IRIX™ Device Driver
Programmer’s Guide

Document Number 007-0911-090

CONTRIBUTORS

Written by David Cortesi

Illustrated by Dany Galgani

Significant engineering contributions by (in alphabetical order): Rich Altmaier, Peter
Baran, Brad Eacker, Ben Fathi, Steve Haehnichen, Bruce Johnson, Tom Lawrence,
Greg Limes, Ben Mahjoor, Charles Marker, Dave Olson, Bhanu Prakash, James
Putnam, Sarah Rosedahl, Brett Rudley, Deepinder Setia, Adam Sweeney, Michael
Wang, Len Widra, Daniel Yau.

Beta test contributions by: Jeff Stromberg of GeneSys

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1996-1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, CHALLENGE, Indigo, Indy, and Onyx
are registered trademarks and Crimson, Indigo?, Indigo? Maximum Impact, IRIS
InSight, IRIX, O2, Origin200, Origin2000, POWER CHALLENGE, POWER Channel,
POWER Indigo?, and POWER Onyx are trademarks of Silicon Graphics, Inc.

MIPS, R4000, R8000 are registered trademarks and R10000 is a trademark of MIPS
Technologies, Inc.

UNIX is a trademark of SCO. Sun and SunOS are trademarks of Sun Microsystems,
Inc. MC6800, MC68000, and VERSAbus are trademarks of Motorola Corporation.
IBM is a trademark of International Business Machines. Intel is a trademark of Intel
Corporation. X Window System is a trademark of Massachusetts Institute of
Technology.

IRIX™ Device Driver Programmer’s Guide
Document Number 007-0911-090

Contents

List of Examples xxi
List of Figures xxv
List of Tables xxvii

About This Guide xxxi

What You Need to Know xxxi

What This Guide Contains xxxii

Other Sources of Information xxxiii
Developer Program xxxiii
Internet Resources xxxiii
Standards Documents Xxxiv
Important Reference Pages xxxiv
Additional Reading xxxv

Conventions Used in This Guide xxxvi

Contents

PART I

1.

IRIX Device Integration

Physical and Virtual Memory 3
CPU Access to Memory and Devices 4
CPU Modules 4
CPU Access to Memory 5
Processor Operating Modes 7
Virtual Address Mapping 7
Address Space Creation 8
Address Exceptions 8
CPU Access to Device Registers 9
Direct Memory Access 10
PIO Addresses and DMA Addresses 11
Cache Use and Cache Coherency 13
The 32-Bit Address Space 15
Segments of the 32-bit Address Space 15
Virtual Address Mapping 17
User Process Space—kuseg 17
Kernel Virtual Space—kseg2 18
Cached Physical Memory—kseg0 18
Uncached Physical Memory—ksegl 18
The 64-Bit Address Space 19
Segments of the 64-Bit Address Space 19
Compatibility of 32-Bit and 64-Bit Spaces 21
Virtual Address Mapping 21
User Process Space—xkuseg 22
Supervisor Mode Space—xksseg 22
Kernel Virtual Space—xkseg 23
Cache-Controlled Physical Memory—xkphys 23

Contents

Address Space Usage in Origin2000 Systems 25
User Process Space and Kernel Virtual Space 25
Uncached and Special Address Spaces 25
Cached Access to Physical Memory 26
Uncached Access to Memory 28
Synchronization Access to Memory 28

Device Driver Use of Memory 30
Allowing for 64-Bit Mode 30
Memory Use in User-Level Drivers 31
Memory Use in Kernel-Level Drivers 32

Device Configuration 35
Device Special Files 36

Devices as Files 36

Block and Character Device Access 36

Multiple Device Names 37

Major Device Number 38

Minor Device Number 39

Creating Conventional Device Names 40
Hardware Graph 41

UNIX Hardware Assumptions, Old and New 42

Hardware Graph Features 43

/hw Filesystem 46

Driver Interface to Hwgraph 47
Hardware Inventory 48

Using the Hardware Inventory 48

Creating an Inventory Entry 51

Using ioconfig for Global Controller Numbers 51
Configuration Files 55

Master Configuration Database 55

Kernel Configuration Files 56

System Tuning Parameters 58

X Display Manager Configuration 58

Contents

vi

3.

PART II

4.

Device Control Software 59
User-Level Device Control 59
PCI Mapping Support 60
EISA Mapping Support 60
VME Mapping Support 60
User-Level DMA From the VME Bus 61
User-Level Control of SCSI Devices 61
Managing External Interrupts 62
User-Level Interrupt Management 62
Kernel-Level Device Control 63
Kinds of Kernel-Level Drivers 63
Typical Driver Operations 63
Upper and Lower Halves 71
Layered Drivers 73
Combined Block and Character Drivers 73
Drivers for Multiprocessors 74
Loadable Drivers 75

Device Control From Process Space

User-Level Access to Devices 79
PCI Programmed I/0 80
Mapping a PCI Device Into Process Address Space 80
PCI Device Special Files 80
Using mmap() With PCI Devices 82
PCI Bus Hardware Errors 83
PCI PIO Example 83
EISA Programmed I/0 84
Mapping an EISA Device Into Memory 85
EISA PIO Bandwidth 87
VME Programmed I/0 88
Mapping a VME Device Into Process Address Space 88
VME PIO Access 91

Contents

VME User-Level DMA 92
Using the DMA Library Functions 92

User-Level Access to SCSI Devices 95
Overview of the dsreq Driver 96
Generic SCSI Device Special Files 96
Major and Minor Device Numbers in /dev/scsi 97
Form of Filenames in /dev/scsi 97
Creating Additional Names in /dev/scsi 98
Relationship to Other Device Special Files 99
The dsreq Structure 99
Values for ds_flags 101
Data Transfer Options 102
Return Codes and Status Values 103
Testing the Driver Configuration 106
Using the Special DS_RESET and DS_ABORT Calls 107
Using DS_ABORT 107
Using DS_RESET 107
Using dslib Functions 107
dslib Functions 108
Using dsopen() and dsclose() 109
Issuing a Request With doscsireq() 110
SCSI Utility Functions 110
Using Command-Building Functions 113
Example dslib Program 120

Control of External Interrupts 129
External Interrupts in Challenge and Onyx Systems 130
Generating Outgoing Signals 130
Responding to Incoming External Interrupts 131
External Interrupts In Origin2000 and Origin200 135
Generating Outgoing Signals 136
Responding to Incoming External Interrupts 138

Vii

Contents

viii

PART I11

8.

User-Level Interrupts 141

Overview of ULI 141
The User Level Interrupt Handler 141
Restrictions on the ULI Handler 142
Planning for Concurrency 143
Using Multiple Devices 144

Setting Up 144
Opening the Device Special File 144
Locking the Program Address Space 145
Registering the Interrupt Handler 145
Interacting With the Handler 147

Sample Program 149

Kernel-Level Drivers

Structure of a Kernel-Level Driver 155
Summary of Driver Structure 157
Entry Point Naming and Iboot 157
Entry Point Summary 159
Driver Flag Constant 162
FlagD_MP 163
FlagD_MT 163
Flag D_WBACK 163
Flag D_OLD Not Supported 164
Initialization Entry Points 164
When Initialization Is Performed 164
Entry Pointinit() 165
Entry Point edtinit() 165
Entry Point start() 166
Entry Pointreg() 167
Attach and Detach Entry Points 167
Entry Point attach() 167
Entry Point detach() 170

Contents

Open and Close Entry Points 171
Entry Point open() 171
Entry Point close() 174
Control Entry Point 175
Choosing the Command Numbers 176
Supporting 32-Bit and 64-Bit Callers 176
User Return Value 176
Data Transfer Entry Points 176
Entry Points read() and write() 177
Entry Point strategy() 179
Poll Entry Point 180
Use and Operation of poll(2) 180
Entry Point poll() 181
Memory Map Entry Points 182
Concepts and Use of mmap() 183
Entry Point map() 184
Entry Point mmap() 186
Entry Pointunmap() 187
Interrupt Entry Point and Handler 188
Associating Interrupt to Driver 188
Interrupt Handler Operation 189
Interrupts as Threads 190
Mutual Exclusion 191
Interrupt Performance and Latency 192
Support Entry Points 192
Entry Point unreg() 192
Entry Point unload() 193
Entry Point halt() 194
Entry Point size() 194
Entry Point print() 194

Handling 32-Bit and 64-Bit Execution Models 195

Contents

Designing for Multiprocessor Use 196
The Multiprocessor Environment 196
Synchronizing Within Upper-Half Functions 198
Coordinating Upper-Half and Interrupt Entry Points 199
Converting a Uniprocessor Driver 201
Example Conversion Problem 201

9. Device Driver/Kernel Interface 203
Important Data Types 204
Hardware Graph Types 204
Address Types 205
Address/Length Lists 205
Structure uio_t 207
Structure buf t 208
Lock and Semaphore Types 210
Device Number Types 211
Important Header Files 213
Kernel Memory Allocation 215
General-Purpose Allocation 215
Allocating Memory in Specific Nodes of a Origin2000 System 216
Allocating Obijects of Specific Kinds 217
Transferring Data 219
General Data Transfer 219
Transferring Data Through a uio_t Object 221
Managing Virtual and Physical Addresses 222
Managing Mapped Memory 222
Working With Page and Sector Units 223
Using Address/Length Lists 224
Setting Up a DMA Transfer 228
Testing Device Physical Addresses 232
Hardware Graph Management 233
Interrogating the hwgraph 233
Extending the hwgraph 234
Attaching Information to Vertexes 240

Contents

10.

User Process Administration 243
Sending a Process Signal 244

Waiting and Mutual Exclusion 245
Mutual Exclusion Compared to Waiting 245
Basic Locks 246
Long-Term Locks 248
Reader/Writer Locks 251
Priority Level Functions 253
Waiting for Time to Pass 254
Waiting for Memory to Become Available 256
Waiting for Block I/0 to Complete 256
Waiting for a General Event 258
Semaphores 262

Building and Installing a Driver 265
Defining Device Numbers 266
Selecting a Major Number 266
Selecting Minor Numbers 266
Defining Device Special Files 267
Static Definition of Device Special Files 267
Dynamic Definition of Device Special Files 267
Compiling and Linking 268
Using /var/sysgen/Makefile.kernio 268
Compiler Variables 269
Compiler Options 270
Configuring a Nonloadable Driver 271
How Names Are Used in Configuration 271
Placing the Object File in /var/sysgen/boot 272
Describing the Driver in /var/sysgen/master.d 272
Configuring a Kernel 275
Generating a Kernel 276

xi

Contents

Xii

11.

