ImageVision Library™
Programming Guide

Document Number 007-1387-040

CONTRIBUTORS

Written by George Eckel, Jackie Neider, and Eleanor Bassler

Illustrated by Seth Katz, Nancy Cam, Bill Pickering, and Eleanor Bassler

Edited by Nan Schweiger

Engineering contributions by Chris Walker, Nancy Cam, Venkatesh Narayanan,
Dan Baca, Jon Brandt, Don Hatch, and Casey Leedom

Photography by Jackie Neider, Jim Winget, Nancy Cam, and Judith Quenvold

© 1993, 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIS-4D, IRIX, IRIS Graphics
Library, IRIS IM, ImageVision, ImageVision Library, and RealityEngine are
trademarks of Silicon Graphics, Inc. Motif is a trademark of Open Software
Foundation. UNIX is a registered trademark of UNIX System Laboratories. X
Window System is a trademark of the Massachusetts Institute of Technology.
Microsoft is a registered trademark of Microsoft Corporation. Apple and Macintosh
are registered trademarks of Apple Computer, Inc. Kodak and Kodak Photo CD are
trademarks of Eastman Kodak Company.

Red-tailed boa photograph property of Judith Quenvold.

ImageVision Library™ Programming Guide
Document Number 007-1387-040

Contents

List of Figures xiii
List of Tables xvii
List of Examples xix

About This Guide xxi

What This Guide Contains xxi

Suggestions for Further Reading xxiii

Adding a User Interface to Your ImageVision Library Program xxiv
Style Conventions xxv

Writing an ImageVision Library Program 1
A Sample Program in C++ 2
C++ Version of the Sample Program 3
More about the Sample Program 4
The C Interface 9
Creating and Deleting C++-style Objects 9
Calling Functions 10
Including Header Files 11
A Sample Program inC 11

The ImageVision Library Foundation 15
The IL Class Hierarchy 15
Foundation Classes 16

The ilLink Class 17

The illmage Class 19

Contents

Image Attributes 20
Error Codes 22
Size 22
Data Type 23
Data Ordering 24
Color Model 25

Determining Operator Data Types, Ordering, Working Types, and Definable Fields
26

Color Palette 27
Orientation 28
Fill Value 29
Minimum and Maximum Pixel Values 30
Data Compression 32
The Cache 32
Managing Cache 35
Priority 36
Page Size 38
Multi-threaded Paging Support 39
Accessing Image Data 40
Two-dimensional Functions 40
Three-dimensional Functions 46
Data Access Support Functions 47
Orientation Support 48
Geometric Mapping Support 49
The IL Execution Model 50
On-demand Processing 50
Multi-threading 53
Using Graphics Hardware for Acceleration 55
Working with Image Chains 56
Dynamically Reconfiguring a Chain 57
Propagating Image Attributes 59
Object Properties 61

Contents

3. Accessing External Image Data 65
Supported IFL Image File Formats 66
FIT 66
GIF 66
JFIF (JPEG) 67
iITCL 67
Kodak Photo CD Image Pac 67
Kodak Photo CD Overview Pac 69
PNG 69
PPM/PGM/PBM 69
Raw 69
SGI 70
TIFF 70
Using IL to Access an Image 71
Opening an Existing File 71
Creating an Image File 73
Setting a File’s Compression 74
Querying a File Image 75
Setting and Getting Special Image Properties 76
Importing and Exporting Image Data 77
Images in Memory 78

Contents

vi

Operating on an Image 81

Image Processing Operators Provided with IL 84
Color Conversion and Transformation 85
Arithmetic and Logical Transformations 90
Geometric Transformations 98
Spatial Domain Transformations 106
Edge Detection 117
Frequency Domain Transformations 120
Generation of Statistical Data 132
Radiometric Transformations 136
Combining Images 146
Constant-valued Images 152
Using a Null Operator 152

Defining a Region of Interest 153
Creating an ilRoilmg 154
Creating an ilSublmg 156

Displaying an Image 159
Overview of the Display Facility 160
Scrolling Windows 164
A Simple Interactive Display Program 165
Sample Program Code 165
Sample Program Comments 167
Creating an ilDisplay 169
Opening an X Window and Creating an ilDisplay Object 169
Adding a View to the ilDisplay Object 170
Deallocating the Display 171

Contents

View and Display Basics 171
Background Color 171
Borders 172
Preventing View Operations 173
Deferring Drawing 174
The Drawing Area 174
Managing the Cache 175
Mode Flags 175

Managing Views 176
Adding Images 177
Stereo Viewing 177
Retrieving Views 178
Retrieving Images 179
Removing Views 179
Replacing Images 179
Reordering the View Stack 179
Finding a View 180
Finding an Edge 180
Operating on a Pixel 181
Locating a Point 182

Applying a Display Operator 183
Drawing Views 183
Relocating Views and Images 187
Resizing Views 191
Updating Views 194
Using setMouse() 194

A More Complicated Interactive Display Program

Extending ImageVision Library 199
Deriving From illmage 202
Data Access Functions 203
Color Conversion 206
Managing Image Attributes 207
Deriving From ilCachelmg 212

195

Vii

Contents

Deriving From ilMemCachelmg 212

Implementing an Image Processing Operator 215
Deriving From ilOplmg 216
Defining the Request Processing Virtual Functions 221
Deriving From ilMonadiclmg or ilPolyadicimg 227
Deriving From ilSpatiallmg 233
Deriving New Classes From ilWarplmg and ilWarp 236
Deriving From ilFMonadiclmg or ilFDyadicimg 237
Deriving From ilFFiltimg 240

Deriving From ilRoi 241
Using an ROI: The ilRoilter class 242
Deriving New Classes From ilRoi 242
Deriving New Classes From ilRoilter 242

7. Optimizing Your Application 245

Managing Memory Usage 245
Optimizing Use of Cache 245
Page Size 249
Buffer Space 251

Using Hardware Acceleration 251
Using Accelerated Operators 251
Understanding the OpenGL Imaging Pipeline 253
Composing Operators 254
Pixel Buffers and Multi-Pass Acceleration 256
Texture 257

8. The Programming Environment 261
Compiling and Linking an IL Program 261
Programs Written in C++ 261
Programs Written in C 262
Reading the Reference Pages 263
Image Tools 264
Online Source Code 265

viii

Contents

Environment Variables 266
Caching Configuration Issues 267
Hardware-Acceleration Configuration Issues 268
Hardware Display Configuration Issues 268
Monitoring Control Issues 269
Multi-Threading Configuration Issues 270

What is New in Version 3.0 273
Overview of Changesin 3.0 273
Understanding the New Features 274
Support for OpenGL and Hardware Acceleration 274
64-bit Address Space Support 275
Understanding New Classes 275
Understanding the Changes to the Existing Features 278
Multi-threading Architecture Changes 278
Asynchronous Operations 278
Changes to the Display Facility 280
Error handling 281
Polynomial Coordinate Structures 282
Run-time Object-Type Query Macros 283
Changes to Existing Classes 283
Backwards Compatibility with IL 2.5 292
Automatic Class Name Conversion 294
New Derivations for Classes 299

Introduction to C++ 301
Objects and Classes 301
Overloaded Functions 302
Inheritance 303
Public versus Protected versus Private 304
Passing by Reference 304
Default Values 304
Class Declaration Format 305
Linking with Libraries in Other Languages 305

Contents

Referring to Function Names 307
C. Summary of All Classes 309

Implementing Your Own Image File Format 323
Deriving and Implementing Your Image File Format Class 323
Opening an Existing File 324
Creating a New Image File 326
Closing a File 328
Parsing the File Name 330
Reading and Writing Formatted Data 330
Functions that Manipulate the Image Index 334
Adding Images to Image Files 335
Deriving an Image File Format from iflFormat 335
Deriving Subclasses 336
Virtual Function Descriptions 337
Sample Code for Virtual Function Definitions 338
Registering an Image File Format 339
Using the File Format Database 340

E. Auxiliary Classes, Functions, and Definitions 341
Auxiliary Classes 342
iflConfig 343
Using iflLut 344
Useful Functions 346
Computing the Size of Data Types 347
Minimum and Maximum Comparisons 348
Converting to Color-index Mode 348
Convenient Structures 349
Coordinate Data Structures 349
Error Codes 350
ilStatus Error Codes 350
iflStatus Error Codes 352
Enumerated Types and Constants 353
Describing Image Attributes 354

Contents

Using the Electronic Light Table 359
Understanding How ELT Works 359
DeWarping the Image 361
RotZooming the Image 361
Convolving the Image 362
Collecting Histogram Data 362
Dynamically Adjusting the Image 363
DeWarping the Image Data 364
Enabling and Disabling Operators 364
Setting Operator Values 365
Understanding Accelerated Performance 365
Look-ahead Algorithms 366
Hardware Acceleration 366
Image Size 367
Choosing a Display in ELT Applications 367
Creating an ELT Application 367
Understanding the ilELTImg APl 373

Results of Operators 381

Color Conversion 382

Arithmetic and Logical Transformations 383
Geometric Transformations 386

Spatial Domain Transformations 387

Edge Detection 388

Frequency Domain Transformations 390
Radiometric Transformations 391
Combining Images 393

Index 395

xi

List of Figures

Figure 1-1 An Image before Processing 6

Figure 1-2 The Image after Processing 8

Figure 2-1 The ilLink Class Inheritance 17

Figure 2-2 An IL Chain 18

Figure 2-3 Sizes of Original and Processed Images 23

Figure 2-4 Pixel Data Ordering for an RGB Image 24

Figure 2-5 Determining Color Model Inheritance for Operator Images 26

Figure 2-6 Image orientations 29

Figure 2-7 Cache Containing Portions of Three Images 33

Figure 2-8 Pages and Tiles of Image Data 34

Figure 2-9 Priority Lists in Cache 37

Figure 2-10 Parameters for getSubTile() and setSubTile() 45

Figure 2-11 Image Chain for the Sample Program 51

Figure 2-12 Image Chain Showing Demand-driven Execution Model 52

Figure 2-13 Performance Comparison of Non-threaded, Single-processor, and
Multi-processor Applications 53

