

4779 Hybrid Smart Card Device IBM

Device Resident
Application Programming Guide

 SA34-2361-01

4779 Hybrid Smart Card Device IBM
Device Resident
Application Programming Guide

 SA34-2361-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

Second Edition (March 1997)

Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM
systems, consult your IBM representative to be sure you have the latest edition and any Technical Newsletters.

IBM does not stock publications at the address given below; requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, comments may be
addressed to IBM Corporation, Department 56I, 8501 IBM Drive, Charlotte, NC 28262-8563, U.S.A. IBM may use or distribute any of
the information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
License . viii
Trademarks . viii

About This Publication . ix
Who Should Read This Book . ix
How This Book Is Organized . ix
Related Publications . x
References . x

Chapter 1. Overview of Programming a 4779 Device Resident Application 1-1

Chapter 2. Creating a 4779 Device Resident Application 2-1
Writing the Main Program Module . 2-2

Entry Code . 2-2
Establishing Serial Communications . 2-2
Application Initialization . 2-3
Communications Buffer Read and Message Processing 2-3
Main Program Considerations . 2-5

Accessing the Security Functions . 2-6
Security Function Communication Example . 2-8
Compiling the Device Resident Application . 2-9
Linking the Device Resident Application . 2-9

Chapter 3. 4779 Run-Time Library . 3-1
How To Use the Libraries . 3-1
Interface . 3-1

Serial Communications . 3-2
ICC (Integrated Circuit Card) Reader . 3-4
Display . 3-6
Magnetic Stripe Reader . 3-8
Keypad . 3-11
Tone generator . 3-13
Timer . 3-14
System . 3-15
Interface Control . 3-18
Security Function Interface . 3-19
Modified Compiler Run-Time Functions . 3-20

Chapter 4. Loading the 4779 Device Resident Application 4-1
Invoking the 4779 Application Download Program for DOS 4-1
Invoking the 4779 Application Download Program for OS/2 4-1

Appendix A. 4779 Device-Resident Development Kit Components . . . A-1

Appendix B. Additional Security Functions B-1
Construct Triple-Encrypted Block . B-1
Format ANSI PIN Block . B-2
Format 3624 PIN Block . B-2
Read Security Function Device Information . B-3

 Copyright IBM Corp. 1996, 1997 iii

Appendix C. 4779 Device Resident Application Sample Code List . . . C-1

iv 4779 Application Programming Guide

 Figures

1-1. 4779 Operational Overview . 1-1
2-1. 4779 Microcode Architecture . 2-1
2-2. Memory Map - 4779 Device without Enhanced Security Feature . . 2-10
2-3. Memory Map - 4779 Device with Enhanced Security Feature 2-11
3-1. LCD pattern . 3-7
3-2. MIDS tags . 3-16
4-1. 4779 Application Download Programs 4-1
A-1. 4779 Device-Resident Development Kit Components A-1

 Copyright IBM Corp. 1996, 1997 v

vi 4779 Application Programming Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectable rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user’s responsibility.

Licensees of this program who wish to have information about it for the purpose of
enabling:

(i) the exchange of information between independently created programs and
other programs (including this one) and
(ii) the mutual use of the information which has been exchanged, should
contact: IBM Corporation, Department MG39/201, 8501 IBM Drive, Charlotte,
NC 28262-8563, U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Federal Communications Commission (FCC) Statement
Note: This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are
designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to cause
harmful interference, in which case the user will be required to correct the
interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to
meet FCC emission limits. IBM is not responsible for any radio or television
interference caused by using other than recommended cables and connectors or by
unauthorized changes or modifications to this equipment. Unauthorized changes or
modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the
following two conditions: (1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that
may cause undesired operation.

 Copyright IBM Corp. 1996, 1997 vii

 License
You may use the files which make up Feature Code 3922 (Programs) with the
IBM 4779 only in accordance with the IBM International Program License
Agreement that accompanies the Programs.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

Personal Security Personal System/2 PS/2
IBM Operating System/2 OS/2

viii 4779 Application Programming Guide

About This Publication

This book tells you how to create a 4779 device resident application that uses the
IBM* 4779 BIOS.

Who Should Read This Book
The information in this book is intended for people who are creating or modifying
the 4779 device resident application.

In order to use this document, the reader should be familiar with the system and
application programs that work with the 4779 and with background material related
to devices of this type. Specifically, the reader should have a working knowledge
of the following areas:

Basic cryptography, including the use of DES and RSA

Magnetic stripe cards and their use

 Smart cards

In addition the user should be familiar with writing, compiling, linking and debugging
the C programming language. A knowledge of the 8051 microprocessor is also
valuable.

How This Book Is Organized
This book contains the following sections:

Chapter 3, “4779 Run-Time Library,” documents the I/O run-time library support for
the 4779 device according to the categories of tasks they perform.

Chapter 2, “Creating a 4779 Device Resident Application,” explains how to create a
device resident application for the 4779 device.

Appendix A, “4779 Device-Resident Development Kit Components,” lists the
components of the 4779 Device Resident Development Kit found on the 4779
Device Resident Development Kit diskette.

Appendix B, “Additional Security Functions,” describes the additional security
functions available to those creating 4779 Device Resident Application.

Appendix C, “4779 Device Resident Application Sample Code List,” lists the device
resident sample code files available from the self extracting file 4779AZIP.EXE.

* Trademark of IBM

 Copyright IBM Corp. 1996, 1997 ix

 Related Publications
You might need additional information from one or more of the following
publications:

The DOS Technical Reference, for your DOS operating system

4779 Programming Guide, SA34-2360

4700 Finance Communication System: System Summary, GC31-2016

4700 Financial I/O Planning Guide, GC31-3762

 References
The following references may be useful to those readers who are not familiar with
cryptography, magnetic stripe technology, or PIN pads.

Applied Cryptograhpy by Bruce Schneier, ISBN 0-471-59756-2.

Security for Computer Networks by D.W. Davies and W.L. Price, ISBN
0-471-92137-8.

Cryptography and Data Security by Dorothy Denning, ISBN 0-201-10150-5.

Transaction Security System, Concepts and Programming Guide: Volume I,
Access Controls and DES Cryptography, IBM publication number GC31-3937.

Transaction Security System, Concepts and Programming Guide: Volume II,
Public-Key Cryptography, IBM publication number GC31-2889.

4777 Magnetic Stripe Unit and 4778 PIN-Pad Magnetic Stripe Reader: DOS
Programming Guide, IBM publication number SA34-2206.

ISO 7811-2: Identification cards - Recording technique - Part 2: Magnetic
stripe..

ISO 7816-1: Identification cards - Integrated circuit cards with contacts - Part
1: Physical characteristics.

ISO 7816-2: Identification cards - Integrated circuit cards with contacts - Part
2: Dimensions and location of the contacts.

