
ImageVision Library
Programming Guide

Document Number 007-1387-030

ImageVision Library Programming Guide
Document Number 007-1387-030

CONTRIBUTORS

Written by Jackie Neider and Eleanor Bassler
Illustrated by Seth Katz, Nancy Cam, Bill Pickering, and Eleanor Bassler
Edited by Nan Schweiger
Production by Laura Cooper
Engineering contributions by Chris Walker, Nancy Cam, Venkatesh Narayanan,

Dan Baca, Jon Brandt, Don Hatch, and Casey Leedom
Photography by Jackie Neider, Jim Winget, Nancy Cam, and Judith Quenvold

© Copyright 1993, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

Restricted Rights Legend
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIS-4D, IRIX, IRIS Graphics
Library, IRIS IM, ImageVision, ImageVision Library, and RealityEngine are
trademarks of Silicon Graphics, Inc. Motif is a trademark of Open Software
Foundation. UNIX is a registered trademark of UNIX System Laboratories. X
Window System is a trademark of the Massachusetts Institute of Technology.
Microsoft is a registered trademark of Microsoft Corporation. Apple and Macintosh
are registered trademarks of Apple Computer, Inc. Kodak and Kodak Photo CD are
trademarks of Eastman Kodak Company.

Red-tailed boa photograph property of Judith Quenvold.

iii

Contents

About This Guide xix
What This Guide Contains xx
Suggestions for Further Reading xxi
Adding a User Interface to Your ImageVision Library Program xxiii
Style Conventions xxiv

1. Writing an ImageVision Library Program 3
A Sample Program in C++ 4

Mixed-Model Version of the Sample Program 5
Pure GL Version of the Sample Program 8
More about the Sample Program 10

The C and Fortran Interfaces 15
Creating and Deleting C++-style Objects 15
Calling Functions 17
Including Header Files 18

A Sample Program in C 19
Mixed-Model Program Written in C 19
Pure GL Sample Program Written in C 22

A Sample Program in Fortran 24

2. The ImageVision Library Foundation 29
The IL Class Hierarchy 30
Foundation Classes 31

The ilLink Class 32
The ilImage Class 33

iv

Contents

Image Attributes 34
Error Codes 36
Size 36
Data Type 37
Data Ordering 38
Color Model 40
Color Palette 40
Image Type 41
Coordinate Space 42
Fill Value 43
Minimum and Maximum Pixel Values 44
Data Compression 46

The Cache 46
Managing Cache 49
Priority 50
Page Size 52
Paging Support 53

Accessing Image Data 54
Two-dimensional Functions 55
Three-dimensional Functions 63
Data Access Support Functions 65
Coordinate Space Support 66
Geometric Mapping Support 67

The IL Execution Model 68
On-demand Processing 68
Multi-threading 71
Using Graphics Hardware for Acceleration 73

Working with Image Chains 75
Dynamically Reconfiguring a Chain 75
Propagating Image Attributes 78

Object Properties 80

v

3. Accessing External Image Data 85
Supported IL Image File Formats 87

TIFF 87
GIF 87
Kodak Photo CD Image Pack 88
Kodak Photo CD Overview Pack 90
SGI 90
FIT 91

Using the IL Image File Formats 91
Opening an Existing File 92
Creating a TIFF, SGI, or FIT File 94
Setting a File’s Compression 96
Querying a File Image 98
Managing TIFF Tags and Directories 98
Extending the FIT Format 100

Importing and Exporting Image Data 101
Images in Memory 101
X Window Images 103

4. Operating on an Image 107
Image Processing Operators Provided with the IL 110

Color Conversion and Transformation 111
Arithmetic and Logical Transformations 117
Geometric Transformations 125
Spatial Domain Transformations 133
Edge Detection 144
Frequency Domain Transformations 148
Generation of Statistical Data 162
Radiometric Transformations 166
Combining Images 177
Constant-valued Images 184
Using a Null Operator 184

vi

Contents

Defining a Region of Interest 185
Creating an ilRoiImg 186
Creating an ilSubImg 190

5. Displaying an Image 195
Overview of the Display Facility 196
A Simple Interactive Display Program 201

Sample Program Code 202
Sample Program Comments 205

Creating an ilDisplay 208
Opening and Configuring a Window 208
Creating an ilDisplay Object 209
Changing a Graphics Configuration 210

View and Display Basics 211
Background Color 211
Borders 211
Preventing View Operations 213
Deferring Drawing 213
The Drawing Area 214
Managing the Cache 214
Automatic Seek-ahead 214
Mode Flags 215

Managing Views 216
Adding Images 216
Stereo Viewing 217
Retrieving Views 218
Retrieving Images 219
Removing Views 219
Replacing Images 219
Reordering the View Stack 220
Finding a View 220
Finding an Edge 220

vii

Operating on a Pixel 221
Locating a Point 222

Applying a Display Operator 223
Drawing Views 224
Relocating Views and Images 227
Resizing Views 232
Updating Views 234
Using setStart() 235

A More Complicated Interactive Display Program 235

6. Extending the IL 241
Deriving from ilImage 244

Data Access Functions 246
Color Conversion 249
Managing Image Attributes 249

Deriving from ilCacheImg 255
Deriving From ilMemCacheImg 255
Implementing Your Own File Format 258

Creating and Opening a File 259
Closing a File 266
Reading and Writing Formatted Data 268
Registering Your File Format 269

Implementing an Image Processing Operator 273
Deriving from ilOpImg 275
Deriving from ilMonadicImg or ilDyadicImg 285
Deriving from ilSpatialImg 290
Deriving from ilWarpImg or ilPolyWarpImg 294
Deriving from ilFMonadicImg or ilFDyadicImg 295
Deriving from ilFFiltImg 299

Deriving from ilRoi 300

viii

Contents

7. Optimizing Your Application 307
Managing Memory Usage 308

Optimizing Use of Cache 308
Page Size 313
Buffer Space 314

Using Hardware Acceleration 315
Initiating Hardware Acceleration 315
Controlling Hardware Acceleration 315
Accelerated Operations 317
Hardware Acceleration on Non-RealityEngine Platforms 319
Hardware Acceleration on the RealityEngine 319
Using a Dedicated GL Rendering Thread 332
Controlling the Rendering Thread 332

Controlling Multi-threading 336
Controlling Threads 336
Semaphores and Locks 337
Controlling Arenas 338
Interaction with Multi-threaded Applications 338

8. The Programming Environment 343
Compiling and Linking an IL Program 344

Programs Written in C++ 344
Programs Written in C or Fortran 346

Reading the Reference Pages 348
Debugging an IL C++ Program 349

Compiling for Debugging 349
Referring to Function Names 349

Image Tools 351
Online Source Code 352

ix

A. Introduction to C++ 355
Objects and Classes 355
Inheritance 356
Public versus Protected versus Private 357
Passing by Reference 358
Default Values 358

B. Summary of All Classes 359

C. Data Types, Data Orderings, and Color Models 369
Determining Color Model 370
Determining Operator Data Types and Orderings 371

Color Conversion 372
Arithmetic and Logical Transformations 373
Geometric Transformations 375
Spatial Domain Transformations and Edge Detection 376
Frequency Domain Transformations 378
Radiometric Transformations 379
Combining Images 380
Null Operation 380

D. Results of Operators 381
Color Conversion 382
Arithmetic and Logical Transformations 383
Geometric Transformations 386
Spatial Domain Transformations 387
Edge Detection 388
Frequency Domain Transformations 390
Radiometric Transformations 391
Combining Images 393

x

Contents

E. Auxiliary Classes, Functions, and Definitions 395
Auxiliary Classes 396

ilConfig 397
ilLut 399

Useful Functions 401
Computing the Size of Data Types 401
Minimum and Maximum Comparisons 402
Converting to Color-index Mode 402

Convenient Structures 403
Coordinate Data Structures 403
Coefficients 404

Error Codes 407
Enumerated Types and Constants 408

Describing Image Attributes 409
Controlling Operators 411
Controlling the Display Facility 413

Index 415

xvii

Examples

Example 1-1 Sample Program (in C++) Using X Window
Management 5

Example 1-2 Sample Program (in C++) Using GL Window
Management 8

Example 1-3 Sample Program (in C) Using X Window Management 19
Example 1-4 Sample Program (in C) Using GL Window

Management 22
Example 1-5 Sample Program (in Fortran) using GL Window

Management 24
Example 3-1 Opening an Image File and Reading Data 93
Example 5-1 A Simple Interactive Display Program 202
Example 5-2 A More Complicated Interactive Display Program 236
Example 6-1 ilLink’s Implementation of resetCheck() 250
Example 6-2 ilFITImg Constructor to Open an Existing File 260
Example 6-3 Reading a FIT Header File and Initializing Variables 261
Example 6-4 Creating a File for FIT Data 264
Example 6-5 An Implementation of reset() for ilFITImg 266
Example 6-6 Destructor for ilFITImg 267
Example 6-7 Reading and Writing Data in the FIT format 269
Example 6-8 Implementation of OpenFile() 271
Example 6-9 Typical Header for a Class Derived from ilOpImg 275
Example 6-10 Typical Constructor for a Class Derived from ilOpImg 276
Example 6-11 The resetOp() Function of ilMonadicImg 277
Example 6-12 A getPage() Implementation for a Class Derived from

ilOpImg 281
Example 6-13 Computing the Pixelwise Sum of Two Images 282
Example 6-14 Implementation of doCalc() in ilPowerImg 288
Example 6-15 Implementation of loadLut() in ilPowerImg 288

xviii

Examples

Example 6-16 A Class Derived from ilHistLutImg to Count Pixels 290
Example 6-17 A Class Derived from ilConvImg to Multiply and

Accumulate Data 293
Example 6-18 Constructor and Member Functions of a Class Derived from

ilFMonadicImg to Convert Coordinates 297
Example 6-19 A Class Derived from ilFDyadicImg to Multiply Two

Fourier Images 298
Example E-1 ilConfig Constructors and Fields 397
Example E-2 ilLut Constructors and Member Functions 399

xi

Figures

Figure 1-1 An Image before Processing 12
Figure 1-2 The Image after Processing 14
Figure 2-1 The ilLink Class Inheritance 31
Figure 2-2 An IL Chain 32
Figure 2-3 Sizes of Original and Processed Images 37
Figure 2-4 Pixel Data Ordering for an RGB Image 39
Figure 2-5 Image Coordinate Spaces 43
Figure 2-6 Cache Containing Portions of Three Images 47
Figure 2-7 Pages and Tiles of Image Data 48
Figure 2-8 Priority Lists in Cache 51
Figure 2-9 Parameters for getSubTile() and setSubTile() 61
Figure 2-10 Image Chain for the Sample Program 69
Figure 2-11 Image Chain Showing Demand-driven Execution

Model 70
Figure 2-12 Performance Comparison of Non-threaded,

Single-processor, and Multi-processor Applications 72
Figure 2-13 Operators, Requests for Pages, and Threads 73
Figure 2-14 An Image Chain 76
Figure 3-1 File and Memory Classes 86
Figure 3-2 Processing Kodak Photo CD Images 88
Figure 4-1 ilOpImg and the IL Inheritance Hierarchy 108
Figure 4-2 Color Conversion Operators Inheritance Hierarchy 112
Figure 4-3 Determining the Color Model of Multi-Input

Operators 114
Figure 4-4 A Falsely Colored Image 116
Figure 4-5 Arithmetic and Logical Operators Inheritance

Hierarchy 118
Figure 4-6 A Positive and Negative Image Pair 120

xii

Figures

Figure 4-7 Adding Two Images 123
Figure 4-8 Minimum of Two Images 124
Figure 4-9 Logical AND and OR of Two Images 125
Figure 4-10 A Warped Image 126
Figure 4-11 Geometric Operator Inheritance Hierarchy 126
Figure 4-12 Warping an Image 131
Figure 4-13 Spatial Domain Operator Inheritance Hierarchy 133
Figure 4-14 The ilPadSrc Edge Mode 135
Figure 4-15 An Original Image 137
Figure 4-16 An Image Blurred with ilBlurImg 138
Figure 4-17 An Image Sharpened with ilSharpenImg 139
Figure 4-18 An Over-sharpened Image 139
Figure 4-19 Median Rank Filtering on an Image 141
Figure 4-20 Edge Detection Operator Inheritance Hierarchy 145
Figure 4-21 Edge Image Produced by ilRobertsImg 146
Figure 4-22 A Compass Filtered Image 148
Figure 4-23 Frequency Domain Operator Inheritance Hierarchy 149
Figure 4-24 Magnitude and Phase Fourier Operators 154
Figure 4-25 Original Image 158
Figure 4-26 Image Processed with ilFGaussFiltImg 159
Figure 4-27 The ilImgStat Inheritance 163
Figure 4-28 Radiometric Operator Inheritance Hierarchy 168
Figure 4-29 Using Scaling 170
Figure 4-30 Breakpoints along a Piecewise Continuous Function 175
Figure 4-31 Using a Lookup Table Editor to Set Breakpoints 177
Figure 4-32 ilBlendImg, ilMergeImg, and ilCombineImg Inheritance

Hierarchy 178
Figure 4-33 Blended Images 179
Figure 4-34 Composition Modes for ilBlendImg 182
Figure 4-35 ilRoi’s Subclasses 187
Figure 4-36 Source Image and Subimage 191
Figure 4-37 Translated Subimage 192
Figure 5-1 IL Display Classes 196

xiii

Figure 5-2 Stacked Images in an X Window 197
Figure 5-3 ilDisplay Object Creates a Display Area 199
Figure 5-4 ilView Objects Map Images to Display Regions 200
Figure 5-5 Display Area After Views Are Drawn 200
Figure 5-6 Aligning an Image to Bottom Left Corner 228
Figure 5-7 Aligning Views 229
Figure 5-8 split() with ilAbsSplit | ilRowSplit | ilColSplit 231
Figure 5-9 split() with ilRelSplit | ilRowSplit | ilColSplit 231
Figure 5-10 Using wipeSize() 234
Figure 6-1 User-defined Classes in the IL 242
Figure 6-2 ilOpImg and Its Subclasses for Deriving 274
Figure 6-3 Valid and Invalid Data in a Row of Pixels 301
Figure 7-1 Varying Page Dimensions 310
Figure 7-2 RealityEngine Pixel Transfer Paths (transfer rates are in

millions of pixels per second) 321
Figure 7-3 Image Processing Operations Accomplished in a Single

Pixel Transfer on the RealityEngine 323
Figure 7-4 Composite Operation 325
Figure 7-5 Multi-pass Operation 326
Figure 7-6 Hardware Acceleration on an Image Chain 327
Figure 7-7 New Chain Constructed with Hardware Passes 328
Figure 7-8 Dedicated Il Rendering Thread 332
Figure A-1 Sample Inheritance Hierarchy 357
Figure C-1 Determining Color Model 370
Figure D-1 ilFalseColorImg 382
Figure D-2 ilGrayImg 382
Figure D-3 Original Image and Flipped Image 383
Figure D-4 ilAddImg and ilAndImg 383
Figure D-5 ilDivImg 383
Figure D-6 ilExpImg and ilInvertImg 384
Figure D-7 ilLogImg and ilMaxImg 384
Figure D-8 ilMinImg and ilMultiplyImg 384
Figure D-9 ilNegImg and ilOrImg 385

xiv

Figures

Figure D-10 ilPowerImg and ilSqRootImg 385
Figure D-11 ilSquareImg and ilSubtractImg 385
Figure D-12 ilXorImg 386
Figure D-13 Original and ilRotZoomImg 386
Figure D-14 ilWarpImg 387
Figure D-15 Original, ilBlurImg and ilGBlurImg 387
Figure D-16 ilDilateImg, ilErodeImg, and ilMaxFltImg 387
Figure D-17 ilMedFltImg, ilMinFltImg, and ilSharpenImg 388
Figure D-18 ilCompassImg 388
Figure D-19 ilLaplaceImg (original and filtered image) 388
Figure D-20 ilRobertsImg (original and filtered image) 389
Figure D-21 ilSobelImg (original and filtered image) 389
Figure D-22 ilFGaussFiltImg 390
Figure D-23 ilHistEqImg (filtered image and histogram) 391
Figure D-24 ilHistNormImg (filtered image and histogram) 391
Figure D-25 ilHistScaleImg (filtered image and histogram) 392
Figure D-26 ilLutImg (original, filtered image, and LUT editor) 392
Figure D-27 ilThreshImg 392
Figure D-28 ilBlendImg 393
Figure D-29 ilCombineImg 394

xv

Tables

Table 2-1 Image Attribute Summary 35
Table 2-2 Data Access Functions 55
Table 2-3 Channel Mapping 59
Table 3-1 Default Page Dimensions 95
Table 3-2 Modifiable File Attributes 96
Table 3-3 Compression Algorithms Supported for ilTIFFImg Files 97
Table 4-1 Single-input Arithmetic Operators and Their Valid

Output Data Types 119
Table 4-2 Compass Directions for the ilCompassImg Operator 147
Table 4-3 Output of a Forward Fourier Transform (if nx and

ny are even) 152
Table 4-4 Output of a Forward Fourier Transform (if nx and

ny are odd) 153
Table 4-5 Sample Parameter Values for

ilFGaussFiltImg 157
Table 6-1 Image Attributes Needing Initialization in ilImage

Subclass 244
Table 6-2 ilImgParam Constants 251
Table 6-3 Additional Attributes Needing Initialization in

ilMemCacheImg Derived Classes 257
Table 6-4 Additional Image Attributes Needing Initialization during

File Opening 261
Table 6-5 ilOpImg Subclasses and Their Algorithm Functions 280
Table 6-6 Valid and Invalid Run Lengths 302
Table 7-1 Accelerated Operations by Platform 318
Table 7-2 GL Subroutines used by the IL and the Affected

Data Path 322
Table 7-3 Texture Image Internal Formats 330
Table 7-4 Texture Size for Internal Formats 330

xvi

Tables

Table 7-5 ilHwState Member Functions Used to Make GL Call 335
Table C-1 Data Types and Orderings for Color Conversion

Operators 372
Table C-2 Data Types and Ordering for Arithmetic and Logical

Transformations 373
Table C-3 Data Types and Orderings for Geometric

Transformations 375
Table C-4 Data Types and Orderings for Spatial Domain

Transformations and Edge Detection 376
Table C-5 Data Types and Orderings for Frequency Domain

Transformations 378
Table C-6 Data Types and Orderings for Radiometric

Transformations 379
Table C-7 Data Types and Orderings for Operators that Combine

Images 380
Table C-8 Data Type and Ordering for the NULL Operator 380
Table E-1 Coordinate Data Structures 403

xix

About This Guide

The ImageVision Library™ (IL) is an object-oriented, extensible toolkit
designed for developers of image processing applications. Typical image
processing programs access existing image data, manipulate it, and display
and save the processed results. The IL provides a robust framework within
which developers can easily create such programs to run on all Silicon
Graphics® workstations.

The IL consists of a library written in the C++ programming language;
interfaces for the C and Fortran languages are also available. The
object-oriented nature of C++ provides a simplified programming model
based on abstractions of what images are and how they’re manipulated. This
model relieves developers of many tedious programming details and allows
them to conceptually design creative programming solutions. Also, because
the IL is written in C++, developers can easily extend it, for example, to
incorporate their own image processing algorithms or to include support for
their own image file formats. Several examples of images produced using
the IL appear in Chapter 4, “Operating on an Image,” of this programming
guide.

xx

About This Guide

What This Guide Contains

This guide presents a task-oriented perspective of the IL. The topics in this
guide are arranged to coincide with the order in which you need to refer to
them while writing an image processing program. To illustrate the use of the
IL, code examples are sprinkled liberally throughout the guide. Additional
sample source code is provided online; see “Online Source Code” on
page 352. Brief descriptions of the chapters in this guide follow:

• Chapter 1, “Writing an ImageVision Library Program,” shows what a
typical image processing application that uses the IL looks like. It
presents an IL program that performs the tasks common to many image
processing applications. It also summarizes the differences among the
C++, C, and Fortran interfaces to the IL.

• Chapter 2, “The ImageVision Library Foundation,” explains the general
architecture and design philosophy of the IL. Most of this chapter is
devoted to discussion of the principal image class (ilImage), from
which virtually all IL classes derive, and the class that implements a
key part of the IL’s execution model (ilCacheImg).

• Chapter 3, “Accessing External Image Data,” describes how to read
and write image data from and to either a file on disk or memory.

• Chapter 4, “Operating on an Image,” discusses the more than 70 image
processing algorithms provided with the IL. It explains how to use
them and what effect they have on image data.

• Chapter 5, “Displaying an Image,” describes how to display and
manage a set of images on the screen in an interactive program. You can
allow a user of your program to move images, perform wipes, roam
around an image, and create split views of multiple images.

• Chapter 6, “Extending the IL,” explains how to extend the capabilities
of the IL to implement your own derived classes. You might extend the
IL to include support for your own file format or to incorporate your
own image processing algorithm.

• Chapter 7, “Optimizing Your Application,” provides information on
optimizing your IL programs by reducing memory usage, taking
advantage of hardware acceleration, and making use of the IL’s
multi-threading facility.

• Chapter 8, “The Programming Environment,” provides information on
the programming environment available on Silicon Graphics

Suggestions for Further Reading

xxi

workstations. It mentions special tools that may help you in writing,
compiling, and debugging your IL program.

In addition to these chapters, this guide includes several appendices as
handy summaries of useful information:

• Appendix A, “Introduction to C++,” contains a brief introduction to the
principles of C++ programming.

• Appendix B, “Summary of All Classes,” provides a brief summary of
all the classes that make up the IL.

• Appendix C, “Data Types, Data Orderings, and Color Models,”
provides a summary of the default data type, data ordering, and color
model attributes of IL images.

• Appendix D, “Results of Operators,” contains illustrations showing the
results of using the IL’s operators to process data.

• Appendix E, “Auxiliary Classes, Functions, and Definitions,” describes
IL classes not fully discussed elsewhere in this guide. It also lists all the
error codes and enumerated types used by the IL.

Other documentation on the IL is contained in the ImageVision Library
Reference Pages. These reference pages provide concise yet thorough
descriptions of each C++ class included in the IL. They’re only available
online in versions for C++, C, and Fortran programmers. See “Reading the
Reference Pages” on page 348 for more information on the exact content of
the reference pages.

Suggestions for Further Reading

Because the IL is written in C++, it’s easiest to describe its design philosophy
and how to program with it by talking about the C++ classes that compose
the IL. While it’s not necessary that you know how to program in C++, you
will gain more from this guide if you understand the concepts of
object-oriented programming. Where possible, however, this guide avoids
focusing on topics directly related to the C++ implementation of the IL. In
addition, a brief introduction to C++ is included in Appendix A.
Programming examples in Chapter 1, “Writing an ImageVision Library

xxii

About This Guide

Program,” are given in C++, C, and Fortran. Some books on C++ you might
find helpful include:

• Ellis, Margaret, and Bjarne Stroustrup. The Annotated C++ Reference
Manual. AT&T Bell Laboratories, 1990. The official C++ language
reference manual.

• The C++ Programmer’s Guide. A short manual that provides information
about implementing C++ programs on Silicon Graphics workstations.

• Lippman, Stanley. C++ Primer. AT&T Bell Laboratories, 1991. An
introductory-level, tutorial-style presentation of C++.

This guide assumes that you’re familiar with the principles of image
processing. A good, general discussion of image processing can be found in
any of several textbooks, such as:

• Jain, Anil K. Fundamentals of Digital Image Processing. Prentice-Hall, Inc.,
1989. A thorough presentation of the major concepts of image
processing, written for graduate students.

• Pratt, William K. Digital Image Processing. John Wiley & Sons, 1991.

• Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing.
Addison-Wesley, 1992.

To learn more about the RealityEngine™ architecture, read:

• Akeley, Kurt, and Tom Jermoluk. RealityEngine Graphics™. In
Proceedings of SIGGRAPH ‘93 (August 1993), pp. 109-116.

Most sample programs in this guide include calls to the IRIS Graphics
Library™ (GL), and the IL itself uses the GL to perform rendering in the
frame buffer. These calls are not explained in much detail since the GL is
documented separately in these Silicon Graphics books:

• Graphics Library Programming Guide

• Graphics Library Reference Pages

• Graphics Library Programming Tools and Techniques

Adding a User Interface to Your ImageVision Library Program

xxiii

The IL provides support for manipulating files stored in the format defined
by Tag Image File Format (TIFF), Revision 6.0, distributed by Aldus Corp.
You might want to obtain the official specification of this format directly from
Aldus (411 First Avenue South; Suite 200; Seattle, WA 98104; (206) 628-6593).

• TIFF 6.0 Specification

The IL provides support for multi-threading on single- and multi-processor
machines. If you want to know more about writing multi-threaded
applications, refer to this document:

• Parallel Programming on Silicon Graphics Computer Systems

The IL uses dynamic linking. To learn more about using dynamic linking
with your applications, read:

• the dlopen, dlsym, and dlerror reference pages

• IRIX™ Programming Guide

Adding a User Interface to Your ImageVision Library Program

The IL doesn’t impose any particular user interface (UI), so you can use any
UI toolkit—such as IRIS IM™, Silicon Graphic’s port of the
industry-standard OSF Motif™—to allow the user to control your program.
To support such interactive control, the IL provides many functions for
altering parameters dynamically. The IL also keeps track of when
parameters have changed so that image data can be updated automatically.
These user-interface manuals are available from Silicon Graphics:

• OSF/Motif Programmer’s Guide

• OSF/Motif Programmer’s Reference

• OSF/Motif Style Guide

• IRIS IM Programming Notes

Silicon Graphics recommends that you write mixed-model programs rather
than pure GL programs. A mixed-model program is essentially an X
program that uses the GL to handle graphics; the GL is completely removed
from all areas governed by the X server. If you’re creating a mixed-model
X Window System™ and IL program, you might also want to refer to these

xxiv

About This Guide

volumes in the O’Reilly X Window System Series, published by O’Reilly &
Associates, Inc., Sebastopol, California:

• Volume One: XLIB Programming Manual, by Adrian Nye

• Volume Four: X Toolkit Intrinsics Programming Manual, by Adrian Nye
and Tim O’Reilly

Volumes One and Four are available from Silicon Graphics as part of the IRIS
Development Option (IDO).

Style Conventions

These style conventions are used in this guide:

• Bold—Functions, data members, and data types

• Italics—Variables, filenames, spatial dimensions, and command

• Regular—Class names and enumerated types

Code examples are set off from the text in a fixed-space font.

This chapter describes the tasks typically
performed by an application using the
ImageVision Library. It illustrates the
implementation of these tasks with
sample programs in C++, C, and
Fortran.

Writing an ImageVision Library Program

Chapter 1

3

Chapter 1

1. Writing an ImageVision Library Program

The C++ classes that make up the ImageVision Library are designed to be
used together in an image processing program. Programs that use these
classes usually assume the program structure defined by the IL. This chapter
shows what a typical image processing application that uses the IL looks
like. Chapter 2, “The ImageVision Library Foundation,” discusses the basic
concepts encapsulated in the IL’s principal classes.

This chapter contains the following major sections:

• “A Sample Program in C++” on page 4 presents a sample program
written in C++ that uses the IL. The section shows the program in two
versions, one that uses X window management (mixed-model) and one
that uses GL window management (pure GL).

• “The C and Fortran Interfaces” on page 15 explains the differences
between the C++ and C and Fortran interfaces to the IL.

• “A Sample Program in C” on page 19 presents the sample program
written in C. This section contains two versions of the program, one
that uses X window management and one that uses GL window
management.

• “A Sample Program in Fortran” on page 24 presents the sample
program written in Fortran.

4

Chapter 1: Writing an ImageVision Library Program

A Sample Program in C++

The sample C++ program presented in this section reads image data from a
file, processes it, displays it, and saves the processed data in a new file. Each
task the program performs is described in more detail in subsequent
chapters. This chapter gives you a brief introduction to the capabilities of the
IL and provides you with a code example that can serve as a template for
programs you write.

Image processing applications typically perform at least some of the
following tasks:

• Read image data—Read formatted image data from a file on disk, for
example, and decompress it if necessary.

• Process the data—Manipulate the data, for example to enhance the
original image or to produce a statistical analysis of the data.

• Display the image on the screen—Allow a user to interactively view
selected portions of simultaneously displayed images.

• Save the processed data in a file—Format and possibly compress the
data.

The C++ program outlined and listed below demonstrates how the IL
accomplishes these tasks. (Versions of this program in the C and Fortran
languages appear later in this chapter.) In this particular example, the user
invokes the program from the command line and specifies a file of image
data to be processed. The program first sharpens the image data (like
improving the focus through a camera lens) and then rotates it 90 degrees.
Next it displays the processed image on the screen and writes it to a file.

The sample program performs these tasks:

1. Opens the input file of image data.

2. Constructs a sharpening operator that uses the file of image data as
input.

3. Constructs a rotate operator that uses the output of the sharpening
operator as input.

4. Displays the sharpened and rotated image data on the screen.

A Sample Program in C++

5

5. Copies the sharpened and rotated image to a file on disk.

6. Continues to display the processed image until the user quits by
pressing the <Esc> key or by using the window menu.

The code for this program (in both mixed-model and pure GL) is available
online so that you can easily compile and run it. Look in:

/usr/people/4Dgifts/examples/ImageVision/ilguide

Other sample code is also available online; see “Online Source Code” on
page 352.

Mixed-Model Version of the Sample Program

The code in Example 1-1 shows the mixed-model version of the sample
program. Silicon Graphics recommends that you write mixed-model
programs rather than pure GL programs.

Example 1-1 Sample Program (in C++) Using X Window Management

/* sampleProgX: X window (mixed-model) version
* Opens a file image and then sharpens and rotates it. Sets
* up the window configuration, opens an X window, and
* displays the processed image.

*/
#include <stdlib>
#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/keysym.h>
#include <il/ilGLXConfig.h>
#include <il/ilGenericImgFile.h>
#include <il/ilSharpenImg.h>
#include <il/ilRotZoomImg.h>
#include <il/ilDisplay.h>

void main (int argc, char **argv)
{

if (argc < 2) {
printf("usage: sampleProgX <filename>\n");
exit(0);

}

6

Chapter 1: Writing an ImageVision Library Program

ilFileImg *inImg = ilOpenImgFile (argv[1], "r");

ilSharpenImg sharperImg(inImg, 0.5);

// If page width equals image width Then adjust cache size
// to hold pages needed for ilRotZoomImg
int px, py, pz, pc;
inImg->getPageSize(px, py, pz, pc);
if (px == inImg->getXsize()) ;

sharperImg.setCacheWindow(inImg->getXsize(),
inImg->getYsize());

ilRotZoomImg rotatedImg(&sharperImg, 90.0);

int rgbMode = getgdesc(GD_BITS_NORM_SNG_RED) > 0;
int doubleBuffer = getgdesc(GD_BITS_NORM_DBL_RED) >= 8;

ilGLXConfig glx;
glx.addEntry(GLX_NORMAL, GLX_RGB, rgbMode);
glx.addEntry(GLX_NORMAL, GLX_DOUBLE, doubleBuffer);
glx.addEntry(0, 0, 0); // terminator

ilSize size;
rotatedImg.getSize(size);
Display* dpy = XOpenDisplay(NULL);
Window win = glx.createWindow(dpy,

RootWindow(dpy, DefaultScreen(dpy)),
0, 0, size.x, size.y, 0);

XStoreName(dpy, win, "Processed Image"); //set window title
XSelectInput(dpy, win, ExposureMask | KeyPressMask);
XMapWindow(dpy, win);

// If SGI format Then adjust cache size
if (inImg->getImageFormat() == ilSGI_IMG)

inImg->setCacheWindow(size.x, size.y);

ilDisplay disp(dpy, win);
disp.addView(&rotatedImg, ilLast);

Step 1: Open the file of
image data.

Step 2: Create IL objects for
sharpening and rotating.

Step 3: Configure and open a
window for display.

Step 4: Display the processed
data.

A Sample Program in C++

7

ilFileImg *tmpFile = ilCreateImgFile("outFile.tif", size,
inImg->getDataType(),
inImg->getOrder(), ilTIFF_IMG);

tmpFile->copyTile(0,0,size.x,size.y,&rotatedImg,
0,0,0,TRUE);

delete tmpFile; //flush

XEvent event;
int ever = 1;
for (;ever;) {

XNextEvent(dpy, &event);
switch (event.type) {

case DestroyNotify:
ever = 0;
break;

case KeyPress:
switch(XLookupKeysym(&event.xkey, 0)) {
case XK_Escape: // Escape key

ever = 0;
break;

}
break;

case Expose:
disp.redraw();
break;

}

}
XCloseDisplay(dpy);
exit(0);

}

Step 5: Write the processed data
to a file.

Step 6: Display until the user
quits.

8

Chapter 1: Writing an ImageVision Library Program

Pure GL Version of the Sample Program

The code in Example 1-2 shows a pure GL implementation of the sample
program.

Example 1-2 Sample Program (in C++) Using GL Window Management

/* sampleProgGL: Pure GL version
* Opens a file image, then sharpens and rotates it. Sets up
* the window configuration, opens a GL window, and displays
* the processed image.
*/

#include <stdio.h>
#include <stdlib.h>
#include <il/ilGenericImgFile.h>
#include <il/ilSharpenImg.h>
#include <il/ilRotZoomImg.h>
#include <il/ilDisplay.h>
#include <gl/gl.h>
#include <gl/device.h>

void main (int argc, char **argv)
{

if (argc < 2) {
printf("usage: sampleProgGL <filename>\n");
exit(0);

 }

ilFileImg *inImg = ilOpenImgFile (argv[1], "r");

ilSharpenImg sharperImg(inImg, 0.5);

// If page width equals image width Then adjust cache size
 // to hold pages needed for ilRotZoomImg
 int px, py, pz, pc;
 inImg->getPageSize(px, py, pz, pc);
 if (px == inImg->getXsize()) ;

sharperImg.setCacheWindow(inImg->getXsize(),
inImg->getYsize());

ilRotZoomImg rotatedImg(&sharperImg, 90.0);

Step 1: Open the file of image
data.

Step 2: Create IL objects for
sharpening and rotating.

A Sample Program in C++

9

ilSize size;
rotatedImg.getSize(size);
prefsize(size.x, size.y);
long wid = winopen("Processed Image");
if (getgdesc(GD_BITS_NORM_SNG_RED) !=0) RGBmode();
gconfig();

ilDisplay disp(wid);
disp.addView(&rotatedImg);
disp.redraw();

ilFileImg *tmpFile = ilCreateImgFile("outFile.tif", size,
inImg->getDataType(), inImg->getOrder(),
ilTIFF_IMG);

tmpFile->copyTile(0,0,size.x,size.y,&rotatedImg,
0,0,0,TRUE);

delete tmpFile; //flush

qdevice(REDRAW);
qdevice(ESCKEY);
qenter(REDRAW, short(wid));
short val;

int active = 1;
while (active) {

switch (qread (&val)) {
case ESCKEY:

active = 0;
break;

case REDRAW:
disp.redraw();
break;

}
}
exit(0);

}

Step 3: Configure and open a
window for display.

Step 4: Display the processed
data.

Step 5: Write the processed
data to a file.

Step 6: Display until the user
quits.

10

Chapter 1: Writing an ImageVision Library Program

More about the Sample Program

Both the mixed-model and pure GL versions of the sample program use the
IL in a recommended way, but many good programming habits were not
followed in the interest of keeping the program short. More specifically, this
program does not do any of the following things, and you shouldn’t regard
it as recommended practice in at least these areas:

• check return arguments and write error messages as appropriate

• strip arguments off the command line in an elegant way and check
them for appropriate values (or provide a graphical user interface)

• provide feedback to the user—for example, to indicate that a file of
processed image data has been created

The remaining paragraphs in this section walk through the sample program,
explaining how it uses the IL. This discussion is intended to give you a taste
of the kinds of things the IL can do and what you as a programmer need to
do to accomplish them. Each of the topics touched on is discussed
extensively elsewhere in this guide.

Header Files

The first few lines of code include the necessary header files from the IL.
These header files also include other IL header files, as well as header files
from the Graphics Library and the standard C library. If you use this
program as a template and modify it to suit your needs, be sure you include
the header files necessary for your program. Since the IL provides many
more capabilities than you’ll need for any particular program, you don’t
need to include all of its header files. To minimize compile time and the size
of your executable, you should include only those header files actually
required by your program.

In this example,

• the header il/ilGLXConfig.h is included to configure an X window for
GL rendering.

• the header il/ilGenericImgFile.h is included to implement the ilFileImg
class.

• the header il/ilSharpenImg.h is included to implement the ilSharpenImg
class.

A Sample Program in C++

11

• the header il/ilRotZoomImg.h is included to implement the
ilRotZoomImg class.

• the header il/ilDisplay.h is included to manage views in an X or GL
window.

In general, when writing an IL program in C++, you’ll need to include an IL
header file for each IL class you use. More information about programming
and compiling IL programs is included in “Compiling and Linking an IL
Program” on page 344.

Step 1: Open the File of Image Data

In step 1 of the main() function, an image data file specified by the user is
opened by invoking the ilOpenImgFile() function. This function takes two
arguments: the pathname of the file and a mode argument, which indicates
whether the file is read-only or read-write. In this example, the filename is
taken as an argument from the command line, and the file is opened for
reading. An example image from a file is shown in Figure 1-1.

Before any image data can be read, ilOpenImgFile() must determine the file
format used to store the data by returning a pointer to one of the supported
ilFileImg types. The IL supports the following six file formats:

• an extended version of the Tag Image File Format (TIFF), Revision 6.0

• Silicon Graphics’ format for storing image data, typically in files
suffixed with .bw (black-and-white) or .rgb (red, green, blue—or RGB)

• Photo CD image pack file format to support images produced and
stored in a Kodak Photo CD™

• a simple tiled file format called FIT, developed primarily as an example
of extending the IL to include other file formats

• GIF (Graphics Interchange Format), Compuserve’s image file format

Also, as suggested by the existence of FIT, you can easily add support to the
IL for other file formats. Chapter 3, “Accessing External Image Data,”
presents detailed information about reading and writing image data in
specific file formats. “Implementing Your Own File Format” on page 258
tells you how to extend the IL to support your own file format.

12

Chapter 1: Writing an ImageVision Library Program

Figure 1-1 An Image before Processing

Step 2: Create IL Objects for Sharpening and Rotating

Now that the source of the image data to be processed is ready, the IL classes
used for processing the data are created in step 2. For this sample program,
data is first sharpened and then rotated by using the ilSharpenImg and
ilRotZoomImg classes. These two classes are among the many operators
provided by the IL that perform image processing algorithms; however, you
can invoke any number of operators on a set of data. See Chapter 4,
“Operating on an Image,” for more information about how the IL allows you
to operate on image data. You can also easily add your own algorithms;
“Implementing an Image Processing Operator” on page 273 tells you how to
extend the IL to include a new image processing operator.

• Create Sharpening Object—As shown in the program example, the
parameter 0.5 is passed along with a pointer to the input image data
file. This parameter, which is a single-precision floating point number,
can range in value from 0 to 1; it determines how much the data is
 sharpened. The specific algorithm that ilSharpenImg uses to sharpen
image data is described in detail in its class reference page (read “Reading
the Reference Pages” on page 348 for an explanation of the difference
between normal reference pages and class reference pages). If this were
an interactive program, you could allow the user to change the
sharpness factor dynamically, perhaps with a slider; you would then
reset the ilSharpenImg parameter to respond to the user’s input.

A Sample Program in C++

13

For better performance, the sample program checks to make sure the
cached area in ilSharpenImg is set to the size of the image. This ensures
that the program can store the entire sharpened image in cache.

• Create Rotate Object—You can use the ilRotZoomImg class to rotate
and/or zoom (magnify or minify) an image. In this example, the
sharpened image data is rotated 90 degrees, in a counterclockwise
direction, as specified by the parameter passed to ilRotZoomImg. The
ilRotZoomImg class is discussed in detail in its reference page.

• On-demand Processing—As an IL program executes, image data is
processed only on demand—for example, when it’s needed for
displaying or writing to a file. This execution model eliminates
unnecessary processing and minimizes transfers of data in and out of
memory. In this sample program, data isn’t actually processed until
step 4. The execution model is discussed in detail in “The IL Execution
Model” on page 68.

Step 3: Configure and Open a Window for Display

In the mixed-model version of the program (sampleProgX), calls are made to
the X Window library to initialize and open a window on the screen. The
getgdesc() function is used to avoid switching to RGB or double buffer mode
on machines that don’t support these modes. An IL object, ilGLXConfig, is
used to make the job of configuring and opening an X Window easier. For
more information on the ilGLXConfig object and creating mixed-model
programs, see Chapter 5, “Displaying an Image.” For information on
X library calls, see the manuals listed in the Introduction.

In the pure GL version of the program (sampleProgGL), calls are made to the
GL to initialize the GL and to open a window on the screen. The getgdesc()
function is used to avoid switching to RGB mode on machines that don’t
support this mode. In this example, the window is the size of the processed
image (measured in pixels) and is titled “Processed Image.” For information
on GL calls, see the manuals listed in the Introduction.

Step 4: Display the Processed Data

In step 4, an ilDisplay object is created to display the processed image data.
This must be done after the window is opened. In a more interactive image
processing program, you would use an ilDisplay object to manage the

14

Chapter 1: Writing an ImageVision Library Program

dynamic display of multiple images. Also, you could rewrite the program to
display the sharpened image before it’s rotated. This program, however,
simply displays the final image. Displaying processed images is covered in
detail in Chapter 5, “Displaying an Image.” The result of running the sample
program with the image from Figure 1-1 is shown in Figure 1-2.

In the IL’s execution model, data is processed in conveniently sized chunks,
called pages. As you execute this sample program, you can watch as
successive pages of image data are displayed after they’ve been processed.

Figure 1-2 The Image after Processing

Step 5: Write the Processed Data to a File

Many image processing applications need to write processed image data to
a file. In step 5, ilCreateImgFile() creates a file for writing data using the
TIFF file format. This function needs to know the name of the file, the size of
the image in pixels, the data type of the pixels (for example, float or int), and
how those pixels are ordered. See “Creating a TIFF, SGI, or FIT File” on
page 94 for more information about ilCreateImgFile().

The C and Fortran Interfaces

15

The ilCreateImgFile() function only creates a file. The copyTile() function
actually writes the processed (sharpened and rotated) image data directly
into the file.

Step 6: Display Until the User Quits

Finally, in step 6, the program sets up a loop using GL calls (in sampleProgGL)
or X library calls (in sampleProgX) to display the image data until the user
quits the program by pressing the <Esc> key (or by using the window
menu). Also, the program redraws the image as necessary, for example, if the
user moves, resizes, or pops the window on the screen.

The C and Fortran Interfaces

Since the IL was written in C++, it implements the C and Fortran interfaces
as wrappers to C++ member functions. These wrappers have names that are
similar to those of the C++ member functions. Thus, the concepts explained
in this guide apply to C, Fortran, and C++ programmers even though most
of the code examples are shown in C++. If you’re programming in C or
Fortran, feel free to refer to this section as necessary for information about
how to translate C++ functions into C and Fortran function calls.

Creating and Deleting C++-style Objects

A C++ class object must be defined as something the C language recognizes
to make it usable in a C program. For example, the header file il/ilCdefs.h
defines all the IL classes as being of data type struct. To “create” such a struct
in your program, call the appropriate function, which is of the form
ClassNameCreate(). The call to create an ilDisplay struct, for example, is
ilDisplayCreate().

In C, use these statements:

ilDisplay* disp;
disp = ilDisplayCreate(dpy, win, ilGLRender, ilDefault);

16

Chapter 1: Writing an ImageVision Library Program

In Fortran, use these statements:

integer*4 disp
disp = ilDisplayCreate(dpy, win, ilGLRender, ilDefault)

In C++, use these statements:

ilDisplay disp(dpy, win); //automatic storage
ilDisplay* disp=new ilDisplay(dpy, win); //dynamic allocation

You can see in this example some other differences among the C, Fortran,
and C++ calls. In C++, you can have variables created automatically for you,
or you can allocate them dynamically yourself. The C variable disp must be
declared as a pointer to type ilDisplay. The Fortran variable must be of type
integer*4, which is indirectly a pointer. In all instances where C and C++
expect a pointer, Fortran will expect an integer*4. A void* becomes an array
in Fortran. (The difference in the number of arguments given to these
functions is explained in “Calling Functions” on page 17.)

Since you can create an ilDisplay for use with either an X or GL window, two
functions are provided to create an ilDisplay struct. Both functions have the
same name in C++, but must have distinct names in C and Fortran. The
second function is called ilDisplayGL() in these two languages, since it
creates an ilDisplay given only a GL window identifier.

In C, use these statements:

ilDisplay* disp;
disp = ilDisplayGL(wid);

In Fortran, use these statements:

integer*4 disp
disp = ilDisplayGL(wid)

In C++, use these statements:

ilDisplay disp(wid); //automatic storage
ilDisplay* disp = new ilDisplay(wid); //dynamic allocation

Since disp appears as just a struct to C, you will need to call a destructor
directly when you need to delete it. The destructor naming scheme is similar
to the creator scheme. In order to delete the display you created with the calls
above, use ilDisplayDelete().

The C and Fortran Interfaces

17

In C, use this statement:

ilDisplayDelete(disp);

In Fortran, use this statement:

call ilDisplayDelete(disp)

In C++, use this statement:

delete ilDisplay; // not needed unless created with new

Calling Functions

Once you’ve accomplished the C or Fortran equivalent of creating an object,
you can manipulate it with the C or Fortran versions of the functions
associated with that object. The C and Fortran function names generally
include the C++ class name, and the functions themselves take a pointer to
the “object” as an additional argument.

In C, use this statement:

status = ilDisplayAddView(disp, rotatedImg, 0, ilCenter);

In Fortran, use this statement:

status = ilDisplayAddView(disp, rotatedImg, 0, ilCenter)

In C++, use this statement:

status = disp.addView(rotatedImg);

As you can see, the C++ function addView(), which is a member function of
the ilDisplay class, becomes ilDisplayAddView(). Most functions will
follow this form and prefix the name of the base class. C++ functions from
the ilImage base class (or from ilImage’s parent class, ilLink) will just add
“il,” not “ilImage.” ilCacheImg’s flush() function does this as well; it
becomes ilFlush(), not ilCacheImgFlush().

The C++ versions of the IL functions fill in default values for some
arguments. If you omit those arguments, C++ simply calls the function with
the defaults. C and Fortran, however, won’t fill in defaults for you. You must

18

Chapter 1: Writing an ImageVision Library Program

supply values for each argument. The C++ sample program takes advantage
of this feature when creating a new ilSharpenImg object.

In C, use this statement:

sharperImg = ilSharpenImgCreate(theImg, 0.5, 1.5, ilPadSrc);

In Fortran, use this statement:

sharperImg = ilSharpenImgCreate(theImg, 0.5, 1.5, ilPadSrc)

In C++, use this statement:

ilSharpenImg sharperImg(theImg);

0.5, 1.5, and ilPadSrc are the default values for the sharpness factor, radius,
and edge mode arguments, respectively. In C and Fortran, you must pass
them explicitly.

Including Header Files

To use the IL in your C programs, you need to include only il/ilCdefs.h. In
your Fortran programs, include il/ilFdefs.h. These two header files each
include information about all of the IL classes and functions.

A Sample Program in C

19

A Sample Program in C

This section contains C code for the sample program, both mixed-model and
pure GL versions.

Mixed-Model Program Written in C

The code in Example 1-3 shows the mixed-model version of the sample
written in C.

Example 1-3 Sample Program (in C) Using X Window Management

/* sampleCProgX
*/
#include <il/ilCdefs.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

void main (int argc, char **argv)
{

ilFileImg *inImg, *tmpFile;
ilSharpenImg *sharperImg;
ilRotZoomImg *rotatedImg;
ilDisplay *disp;
ilSize size;
ilGLXConfig glx;
Display *dpy;
Window win;
XEvent event;
long dev, wid;
short val, ever;
int rgbMode, doubleBuffer;
int px, py, pz, pc;

if (argc < 2) {
printf("usage: sampleCProgX <filename>\n");
exit(0);

}

 inImg = ilOpenImgFile(argv[1], "r");Step 1: Open the file of image
data.

20

Chapter 1: Writing an ImageVision Library Program

 sharperImg = ilSharpenImgCreate((ilImage*)inImg,
0.5, 1.5, ilPadSrc);

/* If page width equals image width Then adjust cache */
 /* size to hold pages needed for ilRotZoomImg */

ilGetPageSize((ilImage *)inImg, &px, &py, &pz, &pc);
if (px == ilGetXsize((ilImage *)inImg))

ilSetCacheWindow((ilImage *)sharperImg,
 ilGetXsize((ilImage *)inImg),
 ilGetYsize((ilImage *)inImg), 0, 0, TRUE);

rotatedImg = ilRotZoomImgCreate((ilImage*)sharperImg,
90.0,1,1,0,ilBiLinear);

rgbMode = getgdesc(GD_BITS_NORM_SNG_RED) > 0;
doubleBuffer = getgdesc(GD_BITS_NORM_DBL_RED) >= 8;

glx = ilGLXConfigCreate(5);
ilGLXConfigAddEntry(glx, GLX_NORMAL, GLX_RGB, rgbMode);
ilGLXConfigAddEntry(glx,GLX_NORMAL,GLX_DOUBLE,

doubleBuffer);
ilGLXConfigAddEntry(glx, 0, 0, 0); /* terminator */

dpy = XOpenDisplay(NULL);
ilGetSize((ilImage*)rotatedImg, &size);
win = ilGLXConfigCreateWindow(glx, dpy,

RootWindow(dpy, DefaultScreen(dpy)),
0, 0, size.x, size.y, 0);

XStoreName(dpy, win, “Processed Image”);//set window title
XSelectInput(dpy, win, ExposureMask | KeyPressMask);
XMapWindow(dpy, win);

/* If SGI format Then adjust cache size */
if (ilFileImgGetImageFormat(inImg) == ilSGI_IMG)
ilSetCacheWindow((ilImage *)inImg, size.x, size.y, 0, 0,

 TRUE);

disp = ilDisplayCreate(dpy, win, ilGLRender, ilDefault);
ilDisplayAddViewTop(disp, (ilImage*)rotatedImg, ilCenter);
ilDisplayRedraw(disp, ilDefault);

Step 2: Create IL objects for
sharpening and rotating.

Step 3: Open a window for
displaying in RGB mode.

Step 4: Display the processed
data.

A Sample Program in C

21

tmpFile = ilCreateImgFile(“outFile.tif”, &size,
ilGetDataType((ilImage*)inImg),
ilGetOrder((ilImage*)inImg),
ilTIFF_IMG, NULL);

ilCopyTile((ilImage*)tmpFile, 0,0,size.x,size.y,
(ilImage*)rotatedImg,0,0,0,1);

ilImageDelete((ilImage*)tmpFile);

ever = 1;
for (;ever;) {

XNextEvent(dpy, &event);
switch (event.type) {

case DestroyNotify:
ever = 0;
break;

case KeyPress:
switch(XLookupKeysym(&event.xkey, 0)) {
case XK_Escape: /* Escape key */

ever = 0;
break;

}
break;

case Expose:
reshapeviewport();
ilDisplayRedraw(disp, ilDefault);
break;

}
}
XCloseDisplay(dpy);
exit(0);

}

You can see several examples of function name changes in this sample
program. For example, the C++ call inImg->getOrder() becomes
ilGetOrder(inImg) in C, inImg->getSize() becomes ilGetSize(inImg), and
so on. Note also where ilFileImg, ilSharpenImg, and ilRotZoomImg pointers
are cast to ilImage pointers in the argument lists for several functions.

Step 5: Write the processed data to
a file.

Step 6: Display until the user
quits.

22

Chapter 1: Writing an ImageVision Library Program

Pure GL Sample Program Written in C

The code in Example 1-4 shows the version of the sample written in C using
GL window management.

Example 1-4 Sample Program (in C) Using GL Window Management

/* sampleCProgGL */
#include <il/ilCdefs.h>
#include <gl/device.h>
#include <stdlib.h>
#include <stdio.h>

void main (int argc, char **argv)
{

ilFileImg *inImg, *tmpFile;
ilSharpenImg *sharperImg;
ilRotZoomImg *rotatedImg;
ilDisplay *disp;
ilSize size;
long dev, wid;
short val, active;
int px, py, pz, pc;

if (argc < 2) {
printf("usage: sampleCProgGL <filename>\n");
exit(0);

}

inImg = ilOpenImgFile(argv[1], "r");

sharperImg = ilSharpenImgCreate((ilImage*)inImg,
0.5, 1.5, ilPadSrc);

/* If page width equals image width Then adjust cache */
/* size to hold pages needed for ilRotZoomImg */
ilGetPageSize((ilImage *)inImg, &px, &py, &pz, &pc);
if (px == ilGetXsize((ilImage *)inImg))

ilSetCacheWindow((ilImage *)sharperImg,
ilGetXsize((ilImage *)inImg),

 ilGetYsize((ilImage *)inImg), 0, 0, TRUE);

rotatedImg = ilRotZoomImgCreate((ilImage*)sharperImg,
90.0,1,1,0,ilBiLinear);

Step 1: Open the file of image data.

Step 2: Create IL objects for
sharpening and rotating.

A Sample Program in C

23

ilGetSize((ilImage*)rotatedImg, &size);
prefsize(size.x, size.y);
wid = winopen(argv[1]);
if (getgdesc(GD_BITS_NORM_SNG_RED) != 0) RGBmode();
gconfig();

disp = ilDisplayGL(wid);
ilDisplayAddViewTop(disp, (ilImage*)rotatedImg, ilCenter);
ilDisplayRedraw(disp, ilDefault);

tmpFile = ilCreateImgFile("outFile.tif", &size,
ilGetDataType((ilImage*)inImg),
ilGetOrder((ilImage*)inImg),
ilTIFF_IMG, NULL);

ilCopyTile((ilImage*)tmpFile, 0,0,size.x,size.y,
(ilImage*)rotatedImg,0,0,0,1);

ilImageDelete((ilImage*)tmpFile);

qdevice(REDRAW);
qdevice(ESCKEY);

active = 1;
while (active) {

switch (dev = qread (&val)) {

case ESCKEY:
active = 0;
break;

case REDRAW:
reshapeviewport();
ilDisplayRedraw(disp, ilDefault);
break;

}
}
exit(0);

}

Step 3: Open a window for
displaying in RGB mode.

Step 4: Display the processed
data.

Step 5: Write the processed data
to a file.

Step 6: Display until the user
quits.

24

Chapter 1: Writing an ImageVision Library Program

A Sample Program in Fortran

Here’s the pure GL sample program as you would write it in Fortran.

Example 1-5 Sample Program (in Fortran) using GL Window Management

c program sampleFProgGL

c Include Fortran header file for Image Library
#include <il/ilFdefs.h>
#include <gl/fgl.h>

integer*4 theImg, sharperImg, rotatedImg, disp
integer*4 status, viewptr, wid, ordtype, datatype
integer*4 sizex, sizey, j, i, chanlist(3)
character*1 tmp(80)
character*80 fname
equivalence (fname, tmp(1)
integer*4 dev
integer*2 val
integer*4 outimagesize(4), tmpfile

j = iargc()
if (j .ne. 1) then

write(6,*)'usage: sampleFProgGL <filename>'
stop

endif
call getarg(1, fname)

c strip blanks off the filename and stuff with nulls
i = index(fname,' ')
do 100 j = i, 80

tmp(j) = '\0'
100 continue

theImg = ilOpenImgFile(fname, 'r')

sharperImg =
1 ilSharpenImgCreate(theImg,0.5,1.5,ilPadSrc)

rotatedImg = ilRotZoomImgCreate(sharperImg,90.0,
1 1.0,1.0,0,ilBiLinear)

Step 1: Open the file of
image data.

Step 2: Create IL objects for
sharpening and rotating.

A Sample Program in Fortran

25

sizex = ilGetXsize(rotatedImg)
sizey = ilGetYsize(rotatedImg)
call prefsi(sizex, sizey)
wid = winope(‘sampleFProgGL’, 13)
if (getgde(GD_BITS_NORM_SNG_RED) .ne. 0) call RGBmod()
call gconfi()

disp = ilDisplayGL(wid, ilDefault)
viewptr = ilDisplayAddView(disp,rotatedImg,0,ilCenter)
status = ilDisplayRedraw(disp, ilDefault)

ordtype = ilGetOrder(rotatedImg)
datatype = ilGetDataType(rotatedImg)
outimagesize(1) = sizex
outimagesize(2) = sizey
outimagesize(3) = ilGetZsize(rotatedImg)
outimagesize(4) = ilGetCsize(rotatedImg)
tmpFile = ilCreateImgFile("outFile.tif",

1 outimagesize(1), datatype, ordtype, ilTIFF_IMG,
2 %VAL(0), %VAL(11), %VAL(4))

status = ilCopyTile(tmpFile,0,0,sizex,sizey,
1 rotatedImg,0,0,%VAL(0),1)

call ilImageDelete(tmpFile)

call qdevic(REDRAW)
call qdevic(ESCKEY)

200 continue
dev = qread(val)
if (dev .eq. REDRAW) then

call reshap()
status = ilDisplayRedraw(disp,ilDefault)

end if
if (dev .eq. ESCKEY) goto 99
if (dev .ne. 0) go to 200

99 stop
end

The Fortran IL calls are nearly identical to the C calls, with the exception that
each pointer is replaced in Fortran by an integer*4. As in the C calls, you
must include all arguments to each function. (For more information on
calling C functions from Fortran, see the chapter titled “Fortran
Programming Interfaces” in the FORTRAN 77 Programmer’s Guide.)

Step 3: Open a window for
displaying in RGB mode.

Step 4: Display the processed
data.

Step 5: Write the processed data
to a file.

Step 6: Display until the user
quits.

This chapter describes the architecture
and design philosophy of the
ImageVision Library. This description
includes the IL class hierarchy, image
attributes, the caching and accessing of
image data, and the chaining of image
operators for optimum performance.

The ImageVision Library Foundation

Chapter 2

29

Chapter 2

2. The ImageVision Library Foundation

This chapter explains the general architecture and design philosophy of the
ImageVision Library. All subsequent chapters assume knowledge of the
basic concepts presented here. This chapter contains the following major
sections:

• “The IL Class Hierarchy” on page 30 gives a brief overview of the main
classes that compose the IL.

• “Foundation Classes” on page 31 introduces the IL foundation classes,
particularly ilLink and ilImage, from which most IL classes derive.

• “Image Attributes” on page 34 discusses in detail the attributes used to
describe an image and the functions available for retrieving and setting
these attributes.

• “The Cache” on page 46 describes the role of cache in holding raw and
processed image data.

• “Accessing Image Data” on page 54 discusses the general capabilities
for reading and writing image data that are common to all image
classes.

• “The IL Execution Model” on page 68 discusses the IL’s demand-driven
model that optimizes memory usage and performance as image data is
processed.

• “Working with Image Chains” on page 75 shows how you can
manipulate image chains in a dynamic environment.

• “Object Properties” on page 80 describes how you can assign property
values to objects and retrieve these values.

30

Chapter 2: The ImageVision Library Foundation

The IL Class Hierarchy

The architecture and functionality of the IL is contained in a hierarchy of
C++ classes. Most of this chapter is devoted to a discussion of the principal
image class (ilImage), from which most IL classes derive, and the
ilMemCacheImg class, which implements a key part of the IL’s execution
model. However, a brief look first at the IL base classes provides a
perspective for better understanding the role of the ilImage and
ilMemCacheImg classes.

The base classes can be divided into four functional groupings:

ilLink The ilLink class defines the chaining of image operators and
the images associated with these operators. “The ilLink
Class” on page 32 contains more information about the
ilLink class.

Multi-threading
The IL contains several base classes that implement the
multi-threading feature in the IL. “Multi-threading” on
page 71 describes how multi-threading works in the IL.
“Controlling Multi-threading” on page 336 tells you how
you can query or control the classes used in
multi-threading.

ilDisplay The ilDisplay class allows you to create and manage one or
more processed images in a graphics window. Read
Chapter 5, “Displaying an Image,” to learn more about this
class.

Miscellaneous Some base classes, like ilLut, ilPixel, and ilSize, provide a
variety of auxiliary functions to support the function of the
IL. For example, ilPage defines a page of image data and
ilLut defines a color palette lookup table (LUT) used to
interpret the data in some images. “Auxiliary Classes” on
page 396 contains more detail about many of these
miscellaneous base classes.

The entire IL inheritance hierarchy is shown on the quick reference card
included with this guide. All the IL classes are briefly summarized in
“Summary of All Classes” on page 359.

Foundation Classes

31

Foundation Classes

Figure 2-1 shows the portion of the IL class hierarchy that derives from
ilLink. The classes in the shaded boxes are the IL foundation classes. These
classes provide much of the functionality and flexibility of the ImageVision
Library.

Figure 2-1 The ilLink Class Inheritance

The foundation classes shown in Figure 2-1 are abstract classes and can’t be
used directly. However, understanding the capabilities these classes provide
is key to understanding how the IL works and how to use it. Also, if you
extend the IL to meet your specific image processing needs, you will derive
your own classes from these abstract classes.

ilLink

ilImage

ilImgStat

ilRoi

ilView

ilCacheImg

ilConstImg

ilDisplayImg

ilMergeImg

ilRoiImg

ilSubImg

ilMemoryImg ilOpImg

ilFileImg
ilFITImg

ilSGIImg

ilPCDImg

ilTIFFImg

Operator
classes

ilGIFImg

ilMemCacheImg

ilSwitchImg

ilPCDOImg

32

Chapter 2: The ImageVision Library Foundation

The ilLink Class

The IL allows you to access, manipulate, store, and display images. You can
perform a series of operations on one or more images by creating a chain of
operators and passing the image or images down this chain of operators. An
operator is a class derived from ilOpImg (the base class for all IL operators)
that applies its image processing algorithm to an image. The image output
from each operator becomes the input to the next operator in the chain.

An element in a chain of operators can be:

• a raw or processed image

• an object containing statistical information about an image, for
example, a histogram

• a region of interest within an image

• a portion of the image to be displayed

The result of a chain of operations is either a display of the processed image
or a file on disk containing the processed image. Figure 2-2 illustrates this
concept by showing an image chain whose elements are raw and processed
images.

Figure 2-2 An IL Chain

The ilLink class implements the chaining model by defining the mechanism
for linking the image objects together. This model defines the concept of
parent (input) and child (output) images. The ilLink class also provides
functions that allow you to manipulate image attributes by providing
functions that keep track of whether an attribute is allowed to change or has

monitor

raw
image

processed
disk operator1 operator2

processed

image image

IL chain

disk

Foundation Classes

33

been altered. “The IL Execution Model” on page 68 contains more
information about chaining in the IL.

The ilImage Class

The ilImage class is the root of the majority of the IL’s image class hierarchy
and provides the IL’s abstract concept of what images are and how they’re
manipulated. The IL defines an image as a four-dimensional array of pixels,
x, y, z, and c. An image has certain attributes, such as what size (in pixels) the
image is, what data type the pixel elements are (for example, float or int),
and what color model should be used to interpret the data (for example, RGB
or CMYK).

The ilImage class provides two main categories of functions to support this
abstraction of an image:

• image attribute functions, for querying an image about its attributes
and setting these attributes (Programmers can explicitly set some
attributes, even though many attributes are determined at the time the
image is instantiated.)

• data access functions, for reading, writing, and copying image data

All classes that derive from ilImage (see Figure 2-1) inherit these general
capabilities for querying and setting attributes and accessing data. Thus, the
IL allows you to manipulate all images in the same way, regardless of the
actual source or destination of the data. The same mechanism is used for
data that’s associated with any type of image; for example:

• an image stored in memory (ilMemoryImg)

• an image that’s displayed on the screen and that resides in the
framebuffer (ilDisplayImg)

• an image operator, which applies an image processing algorithm to its
data (ilOpImg)

• an image that resides in a file on disk and is buffered in memory
(ilFileImg)

Classes derived from ilImage implement their own versions of the data
access functions as necessary to add specificity. For example,
ilMemCacheImg defines versions of the data access functions that read data

34

Chapter 2: The ImageVision Library Foundation

from or write it to a partial copy of the image buffered in main memory.
Similarly, ilTIFFImg adds capabilities specifically for reading and writing
TIFF file headers and data. The ilSharpenImg class incorporates a
sharpening algorithm into its access functions.

Image Attributes

In the IL, an image has several descriptive attributes. These include:

• image size

• data type of image pixels

• data ordering of channels in an image

• color model

• color palette

• image type

• coordinate space

• fill value

• minimum and maximum pixel values

• data compression

• page border

• image format

Many of these attributes are assigned default values when an image is
created. Some of them are changed subsequently, usually as a result of
applying—or preparing to apply—an image operator. Some can be changed
explicitly by the programmer. Each class that derives from ilImage chooses
which attributes it allows to be explicitly modified. (For more information
about how this mechanism works, see “Propagating Image Attributes” on
page 78 and “Managing Image Attributes” on page 249.)

This section describes the image attributes and the functions available for
retrieving and setting them. These functions are defined by the ilImage and
ilLink classes and therefore can be used on any type of image.

Image Attributes

35

For your convenience, Table 2-1 provides a summary of the image attribute
functions. All of these functions are described later in this section except for
image format (described in “Querying a File Image” on page 98) and page
border (described in “Page Borders” on page 75).

In addition to the functions shown above, which allow you to set image
attributes individually, you might decide to use the IL’s ilConfig class, which
allows you to specify several image attributes at once. An ilConfig contains
several elements that describe pixel data: the data type, pixel ordering,
number of data channels, ordering of data channels, channel offset,

Table 2-1 Image Attribute Summary

Image Attribute Retrieving Attributes Changing Attributes

Size getSize()
getXsize()
getYsize()
getZsize()
getCsize()

setSize()
setCsize)
Apply an operator that affects size.

Data type getDataType()
isSigned()

setDataType()

Data ordering getOrder() setOrder()

Color model getColorModel() setColorModel()

Color palette getColorMap() setColorMap()

Image type getImageType() Set upon file creation and cannot be
changed

Coordinate Space getCoordSpace() setCoordSpace()

Fill value getFill() setFill()

Min and max pixel
values

getminPixel()
getMaxPixel()
getMaxValue()

setMinPixel()
setMaxPixel()
setMaxValue()

Data compression getCompression() setCompression()

Page border getPageBorder() setPageBorder()

Image format getImageFormat() Use the imgCopy utility to convert from
one IL-supported format to another

36

Chapter 2: The ImageVision Library Foundation

coordinate space, and zoom factors. This class is defined in the header file
il/ilConfig.h and described in more detail in “ilConfig” on page 397 as well as
in its reference page.

Error Codes

As you read the following sections, you’ll note that many of the functions
described return a value of data type ilStatus. This enumerated type, which
is defined in the header file il/ilError.h, contains the error codes used by the
IL to indicate that an unexpected result occurred. If no unexpected result
occurred, an image’s status is ilOKAY. The error codes and their meanings
are listed in “Error Codes” on page 407.

At any point, you can query an ilImage about its current status by using
getStatus(), a function defined in ilLink that takes no arguments and returns
a value of type ilStatus. You can also set an image’s status to ilOKAY by
using clearStatus() (a function defined in and inherited from ilLink).

Size

One key attribute of an image is its size, which is determined initially when
an image is created. In the sample program in Chapter 1, “Writing an
ImageVision Library Program,” the size of the image data is determined
when the ilOpenImgFile() function is called. The IL defines an ilSize data
structure, which consists of four integers that correspond to the image’s size
in the x, y, and z dimensions and the number of data channels, c, per pixel.

The x and y dimensions specify the width and height of the image as
measured in pixels. The z dimension, or “depth,” may refer to the number of
xy planes of image data. The xy planes are usually related in some way; for
example, they might be a time-series of a single animation scene or a set of
CAT scan images. (CAT stands for computerized axial tomography, a
medical imaging technique used to create three-dimensional images.)
Different image representations require different numbers of data channels
to describe each pixel of data. An RGB (red, green, blue) image, for example,
requires three channels, one for each of the three colors.

Image Attributes

37

The ilImage class defines functions for retrieving the entire ilSize structure
for an image at once and functions for returning each of the elements
separately:

ilSize imgSize;
int imgXSize, imgYSize, imgZSize, imgChans;

myImg.getSize(imgSize);
imgXSize = myImg.getXsize();
imgYSize = myImg.getYsize();
imgZSize = myImg.getZsize();
imgChans = myImg.getCsize();

You can change an image’s size by applying an image operator that affects
its size or by setting its size explicitly (if you’re allowed to set it). For
example, in most cases, the ilRotZoomImg operator (used in the sample
program in Chapter 1, “Writing an ImageVision Library Program”)
produces a processed image with a size that differs from that of the original
image, as shown in Figure 2-3:

Figure 2-3 Sizes of Original and Processed Images

You can set an image’s size explicitly by using setSize(), which takes a
reference to the desired ilSize structure as an argument. A separate function,
setCsize(), allows you to restrict the number of channels associated with an
image.

Data Type

An image’s pixel components must all be of the same data type. The IL
defines an enumerated set of data types (ilType) and a function,
getDataType(), to return the data type of an image’s pixels:

ilType imgType;
imgType = myImg.getDataType();

Original
Rotated Image

New Size

Image
Zoomed Image

New Size

38

Chapter 2: The ImageVision Library Foundation

The ilType returned can be one of the following: ilBit, ilChar, ilUChar (an
unsigned char), ilShort, ilUShort, ilLong, ilULong, ilFloat, or ilDouble.
(These types are defined in the il/ilTypes.h header file and listed in
“Describing Image Attributes” on page 409.)