Figure 2-14 Operators, Requests for Pages, and Threads 55

Figure 2-15 An Image Chain 57

Figure 4-1 ilOpImg and IL Inheritance Hierarchy 82

Figure 4-2 Color Conversion Operators Inheritance Hierarchy 85

Figure 4-3 Determining the Color Model of Multi-Input Operators 87

Figure 4-4 A Falsely Colored Image 89

Figure 4-5 Arithmetic and Logical Operators Inheritance Hierarchy 91

Figure 4-6 A Positive and Negative Image Pair 93

Figure 4-7 Adding Two Images 96

Figure 4-8 Minimum of Two Images 97

Figure 4-9 Logical AND and OR of Two Images 98

xiii

List of Figures

Xiv

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 4-24
Figure 4-25
Figure 4-26
Figure 4-27
Figure 4-28
Figure 4-29
Figure 4-30
Figure 4-31
Figure 4-32
Figure 4-33
Figure 4-34
Figure 4-35
Figure 4-36
Figure 4-37
Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

A Warped Image 99

Geometric Operator Inheritance Hierarchy 99
Warping an Image 104

Spatial Domain Operator Inheritance Hierarchy 106
The ilPadSrc Edge Mode 108

An Original Image 110

An Image Blurred with ilBlurimg 111

An Image Sharpened with ilSharpenimg 112

An Over-sharpened Image 112

Median Rank Filtering on an Image 114

Edge Detection Operator Inheritance Hierarchy 117
Edge Image Produced by ilRobertsimg 118

A Compass Filtered Image 120

Frequency Domain Operator Inheritance Hierarchy 121
Magnitude and Phase Fourier Operators 125
Original Image 129

Image Processed with ilFGaussFiltimg 129

The illmgStat Inheritance 133

Radiometric Operator Inheritance Hierarchy 137
Using Scaling 139

Breakpoints along a Piecewise Continuous Function 143
Using a Lookup Table Editor to Set Breakpoints 146
iIBlendimg, ilMergelmg, and ilCombinelmg Inheritance Hierarchy 146
Blended Images 148

Composition Modes for ilBlendimg 150

IRoi’s Subclasses 155

Source Image and Subimage 156

Translated Subimage 157

IL Display Classes 160

Stacked Images in an X Window 161

ilDisplay Object Creates a Display Area 162

ilView Objects Map Images to Display Regions 163
Display Area After Views Are Drawn 164

List of Figures

Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 6-1
Figure 6-2
Figure 6-3
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure B-1
Figure F-1
Figure G-1
Figure G-2
Figure G-3
Figure G-4
Figure G-5
Figure G-6
Figure G-7
Figure G-8
Figure G-9
Figure G-10
Figure G-11
Figure G-12
Figure G-13
Figure G-14
Figure G-15

Aligning an Image to Bottom Left Corner 188
Aligning Views 188

split() with ilAbsSplit | ilRowSplit | ilColSplit 191
split() with ilRelSplit | ilRowSplit | ilColSplit 191
Using wipeSize() 194

User-Defined Classes in IL 200

ilOpImg and Its Subclasses for Deriving 216
Visualizinga ROl 241

Varying Page Dimensions 247

OpenGL Image Processing Pipeline 254

IL Chain Mapped to the OGLIP Pileline 255
Mapping onto the OGLIP in a Single Transfer 255
Running a Subsection of an IL Chain 256
Two-Pass Transfer Operations 257
Accelerating an IL Chain Using Texture 258
Data Path of the IL Chain in Figure 7-7 259
Sample Inheritance Hierarchy 303

ELT image processing pipeline 360
ilFalseColorimg 382

ilGraylmg 382

Original Image and Flipped Image 383
ilAddimg and ilAndimg 383

ilIDivimg 383

ilExplmg and ilinvertimg 384

ilLogimg and ilMaximg 384

ilMinImg and ilMultiplylmg 384

iINegimg and ilOrlmg 385

ilPowerlmg and ilSgRootimg 385
ilSquarelmg and ilSubtractimg 385

ilXorimg 386

Original and ilRotZoomIimg 386

ilWarplmg 387

Original, ilBlurlmg and ilGBlurlmg 387

XV

List of Figures

XVi

Figure G-16
Figure G-17
Figure G-18
Figure G-19
Figure G-20
Figure G-21
Figure G-22
Figure G-23
Figure G-24
Figure G-25
Figure G-26
Figure G-27
Figure G-28
Figure G-29
Figure G-30

ilDilatelmg, ilErodelmg, and ilMaxFItimg 387
ilMedFItImg, iIMinFItimg, and ilSharpenimg 388
ilCompassimg 388

ilLaplacelmg (original and filtered image) 388
ilRobertsImg (original and filtered image) 389
ilISobellmg (original and filtered image) 389
ilFGaussFiltimg 390

ilHistEglmg (filtered image and histogram) 391
ilHistNormImg (filtered image and histogram) 391
ilHistScalelmg (filtered image and histogram) 392
ilLutlmg (original, filtered image, and LUT editor) 392
ilThreshimg 392

Originals and Original Mask 393

ilBlendimg 393

ilCombinelmg 394

List of Tables

Table 1-1 IFL-supported Image Formats 6
Table 2-1 Image Attribute Summary 21
Table 2-2 Data Access Functions 40
Table 2-3 Channel Mapping 43
Table 3-1 Compression Algorithms Supported for iITIFFImg Files 75
Table 3-2 File Query Functions 76
Table 3-3 Color Models 79
Table 4-1 Single-input Arithmetic Operators and Their Valid Output
Data Types 92
Table 4-2 Compass Directions for the ilCompassimg Operator 119
Table 4-3 Output of a Forward Fourier Transform (if nx and ny are even) 123
Table 4-4 Output of a Forward Fourier Transform (if nx and ny are odd) 123
Table 4-5 Sample Parameter Values for ilFGaussFiltimg 128
Table 6-1 Image Attributes Needing Initialization in illmage Subclass 202
Table 6-2 illmgParam Constants 208
Table 6-3 Additional Attributes Needing Initialization in iIMemCachelmg
Derived Classes 214
Table 6-4 ilOpImg Subclasses and Their Algorithm Functions 222
Table 6-5 Classes Derived from ilMonaDiclmg and ilPolyadicimg 227
Table 6-6 ilSpatiallmg’s Subclasses 233
Table 6-7 The Subclasses of iIFMonadiclmg and ilfDyadicimg 237
Table 8-1 Environment Variable Definitions 266
Table A-1 New Names for Polynomial Structures 283
Table A-2 Run-time Object Inquiries 283
Table A-3 Class Name Conversions 294
Table A-4 New Class Hierarchies 299
Table C-1 Summary of All Classes 309

Xvii

List of Tables

Xviii

Table D-1
Table E-1
Table E-2
Table E-3
Table F-1

iflFormat’s Virtual Functions 337
Coordinate Data Structures 349
ilStatus Error Codes 350

iflStatus Error Codes 352
Methods in ilELTImg 373

List of Examples

Example 1-1
Example 1-2
Example 3-1
Example 5-1
Example 5-2
Example 6-1
Example 6-2
Example 6-3
Example 6-4

Example 6-5
Example 6-6
Example 6-7
Example 6-8
Example 6-9

Example 6-10

Example 6-11

Example 8-1
Example 8-2
Example B-1
Example D-1
Example D-2
Example D-3
Example D-4
Example D-5

Sample Program (in C++) Using X Window Management 3
Sample Program (in C) Using X Window Management 11
Opening an Image File and Reading Data 72

A Simple Interactive Display Program 165

A More Complicated Interactive Display Program 195
Typical Header for a Class Derived From ilOplmg 217
Typical Constructor for a Class Derived From ilOplmg 218
The resetOp() Function of ilMonadiclmg 219

A Request-Processing Implementation for a Class Derived From
ilOplmg 222

Computing the Pixelwise Sum of Two Images 224
Implementation of ilArithDoCalc() in ilPowerimg 230
Implementation of loadLut() in ilPowerlmg 230

A Class Derived From ilHistLutlmg to Count Pixels 232

A Class Derived From ilConvimg to Multiply and
Accumulate Data 234

Constructor and Member Functions of a Class Derived From
ilFMonadiclmg to Convert Coordinates 238

A Class Derived From ilFDyadiclmg to Multiply Two
Fourier Images 239

Makefile for a C++ Program 262

Makefile for a C Program 263

Class Declaration Format 305

Opening a File 325

Creating a File 327

Closing a File 329

Flushing a Buffer 329

Reading and Writing Data in the FIT Format 333

Xix

List of Examples

XX

Example D-6
Example E-1
Example E-2
Example F-1

Defining Virtual Functions for Your Image File Format 338
iflConfig Constructors and Fields 343

iflLut Constructors and Member Functions 345

Coding an ELT Application 368

About This Guide

The ImageVision Library™ (IL) is an object-oriented, extensible toolkit designed for
developers of image-processing applications. Typical image processing programs access
existing image data, manipulate it, display it, and save the processed results. IL provides
a robust framework within which developers can easily create such programs to run on
all Silicon Graphics® workstations.

IL consists of a library written in the C++ programming language; interfaces for the C
language are also available. The object-oriented nature of C++ provides a simplified
programming model based on abstractions of what images are and how they are
manipulated. This model relieves developers of many tedious programming details and
allows them to conceptually design creative programming solutions. Also, because IL is
written in C++, developers can easily extend it, for example, to incorporate their own
image processing algorithms or to include support for their own image file formats.
Several examples of images produced using IL appear in Chapter 4, “Operating on an
Image.”

What This Guide Contains

This guide presents a task-oriented perspective of IL. The topics in this guide are
arranged to coincide with the order in which you need to refer to them while writing an
image processing program. To illustrate the use of IL, code examples are sprinkled
liberally throughout the guide. Additional sample source code is provided online; see
“Online Source Code” on page 265. Brief descriptions of the chapters in this guide follow:

= Chapter 1, “Writing an ImageVision Library Program,” shows what a typical image
processing application that uses IL looks like. It presents an IL program that
performs the tasks common to many image processing applications. It also
summarizes the differences among the C++, C, and Fortran interfaces to IL.

= Chapter 2, “The ImageVision Library Foundation,” explains the general architecture
and design philosophy of IL. Most of this chapter is devoted to discussion of the
principal image class (illmage), from which virtually all IL classes derive, and the
class that implements a key part of IL’s execution model (ilCachelmg).

XXi

About This Guide

Chapter 3, “Accessing External Image Data,” describes how to read and write
image data from and to either a file on disk or memory.

= Chapter 4, “Operating on an Image,” discusses the more than 70 image processing
algorithms provided with IL. It explains how to use them and what effect they have
on image data.