ISO 7816-3: Identification cards - Integrated circuit cards with contacts - Part
3: Electronic signals and transmission protocols.

x 4779 Application Programming Guide

Chapter 1. Overview of Programming a 4779 Device Resident
Application

The 4779 has two local applications controlling the interface with the end user. The
4779 PC application and required programming is described in the IBM 4779
Programming Guide. The 4779 application, a device resident program, is
developed as shown in Figure 1-1. A programmer uses the programs supplied
with the IBM 4779 Device Resident Application Software Development Kit (SDK)
and an 8051C compiler to produce an application that is loaded into the 4779.

Creating a 4779 device resident application requires an understanding of the
application requirements and the capabilities of the existing 4779 device resident
application. An important design consideration is determining which application,
PC, host, or device, performs specific functions.

Application
Program

Device
Driver

Device
Resident
Program Compiler

C Source

Compiler
Run-time
Library

4779
Run-time
Library

Load
Utility

Device
Resident
Program

BIOS
RS-232

Runtime Development

Figure 1-1. 4779 Operational Overview

When more function is performed at the device level, less communication with the
PC is required. You should decide if this is important to your application, consider
the following:

You can simplify your PC application by performing primitive operations, such
as retries and messages, at the device level.
If your PC application performs all of the transaction flow control then less
function is performed at the device level.

When you create a unique device resident application or modify an existing one
then the 4779 Device Resident Application Software Development Kit libraries are
required. The device resident application resides in the 4779's 8051C
microprocessor.

To compile the device resident application you must use a compiler designed to
produce code for an 8051 microprocessor. The 4779 device resident application
was created using the C51 Compiler available from Franklin Software, Inc. Similar
products are available from other suppliers. These compilers have specific system
requirements. You should use your compiler's documentation to determine the
minimum system requirements.

 Copyright IBM Corp. 1996, 1997 1-1

1-2 4779 Application Programming Guide

Chapter 2. Creating a 4779 Device Resident Application

This chapter describes the process for creating a 4779 device resident application.
These steps include writing source modules that use the 4779 run-time library
functions to perform specific application requirements, compiling the source code,
and linking the source objects into an executable program.

To assist you in developing an application, the source code used to create the
4779 device resident application supplied with the 4779 is included in Feature Code
3922 as a working sample. You may use this sample code as is, or modified it to
achieve your desired application objectives. You are responsible for ensuring that
the device resident application meets your required objectives.

A list of the source code provided is found in Appendix C, “4779 Device Resident
Application Sample Code List” on page C-1. The files are made available by
executing the self-extracting zip file 4779AZIP.EXE. located on the diskette for
Feature Code 3922.

The architecture for the 4779 is illustrated in Figure 2-1. While this diagram does
not represent all microcode components in the 4779 device, it illustrates what
functions are available and how they interact with each other and the rest of the
system.

PC
Application

Device Resident
Application

(main)

Device Resident
Application Function

Module(s)

Run-time
Library

Functions
Security

Functions

4779 Device

Figure 2-1. 4779 Microcode Architecture

Commands generated by the PC application are sent to the 4779 device via the
DOS or OS/2 device driver and placed in the communication buffer. The main
program module reads a message in the buffer, interprets the command, calls a
function to execute the command, and places the response in a communication
buffer. The response is returned to the PC application by the device driver. A
number of function modules would typically be required for an entire application.
The sample run-time application supplied by IBM is comprised of several modules;
a device resident application (main) and subfunction modules. These modules are
compiled and linked with the run time library functions described in Chapter 3,
“4779 Run-Time Library” to produce a device resident application.

 Copyright IBM Corp. 1996, 1997 2-1

The modules can also call the security functions through a security function
interface, see “Security Function Interface” on page 3-19

Writing the Main Program Module
A basic application must open the serial communication port, perform initialization,
read from the communication buffer and write to the communication buffer. See
Appendix C, “4779 Device Resident Application Sample Code List” on page C-1
for a complete listing of the main program module. The application program entry
point (main) should provide these functions as well as a command interpreter to
process the commands sent from the PC application.

 Entry Code
The entry code defines required variables and functions for the remainder of the
program.
/ /
/ Main Program Example /
/ /

#define INPUT_MSG_MAX_SIZE 2 / Input data buffer size /
#define OUTPUT_MSG_MAX_SIZE 2 / Output data buffer size /
#define FCN_SUCCESS / Run-time library function success value /

typedef struct / Input buffer - messages received from host /
{

UINT length; / # bytes of data received /
UCHAR cmd; / Requested appl. command /
UCHAR mdata[INPUT_MSG_MAX_SIZE-1] ; / Data for the command /

} msg_in_struct;

typedef struct / Output buffer - messages going to host /
{

UINT length; / # bytes of data being sent /
UCHAR rc; / Return code /
UCHAR mdata[OUTPUT_MSG_MAX_SIZE-1] ; / Response data /

} msg_out_struct;

Establishing Serial Communications
Open the serial communication port, this operation uses the run-time function
sio_open to specify the baud rate, the word length in bits and the parity.

sio_open

void sio_open (int baud, int wordlen, int parity);

Include EFT.H

baud Baud rate to be set (0 = 1200, 1 = 2400, 2 = 4800, 3 = 9600)

wordlen Word length (0 = 7 bits, 1 = 8 bits, all others reserved)

parity Parity select (0 = no parity, 1 = odd parity, 2 = even parity, all others
reserved)

Returns No return value

Opens and initializes the serial communication channel.

/ /
/ Open the Serial Port /
/ /
/ Open the serial communications channel to the host. /

 sio_open(BAUD_96 , / at 96 baud /
WORD_LENGTH_8, / with 8-bit word length /

2-2 4779 Application Programming Guide

PARITY_ODD); / and odd parity. /

 Application Initialization
Initialize the application, this step is application dependent. It can include such
items as variable initialization, writing a start-up message to the display, and
clearing the device of any cards.

Communications Buffer Read and Message Processing
Read the communication buffer, this process involves using the run-time function
sio_get_message to read the PC application message placed in the communication
buffer by the device driver.

sio_get_message

int sio_get_message (unsigned char * buffer, unsigned int * len);

Include EFT.H

buffer User buffer where a message is to be placed

len Length of the message buffer

Returns 0 if successful; len is updated with the actual number of bytes read if
successful.

-1 if not successful

Reads a single message from the communication receive buffer and stores it in buffer as per
the link level protocol.

Prior to this call, the message length should be initialized to the maximum length.
Messages read from the communication buffer contain an initial two byte length
field that is created by the device driver.

If the communication buffer cannot be read, the buffer is cleared with the run-time
function sio_rx_flush and the message length and return code are updated to
reflect an error condition.

sio_rx_flush

void sio_rx_flush (void);

Include EFT.H

Returns No return value

Flushes the receive buffer of the serial communication channel.