Use isSigned() to query an ilImage about whether its data type is signed:

int sign = myImg.isSigned();

As shown, this function takes no arguments and returns TRUE (nonzero) if
the image’s data type is signed and FALSE (zero) otherwise.

Operators accept input images of any data type, even if the actual image
processing computation is performed using a different type. In these cases,
the data is converted as needed to perform the computation. If you know
what data type you’ll need at the end of the computation, you can use the
setDataType() function to force the data type.

Data Ordering

The channels composing an image’s pixel data can be ordered in any of
several ways. The IL defines a corresponding enumerated type, ilOrder, and
a query function getOrder(), as shown below. (See the il/ilTypes.h header file
and “Describing Image Attributes” on page 409.)

ilOrder imgOrder;
imgOrder = myImg.getOrder();

Image Attributes

39

The ilOrder value returned can be either ilInterleaved, ilSequential, or
ilSeparate. The meanings of these three orders are shown in Figure 2-4 and
explained below:

Figure 2-4 Pixel Data Ordering for an RGB Image

Interleaved In interleaved ordering, all pixel components are clustered
together. For an interleaved RGB image, data is stored as:
RGBRGBRGB....

Sequential With sequential ordering, each component is stored as a
separate line. In the example, three lines of data (one each
for red, green, and blue data) are needed to describe one line
of pixels.

Separate An image using separate ordering stores each component in
a separate page. (See “The Cache” on page 46 for more
information about pages.)

Thus, the order defines which dimensions vary most rapidly relative to the
others in a chunk of data. For example, in the interleaved case, the channel
dimension varies most rapidly, and the z dimension varies least rapidly.
Here’s how the dimensions vary for each of the orders, listed from most to
least rapidly: ilInterleaved (c,x,y,z), ilSequential (x,c,y,z), ilSeparate (x,y,z,c).

In the rare cases where you need to set an image’s order, use the setOrder()
function. Some classes derived from ilImage, such as ilFileImg, won’t let you
change an image’s order.

ilInterleaved ilSequential ilSeparate

RGB
RGB

RGB RRR
GGG
BBB

RRR GGG BBB
RRR
RRR

GGG
GGG

BBB
BBB

40

Chapter 2: The ImageVision Library Foundation

Color Model

An image’s color model determines the meaning of the data channels from
which a pixel is constructed. The IL defines an ilColorModel enumerated
type (in the header file il/ilTypes.h) that can refer to the following color
models:

ilRGB red, green, blue

ilRGBA red, green, blue, alpha

ilRGBPalette color index mapped to an RGB lookup table

ilHSV hue, saturation, value

ilCMY cyan, magenta, yellow

ilCMYK cyan, magenta, yellow, black

ilMinWhite grayscale, with the minimum value interpreted as white

ilMinBlack grayscale, with the minimum value interpreted as black

ilBGR variation of RGB, for images generated by Silicon Graphics

ilABGR variation of RGBA, for images generated by Silicon
Graphics

ilMultiSpectral generally more than three channels; requires a special
interpretation

ilYCC a luminance/chrominance data metric based on video
primaries

The getColorModel() function allows you to query an image about its color
model. If necessary, you can change the data interpretation by using the
setColorModel() function.

Color Palette

Some images include a color palette that’s used to interpret their data. A
color palette is also referred to as a lookup table or LUT. The most common
use of such a table is to store color map values. The ilLut class, defined in the

Image Attributes

41

header file il/ilLut.h and described in “ilLut” on page 399, is provided for
such purposes. To set an image’s LUT, use setColorMap():

ilStatus setColorMap(const ilLut& lut);

The table pointed to by lut is established as the image’s look-up table. This
function copies the specified ilLut but not its data. The getColorMap()
function returns by reference an image’s LUT:

void getColorMap(ilLut& lut);

Two other functions—ilSGICmapLUT() and ilSGIFileLut()—create
look-up tables for use in managing color map data. They’re described in
“ilLut” on page 399 and in their own reference pages.

Image Type

The way in which an image stores its data defines its image type. The IL
defines the ilImageType data type in the header file il/ilTypes.h. The IL
supports nine image types:

ilMEM_IMG an image residing in memory

ilFILE_IMG an image residing in a file on disk

ilGLDISP_IMG a GL image residing in the framebuffer

ilXDISP_IMG an X image residing in the framebuffer

ilOP_IMG an operator image

ilX_IMG an X image

ilSYNTH_IMG a synthetic image created interactively

ilTEX_IMG an image residing in texture memory

ilAUX_IMG an image residing in off-screen framebuffer memory

The last three are used internally and do not correspond to any particular
image class in the IL hierarchy.

The getImageType() function allows you to query an image about its image
type. The proper type is set upon creation and may not be changed by the
programmer.

42

Chapter 2: The ImageVision Library Foundation

Coordinate Space

Different file formats arrange their data in different ways. By default, a TIFF
file image considers its origin to be the upper left corner; if you scan through
the data, you should read from left to right, working your way down the
image. An SGI RGB image considers its origin to be the lower left corner; to
read through its data, again read from left to right, but work your way up
the image.

The IL defines an ilCoordSpace data type to represent the possible
orientations of image data. To query an image about the orientation of its
coordinate space, use getCoordSpace(), which returns one of the eight
values listed below. (You can set an image’s coordinate space with the
setCoordSpace() function.) These four coordinate spaces have the
traditional orientation of the x and y dimensions (the x dimension goes
across, and the y dimension runs up and down):

The following four coordinate spaces have the x and y dimensions
transposed so that the x dimension runs up and down, and the y dimension
goes across.

ilUpperLeftOrigin the same as the TIFF example

ilLowerLeftOrigin the same as the Silicon Graphics RGB example

ilUpperRightOrigin the origin is in the upper right corner, and you
read data from right to left, working your way
down the image

ilLowerRightOrigin the origin is in the lower right corner, and you
read data from right to left, working your way
up the image

ilLeftUpperOrigin The origin is in the upper left corner, and you read
from top to bottom, working your way across the
image to the right.

ilLeftLowerOrigin The origin is in the lower left corner, and you read
from the bottom to the top, working your way across
the image to the right.

Image Attributes

43

Figure 2-5 illustrates the difference between ilUpperLeftOrigin and
ilLeftUpperOrigin orientation of image data.

Figure 2-5 Image Coordinate Spaces

Fill Value

When a function tries to access pixels that are beyond an image’s edge, those
pixels are set to the image’s fill value. By default, an image’s fill value is 0,
but you can set a different fill value with the setFill() function:

static float fillData[3] = {127.0, 127.0, 127.0};
myImg.setFill(ilPixel(ilFloat, 3, fillData));

As shown, setFill() takes a reference to an ilPixel as an argument. An ilPixel
defines the pixel’s data type (in this case, ilFloat), the number of data
channels (3), and the pixel data itself (fillData[]). (In this example, the ilPixel
value is passed in-line so that the compiler automatically constructs and
deletes the object.) The image makes its own copy of the pixel data.

ilRightUpperOrigin The origin is in the upper right corner, and you read
data from top to bottom, working your way across the
image to the left.

ilRightLowerOrigin The origin is in the lower right corner, and you read
data from bottom to top, working your way across the
image to the left.

. .
 .

. . .

ilUpperLeftOrigin ilLeftUpperOrigin

OriginOrigin

44

Chapter 2: The ImageVision Library Foundation

Use getFill() to query an image about its fill value:

ilPixel theFillValue;
myImg.getFill(theFillValue);

Minimum and Maximum Pixel Values

By default, no restrictions are placed on the range of a pixel’s allowable
values. However, when an image is displayed—for example, using the
ABGR color model—its pixel values may need to be converted to the range
that’s meaningful for the framebuffers, which is 0 to 255. If you explicitly set
an image’s minimum and maximum allowable pixel values, they’re used to
color-scale the data as it’s displayed.

You might want to set the allowable pixel values for a processed image so
that the resulting data has certain characteristics, especially if you’ll be
displaying the data. For example, suppose you’re using an edge detection
filter that theoretically produces data ranging in value from -1000 to +1000.
However, you know that the images you’ll be filtering will actually yield
filtered data ranging from -100 to +100. If you set the allowable values to
match this range and then display the filtered data, the display will be more
useful, since the data will be scaled and stretched out over the framebuffer’s
meaningful range.

Setting Maximum and Minimum Pixel Values

Minimum and maximum values are image attributes that are stored with an
image. You can set the minimum and maximum allowable values for an
image’s pixel data by using the setMinPixel() and setMaxPixel() functions.
Both these functions take an ilPixel reference as an argument:

ilStatus setMinPixel(const ilPixel& pix);
ilStatus setMaxPixel(const ilPixel& pix);

Use getMinPixel() and getMaxPixel() to query an image about its minimum
and maximum allowable pixel values:

void getMinPixel(ilPixel& pix);
void getMaxPixel(ilPixel& pix);

These functions return the minimum or maximum pixel value by reference.

Image Attributes

45

Setting Maximum and Minimum Pixel Values for a Channel

You can also set the minimum and maximum values for an individual
channel of an image:

ilStatus setMinValue(double val, int c=0);
ilStatus setMaxValue(double val, int c=0);

These functions set channel c’s minimum or maximum value to val.

To query an image about its channel value limits, use getMinValue() and
getMaxValue():

double getMinValue(int c=-1);
double getMaxValue(int c=-1);

These functions return the minimum or maximum allowable value for the
specified channel (the default, -1, returns the minimum or maximum of all
channels).

Setting Maximum and Minimum Scaling Values For Color Conversion

Minimum and maximum scaling values are used by the IL during color
conversion. By default, the scale minimum and maximum are the same as
the image minimum and maximum values. The IL provides functions you
can use to retrieve current maximum and minimum scaling values and set
new ones.

The initScaleMinMax() function initializes the scale minimum and
maximum to the image minimum and maximum values. If scale minimum
and maximum have already been set, they are unchanged, unless force is
TRUE.

void initScaleMinMax(int force=0);

The function setScaleMinMax() sets the minimum and maximum scaling
values to min and max. The setScaleType() function sets the scale minimum
and maximum to the minimum and maximum values of the data type
passed in type.

ilStatus setScaleMinMax(double min, double max);
ilStatus setScaleType(ilType type=ilType(0));

46

Chapter 2: The ImageVision Library Foundation

The getScaleMax() and getScaleMin() functions return the maximum and
minimum value used for scaling during color conversion.

double getScaleMax();
void getScaleMin();

Data Compression

Often, images stored in a file on disk are compressed to minimize their size.
Such images need to be decompressed before they can be read. There are
many different compression algorithms, and each specific file format (for
example, TIFF) determines which algorithms it supports. See “Setting a
File’s Compression” on page 96 for more information about which
compression algorithms the IL supports. From a programmer’s point of
view, as data is read or written in an IL program, its compression or
decompression is handled transparently.

The Cache

The IL uses the term cache to mean a portion of memory that holds raw and
processed image data accessed by a process. This is not the same as the
hardware cache accessed by the CPU. The IL cache holds image data in
rectangular pieces called pages. The cache does not necessarily hold all the
pages for each image being processed, but only those pages that have been
referenced and have not been bumped out of cache to make room for more
recently referenced pages. Thus, only part of an image may reside in cache.

Figure 2-6 shows a cache that contains three images being used by an IL
application. The three rectangles on the left show a logical map of the pages
for each image. The shaded boxes indicate the pages of each image resident
in cache. For example, the raw image contains four pages, only two of which
are in cache. The rectangle on the right shows cache as it might contain the
pages from the three images.

The Cache

47

Figure 2-6 Cache Containing Portions of Three Images

 The IL keeps track of the pages in cache, brings in a page when the program
requests data on a page not in cache, and chooses a page to be overwritten
when it needs to read a new page for which there is no space.

Every IL class that derives from ilMemCacheImg uses cache and the caching
mechanism defined by ilMemCacheImg. Both ilOpImg and ilFileImg inherit
directly from ilMemCacheImg and use caching in these ways:

• IL operators (those classes that derive from ilOpImg) use the cache to
hold the results of applying their image processing algorithms to an
image.

• Classes that derive from ilFileImg place raw, uncompressed data in the
cache.

While the cache holds image data in pages, an IL program can access image
data in rectangular blocks of any size, without regard to page boundaries.
These rectangular blocks are referred to as tiles. As shown in Figure 2-7, tiles
can cross page boundaries or can be smaller than a page.

Raw Image Processed Image Processed Image Cache

1

2

3

4

1

1
11

1
2

2

2
2

3

3

3

4
4

4

2

48

Chapter 2: The ImageVision Library Foundation

Figure 2-7 Pages and Tiles of Image Data

When a program requests a data tile, the IL checks the cache. If the data
corresponding to the tile isn’t among the pages already in the cache, the IL
brings additional pages into the cache as necessary. If the cache is already
full, it must discard some of the resident pages in order to read the new
pages. The page replacement algorithm is based on a combination of these
factors:

• The number of times each page has been referenced; the more times a
page is referenced, the more likely it will remain in the cache.

• The priority of the references; higher priority requests tend to have
their pages retained longer.

• The relative time since each page was last referenced; the pages that
have been in the cache the longest without being referenced are
discarded first.

The overall effect of the page replacement algorithm is that data toward the
end of a chain tends to get preferentially cached. Other data that is
frequently referenced (for instance, the input to an operator whose
parameters are being repeatedly adjusted) also tends to remain in the cache.
To prevent data from being recomputed for successive tile requests, the
cache must be large enough so that pages just discarded aren’t reread. (See
the following two sections for more information on setting the size of the
cache and adjusting priorities.)

Since operators place processed image data in the cache, data is operated on
as it’s brought into the cache. To maximize efficiency under this execution

Image

Page

Tile

Tile

The Cache

49

model, only the pages needed to satisfy any given tile request are brought
into the cache. For example, if a getTile() request specifies only a single
channel of an image that’s stored in a separate format, only the pages
containing that channel are accessed. Thus, processing multispectral data (or
any data stored in a separate format) is made as efficient as possible.

Managing Cache

By default, the cache size is set to 30% of the total user memory on the host
system. The IL provides two functions to override the default size of the
cache, ilSetMaxCacheSize() and ilSetMaxCacheFraction(), which are
defined as shown below:

void ilSetMaxCacheSize(int maxBytes);
void ilSetMaxCacheFraction(float fraction);

The first function sets the cache size to the number of bytes indicated. The
second function computes the size of the cache as the indicated fraction of
the total user memory on the host computer.

You can change these limits without modifying an IL- based program by
using the environment variables IL_CACHE_SIZE or
IL_CACHE_FRACTION to set either the size in bytes or the fraction of user
memory, respectively. The IL_CACHE_SIZE value overrides the value
specified by IL_CACHE_FRACTION. Any value established with these
environment variables is overridden by calls to ilSetMaxCacheSize() or
ilSetMaxCacheFraction().

The current value of these cache size limits can be obtained with either
ilGetMaxCacheSize() or ilGetMaxCacheFraction(). The current actual size
of the object’s cache can be retrieved with ilGetCurCacheSize(). These
functions are defined as shown below:

int ilGetCurCacheSize();
int ilGetMaxCacheSize();
float ilGetMaxCacheFraction();

The IL maintains global cache in a special memory pool that allows the cache
memory to be compacted to eliminate memory fragmentation problems.
When fragmentation exceeds a defined threshold, the pool is automatically
compacted. You can use the ilSetCompactFraction() function to set the

50

Chapter 2: The ImageVision Library Foundation

fragmentation threshold to the maximum fraction of the pool that is allowed
to be wasted space before compaction occurs. The current value of this
threshold can be obtained with ilGetCompactFraction(). The default
compact fraction value is .2 or 20%.

ilSetCompactFraction(float maxWastedFraction);
float ilGetCompactFraction();

You can force compaction of the pool at any time by calling
ilCompactCache(). If the pool is more fragmented than the fraction passed
to this routine, it is compacted. You can pass zero to cause the pool to be
unconditionally compacted.

ilCompactCache(float maxWastedFraction=0);

You can use the getCacheSize() function of ilMemCacheImg to query the
cache size for a individual object:

int getCacheSize();

You can use the flush() member function of ilMemCacheImg to flush the
cache for a individual object:

ilStatus flush(int discard=FALSE));

You can free the memory in the global cache to get it down to a desired
maximum size with ilFlushCache(). This call also compacts the cache
memory.

int ilFlushCache(int maxsize);

Priority

When an image operator requests a tile and any of the pages needed by the
tile are not in cache, the missing pages must be brought into cache. If the
cache is full, some of the resident pages must be discarded and replaced with
new pages. The IL then has to decide which pages to discard.

The IL assigns priorities to pages in cache and uses these priorities to make
decisions about which pages to discard. The priority associated with pages
in cache ranges from zero (lowest) to seven (highest); the higher the priority,
the greater the likelihood the page will remain resident.

The Cache

51

The IL maintains a linked list of the pages in cache for each of priority levels
0 through 7. Figure 2-8 illustrates this concept. This simplified diagram
shows a cache with three pages at priority level seven, two pages at priority
level three, and three pages at level zero.

Figure 2-8 Priority Lists in Cache

The initial (default) priority level of a page is zero. The following events can
cause a change to the priority level:

• The priority of a page is increased by one each time the page is accessed
(for example by a copyTile() or getPage()). This is essentially a
reference count; the more times a page is referenced, the higher its
priority.

• The priority of the page is increased by one when you use the
lockPage() method to lock a page.

• If you use the setPriority() method to set the priority of the image
containing the page, the IL increases the priority of the page by one
plus the value specified in setPriority() each time the page is
referenced. The setPriority() definition is shown below:

void setPriority(int priority);

• The maximum number of pages at each priority level is one eighth of
the total number of pages in cache. If the number of pages at any one

0

1

2

3

4

5

6

7

Priority level Pointers to pages in cache

52

Chapter 2: The ImageVision Library Foundation

priority level exceeds this limit, the priority level of the last page at that
level is reduced by one. In other words, the page is moved to the head
of the list at the next lower priority level.

You can use the ilmonitor utility to monitor the activity of pages in cache. See
the ilmonitor reference page or “Image Tools” on page 351 for more
information about ilmonitor.

Page Size

The page size for each operator is defined by its input images; for an
ilFileImg, the page dimensions match those used to store the image on disk.
Some images also let you set the size of the pages in the cache and the data
type and ordering of the cached data. The data type and ordering affect how
data is cached, so if you change these attributes, you might also want to
change the size of the cache. To set the data type or the ordering of data in
the cache, use the appropriate functions defined by ilImage, setDataType()
and setOrder(). These functions are described in “Image Attributes” on
page 34. “Managing Cache” on page 49 describes how to set the size of the
cache.

Not all images allow you to set the page size; in fact, generally only
operators do. If you change the page size of an image, you should follow the
suggestions in “Cache Priority” on page 311.

To set the size of the pages used in the cache for a particular image, use
setPageSize(), which is defined by ilImage as follows:

ilStatus setPageSize(int nx, int ny, int nz=1, int nc=0);

The arguments specify the x and y dimensions of the page in pixels. By
default, the z dimension, or depth of the image, is 1, and the channel
dimension matches that of the image. This function calculates the number of
bytes needed to store a page with the specified dimensions.

The Cache

53

You can use any of a number of functions to query an image about its page
size, depending on whether you want the answer in page dimensions, bytes,
or pixels:

int getPageSize();
int getPageSize(int& nx, int& ny, int& nz, int& nc);

int getPageSizePix();
int getPageSizeVal();

getPageSize() returns the page size in bytes; this function is overloaded as
shown to take no arguments, or to take arguments that
indicate locations into which the dimensions of the page in
pixels are returned.

getPageSizePix()
returns the total number of pixels represented by a page;
this value is found by multiplying the x, y, and z
dimensions.

getPageSizeVal()
returns the total number of data elements represented by a
page; this function multiplies the page’s channel dimension
by the value returned from getPageSizePix().

Paging Support

The ilImage class provides functions to support paging in a multi-threaded
environment. These functions allow you to lock pages to ensure that those
pages stay in memory until you unlock them. The five virtual functions that
control paging are:

virtual int hasPages();
virtual ilPage* lockPage(int x, int y, int z, int c,

ilStatus& status, int mode=ilLMread);
virtual void unlockPage(ilPage* page);
virtual ilStatus lockPageSet(ilLockRequest* set,

int mode=ilLMread, int count=1);
virtual void unlockPageSet(ilLockRequest* set, int count=1);

hasPages() returns TRUE for ilMemCacheImg and all of its
descendants and FALSE for all other classes in the IL. This
is useful for determining whether the ilImage in question
supports paging.

54

Chapter 2: The ImageVision Library Foundation

lockPage() is used to lock down the page located at x, y, z, and c in the
cache; it returns a pointer to that page, which later must be
passed to unlockPage() to free up that page again.

unlockPage() frees the page specified by the pointer in the argument list.

lockPageSet() processes a set of ilLockRequest structures and returns
pointers to the requested pages in the structures.

unlockPageSet()
releases the set of pages obtained by the lockPageSet()
function.

These methods provide a mechanism to bypass the overhead of getTile()
and setTile(), but they require that you be aware of all of the attributes of the
page: size, data type, and order.

Accessing Image Data

All classes derived from ilImage read, write, and copy image data using the
same set of data access functions defined by the ilImage base class. Each
derived class implements the functions as necessary to suit its particular
requirements. A key feature of these functions is that they allow you to
access any arbitrary rectangle, or tile, of image data, regardless of how that
data is stored. This flexibility allows the IL’s demand-driven execution
model to be implemented. As part of this model, calls to some of these
functions are generated automatically. However, you can also call these
functions explicitly as needed. The execution model is discussed in detail in
“The IL Execution Model” on page 68. The ilImage class defines both
three-dimensional and, for convenience, two-dimensional data access
functions, as shown in Table 2-2.

Accessing Image Data

55

The two-dimensional data access functions work through their
three-dimensional counterparts. Since the two-dimensional versions are
slightly easier to comprehend, they’re discussed first, in the next section.
Two other sets of functions are also described below; one set provides
support while accessing data, and the other helps manage coordinate space
translations.

Two-dimensional Functions

The two-dimensional functions you’re likely to use most frequently are
getTile(), setTile(), and copyTile(). As their names suggest, these functions
read (get), write (set), and copy a tile of data. They assume that the data
buffer being read into or written from is the exact size necessary to hold the
tile being read or written; if the buffer is larger use getSubTile() or
setSubTile(). Another pair of functions, getPixel() and setPixel(), allow you
to read and write pixels rather than tiles. The fillTile() function allows you
to fill a two-dimensional tile of data with a specified constant value. The

a. << is the left-shift or output operator; it’s redefined in the C++ version of the IL.

Table 2-2 Data Access Functions

Three-dimensional Two-dimensional Description

getTile3D()

setTile3D()

copyTile3D() or <<a

copyTileCfg()

getTile()

setTile()

copyTile() or <<a

reads, writes, and copies a tile of data

getSubTile3D()

setSubTile3D()

getSubTile()

setSubTile()

reads and writes a subtile of data

getPixel3D()

setPixel3D()

getPixel()

setPixel()

reads and writes a pixel

fillTile3D() fillTile() fills a tile with a constant value

seekTile3D() seekTile() finds and updates a tile in memory

56

Chapter 2: The ImageVision Library Foundation

seekTile() function updates a tile of data so that a subsequent access will
find that tile in memory.

getTile() and setTile()

The calling sequences for getTile() and setTile(), which take the same
arguments, are shown below:

ilStatus getTile(int x, int y, int nx, int ny, void*
data,const ilConfig* config=NULL);

ilStatus setTile(int x, int y, int nx, int ny, void* data,
const ilConfig* config=NULL);

As you might expect, getTile() retrieves a tile of data from a source image
and places it in the location pointed to by data. This source image is the one
whose getTile() function is called. The tile that’s retrieved is specified by its
origin in the source image (x,y) and its size (nx and ny), which is measured
in pixels. (Since the tile’s origin is specified in the image’s coordinate space,
the (x,y) point is specified relative to the image’s origin.) The optional config
argument allows you to change the configuration of the data (including the
coordinate space) as it’s read and placed in the buffer. If this argument isn’t
supplied, the configuration of the source image is used. One element of an
ilConfig is an ordered list of the image’s channels; see the section on
copyTile() for an example of using this channel list to reorder channels as
data is retrieved.

The setTile() function writes a tile of data from the location pointed to by
data to the destination image. In this case, the destination image’s setTile() is
called. The location of the tile being written is specified by its origin in the
destination image (x,y) and its size (nx and ny). The optional config argument
for setTile() describes the configuration of the data being written; if
necessary, the data is automatically reconfigured to match the configuration
of the destination image. If this argument isn’t supplied, it’s assumed that
the data being written already has the same configuration as the destination
image.

Accessing Image Data

57

copyTile()

The copyTile() function is an efficient way to copy a tile of data from one
ilImage to another:

ilStatus copyTile(int x, int y, int nx, int ny,
ilImage* other, int ox, int oy,
int* chanList=NULL, int from=1);

By default, the tile is copied to the calling image from the image pointed to
by other. The x and y arguments specify the origin of the tile in the destination
image, and nx and ny specify the size of the tile. The tile that’s to be copied
is located at (ox,oy) in the other image. (If the tile is at the same location in
both the source and destination images, then x=ox and y=oy.) If the source
and destination images have different coordinate spaces, the data is
transposed automatically as necessary. The last argument, from, allows you
to reverse the direction of the copy; if it’s 0, the tile is copied to other from the
calling image.

The default direction (from other to the calling image) is the most efficient
direction when you’re copying to a file image (that is, one that inherits from
ilFileImg). See “Cache Priority” on page 311 for an explanation.

No configuration argument is needed for copyTile() because the destination
image’s configuration is always used; data is automatically converted as
necessary to match the destination image’s data type, order, and coordinate
space. However, you can choose a subset of the source image’s channels
and/or reorder them using the optional chanList argument. This argument is
an int array that specifies a channel mapping between the other image and
the calling image; its interpretation is the same, regardless of the direction of
the copy. The number of entries in the array should always match the
number of channels in the calling image; a negative one (-1) in the array
means that no data will be written for that channel.

As an example, suppose you have an RGB image (with red, green, and blue
channels) that you want to display as an ABGR image (with alpha, blue,
green, and red channels). (You can do this most simply with the color
conversion operators that derive from ilColorImg, but this example is

58

Chapter 2: The ImageVision Library Foundation

presented for discussion purposes.) The code for accomplishing this with
getTile() and setTile() is:

/* allocate the data buffer */
int xsize = 20;
int ysize = 10;
char data[xsize*ysize*3];

/* specify the channel list and configuration */
static int chans[] = {3, 2, 1};
ilConfig config(ilUChar, ilInterleaved, 3, chans);

/* read the data from one image and write it to the other */
RGBImg.getTile(0, 0, xsize, ysize, data);
ABGRImg.setTile(0, 0, xsize, ysize, data, &config);

First, a buffer, data, is allocated to hold the 20-pixel by 10-pixel three-channel
tile as it’s copied. Next, the configuration that the data should be mapped
into is specified. The channel list chans maps the channels of the RGB data to
the channels of the ABGR image, as explained below. (Keep in mind that
channels are numbered beginning with 0 and that there is no channel offset.)

• Channel 0 of the RGB data (the red channel) is mapped to channel 3 of
the ABGR image (also the red channel).

• Channel 1 of data (green) is mapped to channel 2 of the ABGR image
(also green).

• Channel 2 of data (blue) is mapped to channel 1 of the ABGR image
(blue).

• Nothing is available to map to channel 0 of the ABGR image (the alpha
channel).

Finally, the data is read into the buffer from RGBImg, and then it’s written to
ABGRImg from the buffer.

Here’s what the code looks like if copyTile() is used:

int xsize = 20;
int ysize = 10;
static int chans[] = {-1, 2, 1, 0};

ABGRImg.copyTile(0, 0, xsize, ysize, RGBImg, 0, 0, chans);

In this case, no intermediate data buffer needs to be allocated; the tile is
copied directly from RGBImg to ABGRImg. The channel list specifies how

Accessing Image Data

59

the channels of RGBImg are mapped to those of ABGRImg, as shown in
Table 2-3.

The interpretation of the channel list is the same if the direction of the copy
is reversed. If the same channel list were used with a call to copyTile() that
specified 0 as the direction argument, data would be copied from ABGRImg
to RGBImg as follows:

• Channel 0 of ABGRImg isn’t copied at all.

• Channel 1 of ABGRImg is copied to channel 2 of RGBImg.

• Channel 2 of ABGRImg is copied to channel 1 of RGBImg.

• Channel 3 of ABGRImg is copied to channel 0 of RGBImg.

If you need to offset channels you need to use copyTileCfg() instead of
copyTile(). This function is discussed in “Three-dimensional Functions” on
page 63. To force a two-dimensional interpretation of copyTileCfg(), specify
zero values for the z, nz, and oz parameters.

The Left-Shift or Output Operator, <<

The C++ language allows you to overload the definition of operators as long
as the new definition takes at least one class argument. The IL overloads the
operator << so that it requires a reference to an ilImage as an argument and
so that it becomes a shorthand for copyTile(). Here’s how you invoke this
operator (assume the two ilImages srcImage and destImage are already
created):

destImage<<srcImage;

Table 2-3 Channel Mapping

Channel List RGBImg Channel ABGRImg Channel

-1 none 0 (alpha)

2 2 (blue) 1 (blue)

1 1 (green) 2 (green)

0 0 (red) 3 (red)

60

Chapter 2: The ImageVision Library Foundation

This operator copies srcImage’s data to destImage, aligning the data with
destImage‘s origin. If the two images are different sizes, as much data as
possible is copied. This operator works for two- and three-dimensional
images.

getSubTile() and setSubTile()

One limitation of getTile() and setTile() is that the data buffer must be the
exact size needed to hold the data being read or written. If the buffer you’re
reading data into or writing it from is larger than the tiles being read or
written, use getSubTile() or setSubTile() to specify a subtile of the larger
buffer. (Be sure the buffer is at least as large as the tile being read or written
and that the tile is completely contained in the buffer.) The calling sequences
for these functions are shown below:

ilStatus getSubTile(int x, int y, int nx, int ny, void* data,
int dx, int dy, int dnx, int dny,
const ilConfig* config=NULL);

ilStatus setSubTile(int x, int y, int nx, int ny, void* data,
int dx, int dy, int dnx, int dny,
const ilConfig* config=NULL);

The x, y, nx, ny, data, and config parameters have the same meanings as they
have in getTile() and setTile(). The remaining parameters specify the origin
of the data buffer (dx,dy) relative to the image and the size of the buffer (dnx
and dny), as shown in Figure 2-9. (This figure assumes that the image’s
coordinate space defines the origin as the lower left corner.) With either
function, if the data buffer is the same size as the source tile, then x=dx, y=dy,
nx=dnx, and ny=dny.

Accessing Image Data

61

Figure 2-9 Parameters for getSubTile() and setSubTile()

getPixel() and setPixel()

If you’d rather read or write pixels than tiles, use getPixel() or setPixel():

ilStatus getPixel(int x, int y, ilPixel& pix);
ilStatus setPixel(int x, int y, ilPixel& pix);

These functions read or write the pixel at location (x,y) in the calling image.
When a pixel of data is read, it’s placed in the location referenced by pix. The
pix argument for setPixel() references the data that’s written into the calling
image at (x,y).

fillTile()

As a special case of writing a tile of data, you can set an arbitrary rectangular
area of an image to a constant value with fillTile():

ilStatus fillTile(int x, int y, int nx, int ny,
void* data, const ilConfig* config=NULL,
const ilTile* fillMask=NULL);

The rectangular area to be filled is specified by its origin (x,y) and size (nx
and ny), measured in pixels. The data argument specifies the value used to
fill the tile; it’s typically an ilPixel object (for C++ programmers). For
example, to fill a tile with white, use an ilPixel with these values: 255, 255,
255. The optional config argument describes the configuration of data; if it’s

nx

ny

(x,y)

dnx

dny

(dx,dy)

Image

Data Buffer

(0,0)

Tile

62

Chapter 2: The ImageVision Library Foundation

omitted, data is assumed to have the same configuration as the image being
filled.

The last argument, fillMask, allows you to define a mask that prevents a
portion of the tile from being filled. (See “Auxiliary Classes” on page 396 for
a detailed description of the ilTile class.) If it’s not NULL, only the portion
outside of the fillMask is filled.

seekTile()

The seekTile() function, still under development, will allow you to prefetch
data to ensure smooth performance. You might use this function if the user
of your application roams across an image in a particular direction, and you
want to maximize performance by making sure that the tiles the user is
approaching will be in memory before they need to be displayed. To ensure
that an upcoming memory access will find a particular tile, call seekTile():

ilStatus seekTile(int x, int y, int nx, int ny,
const ilConfig* config=NULL,
ilSemaphore* sem=NULL,
ilImage* target=NULL);

The x, y, nx, ny, and config parameters have the same meaning as they have
in getTile() and setTile(). There is no data parameter, since the tile specified
isn’t being written to or read from a buffer; it’s merely being updated in the
image’s cache. The sem and target parameters are not currently implemented.

Prefetching

The IL contains a prefetch feature that improves the speed and smoothness
of some display operations. The prefetcher attempts to predict new pages
that are going to be required as a user pans smoothly over a displayed IL
image. It accomplishes this prediction by recording the coordinates of a
series of copyTile() operations to an ilDisplayImg and then making a linear
prediction of future copyTile() requests. Based on this prediction, input
pages are scheduled to be interleaved with the normal copyTile()
operations. For instance, suppose you are roaming over an image having
page size 64 x 64 pixels. The size of each frame is 512 x 512 pixels and you
offset your position by one pixel in the x direction and one pixel in the y
direction in each frame. In this case, every 64 frames, 17 new pages need to
be loaded into the cache. If this is done all at once on the 64th frame, there is

Accessing Image Data

63

a visible delay on this frame. The prefetcher detects that the image is being
linearly translated in the displayed window and distributes the 17 lockPages
evenly over the 64 frame interval so that one extra lockPage is done about
every 4 frames. On the 64th frame all the necessary new pages are already
resident in the cache and there is no hesitation.

The prefetch feature is enabled by default. You can use the
ilEnablePreFetch() function to disable prefetching and the
ilPreFetchIsEnabled() feature to check the status of prefetching.

void ilEnablePreFetch(int enable);

int ilPreFetchIsEnabled();

You can also use the environment variable IL_ENABLE_PREFETCH to
enable or disable prefetching.

setenv IL_ENABLE_PREFETCH 0

The prefetcher works best with small, mostly square page sizes. If you use
unusual page sizes, its behavior can be erratic and you may wish to disable
it. The behavior of the prefetcher can be observed using the ilmonitor tool.
See “Image Tools” on page 351 for more information about ilmonitor.

Three-dimensional Functions

The three-dimensional data access functions are the same as their
two-dimensional counterparts, except that they take extra arguments as
necessary to handle an image’s z dimension. For example, getTile3D(),
setTile3D(), and copyTile3D() take arguments to specify the origin and size
in the z dimension:

ilStatus getTile3D(int x, int y, int z, int nx, int ny,
int nz, void* data, const ilConfig* config=NULL);

ilStatus setTile3D(int x, int y, int z, int nx, int ny,
int nz, void* data, const ilConfig* config=NULL);

ilStatus copyTile3D(int x, int y, int z,
int nx, int ny, int nz,
ilImage* other, int ox, int oy, int oz,
int* chanList=NULL, int from=0);

64

Chapter 2: The ImageVision Library Foundation

The overloaded left-shift or output operator << works for three-dimensional
images as well as two-dimensional ones, as described above.

The copyTileCfg() function works similarly to the copyTile3D() function,
except that it allows the channels of the copied data to be offset as well as
reordered at the same time it is being copied:

virtual ilStatus copyTileCfg(int x, int y, int z,
int nx, int ny, int nz,
ilImage* other, int ox, int oy, int oz,
const ilConfig* config=NULL, int from=1);

Note that this function takes an ilConfig argument rather than an int*. Only
fields in the ilConfig that refer to the number of channels, channel list, and
channel offset are used during the copy; the other fields are ignored.

The getSubTile3D() and setSubTile3D() functions require several
additional arguments to specify the origin and size of the z dimension in
both the source and the destination:

virtual ilStatus getSubTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, int dx, int dy, int dz,
int dnx, int dny, int dnz,
const ilConfig* config=NULL) = 0;

virtual ilStatus setSubTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, int dx, int dy, int dz,
int dnx, int dny, int dnz,
const ilConfig* config=NULL) = 0;

The pixel functions take an additional z component to the origin
specification:

ilStatus getPixel3D(int x, int y, int z, ilPixel& pix);
ilStatus setPixel3D(int x, int y, int z, ilPixel& pix);

The fillTile3D() and seekTile3D() functions take arguments that are similar
to the two-dimensional versions:

virtual ilStatus fillTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, const ilConfig* config=NULL,
const ilTile* fillMask=NULL);

Accessing Image Data

65

virtual ilStatus seekTile3D(int x, int y, int z,
int nx, int ny, int nz,
const ilConfig* config=NULL,
ilSemaphore* sem=NULL);

Data Access Support Functions

This section discusses a few functions designed to perform tasks related to
accessing data. These functions help you step through a buffer of image data,
getStrides() and getStrides3D(), or clip a tile to the dimensions of the image,
clipTile().

getStrides() and getStrides3D()

In some situations, you might want to step through a buffer of image data
pixel by pixel, rather than simply reading or writing a single tile of data. Or
you might want to move some specific number of pixels in a particular
direction. To do this, you need to know where one pixel’s data ends and the
next one’s begins. This information, called the stride, depends on the image’s
data type, pixel ordering, and the size of the data buffer. The two functions,
getStrides() and getStrides3D(), return data strides by reference:

void getStrides(int nx, int& xs, int& ys,
int& cs, int& nc, ilOrder ord=numilOrders);

void getStrides3D(int nx, int ny, int& xs, int& ys, int& zs,
int& cs, int& nc, ilOrder ord=numilOrders);

You specify the size of the data buffer (nx and ny in the three-dimensional
case) and the pixel ordering, ord. The default value numilOrders means that
the calling image’s ordering should be used. The remaining values are
returned by reference:

• xs, the x stride, steps to the next pixel in the same row.

• ys, the y stride, steps to the next pixel in the same column.

• zs, the z stride, steps to the next pixel along the z axis at the same xy
location.

• cs, the channel stride, steps to the next channel of the same pixel.

• nc is the number of channels in the data.

66

Chapter 2: The ImageVision Library Foundation

clipTile()

Another useful function, clipTile(), clips a specified tile to an image’s
boundaries:

ilStatus clipTile(int& x, int& y, int& z,
int& nx, int& ny, int& nz,
int includeBorder=FALSE);

The arguments specify by reference the origin (x, y, z) and size (nx, ny, nz) of
the tile. The includeBorder argument specifies whether the page borders of
the image should be used to determine clipping. If includeBorder is TRUE, the
clipped tile will include a border at the edge of the image whose size is
determined by the IL (or by setPageBorder() if you choose to use this
function). If includeBorder is FALSE (which it is by default), the tile is clipped
to the actual image edge, not including any borders. If any part of the tile lies
outside the image’s boundaries, the corresponding argument is adjusted as
necessary to clip the tile. You can then use the parameters in a call to getTile()
or setTile(), for example. If the tile is clipped, clipTile() returns
ilDATACLIPPED; otherwise, it returns ilOKAY.

Coordinate Space Support

Several functions are defined to help you translate image data from one
coordinate space to another:

ilCoordSpace mapFlipTrans(ilCoordSpace fromSpace,
ilFlip& flip, int& transXY,
ilCoordSpace workSpace=ilCoordSpace(0));

void mapTile(ilCoordSpace fromSpace, ilTile& tile,
ilFlip& flip, int& transXY,
ilCoordSpace workSpace=ilCoordSpace(0));

void mapTile(ilCoordSpace fromSpace, ilTile& tile,
ilCoordSpace workSpace=ilCoordSpace(0));

void mapXY(ilCoordSpace fromSpace, int& x, int& y,
ilCoordSpace workSpace=ilCoordSpace(0));

void mapXY(ilCoordSpace fromSpace, float& x, float& y,
ilCoordSpace workSpace=ilCoordSpace(0));

void mapXYSign(ilCoordSpace fromSpace, float& x, float& y,
ilCoordSpace workSpace=ilCoordSpace(0));

Accessing Image Data

67

ilCoordSpace mapSpace(int flipX, int flipY,
int transXY=FALSE);

void getSize(ilSize &sz, ilCoordSpace workSpace);

int isMirrorSpace(ilCoordSpace otherSpace,
ilCoordSpace workSpace=ilCoordSpace(0));

The mapFlipTrans() function determines the flips and/or transpositions
necessary to map coordinates from the fromSpace coordinate space to
workSpace (and returns them by reference). The mapTile() and mapXY()
functions map the specified tile or (x,y) point from fromSpace to workSpace.
The mapXYSign() function reverses the sign of the (x,y) values if workSpace
is flipped with respect to fromSpace; it also swaps the values (that is,
exchanges x for y and vice versa) if the coordinate spaces are transposed. The
mapSpace() function returns the coordinate space that results from
performing the specified flips and/or transpositions. The other two
functions return information related to an image’s coordinate space. The
getSize() function maps the image’s size to the workSpace coordinate space
and returns it by reference. The isMirrorSpace() function returns whether
otherSpace is a mirror image of workSpace.

For more information about these functions, see the ilImage reference page.

Geometric Mapping Support

These four functions are defined in ilImage to support functionality in image
processing operators that perform geometric transformations:

void mapToSource(ilXYfloat& src, const ilXYfloat& self);
void mapFromSource(ilXYfloat& self, const ilXYfloat& src);
virtual void evalXY(ilXYfloat& xy, const ilXYfloat& uv);
virtual void evalUV(ilXYfloat& uv, const ilXYfloat& xy);

mapToSource() transforms the coordinates in self into the ultimate source
image’s coordinate space and places them in src. mapFromSource()
transforms the coordinates in src into the calling image’s coordinate space
and places them in self. evalXY() maps from the calling image’s coordinate
space to the immediate input image’s coordinate space, and evalUV() maps
from the immediate input image’s coordinate space to the calling image’s
coordinate space.

68

Chapter 2: The ImageVision Library Foundation

The IL Execution Model

This section describes the IL execution model and explains in general how it
works in an IL program. Features of the IL execution model are:

• on-demand processing of image data using chains of IL operators

• multi-threading to allow some portions of an IL program to execute in
parallel

• the use of hardware acceleration hardware whenever possible to
improve the performance of operators in an IL chain

The IL incorporates these features into your program automatically. You
don’t have to do anything to make them happen. You will, however, need to
understand them to tune your program for optimum performance.

On-demand Processing

In the IL’s execution model, image data is processed only on demand. This
technique minimizes both the need to store intermediate results and the
frequency of disk input and output operations so that overall program
performance is optimized. IL programs that apply multiple successive
image processing operators or that deal with large images especially benefit
from this execution model. (An operator is a class derived from ilOpImg that
applies its image processing algorithm to the data encapsulated in an
ilImage object. See Chapter 4, “Operating on an Image,” for more
information.)

An IL program implements the demand-driven execution model in two
stages:

1. It creates a chain of image processing operators by creating the desired
operator classes.

2. It pulls data through the chain as it is needed. The impetus for pulling
data through the processor chain is the need for the image data at the
end of the chain, either for display or storage back to disk. The data is
pulled by processing one to several pages at a time.

In the IL program listed in “A Sample Program in C++” on page 4, a
relatively simple image chain is constructed. Figure 2-10 shows this chain,

The IL Execution Model

69

with arrows indicating the path that image data follows as it’s read from
disk, processed (sharpened and rotated), and then both displayed and
written back to disk.

Figure 2-10 Image Chain for the Sample Program

An image processing library that uses a conventional execution model
shuffles data in and out of memory at each stage of the chain. Such a
program:

1. Reads the initial image data from disk into a buffer

2. Sharpens it

3. Writes the sharpened data into a different buffer

4. Rotates the sharpened data

5. Writes this final, processed data into yet another buffer

6. Writes the final data into the framebuffer and back to disk

If the image is too large to be cached in memory, a conventional library will
write at least some of the processed data to disk for each intermediate stage.
This data then needs to be read back in from disk for the next stage.

In contrast, the IL pulls one or several pages of image data at a time all the
way through the chain; after a page is completely processed—in this
example, read from disk, sharpened, rotated, displayed, and written to a file
on disk—the next page is pulled through the chain. When multi-threading is
enabled, several pages can be in process through the chain at any one time.
This execution model eliminates the need to save intermediate processing

ilSharpenImgilFileImg

ilDisplay

ilTIFFImg

ilRotZoomImg

disk

monitor

70

Chapter 2: The ImageVision Library Foundation

results for all images, regardless of their size. Thus, all those intermediate
buffers don’t need to be allocated. The IL’s model also minimizes startup
time for IL programs, particularly those that allow the user to roam around
a large image. The data for the entire image isn’t processed before startup;
it’s processed only as needed, which in this case is as the user roams.

The backward red and blue arrows in Figure 2-11 show how data is pulled
through the image chain in the sample program.

Figure 2-11 Image Chain Showing Demand-driven Execution Model

In this example, the redraw() and copyTile() function calls issued by the
program instigate the processing of image data. They cause successive tiles
of image data to be pulled through the chain and sent to the display or back
to the disk. As each tile is written, another tile is requested from the previous
stage of the chain with a getTile(), copyTile(), or getPage() call. If the tile
requested doesn’t already reside in the cache, the page containing that tile is
pulled through the chain—read from disk, sharpened, and rotated. The
ilDisplay class manages the transfer of data from the end of the chain to the
framebuffer.

In the sample program in Chapter 1, “Writing an ImageVision Library
Program,” the instigating functions—ilDisplay’s redraw() and ilTIFFImg’s
copyTile()—are actually called in the program. The other function calls are
generated automatically as the program executes. Thus, only data that’s
actually needed is pulled through the chain.

ilSharpenImgilFileImg

ilDisplay

ilFileImg

redraw()

setPage()

ilRotZoomImg

disk

copyTile()

getTile()

getTile()

copyTile()

getPage()

getTile()

tile tile tile

monitor

Program

tile

The IL Execution Model

71

This particular sample program displays and writes to disk the entire
processed image, a tile at a time. Other image processing programs might
not even process an entire image. For example, suppose that instead of
simply displaying the entire final image, the program allowed the user to
roam around the image, viewing only a fraction of it at a time. This kind of
user interface is typically provided with programs that deal with huge
images. Since IL programs process data only as it’s needed, only those
portions of the image that the user demands to see are processed. It’s quite
possible—often the case, in fact—that the user will never view some
portions of a large image, and those portions won’t be read from disk or
processed. Thus, the IL helps minimize your program’s overall processing
requirements.

Multi-threading

The multi-threading part of the IL’s execution model optimizes overall
program performance by allowing portions of an IL program to execute in
parallel. For example, when a tile covering several pages is copied from one
operator to the next in a chain and the tiles are not resident in cache, they
must be fetched from disk. The IL implements the parallel fetching of pages
by queueing a request for each page and creating a process thread to service
each request.

Figure 2-12 shows how long it takes to read in and perform computations on
four pages in a non-multi-threaded application, a multi-threaded
application running on a single-processor machine, and a multi-threaded
application running on a multiple-processor machine. As you can see, the
multi-threaded applications complete this transaction more quickly than the
non-multi-threaded application.

72

Chapter 2: The ImageVision Library Foundation

Figure 2-12 Performance Comparison of Non-threaded, Single-processor, and
Multi-processor Applications

The IL supports parallel execution on single- and multiple-CPU machines by
creating process threads that execute portions of an IL program
simultaneously. This multi-threading facility is implemented transparently
and automatically: there are no special function calls to make or header files
to include. When you derive new classes from the existing classes in the
library, however, you must ensure that the code you produce is reentrant, or
able to be called from several process threads running concurrently. You will
find information in Chapter 6, “Extending the IL,” about how to do this.

When debugging your application or linking with other libraries that
perform multi-threading, you may want to turn off the IL’s multi-threading
facility. The preferred way to do this is to set the environment variables
IL_COMPUTE_THREADS and IL_SPARE_THREADS to zero by using the
convenience function ilMpSetMaxProcs(), as shown below. This is a global
function that doesn’t belong to any class.

ilMPSetMaxProcs(0,0);

More specific information on how to adjust the IL’s multi-threading facility
is located in “Controlling Multi-threading” on page 336.

How Multi-threading Works

When the IL processes a getTile() or copyTile() call, it determines the pages
needed for the requested tile and dispatches a request for each page. It then

Non-threaded

Single-processor

Multi-processor

th1
th2
th1
th2

th1
th2
th3
th4

Input/Output performed

Computations performed
Thread = th

The IL Execution Model

73

maintains these requests in a queue and creates process threads to service
the queue. Figure 2-13 illustrates the concept of multi-threading as well as
the on-demand processing described in the preceding section.

Figure 2-13 Operators, Requests for Pages, and Threads

Using Graphics Hardware for Acceleration

The hardware acceleration facility built into the IL allows your application
to automatically take advantage of specialized graphics hardware whenever
possible in order to make certain operations more efficient. It does this by
performing one or more operations at the end of a chain in the graphics
hardware instead of the CPU. On some architectures, it does this by
reserving part of the framebuffer as an auxiliary buffer for the IL.
Computations are then performed on the data stored in the framebuffer and
displayed more quickly than if the data were being operated on in the CPU
and brought in from main memory. If the IL needs a tile that is not in the
reserved part of the framebuffer, the tile is brought into the framebuffer from

ilOp2ilOp1

getTile()

getTile()

thread1

thread2

getTile()

request
queue

Request for a tile that spans two
pages is pulled through the image
chain

Retrieved tile is sent
to the buffer

processed
tile

processed
page

processed
page

processed
tile

page
requests

74

Chapter 2: The ImageVision Library Foundation

main memory. This model is implemented transparently and automatically;
there are no header files to include or function calls to make.

Disabling Hardware Acceleration

Sometimes you’ll need to disable the hardware acceleration facility. For
instance:

• when you are debugging your program. You cannot debug with this
facility enabled if the operator you need to test is a CPU operation that
is accelerated in the hardware.

• when you need more accurate results. Computing some operations in
the CPU (for example, those that require a resampling method) gives
more accurate results at the expense of speed.

• if your IL application includes certain GL calls, such as scrmask(),
pixmode(), logicop(), blendfunction(), ortho(), viewport(), or texture
loading calls. These GL routines depend on state variables that the IL
can change at any time. (You can safely use hardware acceleration in
conjunction with these GL calls, but only if you restore the GL state
after making IL calls.)

You can enable and disable the hardware acceleration facility:

• globally for all features of the IL

• for a specific objects of an operator class

• for all objects of a specified class

“Controlling Hardware Acceleration” on page 315 gives detailed
information about how to enable and disable hardware acceleration.

Using a Dedicated GL Thread for Hardware-Accelerated Rendering

The IL allows you the option of creating a dedicated thread to perform all
hardware-accelerated rendering operations. You can enable the use of this
thread with the ilHwThreadEnable() function. The default is that no
dedicated thread is used.

Using a dedicated thread can improve performance in intensive rendering
situations but it also requires extra effort to avoid collision with

Working with Image Chains

75

user-initiated rendering operations. The simplest way to ensure that the
rendering thread doesn’t collide with user rendering is to bracket all user
rendering with calls to ilHwSuspend() and ilHwThreadResume(). See
“Using a Dedicated GL Rendering Thread” on page 332 for more
information about using a dedicated rendering thread.

Page Borders

To be accelerated in the graphics hardware, some image processing
operations (specifically, those that perform image warps) require the data in
the pages of the cache to overlap somewhat. A set of page borders determines
how much the pages in the cache can overlap for these operations. The page
borders are set automatically for you by the IL and should rarely be changed.
You can use the setPageBorder() and getPageBorder() functions to query
and set page borders.

Working with Image Chains

Your IL programs always contain image chains—the string of operators that
define the kinds of operations you want performed on your images and the
order in which these operations are to be performed. You can manipulate
these chains after they are created.

Dynamically Reconfiguring a Chain

Some IL programs need to construct new image chains dynamically, as the
program executes. For example, imagine a program with a graphical user
interface that allows its user to specify input images and select operations to
be performed on them. Once processing has been performed, the user can
choose to operate further or to start again with new images and operators.
Such a program is most easily implemented by taking advantage of the IL’s
facility for reconfiguring an image chain.

Each image in a chain maintains two lists, one of the images directly
preceding it in the chain (its inputs or parents) and one of the images
succeeding it in the chain (its children). In the chain shown in Figure 2-14, for
example, the ilRotZoomImg object has one parent, the ilSharpenImg object,
and one child, the ilTIFFImg object.

76

Chapter 2: The ImageVision Library Foundation

Figure 2-14 An Image Chain

The lists start numbering at 0; that is, the first item on the list is at index 0.

Note: An ilDisplayImg object is a special kind of image, and it isn’t
considered a child. (An ilView created by ilDisplay is the child of
ilRotZoomImg).

Replacing a Chained Operator

Let’s say you want to modify the sample program so that it can dynamically
add a threshold operator in place of the ilSharpenImg operator. The
ilThreshImg operator examines each pixel in an image and sets the pixel to
a new value, depending on whether its value is higher or lower than a
specified threshold value. If a pixel is higher than or equal to the threshold,
it’s set to the image’s maximum pixel value; if the pixel is lower, it’s set to the
minimum value.

Here’s what the code might look like to replace the ilSharpenImg operator
with an ilThreshImg operator (this code can be inserted just before step 3 in
the sample program in Chapter 1, “Writing an ImageVision Library
Program”):

// set the threshold value to 127.5
float threshValue = 127.5;
ilPixel threshPixel(ilFloat, 1, &threshValue);

// create the ilThreshImg operator
ilThreshImg myThresher(inImg, threshPixel);

// replace ilSharpenImg with ilThreshImg
rotatedImg.setInput(&myThresher);

ilSharpenImgilFileImg ilDisplayilRotZoomImg

disk

monitor

ilTIFFImg

Working with Image Chains

77

This example is simplified, but it demonstrates the use of setInput() to
reconfigure a chain. A more realistic program will let the user specify the
threshold value to be used and also might let the user specify any of a
number of different operators to be replaced or added to the chain.

In this code fragment, the threshold value is explicitly set to 127.5 (which is
halfway between the 0 and 255 endpoints for a standard RGB image), and an
ilPixel object is created with this value. Next, the ilThreshImg operator is
created and given the input image inImg (which is the ilFileImg created in
the sample program to read an image file from disk) and the ilPixel.

The setInput() function removes the ilSharpenImg operator from the chain
by replacing it with the new ilThreshImg operator. This function, which is
declared in ilImage, takes a pointer to the new, already created input ilImage
as its first argument. In this example, the ilThreshImg operator is now the
input image for the ilRotZoomImg object, rotatedImg. The old input, which
in the sample program was an ilSharpenImg, isn’t deleted by the IL, so you
might want to delete it if it isn’t needed anymore. The attributes of the new
input image are propagated down the operator chain as described in
“Propagating Image Attributes” on page 78.

A second, optional argument for setInput() is of type int, and it specifies the
position on the indexed list of inputs at which the input is to be added. By
default, this argument is 0, indicating the first position on the list. Before the
setInput() call, the ilSharpenImg operator occupies position 0 on
ilRotZoomImg’s list of inputs. Afterward, the ilThreshImg operator is at
position 0, having replaced the ilSharpenImg operator.

Querying Chained Images

Although you probably won’t frequently need to query a chained image
about the operators it’s chained to, the ilImage base class defines functions
for you to do so. The function getNumInputs() returns an int, indicating the
number of inputs or links backward; getNumChildren() (inherited from
ilLink) returns the number of children or links forward.

78

Chapter 2: The ImageVision Library Foundation

You can also obtain a pointer to the preceding or succeeding linked images:

ilImage* myInput;
ilImage* myChild;

myInput = theImg.getInput(0);
myChild = theImg.getChild(0);

As its name implies, getInput() returns a pointer to the ilImage preceding it
in the chain; getChild() (inherited from ilLink) returns a pointer to the
ilImage succeeding it. Since there can be multiple inputs and children, both
of these functions allow you to specify the indexed position of the image you
wish to retrieve. By default, this argument is 0, indicating the first position
on the indexed list.

Adding and Removing Inputs

Some operator images can have a variable number of inputs. For such
operators, you may need to dynamically change the number of inputs as a
chain is reconfigured. The two functions that are provided for this purpose
are shown below:

ilStatus addInput(ilImage* img);
ilStatus removeInput(int index = 0);

The addInput() function adds the ilImage supplied as an argument to the
end of its current list of inputs. As its name suggests, removeInput()
removes the ilImage located at the specified index from its list of inputs. The
ilImage removed from the chain isn’t deleted, so you might want to delete it
if it won’t be used anymore.

The setNumInputs() function sets the maximum number of inputs to the int
passed in as its argument. Since this function is declared protected, you can
use it only when you’re deriving a class from ilImage.

Propagating Image Attributes

One important property of image chains is that they propagate attribute
values to succeeding stages of the chain. In other words, each stage of the
chain receives some or all of the attributes of the preceding stage. The
attributes that are propagated—image size, data type, order, coordinate
space, color model, lookup table, page size, minimum and maximum pixel

Working with Image Chains

79

values, and the fill value—are defined in ilImage and discussed in “Image
Attributes” on page 34.

Changing Image Attributes

Image attribute values can change, either from being set explicitly or as a
result of performing an operation. You can override a propagated value by
explicitly setting it (if the operator allows you to do so), in which case the IL
discards any data residing in the cache so that only data with the correct
attributes is processed.

Operators can restrict the values for certain attributes. A supported value
won’t be overridden by an unsupported propagated one. In addition, chains
can be constructed so that one link has more than one preceding link (for
example, ilBlendImg blends two images). In these cases, the most
appropriate value is propagated; usually, this is the largest (for the size
attribute, for example) or the most general value.

Typically, if you’ve explicitly set an attribute value using one of the
appropriate functions defined in ilImage, for example, setDataType() or
setPageSize(), you don’t want it to be overridden automatically by a
propagated one. The IL assumes this to be the case, so it keeps track of any
attributes that you’ve set. These attributes won’t be allowed to change
through propagation down the chain unless you indicate that they should
be. To allow an attribute to change even though you’ve set it, call clearSet()
(inherited from ilLink):

myImg.clearSet(ilIPdataType);

The argument to clearSet() can be any logical combination of the
enumerated type ilImgParam, which is defined in the header file il/ilImage.h
and discussed in more detail in Chapter 6, “Extending the IL.” For more
information about how the propagation mechanism is implemented, see
“Deriving from ilImage” on page 244.

Automatic Color Conversion of Inputs

If the input(s) to an operator does not match its color model (either as
inherited from multiple inputs or as set by the user), then an ilColorImg is
automatically inserted between the operator and its input(s). The ilColorImg
converts any mismatched input to match the operator’s color model.

80

Chapter 2: The ImageVision Library Foundation

In some cases, this automatic conversion is not desired, especially for
operators such as ilColorImg and ilFalseColorImg that perform color
conversions as part of their operations. These operators can prevent the
insertion of an ilColorImg by setting the member variable allowDiffCM to
TRUE, either in their constructor or when they initialize their state. When
allowDiffCM is TRUE, the operator must be prepared to handle inputs of any
color model for proper operation to be guaranteed. The default value is
FALSE.

Object Properties

The IL allows you to assign property values and associated property names
to objects derived from ilLink and then to query these values. This feature
allows you to tag an object with arbitrary attributes. A property value can be
an integer, a floating point number, or a pointer. The property name is a
character string.

The IL provides three scope levels for property values:

• ilInstanceScope – defines the scope as a specified object

• ilClassScope – defines the scope as an object class

• ilGlobalScope – defines a global scope

The IL provides several redundant functions to set and query property
values. In each of these functions, a scope argument specifies the search
range for property lookup. This argument can be any logically OR’ed
combination of ilInstanceScope, ilClassScope, and ilGlobalScope. If
ilInstanceScope is specified, the object’s property set is searched. If
ilClassScope is specified, the object’s class property set is searched. Finally, if
ilGlobalScope is specified, the global property set is searched. If more than
one of the search scopes is specified, each of the specified scopes is searched
in this order: the object instance scope, then the object class scope, then the
global scope. The default value for scope is ilInstanceScope.

The functions provided for the property value feature refer to a property
associated with a character string name or, alternatively, with an ilName
pointer that is used as a search key. It is more efficient to lookup a property
by ilName pointer than by a string because hashing is avoided. See the

Object Properties

81

ilGlobalName reference page to find out how to obtain an ilName pointer
from a string.

The getIntProp() functions return the integer property value associated with
either the string s or an ilName pointer. These functions return 0 if no such
property has been defined.

int getIntProp(Char *s, ilScope scope_ilInstanceScope);
int getIntProp(ilName* n, ilScope scope_ilInstanceScope);

The getFloatProp() functions return the float property value associated with
the string s or an ilName pointer. These functions return 0 if no such
property has been defined.

float getFloatProp(char* s, ilScope scope=ilInstanceScope);
float getFloatProp(ilName* n, ilScope scope=ilInstanceScope);

The getPtrProp() functions return the pointer property value associated with
the string s or the ilName. These functions return NULL if no such property
has been defined.

void* getPtrProp(char* s, ilScope scope=ilInstanceScope);
void* getPtrProp(ilName* n, ilScope scope=ilInstanceScope);

The getProp() functions return the property associated with the string s or
an ilName pointer. These functions return NULL if no such property has
been defined.

ilProperty* getProp(char* s, ilScope scope=ilInstanceScope);
ilProperty* getProp(ilName* n,

ilScope scope=ilInstanceScope);

You can use one of the following setProp() functions to assign a property
value to be associated with the string s or an ilName pointer. These functions
return ilOKAY if scope is one of the following: ilInstanceScope, ilClassScope,
or ilGlobalScope. Otherwise, it returns ilUNSUPPORTED. The object is not
marked altered as a result of setProp().

ilStatus setProp(char* s, int i,
ilScope scope=ilInstanceScope);

ilStatus setProp(ilName* n, int i,
ilScope scope=ilInstanceScope);

ilStatus setProp(char* s, float f,
ilScope scope=ilInstanceScope);

82

Chapter 2: The ImageVision Library Foundation

ilStatus setProp(ilName* n, float f,
ilScope scope=ilInstanceScope);

ilStatus setProp(char* s, void* p,
ilScope scope=ilInstanceScope;

ilStatus setProp(ilName* n, void* p,
ilScope scope=ilInstanceScope);

ilStatus setProp(char* s, const ilPropValue& val,
ilScope scope=ilInstanceScope);

ilStatus setProp(ilName* n, const ilPropValue& val,
ilScope scope=ilInstanceScope);

The removeProp() functions remove the property associated with the string
s or the ilName pointer n from the specified property set.The object is not
marked altered as a result of removeProp().

ilStatus removeProp(char* s, ilScope scope=ilInstanceScope);
ilStatus removeProp(ilName* n,

ilScope scope=ilInstanceScope);

The getClassPropSet() function returns a pointer to the property set
associated with the object’s class

ilPropSet* getClassPropSet();

The getPropSet() function returns a pointer to the object’s property set.

ilPropSet* getPropSet();

This chapter describes the six file formats
supported by the ImageVision Library
and the ways in which you can create and
access image data in these formats.

Accessing External Image Data

Chapter 3

85

Chapter 3

3. Accessing External Image Data

This chapter describes how to use the IL to read and write image data from
and to either a file on disk or memory. This chapter contains the following
major sections:

• “Supported IL Image File Formats” on page 87 describes the six
supported IL image file formats.

• “Using the IL Image File Formats” on page 91 tells you how to access
data in the six file formats.

• “Importing and Exporting Image Data” on page 101 discusses how to
import and export image data between the IL and other libraries or
devices.

86

Chapter 3: Accessing External Image Data

The IL classes discussed in this chapter are shown shaded in Figure 3-1.

Figure 3-1 File and Memory Classes

The six classes ilTIFFImg, ilSGIImg, ilFITImg, ilPCDImg, ilPCDOImg, and
ilGIFImg encapsulate the IL’s support for these six file formats: TIFF, SGI,
FIT, Photo CD Image Pack, Photo CD Overview Pack, and GIF, respectively.

You use the ilTIFFImg, ilSGIImg, and ilFITImg classes directly to read or
write image data in these formats, as described in “Using the IL Image File
Formats” on page 91. You can use the ilPCDImg class only to read data in the
ilPCDImg format. The ilPCDOImg and ilGIFImg classes are also currently
read-only.

The ilFileImg class, from which these six classes derive, provides the basic
support needed to access data in any file format. To integrate support for
your particular file format, you must derive a class from ilFileImg and

ilImage

ilSGIImg

ilTIFFImg

ilFITImg

ilDisplayImg

ilMemoryImg

ilSharpenImg

ilRotZoomImg

ilCacheImg

ilFileImg

. . .

. . .

ilXImage

ilPCDImg

ilPCDOImg

ilGIFImg

ilMemCacheImg

ilOpImg

Supported IL Image File Formats

87

implement the necessary functions. (See “Implementing Your Own File
Format” on page 258 to learn more about deriving from ilFileImg.) The
ilMemoryImg class allows you to import and export raw image data
between the IL and other libraries or devices.

Supported IL Image File Formats

The following sections describe the six file formats supported by the
ImageVision Library.

TIFF

The TIFF file format is an extended version of the Tag Image File Format,
Revision 6.0. The purpose of TIFF is to describe and store raster image data.
TIFF can describe bilevel, grayscale, palette-color, and full-color image data
in several color spaces. TIFF includes a number of compression schemes that
allow you to choose the best space or time trade-off for your applications.
The IL uses these extensions to TIFF 6.0: Tilewidth, Tilelength, and
SampleFormat. These tags provide necessary support for the image data
types and tiles as defined by the IL.

The Introduction of this Programming Guide tells you how to obtain more
information about the TIFF 6.0 specification. Refer to il/ilTIFF.h to see a list of
the available tags and to the TIFF specification, generated by Aldus
Corporation, to learn more about TIFF tags.

GIF

The GIF file format is used to read image files stored in the CompuServe
Graphics Image File (GIF) format. To obtain more information about the GIF
specification, contact CompuServe, Incorporated; Columbus, Ohio.

88

Chapter 3: Accessing External Image Data

Kodak Photo CD Image Pack

The PCD file format supports image files produced by the Kodak Photo CD
system. Photo CD establishes a system for storing high-resolution digital
photographic images on compact discs. The Kodak Photo CD™ system:

• scans photographic film

• processes the resultant images (color correction, color encoding,
hierarchical decomposition, and compression)

• records these images as a series of digitally coded images on a Kodak
Photo CD disc

In addition to digital images, Kodak Photo CD can also produce digital
psaudio data and playback control data. However, the IL only handles the
image data files from a Photo CD disc.

The IL allows you to read Kodak Photo CD discs and process the images
retrieved from the discs. Figure 3-2 shows the sequence of operations that
occur as photographic film becomes an image in an IL file.

.

Figure 3-2 Processing Kodak Photo CD Images

Kodac Photo
CD System

Kodac Photo
CD Disk IL Image

Photographic
Film

Kodak Photo
CD System

Kodak Photo
CD Disk IL Image

Photographic
Film

Supported IL Image File Formats

89

Photo CD Images

A photographic image on a Kodak Photo CD disc is stored as a hierarchy of
images, each of which represents the original image in a different resolution.
This image hierarchy is stored in a structure called an image pack. You can
get a maximum of six different resolutions of an image from an image pack.
These resolutions are:

An image pack file always contains the first four resolutions listed above.
The last two resolutions, 4Base and 16Base, can be omitted when the Photo
CD disc is created. Resolutions Base/64 through Base are stored directly and
can be accessed quickly. Resolutions 4Base and 16Base, if they are available
in the image file, are stored in a compressed form.

You can use the inherited ilFileImg member function getNumImgs() to
determine the number of images in your ilPCDImg file. You can use the
setCurrentImg() and getCurrentImg() functions to select and query the
current resolution. If you use setCurrentImg() to select an image resolution
that does not exist in the image pack, the function returns the ilStatus value
ilOUTOFBOUND but does not set the image’s status.

The IL determines page sizes for the varying Photo CD image resolutions in
the following way:

• For the Base/4, Base, 4Base, and 16Base resolutions, a page contains 16
scan lines.

• For the Base/64 and Base/16 resolutions, a page contains the whole
image.

Base/64 (96x64)

Base/16 (192x128)

Base/4 (384x256)

Base (768x512)

4Base (1536x1024)

16Base (3072x2048)

90

Chapter 3: Accessing External Image Data

Photo CD Color Model

The color model of a Kodak Photo CD image is YCC. Photo YCC is a
luminance/chrominance data metric that is based on video primaries and is
designed to allow simple video display without compromising the colors
available in photographic media. You can convert from the YCC color model
to another color model using the IL. Currently, you cannot do the reverse,
convert from another color model to YCC.

Kodak Photo CD Overview Pack

Every Kodak Photo CD contains a file in the Kodak Photo CD overview pack
format. This format contains a low resolution representation of each image
on the Photo CD. The ilPCDOImg class allows you to retrieve each of the
overview images at either Base/16 or Base/64 resolution (the default is
Base/16).

You can use the inherited ilFileImg member function getNumImgs() to
determine the number of images in your ilPCDOImg file. You can use the
setCurrentImg() and getCurrentImg() functions to select and query the
current resolution. If you use setCurrentImg() to select an image resolution
that does not exist in the overview pack, the function returns the ilStatus
value ilOUTOFBOUND but does not set the image’s status.

SGI

SGI is the first format defined by Silicon Graphics for storing image data. SGI
files are typically stored in files suffixed by .bw, .rgb, .rgba, .sgi, or .screen. SGI
files support full color, color palette, and monochrome images of either one
or two bytes per color component. Image data can be stored in either raw
form or RLE (run-length encoding) form. You can create SGI files with
compression but you cannot later rewrite a portion of a compressed SGI file.