= Chapter 5, “Displaying an Image,” describes how to display and manage a set of
images on the screen in an interactive program. You can allow a user of your
program to move images, perform wipes, roam around an image, and create split
views of multiple images.

= Chapter 6, “Extending ImageVision Library,” explains how to extend the
capabilities of IL to implement your own derived classes. You might extend IL to
include support for your own file format or to incorporate your own image
processing algorithm.

= Chapter 7, “Optimizing Your Application,” provides information on optimizing
your IL programs by reducing memory usage, taking advantage of hardware
acceleration, and making use of IL's multi-threading facility.

« Chapter 8, “The Programming Environment,” provides information on the
programming environment available on Silicon Graphics workstations. It mentions
special tools that may help you in writing, compiling, and debugging your IL
program.

In addition to these chapters, this guide includes several appendices as handy
summaries of useful information:

= Appendix A, “What is New in Version 3.0,” describes the differences between versions
2.5 and 3.0 of the ImageVision Library.

= Appendix B, “Introduction to C++,” contains a brief introduction to the principles
of C++ programming.

= Appendix C, “Summary of All Classes,” provides a brief summary of all the classes
that make up IL.

= Appendix D, “Implementing Your Own Image File Format,” describes how to add
and implement your own image file format.

= Appendix E, “Auxiliary Classes, Functions, and Definitions,” describes IL classes
not fully discussed elsewhere in this guide. It also lists all the error codes and
enumerated types used by IL.

XXii

Suggestions for Further Reading

= Appendix F, “Using the Electronic Light Table,” describes the il[ELT Img operator
and how you use it along with ilDisplay, ilView, and ilStereoView to create an ELT
application.

= Appendix G, “Results of Operators,” contains illustrations showing the results of
using IL’s operators to process data.

Other documentation on IL is contained in the ImageVision Library Reference Pages. These
reference pages provide concise yet thorough descriptions of each C++ class included in
IL. They are only available online in versions for C++, C, and Fortran programmers. See
“Reading the Reference Pages” on page 263 for more information on the exact content of
the reference pages.

Suggestions for Further Reading

Because IL is written in C++, it is easiest to describe its design philosophy and how to
program with it by talking about the C++ classes that compose IL. While it is not
necessary that you know how to program in C++, you can gain more from this guide if
you understand the concepts of object-oriented programming. Where possible, however,
this guide avoids focusing on topics directly related to the C++ implementation of IL. In
addition, a brief introduction to C++ is included in Appendix B. Programming examples
in Chapter 1, “Writing an ImageVision Library Program,” are given in C++, C, and
Fortran. Some books on C++ you might find helpful include:

= Ellis, Margaret, and Bjarne Stroustrup. The Annotated C++ Reference Manual. AT&T
Bell Laboratories, 1990. The official C++ language reference manual.

e The C++ Programmer’s Guide. A short manual that provides information about
implementing C++ programs on Silicon Graphics workstations.

« Lippman, Stanley. C++ Primer. AT&T Bell Laboratories, 1991. An introductory-level,
tutorial-style presentation of C++.

This guide assumes that you are familiar with the principles of image processing. A
good, general discussion of image processing can be found in any of several textbooks,
such as:

< Jain, Anil K. Fundamentals of Digital Image Processing. Prentice-Hall, Inc., 1989. A
thorough presentation of the major concepts of image processing, written for
graduate students.

= Pratt, William K. Digital Image Processing. John Wiley & Sons, 1991.

XXili

About This Guide

= Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing.
Addison-Wesley, 1992.

To learn more about the RealityEngine™ architecture, read:

= Akeley, Kurt, and Tom Jermoluk. RealityEngine Graphics™. In Proceedings of
SIGGRAPH ‘93 (August 1993), pp. 109-116.

Most sample programs in this guide include calls to the IRIS Graphics Library™ (GL),
and IL itself uses the GL to perform rendering in the frame buffer. These calls are not
explained in much detail since the GL is documented separately in these Silicon Graphics
books:

e Graphics Library Programming Guide

e Graphics Library Reference Pages

e Graphics Library Programming Tools and Techniques

IL provides support for manipulating files stored in the format defined by Tag Image File
Format (TIFF), Revision 6.0, distributed by Aldus Corp. You might want to obtain the

official specification of this format directly from Aldus (411 First Avenue South; Suite 200;
Seattle, WA 98104; (206) 628-6593).

e TIFF 6.0 Specification

IL provides support for multi-threading on single- and multi-processor machines. If you
want to know more about writing multi-threaded applications, refer to this document:
« Parallel Programming on Silicon Graphics Computer Systems

IL uses dynamic linking. To learn more about using dynamic linking with your
applications, read:

= the dlopen, dlsym, and dlerror reference pages

e |IRIX™ Programming Guide

Adding a User Interface to Your ImageVision Library Program

IL does not impose any particular user interface (Ul), so you can use any Ul toolkit—such
as IRIS IM™ Silicon Graphic’s port of the industry-standard OSF Motif™—to allow the
user to control your program. To support such interactive control, IL provides many

XXiv

Style Conventions

Style Conventions

functions for altering parameters dynamically. IL also keeps track of when parameters
have changed so that image data can be updated automatically. These user-interface
manuals are available from Silicon Graphics:

* OSF/Motif Programmer’s Guide

e OSF/Motif Programmer’s Reference

e OSF/Motif Style Guide

* |IRIS IM Programming Notes

Silicon Graphics recommends that you write mixed-model programs rather than pure
GL programs. A mixed-model program is essentially an X program that uses the GL to
handle graphics; the GL is completely removed from all areas governed by the X server.
If you are creating a mixed-model X Window System™ and IL program, you might also

want to refer to these volumes in the O’Reilly X Window System Series, published by
O’Reilly & Associates, Inc., Sebastopol, California:

= Volume One: XLIB Programming Manual, by Adrian Nye
= Volume Four: X Toolkit Intrinsics Programming Manual, by Adrian Nye and Tim
O’Reilly

Volumes One and Four are available from Silicon Graphics as part of the IRIS
Development Option (IDO).

These style conventions are used in this guide:
< Bold—Functions, data members, and data types
= [|talics—Variables, filenames, spatial dimensions, and command

= Regular—Class names and enumerated types

Code examples are set off from the text in a fixed-space font.

XXV

Chapter 1

Writing an ImageVision Library Program

To write an image processing program, you use the C++ classes in the ImageVision
Library (IL). This chapter shows several, typical image processing applications.
This chapter contains the following major sections:

< “ASample Program in C++” on page 2 presents a sample program written in C++
that uses the IL. The section shows the program that uses X window management.

= “The C Interface” on page 9 explains the differences between the C++ and C
interfaces to the IL.

< “ASample Program in C” on page 11 presents the sample program written in C.

Chapter 1: Writing an ImageVision Library Program

A Sample Program in C++

The sample C++ program presented in this section reads image data from a file,
processes it, displays it, and saves the processed data in a new file. Each task the program
performs is described in more detail in subsequent chapters. This chapter gives you a
brief introduction to the capabilities of the IL and provides you with a code example that
can serve as a template for programs you write.

Image processing applications typically perform at least some of the following tasks:

Read image data
Read formatted image data from a file on disk, for example, and
decompress it if necessary.

Process the data
Manipulate the data, for example, to enhance the original image or to
produce a statistical analysis of the data.

Display the image on the screen
Allow a user to interactively view selected portions of
simultaneously-displayed images.

Save the processed data in a file
Format and possibly compress the data.

The C++ program presented in Example 1-1 demonstrates how the IL accomplishes these
tasks. (A version of this program in the C language appears later in this chapter.) In
Example 1-1, the user invokes the program from the command line and specifies a file of
image data to be processed. The program then performs the following tasks:

1. Opens the input file of image data.
2. Constructs a sharpening operator that uses the file of image data as input.

3. Constructs a rotate operator that uses the output of the sharpening operator as
input.

4. Displays the sharpened and rotated image data on the screen.

5. Continues to display the processed image until the user quits by pressing the <Ctrl>
<g> keys or by using the window menu.

6. Copies the sharpened and rotated image to a file on disk.

The code for this program is available online so that you can easily compile and run it.
Look in:

A Sample Program in C++

Jusr/share/src/il/guide/sampleProg.c++

Other sample code is also available online; see “Online Source Code” on page 265.

C++ Version of the Sample Program
The code in Example 1-1 shows the C++ version of the sample program.

Example 1-1 Sample Program (in C++) Using X Window Management

#include <stdlib.h>

#include <stdio.h>

#include <X11/Xlib.n>
#include <X11/keysym.h>
#include <ilfilFilelmg.h>
#include <ilfilSharpenimg.h>
#include <ilfilRotZoomimg.h>
#include <ililViewer.h>

void
main(int argc, char **argv)
{
Il Step 1. Open the file of image data.

if (argc <2){
printf("Usage: %s <flename>\n", argvi0]);
exit(0);

}

iIFilelmg inlimg(argv{1]);
Il Step 2: Create IL objects for sharpening and rotating

iISharpenimg sharperimg(&nimg, 0.5);
iIRotZoomimg rotatedimg(&sharperimg, 90.0);

Il Step 3: Set up and open a window for display.

ifiSize size;
rotatedimg.getDimensions(size);
Display* dpy = XOpenDisplay(NULL);

iViewer viewer(dpy, size x, size.y);

Chapter 1: Writing an ImageVision Library Program

Il Step 4: Display the processed data.
viewer.addView(&rotatedimg, ilLast, iiCenter);
/I Step 5: Display until the user quits.
viewer.eventLoop();

XCloseDisplay(dpy);
Il Step 6: Write the processed data to a file.

ifFleConfig fc(&size);

iIFilelmg tmpFile(“outFile.tif', &nlmg, &fc);
tmpFile.copy(&rotatedimg);
tmpFile.flush();

More about the Sample Program

The sample program uses the IL in a recommended way, but many good programming
habits were not followed in the interest of keeping the program short. More specifically,
this program does not do any of the following things:

= check return arguments and write error messages as appropriate

e strip arguments off the command line in an elegant way and check them for
appropriate values (or provide a graphical user interface)

= provide feedback to the user, for example, to indicate that a file of processed image
data has been created

The remainder of this section walks through Example 1-1, explaining how it uses the IL.
This discussion is intended to give you a taste of the kinds of things the IL can do and
what you, as a programmer, need to do to accomplish them. Each of the following topics
is discussed extensively elsewhere in this book.