Configuring a Loadable Driver 276
Public Global Variables 276
Compile Options for Loadable Drivers 277
Master File for Loadable Drivers 277
Loading 278
Registration 279
Unloading 280

Testing and Debugging a Driver 281
Preparing the System for Debugging 281
Placing symmon in the Volume Header 281
Enabling Debugging in irix.sm 283
Generating a Debugging Kernel 285
Specifying a Separate System Console 285
Verifying the Debugging Tools 286
Producing Diagnostic Displays 286
Using cmn_err 286
Using printf() 288
Using ASSERT 289
Using symmon 289
How symmon Is Entered 290
Commands of symmon 291
Syntax of Command Elements 292
Commands for Symbol Conversion and Lookup 293
Commands to Control Execution Flow 294
Commands to Manage Virtual Memory 296
Commands to Display Memory 296
Commands to Display the hwgraph 297
Utility Commands 298

Contents

12.

PART IV

13.

Using idbg 299
Loading and Invoking idbg 299
Commands of idbg 301
Commands to Display Memory and Symbols 302
Commands to Display Process Information 302
Commands to Display Locks and Semaphores 303
Commands to Display 170 Status 304
Commands to Display buf_t Objects 305
Commands to Display STREAMS Structures 305
Commands to Display Network-Related Structures 306
Using icrash 306

Driver Example 307
Installing the Example Driver 307
Obtaining the Source Files 308
Compiling the Example Driver 308
Configuring the Example Driver 308
Creating Device Special Files 309
Verifying Driver Operation 310
Example Driver Source Files 311
Descriptive File 311
System File 312
Header File 312
Driver Source 316
User Program Source 332

VME Device Drivers

VME Device Attachment 337
Overview of the VME Bus 338
VME History 338
VME Features 338

xiii

Contents

About VME Bus Attachment 340
The VME Bus Controller 340
VME PIO Operations 341
VME DMA Operations 342
Operation of the DMA Engine 343
About VME Bus Addresses and System Addresses 344
User-Level and Kernel-Level Addressing 344
P1O Addressing and DMA Addressing 345
About VME in the Origin2000 347
About the VME Controller 348
Universe Il Controller Chip 350
Configuring VME Devices 352
VME Bus and Interrupt Naming 352
Directing VME Interrupts 353
VME Device Naming 354
Defining VME Devices with the VECTOR Statement 354

14. Services for VME Drivers 359
About VME Drivers 360
About VME Support Functions 360
Initializing the Driver 361
Initializing a VME Device 362
Information in the edt_t Structure 362
Setting Up the Hardware Graph 364
Dealing with Initialization Errors 366
Creating and Using PIO Maps 367
Allocating and Freeing PIO Maps 368
Using a PIO Map for PIO 371
Using a PIO Map for Block Copy 371
Creating and Using DMA Maps 372
Allocatinga DMA Map 372
Using a DMA Map for One Buffer 374
Using a DMA Map with Address/Length Lists 374

Xiv

Contents

PART V

15.

Handling VME Interrupts 375
Connecting the Interrupt Handler 375

Porting From IR1X 6.2 378

Sample VME Device Driver 379

SCSI Device Drivers

SCSI Device Drivers 457

SCSI Support in Silicon Graphics Systems 458
SCSI Hardware Support 458
IRIX Kernel SCSI Support 459
SCSI Devices in the hwgraph 459
Hardware Administration 463

Host Adapter Facilities 464
Purpose of the Host Adapter Driver 464
Host Adapter Concepts 464
Overview of Host Adapter Functions 466
How the Host Adapter Functions Are Found 467
Using scsi_info() 469
Using scsi_alloc() 469
Using scsi_free() 470
Using scsi_command() 471
Using scsi_abort() 477

Designing a SCSI Driver 478
SCSI Driver Initialization 478
Opening a SCSI Device 478
Accessing a SCSI Device 478
Configuring a SCSI Driver 479

Example SCSI Device Driver 479

Designing a Host Adapter Driver 479

SCSI Reference Data 480
SCSI Error Messages 480
SCSI Error Message Tables 481

XV

Contents

PART VI Network Drivers

16. Network Device Drivers 489
Overview of Network Drivers 490
Application Interfaces 491
Protocol Stack Interfaces 491
Device Driver Interfaces 492
Network Driver Interfaces 492
Kernel Facilities 492
Principal ifnet Header Files 493
Debugging Facilities 494
Information Sources 494
Network Inventory Entries 495
Multiprocessor Considerations 496
Ineffective spl() Functions 497
Multiprocessor Locking Macros 497
Compiler Flags for MP TCP/IP 497
Mutual Exclusion Macros 498
Example ifnet Driver 500

PART VII EISA Drivers

17. EISA Device Drivers 531
The EISA Bus in Silicon Graphics Systems 532
EISA Bus Overview 532
EISA Request Arbitration 533
EISA Interrupts 534
EISA Data Transfers 534
EISA Address Spaces 534
EISA Locked Cycles 534
EISA Byte Ordering 535
EISA Product Identifier 535

XVi

Contents

PART VIII

18.

EISA Support in Indigo? and Challenge M Series
Available Card Slots 538
EISA Address Mapping 538
Interrupt Priority Scheduling 538
EISA Configuration 539
Configuring the Hardware 539
Configuring IRIX 539
Kernel Functions for EISA Support 542
Mapping PIO Addresses 542
Allocating IRQs and Channels 545
Programming Bus-Master DMA 547
Programming Slave DMA 549
Sample EISA Driver Code 550
Initialization Sketch 550
Complete EISA Character Driver 552

GIO Drivers

GIO Device Drivers 615
GIO Bus Overview 616
GIO Bus Address Spaces 616
Configuring a GIO Device 617
GIO VECTOR Line 617
Writing a GIO Driver 618
GIlO-Specific Kernel Functions 618
splgio0, splgiol, splgio2 620
GIO Driver edtinit() Entry Point 620
GIO Driver Interrupt Handler 622
Using PIO 622
Using DMA 624
Memory Parity Workarounds 628
Example GIO Driver 630

538

XVii

Contents

Xviii

PART IX

19.

20.

PCI Drivers

PCI Device Attachment 645

PCI Bus in Silicon Graphics Workstations 646
PCI Bus and System Bus 646
Buses, Slots, Cards, and Devices 648
Architectural Implications 648
Byte Order Considerations 649

PCI Implementation in O2 Workstations 652
Unsupported PCI Signals 652
Configuration Register Initialization 653
Address Spaces Supported 653
Slot Priority and Bus Arbitration 654
Interrupt Signal Distribution 655

PCI Implementation in Origin Servers 656
Latency and Operation Order 656
Unsupported PCI Signals 656
Configuration Register Initialization 657
Address Spaces Supported 657
Bus Arbitration 659
Interrupt Signal Distribution 659

Services for PCI Drivers 661

About PCI Drivers 662
About Registration 662
About Attaching a Device 664
About Unloading 665

Using PIO Maps 665
PIO Mapping Functions 666
Allocating PIO Maps 666
Performing PIO With a PIO Map 669
Using One-Step PIO Translation 671
Accessing the Device Configuration 671
Interrogating PIO Maps 674

Contents

Using DMA Maps 674
Allocating DMA Maps 676
Usinga DMA Map 677
Interrogating DMA Maps 679
Registering an Interrupt Handler 679
Creating an Interrupt Object 680
Connecting the Handler 680
Disconnecting the Handler 682
Interrogating an Interrupt Handler 682
Registering an Error Handler 683
Interrogating a PCI Device 684
Example PCI Driver 685

PART X STREAMS Drivers

21. STREAMS Drivers 701
Driver Exported Names 702
Streamtab Structure 702
Driver Flag Constant 702
Initialization Entry Points 703
Entry Point open() 703
Entry Point close() 704
Put Functions wput() and rput() 704
Service Functions rsrv() and wsrv() 705
Building and Debugging 706
Special Considerations for Multiprocessing 707
Expanded Termio Interface 708

Xix

Contents

XX

Special Considerations for IRIX 709
Extension of Poll and Select 709
Support for Pipes 710
Service Scheduling 710
Supplied STREAMS Modules 710
No #idefs 711
Different 1/0 Hardware Model 711
Different Network Model 711
Support for CLONE Drivers 712

Summary of Standard STREAMS Functions 714

STREAMS Modules for X Input Devices 717
The X Input Subsystem 717
Shared Memory Input Queue 718
IDEV Interface 718
Input Device Naming 719
Opening Input Devices 719
Device Controls 721

Silicon Graphics Driver/Kernel APl 723
Driver Exported Names 724

Kernel Data Structures and Declarations 725
Kernel Functions 727

New and Updated Reference Pages 745
Address/Length List Reference Pages 745
Device Descriptor Reference Pages 753
Hardware Graph Reference Pages 758
PCI Infrastructure Reference Pages 771
SCSI Host Adapter Reference Pages 799

Glossary 805
Index 819

List of Examples

Example 2-1 Testing the Hardware Inventory in a Shell Script 49
Example 2-2 Function Returning Type Code for CPU Module 50
Example 4-1 PCI Configuration Space Dump 83

Example 5-1 Testing the Generic SCSI Configuration 106

Example 5-2 Code of the testunitread00() Function 119

Example 5-3 Program That Uses dslib Functions 120

Example 6-1 Challenge Function to Test and Set External Interrupt Pulse Width 133
Example 7-1 Hypothetical ULI Program 149

Example 8-1 Compiling Driver Prefix as a Macro 158

Example 8-2 Entry Point Name Macros 158

Example 8-3 Hypothetical pfxread() entry in a Character/Block Driver 178
Example 8-4 pfxpoll() Code for Hypothetical Driver 181

Example 8-5 Edited Fragment of flash_map() 185

Example 8-6 Hypothetical Call to pollwakeup() 190

Example 8-7 Entry Point pfxprint() 194

Example 8-8 Conditional Choice of Mutual Exclusion Lock Type 200
Example 8-9 Uniprocessor Upper-Half Wait Logic 201

Example 8-10 Uniprocessor Interrupt Logic 202

Example 9-1 Typical Code to Get Device Info 234

Example 9-2 Hypothetical Code for a Single Vertex 236

Example 9-3 Hypothetical Code for Multiple Vertexes 238

Example 9-4 LIFO Queue Using Basic Locks 247

Example 9-5 Skeleton Code for Use of SV_WAIT 261

Example 10-1 Defining Variables in Master Descriptive File 275
Example 11-1 Verifying Presence of symmon 282