Note: If an SGI formatted image is RGB Palette, its corresponding color map
must be stored in a separate (also SGI formatted) file with the name img.map,
where img is the name of the SGI image.

Page width for SGI files is the width of the image. Page height is a value in
the range 16 through 32 that evenly divides the overall height of the image.

Using the IL Image File Formats

91

The SGI format makes the image order interleaved. SGI supports only
unsigned data and a lower left coordinate space.

FIT

The FIT file format is a simple tiled format developed along with the IL. You
might use FIT as a starting point for defining your own file format.

FIT supports the full flexibility of the IL model: all data types, orders, and
page sizes. It uses a default page size of 128 x 128. FIT allows you to reserve
space to hold user extensions to the file format. FIT is the only format that
supports paging in the channel dimension, which is useful for multispectral
imagery.

Code that implements the FIT file format is located in the
/usr/people/4Dgifts/examples/ImageVision/ilsrc file.

Using the IL Image File Formats

The IL allows you to read and write image data in any of the three file
formats ilTIFFImg, ilSGIImg, and ilFITImg, and to read image data from the
ilPCDImg, ilPCDOImg, and ilGIFImg file formats. You can also integrate
support for your own file format, as described in “Implementing Your Own
File Format” on page 258.

The easiest way to open existing files or create new ones in any of these
formats is to use the convenience functions ilOpenImgFile() and
ilCreateImgFile(), as discussed in the next section. These two functions are
declared in the header file il/ilGenericImgFile.h and are described in detail in
their own reference pages. You can use the constructors for the ilTIFFImg,
ilSGIImg, ilPCDImg, ilPCDOImg, ilGIFImg, and ilFITImg classes directly,
but the convenience functions are simpler and allow you to write
format-independent code. If you choose to use the constructors to open or
create files, you must include the appropriate header files in your program.

You must link to the appropriate libraries in /usr/lib/ImageVision/filefmt.
Before running your program, enter the command:

setenv LD.LIBRARY_PATH.filefmt

92

Chapter 3: Accessing External Image Data

Opening an Existing File

The following example opens an existing file for reading. The name of the
file is specified in the first argument to ilOpenImgFile().

ilFileImg* myFile;
myFile = ilOpenImgFile("anExistingFileName", "r");

The second argument to ilOpenImgFile(), the file access mode, can be either:

• “r” to indicate that the file is to be opened only for reading

• “r+” if the file will be read from and written to. Remember that you
can’t write to ilPCDImg, ilPCDOImg, and ilGIFImg files, you can only
read from them.

The ilOpenImgFile() function opens the named file and returns a pointer to
one of the six ilFileImg types—ilTIFFImg, ilSGIImg, ilPCDImg, ilPCDOImg,
ilGIFImg, or ilFITImg. If the named file doesn’t exist, or if it’s in another,
unsupported format, a NULL pointer is returned. If you specify an invalid
file access mode, for example if you try to write to an ilPCDImg file, the
function returns a NULL pointer. ilOpenImg() also returns NULL if you
attempt to open an existing file without read permission.

When you open an ilPCDImg file, you can modify the filename argument to
the ilOpenImgFile() function to select the initial resolution. To do this,
append a colon to the filename argument, followed by the index of the
desired resolution. The index values are 0 through 5 for resolutions Base/64
through 16Base; the default index is 3 (Base resolution). The following
example opens an existing ilPCDImg file for reading. The index, specified as
part of the file name, selects an initial resolution of Base/4.

ilFileImg* photoFile;
photoFile = ilOpenImgFile (“myPhotoFile:2”, “r”);

You can also append an index to the filename to select the initial index for
any multi-image file in the formats (TIFF, GIF, PDC, PDCO) that support
multiple images in a file.

You can use ilOpenImgFile() to open a file in a format you’ve designed, as
described in “Implementing Your Own File Format” on page 258.

Using the IL Image File Formats

93

After you open a file of image data, you can read the data. Example 3-1
illustrates this.

Example 3-1 Opening an Image File and Reading Data

// open the file
ilFileImg* someFile = ilOpenImgFile("someFileName", "r");

// check for errors
if (someFile == NULL) {

printf("file %s could not be opened", fname);
exit (1);

}

// obtain image attributes
ilType theDataType = someFile -> getDataType();
int theXdimension = someFile -> getXsize();
int numChannels = someFile -> getNumChans();

// allocate buffer
char* buf = new char[ilDataSize(theDataType,

theXdimension*numChannels)];

// read data into buffer
someFile -> getTile(0,0,theXdimension,1,buf);

In this example:

1. A file is opened for reading—and a corresponding ilFileImg is
created—with ilOpenImgFile(). If the file can’t be opened, the program
exits.

2. The ilFileImg is queried about some of its attributes to determine what
size buffer to allocate for holding one row of the image’s data.

3. The buffer is allocated. The ilDataSize() function returns the number of
bytes needed for the data type indicated by its first argument,
multiplied by the optional second argument. This function is declared
in the header file il/ilDataSize.h and described in “Computing the Size of
Data Types” on page 401.

4. The getTile() function reads the first row of the image’s data into the
buffer.

94

Chapter 3: Accessing External Image Data

Creating a TIFF, SGI, or FIT File

To create a new file for writing image data, you need to specify the
characteristics of the data, such as its data type, and indicate what file format
will be used. The calling sequence for ilCreateImgFile() is shown below, and
the image data attributes that you need to specify are discussed in the next
paragraph. (All of these attributes are discussed in detail in “Image
Attributes” on page 34, along with the constants that specify particular
values for these attributes.)

ilFileImg* ilCreateImgFile(const char* name,
const ilSize& size, ilType type, ilOrder order,
char* format=NULL, const ilSize* pageSize=NULL);

This function creates an image file with the requested attributes and returns
a corresponding pointer to one of the ilFileImg types. The first two
arguments specify the name of the file to be created (which can be a
pathname) and the size of the image to be written. The next three arguments
indicate the data type of the data to be written (such as ilFloat), the pixel
ordering (for example, ilInterleaved), and the format (for example, “TIFF”).
If no format is supplied, the format is determined by the file name extension
(for example “.tif” denotes TIFF format). If the format cannot be deduced
from the argument, the default format TIFF is used.

The pageSize argument defines the x, y, z, and channel dimensions of the
pages that the image is broken into as it’s stored on disk. If no page size is
supplied, the default page size for that particular format and image size is
computed, as described in Table 3-1. (The x and y dimensions are specified
in pixels.)

Using the IL Image File Formats

95

The attributes specified when ilCreateImgFile() is called must match those
supported by the file format being used. For example, TIFF files support any
data type except ilDouble, SGI files support only ilUChar and ilUShort, and
FIT files can handle any data type. See the reference pages for the various
ilFileImg types for more information about what they support.

Once you create a file, you can write data to it. The example shown below
assumes that theImg of size size has been previously created; its data is
written to the file outFile.tif using copyTile().

ilFileImg* tmpFile = ilCreateImgFile("outFile.tif", size,
theImg.getDataType(), theImg.getOrder());

tmpFile->copyTile(0, 0, size.x, size.y, theImg, 0,0,0,1);
delete tmpFile;

You can change some attributes of a file after it is created, or even after an
existing file is opened. Each of the different file formats uses the
setAllowed() function inherited from ilLink to permit a few attributes to be
modified. If you modify any of these attributes, you must do so before you

a. The x -dimension must be either the width of the image or a multiple of 8.

b. The y -dimension must be a multiple of 8; it’s set so that the total page size is approximately
64 KB.

c. If the image’s ordering is ilSeparate, the channel dimension of its page size is 1.

d. The image is broken up as evenly as possible into pages that are less than or equal to 32
pixels in the y dimension.

Table 3-1 Default Page Dimensions

File Format x-Dimension y-Dimension z-Dimension Channel Dimension

TIFF x-dimension
of imagea

64K/
(x-dim*c-dim)ab

1 number of channels
in the imagec

SGI width of
image

32d 1 number of channels
in the image
(1, 3, or 4)

FIT 128 128 1 number of channels
in the imagec

96

Chapter 3: Accessing External Image Data

write data to the file. Table 3-2 lists which attributes can be set for each of the
three file formats.

The attributes shown in Table 3-2 are discussed in detail in “Image
Attributes” on page 34.

Setting a File’s Compression

Often, images stored in a file on disk are compressed to minimize their size.
Such images need to be decompressed before you can read them. There are
many different compression algorithms, and each specific file format (for
example, TIFF) determines which algorithms it supports. From a
programmer’s point of view, as data is read or written in an IL program, its
compression or decompression is handled transparently.

The compression attribute indicates which compression algorithm, if any, is
used to compress the data before it’s stored on disk. You should not
compress files that will be interactively modified, rather than just written
once and then read. Modifying portions of a compressed, existing file is
dangerous because the amount of data written must be the same as what
was originally in the file. In general, the size of a file image, once created, is
fixed.

Currently, TIFF and SGI are the only IL file formats that support the creation
of compressed files. Of course, you can implement your own file format as

Table 3-2 Modifiable File Attributes

File Format File Type Modifiable Attributes

TIFF Existing color model, color palette

New color model, color palette, compression, coordinate
space

SGI Existing color model, color palette

New color model, color palette

FIT Existing z size

New color model, coordinate space, z size

Using the IL Image File Formats

97

described in “Implementing Your Own File Format” on page 258 and have
it support compression.

To set a TIFF file’s compression algorithm after you’ve created the file (and
before you’ve written any data to it), use the setCompression() function
declared by ilImage:

myTIFFFile->setCompression(ilLZW);

The argument passed to setCompression() is of type ilCompress and
indicates which supported compression algorithm to use. Table 3-3 lists the
ilCompress constants defined in the header file il/ilTypes.h and their
corresponding compression algorithms.

To query an existing TIFF file about which compression algorithm it uses,
call getCompression():

ilCompress whichCompression;
whichCompression = myTIFFFile->getCompression();

This function returns a value of type ilCompress corresponding to one of the
supported algorithms.

Table 3-3 Compression Algorithms Supported for ilTIFFImg Files

ilCompress Constant Compression Algorithm

ilNoCompression none

ilCCITTFAX3 CCITT Group 3 fax encoding

ilCCITTFAX4 CCITT Group 4 fax encoding

ilLZW Lempel-Ziv and Welch algorithm

ilPACKBITS Apple® Computer, Inc., Macintosh® RLE (run-length
encoding)

98

Chapter 3: Accessing External Image Data

Querying a File Image

Once you’ve created an ilFileImg, you can query its attributes with any of
these functions:

char* getFileName();
int getFileDesc();
int getFileMode();
char* getImageFormat();
int getNumImgs();

Managing TIFF Tags and Directories

The ilTIFFImg implementation matches the TIFF 6.0 specification. For more
information on how to obtain the TIFF 6.0 specification, see the Introduction
of this Programming Guide. Also, the header file il/ilTIFF.h lists the TIFF tags
supported by the IL. In addition, two new tags, TIFFTAG_IMAGEDEPTH
and TIFFTAG_TILEDEPTH, have been added in the IL implementation to
define the image depth, or what the IL refers to as the z dimension of an
image’s size.

You can use getTIFFTag(), which is declared in the header file il/ilTIFFImg.h,
to retrieve any of the TIFF fields specified by TIFF 6.0:

char* tagValue;
myTIFFImg->getTIFFTag(TIFFTAG_IMAGEDESCRIPTION, &tagValue);

This function returns the requested tag value into the location referenced by
tagValue.

getFileName() returns the name of the file

getFileDesc() returns the file descriptor

getFileMode() returns either O_RDWR or O_RDONLY, depending on
whether the file was opened for reading and writing or
just reading

getImageFormat() returns the file format—TIFF, SGI, PhotoCD Image
Pack, PhotoCD Overview Pack, GIF, or FIT

getNumImgs() returns the number of images stored in the file

Using the IL Image File Formats

99

You can set most TIFF tags using setTIFFTag(), as shown below.

myTIFFImg->setTIFFTag(TIFFTAG_IMAGEDESCRIPTION, tagData);

This function sets the TIFF tag using information pointed to by tagData.

These are the TIFF tags you’re not allowed to set:

TIFFTAG_IMAGEWIDTH
TIFFTAG_IMAGELENGTH
TIFFTAG_BITSPERSAMPLE
TIFFTAG_SAMPLESPERPIXEL
TIFFTAG_ROWSPERSTRIP
TIFFTAG_TILEWIDTH
TIFFTAG_TILELENGTH
TIFFTAG_TILEDEPTH
TIFFTAG_DATATYPE
TIFFTAG_IMAGEDEPTH
TIFFTAG_PLANARCONFIG
TIFFTAG_SAMPLEFORMAT
TIFFTAG_COLORMAP

In order to call either getTIFFTag() or setTIFFTag(), you need a pointer to an
ilTIFFImg. However, ilOpenImgFile() and ilCreateImgFile() return a
pointer to an ilFileImg. To solve this problem, you can query your ilFileImg
about its format and then cast the pointer appropriately, as shown below:

ilTIFFImg* myTIFFImg = NULL;

if (strcmp(myFileImg->getFileFormat(), “TIFF”) == 0)
myTIFFImg = (ilTIFFImg*)myFileImg;

if (myTIFFImg != NULL) {
// retrieve or set TIFF tags

}

Within fax-encoded TIFF files, each page of the fax is typically considered a
separate image. The separate images are stored individually in the same
TIFF file, each with its own header. The header at the top of the file points to

100

Chapter 3: Accessing External Image Data

the file’s first image. You can specify a particular image with its index (page
number minus one). The example below reads the fourth page of the file:

ilStatus stat;
stat = myTIFFImg.setCurrentImg(3); // fourth page
if (stat == ilOKAY) {

// continue work on this page
} else {

// NULL data
}

You can also obtain the index for the current ilTIFFImg with
getCurrentImg().

You can use the index feature of ilOpenImgFile() to select the desired page
of the fax-encoded file when you open the file:

ilFileImg* faxFile
faxFile = ilOpenImgFile(“faxFile:3”, “r”);

Extending the FIT Format

The ilFITImg class allows you to support extensions to the format. To do this,
you must first reserve space in the file header and then use this space to write
the data corresponding to the extension.

The function reserveExtension(), declared in the header file il/ilFITImg.h,
takes a single int argument that indicates the number of bytes of space you
wish to reserve. Once this space is reserved, you can write the header data
using writeExtension(). This function takes two arguments; the first is a
pointer to the data to be written, and the second indicates the number of
bytes to be written:

ilStatus readExtension(void* data, int length);
ilStatus writeExtension(void* data, int length);

To read the additional header data, call readExtension(). This function also
takes two arguments; the first points to a location into which the data should
be read, and the second indicates the number of bytes to be read. The
interpretation of the extension data is up to you.

Importing and Exporting Image Data

101

Importing and Exporting Image Data

The IL provides a convenient mechanism for importing or exporting raw
image data between the IL and other libraries or devices. This mechanism is
encapsulated in the ilMemoryImg class, which interprets a contiguous array
of data residing in memory as an ilImage object. Since ilMemoryImg inherits
from ilImage, you can use any of the data access, query, and other functions
defined in ilImage. In addition, ilMemoryImg defines a function that returns
a pointer to its array of data so that you can read the data (for exporting) or
write new data (for importing). The class ilXImage, derived from
ilMemoryImg, allows you to convert an XImage (an X Window data
structure that defines X’s representation of an image) to an ilImage and vice
versa.

Images in Memory

The ilMemoryImg class provides four constructors. You can use these
constructors to:

• allocate an array to hold data that will be written

• use an already existing array

• create an ilMemoryImg object from an ilImage

• create an empty ilMemoryImg that will be populated later

The first constructor:

ilMemoryImg(const ilSize& size, ilType datatype,
ilOrder order);

allocates an array large enough to hold size.x*size.y*size.z*size.c pixels of the
indicated data type. This array is deallocated when the ilMemoryImg object
is destroyed.

The second constructor allows you to import data. It takes as an argument
an already existing array of data:

ilMemoryImg(void* data, const ilSize& size, ilType datatype,
ilOrder order);

102

Chapter 3: Accessing External Image Data

This constructor creates an ilMemoryImg object and initializes its data array
with the data pointed to by data. The array needs to be large enough to hold
size.x*size.y*size.z*size.c pixels of the indicated data type. Since this array
wasn’t allocated by ilMemoryImg, it won’t be deallocated automatically
when the ilMemoryImg object is destroyed.

Both of these constructors set the ilMemoryImg’s attributes—size, data type,
and order—to the values passed in the constructor so that you can use the
query functions defined in ilImage, such as getDataType(). The minimum
and maximum allowable pixel values are set by default to the minimum and
maximum values allowed for the image’s data type. In addition, the
coordinate space attribute is set to ilLowerLeftOrigin. The color model is set
depending on the number of channels in the image. If the channel dimension
is 1, the color model is ilMinBlack; if it’s 3, the color model is ilRGB. If the
channel dimension is 4, the color model is ilABGR. Otherwise, the color
model is ilMultiSpectral. You’re allowed to change the color model and
coordinate space of an ilMemoryImg after it’s created.

The third constructor:

ilMemoryImg(ilImage* img, int autoSyncEnable = TRUE);

takes an ilImage as an argument. The ilMemoryImg object created has the
same attributes as the ilImage. In addition, if autoSyncEnable is TRUE (the
default), the attributes and data of the ilMemoryImg are automatically
synchronized to match those of the ilImage during ilMemoryImg’s reset
operation. To turn off this feature:

• use setAutoSync() and pass in FALSE as the argument

• pass in FALSE for autoSyncEnable

You can call the sync() function on this type of ilMemoryImg to synchronize
the attributes and data at any point, regardless of whether automatic
synchronization is in effect.

The fourth constructor:

ilMemoryImg();

returns an ilMemoryImg object with no data or attributes. You can use this
constructor when you need to create an ilMemoryImg sooner than you can
supply its data. Use setDataPtr() to specify the data.

Importing and Exporting Image Data

103

To change the image data residing in an ilMemoryImg object, call
setDataPtr() and pass a pointer to the new data. You should also call
markDirty() to indicate that the data in the ilMemoryImg object has been
altered.

void setDataPtr(void* data);
void markDirty();

To gain direct access to the image data residing in a ilMemoryImg object, call
getDataPtr(). This function returns a void pointer to the data, as shown
below.

void* getDataPtr();

Because an ilMemoryImg resides in memory, you can use it to hold
temporary copies of images that you need to access quickly.

Note: Since the entire image resides in memory at once, the IL’s on-demand
execution model doesn’t take effect when an ilMemoryImg is used.

X Window Images

An XImage, (the X library defines struct XImage), can be converted to an
ilImage using the ilXImage class, which is derived from ilMemoryImg. Since
an XImage cannot be chained as an ilImage is, you need to convert any
XImage to an ilImage before you can use the IL to perform image processing
on it. Note that an ilXImage holds its entire contents in memory at once and
thus doesn’t give the benefits of the IL’s demand-driven paging model. You
can remedy this by using the ilNopImg operator, which does nothing but
allow you to tile and cache an otherwise non-cached IL object. See “Using a
Null Operator” on page 184 for more information about the ilNopImg class.

You can construct an ilXImage in four different ways:

ilXImage(ilImage* ilImg, Display* xDisply = NULL);
ilXImage(XImage* xImg, Display* xDisply = NULL);
ilXImage(const ilSize& size, ilType type,

Display* xDisply = NULL);
ilXImage(void* data, const ilSize& size, ilType type,

Display* xDisply = NULL);

104

Chapter 3: Accessing External Image Data

The first and second constructors create an ilXImage from an ilImage and an
XImage, respectively. The third constructor creates an ilXImage of the
specified size and data type. The fourth constructor creates an ilXImage from
data of the specified size and data type. The Display pointer (an X Window
struct) associated with the image is optionally specified in each constructor
with xDisply (which is NULL by default).

If you are programming using the X library and need X Window information
from an ilXImage, you may wish to use these functions:

XImage* getXImage();
Visual* getXVisual();
XVisualInfo* getXVisualInfo();

You can get an XImage pointer from the ilXImage with getXImage(). Use
getXVisual() to get the Visual pointer associated with the ilXImage and
getXVisualInfo() to return an XVisualInfo pointer. Additionally, for C++
programmers, the function call operator, (), is overloaded to perform the
same function as getXImage(). (Visual and XVisualInfo are structs defined in
the X Window library.)

Use these functions to set X Window information in the ilXImage:

void setXDisplay(Display* xDisply);
void setXVisual(Visual* xVisual);

Several protected functions are provided for convenience to extract IL and X
information from the ilXImage. These functions can be useful for X
programming; for example, functions are provided to determine the color
map associated with the image and its depth. See the ilXImage reference
page for details.

This chapter describes how to use the
image processing operators defined by the
ImageVision Library. It also tells you
how to restrict an image processing
operation to just a portion of an image.

Operating on an Image

Chapter 4

107

Chapter 4

4. Operating on an Image

Much of the ImageVision Library implementation consists of image
processing algorithms, or operators. An operator applies its algorithm to the
image data encapsulated in an ilImage object. To maximize the efficiency of
the computation required to perform such an operation, the IL uses the
demand-driven execution model discussed in Chapter 2, “The ImageVision
Library Foundation.”

This chapter explains how to use each of the operators defined by the IL.
“Implementing an Image Processing Operator” on page 273 explains how
you can implement your own image processing algorithm as an IL operator.
This chapter contains the following major sections:

• “Image Processing Operators Provided with the IL” on page 110
describes the set of approximately 70 image processing operators
implemented in the IL.

• “Defining a Region of Interest” on page 185 explains how to mask out
portions of an image and restrict processing to a desired area.

108

Chapter 4: Operating on an Image

The IL classes covered in this chapter are mainly those that derive from
ilOpImg. The relevant portion of the IL inheritance hierarchy is shown
shaded in Figure 4-1.

Figure 4-1 ilOpImg and the IL Inheritance Hierarchy

Some operators derive directly from ilOpImg, which is itself an abstract
class. In addition, several abstract or generalized classes inherit from
ilOpImg, and these classes have operator subclasses. Each of the sections
that follows shows how the relevant classes fit into the IL inheritance
hierarchy.

The ilOpImg class defines the basic support for all operator classes. It
provides functions for setting attributes, accessing data, and propagating
attributes down an operator chain. All of these functions are declared

ilImage

ilSGIImg

ilTIFFImg

ilFITImg

ilMemoryImg

ilMonadicImg

ilDyadicImg

ilOpImg

ilFileImg

ilDisplayImg

ilCacheImg

ilPCDImg

ilWarpImg

ilSpatialImg

ilPCDOImg

ilGIFImg

ilMemCacheImg

109

protected, so while they’re available for use in a subclass’s implementation,
they’re not available (or needed) if you’re simply using an operator. In fact,
ilOpImg defines only three sets of public functions:

double getBias();
ilStatus setBias(double biasValue=0);

ilStatus setClamp(ilType type=numilTypes);
ilStatus setClamp(double min, double max);

void hwAccelerate(int enable);
int isAccelerated();

Some operators take a bias argument in their constructors and use it in their
image processing algorithms. This bias value is discussed in the sections
describing the relevant operators in the remainder of this chapter.

The setClamp() functions allow you to set values that pixels is clamped to if
underflow or overflow occurs. Not all operators allow the clamp values to
be modified, so you need to check that the returned status isn’t
ilUNSUPPORTED if you’re assuming you’ve changed the values. The first
version of setClamp() sets the clamp values to be the minimum and
maximum values allowed for the data type type; the default value of
numilTypes means to use the operator’s data type. The second version
allows you to specify actual clamp values. You won’t generally need to use
either of these functions since most operators handle overflow and
underflow conditions appropriately.

In addition, all operators that alter the data range of their inputs compute the
worst case minimum and maximum pixel values to ensure that the
processed data can be displayed. For example, if you multiply two images
and then display the result, you can easily end up with pixel data that’s all
black. To solve this problem, ilMultiplyImg automatically computes the
worst case minimum and maximum values. When the data is displayed
using ilDisplay, the data is automatically scaled between these values (or
those allowed by the display) so that a meaningful display is produced.

The hwAccelerate() function allows you to turn hardware acceleration on
(enable = TRUE) or off (enable = FALSE) for a particular operator. Hardware
acceleration is enabled by default. See “Using Graphics Hardware for
Acceleration” on page 73 for a discussion of hardware acceleration. “Using
Hardware Acceleration” on page 315 lists operators and the hardware on
which they’re accelerated.

110

Chapter 4: Operating on an Image

Image Processing Operators Provided with the IL

This section discusses all the operators provided with the IL. They’re
grouped functionally as listed below:

• “Color Conversion and Transformation” on page 111 describes
operators that convert an image from one color model to another.

• “Arithmetic and Logical Transformations” on page 117 describes
operators that perform pixelwise arithmetic or logical computations.

• “Geometric Transformations” on page 125 describes operators that
warp, rotate, and zoom (magnify or minify) an image.

• “Spatial Domain Transformations” on page 133 describes operators that
transform an image in the spatial domain—for example, by sharpening,
blurring, convolving, or rank filtering it in the spatial domain.

• “Edge Detection” on page 144 describes gradient operators such as
compass, Laplace, Roberts, and Sobel.

• “Frequency Domain Transformations” on page 148 describes operators
that incorporate forward or inverse Fourier transforms and
frequency-domain filters.

• “Generation of Statistical Data” on page 162 describes the operator that
computes the histogram, mean, and standard deviation of an image.

• “Radiometric Transformations” on page 166 describes operators that
perform radiometric transformations such as histogram normalization
and thresholding.

• “Combining Images” on page 177 describes operators that blend,
merge, or combine two images.

• “Constant-valued Images” on page 184 describes an image class that
returns a constant value for all data accesses.

• “Using a Null Operator” on page 184 describes an operator that
performs a “null” operation.

Image Processing Operators Provided with the IL

111

Color Conversion and Transformation

The IL provides several operators that perform color conversions and color
transformations of IL images. These operators can be summarized as
follows:

• The ilColorImg operator converts an existing image from any
IL-supported color model to a requested color model. (See “Color
Model” on page 40 for a description of the color models supported by
the IL.)

• Several operators, derived from ilColorImg, convert an existing image
to one of the more commonly used color models: CMYK, grayscale,
HSV, and RGB.

• The ilFalseColorImg operator converts an image from one multispectral
color model to another.

• The ilSaturateImg operator provides a mechanism to transform the
color saturation of an image.

These color conversion and transformation operators are described in the
following paragraphs. Their positions in the IL inheritance hierarchy are
shown in Figure 4-2.

112

Chapter 4: Operating on an Image

Figure 4-2 Color Conversion Operators Inheritance Hierarchy

Color Conversion

The base class for the color conversion operators, ilColorImg, defines the
generic support for performing color conversions on image data. It converts
data from any supported color model to any other supported color model,
except multispectral.

ilColorImg(ilImage* img, ilColorModel cm)

For example, the following code converts an ilRGB image (theimg) to one
whose color model is ilYCC.

ilColorImg(ilImage* theimg, ilColorModel ilYCC);

The ilColorImg class is not normally used directly to do color-model
conversion. Instead, use derived classes. Each of the six classes derived from
ilColorImg performs a specific conversion. The algorithms used to perform

ilOpImg

ilRGBImg

ilHSVImg

ilGrayImg

ilCMYKImg

ilABGRImg

ilColorImg

ilSGIPaletteImg

ilMonadicImg

ilFalseColorImg

...

ilSaturateImg

ilBGRImg

Image Processing Operators Provided with the IL

113

the various conversions are detailed in the respective reference pages. The
six derived classes are summarized below:

• ilABGRImg converts data to the ABGR color model used by Silicon
Graphics’ framebuffer.

• ilCMYKImg converts data to the CMYK color model. This color model
is used primarily as an output format for color printers.

• ilGrayImg converts an image to minBlack.

• ilHSVImg converts to the HSVcolor model.

• ilRGBImg converts an image to the ilRGB color model.

• ilSGIPaletteImg converts data to the ilRGBPalette color model. This
color model is suitable for data that is to be displayed in a
color-mapped window.

Using any of these derived classes is simple since the only public member
function most of them define is a constructor. To convert an ilImage, call the
constructor for the desired color model and supply as an argument a pointer
to the ilImage to be converted. For the following example, assume that
theImg has already been created and that it uses any one of the supported IL
color models:

ilCMYKImg* cnvrtdImg;
cnvrtdImg = new ilCMYKImg(theImg);

In this example, the constructor for the ilCMYKImg class returns a pointer to
an ilCMYKImg, which produces image data converted to the CMYK color
model. Similarly, the constructors for any of the derived
classes—ilABGRImg, ilCMYKImg, ilGrayImg, ilHSVImg, ilRGBImg, or
ilSGIPaletteImg—return a pointer to an object of that class, which produces
converted image data. That’s really all there is to it.

If you want to convert to the color models for which there is no derived class
(ilRGBA, ilCMY, ilBRG or ilYCC), use the ilColorImg operator.

If an operator image has two or more inputs with different color models, the
color model of the resulting image depends on the color models of the input
images. The IL converts the color models of the input images to a common
color model before performing the operation. The resulting image has this
color model. You can use the diagram in Figure 4-3 to determine how the IL
determines the common color model. Just find the nodes for the input

114

Chapter 4: Operating on an Image

images and follow the paths from these nodes to a common node. This nodes
determines the color model of the resulting image. For example, if the color
models of two inputs to an operator are ilHSV and ilYCC, the color model of
the resulting image is ilRGB.

Figure 4-3 Determining the Color Model of Multi-Input Operators

ilFalseColorImg

The ilFalseColorImg operator performs false coloring of multispectral
images. It accomplishes this by computing the weighted sum of the input
channels for each channel of the resulting false-color image. The constructor
for ilFalseColorImg takes a pointer to the input image and arguments that
define the conversion algorithm:

ilFalseColorImg(ilImage *img, ilFloatMatrix& Tm);
ilFalseColorImg(ilImage *img, ilFloatMatrix& Tm,

ilFloatMatrix& Bm);

ilMultiSpectral

ilRGBA

ilABGR

ilRGB

ilRGBPalette

ilHSV

ilMinBlack ilCMYK

ilYCC

ilMinWhite

ilBGR

ilCMY

Image Processing Operators Provided with the IL

115

The conversion is defined by the transformation matrix, Tm. (The
ilFloatMatrix type is described in “Auxiliary Classes” on page 396.) This
matrix has dimensions N x M, where N is the number of channels the output
image should have and M is the number of channels in the source image.
Each row of this matrix defines a set of weights used to produce one channel
of the output. Each weight is multiplied by the pixel values in the
corresponding input channel, and the weighted sum forms the output
channel. The conversion may also include a bias vector, Bm. This vector
contains a constant value for each input channel that is added to each input
value before it is weighted. Thus, the transformation equation for each
channel of the output image is:

You can set the transformation matrix and bias vector with setTransform():

ilStatus setTransform(ilFloatMatrix& Tm)
ilStatus setTransform(ilFloatMatrix& Tm, ilFloatMatrix& Bm)

An image transformed by ilFalseColorImg appears in Figure 4-4.

OutputNx1 TNxM InputMx1 BMx1+()=

116

Chapter 4: Operating on an Image

Figure 4-4 A Falsely Colored Image

ilSaturateImg

This operator performs a color saturation of its input. If the input color
model is not RGB, the input is first converted to RGB. The constructor for
ilSaturateImg takes a pointer to the input image and an initial saturation
value:

ilSaturateImg(ilImage* img=NULL, float sat=1);

The transformation is defined as:

lum = .3redin + .59greenin + .11bluein

redout = lum + (redin - lum)sat

greenout = lum + (greenin - lum)sat

Image Processing Operators Provided with the IL

117

blueout = lum + (bluein - lum)sat

You can set the saturation value interactively with setSaturation():

void setSaturation(float saturation);

The current value of the saturation factor can be queried with
getSaturation():

float getSaturation();

A value of zero completely desaturates the image (equivalent to ilGrayImg),
a value of one leaves the image unchanged, and values greater than one
increase the color saturation of the image. Output values are clamped to the
minimum and maximum values of the operator image, which by default are
simply inherited from the input.

Arithmetic and Logical Transformations

There are numerous IL operators that perform pixelwise arithmetic
transformations of image data. Some of these require two input images—for
example, to add them together—while others perform computations on a
single image’s data, such as determining the absolute value. In the
inheritance hierarchy shown in Figure 4-5, operators that inherit from
ilDyadicImg take two images as inputs, and those that derive from
ilMonadicImg take only one.

118

Chapter 4: Operating on an Image

Figure 4-5 Arithmetic and Logical Operators Inheritance Hierarchy

When using one of the dual-input operators, you might want to use an
ilConstImg as one of the inputs. An ilConstImg returns the same value for
all of its pixels, so you can use it to multiply each of an image’s pixels by a
constant value, for example. For more information on how to create an
ilConstImg, see “Constant-valued Images” on page 184.

ilOpImg

ilMaxImg

ilDivImg

ilAndImg

ilAddImg

ilAbsImg

ilSubtractImg

ilExpImg

ilMonadicImg

...

ilDyadicImg

ilOrImg

ilMinImg

ilLogImg

ilInvertImg

ilSqRootImg

ilXorImg

ilPowerImg

ilSquareImg

ilMultiplyImg

ilNegImg

ilLutImg ilArithLutImg

ilBlendImg

ilAbsImg

ilHistLutImg

Image Processing Operators Provided with the IL

119

Single-input Operators

The single-input arithmetic operators are listed in Table 4-1, along with the
operation they perform on each pixel of image data and the pixel data types
each operation can produce. The last five operators in Table 4-1
(ilSquareImg, ilSqRootImg, ilExpImg, ilPowerImg, and ilLogImg) descend
directly from ilArithLutImg. The ilArithLutImg abstract class optimizes the
performance of operators that derive from it by pulling precomputed
square, square root, exponent, power, and log values from a lookup table.
This is much more efficient than computing values on a per-pixel basis.

The ilArithLut class in turn inherits from ilLutImg, Thus, the last five
operators in Table 4-1 inherit the ability to be accelerated further in the CPU
or in specialized graphics hardware. See “Radiometric Transformations” on
page 166 and “Using Hardware Acceleration” on page 315 for details about
ilArithLutImg and hardware acceleration, respectively.

An example of processing by an arithmetic operator is given in Figure 4-6,
which shows an original image constructed from simulation data processed

a. ilChar ilShort, ilLong, ilFloat, and ilDouble are the signed data types.

b. These operators allow you to apply scale and bias values to the pixelvalue, so that it
becomes scale*pixelvalue+bias

Table 4-1 Single-input Arithmetic Operators and Their Valid Output Data Types

Operator Operation Performed Valid Data Types

ilAbsImg absolute value ilUChar, ilUShort, ilULong,
ilFloat, ilDouble

ilNegImg two’s complement any signed data typea

ilInvertImg one’s complement ilBit, ilChar, ilUChar, ilShort,
ilUShort, ilLong, ilULong

ilSquareImg (pixelvalue)2 any type except ilBit

ilSqRootImg any type except ilBit

ilExpImgb base(pixelvalue) any type except ilBit

ilPowerImgb (pixelvalue)power any type except ilBit

ilLogImgb logbase(pixelvalue) any type except ilBit

pixelvalue

120

Chapter 4: Operating on an Image

with ilNegImg. See “Arithmetic and Logical Transformations” on page 383
for examples of the output of other arithmetic and logical operators.

Figure 4-6 A Positive and Negative Image Pair

The only public member function defined in ilAbsImg, ilNegImg,
ilInvertImg, ilSquareImg, and ilSqRootImg is a constructor that takes a
single argument, the input image. Thus, to include any of these operators in
a chain, you simply call its constructor and pass as the argument a pointer to
the input ilImage. In this example, assume that inputImg is a pointer to an
already existing ilImage:

ilAbsImg* someAbsImg = new ilAbsImg(inputImg);

The constructors for the ilAbsImg, ilNegImg, ilInvertImg, ilSquareImg, and
ilSqRootImg classes all return a pointer to the operator image.

The constructors for the remaining three classes—ilExpImg, ilPowerImg,
and ilLogImg—take three additional arguments, all of type double. The
second argument for each of these constructors specifies base or power, the
third specifies scale, and the fourth bias.

ilExpImg(ilImage* inImg = NULL, double expBase=0,
double scl=1., double bs=0.);

ilPowerImg(ilImage* inImg = NULL, double pow = 2,
double scl=1., double bs=0.);

ilLogImg(ilImage* inImg = NULL, double logBase=0,
double scl=1., double bs=0.);

Image Processing Operators Provided with the IL

121

The ilExpImg, ilPowerImg, and ilLogImg classes define a function for
setting the value of the second parameter after the operator is created, so that
you can dynamically alter the computation:

void setBase(double expBase=0); // for ilExpImg
void setPower(double power=2); // for ilPowerImg
void setBase(double logBase=0); // for ilLogImg

The ilExpImg, ilPowerImg, and ilLogImg classes define functions for setting
and retrieving the scale parameter after the operator is created.

void setScale(double scl);
double getScale();

Dual-input Operators

As their names suggest, the dual-input operators ilAddImg, ilSubtractImg,
ilMultiplyImg, and ilDivImg perform standard arithmetic
computations—addition, subtraction, multiplication, and division of two
images. The constructors for each of these classes take as arguments pointers
to the two input images, which can be different sizes but must have the same
number of channels. If they’re different sizes, by default the output image is
the larger of the two sizes; the smaller input image is padded with its fill
value, and then the operator performs its computation on corresponding
pixels in the two images. You can explicitly set the desired output size with
setSize().

You may also offset one image with respect to the other:

void setOffset(int x, int y, int z = 0, int input = 0);
void getOffset(int &x, int &y, int &z, int input = 0);

setOffset() offsets the first image with respect to the second by x, y, and z if
input is 0. If input is 1, the second image is offset with respect to the first.
getOffset() queries the dual-input operator for its offsets. If input is 0, the
offset of the first image relative to the second is given; if input is 1, the offset
of the second image relative to the first is given.

122

Chapter 4: Operating on an Image

Here are the constructors for the dual-input operators:

ilAddImg(ilImage* in1 = NULL, ilImage* in2 = NULL,
double bias=0);

ilSubtractImg(ilImage* in1 = NULL, ilImage* in2 = NULL,
double bias=0);

ilMultiplyImg(ilImage* in1 = NULL, ilImage* in2 = NULL);
ilDivImg(ilImage* in1 = NULL, ilImage* in2 = NULL, ckDiv=1);

 ilAddImg adds the bias value to the sum found by adding the corresponding
pixels of in1 and those of in2. The ilSubtractImg operator subtracts the
corresponding pixels of in2 from every pixel of in1 and then adds the bias
value. ilMultiplyImg multiplies the pixels in the two input images, and
ilDivImg divides the pixels of in1 by the corresponding pixels of in2. All
these operators can produce an image containing any data type except ilBit.
An example using ilAddImg appears in Figure 4-7. The two original images
appear as well; one is the flipped version of the other.

The ckDiv argument for ilDivImg’s constructor specifies whether the
operator should check for division by zero. By default, it does check and
responds as described below:

• If the divisor is zero and the dividend is positive, the quotient is set to
the maximum value possible for the final image’s data type.

• If the divisor is zero and the dividend is negative, the quotient is set to
the minimum value possible for the final image’s data type.

• Zero divided by zero produces a zero.

You can use setCheck() to change whether this check is made.

Image Processing Operators Provided with the IL

123

Figure 4-7 Adding Two Images

The two classes ilMaxImg and ilMinImg compare each corresponding pixel
in the two input images and select the greater or the lesser value,
respectively. Their constructors take pointers to the two input images as
arguments. These input ilImages must have the same number of channels;
the output image can contain any data type except ilBit. (There are also
simple in-line functions defined in the header file il/ilMinMax.h that compare
two values and return the greater or the lesser one. See “Minimum and
Maximum Comparisons” on page 402 for more information about these

Original 1 Original 2

Added Images

124

Chapter 4: Operating on an Image

functions.) An example of using ilMinImg appears in Figure 4-8. Two
original images are shown, followed by the image that results if you apply
ilMinImg to these images.

Figure 4-8 Minimum of Two Images

Similarly, the logical-operator classes—ilAndImg, ilOrImg, and
ilXorImg—perform their computations (logical AND, OR, and
exclusive-OR) by combining each corresponding pixel in the two input
images. The constructors for these classes take pointers to the two input
images as arguments. The input ilImages must have the same number of
channels; the output image can contain any of the following data types:
ilChar, ilUChar, ilShort, ilUShort, ilLong, or ilULong. Figure 4-9 shows an
example of using ilAndImg and ilOrImg on the original images from
Figure 4-7.

Original Image Original Mask

Minimum of Image and Mask

Image Processing Operators Provided with the IL

125

Figure 4-9 Logical AND and OR of Two Images

Geometric Transformations

The heart of a geometric transformation, or warp, is the algorithm that maps
output image coordinates to input coordinates. (See Figure 4-10.) The
general support for such transformations is encapsulated in the abstract
class, ilWarpImg. Classes that derive from ilWarpImg—ilPolyWarpImg,
ilTieWarpImg, and ilRotZoomImg—implement specific warping
algorithms; these algorithms are most efficient for images that are relatively
square.

Original Image 1 Original Image 2

Logical AND Logical OR

126

Chapter 4: Operating on an Image

Figure 4-10 A Warped Image

The warping classes are shown in Figure 4-11 and discussed in the following
paragraphs.

Figure 4-11 Geometric Operator Inheritance Hierarchy

Warping an Image

The ilWarpImg class, from which ilPolyWarpImg, ilTieWarpImg, and
ilRotZoomImg derive, performs up to a two-dimensional, seventh-order
warp. The output image space is mapped to the input image space with a
transformation defined by two sets of polynomials (which can be up to
seventh order), one for the x-dimension and one for the y-dimension. Since
the coefficients for the polynomials aren’t always integers, the addresses
computed for the output space sometimes contain fractional components.
Therefore, a resampling method must be applied to convert these fractional
addresses into meaningful pixel locations.

To use ilWarpImg, you must choose a resampling algorithm and specify the
coefficients of the warping polynomials. The constructor takes as its
arguments a pointer to the input image and a constant that corresponds to a
resampling method:

ilWarpImg(ilImage* img, ilResampType rs);

ilOpImg...

ilTieWarpImg

ilRotZoomImg

ilWarpImg ilPolyWarpImg

Image Processing Operators Provided with the IL

127

The ilResampType enumerated type is defined in the header file il/ilTypes.h
and shown in “Controlling Operators” on page 411. It has these six
members:

• ilNearNb (nearest neighbor)

• ilBiLinear

• ilBiCubic

• ilMinify

• ilAutoResamp

• ilUserDef (for a resampling algorithm you implement)

If you choose a bicubic resampling method, you can use setBicubicFamily()
to fine-tune its algorithm.

If you choose the ilMinify resampling method, you can use
setMinifyKernel() to specify your own kernel instead of the default box
(all 1s) kernel. In the default case, the kernel size is dynamically adjusted so
that the entire input is sampled (that is, all the input image pixels are used to
compute the output). If you use the default kernel, you can speed up the
operation by using setMaxSamples() to set the number of input image pixels
to be averaged to produce a single output pixel. For example, if you set the
maximum number of samples to 10 and you are minifying by a factor of 8,
thus necessitating the use of an 8 x 8 kernel, only 10 input pixels (instead of
64) uniformly interspersed throughout the 8 x 8 area are averaged to
produce one output pixel.

ilAutoResamp is not another resampling algorithm, but a mechanism
through which derived classes can dynamically set the resampling method
to one of the six listed above. ilAutoResamp sets a flag, autoResamp, that
derived classes inherit and can use to set the resampling method, using the
inherited member variable resampType, as shown below:

If (autoResamp) {
if(condition1)resampType = ilBiLinear;
else if (condition2)resampType = ilMinify;
else if (condition3)resampType = ilBiCubic;
else resampType = ilNearNb;

}

128

Chapter 4: Operating on an Image

This code typically appears in the resetOp() method of a derived class.
IlRotZoomImg has the resampling method set to ilAutoResamp by default.
When there is no hardware acceleration, it uses the mechanism described
above to set the resampling method to ilMinify for pure minification (x and
y zoom factors less than 1.0 and no rotation) and to ilNearNb for all other
cases. If there is hardware acceleration, it sets the resampling method to
ilBiLinear for pure minification and to ilNearNb for all other cases.

To define your own resampling method, use setResampFunc() and pass in a
pointer to your algorithm. The reference page for ilWarpImg explains what
the supported algorithms are, which one you might want to use, and how to
define your own algorithm.

You can dynamically change and retrieve the resampling method with
setResampType() and getResampType(), which are inherited from
ilWarpImg:

void setResampType(ilResampType rs);
ilResampType getResampType();

Additionally, ilWarpImg lets you determine the amount of error allowed in
a warp performed in graphics hardware with setAddressError(). Its one
parameter, maxPixelsOff, determines by how many pixels the warped data
may be incorrect. The previously set parameter can be retrieved with
getAddressError():

void setAddressError(float maxPixelsOff);
float getAddressError();

ilPolyWarpImg adds to the capabilities of ilWarpImg in that it allows you to
define the coefficients of the warping polynomial. Once you’ve created an
ilPolyWarpImg object, you need to set the coefficients with the setCoeff()
function:

void setCoeff(const ilCoeff_2d& xcoeff, const ilCoeff_2d& ycoeff);

You can query the ilPolyWarpImg object for its coefficients with getCoeff()
and for the order of its polynomial with getPolyOrder():

void getCoeff(ilCoeff_2d& xcoeff, ilCoeff_2d& ycoeff);
int getPolyOrder();

Image Processing Operators Provided with the IL

129

The ilCoeff_2d structure contains floating point numbers for the coefficients;
it’s defined in the header file il/ilPolyDef.h as shown below:

struct ilCoeff_2d {
int order;// equation’s total degree or order
struct ilCoeff7_2d c;

};

struct ilCoeff7_2d {
float con, // constant
y, x, // first-order terms
y2, xy, x2, // second-order terms
y3, xy2, x2y, x3, // third-order terms ...
y4, xy3, x2y2, x3y, x4,
y5, xy4, x2y3, x3y2, x4y, x5,
y6, xy5, x2y4, x3y3, x4y2, x5y, x6,
y7, xy6, x2y5, x3y4, x4y3, x5y2, x6y, x7;

};

Using ilTieWarpImg is similar to using ilPolyWarpImg. This class also
performs a two-dimensional warp, but it doesn’t allow you to specify the
coefficients of the warping polynomial directly. Instead, you specify pairs of
tie points in the input and the output images that should match after the
image is warped as shown in Figure 4-12. The coefficients of the polynomial,
which you can choose to be first- to seventh-order, are then computed from
these tie points. The minimum number of pairs of points necessary to
determine the coefficients of a polynomial of order ord is given by the
formula:

Thus, you need to specify at least three pairs of points for a first-order
polynomial, six pairs for a second-order, and so on.

The constructor for ilTieWarpImg takes the same arguments as that for
ilPolyWarpImg. After creating an ilTieWarpImg operator, you must specify
the tie points from which the warping polynomial is computed. For this, use
setTiePoints():

void setTiePoints(const ilXYSfloat* uv, const ilXYSfloat* xy,
int n);

pairs
ord 1+() ord 2+()

2
=

130

Chapter 4: Operating on an Image

This function takes pointers to arrays of n tie points in the input image (xy)
and the output image (uv) and computes the polynomial’s coefficients. (The
data type ilXYSfloat is defined in the header file il/ilCoord.h as an (x,y)
coordinate pair of data type float.) The function isWellDefined() can be used
to check if the polynomial coefficients can be computed from the specified
tie points. If the polynomial is successfully computed, 1 is returned; if not, 0
is returned. Before you call setTiePoints(), you might want to set the order
of the polynomial that will be computed by calling setPolyOrder() and
passing in 1, 2, 3, 4, 5, 6, or 7 as the desired order. If you don’t explicitly set
the order, a first-order polynomial will be used. The function getPolyOrder()
returns the order of the warping polynomial.

ilPolyWarpImg defines functions (which ilTieWarpImg and ilRotZoomImg
inherit) that, given a point in the input (or output) image, compute the
corresponding point in the output (or input) image, using the mapping
specified by the polynomial:

void evalUV(ilXYSfloat& uv, const ilXYSfloat& xy);

void evalXY(ilXYSfloat& xy, const ilXYSfloat& uv);

The function evalUV() takes the input image point xy and returns by
reference the corresponding point uv in the output image. Similarly,
evalXY() computes the input image point xy from the output image point uv.

Figure 4-12 shows the result of applying ilTieWarpImg to an image.
“Geometric Transformations” on page 386 illustrates the effect of other
geometric transformation on an image.

Image Processing Operators Provided with the IL

131

Figure 4-12 Warping an Image

Rotating, Zooming, and Flipping an Image

Unlike the various warping classes, the ilRotZoomImg operator is limited to
performing two-dimensional affine transformations on an image. This single
operator can rotate, zoom (magnify or minify), and mirror (or flip) image
data:

ilRotZoomImg(ilImage* img=NULL, float rotAngle=0,
float xzoom=1., float yzoom=1.,
ilFlip flip=ilNoFlip,
ilResampleType rs=ilAutoResamp);

The input image, img, is rotated by rotAngle degrees in a counterclockwise
direction, and magnified or minified in the appropriate dimension by the
xzoom and yzoom factors. The flip argument should be ilXFlip or ilYFlip to
specify mirroring across the image’s x or y axis; use ilNoFlip if you don’t
want the image mirrored (this is the default). The default resampling
method is ilAutoResamp. This method, when there is no hardware

Original Image Warped Image

132

Chapter 4: Operating on an Image

acceleration, chooses ilMinify resampling for pure minification (x and y
zoom factors < 1.0 and rotation angle = 0.0) and ilNearNb otherwise. If there
is hardware acceleration, then ilBiLinear is chosen for pure minification and
ilNearNb otherwise. This operator is especially efficient when the rotation is
a multiple of 90 degrees and when the resampling method is ilNearNb.

Functions are provided for you to dynamically change all the parameters:

void setAngle(float rotAngle);
void setZoom(float x, float y);
void setCenter(float x, float y);
void setFlip(ilFlip flp);

An analogous set of functions is provided to retrieve the parameters:

float getAngle();
void getZoom(float& x, float& y);
int getCenter(float& x, float& y);
ilFlip getFlip();

You can also select a portion of the image to be operated on by using
setSize() (inherited from ilImage) and setCenter(). (Alternatively, you can
ask for only the desired portion using getTile() or copyTile() with the
appropriate arguments, or you can define a region of interest.) The setSize()
and setCenter() functions limit the transformation to the area specified with
setSize(), centered on the point given in setCenter(). The center point is
specified in the input image’s coordinate space. These functions also
translate the image’s coordinate space so that the image’s origin becomes the
corner of the region specified by setCenter() and setSize(). You can clear the
center point set with setCenter() by calling clearCenter().

You can zoom the input image to a particular size by calling sizeToFit():

void sizeToFit(float x, float y, int keepAspect=FALSE);

You specify the desired image width and height with x and y. If you want the
image to keep its aspect ratio, set keepAspect to TRUE. The default behavior
allows the image’s aspect ratio to change.

Image Processing Operators Provided with the IL

133

Spatial Domain Transformations

Spatial operators transform image data by computing a weighted sum of the
pixels in the neighborhood surrounding the target pixel. The size of the
neighborhood and the weights used for neighboring pixel values are defined
by the kernel. Some spatial operators predefine their kernels, while others
allow the user to specify them. In addition, a method for handling pixels at
the edge of the image must be specified, since a pixel’s neighborhood is
undefined beyond the edge of a page. The spatial operators provided with
the IL are shown in Figure 4-13.

Figure 4-13 Spatial Domain Operator Inheritance Hierarchy

The ilSpatialImg class, which is an abstract class, defines the basic support
for spatial operators that derive from it. The public functions it defines are
those that allow you to set and retrieve the kernel and the edge-handling
method (remember that some operators predefine their kernel and thus
don’t allow you to set it):

void setKernel(ilKernel* kern=NULL);
void setKernelSize(int x, int y, int z=1);
void getKernelSize(int& x, int& y, int& z);
void getKernelSize(int& x, int&y);

void setEdgeMode(ilEdgeMode eMode = ilPadSrc);
ilEdgeMode getEdgeMode();

ilOpImg...

ilSharpenImg

ilBlurImg

ilSpatialImg

ilConvImg

ilRankFltImg

ilGBlurImg

ilMaxFltImg

ilMedFltImg

ilMinFltImg

ilDilateImg

ilErodeImg

ilSepConvImg

134

Chapter 4: Operating on an Image

The ilKernel class defines a kernel as consisting of five elements:

• the size of the kernel in the x, y, and z dimensions

• the size of the data type used to specify kernel weights

• a pointer to the data specifying the weights

The x, y, and z dimensions should be odd numbers so that a neighborhood
can be exactly centered on a single, target pixel. If they’re even numbers, the
data may be shifted. See the reference page for ilKernel, il/ilKernel.h, and
“Auxiliary Classes” on page 396 for more information about this class.

The origin of an ilKernel normally falls at its center pixel. The origin can be
specified with ilKernel’s setOrigin() function to correspond to any of the
pixels in the kernel; the arguments x, y, and z indicate the origin’s offset from
the upper-left-front corner of the kernel. getOrigin() returns the offset by
reference.

void setOrigin(int x, int y, int z=0);
void getOrigin(int &x, int &y, int &z);

ilSpatialImg’s setEdgeMode() function specifies how the neighborhood is
defined for pixels at the edge of the image. Explanations of the supported
edge modes, which are defined in il/ilTypes.h, follow:

ilReflect Sufficient data near the edge of the image is reflected so that
a full-sized output image can be processed without
producing artifacts at the image edge. This mode gives the
best results for most operators.

ilWrap Sufficient data is taken from the opposite edge of the source
image so that a full-sized output image can be processed.

ilPadSrc The edge of the input image is padded with the input
image’s fill value so that a full-sized output image can be
processed (see Figure 4-14). See “Fill Value” on page 43 for
more information on an image’s fill value.

Image Processing Operators Provided with the IL

135

Figure 4-14 The ilPadSrc Edge Mode

ilNoPad No padding is done, and the output image shrinks by the
size of the kernel minus one in each dimension.

ilPadDst Similar to ilNoPad, except that the output, or destination,
image’s border is sufficiently padded with its fill value so
that the final image is the same size as the source image.

Convolving an Image

The ilConvImg operator performs general image convolution. This class
isn’t an abstract class, so you can use it directly to convolve image data. The
constructor for ilConvImg, which is its only public member function, is
shown below:

ilConvImg(ilImage* inputImage=NULL,
ilKernel* inputKernel=NULL, double biasValue=0.0,
ilEdgeMode edgeMode=ilPadSrc);

This function takes a pointer to the source or input image, a pointer to the
kernel, and an enumerated type that matches one of the supported edge
modes. The other argument, biasValue, is added to the weighted sum (image
data multiplied by kernel weight) for each neighborhood. You can set the
bias value with the setBias() function.

You can also perform certain convolutions more efficiently with a separable
kernel (one that is specified by row and column vectors). The ilSepConvImg,
descended from ilSpatialImg, provides this feature. Its constructor accepts

Page Being Processed

Image Data
Kernel

Filled Border

Padded Data

136

Chapter 4: Operating on an Image

the input image, the row and column kernels, the sizes of the kernels, an
optional bias value, and an optional edge mode:

ilSepConvImg(ilImage *inputImg = NULL,
float *xkernel=NULL, float *ykernel=NULL, int xsize=5,
int ysize=5, double biasVal=0.0,
ilEdgeMode eMode = ilPadSrc);

As shown, the default bias is 0.0, and the default edge mode is ilPadSrc. The
default kernel size for each kernel is 5. This operator is especially efficient for
kernel sizes 3 x 3, 5 x 5, and 7 x 7.

ilSepConvImg also defines a set of functions to set and get the kernel vectors:

void setXkernel(float *xval);
void setYkernel(float *yval);
float* getXkernel();
float* getYkernel();

setXkernel() allows you to change the row kernel; getXkernel() returns its
value. setYkernel() allows you to change the column kernel; getYkernel()
returns its value. If you replace either kernel with one that has a different
size, don’t forget to use setKernelSize() (inherited from ilSpatialImg) to
update the sizes.

Blurring or Sharpening an Image

The two blurring operators, ilBlurImg and ilGBlurImg, both blur an image
by performing a convolution, but they use different kernels and algorithms
for the convolution. ilBlurImg convolves the image with a blurring kernel
using the general convolution algorithm defined by ilConvImg. ilGBlurImg
(descended from ilSepConvImg) convolves an image with a separable
two-dimensional Gaussian kernel. Because ilGBlurImg uses a separable
kernel, it’s generally more efficient than ilBlurImg. Although different
methods are used, often the blurred results don’t look significantly different.
The reference pages for these classes provide more detailed information on
the kernels and convolution algorithms used. Figure 4-15 shows an original
image that’s used as an example in the following pages.

Image Processing Operators Provided with the IL

137

Figure 4-15 An Original Image

The ilBlurImg and ilGBlurImg classes have slightly different interfaces:

ilBlurImg(ilImage* inputImage, float blurFactor=1.0,
float radius=2.0, ilEdgeMode edgeMode=ilPadSrc);

ilGBlurImg(ilImage* inputImage, float blurFactor=1.0,
int xsize=5, int ysize=5, double biasVal=0.0,
ilEdgeMode edgeMode=ilPadSrc);

Both constructors take as arguments a pointer to the source image, a blur
factor ranging from 0.0 (no blur) to 1.0 (maximum blur), and an enumerated
type specifying the edge mode. By default, the blur factor is set to 1.0, and
the edge mode is ilPadSrc. The radius argument for ilBlurImg (with a default
value of 2.0) and the xsize and ysize arguments for ilGBlurImg (with default
values of 5) control the size of the kernel used for blurring. (The ilBlurImg
kernel size is equal to 1+radius*2.) ilGBlurImg’s biasValue argument, which
by default is zero, is added to the final weighted sum.

Both classes allow you to dynamically modify the amount of blur by passing
a float value to the setBlur() function. You can also change the size of the
kernel with setBlurRadius() (for ilBlurImg) or setBlurKernelSize() (for
ilGBlurImg). An image blurred with ilBlurImg is shown in Figure 4-16.

138

Chapter 4: Operating on an Image

Figure 4-16 An Image Blurred with ilBlurImg

The ilSharpenImg class is similar to ilBlurImg, except that instead of using a
kernel that blurs, it uses a kernel that sharpens the image data. Its
constructor takes a similar set of arguments:

ilSharpenImg(ilImage* img, float sharpness=0.5,
float radius=1.5, ilEdgeMode edgeMode=ilPadSrc);

The sharpness factor indicates the degree of sharpening that should occur.
This factor can have a value between 0.0 and 1.0, with a default value of 0.5.
A sharpened image appears in Figure 4-17.

Image Processing Operators Provided with the IL

139

Figure 4-17 An Image Sharpened with ilSharpenImg

As with ilBlurImg, you can dynamically change the sharpness factor (with
setSharpness()) and the size of the radius (with setSharpenRadius()).
getSharpness() and getSharpenRadius() are the query methods that return
the values of the sharpness factor and radius. Making the size of the radius
too large or repeatedly cycling an image through the sharpening operation
can result in a grainy, high-contrast image. Figure 4-18 shows an example of
this.

Figure 4-18 An Over-sharpened Image

140

Chapter 4: Operating on an Image

To see additional illustrations of the ilBlurImg and ilGBlurImg
transformations, refer to “Spatial Domain Transformations” on page 387.

Rank Filtering an Image

The ilRankFltImg class performs two-dimensional rank filtering, which is
typically—though not exclusively—done on black-and-white images. It
involves sorting all the pixel values (for each channel) for a neighborhood of
pixels. Then, the target pixel is assigned the values corresponding to a
specified rank. For example, suppose you have chosen a
3 x 3 neighborhood and a desired rank of 0 (the minimum). In this case, each
pixel is assigned the lowest value found among itself and its eight
surrounding pixels.

The classes that derive from ilRankFltImg—ilMinFltImg, ilMaxFltImg, and
ilMedFltImg—assume that the desired rank is the minimum possible rank,
the maximum possible rank, and the median, respectively. Median filtering
is useful for removing binary, or impulse, noise in image data. Minimum and
maximum rank filtering produce morphological erosion and dilation. An
example of an image processed with ilMedFltImg appears in Figure 4-19.

The only public member function defined by these three classes is a
constructor, and each of these constructors takes the same set of arguments.
ilMinFltImg’s constructor is shown below:

ilMinFltImg(ilImage* inputImage = NULL,
ilEdgeMode edgeMode = ilPadSrc,
ilKernel* inputKernel = NULL);

As shown, you need to specify the input image, how pixels at the edge of the
image are to be handled, and the kernel. The kernel is treated as a mask.
Only nonzero elements are included in the neighborhood; the rest are
ignored, as are the kernel weights.

The constructor for the ilRankFltImg superclass takes the same set of
arguments and an additional one for specifying the desired rank for the
target pixel:

ilRankFltImg(ilImage* inputImage = NULL, int filterRank = -1,
ilEdgeMode edgeMode = ilPadSrc,
ilKernel* inputKernel = NULL);

Image Processing Operators Provided with the IL

141

The default rank of minus 1 indicates that median rank should be used. You
can dynamically change the desired rank with the setRank() function; you
can also determine what the maximum possible rank is with getMaxRank().

Figure 4-19 Median Rank Filtering on an Image

To see additional illustrations of the rank filtering transformations, refer to
“Spatial Domain Transformations” on page 387.

Morphological Operators

Morphological operators include shape-dependent, nonlinear image
transformations such as erosion and dilation. The operators implemented in
the IL, ilDilateImg and ilErodeImg, can be used on 1-D, 2-D or 3-D data sets.
More powerful morphological operations such as “opening” and “closing”
can be performed by chaining together dilation and erosion operations.
Opening can be accomplished by an erosion followed by a dilation; closing
can be done with a dilation followed by an erosion.

These operations are defined on binary or grayscale images. Note that you
can operate on color images if you remember that “binary” and “grayscale”
indicate how the pixel values or intensities in each channel of the image are
interpreted. A binary image contains no more than two levels or intensity
values: zero and not zero. An 8-bit image with 256 pixel intensities can be
treated as a binary image by collapsing the intensities into two groups; for
example, a zero pixel intensity could be represented with a zero, and all
intensities between 1 and 255 could be represented with a nonzero value. A
grayscale image, of course, includes more than two intensity values. Thus,

Original Filtered

142

Chapter 4: Operating on an Image

an 8-bit image can be treated as an input image with 256 pixel intensities.
Typically the image has a single channel. (For multichanneled input, the
operations are performed on each channel independently.)

Both ilErodeImg and ilDilateImg are derived from ilSpatialImg and thus
involve moving a kernel across an image, but the operation performed isn’t
a computed sum. Instead, in morphological operations, the kernel is called
a ‘‘structuring element’’ (SE) and is represented by an ilKernel. The SE, like
the input image, can be interpreted as binary or grayscale. When applied to
an image, a morphological operator returns a quantitative measure of the
image’s geometrical structure in terms of the SE.

The interpretation of the numbers that make up an SE depends on the type
of morphological operation being performed. Negative SE elements are
always treated as logical “don’t cares”; when the operation is in progress,
image pixels under negative SE elements are ignored. Thus, the support of
the SE is limited to those elements that are nonnegative. This permits the
creation of odd-shaped SEs. The image pixel under the origin is the one
potentially modified. (You can change the origin of the SE by using ilKernel’s
setOrigin() method. The default is in the center of the SE.)

The result of erosion or dilation on a binary image (regardless of whether the
SE is binary or grayscale) is to turn every pixel either “on” or “off.” A pixel
in the output image can then be assigned one of two intensities,
corresponding to whether it’s on or off. These two intensities are typically
the maximum and minimum values of the operator image, which can be set
using setMaxValue() and setMinValue() (inherited from ilImage). If they’re
not explicitly set, the maximum and minimum values are inherited from the
input image. For the example of an 8-bit image, the minimum value might
be 0 and the maximum 255. A pixel that’s 0 in the input image might have a
value of 255 in the output image, and a nonzero input pixel might be 0 in the
output.

The interpretation of the image or the SE as binary or grayscale can be
controlled through the enumerated type ilMorphType, as described below.

• If the input image and the SE are binary (ilMorphType = ilBinBin), then
the SE is used to perform a hit-or-miss transformation. That is, if a zero
image pixel falls under a zero SE element, or if a nonzero image pixel
falls under a nonzero SE element, the image pixel beneath the SE origin
is turned on (assigned the maximum value) for dilation and turned off

Image Processing Operators Provided with the IL

143

(assigned the minimum value) for erosion. Typically, for binary images,
an SE is composed of negative and positive 1s.

• If the input image is binary and the SE type is grayscale (ilMorphType =
ilBinGray), then the nonnegative SE elements determine the support
area. In other words, image pixels under negative SE elements are
ignored, but if a positive image pixel falls under a non-negative SE
element, then the target pixel (under the SE origin) is turned on for
dilation or off for erosion.

• If the input image is grayscale and the SE type is binary (ilMorphType =
ilGrayBin), then the maximum or minimum (depending on whether
dilation or erosion is being performed, respectively) of image pixels
falling under positive SE elements is computed.

• If the input image and the SE are grayscale and a “set” operation is
desired (ilMorphType = ilGrayGraySet), then the maximum or
minimum (depending on whether dilation or erosion is being
performed) of image pixels falling under nonnegative SE elements is
computed.

• If a “function” operation is desired (ilMorphType = ilGrayGrayFct),
then the computation is the same as for ilGrayGraySet, except that the
SE elements are added to the image pixels before computing the
minimum or maximum.

The constructors for erosion and dilation are shown below:

ilDilateImg(ilImage* inputImage = NULL,
ilMorphType mtype = ilBinGray,
ilKernel* se = NULL, double biasVal = 0.,
ilEdgeMode eMode = ilPadSrc);

ilErodeImg(ilImage* inputImage = NULL,
ilMorphType mtype = ilBinGray,
ilKernel* se = NULL, double biasVal = 0.,
ilEdgeMode eMode = ilPadSrc);

Each operator accepts a pointer to an input image (inputImage), a
specification of the type of morphological operation (mtype), a structuring
element (the ilKernel pointer se), a bias (biasVal), and an edge mode (eMode).

The morphological transform types, which are members of the enumerated
type ilMorphType (defined in il/ilTypes.h), are summarized below. These
types define whether data in the image and the structuring element (SE) is

144

Chapter 4: Operating on an Image

treated as binary (that is, having a zero or a nonzero value) or as grayscale
(that is, with an appropriate range for its data type).

BinBin Dilation or erosion on a binary image with a binary SE.

BinGray Dilation or erosion of a binary image with a grayscale SE.
The operation is performed over the support of nonnegative
SE elements.

GrayBin Dilation or erosion of a grayscale image with a binary SE.
The operation is performed over the positive support of the
SE.

GrayGraySet Dilation or erosion of a grayscale image with a grayscale SE.
The operation is performed over the nonnegative support of
the SE.

GrayGrayFct Dilation or erosion of a grayscale image with a grayscale SE.
The dilation or erosion is performed as a function operation
over the nonnegative support of the SE; that is, the SE
elements are added to the image pixels before the dilation or
erosion is performed.

Both ilDilateImg and ilErodeImg define these two functions:

void setMorphType(ilMorphType type);
ilMorphType getMorphType();

setMorphType() allows you to set the type of morphological operation and
getMorphType() returns the type of operation.

Edge Detection

The operators described in this section are gradient operators that produce
edge-enhanced images by performing orthogonal convolutions with
particular kernels. This section focuses on how to use these operators rather
than on the specific algorithm implemented by each of these operators. For
more information about the algorithms, see the reference pages for the
specific class.

The classes described in this section inherit directly or indirectly from
ilSpatialImg, as shown in Figure 4-20.

Image Processing Operators Provided with the IL

145

Figure 4-20 Edge Detection Operator Inheritance Hierarchy

The constructors for the ilRobertsImg and ilSobelImg operators take the
same arguments:

ilRobertsImg(ilImage* inImg = NULL, double biasVal = 0.0,
ilEdgeMode eMode = ilPadSrc);

ilSobelImg(ilImage* inImg = NULL, double biasVal = 0.0,
ilEdgeMode eMode = ilPadSrc);

The image to be transformed is specified by inImg. The other two arguments,
which have default values, indicate a bias value to be added as each
pixelwise convolution is performed and how pixels at the edge of a page are
to be handled. These arguments have the same meaning as the ones supplied
in the ilConvImg constructor, which is described in the preceding section. As
explained in more detail in the reference pages, these operators perform two
orthogonal two-dimensional convolutions, which are then combined with
predefined kernels. The resulting images are edge-enhanced images. An
example image produced by ilRobertsImg is shown in Figure 4-21.

ilOpImg...

ilCompassImg

ilSpatialImg

ilConvImg

ilSobelImg

ilRobertsImg

ilLaplaceImg

146

Chapter 4: Operating on an Image

Figure 4-21 Edge Image Produced by ilRobertsImg

The constructor for the ilLaplaceImg operator uses the same arguments as
the constructors shown above, plus an additional argument that allows you
to select one of two predefined kernels:

ilLaplaceImg(ilImage* inImg = NULL, double biasVal = 0.0,
ilEdgeMode eMode = ilPadSrc, int kerno = 1);

The kerno argument can be either 1 or 2; the corresponding kernels are listed
in the reference page for ilLaplaceImg. You can use setKernel() to specify
either kernel after you’ve created an ilLaplaceImg object.