Header Files

The first few lines of code include the necessary header files from the IL. These header
files also include other IL header files, as well as header files from the Graphics Library
and the standard C library. If you use this program as a template and modify it to suit

A Sample Program in C++

your needs, be sure you include the header files necessary for your program. Since the IL
provides many more capabilities than you need for any particular program, you do not
need to include all of its header files. To minimize compile time and the size of your
executable, you should include only those header files actually required by your
program.

In this example,

= the header X11/Xlib.h is included to configure an X window for OpenGL rendering
= the header X11/keysym.h is included to handle user input

= the header il/ilFilelmg.h is included to implement the ilFilelmg class

= the header il/ilSharpenimg.h is included to implement the ilSharpenimg class

= the header il/ilRotZoomImg.h is included to implement the ilRotZoomImg class.

= the header il/ilViewer.h is included to manage views in an X window.

In general, when writing an IL program in C++, you will need to include an IL header

file for each IL class you use. More information about programming and compiling IL
programs is included in “Compiling and Linking an IL Program” on page 261.

Step 1: Open the File of Image Data

In step 1 of Example 1-1, an image data file specified by the user is opened by invoking
the ilFilelmg constructor. This function takes one argument: the pathname of the file. In
this example, the filename is taken as an argument from the command line and the file is
opened for reading. Figure 1-1 shows an example image file.

Chapter 1: Writing an ImageVision Library Program

35 2 g s

Figure 1-1 An Image before Processing

Before any image data can be read, the ilFilelmg constructor determines the format of the
image file by returning a pointer to one of the supported ilFilelmg types. IL recognizes
the image file formats at runtime by searching for dynamic shared objects (DSOs) that
contain the code for specific file formats. Table 1-1 shows all of the IFL -supported image
file formats and their customary suffixes.

Table 1-1 IFL-supported Image Formats
File Format Customary Suffix

SGI .rgb, .sgi, .rgbha, .bw, .screen
TIFF tif, tiff

JFIF .ipg, .jpeg, jfif

FIT fit

PCD .pcd

PCDO pcdo

GIF .gif

PPM .ppm, .pgm, .pbm, .pnm
PNG .png

Raw raw

A Sample Program in C++

IFL is a lower-level library upon which IL is built.

You can also create your own image file formats. For more information about defining
image file formats, see Appendix D, “Implementing Your Own Image File Format.”.

Step 2: Create IL Objects for Sharpening and Rotating

Now that the source of the image data is ready, the IL objects used for processing the data
are created in step 2. For this sample program, data is first sharpened and then rotated
by using the ilSharpenimg and ilRotZoomImg classes. These two classes demonstrate
two of the many image manipulation functions included in the IL.

As shown in Example 1-1, the parameter 0.5 is passed in with a pointer to the input
image data file to create the sharpening object. This parameter, which is a
single-precision floating point number, can range in value from 0 to 1; it defines how
much the data is sharpened. The specific algorithm that ilSharpenlmg uses to sharpen
image data is described in detail in its class reference page (read “Reading the Reference
Pages” on page 263 for an explanation of the difference between normal reference pages
and class reference pages). If this were an interactive program, you could allow the user
to change the sharpness factor dynamically, perhaps with a slider widget.

You can use the ilRotZoomlImg class to rotate and/or zoom (magnify or minify) an
image. In Example 1-1, the sharpened image data is rotated 90 degrees, in a
counterclockwise direction, as specified by the parameter passed to ilRotZoomImg. The
ilRotZoomImg class is discussed in detail in its reference page.

The program uses the size of the rotated image to set the size of the X window opened to
display the image.

You can invoke any number of operators on a set of data. See Chapter 4, “Operating on
an Image,” for more information about how the IL allows you to operate on image data.
You can also easily add your own algorithms; “Implementing an Image Processing
Operator” on page 215, tells you how to extend the IL to include a new image processing
operator.

As an IL program executes, image data is processed only on demand, for example, when
it’s needed for displaying or writing to a file. This execution model eliminates
unnecessary processing and minimizes transfers of data in and out of memory. In
Example 1-1, data is not actually processed until step 4. The execution model is discussed
in detail in “The IL Execution Model” on page 50.

Chapter 1: Writing an ImageVision Library Program

Step 3: Open a Window for Display

Example 1-1 calls the X Window library function, XOpenDisplay(), to return a pointer to
the display device which, in turn, is passed to ilDisplay to open a window.

Step 4: Display the Processed Data

In step 3, an ilViewer object is created to display the processed image data. In a more
interactive image processing program, you would use an ilViewer object to manage the
dynamic display of multiple images. Also, you could rewrite the program to display the
sharpened image before it’s rotated. Example 1-1, however, simply displays the final
image by calling the addView() member function on the sharpened, rotated image.
Displaying processed images is covered in detail in Chapter 5, “Displaying an Image.”
The result of running the sample program with the image from Figure 1-1 is shown in
Figure 1-2.

Figure 1-2 The Image after Processing

In the IL’s execution model, data is processed in conveniently sized chunks, called pages.
As you execute Example 1-1, you can watch as successive pages of image data are
displayed—one rectangular part of the image after another—after the pages have been
processed.

The C Interface

The C Interface

Step 5: Display Until the User Quits

In step 5, the program uses the eventLoop() function in ilViewer to handle X events until
the user types <Ctrl> <g> . You could also write your own event loop using X library
calls and pass events you do not want to handle to the event() function in ilViewer.

Step 6: Write the Processed Data to a File

Many image processing applications need to write processed image data to afile. In step
6, the iflFileConfig function, fc(), sets the size of the image in pixels. All other image
attributes are copied from inlmg which is passed to the output file object’s constructor.

The ilFilelmg constructor creates a file for writing data using the TIFF file format. This
version of the constructor needs to know the name of the output file, a pointer to the
original image file, and the size of the image in pixels. See “Creating an Image File” on
page 73 for more information about ilFilelmg.

The ilFilelmg constructor only creates a file. The ilFilelmg.copy() function actually
writes the processed (sharpened and rotated) image data directly into the file. The
ilFilelmg.flush() function then writes to the disk file all pages still residing in memory.

Since the IL was written in C++, it implements the C interface as a wrapper to C++
member functions. This wrapper has names that are similar to those of the C++ member
functions. Thus, the concepts explained in this guide apply to C as well as C++
programmers even though most of the code examples are shown in C++.

Creating and Deleting C++-style Objects

A C++ class object must be defined as something the C language recognizes to make it
usable in a C program. For example, the header file il/ilCdefs.h defines all the IL classes as
being of data type struct. To “create” such a struct in your program, call the appropriate
function, which is usually of the form ClassNameCreate(). The call to create an ilDisplay
struct, for example, is ilDisplayCreate().

In C, use these statements:
iIDisplay* disp;

Chapter 1: Writing an ImageVision Library Program

10

disp = ilDisplayCreateWindow(dpy, size.x, size.y,
ilVisDoubleBuffer,0,0, ilDefault, ExposureMask |
KeyPressMask | StructureNotifyMask);

You can see in this example some other differences between the C and C++ calls. In C++,
you can have variables created automatically for you, or you can allocate them
dynamically yourself. The C variable disp must be declared as a pointer to type ilDisplay.

Since disp appears as just a struct to C, you need to call a destructor directly when you
need to delete it. The destructor naming scheme is similar to the creator scheme. In order
to delete the display you created with the calls above, use ilViewerDelete().

In C, use this statement:

ilViewerDelete(viewer);

In C++, use this statement:

delete ilViewer; // not needed unless created with new

Calling Functions

Once you have accomplished the C equivalent of creating an object, you can manipulate
it with the C version of the functions associated with that object. The C function name
generally includes the C++ class name, and the functions themselves take a pointer to the
“object” as an additional argument.

In C, use this statement:
status = ilDisplayAddView(disp, rotatedimg, 0, ilCenter);

In C++, use this statement:

status = disp.addView(rotatedimg);

Asyou can see, the C++ function addView(), which is a member function of the ilDisplay
class, becomes ilDisplayAddView(). Most functions follow this form: the name of the
base class is used as the prefix for the functions. C++ functions from the illmage base
class (or from illmage’s parent class, ilLink) add “il,” not “illmage.” ilCachelmg’s flush()
function does this as well; it becomes ilFlush(), not ilCachelmgFlush().

Note: The C version of the man pages list the C names for each method.

A Sample Program in C

The C++ versions of the IL functions fill in default values for some arguments. If you
omit those arguments, C++ simply calls the function with the defaults. C, however, does
not fill in defaults for you. You must supply values for each argument. The C++ sample
program takes advantage of this feature when creating a new ilSharpenimg object.

In C, use this statement:
sharperimg = ilSharpenimgCreate(thelmg, 0.5, 1.5, ilPadSrc);

In C++, use this statement:
iISharpenimg sharperlmg(thelmg);

0.5, 1.5, and ilPadSrc are the default values for the sharpness factor, radius, and edge
mode arguments, respectively. In C, you must pass them explicitly.
Including Header Files

To use the IL in your C programs, you need to include only il/ilCdefs.h. This file includes
information about all the IL classes and functions.

A Sample Program in C

Example 1-2 shows the equivalent of Example 1-1 written in C. Example 1-2 opens a file
image, sharpens and rotates it, sets up the window configuration, opens an X window,
and displays the processed image.

Example 1-2 Sample Program (in C) Using X Window Management

#include <ilfiCdefs.h>
#include <X11keysym.h>
#include <stdlib.n>
#include <stdio.h>
#include <sysffentl.h>

void

main(int argc, char **argv)

{
iIFilelmg *inlmg, *mpFile;
ifFleConfig *fc;
iISharpenimg *sharperimg;

11

Chapter 1: Writing an ImageVision Library Program

iIRotZoomimg *rotatedimg;
iViewer *viewer,

ifiSize size;

Display *dpy;

XEvent event;

int ever;

if (argc <2){
printf("Usage: %s <flename>\n", argvi0]);
exit(0);

}

Il Step 1: Open the file of the image data.
inlmg = ilFilelmgOpen(argv{1], O_RDONLY, NULL);
Il Step 2: Create IL objects for sharpening and rotating.

sharperimg = ilSharpenimgCreate(inimg, 0.5, 1.5, iIPadSrc);
rotatedimg = iIRotZoomimgCreate(sharperimg,90.0, 1, 1, iBiLinear);

/I Step 3: Set up and open a window for display.
dpy = XOpenDisplay(NULL);
iIGetSize(rotatedimg, &size);
disp = iViewerCreateWindow(dpy, size.x, size.y, iVisDoubleBuffer, O,
0, iiDefault, ExposureMask | KeyPressMask |
StructureNotifyMask);
Il Step 4: Display the processed data.

iDisplayAddViewTop(viewer, rotatedimg, iiCenter);
iIDisplayRedraw(viewer, iDefault);

/I Step 5: Display until the user quits.
iViewer.eventLoop(viewer);
XCloseDisplay(dpy);
Il step 6: Write the processed data to a file
fc = ifiFileConfigCreate(&size, 0, 0, 0, 0, 0, NULL);

tmpFile = iIFilelmgCreate(‘outFile.tif*, inlmg, fc, NULL);
iICopy(tmpFile, rotatedimg);

12

A Sample Program in C

illmageDelete(tmpFile);
}

Example 1-2 shows several examples of function name changes, for example, the C++
call rotatedlmg.getSize() becomes ilGetSize() in C.