Example 11-2 Setting Kernel putbuf Size 288

Example 11-3 Debugging Macros Using cmn_err() 288

XXi

List of Examples

XXii

Example 11-4
Example 11-5
Example 11-6
Example 12-1
Example 12-2
Example 12-3
Example 13-1
Example 14-1
Example 14-2
Example 16-1
Example 17-1
Example 17-2
Example 17-3
Example 17-4
Example 17-5
Example 17-6
Example 18-1
Example 18-2
Example 18-3
Example 18-4
Example 18-5
Example 18-6
Example 19-1
Example 20-1
Example 20-2
Example 20-3
Example 20-4
Example 20-5
Example 20-6
Example 21-1
Example B-1

Example B-2

Example B-3

Invoking idbg Interactively 299

Invoking idbg with a Log File 300

Invoking idbg for a Single Command 300

Startup Messages from snoop Driver 309

Driver Administration Statement in snoop.sm 309
Typical Output of snoop Driver Unit Test 310
Hypothetical VME Configuration File 356

Adding a Vertex to the Hardware Graph 365

Sample VME Driver 380

Skeleton ifnet Driver 500

Sketch of EISA Initialization 550

Master File /var/sysgen/rap for RAP-10 Driver 553
Configuration File /var/sysgen/rap.sm for RAP-10 Driver 553
Installation Script for RAP-10 Driver 553

Program to Test RAP-10 Driver 554

Complete EISA Character Driver for RAP-10 556

GIO Driver edtinit() Entry Point 621

Hypothetical PIO Routine for GIO 623

Strategy Code for Hypothetical Scatter/Gather GIO Device 624
Strategy() Code for GIO Device Without Scatter/Gather 627
Disabling SysAD Parity Checking During PIO 630
Complete Driver for Hypothetical GIO Device 631
Declaration of Memory Copy of Configuration Space 651
Driver Registration 663

Allocation of PCI PIO Map 667

Function to Read Using a Map 670

Configuration Access Macros 672

Reading PCI Configuration Space 673

Setting Up a PCI Interrupt Handler 681

Testing Pipe Configuration 710

alenlist(d4x) 746

alenlist_ops(d3x) 749

device_desc(d4x) 753

List of Examples

Example B-4
Example B-5
Example B-6
Example B-7
Example B-8
Example B-9
Example B-10
Example B-11
Example B-12
Example B-13
Example B-14
Example B-15
Example B-16
Example B-17
Example B-18
Example B-19
Example B-20
Example B-21

device_desc_ops(d3x) 756
hwgraph.admin(d3x) 758
hwgraph.dev(d3x) 759
hwgraph.edge(d3x) 762
hwgraph.intro(d4x) 763
hwgraph.inv(d3x) 766
hwgraph.Iblinfo(d3x) 768
hwgraph.vertex(d3x) 770
pciio(d3) 771
pciio_dma(d3) 776
pciio_error(d3) 782
pciio_get(d3) 785
pciio_intr(d3) 789
pciio_pio(d3) 792
scsi_alloc(d3x) 799
scsi_command(d3x) 801
scsi_free(d3x) 802
scsi_info(d3x) 803

XXili

List of Figures

Figure 1-1 CPU Access to Memory 6

Figure 1-2 CPU Access to Device Registers (Programmed 1I/0) 9
Figure 1-3 Device Access to Memory 10

Figure 1-4 Device Access Through a Bus Adapter 11

Figure 1-5 The 32-Bit Address Space 16

Figure 1-6 MIPS 32-Bit Virtual Address Format 17

Figure 1-7 Main Parts of the 64-Bit Address Space 20

Figure 1-8 MIPS 64-Bit Virtual Address Format 22

Figure 1-9 Address Decoding for Physical Memory Access 23

Figure 1-10 Origin2000 Physical Address Decoding 27
Figure 1-11 Origin2000 Fetch-and-Op Address Decoding 29

Figure 2-1 Part of a Typical Hwgraph 44

Figure 3-1 Overview of Device Open 64

Figure 3-2 Overview of Device Control 66

Figure 3-3 Overview of Programmed Kernel I/0 67

Figure 3-4 Overview of Memory Mapping 68

Figure 3-5 Overview of DMA I/0O 70

Figure 5-1 Bit Assignments in SCSI Device Minor Numbers 97
Figure 9-1 Address/Length List Concepts 206

Figure 13-1 Relationship of VME Bus to System Bus 341

Figure 13-2 VME Bus Enclosure and Cable to an Origin2000 Deskside 347
Figure 13-3 VME Bus Connection to System Bus 349

Figure 15-1 SCSI Vertexes and Data Structures 467

Figure 16-1 Overview of Network Architecture 490

Figure 17-1 High-Level Overview of EISA Bus in Indigo? 533
Figure 17-2 Encoding of the EISA Manufacturer ID 537

Figure 18-1 The SysAD Bus in Relation to GIO 629

Figure 19-1 PCI Bus In Relation to System Bus 647

XXV

List of Tables

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 8-1
Table 9-1
Table 9-2
Table 9-3

CPU Modules and System Names 4

Number of TLB Entries by Processor Type 8

Cache Algorithm Selection 24

Special Address Spaces in Origin2000 26

Origin2000 Fetch-and-Op Operations 29

PCI Device Special File Names for User Access 81

EISA Bus PIO Bandwidth (32-Bit Slave, 33-MHz GIO Clock) 87
EISA Bus PIO Bandwidth (16-Bit Slave, 33-MHz GIO Clock) 88
Data Width Names in VME Special Device Names 90

Fields of the dsreq Structure 99

Flag Values for ds_flags 101

Return Codes From SCSI Operations 103

SCSI Status Codes 104

SCSI Message Byte Values 105

Fields of the dsconf Structure 106

dslib Function Summary 108

Lookup Tables in dslib 112

Functions for Outgoing External Signals in Challenge 130
Functions for Incoming External Interrupts 131

Functions for Fixed External Levels in Origin2000 136
Functions for Pulses and Pulse Trains in Origin2000 137
Functions for Outgoing External Signals in Origin2000 137
Functions for Incoming External Interrupts in Challenge 138
Entry Points in Alphabetic Order 160

Accessible Fields of buf_t Objects 209

Functions to Manipulate Device Numbers 212

Header Files Often Used in Device Drivers 213

XXVil

List of Tables

XXViii

Table 9-4

Table 9-5

Table 9-6

Table 9-7

Table 9-8

Table 9-9

Table 9-10
Table 9-11
Table 9-12
Table 9-13
Table 9-14
Table 9-15
Table 9-16
Table 9-17
Table 9-18
Table 9-19
Table 9-20
Table 9-21
Table 9-22
Table 9-23
Table 9-24
Table 9-25
Table 9-26
Table 9-27
Table 9-28
Table 9-29
Table 9-30
Table 9-31
Table 9-32
Table 9-33
Table 10-1
Table 10-2
Table 10-3

Functions for Kernel Virtual Memory 215

Functions for Kernel Memory In Specific Nodes 217
Functions for Allocating pollhead Structures 217
Functions for Allocating buf_t Objects and Buffers 218
Functions for General Data Transfer 219

Functions Moving Data Using uio_t 221

Functions to Manipulate a vhandl_t Object 222
Constants and Macros for Page and Sector values 223
Functions to Convert Bytes to Sectors or Pages 224
Functions to Explicitly Manage Alenlists 225
Functions to Populate Alenlists 226

Functions to Manage Alenlist Cursors 227

Functions to Use an Alenlist Based on a Cursor 227
Functions to Map Buffer Pages 230

Functions Related to Cache Coherency 231

Functions to Test Physical Addresses 232

Functions to Query the Hardware Graph 233
Functions to Construct Edges and Vertexes 235
Functions to Manage Attributes 242

Functions for User Process Management 243
Functions for Basic Locks 246

Functions for Mutex Locks 248

Functions for Sleep Locks 250

Functions for Reader/Writer Locks 252

Functions to Set Interrupt Levels 253

Functions for Timed Delays 254

Functions for Synchronizing Block I/0 256
Functions for Synchronization: sleep/wakeup 258
Functions for Synchronization: Synchronization Variables 259
Functions for Semaphores 262

Compiler Variables Tested by System Header Files 269
Compiler Options Kernel Modules 270

Fields of Descriptive Line in Master File 273

List of Tables

Table 10-4
Table 10-5
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11
Table 11-12
Table 11-13
Table 13-1
Table 13-2
Table 14-1
Table 14-2
Table 14-3
Table 14-4
Table 14-5
Table 14-6
Table 14-7
Table 14-8
Table 14-9
Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 15-6
Table 15-7

Flag Values for Nonloadable Drivers 273

Flag Values for Loadable Drivers 277

Commands for Symbol Conversion and Lookup 293
Commands to Control Execution 294

Commands to Manage Virtual Memory 296
Commands to Display Memory 296

Utility Commands 297

Utility Commands 298

Commands to Display Memory and Symbols 302
Commands to Display Process Information 302
Commands to Display Locks and Semaphores 304
Commands to Display 1/0 Status 304

Commands to Display buf_t Objects 305
Commands to Display STREAMS Structures 305
Commands to Display Network-Related Structures 306
Accessible VME P1O Addresses on Any Bus 346
Universe Il Register Settings 351

Functions of the VME 1/0 Infrastructure 361

VME Driver Contents of edt_t Structure 363

VME Driver Contents of iospace_t Structures 364
Functions to Create and Use PIO Maps 367
Address Space and Modifiers Available for PIO 369
Functions That Operate on DMA Maps 372
Address Space and Modifiers Available for DMA 373
Functions for Interrupt Control 376

VME Kernel Function Compatibility Summary 378
Host Adapter Function Summary 466

Macro Access to SCSI Information 468

Input Fields of the scsi_request Structure 471
Values for the sr_flags Field of a scsi_request 472
Values Returned From a SCSI Command 474
Software Status Values From a SCSI Request 475
SCSI Status Bytes 476

XXiX

List of Tables

Table 15-8 Host Adapter Status After a SCSI Request 476
Table 15-9 Adapter Error Codes 481

Table 15-10 Primary Sense Key Error Table 482

Table 15-11 Additional Sense Code Table 483

Table 16-1 Important Reference Pages Related to Network Drivers 495
Table 16-2 Mutual Exclusion Macros for ifnet Drivers 498

Table 17-1 Functions to Create and Use PIO Maps 543

Table 17-2 Functions for IRQ and Channel Allocation 545

Table 17-3 Functions That Operate on DMA Maps 548

Table 17-4 Functions for EISA DMA 549

Table 18-1 GIO Slot Names and Addresses 617

Table 19-1 P10 Byte Order in 32-bit Transfer 650

Table 19-2 PCI Interrupt Distribution to System Interrupt Numbers 655
Table 20-1 Functions for PIO Maps for the PCI Bus 666

Table 20-2 PIO Map Address Space Constants 668

Table 20-3 Functions for Interrogating PIO Maps 674

Table 20-4 Functions for Simple DMA Maps for PCl 675

Table 20-5 Functions for Interrogating DMA Maps 679

Table 20-6 Functions for Managing PCI Interrupt Handlers 679
Table 20-7 Functions for Interrogating an Interrupt Object 682
Table 20-8 Declaration Used In Setting Up PCI Error Handlers 683
Table 20-9 Functions for Interrogating a PCI Device 684

Table 21-1 Multiprocessing STREAMS Functions 708

Table 21-2 Kernel Entry Points 714

Table A-1 Driver Exported Names 724

Table A-2 Device Driver Interface Objects 725

Table A-3 STREAMS Driver Interface Objects 726

Table A-4 Kernel Functions 727

XXX

About This Guide

This guide describes the ways in which hardware devices are integrated into and
controlled from a Silicon Graphics® computer system running the IRIX™ operating
system version 6.5™, which includes Origin2000™, Onyx2™, Origin200™, and the
OCTANE workstation.