A compass operator measures gradients in a specified direction. The
ilCompassImg operator allows you to specify the desired direction as an
angle between 0 and 360 degrees or as one of eight compass points. You can
also specify the size of the kernel to be used. Once all this information is
supplied, a square kernel is generated, which is then convolved with the
image data. Here’s the class constructor:

ilCompassImg(ilImage* inImg= NULL,
float angleDir = ilCompassN, double biasVal = 0.0,
int kernSize = 3,ilEdgeMode edgeMode = ilPadSrc);

Original Filtered

Image Processing Operators Provided with the IL

147

An example image produced by using ilCompassImg appears in
Figure 4-22.

The angleDir argument can be a number or one of the following values (see
Table 4-2), which correspond to the compass points.

North, or 0 degrees, is the top of an image (as it’s displayed using ilDisplay);
angles are measured from north in a clockwise direction. The bias value and
edge mode arguments for the constructor have the same meaning as those
for ilLaplaceImg. Since the kernel is always square, only one dimension of
its size needs to be specified. You can set and retrieve the bias value with
setBias() and getBias(), which are defined by ilOpImg.

Once you’ve created an ilCompassImg operator, you can dynamically
change the direction of the gradient with either setAngle() or setXYWt():

void setAngle(float angleDir = ilCompassN);
void setXYWt(float Xwt = 0.0, float Ywt = 1.0);

The setXYWt() function specifies weights in the x and y dimensions, which
are then used to generate the kernel. The ilCompassImg reference page
describes in more detail how the kernel is generated from the angle or
weights.

Table 4-2 Compass Directions for the ilCompassImg Operator

Value Angle (in degrees

ilCompassN 0

ilCompassNE 45

ilCompassE 90

ilCompassSE 135

ilCompassS 180

ilCompassSW 225

ilCompassW 270

ilCompassNW 315

148

Chapter 4: Operating on an Image

You can query an ilCompassImg about its angle or weights with these
functions:

float getAngle();
void getXYWt(float& Xwt, float& Ywt);

Figure 4-22 A Compass Filtered Image

Frequency Domain Transformations

It’s often convenient to manipulate data in the frequency domain,
particularly when restoring, enhancing, or removing noise from images. The
ilRFFTfImg operator described in this section performs a forward fast
Fourier transform (FFT) on an image (containing “real-valued” data, not
complex). Once you’ve converted an image into the frequency domain, you
can use any of the numerous Fourier operators to manipulate the image
data. Then, when you’re finished, you can use ilRFFTiImg, which performs
an inverse FFT, to convert back to the spatial domain. Figure 4-23 shows the
frequency domain operators and how they fit into the IL inheritance
hierarchy.

Unfiltered Filtered

Image Processing Operators Provided with the IL

149

Figure 4-23 Frequency Domain Operator Inheritance Hierarchy

Forward and Inverse Fourier Transforms

As shown in Figure 4-23, both ilRFFTfImg and ilRFFTiImg inherit publicly
from ilOpImg and privately from ilFFTOp. You should think of these two
classes as operators that simply use the forward and inverse transform
functions defined by ilFFTOp. This class, which doesn’t derive from any
superclass, defines functions that do the actual computation necessary to
perform forward and inverse FFTs. The ilFFTOp class also defines a function
that determines the average power spectrum of an image. Both ilRFFTfImg
and ilRFFTiImg try to set the page size large enough to hold an entire

ilOpImg...

ilFRaisePwrImg

ilFDyadicImg

ilFConjImg

ilFMultImg

ilFCrCorrImg

ilFFTOp

ilFFiltImg

ilFMonadicImg

ilFDivImg

ilFMagImg

ilFMergeImg

ilFPhaseImg

ilRFFTfImg

ilFSpectImg

ilRFFTiImg

ilFGaussFiltImg

ilFExpFiltImg

private derivation

150

Chapter 4: Operating on an Image

channel of the image. If your image is too large, you can use ilFFTOp’s
functions directly on each channel in turn. Remember that even though
ilFFTOp applies its algorithms to ilImages, it doesn’t derive from ilOpImg
and thus can’t be linked into an operator chain as ilRFFTfImg and
ilRFFTiImg can. Multiprocessing on an ilFFTOp object can be turned on or
off and queried using the enableMP() and isMPenabled() functions.

The FFTs are performed using the Prime Factor algorithm, using floating
point arithmetic. (For more information on the specifics of this algorithm, see
the ilFFTOp reference page and the article “Symmetric FFTs,” by Paul N.
Swarztrauber, Mathematics of Computation, Vol. 47, Number 175, July 1986,
pp. 323-346.) The only restriction this algorithm places on the input image is
that it have a real (non-complex) data type other than ilBit. However, the
algorithm is most efficient if the image already contains floating point data
(so it doesn’t have to be converted for processing and then converted back
again), has an ilSeparate order, and has dimensions that are products of
small primes. Dimensions that are a power of two yield the most efficient
computation. The reference pages for each of the Fourier operators
described in this section contain more information about the methods used
to perform the computations as well as hints about how to achieve the
greatest possible efficiency.

The constructor for the ilRFFTfImg operator and the member function
ilRfft() perform a forward FFT.

ilRFFTfImg(ilImage* src=NULL, short option=3);
ilRfftf(ilImage src, int srcCh, ilImage* dst, int dstCh,

short option=3);

Using the ilRFFTfImg operator to perform a forward FFT is relatively easy.
The first argument is a pointer to the source image that’s to be transformed.
The second argument, called option, allows you to choose whether a one- or
two-dimensional transform is performed; if it’s:

• 1, a one-dimensional FFT is performed on the rows of data

• 2, a one-dimensional FFT is performed on the columns of data

• 3, a two-dimensional FFT is performed (the default)

You can dynamically change this parameter with the setOption() function.

Image Processing Operators Provided with the IL

151

If you’re using ilFFTOp to perform a forward FFT, you have to first create an
ilFFTOp object and then use its ilRfftf() member function on a particular
channel of the source image. In the following example, assume that srcImg
already exists and is a pointer to an ilImage.

ilFFTOp myFFTOp;
ilImage* destImg;
myFFTOp.ilRfftf(srcImg, 0, destImg, 0, 3);

The first four arguments to ilFFTOp’s ilRfftf() function specify which
channel of the source image is to be transformed and into which channel of
the destination image the result should be put. In this example, channel 0 of
srcImg is transformed and placed into channel 0 of destImg; the size of both
of these images must be the same. The last argument for this function
specifies which of the three options described above is desired. (It has the
same meaning as the second argument to the ilRFFTfImg constructor.)

Since the source image must contain real data (not complex numbers), the
output is conjugate-symmetric. In other words, only two of the four
quadrants are unique, and only these are computed for the output. The
output is complex, however, so both the real and imaginary results must be
reported; because of this, the destination image has the same x and y
dimensions as the source image. Table 4-3 shows the format of the output
from either the ilRFFTfImg operator or ilFFTOp’s ilRfftf() function. (The
origin is in the upper left corner.)

152

Chapter 4: Operating on an Image

Columns 1 through nx-2 contain the real and imaginary components of a
complex transform; for example, column 1 contains the real component and
column 2 the corresponding imaginary component of the first complex FFT
output. The column 0 represents the 0-frequency (or DC) component, and
column nx-1 represents the highest (Nyquist) frequency along the
x-direction. These two columns resemble the output of a real-valued FFT. In
the example shown, both nx and ny are assumed to be even. If nx were odd,
the Nyquist column would be missing. If ny were odd, the last row shown
would be missing. Table 4-4 shows the output format if both nx and ny are
odd.

Table 4-3 Output of a Forward Fourier Transform (if nx and ny are even)

0 1 2 3 4 ... nx-3 nx-2 nx-1

0 real real imag real imag ... real imag real

1 real real imag real imag ... real imag real

2 imag real imag real imag ... real imag imag

3 real real imag real imag ... real imag real

4 imag real imag real imag ... real imag imag

...

ny-3 real real imag real imag ... real imag real

ny-2 imag real imag real imag ... real imag imag

ny-1 real real imag real imag ... real imag real

Image Processing Operators Provided with the IL

153

This format is what’s expected as input by all the Fourier operators
described in this section. In particular, the constructor for the ilRFFTiImg
operator and the ilRffti() member function of the ilFFTOp class both expect
this format in their source image. They perform an inverse FFT, which is to
say they convert the input Fourier data back to the spatial domain:

ilRFFTiImg(ilImage* src = NULL, short option = 3);

ilStatus ilRffti(ilImage* src, int srcCh,
ilImage* dst, int dstCh, short option = 3);

The ilRFFTiImg constructor takes a pointer to the source image and the same
option argument described above. (The ilRFFTiImg operator also defines the
same setOption() function described above.) For the ilRffti() function, the
source and destination images (src and dst) must be the same size; the srcCh
and dstCh arguments specify the channel to be transformed and the
destination channel number. Both the constructor and the function produce
output data that’s real. The output of the forward transform is multiplied by
1.0/(nx*ny) so that the forward transform followed by the inverse returns
the original image unscaled.

The ilFFTOp class also defines functions that allow you to control the size of
the buffer it uses to hold data that’s being transformed. Ideally, this buffer is

Table 4-4 Output of a Forward Fourier Transform (if nx and ny are odd)

0 1 2 3 4 ... nx-2 nx-1

0 real real imag real imag ... real imag

1 real real imag real imag ... real imag

2 imag real imag real imag ... real imag

3 real real imag real imag ... real imag

4 imag real imag real imag ... real imag

...

ny-2 real real imag real imag ... real imag

ny-1 imag real imag real imag ... real imag

154

Chapter 4: Operating on an Image

large enough to hold an entire channel of the source image. By default, it
holds 4 MB, which is just enough for one channel of a 1-MB image. You can
set the size of the buffer with setBufSize(), which takes an int argument that
specifies the desired size of the buffer in bytes. Remember that computations
are performed using floating point data, so the number of pixels that the
buffer can hold is its size in bytes divided by four (size of float). You can
retrieve the current size of the buffer with getBufSize().

Another useful function defined by ilFFTOp, ilFFTAvg(), computes the
average power spectrum of an image. This function uses a relatively
complicated algorithm that’s described in some detail in the ilFFTOp class
reference page.

Separating the Magnitude and Phase Components

The operators described in this section allow you to separate the magnitude
and phase components of a complex Fourier image so that you can process
or filter them independently, and then combine them into a complete image
when you’re finished. Such an operator chain would look like Figure 4-24.

Figure 4-24 Magnitude and Phase Fourier Operators

As you might expect from their names, the ilFMagImg operator computes
the magnitude of an input complex Fourier image, and ilFPhaseImg
determines the phase component. The constructors for both of these

ilFMagImg

ilRFFTfImg ilRFFTiImg

(operators)

ilFPhaseImg

ilFMergeImg

(operators)

Image Processing Operators Provided with the IL

155

operators expect the format produced by ilRFFTfImg (which is described
above):

ilFMagImg(ilImage* src = NULL);
ilFPhaseImg(ilImage* src = NULL);

The x -dimension of the output image for both these operators is half of the
input image’s size, plus one; the y dimension is unchanged. The x dimension
shrinks because the input image uses two columns for each Fourier element,
one for the real component and one for the imaginary, whereas the
magnitude and phase aren’t complex. (For a complex number represented
by , the

magnitude is and the phase is .)

An operator that’s similar to ilFMagImg, ilFSpectImg, computes the
spectrum of a Fourier image. The computation is the same as that performed
by ilFMagImg, but all quadrants are represented in the output image, not
just the two that are unique. As a result, the size of the output image is the
same as that of the input image, and the origin of the output image is at its
center rather than its upper left corner. You might use an ilFSpectImg object
for displaying, although you probably want to scale the spectral values
using ilHistScaleImg. (This operator is described in “Radiometric
Transformations” on page 166.) An ilFMagImg object is more efficient for
processing since redundant calculations aren’t performed.

The constructor for ilFSpectImg simply takes a pointer to the source image:

ilFSpectImg(ilImage* src = NULL);

The ilFMergeImg operator merges an ilFMagImg and an ilFPhaseImg to
produce the original whole Fourier image. The merged image is converted
from polar to rectangular form so that it’s in the format expected by
ilRFFTiImg. The constructor for ilFMergeImg takes pointers to the two
images and an int that specifies the desired x dimension of the final image:

ilFMergeImg(ilImage* mag, ilImage* phase, int xsize);

The xsize argument is required because the x dimension of a merged image
can’t be uniquely determined from the x dimension of mag or phase. For
example, if mag and phase have x dimensions of 129, the merged image could
have an x dimension of either 256 or 257. You can explicitly set the x
dimension with setXsize().

a ib+

a2 b2+ b a⁄()atan

156

Chapter 4: Operating on an Image

Filtering

Two filter operators are provided for use on Fourier images: ilFExpFiltImg
and ilFGaussFiltImg. These operators derive from ilFFiltImg, an abstract
class that implements the basic support for frequency domain filtering. (You
can derive your own filter as described in “Deriving from ilFFiltImg” on
page 299.) Both ilFExpFiltImg and ilFGaussFiltImg expect input in the
format produced by ilRFFTfImg; typically, you’ll apply the ilRFFTiImg
operator to the filtered image in order to view the results in the spatial
domain.

The constructors for these operators are shown below:

ilFExpFiltImg(ilImage* src, float alpha, float beta,
float gamma, float eccent, float theta);

ilFGaussFiltImg(ilImage* src, float hfgain, float dcgain,
float minhalf, float majhalf, float theta);

For more information about what these arguments mean, see the filter
equations below and the reference pages for these two operators.

This is the filtering equation used by ilFExpFiltImg:

This is the filtering equation used by ilFGaussFiltImg:

where for both equations:

H() = transfer function of the filter

u,v = two-dimensional frequency coordinates

 , , ,

 , where = angle in degrees of the filter’s orientation

xSize = x dimension of the source image

H u v,() α βe
γ a11u a12v+() 2 a21u a22v+() 2+[]{ }

+=

H u v,() hf dc hf−() e
a11u a12v+() 2 a21u a22v+() 2+{ }−+=

a11

σS θ'cos

xSize
= a12

σS θ'sin

ySize
= a21

σL θ'sin

xSize
−= a22

σL θ'cos

ySize
=

θ'
πθ
180

= θ

Image Processing Operators Provided with the IL

157

ySize = y dimension of the source image

and where for ilFExpFiltImg:

 = high-frequency asymptote

 = decay coefficient

 = exponential decay coefficient

 = 1.0 and where = eccentricity of equal contours of

the filter

and where for ilFGaussFiltImg:

hf = gain of filter at the Nyquist (highest) frequency

dc = gain of filter at zero frequency

 and

minHalf = frequency of half-power point along the minor elliptical axis

majHalf = frequency of half-power point along the major elliptical axis

Table 4-5 shows two examples of specific values that might be passed in for
ilFGaussFiltImg.

Table 4-5 Sample Parameter Values for ilFGaussFiltImg

Parameter High-pass Low-pass

dc 0.004 1.0

hf 3.0 0.002

minHalf 0.01 0.05

majHalf 0.01 0.05

 (theta) 0.0 0.0

α

β

γ

σS σL

1

1 ε2−
= ε

σS

0.693147

minHalf2
= σL

0.693147

majHalf2
=

θ

158

Chapter 4: Operating on an Image

The high-pass values create a two-dimensional circular high-pass filter with
a cutoff value of 0.01 on both axes; its DC gain is 0.004, and its gain at the
highest frequency is 3.0. A high-pass filter diminishes the constant or slowly
changing portions of an image and thereby accentuates the edge portions
(creating a high-contrast, edge image). The low-pass values create a
two-dimensional circular low-pass filter with a cutoff value of 0.05 on both
axes; its DC gain is 1.0, and its gain at the highest frequency is 0.002. A
low-pass filter diminishes the dramatically changing values at edges in an
image and thereby accentuates the constant or slowly varying portions
(creating a blurry image). See Figure 4-25 and Figure 4-26.

Figure 4-25 Original Image

Image Processing Operators Provided with the IL

159

Figure 4-26 Image Processed with ilFGaussFiltImg

Functions are defined to set the value of all the parameters used in the
constructors for both operators:

void setAlpha(float val);
void setBeta(float val);
void setGamma(float val);
void setEccent(float val);
void setTheta(float val);

void setHFgain(float val);
void setDCgain(float val);
void setMinHalf(float val);
void setMajHalf(float val);
void setTheta(float val);

See the reference pages for more information about these functions.

Single-input Operators

The two operators described in this section are ilFConjImg and
ilFRaisePwrImg, both of which derive from ilFMonadicImg. (See “Deriving
from ilFMonadicImg or ilFDyadicImg” on page 295 for more information
about deriving your own operator from this class.) ilFConjImg and
ilFRaisePwrImg expect a source image in the format produced by
ilRFFTfImg. Typically, you’ll need to convert ilFRaisePwrImg’s output to the

160

Chapter 4: Operating on an Image

spatial domain by using ilRFFTiImg. (You won’t typically need to convert
the result of applying ilFConjImg to an image back to the spatial domain;
usually, it is used in the middle of a chain of operators in the frequency
domain.)

As its name suggests, ilFConjImg computes the complex conjugate of an
image; it also multiplies the complex values by a real factor:

ilFConjImg(ilImage* src=NULL, float scale = 1.0);

The scale argument is used to multiply or scale the values; the default value
of 1.0 results in no scaling. You can change the scaling factor with setScale().
ilFConjImg is useful in computing the magnitude squared of the Fourier
transform. For example, assume theImg is a pointer to a valid ilImage in the
spatial domain:

ilRFFTfImg forwardImg(theImg);
ilFConjImg conjugateImg(&forwardImg);
ilFMultImg magSquaredImg(&forwardImg, &conjugateImg);

You can then display magSquaredImg.

The ilFRaisePwrImg operator raises the natural log of the magnitude values
of a Fourier image by a power, exponentiates the result, and writes the
values back in complex rectangular form:

 = magnitude and p = specified power

This root-filtering operation is useful for image sharpening. The constructor
for this class is shown below:

ilFRaisePwrImg(ilImage* src, float power);

The log of the magnitude values of the source image, src, are raised by power,
exponentiated, and converted back to complex rectangular form. The valid
range for power is 0.0-1.0. You can set this value dynamically with
setPower().

e ln m() p

where m

Image Processing Operators Provided with the IL

161

Dual-input Operators

Three operators take two Fourier images as inputs:

• ilFCrCorrImg, which computes the cross-correlation of two images

• ilFMultImg, which multiplies two images

• ilFDivImg, which divides two images

These classes derive from ilFDyadicImg, which implements the basic
support for dual-input Fourier operators, and they expect input images in
the format produced by ilRFFTfImg. To convert the processed data back to
the spatial domain, you need to apply the inverse transform implemented
by ilRFFTiImg. See “Deriving from ilFMonadicImg or ilFDyadicImg” on
page 295 for more information about deriving your own dual-input Fourier
operator.

The constructors for ilFCrCorrImg, ilFMultImg, and ilFDivImg expect two
images, which must be the same size:

ilFCrCorrImg(ilImage* src1 = NULL, ilImage* src2 = NULL);
ilFMultImg(ilImage* src1 = NULL, ilImage* src2 = NULL);
ilFDivImg(ilImage* src1 = NULL, ilImage* src2 = NULL,

int ckDiv = 1);

To compute the cross-correlation, ilFCrCorrImg multiplies src1 by the
conjugate of src2 and then normalizes the result using the DC (or (0,0))
coefficient of src1. One of the principal applications of cross-correlation in
image processing is in prototype matching, where one tries to match a given
unknown image to a known image. The closest match can be found by
selecting the image that yields the correlation function with the largest
value.

Multiplying two Fourier images is equivalent to convolving them in the
spatial domain. Since the Fourier algorithm is very efficient, you might want
to choose ilFMultImg over one of ilConvImg’s subclasses if you’re using a
large kernel for the convolution.

162

Chapter 4: Operating on an Image

ilFDivImg divides src1 by src2 and, by default, checks for division by zero
according to the following rules:

• If the numerator of the real or imaginary part is positive and the
denominator is zero, the result is the largest possible floating point
value (3.40282346e+38).

• If the numerator of the real or imaginary part is negative and the
denominator is zero, the result is the smallest possible floating point
value (-3.40282346e+38).

• If both the numerator and the denominator are zero, the result is zero.

You can call setCheck() and pass in a 0 to prevent ilFDivImg from checking
for division by zero.

You can use ilFDivImg in image restoration. Given the Fourier transform of
a degraded or noisy image and the Fourier transform of the noise function
(or “noise image”), you can retrieve a clean image by dividing (in the
frequency domain) the degraded image by the noise image. Once converted
back to the spatial domain, you can then display the clean image.

Generation of Statistical Data

It’s often desirable to collect statistical information about an image, such as
how frequently various pixel values occur and what the minimum and
maximum pixel values are. The ilImgStat class computes this kind of
information for an entire image or for a specified region within an image.
More specifically, for each channel of image data, it computes:

• a one-dimensional histogram showing frequency of pixel values

• the minimum and maximum pixel values

• the mean and standard deviation of the data, calculated from the
histogram

The ilImgStat class inherits from ilLink, as shown in Figure 4-27.

Image Processing Operators Provided with the IL

163

Figure 4-27 The ilImgStat Inheritance

The constructor for the ilImgStat class allows you to specify whether the data
should be computed for the entire source image or for just a portion of it, as
shown below. The portion is defined as a region of interest (ROI); see
“Defining a Region of Interest” on page 185 for more information about the
ilRoi class, which defines an ROI within an image.

ilImgStat(ilImage* src, ilRoi* Roi = NULL, int xoffset = 0,
int yoffset = 0, int autoCalcEnable = TRUE);

The xoffset and yoffset parameters represent the offsets into the src image at
which the ROI is placed; they’re specified in the coordinate space of the
input image, src.

You can also specify an ilRoi and its offsets for the ilImgStat with the setRoi()
function, which accepts a pointer to an ilRoi and two integers. If no ROI is
specified, ilImgStat performs its computations over the whole image.

You can use the autoCalcEnable parameter to enable or disable recalculation
of statistics; if TRUE, the requested statistics are recalculated whenever the
input image or ROI is changed or altered; if FALSE, input changes or
alterations are ignored and statistics are never recalculated. Currently
existing statistics are returned. If no values currently exist (for example,
immediately after construction, after a reset, or if the input image has
changed and the channel size of the new image is different from the previous
one), then the requested values are computed based on the current input.
You can set or query the autoCalc feature with the setAutoCalc() and
isAutoCalc() functions. This feature is very useful if statistics from one part
of an image are to be used to change other parts of an image.

Note: ilImgStat doesn’t derive from ilImage, so its constructor doesn’t create
an ilImage. Thus, an ilImgStat object can’t be passed as an image to another
operator, but it might be one of an operator’s input arguments.
Multiprocessing on an ilImgStat object can turned on or off and queried
using the enableMP() and isMPenabled() functions.

ilLink ilImgStat

164

Chapter 4: Operating on an Image

An Image’s Histogram

An image’s histogram, which is computed for each channel of image data, is
defined by:

• The starting and ending pixel values. These establish the endpoints of
the histogram’s range.

• The number of bins. The range is evenly divided into a specified
number of bins.

• The size of each bin. The size is the range covered by each bin; this is
computed by dividing the total range by the number of bins.

Once you’ve created an ilImgStat object, you can ask it to compute the
histogram of the source image’s pixel values with the getHist() function:

int* getHist(int c=0, int nbins=0);
int* getHist(double start, double end, int c=0, int nbins=0);

As shown, this function is overloaded to allow you to specify the lower and
upper endpoints of the range, as start and end. If you use the first constructor,
the endpoints are the minimum and maximum values found. The other two
arguments specify the channel (c) and the number of bins to use (nbins). If
nbins has the default value of 0, the number of bins is equal to the total range
indicated by start and end (in other words, the bin size is 1), up to a maximum
of 4096 bins. (If nbins=4096, then the bin size is the range divided by 4096.)
However, if the image’s data type is either ilChar or ilUChar, 256 bins are
used, and if the data type is ilBit, 2 bins are used, regardless of what value is
specified for nbins.

The getHist() function returns a pointer to an int array nbins long that’s
allocated by ilImgStat. The values in the array correspond to the number of
pixels that have values within each bin’s respective range. To normalize this
data, copy the int array into a float array, and then divide each element of the
array by the total number of pixels used to compute the histogram for that
particular channel. You can obtain the number of pixels used with getTotal():

int totalPixelCount = myImgStat.getTotal(1);

The argument for this function is an int that specifies the desired channel.
(The number of pixels used for each of the channels might vary if you’ve
specified different endpoints for the different channels.)

Image Processing Operators Provided with the IL

165

If the image’s pixel ordering is ilSeparate, you can make multiple calls to
getHist() for each channel and specify varying numbers of bins and starting
points and endpoints. However, the histograms for all channels of
ilInterleaved or ilSequential images are computed on the first call to
getHist(), so the number of bins and the starting points and endpoints are
fixed for subsequent calls. If you change limits on subsequent calls, status is
set to ilUSEDOLDLIMITS, which is what getStatus() returns. If you need to
change the histogram’s attributes for subsequent calls, use reset(). This
function deallocates the array created with getHist() and enables you to start
over. (In general, you should call reset() or the ilImgStat destructor as soon
as you’re finished with a histogram to minimize memory usage.) If you’ll
need the histogram you’ve already computed, copy it into your own buffer
before calling reset().

After you’ve called getHist(), you can obtain the number of bins, the bin size,
and the lower limit of the first bin for any particular channel:

int numBins = myImgStat.getNbins(1);
double binSize = myImgStat.getDBinSize(1);
double lowerLimit = myImgStat.getDStart(1);

The argument for these functions is an int that specifies the desired channel.

You can use getStatus() to check whether any errors occurred while the
histogram was being computed. This function is inherited from ilLink. See
“Error Codes” on page 407 for more information about the values returned
by getStatus().

Minimum, Maximum, Mean, and Standard Deviation

The ilImgStat class defines functions that return the minimum value,
maximum value, mean, and standard deviation of a particular channel:

double getDMin(int c=0);
double getDMax(int c=0);
double getDMean(int c=0);
double getDStDev(int c=0);

These functions all return the desired number as a double, regardless of the
data type of the image. Both getDMean() and getDStDev() perform their
calculations using the most recently computed histogram, so their return
values might be only approximations. (This is because a histogram

166

Chapter 4: Operating on an Image

represents a range of pixel values by a single value, the midpoint of the bin
range. The calculations are exact for images with ilChar, ilUChar, or ilBit
data types, or for ones with int values that use a bin size of one.) If either
function is called before getHist(), the image’s histogram is calculated first
(using the minimum and maximum values as the endpoints), and then the
desired statistical quantity is computed.

Other Functions

Two other support functions are provided:

void hwAccelerate(int enable);
void setZ(int z, int nz=1);

You can use the first function shown above to enable and disable hardware
acceleration by passing in TRUE or FALSE, respectively. You can use the
second function to limit processing in the z dimension of the image. The z
argument specifies the starting z value, and nz indicates the size of the z tile.
Thus, you can use these values to effectively create a 3-D ROI.

Radiometric Transformations

This section describes a set of operators that adjust all the pixels of an image
so that together they have certain specified characteristics. Three of the
operators described in this section—ilHistNormImg, ilHistEqImg, and
ilHistScaleImg—modify an image’s pixel values channel by channel, so that
the image’s histogram has certain desired properties. You can limit the area
for which statistics are computed by specifying an ROI and its offsets when
you create these operators; the operators then adjust all the pixels of the
image so that the entire image’s histogram matches that computed for the
ROI. (See “Defining a Region of Interest” on page 185 for more information
about ROIs.) If you’ve already created an image’s histogram using ilImgStat
as described in the previous section, you can pass a pointer to the existing
ilImgStat object to speed the transformations performed by these operators.

Image Processing Operators Provided with the IL

167

The following radiometric operators are described in this section:

The operators that perform radiometric scaling, ilScaleImg and
ilHistScaleImg, are accelerated on certain hardware platforms. The ilLutImg
operator and the operators derived from it, such as ilPiecewiseImg,
ilHistNormImg and ilHistEqImg, are also accelerated provided they meet
the constraints specified in “Using Hardware Acceleration” on page 315.
The ilThreshImg operator is also accelerated through the LUT mechanism,
even though it’s not derived from ilLutImg. All these classes derive directly
or indirectly from ilMonadicImg, as shown in Figure 4-28.

ilScaleImg linearly scales the pixel data of an image so that it
falls in a new specified range.

ilHistNormImg transforms an image so that its histogram is
normalized (Gaussian) and so that it has a
specified mean and standard deviation.

ilHistEqImg transforms an image so that its pixel values are
uniformly distributed (so that the cumulative
histogram is linear).

ilHistScaleImg clamps values to a specified percentage
distribution of the high- and low-intensity pixels
and scales the remaining data between the clamp
values.

ilThreshImg sets each pixel to the image’s minimum or
maximum value, depending on whether the pixel
is less than or greater than a specified threshold
value.

ilLutImg transforms a source image using a specified
lookup table.

ilPiecewiseImg transforms a source image using a lookup table
created with a piecewise linear mapping
function.

168

Chapter 4: Operating on an Image

Figure 4-28 Radiometric Operator Inheritance Hierarchy

Scaling an Image

The ilScaleImg operator linearly scales the pixel data of an image so that it
falls in a specified range. If you don’t know the range of the input pixels, the
first constructor shown below must be used. This constructor uses the
minimum and maximum value fields of the input image to determine the
input range, and it assumes an output range of 0 to 255. If you want to
override the range of the input pixel data, you can use the second
constructor and also specify an output range. The default is 0 to 255.

ilScaleImg(ilImage* img = NULL);
ilScaleImg(ilImage* img, double inMin, double inMax,

double outMin=0, double outMax=255.999);

Pixels of value inMin are scaled to outMin, while those of value inMax are
scaled to outMax. Pixels channel values lying between these extremes are
scaled accordingly. Pixels outside the input domain are clamped between
outMin and outMax.

The scaling function is normally computed based on inMin and inMax (the
domain) and outMin and outMax (the range). To do this scaling, ilScaleImg
computes the slope and intercept of a linear function of the form:

ilOpImg... ilMonadicImg

ilHistNormImg

ilThreshImg

ilHistScaleImg

ilHistEqImg

ilLutImg

ilScaleImg

ilPiecewiseImg

ilHistLutImgilArithLutImg

f x() x slope⋅() intercept+=

Image Processing Operators Provided with the IL

169

Thus, an input pixel of value x becomes an output pixel of value f(x). The
slope and intercept are computed as follows:

You can alter the operator’s parameters with these member functions:

void setRange(double outMin, double outMax);
void setDomain(double inMin, double inMax);

You can control the scaling behavior with these functions:

void resetDomain();
void resetRange();
void resetScaling();
void setScaling(double slope, double intercept);

resetDomain() invalidates the current input levels and, if none are specified
via setDomain(), the minimum and maximum values of the input images
are used for the domain.

resetRange() invalidates the current output levels and, if none are specified
via setRange(), default values are computed using the input domain and the
scaling values (slope and intercept). An example image produced using
ilScaleImg is shown in Figure 4-29.

resetScaling() forces the operator to forget any values explicitly set for slope
and intercept and to compute them as shown above.

setScaling() allows you to explicitly set the values of the slope and intercept
of the scaling function.

slope
outMax outMin−()

inMax inMin−()
=

intercept outMin slope inMin⋅()−=

170

Chapter 4: Operating on an Image

Figure 4-29 Using Scaling

Histogram Operators

Both ilHistNormImg and ilHistEqImg derive from ilHistLutImg, which
itself derives from ilArithLutImg. This inheritance allows the histogram
operators to use lookup tables to determine resulting values, rather than
perform the computations on a per-pixel basis. As a result, the histogram
operators are more efficient.

The constructors for ilHistNormImg are:

ilHistNormImg(ilImage* src, ilPixel& mean, ilPixel& stdev,
ilImgStat* imgstat = NULL, ilRoi* Roi = NULL,
int xoffset = 0, int yoffset = 0);

ilHistNormImg(ilImage* img = NULL, ilImgStat = NULL,
ilRoi* Roi = NULL, int xoffset = 0, int yoffset = 0);

Image Processing Operators Provided with the IL

171

The first constructor below allows you to specify the source image and the
desired mean and standard deviation. The second constructor takes a source
image and computes default values for the mean and standard deviation.
The mean for each channel is computed as the average of the minimum and
maximum values of the source image for that channel. The standard
deviation is set to 1.0 for each channel.

The ilPixels can use any data type, but their number of channels must match
that of the source image. If you’ve already created an ilImgStat object (for the
source or even a different image), you can pass a pointer to it. This makes
ilHistNormImg more efficient. If you supply both an ilImgStat and an ilRoi,
the histogram computed for the ilImgStat is used and the ilRoi is ignored.

You can dynamically change the mean, the standard deviation, the ilImgStat
object, and the ilRoi and its offsets with the following functions:

void setMean(ilPixel& mean);
void setStdev(ilPixel& stdev);
void setImgStat(ilImgStat* imgstat);
void setRoi(ilRoi* Roi, int xoffset = 0, int yoffset = 0);

The setImgStat() and setRoi() functions are inherited from ilHistLutImg.

Histogram equalization and histogram scaling of an image are often
performed to enhance the contrast of an image. Histogram equalization
results in an image with pixel values that are more evenly distributed.

The constructor for ilHistEqImg is shown below:

ilHistEqImg(ilImage* src = NULL, ilImgStat* imgstat = NULL,
ilRoi* Roi = NULL, int xoffset = 0, int yoffset = 0);

As shown, you specify the source image, the ilImgStat object if one exists,
and an optional ROI along with its offsets. This class also inherits
setImgStat() and setRoi() functions as does ilHistNormImg.

The constructor for ilHistScaleImg is more complicated:

ilHistScaleImg(ilImage* src = NULL,
double lowClip=0, double highClip=0,
double outMin=0, double outMax=255,
ilImgStat* imgstat = NULL, ilRoi* Roi = NULL,
int xoffset = 0, int yoffset = 0);

172

Chapter 4: Operating on an Image

The src argument specifies the source image. The next four arguments
specify how the source image should be transformed. The highClip and
lowClip arguments indicate what percentage of the high and low intensity
pixels should be clamped to the values specified by outMax and outMin,
respectively. Imagine that the pixels are sorted in order of increasing
intensity, as in a histogram. Then, highClip percent of the highest-intensity
pixels are set to the outMax value, and lowClip percent of the lowest-intensity
pixels are set to the outMin value. After the desired pixels have been clipped,
the remaining pixels are scaled linearly between the clamp values. The
optional ilImgStat and ilRoi objects (and offsets) each have the same
meaning as with ilHistNormImg.

You can dynamically change all these arguments with the following
functions:

void setImgStat(ilImgStat* imgstat);
void setRoi(ilRoi* Roi, int xoffset = 0, int yoffset = 0);
void setClip(double lowClip, double highClip);
void setRange(double outMin, double outMax);

One other useful function, setHistLimits(), allows you to change the limits
between which the histogram is to be computed:

void setHistLimits(double low, double high);

The two arguments, low and high, define the histogram’s limits.

Be careful when changing the input to any of the histogram operators by
using setInput(). (See “Dynamically Reconfiguring a Chain” on page 75 for
more information.) If an ilImgStat has already been specified in a histogram
operator constructor and then setInput() is called, the old ilImgStat is used
unless you call setImgStat() with a new one. You can use NULL in
setImgStat() to force a new one to be computed.

The Threshold Operator

The ilThreshImg operator sets each pixel (on a channel by channel basis) to
the image’s minimum or maximum allowable value, depending on whether
the pixel is less than or greater than a specified threshold value. (See
“Minimum and Maximum Pixel Values” on page 44 for more information
about how to set an image’s minimum and maximum pixel values.)

Image Processing Operators Provided with the IL

173

To create an ilThreshImg operator, you can use one of the two constructors
shown below. In the first constructor, the threshold is specified as an ilPixel,
and a different threshold level can be applied to each channel of the source
image. In the second constructor, the same threshold, val, is applied to all
channels:

ilThreshImg(ilImage* src, const ilPixel& thresh);
ilThreshImg(ilImage* src = NULL, float val = 0);

Each channel or each pixel of the source image is compared to the threshold
value, thresh or val. If the channel value is less than the threshold value, it is
set to the image’s minimum channel value. If the channel value is greater
than or equal to the threshold value, it is set to the maximum channel value.
(If thresh is a single-channel pixel, its value is used for all channels of the
source image.)

You can query an image about its threshold value and dynamically change
this value with these functions:

void getThresh(ilPixel& thresh);
void setThresh(float val);
void setThresh(const ilPixel& thresh);

getThresh() returns the threshold value by reference, and setThresh() sets
the threshold value.

ilLutImg

The ilLutImg class transforms a source image using a specified lookup table
(LUT). As mentioned previously, ilArithLutImg (see “Single-input
Operators” on page 119) and ilHistLutImg (see “Histogram Operators” on
page 170) derive from ilLutImg. Normally, the LUT and the image have the
same number of channels. However, two other possibilities are allowed: if
the LUT has only one channel, it is applied to each channel of the image; if
the source image has only one channel while the LUT has n channels, each
LUT channel is applied to the source image in turn, producing an ilLutImg
with n channels. (For any other combination, the ilStatus value
ilLUTSIZEMISMATCH is returned by any data access operations.)

174

Chapter 4: Operating on an Image

The first constructor below allows you to specify the source image and the
LUT. The second one lets you specify the source image and sets the LUT to
NULL. You can later specify a LUT using the setLookUpTable() function.

ilLutImg(ilImage* source, const ilLut& lut);
ilLutImg(ilImage* source = NULL);

See “ilLut” on page 399 for more information about the ilLut class and also
for an explanation of how lookup tables can be stored and retrieved using
SGI image files.

You can dynamically change or retrieve the LUT with these functions:

ilStatus setLookUpTable(const ilLut& lut);
ilStatus getLookUpTable(ilLut& table);

If you change the LUT, the output number of channels and data type are
updated if necessary to accommodate the new LUT. Use the following
functions to set or query whether the input data is signed and to obtain its
data type:

void setSign(int sgn);
int getSign();
ilType getInputType();

ilPiecewiseImg

The ilPiecewiseImg class, derived from ilLutImg, simplifies the task of
constructing a lookup table when only a piecewise linear mapping is needed
from the input pixels to the output data. The constructor accepts the source
image, a list of breakpoints, and the length of that list:

ilPiecewiseImg(ilImage* inputImage = NULL,
const ilXYSfloat* bkpts=NULL, int length=0);

A breakpoint is a point on a piecewise continuous function where two
continuous segments meet, as shown in Figure 4-30. The endpoints, 0 and
255, are made breakpoints by default (this does not affect the length of the
breakpoints list). If a breakpoint is entered outside the range, it is clamped to
the appropriate endpoint.

Image Processing Operators Provided with the IL

175

Figure 4-30 Breakpoints along a Piecewise Continuous Function

Several functions are provided to manipulate the breakpoints:

ilStatus setBreakpoints(const ilXYSfloat* bkpts=NULL,
int length=0, int chan=-1);

ilStatus insertPoint(const ilXYSfloat& point, int index,
int chan=-1);

ilStatus replacePoint(const ilXYSfloat& point, int index,
int chan=-1);

ilStatus removePoint(int index, int chan=-1);

setBreakpoints() allows you to specify a new list of breakpoints (of
length length). You can specify a list for a specific
channel with the chan argument; if this is minus 1 (the
default), the list is used for all channels in the image.

insertPoint() inserts a breakpoint point after the one at index in the
list for channel chan.

replacePoint() replaces the breakpoint at index in the breakpoint list
for channel chan with point.

removePoint() removes the breakpoint at index; you specify which
channel’s breakpoint list with chan.

Breakpoint

Endpoint

0 255
Input channel values

Output
channel
values

176

Chapter 4: Operating on an Image

You can query an ilPiecewiseImg about its breakpoints with these functions:

int getBreakpoints(ilXYSfloat* bkpts, int chan=0);
int getNumBreakpoints(int chan=0);
void getPoint(ilXYSfloat& point, int index, int chan=0);
float findPoint(ilXYSfloat& loc, int& index, int forInsert=0,

int chan=0);

In all of the above functions, chan is 0 by default, specifying the first channel
of the image.

Figure 4-31 shows an example of an application with a graphical user
interface (imgview) that can be written with ilPiecewiseImg.

getBreakpoints() accepts a pointer to a list of breakpoints and
returns the length of the breakpoint list for chan as
an int and the breakpoint list itself through bkpts
(you must allocate enough space in bkpts before
this function call).

getNumBreakpoints() returns the number of breakpoints in the
breakpoint list for chan.

getPoint() returns the breakpoint at index in the breakpoint
list for chan by reference in point.

findPoint() accepts a location (loc), an index into the
breakpoints list for chan, and a flag specifying
whether the closest breakpoint should be found
(forInsert = 0) or whether the closest edge should be
found (forInsert = 1). In either case, the distance
between the given location and the found location
is returned as a float, the breakpoint is returned by
reference in loc, and the index of that breakpoint is
returned in index.

Image Processing Operators Provided with the IL

177

Figure 4-31 Using a Lookup Table Editor to Set Breakpoints

Combining Images

The three operators described in this section—ilBlendImg, ilMergeImg, and
ilCombineImg—combine two or more images into one using different
methods:

• ilBlendImg blends two images using a specified alpha value or alpha
images that indicate how to weight the images relative to each other.

• ilMergeImg merges a series of images into a single multiple-channel
image.

• ilCombineImg combines two images using a mask to define which
portions of the two images to use in the final combined image.

These three classes have very different pedigrees, as shown in Figure 4-32.

Original Edited LUT Editor RGB Interface

178

Chapter 4: Operating on an Image

Figure 4-32 ilBlendImg, ilMergeImg, and ilCombineImg Inheritance Hierarchy

Note that ilMergeImg doesn’t inherit from ilOpImg, so it’s not, strictly
speaking, a true operator. An ilMergeImg doesn’t actually hold any image
data, but all the data access functions are redefined so that the data can be
treated as a single ilImage.

ilBlendImg

The constructors for ilBlendImg allow you to specify a constant alpha value
or to specify third and fourth images that contain alpha values for each pixel
of the foreground and background images. You can also select the way in
which the foreground and background images are blended:

ilBlendImg(ilImage* fore, ilImage* bkgd, float alpha);
ilBlendImg(ilImage* fore = NULL, ilImage* bkgd = NULL,

ilImage* alphaf = NULL, ilImage* alphab=NULL,
ilCompose comp=ilAplusB);

The first constructor specifies one constant alpha value (which should fall
between 0.0 and 1.0) that is used to calculate a foreground and background
alpha. If the second constructor is used, the alpha values are taken from the
first channel of alphaf (for the foreground alphas) and alphab (for the
background alphas). The other channels, if any, are ignored. In the default
mode (ilAplusB), if alphab is NULL, then the background alpha values for
each pixel are computed from alphaf as 1 - alphaf. Figure 4-33 shows an
example image produced using the ilBlendImg operator and the ilAplusB
compose mode.

The second constructor also allows you to specify the composition mode. See
Figure 4-34 for an explanation of these modes. The default is ilAplusB. The
composition modes are defined in the header file il/ilTypes.h.

ilImage ilBlendImgilOpImg ilDyadicImg

ilMergeImg

ilCombineImg

ilCacheImg

Image Processing Operators Provided with the IL

179

Figure 4-33 Blended Images

The foreground, background, and alpha images must all be the same size.
The alpha values defined by alphaf and alphab are normalized to the range
(0-1), based on the minimum and maximum allowable pixel values of alphaf
and alphab. The foreground and background alphas are calculated as
follows:

, or

, (if alphab is not NULL), and

Original 1

Original 2 Blend of 1 and 2

Original Mask

foreα alpha= backα 1 alpha−=

foreα alphaf= backα alphab=

180

Chapter 4: Operating on an Image

 (if alphab is NULL)

The blending function, which is used for each pixel, is:

The composition mode determines FA and FB. For the default composition
mode (ilAplusB), they are both equal to 1.0. See Figure 4-34

If ilImgA is the foreground image and ilImgB is the background image, then

 and .

However, when alphaB=NULL, then

You may set the composition method with setBlendMode(). It takes one
argument of type ilCompose:

void setBlendMode(ilCompose mode = ilAplusB);

You can explicitly set the minimum and maximum allowable pixel values of
the alpha images alphaf and alphab using these functions:

void setAlphaRange(float fmin, float fmax);
void setAlphaRange(float fmin, float fmax,

float bmin, float bmax);

The first function sets the normalizing values for the foreground alpha; the
second sets the minimum and maximum values of the alpha for the
foreground and background images.

To query an ilBlendImg about its normalizing values, use:

void getAlphaRange(float& fmin, float& fmax);
void getAlphaRange(float& fmin, float& fmax,

float& bmin, float& bmax);

The first function returns the normalizing values for the foreground alpha,
and the second function returns the normalizing values for both the

backα 1 alphaf−=

FA foreground foreα FB background backα⋅ ⋅+⋅ ⋅

αA alphaf= αB alphab=

αB alphaf=

Image Processing Operators Provided with the IL

181

foreground and background alphas. You can also dynamically change the
alpha images or the constant alpha value:

ilStatus setAlphaPlane(ilImage* alphaImg);
ilStatus setAlphaPlane(ilImage* alphaf, ilImage* alphab)
ilStatus setConstAlpha(float val);

The first function shown above sets the foreground alpha image, while the
second function sets both the foreground and background alpha images. The
third function sets the constant alpha value. You can also use setOffset()
(inherited from ilDyadicImg) to offset the foreground image with respect to
the background image.

182

Chapter 4: Operating on an Image

Figure 4-34 Composition Modes for ilBlendImg

ilImgA

ilImgB

ilAoverB

ilBoverA

ilAinB

ilBinA

ilAoutB

ilBoutA

ilAatopB

ilBatopA

ilAxorB

ilAplusB

1

0

1

1−α
Β

αΒ

0

1−αΒ

0

αΒ

1−αΒ

1−αΒ

1

0

1

1−αΑ

1

0

αΑ

0

1−αΑ

1−αΑ

αΑ

1−αΑ

1

Mode Diagram FA FB

Image Processing Operators Provided with the IL

183

ilMergeImg

An ilMergeImg consists of a single ilImage formed by merging a number of
images. The number of channels of the merged image equals the sum of the
number of channels in all the individual input images. All the input images
should be the same size, but you can assign a different data type or order to
the final ilMergeImg as it’s created:

ilMergeImg(ilImage** imgPtr, int nimg,
ilOrder order=ilInterleaved,
ilType dtype=numilTypes);

ilMergeImg(int nimg, ilImage** imgPtr);

In both of these constructors, imgPtr is an array of pointers to the ordered
input ilImages. The first nimg ilImages in the array are merged, and the rest
are ignored. (imgPtr should have at least nimg pointers.) The first constructor
lets you specify an order and data type for the merged image. If the default
data type numilTypes is used, the data type of the merged image is the
largest data type of the ilImages. If the second constructor is used, the order
and data type of the merged image are the same as those of the first ilImage
pointed to in the imgPtr array.

ilCombineImg

An ilCombineImg takes two ilImages of the same size and uses an ROI (and
its offsets) to determine which pixels to use in the final image (pixels that are
inside the ROI are taken from the foreground image, and pixels that are
outside the ROI are taken from the background image):

ilCombineImg(ilImage* bkgd = NULL, ilImage* fore = NULL,
ilRoi* roi = NULL,int xoffset = 0, int yoffset = 0);

See “Defining a Region of Interest” on page 185 for more information about
creating an ilRoi object. The xoffset and yoffset parameters specify the offsets
at which the ROI is placed in the foreground and background images;
they’re specified in the coordinate space of the fore image. You can change
the ROI and its offsets after the combined image is created, and you can
obtain a pointer to it with these functions:

void setRoi(ilRoi* roi, int xoffset = 0, int yoffset = 0);
ilRoi* getRoi();

184

Chapter 4: Operating on an Image

Constant-valued Images

The ilConstImg class allows you to create an object that returns a constant
value whenever its data is read. You might use this class as an input to one
of the operators described in the “Dual-input Operators” on page 121—for
example, to multiply each pixel in an image by a constant value. Remember
that ilConstImg isn’t an operator since it derives directly from ilImage.

The ilConstImg class defines only one function, its constructor:

ilConstImg(const ilPixel& fillPix);

The specified ilPixel is the value returned whenever the image’s data is read,
regardless of how much data is read. Since an ilConstImg stores only one
ilPixel, it uses much less memory than, for example, an ilMemoryImg filled
with pixels. To change an ilConstImg’s pixel value after you’ve created an
ilConstImg object, use the setFill() function defined in ilImage and described
in “Fill Value” on page 43.

Using a Null Operator

As its name suggests, the ilNopImg operator performs no operation at all. It
is useful for caching the results defined by a non-cached class, such as
ilMemoryImg (described in “Importing and Exporting Image Data” on page
101) or ilSubImg (described in “Defining a Region of Interest” on page 185).
It’s also useful if you just want to change some of the attributes of any image
(for example, data type, data ordering, or page size) and need to cache the
result. Note that this class is a real operator, as it derives from ilMonadicImg.

The ilNopImg class defines one public member function, its constructor:

ilNopImg(ilImage* inputImage = NULL);

An image stored as an ilMemoryImg cannot take advantage of the IL’s
on-demand paging mechanism, since it does not derive from ilCacheImg;
however, ilNopImg is derived (indirectly) from ilCacheImg. Thus, storing
that ilMemoryImg as an ilNopImg allows you to page that image.

Defining a Region of Interest

185

Defining a Region of Interest

Some IL programs, especially those that deal with large images, may need to
apply an operator to only a portion of an entire image. When this is the case,
you can restrict the processing area to a region of interest (ROI). An ROI
allows you to modify irregular regions of an image. The IL provides two
principal classes that let you restrict the data that can be accessed:

• ilRoiImg, which associates an ROI with an image so that subsequent
operations on the image affect only the data inside the ROI

• ilSubImg, which allows a rectangular portion of an image to be treated
as if it were an independent image

In some situations, these two classes might appear to have similar effects,
but they actually achieve their results through very different means, and
they have different uses. An ilRoiImg is the same size as the initial image; the
difference is that portions of the ilRoiImg are “masked out”—set to a
specified background value—so that they won’t be affected by processing.
You use an ilRoiImg when you wish to modify a portion of an image while
leaving the rest of the image intact. This is the traditional masking, or ROI,
concept.

An ilSubImg doesn’t actually hold any data itself; it merely implements the
standard data access functions—getSubTile3D(), setSubTile3D(), and
copyTileCfg()—so that they access only the data in the subimage. When you
call one of the access functions, you specify the origin and size of the desired
tile in the subimage. The ilSubImg maps the coordinates of the desired tile to
the source image so that the correct data is accessed. An ilSubImg can be
used as a rectangular ROI, but it’s most useful for manipulating the input
images to an operator to achieve particular results. For example, you can use
an ilSubImg to offset two images relative to each other before they’re fed into
an ilAddImg operator to be added together. (You can also do this with the
setOffset() function in ilDyadicImg.) Or you can select the red and blue
channels of an image using two ilSubImgs and then add them together.

Once you’ve created either an ilSubImg or an ilRoiImg, you can use it in an
operator chain just as you would any other ilImage. You can also write data
back into ilSubImg or ilRoiImg, which you cannot do with an operator (since
all operators are read-only). When you do write data back into an ilSubImg
or an ilRoiImg, the input image is modified appropriately. The next sections
describe how to use these two classes.

186

Chapter 4: Operating on an Image

Creating an ilRoiImg

Typically, you’ll use an ilRoiImg when you’re displaying processed data or
writing it to a file. By restricting the area that needs to be processed, you can
prevent data from being processed unnecessarily.

Before you can create an ilRoiImg, you need to create the following:

• the source ilImage that’s to be masked with the ROI

• the actual ROI itself, in the form of an ilRoi object

• the x and y offsets for placing the ROI into the source image

• the background value, an ilPixel, that’s used to fill areas outside the
ROI

The source image can be any ilImage, and it can be part of an already existing
operator chain. The background value defines the ilImage’s values outside
the ROI. As shown below, the constructor for the ilRoiImg class takes
pointers to all three of these objects:

ilRoiImg(ilImage* src, ilRoi* roi, ilPixel& bkgd,
int xoffset = 0, int yoffset = 0);

This constructor associates the ilRoi with the source ilImage and sets the
ilRoiImg’s background value. The xoffset and yoffset values determine where
the ROI is placed; they’re specified in the src image’s coordinate space.
Subsequent operations to the ilRoiImg affect only the image data inside the
specified ilRoi. Any attribute of an ilRoiImg that’s not explicitly set is
inherited from its source image.

Once an ilRoiImg is created, you can modify its associated ilRoi or the
background value by calling setRoi() or setBkgd(). These functions take a
pointer to the desired ilRoi or ilPixel:

void setRoi(ilRoi* roi, int xoffset = 0, int yoffset = 0);
void setBkgd(ilPixel& bkgd);

You can also query an ilRoiImg about its ROI or background value:

ilRoi* getRoi();
void getBkgd(ilPixel& bkgd);

Defining a Region of Interest

187

The ilRoi base class defines the basic concept of a region of interest in the IL;
it’s an abstract class, so you must use one of the classes that derive from it to
create an ROI. (You can also derive your own class to define an ROI that
more specifically matches your needs. See “Deriving from ilRoi” on page 300
to learn more about deriving from ilRoi.) An ilRoi is a two-dimensional
object with its own x and y dimensions and its own coordinate space. If you
imagine the ilRoi placed on top of the image and yourself viewing it from
above, you would see regions of the image inside and outside the ilRoi. The
regions inside are considered valid and are accessible for image processing
operations; those outside the ilRoi are invalid and are typically set to a
background value for processing. The same ilRoi can be associated with
different images (which can be different sizes), and it can be placed at
different offsets within each image. This functionality is achieved through
the ilRoiMap class, which is described later. You manage the ilRoi’s
coordinate space with setCoordSpace() and getCoordSpace().

Currently, the IL provides two classes derived from ilRoi, as shown in
Figure 4-35.

Figure 4-35 ilRoi’s Subclasses

An ilRectRoi defines a rectangular ROI, and an ilBitMapRoi defines a bitmap
of any shape that can be used as an ROI.

A Rectangular ROI

As its name suggests, ilRectRoi allows you to define a rectangular ROI:

ilRectRoi myRoi(20, 30, 1);

All the arguments for the ilRectRoi constructor are of type int. The first two
specify the sizes in the x and y dimensions (20 and 30) of the rectangle to be
used as the ROI. The optional last argument, which can be either 1 or 0,
indicates whether the area inside or outside the rectangle should be
considered the valid area. The default value is 1, which defines the inside of

ilBitMapRoi

ilRectRoi

ilRoiilLink

188

Chapter 4: Operating on an Image

the rectangle as the valid area. You specify the image that the ilRectRoi is
associated with and the offsets into the image later so that the same ilRectRoi
can be used for different images at different offsets. In addition, operators
that take an ROI as an input also take the offsets as arguments.

The ilRectRoi class defines functions that allow you to change the x and y
dimensions of the rectangle and to retrieve this information:

ilStatus setRSize(int nxr, int nyr);
void getRSize(int& nxr, int& nyr);

You can also determine which is the valid area (the inside or the outside of
the rectangle) and change the current designation:

int getValidValue();
ilStatus setValidValue(int val);

The first function returns either a 1 or a 0 to indicate that the inside or the
outside is valid, and the second function sets the valid area.

A Bitmap ROI

Since it allows you to define an ROI of any arbitrary shape (it might even
have disjoint regions), ilBitMapRoi is more versatile than ilRectRoi. As its
name suggests, ilBitMapRoi uses a bitmap to define an ROI. A bitmap ROI
is a data array in which each bit corresponds to a pixel in the image that’s to
be masked with the ROI. The value of the bit specifies whether a pixel is
considered valid or invalid. Look in:

• /usr/people/4Dgifts/examples/ImageVision/ilguide
/bitmapRoiEx.c++

• /usr/people/4Dgifts/examples/ImageVision/iltutorial/ex3.c++

for sample programs that define and use an ilBitMapRoi.

Like an ilRectRoi, an ilBitMapRoi is a two-dimensional object with x and y
dimensions and a coordinate space that don’t have to match those of the
image with which it’s associated. Also, you can specify the images and
offsets to be associated with an ilBitMapRoi after you’ve created it, as
described earlier for ilRectRoi.

Defining a Region of Interest

189

You can create an ilBitMapRoi using either an ilImage or an existing data
array:

ilBitMapRoi(ilImage* bitmapimg, int valid=1);
ilBitMapRoi(int xsize, ysize, void* data=NULL,

ilCoordSpace spc=ilCoordSpace(0), int valid=1);
ilBitMapRoi();

The first constructor takes a pointer to an ilImage as the definition of the
bitmap ROI; bitmapimg‘s data should consist of a series of 1s and 0s.
(Actually, any value other than 0 is treated as a 1.) The coordinate space of
the ilBitMapRoi is taken from that of bitmapimg.

With either constructor, you can choose to use either a 1 or a 0 to indicate
valid data in the bitmap. By default, a value of 1 denotes valid data and a 0
denotes invalid data. You can also reverse the meaning of the bit values after
an ilBitMapRoi is created by using setValidValue(). This function sets the
valid value to the int argument passed in. If you need to check what the valid
value is, call getValidValue(), which returns the value used to indicate valid
data.

In the second constructor shown above, xsize and ysize are the dimensions of
the bitmap. The next argument, data, is a pointer to the bitmap, which should
consist of

bytes of data. If data is NULL, a bitmap of this size is allocated. The spc
argument is the bitmap’s coordinate space; by default, it’s
ilLowerLeftOrigin.

The third constructor creates an instance of an ilBitMapRoi object,
initializing its valid value to 1 and bitmapimg and data to NULL. You must
later use either setImg() or setData() described below to actually associate
an ROI with this instance of ilBitMapRoi.

Several functions are provided to set and obtain the bitmap data and the
bitmap image:

void setData(void* data, int nx, int ny, ilCoordSpace spc);
void* getData();
void setImg(ilImage* img);

xsize ysize 7+⋅
8

190

Chapter 4: Operating on an Image

Also, you can use getRSize() as described earlier for ilRectRoi to obtain the
bitmap’s dimensions.

You can write to the bitmap using ilBitMapRoi’s setTile() function:

ilStatus setTile(int x, int y, int xsize, int ysize,
void* data, const ilConfig* config=NULL);

This function writes the tile of data pointed to by data to the ilBitMapRoi,
starting at the location indicated by x and y. The tile’s size is specified by xsize
and ysize. The config argument describes the configuration of data; if it’s
NULL, the tile is assumed to have the same configuration as the bitmap.

You can also retrieve a tile of bitmap data into a buffer you allocate using
getTile():

ilStatus getTile(int x, int y, int xsize, int ysize,
void* data, const ilConfig* config=NULL);

This function retrieves a tile of data from the ilBitMapRoi and puts it in the
buffer pointed to by data. The tile’s size is specified by xsize and ysize, and its
origin in the ilBitMapRoi is indicated by x and y. The optional config
argument allows you to reconfigure the data before it’s written to the buffer.

Creating an ilSubImg

The ilSubImg class defines three constructors that let you create a subimage
that’s a different size from the source image. The first constructor is for
two-dimensional images, the second for three-dimensional images, and the
third for four-dimensional images.

ilSubImg(ilImage* src, int xs, int ys, int xsz, int ysz,
ilConfig* config = NULL);

ilSubImg(ilImage* src, int xs, int ys, int zs,
int xsz, int ysz, int zsz, ilConfig* config = NULL);

ilSubImg(ilImage* src, int xs, int ys, int zs, int cs,
int xsz, int ysz, int zsz, int csz,
ilConfig* config = NULL);

The first argument in all of these functions is a pointer to the source image.
The next arguments specify the location of the origin of the subimage (xs, ys,
zs, and cs), measured in pixels in the source image, and the dimensions of the

Defining a Region of Interest

191

subimage (xsz, ysz, zsz, and csz), as shown in Figure 4-36. (This figure
assumes that the subimage’s coordinate space is ilLowerLeftOrigin.) If the
dimensions are larger than the source image, the subimage is padded with
the source image’s fill value.

Figure 4-36 Source Image and Subimage

The last, optional argument for these constructors is a pointer to an ilConfig
object that specifies the configuration of the subimage. If this argument isn’t
supplied, the subimage inherits its configuration from the source image.

A fourth constructor is provided for convenience when the subimage has the
same size as the source image but a different configuration:

ilSubImg(ilImage* src, ilConfig* config);

You can use the ilConfig argument for any of these constructors to select a
subset of the source image’s channels and to reorder them; you can also use
it to set the coordinate space, data type, and pixel ordering of the subimage.

Once you’ve created an ilSubImg, you can modify several of its
attributes—size, data type, order, color model, and coordinate space—using
the functions defined in ilImage. To change an ilSubImg’s configuration after
you’ve created it, use setConfig(). This function takes a pointer to an ilConfig
and modifies the ilSubImg accordingly. Any attribute of an ilSubImg that’s
not explicitly set is inherited from its source image.

You can also translate the origin of a subimage after it’s been created:

const int xorigin = 20;
const int yorigin = 20;

mySubImg.setStart(xorigin, yorigin);

xsz

ysz

Source Image

Subimage

(xs, ys)

192

Chapter 4: Operating on an Image

As shown, setStart() expects const int arguments. For a three-dimensional
image, supply a third argument for the z dimension. For a four-dimensional
image, supply a fourth c dimension. The ilSubImg’s origin, not its size, is
affected by setStart(), as shown in Figure 4-37.

Figure 4-37 Translated Subimage

You can also query a subimage about its origin:

int xorigin, yorigin, zorigin, corigin;
mySubImg.getStart(xorigin, yorigin, zorigin);

or

mySubImg.getStart(xorigin, yorigin, zorigin, corigin);

As shown, the overloaded getStart() retrieves the origin by reference.

The virtual method hasPages(), inherited from ilImage, indicates whether a
class implements paging and is defined by ilSubImg. It returns TRUE if its
parent implements paging and FALSE otherwise.

Image

Subimage

Translated
Subimage

This chapter explains how to use the IL’s
display facility to display and manage a
set of images on the screen.

Displaying an Image

Chapter 5

195

Chapter 5

5. Displaying an Image

This chapter describes how to display and manage a set of images on the
screen using the IL’s display facility. As part of this facility, numerous
functions are provided to help you develop an interactive image processing
program. You can use these functions to move images, perform wipes, roam
around an image, and create split views of multiple images.

The chapter describes the IL’s display facility in the following major sections:

• “Overview of the Display Facility” on page 196 describes the sequence
of operations you must perform to display an image.

• “A Simple Interactive Display Program” on page 201 lists and describes
a program that opens an image file, performs an operation on it, and
allows interactive viewing of both images.

• “Creating an ilDisplay” on page 208 describes in detail how to open a
window and create an ilDisplay.

• “View and Display Basics” on page 211 describes basic concepts such as
setting background color and page borders and deferring drawing of a
view.

• “Managing Views” on page 216 describes how to manage the view
stack and how to retrieve information from views.

• “Applying a Display Operator” on page 223 tells you how to use
display operators to draw views, relocate or resize them, and update
them.

• “A More Complicated Interactive Display Program” on page 235
contains a program illustrating control of a display.

196

Chapter 5: Displaying an Image

Overview of the Display Facility

The IL display classes described in this chapter are shown shaded in
Figure 5-1.

Figure 5-1 IL Display Classes

With the IL’s display facility, you can display any combination of IL or X
images in an X or GL window.1 These images can be positioned anywhere
within the window and can overlap each other. Overlapped regions are
displayed based on a stacking order such that the image on top is visible, as
shown in Figure 5-2.

1 In the future, the GL will no longer support window and event management. You are encouraged to use
mixed-model programming instead. A mixed-model program is an X program that uses GL to handle
graphics.

ilGLDisplayImg
ilLink

ilDisplay

ilImage

ilView ilStereoView

ilViewer

ilGLViewer

ilXDisplayImg

ilDisplayImg

ilGLXConfig

Overview of the Display Facility

197

Figure 5-2 Stacked Images in an X Window

In order to assemble such a display, you must:

1. Create or open the images.

You can display any combination of ilImage, ilXImage, or XImage using
either GL or X to render them. (The ilXImage class is described in “X
Window Images” on page 103. An XImage is an X Window struct.)
Often, displayed images are the product of an image processing chain.
For example, you might want to display the original unprocessed
image, an intermediate stage of the chain, and the final image. In some
cases, you might want to display only a portion of an image.

2. Configure and open a window.

To open an X window, you can use the standard X calls or you can use
the ilGLXConfig object, as explained in “Creating an ilDisplay” on
page 208. To open a GL window, you can use the GL calls explained in
“A Sample Program in C++” on page 4.

3. Create a display.

Use calls to ilDisplay functions.

ilViews

Background
(display area)

X Window

addView(Img1)
addView(Img2)
addView(Img3)
addView(Img4)

Img4

Img3

Img2
Img1

Assuming:

198

Chapter 5: Displaying an Image

4. Add the images to the display.

Use calls to ilDisplay functions.

5. Cause the images to be displayed.

Use calls to ilView and ilDisplay functions.

Note: You should assume that any function discussed in this chapter is an
IL function, unless it’s explicitly identified as a GL or X function.

The three principal classes within the IL display facility are:

• ilDisplay—Manages one or more ilViews in an X or GL window. The
entire window is used for display. An ilDisplay object maintains a stack
of ilViews and provides functions to manipulate them. Two classes
derive from ilDisplay: ilViewer, which manages the display of images
in an X window with X event handling, and ilGLViewer, which
manages the display of images in a GL window with GL event
handling.

• ilView—Maps an ilImage or XImage to a region within the ilDisplay. It
has various attributes such as view position, view size, image position,
border color, and border width.

• ilDisplayImg—Acts as a base class for images that reside in the frame
buffer. There are two derived classes:

■ ilXDisplayImg—implements reading and writing using the X
Window library

■ ilGLDisplayImg—implements reading and writing using the GL

When an ilDisplay is created, it creates an ilGLDisplayImg for GL rendering
or an ilXDisplayImg for X rendering. The display image is configured to
occupy the entire window specified by the application. As Figure 5-3
illustrates, the creation of an ilDisplay object defines a display area in which
views will be drawn.

Overview of the Display Facility

199

Figure 5-3 ilDisplay Object Creates a Display Area

When you want to add an image to ilDisplay, create an ilView to control
where the image is to be displayed. This view is pushed onto an indexed
view stack and a pointer to it is returned to your application. As you add
more images, you must create an ilView for each image. These views are
pushed onto the view stack. When a view is added to the stack, it is pushed
onto the top by default. However, you can specify a particular index to
control where the view is put in the view stack. An ilView has various
attributes such as:

• view position that controls where in the window the image is displayed

• view size that controls how much of the image is displayed

• image position that controls what part of the image is displayed

The position of an ilView in the view stack controls its visibility on the
screen, as shown in Figure 5-2. The view on the top of the stack is fully
visible. A view at the bottom of the stack is obscured by the views above it.

 In Figure 5-4, two ilView objects have been created and the positions of the
corresponding views in the display defined. Two images to be displayed
have been added to the view stack.

Display Area

X Window

ilDisplay
object

Memory

200

Chapter 5: Displaying an Image

Figure 5-4 ilView Objects Map Images to Display Regions

When ilDisplay draws its contents, the position and size of each ilView, as
well as the stacking order, are used to determine what portion of each view
is visible. ilDisplayImg (GL or X) is called to render the images into the frame
buffer. Each image is converted to the proper data type, order, color model,
and coordinate space as necessary for displaying. Figure 5-5 shows the
display after the views have been drawn.

Figure 5-5 Display Area After Views Are Drawn

In addition to the views added by an application, ilDisplay creates a
background view. This background view is the size of the window and is

view1

view2

view stack

Img2

Img1

addView(Img2)

addView(Img1)

Memory

ilView
objects

top

view1

view2

view stack

Img2

Img1

Display(view1)

Display(view2)

Memory

top

A Simple Interactive Display Program

201

always at the bottom of the view stack. You can’t control it other than to
change its color from the default, which is black.

ilDisplay provides several operators to manipulate ilViews as well as
functions to facilitate interactive display. The display operators enable you
to move a view, change its size, or move the image within the view. The
display operators are discussed in detail in “Applying a Display Operator”
on page 223. By default, view manipulation also causes the display to be
redrawn; however, a sequence of display operations can be performed with
drawing deferred. In addition, an application can explicitly control drawing.
ilDisplay is optimized to draw only the areas that have changed or that have
been exposed.

A Simple Interactive Display Program

Now let’s look at a simple interactive program that shows the IL display
facility in action. This program opens an image file and applies a threshold
operator to it. Both the original image and the processed image are displayed
in a window, stacked on top of each other. You can wipe the original image
away gradually so that you can see the processed image beneath it. Wiping
changes the view size. The best way to understand wiping, of course, is to
compile and run the display program. It’s available online in:

/usr/people/4Dgifts/examples/ImageVision/ilguide/displayEx.c++

When you run the program, you’ll see a window displaying the original
image. The processed image is actually underneath the original one, but you
can’t see it since the images are opaque and of the same size. If you click in
the window with the left mouse button, a red highlight border appears
around the image, indicating that it’s ready to be wiped. To wipe, click the
left mouse button near any edge of the image and drag toward the center of
the image. As you drag, the processed image becomes visible as the original
image is wiped away; release the button to stop the wiping. You can wipe
any edge or corner of the original image. To exit the program, use the normal
window manager menu command.

202

Chapter 5: Displaying an Image

Sample Program Code

The code for the sample program is shown in Example 5-1 and discussed in
the paragraphs following that. All the ilDisplay functions used in the
program are explained in more detail in the appropriate sections in this
chapter.

Example 5-1 A Simple Interactive Display Program

/* Example program showing IL display facility.