/ /
/ Read the Communication Buffer /
/ /
msg_in.length = INPUT_MSG_MAX_SIZE; / Indicate recv. buffer size /

if (FCN_SUCCESS != sio_get_message(&msg_in.cmd, / Buffer addr. /
(UCHAR) &msg_in.length)) / #bytes recd. /

{
/ The message was not read into our buffer successfully. Flush it /
/ from the buffer and send an errror response message. /

(void) sio_rx_flush(); / Flush the message /

msg_out.rc = arc_DATA_LENGTH_ERROR;

 Chapter 2. Creating a 4779 Device Resident Application 2-3

msg_out.length = ;
}
else / Message was received successfully /
{

/ A message is available, and we've read it into the buffer /
/ msg_in. Decide what the message is, and call the appropriate /
/ processing function. Pass pointers to the incoming and outgoing /
/ message buffers. The called functions are responsible for /
/ setting up a response message in msg_out, including the data (if /
/ any), the return code, and the length -- which is the length of /
/ only the data, not including the return code. /

/ Note that all commands with codes in the range 8 -EF are for the /
/ security function. These are passed through to that processor /
/ for handling, and the responses are passed back to the requester. /

/ Set the default response message return code to indicate there /
/ were no errors. Set the default output length to indicate the /
/ command had no data to return. Note that the length is /
/ incremented after the command is complete in order to add in the /
/ length of the return code - until then, the length is considered /
/ to be just the number of bytes of data generated by the command /

 / itself. /

msg_out.rc = arc_OK; / No errors /
msg_out.length = ; / No data /

 / /
/ Interpret Messages Received /

 / /
/ Decode the incoming command code. If it is for the security /
/ processor, pass it on to that processor for handling. Otherwise, /
/ decode here and call the appropriate routine. /

/ Check if command is a security function /

if ((msg_in.cmd >= ac_FIRST_SP_CMD) && (msg_in.cmd <= ac_LAST_SP_CMD))
 {

/ Send request on to the security processor for handling /

/ Decrease the response length by one, so it is only the length /
/ of the data returned by the command. The supervisor will add /
/ one (see below) to add in the length of the return code. /

 msg_out.length--;
 }

else switch (msg_in.cmd) / Call required command /
 {

 case COMMAND_ONE :
 call_command_one(&msg_in, &msg_out);
 break;
 default:
 unknown_command(&msg_in, &msg_out);
 break;

} / End switch /
}

Interpret messages received, this process involves matching the command in a
message with a the predefined command set for the application. The following hex
command identifiers are reserved : F0, F1, F2, F3, F4, and F5. Commands that
are not identifiable as application commands or security function commands are
handled as a default. Valid commands initiate a call to an application module that
executes the desired function. The command interpreter is a case statement
enclosed in a do-while loop that continues until the device is reset.
H3.Communications Buffer Write

Write to the communication buffer, the run-time function sio_put_message is used
to return a message to the PC application.

2-4 4779 Application Programming Guide

sio_put_message

int sio_put_message (unsigned char * buffer, unsigned int len);

Include EFT.H

buffer User message buffer containing the data to be transmitted

len Length of the data to be transmitted

Returns 0 if successful

-1 if not successful

Writes len bytes from buffer to the serial communication channel as per the link level
protocol.

In order to maintain synchronization, each message read from the communication
buffer must be followed by a return message. Prior to sending a message, the
length of the message is incremented to reflect the return code size. If an attempt
to write a message to the buffer is unsuccessful, you should re-initialize the device
with the reset run-time function.
/ /
/ Write to the Communication Buffer /
/ /
/ We have finished processing the command, and a response has been /
/ formatted in the output buffer, msg_out. Send the response /
/ message to the PC application. Note that we increase msg_out.length, /
/ to account for the return code byte. The application functions only to /
/ set msg_out.length to the length of the returned data, not including /
/ the return code. /

/ If we are unable to communicate with the host, reset the box. /

msg_out.length += sizeof(msg_out.rc); / Add length of return code /

if (FCN_SUCCESS != sio_put_message(&msg_out.rc, / Data to send /
msg_out.length)) / # bytes /

{
reset(); / Can't communicate! Reset. /

}

Main Program Considerations
An application in this context is a set of high-level functions. Each function is a
module called by a command interpreter using a predefined command set. Each
module typically contains a number of run-time functions combined to achieve a
specific result. Your modules should include the following:

Message verification - This involves verification that the received message
length is correct for the particular command sent and that any parameters are
valid. Since the device drivers for this device function primarily to pass
messages, it is the responsibility of the application program to verify the content
of the messages received and sent.

Device compatibility - This step verifies that the particular 4779 device model or
type will support the command being executed. The device information is
obtained by a run-time function call to MIDS.

For more detailed information please refer to the Machine Information Data
Structure Appendix of the 4779 Hybrid Smart Card Device Programming Guide.

Issue run-time functions - This involves execution of the run-time functions
required to perform the expected module function.

 Chapter 2. Creating a 4779 Device Resident Application 2-5

Error response - This step involves interpreting the result of a call to a run-time
function.

Message construction - This step constructs a message to be returned to the
PC application. The minimum message contains a return code and message
length. Data is also be returned if applicable.

Accessing the Security Functions
Access to the security functions described in the 4779 Hybrid Smart Card Device
Programming Guide is through the 4779 device resident application program.
Because the security functions cannot be modifiable, a predefined interface must
be adhered to when these functions are called. Four additional security function
definitions are available when creating a modified 4779 device resident application.

If your application uses any of the security functions, the following definitions must
be included in the application program.

 Command Name Command Code

 #define ac_FIRST_SP_CMD 0x80
 #define ac_READ_SER_NO 0x80
 #define ac_GENERATE_RAND_NO 0x81
 #define ac_LOAD_CLEAR_RSA_PRIV_KEY 0x82
 #define ac_LOAD_DES_KEK_PART 0x83
 #define ac_LOAD_RSA_ENCR_KEK 0x84
 #define ac_LOAD_DES_ENCR_KEK 0x85
 #define ac_LOAD_DES_ENCR_KEK_WITH_CV 0x86
 #define ac_LOAD_DES_ENCR_KD 0x87
 #define ac_VISA 0x88
 #define ac_GENERATE_MAC 0x8D
 #define ac_VERIFY_MAC 0x8E
 #define ac_INITIALIZE_SECPROC 0x8F
 #define ac_FORMAT_PIN_ANSI 0x90
 #define ac_FORMAT_PIN_3624 0x91
 #define ac_RD_SP_DEV_INFO 0x93
 #define ac_COMPUTE_VERIF_PATTERN 0x94
 #define ac_VERIFY_DES_KEY 0x95
 #define ac_LAST_SP_CMD 0xEF

Security functions are accessed by sending a message containing the desired
command information to the security functions, waiting for the command to be
processed, and then receiving the output message.

This process is outlined below and followed by a code segment example.

Send a message to the security functions
This is accomplished by implementing the run-time function spc_put_message.

2-6 4779 Application Programming Guide

spc_put_message

int spc_put_message(unsigned char * buffer, unsigned int length);

Include EFT.H

buffer The user buffer containing the data to be transmitted.

length The length of the user buffer containing the data to be transmitted.