Note: This edition applies only to IRIX 6.5, and discusses only hardware supported by
that system version. If your device driver will work with a different release or other
hardware, you should use the version of this manual appropriate to that release (see
“Internet Resources” on page xxxiii for a way to read all versions online).

Three general classes of device-control software exist in an IRIX system: process-level
drivers, kernel-level drivers, and STREAMS drivers.

= A process-level driver executes as part of a user-initiated process. An example is the
use of the dslib library to control a SCSI device from a user program.

= Akernel-level driver is loaded as part of the IRIX kernel and executes in the kernel
address space, controlling devices in response to calls to its read, write, and ioctl
(control) entry points.

= A STREAMS driver is dynamically loaded into the kernel address space to monitor
or modify a stream of data passing between a device and a user process.

All three classes are discussed in this guide, although the greatest amount of attention is
given to kernel-level drivers.

What You Need to Know

In order to write a process-level driver you must be an experienced C programmer with
a thorough understanding of the use of IRIX system services and, of course, detailed
knowledge of the device to be managed.

XXXI

About This Guide

In order to write a kernel-level driver or a STREAMS driver you must be an experienced
C programmer who knows UNIX® system administration, and expecially IRIX system
administration, and who understands the concepts of UNIX device management.

What This Guide Contains

XXX

This guide is divided into the following major parts.

Part I, “IRIX Device Integration”

Part 11, “Device Control From
Process Space”

Part 111, “Kernel-Level Drivers”

Part IV, “VME Device Drivers”
Part V, “SCSI Device Drivers”
Part VI, “Network Drivers”

Part VII, “EISA Drivers”

Part VIII, “GIO Drivers”

Part IX, “PCI Drivers”
Part X, “STREAMS Drivers”

Appendix A, “Silicon Graphics
Driver/Kernel API”

In the printed book, you can locate these parts using the part-tabs printed in the margins.
Using IRIS InSight®, each part is a top-level division in the clickable table of contents, or

How devices are attached to Silicon Graphics
computers, configured to IRIX, and initialized at
boot time.

Details of user-level handling of PCI devices, and
SCSI control using dslib.

How kernel-level drivers are designed, compiled,
loaded, and tested. Survey of kernel services for
drivers.

Kernel-level drivers for the VME bus.
Kernel-level drivers for the SCSI bus.
Kernel-level drivers for network interfaces.

Kernel-level drivers for the EISA bus in Indigo2
workstations.

Kernel-level drivers for the GIO bus in Indigo2
workstations.

Kernel-level drivers for the PCI bus.
Design of STREAMS drivers.

Summary of kernel functions with compatibility
notes.

you can jump to any part by clicking the blue cross-references in the list above.

About This Guide

Other Sources of Information

Developer Program

Information and support are available through the Silicon Graphics Developer Program.
The Developer Toolbox CDROM contains numerous code examples. To join the program,
contact the Developer Response Center at (800) 770-3033 or send e-mail to
devprogram@sgi.com.

Internet Resources
A great deal of useful material can be found on the internet. Some starting points are in
the following list.

Earlier versions of this book as well as all other http://techpubs.sgi.com/library
SGI technical manuals to read or download.

SGI patches, examples, and other material. ftp://ftp.sgi.com

Network of pages of information about Silicon http://www.sgi.com
Graphics and MIPS® products

Text of all Internet RFC documents. ftp://ds.internic.net/rfc/
Computer graphics pointers at the UCSC http://mambo.ucsc.edu/psl/
Perceptual Science Labororatory. cg.html

Pointers to binaries and sources at The National http://zeno.ibd.nrc.ca:80/~sgi/
Research Council of Canada’s Institute For
Biodiagnostics.

A Silicon Graphics “meta page” at the Georgia http://www.cc.gatech.edu/service/

Institute of Technology College of Computing. sgimeta.html

Dazzling Silicon Graphics “meta page” at NASA http://chernobog.msfc.nasa.gov/
in Huntsville, AL. SGI/html/SGl.html

Complete SCSI-2 standard in HTML. http://abekas.com:8080/SCSI12/
IEEE Catalog and worldwide ordering http://stdsbbs.ieee.org:70/0/pub/
information. htmilfiles/stctoc.htm

MIPS processor manuals in HTML form. http://www.mips.com/

Home page of the PCI bus standardization http://www.pcisig.com

organization

XXXiii

About This Guide

XXXIV

Standards Documents

The following documents are the official standard descriptions of buses:

= PCI Local Bus Specification, Version 2.1, available from the PCI Special Interest Group,
P.O. Box 14070, Portland, OR 97214 (fax: 503-234-6762)

< ANSI/IEEE standard 1014-1987 (VME Bus), available from IEEE Customer Service,
445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331 (but see also “Internet
Resources” on page xxxiii).

Important Reference Pages

The following reference pages contain important details about software tools and
practices that you need.

alenlist(d4x) Overview of address/length list functions
getinvent(3) The interface to the inventory database
hinv(1) The use of the inventory display command

hwgraph.intro(d4x) Overview of the hardware graph and kernel functions for it

intro(7) The conventions used for special device filenames
ioconfig(1M) The startup program that creates device special files
master(4) Syntax of files in /var/sysgen/master.d

system(4) Syntax of files in /var/sysgen/system/*.sm

prom(1) Commands of the “miniroot” and other features of the boot

PROM, which you use to bring up the system when testing a
new device driver

udmalib(3) Functions for performing user-level DMA from VME.

uli(3) Functions for registering and using a user-level interrupt
handler (installs with the REACT/Pro product).

usrvme(7) Naming conventions for mappable VME device special files.

About This Guide

Additional Reading

The following books, obtainable from Silicon Graphics, can be helpful when designing
or testing a device driver.

MIPSpro Compiling and Performance Tuning Guide, document number 007-2360-nnn,
tells how to use the C compiler and related tools.

MIPSpro Assembly Language Programmer’s Guide, document number 007-2418-nnn,
tells how to compile assembly-language modules.

MIPSpro 64-Bit Porting and Transition Guide, document number 007-2391-nnn,
documents the implications of the 64-bit execution mode for user programs.

MIPSpro N32 ABI Handbook, document number 007-2816-nnn, gives details of the
code generated when the -n32 compiler option is used.

Topics in IRIX Programming, document number 008-2478-nnn, documents some of
the sophisticated services offered by the IRIX kernel to user-level programs.

MIPS R4000 User’s Manual (2nd ed.) by Joe Heinrich, document number
007-2489-001, gives detailed information on the MIPS instruction set and hardware
registers for the processor used in many Silicon Graphics computer systems (also
available as HTML on http://www.mips.com/).

MIPS R10000 User’s Manual by Joe Heinrich gives detailed information on the MIPS
instruction set and hardwatre registers for the processor used in certain high-end
systems. Available only in HTML form from http://www.mips.com/.

IRIX Admin: System Configuration and Operation, document number 007-2859-nnn,
describes the basic adminstrative tools for configuring, operating, and tuning IRIX.

IRIX Admin: Disks and File Systems, document number 007-2825-nnn, describes the
configuration of new disk subsystems and the management of logical volumes and
file systems.

IRIX Admin: Peripheral Devices, document number 007-2861-nnn, describes the
adminstration of tapes, printers, and other devices.

The following books, obtainable from bookstores or libraries, can also be helpful.

Lenoski, Daniel E. and Wolf-Dietrich Weber. Scalable Shared-Memory Multiprocessing.
Morgan Kaufmann Publishers, San Francisco, 1995. ISBN 1-55860-315-8.

Egan, Janet I., and Thomas J. Teixeira. Writing a UNIX Device Driver. John Wiley &
Sons, 1992.

XXXV

About This Guide

e Leffler, Samuel J., et alia. The Design and Implementation of the 4.3BSD UNIX
Operating System. Palo Alto, California: Addison-Wesley Publishing Company, 1989.

= A Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts, Third Edition.
Addison Wesley Publishing Company, 1991.

= Heath, Steve. VMEbus User’s Handbook. CRC Press, Inc, 1989. ISBN 0-8493-7130-9.
= Device Driver Reference, UNIX SVR4.2, UNIX Press 1992.

= UNIX System V Release 4 Programmer’s Guide, UNIX SVR4.2. UNIX Press, 1992.

= STREAMS Modules and Drivers, UNIX SVR4.2, UNIX Press 1992. ISBN 0-13-066879.

Conventions Used in This Guide

XXXVi

Special terms and special kinds of words are indicated with the following typographical
conventions:

Data structures, variables, function The dsiovec structure has members iov_base and
arguments, and macros. iov_len. Use the IOVLEN macro to access them.

Kernel and library functions and When successful, v_mapphys() returns 0.
functions in examples.

Driver entry point names that must be The munmap() system function calls the
completed with a unique prefix string. pfxunmap() entry point.

Files and directories. Device special files are in /dev, and are created
using the /dev/MAKEDEYV script.

First use of terms defined in the The inode of a device special file contains the

glossary (see “Glossary™). major device number.

Literal quotes of code examples. The SCSI driver’s prefix is scsi_ .

PART ONE

IRIX Device Integration

Chapter 1, “Physical and Virtual Memory”
An overview of physical memory, virtual address space management, and
device addressing in Silicon Graphics/MIPS systems.

Chapter 2, “Device Configuration”
How IRIX locates devices, and how devices are represented in software.