#include <stdlib.h>
#include <stdio.h>
#include <il/ilGLXConfig.h>
#include <il/ilGenericImgFile.h>
#include <il/ilThreshImg.h>
#include <il/ilDisplay.h>

const int Border = 10;// Threshold (in pixels)
// for edge finding operation

void main (int argc, char* argv[])
{

if (argc < 2) {
printf ("Usage: %s in-image1\n", argv[0]);
exit(0);

}

// Open input image file
ilFileImg* in = ilOpenImgFile(argv[1], "r");
if (in == NULL) {

printf (“Couldn’t open image file: %s\n”, argv[1]);
exit(0);

}

// Create threshold image
float threshVal = 100.0;
ilPixel threshPix(ilFloat, 1, &threshVal);
ilThreshImg thresh(in, threshPix);

Step 1: Open an image file
and create a threshold image.

A Simple Interactive Display Program

203

// Set up window configuration
int rgbMode = getgdesc(GD_BITS_NORM_SNG_RED) > 0;
int doubleBuffer = getgdesc(GD_BITS_NORM_DBL_RED) >= 8;
ilGLXConfig glx;
glx.addEntry(GLX_NORMAL, GLX_RGB, rgbMode);
glx.addEntry(GLX_NORMAL, GLX_DOUBLE, doubleBuffer);
glx.addEntry(0, 0, 0); // terminator

// Get Connection to X server and open X window
ilSize size;
in->getSize(size);

Display* dpy = XOpenDisplay(NULL);
Window win = glx.createWindow(dpy,

RootWindow(dpy, DefaultScreen(dpy)),
0, 0, size.x, size.y, 0);

XSelectInput(dpy, win, ExposureMask | KeyPressMask |
PointerMotionMask | PointerMotionHintMask |
ButtonPressMask | ButtonReleaseMask);

//Set window title

XStoreName(dpy, win, argv[0]);

XMapWindow(dpy, win);
glx.winset();

// Create ilDisplay object and add the images
 ilDisplay disp(dpy, win);

disp.addView(&thresh);
ilView* inView = disp.addView(in);
disp.setBorders(TRUE);

Step 2: Open an X window.

Step 3: Create an ilDisplay
object and add the images.

204

Chapter 5: Displaying an Image

// Process events, allowing wipe between original & processed
// images using the left mouse button

int active = TRUE;
int wipemode = 0;

while (active) {
ilXYint winSize;
XEvent event;
XNextEvent(dpy, &event);
switch (event.type) {
case MotionNotify:

// flush the event queue
Window rw, cw;
int rx, ry, x, y;
unsigned int state;
XQueryPointer(dpy, win,

&rw, &cw, &rx, &ry, &x, &y, &state);
if (event.xmotion.state&Button1Mask)

inView->wipe(x, y, wipemode|ilClip);
else

wipemode = inView->findEdge(x, y, Border);
break;

case ButtonPress:
disp.setStart(event.xbutton.x, event.xbutton.y);
break;

case Expose:
disp.display(NULL, ilDefer|ilCenter);
disp.redraw();
disp.getSize(winSize.x, winSize.y);
break;

case DestroyNotify:
active = FALSE;
break;

}
}

XCloseDisplay(dpy);
}

Step 4: Process events.

A Simple Interactive Display Program

205

Sample Program Comments

The first half of this program should be familiar to you; it’s very similar to
the sample program in Chapter 1, “Writing an ImageVision Library
Program.” The first several lines of code include the necessary header files.
If the user specifies fewer than two arguments (the name of the program and
the name of the image file), the program prints an error message and then
exits.

Step 1: Open an Input Image File and Create a Threshold Image

The specified image file is opened as an ilFileImg object called in. Next, an
ilPixel object is created for use by the threshold operator; the threshold value
chosen for this example is 100.0. The ilThreshImg operator thresh sets each
pixel to its maximum possible value if the pixel value is greater than or equal
to the threshold value, or to its minimum possible value if it’s less than the
threshold value.

Step 2: Open an X Window

After the threshold image is created, the window to be created must be
configured. This is accomplished with the ilGLXConfig object glx. The
getgdesc() GL function, which returns information describing the graphics
system, avoids RGB mode if the machine doesn’t support it. The necessary
information about the RGB and double buffering modes are set with
ilGLXConfig’s addEntry() function.

After the configuration of the window is specified, the size of the threshold
image is determined with getSize(), and this information is used to create a
window. The X server connection is created with the X function
XOpenDisplay().

The createWindow() member function of ilGLXConfig accepts arguments
specifying the X server connection, parent window, origin, and size of the X
window to create. This new window is saved as win. The X macro
RootWindow() returns the root window of the system; here it takes as its
second argument the result from the X macro DefaultScreen(), which
returns the screen number referenced by the previous call to
XOpenDisplay().

206

Chapter 5: Displaying an Image

The X function XSelectInput() tells the window system to monitor the input
events corresponding to the specified event masks. When the user triggers
an event (for example, moving the mouse), the event is added to the X event
queue. In this case, the user can perform one of three actions:

• quit by selecting the quit item in the window menu (event
DestroyNotify)

• press the left mouse button to initiate dragging (event ButtonPress)

• drag the mouse to perform a wiping (event MotionNotify).

The X function XMapWindow() maps the window to the screen, and
ilGLXConfig’s winset() function creates a GL context to allow GL rendering
in that window.

Step 3: Create an ilDisplay Object and Add the Images

Next, an ilDisplay object is created by passing the appropriate X window
and display ids. As shown, the processed image thresh is added first, and
then the original image in is added using addView(). The addView()
function creates an ilView for the specified image, adds it to the display’s
view stack, and returns a pointer to the ilView. The pointer to the ilView
associated with in is used later in the program.

The order in which images are added determines their stacking order when
they’re displayed; the last view added is on top. In this case, the original
image is displayed on top of (and completely obscuring) the processed
image. You can reorder the views as needed.

The setBorders() function is used with default arguments in this example to
highlight all views in the view stack. You can also specify the border color
and width.

Step 4: Process Events

Processing events is a critical task for interactive programs. All of the
previously identified inputs (events) must be handled. The event loop in this
example processes events continuously while the program is active.

A Simple Interactive Display Program

207

The code in the event loop uses the following variables:

active indicates that the window is still active. It becomes FALSE
when the user selects “Quit” from the window menu.

event holds the event read from the X event queue with
XNextEvent().

winSize indicates the current size of the window.

wipemode indicates which edge of the image to wipe.

x and y hold the x and y positions of the mouse, respectively, as the
user drags to perform a wipe.

The code in the event loop takes the following actions in response to use
actions:

• MotionNotify. As the mouse is moved, the x and y values are accessed
with the X function XQueryPointer(). The current xy location of the
mouse is passed to wipe(), which changes the size of the view by
moving one or more edges. While the mouse button is pressed, motion
causes a wipe to be performed. If the mouse button is not pressed, then
findEdge() is called. The findEdge() function returns the edge(s) near
the xy location specified and is saved in wipemode. (In this program, the
user must click within 10 pixels of the edge.) When wipe() is called,
wipemode specifies which edges to wipe.

• Button Press. When the user presses the left mouse button to start
wiping, the setStart() function is called to save the current x and y
mouse positions.

• Expose. The first time through the loop, an Expose event is processed,
causing the entire display to be drawn on the screen with the redraw()
function.

• DestroyNotify. When the user quits, the active flag is set to FALSE.

208

Chapter 5: Displaying an Image

Creating an ilDisplay

To incorporate the IL’s display facility in your program, you must:

1. Open and configure a window.

2. Create an ilDisplay object to manage the window.

3. Add and manipulate images you want to display.

4. Apply the desired display operator(s) to one or more of the views.

This section discusses the first two of these items. The remaining two items
are covered in detail in following sections.

Opening and Configuring a Window

Before creating an ilDisplay object, you must open a window and configure
it. To do this, use standard X calls for rendering or use the ilGLXConfig object
as follows:

int rgbMode = TRUE, doubleBuffer = TRUE;

// set up configuration: rgb mode, double buffering
ilGLXConfig glx;
glx.addEntry(GLX_NORMAL, GLX_RGB, rgbMode);
glx.addEntry(GLX_NORMAL, GLX_DOUBLE, doubleBuffer);
glx.addEntry(0, 0, 0); // terminator - end of config list

// connect to X server
Display* dpy = XOpenDisplay(NULL);

// open X window
Window win = glx.createWindow(dpy, RootWindow(dpy,

DefaultScreen(dpy)),
origin.x, origin.y,
winsize.x, winsize.y, 0);

After you create an ilGLXConfig object, the configuration of the window it
creates is set with calls to the addEntry() function. In the example above,
three calls are required. The first turns on RGB mode; the second turns on
double buffering. The last call terminates the list. After a connection to the X
server is made with the X call XOpenDisplay(), the ilGLXConfig object can
create a new X window with createWindow(). See the X call
XCreateWindow() for similar arguments. Here, the parent window is the

Creating an ilDisplay

209

root window. The next several arguments specify the origin, width, and
height of the window. The last argument specifies the width of the window’s
border, zero in this case.

Creating an ilDisplay Object

An ilDisplay object manages views of images within the window passed to
it. If an X window is passed, render mode specifies whether X or GL should
be used to render the images. Only GL rendering can be used if a mixed
model window is passed (ilGLXConfig is used to create the window). If a GL
window is passed, GL rendering is automatically selected. Hardware
acceleration is only available with GL rendering. The constructor for
ilDisplay is shown below:

ilDisplay (Display* display, Window win, ilRender
rendmode=ilGLRender, int mode = ilDefault);

The statement below creates an ilDisplay object for the window created in
the preceding section:

ilDisplay myDisp(dpy, win);

The ilDisplay object created has the GL graphics configuration (single versus
double buffer and RGB versus color map mode) that was established by the
ilGLXConfig object that created the window. When ilDisplay is created, a
render mode of ilGLRender (default) or ilXRender can be specified. If the
render mode is GL, then the display origin is the lower left corner. If the
render mode is X, then the display origin is the upper left corner. The entire
window is used for drawing, but this window may be a subwindow within
an application.

Note: The ilDisplay class uses many enumerated types, which are listed in
“Enumerated Types and Constants” on page 408 and the header file
il/ilDisplayDefs.h.

210

Chapter 5: Displaying an Image

Changing a Graphics Configuration

To change an ilDisplay’s graphics configuration, you need to create a new X
window with the desired configuration, then switch to the new window
with the setWindow() function:

ilGLXConfig nextglx;

// set up configuration: non-rgb, non-double buffered
nextglx.addEntry(GLX_NORMAL, GLX_RGB, FALSE);
nextglx.addEntry(GLX_NORMAL, GLX_DOUBLE, FALSE);
nextglx.addEntry(0, 0, 0); // terminator

Window win2 = nextglx.createWindow(dpy, // open X window
RootWindow(dpy, DefaultScreen(dpy)),
origin.x, origin.y,
winsize.x, winsize.y, 0);

myDisp.setWindow(win2);

In this example, a new configuration is created with nextglx. The new
window created, win2, has RGB mode turned off and double buffering
disabled. The myDisp display switches to this new window. Since an X
window cannot change its configuration after it has been created, this is the
only way to change the configuration of a display.

Until an X window is deallocated (with the X call XDestroyWindow()), it can
be used again; you can switch back to the original configuration by using
setWindow():

myDisp.setWindow(win);

You can query an ilDisplay about its graphics configuration with
isDoubleBuffer() or isRGBMode(). Each function returns a TRUE if the
feature is on and a FALSE otherwise.

Note: If you no longer need the previous window, you should free or delete
it to save or recapture memory.

View and Display Basics

211

View and Display Basics

Once you have created a display object, the next step is to add views to this
display and then apply display operators to these views. Before learning
more about views, however, you’ll need to be familiar with some basic
concepts that apply to both displays and the views contained within them.

Background Color

If the images being displayed don’t cover the entire display area, the
ilDisplay’s background view is seen in the uncovered areas. The background
may also be revealed if images are dragged around or resized by the user. By
default, an ilDisplay uses black as the background color. You can set the
color to any pixel value with setBackground():

unsigned char bgdColor[] = {0, 255, 0};
myDisp.setBackground(ilPixel(ilUChar, 3, bgdColor));

In this example, the background color is set to green.

You can also retrieve an ilDisplay’s current background color:

ilPixel pix;
myDisp.getBackground(pix);

Note: The color is always returned as a three-channel (RGB) pixel, whether
the rendering occurs in X or GL.

Borders

All ilViews have borders, but by default they’re not drawn (that is, they’re
turned off). You can use ilView’s setBorders() to turn borders on (TRUE) or
off (FALSE).

void setBorders(int flag);

When borders are turned off, the highlight flag (see “Finding a View” on
page 220) is also turned off. The borders are painted or erased immediately
unless painting is deferred. Note that borders are painted inside the view.

212

Chapter 5: Displaying an Image

In addition, both the borders and the nop flag can be controlled using the
select functions on ilView (see “Preventing View Operations” on page 213 to
learn more about the nop flag). When select() is called, borders are turned on
and its nop flag is turned off. When unselect() is called, borders are turned
off and its nop flag is turned on. The isSelected() function returns TRUE if
the view is selected or FALSE otherwise:

void select();
void unselect ();
int isSelected();

You can also specify the width and color of the borders:

void setBorderWidth(unsigned int bordWidth);
void setBorderColor(ilPixel *pix);

The first function sets the width of the border in pixels to bordWidth; by
default, a border has a width of two pixels. (bordWidth should be a number
greater than or equal to zero.) The second function sets the color of the
border to the specified pixel value; borders are red by default.

You can query an ilView about its border width or color:

unsigned int getBorderWidth();
ilPixel *getBorderColor();

Note that the color is always returned and set as a three-channel (RGB) pixel,
whether rendering occurs in GL or X.

For convenience, you may set border parameters on all the views in an
ilDisplay’s view stack by calling the corresponding functions on ilDisplay.
(You can exclude particular views in the stack from being acted upon by
these functions by setting a nop flag in each view you wish to exclude. See
“Deferring Drawing” on page 213.) For example:

float *bordColor = {0.0, 0.0, 255};

myDisp.setBorders(TRUE);
myDisp.setBorderWidth(5);
myDisp.setBorderColor(ilPixel(ilFloat,3,bordColor));

There are no convenience functions for getBorders(), getBorderWidth(), or
getBorderColor() in the ilDisplay class since the information may vary from
view to view.

View and Display Basics

213

Preventing View Operations

To keep any view in the stack from being operated upon, use the setNop()
function to set the nop flag:

void ilDisplay::setNop(int nop, ilView* view);
void ilView::setNop(int nop);

If the nop argument is TRUE, then the view won’t be operated on. To allow
operations to take place on a view, nop should be FALSE. You can use the
function isNop() to determine the state of the nop flag:

int ilDisplay::isNop(ilView* view);
int ilView::isNop();

If you need to perform an operation on each view in the stack regardless of
the value of each view’s nop flag, pass the ilDop flag in the mode for that
operation.

If an operation is called on a view, the nop flag is overridden. For example,
the statement below ignores the nop flag on the specified view:

view->wipe();

Deferring Drawing

Drawing can be deferred by calling setDefer() on ilDisplay or ilView. When
used to defer the display, nothing is drawn; however, each view can be
individually deferred as well. These calls are shown below:

void ilDisplay::setDefer(int def, ilView *view=NULL);
void ilView::setDefer(int def);

In the ilDisplay version, you specify the view in which you wish to defer
drawing (the default is all views) by setting the ilView pointer argument to:

• NULL, which causes all views in the view stack to be affected.

• A pointer to an ilView in the view stack.

You might want to defer drawing until you’ve made a series of changes to
an ilDisplay’s attributes (or to those of its views) so that they all take effect
simultaneously. You might also want to defer drawing while you apply

214

Chapter 5: Displaying an Image

more than one display operator to avoid drawing intermediate results. In
addition, most of the display operators allow you to pass the ilDefer flag (see
“Mode Flags” on page 215) to defer drawing. (Display operators are
described in more detail in “Applying a Display Operator” on page 223.)

To defer drawing, call setDefer() and pass TRUE as its def argument. After
that, the display won’t be redrawn until you call setDefer() with FALSE as
its def argument. You can check whether drawing is deferred with isDefer():

int ilDisplay::isDefer(ilView *view=NULL);
int ilView::isDefer();

This function returns TRUE or FALSE to indicate whether drawing has been
deferred or not.

The Drawing Area

An ilDisplay assumes that it can draw anywhere in the window that’s been
passed to it. You can retrieve the current size of the drawing area with
getSize(), which returns the x and y dimensions by reference:

void getSize(int& x, int& y);

Managing the Cache

With global cache management, using ilView to manage the cache on its
input is unnecessary. The various cache management methods on ilView
have no effect and will be removed in the future. Instead refer to “The
Cache” on page 46 and “Optimizing Use of Cache” on page 308 for a
discussion of the global cache management scheme.

Automatic Seek-ahead

The isAutoSeek() and setAutoSeek() functions have no effect and will be
removed in the future. When hardware acceleration is used, the auto-seek

View and Display Basics

215

feature can become disabled. For this reason, the auto-seek feature has been
replaced by the prefetcher feature (see “Prefetching” on page 62).

Mode Flags

All the display operators use a mode argument to control the display of
views. This mode is a bitwise-ORed combination of flags that control the
operator. The flags are defined as enumerated values (see il/ilDisplayDefs.h or
“Controlling the Display Facility” on page 413). Some flag types are
described below:

Display Flags

Display flags specify various display modes. Examples are:

• ilClip to clip an image to the edge of the display or view

• ilDefer to defer painting

• ilDop to override the nop flag

Coordinate Flags

Coordinate flags specify how the resizing, relocating, and update operators
are to interpret coordinate values. Examples are:

• ilDelVal where x,y is interpreted as delta relative to the current values

• ilRelVal to interpret the x,y coordinates relative to the starting x,y
(starting x,y is updated)

• ilAbsVal to interpret the x,y coordinates as absolute values

• ilOldRel to interpret the x,y coordinates relative to the starting x,y
(starting x,y is not updated)

Wipe Mode Flags

Wipe mode flags specify the edges in a wipe operation. Some examples are:

• ilTopEdge to do the wipe from the top edge

• ilLeftEdge to do the wipe from the left edge

216

Chapter 5: Displaying an Image

Align Mode Flags

Align mode flags specify image alignment. Some examples are:

• ilTopLeft to align the view from the top left corner

• ilCenter to align the view to the center of the window or the image to
the center of the view

The sample program shown at the beginning of this chapter contains an
example of the use of the mode argument. In this example, the display
operator initializes all views in the view stack, aligns the views to the center
of the image, and defers the painting of the view until later.

disp.display(NULL, ilDefer|ilCenter);

Managing Views

Once an ilDisplay has been created, you can create views of the images you
want displayed. As views are created, they are pushed onto the view stack.
You can also retrieve views from the stack, replace the images within the
views with other images, remove views, and reorder the views in the stack.
This section explains how to perform these tasks.

Note: If an error occurs while rendering part of a view, the offending tile is
painted with the error color, and the status is set on ilDisplay. The error color
defaults to yellow, but can be set per view with:

ilView::setErrorColor(const ilPixel& pixel);

Adding Images

The addView() function creates an ilView and adds it to the view stack. The
image is drawn when addView() is called unless ilDefer is passed in mode. It
returns a pointer to the ilView for the ilImage (or XImage) pointer passed in:

ilView* addView(ilImage* img, int index, int mode);
ilView* addView(ilImage* img, int mode=ilCenter);

ilView* addView(XImage* img, int index, int mode);
ilView* addView(XImage* img, int mode=ilCenter);

Managing Views

217

You can call addView() with just the image or the image and the display
mode. In this case, the view index defaults to 0 (top of the stack). If you use
the version of addView() that takes an index, you can specify the location in
the view stack where the image is to go.

The mode parameter controls the creation and position of the ilView. By
default, the view is centered, not clipped to the display window, and is
painted after being added. However, this behavior can be modified using
various display mode flags such as ilClip and ilDefer. See “Mode Flags” on
page 215 and the ilDisplay reference page for more details.

If an image has a z dimension that’s greater than one, you can choose which
xy plane of the image to display. By default, the first plane (z = 0) is
displayed. To display a different plane, call setZ() on ilView:

void setZ(int startZ);

The startZ argument specifies the desired plane of the image in the view that
the function is called on. ilView’s getZ() function takes no arguments and
returns the current z plane being displayed of the corresponding image.

Stereo Viewing

If your machine is capable of stereo and stereo is supported by IL on that
machine, you can turn on stereo viewing mode. Currently, stereo is
supported only on the RealityEngine. A stereo view can be created as shown
below:

ilStereoView* addStereoView(ilImage* imgL, ilImage* imgR,
int index=0, int mode=ilCenter);

ilStereoView* addStereoView(ilImage* zImg,
int zLeft = 0, int zRight = 1,
int index=0, int mode=ilCenter);

Using the first version, pointers to the left and right images are passed to this
method on ilDisplay. The last two arguments specify where to add the view
to the view stack and the display mode for the view. In this case, an IL chain
must be set up for each image.

The second version takes a single image with the left and right images stored
in the z dimension. The parameters zLeft and zRight specify the index in the

218

Chapter 5: Displaying an Image

z dimension corresponding to the left and right images. The benefit of this
approach is that you can use a single IL chain to process both images.

In either case, the relative screen positions of the left and right images can be
adjusted (see the ilStereoView reference page). If the hardware doesn’t
support stereo, or if stereo mode is disabled, only the left image is displayed.
Also note that the IL can display a mixture of monoscopic and stereoscopic
views in the same stereo window.

The application must allocate a stereo buffer using ilGLXConfig or
GLXconfig similar to the way double buffer is done. The application must
also configure stereo video mode by calling setmonitor() or setmon(). For
more information, see the setmon and setmonitor reference pages or the
example in ~4Dgifts/examples/ImageVision/ilapps/ilstereoview.c++.

Retrieving Views

You can obtain a pointer to any view in the stack with getView(). There are
two versions of this function, one that takes an index and another that takes
a pointer to an ilImage:

ilView* getView(int index = 0);
ilView* getView(ilImage* img);

Both functions return a pointer to the corresponding ilView. If the image
appears in more than one view, the view that’s nearest the top of the stack is
returned.

You can also retrieve the index corresponding to a particular view:

int theIndx = myDisp.getViewIndex(someView);
int theIndx = myDisp.getViewIndex(someImg);

The getViewIndex() function takes a pointer to an ilView (someView) or a
pointer to an ilImage (someImg) and returns its index as an int (theIndx).

To determine how many views are in the view stack, call getNumViews().

Managing Views

219

Retrieving Images

You can obtain a pointer to the image in a particular view with getImg() or
getXImg():

ilImage* myImg = someView->getImg();
XImage* myXImg = someOtherView->getXImg();

A pointer to the ilImage or XImage in the view is returned. (Here, someView
and someOtherView are ilView pointers.)

To obtain pointers to the images in a stereo view, use getLImg() and
getRImg():

ilImage* myLeft = someStereoView->getLImg();
ilImage* myRight = someStereoView->getRImg();

A pointer to the left ilImage is returned from getLImg() and a pointer to the
right from getRImg(). (Here, someStereoView is an ilStereoView pointer.)

Removing Views

You can remove a view from the stack by deleting the view or by calling
deleteView() on ilDisplay. This function removes the specified view from
the stack and deletes it:

void deleteView(ilView* view);

Replacing Images

An ilView object allows you to replace its image:

void setImg(ilImage* ilInImg);
void setXImg(XImage* xInImg);

The argument is a pointer to the image you want the view to hold. This
image replaces the image mapped to the view.

220

Chapter 5: Displaying an Image

Reordering the View Stack

Several functions are provided by ilDisplay to reorder the view stack. The
push() function pushes the specified view down count places in the stack. By
default, it pushes the view to the bottom. Similarly, the pop() function pops
the specified view up count places in the stack. By default, it pops the view
to the top. On both push and pop, when count is 1, the view is moved one
position in the view stack. In addition, the swap() function swaps two views
in the stack. These functions are shown below:

push(ilView *view, int count=0);
pop(ilView *view, int count=0);
swap(ilView *view1, ilView *view2);

Finding a View

Sometimes you need to find the view at a specified location. In an interactive
program, the mouse is typically used to select a view. To find the view at a
given x,y location, findView() can be called on ilDisplay as shown below:

ilView* findView(int x, int y, int mode = ilDspCoord);

This function returns a pointer to the topmost ilView found at location xy
within the display. If there is no view at xy, it returns NULL. If ilHighlight is
passed in mode, the view is highlighted if found. When a view is highlighted,
its borders are turned on. However, only one view at a time can be
highlighted. If ilDspCoord is passed in mode (the default), the xy coordinates
are interpreted relative to the origin of the display area (display coordinates).
If ilScrCoord in passed in mode, then the xy coordinates are interpreted
relative to the screen (screen coordinates). Recall that the origin of the
display area coincides with that of the window.

Finding an Edge

You may need an edge of a view for certain operations. Sometimes, you’ll
want to determine which edge of a view the cursor is near. This is especially
useful for wiping, as described in “Applying a Display Operator” on
page 223. For this, use ilView’s findEdge() function:

int findEdge(int x, int y, int margin = -1,
int mode = ilDspCoord);

Managing Views

221

This function determines which edge of the view is nearest to the specified
xy coordinates. If the specified point is within margin pixels from an edge,
that edge is returned. By default, the margin is either the default margin (15)
or the current border width, whichever is greater. The mode argument can be
either ilDspCoord (the default) or ilScrCoord to indicate whether x and y are
specified in display or screen coordinates.

The value returned by findEdge() is a bitwise-ORed combination of the
following values:

ilNoView The coordinates lie outside margin pixels of all views.

ilRightEdge The coordinates are within margin from the right edge.

ilLeftEdge The coordinates are within margin from the left edge.

ilTopEdge The coordinates are within margin from the top edge.

ilBottomEdge The coordinates are within margin from the bottom edge.

ilAllEdge The coordinates are within margin from all edges; this is an
unusual case since it implies that margin is very large
relative to the image. The ilAllEdge value is used primarily
as an argument for wipe(), which is described in “Applying
a Display Operator” on page 223.

ilNoEdge The coordinates don’t lie within margin from any edge.

If a combination of two intersecting edges is returned—for example,
ilRightEdge|ilTopEdge—you can treat the value as corresponding to a
corner, in this case the upper-right corner. Note that you can also receive a
value such as ilTopRight, which is equivalent to ilTopEdge|ilRightEdge.

ilDisplay also defines a findEdge() function, which finds the edge on all
views. For each view, it saves the edge for later use with wipeSplit().

Operating on a Pixel

You can obtain the actual pixel data at a specified point in a view with
getPixel() (defined by both ilDisplay and ilView):

ilStatus getPixel(int x, int y, ilPixel& pix, int mode = 0);

222

Chapter 5: Displaying an Image

In ilView’s version, this function copies the pixel data at the point x,y into
pix. If the point lies outside the view, the fill value is returned by reference.
In ilDisplay’s version, the topmost view pointed to by the point x,y is found
with findView(); the pixel data from the point in that view is copied into pix.
If the point refers to no view, no pixel data is returned by reference. (The x,y
point is specified in display coordinates.)

You can also set a pixel value with setPixel():

void setPixel(int x, int y, ilPixel pix, int mode = 0);

Locating a Point

You can find out where you are in an image by passing the display
coordinates to getLoc() (defined by both ilDisplay and ilView):

void getLoc(int x, int y, int& ix, int& iy,
int mode = ilLocIn);

void getLoc(float x, float y, float& ix, float& iy,
int mode = ilLocIn);

void getLoc(float& ix, float& iy,
int mode = ilLocIn|ilCenter);

The getloc() function returns the location in the image corresponding to x
and y. The location in the image is returned in ix and iy. If ilLocIn is passed in
mode, the location is returned in the input space of the image. If ilLocOut is
passed in mode, the location is returned in the output space of the image. For
example, if an ilRotZoomIng is mapped to the view and ilLocIn is specified,
ix and iy correspond to the location in the unzoomed image. However, if
ilLocOut is specified, ix and iy correspond to the location in the zoomed
image. If ilLocImg is specified (default), then the image is moved to the
specified location. If ilLocView is specified, then the view is moved to the
specified location.

The second version uses floating point values for more accuracy. The third
version determines the desired location based on mode. For example, if
ilCenter is specified, the location corresponding to the center of the view
returned.

When called on ilDisplay, the topmost view pointed to by x, y is found with
findView(). Then the location is returned for that view. On both ilDisplay

Applying a Display Operator

223

and ilView, a version is provided that doesn’t require an xy location to be
specified. Instead, the mode is used to specify the center or a corner.

Similarly, you can set the location of an image within the display by calling
setLoc() on ilDisplay or ilView. This allows you to move a point within the
image to a specific location within the display as show below:

void setLoc(int ix, int iy, int x, int y,
int mode = ilLocIn);

void setLoc(float ix, float iy, int mode = ilLocIn|ilCenter);
void setLoc(float ix, float iy, float x, float y,

int mode = ilLocIn);

The relocation can be accomplished by moving the image or the view. If
ilLocView is specified, then the view is moved, otherwise the image is
moved (ilLocImg).

Applying a Display Operator

Display operators alter views, typically in response to input from the user.
These operators may draw all or portions of a view. Also, they can change
the size and/or location of all or some of the displayed views and then
update the display accordingly. These are the IL’s display operators; they can
be called on both ilDisplay and ilView (except for display(), which may be
called only on ilDisplay):

• Drawing operators—Operators whose primary purpose is to draw all
or part of the display. This group includes display(), paint(), redraw(),
setStaticUpdate(), and save().

• Relocating operators—Operators whose primary purpose is to change
the location of views or images. This group includes alignView(),
alignImg(), moveView(), moveImg(), and split().

• Resizing operators—Operators whose primary purpose is to change the
size of views or images. This group includes wipe(), wipeSize(),
wipeSplit(), and resize().

• update()—Generalized operator that combines the capabilities of
moveView(), moveImg(), and wipe(). However, because it is a
generalized operator, it is not as optimized as some of the other
operators.

224

Chapter 5: Displaying an Image

There is only one difference between calling a function on ilDisplay and
calling it on ilView. When called on ilView, the function only operates on that
view regardless of the state of the nop flag. In contrast, when called on
ilDisplay, a view must be specified. If NULL is passed, then all views in the
stack are operated on (except those with the nop flag set). If a pointer to a
view is passed, the function only operates on that view.

In this section, all operators are given in their ilDisplay forms. The ilView
versions are easily derived by leaving out the argument specifying the view.

Drawing Views

The functions used primarily for drawing are described in this section:

• display() reinitializes the specified view and optionally aligns the view
and image. The specified view is then painted. If NULL is specified,
then all views are initialized (except those with nop flag set).

• paint() doesn’t resize or reposition the view. It simply paints the
specified view if it needs to be painted. If ilPaintExpose is passed, then
the view is forced to be painted.

• redraw() resizes the display image and background view to occupy the
entire window. It then paints all views regardless of the nop flag. It
doesn’t resize or reposition any views.

• save() paints the specified region of the display to an ilImage. A starting
location within the display and a pointer to an ilImage are passed. The
save region is specified by the starting location and the size of the
image.

• setStaticUpdate() sets the staticUpdate mode to paint a rectangular
region as one tile rather than many smaller ones.

display()

The display() function takes three arguments, all of which have default
values as shown below:

void ilDisplay::display(ilView* view = NULL,
int vmode = ilCenter,
int imode = ilCenter);

Applying a Display Operator

225

view Reinitializes the specified view. If NULL is passed, then it
reinitializes all views (except those with nop flag set). If the
ilDop flag is passed in mode, the nop flag is ignored.

vmode Specifies how to align the view within the display.

imode Specifies how to align the image within the view. As
explained above, only the visible portion of each view is
drawn.

Both vmode and imode are a bitwise-ORed combination of values that allow
you to specify alignment. You can align to any corner or edge using any
combination of ilTopEdge, ilBottomEdge, ilLeftEdge, or ilRightEdge. In
addition, ilTopLeft, ilBottomLeft, ilTopRight, or ilBottomRight can be used
to specify a corner. By default, ilCenter is used. If no alignment is desired,
ilNoEdge or ilNoAlign can be passed instead. See “Relocating Views and
Images” on page 227 for more information about the alignView() and
alignImg() functions.

By default, a view is the size of its image; however, if ilClip is passed in
vmode, then the view is clipped to the size of the display or window.

paint()

The paint() function is typically used when a view needs to be redrawn after
several deferred operations. This function takes a view pointer and a mode
as arguments:

void paint(ilView* view = NULL, int mode = 0);

The view argument has the same meaning as that for display(). The mode
argument can include any of the generic display flags.

redraw()

The redraw() function is called when a REDRAW (GL) or Expose (X) event
occurs (for example, if the window is exposed or resized):

void redraw(int mode = ilDefault);

The redraw() function resizes the drawing area (display image) and the
background view to match the new size of the window, and paints all views.

226

Chapter 5: Displaying an Image

save()

The save() function saves a region of the display by painting to an ilImage.
The region saved is specified by the origin x, y and is the size of the image
passed in:

ilStatus save(ilImage* img, int x = 0, int y = 0,
int mode = ilDefault);

By default, borders are not painted. However, if ilPaintBorder is passed in
mode, the borders are painted. Note that on 8-bit graphics systems,
displayed images may be dithered. Therefore, the save function provides a
higher quality result than copying from the screen.

setStaticUpdate()

The setStaticUpdate() function allows you to enable or disable the
staticUpdate mode. Static update paints a rectangular region as one large tile
rather than as many smaller tiles. When staticUpdate mode is enabled, it
forces a static update to occur whenever the view is painted.

void setStaticUpdate(int enable)

The setAutoStaticUpdate() function forces a static update after a reset has
occurred. A reset is caused by changing inputs or processing parameters in
the chain. In this case, since the entire exposed region of the view must be
painted, the performance can be improved by painting the region as one
large tile. After the static update has been completed, normal tiled painting
resumes. By default, automatic static update is enabled.

void setAutoStaticUpdate(int enable)

The isStaticUpdate() function allows you to retrieve the current
staticUpdate mode:

isStaticUpdate()

Note: Static update mode only has effect for hardware acceleration.

Applying a Display Operator

227

Relocating Views and Images

The functions used to relocate views and images are described in this
section:

• alignImg() aligns an image within its view.

• alignView() aligns a view with a reference view.

• moveImg() moves an image within a view.

• moveView() moves a view within the display area.

• split() repositions all views into rows and/or columns and resizes the
views to fit.

The following mode flags are also used in conjunction with the functions
discussed in this section:

ilAbsVal The xy pair represents absolute values. In other words, the
view is simply moved to the location specified.

ilDelVal The coordinates represent a change (delta) in the current
view or image position. For example, if moveView is called
with (2,5) and the specified view is located at (1,1), then the
view is moved to (3,6).

ilRelVal The xy pair is interpreted relative to the starting xy set by
calling setStart(). The starting x,y values are updated. The
setStart() function must have been called previously to
initialize ilDisplay’s coordinate values. This is the default
mode for most functions.

ilOldRel Same as ilRelVal except that the starting xy values aren’t
updated.

alignImg()

The alignImg() function is defined on both ilDisplay and ilView. This
function aligns the image in view. If view is NULL (the default), the function
aligns the images in all the views in the view stack (except those with the nop
flag set). It is called as shown below:

void alignImg(ilView* view=NULL, int mode=ilCenter);

228

Chapter 5: Displaying an Image

Alignment means that an edge, corner, or center of an image is aligned
within the view, as shown in Figure 5-6. The mode argument specifies how to
align the image. For example, the default, ilCenter, indicates that the image
is to be centered in the view. In Figure 5-6, ilBottomLeft is passed in mode,
causing the lower left corner of the image to be aligned to the lower left
corner of the view.

Figure 5-6 Aligning an Image to Bottom Left Corner

alignView()

The alignView() function is defined on both ilDisplay and ilView. This
function aligns the specified view with a reference view. If NULL is passed,
all views are aligned (except those with the nop flag set). The function is
called as shown below:

void alignView(ilView* view = NULL, int mode = ilCenter,
ilView* rView = NULL);

The reference view is specified by rview. If it is NULL, then the back view is
used. Alignment means that edges, corners, or centers of the views are
aligned, as shown in Figure 5-7. The mode argument specifies how to align
the views. By default, ilCenter causes views to be aligned by their centers. In
Figure 5-7, the views are aligned by their lower left corners with
ilBottomLeft.

Unaligned Image Aligned Image

Image

View

Applying a Display Operator

229

Figure 5-7 Aligning Views

moveImg()

The moveImg() function changes the location of images within their
respective views. To use this function, you need to specify the desired
location and the view to which the image corresponds:

void moveImg(int x, int y, ilView* view = NULL,
int mode = ilRelVal);

This function moves the image within the specified view. In other words, the
view remains fixed relative to the display while the corresponding image
moves within the view. This function allows a user to roam around an image.
This is particularly useful for large images that are bigger than the screen.
Thus, the coordinate values x,y specify the desired location of the image’s
origin. They’re interpreted according to the relevant flags passed in mode
(such as ilDelVal, ilRelVal, and so on). The mode argument can also include
flags indicating that drawing should be deferred (ilDefer) and that the image
shouldn’t be moved beyond its edge (ilClip). By default, the image can be
moved beyond its view, in which case the image’s fill value is used to paint
the view.

moveView()

The moveView() function changes the location of views within the display.
You might use this function to allow a user to drag a view around the display

Unaligned Views Aligned Views

Reference
View

Display

230

Chapter 5: Displaying an Image

area using one of the mouse buttons. To use this function, you need to
specify the desired location and the view to be moved:

void moveView(int x, int y, ilView* view = NULL,
int mode = ilRelVal);

The view pointer argument view specifies which view to move (or all the
views if NULL, the default). The x and y arguments indicate where to move
the view, and mode specifies how these arguments should be interpreted
(with ilDelVal, ilRelVal, and so on).

You can include ilDefer in the mode argument if you don’t want the display
updated. Also, by default, you can move the views out of the window. For
example, a user can continue dragging a view past the edge of the window;
the view won’t be visible, but ilDisplay keeps track of its location so that if
the user drags it in the opposite direction, eventually the view becomes
visible in the window. You can prevent a view from being moved past the
window’s edge by specifying ilClip as part of the mode argument.

split()

The split() function allows you to display all views next to one another in
rows and/or columns rather than randomly overlapping one another. All
views are resized and repositioned based on the number of views in the view
stack. Starting at the bottom of the stack, views are positioned starting at the
lower left corner of the display. The split() function is called as shown below:

void split(int mode = ilAbsSplit|ilRowSplit|ilColSplit)

The mode argument controls the layout. It can be a combination of the
following modes:

ilAbsSplit Aligns images to the origin regardless of the view position.
(See Figure 5-8.)

ilRelSplit Positions images relative to view position. (See
Figure 5-9.)

ilRowSplit Divides the drawing area into rows. (See Figure 5-8.)

ilColSplit Divides the drawing area into columns.

ilPackSplit Clips views to an image if needed and packs them together.

Applying a Display Operator

231

Figure 5-8 split() with ilAbsSplit | ilRowSplit | ilColSplit

Figure 5-9 split() with ilRelSplit | ilRowSplit | ilColSplit

If both ilRowSplit and ilColSplit are specified, split() divides the drawing
area into equal-sized rectangles such that the number of rows and columns
is nearly equal. (See Figure 5-9.) Note that if both ilAbsSplit and ilRelSplit
are specified, split defaults to ilAbsSplit. In addition, an alignment mode can
be specified with ilAbsSplit, such as ilCenter.

Displayed with the
default mode ilAbsSplit |

Displayed with
iilAbsSplit | ilColSplit

Views to be displayed

ilRowSplit | ilColSplit

232

Chapter 5: Displaying an Image

Resizing Views

The functions used to resize one or more views are shown below and are
described in this section:

• resize() resizes a view (defined only on ilView).

• wipe() moves one or more edges of a view.

• wipeSplit() wipes the nearest edge of all views.

• wipeSize() wipes an edge or corner and the opposite edge or corner.

As with the relocating functions, if ilAbsVal is passed in mode, the xy values
specify the new size of the view. For ilDelVal, the xy values represent
changes to the current size of the view. ilRelVal means that the xy values are
interpreted relative to the start values previously set with setStart(). The
start values are then updated by ilDisplay unless ilOldRel is specified.

resize()

The resize() function reinitializes the size of a view to the size of the image
it displays. This useful after setting the image in ilView. The resize() function
is called as shown below:

void resize(int mode = 0);

If ilClip is passed in mode, then the view is clipped to the size of the display.
After the view is resized, it is painted unless ilDefer is passed.

wipe()

The wipe() function moves one or more edges on the specified view. It is
called as shown below:

void wipe(int x, int y, ilView* view = NULL,
int mode = ilRelVal);

The values x and y specify how to move the specified edge of the view.
They’re interpreted according to the flags passed in mode (such as ilRelVal,
ilDelVal, and so on). The default is ilRelVal. If NULL is passed for view, then
all views are wiped (except those with nop flag set).

Applying a Display Operator

233

The edge to wipe is specified in mode. Any combination of the following edge
modes can be used: ilRightEdge, ilLeftEdge, ilTopEdge, or ilBottomEdge.
For example, ilTopEdge|ilRightEdge (or ilTopRight) allows the user to wipe
the upper-right corner, thus resizing the view. In addition, the value
returned by findEdge() can be used directly. (See “Finding an Edge” on
page 220.)

If ilAllEdge (or a bitwise OR of all four edges) is used, the effect is slightly
different from a normal wipe. In this mode, called an inset, the view moves
while the image remains fixed (opposite of moveImg()). This mode is useful
to move a processed view of an image around on top of the original image
for comparison.

By default, the view is painted after it is wiped unless ilDefer is passed in
mode. Also by default, the edge of a view can be moved beyond the edge of
the image, unless ilClip is passed. When the view is allowed to be wiped
beyond the edge of the image, the image’s fill value is used to paint the
exposed region. Note that the wipe function is optimized to paint only the
wiped region.

wipeSplit()

The wipeSplit() function is used in conjunction with findEdge() on ilDisplay
to wipe the nearest edge of all views. It is called as shown below:

void wipeSplit(int x, int y, int mode = ilRelVal);

The x and y parameters control how the edges are moved. No view is
specified because it operates on all views in the view stack. The mode
parameter specifies only how to interpret x and y. Note that the edge on each
view is not specified by mode. Instead, findEdge() must be called on ilDisplay
first to find the edge on all views. If no edge is found for a particular view,
then that view is not wiped.

This function is useful after a split operation. For example, if the display is
split to show two views side by side, it allows you to wipe the right edge of
the left view and the left edge of the right view simultaneously. This is useful
when comparing two or more images. In general, adjacent views can be
wiped using this function.

234

Chapter 5: Displaying an Image

wipeSize()

The wipeSize() function wipes the specified edge and the opposite edge to
resize the view. It is called as shown below:

void wipeSize(int x, int y, ilView* view = NULL,
int mode = ilDelVal | ilTopRight);

The x and y parameters control which way to move the edge specified in
mode. In addition, the opposite edge is moved in the opposite direction,
causing the view to grow or shrink in size. For example, if the right edge is
moved to the right, then the left edge is moved to the left as well. In this case,
the view would grow in width, as show in Figure 5-10.

Figure 5-10 Using wipeSize()

Updating Views

The update() function can change the view position, view size, and image
position as shown below:

void update(int x=0, int y=0, int nx=0, int ny=0,
int imgX=0, int imgY=0,
ilView* view=NULL, int mode=ilRelVal);

The view is moved to the position specified by x and y and is resized to nx
and ny. The image within the view is moved to the position specified by
imgX and imgY. If view is NULL, then all views in the view stack are updated
(except those with nop flag set).

The first six of these parameters are interpreted as specified by mode. For
example, if ilDelVal is specified, then all six parameters are interpreted as
changes from the current configuration. In addition, the parameters are used

New wiped size of view

Previous size of view

A More Complicated Interactive Display Program

235

as specified. However, if ilClip is passed in mode, then the view position, size,
and image position are clipped. After the view has been updated, it is
painted unless ilDefer is passed in mode. The update function combines the
functionality of moveView(), wipe(), and moveImg().

Using setStart()

A display support function that you might find useful as you apply display
operators is setStart():

void setStart(int x, int y, int mode = 0);

This function is typically used in an interactive loop to initialize the starting
x and y coordinate values that the ilDisplay keeps track of. The coordinates
passed to any function with ilRelVal or ilOldRel are interpreted relative to
the current start values. If ilRelVal is specified, the old start values are
updated; however, if ilOldRel is specified, the start values aren’t updated.
This is useful if several operations are needed and you don’t want to update
the start values until you are done. This model is used in the program
presented in “A Simple Interactive Display Program” on page 201. To
retrieve the previously set start values, use getStart(). This function returns
the start values by reference:

void getStart(int& x, int& y);

You can achieve many different effects by judiciously deferring drawing
while you apply a combination of these and/or any of the other display
operators.

A More Complicated Interactive Display Program

The imgview interactive display program (which is installed in /usr/sbin
when you install the Image Tools) allows a user to drag, roam, and wipe
several images in a display window. (See its reference page for more
information.) A simplified version of its source code is provided online in:

/usr/people/4Dgifts/examples/ImageVision/ilapps

236

Chapter 5: Displaying an Image

The C++ version of the simplified program is ilview.c++, and the C version is
ilcview.c.

The portion of this program that processes events and calls display operators
is shown below for your convenience. It uses an ilViewer to handle events.
The ilViewer class is a higher-level object derived from ilDisplay. It calls
ilDisplay functions and operators based on X events. It calls moveView() for
left mouse button movement and moveImg() for middle mouse button
movement. The cursor changes shape near the edges and corners to indicate
that wipe mode is enabled on the left mouse button. If you press the left
mouse button and perform a wipe, this changed cursor remains for the
duration of the wipe. See the ilViewer reference page and the header file
il/ilViewer.h for details. The source code for ilViewer is provided in:

/usr/people/4Dgifts/examples/ImageVision/ilsrc

Example 5-2 A More Complicated Interactive Display Program

// Create X window for GL or X rendering

Display* dpy = XOpenDisplay(NULL);

ilGLXConfig glx;
glx.addEntry(GLX_NORMAL, GLX_RGB, rgbMode);
glx.addEntry(GLX_NORMAL, GLX_DOUBLE, doubleBuffer);
glx.addEntry(0, 0, 0); // terminator

Window win = glx.createWindow(dpy,
RootWindow(dpy, DefaultScreen(dpy)),
origin.x, origin.y, winsize.x, winsize.y, 0);

XMapWindow(dpy, win);
glx.winset();

// Revert to default error handler
XSetErrorHandler(0);

// Set window title
XStoreName(dpy, win, argv[optind]);

// Select the input events that will be acted on
XSelectInput(dpy, win, ExposureMask | KeyPressMask |

PointerMotionMask | PointerMotionHintMask |
ButtonPressMask | ButtonReleaseMask);

// Add the images to be viewed
ilViewer viewer(dpy, win, render);

A More Complicated Interactive Display Program

237

for (idx = 0; idx < nimg; idx++)
viewer.addView(img[idx], ilLast,

 ilClip|ilCenter|ilDefer);

viewer.setStop(TRUE);

// Execute the UI event loop

XEvent event;
int ever = 1;
for (;ever;) {

XNextEvent(dpy, &event);
switch (event.type) {

case KeyPress:
switch(XLookupKeysym(&event.xkey, 0)) {

case XK_Home:
viewer.display(NULL, ilCenter|ilClip);
break;

case XK_Escape:
ever = 0;
break;

case XK_Up:
viewer.raise();
break;

case XK_Down:
viewer.lower();
break;

default:
break;

}
break;

case DestroyNotify:
ever = 0;
break;

default:
viewer.event(&event);
break;

}

}

238

Chapter 5: Displaying an Image

glx.destroyWindow();
XCloseDisplay(dpy);
exit(0);

}

This chapter explains how you can
extend the ImageVision Library by
deriving new classes to support
capabilities unique to your applications.

Extending the IL

Chapter 6

241

Chapter 6

6. Extending the IL

Since the IL is implemented in C++, you can easily extend it by deriving new
classes that provide support for the capabilities you need, for instance, to
include another file format or image processing algorithm. You can derive
from any C++ class, but you’re most likely to want to derive from the
foundation classes. Figure 6-1 shows the types of classes you’re most likely
to derive.

Note: If you’re using the C or the Fortran interfaces to the IL, extending the
library isn’t quite so simple. You have to implement a new class in C++ and
then generate a C or Fortran interface for it.

This chapter contains the following major sections:

• “Deriving from ilImage” on page 244 tells you how to derive new
classes from ilImage.

• “Deriving from ilCacheImg” on page 255 tells you how to derive new
caching classes to manage data.

• “Deriving From ilMemCacheImg” on page 255 tells you how you can
derive from ilMemCacheImg to manage images in main memory.

• “Implementing Your Own File Format” on page 258 describes adding
classes to support new file formats.

• “Implementing an Image Processing Operator” on page 273 tells you
how to define operators that implement new image processing
algorithms.

• “Deriving from ilRoi” on page 300 describes how you define new
regions of interest in your images.

242

Chapter 6: Extending the IL

The IL classes from which you might want to derive you own new classes
are shown in Figure 6-1.

Figure 6-1 User-defined Classes in the IL

ilImage

ilSGIImg

ilTIFFImg

ilFITImg

ilDisplayImg ilSharpenImg

ilRotZoomImgilOpImg

ilCacheImg

ilFileImg

. .

newCacheClass

newOperator

newFileFormat

newImgClass

ilPCDImg

ilLink

ilMemoryImg

ilBitMapRoi

newRoiClass

ilRectRoi

ilRoi

ilMemCacheImg
ilPCDOImg

ilGIFImg

. .

. .

243

Each extension to the IL can be designed to provide a certain set of
capabilities and require the implementation of a matching set of functions,
as described below:

• newImgClass—A class derived from ilImage inherits all of its functions
for handling an image’s attributes; it needs to implement ilImage’s pure
virtual functions for reading and writing data. More information on
deriving from ilImage is provided in “Deriving from ilImage” on
page 244.

• newCacheClass—A class derived from ilCacheImg inherits its caching
mechanism; such a class is useful for managing a large amount of data
that’s accessed a portion at a time. More information on deriving from
ilCacheImg is provided in “Deriving from ilCacheImg” on page 255.

• new ilMemCacheImg class—A class derived from ilMemCacheImg
inherits its main memory caching mechanism. Pure virtual functions
for storing and retrieving pages of image data must be implemented.
More information on deriving from ilMemCacheImg is provided in
“Deriving From ilMemCacheImg” on page 255.

• newFileFormat—To add support for your file format, you need to
derive from ilFileImg and implement functions that create a new file or
open an existing one in the desired format. You must also create
functions that read and write data from and to the file. More
information on deriving from ilFileImg is provided in “Implementing
Your Own File Format” on page 258.

• newOperator—To define a new operator, you need to implement the
desired image processing algorithm and ensure that the processed
image has the correct attributes. You can derive directly from ilOpImg
or from one of its generalized subclasses. See “Implementing an Image
Processing Operator” on page 273 for more information.

• newRoi—To define a new ROI, you need to derive from ilRoi and
implement functions that describe valid and invalid regions with
respect to this new ROI. See “Deriving from ilRoi” on page 300 for more
information.

The classes ilImage, ilCacheImg, ilMemCacheImg, ilFileImg, ilOpImg, and
ilRoi are abstract classes; they declare pure virtual functions that subclasses
need to implement. These virtual functions, and the class constructor and
destructor, represent the minimum set that a derived class needs to

244

Chapter 6: Extending the IL

implement. Other functions can be added as necessary to provide the
desired capabilities of the class.

The remaining sections in this chapter explain how to derive from ilImage,
ilCacheImg, ilMemCacheImg, ilFileImg, ilOpImg, or ilRoi (or one of their
generalized subclasses). Remember that when you derive from a class, you
inherit all its public and protected data members and member functions. as
well as the public and protected members from its superclasses. You should
review beforehand the header files and the reference pages for any class you
plan to derive from in order to become familiar with its data members and
member functions. Many of the functions described in the following sections
are protected, so they’re available for use only by derived classes.

Deriving from ilImage

A class derived from ilImage must assign values to the image’s attributes
and implement ilImage’s virtual functions. The image’s attributes (data
members) are listed in Table 6-1; they’re generally initialized in the
constructor.

a. Inherited from ilLink

Table 6-1 Image Attributes Needing Initialization in ilImage Subclass

Name Data Type Meaning

size ilSize size of the image in pixels

dtype ilType pixel data type

order ilOrder pixel data ordering

cm ilColorModel image’s color model

space ilCoordSpace location of origin and orientation of axes

imtype ilImageType type of image (memory, file, display, operator)

fillValue ilPixel value used to fill pixels beyond the image’s edge

minValue,
maxValue

ilPixel minimum and maximum allowable pixel values

status ilStatus image’s status (for example, ilOKAY)a

Deriving from ilImage

245

Typically, you’ll just set these attributes directly. However, there are
convenience functions—for setting minValue, maxValue, cm, and
status—that you might want to use (these functions are protected, so they’re
available only to classes derived from ilImage):

void initMinMax(int force=0);
void initColorModel(int noABGR=0);
ilStatus setStatus(ilStatus val); //inherited from ilLink
void clearStatus(); // inherited from ilLink

The initMinMax() function simultaneously sets both the minimum and
maximum allowable pixel values. They’re set to the smallest and largest
possible values, respectively, allowed by the image’s data type. Therefore,
you must set the image’s data type before you call initMinMax(). By default,
this function’s argument is 0, which means that the minimum and maximum
values won’t be changed if they’ve already been explicitly set; if you pass in
1 as the argument to this function, both values will be set regardless of
whether they’ve been set before.

The initColorModel() function sets the color model based on the channel
dimension of the image. If the channel dimension is 1, the color model is
ilMinBlack; if it’s 3, the color model is ilRGB. If the channel dimension is 4
and the default value of 0 is used for the noABGR argument, the color model
is ilABGR. Otherwise, the color model is ilMultiSpectral.

The setStatus() function simply sets and returns the image’s status. The
clearStatus() function sets the image’s status to ilOKAY. (Both of these
functions are inherited from ilLink.) See “Error Codes” on page 407 for a list
of the error codes that the IL defines as being of type ilStatus.

Another function you may want to use in a constructor is setNumInputs().
This function sets the maximum possible number of inputs to an image.
Typically, you’ll use this function only when deriving an operator. See
“Implementing an Image Processing Operator” on page 273 for more
information about doing this.

246

Chapter 6: Extending the IL

Data Access Functions

Most of the functions declared virtual in ilImage are data access functions:

virtual ilStatus getSubTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, int dx, int dy, int dz,
int dnx, int dny, int dnz,
const ilConfig* config=NULL) = 0;

virtual ilStatus setSubTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, int dx, int dy, int dz,
int dnx, int dny, int dnz,
const ilConfig* config=NULL) = 0;

virtual ilStatus copyTileCfg(int x, int y, int z,
int nx, int ny, int nz,
ilImage* other, int ox, int oy, int oz,
const ilConfig* config=NULL, int from=1);

virtual ilStatus fillTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, const ilConfig* config=NULL,
const ilTile* fillMask=NULL);

virtual ilStatus seekTile3D(int x, int y, int z,
int nx, int ny, int nz,
const ilConfig* config=NULL,
ilSemaphore* sem=NULL);

virtual ilLockedTile* lockTile3D(int x, int y, int z,
int nx, int ny, int nz,
const ilConfig* cfg=NULL, int mode=ilLMread);

Note that two of these—getSubTile3D() and setSubTile3D()—are pure
virtual functions; in other words, they have no default implementation, so
they must be defined by derived classes. The other
functions—copyTileCfg(), fillTile3D(), seekTile3D(), and
ilLockedTile()—have a default implementation that may or may not meet
your needs. You can choose whether or not to override these functions. The
rest of this section explains how to implement all of these functions.

Deriving from ilImage

247

Implementing getSubTile3D()

You should implement getSubTile3D() so that it retrieves an arbitrary tile of
data from the source image and puts it into the location indicated by data.
The tile is located at position (x, y, z) in the source image and has the size
indicated by nx, ny, and nz. The dx, dy, and dz parameters specify the data
buffer’s origin relative to the image; dnx, dny, and dnz specify the buffer’s
size. The optional config argument indicates how the data should be
configured in the buffer. See “Three-dimensional Functions” on page 63 for
more information about getSubTile3D().

Implementing setSubTile3D()

Your version of the setSubTile3D() function should write the tile of data
pointed to by data into the destination image. The arguments for
setSubTile3D() have analogous meanings to those for getSubTile3D():
(x,y,z) and (nx, ny, nz) indicate the desired origin and size of the tile in the
destination image; dx, dy, and dz specify the data buffer’s origin relative to
the image; and dnx, dny, and dnz specify the size of the data buffer. The
optional config argument describes the configuration of the tile being passed
or written; if it’s NULL, assume that the tile’s configuration matches that of
the destination image. See “Three-dimensional Functions” on page 63 for
more information about setSubTile3D().

Implementing Other Data Access Functions

Several other data access functions have default implementations that you
may choose to override. These include:

copyTileCfg() The default implementation of copyTileCfg() copies a tile of
data from one image to another. This implementation isn’t
as efficient as possible, since it allocates a temporary buffer
for holding the data as it performs the copy and then deletes
the buffer when it completes the copy; however, this
implementation is still more efficient than getTile() or
setTile(). You might want to override this function to
provide a more efficient version.

248

Chapter 6: Extending the IL

fillTile3D() The default version of fillTile3D() does nothing; you’ll need
to override it if you want its functionality. Your
implementation of fillTile3D() should fill a specified tile
with the fill value of the image.

seekTile3D() The default version of seekTile3D() does nothing; you’ll
need to override it if you want its functionality. Your
implementation of seekTile3D() merely needs to load the
specified tile of data into the image’s cache.

lockTile3D() The default implementation of lockTile3D() requests
locking of the pages spanning the requested tile. The pages
are locked as read-only by default.

 For more information about these three functions and their arguments, see
“Three-dimensional Functions” on page 63.

Support Functions

The outOfBound() support functions are provided to help implement the
data access functions:

int outOfBound(int x, int y);
int outOfBound(int x, int y, int z);

These functions return TRUE if the specified point lies outside the image.

You might also want to use the functions that help convert from one
coordinate space to another. These functions are discussed in “Coordinate
Space Support” on page 66 and described in more detail in the ilImage
reference page.

If you implement any of the data access functions, you need to hook them
into the reset mechanism, which is described next.

Deriving from ilImage

249

Color Conversion

The checkColorModel() function matches the color model of an image with
the number of channels. If there is a mismatch, the number of channels is
updated to match the color model. However, if the number of channels was
set and there is a mismatch, a status of ilBADCOLFMT is set.

checkColorModel();

The needColorConv() function returns TRUE if the image’s color model
does not match the color model of other. The from flag indicates the direction
that data is copied.

needColorConv(ilImage* other, int from, const ilConfig* cfg);

The copyConverted() function uses ilCopyTileCfg() to copy a tile of
color-sensitive data from one image to another.

ilStatus CopyConverted(int x, int y, int z,
int nx, int ny, int nz, ilImage *other,
int ox, int oy, int oz,
const ilCOnfig* cfg, int from);

Managing Image Attributes

An image has numerous attributes associated with it that describe the image.
You can change some attributes; some change as a result of being operated
on by a display function. This section describes functions you can use to
manage attribute values in a class derived from ilImage.

The reset() Function

The only other virtual function in ilImage that you should be concerned with
is reset():

virtual void reset(); // inherited from ilLink

This function is designed to adjust or validate an image’s attributes if they’ve
been altered, for example, by applying an operator or by setting an attribute
explicitly. This function plays a key role in the IL’s execution model, which
propagates image attribute values down an operator chain. (See

250

Chapter 6: Extending the IL

“Propagating Image Attributes” on page 78 for more information on
propagating image attributes.)

The reset mechanism is triggered whenever an image is queried about its
attributes or when its data is accessed. The query and access functions all call
resetCheck() (which is inherited from ilLink) to initiate the reset process. If
you implement getSubTile3D(), setSubTile3D(), copyTileCfg(),
fillTile3D(), seekTile3D(), lockTile3D(), or any getAttribute() function, you
need to call resetCheck() before you do anything else in your versions of
these functions. This ensures that correct information about an image’s
attributes is returned and that image data is always valid before it’s read,
written, copied, filled, or updated.

Example 6-1 contains ilLink’s implementation of resetCheck(). As shown in
this example, resetCheck() first checks whether any attributes have been
altered since the last reset operation.

Example 6-1 ilLink’s Implementation of resetCheck()

ilStatus ilLink::resetCheck()
{

if (anyAltered()) { // is a reset needed?
mutex.set(); // reentrant lock

//Have any attributes been altered?
if (anyAltered() && !inProgress()) {
disableAltered(); // prevent recursion during reset
calcDepth(); // determine depth of this image
reset(); // do the reset operation
resetAltered (); // clear the altered flags

// notify user of alteration
if (isResetCallbackEnabled(ilResetCbAll)) {

if (isResetCallbackEnable(ilResetCbOn|ilResetCbAlter) &&
neverReset())
rcbFunc(this, ‘i’, rcbArg);

else if (isResetCallbackEnabled(ilResetCbAlter))
rcbFunc(this, ‘a’, rcbArg);

}

clearNeverReset;
}
mutex.unset(); // reentrant free

 }
return status;

}

Deriving from ilImage

251

The anyAltered() function (inherited from ilLink) returns TRUE if any
attributes have changed. If any have, a reset operation must be performed.
First, the disableAltered() function (inherited from ilLink) is called to avoid
recursion that otherwise would occur during a reset operation (when
attributes are adjusted and checked to see if they’ve been adjusted).

The reset() function must be defined by derived classes to perform any
necessary reset tasks. For example, the ilMemCacheImg class’s version of
reset() throws out any existing data in the cache since it’s invalid; ilOpImg
performs several chores in its reset() function and then calls resetOp(),
which needs to be implemented by derived classes to perform more specific
reset tasks. The resetAltered() function (inherited from ilLink) clears the
flags indicating that attributes have been altered and that a reset is needed.

Allowing Attributes to Change

Not every image attribute can be changed; by default, the fill value and the
maximum and minimum pixel values are allowed to change. Each ilImage
derived class can choose which attributes it allows to be modified by using
the setAllowed() function (inherited from ilLink), typically in the
constructor:

myImg.setAllowed(ilIPcolorModel|ilIPcoordSpace);

The argument passed to setAllowed() is a mask composed of a logical
combination of the enumerated type, ilImgParam, which is defined in the
header file il/ilImage.h. The ilImgParam constants defined in the IL are listed
in Table 6-2. Each image attribute listed in the table is described elsewhere in
this guide. Derived classes can add members to this structure to trace
whether particular parameter values have changed and to control whether
they can be explicitly modified.

Table 6-2 ilImgParam Constants

Defining Class ilImgParam Image Attribute

ilImage ilIPdataType data type

“ ilIPorder pixel ordering

“ ilIPpageSize page size

“ ilIPxsize x image size

252

Chapter 6: Extending the IL

Preventing Attributes from Changing

An image can explicitly disallow any of these attributes to be modified. For
this, it uses the clearAllowed() function (from ilLink) and passes in a logical
combination of the ilImgParam parameters that should be disallowed.

“ ilIPysize y image size

“ ilIPchans number of channels

“ ilIPcoordSpace coordinate space

“ ilIPcolorModel color model

“ ilIPminPixel minimum pixel value

“ ilIPmaxPixel maximum pixel value

“ ilIPscale color scaling value

“ ilIPfill fill value

“ ilIPcompression compression

“ ilIPcmap look-up table color map

“ ilIPpageBorder page border for overlapping pages

“ ilIPdepth image depth (size of z dimension)

ilFileImg ilFPimageIdx image index

ilOpImg ilIPbias bias value

“ ilIPclamp clamp value

“ ilIPworkingType working data type

ilSubImg ilIPconfig configuration

ilImgStat ilISPzBounds z dimension bounds

ilRoi ilROIcoordspace coordinate space

ilDisplayImg ilDPcontext

Table 6-2 ilImgParam Constants (continued)

Defining Class ilImgParam Image Attribute

Deriving from ilImage

253

Another function, unalterable() (inherited from ilLink), checks whether a
particular attribute can be modified:

canNotChange = myImg.unalterable(ilIPsize);

This function takes the same sort of argument as clearAllowed() and returns
TRUE if the attributes specified aren’t allowed to be modified.

Setting Altered and Stuck Flags

When an attribute’s value is changed by the user (by calling the appropriate
setAttribute() function), setAltered() (from ilLink) should be called to set a
flag indicating that a reset is needed. Thus, you must call setAltered() within
any setAttribute() functions you define. This function takes a mask of
ilImgParam parameters as an argument and sets the altered flags for the
specified attributes.

You can check whether any particular attributes have been altered with
isAltered() (inherited from ilLink). This function takes an ilImgParam mask
as an argument and returns TRUE if any of the specified attributes have been
altered.

As explained in “Propagating Image Attributes” on page 78, IL programs
need to keep track of attributes that have been explicitly set by the user so
that they remain fixed during the reset process. To keep track of these
attributes, you should call markSet() (inherited from ilLink) with an
ilImgParam mask as an argument. This function marks the specified
attributes with a stuck flag (yet another item inherited from the ilLink class),
which indicates that their values shouldn’t be changed during a reset
operation. markSet() is invoked automatically for you when setAltered() is
called, so generally you don’t need to call markSet() yourself.

You can determine whether any attributes are fixed with isSet() (inherited
from ilLink). This function returns TRUE if any of the attributes specified in
the mask passed in have been explicitly set.

Setting Attributes Directly

Sometimes within a derived class’s implementation, you may want to
change an attribute’s value without triggering the reset mechanism and
without causing the value to become fixed. You’ve already seen one

254

Chapter 6: Extending the IL

situation where you want to do this: within a constructor, when attributes
are being initialized. Another case is when you’re computing attribute
values during the reset operation itself. In these situations, you don’t use a
setAttribute() function since it calls setAltered(), which in turn calls
markSet(). Since derived classes have access to protected data members,
simply set the value of the desired attribute directly:

dtype = ilFloat; // changes value; no flag set

You should bypass the reset mechanism in this way only when necessary,
since doing so prevents attribute values from being automatically
propagated down the operator chain. In particular, since the IL has a parallel
implementation, it should never be done anywhere that code is required to
be reentrant (such as within the implementations of any tile access functions
like getPage() or setPage()). The initMinMax(), initColorModel(), and
setStatus() functions described earlier in this section all set attributes
directly.

Adding New Attributes

It is quite easy to add attributes to a newly derived class. You can use the
header files for the already existing IL classes for examples. Here’s an
example from the il/ilOpImg.h header file:

enum ilOpImgParam {
ilIPbias = ilImgParamLast<<1,
ilIPclamp = ilImgParamLast<<2,
ilIPworkingType = ilImgParamLast<<3,
ilOpImgParamLast = ilIPworkingType

};

The pattern is simple. Suppose you were to derive a new class from ilOpImg
and add parameters to it. You might do the following:

enum ilMyClassParam {
ilIPparam1 = ilOpImgParamLast<<1,
ilIPparam2 = ilOpImgParamLast<<2,

ilIPparam5 = ilOpImgParamLast<<5,
ilMyClassParamLast = ilIPparam5

};

Deriving from ilCacheImg

255

Deriving from ilCacheImg

The ilCacheImg class implements an abstract model of cached image data.
The main purpose of this class is the definition of a common API for cached
image objects. You can implement your own caching mechanism by deriving
from ilCacheImg. The ilMemCacheImg class, derived from ilCacheImg,
provides an example of the implementation of a caching mechanism.

If you derive from ilCacheImg, you must implement the getTile(), setTile(),
copyTile(), and copyTileCfg() methods to retrieve data. You must also
implement the flush(), getCacheSize(), and listResident() functions if you
derive from ilCacheImg.

The flush() function causes any modified data in the cache to be written out.
Derived classes that access an image file can call this function in their
destructor before they close the file to ensure that all data is written.

virtual ilstatus flush(int discard=FALSE);

The getCacheSize() function returns the amount of cache memory, in bytes,
currently allocated by this image object.

virtual int getCacheSize();

The listResident() function returns a list of all the resident pages. The page
callback specified by func is called once for each resident page of the image.

virtual ilStatus listResident(ilCacheImgPagingCB* func,
 void* arg=NULL);.

Deriving From ilMemCacheImg

The ilMemCacheImg class implements a caching mechanism for efficiently
manipulating image data in main memory. In managing the interface to an
image’s cache, ilMemCacheImg implements several ilImage virtual
functions —getSubTile3D(), setSubTile3D(), copyTileCfg(), fillTile3D(),
and seekTile3D(). The ilMemCacheImg class also implements the virtual
functions hasPages(), lockPage(), and unlockPage() defined in ilImage.
hasPages() should return TRUE only for classes that implement the IL’s
paging mechanism (ilMemCacheImg does). lockPage() returns a pointer to

256

Chapter 6: Extending the IL

the page containing the specified pixel. unlockPage() unlocks the specified
page.

Classes that derive from ilMemCacheImg don’t need to implement these
functions; instead, they need to implement ilMemCacheImg’s pure virtual
functions:

virtual ilStatus getPage(void* data, ilPgCB& cb) = 0;
virtual ilStatus setPage(void* data, ilPgCB& cb) = 0;

getPage() is called when a page of image data needs to be retrieved
from the image and put into the cache. The data argument is
a pointer to a page-sized buffer into which data will be read.

setPage() is called when the cache is full and a page needs to be
written back to the image. The data argument is a pointer to
a page-sized buffer that contains data that will be written to
disk.

