR ARITHMETIC 289

mi, ..., m, and saving the remainders. A possibly more attractive procedure,
if u = (VmVYm—1-.-v0)s, is to evaluate the polynomial

(...(vmb+vm_1)b+---)b+v0

using modular arithmetic. When b = 2 and when the modulus m; has the special
form 2% —1, both of these methods reduce to quite a simple procedure: Consider
the binary representation of u with blocks of e; bits grouped together,

u=a; At + a1 AT+ + a1 A+ ao, (21)
where A =2% and 0 < aj; < 2% for 0 < k <¢. Then
u=a;+a;_1+---+ay+ao (modulo 2% — 1), (22)

since A = 1, so we obtain u; by adding the e;-bit numbers a; & --- & a; B ao,
using (16). This process is similar to the familiar device of “casting out nines”
that determines u mod 9 when u is expressed in the decimal system.

Conversion back from modular form to positional notation is somewhat more
difficult. It is interesting in this regard to notice how the study of computation
changes our viewpoint towards mathematical proofs: Theorem C tells us that the
conversion from (uy,...,u,) to u is possible, and two proofs are given. The first
proof we considered is a classical one that relies only on very simple concepts,
namely the facts that

i) any number that is a multiple of m;, of ms, ..., and of m,, must be a
multiple of mimg ... m, when the m;’s are pairwise relatively prime; and

ii) if m pigeons are put into m pigeonholes with no two pigeons in the same
hole, then there must be one in each hole.

By traditional notions of mathematical aesthetics, this is no doubt the nicest
proof of Theorem C; but from a computational standpoint it is completely
worthless. It amounts to saying, “Iry u = a, a+ 1, ... until you find a value for
which v = u; (modulo my), ..., u = u, (modulo m,).”

The second proof of Theorem C is more explicit; it shows how to compute r
new constants Mi, ..., M., and to get the solution in terms of these constants
by formula (g). This proof uses more complicated concepts (for example, Euler’s
theorem), but it is much more satisfactory from a computational standpoint,
since the constants M;, ..., M, need to be determined only once. On the
other hand, the determination of M; by Eq. (8) is certainly not trivial, since the
evaluation of Euler’s ¢-function requires, in general, the factorization of m; into
prime powers. There are much better ways to compute M, than to use (8); in
this respect we can see again the distinction between mathematical elegance and
computational efficiency. But even if we find M; by the best possible method,
we’re stuck with the fact that M; is a multiple of the huge number m/m;. Thus,
(9) forces us to do a lot of high-precision calculation, and such calculation is just
what we wished to avoid by modular arithmetic in the first place.

So we need an even better proof of Theorem C if we are going to have a
really usable method of conversion from (ui,...,u,) to u. Such a method was

290 ARITHMETIC 4.3.2

suggested by H. L. Garner in 1958; it can be carried out using (’2") constants ¢;;
for 1 <i < j <r, where

¢;jm; =1 (modulo my). (23)

These constants ¢;; are readily computed using Euclid’s algorithm, since for any
given 7 and j Algorithm 4.5.2X will determine a and b such that am; + bm; =
ged(m;,m;) = 1, and we may take ¢;; = a. When the moduli have the special
form 2% — 1, a simple method of determining c;; is given in exercise 6.

Once the c;; have been determined satisfying (23), we can set

v1 < u; mod mq,

Vg « (u2 — v1) c12 mod my,

Vg ((u3 —v1)cC13 — Uz) c23 mod ms3, (24)
vy (.. ((ur —v1) €1p — v2) C2r — * -+ — Vp_1) C(r—1), mOd M.
Then
U= VpMp_1...Mam1 + -+ vgmemy + vomy + vy (25)
is a number satisfying the conditions
0<u<m, u = u; (modulo m;) for 1 <j<r. (26)

(See exercise 8; another way of rewriting (24) that does not involve as many
auxiliary constants is given in exercise 7.) Equation (25) is a mized-radiz repre-
sentation of u, which can be converted to binary or decimal notation using the
methods of Section 4.4. If 0 < u < m is not the desired range, an appropriate
multiple of m can be added or subtracted after the conversion process.

The advantage of the computation shown in (24) is that the calculation
of v; can be done using only arithmetic mod mj, which is already built into the
modular arithmetic algorithms. Furthermore, (24) allows parallel computation:
We can start with (vy,...,v,) ¢ (ug modmy, ..., u, modm,), then at time j
for 1 < j < r we simultaneously set vg + (vg —