Returns

0 = successful
-1 = not successful

This function transmits a message to the security interface.

The origin of a message sent may be the PC application or the device resident
application. This run-time function must be used to send a message to the security
functions.

/
/ Send the Security Message /
/
/ The incoming data in msg_in contains length, command, and data fields,
/ all in contiguous memory. From the message's length field, we compute
/ the length of the message to be passed to the security function, and
/ we then pass the entire cmd/length/data structure with this associate d
/ length using the run-time function spc_put_message. /

ok = (FCN_SUCCESS == spc_put_message((byte) &msg_in->cmd, msg_in->leng t

Initialize return code
Involves initializing the return code of a message received from the security
functions to non-error state.

Initialize message return length
The length of the message returned must be initialized to 1999 in order to insure
compatibility with the non-modifiable security code.

Receive a message from the security functions
This is done by use of the run-time function spc_get_message.

spc_get_message

int spc_get_message (unsigned char * buffer, unsigned int * length);

Include EFT.H

buffer The user buffer for the returned security function response

length On input, the length of buffer; on output, the length of the returned
security function response.

Returns 0 = successful
-1 = not successful

This function reads a response from the security interface. If no response is available, this
function returns immediately with an unsuccessful return code.

 Chapter 2. Creating a 4779 Device Resident Application 2-7

This function is called within a do-while loop that either reads the return message
when it was available or times out after some defined amount of time.

/ /
/ Receive the Security Message /
/ /
/ Keep trying to get a response, until we're successful, or until /
/ we have tried the maximum number of times. /

do
{

ok = (FCN_SUCCESS == spc_get_message((byte) &msg_out->rc,
(int_or_bytes) &msg_out->length));

if (!ok) timeout_count--;

} while ((!ok) && (timeout_count !=));

Security Function Communication Example
/ /
/ Security Function Communication Example /
/ /
#define INPUT_MSG_MAX_SIZE 2 / Input data buffer size /
#define OUTPUT_MSG_MAX_SIZE 2 / Output data buffer size /
#define FCN_SUCCESS / Run-time library function success value /

typedef struct / Input buffer - messages received from host /
{

UINT length; / # bytes of data received /
UCHAR cmd; / Requested appl. command /
UCHAR mdata[INPUT_MSG_MAX_SIZE-1] ; / Data for the command /

} msg_in_struct;

typedef struct / Output buffer - messages going to host /
{

UINT length; / # bytes of data being sent /
UCHAR rc; / Return code /
UCHAR mdata[OUTPUT_MSG_MAX_SIZE-1] ; / Response data /

} msg_out_struct;

int ok; / Communication return value /
UNIT timeout_count; / Number of retries waiting for security response /
/ /
/ Send the Security Message /
/ /
/ The incoming data in msg_in contains length, command, and data fields, /
/ all in contiguous memory. From the message's length field, we compute /
/ the length of the message to be passed to the security function, and /
/ we then pass the entire cmd/length/data structure with this associated /
/ length using the run-time function spc_put_message. /

ok = (FCN_SUCCESS == spc_put_message((byte) &msg_in->cmd, msg_in->length));
/ /
/ Initialize the Return Code /
/ /
/ Initialize the return code in the response message to zero, indicating /
/ that no errors were detected. It will be replaced if errors occur. /

msg_out->rc = arc_OK;

/ We now call spc_get_message to wait for a response from the security /
/ function. If the security function has not yet responded, the /
/ request will time out and return with an error. In this case, we keep /
/ retrying up to the maximum number of times for this command. That /
/ maximum is obtained with a call to get_sp_cmd_timeout(). /

if (ok) / If no errors sending the message... /
{

timeout_count = / Number defined by the application /

 / /
/ Initialize the Return Length /

2-8 4779 Application Programming Guide

 / /
/ Initialize msg_out length to the maximum to insure compatibility /
/ with the security functions. /

msg_out->length = OUTPUT_MSG_MAX_SIZE - 1;

 / /
/ Receive the Security Message /

 / /
/ Keep trying to get a response, until we're successful, or until /
/ we have tried the maximum number of times. /

 do
 {

ok = (FCN_SUCCESS == spc_get_message((byte) &msg_out->rc,
(int_or_bytes) &msg_out->length));

if (!ok) timeout_count--;

} while ((!ok) && (timeout_count !=));
}
/ If there were errors, set the length of the response to zero, and put /
/ an appropriate error code in the response message. /

if (!ok)
{

msg_out->rc = arc_SECURITY_ERROR;
msg_out->length = 1;

}

Compiling the Device Resident Application
Creating object code for the application is similar to using a conventional 'C'
compiler. The application must be compiled using the compiler options specifing a
large memory model without debug, and optimization based upon size. Refer to
the documentation provided with the compiler you are using for how to implement
these options.

Linking the Device Resident Application
The link step will combine the compiled object modules into an executable program
that is in Intel OMF-51 absolute object module format. The Enhanced Security
Feature will determine the specifics of the link process in terms of the Run-Time
Libraries called and the code location. 4779 devices without this feature will call
the Run-Time Libraries 4779RTL.LIB and 4779RTLS.LIB and will link the code at a
location of 7000H. Devices with this feature will call the Run-Time Libraries
4779RTL.LIB and 4779RTLD.LIB and will link the code at 4000H. Please refer to
the memory maps in figures 2-1 and 2-2. Bit addressing begins at 40H, the stack
address is 30H, and the external data address begins at 08000H. To link start-up
code refer to the documentation provided with the compiler you are using.

In order to load the linked executable into the 4779 device, convert it into an Intel
HEX format with a HEX file extension. Refer to the documentation provided with
the compiler that you are using for a description of how to accomplish this.

 Chapter 2. Creating a 4779 Device Resident Application 2-9

 FFFFH FFFFH
 / / / /
 User
 User Application

 Application Data
 Code
 7 H 8 H
 Security
 / Function / / /
 Code

 4 H

 / /

 / /

 Security
 Monitor, Function
 BIOS, and Data
 Loader
 code

 BIOS
 Data

 H H

Program Memory External Data Memory

Figure 2-2. Memory Map - 4779 Device without Enhanced Security Feature

2-10 4779 Application Programming Guide

 FFFFH FFFFH
 / / / /
 User
 User Application

 Application Data
 Code
 8 H

 / / / /

 4 H

 / /

 / /

 Security
 Monitor, Function
 BIOS, and Data
 Loader
 code

 BIOS
 Data

 H H

Program Memory External Data Memory

Figure 2-3. Memory Map - 4779 Device with Enhanced Security Feature

 Chapter 2. Creating a 4779 Device Resident Application 2-11

2-12 4779 Application Programming Guide

Chapter 3. 4779 Run-Time Library

This chapter describes the I/O run-time library support for the 4779 device. The
three libraries provided with this feature are:

 4779RTL.LIB
 4779RTLS.LIB
 4779RTLD.LIB

These libraries support 4779 devices with or without the Enhanced Security Feature
(Feature Codes 3923, 3924). Each type of device requires calling two of the above
libraries when the application is linked.