13

Chapter 2

The ImageVision Library Foundation

This chapter explains the general architecture and design philosophy of the ImageVision
Library (IL). All subsequent chapters assume knowledge of the basic concepts presented
in this chapter. This chapter contains the following major sections:

= “The IL Class Hierarchy” on page 15 gives a brief overview of the main classes that
compose the IL.

= “Foundation Classes” on page 16 introduces the IL foundation classes, particularly
ilLink and illmage, from which most IL classes derive.

= “Image Attributes” on page 20 discusses in detail the attributes used to describe an
image and the functions available for retrieving and setting these attributes.

= “The Cache” on page 32 describes the role of the cache in holding raw and
processed image data.

= “Accessing Image Data” on page 40 discusses the general capabilities for reading
and writing image data that are common to all image classes.

= “The IL Execution Model” on page 50 discusses the IL’'s demand-driven model that
optimizes memory usage and performance as image data is processed.

= “Working with Image Chains” on page 56 shows how you can manipulate image
chains in a dynamic environment.

= “Object Properties” on page 61 describes how you can assign property values to
objects and retrieve these values.

The IL Class Hierarchy

The architecture and functionality of the IL is contained in a hierarchy of C++ classes.
Most of this chapter is devoted to a discussion of the principal image class (illmage), from
which most IL classes derive, and the ilMemCachelmg class, which implements image
data caching. However, a brief look first at the IL base classes provides a perspective for
better understanding the role of the illmage and ilMemCachelmg classes.

15

Chapter 2: The ImageVision Library Foundation

Foundation Classes

16

The base classes can be divided into four functional groupings:

ilLink TheilLink class defines the linking of image operators in succession and
the images associated with these operators. See “The ilLink Class” on
page 17 for more information about the ilLink class.

Multi-threading
The IL contains several base classes that implement multi-threading in
IL. “Multi-threading” on page 53 describes how multi-threading works
in the IL. “Effect of Multi-threading on Cache” on page 247 tells you how
use multi-threading with the cache.

iIDisplay The ilDisplay class allows you to create and manage one or more
processed images in a graphics window. Read Chapter 5, “Displaying
an Image.” to learn more about this class.

Miscellaneous Some base classes, like iflLut, iflPixel, and iflSize, provide a variety of
auxiliary functions to support the function of the IL. For example, ilPage
defines a page of image data and iflLut defines a color palette lookup
table (LUT) used to interpret the data in some images. “Auxiliary
Classes” on page 342 contains more detail about many of these
miscellaneous base classes.

All the IL classes are briefly summarized in “Summary of All Classes” on page 309.

Figure 2-1 shows the portion of the IL class hierarchy that derives from ilLink. These
classes provide much of the functionality and flexibility of the ImageVision Library.

Foundation Classes

ilCachelmg

iIMemCachelmg

Operator
classes

iiIMemorylmg

illmage iIFITImg

i
il

iIFilelImg

ilConstimg iISGlimg

iIRol
rRoiimg iIPCDImg

| ifIListItemH ilLink |—

iITIFFImg

iIGIFImg

illmgStat

iIPCDOImg

ilView

iISwitchimg

Figure 2-1 The ilLink Class Inheritance

The foundation classes shown in shaded boxes in Figure 2-1 are abstract classes and
cannot be used directly. Understanding the capabilities these classes provide is key to
understanding how the IL works and how to use it. Also, if you extend the IL to meet
your specific image processing needs, you will derive your own classes from these
abstract classes.

The ilLink Class

The IL allows you to access, manipulate, store, and display images. You can perform a
series of operations on one or more images by creating a chain of operators and passing
the image or images down this chain. An operator is a class derived from ilOplmg (the
base class for all IL operators) that applies its image processing algorithm to an image.
The image output from each operator becomes the input to the next operator in the chain.

1

~

Chapter 2: The ImageVision Library Foundation

18

An element in a chain of operators can be:
= animage file, for example, an ilFilelmg object

= aprocessing operation, which generates an image from one or more input elements,
for example, an ilAddIimg object

= an object containing statistical information about an image, for example, an
illmgStat object

= aregion of interest (ROI), used to restrict the scope of an operator to a sub-portion
of its input elements, for example, an ilRectRoi object

= asubsection element, which selects a portion of its input(s) to be produced as an
output, for example, an ilSublmg or ilSwitchimg object

The result of a chain of operations is either a display of the processed image or a file on
disk containing the processed image. Figure 2-2 illustrates this concept by showing a
generalized image processing chain whose elements are raw and processed images.

IL chain

- rocessed
- raw operatorl processed operator2 p.
image image Image

monitor

The ilLink class implements the chaining model by defining the mechanism for linking
the image objects together. This model defines the concept of parent (input) and child
(output) images.

Figure 2-2 An IL Chain

TheilLink class also provides functions that allow you to manipulate image attributes by
providing functions that keep track of whether an attribute is allowed to change or has
been altered. For more information about chaining operators, see “The IL Execution
Model” on page 50.

Foundation Classes

The illmage Class

The illmage class is the root for the majority of the IL’s image class hierarchy. It provides
the IL’s abstract concept of what images are and how they are manipulated. The IL
defines an image as a four-dimensional array of pixels, x, y, z, and ¢c. An image has certain
attributes, such as the size (in pixels) of the image, the data type of the pixel elements (for
example, float or int), and the color model that should be used to interpret the data (for
example, RGB or CMYK).

The illmage class provides two main categories of functions to support this abstraction
of an image:

= image attribute functions, for querying an image about its attributes and setting
these attributes (Programmers can explicitly set some attributes, even though many
attributes are determined at the time the image is instantiated.)

= data access functions, for reading, writing, and copying image data

All classes that derive from ilimage (see Figure 2-1) inherit these general capabilities for
guerying and setting attributes and accessing data. Thus, the IL allows you to
manipulate all images in the same way, regardless of the actual source or destination of
the data. The same mechanism is used for data that is associated with any type of image,
for example:

« animage stored in memory (ilMemorylimg)

= animage that is displayed on the screen and that resides in the framebuffer
(ilFrameBufferimg)

= animage operator, which applies an image processing algorithm to its data
(ilOpImg)

= animage that resides in a file on disk and is buffered in memory (ilFilelmg)

Classes derived from illmage implement their own versions of the data access functions
as necessary to add specificity. For example, iIMemCachelmg defines versions of the data
access functions that read data from or write data to a partial copy of the image buffered
in main memory. Similarly, iITIFFImg adds capabilities specifically for reading and
writing TIFF file headers and data. The ilSharpenlimg class incorporates a sharpening
algorithm into its access functions.

19

Chapter 2: The ImageVision Library Foundation

Image Attributes

In the IL, an image has many descriptive attributes. These include:

< image size

= data type of image pixels

< data ordering of channels in an image

= color model

= color palette

= image type

= orientation

= fill value

= minimum and maximum pixel values

= data compression

= page border

< image format

Many of these attributes are assigned default values when an image is created. Some of
them are changed subsequently, usually as a result of applying—or preparing to apply—
an image operator. Some can be changed explicitly by the programmer. Each class that
derives from illmage chooses which attributes it allows to be explicitly modified. (For

more information about how this mechanism works, see “Propagating Image Attributes
on page 59 and “Managing Image Attributes” on page 207.)

This section describes the image attributes and the functions available for retrieving and
setting them. These functions are defined by the illmage and ilLink classes and therefore
can be used on any type of image.

20

Image Attributes

Table 2-1 provides a summary of the image attribute functions. All of these functions are
described later in this section except for the image format (described in “Querying a File
Image” on page 75) and the page border (described in “Page Borders” on page 56).

Table 2-1

Image Attribute Summary

Image Attribute

Retrieving Attributes Changing Attributes

Size

Data type

Data ordering
Color model
Color palette
Orientation
Fill value

Min and max pixel
values

Min and max scale
values

Data compression
Page border

Image format

getSize()

getXsize()
getYsize()
getZsize()
getCsize()

getDataType()
isSigned()

getOrder()
getColorModel()
getColorMap()
getOrientation()
getFill()

getMinPixel()
getMaxPixel()

getMinValue()
getMaxValue()

getScaleMin()
getScaleMax()

getCompression()
getPageBorder()

getimageFormat()

setSize()
setCSize)
Apply an operator that affects the size.

setDataType()

setOrder()
setColorModel()
setColorMap()
setOrientation()
setFill()

setMinPixel()
setMaxPixel()
setMinValue()
setMaxValue()
setScaleMinMax()
initScaleMinMax()
setScaleType()

setCompression()
setPageBorder()

Use the imgCopy utility to convert from
one IL-supported format to another

In addition to the functions shown above, which allow you to set image attributes
individually, you might decide to use the IL’s ilConfig class, which allows you to specify
several image attributes at once. An ilConfig object contains several elements that

21

Chapter 2: The ImageVision Library Foundation

22

describe pixel data: the data type, pixel ordering, number of data channels, ordering of
data channels, channel offset, orientation, and zoom factors. This class is defined in the
header file il/ilConfig.h and described in more detail in “iflConfig” on page 343 as well as
in its reference page.

Error Codes

As you read the following sections, you will note that many of the functions described
return a value of data type ilStatus. This enumerated type, which is defined in the header
file il/ilError.h, contains the error codes used by the IL to indicate that an unexpected
result occurred. If no unexpected result occurred, an image’s status is ilOKAY. The error
codes and their meanings are listed in “Error Codes” on page 350.