The ilPgCB struct (defined in the header file il/ilMemCacheImg.h) is a control
block that defines the location within the buffer and the amount of data to be
read or written:

struct ilPgCB {
// C++ constructor:

ilPgCB(ilImage* img, int x, int y, int z, int c);

int x, y, z, c; // origin of page
int nx, ny, nz, nc; // size of page

};

Since an image’s size isn’t generally an exact multiple of the page size, you’re
likely to encounter pages that are only partially full of data. The nx, ny, nz,
and nc parameters define the actual limits of the data that you need to read
or write within a given page buffer. You might want to use the
getStrides3D() function to help you step through a page buffer. See “Data
Access Support Functions” on page 65 for more information about
getStrides3D().

Deriving From ilMemCacheImg

257

Table 6-3 lists additional attributes you might need to initialize for a class
derived from ilMemCacheImg.

If you derive from ilMemCacheImg, you must implement the virtual
function listResident(). The callback function specified in func is invoked
once for each page resident in memory. The callback function should have
prototype as defined in setPagingCallback().

virtual ilStatus listResident(ilCacheImgPagingCB* func,
 void* arg=NULL);

You can also implement the allocPage() and freePage() functions. These
functions allocate or free a page in main memory whose pixel includes
(x,y,z,c). If you implement the function allocPage(), you must also call the
function doUserPageAlloc() in the function that calls allocPage() to notify
the IL that the pages need to be defined.

The flush() function (defined by ilMemCacheImg) flushes data from an
image’s cache; it calls setPage() to ensure that the data is written to the
proper place:

virtual ilStatus flush(int discard=FALSE);

This function takes one optional argument and returns an ilStatus to indicate
whether the flush was successful. Calling flush() with a TRUE argument will
discard all data in the cache. This is useful for freeing up memory if you
know you’re never going to use the cached data again. When discard is
FALSE, flush() writes any modified data from the cache to the image. The
destructor for any class derived from ilMemCacheImg must call
ilMemCacheImg’s flush() (with discard equal to FALSE) before the class

Table 6-3 Additional Attributes Needing Initialization in ilMemCacheImg
Derived Classes

Name Data Type Meaning

pageSize int size of a page in bytes

xPageSize, yPageSize,
zPageSize, cPageSize

int pixel dimensions of the pages used to
store data on disk

xPageBorder,
yPageBorder,
zPageBorder

int pixel dimensions of page borders as
stored on disk (default is zero)

258

Chapter 6: Extending the IL

object is deleted to ensure that any modified data is written back to the
image.

For more information about deriving from either of ilMemCacheImg’s
derived classes (ilFileImg and ilOpImg), see “Implementing Your Own File
Format” below and “Implementing an Image Processing Operator” on
page 273.

Implementing Your Own File Format

The IL is designed so that you can easily extend it to support any particular
file format. In fact, the FIT format supplied with the IL was originally
designed in part to exercise the robustness of extending the IL’s file input
and output abilities; it’s used as an example in the paragraphs that follow.
The code for the FIT format is also available online in:

/usr/people/4Dgifts/examples/ImageVision/ilsrc/ilFITImg.c++

The online code may differ slightly from the excerpts shown in the following
paragraphs, but the functionality is the same.

To implement IL support for your file format, you need to derive a new class
from ilFileImg and provide versions of functions that:

• create a new file or open an existing one

• read data from a file into the cache, one page at a time, decompressing
it if necessary

• write data from the cache into a file, one page at a time, compressing it
if necessary

• close a file

• allow your format to be registered

Typically, the constructors for the class you derive from ilFileImg create and
open files, and getPage() and setPage() read and write data, respectively.
These functions (and a class destructor) are the bare minimum that you need
to override in order to derive from ilFileImg. You might also want to provide
your own version of reset() (declared in ilLink and ilImage) so that altered
parameters are handled properly. In addition, you may want to implement

Implementing Your Own File Format

259

other functions of your own design to provide more capabilities. The rest of
this section describes in detail the tasks that the minimal set of functions
needs to perform.

Creating and Opening a File

Most image data file formats consist of a file header and the data itself. The
file header specifies such information as the size of the image, the data type
of the image data, and the color model that should be used to interpret the
data. When you open an existing file for reading, the file header is generally
read first so that the characteristics of the data are known. When you create
a new file and write data into it, the header needs to be written before you
close the file.

Since existing and new files need to be treated slightly differently, it makes
sense to have two corresponding types of functions, typically constructors,
in a class derived from ilFileImg. The ilFITImg class, which can serve as a
model for this discussion, provides two constructors for existing files and
one for creating new image files.

Opening an Existing File

The two constructors in the ilFITImg class that open an existing file differ in
how they allow the file to be specified; one takes a filename as an argument,
and the other takes a file descriptor. The constructor shown in Example 6-2
demonstrates how, given a filename and a mode (indicating whether the file
is readable or writable), the corresponding file might be opened. The init()
function, which performs important initialization tasks such as reading the
file’s header, is described in the paragraphs that follow Example 6-2.

260

Chapter 6: Extending the IL

Example 6-2 ilFITImg Constructor to Open an Existing File

ilFITImg::ilFITImg(const char* name, const char* mode)
{

// decipher mode
fmode = mode[0] == 'r' && mode[1] != '+'? O_RDONLY:O_RDWR;

// open the file
if ((fd = open(name, fmode)) == -1)

{ setStatus(ilBADFILEOPEN); return; }
fname = strdup(name);

// do common initializations
init();

}

In addition to opening the file, the constructor needs to read the header
information and initialize the values of several variables related to the image
data. These variables need to be initialized so that query functions inherited
from ilFileImg and ilImage return the proper values. (ilFileImg inherits from
ilMemCacheImg, but ilMemCacheImg doesn’t define any variables or query
functions that require initialization.)

Table 6-4 lists the variables that need to be initialized (in addition to those
listed in Table 6-1 and Table 6-3). Some variables may not need to be
changed, depending on the requirements of the particular file format and on
what default value they’re given. For example, formats that don’t provide
compression don’t need to set the compress variable since by default it’s
ilNoCompression; similarly, imgidx doesn’t need to be changed if the default
first image in the file (0) is appropriate.

Implementing Your Own File Format

261

Values for some of these variables are typically stored in a file’s header and
can therefore be set by reading the header. The remaining variables need to
be set explicitly. Example 6-3 shows how a header for a file in the ilFIT
format might be read and how all the needed variables might be initialized.

Example 6-3 Reading a FIT Header File and Initializing Variables

struct FIThead {
unsigned short magic; // file identifier
unsigned short version; // file version
unsigned int xSize; // image size
unsigned int ySize;
unsigned int zSize;
unsigned int cSize;
int dtype; // data type
int order; // RGBRGB.. or RR..GG..BB..
int space; // coordinate space
int cm; // color model

Table 6-4 Additional Image Attributes Needing Initialization during File
Opening

Name Data Type Declared In Comments

fname char* ilFileImg filename

fmode int “ indicates read-only or read-write

fd int “ file descriptor, if available

format char* “ file format (for example, “FIT”)

nimgs int “ number of images in file; default is 1

imgidx int “ initialize image index; default is 0

compress ilCompress ilImage data compression, if supported; default is
ilNoCompression

allowed int ilLink defines which image parameters can be
changed; default is ilIPfill, ilIPminPixel,
and ilIPmaxPixel

status ilStatus “ status; default is ilOKAY

262

Chapter 6: Extending the IL

unsigned int xPageSize; // page size
unsigned int yPageSize;
unsigned int zPageSize;
unsigned int cPageSize;
double minValue; // min/max pixel values
double maxValue;
unsigned dataOffset; // offset to first page of data

// user extensible area...
};

void ilFITImg::init()
{

needHeader = 0; // must be initialized for destructor
dataWritten = 1; // so extensions can’t be reserved

// read the header
if (readHeader() != ilOKAY) return;

// fill in other info
format = “FIT”;
calcPageParams();

setStatus(ilOKAY);
}

void ilFITImg::calcPageParams()
{

pageCount.x = (size.x-1)/xPageSize + 1;
pageCount.y = (size.y-1)/yPageSize + 1;
pageCount.z = (size.z-1)/zPageSize + 1;
pageSize = ilDataSize(dtype,

xPageSize*yPageSize*zPageSize*cPageSize);
}

ilStatus ilFITImg::readHeader()
{

 FIThead head;

lseek (fd, 0, SEEK_SET);

if (read(fd, &head, sizeof head) == -1)
return setStatus(ilBADFILEREAD);

if (head.magic != ilFITmagic)
return setStatus(ilBADMAGIC);

Implementing Your Own File Format

263

// extract the image attributes from the file header
if (head.version == ’02’) {

size.x = head.xSize;
size.y = head.ySize;
size.z = head.zSize;
size.c = head.cSize;
dtype = ilType(head.dtype);
order = ilOrder(head.order);
space = ilCoordSpace(head.space);
cm = ilColorModel(head.cm);
xPageSize = head.xPageSize;
yPageSize = head.yPageSize;
zPageSize = head.zPageSize;
cPageSize = head.cPageSize;
setMinValue(head.minValue);
setMaxValue(head.maxValue);
dataOffset = head.dataOffset;
userOffset = sizeof(FIThead);

}
else if (head.version == ’01’) {

// similar code omitted for older version
}
else

 return setStatus(ilBADIMGFMT);
return setStatus(ilOKAY);

}

ilFITImg’s initializing method init() sets the needHeader flag to indicate that
the header doesn’t need to be written out when the file is closed (since the
file is just being read). The flag is set before reading the header to avoid
problems in the destructor if there is a failure reading the header. Another
flag, dataWritten, is also set to indicate that the extension area can’t be
written (it has to be written before any image data).

The init() method then calls readHeader() to read all the header data. Notice
that a special struct is defined for the header to make the code more legible.
The header is read into this struct using the UNIX® system calls lseek() and
read(). Once the header information is obtained, the variables can be
initialized.

For most file formats, the values read from the header would need to be
translated to match the enumerated values used by IL; since the FIT format

264

Chapter 6: Extending the IL

was developed for IL, these values are conveniently matched. Your code will
almost certainly be more involved.

After the values are filled in, readHeader() returns to init(), where the page
dimensions are set with calcPageParams(). Note that FIT supports paging in
the channel dimension, with cPageSize. This is an unusual feature that’s
useful for multispectral data.

Creating a New Image File

When you create a new image file, you must supply much of the same
information as when you open an existing file. The constructor that creates
a new file of image data typically takes several arguments that describe the
data that will be written into the file. Example 6-4 shows the constructor that
creates a new file for data in the FIT format.

Example 6-4 Creating a File for FIT Data

ilFITImg::ilFITImg(const char* name, const ilSize& sz,
ilType type, ilOrder o,
int xpgsz, int ypgsz, int zpgsz,
int cpgsz)

{

// create the file
if ((fd = open(name, O_RDWR|O_CREAT|O_TRUNC)) == -1)

{ setStatus(ilBADFILEOPEN); return; }

// identify what attributes are settable
setAllowed(ilIPcolorModel|ilIPcoordSpace|ilIPdepth);

// compute defaults
if (cpgsz == 0) cpgsz = o==ilSeparate? 1:sz.c;

// fill in info
fname = strdup(name);
fmode = O_RDWR;
format = “FIT”;
size = sz;
dtype = type;
order = o;
space = ilLowerLeftOrigin;
initColorModel();
initMinMax();
xPageSize = xpgsz;

Implementing Your Own File Format

265

yPageSize = ypgsz;
zPageSize = zpgsz;
cPageSize = cpgsz;
dataOffset = userOffset = sizeof(FIThead);

// flag the header/data as not written
needHeader = 1; // header needs to be written
dataWritten = 0; // still ok to reserve an extension
calcPageParams();
setStatus(ilOKAY);

}

The first four arguments specify the file name, the size of the image being
written into the file, the data type, and the pixel ordering. The remaining
arguments specify the dimensions of the pages as they’re stored on disk.
Although it’s not explicitly shown here, these remaining arguments are
given default values in the il/ilFITImg.h header file, so they don’t need to be
specified when the constructor is called.

The first task of this constructor is to create the image data file using the
UNIX system call open(). Next, those image attributes that a programmer is
allowed to change—color model and coordinate orientation—are specified.
After that, image attributes are initialized. Note that a flag (needHeader) is
set indicating that the header needs to be written out before the file is closed,
as discussed in the next section. Another flag, dataWritten, is set to indicate
that the user can reserve an extension area before image data is written.

If you allow any attributes to be modified, you need to provide a version of
reset() (inherited from ilImage) that checks for such modification. As shown
in Example 6-5, the ilFITImg version of reset() uses the keepCacheData flag
(inherited from ilMemCacheImg) to prevent the cache data from being
discarded when the file attributes such as depth (z size) are changed. If any
attributes have been altered, reset() sets the flag needHeader to indicate that
the header should be written. It then calls ilFileImg’s version of reset(),
which updates any other attributes that have changed.

266

Chapter 6: Extending the IL

Example 6-5 An Implementation of reset() for ilFITImg

void ilFITImg::reset()
{

// don’t discard any cached data
keepCacheData = TRUE;

// flag the header to be updated if params have been
// altered
if (isAltered(ilIPcolorModel|ilIPcoordSpace|ilIPdepth))

needHeader = 1;
ilFileImg::reset();

}

The flag needHeader is checked in ilFileImg’s destructor, as discussed
below. The IL’s reset mechanism is discussed in detail in “Deriving from
ilImage” on page 244. If there are multiple images in a file, you need to make
sure the proper image is being read or written; this might involve seeking to
the image’s index.

Closing a File

In addition to writing constructors for a class derived from ilFileImg, you
need to write a destructor. This destructor needs to:

• write out the header if necessary (generally, if the file is newly created
or if any attributes were modified)

• finish writing out any modified pages of image data to disk

• close the file and release the file descriptor

• free any temporary buffers that were allocated

The destructor shown in Example 6-6 is an example of how the ilFITImg
destructor might perform these tasks. It uses the same FIThead struct
defined in Example 6-3.

Implementing Your Own File Format

267

Example 6-6 Destructor for ilFITImg

ilFITImg::~ilFITImg()
{

if (fname != NULL) free(fname);
if (fd != -1) {

flush();
close(fd);

}
}

ilStatus ilFITImg::flush(int discard)
{

// update the header if necessary
if (!discard && needHeader) {

setStatus(writeHeader());
if (status != ilOKAY) return status;
needHeader = 0;

}
return setStatus(ilMemCacheImg::flush(discard));

}

ilStatus ilFITImg::writeHeader()
{

FIThead head;

// fill in the file header
head.magic = ilFITmagic;
head.version = ilFITversion;
head.xSize = size.x;
head.ySize = size.y;
head.zSize = size.z;
head.cSize = size.c;
head.dtype = dtype;
head.order = order;
head.space = space;
head.cm = cm;
head.xPageSize = xPageSize;
head.yPageSize = yPageSize;
head.zPageSize = zPageSize;
head.cPageSize = cPageSize;
head.minValue = getMinValue();
head.maxValue = getMaxValue();
head.dataOffset = dataOffset;

lseek (fd, 0, SEEK_SET);

268

Chapter 6: Extending the IL

if (write(fd, &head, sizeof head) == -1)
return setStatus(ilBADFILEWRITE);

return ilOKAY;
}

In this example, the destructor calls ilFITImg’s own version of flush(), which
updates the header with writeHeader(). The header information is first
written into the FIThead struct and then into the file using the UNIX calls
lseek() and write(). After that, ilFITImg’s flush() calls the flush() member
function inherited from ilMemCacheImg to write any pages that have been
modified out to disk. Storage associated with the filename and descriptor is
released through the UNIX calls free() and close().

Reading and Writing Formatted Data

In addition to providing functions that open and close files, you need to
override getPage() and setPage() to read and write image data in your
particular file format. These two functions are declared as protected, pure
virtual member functions in ilFileImg:

virtual ilStatus getPage(void* data, ilPgCB& cb) = 0;
virtual ilStatus setPage(void* data, ilPgCB& cb) = 0;

The data argument for getPage() is a pointer to an already allocated,
page-sized buffer into which data is read. This buffer must be large enough
to hold a page of data. For setPage(), data is a pointer to a page-sized chunk
of memory that contains data that will be written to disk. The ilPgCB struct
is discussed in “Deriving From ilMemCacheImg” on page 255. The ilFITImg
versions of getPage() and setPage() use the information in the ilPgCB struct
to determine the offset to pass to the UNIX system call lseek(). Then, the
actual reading or writing is performed using the system calls read() and
write(). Example 6-7 shows the implementation of getPage() and setPage()
for ilFITImg.

Implementing Your Own File Format

269

Example 6-7 Reading and Writing Data in the FIT format

ilStatus ilFITImg::getPage(void* data, ilPgCB& cb)
{

beginFileIO();
lseek (fd, pageOffset(cb.x,cb.y,cb.z,cb.c), SEEK_SET);
int sts = read(fd, data, pageSize);
endFileIO();
return setStatus(sts == -1? ilBADFILEREAD:ilOKAY);

}

ilStatus ilFITImg::setPage(void* data, ilPgCB& cb)
{

beginFileIO();
lseek (fd, pageOffset(cb.x,cb.y,cb.z,cb.c), SEEK_SET);
int sts = write(fd, data, pageSize);
endFileIO();

dataWritten = 1;
return setStatus(sts == -1? ilBADFILEWRITE:ilOKAY);

}

Both getPage() and setPage() must be reentrant so that IL programs can be
multi-threaded. In this example, the functions beginFileIO() and
endFileIO() are used to “lock” file access during the seeks, reads, and writes.
These two protected member functions are inherited from ilFileImg to
ensure that reads and writes can be made safely in a multi-threaded
environment.

A file image’s cache holds uncompressed data. Therefore, if the particular
file format being used supports compression, getPage() needs to
decompress the data before putting it into the cache. Similarly, setPage()
must compress data before it writes it to disk.

Registering Your File Format

The IL provides an optional mechanism for registering your file format so
that other programmers can manipulate files of image data in that format.
The FIT, TIFF, SGI, and Photo CD file formats are all registered this way.
Registration also allows you to write file format-independent programs
using the convenience functions ilCreateImgFile() and ilOpenImgFile().
These two functions are declared in the header file il/ilGenericImgFile.h and

270

Chapter 6: Extending the IL

discussed in more detail in their own reference pages and in “Opening an
Existing File” on page 92 and “Creating a TIFF, SGI, or FIT File” on page 94.
As their names suggest, these functions create new files or open existing
ones.

Deriving from ilFileFormat

To register your file format, you must first create a class derived from the
ilFileFormat class. The example shown below is for the FIT format; an online
version is also available in:

/usr/people/4Dgifts/examples/ImageVision/ilsrc/ilFITformat.c++

The example starts with the ilDeclareFileFormat macro to declare
ilFITformat as a derivative of ilFileFormat:

ilDeclareFileFormat(ilFITformat);

The next line defines the constructor for the ilFITformat class:

ilFITformat::ilFITformat() : ilFileFormat(“FIT”, “fit”) {}

The arguments passed to the base class constructor define the format name
to be “FIT”, and the standard file extension for this format to be “.fit”. The
format name is used with ilCreateImgFile() to determine what file format is
being created. The file extension is used to guide the IL in choosing which of
the registered formats to try first when opening a file of unknown type with
ilOpenImgFile(). If that format fails, or the extension doesn’t match any of
the registered file formats, then all of the formats will be tried in succession,
in an attempt to open the file. Additional extensions can be registered in the
body of the constructor using the addExtension() method:

void addExtension(const char* formatExt);

Example 6-8 continues with the definition of the openFile() virtual method.

Implementing Your Own File Format

271

Example 6-8 Implementation of OpenFile()

ilFileImg*
ilFITformat::openFile(const char* name, const char* mode,

const ilSize* size, ilType type,
ilOrder ord, const ilSize* pgSize)

{
ilFITImg *img;

if (size==NULL)
// try opening an existing file
img = new ilFITImg(name, mode);

else {

// create a new file
if (pgSize == NULL)

img = new ilFITImg(name, *size, type, ord);
else

img = new ilFITImg(name, *size, type, ord,
pgSize->x, pgSize->y, pgSize->z, pgSize->c);

}

// if anything went wrong then delete the object
if (img != NULL && img->getStatus() != ilOKAY)

{ delete img; return NULL; }
return img;

}

This function is used by the IL to either open or create a file of the FIT format.
As you can see, the openFile() function is mostly a wrapper for the
constructors defined in the ilFITImg class. The size parameter distinguishes
opening from creation. When NULL is passed, the file is opened; otherwise
the file of the indicated size is to be created.

Creating a Dynamic Shared Object

The simplest way to actually register your file format with IL is to construct
an object of the class you have derived from ilFileFormat. The constructor for
the ilFileFormat base class performs all the required bookkeeping. However,
the preferred method of registering with IL is to create a dynamic shared
object (DSO) that allows programs that use IL to recognize your new file
format, without any need to relink those programs.

272

Chapter 6: Extending the IL

The DSO contains the code for both your file format and the registration
object. In the case of FIT, this is the code for ilFITformat and ilFITImg. In the
DSO you must also define a global function, ilNewFileFormat(), with the C
linkage. This function is defined in the example FIT source as:

void ilNewFileFormat() { new ilFITformat(); }

At run time, the IL searches the directory /usr/lib/ImageVision/filefmts for
DSOs that define file formats. It looks up the symbol ilNewFileFormat() in
each DSO and calls it to register the file format(s) defined in that DSO. The
IL can be told to look in other directories by setting the
IL_FILE_FORMAT_PATH environment variable to a colon (:) separated list
of directories to be searched. Be sure to include the default directory
mentioned above in this list if you want IL to continue to recognize the
standard file formats.

To actually create the DSO for the FIT format, you would issue a command
of the form:

ld -shared -all ilFITformat.o ilFITImg.o -lil -o libilFIT.so

This loads the two object files for the FIT example source into a DSO named
libilFIT.so. The name of the DSO is not important, but the DSO must be
placed in a directory that IL will search, as described above. Refer to the ld()
reference page for more details on creating DSOs.

Format-independent File Access

Once ilNewFileFormat() is called for each of the file formats to be
recognized (establishing a means of opening and creating files),
programmers can call ilCreateImgFile() and ilOpenImgFile() to create and
open files regardless of which file format is being used. As shown below,
ilOpenImgFile() takes two arguments, a filename and a string indicating
whether the file is to be opened for reading or for writing:

ilFileImg* ilOpenImgFile(const char* name, const char* mode);

This function extracts the extension from the filename and uses it to try to
determine the file format to use when opening the file. If this fails, it iterates
through the known formats until a valid ilFileImg pointer is returned or the
list is exhausted. It tries to open the desired file by passing the filename and

Implementing an Image Processing Operator

273

mode to each openFile() function. Note that these arguments match those
accepted by the ilFITImg constructors.

The ilCreateImgFile() function takes several arguments that describe the
data to be written into the file:

ilFileImg* ilCreateImgFile(const char* name,
const ilSize& size, ilType type, ilOrder order,
char* format=NULL, const ilSize* pageSize=NULL);

This function uses the format argument to find the correct openFile() to call.
If the format is NULL, it uses the file extension to determine the appropriate
file format. If there is no match on extension, then it uses the default (TIFF)
format. All the information describing the data to be written is passed to the
routine so that the file can be created with the proper attributes.

Consult the reference pages for ilOpenImgFile() and ilCreateImgFile(), and
the ilFileFormat class for more details on this topic.

Implementing an Image Processing Operator

The IL is designed to be easily extendable in C++ to include image
processing algorithms you implement. You can derive a new operator
directly from ilOpImg, or you can take advantage of the support provided
by its subclasses, some of which are specifically designed to be derived from.
This section explains in detail how to derive your own operator; it contains
these sections:

• “Deriving from ilOpImg” on page 275

• “Deriving from ilMonadicImg or ilDyadicImg” on page 285

• “Deriving from ilSpatialImg” on page 290

• “Deriving from ilWarpImg or ilPolyWarpImg” on page 294

• “Deriving from ilFMonadicImg or ilFDyadicImg” on page 295

• “Deriving from ilFFiltImg” on page 299

The subclasses of ilOpImg handle the tasks of reading raw data from the
cache and writing processed data back to the cache; if you derive from these
classes, you’re responsible for writing only the function that processes the

274

Chapter 6: Extending the IL

data in a given input buffer and writes it to a given output buffer. If you
derive directly from ilOpImg, you need to supply your own interface to the
cache as well as your processing algorithm. Figure 6-2 shows the operator
classes you’re most likely to derive from.

Figure 6-2 ilOpImg and Its Subclasses for Deriving

Remember that when you derive from a class, you inherit all of its public and
protected data members and member functions. You also inherit members
from its superclasses. You should review the header file and the reference
page for any class you plan to derive from (as well as the header file and
reference pages of its superclasses) to become familiar with its data members
and member functions. It’s also a good idea to look at a few of its subclasses
to see what general tasks they perform and what functions they implement.
Finally, you might want to take a look at the selected IL source code that’s
provided online in:

/usr/people/4Dgifts/examples/ImageVision/ilsrc

The next section contains information that’s useful whether you derive
directly from ilOpImg or from one of its subclasses. The sections that follow
contain more detailed information about deriving from each of ilOpImg’s
subclasses shown in Figure 6-2.

ilOpImg...

ilColorImg

ilFDyadicImg

ilFFiltImg

ilFMonadicImg

ilWarpImg

ilDyadicImg

ilMonadicImg

ilSpatialImg

ilPolyWarpImg

ilLutImg ilArithLutImg

ilHistLutImgilConvImg

ilSepConvImg

Implementing an Image Processing Operator

275

Deriving from ilOpImg

A class derived from ilOpImg needs to implement these member functions:

• the constructor, which creates the object, declares which data types and
pixel orders are valid for the output, and sets the working data type

• getPage(), which reads data from the cache into an internal buffer,
processes it, and writes the processed data back to the cache (often a
separate function is defined and called from getPage() to process the
data)

• resetOp(), which sets any image parameters that have been altered as a
result of processing the data

• any public setParam() and getParam() functions provided to control the
operator’s algorithm

You also need to implement a destructor if you allocate any memory or
change state within the constructor or any other function you implement.
Note that you don’t implement setPage() since it’s not available for use by
operators. This is because operators by definition compute new data and
thus are read-only. Example 6-9 shows a typical header file for an ilOpImg
subclass.

Example 6-9 Typical Header for a Class Derived from ilOpImg

#include <il/ilOpImg.h>

class myOperator : public ilOpImg {
private:

float param1;
void resetOp();
ilStatus getPage(void* data, ilPgCB& cb);

public:
myOperator(ilImage* img, float param1);
void setParam1(float val)

{ param1 = val; setAltered(); }
float getParam1()

{ resetCheck(); return param1; }
};

The resetOp() function can be declared protected if other programmers are
likely to want to derive a class from the myOperator class.

276

Chapter 6: Extending the IL

The Constructor

The constructor takes a pointer to the source ilImage(s) and additional
arguments as needed to provide parameters to control the operator’s
processing algorithm (for example, param1). If you do use additional
parameters, you might want to define corresponding functions that allow
the user to alter and retrieve the value of those parameters (such as
setParam1() and getParam1()). These functions should probably take
advantage of the IL’s reset mechanism by calling setAltered() and
resetCheck(), respectively. (See “The reset() Function” on page 249 for more
information about how the IL’s reset mechanism works.) Example 6-10
shows you what a simple constructor might look like.

Example 6-10 Typical Constructor for a Class Derived from ilOpImg

myOperator::myOperator(ilImage* img, float param1)
{

setValidType(ilFloat|ilDouble);
setValidOrder(ilInterleaved|ilSequential|ilSeparate);
setWorkingType(ilDouble);
setNumInputs(1);
setInput(img);
setParam1(param1);

}

In this example, myOperator can produce output of either ilFloat or ilDouble
data type; the output will have the same pixel ordering as the input image.
Input image data that’s of type ilFloat will be cast to ilDouble before it’s
processed; this is the meaning of an operator’s working type. Some operators
can handle multiple inputs, but the setNumInputs() function is used here to
limit myOperator to one input. The setInput() function sets the input to be
the ilImage passed in; this step chains myOperator to the input image.
Finally, param1’s value is initialized.

The setValidType(), setValidOrder(), and setWorkingType() functions are
all defined as protected in ilOpImg. They’re discussed in more detail in
ilOpImg’s reference page. The ilImage class defines setNumInputs()
(protected) and setInput().

The constructor shouldn’t contain any calculations that are based on the
value of arguments passed in, since these arguments might change. Most
operators that require arguments other than the input image in their

Implementing an Image Processing Operator

277

constructors define functions for dynamically changing the value of those
arguments (like setParam1()). Such calculations should be done in the
resetOp() function described below. The resetOp() function is declared in
ilOpImg, but its implementation is left to derived operators. Note that when
any ilImage is created, it’s considered “altered,” so resetOp() will always be
called before any data is read (with getPage()).

The resetOp() Function

Since resetOp() is guaranteed to be called before getPage(), it can—and
should—be used to calculate the values of variables needed by getPage(),
particularly if those variables depend on arguments passed in the operator’s
constructor. The resetOp() function also needs to reset any image attributes
that change as a result of the image’s data being processed, so that the proper
attribute values can be propagated down an operator chain. As an example,
imagine an operator that defined the following variables (probably as
protected) in its header file (ilMonadicImg defines these variables):

ilXYZCint str; // output (page) buffer strides
ilXYZCint istr; // input image strides

int bufferSize; // size of input buffer in bytes
int cBuffSize; // number of channels in input buffer

As you might expect, these variables are used to determine the size of the
internal buffer needed for reading in the image’s data that’s to be processed.
This buffer is actually allocated in getPage(), but the values for these
variables are calculated in resetOp(), since they depend on the input image’s
page size and data type attributes. Example 6-11 illustrates this with
ilMonadicImg’s implementation of resetOp(). (The ilXYZCint struct holds
four integers, one for each of an image’s dimensions; see “Convenient
Structures” on page 403 for more information.)

Example 6-11 The resetOp() Function of ilMonadicImg

void ilMonadicImg::resetOp()
{

// make sure we have a valid input
ilImage* img = getInput();
if (img == NULL ||

getOrder() == ilSeparate &&
getCsize() != img->getCsize())

{ setStatus(ilBADINPUT); return; }

278

Chapter 6: Extending the IL

// get buffer strides
ilXYZint pgSize, pgDel;
int cps, nc;
getPageSize(pgSize.x, pgSize.y, pgSize.z, cps);
getPageDelta(pgDel.x, pgDel.y, pgDel.z, cps);
getStrides3D(pgSize.x, pgSize.y,

str.x, str.y, str.z, str.c, nc);

ilXYZint opgSize, opgDel;
int ocps;
img->getPageSize(opgSize.x, opgSize.y, opgSize.z, ocps);
img->getPageDelta(opgDel.x, opgDel.y, opgDel.z, ocps);
ilOrder inord = img->getOrder();
usesIstr = 0; // not supported yet;

// true if output can use input strides
useLock = (usesIstr || pgSize==opgSize && pgDel==opgDel)
&& (cps==ocps || cps==size.c && ocps==img->getCsize())

&& img->getDataType()==wType
&& img->getCoordSpace()==space
&& (order == inord || usesIstr
&& (order==ilSeparate) == (inord==ilSeparate));

if (useLock) {
img->getStrides3D(opgSize.x, opgSize.y,

istr.x, istr.y, istr.z, istr.c,
cBuffSize, img->getOrder());

bufferSize = 0;
 }

else {
img->getStrides3D(pgSize.x, pgSize.y,

istr.x, istr.y, istr.z, istr.c,
cBuffSize, getOrder());

// determine input buffer size
bufferSize = ilDataSize(wType,

pgSize.x*pgSize.y*pgSize.z*cBuffSize);
}

// reset any attributes that change (none in this example)
setStatus(ilOKAY);
}

Implementing an Image Processing Operator

279

As shown, the resetOp() function performs three tasks:

• it makes sure the working data type is set

• it determines the size of the internal buffer

• it resets any attributes that change as a result of processing

The size of the internal buffer depends on the operator’s working data type,
on its page size, and on the input image’s channel stride. Note that for this
operator, the input and output buffers are the same size. (All the functions
used in this example are described in Chapter 2, “The ImageVision Library
Foundation,” except for ilDataSize(), which is described in the reference
pages.) In this example, none of the image’s attributes change as a result of
this operator’s image processing algorithm. An example of an operator that
does change attributes is ilRotZoomImg, which changes the image’s size,
unless the user has explicitly specified a desired size:

if (!isSet(ilIPsize)) {
// calculate newXsize and newYsize
size.x = newXsize;
size.y = newYsize;

}

Notice that the attributes are set directly; the setSize() function isn’t used
since it would flag the size attribute as having been altered. You can use
isDiff() to determine whether any parameters changed as a result of
propagation. This function takes a mask of ilImgParam values and returns
TRUE if any of the specified attributes changed.

The getPage() Function

The getPage() function is automatically called when another page is needed
in an operator’s cache. (See “The Cache” on page 46 for more information
about the IL’s caching mechanism.) Since operators hold processed data in
their caches, the getPage() function needs to process data before writing it
into the buffer provided.

Here are the arguments passed to getPage():

ilStatus getPage(void* data, ilPgCB& cb);

The data argument indicates the location of the page buffer into which
processed data should be written. The ilPgCB argument cb is a page control

280

Chapter 6: Extending the IL

block that defines the amount of data needed. See “Deriving From
ilMemCacheImg” on page 255.

Typically, the getPage() function handles the interface with the cache and
then leaves the actual processing to another function (usually calcPage()),
which is called by getPage(). This is how classes that derive from ilOpImg
and that act as superclasses for other operators work; the other classes
described in this section—for example, ilMonadicImg and
ilDyadicImg—follow this model. The classes you derive do not have to
follow this model, but it lends consistency to the library to do so. The name
of the function that implements the image processing algorithm varies (as do
the arguments it takes), depending on the class, as shown Table 6-5.

Example 6-12 shows what a getPage() implementation might look like
under this model.

Table 6-5 ilOpImg Subclasses and Their Algorithm Functions

ilOpImg Subclass Function That Implements the Image Processing Algorithm

ilMonadicImg ilStatus calcPage(void* inBuf, void* outBuf, ilPgCB& cb)

ilArithLutImg void calcRow(ilType inType, void* ilBuf, void* outBuf, int sx,
int lim, int idx);

ilHistLutImg ilStatus brpCalc(ilImage *src, ilImgStat *imgstat,
double **brPoints);

ilDyadicImg ilStatus calcPage(void* inBuf1, void* inBuf2, void* outBuf,
ilPgCB& cb)

ilSpatialImg ilStatus calcPage(void* inBuf, void* outBuf, ilXYZCint start,
ilXYZCint end)

ilWarpImg,

ilPolyWarpImg

void addrGen(int xpos, int ypos, int count, int xstep, int ystep,
ilXYfloat* addrs)

ilFMonadicImg void cmplxVectorCalc(float* vect, int rr, int ri, int size)

ilFDyadicImg void cmplxVectorCalc(float* vect1, int rr1, int ri1, float* vect2,

int rr2, int ri2, int size, int ch)

ilFFiltImg float freqFilt(int u, int v)

Implementing an Image Processing Operator

281

Example 6-12 A getPage() Implementation for a Class Derived from ilOpImg

ilStatus myOperator::getPage(void* data, ilPgCB& cb)
{

if (status != ilOKAY) return status;

// get and check input
ilImage* inImg = getInput(0);
if (inImg == NULL) return setStatus(ilBADINPUT);

if (useLock) {// if can multithread
// lock the page down in the input
ilPage* page = inImg->lockPage(cb.x, cb.y, cb.z, cb.c,

status);
if (status != ilOKAY) return status;

if (page == NULL) return setStatus(ilBADINPUT);

// call calcPage defined by derived class
status = calcPage(*page, data, cb);

// done with the input data, now release it
inImg->unlockPage(page);
return status;

}
else {/ / can’t multithread

// allocate buffer
ilStackBuffer inBuf(bufferSize);

// read input data into inBuf
// amount of data may vary but buffer size is constant
ilConfig cfg(wType, order, cBuffSize, NULL, cb.c,

getCoordSpace());

status = inImg->getSubTile3D(cb.x, cb.y, cb.z,
cb.nx, cb.ny, cb.nz,
inBuf.data, cb.x, cb.y, cb.z,
xPageSize, yPageSize, zPageSize, &cfg);

if (status != ilOKAY) return status;

// call calcPage defined by derived class
return calcPage(inBuf.data, data, cb);

}
}

As discussed above, getPage() can rely on calculations made in resetOp(). In
this case, resetOp() determines the size of the internal buffer allocated by
getPage(). If uselock is set in resetOp(), then the requested page is locked
down in the input (using ilImage’s method lockPage()) and is passed to

282

Chapter 6: Extending the IL

calcPage(), which writes the results of its operation into data. When you are
finished with the input, you unlock the page (using ilImage’s method
unlockPage()).

If this class is not using a lockPage() to access the input, then the
ilStackBuffer class is used to allocate an input buffer. (See “Auxiliary
Classes” on page 396 and the ilStackBuffer reference page for more
information about this class.) The data to be processed is read into this
buffer, and then both the input and output buffers (and the page control
block) are passed to calcPage(), which performs the actual processing. After
getPage() returns, the ilStackBuffer is immediately deallocated.

The calcPage() function implements the image processing algorithm, taking
care to handle each valid data type appropriately. For example,
Example 6-13 shows how ilAddImg computes the pixelwise sum of two
images.

Example 6-13 Computing the Pixelwise Sum of Two Images

#define doAdd (type) \
if (1) { \

type tb = type(bias); \
for (; idx < lim; idx += sx) \

((type*)outBuf)[idx] = \
((type*)inBuf1)[idx]+((type*)inBuf2)[idx] + tb; \

} else

ilStatus
ilAddImg::calcPage(void* inBuf1, void* inBuf2, void* outBuf,

ilPgCB& cb)
{
 // for interleaved: combine x/c loops to improve performance
 int nc = cb.nc, sc = str.c, nx = cb.nx, sx = str.x;
 if (sc == 1 && sx == nc) { nx *= nc; nc = 1; sx = 1;

sc = 0; }

for (int z = 0; z < cb.nz; z++) {
for (int y = 0; y < cb.ny; y++) {

for (int c = 0; c < nc; c++) {
int idx = z*str.z + y*str.y + c*sc, lim = idx + nx*sx;
switch (dtype) {

case ilUChar: doAdd(u_char); break;
case ilChar: doAdd(char); break;
case ilUShort: doAdd(u_short); break;
case ilShort: doAdd(short); break;

Implementing an Image Processing Operator

283

case ilULong: doAdd(u_long); break;
case ilLong: doAdd(long); break;
case ilFloat: doAdd(float); break;
case ilDouble: doAdd(double); break;
case ilBit: return ilBADPIXTYPE;

}
}

}
 }

return ilOKAY;
}

Since ilAddImg is derived from ilMonadicImg, this function uses
ilMonadicImg’s stride data members—str.x, str.y, str.z, and str.c—to step
through the data. Since the function used to compute the square root varies
with the data type (int or float), a macro is used to apply the correct version.
This macro computes the square root of each pixel value and writes the
result in the output buffer.

Because IL programs can be multi-threaded, the getPage() and calcPage()
functions shouldn’t alter any member variables or do anything else that
would make the algorithm non-reentrant. For example, the input buffer is
allocated locally in getPage() rather than as a member in resetOp() so that
concurrent execution of getPage() uses unique buffers for the different
portions of the input image at the same time.

Clamping Processed Data

Some operators might trigger overflow or underflow conditions as they
process data. To solve this potential problem, you should set clamp values
that will then be used automatically when overflow or underflow arises, as
described below.

In your implementation of resetOp(), call setClamp():

void setClamp(ilType type = numilTypes);
void setClamp(double min, double max);

This function sets the values that pixels will be clamped to if underflow or
overflow occurs. The first version sets the clamp values to be the minimum
and maximum values allowed for the data type type; the default value of

284

Chapter 6: Extending the IL

numilTypes means to use the operator’s current data type. The second
version allows you to specify actual clamp values.

In the calcPage() function, use the initClamp() macro, passing in the
operator’s data type (for example, int or float). This macro initializes two
temporary variables to hold the minimum and maximum clamp values.
Then, after you process each pixel of data, call the clamp() macro and pass
in the processed pixel value. This function clamps the pixel value, if
necessary, to the minimum or maximum clamp value.

To allow a user to set clamp values, you need to add ilIPclamp to the
ilImgParam mask passed to setAllowed() in the constructor.

Setting Minimum and Maximum Pixel Values

Another problem that might arise as a result of processing data is that the
processed values might exceed the range of values. For example, if you
multiply two images (the pixel values of which fall in the 0 to 255 range) and
then display the result, you might end up with pixel data that appears to be
invalid if the pixel values exceed 255. To solve this potential problem,
operators that alter the data range of their inputs need to set the minValue
and maxValue data members (inherited from ilImage) to ensure that the
processed data can be displayed. When the data is displayed using ilDisplay,
it’s automatically scaled between these values so that a meaningful display
is produced.

Here’s how ilAddImg computes minValue and maxValue in its resetOp()
function (ilAddImg performs pixelwise addition on two images; a
user-specified bias value can also be added to each pixel of the output):

// compute worst case min/max values
double min = getInputMin(0) + getInputMin(1);
double max = getInputMax(0) + getInputMax(1);

setStatus(checkMinMax(min+bias, max+bias));

The getInputMin() and getInputMax() functions return the minimum and
maximum pixel value attributes of the input image. The argument for these
functions is the index of the desired image in the list of inputs (the first input
is at index 0). These values are added (since that’s what ilAddImg does),
combined with the bias value, and then passed to checkMinMax(). This
function first attempts to set the operator’s data type to the smallest

Implementing an Image Processing Operator

285

supported data type that can hold the range specified by its arguments. If the
data type is explicitly set by the user, however, it won’t be changed. Then, if
minValue and maxValue aren’t explicitly set, they’re set to the values passed
to checkMinMax(). If checkMinMax() returns ilUNSUPPORTED, it isn’t
able to change the data type to support the range; in this case, minValue and
maxValue are set to the maximum range of the current data type.

Deriving from ilMonadicImg or ilDyadicImg

Both ilMonadicImg and ilDyadicImg follow the getPage()/calcPage() model
described above. These two classes provide support for operators that take
a single input image (ilMonadicImg) or two input images (ilDyadicImg) and
that operate on all pixels of the input image data. The classes that derive
from ilMonadicImg and ilDyadicImg are listed below:

Classes That Derive from
ilMonadicImg

 Classes That Derive from
 ilDyadicImg

ilAbsImg ilAddImg

ilFalseColorImg ilANDImg

ilInvertImg ilBlendImg

ilNegImg ilDivImg

ilThreshImg ilMaxImg

ilColorImg (& subclasses) ilMinImg

ilLutImg (& subclasses) ilMultiplyImg

ilScaleImg (& subclasses) ilORImg

ilSubtractImg

ilXorImg

286

Chapter 6: Extending the IL

Here are some things you need to keep in mind if you derive from either of
these classes:

• Don’t redefine getPage(); use the version defined in ilMonadicImg or
ilDyadicImg. Just implement your algorithm in calcPage().

• If you redefine resetOp(), call the superclass version in your resetOp()
(so that buffers and page sizes are reset appropriately):

// either
ilMonadicImg::resetOp();
// or
ilDyadicImg::resetOp();

• Use setWorkingType() if you want the input buffer to be read in as a
different type than the operator image’s data type. Note that the output
buffer always uses the operator’s data type.

Example 6-13 shows that ilAddImg’s implementation of calcPage() takes
three arguments. Similarly, ilMonadicImg’s calcPage() function takes three
arguments:

virtual ilStatus calcPage(void* inBuf, void* outBuf,
ilPgCB& cb) = 0;

inBuf is the input buffer of data that needs to be processed, outBuf is the
output buffer into which the processed data should be written, and cb is the
page control block that describes the page of data being processed. Your
implementation of calcPage() (for any class derived directly or indirectly
from ilMonadicImg) must accept this argument list.

Since ilDyadicImg processes two input images at once, its calcPage()
function supplies an extra input buffer of data. As above, your
implementation of calcPage() must accept this argument list:

virtual ilStatus calcPage(void* inBuf1, void* inBuf2,
void* outBuf, ilPgCB& cb) = 0;

When you derive from a class, you inherit all of its public and protected data
members and member functions. All the public members for ilMonadicImg
and ilDyadicImg have been discussed in previous sections. The protected

Implementing an Image Processing Operator

287

member functions are resetOp(), getPage(), and calcPage(). For reference
purposes, here are ilMonadicImg’s protected data members:

ilXYZCint str; // output (page) buffer strides
ilXYZCint istr; // input image strides

int bufferSize; // size of input buffer in bytes
int cBuffSize; // number of channels in input buffer

An example using these members is shown in “The getPage() Function” on
page 279.

The protected data members defined in ilDyadicImg are similar:

ilXYZCint str; // output buffer strides
ilXYZCint istr1, istr2; // input image strides

int buffSize1, buffSize2; // size of input buffers in bytes
int cBuffSize1, cBuffSize2; // number of channels in input
// buffers

Deriving from ilArithLutImg

As an abstract class, ilArithLutImg defines how to use look-up tables when
performing arithmetic or radiometric operations. To derive from it, you
implement your algorithm in calcRow() rather than in calcPage():

void calcRow(ilType intype, void *inBuf, void *outBuf,
int sx, int lim, int idx);

The intype parameter indicates the input image’s data type. The next two
arguments are the input buffer of data that needs to be processed and the
output buffer into which processed data should be written. The next three
arguments specify how to step through the data: sx is the x stride of the
output buffer, lim is the maximum x stride, and idx is the starting index. The
calcRow() function contains the algorithm for processing one row of input
data. For efficiency, you can use the defined macro doRow() to obtain the
proper data type and feed it to the macro doCalc(). (The doRow() macro is
defined in ilArithLutImg’s header file.) If you use these macros, your
calcRow() definition would be just a call to doRow():

ilMyOpImg::calcRow(ilType inType, void* inBuf,
void* outBuf,int sx, int lim, int idx)

{ doRow(); }

288

Chapter 6: Extending the IL

and you’d actually implement the computation algorithm in the macro
doCalc(), as ilPowerImg does, for example, as shown in Example 6-14.

Example 6-14 Implementation of doCalc() in ilPowerImg

#define doCalc(outype, intype) \
if (1) {\

if (inType == ilDouble || dtype == ilDouble) { \
for (; idx < lim; idx += sx) \

((outype*)outBuf)[idx] = (outype)pow((double) \
(((intype*)inBuf)[idx]*scale+bias), \
(double)power);\

}\
else {\

for (; idx < lim; idx += sx) \
((outype*)outBuf)[idx] = (outype)powf((float) \
(((intype*)inBuf)[idx]*scale+bias),(float)power);\

}\
}

You also need to implement loadLut() to compute and load the appropriate
values into the LUT. Example 6-15 shows ilPowerImg’s version of loadLut().

Example 6-15 Implementation of loadLut() in ilPowerImg

void
ilPowerImg::loadLut()
{

for (int i=0; i<lut->getLength(); i++) {
if (wType == ilDouble || dtype == ilDouble)

lut->setVal(pow((double)(i*scale+bias),(double)power),i);
else

lut->setVal(powf((float)(i*scale+bias),(float)power),i);
}

}

For your convenience, ilArithLutImg has functions for scaling and biasing
the input data before the LUT is applied:

void setScale(double scale);
double getScale();
void setBias(double bias);
double getBias();

Implementing an Image Processing Operator

289

Deriving from ilHistLutImg

The ilHistLutImg class provides support for operators that compute a
look-up table from the histogram of the source image and then apply this
table to the source image. It derives from ilArithLutImg and implements its
own versions of calcPage(), calcRow(), and loadLut(). The only pure virtual
function in ilHistLutImg is brpCalc(), which all derived classes must
implement:

virtual ilStatus brpCalc(ilImage *src, ilImgStat *imgstat,
double **brPoints) = 0;

This function computes the breakpoints (brPoints) of a piecewise LUT. You
can think of it as a pointer to a two-dimensional array whose members can
be accessed by:

double val = brPoints[i][j] where:

i = 0,1,2,...,nc-1
j = 0,1,2,...,nbins i

nc = number of channels in the source image
nbins i = number of bins in the histogram of channel i

You can obtain the number of bins by using imgstat’s getNbins() function.
The variable val in the example shown above represents what the pixel
intensity represented by the jth bin of the histogram for channel i maps to.
For example, to invert pixel intensities of an image containing unsigned
char data, you can use:

brPoints[i][j] = 255-j;

All the members of brPoints need to be evaluated in brpCalc(), using both the
source image and a pointer to its associated data as inputs. Derived classes
don’t need to allocate and manage memory for brPoints, since ilHistImg does
this for them. In addition, ilHistImg provides convenience functions for
setting the ilImgStat and ilRoi objects:

void setImgStat(ilImgStat *imgstat);
void setRoi(ilRoi *roi, int xoffset=0, int yoffset=0);

If you implement resetOp() in a derived class, be sure to explicitly call
ilHistLutImg’s version of resetOp().

290

Chapter 6: Extending the IL

An example of a class derived from ilHistLutImg might be an operator called
ilPixelCountImg, which replaces each pixel intensity by the number of times
it occurs in that particular channel. Such an operator might be implemented
as shown in Example 6-16.

Example 6-16 A Class Derived from ilHistLutImg to Count Pixels

class ilPixelCountImg:public ilHistLutImg {
private:

ilStatus brpCalc(ilImage *src, ilImgStat *imgstat,
double **brPoints);

public:
ilPixelCountImg(ilImage *src);

}

ilPixelCountImg::ilPixelCountImg(ilImage *src)
:ilHistLutImg(src)

{
}

ilStatus brpCalc(ilImage *src, ilImgStat *imgstat,
double **brPoints)

{
if (src==NULL) return ilBADINPUT;
int nch=src->getNumChans();

for (int i=0; i<nch ; i++) {
int *hist = imgstat->getHist(i);
int nbins = imgstat->getNbins(i);
int total = imgstat->getTotal(i);
double max = src->getMaxValue(i);

for (int j=0; j<nbins; j++) {
brPoints[i][j]=(hist[j]*max)/total;

}
}
return ilOKAY;

}

Deriving from ilSpatialImg

The ilSpatialImg class provides basic support for operators that adjust a
pixel’s value based on a weighted sum of its surrounding pixels. The kinds
of operators that can use this support perform convolutions for particular

Implementing an Image Processing Operator

291

purposes—for example, they calculate gradients or perform rank filtering.
ilSpatialImg’s subclasses are listed below.

The ilSpatialImg class follows the same getPage()/calcPage() model as
ilMonadicImg does. All the following hints are also true about deriving from
ilSpatialImg (and any of its subclasses):

• Don’t redefine getPage(), just implement your algorithm in calcPage().

• If you redefine resetOp(), call the superclasses in your resetOp() (so
that buffers and page sizes are reset appropriately):

ilSpatialImg::resetOp();

• Use wType as the working data type, but be sure the data you write
into the output buffer is of type dType.

The calcPage() function for ilSpatialImg takes these arguments:

virtual ilStatus calcPage(void* inBuf, void* outBuf,
ilXYZCint start, ilXYZCint end) = 0;

The input buffer inBuf points to a buffer containing the data that needs to be
processed, and outBuf points to a page in the cache where the processed data
should go. Depending on the edge mode, some of the data in inBuf may have
been set to the image’s fill value. (Refer to “Spatial Domain
Transformations” on page 133 for further explanation of the possible edge
modes.) start and end demarcate the beginning and the end of source data in
inBuf that needs to be computed, so you should use them to delimit the
computation.

ilSepConvImg ilSepConvImg
Subclasses

RankFltImg
Subclasses

ilLaplaceImg ilBlurImg ilMaxFltImg

ilRobertsImg ilCompassImg ilMedFltImg

ilSobelImg ilSharpenImg ilMinFltImg

292

Chapter 6: Extending the IL

ilSpatialImg provides several protected member variables that are likely to
be useful as you implement your algorithm. These include strides, for use in
stepping through the input and output buffers:

ilXYZCint inStr; // input strides
ilXYZCint outStr; // output strides

The ilXYZCint struct holds four integers; for more information about it, see
“Convenient Structures” on page 403. ilSpatialImg also constructs a kernel
offset table and a kernel value table based on the data in the kernel. The
offset table contains offsets into the input buffer to access data
corresponding to nonzero kernel elements. The value table contains the
nonzero elements and corresponds to the offset table. These data members
are shown below:

ilKernel* kernel; // kernel object
int kernSz; // number of nonzero kernel elements
int* kernOff; // kernel offset table
void* kernVal; // kernel value table

You can use these tables to improve the efficiency of your algorithm—for
example, by avoiding multiplications by 0. A related function,
setKernFlags(), allows you to set flags indicating that the offset table and/or
value table must be created:

void setKernFlags(int of=0, int vf=0);

If you pass in a 1 for either the offset flag of or the value flag vf, the
corresponding table will be created to match the current kernel. You should
call this function in the constructor of your class (with 1’s as arguments) so
that the tables get built.

The following code might be part of a calcPage() implementation for a
convolution. It shows how kernel values multiply data values and how this
result is accumulated. It also demonstrates how inBuf, outBuf, and the kernel
are offset with respect to one another. This example is a bit simplified in that
it assumes both wType and dtype are ilFloat, and it assumes that the kernel
weights sum to 1.0 so that no clamping is necessary. Also, if you actually
need to implement a convolution-based algorithm, consider deriving from
ilConvImg, as described in Example 6-17

Implementing an Image Processing Operator

293

Example 6-17 A Class Derived from ilConvImg to Multiply and Accumulate
Data

// cast the buffers to be of type wType
float* in = (float*)inBuf;
float* out = (float*)outBuf;

// iterate through all channels
for (int ci = start.c; ci < end.c; ci++) {

int cSrcIndex = ci*inStr.c;
int cDstIndex = ci*outStr.c;

// iterate through z dimension
for (int zi = start.z; zi < end.z; zi++) {

int zSrcIndex = zi*inStr.z + cSrcIndex;
int zDstIndex = zi*outStr.z + cDstIndex;

// iterate through y dimension
for (int yi = start.y; yi < end.y; yi++) {

int srcIndex = start.x*inStr.x + yi*inStr.y + zSrcIndex;
int dstIndex = start.x*outStr.x + yi*outStr.y + zDstIndex;

// iterate through x dimension
for (int xi = start.x; xi < end.x;

xi++, srcIndex += inStr.x, dstIndex += outStr.x) {
float sum = bias;// bias is inherited from ilOpImg
// cast kernVal to a float
float* kr = (float*)kernVal;

//iterate through nonzero kernel values
for (int k = 0 ; k < kernSz ; k++) {

sum += in[srcIndex+kernOff[k]] * kr[k];
}

// note use of kernOff to access the correct input value
out[dstIndex] = sum;

}
}

}
}

Deriving from ilConvImg or ilSepConvImg

The ilConvImg class performs general convolution on an image, and the
ilSepConvImg class performs separable convolution. You might want to
derive from these classes if kernel values aren’t available at the time the
operator is constructed because they depend on certain input parameters. In

294

Chapter 6: Extending the IL

this case, you’d define a resetOp() function in the derived class that
computes the x and y kernel values from input parameters. Then you could
use the inherited functions setXKernel(), setYKernel(), and setKernelSize()
to specify the kernel and its size, after which you’d need to explicitly call
ilConvImg’s or ilSepConvImg’s version of resetOp(). Remember that the
kernel for ilConvImg should be a two-dimensional matrix, while that for
ilSepConvImg should be two separate vectors. You should also set the edge
mode and bias value.

Deriving from ilWarpImg or ilPolyWarpImg

The ilWarpImg class provides basic support for warping an image; it defines
getPage() so that derived classes need to implement only the virtual function
addrGen(), which should contain the warping algorithm. ilPolyWarpImg,
which inherits from ilWarpImg, provides basic support for warping an
image using up to seventh-order polynomials; it implements addrGen() but
requires that the user explicitly define the coefficients of the polynomials.
Often, users know the kind of warp effect they want to achieve, but they
don’t know how to specify coefficients to achieve this effect. The two
operators that derive from ilPolyWarpImg—ilRotZoomImg and
ilTieWarpImg—provide the user with an indirect way of specifying the
coefficients. For example, ilRotZoomImg lets you specify an angle of
rotation, and then it performs the work necessary to compute the coefficients
needed to achieve the rotation.

There are two principal motivations for deriving your own warp operator:

• If you need a warping algorithm that uses higher-order polynomials
(eighth-order and above), you should derive a new operator directly
from ilWarpImg.

• If you want to define a new way of specifying the warping coefficients,
you can derive from ilPolyWarpImg as long as seventh-order
polynomials are sufficient for your needs. If they’re not sufficient, you’ll
need to derive from ilWarpImg.

If you derive from ilWarpImg, you need to implement the pure virtual
function addrGen(), which transforms output image coordinates to input

Implementing an Image Processing Operator

295

image coordinates. This function is called by getPage() as needed to generate
coordinates. The calling sequence of addrGen() is shown below:

virtual void addrGen(float upos, float vpos, float ustep,
ilXYSfloat *addrs, int count) = 0;

The first two arguments, upos and vpos, define the starting coordinate in the
output image, and count defines the number of addresses that must be
transformed. The ustep value indicates how to step through the output
image data; add it to the current u coordinate to determine the next
coordinate that needs to be transformed. The v coordinate is always constant
for each call to addrGen(). Return the computed input image coordinates in
the addrs array.

The virtual function checkTile() determines the bounds of the input tile
required for a given output tile. ilWarpImg’s version of this function
accomplishes this by computing the minimum and maximum values in both
the x and y dimensions of the transformed address on an 8x8 subsampled
grid covering the output tile. If you can provide a more efficient way to
compute the bounds, you can override this function. If you do, you might
want to use maxInBuf(), which returns the size of the input buffer in bytes.
The ilWarpImg reference page provides more information about how to
define your own version of checkTile().

If you derive from ilPolyWarpImg, you need to call only setCoeff(). Your
derived class should translate the user-specified arguments into coefficients
and pass them to setCoeff(). See the ilPolyWarpImg reference page for more
information.

Deriving from ilFMonadicImg or ilFDyadicImg

The ilFMonadicImg and ilFDyadicImg classes provide the basic support for
operators that perform pixelwise computations on images that have been
converted to the frequency domain. To implement a frequency domain filter,
derive from ilFFiltImg, as explained in “Deriving from ilFFiltImg” on page
299 (or use ilFMultImg). Both ilFMonadicImg and ilFDyadicImg expect the
input image(s) to be in the format produced by ilRFFTfImg (or by ilFFTOp’s
ilRfftf() function). As their names suggest, ilFMonadicImg expects a single

296

Chapter 6: Extending the IL

input image, and ilFDyadicImg expects two input images. Their subclasses
are shown below.

Both classes implement getPage() for you so that you have to implement
your algorithm only in cmplxVectorCalc(). This function processes a vector
of complex values; getPage() calls it as needed to process an entire page of
data. The calling sequence for ilFMonadicImg’s cmplxVectorCalc() is shown
below:

virtual void cmplxVectorCalc(float* vect,
int rr, int ri, int size);

The first argument, vect, is a pointer to a vector of size number of complex
values. On input, vect holds the data to be processed, and on output it holds
the processed data. Use rr and ri to step through this vector: rr is the stride
between the real parts of two consecutive complex numbers in vect, and ri is
the stride between the real and imaginary part of a complex number in vect.

An example of a class derived from ilFMonadicImg would be an operator
that converts rectangular coordinates to polar coordinates. Such an operator
would need to declare only two member functions:

class ilFPolarImg : public ilFMonadicImg {
private:

void cmplxVectorCalc(float* vect, int rr, int ri,
int size);

public:
ilFPolarImg(ilImage* src);

}

ilFMonadicImg’s Subclasses ilFDyadicImg’s Subclasses

ilFConjImg ilFCrCorrImg

ilFRaisePwrImg ilFDivImg

ilFMultImg

Implementing an Image Processing Operator

297

In this example, cmplxVectorCalc() is declared private since it’s assumed
that ilFPolarImg won’t have subclasses. Example 6-18 shows how the
constructor and cmplxVectorCalc() functions might be implemented.

Example 6-18 Constructor and Member Functions of a Class Derived from
ilFMonadicImg to Convert Coordinates

ilFPolarImg::ilFPolarImg(ilImage* src1)
{

setValidType(ilFloat);
addValidOrder(ilSeparate);
setNumInputs(1);
addInput(src1);

}

void
ilFPolarImg::cmplxVectorCalc(float* vect, int rr, int ri,

int size)
{
 int i, k;
 for (i = k = 0; k < size; i += rr, k++) {

float real = vect[i];
float imag = vect[i + ri];
vect[i] = fsqrt (real*real + imag*imag);
vect[i+ri] = fatan2 (imag, real);

 }
}

For classes derived from ilFDyadicImg, cmplxVectorCalc() takes more
arguments since there are two input vectors that need processing:

virtual void cmplxVectorCalc(float* vect1, int rr1, int ri1,
float* vect2, int rr2, int ri2,
int size, int ch) = 0;

In this case, vect1 and vect2 are pointers to the input vectors, which are of the
same size. On input, they hold data to be processed, and on output, vect1
holds the output data and vect2 is unchanged. You can use rr1, ri1, rr2, and
ri2 to step through these vectors. The final argument, ch, indicates which
channel is currently being processed. This argument is ignored in most
cases, but you can use it when the computation being performed depends on
the channel. For example, when a cross-correlation is computed, each
channel’s output is normalized by the average value of that channel.

298

Chapter 6: Extending the IL

Here’s what the declaration of ilFMultImg (which multiplies two Fourier
images) might look like:

class ilFMultImg : ilFDyadicImg {
private:

void cmplxVectorCalc(float* vect1, int rr1, int ri1,
float* vect2, int rr2, int ri2,
int size, int ch);

public:
ilFMultImg(ilImage* src1, ilImage* src2);

}

A possible implementation of this class is shown in Example 6-19.

Example 6-19 A Class Derived from ilFDyadicImg to Multiply Two Fourier
Images

ilFMultImg::ilFMultImg(ilImage* src1, ilImage* src2)
{
 setValidType(ilFloat);
 addValidOrder(ilSeparate);
 setNumInputs(2);
 addInput(src1);
 addInput(src2);
}

void
ilFMultImg::cmplxVectorCalc(float* vect1, int rr1, int ri1,
 float* vect2, int rr2, int ri2, int size, int)
{
 int i, j, k;
 for (i = j = k = 0; k < size; i += rr1, j += rr2, k++) {

 float real1 = vect1[i];
float imag1 = vect1[i + ri1];
float real2 = vect2[j];
float imag2 = vect1[j + ri2];
vect[i] = real1*real2 + imag1*imag2;

 vect[i+ri1] = real2*imag1 - imag2*real1;
 }
}

Implementing an Image Processing Operator

299

Deriving from ilFFiltImg

The ilFFiltImg class provides basic support for operators that perform
frequency filtering, such as ilFExpFiltImg and ilFGaussFiltImg. This class is
particularly useful when the filter can be described as a real-valued analytic
function. The input image must be in the format produced by ilRFFTfImg or
by ilFFTOp’s ilRfftf() function.

Since ilFFiltImg implements getPage(), all you have to do to derive from this
class is provide your algorithm in the freqFilt() function:

virtual float freqFilt(int u, int v) = 0;

This function returns the filter value at the frequency coordinates u and v,
which are the coordinates in the x and y directions, respectively. If nx and ny
are the x and y dimensions of the original spatial-domain image, then:

 and

The following example shows a low-pass frequency filter implementation:

class ilFLowPassImg : public ilFFiltImg {
private:
 float cutoff;
 float freqFilt(int u, int v)
 {return fexp(-(u**2 + v**2)/cutoff**2);}
public:
 ilFLowPassImg(ilImage* src, float cutoff);
 void setCutOff(float val) {cutoff = val; setAltered();}
}

ilFLowPassImg::ilFLowPassImg(ilImage* src, float cutoff)
{
 setValidType(ilFloat);
 addValidOrder(ilSeparate);
 setNumInputs(1);
 addInput(src);
 setCutoff(cutoff);
}

The constructor for this class takes an input source image and a cutoff level
as arguments. The freqFilt() function is implemented as shown below:

0 u
nx
2

1+<≤
ny 1−

2
v

ny
2

≤ ≤−

e

u2 v2+

cutoff2 
 −

300

Chapter 6: Extending the IL

Deriving from ilRoi

If you derive your own ilRoi class, you need to know how ilRoi expects valid
and invalid regions to be defined. Valid and invalid regions are described in
terms of their run length, which is the number of pixels between the current
valid pixel, for example, and the first invalid pixel, traveling as specified by
the coordinate space. To derive from ilRoi, you need to implement
getNextRle() and getNextIRle(), which are pure virtual functions, so that
they compute the next valid and invalid run lengths, respectively:

virtual int getNextRle(ilRoiMap &map) = 0;
virtual int getNextIRle(ilRoiMap &map) = 0;

These functions should start at the specified point (x, y) and search for the
desired run; they should return TRUE or FALSE, depending on whether a
run of the desired type is found. The ilRoiMap class encapsulates all the
information needed and returned by the getNextRle(), getNextIRle(),
getBoundBox(), and ilRoiIter’s functions. The ilRoiMap class also makes it
easy to attach the same ROI to different images at different offsets. The
constructor for this class is shown below:

ilRoiMap(ilImage *img, int xoffset=0, int yoffset=0,
ilTile *clipBox=NULL, int skip=FALSE, int x=0,
int y=0, ilCoordSpace spc=ilCoordSpace(0));

*img Specifies the image to be associated with the ROI.

xoffset, yoffset Specify the offsets into the image at which the ROI is to be
placed.

clipBox If not NULL, restricts the search for valid or invalid run
lengths to the rectangle specified. (The ilTile class is
declared in the header file il/ilTile.h; an ilTile object defines a
rectangle, using six arguments—an origin (x,y,z) and
dimensions (nx,ny,nz).)

skip Indicates whether to skip the run length that encompasses
the starting point given by (x,y); generally, it should be
FALSE to begin with so that the first run length at the
specified starting point isn’t skipped.

Deriving from ilRoi

301

spc Specifies the desired coordinate space for the starting
coordinates of the run length and bounding box (see below);
the clipping box and the offsets are assumed to be in this
coordinate space. With the default, NULL, the coordinate
space of the image img is used.

Both getNextRle() and getNextIRle() should update the x, y, and len
members of ilRoiMap that are passed to them. In order to do this, declare
your ROI class as a friend of ilRoiMap. You can do this by adding the line
“friend myRoiClass” to the class definition of ilRoiMap in the include file
/usr/include/il/ilRoiMap.h.

Use the ilRoiIter class to cycle through the valid or invalid run lengths in an
ROI. As shown below, the constructor to ilRoiIter takes a pointer to an ROI
object and to an ilRoiMap object:

ilRoiIter (ilRoi *roi, ilRoiMap *map);

Use the ilRoiIter class functions moreRle(), moreIRle(), getX(), getY(), and
getLen() to obtain the starting locations and length of the valid or invalid
run. Table 6-6 illustrates the values that these five functions would compute
given the two starting points shown for the row of image data presented in
Figure 6-3. (Assume the O’s represent valid data and the X’s represent
invalid data; the numbers are shown as counters for convenience.)

Figure 6-3 Valid and Invalid Data in a Row of Pixels

XXXXXOOOXXXXOOOXXXXX

A: (x,y)=(4,1)

B: (x,y)=(15,1)

12345678901234567890

302

Chapter 6: Extending the IL

Table 6-6 Valid and Invalid Run Lengths

These ilRoiIter functions are normally used in a loop to cycle through the run
lengths, as shown below:

ilRoi *myRoi;
ilTile myClipBox(1, 1, 0, 10, 10, 1);
ilRoiMap myMap(myImg, 10, 20, &myClipBox, FALSE, 0, 0,

ilLowerLeftOrigin);
ilRoiIter myIter(myRoi, &myMap);

while (myIter.moreRle()) {
int startx = myIter.getX();
int starty = myIter.getY();
int len = myIter.getLen();
// process the run data here

}

This loop allows you to step through all the valid runs of data and perform
whatever processing is necessary. Now suppose you want to use the same
ROI on another image to obtain the invalid run lengths. Your code might
look like this:

myIter.init(anotherImg);

while (myIter.moreIRle()) {
int startx = myIter.getX();
int starty = myIter.getY();
int len = myIter.getLen();
// process the run data here

}

a. When FALSE is returned by moreRle() or moreIRle(), values returned by getX(), getY(), and
getLen() are unchanged, so the value returned by getLen() might be invalid.

moreRle() moreIRle()

Point A Point B Point A Point B

getX() 6 4 9 16

getY() 1 1 1 1

getLen() 3 a 4 5

return value TRUE FALSE TRUE TRUE

Deriving from ilRoi

303

Note the use of the init() function to reset myIter’s image. There are several
such initializing functions that allow you to begin the search for valid or
invalid run lengths with the same ilRoiIter object. All these functions set the
skip flag to FALSE and initialize the starting point to be the origin of the
clipping box (if one is specified) or the image (if there is no clipping box). You
can also reset other parameters by choosing the appropriate init() function:

void init(ilImage *img);
void init(ilRoi *roi);
void init(ilTile *clipBox);
void init(ilCoordSpace spc);

void init(ilImage *img, int xoffset, int yoffset);
void init(ilImage *img, int xoffset, int yoffset,

ilTile *clipBox, ilCoordSpace spc);

Also note that you can use ilRoi’s getRoiType() function to find out whether
a particular ROI is an ilBitMapRoi or an ilRectRoi. The corresponding values
returned by this function are ilBitMap and ilRect, as listed in the definition
of the ilRoiType enumerated type in the header file il/ilType.h. You can add
your own ROI types to this enumerated type if you define other types of
ROIs.