The Run-Time Library 4779RTL.LIB contains function categories that are common
to either type of device. These categories are listed below.

 Serial communications
Integrated circuit card (ICC) reader

 Display
Magnetic stripe reader

 Keypad
 Tone generator
 Timer
 System
 Interface control

In addition, the compiler supplied run-time library may require modification to
include functions used with the device resident application. If your application uses
any of the functions in this category, refer to the documentation supplied with the
compiler related to library utilities. The modified library must be compatible with
your compiler's large memory model. This library is used for either type of 4779
device. Refer to the following category for specific functions.

Modified compiler run-time functions

How To Use the Libraries
When you create or modify a 4779 resident application the Run-Time Libraries
previously described are statically linked with the application object modules. The
libraries you link with the compiler are determined by the run-time functions called
by the application and the presence or absence of the Enhanced Security Feature.
For information on linking the libraries refer to the documentation provided with the
compiler that you are using and Chapter 2, “Creating a 4779 Device Resident
Application” on page 2-1.

 Interface

 Copyright IBM Corp. 1996, 1997 3-1

 Serial Communications

sio_open

void sio_open (int baud, int wordlen, int parity);

Include EFT.H

baud Baud rate to be set (0 = 1200, 1 = 2400, 2 = 4800, 3 = 9600)

wordlen Word length (0 = 7 bits, 1 = 8 bits, all others reserved)

parity Parity select (0 = no parity, 1 = odd parity, 2 = even parity, all others
reserved)

Returns No return value

Opens and initializes the serial communication channel.

sio_rx_flush

void sio_rx_flush (void);

Include EFT.H

Returns No return value

Flushes the receive buffer of the serial communication channel.

sio_in

int sio_in (void);

Include EFT.H

Returns A single data byte from the communication receive buffer

-1 if no data available

Reads and returns a data byte from the serial communication channel receive buffer.

sio_out

int sio_out (unsigned char data);

Include EFT.H

data Data byte to be transmitted

Returns 0 if successful

-1 if not successful

Transmits a data byte across the serial communication channel.

3-2 4779 Application Programming Guide

sio_get_message

int sio_get_message (unsigned char * buffer, unsigned int * len);

Include EFT.H

buffer User buffer where a message is to be placed

len Length of the message buffer

Returns 0 if successful; len is updated with the actual number of bytes read if
successful.

-1 if not successful

Reads a single message from the communication receive buffer and stores it in buffer as per
the link level protocol.

sio_put_message

int sio_put_message (unsigned char * buffer, unsigned int len);

Include EFT.H

buffer User message buffer containing the data to be transmitted

len Length of the data to be transmitted

Returns 0 if successful

-1 if not successful

Writes len bytes from buffer to the serial communication channel as per the link level
protocol.

sio_in_status

int sio_in_status (void);

Include EFT.H

Returns 0 if data available

-1 if no data available

Returns the status of the serial communication receive channel.

 Chapter 3. 4779 Run-Time Library 3-3

ICC (Integrated Circuit Card) Reader

icc_arm

void icc_arm (int switch);

Include EFT.H

switch control switch

0 = off
1 = on

Returns No return value

Arms or disarms the ICC (Integrated Circuit Card) reader.

Note: This function enables the model 2 transport motor. Before issuing this command to
the model 2, make sure a card is not partially inserted into the reader. When using a model
1, it is recommended that prior to issuing this function call it is confirmed that a card is
present in the device. This would be done by reading status.

icc_reset

int icc_reset (unsigned char * buffer);

Include EFT.H

buffer User buffer where the answer to reset data is to be stored (the length
of the reset data is self-defining)

Returns

0 = successful
-1 = not successful

Resets the ICC (Integrated Circuit Card).

icc_cmd0

int icc_cmd0 (unsigned char * buffer, int length, unsigned int * icrc);

Include EFT.H

buffer User buffer that on input contains the command to be sent to the ICC
and on output where the ICC response data is to be stored (if required)

length Length of the user command buffer to be sent to the ICC

icrc User buffer where the return code from the ICC is to be stored

Returns

0 = successful
-1 = not successful

Sends a command and receives a response from the ICC using protocol T=0.

3-4 4779 Application Programming Guide

icc_cmd

int icc_cmd (unsigned char * cmdbuff, int cmdlen, unsigned char * rspbuff, unsigned char
*rsplen, unsigned int * icrc);

Include EFT.H

cmdbuff User buffer containing the command to be sent to the ICC

For a T=0 card, this buffer contains the command data
For a T=1 card, this buffer contains the information field

cmdlen Length of the user command buffer to be sent to the ICC

rspbuff User buffer where the ICC response data is to be stored

rsplen Length of the response received from the ICC

icrc User buffer where the return code from the ICC is to be stored

Returns

0 = successful
-1 = not successful

Sends a command and receives a response from the ICC using either protocol T=0 or T=1,
depending on the type of card present in the reader.

icc_status

int icc_status (void);

Include EFT.H

Returns

0 = no ICC present
1 = ICC present
3 = ICC present and locked
-1 = card motor timeout

Senses the presence of a card in the reader.

 Chapter 3. 4779 Run-Time Library 3-5

 Display

cld

void cld (void);

Include EFT.H

Returns No return value

Clears the display and moves the cursor to the home position.

cursor_ctrl

void cursor_ctrl (int mode);

Include EFT.H

switch mode

0 = cursor off/no blink
1 = cursor on/no blink
2 = cursor off/blink
3 = cursor on/blink

Returns No return value

Enables or disables display and blink attribute of the display cursor.

gotoxy

void gotoxy (int x, int y);

Include EFT.H

x x coordinate (0 - 19, all others reserved)

y y coordinate (0 - 3, all others reserved)

Returns No return value

Moves the cursor to the designated position.

3-6 4779 Application Programming Guide

lcd_pattern

void lcd_pattern (unsigned char cp, unsigned char * buffer);

Include EFT.H

cp character codepoint to be loaded

0 = character 1
1 = character 2
2 = character 3
3 = character 4
4 = character 5
5 = character 6
6 = character 7
7 = character 8

buffer User buffer containing character defined data to be loaded to the LCD
character generator

Returns No return value

Loads a user defined character to one of the 8 user definable codepoints in the LCD
character generator.

The LCD is a 5x8 matrix with cursor. The following example shows the format of the user
buffer to define an "up arrow".

Buffer Index b7 b6 b5 b4 b3 b2 b1 b0

0 X X X 0 0 1 0 0
1 X X X 0 1 1 1 0
2 X X X 1 0 1 0 1
3 X X X 0 0 1 0 0
4 X X X 0 0 1 0 0
5 X X X 0 0 1 0 0
6 X X X 0 0 1 0 0
7 X X X 0 0 0 0 0

where X is ignored, 0 is a dot that is to be off, and 1 is a dot that is to be on.