Chapter 3, “Device Control Software”
A survey of the ways in which you can control devices under IRIX, from
user-level processes and from kernel-level drivers of different kinds.

Chapter 1

Physical and Virtual Memory

This chapter gives an overview of the management of physical and virtual memory in
Silicon Graphics systems based on the MIPS® R5000™ and R10000™ processors. The
purpose is to give you the background to understand terms used in device driver header
files and reference pages, and to understand the limitations and special conventions used
by some kernel functions.

This information is only of academic interest if you intend to control a device from a

user-level process. (See Chapter 3, “Device Control Software,” for the difference between
user-level and kernel-level drivers.) For a deeper level of detail on Origin2000 memory
hardware, see the hardware manuals listed under “Additional Reading” on page Xxxv.

The following main topics are covered in this chapter.

e “CPU Access to Memory and Devices” on page 4 summarizes the hardware
architecture by which the CPU accesses memory.

= “The 32-Bit Address Space” on page 15 describes the parts of the physical address
space when 32-bit addressing is used.

= “The 64-Bit Address Space” on page 19 describes the 64-bit physical address space.

= “Address Space Usage in Origin2000 Systems” on page 25 gives an overview of
how physical memory is addressed in the complex architecture of the Origin2000.

Chapter 1: Physical and Virtual Memory

CPU Access to Memory and Devices

Each Silicon Graphics computer system has one or more CPU modules. A CPU reads
data from memory or a device by placing an address on a system bus, and receiving data
back from the addressed memory or device. An address can be translated more than once
as it passes through multiple layers of bus adapters. Access to memory can pass through
multiple levels of cache.

CPU Modules

A CPU is a hardware module containing a MIPS processor chip such as the R8000,
together with system interface chips and possibly a secondary cache. Silicon Graphics
CPU modules have model designation of the form IPnn; for example, the 1IP22 module is
used in the Indy™ workstation. The CPU modules supported by IRIX 6.4 are listed in

Table 1-1.

Table 1-1 CPU Modules and System Names

Module MIPS Processor System Families

IP19 R4x00 Challenge (other than S model), Onyx
1P20 R4x00 Indigo®

1P21 R8000 POWER Challenge™, POWER Onyx™
1P22 R4x00 Indigo?™, Indy, Challenge S

1P25 R10000 POWER Challenge R10000

1P26 R8000 POWER Indigo?™

1P27 R10000 Origin2000

1P28 R10000 POWER Indigo? R10000

1P32 R10000 02

Modules with the same IP designation can be built in a variety of clock speeds, and they
can differ in other ways. (For example, an IP27 can have 0, 1 or 2 R10000 modules
plugged into it.) Also, the choice of graphics hardware is independent of the CPU model.
However, all these CPUs are basically identical as seen from software.

CPU Access to Memory and Devices

Interrogating the CPU Type

At the interactive command line, you can determine which CPU module a system uses
with the command

hinv -c processor

Within a shell script, it is more convenient to process the terse output of

uname -m

(See the uname(1) and hinv(1) reference pages.)

Within a program, you can get the CPU model using the getinvent() function. For an
example, see “Testing the Inventory In Software” on page 49.

CPU Access to Memory

The CPU generates the address of data that it needs—the address of an instruction to

fetch, or the address of an operand of an instruction. It requests the data through a
mechanism that is depicted in simplified form in Figure 1-1.

Chapter 1: Physical and Virtual Memory

CPU module Execution unit
and registers

Translation
lookaside

Secondary

MIPS R4X00;
R5000, R8000 or R10000

Figure 1-1 CPU Access to Memory

1.

The address of the needed data is formed in the processor execution or
instruction-fetch unit. Most addresses are then mapped from virtual to real through
the Translation Lookaside Buffer (TLB). Certain ranges of addresses are not
mapped, and bypass the TLB.

Most addresses are presented to the primary cache, a cache in the processor chip. If a
copy of the data with that address is found, it is returned immediately. Certain
address ranges are never cached; these addresses pass directly to the bus.

When the primary cache does not contain the data, the address is presented to the
secondary cache. If it contains a copy of the data, the data is returned immediately.
The size and the architecture of the secondary cache differ from one CPU model to
another.

The address is placed on the system bus. The memory module that recognizes the
address places the data on the bus.

The process in Figure 1-1 is correct for an Origin2000 system when the addressed data is
in the local node. When the address applies to memory in another node, the address
passes out through the connection fabric to a memory module in another node, from
which the data is returned.

CPU Access to Memory and Devices

Processor Operating Modes

The MIPS processor under IRIX operates in one of two modes: kernel and user. The
processor enters the more privileged kernel mode when an interrupt, a system
instruction, or an exception occurs. It returns to user mode only with a “Return from
Exception” instruction.

Certain instructions cannot be executed in user mode. Certain segments of memory can
be accessed only in kernel mode, and other segments only in user mode.

Virtual Address Mapping

The MIPS processor contains an array of Translation Lookaside Buffer (TLB) entries that
map, or translate, virtual addresses to physical ones. Most memory accesses are first
mapped by reference to the TLB. This permits the IRIX kernel to to relocate parts of the
kernel’s memory and to implement virtual memory for user processes. The translation
scheme is summarized in the following sections and covered in detail in the hardware
manuals listed under “Additional Reading” on page Xxxv.

TLB Misses and TLB Sizes

Each TLB entry describes a segment of memory containing two adjacent pages. When the
input address falls in a page described by a TLB entry, the TLB supplies the physical
memory address for that page. The translated address, now physical instead of virtual,
is passed on to the cache, as shown in Figure 1-1 on page 6.

When the input address is not covered by any active TLB entry, the MIPS processor
generates a “TLB miss” interrupt, which is handled by an IRIX kernel routine. The kernel
routine inspects the address. When the address has a valid translation to some page in
the address space, the kernel loads a TLB entry to describe that page, and restarts the
instruction.

Chapter 1: Physical and Virtual Memory

The size of the TLB is important for performance. The size of the TLB in different
processors is shown in Table 1-2.

Table 1-2 Number of TLB Entries by Processor Type
Processor Type Number of TBL Entries
R4x00 96

R5000 96

R8000 384

R10000 128

Address Space Creation

There are not sufficient TLB entries to describe the entire address space of even a single
process. The IRIX kernel creates a page table in kernel memory for each process. The page
table contains one entry for each virtual memory page in the address space of that
process. Whenever an executing program refers to an address for which there is no
current TLB entry, the CPU traps to the TLB miss handler. The handler loads one TLB
entry from the appropriate page table entry of the current process, in order to describe
the needed virtual address. Then it resumes execution with the failed instruction.

In order to extend a virtual address space, the kernel takes the following two steps.

= Itallocates unused page table entries to describe the needed pages. This defines the
virtual addresses the pages will have.

= It allocates page frames in memory to contain the pages themselves, and puts their
physical addresses in the page table entries.

Address Exceptions

When the CPU requests an invalid address—because the processor is in the wrong mode,
or an address does nhot translate to a valid location in the address space, or an address
refers to hardware that does not exist in the system—an addressing exception occurs. The
processor traps to a particular address in the kernel.

CPU Access to Memory and Devices

An addressing exception can also be detected in the course of handling a TLB miss. If
there is no page table entry assigned for the desired address, that address is hot part of
the address space of the processs.

When a user-mode process caused the addressing exception, the kernel sends the process
a SIGSEGV (see the signal(5) reference page), usually causing a segmentation fault.
When kernel-level code such as a device driver causes the exception, the kernel executes
a “panic,” taking a crash dump and shutting down the system.

CPU Access to Device Registers

The CPU accesses a device register using programmed 1/0O (P10), a process illustrated in
Figure 1-2. Access to device registers is always uncached. It is not affected by
considerations of cache coherency in any system (see “Cache Use and Cache Coherency”
on page 13).

Processor unit Execution unit
and registers

Translation
lookaside

Primary

cache

Secondary
cache

System bus

MIPS R4X00;
R5000, R8000 or R10000

Memory

Figure 1-2 CPU Access to Device Registers (Programmed 1/0)

Chapter 1: Physical and Virtual Memory

10

1. The address of the device is formed in the Execution unit. It may or may not be an
address that is mapped by the TLB.

2. Adevice address, after mapping if necessary, always falls in one of the ranges that is
not cached, so it passes directly to the system bus.

3. The device or bus attachment recognizes its physical address and responds with
data.

The P10 process shown in Figure 1-2 is correct for a Origin2000 system when the
addressed device is attached to the same node. When the device is attached to a different
node, the address passes through the connection fabric to that node, and the data returns
the same way.

Direct Memory Access

Some devices can perform direct memory access (DMA), in which the device itself, not the
CPU, reads or writes data into memory. A device that can perform DMA is called a bus
master because it independently generates a sequence of bus accesses without help from
the CPU.

In order to read or write a sequence of memory addresses, the bus master has to be told
the proper physical address range to use. This is done by storing a bus address and
length into the device’s registers from the CPU. When the device has the DMA
information, it can access memory through the system bus as shown in Figure 1-3.

System bus

Memory

Figure 1-3 Device Access to Memory

CPU Access to Memory and Devices

1. The device places the next physical address, and data, on the system bus.

2. The memory module stores the data.

In a Origin2000 system, the device and the memory module can be in different nodes,
with address and data passing through the connection fabric between nodes.

When a device is programmed with an invalid physical address, the result is a bus error
interrupt. The interrupt is taken by some CPU that is enabled for bus error interrupts.
These interrupts are not simple to process for two reasons. First, the CPU that receives
the interrupt is not necessarily the CPU from which the DMA operation was
programmed. Second, the bus error can occur a long time after the operation was
initiated.

PIO Addresses and DMA Addresses

Figure 1-3 is too simple for some devices that are attached through a bus adapter. A bus
adapter connects a bus of a different type to the system bus, as shown in Figure 1-4.

System bus

Memory Bus adapter Device

Figure 1-4 Device Access Through a Bus Adapter

For example, the PCI bus adapter connects a PCI bus to the system bus. Multiple PCI
devices can be plugged into the PCI bus and use the bus to read and write. The bus
adapter translates the PCI bus protocol into the system bus protocol. (For details on the
PCI bus adapter, see Part IX, “PCI Drivers.”)

11

Chapter 1: Physical and Virtual Memory

12

Each bus has address lines that carry the address values used by devices on the bus.
These bus addresses are not related to the physical addresses used on the system bus. The
issue of bus addressing is made complicated by three facts:

= Bus-master devices independently generate memory-read and memory-write
commands that are intended to access system memory.

= The bus adapter can translate addresses between addresses on the bus it manages,
and different addresses on the system bus it uses.