Finally, when deriving from ilRoi, you also need to implement the pure
virtual function getBoundBox():

void getBoundBox(ilRoiMap &map, ilTile &box)=0;

This function returns by reference the bounding box (box), which is the
smallest rectangle that contains the entire valid region within the clipping
box specified by map. If a clipping box is not specified, the entire image is
searched. The coordinate space of box matches that specified by map; if map’s
coordinate space is NULL, the coordinate space of the image is used.

This chapter explains how you can
improve the performance of your
application by optimizing memory
usage, taking complete advantage of
hardware acceleration features, and
controlling multi-threading.

Optimizing Your Application

Chapter 7

307

Chapter 7

7. Optimizing Your Application

This chapter is intended for programmers who are somewhat familiar with
the IL and who want to optimize their applications. This chapter has three
major sections:

• “Managing Memory Usage” on page 308 describes how to optimize the
memory usage of your application.

• “Using Hardware Acceleration” on page 315 describes what operations
can be accelerated on different graphics hardware.

• “Controlling Multi-threading” on page 336 describes how to optimize
the performance of your application by adjusting the multi-threading
facility of the IL.

308

Chapter 7: Optimizing Your Application

Managing Memory Usage

You can optimize the performance of your application by making
knowledgable decisions about the use of memory resources. Three areas in
which you can optimize use of memory are:

• use of cache

• page size

• buffer size

The following sections describe these three areas in greater detail.

Optimizing Use of Cache

You can optimize the use of cache in your application in a number of ways.
You can change the size of the cache, control the automatic growth of cache
that can occur if multi-threading is turned on, set priority on an image in
cache, and use tools to monitor the use of cache.

Before reading further, you might want to refer to other parts of this manual
that describe caching. To learn about:

• caching and paging, read “The Cache” on page 46.

• changing cache size using the functions ilSetMaxCacheSize() and
ilSetMaxCacheFraction(), read “Managing Cache” on page 49.

• using the ilCompactCache() and ilFlushCache() functions to compact
global cache memory, read “Managing Cache” on page 49

Cache Size

This section describes how to determine the cache size that is most
appropriate to your application. Every class descended from ilCacheImg
(including all the image operators) needs memory for a cache, which holds
pages of image data. By default, the IL cache size is 30% of the total user
memory on the system. In some applications this is too large, in others it’s
too small.

Managing Memory Usage

309

The optimum cache size for any particular IL program depends on the size
of the images that the program manipulates and on the type of operations it
performs on the data.

If your application:

• operates on small images, you can set the size of the cache to be the size
of the image, minimizing both memory and total processing needs.

• operates on large images, you will need a larger cache. A program with
a large image cache improves performance because it saves the
processing overhead required to move data in and out of memory.
However, if the cache is too large and uses up main memory, you could
potentially be swapping pages in and out of virtual memory on your
system, which degrades performance.

• displays image data, its cache should be large enough to hold the
displayed window of data.

• just produces a reduced resolution version of an image in another
image file, you can get by with a smaller cache.

Typically, the cache won’t be able to hold everything needed for an
operation. For these cases, set the cache at least large enough to hold both:

• one page of output data

• the number of pages of input data required to produce that page

For example, suppose that you’re copying an image with pages that are 128
pixels square (these are the default page dimensions for FIT images) to an
image that sets the page width to match the width of the image (this is true
for SGI RGB images). Further, suppose that both images are 2K pixels wide
and that the SGI image sets its page height to 64 pixels. Figure 7-1 shows the
two images and the pages contained in them. (This figure isn’t drawn to
scale.)

310

Chapter 7: Optimizing Your Application

Figure 7-1 Varying Page Dimensions

To write a single 2 KB x 64 SGI page, you need data from all the FIT pages
that span the width of the image. Thus, in this example, set the cache size to
(2 KB x 64 + 2 KB x 128) x 3 bytes (assuming that there are 3 channels and
that the data type is ilChar). Add about 10% to this figure to allow for the size
of page descriptors and other overhead. This allows all needed pages to be
held in the cache. If the cache is smaller than this, the data can still be
processed, but FIT pages are bumped out of the cache and then read back in
as successive SGI pages are written.

Effect of Multi-threading on Cache

The use of multi-threading can affect the size of cache in an application (see
“Multi-threading” on page 71). With multi-threading enabled, the cache can
grow larger than its preset limit if all the pages contained within it are locked
down and another page must be brought into the cache. This growth of
cache prevents deadlock, but can cause the application to use more memory
than you wish. To prevent this behavior, do one of the following:

• reduce the number of threads (so that there are never more threads than
pages in the cache)

• reduce the size of each page (so that there are enough pages in the cache
for all the threads)

• increase the size of the cache (so that there is one page for each thread)

For example, if there is room in the cache for only two of the operator’s pages
but there are four threads, the cache may be grown so that it contains four
pages. If this is unacceptable, either reduce the number of threads to two or

128

128
64

FIT Image SGI Image

2K

Page

Managing Memory Usage

311

reduce the size of a page by half (so that the cache can contain twice as many,
or four, pages). Multi-threaded applications always need more memory to
run efficiently; the best solution is to add more memory to your system. If
this is not possible, the next best solution is to reduce the page size.

Cache Priority

As explained in “Priority” on page 50, the pages of an image that are brought
into cache as the result of an operation on the image are kept there until the
cache becomes full. When the cache is full, decisions must be made about
which pages are kept in cache and which are discarded and replaced by new
pages.

The IL attempts to optimize the use of cache. You can also affect the caching
process by using the setPriority() and lockPage() methods. It is helpful,
when you are optimizing your use of cache, to understand actions the IL is
also taking to accomplish this. The IL considers these factors as it manages
the contents of cache:

• time since the last reference to a page. Pages most recently referenced
are least likely to be overwritten.

• number of references made to a page. Pages that are frequently
referenced are least likely to be overwritten.

• the destination of a page. The IL automatically raises the priority of a
page request for data that is directly displayed. This has the effect of
caching data at the end of a displayed chain.

Sometimes it makes sense to cache data at points other than at the end of a
chain. The reference counting used in the page replacement algorithm can
help to accomplish this caching, but in cases where explicit knowledge of the
application is required, you can use the setPriority() method of ilImage to set
the priority of the image containing the specified page. For instance, you
may want to raise the priority of the file input to a long chain to avoid
rereading the input if the chain is expected to be altered.

You may also want to raise the priority of the input to an operator that is
having its parameters interactively modified, although again the reference
counting built into IL will tend to automatically increase the priority for you.

312

Chapter 7: Optimizing Your Application

Monitoring the Cache

You can monitor image data cache usage in two ways:

• by using the image tool ilMonitor. This provides an interactive means
for you to monitor the use of the cache. See “Image Tools” on page 351
for more information about ilMonitor.

• by setting the environment variable IL_MONITOR_CACHE to a value
of 1. This causes the IL to print a message for each page loaded into the
cache or deleted from the cache. The message identifies the page
location in its associated image and the class and address of that image.

It is often important to know about the operator images (such as color
converters) that are automatically inserted by IL. You can use
ilDumpChain() to print out a simple description of an IL chain.

An example using this environment variable is shown below:

% setenv IL_MONITOR_CACHE 1
% imgview /usr/demos/data/images/weather.fit
Page (0,0,0,0) loading in Color(0x10034ec8)
Page (0,0,0,0) loading in FIT(0x1001d010)

This example shows that a color converter operator image has been used to
cache the data from the FIT image in frame-buffer format. It also shows the
background view with ilConstantImg as input that is automatically created
by ilDisplay. You can use this technique to identify cache thrashing if you
suspect it’s occurring. You can eliminate such problems by one of the
techniques described in the preceding sections.

For more challenging situations, you may want to use the
setPagingCallback() method in ilCacheImg. Refer to the ilCacheImg
reference page for more details.

Note: Do not attempt to use setPagingCallback() and ilMonitor at the same
time since ilMonitor uses the setPagingCallback() mechanism.

Managing Memory Usage

313

Page Size

Image data is always cached in pages. A file image’s page dimensions match
those used to store the image on disk. By default, an operator’s page size is
defined by its input images. Certain operators override this default size,
which can affect the caching of images. Some images also let you set the size
of the pages in the cache and the data type and ordering of the cached data.
The data type and ordering affect how data is cached, so if you change these
attributes, you might also want to change the size of the cache.

Optimum Page Size

Operators are usually the only images that allow you to set the page size.
The ideal page size depends on the particular application, but in general you
want an image’s page size to be as close as possible to that of whichever
image it’s being copied to or read from. If the application involves roaming
on a large image, however, the page size should be relatively square. The
functions that change page size are defined by ilImage and are explained in
“Page Size” on page 52.

Large pages use up more memory, which is a problem when the cache grows
beyond its limit and starts allocating extra pages to get around deadlock. See
the previous section for suggested solutions. Making pages too small,
however, forces too much processing overhead. A page shouldn’t be smaller
than 32 x 32 bytes, and in general the total number of bytes in a page should
be between 16KB and 64KB. This range typically works out to be 128 x 128
to 256 x 256 when measured in pixels. Some operators, such as the frequency
domain ones, are more efficient when the page size is a power of 2.

Maximizing Efficiency When Copying Pages

The copyTile() function is an efficient way to copy a tile of data from one
ilImage to another:

ilStatus copyTile(int x, int y, int nx, int ny,
ilImage* other, int ox, int oy,
int* chanList=NULL, int from=1);

By default, the tile is copied to the calling image from the image pointed to
by other. The x and y arguments specify the origin of the tile in the destination
image, and nx and ny specify the size of the tile. The tile that’s to be copied

314

Chapter 7: Optimizing Your Application

is located at (ox,oy) in the other image. (If the tile is at the same location in
both the source and destination images, then x=ox and y=oy.) If the source
and destination images have different coordinate spaces, the data is
transposed automatically as necessary. The last argument, from, allows you
to reverse the direction of the copy; if it’s 0, the tile is copied to other from the
calling image.

The default direction (from other to the calling image) is the most efficient
direction when you’re copying to a file image (that is, one that inherits from
ilFileImg) because the page dimensions of the calling image define the units
of processing. With the default direction, the calling image is the destination
image. As the copy proceeds, each page of the calling image is “locked
down” in the cache and filled in completely from the other image. If you use
the reverse direction for copying, the IL may have to shuffle the destination
image’s pages in and out of the cache; since the destination is really a file, this
results in unnecessary file input/output operations, which in turn adversely
affects the performance of the copying procedure.

Buffer Space

You may sometimes need a temporary buffer to work on image data. Using
copyTile() instead of getTile() or setTile() to transfer data between images
eliminates the need for temporary buffers, saving you memory. copyTile() is
explained in “Accessing Image Data” on page 54.

In addition to temporary buffers you may allocate to hold data, the IL
allocates buffers to operate on data internally. The amount of buffer space
that the IL can allocate at any one time depends on the number of threads
running concurrently. If three threads are performing image processing
operations on three tiles, in general, three buffers of the necessary sizes must
be used. However, extra buffer space is not used if the operator in question
is locking down pages, transferring data from input cache to output cache,
and operating on the data “in-place.” Certain operators derived from
ilMonadicImg do this. If you derive a new operator from ilMonadicImg or
any of its descendants, you might want to ensure that your derived class
operates on its data in-place by setting its inPlace member variable in the
constructor.

Using Hardware Acceleration

315

Using Hardware Acceleration

The IL provides a transparent mechanism to accelerate some sequences of
operations in an operator chain. It uses specialized graphics devices to
implement this hardware acceleration. Depending on your hardware
platform, you can improve the performance of your application by
understanding how the IL implements hardware acceleration and by
choosing operators that take advantage of this feature. Read “Using
Graphics Hardware for Acceleration” on page 73 to learn more about
hardware acceleration.

Hardware acceleration takes place automatically and whenever possible,
without explicit user intervention. This following sections describe these
features of hardware acceleration:

• how to control it

• what triggers it

• what operators are accelerated (not all are)

• hardware acceleration on non-RealityEngine platforms

• hardware acceleration on RealityEngine platforms

Initiating Hardware Acceleration

Typically, hardware acceleration is triggered by entering the copyTileCfg()
method of ilOpImg. Such a copyTile operation occurs when an ilView needs
to be repainted. In this case, hardware acceleration helps improve interactive
performance of the IL. Hardware acceleration can also be triggered through
the getSubTile3D() method of ilOpImg. In this case, general performance is
improved, including that of non-displayed operations such as the storage of
processed image data directly to a file on disk.

Controlling Hardware Acceleration

Sometimes you may want to disable hardware acceleration.“Turning off
Hardware Acceleration” on page 63 tells you when you might want to do
this.

316

Chapter 7: Optimizing Your Application

The IL provides functions that allow you select the type of hardware
acceleration appropriate to your application. These functions use an enable
parameter that specifies the objects for which hardware acceleration is to
apply, The enable parameter is an ANDed combination of any of the values
shown below:

ilHwNone All hardware acceleration is disabled.

ilHwAll All hardware acceleration is enabled (default).

ilHwCopyTile Hardware acceleration is initiated when a CopyTile()
operation to the display is issued.

ilHwGetTile Hardware acceleration is initiated when a GetTile()
operation is issued.

ilHwAlways Hardware acceleration is performed even though it is
globally disabled.

Disabling Hardware Acceleration Globally

To disable hardware acceleration completely, use the:

• environment variable IL_HW_ACCELERATE

• global convenience function ilHwAccelerate() and pass in the enable
parameter. The function ilHwIsEnabled() returns the enable value set
by ilHwAccelerate().

ilHwAccelerate(int enable);
int ilHwIsEnabled();

The global function takes precedence over the IL_HW_ACCELERATE
environment variable.

Disabling Hardware Acceleration for an Operator

To disable hardware acceleration for a specified operator, use the
hwAccelerate() function that’s defined in ilOpImg and ilImgStat. It accepts
one argument—TRUE to enable acceleration on the operator (the default) or
FALSE to disable acceleration. For example, to ensure that the operators in

Using Hardware Acceleration

317

the sample program from “A Sample Program in C++” on page 4 are not
accelerated in hardware, you can modify the code as follows:

ilSharpenImg sharperImg(inImg, 0.5);
ilRotZoomImg rotatedImg(&sharperImg, 90.0);
sharperImg.hwAccelerate(FALSE);
rotatedImg.hwAccelerate(FALSE);

Disabling Hardware Acceleration for a Specified Objects

To enable and disable hardware acceleration of objects of a specified class,
use the ilHwAccelerateClass() function. The ilHwIsEnabledClass()
function returns the class-specific enable value as set by
ilHwAccelerateClass().

ilHwAccelerateClass(ilClassId id, int enable);
int ilHwIsEnabledClass(ilClassId id);

The following example enables hardware acceleration for all objects of the
class ilRotZoomImg.

ilHwAccelerateClass(ilClassID(ilRotZoomImg), ilHwCopyTile)

Accelerated Operations

To take advantage of the hardware acceleration built into the IL, you must
use the operators that are implemented in the hardware you are using. For
example, if your program is running on a RealityEngine and you have the
choice of using either a Fourier domain operator or an accelerated spatial
domain operator to do the same or a similar image processing operation, use
the accelerated operator in the chain when quick operation is a priority.

It is possible that some image operations performed by a given IL operator
are accelerated while other operations performed by the same operator are
not. For example, an ilConvImg can be accelerated on a RealityEngine for a
kernel size of 3 x 3, 5 x 5, or 7 x 7, but not for any other kernel size. Table 7-1
indicates which operations are accelerated on different graphics platforms.

318

Chapter 7: Optimizing Your Application

Table 7-1 Accelerated Operations by Platform

a. Nearest neighbor resampling only.

b. Nearest neighbor, bilinear, or bicubic resampling only.

c. 3 x 3, 5 x 5, or 7 x 7 kernels only. ilPadSrc, ilPadDst, and ilNoPad modes only.

d. Bias value accepted.

e. At most, 4096 entries and 4 components.

f. To/from ilABGR, ilRGB, ilRGBA, ilBGR, ilMinWhite, and ilMinBlack (there is no
conversion from color to grayscale).

g. All types except ilDouble.

Image Operator
PI,
Starter,
Elan

GT,
GTX

VGX Reality-
Engine

ilRotZoomImg (integer zoom only,
no rotation)a

✘ ✘ ✘ ✘

ilRotZoomImg (continuous zoom
only, no rotation)a

✘ ✘

ilBlendImg (constant alpha only) ✘ ✘ ✘

ilInvertImg, ilAndImg, ilOrImg,
and ilXorImg

✘ ✘ ✘

ilPolyWarpImg (and its
descendants)b

✘

ilConvImg and ilSepConvImg (and
their descendants)cd

✘

ilImgStat ✘

ilScaleImg and ilHistScaleImgd ✘

ilLutImg (and its descendants)e ✘

Color model conversionsf ✘

Data type conversionsg ✘

Using Hardware Acceleration

319

Hardware Acceleration on Non-RealityEngine Platforms

The IL provides only limited support for image processing operations not
running on the VTX or the RealityEngine and the RealityEngine2. On the PI,
Starter, Elan, Extreme, GT, GTX, VGX, and Indy platforms, only the last one
or two operations in an image chain can be accelerated in the graphics
hardware. These operations include simple zooming using rectzoom(),
blending using blendfunction(), and ALU-based operations using logicop()
(see Table 7-1).

None of these graphics platforms has the auxiliary buffer required for
hardware acceleration. Thus, it is not possible to accelerate sequences of
operations that require more than one pixel transfer operation. Moreover,
data type and color model conversion are not supported by these graphics
platforms. Only the ilABGR color model and ilUChar data type are
accelerated.

Hardware Acceleration on the RealityEngine

The RealityEngine is the most sophisticated graphics device supported by
the IL for hardware acceleration. The operations implemented in the
RealityEngine are shown in Table 7-1. An IL operator that is accelerated on
the RealityEngine can be of any IL type except ilDouble, but it must have a
color model that is ilABGR, ilRGB, ilRGBA, ilBGR, ilMinWhite, or
ilMinBlack. Moreover, pixel format conversion among these color models is
supported, except that conversion from three- or four-component pixels to
single-component pixels is not supported.

The remainder of this section tells you more about how hardware
acceleration on the RealityEngine works with the IL. It describes:

• RealityEngine architecture

• pixel transfer rate on the RealityEngine

• functional path of image processing operations

• overview of hardware acceleration

• the hardware pass

• auxiliary buffers

320

Chapter 7: Optimizing Your Application

• auxiliary buffer management on multiple pipes

• texture

• static update

“Suggestions for Further Reading” on page xxi gives a reference for
additional reading about the RealityEngine.

RealityEngine Architecture

The VTX, RealityEngine, and RealityEngine2 graphics systems have
essentially the same architecture. This consists of a Geometry Engine board
(GE), one to four Raster Manager (RM) boards, and a DisplayGenerator (DG)
board. From the perspective of the programmer, only the features of the GE
and RM boards are interesting.

A GE board holds a bus interface chip, the Command Processor chip, and
six, eight, or twelve programmable geometry processors. In addition to
performing normal 3-D graphics operations, these processors are also used
as pixel processors for GL pixel operations like convolve() and for GL
texture loading operations like subtexload().

The Raster Manager boards take descriptions of geometry in screen space
from the GE board and rasterize the geometry, possibly with image or
texture mapping applied. There are from one to four Raster Boards, which
contain the framebuffer and texture memory.

Pixel Transfer Rate on the RealityEngine

Any image processing operation performed by the RealityEngine is limited
by the pixel transfer rate of the relevant RealityEngine data path (see
Figure 7-2). Most paths have a transfer rate in the range of 5-35 million pixels
per second (Mpix/sec). The exception is texture rendering, which moves
data from texture memory to the framebuffer at rates of:

• 40 Mpix/sec for 1 RM board and ABGR bicubic resampling

• 80 Mpix/sec for 2 RM boards and luminance bicubic resampling

• 320 Mpix/sec for 4 RM boards with luminance bilinear resampling

Using Hardware Acceleration

321

Figure 7-2 RealityEngine Pixel Transfer Paths (transfer rates are in millions of
pixels per second)

In order to evaluate the transfer rate of a sequence of image processing
operations that are accelerated by the RealityEngine graphics hardware, you
should know the paths over which the data travels and the rates for those
paths. Figure 7-2 shows the different paths between functional blocks and
the variability in data transfer rates. The RealityEngine GL subroutines used
by the IL and the paths they access are listed in Table 7-2. Consult the
reference pages for these subroutines for additional information.

Note: Unfortunately, it can be difficult to accurately estimate the overall
performance of the system for a particular image processing sequence
because so many parameters significantly affect these rates, including the
number of components per pixel, efficiency at various page sizes, and so
forth. If you need very accurate performance estimates, it is best to
benchmark the GL operations on the target machine.

Host GE

RM

Aux Buffer

Texture

Frame Buffer

DG

10-25 Mpix/sec

15-35 Mpix/sec

6-22 Mpix/sec
20-320 Mpix/sec

monitor

322

Chapter 7: Optimizing Your Application

Table 7-2 GL Subroutines used by the IL and the Affected Data Path

Functional Path of RealityEngine Image Processing Operations

The RealityEngine has been programmed to perform several important
image processing operations as part of its pixel transfer path. That is, when
a block of pixels is transferred, either by an lrectwrite(), a rectcopy(), or a
subtexload() operation, the sequences of image processing operations
shown in Figure 7-3 can be in effect. These sequences of operations
constitute what can be computed in a single pass. If the desired sequence of
operations cannot be accomplished in a single hardware pass (for example,
convolve with a warp as input), the sequence can be divided into two or
more subsequences, each of which can be computed in a single pass (see
“The Hardware Pass in Detail” on page 324). The RealityEngine auxiliary

GL Subroutine Host
to GE

GE to
FB/Aux

GE to
Texture

Texture to
FB/Aux

FB/Aux to GE

bgntmesh,
endtmesh,
istexloaded

✘

blendfunction,
logicop

✘

convolve ✘ ✘

fbsubtexload ✘ ✘

ilbuffer, ildraw,
wmpack

✘ ✘

lrectwrite ✘ ✘

pixelmap ✘

pixeltransfer,
pixmode

✘ ✘

readcomponent,
readsource

✘

rectcopy ✘ ✘

subtexload ✘ ✘

tevbind, texbind ✘ ✘

tevdef, texdef2d ✘

Using Hardware Acceleration

323

buffers (see the section, “Auxiliary Buffers” on page 327) provide storage for
intermediate results created during a multi-pass operation.

Figure 7-3 Image Processing Operations Accomplished in a Single Pixel Transfer
on the RealityEngine

Overview of Hardware Acceleration on the RealityEngine

The goal of hardware acceleration is to efficiently map a sequence of one or
more image processing operations onto specialized graphics devices. The IL
looks at operations in an image chain to determine where acceleration
applies. If the last operator in an image can be accelerated in hardware, it is.
The IL then accelerates any operators preceding the last one that can be
accelerated along with the last one in the chain.

The IL creates a new object, ilHwPass, to perform an accelerated operation.
If two operations can be accelerated together, a single hardware pass
performs those two operations. If two adjacent operations the end of a chain
can both be accelerated but not combined, two hardware passes are created,
one for each operation.

Convolve

Warp

Clamp Lut

Rotate
Zoom

Blend

ALUScale
Bias*

Scale
Bias*

Scale
Bias*

Histogram
Min/Max *Composition of two or more of these

operations is allowed.

Pixel
Conversion

324

Chapter 7: Optimizing Your Application

If a pass can be created for an operator, a method is called on that pass to
complete the requested operation. The pass will lock the input pages in a
manner similar to ilCacheImg and then perform primitive transfer
operations such as rectcopy() and lrectwrite().

The Hardware Pass in Detail

This section describes how the IL builds a hardware pass that performs one
or more IL operations using graphics hardware. The next section,
“Functional Path of RealityEngine Image Processing Operations,” describes
which IL operations can be combined into a single hardware operation and
the order in which the operations must occur in the image chain for this
combined operation to happen.

The ilHwPass object represents a primitive pixel transfer operation such as
an lrectwrite(), a rectcopy(), or a texture rendering operation that may also
perform one or more image processing operations.

The IL hardware pass is designed to achieve hardware acceleration while
coping with the following issues:

• Hardware acceleration can occur at any point in an image chain, since a
display operation, which initiates the hardware acceleration, can be
applied to any operator in the chain.

• A single hardware pass can perform more than one IL operation, since
a graphics device can execute more than one image processing
operation. An example of this is convolution followed by a look-up
table operation. Thus, the mapping of IL operations to the primitive
pixel transfer operations performed by the graphics device is
many-to-one (that is, many IL operations to one pixel transfer).

• The IL must defer most decisions regarding hardware acceleration until
the copyTileCfg() call is issued, since the hardware acceleration
configuration depends on destination parameters (such as the ilConfig
structure) that are not known until then.

When a copyTileCfg() is issued on an ilOpImg and the destination is an
ilGLDisplayImg, then control is passed from the ilOpImg to the associated
ilHwPass to attempt to complete the requested operation. If the ilHwPass is
unable to configure itself for the requested operation, then control is
returned to copyTileCfg() and normal, CPU-based processing ensues.

Using Hardware Acceleration

325

Initially, an ilOpImg has no hardware pass associated with it and thus it
must construct one. The manner by which the pass is constructed is
instrumental in achieving the many-to-one mapping of image processing
operations to primitive pixel transfer operations mentioned above.

1. The ilOpImg first requests the hardware pass of its input. It then
attempts to compose its operation with the ilHwPass of its input to
form a new composite pass, which is composed of this ilOpImg and
one or more images preceding it in the image chain. For example, in
Figure 7-4, the ilLutImg is able to compose its operation with the
preceding ilSharpenImg operation to create a composite operation to
perform both IL operations. In this figure, ilHwPass2 performs the
combined ilSharpenImg and ilLutImg operations. ilHwPass1 performs
just the ilSharpenImg operation. This is used only if the result of the
ilSharpenImg operation is to be displayed.

.

Figure 7-4 Composite Operation

2. If the attempt to create a composite operation fails because the
composite operation is not supported by a single pixel transfer, then a
new pass is constructed representing the single image processing
operation of the ilOpImg in question, and its input is set to be the
output of the input pass. The IL must create temporary storage to cache
the data between passes. It does this in an auxiliary buffer, which is
described in “Auxiliary Buffers” on page 327. Figure 7-5 illustrates this
multi-pass operation.

ilFileImg ilSharpenImg

ilHwPass2

ilLutImg Display

ilHwPass1

326

Chapter 7: Optimizing Your Application

.

Figure 7-5 Multi-pass Operation

3. If the attempt to create a new pass also fails, most likely because the
graphics device does not support the auxiliary framebuffer storage
necessary to chain the output of one pass to the input of another, then
the input of the pass is set to be the input of the ilOpImg, that is, the
result of the unaccelerated input computation.

4. Once constructed, a pass is retained until the ilOpImg is reset, or until
the ilOpImg is deleted.

Consider now hardware acceleration performed on an image chain similar
to that of the sample program from Chapter 1, “Writing an ImageVision
Library Program.” Figure 7-6 contains a diagram of the image chain. For
simplicity, this chain does not write its result back to disk.

ilFileImg ilSharpenImg

ilHwPassilHwPass

ilRotZoomImg

Auxiliary Buffer

Using Hardware Acceleration

327

Figure 7-6 Hardware Acceleration on an Image Chain

Auxiliary Buffers

The RealityEngine includes one or more auxiliary buffers that the IL uses to
cache image data between hardware passes. An auxiliary buffer is reserved
space in the framebuffer. All IL processes share auxiliary buffer space, which
restricts other rendering functionality since the auxiliary buffer cannot be
moved or resized once it is reserved. If a non-IL application reserves the
space needed for the auxiliary buffer first (for example, to do z-buffering or
multi-sampling), any IL application that tries to reserve it is locked out. This
restricts hardware acceleration to single pass operations. An analogous
situation occurs if an IL application reserves the space in the framebuffer
first. This lockout ensures that the data in the auxiliary buffer is not
overwritten by any concurrently running applications.

Figure 7-7 shows the use of an auxiliary buffer to implement the creation of
a composite pass that performs the ilSharpenImg and ilLutImg operations.
In this diagram, dashed lines show linkages in the image chain, the black
lines show data flow into the hardware passes, heavy gray lines represent
input to images.

ilFileImg ilRotZoomImgilSharpenImg

copyTileCfg()

ilHwPass

Framebuffer

ilHwPass

Auxiliary Buffer

328

Chapter 7: Optimizing Your Application

Figure 7-7 New Chain Constructed with Hardware Passes

Data is stored in the auxiliary buffer as 12 bits per component and up to 4
components per pixel. This image data is held in an ilAuxImg object, which
is an IL image that is used internally and not exposed for external use. An
ilAuxImg object resides in the auxiliary buffers and holds intermediate
results for multi-pass operations. It has a page size of 128 x 128 pixels (except
in static update, see “Static Update” on page 331). An ilAuxImg is similar to
an ilMemCacheImg except that the total number of pages is much more
limited and the pages reside in the framebuffer. As a rule, pages of an
ilAuxImg remain unlocked except during a computation. However, pages of
an ilAuxImg that have been loaded into a texture must remain locked since
IRIS GL requires them to be available for reloading at any time. When a page
allocation fails because all of the pages in the auxiliary buffers are locked, the
operation is aborted and the equivalent non-accelerated operation is
attempted instead.

The auxiliary buffers are managed as a shared global resource among all
IL-based processes through a global arena. The total number of auxiliary
buffers available to the IL depends on the number of Raster Managers (RMs)
installed in the RealityEngine, the current video format, and whether other
non-IL applications have already reserved some of the auxiliary buffers. The
first IL process that attempts to allocate an ilAuxImg automatically

ilFileImg ilRotZoomImgilSharpenImg

ilHwPassilHwPass

ilLutImg

ilGLDisplayImg

ilAuxImg

Using Hardware Acceleration

329

initializes the global arena used for mediating auxiliary buffer access and
reserves some of the auxiliary buffers for exclusive IL use. The environment
variable IL_AUX_BUFFERS limits the number of auxiliary buffers reserved
for use by the IL. Subsequent IL processes simply join the existing global
arena.

The global arena exists as long as at least one IL process is attached to it.
When the last IL process attached to the global arena terminates, the arena is
destroyed. If an IL process terminates prematurely, it is possible that
auxiliary buffer pages locked by that process will remain locked indefinitely.
The only way to correct this situation is to destroy the arena by terminating
all IL processes attached to the arena. The shared global arena is located in
/var/tmp/.ilAuxBufferArena. This file can safely be deleted if no IL processes
are executing.

Auxiliary Buffer Management on Multiple Pipes

Systems that have more than one RealityEngine subsystem also have more
than one disjoint set of auxiliary buffers. Each pass that writes its output to
an ilAuxImg has a copy of the image in each of the sets of auxiliary buffers.
The auxiliary buffer cache is not shared across subsystems because it is
impractical to copy image data between them.

Texture and Its Limitations

Polynomial warp operations are accelerated on the RealityEngine by
exploiting its texture rendering facility. Pages of the input image are loaded
into texture memory using the GL call subtexload() or fbsubtexload() if the
input is an ilAuxImg. The desired geometric transformation is applied to the
texture and the resulting transformed image is rendered using v2f() and
v2i(). The texture is limited in size to 1024 x 1024 pixels for bilinear and
nearest neighbor interpolation, and to 512 x 512 for bicubic interpolation. If
the input image is larger than this size,a only a subportion of the image can
be held in texture memory at any given time. If the image is smaller than this

a Actually a one page border of fill value must also be loaded into texture, so the actual limit is the texture size
minus one page width.

330

Chapter 7: Optimizing Your Application

critical size, then it can be loaded in its entirety and rendered rapidly.
However, larger images must be paged and are therefore limited by the
subtexload() speed, which is substantially less than the rendering speed.

To optimize the texture’s efficiency, the IL constrains warps and
rotates/zooms in the RealityEngine to a page size of 64 x 64.

Image data is stored internally in texture in a variety of formats, depending
on the operator color model and resampling method. See Table 7-3 for the
detail about internal formats.

See the texdef reference pages for more information about internal formats.
Table 7-3 shows the texture sizes associated with the various internal
formats.

a. Double these values for RM5.

Table 7-3 Texture Image Internal Formats

Color Model

Resampling

ilBicubic

Type

ilBilinear/ilNewNb

ilRGB
ilBGR

TX-RGB-12 TX_RGB-12
TX_RGB_8
TX_RGB_5

MinBits>8
5<MinBits<=8
otherwise

ilABGR
ilRGBA

TX_RGBA_12 TX_RGBA_12
TX_RGBA_8
TX_RGBA_4

MinBits>8
4<MinBits<=8
otherwise

ilMinWhite TX_I_12A_4 TX_I_12A_4

Table 7-4 Texture Size for Internal Formats

Internal Format Texture Size a

TX_I_12A_4
TX_RGB_5
TX_RGBA_4

1024 x 1024
1024 x 1024
1024 x 1024

TX_RGBA_8 1024 x 512 or 512 x 1024

TX_RGB-12
TX_RGBA_12

512 x 512
512 x 512

Using Hardware Acceleration

331

You can use the setMinComponentBits() method of ilWarpImg to set the
minimum number of bits per component in the internal texture format. In
this way, you can influence the choice of internal format and consequent size
and rendering of the texture.

Static Update

An ilAuxImg is made up of pages so that as you roam over a displayed
image, the requisite intermediate ilAuxImg pages can be loaded into the
auxiliary buffers and then later reclaimed. However, when the ilAuxImg is
reset, any pages that it has cached in the auxiliary buffers are discarded.
Therefore, if an operator chain is being repeatedly reset, perhaps because an
operator parameter is being interactively varied, then the ilAuxImg pages
are repeatedly being discarded and recomputed, incurring a fair amount of
overhead. In order to obtain peak throughput for non-roaming iterative
reset, a non-paged processing mode called “Static Update” is automatically
activated.

An ilView can distinguish between normal roaming and static update by
checking if a reset has just occurred. If so, the ilView passes a static update
“hint” to copyTileCfg() and ultimately to the hardware acceleration logic.
When in static update mode, the page size and origin of the ilAuxImg are
changed to coincide with the size and position of the requested tile. The
static update hint is also propagated to the input of the pass and therefore
applies to all passes in a multi-pass operation. However, static update is not
propagated to the input of an accelerated warp operation because of the
constraints to texture input.

It is possible to disable and also to force static update using the
setStaticUpdate() and setAutoStaticUpdate() methods of ilView.
isStaticUpdate() checks the status of the static update mode.

isStaticUpdate();
setStaticUpdate(int enable);
setAutoStaticUpdate(int enable);

332

Chapter 7: Optimizing Your Application

Using a Dedicated GL Rendering Thread

Your IL application can use a dedicated thread for GL access to maximize
interactive performance on the RealityEngine. In the multi-threaded IL
environment, only one thread at a time can be used for GL rendering. This
limitation exists because the GL is not mp-safe. The IL normally uses
spinlocks to insure that only one thread at a time accesses the GL. This
method switches GL rendering from one thread to another, which incurs a
high overhead. Having a dedicated thread for the GL avoids this overhead.

Figure 7-8 shows how the dedicated GL thread works. Client threads (any
thread except the dedicated GL thread) place requests for GL rendering in
the input queue. The dedicated thread removes an entry from this queue,
performs the rendering operation, and places the request in an output
queue. Client threads check the output queue for completed requests while
they are waiting for “wait” criterion to be satisfied and delete any completed
requests they find.

Figure 7-8 Dedicated Il Rendering Thread

Controlling the Rendering Thread

 There are two ways to control the dedicated IL rendering thread.

1. Use the global call ilHwThreadEnable() to enable and disable the
dedicated rendering thread. TRUE enables the thread, FALSE disables
it. The GL rendering thread is disabled by default.

ilHwThreadEnable(int enable);

Input Queue
Client Threads

Dedicated
GL Thread

Output Queue

Using Hardware Acceleration

333

2. Use the global calls ilHwThreadSuspend() and ilHwThreadResume()
to temporarily suspend and resume a dedicated IL rendering thread.
ilHwThreadSuspend() suspends the thread if it is active and does
nothing if there is no active dedicated thread. Calls to suspend and
resume can be nested. The last matching resume reactivates the thread
if it was active prior to the first suspend. Do not suspend the dedicated
IL thread while it is in the process of GL rendering.

It is imperative that the rendering thread not be forced to sleep due to mp
contention or insufficient number of processors. (The minimum sleep
interval is 10ms or ~2/3 of a 60Hz frame.) This implies that the default
number of IL threads (number of processors +1) is probably too many if the
rendering thread is active. It is recommended that you set the total number
of IL threads to the number of processors - 1 when using the rendering
thread.

Using the Rendering Thread

The ilHwRequest class allows you to create requests for the GL rendering
thread. The constructor for the class is:

ilHwRequest(ilDisplay* Display);

Objects of class ilHwRequest are queued for execution by the rendering
thread through the static member function ilHwRequest::dispatch().
Rendering requests that are posted in this manner are processed on a
first-come first-served basis.

void dispatch(ilHwRequest* req, int (*wait)() = NULL);

The client threads wait inside the dispatch() function until the “wait”
criterion (that is passed as a callback function) is satisfied. The default wait
action is to return immediately. However, you can use this wait criterion to
regulate the flow of requests pending to be executed. For instance, you may
want to limit the number of pending window refreshes to be less than some
constant number of frames so that there is not a significant lag between user
actions and display response. In this case, you can dispatch a request once
per frame that increments a counter, and then decrements it when the
request is destroyed. The callback can test this counter against the limiting
value and return TRUE if the number of pending display refreshes exceeds
the threshold.

334

Chapter 7: Optimizing Your Application

The ilHwRequest class defines the static function flush() that inserts a
dummy request in the queue and waits for it to be executed. This effectively
flushes all requests dispatched prior to the flush().

static void flush();

The requests are deleted after they are executed; so they should be allocated
using new and then forgotten after being dispatched. They are deleted by the
threads that are forced to wait for the queue to drain during dispatch(),
rather than by the rendering thread. This keeps mp contention of the
rendering thread to a minimum.

Mixing Application Rendering with the IL Rendering Thread

If the application makes GL calls directly (i.e. not through the IL), it must
synchronize with the rendering thread since GL is not mp safe. There are
several ways to do this.

1. Temporarily suspend the rendering thread by calling
ilHwThreadSuspend().

2. Queue application rendering that is to be executed by the rendering
thread in one of two ways:

■ Derive a new subclass from the base class ilHwRequest. Override
the virtual exec(), which gets called by the rendering thread when
the request is taken off the queue.

■ Queue a callback using the IL global ilHwCallback(). The queued
callback function is called by the rendering thread when it is taken
off the queue.

Restrictions on the exec() virtual

The hardware acceleration logic avoids redundant calls of costly GL routines
by filtering these calls through a global GL state object. If an exec() method
makes direct GL calls, it may confuse the IL’s picture of the current GL state.
(If you suspend the rendering thread using ilHwThreadSuspend(), then this
restriction does not apply because the GL state is forgotten when the thread
is resumed.)

Using Hardware Acceleration

335

To get a pointer to the global GL state object, call ilHwState::getGLState().
Table 7-5 provides a provisional list of the protected GL calls, and how to call
them, if it is required.

Table 7-5 ilHwState Member Functions Used to Make GL Call

Also, certain IL calls during the exec() method can trigger deadlock. In
particular, get methods on ilLink-derived objects usually call resetCheck()
and possibly reset(). In general, it is a good practice to avoid reset() during
the exec() virtual. In particular, it is an error to call ilGLDisplayImg::reset()
during the exec() virtual.

On a related note, an IL object can go through reset() one or more times
between the time that the request is posted and the time that it is executed.
Therefore, you cannot rely on the parameters of the object to remain
unchanged. Moreover, cache pages will be invalid, unless they are locked.

A well-designed ilHwRequest object caches all requisite parameters in its
constructor (or at least prior to dispatch) and locks any input pages and
other ancillary objects. The exec() virtual itself should do very little, other
than the necessary GL calls. In the destructor, unlock the input pages, etc.

GL Call ilHwState Member Function

winset ilHwState::setDest()

scrmask, ortho, viewport, mmode,
etc

bracket with GL pushviewport and
popviewport calls

pixmode ilHwState::setup(), ilHwState::doStride(),
ilHwState::setFlip()

cpack ilHwState::doCpack()

wmpack ilHwState::doWmpack()

readsource, readcomponent ilHwState::auxRead()

336

Chapter 7: Optimizing Your Application

Controlling Multi-threading

Typically, the IL automatically uses multi-threading to optimize common
functions (like operating on pages of data). This is explained in
“Multi-threading” on page 71. In addition, you can explicitly control or
query some of the classes used in the IL’s multi-threading facility:

ilSemaphore a several-thread “lock” that limits the number of process
threads that may simultaneously access some shared data
structure or resource.

ilSpinLock a single-thread lock that limits simultaneous access to some
shared data structure or resource to one thread at a time.

ilArena an area of CPU memory shared by multiple processes
(threads); the IL allocates semaphores and spinlocks from
an arena.

These classes are described in more detail in the following sections. In
addition, several other classes work with those above to compose the
multi-threading facility, but you can’t typically control them to your
advantage. They’re briefly described below for your convenience:

ilThread an execution thread. A dispatcher assigns requests from the
queue to threads. A thread blocks if it is waiting for a
request to complete or if there are no requests in the queue.

ilDispatcher an abstract class (derived to work with particular operators)
that dispatches requests to a global request queue and
spawns threads as needed to service the queue.

ilRequest a request for an I/O operation or computation that is
dispatched to the request queue and which is eventually
completed by a thread.

Controlling Threads

Internally, the IL keeps track of how many threads can be used for CPU
computations. This is usually equal to the number of processors on the
machine, but you can control or limit the number of processors the IL uses
by setting the environment variable IL_COMPUTE_THREADS to the
maximum number of threads you want to apply.
(IL_COMPUTE_THREADS should never be more than the number of

Controlling Multi-threading

337

processors or the performance of the IL application will suffer.) The IL also
keeps track of how many additional “spare” threads it has for use in I/O
operations. This is usually equal to zero, but you can change it by setting the
environment variable IL_SPARE_THREADS. (The application that you are
running counts as an implicit “spare” thread.) Alternatively, you can set both
internal values at once with the global function ilMpSetMaxProcs():

ilSetMaxProcs(int compute, int spare);

You must call this function before issuing any request that uses the
multi-processing capabilities; in other words, you cannot retroactively
change the number of allowed threads. Making the number of CPU and
spare threads both equal to zero disables multi-threading. You will run out
of space in the arena if you allow too many threads. By default, the
maximum limit set by the IL is 40 threads. You can increase this limit by
setting the environment variable, IL_ARENA_MAXUSERS, to a larger
value.

It’s also possible to control the use of multi-threading on individual
operators using the enableMP() method on ilCacheImg:

void enableMP(int on=TRUE)

Calling this method with on set to FALSE will prevent the object from issuing
concurrent getPage() requests to satisfy its tile requests.

Semaphores and Locks

To limit access by concurrently running threads to a shared data structure or
resource, use an ilSemaphore or ilSpinLock. The ilSpinLock class is preferred
for short duration locking; ilSemaphore is recommended for operations that
may take some time. For example, the IL uses a semaphore to limit the
number of concurrent executions of the computational part of an operator to
the number of available processors. On the other hand, IL uses an ilSpinLock
to prevent concurrent access to the caching data structures.

338

Chapter 7: Optimizing Your Application

Controlling Arenas

An ilArena is an area of shared memory from which semaphores, locks, and
threads are created. Only a limited number of threads can share an arena,
and this number is set when the ilArena is created:

ilArena(int maxUsers = 24);

ilArena’s other member function, getHandle(), takes no arguments and
returns a void* that represents the pointer to the arena. This value is NULL
if multi-threading is not supported. (You can use this function to determine
if the IL can use its multi-threading facilities on your system.)

Note: Linking an IL application with other libraries that create arenas can
cause an address space collision. To prevent such collisions, set the
environment variable IL_ARENA_ADDRESS to a value that will not overlap
the address space created by the arena of another library.

Interaction with Multi-threaded Applications

You can use the IL with multi-threaded applications provided your
application follows these guidelines:

• If you create threads, don’t destroy them unless you disable IL’s use of
the prctl(PR_SETEXITSIG, SIGHUP) call. IL uses this call to force all
threads to be terminated when an IL-based program encounters an
error or upon normal termination. If you override the default behavior
of the IL with respect to the child threads, take care to clean up these
threads on process termination. If you use ilThread to create your
threads, its destructor will safely terminate just that thread.

• Don’t issue calls to alter the chain in any way while a getTile(),
setTile(), copyTile(), or fillTile() request is in progress in another
thread. Unpredictable results will occur if you do so, as the alteration
methods are not safe for multi-threading.

Controlling Multi-threading

339

• Issuing multiple tile requests concurrently is safe for multi-threading.

• You will probably want to use ilMpSetMaxProcs() to limit IL’s use of
threads, if you create your own threads, to avoid excessive thrashing of
CPU resources. You can also use the enableMP() method on
ilCacheImg to turn off multi-threading on individual operators and file
images.

This chapter describes the programming
environment in which your IL
application runs and tools you can use to
write, compile, and debug your program.

The Programming Environment

Chapter 8

343

Chapter 8

8. The Programming Environment

This chapter provides information on the programming environment
available on Silicon Graphics workstations. Special tools that may help you
in writing, compiling, and debugging your IL program are discussed.

This chapter contains the following major sections:

• “Compiling and Linking an IL Program” on page 344 describes what
you need to do to compile an IL program written in C++, C, or Fortran.

• “Reading the Reference Pages” on page 348 explains how to read the
class reference pages. These reference pages don’t follow the standard
UNIX reference page format.

• “Debugging an IL C++ Program” on page 349 briefly mentions how to
debug your program.

• “Image Tools” on page 351 describes some image tools that were
developed using the IL.

• “Online Source Code” on page 352 describes the IL-related code that’s
available online.

344

Chapter 8: The Programming Environment

Compiling and Linking an IL Program

The following sections show you how to compile and link IL programs
written in C++, C, or Fortran.

Programs Written in C++

To compile an IL program written in C++, use the following command line:

CC -g sample.c++ -o sample -lil

Libraries that you must link to include the IL library itself. (See the CC
reference page for more information about the C++ compiler.)

By default, the *.so libraries are used to link your programs. In general, you
should not use the static, or *.a, libraries unless you want to keep your
application in one complete binary. If you do choose to use the static
libraries, your command must be as follows:

CC -g sample.c++ -o sample /usr/lib/libil.a -lgl -ldl -lm

If you are using the static libraries, the libraries you must link to include the
IL library itself, the GL shared library, the X Window library (if you are
creating a mixed-model X and GL application), the math library, the C++
library, the multiprocessing library, and the dynamic linking library.

A Sample Makefile

Here’s a sample Makefile for compiling IL programs:

Makefile for IL test programs

SHELL = /bin/sh
If you want to debug,turn on the “-g” option.
FLAGS = -g

MAINS= sample.c++
OBJS = ${FILES:.c++=.o}
PROGS = ${MAINS:.c++=}

LIBS = -lil

.c++:
 CC $(FLAGS) $< -o $@ $(LIBS)

Compiling and Linking an IL Program

345

.c++.o:
 CC $(FLAGS) -c $<

clean:
 rm -rf $(OBJS) $(PROGS)
 rm -rf core

Image File Format Libraries

The image file formats are in their own libraries, stored in
/usr/lib/ImageVision/filefmt. If your program explicitly creates an object of
type ilTIFFImg, ilPCDImg, ilFITImg, or ilSGIImg (as opposed to using
ilCreateImgFile()), you must link with the corresponding library.

In the compile line, you must add:

-L/usr/lib/ImageVision/filefmt -lilFMT

where FMT is TIFF, FIT, PCD, or SGI.

You also need to set LD-LIBRARY_PATH at runtime.

Linking with Libraries in Other Languages

If you program in C++, you’ll probably want to link with object files and
libraries written in languages other than C++, especially C. In order to do so,
you must include in your program declarations for the functions you wish
to call. In most cases, you can do this by including appropriate header files
with the #include directive. For the standard C header files supplied by
Silicon Graphics, using #include is all you need to do. For example, if you
are going to use C standard I/O and the Graphics Library, write:

#include <stdio.h>
#include <gl/gl.h>

If you want to call C functions from within a C++ program, either directly or
by file inclusion, make sure that the C++ program contains correctly
prototyped declarations for the functions. Also, the function declarations
need to be recognizable by the C++ translator as declaring functions whose
definitions are in C.

346

Chapter 8: The Programming Environment

These steps are necessary because C++ normally encodes function names to
support overloading. For example, the real name of a function declared in a
C++ program as:

 void printf(char*, ...) is printf__FPce.

The printf() function in libc.so, however, is called printf. To allow a C++
program to call functions written in C, C++ provides linkage specifications.
To use the standard printf() function, for example, write:

extern "C" {
 void printf(char *, ...);
}

within the C++ source file that calls printf(), or within a header file that is
included by the source file. The extern C statement tells the translator that the
function linkage should be done according to the conventions used by the C
programming language.

If you want to adapt an existing C header file or create a header file of your
own containing C function declarations, and you want to be able to include
it in either C or C++ programs, you can use the symbol __cplusplus (with two
underscores preceding it). __cplusplus is always defined for C++
compilations and is otherwise undefined. Thus, you can enclose C function
declarations with:

#ifdef __cplusplus
extern "C" {
#endif

and

#ifdef __cplusplus
}
#endif

This scheme is used to create the C and Fortran interfaces to the IL.

Programs Written in C or Fortran

Link your C object files to the libcil.so library, the C version of the IL. For
example, to compile a C program called ctest.c, use this line:

Compiling and Linking an IL Program

347

cc -g ctest.c -o carprot -lcil

The IL is compatible with ANSI C. To use the older, pre-ANSI dialect, add
–cckr to the command line. Ignore any warnings generated during
compilation.

Link your Fortran programs to the Fortran version of the IL—libfil.so. The
Fortran compilation line looks like:

f77 -g ftest.f -o ftest -lfil

See the C and f77 reference pages for more information about the C and
Fortran compilers.

A Sample Makefile

Here is how you might write a short Makefile to compile IL programs:

A very simple Makefile for IL test programs

SHELL = /bin/sh
FLAGS = -g

CMAINS = csample.c
COBJS = ${CMAINS:.c=.o}
CPROGS = ${CMAINS:.c=}
CLIBS = -lcil

FMAINS = fsample.f
FOBJS = ${FMAINS:.f=.o}
FROGS = ${FMAINS=.f=}
FLIBS = -lfil

.f:
f77 $(FLAGS) $< -o $@ $(FLIBS)

.c:
cc $(FLAGS) $< -o $@ $(CLIBS)

clean:
rm -rf $(COBJS) $(FOBJS)
rm -rf core

clobber: clean
rm $(FROGS) $(CPROGS)

348

Chapter 8: The Programming Environment

Reading the Reference Pages

The IL reference pages don’t look like typical reference pages, since they’re
class reference pages. They’re available online by typing man ilClassName in
a shell window. (A printed version of the reference pages is available as an
option; see the Introduction for ordering information.)

The C++, C, and Fortran versions of the class reference pages share a similar
format; the main sections of each reference page are described below:

Name The class name and a one-line description of the class.

Inherits From A colon-separated list of superclasses, beginning with the
base class.

Header File The class’s header file.

Class Description
Describes how the class fits into the IL and how to use it.
This section briefly mentions the most important functions
associated with the class. The C++ version also contains
information about deriving from the class, if appropriate.

Class Member Function Summary
Lists the prototypes of the functions associated with the
class. They’re grouped functionally with headings that
indicate the general task they perform. Functions that are
protected are identified as such. This section should be a
synopsis of the class.

Function Descriptions
Describes what each function does and what its arguments
mean; sometimes code examples are included. This section
is arranged alphabetically so that you can easily find the
description of a particular function of interest.

Inherited Member Functions
Alphabetical list of the functions inherited from
superclasses.

See Also Other reference pages of interest.

Notes (optional)
Special information about the class.

Debugging an IL C++ Program

349

Debugging an IL C++ Program

This section gives an overview of how you can debug your IL program by
using dbx. It may be easier to debug your program if you use environment
variables to turn off the multi-threading facility of the IL before compiling a
program for debugging. You may also need to turn off the hardware
acceleration facility. See “Multi-threading” on page 71 and “Using Graphics
Hardware for Acceleration” on page 73 for information about how to turn
off these facilities.

Compiling for Debugging

You can debug IL C++ programs with dbx. Compile and link with the –g
option for best results; –g must be specified to allow the examination of local
variables. If you don’t compile with –g, you can still set breakpoints, and
function names will be recognized, but variable names won’t. Compiling
with –g also disables most optimizations.

See the dbx Reference Manual for a detailed description of the debugger.

Referring to Function Names

The most important thing you need to know when debugging C++
programs with dbx is how to refer to functions and data members:

• Member functions. Refer to these as classname::functionname. For
example, to set a breakpoint in class C’s member function f(), type:

stop in C::f

If there is more than one member function named f(), this command
will set a breakpoint in every such function. (However, you can’t set a
breakpoint in an in-line function.)

• Global C++ functions. Refer to these as ::functionname. For example, to
set a breakpoint in the global function f(), type:

stop in ::f

• Non-C++ functions. Refer to these as functionname. For example, to set a
breakpoint in printf(), type:

350

Chapter 8: The Programming Environment

stop in printf

• Data members. You cannot refer to a data member by its name alone,
even if the program is stopped in a member function. To refer to data
member m, use this–>m.

The following example illustrates various possibilities:

#include <stdio.h>

class foo {
int n;

public:
foo() {n = 0;}// this is an inline function
foo(int x);
int bar();
int bar(int);

};

int foo:: bar()
{

return n;
}

int foo:: bar(int x)
{

return n + x;
}

foo::foo(int x)
{

n = x;
}

int square(int x) // this is a global function
{

return x * x;
}

main()
{

foo a;
foo b = 11;
int x = a.bar();
int y = b.bar(x) + square(x);
printf("y = %d\n", y);

}

Image Tools

351

If you type:

stop in foo::foo

execution will stop in the constructor for the variable b but not in the
constructor for the variable a because you cannot set a breakpoint by name
in an in-line function.

If you type:

stop in foo::bar

execution will stop both when a.bar is called and when b.bar is called because
the debugger is unable to distinguish between the overloaded functions.

To stop in square, type:

stop in ::square

To stop in printf (a C function), type:

stop in printf

Image Tools

Several useful utilities are provided for displaying, copying, and
manipulating images. These image tools are based on the IL and therefore
support TIFF, SGI, PCD (Photo CD), PCDO, GIF, and FIT file formats. They
are installed in /usr/sbin, and most of them are documented in the IRIS
Utilities User’s Guide. (They also have reference pages.)

imgcopy Image Copy. Copies a specified region of an input image file
to an output image file. It can also be used to convert
between IL-supported file formats. See the imgcopy
reference page.

imginfo Image Info. Reports image information such as size, data
type, color model, and file format for any IL-supported file
format. See the imginfo reference page.

352

Chapter 8: The Programming Environment

imgview Image View. Allows any combination of IL-supported image
files to be displayed and manipulated. The images may be
roamed, dragged, cropped, or wiped separately or
simultaneously. See the imgview reference page.

imgworks Image Works. Provides a graphical user interface for
manipulating images. Images can be brightened, darkened,
histogram-equalized, thresholded, zoomed, rotated,
flipped, sharpened, and blurred. See the imgworks reference
page.

imgformats Image Formats. Lists all the IL-compatible formats currently
installed.

ilmonitor IL monitor. A graphical tool that monitors image objects and
the image data cache and dynamically alters global cache
and some image attributes.

Online Source Code

To provide you with source code examples, the IL installs several directories
in /usr/people/4Dgifts/examples/ImageVision, as described below:

• ilguide contains the whole-program examples presented in this guide.
They’re provided so that you can compile and run them as you read the
relevant discussion in the guide.

• ilapps contains sample IL applications such as imgcopy and imgview
(which are described above) as well as several others. These
applications serve as examples of how to program with the IL and serve
as possible templates for developing new applications.

• ilsrc contains IL source code that may be of use if you extend the IL by
deriving your own classes. It includes the source for the FIT file format,
the ilViewer class, and several operators. You might want to examine
the corresponding header files, which are in /usr/include/il.

• iltutorial contains a series of programs that build on one another. The
first in the series (ex0.c++) simply opens and displays an IL image file.
The other programs use various operators and display techniques.

Online Source Code

353

You can examine the README files in the various directories for more
information on each of the code examples. Also, each of the directories
containing whole programs has an appropriate Makefile; to compile any of
the programs, simply type:

make < program name>

where <program name> is the name of the file minus its .c++ suffix.

355

Appendix A

A. Introduction to C++

This chapter introduces the basic concepts of programming in C++. It briefly
covers the principal concepts that differentiate C++ from
non-object-oriented languages. Rather than providing a definitive overview,
it gives C and Fortran programmers a basic grasp of the C++ concepts and
phrases that are occasionally used in this guide. If it has the side benefit of
piquing the interest of C and Fortran programmers enough to give C++ a try,
so much the better. One primary benefit of programming in C++ is that you
can extend the IL as you wish—for example, to include support for your file
format or for an image processing algorithm.

Objects and Classes

If you know that C++ is an object-oriented language, you correctly assume
that objects play a major role in a C++ program. An object is an instance of a
C++ class. A class is a fancy data type that defines not only data elements as
in a data structure but functions that manipulate those data elements. These
data elements are called the class’s data members, since they belong to the
class; similarly, the functions that manipulate the data members are called
member functions.

One key member function is the constructor, which contains instructions
about how to create a class object. Typically, the constructor initializes the
values of the data members. The class destructor deallocates the class object.
In C++, you can have the compiler automatically create objects for you:

goodClass myGoodClass(anArg);

This statement defines the variable myGoodClass as being an instance of the
class goodClass; it invokes the goodClass constructor to create myGoodClass,
passing in the variable anArg as an argument to the constructor. Since

356

Appendix A: Introduction to C++

storage is allocated for myGoodClass, you can now invoke any of its member
functions:

myGoodClass.doItNow(someArg, anotherArg);

This statement invokes the doItNow() function, explicitly passing in two
arguments and implicitly passing the data elements of myGoodClass. Note
the use of the dot operator (“.”) to access the doItNow() member function of
the goodClass. You can use this operator to access either a data member or a
member function of a class object. Since the myGoodClass object is created
automatically, it is also deleted (its storage freed) automatically.

You can explicitly create an object as shown below:

goodClass* myGoodClassP = new goodClass(anArg);

Here, the goodClass constructor is explicitly called with anArg as the
argument; note that the constructor has the same name as the class and that
it returns a pointer to the class object. So, instead of a class object, you now
have a pointer to a class. In this case, to access one of its members, you have
to use the arrow operator (“->”):

myGoodClass->doItNow(someArg, anotherArg);

Since you’ve explicitly created the myGoodClassP object, it won’t be
automatically deleted. You have to do this yourself:

delete myGoodClassP;

This statement calls the goodClass destructor to delete the object.

Inheritance

Classes can inherit selected data members and member functions from other
classes; inherited members are available for use by a class just as though they
were defined in the class itself. A class that inherits members from another
is said to derive from that class. Thus, classes exist in an inheritance hierarchy.
As shown in the inheritance hierarchy in Figure A-1, bestClass inherits from
betterClass, which itself inherits from goodClass.

Public versus Protected versus Private

357

Figure A-1 Sample Inheritance Hierarchy

In this example, betterClass is “better” since it inherits members from
goodClass and also defines its own; similarly, bestClass inherits members
from goodClass and betterClass, and it defines its own. The root of a
hierarchy is called the base class—in this example, the base class is goodClass.
Typically, the base class has several subclasses that derive from it; it defines
general capabilities common to every class in the hierarchy. A subclass then
adds definitions of whatever members it needs to implement in order to
provide its specific functionality.

A superclass can declare a member function as virtual, giving a subclass the
opportunity to provide its own definition of that function. In some cases,
virtual functions are simply declared but not implemented at all in a
superclass. These are called pure virtual functions, and they must be
overridden by a subclass’s own version. You can’t create an object of a class
that contains pure virtual functions; such a class is called an abstract class.

Note: If a superclass declares a member function to be virtual, any of its
subclasses may define its own definition of that function, including any
subclass that is indirectly descended from the superclass through another
subclass that has provided its own definition of that function.

Public versus Protected versus Private

A class can’t use all of its superclass’s members. Some of a class’s members
are declared private, and they’re available for use only by the member
functions of that class. Other members are declared protected, and these are
available for use by derived classes. Yet other members are declared public,
and they’re accessible anywhere in the program.

goodClass betterClass bestClass

358

Appendix A: Introduction to C++

Passing by Reference

The C++ language allows variables to be passed by reference (as Fortran
does). For example, here’s the declaration of a query function getAttribute(),
which returns an attribute’s value by reference:

void getAttribute(int& val);

Here’s how you use this function:

int x;
myGoodClass.getAttribute(x);

It looks like getAttribute() is taking the variable itself, but behind the scenes,
C++ actually passes a pointer to x.

Default Values

Another handy thing C++ allows you to do is to specify default values for a
function’s arguments. You do this when you declare the function:

void thisFunction(int arg1, int arg2 = 5);

Subsequently, you can call thisFunction() without explicitly specifying the
second argument:

myGoodClass.thisFunction(3);

This statement invokes the function, passing in 3 as the first argument and 5
as the second. Additionally, you can specify whatever value you wish for the
second argument instead of relying on the default, as shown below:

myGoodClass.thisFunction(3, 7);

359

Appendix B

B. Summary of All Classes

This appendix lists all the classes that make up the IL. Each of these classes
has its own reference page. Convenience functions that don’t belong to any
particular class are also listed here. These functions have reference pages as
well.

Class or Function Description

ilABGRImg Converts to the ABGR color model

ilAbsImg Computes the pixelwise absolute value of an image

ilAddImg Computes the pixelwise addition of two images

ilAndImg Computes the pixelwise logical AND of two images

ilArena Defines an area of CPU memory shared by multiple
threads

ilArithLutImg Performs a generalized arithmetic operation using a
look-up table

ilBGRImg Converts to the BGR color model

ilBitArray Provides a limited subscriptable bit array

ilBitMapRoi Defines a bitmap-based region of interest (ROI)

ilBlendImg Blends images

ilBlurImg Blurs an image

ilBuffer Provides a four-dimensional resizable buffer

ilCacheImg Implements image data caching

ilCMYKImg Converts to the CMYK color model

ilColorImg Converts to the ABGR color model

360

Appendix B: Summary of All Classes

ilCombineImg Combines two images controlled by an ROI

ilCompactCache Supports a compact pool of pages from global cache

ilCompassImg Performs a directional gradient transform of an
image

ilConfig Defines configuration of pixel data

ilConstImg Defines a constant-valued image

ilConvImg Performs general image convolution

ilCreateImgFile Creates an image file

ilDataIsSigned(),
ilDataMin(), ilDataMax(),
ilDataSize(), ilDataType()

Functions that manipulate IL data types

ilDictionary Implements a dictionary of named elements

ilDilateImg Performs morphological dilation on an image

ilDisplay Manages the display of images in an X window

ilDisplayImg Defines an image that exists in the frame buffer

ilDivImg Computes pixelwise division of two images

ilDyadicImg Provides basic support for dual-input operators

ilEnablePrefetch Enables and disables the prefetching of pages

ilEnviron Provides support for environment variables

ilErodeImg Performs a morphological erosion on an image

ilExpImg Performs pixelwise exponentiation of an image

ilFalseColorImg Performs false coloring of multispectral images

ilFConjImg Computes the conjugate of a Fourier image and
normalizes the complex value by a real factor

ilFCrCorrImg Computes the cross-correlation of two Fourier
images

ilFDivImg Divides two Fourier images

Class or Function Description

361

ilFDyadicImg Provides basic support for dual-input Fourier
operators

ilFExpFiltImg Applies an exponential Fourier filter to a Fourier
image

ilFFiltImg Provides basic support for Fourier filter operators

ilFFTOp Performs a forward, inverse, or average fast Fourier
transform of an image

ilFGaussFiltImg Applies a Gaussian Fourier filter to a Fourier image

ilFileFormat Registers supported image file formats

ilFileImg Provides basic support for image files

ilFITImg Creates an image file in the FIT format

ilFlushCache Frees memory in global cache

ilFMagImg Computes the magnitude values of a Fourier image

ilFMergeImg Merges magnitude and phase images into a Fourier
image

ilFMonadicImg Provides basic support for single-input Fourier
operators

ilFMultImg Multiplies two Fourier images

ilFPhaseImg Computes the phase values of a Fourier image

ilFRaisePwrImg Raises the magnitude values of a Fourier image by a
power

ilFSpectImg Computes the spectrum of a Fourier image

ilGBlurImg Performs a two-dimensional Gaussian blur of an
image

ilGetClassPropSet Accesses class property set by name

ilGetCompactFraction Queries the fragmentation threshold

Class or Function Description

362

Appendix B: Summary of All Classes

ilGetCurCacheSize(),
ilGetMaxCacheSize(),
ilGetMaxCacheFraction()

Convenience functions that query the state of the
global page data cache; see the ilHwAccelerate
reference page for details

ilGIFImg Accesses an image file in the GIF format

ilGLDisplayImg Defines an image that exists in the frame buffer (GL
rendering version)

ilGlobalName Defines a global name, accesses global name space

ilGLViewer Handles operations on ilDisplay triggered by GL
events in a standard, elegant way

ilGLXConfig Configures and creates X windows

ilGrayImg Converts to the gray-scale color model

ilHashTable Base class from which hash table implementations
can be derived

ilHistEqImg Performs histogram equalization of an image

ilHistLutImg Base class for operators that compute a lookup table
based on a histogram

ilHistNormImg Performs histogram normalization of an image

ilHistScaleImg Performs histogram scaling of an image

ilHSVImg Converts to the HSV color model

ilHwAccelerate(), Convenience function for enabling and disabling
hardware acceleration

ilHwAccelerateClass Enables and disables hardware acceleration of
objects of a specified class

ilHwIsEnabled Convenience function for querying the state of
hardware acceleration

ilHwRequest Provides support for hardware acceleration

ilHwState Manages the GL state

ilHwThreadEnable Enables and disables the use of a dedicated thread
for hardware-accelerated rendering

Class or Function Description

363

ilHwThreadResume Resumes a dedicated rendering thread

ilHwThreadSuspend Temporarily suspends the dedicated rendering
thread

ilImage Provides basic support for images

ilImgStat Computes the histogram, minimum, maximum,
mean, and standard deviation of an image

ilIndexableList Provides an indexable linked list

ilIndexableStack Manages an indexable list as a stack

ilInvertImg Performs one’s complement of an image

ilKernel, ilDoubleKernel,
ilFloatKernel,
ilLongKernel,
ilShortKernel

Classes that define kernels

ilLaplaceImg Performs edge detection using Laplacian kernels

ilLink Provides for chaining and setting attributes

ilLinkItem Base class that creates elements of a doubly linked
list

ilLinkIter Iterator for ilLink

ilList Base class for a simple doubly-linked list

ilListIter, ilListIterRev Iterators for ilList and ilIndexableList

ilLogImg Computes the pixelwise logarithm of an image

ilLut Defines a lookup table

ilLutImg Translates an image using a lookup table

ilMatrix, ilFloatMatrix,
ilLongMatrix

Classes that define matrices

ilMaxFltImg Performs max filtering of an image

ilMaxImg Computes the pixelwise maximum of two images

ilMedFltImg Performs median filtering of an image

Class or Function Description

364

Appendix B: Summary of All Classes

ilMemCacheImg Implements data caching in main memory

ilMemoryImg Defines an image array resident in memory

ilMergeImg Merges several images into one

ilMinFltImg Performs minimum filtering of an image

ilMinImg Computes the pixelwise minimum of two images

ilMinMax(), ilMin(),
ilMax()

Functions for performing minimum and maximum
comparisons

ilMonadicImg Provides basic support for single-input operators

ilMpSetMaxProcs() Convenience function to set multi-processing
parameters; see the ilHwAccelerate reference page
for more details

ilMultiplyImg Computes the pixelwise multiplication of two
images

ilName Creates named elements for an ilDictionary

ilNegImg Performs two’s complement of an image

ilNopImg Provides for caching on non-cached images

ilOpenImgFile() Function that opens an image file

ilOpImg Provides basic support for operators

ilOrImg Computes pixelwise logical OR of two images

ilPage Defines a page of image data in a cache

ilPageRequest Defines a page of data as a request

ilPCDImg Provides support for the Kodak Photo CD image
pack file format class

ilPCDOImg Accesses the Kodak PCD overview image file

ilPiecewiseImg Performs linear mapping of lookup table images

ilPixel Defines a pixel

ilPolyWarpImg Performs a two-dimensional seventh-order warp

Class or Function Description

365

ilPowerImg Raises image data by a specified power

ilPreFetcher Manages prefetch paging

ilPrefetchIsEnabled Checks the status of prefetching

ilPriorityItem Creates a priority item

ilPriorityList List of items sorted by priority

ilProperty Creates a name/value pair

ilPropList Manages a property set as an indexable list

ilPropSet Creates a collection of properties

ilPropSetIter Controls iteration through a property set

ilPropTable Manages a property set as a hash table

ilRankFltImg Performs two-dimensional rank filtering on an
image

ilRasterIter Iterates through the scanlines that define a convex
polygon

ilRectRoi Defines a rectangular ROI

ilRFFTfImg Performs a real forward fast Fourier transform

ilRFFTiImg Performs a real inverse fast Fourier transform

ilRGBImg Converts to the RGB color model

ilRobertsImg Performs edge detection using Roberts kernels

ilRoi Defines an ROI

ilRoiImg Associates an ROI with an image

ilRoiIter Cycles through run lengths in an ROI

ilRoiMap Declares ROI attributes

ilRotZoomImg Rotates, zooms, and flips an image

ilSaturateImg Performs color saturation of an image

Class or Function Description

366

Appendix B: Summary of All Classes

ilScaleImg Performs a linear scaling of an image

ilSemaphore Limits access to a shared data structure to some
maximum number of process threads

ilSepConvImg Performs an image convolution using a separable
kernel

ilSetCompactFraction Sets the fragmentation threshold

ilSetMaxCacheSize(),
ilSetMaxCacheFraction()

Convenience functions that set the state of the global
page data cache; see the ilHwAccelerate reference
page for details.

ilSGICmapLut(),
ilSGIFileLut()

Functions that create or access color maps

ilSGIImg Creates an image file in the SGI format

ilSGIPaletteImg Converts to the RGBPalette color model

ilSharpenImg Sharpens an image

ilSize Defines the size of an image

ilSmallBitArray Defines a bit array

ilSobelImg Performs edge detection using Sobel kernels

ilSpatialImg Provides basic support for spatial operators

ilSpinLock Manages spinlock services

ilSqRootImg Computes the pixelwise square root of an image

ilSquareImg Computes the pixelwise square of an image

ilStackBuffer Provides a four-dimensional resizable buffer with
better performance than an ilBuffer

ilStereoView Associates a stereo view (two images) with a region
in an ilDisplayImg

ilSubImg Defines a rectangular portion of an image as an
independent image

ilSubtractImg Computes the pixelwise subtraction of two images

Class or Function Description

367

ilSwitchImg Implements a switch construct in an image operator
chain

ilThread Manages a shared group of processes

ilThreshImg Applies a threshold to an image

ilTieWarpImg Warps an image by specifying tie points

ilTIFFImg Creates an image file in the TIFF format

ilTile, ilTileFloat Defines a three-dimensional rectangle of image data

ilTileImgIter, ilTileIter Cycles through the pages spanning a tile

ilView Associates an image with a region in an ilDisplayImg

ilViewer Handles operations on ilDisplay triggered by X
events in a standard, elegant way

ilViewIter Iterates through ilDisplay’s view stack

ilWarpImg Provides basic support for warping an image

ilXDisplayImg Defines an image that exists in the frame buffer (X
rendering version)

ilXImage Translates between an XImage and an ilImage

ilXorImg Computes the pixelwise exclusive-OR of two images

Class or Function Description

369

Appendix C

C. Data Types, Data Orderings, and Color Models

This appendix provides a summary of the default data type, data ordering,
and color model attributes of IL images. It tells you how to determine the:

• default color model used by the IL for an ilOpImg object in a chain of
image operators

• data types and data orderings and working data types of objects
derived from ilOpImg

370

Appendix C: Data Types, Data Orderings, and Color Models

Determining Color Model

If an application or derived class does not use the setDataType() function to
explicitly set the color model of an ilOpImg object, the color model defaults
to the lowest common ancestor of the input images in the following diagram:

Figure C-1 Determining Color Model

ilMultiSpectral

ilRGBA

ilABGR

ilRGB

ilRGBPalette

ilHSV

ilMinBlack ilCMYK

ilYCC

ilMinWhite

ilBGR

ilCMY

Determining Operator Data Types and Orderings

371

Determining Operator Data Types and Orderings

The tables on the following pages list the output data types, data orderings,
and working data types for classes derived from ilOpImg.