At any point, you can query an illmage about its current status by using getStatus(), a
function defined in ilLink that takes no arguments and returns a value of type ilStatus.
You can also set an image’s status to ilOKAY by using clearStatus() (a function defined
in and inherited from ilLink).

Size

One key attribute of an image’s its size, which is determined initially when an image is
created. In Example 1-1 in Chapter 1, “Writing an ImageVision Library Program,” the
size of the image data is determined when the ilFilelImgOpen() function is called. An
image’s size can be described with an iflSize data structure, which consists of four
integers that correspond to the image’s size in the x, y, and z dimensions and the number
of data channels, c, per pixel.

The x and y dimensions specify the width and height of the image as measured in pixels.
The z dimension, or “depth,” may refer to the number of xy planes of image data. The xy
planes are usually related in some way; for example, they might be a time-series of a
single animation scene or a set of CAT scan images. (CAT stands for computerized axial
tomography, a medical imaging technique used to create three-dimensional images.)
Different image representations require different numbers of data channels to describe
each pixel of data. An RGB (red, green, blue) image, for example, requires three channels,
one for each of the three colors.

The illmage class defines functions for retrieving the entire iflSize structure for an image
at once and functions for returning each of the elements separately:

Image Attributes

illmage mylmg;

iflSize imgSize;

int imgXSize, imgYSize, imgZSize, imgChans;
mylmg.getSize(imgSize);

imgXSize = mylmg.getXsize();

imgYSize = mylmg.getYsize();

imgZSize = mylmg.getZsize();

imgChans = mylmg.getCsize();

You can change an image’s size by applying an image operator that affects its size or by
setting its size explicitly (if you are allowed to set it). For example, in most cases, the
ilRotZoomImg operator produces a processed image with a size that differs from that of
the original image, as shown in Figure 2-3:

4— New Size 4— New Size
?#ggg ! Rotated Image Zoomed Image
Figure 2-3 Sizes of Original and Processed Images

You can set an image’s size explicitly by using setSize(), which takes a reference to the
desired iflSize structure as an argument. A separate function, setCsize(), allows you to
restrict the number of channels associated with an image.

Data Type

An image’s pixel components must all be of the same data type. The IL defines an
enumerated set of data types (iflDataType) and a function, getDataType(), to return the
data type of an image’s pixels:

iflDataType imgType;

imgType = mylmg.getDataType();

The iflDataType returned can be one of the following: ifIBit, iflChar, iflUChar (an
unsigned char), ifIShort, iflUShort, iflLong, iflULong, iflFloat, or iflDouble. (These types
are defined in the il/iflDataTypes.h header file and listed in “Describing Image Attributes”
on page 354.)

23

Chapter 2: The ImageVision Library Foundation

24

Use isSigned() to query an illmage about whether its data type is signed:
int sign = mylmg.isSigned();

As shown, this function takes no arguments and returns TRUE (nonzero) if the image’s
data type is signed and FALSE (zero) otherwise.

Operators accept input images of any data type. Internally, however, operators may use
a different data type than the input data type to process the image. In this case, the data
is converted as needed to perform the computation. If you know what data type you
need at the end of the computation, you can use the setDataType() function to force the
data type.

Data Ordering

The channels composing an image’s pixel data can be ordered in three ways:
iflinterleaved, iflISequential, or iflISeparate. These are the three possible return values of
the enumerated type, iflOrder. To return the data ordering, use its member function,
getOrder(), as follows:

iflOrder imgOrder;
imgOrder = mylmg.getOrder();

The meanings of the three orders are illustrated in Figure 2-4.

RGB RRR RRR GGG BBB

RGB GGG RRR GGG BBB

RGB BBB RRR GGG BBB
iflinterleaved if[Sequential ifISeparate

Figure 2-4 Pixel Data Ordering for an RGB Image

Interleaved In interleaved ordering, all pixel components are clustered together. For
an interleaved RGB image, data is stored as: RGBRGBRGB....

Sequential With sequential ordering, each component is stored as a separate line. In
the example, three lines of data (one each for red, green, and blue data)
are needed to describe one line of pixels.

Separate An image using separate ordering stores each component in a separate
page. (See “The Cache” on page 32 for more information about pages.)

Image Attributes

Thus, the order defines that dimensions that vary most rapidly relative to the others in a
chunk of data. For example, in the interleaved case, the channel dimension varies most
rapidly, and the z dimension varies least rapidly. Here is how the dimensions vary for
each of the orders, listed from most to least rapidly: iflinterleaved (c,x,y,z), iflSequential
(x,c,y,2), iflSeparate (X,y,z,c).

In the rare cases where you need to set an image’s order, use the setOrder() function.
Some classes derived from illmage, such as ilFilelmg, do not let you change an image’s
order.

Color Model

An image’s color model determines the meaning of the data channels from which a pixel
is constructed. The IL defines an iflColorModel enumerated type (in the header file
il/iflDataTypes.h) that can refer to the following color models:

ifIRGB red, green, blue

ifIRGBA red, green, blue, alpha

ifIRGBPalette color index mapped to an RGB lookup table
ifl[HSV hue, saturation, value

iflCMY cyan, magenta, yellow

ifICMYK cyan, magenta, yellow, black

ifIMinWhite grayscale, with the minimum value interpreted as white
ifIMinBlack grayscale, with the minimum value interpreted as black
ifIBGR variation of RGB, for images generated by Silicon Graphics
iflABGR variation of RGBA, for images generated by IRIS GL

iflIMultiSpectral
generally more than three channels; requires a special interpretation

iflyCC a luminance/chrominance data metric based on video primaries

The getColorModel() function allows you to query an image about its color model. If
necessary, you can change the data interpretation by using the setColorModel() function.

25

Chapter 2: The ImageVision Library Foundation

Determining the Color Model

If an application or derived class does not use the setColorModel() function to explicitly
set the color model of an ilOpImg object, the color model defaults to the lowest common
ancestor of the input images as shown in Figure 2-5:

ifIRGBA
ifIABGR

iflLuminanceAlpha

ifINegative
ifIRGBPalette

Figure 2-5 Determining Color Model Inheritance for Operator Images

Determining Operator Data Types, Ordering, Working Types, and
Definable Fields

All classes derived from ilOplmg have specified output data types, data ordering,

working data types, and fields that can be set on an object. You can identify them by
finding the following functions in each class: setValidType(), setValidOrder(),

26

Image Attributes

setWorkingType(), and setAllowed(), respectively. For example, the ilWarplmg operator
uses an iflUChar as the output data type, can use any output ordering, uses iflFloat as the
working type, and can have any of its fields set.

You can set the data type or data order explicitly to a valid type or ordering by calling the
illmage member function setValidType() or setValidOrder(), respectively. If the data
type or order is not set explicitly in this manner, they default to the “smallest” of the valid
types or ordering that is at least as “great” as each input type or order. Here “small” and
“great” refer to the numeric values of the types and ordering, as defined in
il/iflDataTypes.h.

An ilOplmg object has a “working type”, which is the data type used for calculations.
The working type is often the same as the output data type. When this is not the case, the
setWorkingType() function is used to define the working types.

The setAllowed() function specifies which fields can be set on an object that is an
instance of a class derived from ilOpImg.

Color Palette

Some images include a color palette that is used to interpret their data. A color palette is
also referred to as a lookup table or LUT. The most common use of such a table is to store
color map values. The iflLut class, defined in the header file ifl/iflLut.h and described in
“Using iflLut” on page 344, is provided for such purposes. To set an image’s LUT, use
setColorMap():

iIStatus setColorMap(const iflLut& lut);

The table pointed to by lut is established as the image’s look-up table. This function
copies the specified iflLut but not its data. The getColorMap() function returns by
reference an image’s LUT:

void getColorMap(iflLut& lut);
Two other functions—ifISGIColormap() and ilSGIFileLut()—create look-up tables for

use in managing color map data. They are described in “Using iflLut” on page 344 and
in their own reference pages.

27

Chapter 2: The ImageVision Library Foundation

28

Orientation

Different file formats arrange their data in different ways. By default, a TIFF file image

considers its origin to be the upper left corner; if you scan through the data, you should
read from left to right, working your way down the image. An SGI RGB image considers
its origin to be the lower left corner; to read through its data, again read from left to right,

but work your way up the image.

The IL defines an iflOrientation data type to represent the possible orientations of image

data. To query an image about the orientation of its data, use getOrientation(), which

returns one of the eight values listed below. (You can set an image’s orientation with the
setOrientation() function.) These four orientations use the traditional orientation of the

x and y dimensions (the x dimension runs horizontally, and the y dimension runs

vertically):

iflUpperLeftOrigin

iflLowerLeftOrigin

iflUpperRightOrigin

iflLowerRightOrigin

The origin is in the upper, left corner and you read data from
left to right, working your way down the image

The origin is in the upper, left corner and you read
data from left to right, working your way up the
image

The origin is in the upper right corner, and you read data
from right to left, working your way down the image

The origin is in the lower right corner, and you read
data from right to left, working your way up the
image

The following four orientations have the x and y dimensions transposed so that the x
dimension runs vertically, and the y dimension runs horizontally.

iflLeftUpperOrigin

iflLeftLowerOrigin

ifIRightUpperOrigin

The origin is in the upper left corner, and you read
from top to bottom, working your way across the
image to the right.

The origin is in the lower left corner, and you read
from the bottom to the top, working your way across
the image to the right.

The origin is in the upper right corner, and you read
data from top to bottom, working your way across the
image to the left.

Image Attributes

ifIRightLowerOrigin The origin is in the lower right corner, and you read
data from bottom to top, working your way across the
image to the left.

Figure 2-6 illustrates the difference between iflUpperLeftOrigin and iflLeftUpperOrigin
orientation of image data.

Origin—p — Origin—p
>
> vVvYy v
iflUpperLeftOrigin iflLeftUpperOrigin
Figure 2-6 Image orientations
Fill Value

When a function tries to access pixels that are beyond an image’s edge, those pixels are
set to the image’s fill value. By default, an image’s fill value is 0, but you can set a
different fill value with the setFill() function:

static float fillData[3] = {127.0, 127.0, 127.0};
mylmg.setFill(iflPixel(iflFloat, 3, fillData));

As shown, setFill() takes a reference to an iflPixel as an argument. An iflPixel defines the
pixel is data type (in this case, iflFloat), the number of data channels (3), and the pixel
data itself (fillData[]). (In this example, the iflPixel value is passed in-line so that the
compiler automatically constructs and deletes the object.) The image makes its own copy
of the pixel data.