Figure 3-1. LCD pattern

 Chapter 3. 4779 Run-Time Library 3-7

Magnetic Stripe Reader

msr_arm

void msr_arm (int switch);

Include EFT.H

switch Enable/disable switch

0 = disable
1 = enable for read
2 = enable for encode

Returns No return value

Arms/disarms the magnetic stripe reader. All 3 tracks are armed if arm for read is requested.

Notes:

1. Only the model 2 supports encode.

2. This function enables the transport motor on the model 2. Before issuing this command
to the model 2, make sure a card is not partially inserted into the reader. Refer to the
Run-Time Library function msr_status to obtain this information.

3. The arm for read function causes a read operation to occur in the model 2 if a card is
present and locked in the reader. Refer to the Run-Time Library function msr_status to
obtain this information.

4. When using a model 1, it is recommended that prior to issuing this function call it is
confirmed that a card is present in the device or a card is present and locked. Refer to
the Run-Time Library function msr_status to obtain this information.

msr_read_data

int msr_read_data (int trk, char * buffer);

Include EFT.H

trk track data to be read

0 = track 1
1 = track 2
2 = track 3
all others reserved

buffer Storage location for the returned track data

Returns

0 = successful
-1 = not successful

Reads magnetic data from trk and stores them in buffer. SOM, EOM, and LRC are validated
but not returned as part of the data; the data is converted to ASCII and is a null terminated
string. This function returns to the caller immediately if no data is available.

3-8 4779 Application Programming Guide

msr_read

int msr_read (int trk, char * buffer);

Include EFT.H

trk track data to be read

0 = track 1
1 = track 2
2 = track 3
all others reserved

buffer Storage location for the returned track data

Returns

0 = successful
-1 = not successful

Waits for a magnetic card to be inserted and places the magnetic data from trk into buffer (if
a successful read). The SOM, EOM, and LRC are validated but not returned as part of the
data; the data is converted to ASCII and is a null terminated string. If no data is available
this function waits for a card to be inserted; if data is available in the buffer, this function
returns that data immediately.

Note: This function returns an error if the read operation is unsuccessful.

msr_status

int msr_status (void);

Include EFT.H

Returns

0 = MSR card not present in device
1 = card is present
3 = card is present and locked
-1 = card motor timeout

Queries the MSR system for the presence of a magnetic stripe card in the reader.

msr_eject

void msr_eject (void);

Include EFT.H

Returns No return value

Disarms the magnetic circuitry and ejects a card from the reader.

 Chapter 3. 4779 Run-Time Library 3-9

msr_write

int msr_write (int trk, char * buffer);

Include EFT.H

trk track data to be encoded (1 = track 2, all others reserved)

buffer Storage location containing the data to be encoded to trk.

Returns

0 = successful
-1 = unsuccessful
-2 = card motor timeout

Encodes buffer to trk. The encode data on input must be a null terminated ASCII string. A
readback verification is performed for this operation.

Notes:

1. Only the model 2 supports encode operations.

2. The model 2 only supports track 2 encode operations.

3. This function enables the transport motor on the model 2.

3-10 4779 Application Programming Guide

 Keypad

clr_key_buf

void clr_key_buf (void);

Include EFT.H

Returns No return value

Clears the keypad input buffer.

read_key

int read_key (void);

Include EFT.H

Returns Scan/ASCII code returned (high byte = scan, low = ASCII)
-1 if no key is available

Reads and converts a keystroke from the keypad buffer into a scan and ASCII character
code.

 Keycap Scan Code ASCII Code

 0 70H 30H
 1 71H 31H
 2 72H 32H
 3 73H 33H
 4 74H 34H
 5 75H 35H
 6 76H 36H
 7 77H 37H
 8 78H 38H
 9 79H 39H
 * 7AH 08H
 # 7BH 0DH
 F1 7CH 41H
 F2 7DH 42H
 F3 7EH 43H
 F4 7FH 44H

peek_key

int peek_key (void);

Include EFT.H

Returns Scan/ASCII code returned (high byte = scan, low = ASCII)
-1 if no key is available

This function performs a nondestructive read and conversion of a keystroke from the keypad
buffer into a scan and ASCII character code - the keystroke is not removed from the keypad
buffer.

 Chapter 3. 4779 Run-Time Library 3-11

key_tone_ctrl

void key_tone_ctrl (int switch);

Include EFT.H

switch Enable/disable keypad tone feedback

0 = disable
1 = enable

Returns No return value

This function enables/disables audio feedback on keypad data entry.

Note: If an application wants visual feedback, it must be provided by the application.

3-12 4779 Application Programming Guide

 Tone generator

beep

void beep (unsigned int len);

Include EFT.H

len Length of time (in 10 millisecond intervals) for tone (0 - 65535)

Returns No return value

Generates a tone for len * 10 milliseconds.

 Chapter 3. 4779 Run-Time Library 3-13

 Timer

timer_set

void timer_set (unsigned int len);

Include EFT.H

len Length of time (in 10 millisecond intervals) to be set (0 - 65535)

Returns No return value

Sets the timer value len * 10 milliseconds and enables the timer function (i.e., this function
does not wait for the timeout to occur and returns to the caller immediately). The timeout
condition can be checked using timer_check .

timer_check

int timer_check (void);

Include EFT.H

Returns

0 = no timeout
-1 = timeout

Returns the status of the current timer function.

timer_wait

void timer_wait (unsigned int len);

Include EFT.H

len Length of time to wait (in 10 millisecond intervals)

Returns No return value

Waits len * 10 milliseconds before returning to application.

3-14 4779 Application Programming Guide

 System

reset

void reset (void);

Include EFT.H

Returns No return value

This function performs a long jump to the POR vector and will cause a reinitialization of the
system.

warm_reset

void warm_reset (void);

Include EFT.H

Returns No return value

This function performs a long jump to the user application (main).

download

void download (void);

Include EFT.H

Returns No return value

This function performs a long jump to the system's bootstrap loader. This function allows an
application to dynamically initiate a program download to the device. Once the device
application has issued this function, the host must send the application program across the
communication interface. Following the application download, the system will begin executing
from the POR vector.

 Chapter 3. 4779 Run-Time Library 3-15

Machine Information Data Structure (MIDS)

unsigned char MIDS (unsigned char index, unsigned char * buffer);

Include EFT.H

Index Value from 1 to 9. To retrieve the entire object use 1, for elements of
the object use 2 through 9.

buffer The retrieved data size will not exceed X' 80' (128) bytes.

Returns Number of bytes retrieved from the MIDS object

Zero when there was a error, such as invalid index

This function will retrieve information concerning the capabilities, features and model number
of the device.

The machine information is separated into functional categories, where each category is
given a separate tag. The categories are as follows.

Notice that the constructed tag X' 8001' has the high order bit set to 1, while all the simple
objects carry tags with this bit set to 0. The high order bit is used to distinguish simple and
constructed tags, allowing the parsing software to determine whether to expect the data field
to contain raw data or a series of Tag-Length-Value objects.