= The translation done by the bus adapter can be programmed dynamically, and can
change from one 1/0 operation to another.

This subject can be simplified by dividing it into two distinct subjects: PIO addressing,
used by the CPU to access a device, and DMA addressing, used by a bus master to access
memory. These addressing modes need to be treated differently.

P10 Addressing

Programmed 1/0 (P10O) is the term for a load or store instruction executed by the CPU
that names an 1/0 device as its operand. The CPU places a physical address on the
system bus. The bus adapter repeats the read or write command on its bus, but not
necessarily using the same address bits as the CPU put on the system bus.

One task of a bus adapter is to translate between the physical addresses used on the
system bus and the addressing scheme used within the proprietary bus. The address
placed on the target bus is not necessarily the same as the address generated by the CPU.
The translation is done differently with different bus adapters and in different system
models.

In some older Silicon Graphics systems, the translation was hard-wired. For a simple
example, the address translation from the Indigo2 system bus to the EISA bus was
hardwired, so that, for example, CPU access to a physical address of 0x0000 4010 was
always translated to location 0x0010 in the 1/0 address space of EISA slot 4.

With the more sophisticated PCI and VME buses, the translation is dynamic. Both of
these buses support bus address spaces that are as large or larger than the physical
address space of the system bus. It is impossible to hard-wire a translation of the entire
bus address space.

In order to use a dynamic PIO address, a device driver creates a software object called a
PIO map that represents that portion of bus address space that contains the device

CPU Access to Memory and Devices

registers the driver uses. When the driver wants to use the PIO map, the kernel
dynamically sets up a translation from an unused part of physical address space to the
needed part of the bus address space. The driver extracts an address from the PIO map
and uses it as the base for accessing the device registers. PIO maps are discussed in
Chapter 14, “Services for VME Drivers,” and in Chapter 19, “PCI Device Attachment.”

DMA Addressing

A bus-master device on the PCI or VME bus can be programmed to perform transfers to
or from memory independently and asynchronously. A bus master is programmed using
PI1O with a starting bus address and a length. The bus master generates a series of
memory-read or memory-write operations to successive addresses. But what bus
addresses should it use in order to store into the proper memory addresses?

The bus adapter translates the addresses used on the proprietary bus to corresponding
addresses on the system bus. Considering Figure 1-4, the operation of a DMA device is
as follows:

1. The device places a bus address and data on the PCI or VME bus.

2. The bus adapter translates the address to a meaningful physical address, and places
that address and the data on the system bus.

3. The memory modules stores the data.

The translation of bus virtual to physical addresses is done by the bus adapter and
programmed by the kernel. A device driver requests the kernel to set up a dynamic
mapping from a designated memory buffer to bus addresses. The map is represented by
a software object called a DMA map.

The driver calls kernel functions to establishe the range of memory addresses that the bus
master device will need to access—typically the address of an 1/0 buffer. When the
driver activates the DMA map, the kernel sets up the bus adapter hardware to translate
between some range of bus addresses and the desired range of memory space. The driver
extracts from the DMA map the starting bus address, and (using P1O) programs that bus
address into the bus master device.

Cache Use and Cache Coherency

The primary and secondary caches shown in Figure 1-1 on page 6 are essential to CPU
performance. There is an order of magnitude difference in the speed of access between
cache memory and main memory. Execution speed remains high only as long as a very
high proportion of memory accesses are satisfied from the primary or secondary cache.

13

Chapter 1: Physical and Virtual Memory

14

The use of caches means that there are often multiple copies of data: a copy in main
memory, a copy in the secondary cache (when one is used) and a copy in the primary
cache. Moreover, a multiprocessor system has multiple CPU modules like the one
shown, and there can be copies of the same data in the cache of each CPU.

The problem of cache coherency is to ensure that all cache copies of data are true reflections
of the data in main memory. Different Silicon Graphics systems use different hardware
designs to achieve cache coherency.

In most cases, cache coherence is achieved by the hardware, without any effect on
software. In a few cases, specialized software, such as a kernel-level device driver, must
take specific steps to maintain cache coherency.

Cache Coherency in Multiprocessors

Multiprocessor systems have more complex cache coherency protection because it is
possible to have data in multiple caches. In a multiprocessor system, the hardware
ensures that cache coherency is maintained under all conditions, including DMA input
and output, without action by the software. However, in some systems the cache
coherency hardware works correctly only when a DMA buffer is aligned on a
cache-line-sized boundary. You ensure this by using the KM_CACHEALIGN flag when
allocating buffer space with kmem_alloc() (see “Kernel Memory Allocation” on page 215
and the kmem_alloc(D3) reference page).

Cache Coherency in Uniprocessors

In some uniprocessor systems, itis possible for the CPU cache to have newer information
than appears in memory. This is a problem only when a bus master device is going to
perform DMA. If the bus master reads memory;, it can get old data. If it writes memory;,
the input data can be destroyed when the CPU writes the modified cache line back to
memory.

In systems where this is possible, a device driver calls a kernel function to ensure that all
cached data has been written to memory prior to DMA output (the dki_dcache_wb(D3)
reference page). The device driver calls a kernel function to ensure that the CPU receives
the latest data following a DMA input (see the dki_dcache_inval(D3) reference page). In
a multiprocessor these functions do nothing, but it is always safe to call them.

The 32-Bit Address Space

The 32-Bit Address Space

The MIPS processors can operate in one of two address modes: 32-bit and 64-bit. The
choice of address mode is independent of other features of the instruction set architecture
such as the number of available registers and the precision of integer arithmetic. For
example, programs compiled to the n32 binary interface use 32-bit addresses but 64-bit
integers. The implications for user programs are documented in manuals listed under
“Additional Reading” on page Xxxv.

The addressing mode can be switched dynamically; for example, the IRIX kernel can
operate with 64-bit addresses, but the kernel can switch to 32-bit address when it
dispatches a user program that was compiled for that mode. The 32-bit address space is
the range of all addresses that can be used when in 32-bit mode. This space is discussed
first because it is simpler and more familiar than the 64-bit space.

Segments of the 32-bit Address Space
When operating in 32-bit mode, the MIPS architecture uses addresses that are 32-bit
unsigned integers from 0x0000 0000 to OXFFFF FFFF. However, this address space is not

uniform. The MIPS hardware divides it into segments, and treats each segment
differently. The ranges are shown graphically in Figure 1-5.

15

Chapter 1: Physical and Virtual Memory

16

Ox FFFF FFFF

kseg2 - 1 GB kernel virtual space,
mapped and cached

ksegl - 512 MB unmapped,
uncached window on
physical memory

OXBFFF FFFF

OXA000 0000

OXOFFF FFFF kseg0 - 512 MB unmapped, but
cached, window on
physical memory

J \ I e

0x8000 0000

OX7FFF FFFF

> kuseg - 2 GB user process
virtual space, mapped
and cached

Figure 1-5 The 32-Bit Address Space

The address segments differ in three characteristics:

= whether access to an address is mapped; that is, passed through the translation
lookaside buffer (TLB)

= whether an address can be accessed when the CPU is operating in user mode or in
kernel mode

The 32-Bit Address Space

= whether access to an address is cached,; that is, looked up in the primary and
secondary caches before it is sent to main memory

Virtual Address Mapping

In the mapped segments, each 32-bit address value is treated as shown in Figure 1-6.

Virtual page number (VPN) Offset
r Y
313029 1211
B S R N R A R

L T
O x§x kuseg

£1:0:0: kseg0

©1:0:1: ksegl

P11 1ix i kseg2

Figure 1-6 MIPS 32-Bit Virtual Address Format

The three most significant bits of the address choose the segment among those drawn in
Figure 1-5. When bit 31 is 0, bits 30:12 select a virtual page number (VPN) from 2%° possible
pages in the address space of the current user process. When bits 31:30 are 11, bits 29:12
select a VPN from 228 possible pages in the kernel virtual address space.

User Process Space—kuseg

The total 32-bit address space is divided in half. Addresses with a most significant bit of
0 constitute the 2 GB user process space. When executing in user mode, only addresses
in kuseg are valid; an attempt to use an address with bit 31=1 causes an addressing
exception.

Access to kuseg is always mapped through the TLB. The kernel creates a unique address
space for each user process. Of the 21° possible pages in an address space, most are
typically unassigned—few processes ever occupy more than a fraction of kuseg—and
many are shared pages of program text from dynamic shared objects (DSOs) that are
mapped into the address space of every process that needs them.

17

Chapter 1: Physical and Virtual Memory

18

Kernel Virtual Space—kseg?2

When bits 31:30 are 11, access is to kernel virtual memory. Only code that is part of the
kernel can access this space. References to this space are translated through the TLB. The
kernel uses the TLB to map kernel pages in memory as required, possibly in
noncontiguous locations. Although pages in kernel space are mapped, they are always
associated with real memory. Kernel memory is never paged to secondary storage.

This is the space in which the IRIX kernel allocates such objects as stacks, user page
tables, and per-process data that must be accessible on context switches. This area
contains automatic variables declared by loadable device drivers. It is the space in which
kernel-level device drivers allocate memory. Since kernel space is mapped, addresses in
kseg2 that are apparently contiguous need not be contiguous in physical memory.
However, a device driver can can allocate space that is both logically and physically
contiguous, when that is required (see for example the kmem_alloc(D3) reference page).

Cached Physical Memory—ksegO

When address bits 31:29 contain 100, access is directed to physical memory through the
cache. If the addressed location is not in the cache, bits 28:0 are placed on the system bus
as a physical memory address, and the data presented by memory or a device is returned.
Kseg0 contains the exception address to which the MIPS processor branches it when it
detects an exception such as an addressing exception or TLB miss.

Since only 29 bits are available for mapping physical memory, only 512 MB of physical
memory space can be accessed through this segment in 32-bit mode. Some of this space
must be reserved for device addressing. It is possible to gain cached access to wider
physical addresses by mapping through the TLB into kseg2, but systems that need access
to more physical memory typically run in 64-bit mode (see “Cache-Controlled Physical
Memory—xkphys” on page 23).

Uncached Physical Memory—kseg1

When address bits 31:29 contain 101, access is directly to physical memory, bypassing the
cache. Bits 28:0 are placed on the system bus for memory or device transfer.

The kernel refers to ksegl when performing PIO to devices because loads or stores from
device registers should not pass through cache memory. The kernel also uses ksegl when
operating on certain data structures that might be volatile. Kernel-level device drivers

The 64-Bit Address Space

sometimes need to write to uncached memory, and must take special precautions when
doing so (see “Uncached Memory Access in the IP26 and IP28” on page 33).