Use getFill() to query an image about its fill value:

iflPixel theFillValue;
mylmg.getFill(theFillValue);

29

Chapter 2: The ImageVision Library Foundation

30

Creating Fill Values

You use the allocFillData() and freeFillData() functions in the ilimage class to create and
free fill values in the native image format from an RGB triplet. The functions are defined
as follows:

void* allocFillData(float red, float green, float blue);
void freeFillData(void* data);

Minimum and Maximum Pixel Values

By default, no restrictions are placed on the range of allowable pixel values. However,
when an image is displayed—for example, using the ABGR color model—its pixel values
may need to be converted to the range that is meaningful for the framebuffers, which is
0to 255. If you explicitly set an image’s minimum and maximum allowable pixel values,
they are used to color-scale the data as it is displayed.

You might want to set the allowable pixel values for a processed image so that the

resulting data has certain characteristics, especially if you display the data. For example,
suppose you are using an edge detection filter that theoretically produces data ranging
in value from -1000 to +1000. However, you know that the images you’ll be filtering will
actually yield filtered data ranging from -100 to +100. If you set the allowable values to
match this range and then display the filtered data, the display will be more useful, since
the data will be scaled and stretched out over the framebuffer is meaningful range.

Setting Maximum and Minimum Pixel Values

Minimum and maximum values are image attributes that are stored with an image. You
can set the minimum and maximum allowable values for an image’s pixel data by using
the setMinPixel() and setMaxPixel() functions. Both these functions take an ilPixel
reference as an argument:;

iIStatus setMinPixel(const ilPixel& pix);
iIStatus setMaxPixel(const ilPixel& pix);

Use getMinPixel() and getMaxPixel() to query an image about its minimum and
maximum allowable pixel values:

void getMinPixel(ilPixel& pix);
void getMaxPixel(ilPixel& pix);

These functions return the minimum or maximum pixel value by reference.

Image Attributes

Setting Maximum and Minimum Pixel Values for a Channel

You can also set the minimum and maximum values for an individual channel of an
image:

iIStatus setMinValue(double val, int c=0);
iIStatus setMaxValue(double val, int c=0);

These functions set channel ¢’s minimum or maximum value to val.

To query an image about its channel value limits, use getMinValue() and getMaxValue():

double getMinValue(int c=-1);
double getMaxValue(int c=-1);

These functions return the minimum or maximum allowable value for the specified
channel (the default, -1, returns the minimum or maximum of all channels).

Setting Maximum and Minimum Scaling Values For Color Conversion

Minimum and maximum scaling values are used by the IL during color conversion. By
default, the scale minimum and maximum are the same as the image minimum and
maximum values. The IL provides functions you can use to set and retrieve maximum
and minimum scaling values.

The initScaleMinMax() function initializes the scale minimum and maximum to the
image minimum and maximum values. If scale minimum and maximum have already
been set, they are unchanged, unless force is TRUE.

void initScaleMinMax(int force=0);

The function setScaleMinMax() sets the minimum and maximum scaling values to min
and max. The setScaleType() function sets the scale minimum and maximum to the
minimum and maximum values of the data type passed in type.

iIStatus setScaleMinMax(double min, double max);
iIStatus setScaleType(ifiDataType type = ifIDataType(0));

The getScaleMax() and getScaleMin() functions return the maximum and minimum
values used for scaling during color conversion.

double getScaleMax();
void getScaleMin();

31

Chapter 2: The ImageVision Library Foundation

The Cache

32

Data Compression

Often, images stored in a file on disk are compressed to minimize their size. Such images
need to be decompressed before they can be read. There are many different compression
algorithms. Each file format (for example, TIFF) determines which algorithms it
supports. See “Setting a File’s Compression” on page 74 for more information about
which compression algorithms the IL supports. From a programmer’s point of view, as
data is read or written in an IL program, its compression or decompression is handled
transparently.

The IL uses the term cache to mean a portion of memory that holds raw and processed
image data that can be accessed by a process. This is not the same as the hardware cache
that is accessed by the CPU. The IL cache holds image data in rectangular pieces called
pages. The cache does not necessarily hold all the pages for each image being processed,
but only those pages that have been referenced and have not been bumped out of the
cache to make room for more recently-referenced pages. Thus, only part of an image may
reside in the cache.

Figure 2-7 shows a cache that contains three images being used by an IL application. The
three rectangles on the left show a logical map of the pages for each image. The shaded
boxes indicate the pages of each image resident in the cache. For example, the raw image
contains four pages, only two of which are in the cache. The rectangle on the right shows
the cache as it might contain the pages from the three images.

The Cache

Raw Image Processed Image Processed Image Cache
1
1
i Ea—
2 [r]
Figure 2-7 Cache Containing Portions of Three Images

The IL keeps track of the pages in the cache, brings in a page when the program requests
data on a page not in the cache, and chooses a page to be overwritten when additional
room is needed in the cache.

Every IL class that derives from ilMemCachelmg uses the cache and the caching
mechanism defined by ilMemCachelmg. Both ilOplmg and ilFilelmg inherit directly
from ilMemCachelmg and use caching in these ways:

= |IL operators (those classes that derive from ilOpIlmg) use the cache to hold their
output.

e Classes that derive from ilFilelmg place raw, uncompressed data in the cache.
While the cache holds image data in pages, an IL program can access image data in
rectangular blocks of any size, without regard to page boundaries. These rectangular

blocks are referred to as tiles. As shown in Figure 2-8, tiles can cross page boundaries or
can be smaller than a page.

33

Chapter 2: The ImageVision Library Foundation

34

Image
Page
D‘(—— Tile
W Tile

Figure 2-8 Pages and Tiles of Image Data

When a program requests a data tile, the IL checks the cache. If the data corresponding
to the tile is not among the pages already in the cache, the IL brings additional pages into
the cache as necessary. If the cache is already full, it must discard some of the resident
pages in order to make room for the new pages. The page replacement algorithm is based
on a combination of the following factors:

= The number of times each page has been referenced; the more times a page is
referenced, the more likely it will remain in the cache.

= The priority of the references; higher priority requests tend to have their pages
retained longer.

= The relative time since each page was last referenced; the pages that have been in
the cache the longest without being referenced are discarded first.

The overall effect of the page replacement algorithm is that data toward the end of a
chain tends to get preferentially cached. Other data that is frequently referenced (for
instance, the input to an operator whose parameters are being repeatedly adjusted) also
tends to remain in the cache. To prevent data from being recomputed for successive tile
requests, the cache must be large enough so that pages just discarded aren’t reread. (See
the following two sections for more information on setting the size of the cache and
adjusting priorities.)

Since operators place processed image data in the cache, data is operated on as it is
brought into the cache. To maximize efficiency under this execution model, only the
pages needed to satisfy any given tile request are brought into the cache. For example, if
a getTile() request specifies only a single channel of an image that is stored in a separate
format, only the pages containing that channel are accessed. Thus, processing

The Cache

multispectral data (or any data stored in a separate format) is made as efficient as
possible.

Managing Cache

By default, the cache size is set to 30% of the total user memory on the host system. The
IL provides two functions to override the default size of the cache, ilSetMaxCacheSize()
and ilSetMaxCacheFraction(), which are defined as shown below:

void iISetMaxCacheSize(int maxBytes);
void iISetMaxCacheFraction(float fraction);

The first function sets the cache size to the number of bytes indicated. The second
function computes the size of the cache as the indicated fraction of the total user memory
on the host computer.

You can change these limits without modifying an IL- based program by using the
environmentvariables IL_CACHE_SIZE or IL_CACHE_FRACTION to set either the size
in bytes or the fraction of user memory, respectively. The IL_CACHE_SIZE value
overrides the value specified by IL_CACHE_FRACTION. Any value established with
these environment variables is overridden by calls to ilSetMaxCacheSize() or
ilSetMaxCacheFraction().

The current value of these cache size limits can be obtained with either
ilGetMaxCacheSize() or ilGetMaxCacheFraction(). The current actual size of the object
is cache can be retrieved with ilGetCurCacheSize(). These functions are defined as
follows:

int ilGetCurCacheSize();
int iIGetMaxCacheSize();
float ilGetMaxCacheFraction();

The IL maintains the global cache in a special memory pool that allows the cache
memory to be compacted to eliminate memory fragmentation problems. When
fragmentation exceeds a defined threshold, the pool is automatically compacted. You can
use the ilSetCompactFraction() function to set the fragmentation threshold to the
maximum fraction of the pool that is allowed to be wasted space before compaction
occurs. The current value of this threshold can be obtained with
ilGetCompactFraction(). The default compaction fraction value is .2 or 20%.

iISetCompactFraction(float maxWastedFraction);
float ilGetCompactFraction();

35

Chapter 2: The ImageVision Library Foundation

36

You can force compaction of the pool at any time by calling ilCompactCache(). If the pool
is more fragmented than the fraction passed to this routine, it is compacted. You can pass
zero to cause the pool to be unconditionally compacted.

ilCompactCache(float maxWastedFraction=0);

You can use the getCacheSize() function of ilMemCachelmg to query the cache size for
an individual object:

int getCacheSize();

You can use the flush() member function of iIMemCachelmg to flush the cache for an
individual object:

iIStatus flush(int discard=FALSE));

You can free the memory in the global cache to get it down to a desired maximum size
with ilFlushCache(). This call also compacts the cache memory.

int iIFlushCache(int maxsize);

Priority

The IL assigns priorities to pages in the cache and uses these priorities to make decisions
about which pages to discard. The priority associated with pages in cache ranges from
zero (lowest) to seven (highest); the higher the priority, the greater the likelihood the
page will remain resident.

The IL maintains a linked list of the pages in cache for each of priority levels 0 through
7. Figure 2-9 illustrates this concept. This simplified diagram shows a cache with three
pages at priority level seven, two pages at priority level three, and three pages at level
zero.

The Cache

Priority level Pointers to pages in cache

7 1 —> —

6

5

4

3 > >

2

1

0 > —» —»

Figure 2-9 Priority Lists in Cache

The initial (default) priority level of a page is zero. The following events can cause a
change to the priority level:

The priority of a page is incremented each time the page is accessed (for example by
a copyTile() or ilMemCachelmg::executeRequest()). This is essentially a reference
count; the more times a page is referenced, the higher its priority.