For more detailed information please refer to the 4779 Hybrid Smart Card Device
Programming Guide.

Figure 3-2. MIDS tags

Tag
value

Category

X' 8001' This is the tag for the constructed MIDS object, which contains all the other objects in its
data field.

X' 0002' General device information which does not fall into the other categories.

X' 0003' Magnetic stripe read and write information.

X' 0004' Keypad information

X' 0005' Smart card reader information.

X' 0006' Display information.

X' 0007' Communications interface information.

X' 0008' Information about the version of BIOS resident in the device.

X' 0009' Information about the model type of 4779.

3-16 4779 Application Programming Guide

CRC

int CRC (int address, int length);

Include EFT.H

address The starting memory address in hexadecimal. The CRC will be
evaluated beginning with the byte in this memory address.

length The length of memory in hexadecimal over which the CRC is to be
evaluated. If the low order byte of this parameter is zero, invalid CRC
values will be returned.

Returns The CRC value in hexadecimal.

This function returns a CRC value based on the device memory defined by the starting
address and evaluation length.

 Chapter 3. 4779 Run-Time Library 3-17

 Interface Control

interface_status

int interface_status (void);

Include EFT.H

Returns Communication interface status

0 = not busy
1 = busy

This function returns the status of the serial communication interface.

interface_request

int interface_request (void);

Include EFT.H

Returns

0 = successful
-1 = not successful

This function requests ownership of the serial communication channel.

interface_release

void interface_release (void);

Include EFT.H

Returns No return value

This function releases ownership of the serial communication channel.

3-18 4779 Application Programming Guide

Security Function Interface

spc_put_message

int spc_put_message(unsigned char * buffer, unsigned int length);

Include EFT.H

buffer The user buffer containing the data to be transmitted.

length The length of the user buffer containing the data to be transmitted.

Returns

0 = successful
-1 = not successful

This function transmits a message to the security interface.

spc_get_message

int spc_get_message (unsigned char * buffer, unsigned int * length);

Include EFT.H

buffer The user buffer for the returned security function response

length On input, the length of buffer; on output, the length of the returned
security function response.

Returns 0 = successful
-1 = not successful

This function reads a response from the security interface. If no response is available, this
function returns immediately with an unsuccessful return code.

spc_reset

viod spc_reset (void);

Include EFT.H

Returns 0 if successful

This function reinitializes the security function in 4779 devices with the Enhanced Security
Feature.

spc_rcv_byte

int spc_rcv_byte (void);

Include SP_COMM.H

Returns A single data byte from the security function communication buffer.

This function is used to read a single byte of data from the security function communication
buffer. When implemented this function will degrade security function performance and is not
recommended for use. It is included as a library function to insure compatibility with early
versions of code.

 Chapter 3. 4779 Run-Time Library 3-19

Modified Compiler Run-Time Functions

putchar

char putchar (char c);

Include STDIO.H

c Character to be written.

Returns The character written, c

Writes a single character to the LCD at the current cursor position.

_getkey

char _getkey (void);

Include STDIO.H

Returns An ASCII code from the keypad if successful
-1 if not successful

This function returns an ASCII code from the keypad buffer if keypad data is available. If no
data is available, this function returns immediately with an unsuccessful return code.

3-20 4779 Application Programming Guide

Chapter 4. Loading the 4779 Device Resident Application

Once you have compiled and linked your device resident application program, you
will need to load it into the 4779 device. The 4779 Application Download Programs
provide this service. The 4779 Application Download Programs reside on the 4779
DOS and OS/2 device drivers diskette and are identified in the following table.

Figure 4-1. 4779 Application Download Programs

Component Description

4779APD.EXE 4779 Application Download Program for DOS

4779APD2.EXE 4779 Application Download Program for OS/2

Invoking the 4779 Application Download Program for DOS
Before you invoke the 4779 Application Download Program for DOS, copy file
4779apd.exe from the 4779 DOS and OS/2 Device Driver Diskette to a directory on
your PC workstation. In order to execute the 4779 Application Download Program
for DOS, the 4779 DOS device driver (4779DOS.SYS) must be installed and
loaded in your workstation. To invoke the 4779 Application Download Program for
DOS, enter the following on the DOS command line:

[drive:path\] 4779apd [drive:path\] filename.hex [/c:n or /a:xxxx]

 where
filename = file name of device application to be downloaded
n = serial port to which 4779 is attached,

syntax: 1 for COM1 (default), or 2 for COM2
xxxx = hexidecimal COM port base address

Invoking the 4779 Application Download Program for OS/2
Before you invoke the 4779 Application Download Program for OS/2, copy file
4779apd2.exe from the 4779 DOS and OS/2 Device Driver Diskette to a directory
on your PC workstation. In order to execute the 4779 Application Download
Program for OS/2, the 4779 OS/2 physical device driver (4779OS2.SYS) and
dynamic link library (x4779OS2.DLL) must be installed and loaded in your
workstation. To invoke the 4779 Application Download Program for OS/2, enter the
following on the OS/2 command line:

4779apd2 [drive:path\] filename.hex

 where
filename = file name of device application to be downloaded

 Copyright IBM Corp. 1996, 1997 4-1

4-2 4779 Application Programming Guide

Appendix A. 4779 Device-Resident Development Kit
Components

The 4779 Device-Resident Development Kit includes the following components.

Figure A-1. 4779 Device-Resident Development Kit Components

Component Description

4779RTL.LIB 4779 Runtime Library for models with or without the
Enhanced Security Feature

4779RTLS.LIB 4779 Runtime Library for models without the Enhanced
Security Feature

4779RTLD.LIB 4779 Runtime Library for models with the Enhanced
Security Feature

4779APS.HEX 4779 Default Application for models without the Enhanced
Security Feature

4779APD.HEX 4779 Default Application for models with the Enhanced
Security Feature

4779AZIP.EXE 4779 Resident Application Program Source

 Copyright IBM Corp. 1996, 1997 A-1

A-2 4779 Application Programming Guide

Appendix B. Additional Security Functions

The following security functions are available for use by the 4779 device resident
application program. Unlike the security functions described in chapter 5 of 4779
Hybrid Smart Card Device Programming Guide these may not be called from the
PC application.

Construct Triple-Encrypted Block
This command is used to construct and return an 8-byte triple encrypted block of
data. This function receives the following information: the Data Key pair to be
used, a pad character for the buffer to be triple encrypted in the event that the
buffer length is less than 16 bytes, the length of the buffer to be triple encrypted
(between 1 and 16 bytes), and the buffer to be triple encrypted.

The format of the command is as follows.