Portions of ksegO or ksegl can be mapped into kuseg by the mmap() function. This is
covered at more length under “Memory Use in User-Level Drivers” on page 31.

The 64-Bit Address Space

The 64-bit mode is an upward extension of 32-bit mode. All MIPS processors from the
R4000 on support 64-bit mode. However, this mode was not used in Silicon Graphics
software until IR1X 6.0 was released.

Segments of the 64-Bit Address Space

When operating in 64-bit mode, the MIPS architecture uses addresses that are 64-bit
unsigned integers from 0x0000 0000 0000 0000 to OXFFFF FFFF FFFF FFFF. This is an
immense span of numbers—if it were drawn to a scale of 1 millimeter per terabyte, the
drawing would be 16.8 kilometers long (just over 10 miles).

The MIPS hardware divides the address space into segments based on the most
significant bits, and treats each segment differently. The ranges are shown graphically in
Figure 1-7. These major segments define only a fraction of the 64-bit space. Most of the
possible addresses are undefined and cause an addressing exception (segmentation
fault) if used.

19

Chapter 1: Physical and Virtual Memory

[I—— 32-bit kseg, kseg0, ksegl, kseg2, not to scale

Unused addresses

000 OFFF FRFF FRFF xkseg - 16 TB kernel virtual space,

mapped and cached

L

wy, O/BFFF FFFF FFFF FFFF

xkphys - Unmapped, cache-controled
physical memory access
(see text)

Unused addresses

OX4000 FFF- FRFE FRFE xksseg - 16 TB supervisor-mode
virtual space, mapped

4000 0000 0000 0000 and cached (not used)

Unused addresses

OX0000 OFFF FFFF FRFF xkuseg - 16 TB user process
virtual space, mapped
and cached

lk 0X0000 0000 0000 000Q

32-bit kuseg, not to scale

Figure 1-7 Main Parts of the 64-Bit Address Space

20

The 64-Bit Address Space

As in the 32-bit space, these major segments differ in three characteristics:

= whether access to an address is mapped; that is, passed through the translation
lookaside buffer (TLB)

= whether an address can be accessed when the CPU is operating in user mode or in
kernel mode.

= whether access to an address is cached,; that is, looked up in the primary and
secondary caches before it is sent to main memory

Compatibility of 32-Bit and 64-Bit Spaces

The MIPS-3 instruction set (which is in use when the processor is in 64-bit mode) is
designed so that when a 32-bit instruction is used to generate or to load an address, the
32-bit operand is automatically sign-extended to fill the high-order 32 bits.

As a result, any 32-bit address that falls in the user segment kuseg, and which must have
asign bit of 0, is extended to a 64-bit integer with 32 high-order 0 bits. This automatically
places the 32-bit kuseg in the bottom of the 64-bit xkuseg, as shown in Figure 1-7.

A 32-bit kernel address, which must have a sign bit of 1, is automatically extended to a
64-bit integer with 32 high-order 1 bits. This places all kernel segments shown in
Figure 1-5 at the extreme top of the 64-bit address space. However, these 32-bit kernel
spaces are not used by a kernel operating in 64-bit mode.

Virtual Address Mapping

In the mapped segments, each 64-bit address value is treated as shown in Figure 1-8.

21

Chapter 1: Physical and Virtual Memory

22

All-0 or all-1 Virtual page number (VPN) Offset

4 e

63 62 40 39 14 13

i xkuseg
: xksseg
i xkphys
i xkseg

Figure 1-8 MIPS 64-Bit Virtual Address Format

PR ERO
R ORO

The two most significant bits select the major segment (compare these to the address
boundaries in Figure 1-7). Bits 61:40 must all be 0. (In principle, references to 32-bit kernel
segments would have bits 61:40 all 1, but these segments are not used in 64-bit mode.)

The size of a page of virtual memory can vary from system to system and release to
release, so always determine it dynamically. In a user-level program, call the
getpagesize() function (see the getpagesize(2) reference page). In a kernel-level driver,
use the ptob() kernel function (see the ptob(D3) reference page) or the constant NBPP
declared in sys/immu.h.)

When the page size is 16 KB, bits 13:0 of the address represent the offset within the page,
and bits 39:14 select a VPN from the 2%, or 64 M, pages in the virtual segment..

User Process Space—xkuseg

The first 16 TB of the address space are devoted to user process space. Access to xkuseg is
always mapped through the TLB. The kernel creates a unique address space for each user
process. Of the 2% possible pages in a process’s address space, most are typically
unassigned, and many are shared pages of program text from dynamic shared objects
(DSOs) that are mapped into the address space of every process that needs them.

Supervisor Mode Space—xksseg

The MIPS architecture permits three modes of operation: user, kernel, and supervisor.
When operating in kernel or supervisor mode, the 2 TB space beginning at

0x4000 0000 0000 0000 is accessible. IRIX does not employ the supervisor mode, and does
not use xksseg. If xksseg were used, it would be mapped and cached.

The 64-Bit Address Space

Kernel Virtual Space—xkseg

When bits 63:62 are 11, access is to kernel virtual memory. Only code that is part of the
kernel can access this space, a 2 TB segment starting at 0xC000 0000 0000 0000.
References to this space are translated through the TLB, and cached. The kernel uses the
TLB to map kernel pages in memory as required, possibly in noncontiguous locations.
Although pages in kernel space are mapped, they are always associated with real
memory. Kernel pages are never paged to secondary storage.

This is the space in which the IRIX kernel allocates such objects as stacks, per-process
data that must be accessible on context switches, and user page tables. This area contains
automatic variables declared by loadable device drivers. It is the space in which
kernel-level device drivers allocate memory. Since kernel space is mapped, addresses in
kseg2 that are apparently contiguous need not be contiguous in physical memory.
However, a device driver can can allocate space that is both logically and physically
contiguous, when that is required (see for example the kmem_alloc(D3) reference page).

Cache-Controlled Physical Memory—xkphys

One-quarter of the 64-bit address space—all addresses with bits 63:62 containing 10—are
devoted to special access to one or more 1 TB physical address spaces. Any reference to
the other spaces (xkuseg and xkseg) is transformed by the TLB into a reference to xkphys.
Addresses in this space are interpreted as shown in Figure 1-9.

Must be 0 Physical address
AN AN
Y

63 62 57 40 39

ajajfa|x|x

Cache-
algorithm
Physical ~
page

Figure 1-9 Address Decoding for Physical Memory Access

23

Chapter 1: Physical and Virtual Memory

Bits 39:0 select a physical address in a 1 TB range. Bits 57:40 must always contain 0. Bits
61:59 select the hardware cache algorithm to be used. The only values defined for these
bits are summarized in Table 1-3.

Table 1-3 Cache Algorithm Selection

Address 61:59 Algorithm Meaning

010 Uncached This is the 64-bit equivalent of ksegl in 32-bit
mode—uncached access to physical memory.

110 Cacheable coherent exclusive This is the 64-bit equivalent of kseg0 in 32-bit

on write mode—cached access to physical memory,
coherent access in a multiprocessor.

011 Cacheable non-coherent Data is cached; on a cache miss the processor
issues a non-coherent read (one without regard
to other CPUs).

100 Cacheable coherent exclusive Data is cached; on a read miss the processor
issues a coherent read exclusive.

101 Cacheable coherent update on Same as 110, but updates memory on a store hit

write in cache.

111 Uncached Accelerated Same as 010, but the cache hardware is permitted

to defer writes to memory until it has collected a
larger block, improving write utilization.

Only the 010 (uncached) and 110 (cached) algorithms are implemented on all systems.
The others may or may not be implemented on particular systems.

Bits 58:57 must be 00 unless the cache algorithm is 010 (uncached) or 111(uncached
accelerated). Then bits 58:57 can in principle be used to select four other properties to
qgualify the uncached operation. These bits are first put to use in the Origin2000 system,
described under “Uncached and Special Address Spaces” on page 25.

It is not possible for a user process to access either xkphys or xkseg; and not possible for a
kernel-level driver to access xkphys directly. Portions of xkphys and xkseg can be mapped
to user process space by the mmap() function. This is covered in more detail under
“Memory Use in User-Level Drivers” on page 31. Portions of xkphys can be accessed by
a driver using DMA-mapping and P1O-mapping functions (see “P1O Addresses and
DMA Addresses” on page 11).

24

Address Space Usage in Origin2000 Systems

Address Space Usage in Origin2000 Systems

An Origin2000 system contains one or more nodes. Each node can contain one or two
CPUs as well as up to 2 GB of memory. There is a single, flat, address space that contains
all memory in all nodes. All memory can be accessed from any CPU. However, a CPU
can access memory in its own node in less time than it can access memory in a different
node.

The node hardware provides a variety of special-purpose access modes to make kernel
programming simpler. These special modes are described here at a high level. For details
refer to the hardware manuals listed in “Additional Reading” on page xxxv. These
special addressing modes are a feature of the Origin2000 node hardware, not of the
R10000 CPU chip. As such they are available only in the Origin2000 and Origin200
systems.

User Process Space and Kernel Virtual Space

Virtual addresses with bits 63:62 containing 00 are references to the usr process address
space. The kernel creates a virtual address space for each user process as described before
(see “Virtual Address Mapping” on page 7). The Origin2000 architecture adds the
complication that the location of a page, relative to the location where the process
executes, has an effect on the performance of the process. The kernel uses a variety of
strategies to locate pages of memory in the same node as the CPU that is running the
process.

Kernel virtual addresses (in which bits 63:62 contain 11) are mapped as already described
(see “Kernel Virtual Space—xkseg” on page 23). Certain important data structures may
be replicated into each node for faster access.

The stack and data areas used by device drivers are in xkseg. A driver has the ability to
request memory allocation in a particular node, in order to make sure that data about a
device is stored in the same node where the device is attached and where device
interrupts are taken (see “Kernel Memory Allocation” on page 215).

Uncached and Special Address Spaces

A physical address in xkphys (bits 63:62 contain 10) has different meanings depending on
the settings of bits 61:57 (see Figure 1-9 and Table 1-3). In the Origin2000 architecture,

25

Chapter 1: Physical and Virtual Memory

26

these bits are interpreted by the memory control circuits of the node, external to the CPU.
The possibilities are listed in Table 1-4. Some are covered in more detail in following
topics.

Table 1-4 Special Address Spaces in Origin2000

Address 61:59 Address 58:57 Meaning

(Algorithm)

110 (cached) n.a. Cached access to physical memory

010 (uncached) 00 Node special memory areas including directory cache, ECC,
PROM, and other node hardware locations..