Output Data Types and Orderings

The data type or data order can be set explicitly to one of the valid types or
orderings by calling the ilImage member function setDataType() or
setOrder(), respectively. If the data type or order is not set explicitly in this
manner, they default to the “smallest” of the valid types or orderings that is
at least as “great” as each input type or order. Here “small” and “great” refer
to the numeric values of the types and orderings, as defined in il/ilTypes.h.

Working Types

An ilOpImg object has a “working type”, which is the data type used for
calculations. If a class has no working types specified in the table below, the
working type is the same as the output data type.

For those classes with working types listed in the table, the working type
used is the smallest listed type that is able to express every value of the
output data type. If none of the listed types can do this, then the largest of
the listed types is used (for example, an ilColorImg with output type
ilDouble will use ilFloat as its working type).

372

Appendix C: Data Types, Data Orderings, and Color Models

Color Conversion

Table C-1 Data Types and Orderings for Color Conversion Operators

Operator Output Data Types Output Data
Orderings

Working Types

ilColorImg

ilRGBImg

ilBGRImg

ilCMYKImg

ilHSVImg

ilGrayImg

illABGRImg

ilSGIPaletteImg

ilUChar

ilUShort

ilFloat

ilInterleaved

ilFalseColorImg ilUChar

ilFloat

ilInterleaved

ilSaturateImg ilUChar

ilUShort

ilShort

ilFloat

ilInterleaved

Determining Operator Data Types and Orderings

373

Arithmetic and Logical Transformations

Table C-2 Data Types and Ordering for Arithmetic and Logical
Transformations

Operator Output Data Types Output Data
Orderings

Working Types

ilAbsImg ilUChar

ilUShort

ilULong

ilFloat

ilDouble

any

ilAddImg any except ilBit any

ilAndImg ilUChar

ilChar

ilUShort

ilShort

ilULong

ilLong

any

ilDivImg any except ilBit any

ilArithLutImg

ilExpImg

ilLogImg

ilPowerImg

ilSqRootImg

ilSquareImg

any except ilBit any integer typesa

374

Appendix C: Data Types, Data Orderings, and Color Models

ilInvertImg ilBit

ilChar

ilUChar

ilShort

ilUShort

ilLong

ilULong

any

ilMaxImg any except ilBit any

ilMinImg any except ilBit any

ilMultiplyImg any except ilBit any

ilNegImg ilChar

ilShort

ilLong

ilFloat

ilDouble

any

ilOrImg ilUChar

ilChar

ilUShort

ilShort

ilULong

ilLong

any

Table C-2 (continued) Data Types and Ordering for Arithmetic and Logical
Transformations

Operator Output Data Types Output Data
Orderings

Working Types

Determining Operator Data Types and Orderings

375

Geometric Transformations

a. The working type for an ilLutImg or ilArithLut object is derived from the domain of the LUT
rather than the output type. It is the smallest integer type in which the minimum and
maximum indices of the lookup table can be expressed.

a. The working type for an ilWarpImg object will be ilFloat unless the resampling type is
ilNearNb, in which case the working type will be the same as the output type.

ilSubtractImg any except ilBit any

ilXorImg ilUChar

ilChar

ilUShort

ilShort

ilULong

ilLong

any

Table C-3 Data Types and Orderings for Geometric Transformations

Operator Output Data Types Output Data
Orderings

Working Types

ilWarpImg

ilRotZoomImg

ilPolyWarpImg

ilTieWarpImg

ilUChar

ilUShort

ilShort

ilFloat

any ilFloata

Table C-2 (continued) Data Types and Ordering for Arithmetic and Logical
Transformations

Operator Output Data Types Output Data
Orderings

Working Types

376

Appendix C: Data Types, Data Orderings, and Color Models

Spatial Domain Transformations and Edge Detection

Table C-4 Data Types and Orderings for Spatial Domain
Transformations and Edge Detection

Operator Output Data Types Output Data
Orderings

Working Types

ilConvImg

ilBlurImg

ilSharpenImg

ilCompassImg

any except ilBit any ilFloat

ilDouble

ilDilateImg ilUChar

ilUShort

ilULong

any

ilErodeImg ilUChar

ilUShort

ilULong

any

ilRankFiltImg

ilMinFltImg

ilMedFltImg

ilMaxFltImg

any except ilBit any

ilSepConvImg

ilGBlurImg

any except ilBit any ilFloat

ilDouble

ilLaplaceImg ilUChar

ilShort

ilLong

ilFloat

ilDouble

ilInterleaved

Determining Operator Data Types and Orderings

377

ilRobertsImg ilUChar

ilUShort

ilULong

ilFloat

ilDouble

any

ilSobelImg ilUChar

ilUShort

ilULong

ilFloat

ilDouble

any

Table C-4 (continued) Data Types and Orderings for Spatial Domain
Transformations and Edge Detection

Operator Output Data Types Output Data
Orderings

Working Types

378

Appendix C: Data Types, Data Orderings, and Color Models

Frequency Domain Transformations

Table C-5 Data Types and Orderings for Frequency Domain Transformations

Operator Output Data Types Output Data
Orderings

Working Types

ilRFFTfImg ilFloat ilSeparate

ilRFFTiImg ilFloat ilSeparate

ilFConjImg ilFloat ilSeparate

ilFCrCorrImg ilFloat ilSeparate

ilFDivImg ilFloat ilSeparate

ilFExpFiltImg ilFloat ilSeparate

ilFGaussFiltImg ilFloat ilSeparate

ilFMagImg ilFloat ilSeparate

ilFMergeImg ilFloat ilSeparate

ilFMultImg ilFloat ilSeparate

ilFPhaseImg ilFloat ilSeparate

ilFRaisePwrImg ilFloat ilSeparate

ilFSpectImg ilFloat ilSeparate

ilFMonadicImg ilFloat ilSeparate

ilFDyadicImg ilFloat ilSeparate

ilFFiltImg ilFloat ilSeparate

Determining Operator Data Types and Orderings

379

Radiometric Transformations

a. The working type for an ilLutImg or ilArithLut object is derived from the domain of the LUT
rather than the output type. It is the smallest integer type in which the minimum and
maximum indices of the lookup table can be expressed.

Table C-6 Data Types and Orderings for Radiometric Transformations

Operator Output Data Types Output Data
Orderings

Working Types

ilScaleImg

ilHistScaleImg

ilUChar

ilUShort

ilShort

ilFloat

ilDouble

any

ilThreshImg any any

ilLutImg

ilHistLutImg

ilHistEqImg

ilHistNormImg

ilPiecewiseImg

any except ilBit any integer types a

380

Appendix C: Data Types, Data Orderings, and Color Models

Combining Images

Null Operation

Table C-7 Data Types and Orderings for Operators that Combine Images

Operator Output Data Types Output Data
Orderings

Working Types

ilBlendImg any except ilBit any

ilCombineImg any except ilBit any

Table C-8 Data Type and Ordering for the NULL Operator

Operator Output Data Types Output Data
Orderings

Working Types

ilNopImg any any

381

Appendix D

D. Results of Operators

This appendix presents examples in the following sections of all the
operators that give visible results:

• “Color Conversion” on page 382

• “Arithmetic and Logical Transformations” on page 383

• “Geometric Transformations” on page 386

• “Spatial Domain Transformations” on page 387

• “Edge Detection” on page 388

• “Frequency Domain Transformations” on page 390

• “Radiometric Transformations” on page 391

• “Combining Images” on page 393

For more information on using these operators and what effect they have on
image data, see Chapter 4, “Operating on an Image.” More specific
information on how to apply each operator is located in its header file and
in its reference page.

Original, unprocessed images are presented where necessary. Some images
combine two original images. These images are either reversed copies of the
same image or two extremely similar images.

382

Appendix D: Results of Operators

Color Conversion

Figure D-1 ilFalseColorImg

Figure D-2 ilGrayImg

Arithmetic and Logical Transformations

383

Arithmetic and Logical Transformations

Figure D-3 Original Image and Flipped Image

Figure D-4 ilAddImg and ilAndImg

Figure D-5 ilDivImg

Original Square Root of Original Original and Square Root Divided

384

Appendix D: Results of Operators

Figure D-6 ilExpImg and ilInvertImg

Figure D-7 ilLogImg and ilMaxImg

Figure D-8 ilMinImg and ilMultiplyImg

Arithmetic and Logical Transformations

385

Figure D-9 ilNegImg and ilOrImg

Figure D-10 ilPowerImg and ilSqRootImg

Figure D-11 ilSquareImg and ilSubtractImg

386

Appendix D: Results of Operators

Figure D-12 ilXorImg

Geometric Transformations

Figure D-13 Original and ilRotZoomImg

Spatial Domain Transformations

387

Figure D-14 ilWarpImg

Spatial Domain Transformations

Figure D-15 Original, ilBlurImg and ilGBlurImg

Figure D-16 ilDilateImg, ilErodeImg, and ilMaxFltImg

388

Appendix D: Results of Operators

Figure D-17 ilMedFltImg, ilMinFltImg, and ilSharpenImg

Edge Detection

Figure D-18 ilCompassImg

Figure D-19 ilLaplaceImg (original and filtered image)

Edge Detection

389

Figure D-20 ilRobertsImg (original and filtered image)

Figure D-21 ilSobelImg (original and filtered image)

390

Appendix D: Results of Operators

Frequency Domain Transformations

The frequency domain transformations are of limited interest as
illustrations. For the purposes of this appendix, one example is shown. In the
example, an original image is presented along with its appearance in the
frequency, or Fourier domain, and the filtered resultant image is shown in
both the spatial and frequency domains.

Figure D-22 ilFGaussFiltImg

Frequency DomainOriginal

Frequency DomainFiltered Original

Radiometric Transformations

391

Radiometric Transformations

Figure D-23 ilHistEqImg (filtered image and histogram)

Figure D-24 ilHistNormImg (filtered image and histogram)

392

Appendix D: Results of Operators

Figure D-25 ilHistScaleImg (filtered image and histogram)

Figure D-26 ilLutImg (original, filtered image, and LUT editor)

Figure D-27 ilThreshImg

Combining Images

393

Combining Images

Originals and Original Mask

Figure D-28 ilBlendImg

394

Appendix D: Results of Operators

Figure D-29 ilCombineImg

395

Appendix E

E. Auxiliary Classes, Functions, and Definitions

This appendix describes IL classes not fully discussed elsewhere in this
guide. It also lists all the error codes and enumerated types used by the IL.
This appendix has the following major sections:

• “Auxiliary Classes” on page 396 briefly discusses the ilBitArray,
ilBuffer and ilStackBuffer, ilConfig, ilKernel, ilLut, ilMatrix, ilPage,
ilPixel, ilSize, and ilTile classes.

• “Useful Functions” on page 401 describes several functions that don’t
belong to any particular class. They’re useful for such tasks as
computing the size of IL data types and for performing minimum and
maximum comparisons.

• “Convenient Structures” on page 403 lists the definitions of the ilCoord,
ilSize, and various coefficient data structures.

• “Error Codes” on page 407 lists the error codes used by the IL.

• “Enumerated Types and Constants” on page 408 gives an annotated list
of the enumerated types and constants defined in the IL.

396

Appendix E: Auxiliary Classes, Functions, and Definitions

Auxiliary Classes

All of the classes described in this section have their own reference pages;
refer to them for more specific information about using these classes.

• The ilBitArray class implements a subscriptable bit array of limited
functionality for conveniently operating on bit data.

• ilBuffer (allocated from the heap) and ilStackBuffer (allocated from the
stack) are standalone objects that provide support for accessing a buffer
in up to four dimensions. The call operator, (), is overloaded to operate
on either type of buffer and returns a pointer to the specified element in
the buffer. In addition, the an ilBuffer can be resized after being created.
An ilStackBuffer is recommended for use in derived operators, since it
tends to fragment the memory less than an ilBuffer does, thus resulting
in better performance for an application. However, an ilStackBuffer
cannot be resized.

• The ilConfig class is used in ilImage functions such as getTile() and
setTile() to describe the configuration of pixel data. You can also use it
when constructing an ilSubImage to map the configuration of the input
image to that of the subimage. This class is described in more detail in
“ilConfig” on page 397.

• ilKernel is the base class for deriving a strongly typed
three-dimensional kernel. The kernel elements are stored in row-major
form. An ilKernel is defined by x, y, and z dimensions, the kernel data,
the kernel origin, and the data type of its elements. ilKernel also
provides functions to access kernel attributes and data either by single
elements or vectors. There are several typed kernels derived from
ilKernel: ilShortKernel, ilLongKernel, ilFloatKernel, and
ilDoubleKernel.

• The ilLut class is used to access and manipulate lookup tables. This
class is described in more detail in “ilLut” on page 399.

• ilMatrix is identical in function to ilKernel except that it does not have a
kernel origin. There are two typed kernels derived from ilMatrix:
ilLongMatrix and ilFloatMatrix.

• The ilPage class is used to describe rectangular regions of an image in a
cache (that is, pages). This class groups the eight values describing the
origin (x,y,z,c) and size (nx,ny,nz,nc) of a page together in a convenient
way.

Auxiliary Classes

397

• The ilPixel class abstracts the concept of a pixel of image data. It
contains the data type, the number of channels, and a list of component
values. Pixels are used as arguments to a number of ilImage functions
and to some operator image constructors and functions.

• ilSize is used to describe the size of an IL image. This class groups the
four values describing the size (x,y,z,c) of an image together in a
convenient way.

• The ilTile class is used to describe arbitrary rectangular regions of an
image (that is, tiles). This class groups the six values describing the
origin (x,y,z) and size (nx,ny,nz) of a rectangle together in a convenient
way.

ilConfig

The header file il/ilConfig.h defines the class ilConfig, which is used to
describe the configuration of pixel data. Its fields describe the data type,
pixel ordering, number of data channels, ordering of data channels, channel
offset, coordinate space, and color model (the color model field is currently
ignored by functions such as getTile() and setTile()). The code in
Example E-1 shows the ilConfig constructors and fields.

Example E-1 ilConfig Constructors and Fields

class ilConfig {
public:
 ilType dtype; // data type
 ilOrder order; // pixel ordering
 ilCoordSpace space; // coordinate space
 int nchans; // number of channels
 int choff; // channel offset
 int* channels; // channel list

ilConfig();
// construct config to match parameters of image
ilConfig(ilImage *img);
ilConfig(ilType type, ilOrder ord, int nchan=0,

int* chanList=NULL, int chanOff=0, ilCoordSpace
spc=ilCoordSpace(0),
ilColorModel color=ilColorModel(0));

// extract inverted channel list
void invert(int nc, int* chanList) const;

398

Appendix E: Auxiliary Classes, Functions, and Definitions

//check if channel list can be inverted
int isInvertable() const;

//extract composed channel list
void compose(int nc, int* in, int* out) const;

//map channel number through channel list and offset
int mapChan(int idx) const;
int operator[](int idx) const;

unsigned hints; // ilHints *Internal Use Only*
};

The fields of an ilConfig are set with its constructor. The data type and pixel
ordering arguments are required; the other arguments are optional. The
channel list defines what channels of a source image are mapped into a
destination image; the channel offset defines where to start counting the
source channels as zero. For example, consider a source image with 11
channels (0...10) and suppose you wish to map channels 4, 5, and 6 to a
destination image. You can do this by setting the number of channels to 3
and the channel offset to 4 (so that the first channel mapped is 4, and the next
3 channels in the source define all 3 channels). No channel list is necessary.
Alternatively, you can set the number of channels to 3, the channel offset to
0, and the channel list to 3, 4, 5. The hints field is reserved for internal IL use
only.

invert() is used to create a channel list of nc channels (written into chanList)
that describes an inverse mapping between two images. For example, a
source image defines three channels (0, 1, 2) and you have mapped 0 to 2, 1
to 0, and 2 to 1 in a destination image (the channel list to do this is 1, 2, 0). To
map the destination to the source instead, use invert(). (This is useful to
avoid creating a temporary buffer when copying from an ilDisplayImg to an
ilOpImg, for example.) In the above example, the resulting channel list is
2, 0, 1. isInvertable() is used to determine whether the channel mapping has
an inverse.

compose() is used to compose a channel list from a subset of another; you
supply the number of channels, nc, and the subchannel list, in, and
compose() writes its result to out. For example, a source image defines three
channels (0, 1, 2) and you have mapped 0 to 2, 1 to 0, and 2 to 1 in a
destination image (the channel list to do this is (1, 2, 0). However, the source
image is actually an ilSubImg (a subimage of another ilImage) that contains
no data itself. It specifies a subset of its parent image’s channels; they are 2,

Auxiliary Classes

399

4, and 6 (so it uses an ilConfig with channel list 2, 4, 6). To map directly from
the source’s parent image to the destination image, you need a composed
channel list. The ilSubImg’s channel list is specified as in, and the 3 values
mapped to out are 4, 6, 2.

The member function mapChan() returns the contents of channels (the
channel list) at the specified index added to the channel offset specified by
choff. The index operator, [], is overloaded to perform the same function as
mapChan(); both indicate what channel in the source maps to the specified
channel in the destination. Both return -1 if the supplied index is less than 0
or greater than the number of channels.

ilLut

The header file il/ilLut.h defines a class, ilLut, used to describe lookup tables.
The elements used to define an ilLut are the number of bits per channel, the
number of channels, the data type, the table length, and the table data. The
code in Example E-2 shows the constructors and member functions for ilLut.

Example E-2 ilLut Constructors and Member Functions

class ilLut {
public:
//Constructors
 ilLut();
 ilLut(void *table, int tabChannels, ilType tabType,

int tabBits=-1);
 ilLut(int tabChannels, ilType tabType, int tabBits=-1);
 ilLut(int tabChannels, ilType tabType,

double min, double max);

//Access methods
 void* getData() const;

int getNumChans() const;
 ilType getType() const;

int getLength() const;
double getVal(int idx, int chan=0) const;
void* getChan(int chan) const;
void getDomain(double& min, double& max) const;
void getRange(double& min, double& max) const;
void* getOrigin(int chan) const;

//General

400

Appendix E: Auxiliary Classes, Functions, and Definitions

void setData(void* dataPnt);
ilStatus setVal(double val, int idx, int chan=0);
ilStatus setDomain(double min, double max);

void operator=(const ilLut& from); // copy from lut

};

The first constructor creates an ilLut with all of its member variables
initialized to 0. The first two constructors assume that you allocate memory
for the table and populate the table with data; the other constructors allocate
memory but leave you to populate the table. Use setVal() to populate the
table. The constructor that takes min and max arguments calculates the
number of bits required to express that range. Typically, the size of the table
data in bytes is defined as shown below:

table size = 2 tabBits * tabChannels

The actual size of the table buffer (in bytes) depends on the data type:

table buffer size = table size * number of bytes required for
 data type

Two convenience functions for creating an ilLut—ilSGICmapLut() and
ilSGIFileLut()—are defined in the header files il/ilSGICmapLut.h and
il/ilSGIFileLut.h. These functions both create a 3-channel ilLut class (typically
corresponding to RGB values).

The ilSGICmapLut() function creates a 3-channel lookup table consisting of
RGB color entries of data type ilChar:

ilLut* ilSGICmapLut(ilSGIBufferMode mode);

The size and contents of the returned ilLut depends on the ilSGIBufferMode
specified: ilSgiDefault, ilSingleBuffer, or ilDoubleBuffer. The ilSgiDefault
mode creates an 8-bit lookup table. The 256 entries of the lookup table are
initialized to be those values defined by the default GL color map (refer to
the makemap() reference page). The ilSingleBuffer and ilDoubleBuffer
modes depend on the hardware and the display mode (single or double
buffer) currently in use. In both modes, the size of the table is computed as:

table size = numChans * 2 number of bits

The data is initialized to be the first N entries currently stored in the
hardware’s lookup table, where N = table size.

Useful Functions

401

The ilSGIFileLut() function creates a lookup table from a file. The size and
data are obtained from the file; the data is typically of data type ilShort.
Currently, the only supported file format for restoring lookup tables is the
ilSGIImg file format.

The data in an ilLut is stored in ilSeparate format—that is, the data for
channel 0 is stored first, then the data for channel 1, and so on. Operators
that use ilLuts assume this format. As an example of how data is stored and
retrieved, consider an RGB color map of ilChar data. In this case, the table
size is bytes. So, if the table is called fooMap[], you’d use the
following to obtain red, green, and blue values:

char redValue = fooMap[index];
char greenValue = fooMap[index+256];
char blueValue = fooMap[index+512];

Useful Functions

This section describes utility functions defined by the IL. These functions
don’t belong to any particular class, so they can be used anywhere in an IL
program.

Computing the Size of Data Types

The IL defines constants that correspond to the data types it uses; it also
defines a related set of functions for determining the sizes and possible
values for these types. These constants are defined as the ilType enumerated
type in the header file il/ilTypes.h:

ilBit ilULong

ilUChar ilLong

ilChar ilFloat

ilUShort ilDouble

ilShort

3 28× 1× 768=

402

Appendix E: Auxiliary Classes, Functions, and Definitions

The following two functions perform computations using the above data
types; they’re defined in the header file il/ilDataSize.h and described in the
ilDataSize reference page:

int ilDataSize(ilType type, int count);
ilType ilDataType(double minVal, double maxVal);

The first function, ilDataSize(), returns the number of bytes needed to store
count elements of data type type. By default, count is 1. Conversely,
ilDataType() returns the first IL data type that’s large enough to hold the
range of values specified by minVal and maxVal.

The following two functions return the maximum and the minimum
possible value, respectively, for the specified data type:

double ilDataMax(ilType type);
double ilDataMin(ilType type);

If you pass one of the ilTypes as an argument for ilDataIsSigned(), this
function will return TRUE if the type is signed and FALSE (zero) otherwise.
Remember that ilImage defines a similar function for an image, isSigned(),
that returns TRUE if the image’s data type is signed.

Minimum and Maximum Comparisons

The header file il/ilMinMax.h defines several in-line functions that determine
the minimum and the maximum of two input values. There are separate
functions for each of three data types—int, float, and double. The functions
that use float data are shown below:

inline float ilMin(float a, float b);
inline float ilMax(float a, float b);

The ilMin() function returns the lesser of the two input values, and ilMax()
returns the greater of the two values.

Converting to Color-index Mode

Use the following function to convert an RGB triplet to the closest
corresponding value in the standard color map that’s used in color-index
mode. (This function is defined in the header file il/ilColor.h.)

Convenient Structures

403

int ilRGBtoSGIPalette(int r, int g, int b);

The function ilColorModelChans(ilColorModel cm), also described in
il/ilColor.h, can be used to determine the number of channels for a given color
model cm.

Convenient Structures

This section lists the definitions of the ilCoord and various coefficient data
structures.

Coordinate Data Structures

The structures listed in Table E-1 hold two- (x,y), three- (x,y,z), and
four-dimensional (x,y,z,c) coordinates of various data types; they’re defined
in the il/ilCoord.h header file. ilXYS**, ilXYZS**, and ilXYZCS** are simple
structures without any constructors, destructors, or convenience operators.

Table E-1 Coordinate Data Structures

Two-dimensional Three-dimensional Four-dimensional

ilXYchar, ilXYSchar ilXYZchar, ilXYZSchar ilXYZCchar, ilXYZCSchar

ilXYint, ilXYSint ilXYZint, ilXYZSint ilXYZCint, ilXYZCSint

ilXYfloat, ilXYSfloat ilXYZfloat, ilXYZSfloat ilXYZCfloat,
ilXYZCSfloat

ilXYdouble, ilXYSdouble ilXYZdouble,
ilXYZSdouble

ilXYZCdouble,
ilXYZCSdouble

404

Appendix E: Auxiliary Classes, Functions, and Definitions

Coefficients

The structures listed below, which are defined in the header file il/ilPolyDef.h,
hold coefficients of one-dimensional and two-dimensional (first-, second-,
third-, fourth-, fifth-, sixth-, and seventh-order) equations. They’re useful
with the operator classes that derive from ilWarpImg.

struct ilCoeff1 { float con, x; };
struct ilCoeff2 { float con, x, x2; };
struct ilCoeff3 { float con, x, x2, x3; };
struct ilCoeff4 { float con, x, x2, x3, x4; };
struct ilCoeff5 { float con, x, x2, x3, x4, x5; };
struct ilCoeff6 { float con, x, x2, x3, x4, x5, x6; };
struct ilCoeff7 { float con, x, x2, x3, x4, x5, x6, x7; };

struct ilCoeff1_2d {
 float con,
 y, x;
};

struct ilCoeff2_2d {
 float con,
 y, x,
 y2, xy, x2;
};

struct ilCoeff3_2d {
 float con,
 y, x,
 y2, xy, x2,
 y3, xy2, x2y, x3;
};

struct ilCoeff4_2d {
 float con,
 y, x,
 y2, xy, x2,
 y3, xy2, x2y, x3,
 y4, xy3, x2y2, x3y, x4;
};

Convenient Structures

405

struct ilCoeff5_2d {
 float con,
 y, x,
 y2, xy, x2,
 y3, xy2, x2y, x3,
 y4, xy3, x2y2, x3y, x4,
 y5, xy4, x2y3, x3y2, x4y, x5;
};

struct ilCoeff6_2d {
 float con,
 y, x,
 y2, xy, x2,
 y3, xy2, x2y, x3,
 y4, xy3, x2y2, x3y, x4,
 y5, xy4, x2y3, x3y2, x4y, x5,
 y6, xy5, x2y4, x3y3, x4y2, x5y, x6;
};

struct ilCoeff7_2d {
 float con,
 y, x,
 y2, xy, x2,
 y3, xy2, x2y, x3,
 y4, xy3, x2y2, x3y, x4,
 y5, xy4, x2y3, x3y2, x4y, x5,
 y6, xy5, x2y4, x3y3, x4y2, x5y, x6,
 y7, xy6, x2y5, x3y4, x4y3, x5y2, x6y, x7;
};

/* can be used for orders up to 7 -- one dimensional */
struct ilCoeff_1d {
 int order;
 struct ilCoeff7 c;
};

/* can be used for orders up to 7 -- two dimensional */
struct ilCoeff_2d {
 int order;
 struct ilCoeff7_2d c;
};

The ilCoeff_1d struct provides a convenience operator that evaluates a two
dimensional polynomial at a given y point to return a one-dimensional
polynomial:

ilCoeff_1d(ilCoeff_2d& cf, float y);

406

Appendix E: Auxiliary Classes, Functions, and Definitions

The ilCoeff_2d class provides a few convenience operators as well. The
function call operator is overloaded to accept an (x,y) point and return the
evaluated result of the polynomial at that point:

float operator()(float x, float y);

The above operator is also defined for ilCoeff1_2d. ilCoeff_2d also provides
the assignment operator = to copy the coefficients of one polynomial to
another, and the == operator to compare the coefficients of two polynomials.

ilCoeff1_2d also provides convenience functions compose() and invert().

void compose (const ilCoeff1_2d& u, const ilCoeff1_2d& v);
static int invert(const ilCoeff1_2d& xc,

const ilCoeff1_2d& yc,
const ilCoeff1_2d& uc,
const ilCoeff1_2d& vc);

compose() can be used to collapse two one-dimensional transformations
into one. The coefficients of this transformation are recomputed to account
for the coordinate transformations defined by u and v. invert() can be used
to reverse the transformation defined by xc and yc. The coefficients of the
reverse transformation are returned in uc, vc.

You may use these convenience operators only if you are programming in
C++.

Error Codes

407

Error Codes

This section lists the error codes defined in the header file il/ilError.h as the
enumerated type ilStatus. The function getStatus() returns an ilImage’s
current status; many other functions also return the type ilStatus.

ilOKAY Successful operation

ilBADFILEREAD Error reading from file

ilBADFILEWRITE Error writing to file

ilBADMALLOC malloc() or new returned NULL

ilBADIMGFMT Bad image file format

ilBADDIMS Bad dimensions

ilBADOBJ Bad object on construction

ilBADATTR Bad attributes

ilFMTUNSUP Unsupported file format

ilBADPIXTYPE Bad pixel type

ilBADCONFIG Unsupported configuration

ilNORANDOMSEEK Can’t do random seek

ilBADSEEK Error seeking on file

ilBADDECODE Failure on decompression

ilREADONLY Object is not writable

ilBADFIELDSET Failed to set field in file header

ilBADCOMPRESSION Invalid image compression

ilNULLOBJ NULL object passed as parameter

ilBADINPUT Invalid input passed

ilBADCOLFMT Bad color format

ilBADOP Bad operation attempted

ilBADFILEOPEN Error opening file

ilBADMAGIC Invalid magic number in file

ilEMPTYFILE File is empty

408

Appendix E: Auxiliary Classes, Functions, and Definitions

Enumerated Types and Constants

The IL uses enumerated types and defined constants extensively; they’re
defined in header files such as il/ilTypes.h and il/ilDisplayDefs.h. This section
lists these types and constants in the following functional groups, according
to what they’re used for: describing image attributes, controlling the effect of
operators, and controlling the display facility. All of these types are
described in more detail in the relevant chapters of this guide.

Also note that NULL, TRUE, and FALSE have been defined as follows in the
header file il/ilDefs.h:

#ifndef NULL
#define NULL 0
#endif
#undef TRUE
#define TRUE 1
#undef FALSE
#define FALSE 0

ilDATACLIPPED Data has been clipped

ilOUTOFBOUND Parameter(s) out of bounds

ilTOOMANYLOCKED Too many pages locked in image cache

ilLUTSIZEMISMATCH Incompatible number of channels in lut and
image

ilZERODIVIDE Attempted to divide by zero

ilUNSUPPORTED Attempted operation is unsupported

ilUSEDOLDLIMITS Used old limits for histogram calculation

ilBADPAGEDIMS TIFF page dimensions must be multiples of 8

ilBADTIFFDIR Could not index into TIFF directory

ilNOTRESIDENT Page isn’t resident in cache

ilHWACCELFAIL Unable to complete hardware accelerated
operation

Enumerated Types and Constants

409

Describing Image Attributes

/* Define supported image data types*/

enum ilType {
 ilBit /* single-bit */
 ilUChar /* unsigned character (byte)*/
 ilChar /* Color (Red, Green, Blue triplets) */
 ilUShort /* unsigned short integer (nominally 16 bits)*/
 ilShort /* signed short integer*/
 ilULong /* unsigned long integer*/
 ilLong /* long integer*/
 ilFloat /* floating point */
 ilDouble /* double precision floating point */
};

/* Define supported color models */

enum ilColorModel {
 ilMinWhite /* Grayscale with minimum value white */
 ilMinBlack /* Grayscale with minimum value black */
 ilRGB /* Color (Red, Green, Blue triplets) */
 ilRGBPalette /* Color-mapped values */
 ilRGBA /* Color with transparency(alpha channel)*/
 ilHSV /* Hue, Saturation, Value */
 ilCMY /* Cyan, Magenta, Yellow */
 ilCMYK /* Cyan, Magenta, Yellow, black */
 ilBGR /* Color (Blue, Green, Red triplets) */
 ilABGR /* Color (Alpha, Blue, Green, Red) */
 ilMultiSpectral /* Arbitrary number of chans */

ilYCC /* PhotoCD color model (Luminance,*/
/* Chrominance) */

};

/* Define supported coordinate spaces */

enum ilCoordSpace {
 ilUpperLeftOrigin
 ilUpperRightOrigin
 ilLowerRightOrigin
 ilLowerLeftOrigin
 ilLeftUpperOrigin
 ilRightUpperOrigin
 ilRightLowerOrigin
 ilLeftLowerOrigin
};

410

Appendix E: Auxiliary Classes, Functions, and Definitions

/* Define supported compression schemes */

enum ilCompress {
ilNoCompression
ilCCITTFAX3 /* CCITT Group 3 fax encoding */
ilCCITTFAX4 /* CCITT Group 4 fax encoding */
ilLZW /* Lempel-Ziv & Welch */
ilPACKBITS /* Macintosh RLE */
ilSGIRLE /* SGI’s RLE compression */

};

/* Define the pixel component ordering */

enum ilOrder {
 ilInterleaved /* Store as RGBRGBRGBRGB... */
 ilSequential /* Store as RRR..GGG..BBB.. per line */
 ilSeparate /* Store channels in separate pages */
};

/* Define the supported image file formats */
/* The ilFormat type is defined for backward */
/* compatibility. It will be phased out in a future */
/* release. The defines for each format are also for */
/* backward compatibility. Just use the string value for */
/* new code. */

typedef char* ilFormat /* For backwards compatibility */
/* Will be phased out*/

#define ilFIT_IMG “FIT” /* FIT format (IL example */
/* format) */

#define ilTIFF_IMG “TIFF” /* TIFF format (Tagged Image */
/* File Format) */

#define ilSGI_IMG “SGI” /* Classic SGI format (.rgb or */
/* .bw files) */

#define ilPCD_IMG “PhotoCD” /* Kodak PhotoCD format */

/* Define the supported image object class types */

enum ilImageType {
 ilMEM_IMG /* Memory resident image */
 ilFILE_IMG /* File-based image */
 ilGLDISP_IMG /* GL Frame-buffer resident image */
 ilXDISP_IMG /* X frame-buffer image */
 ilOP_IMG /* Operator image */
 ilSYNTH_IMG /* Synthetic image (no memory used) */
 ilX_IMG /* X image */
 ilTEX_IMG /* Image loaded in texture memory */

ilAUX_IMG /* Image resident in aux buffer */

Enumerated Types and Constants

411

};

Controlling Operators

/* Define the supported ROI (region of interest) types */

enum ilRoiType {
 ilRect /* ROI is a rectangle */
 ilBitmap /* ROI is a char* bitmap */
};

/* Define the supported resampling methods for warp */

enum ilResampType {
 ilUserDef /* User-defined resampling */
 ilNearNb /* Nearest neighbor resampling */
 ilBiLinear /* Bilinear resampling */
 ilBiCubic /* Bicubic resampling */
 ilMinify /* Minification resampling */
 ilAutoResamp /* Resampling chosen automatically */
};

/* Define supported edge modes for spatial operators */

enum ilEdgeMode {
 ilNoPad /* No padding - output shrinks */
 ilPadSrc /* Pad source with fill value */
 ilPadDst /* Pad destination with fill value */
 ilWrap /* Wrap data from opposite edge */
 ilReflect /* Reflect data at edge */
};

/* Define compass directions for ilCompassImg operator */

enum ilCompassDir {
 ilCompassN = 0, /* Compass points every 45 degrees */
 ilCompassNE = 45,
 ilCompassE = 90,
 ilCompassSE = 135,
 ilCompassS = 180,
 ilCompassSW = 225,
 ilCompassW = 270,
 ilCompassNW = 315
};

/* Define flip modes for ilRotZoomImg operator */

enum ilFlip {

412

Appendix E: Auxiliary Classes, Functions, and Definitions

 ilNoFlip /* No flip */
 ilXFlip /* Flip about X axis of input */
 ilYFlip /* Flip about Y axis of input */
};

/* Define supported composition modes for ilBlendImg */

enum ilCompose {
 ilImgA /* Only A shows */
 ilImgB /* Only B shows */
 ilAoverB /* A overlaps B; both show */
 ilBoverA /* B overlaps A; both show */
 ilAinB /* Only A shows and only at intersection */
 ilBinA /* Only B shows and only at intersection */
 ilAoutB /* Only A shows and only out of intersection */
 ilBoutA /* Only B shows and only out of intersection */
 ilAatopB /* At intersection: only A. Outside: only B. */
 ilBatopA /* At intersection: only B. Outside: only A. */
 ilAxorB /* At intersection: nothing. Outside: both */
 ilAplusB /* At intersection: both. Outside: both */
};

/* Define supported combinations for morphological ops
ilErodeImg and ilDilateImg */

enum ilMorphType {
 ilBinBin /* Binary image morphed with binary SE */
 ilBinGray /* Binary image morphed with g-s SE */
 ilGrayBin /* Gray-scale image morphed with binary SE */
 ilGrayGraySet /* Gray-scale image morphed with g-s SE */
 ilGrayGrayFct /* Gray-scale image morphed with g-s SE; */

/* morph is performed as a function op */
};

/* The scope enumerator specifies the search scope for a */
/* property set/get operation. When getting a property, */
/* the scope values may be OR’ed together to specify a */
/* compound search. When setting a property, the scope */
/* values are mutually exclusive */

enum ilScope {
ilNullScope /* search nothing */
ilInstanceScope /* search properties of this object */
ilClassScope /* search properties of this class */
ilGlobalScope /* search global properties */

};

Enumerated Types and Constants

413

Controlling the Display Facility

/* Render Modes (GL or X) */

enum ilRender {
 ilGLRender /* Use GL rendering */
 ilXRender /* Use X Windows rendering */
};

/* ilParamMode specifies how coordinates are interpreted */

enum ilParamMode {
 ilDelVal /* Delta relative to current */
 ilAbsVal /* Absolute value */
 ilRelVal /* Relative to start, update */
 ilOldRel /* Relative to start, no update */
 ilParamMask /* For internal use only */
};

/* ilLocMode is used by getLoc() and setLoc() to find xy
location of a pixel in image and move image or view to
specified location */

enum ilLocMode {
 ilLocIn /* Locate xy in image’s input space */
 ilLocOut /* Locate xy in image’s output space */
 ilLocImg / /* Locate by moving image */
 ilLocView /* Locate by moving view */
 ilLocMask /* For internal use only */
};

/* ilDispMode specifies various display modes such as those
for clipping, stopping, etc. */

enum ilDispMode {
 ilDefault /* No clip or defer. do swap */
 ilClip /* Clip to display or image */
 ilDefer /* Defer painting */
 ilNoSwap /* Don’t swap buffers */
 ilDop /* Override Nop flag */
 ilDispMask /* For internal use only*/
 ilDspCoord /* ilDisplayImg coordinates passed */
 ilScrCoord /* Screen coordinates passed */
 ilCoordMask /* For internal use only */

ilDefaultCmap /* Use default colormap */
};

414

Appendix E: Auxiliary Classes, Functions, and Definitions

/* ilWipeMode specifies mode for display() and wipe(), and
is returned from findView() and findViewEdge() */

enum ilWipeMode {
 ilNoView /* No view found by findView() */
 ilRightEdge /* Wipe right edge, display from right*/
 ilLeftEdge /* Wipe left edge, display from left */
 ilTopEdge /* Wipe top edge, display from top */
 ilBottomEdge /* Wipe bottom edge, display from bottom */
 ilAllEdge /* Display at center, wipe as inset */
 ilNoEdge /* No edge found by findViewEdge() */
 ilWipeMask /* For internal use only */
};

/* ilAlignMode specifies the display() operator modes.
Combinations of ilWipeMode can alternatively be used for the
first 5 values */

enum ilAlignMode {
 ilBottomLeft /* Lower-left corner */
 ilBottomRight /* Lower-right corner */
 ilTopLeft /* Upper-left corner */
 ilTopRight /* Upper-right corner */
 ilCenter /* Align to center */
 ilNoAlign /* Do not realign (no change) */
 ilAlignMask /* For internal use only */
};

/* ilSplitMode specifies the split() operator modes */

enum ilSplitMode {
 ilRelSplit /* Split & pos image relative to view */
 ilAbsSplit /* Split & pos image at origin */
 ilRowSplit /* Split into rows */
 ilColSplit /* Split into columns */
 ilPackSplit /* Split views and pack together */
 ilSplitMask /* For internal use only */
};

/* Miscellaneous display attributes */

enum ilDispMisc{
 ilLast /* Add view to bottom of view stack */
 ilDefaultMargin /* Default margin width for findEdge() */
 ilHighlight /* Find view and highlight its borders */
 };

415

B

background
color, 211
view, 211

beginFileIO(), 269
bias value, 122, 135, 137, 145, 147
BinBin, 144
BinGray, 144
blending images, 177
blurring an image, 136
breakpoint, 174
buffers, using, 314

C

C interface, 15
cache, 46-54, 273, 279

optimizing use of, 308
replacing pages in, 48

cache size, 308-310
affected by multi-threading, 310
default, 308
optimum, 309

calcPage(), 282, 286, 291
chain of operators, 32, 68

components of, 32
propagation, 78
querying, 77
reconfiguring, 75

A

absolute value operator, 119
accessing data, see reading, writing, or copying
addEntry(), 208
addInput(), 78
addition operator, 121
addrGen(), 294
addView(), 206, 216
affine transformations, 131
alignImg(), 227
aligning

images, 227
views, 225, 228

alignView(), 227, 228
allocPage(), 257
alpha value, 178
AND operator, 124
anyAltered(), 251
arenas, 338
arithmetic operators, 117-124

dual-input, 121-125
single-input, 119-121

attributes, see image attributes
auxiliary buffer, 327-329
average power spectrum, 154

Index

416

Index

checkColorModel(), 249
checkMinMax(), 284
checkTile(), 295
clamp(), 284
clearAllowed(), 252
clearCenter(), 132
clearSet(), 79
clearStatus(), 36
clipping, 66
clipTile(), 66
closing a file, 266
cmplxVectorCalc(), 296
coefficient structures, 404
color conversion, 111-114
color model, 40, 111

determining, 113, 370
initializing when deriving, 245

color palette, 40
color saturation, 116
color-index mode, 402
combining images, 177
compass operator, 146, 411
compiling, 344
complex conjugate of an image, 160
compose(), 398
compression, data, 46, 96, 410
conjugate of an image, 160
constant value image, 184
constants, 408
convolution, 135, 144, 161
coordinate space, 42, 409

transforming, 66
coordinates, 403

initializing, 235
copyConverted(), 249

copying
image data, 54-65
tiles efficiently, 313

copyTile(), 55-59, 70, 95, 132, 313, 314
copyTile3D(), 63
copyTileCfg(), 59, 64, 315

implementing when deriving, 246
createWindow(), 208
creating a file, 94, 259
cross-correlation operator, 161

D

data ordering, 38-39, 371-??
data type of an image, 37, 371-??, 401
dbx, 349
debugging, 349
dedicated thread, 74, 332
deferred drawing, 213, 216, 230
deleteView(), 219
deriving classes, 241
dilation, 140
disableAltered(), 251
dispatch(), 333, 334
display mode, 215
display operators, 223
display(), 224, 225
displaying an image, 195, 413
division by zero, 122, 162
division operator, 121

for Fourier images, 161
double buffering, 210, 400
doUserPageAlloc(), 257

417

drawing
area, 214
deferred, 213, 216, 230
views, 224

E

edge detection, 144-148
edge image, 144, 145
edge mode, 133, 134, 137, 140, 145, 147, 411
enableMP(), 150, 163, 337
endFileIO(), 269
enumerated types, 408

for displaying, 413
for image attributes, 409
for operators, 411

erosion, 140
error codes, 36, 407
evalUV(), 67, 130
evalXY(), 67, 130
event-handling, 15, 206
exclusive-OR operator, 124
exec(), 335
execution model, 68-78

advantages, 69
exponential operator, 119

Fourier, 160
exporting data, 101
extending the IL, 241

F

FALSE, 408
faLse coloring, 114
fast Fourier transform, 148

file
access mode, 92
closing, 266
creating, 94, 259
header, 259
opening, 11, 92, 259

file format
creating a new one, 258
registering, 269

fill value, 43, 134
fillTile(), 55-62
fillTile3D(), 64

implementing when deriving, 246
findEdge(), 220, 233
findPoint(), 176
findView(), 220
FIT file format, 11, 91

extending, 100
flags, for display operators, 215

align mode, 216
coordinate, 215
display, 215
wipe mode, 215

flipping an image, 131, 411
flush(), 50, 257, 268, 334
Fortran interface, 15
Fourier filtering, 156
Fourier transform, 148
freePage(), 257
freqFilt(), 299
frequency domain operators, 148-162
frequency filtering, 156

G

Gaussian kernel, 136
geometric operators, 125-132

418

Index

getAddressError(), 128
getAlphaRange(), 180
getAngle(), 132, 148
getBackground(), 211
getBias(), 109, 147
getBkgd(), 186
getBorderColor(), 212
getBorderWidth(), 212
getBoundBox(), 300, 303
getBreakpoints(), 176
getBufSize(), 154
getCacheSize(), 50
getCenter(), 132
getChained(), 78
getClassProp(), 82
getCoeff(), 128
getColorMap(), 41
getColorModel(), 40
getCompression(), 97
getCoordSpace(), 42, 187
getCsize(), 37
getCurrentImg(), 89, 90
getData(), 189
getDataPtr(), 103
getDataType(), 37
getDBinSize(), 165
getDMax(), 165
getDMean(), 165
getDMin(), 165
getDStart(), 165
getDStDev(), 165
getEdgeMode(), 133
getFileDesc(), 98
getFileMode(), 98
getFileName(), 98

getFill(), 44
getFlip(), 132
getFloatProp(), 81
getgdesc(), 205
getGLState(), 335
getHandle(), 338
getHist(), 164
getImageFormat(), 98
getImageType(), 41
getImg(), 219
getInput(), 78
getInputMax(), 284
getInputMin(), 284
getIntProp(), 81
getKernelSize(), 133
getLen(), 301
getLImg(), 219
getLoc(), 222
getLookUpTable(), 174
getMaxPixel(), 44
getMaxRank(), 141
getMaxValue(), 45, 142
getMinPixel(), 44
getMinValue(), 45
getMorphType(), 144
getNbins(), 165
getNextIRle(), 300
getNextRle(), 300
getNumBreakpoints(), 176
getNumChained(), 77
getNumImgs(), 89, 90, 98
getNumInputs(), 77
getNumViews(), 218
getOffset(), 121
getOrder(), 38

419

getOrigin(), 134
getPage(), 70, 256, 275-283

example, 281
overriding when deriving, 268

getPageBorder(), 75
getPageSize(), 53
getPageSizePix(), 53
getPageSizeVal(), 53
getPixel(), 55, 61, 221
getPoint(), 176
getPolyOrder(), 128, 130
getProp(), 81
getPropSet(), 82
getPtrProp(), 81
getResampType(), 128
getRImg(), 219
getRoi(), 183, 186
getRoiType(), 303
getRSize(), 188
getSaturation(), 117
getScale(), 121
getScaleMax(), 46
getScaleMin(), 46
getSize(), 35, 37, 67, 205, 214
getStart(), 192, 235
getStatus(), 36, 165, 407
getStrides(), 65
getStrides3D(), 65, 256
getSubTile(), 55-60
getSubTile3D(), 64, 185

implementing when deriving, 246
getThresh(), 173
getTIFFTag(), 98
getTile(), 49, 55-58, 70, 132, 190
getTile3D(), 63
getTotal(), 164

getValidValue(), 188, 189
getView(), 218
getViewIndex(), 218
getX(), 301
getXImage(), 104
getXImg(), 219
getXkernel(), 136
getXsize(), 37
getXVisual(), 104
getXYWt(), 148
getY(), 301
getYkernel(), 136
getYsize(), 35, 37
getZ(), 217
getZoom(), 132
getZsize(), 37
GIF file format, 87
GL rendering thread, 332-335
GLViewer, 198
gradient operators, 144
graphics configuration, 210
GrayBin, 144
GrayGrayFct, 144
GrayGraySet, 144

H

hardware acceleration, 73, 315-331
disabling, 74
in an image chain, 323
multi-pass operation, 325
on non-RealityEngine platforms, 319
operations affected by, 318
triggering of, 315
with RealityEngine, 319-331

420

Index

hardware pass, 323
building, 324
composite operation, 325

hasPages(), 53, 192
header files, 10, 18
high-pass filter, 158
histogram

equalization, 171
of an image, 162, 164-165, 166
operators, 170-174
scaling, 171

hwAccelerate(), 109, 316

I

IL_ARENA_ADDRESS, 338
IL_ARENA_MAXUSERS, 337
IL_CACHE_FRACTION, 49
IL_CACHE_SIZE, 49
IL_COMPUTE_THREADS, 72, 336
IL_ENABLE_PREFETCH, 63
IL_SPARE_THREADS, 72, 337
ilABGR, 40
ilABGRImg, 113, 318
ilAbsImg, 119
ilAbsSplit, 230
ilAddImg, 121

color illustration, 123, 383
ilAlignMode, 414
ilAndImg, 124, 318

color illustration, 383
illustration, 125

ilArena, 336, 338
ilArithLutImg, 119

deriving from, 280
ilAutoResamp, 127

ilAuxImg, 331
size, 328

ilBGR, 40
ilBiCubic, 127
ilBiLinear, 127
ilBitArray, 396
ilBitMapRoi, 187, 188
ilBlendImg, 177, 178-182, 318

color illustration, 393
illustration, 179

ilBlurImg, 136
color illustration, 138, 387

ilBRG, 113
ilBuffer, 396
ilCacheImg

deriving from, 243-258
ilCMY, 40, 113
ilCMYK, 40
ilCMYKImg, 113
ilCoeff3_2d, 129
ilColorImg, 112
ilColorModel, 40, 409
ilColSplit, 230
ilCombineImg, 177, 183

color illustration, 394
ilCompactCache(), 50
ilCompassDir, 411
ilCompassImg, 146, 411

illustration, 148, 388
ilCompose, 412
ilCompress, 410
ilConfig, 35, 56, 191, 396, 397-399
ilConstImg, 118
ilConvImg, 135, 161, 318
ilCoordSpace, 42, 66, 409
ilCreateImgFile(), 14, 94-96, 269-273

421

ilDATACLIPPED, 66
ilDataIsSigned(), 402
ilDataSize(), 93, 279, 402
ilDataType(), 402
ilDelVal, 227
ilDilateImg, 143-144

illustration, 387
ilDilateImg(), 143
ilDispatcher, 336
ilDisplay, 13, 30, 198

creating, 208
ilDisplayImg, 33, 198
ilDispMode, 413
ilDivImg, 121

color illustration, 383
ilDumpChain(), 312
ilDyadicImg, 117

deriving from, 280, 285-287
ilEdgeMode, 133, 411
ilEnablePreFetch(), 63
ilErodeImg, 143-144

illustration, 387
ilExpImg, 119

color illustration, 384
ilFalseColorImg, 114-116

color illustration, 116, 382
ilFConjImg, 159
ilFCrCorrImg, 161
ilFDivImg, 161
ilFDyadicImg, 161

deriving from, 280, 295-298
ilFExpFiltImg, 156
ilFFiltImg, 156

deriving from, 280, 299
ilFFTAvg(), 154
ilFFTOp, 149

ilFGaussFiltImg, 156
color illustration, 390
illustration, 159

ilFileImg, 33, 86, 258
deriving from, 243

ilFITImg, 86
constructor example, 260
implementation, 259-271

ilFlip, 411
ilFloatMatrix, 115, 396
ilFlushCache(), 50
ilFMagImg, 154
ilFMergeImg, 155
ilFMonadicImg, 159

deriving from, 280, 295-298
ilFMultImg, 161
ilFPhaseImg, 154
ilFRaisePwrImg, 159
ilFSpectImg, 155
ilGBlurImg, 136

color illustration, 387
ilGetCompactFraction(), 50
ilGetCurCacheSize(), 49
ilGIFImg, 86
ilGLDisplayImg, 198
ilGLXConfig, 208
ilGrayImg, 113

illustration, 382
ilHistEqImg, 166, 171

color illustration, 391
ilHistLutImg, 170

deriving from, 280
ilHistNormImg, 166

color illustration, 391
ilHistScaleImg, 155, 166, 171, 318

color illustration, 392
ilHSV, 40

422

Index

ilHSVImg, 113
ilHwAccelerate(), 316
ilHwAccelerateClass(), 317
ilHwCallback(), 334
ilHwIsEnabled(), 316
ilHwIsEnabledClass(), 317
ilHwPass, 323
ilHwRequest, 333
ilHwSuspend(), 75
ilHwThreadEnable(), 74, 332
ilHwThreadResume(), 75, 333
ilHwThreadSuspend(), 333
ilImage, 33

deriving from, 243-254
ilImageType, 41, 410
ilImgParam, 79, 253
ilImgStat, 162, 166, 171, 318
ilInterleaved, 39
ilInvertImg, 119, 318

color illustration, 384
ilKernel, 134, 396
ilLaplaceImg, 146

color illustration, 388
ilLink

classes deriving from, 31
implements chaining model, 32

ilLockRequest, 54
ilLocMode, 413
ilLogImg, 119

color illustration, 384
ilLut, 40, 396, 399-401
ilLutImg, 173, 318

color illustration, 392
ilMatrix, 396
ilMax(), 402

ilMaxFltImg, 140
color illustration, 387

ilMaxImg, 123
color illustration, 384

ilMedFltImg, 140
color illustration, 141, 388

ilMemCacheImg, 33, 47
deriving from, 255-258

ilMemoryImg, 33, 87, 101-104
ilMergeImg, 177, 183
ilMin(), 402
ilMinBlack, 40
ilMinFltImg, 140

color illustration, 388
ilMinify, 127
ilMinImg, 123

color illustration, 124, 384
ilMinWhite, 40
ilMonadicImg, 117, 167

deriving from, 277, 280, 283, 285-287
ilmonitor tool, 352
ilMorphType, 143, 412
ilMpSetMaxProcs(), 72, 337, 339
ilMultiplyImg, 121

color illustration, 384
ilMultiSpectral, 40
ilNearNb, 127
ilNegImg, 119

color illustration, 120, 385
ilNoFlip, 131
ilNoPad, 135
ilOKAY, 36
ilOldRel, 227
ilOpenImgFile(), 11, 92, 269
ilOpImg, 33, 108-109

deriving from, 243, 273-299
subclasses, 280

423

ilOrder, 38, 410
ilOrImg, 124, 318

color illustration, 385
illustration, 125

ilPackSplit, 230
ilPadDst, 135
ilPadSrc, 134
ilPage, 396
ilParamMode, 413
ilPCDImg, 86
ilPCDOImg, 86
ilPgCB, 256, 268, 279
ilPiecewiseImg, 174-177
ilPixel, 43, 44, 221, 397
ilPolyWarpImg, 125, 318

deriving from, 280, 294
ilPowerImg, 119

color illustration, 385
ilPreFetchIsEnabled(), 63
ilRankFltImg, 140
ilRectRoi, 187
ilReflect, 134
ilRelSplit, 230
ilRelVal, 227
ilRender, 413
ilRequest, 336
ilResampType, 127, 411
ilRfftf(), 151
ilRFFTfImg, 148, 156, 159, 161-162
ilRffti(), 153
ilRFFTiImg, 148, 156, 160, 161-162
ilRGB, 40
ilRGBA, 40, 113
ilRGBImg, 113
ilRGBPalette, 40

ilRobertsImg, 145
color illustration, 146, 389

ilRoi, 163
deriving from, 243, 300-303

ilRoiImg, 185, 186
ilRoiIter, 301
ilRoiMap, 300
ilRoiType, 411
ilRotZoomImg, 12, 13, 125-132, 318, 411

color illustration, 386
ilRowSplit, 230
ilSaturateImg, 116-117
ilScaleImg, 318

color illustration, 170
ilScope, 412
ilSemaphore, 336, 337
ilSeparate, 39
ilSepConvImg, 135, 136
ilSequential, 39
ilSetCompactFraction(), 49
ilSetMaxCacheFraction(), 49, 308
ilSetMaxCacheSize(), 49, 308
ilSGICmapLut(), 400
ilSGIFileLut(), 400, 401
ilSGIImg, 86
ilSGIPaletteImg, 113
ilSharpenImg, 12, 138

color illustration, 139, 388
ilSigned(), 38
ilSize, 36, 397
ilSobelImg, 145

color illustration, 389
ilSpatialImg, 133, 144

deriving from, 280, 290-293
ilSpinLock, 336, 337
ilSplitMode, 414

424

Index

ilSqRootImg, 119
color illustration, 385

ilSquareImg, 119
color illustration, 385

ilSquareRootImg
color illustration, 383

ilStackBuffer, 282, 396
ilStatus, 36, 407
ilStereoView, 217
ilSubImg, 185, 190
ilSubtractImg, 121

color illustration, 385
ilThread, 336
ilThreshImg, 172, 205

color illustration, 392
ilTieWarpImg, 125, 129

color illustration, 131
ilTIFFImg, 86
ilTile, 397
ilType, 37
ilUserDef, 127
ilView, 198, 216, 218
ilViewer, 198
ilWarpImg, 125, 126, 404

color illustration, 387
deriving from, 280, 294

ilWipeMode, 414
ilWrap, 134
ilXDisplayImg, 198
ilXFlip, 131
ilXImage, 103
ilXorImg, 124, 318

color illustration, 386
ilXYSfloat, 130
ilXYZCint, 277, 292
ilYCC, 40, 113

ilYFlip, 131
image

aligning, 227
moving, 229
replacing, 219
retrieving, 219

image attributes, 34, 79, 409
adding new, 254
allowing to change, 251
clearing once set, 79
initializing when deriving, 244
marking as altered or set, 253
preventing from changing, 79, 252
propagating, 78
resetting, 249
setting directly when deriving, 253, 279

image chains
constructing dynamically, 75
querying, 77
replacing an operator in, 76

image format, 35
image pack, 89
image tools, 351
image type, 41
imgcopy tool, 351
imgformats tool, 352
imginfo tool, 351
imgview tool, 352
imgworks tool, 352
importing data, 101
init(), 259
initClamp(), 284
initColorModel(), 245
initMinMax(), 245
initScaleMinMax(), 45
insertPoint(), 175
inset, 233

425

interleaved ordering, 39
invert(), 398
isAltered(), 253
isAutoCalc(), 163
isDefer(), 214
isDiff(), 279
isDoubleBuffer(), 210
isInvertable(), 398
isMirrorSpace(), 67
isMPenabled(), 150, 163
isNop(), 213
isRGBMode(), 210
isSet(), 253
isSigned(), 402
isStaticUpdate(), 226, 331
isWellDefined(), 130

K

kernel, 133, 134, 135, 137, 140, 144, 146, 147, 292, 396
separable, 136

L

Laplace operator, 146
laying out views, 230
left-shift operator, 55, 59
linking with libraries, 344
listResident(), 257
loadLut() example, 288
lockPage(), 51, 54
lockPageSet(), 54
log operator, 119
logical operators, 117-124
lookup table, 40, 396

low-pass filter, 158, 299
LUT, see lookup table

M

magnifying an image, 131
magnitude component, Fourier image, 154
Makefile, 344, 347
makemap(), 400
mapChan(), 399
mapFlipTrans(), 67
mapFromSource(), 67
mapSpace(), 67
mapTile(), 67
mapToSource(), 67
mapXY(), 67
mapXYSign(), 67
markSet(), 253
masking, 185
maximum comparison, 123, 402
maximum filtering, 140
maximum pixel value, 44, 162, 165, 172, 284

initializing when deriving, 245
maxInBuf(), 295
mean and standard deviation, 162, 165, 171
median filtering, 140
memory

optimizing usage, 308-314
memory image, 101-104
merging images, 177
minification, 128
minifying an image, 131
minimum comparison, 123, 402
minimum filtering, 140

426

Index

minimum pixel value, 44, 162, 165, 172, 284
initializing when deriving, 245

mirroring an image, 131
mode, display, 215
moreIRle(), 301
moreRle(), 301
morphological

dilation, 140
erosion, 140
operators, 141-144

moveImg(), 227, 229, 236
moveView(), 227
moving

images, 229
views, 229

multi-threaded applications, 338
multi-threading, 71, 283

controlling, 336
effect on cache size, 310
turning off, 72

multiplication operator, 121
for Fourier images, 161

multispectral image, 40, 114

N

needColorConv(), 249
nop flag, 213
NULL, 408

O

object properties, 80
scope of, 80

one’s complement operator, 119

online
documentation, 348
source code, 352

openFIT(), 271
opening a file, 92, 205, 259
operator, definition of, 32
OR operator, 124
order of an image, 38, 410
outOfBound(), 248
overflow, 283

P

padding an image, 134, 191
page

default size, 94
replacement, 48
size, 52, 313
size for PCD images, 89

page borders, 75
pages

prefetching, 62
priority in cache, 50

paging support, 53
paint(), 224, 225
phase component, Fourier image, 154
Photo CD

color model, 90
file format, 88
image pack, 89
image resolutions, 89
opening an image file, 92
overview pack, 90

pixel
operating on, 221

427

pixel transfer
path, 322
rate, 320

pop(), 220
position(), 229
power operator, 119
power spectrum, average, 154
prefetching pages, 62
priority of pages in cache, 50
propagating image attributes, 78
push(), 220

R

radiometric operators, 166-174
rank filtering, 140
readExtension(), 100
reading image data, 54-65
RealityEngine

architecture of, 320
auxiliary buffers, 327
pixel transfer in, 322
texture rendering, 329

redraw(), 70, 224, 225, 226
reference pages, 348
region of interest, 132, 163, 166, 171, 185-192, 411

bitmap, 187, 188
combining images with, 183
rectangular, 187

registering a file format, 269
removeInput(), 78
removePoint(), 175
removeProp(), 82
replacePoint(), 175
resampling method, 127, 132, 411
reserveExtension(), 100

reset mechanism, 248, 276
reset(), 165, 249, 265, 335

example, 266
resetAltered(), 251
resetCheck(), 250, 276, 335

example of, 250
resetDomain(), 169
resetOp(), 128, 251, 275-279, 284

example, 277
resetRange(), 169
resetScaling(), 169
resize(), 232
RGB mode, 210, 402
Roberts operator, 145
ROI, see region of interest
root-filtering, 160
rotating an image, 12, 131
run length, 300

S

save(), 224
scaling data

during color conversion, 45
for displaying, 284

seekTile(), 56, 62
implementing when deriving, 246

seekTile3D(), 246
select(), 212
semaphores, 337
separable kernel, 136
separate ordering, 39
sequential ordering, 39
setAddressError(), 128
setAllowed(), 95, 251
setAlpha(), 159

428

Index

setAlphaPlane(), 181
setAlphaRange(), 180
setAltered(), 253, 276
setAngle(), 132, 147
setAutoCalc(), 163
setAutoStaticUpdate(), 226, 331
setAutoSync(), 102
setBackground(), 211
setBase(), 121
setBeta(), 159
setBias(), 109, 135, 147
setBicubicFamily(), 127
setBkgd(), 186
setBlendMode(), 180
setBlur(), 137
setBlurKernelSize(), 137
setBlurRadius(), 137
setBorderColor(), 212
setBorders(), 206, 211
setBorderWidth(), 212
setBreakpoints(), 175
setBufSize(), 154
setCenter(), 132
setCheck(), 122, 162
setClamp(), 109, 283
setClip(), 172
setCoeff(), 128, 295
setColorMap(), 41
setColorModel(), 40
setCompression(), 97
setConfig(), 191
setConstAlpha(), 181
setCoordSpace(), 42, 187
setCsize(), 35, 37
setCurrentImg(), 89, 90

setData(), 189
setDataType(), 38, 52
setDCgain(), 159
setDefer(), 213
setDomain(), 169
setEccent(), 159
setEdgeMode(), 133
setFill(), 43
setFlip(), 132
setGamma(), 159
setHFgain(), 159
setHistLimits(), 172
setImg(), 189, 219
setImgStat(), 171, 172
setInput(), 77, 276
setKernel(), 133, 146
setKernelSize(), 133
setKernFlags(), 292
setLoc(), 223
setLookUpTable(), 174
setMajHalf(), 159
setMaxPixel(), 44
setMaxSamples(), 127
setMaxValue(), 45
setMean(), 171
setMinComponentBits(), 331
setMinHalf(), 159
setMinifyKernel(), 127
setMinPixel(), 44
setMinValue(), 45, 142
setmonitor(), 218
setMorphType(), 144
setNop(), 213
setNumInputs(), 78, 245, 276
setOffset(), 121, 185

429

setOption(), 150, 153
setOrder(), 39, 52
setOrigin(), 134
setPage(), 256

overriding when deriving, 268
setPageBorder(), 75
setPageSize(), 52
setPagingCallback(), 257, 312
setPixel(), 55, 61, 222
setPolyOrder(), 130
setPower(), 121, 160
setPriority(), 51, 311
setProp(), 81
setRange(), 169, 172
setRank(), 141
setResampFunc(), 128
setResampType(), 128
setRoi(), 163, 171, 172, 183, 186
setRSize(), 188
setSaturation(), 117
setScale(), 121, 160
setScaleMinMax(), 45
setScaleType(), 45
setScaling(), 169
setSharpenRadius(), 139
setSharpness(), 139
setSize(), 35, 37, 121, 132
setStart(), 192, 235
setStaticUpdate(), 224, 226, 331
setStatus(), 245
setStdev(), 171
setSubTile(), 55-60
setSubTile3D(), 64, 185

when deriving, 246
setTheta(), 159

setThresh(), 173
setTiePoints(), 129, 130
setTIFFTag(), 99
setTile(), 55-58, 190
setTile3D(), 63
setTransform(), 115
setVal(), 400
setValidOrder(), 276
setValidType(), 276
setValidValue(), 188, 189
setWorkingType(), 276
setXImg(), 219
setXkernel(), 136
setXsize(), 155
setXYWt(), 147
setYkernel(), 136
setZ(), 217
setZoom(), 132
SGI file format, 90
sharpening an image, 12, 136
size of an image, 36
sizeToFit, 132
Sobel operator, 145
spatial operators, 133-141
split(), 227, 230
square root operator, 119
squaring operator, 119
standard deviation, 162, 165, 171
static update, 331
statistical operator, 162-166
stereo viewing, 217
stride, 65, 292
subimage, 185, 190
subtraction operator, 121

430

Index

swap(), 220
sync(), 102

T

Tag Image File Format, see TIFF file format
texture rendering, 320, 329-331
threads, 336
threshold operator, 172
TIFF file format, 11, 87

managing tags, 98-99
tile of data, 54
tools, image, 351
TRUE, 408
two’s complement operator, 119

U

unalterable(), 253
underflow, 283
unlockPage(), 54
unlockPageSet(), 54
unselect(), 212
update(), 223, 234

V

view
adding, 216
borders, 211
finding an edge, 220
moving, 229, 236
removing, 219
reordering in the stack, 220
resizing, 232
retrieving, 218

stereo, 217
updating, 234

view stack, 216
reordering, 220

viewstack, 199

W

warping operators, 125-132
window, 214
wipe(), 232
wipeSize(), 232, 234
wipeSplit(), 232, 233
wiping an image, 232
working type, 371
writeExtension(), 100
writing image data, 54-65

X

X Window images, 103
XCreateWindow(), 208
XDestroyWindow(), 210
XImage, 103
XNextEvent(), 207
XOpenDisplay(), 208
XQueryPointer(), 207
XSelectInput(), 206

Z

zooming an image, 131

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-1387-030.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