Command - X'88'

Key number pair to be used - X'00' to X'03' defined as follows:

 – X'00'

- Use Data Key 0 as left half of a 16 byte Key for triple encryption
- Use Data Key 1 as right half of a 16 byte Key for triple encryption

 – X'01'

- Use Data Key 2 as left half of a 16 byte Key for triple encryption
- Use Data Key 3 as right half of a 16 byte Key for triple encryption

 – X'02'

- Use Data Key 4 as left half of a 16 byte Key for triple encryption
- Use Data Key 5 as right half of a 16 byte Key for triple encryption

 – X'03'

- Use Data Key 6 as left half of a 16 byte Key for triple encryption
- Use Data Key 7 as right half of a 16 byte Key for triple encryption

Reserved byte X'00'

Pad character (1 byte)

Buffer length to be triple encrypted

Buffer to be triple encrypted (16 ASCII digits maximum)

The format of the response is as follows.

Expected Return Codes

– X'00' - No Error
– X'02' - Data Length Error
– X'04' - Invalid Value
– X'08' - Bad Key

Data - Encrypted Block - 8 Bytes

 Copyright IBM Corp. 1996, 1997 B-1

Format ANSI PIN Block
This command is used to construct and return an encrypted PIN block using the
ANSI 9.8 format. This function receives the following information: the PAN,
generally read from track 2 of the magnetic stripe; the PIN, collected from the
keypad; and the ID of the single length DES key to be used to encrypt the PIN
block.

The format of the command is as follows.

Command - X'90'

Key Number X'00' to X'07'

Reserved byte X'00'

PIN length (a value between 4 and 12 inclusive)

 PAN length

Primary Identification Number (12 ASCII digits maximum)

Primary Account Number (19 ASCII digits maximum)

The format of the response is as follows.

Expected Return Codes

– X'00' - No Error
– X'02' - Data Length Error
– X'04' - Invalid Value
– X'08' - Bad Key

Data - Encrypted PIN Block - 8 Bytes

Format 3624 PIN Block
This command is used to construct and return an encrypted PIN block using the
IBM 3624 format. This function receives the following information: the PIN,
collected from the keypad; and the ID of the single length DES key to be used to
encrypt the PIN block.

The format of the command is as follows.

Command - X'91'

Key Number X'00' to X'07'

Reserved byte X'00'

Pad character (1 byte)

PIN length (a value between 1 and 16 inclusive)

Primary Identification Number (16 ASCII digits maximum)

The format of the response is as follows.

Expected Return Codes

– X'00' - No Error
– X'02' - Data Length Error
– X'04' - Invalid Value

B-2 4779 Application Programming Guide

– X'08' - Bad Key

Data - Encrypted PIN Block - 8 Bytes

Read Security Function Device Information
This command returns the device information structure for the security function.
This includes the serial number, the microcode version, and the application ID
string.

The format of the command is as follows.

Command - X'93'

The format of the response is as follows.

Expected Return Codes

– X'00' - No Error

Serial number - 8 bytes

Microcode version - 14 bytes

Application ID - 16 byte

 Appendix B. Additional Security Functions B-3

B-4 4779 Application Programming Guide

Appendix C. 4779 Device Resident Application Sample Code
List

The following is a list of the sample code provided with the Run-Time Library
feature. This is the sample code used to generate the 4779 device resident
application that is supplied with the device. A brief description of each module is
provided as well as the hex command code implemented by the module when
applicable.

 Module Command
 Name Executed Description

RD_DVINF.C 00 Obtain basic device information
RD_STAT.C 01 Return card status
WRT_DISP.C 02 Write message to the display
RD_KPD.C 03 Read the keypad
MED_ARM.C 04 Arm the device - msr or icc
EJECT.C 05 Eject the card
RD_MAG.C 06 Read magnetic stripe card
WRT_MAG.C 07 Encode track 2 of magnetic stripe card
SC_XCHNG.C 08 Pass message to or from icc
PIN_GET.C 09, 0B Format PIN - ANSI or 3624
PIN_GETP.C 12 Format ANSI PIN using parameters
SCPINCHK.C 0A, 30 Check icc password - SAISS or MFC
LOADPARM.C 0D Load application variables
RD_STRCT.C 0E Read Machine Information Data Structure
OFFSET.C 0C Generate offset - 3624
OFFSETP.C 13 Generate offset using parameters - 3624
OFFSETC.C 21 Generate offset comprehensive version
PIN_VER.C 0F Verify PIN - 3624
PIN_VERP.C 14 Verify PIN using parameters - 3624
PIN_VERC.C 22 Verify PIN comprehensive version
MAN_CARD.C 20 Insert card in device
LDV_PARM.C 10 Load application parameters
UTL_FUNC.C 11 Execute useful application functions
DIAG.C F1 Application download (Reserved)
ABORTDEV.C F2 Cancel keypad operation (Reserved)
REST_DEV.C F3 Reset the device (Reserved)
REST_SPC.C F4 Reset the security processor (Reserved)
SUPERVSR.C NA Application entry point - main
UNKN_CMD.C NA Response to unknown command
CHK_MIDS.C NA Check compatibility of device
GLBLDATA.C NA Global data
SP_CMD.C NA Handles messages with security function
ATR.C NA Decode answer to reset for icc
DEFCHARS.C NA Define special display characters
ICC_RQST.C NA Communicate with icc
MSG.C NA Initialize display prompt messages
UTILITY.C NA Support functions
CMDCODES.H NA Command definitions
RETCODES.H NA Return code definitions
EFT.H NA Run-time library prototypes
VERSION.H NA Version information
SP_TYPES.H NA Definition file
COMMUNIC.H NA Definition file
TYPEDEFS.H NA Definition file
GLBLDATA.H NA Definition file

 Copyright IBM Corp. 1996, 1997 C-1

 Module Command
 Name Executed Description

RUNTIME.H NA Definition file
UTILITY.H NA Definition file
CMDPROCS.H NA Definition file
DISPLAY.H NA Definition file
KEYPAD.H NA Definition file
MAGNETIC.H NA Definition file
SMT_CARD.H NA Definition file
MISCCMDS.H NA Definition file
SP_GLBDT.H NA Definition file
SP_COMM.H NA Definition file
MP_BLOCK.H NA Definition file
TIMERS.H NA Definition file
DIAG.H NA Definition file

C-2 4779 Application Programming Guide

Communicating Your Comments to IBM

4779 Hybrid Smart Card Device
Device Resident
Application Programming Guide

Publication No. SA34-2361-01

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

If you prefer to send comments by mail, use the RCF at the back of this book.

If you prefer to send comments by FAX, use this number:

United States & Canada: 1-800-955-5259

Make sure to include the following in your note:

Title and publication number of this book
Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

4779 Hybrid Smart Card Device
Device Resident
Application Programming Guide

Publication No. SA34-2361-01

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Yes No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate
Complete
Easy to find
Easy to understand
Well organized
Applicable to your tasks

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SA34-2361-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RDS Solutions Development
Department 56I
8501 IBM Drive
Charlotte NC 28262-8563

Fold and Tape Please do not staple Fold and Tape

SA34-2361-01

IBM

Part Number: 84H8595

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

8
4

H
8

5
9

5

SA34-2361- 1