010 (uncached) 01 1/0 space: addresses that can be mapped into the address
space of any bus adapter.

010 (uncached) 10 Synchronization access to memory.

010 (uncached) 11 Uncached access to physical memory.

Cached Access to Physical Memory

When the CPU emits a translated virtual address with bits 63:62 containing 10 and bits
61:59 specifying cached access, the address is a cached reference to physical memory.
When the referenced location is not contained in the secondary cache, it is fetched from
memory in the node that contains it. This is the normal outcome of the translation of a
user or kernel virtual address through the TLB.

The actual address is the physical address in bits 39:0, interpreted as shown in
Figure 1-10.

Address Space Usage in Origin2000 Systems

Figure 1-10 Origin2000 Physical Address Decoding

The node hardware can operate in either of two modes, called ‘M’ and *N.’

Mode ‘M’ Bits 39:32 select one of 256 nodes. Remaining bits select an address in as
much as 4 GB of memory in that node.

Mode ‘N’ Bits 39:31 select one of 512 nodes. Remaining bits select an address in as
much as 2 GB of memory in that node.

Either mode places the memory that is part of each node in a flat address space with a
potential size of 1 TB. All locations are accessed in the same way—there is a single
address space for the entire system. For example, the memory that is part of node 1
begins at 0x0000 0001 0000 0000 (in mode ‘M’) or 0x0000 0000 8000 0000 (in mode ‘N’).

The node hardware implements one special case: addresses in the range 0-63 MB (0
through 0x0000 0000 03ff ffff) are always treated as a reference to the current node. In
effect, the current node number is logically ORed with the address. This allows trap
handlers and other special code to refer to node-specific data without having to know the
number of the node in which they execute.

27

Chapter 1: Physical and Virtual Memory

28

Uncached Access to Memory

A physical address in xkphys (bits 63:62 contain 10) that has the uncached algorithm (bits
61:59 contain 010) always bypasses the secondary cache. An address of this form can
access physical memory in either of two ways.

When bits 58:57 contain 11, the address bits 39:0 are decoded as shown in Figure 1-10. In
this mode there is no aliasing of addresses in the range 0-63 MB to the current node; the
node number must be given explicitly.

However, when bits 58:57 contain 00, an address in the range 0-768 MB is interpreted as
uncached access to the memory in the current node. In effect, the node number is ORed
into the address. Also in this mode, access to the lowest 64 KB is swapped between the
two CPUs in a node. CPU 0 access to addresses 0x0 0000 through 0x1 ffff is directed to
those addresses. But CPU 1 access to 0x0 0000 goes to 0x1 0000, and access to 0x1 0000
goes to 0x0 0000—reversing the use of the first two 64 KB blocks. This helps trap handlers
that need quick access to a 64 KB space that is unique to the CPU.

Synchronization Access to Memory
An uncached physical address with bits 58:57 containing 10 is an atomic

fetch-and-modify access. Bits 39:6 select a memory unit of 64 bytes (half a cache line) and
bits 5:3 select an operation, as shown in Figure 1-11.

Address Space Usage in Origin2000 Systems

Figure 1-11 Origin2000 Fetch-and-Op Address Decoding

The first word or doubleword (depending on the instruction being executed) of the
addressed unit is treated as shown in Table 1-5.

Table 1-5 Origin2000 Fetch-and-Op Operations

Instruction Address 5:3 Operation

Load 000 An uncached read of the location.

Load 001 Fetch-and-increment: the old value is fetched and the memory value
is incremented.

Load 010 Fetch-and-decrement: the old value is fetched and the memory value
is decremented.

Load 011 Fetch-and-zero: the old value is returned and zero is stored.

Store 000 An uncached store of the location.

29

Chapter 1: Physical and Virtual Memory

Table 1-5 (continued) Origin2000 Fetch-and-Op Operations

Instruction Address 5:3 Operation

Store 001 Increment: the memory location is incrmented.
Store 010 Decrement: the memory location is decremented.
Store 011 AND: memory data is ANDed with the store data.
Store 100 OR: memory data is ORed with the store data.

These are atomic operations; that is, no other CPU can perform an interleaved operation
to the same 64-byte unit. The kernel can use this addressing mode to implement locks
and other synchronization operations. A user-level library is also available so that
normal programs can use these facilities when they are available; see the fetchop(3)
reference page.

Device Driver Use of Memory

30

Memory use by device drivers is simpler than the details in this chapter suggest. The
primary complication for the designer is the use of 64-bit addresses, which may be
unfamiliar.

Allowing for 64-Bit Mode

You must take account of a number of considerations when porting an existing C
program to an environment where 64-bit mode is used, or might be used. This can be an
issue for all types of drivers, kernel-level and user-level alike. For detailed discussion, see
the MIPSpro 64-Bit Porting and Transition Guide listed on page Xxxv.

The most common problems arise because the size of a pointer and of a long int changes
between a program compiled with the -64 option and one compiled -32. When you use
pointers, longs, or types derived from longs, in structures, the field offsets differ between
the two modes.

When all programs in the system are compiled to the same mode, there is no problem.

This is the case for a system in which the kernel is compiled to 32-bit mode: only 32-bit
user programs are supported. However, a kernel compiled to 64-bit mode executes user
programs in 32-bit or 64-bit mode. A structure prepared by a 32-bit program—a structure

Device Driver Use of Memory

passed as an argument to ioctl(), for example—does not have fields at the offsets
expected by a 64-bit kernel device driver. For more on this specific problem, see
“Handling 32-Bit and 64-Bit Execution Models” on page 195.

The basic strategy to make your code portable between 32-bit and 64-bit kernels is to be
extremely specific when declaring the types of data. You should almost never declare a
simple “int” or “char.” Instead, use a data type that is explicit as to the precision and the
sign of the variable. The header files sgidefs.h and sys/types.h define type names that you
can use to declare structures that always have the same size. The type __psint_t, for
example, is an integer the same size as a pointer; you can use it safely as alias for a
pointer. Similarly, the type _ uint32_t is guranteed to be an unsigned, 32-bit, integer in
all cases.

Memory Use in User-Level Drivers

When you control a device from a user process, your code executes entirely in user
process space, and has no direct access to any of the other spaces described in this
chapter.

Depending on the device and other considerations, you may use the mmap() function to
map device registers into the address space of your process (see the mmap(2) reference
page). When the kernel maps a device address into process space, it does it using the TLB
mechanism. From mmap() you receive a valid address in process space. This address is
mapped through a TLB entry to an address in segment that accesses uncached physical
memory. When your program refers to this address, the reference is directed to the
system bus and the device.

Portions of kernel virtual memory (ksegO or xkseg) can be accessed from a user process.
Access is based on the use of device special files (see the mem(7) reference page). Access
is done using two models, a device model and a memory map model.

Access Using a Device Model

The device special file /dev/mem represents physical memory. A process that can open this
device can use Iseek() and read() to copy physical memory into process virtual memory.
If the process can open the device for output, it can use write() to patch physical memory.

The device special file /dev/kmem represents kernel virtual memory (ksegO or xkseg). It can

be opened, read and written similarly to /dev/mem. Clearly both of these devices should
have file permissions that restrict their use even for input.

31

Chapter 1: Physical and Virtual Memory

32

Access Using mmap()

The mmap() function allows a user process to map an open file into the process address
space (see the mmap(2) reference page). When the file that is mapped is /dev/mem, the
process can map a specified segment of physical memory. The effect of mmap() is to set
up a page table entry and TLB entry so that access to a range of virtual addresses in user
space is redirected to the mapped physical addresses in cached physical memory (ksegO
or the equivalent segment of xkphys).

The /dev/ikmem device, representing kernel virtual memory, cannot be used with mmap().
However, a third device special, /dev/mmem (note the double “m™), represents access to
only those addresses that are configured in the file /var/sysgen/master.d/mem. As
distributed, this file is configured to allow access to the free-running timer device and, in
some systems, to graphics hardware.

For an example of mapped access to physical memory, see the example code in the
syssgi(2) reference page related to the SGI_QUERY_CYCLECNTR option. In this
operation, the address of the timer (a device register) is mapped into the process’s
address space using a TLB entry. When the user process accesses the mapped address,
the TLB entry converts it to an address in ksegl/xkphys, which then bypasses the cache.

Mapped Access Provided by a Device Driver

A kernel-level device driver can provide mapped access to device registers or to memory
allocated in kernel virtual space. An example of such a driver is shown in Part I11,
“Kernel-Level Drivers.”

Memory Use in Kernel-Level Drivers

When you control a device from a kernel-level driver, your code executes in kernel
virtual space. The allocation of memory for program text, local (stack) variables, and
static global variables is handled automatically by the kernel. Besides designing data
structures so they have a consistent size, you have to consider these special cases:

= dynamic memory allocation for data and for buffers
= transferring data between kernel space and user process space

= getting addresses of device registers to use for PIO

Device Driver Use of Memory

The kernel supplies utility functions to help you deal with each of these issues, all of
which are discussed in Chapter 9, “Device Driver/Kernel Interface.”

Uncached Memory Access in Origin2000 and in Challenge and Onyx Series

Access to uncached memory is not supported in these systems, in which cache coherency
is maintained by the hardware, even under access from CPUs and concurrent DMA.
There is never a need (and no approved way) to access uncached memory in these
systems.

Uncached Memory Access in the IP26 and IP28

The IP26 CPU modaule is used in the Silicon Graphics Power Indigo2 workstation and the
Power Challenge M workstation. Both are deskside workstations using the R8000
processor chip. These remarks also apply to the IP28 CPU used in the Power Indigo2
R10000 workstation. In these machines, extra care must be taken in cache management.

Cache Invalidation and Writeback

When an 1/0 device is going to perform DMA input to memory, the device driver must
invalidate any cached copies of the buffer that will receive the data. If this is not done,
the CPU could go on using the “stale” data in the cache, ignoring the input data placed
in memory by the device. This is done by calling the dki_dcache_inval() function to
invalidate the range of addresses where DMA input is planned.

In the IP28 CPU, the delayed and speculative execution features of the R10000 processor
make it necessary for the driver to invalidate the cache twice: once before initiating the
DMA input, and once again immediately after DMA ends.

Before initiating DMA output, the driver must force all cached data to memory by calling
dki_dcache_wnb(). This ensures that recent data in the cache is also present in memory
before the device begins to access memory. The use of both these functions is discussed
further under “Managing Memory for Cache Coherency” on page 231.

Cache invalidation is handled automatically when you use the userdma() and undma)
functions to lock memory for DMA (see “Setting Up a DMA Transfer” on