The priority of the page is incremented when you use the lockPage() method to lock
a page.

If you use the setPriority() method to set the priority of the image containing the
page, the IL increases the priority of the page by one plus the value specified in
setPriority() each time the page is referenced. The setPriority() definition is shown
below:

void setPriority(int priority);

The maximum number of pages at each priority level is one eighth of the total
number of pages in cache. If the number of pages at any one priority level exceeds
this limit, the priority level of the last page at that level is reduced by one. In other
words, the page is moved to the head of the list at the next lower priority level.

You can use the ilmonitor utility to monitor the activity of pages in cache. See the ilmonitor
reference page or “Image Tools” on page 264 for more information about ilmonitor.

37

Chapter 2: The ImageVision Library Foundation

38

Page Size

The page size for each operator is defined by its input images. For an ilFilelmg, the page
dimensions match those used to store the image on disk. Some images also let you set the
size of the pages in the cache, the data type, and the ordering of the cached data. The data
type and ordering affect how data is cached, so if you change these attributes, you might
also want to change the size of the cache. To set the data type or the ordering of data in
the cache, use the appropriate functions defined by illmage, setDataType() and
setOrder(). These functions are described in “Image Attributes” on page 20. “Managing
Cache” on page 35 describes how to set the size of the cache.

Only image operators allow you to set the page size of an image. If you change the page
size of an image, you should follow the suggestions in “Cache Priority” on page 248.

To set the size of the pages used in the cache for a particular image, use setPageSize(),
which is defined in the illmage class as follows:

iIStatus setPageSize(int nx, int ny, int nz, int nc)

{ return setPageSize(ifISize(nx, ny, nz, nc)); }
iIStatus setPageSize(const iflSize& pageSize);
iIStatus setPageSize(int nx, int ny);

The following functions are related:

iIStatus setPageSizeZ(int nz);
iIStatus setPageSizeC(int nc);

The arguments specify the x, y, z, and ¢ dimensions of the page in pixels. This function
calculates the number of bytes needed to store a page with the specified dimensions.

You can use any of the following functions to query an image about its page size,
depending on whether you want the answer in page dimensions, bytes, or pixels:

size_t getPageSize();

size_t getPageSize(int& nx, int& ny, int& nz, int& nc);

size_t getPageSize(int& nx, int& ny)

size_t getPageSize(iflSize& pageSize, iflOrientation workOrientation);
size_t getPageDimensions(iflSize& pageSize)

int getPageSizePix();

int getPageSizeVal();

getPageSize() returns the page size in bytes; this function is overloaded, as shown, to
take no arguments or to take arguments that return the size and
orientation of the page in pixels.

The Cache

getPageSizePix()
returns the total number of pixels represented by a page; this value is
found by multiplying the x, y, and z dimensions.

getPageSizeVal()
returns the total number of data elements represented by a page; this
function multiplies the page’s channel dimension by the value returned
from getPageSizePix().

Multi-threaded Paging Support

The illmage class provides functions to support paging in a multi-threaded environment.
These functions allow you to lock pages to ensure that those pages stay in memory until
you unlock them. The five virtual functions that control paging are:

virtual int hasPages();
virtual ilPage* lockPage(int x, inty, int z, int c,
iIStatus& status, int mode=ilLMread);
virtual void unlockPage(ilPage* page);
iIStatus lockPageSet(ilLockRequest* set,
int mode=ilLMread, int count=1);
void unlockPageSet(ilLockRequest* set, int count=1);

hasPages() returns TRUE for iIMemCachelmg and all of its descendants and FALSE
for all other classes in the IL. This function is useful for determining
whether the illmage in question supports paging.

lockPage() locks down the page located at x, Y, z, and ¢ in the cache; it returns a
pointer to that page, which is later passed to unlockPage() to free up that
page.

unlockPage() frees the page specified by the pointer in the argument list.

lockPageSet() processes a set of ilLockRequest structures and returns pointers to the
requested pages in the structures.

unlockPageSet()
releases the set of pages obtained by the lockPageSet() function.

These methods provide a mechanism to bypass the overhead of getTile() and setTile(),
but they require that you consider all of the attributes of the page: size, data type, and
order.

39

Chapter 2: The ImageVision Library Foundation

Accessing Image Data

40

All classes derived from illmage read, write, and copy image data using the same set of
data access functions defined by the ilimage base class. Each derived class implements
the functions as necessary to suit its particular requirements. A key feature of these
functions is that they allow you to access any arbitrary rectangle, or tile, of image data,
regardless of how that data is stored. This flexibility allows the IL is demand-driven
execution model to be implemented. As part of this model, calls to some of these
functions are generated automatically. However, you can also call these functions
explicitly as needed. The execution model is discussed in detail in “The IL Execution
Model” on page 50. The illmage class defines both three-dimensional and, for
convenience, two-dimensional data access functions, as shown in Table 2-2.

Table 2-2 Data Access Functions

Three-dimensional Two-dimensional Description

getTile3D() getTile() reads, writes, and copies a tile of data
setTile3D() setTile()

copyTile3D() or <<? copyTile() or <<
copyTileCfg()

getSubTile3D() getSubTile() reads and writes a subtile of data
setSubTile3D() setSubTile()

getPixel3D() getPixel() reads and writes a pixel
setPixel3D() setPixel()

fillTile3D() fillTile() fills a tile with a constant value

a. << is the left-shift or output operator; it is redefined in the C++ version of the IL.

The two-dimensional data access functions work through their three-dimensional
counterparts. Since the two-dimensional versions are slightly easier to comprehend, they
are discussed first, in the next section.

Two-dimensional Functions
The two-dimensional functions you are likely to use most frequently are getTile(),

setTile(), and copyTile(). As their names suggest, these functions read (get), write (set),
and copy atile of data. They assume the data buffer being read into or written from is the

Accessing Image Data

exact size necessary to hold the tile being read or written; if the buffer is larger use
getSubTile() or setSubTile().

Another pair of functions, getPixel() and setPixel(), allow you to read and write pixels
rather than tiles. The fillTile() function allows you to fill a two-dimensional tile of data
with a specified constant value.

getTile() and setTile()

The calling sequences for getTile() and setTile(), which take the same arguments, are
shown below:

iIStatus getTile(int x, int y, int nx, int ny,
void* data,const ilConfig* config=NULL);

iIStatus setTile(int x, int y, int nx, int ny, void* data,
const ilConfig* config=NULL);

getTile() retrieves a tile of data from a source image and places it in the location pointed
to by data. This source image is the one whose getTile() function is called. The tile that is
retrieved is specified by its origin in the source image (x,y) and its size (nx and ny), which
is measured in pixels. (Since the tile’s origin is specified in the image’s orientation, the
(x,y) point is specified relative to the image’s origin.) The optional config argument allows
you to change the configuration of the data (including the orientation) as it is read and
placed in the buffer. If this argument is not supplied, the configuration of the source
image is used. One element of an ilConfig object is an ordered list of the image’s channels.
See “copyTile()” on page 41 for an example of using this channel list to reorder channels
as data is retrieved.

The setTile() function writes a tile of data from the location pointed to by data to the
destination image. The location of the tile being written is specified by its origin in the
destination image (x,y) and its size (nx and ny). The optional config argument for setTile()
describes the configuration of the data being written; if necessary, the data is
automatically reconfigured to match the configuration of the destination image. If this
argument is not supplied, it is assumed that the data being written already has the same
configuration as the destination image.

copyTile()

The copyTile() function is an efficient way to copy a tile of data from one ilimage to
another:

iIStatus copyTile(int X, inty, int nx, int ny,

41

Chapter 2: The ImageVision Library Foundation

42

illmage* image, int ox, int oy,
int* chanList=NULL);

The tile is copied to the location (x, y). (nx, ny) specifies the size of the tile. (0x, oy) specifies
the location in the source image from which the data is copied. (If the tile is at the same
location in both the source and destination images, then x=o0x and y=oy.) If the source and
destination images have different orientations, the data is transposed automatically as
necessary.

No configuration argument is needed for copyTile() because the destination image’s
configuration is always used. Data is automatically converted as necessary to match the
destination image’s data type, order, and orientation. However, you can choose a subset
of the source image’s channels and/or reorder them using the optional chanList
argument. This argument is an int array that specifies a channel mapping between the
other image and the calling image. The number of entries in the array should always
match the number of channels in the calling image; a negative one (-1) in the array means
that no data will be written for that channel.

As an example, suppose you have an RGB image (with red, green, and blue channels)
that you want to display as an ABGR image (with alpha, blue, green, and red channels).
The code for accomplishing this conversion is:

/* allocate the data buffer */

int xsize = 20;

int ysize = 10;

char data[xsize*ysize*3];

/* specify the channel list and configuration */

static int chans[] = {3, 2, 1};
ilConfig config(iflUChar, iflinterleaved, 3, chans);

/* read the data from one image and write it to the other */
RGBImg.getTile(0, O, xsize, ysize, data);
ABGRImg.setTile(0, O, xsize, ysize, data, &config);

Note: You can do this conversion most simply with the color conversion operators that
derive from ilColorImg, but this example using getTile() and setTile() is presented for
discussion purposes.

First, a buffer, data, is allocated to hold the 20-pixel by 10-pixel three-channel tile as it is
copied. Next, the configuration that the data should be mapped into is specified. The
channel list, chans, maps the channels of the RGB data to the channels of the ABGR image,
as follows:

Accessing Image Data

= Channel 0 of the RGB data (the red channel) is mapped to channel 3 of the ABGR
image (also the red channel).

= Channel 1 of data (green) is mapped to channel 2 of the ABGR image (also green).
< Channel 2 of data (blue) is mapped to channel 1 of the ABGR image (blue).

= Nothing is available to map to channel 0 of the ABGR image (the alpha channel).
Finally, the data is read into the buffer from RGBImg and then it is written to ABGRImg
from the buffer.

The following code performs the same task using copyTile() instead:

int xsize = 20;
int ysize = 10;
static int chans[] ={-1, 2, 1, 0};

ABGRImg.copyTile(0, 0, xsize, ysize, RGBImg, 0, 0, chans);
In this case, an intermediate data buffer is not needed; the tile is copied directly from

RGBImg to ABGRImg. The channel list specifies how the channels of RGBImg are
mapped to those of ABGRImg, as shown in Table 2-3.

Table 2-3 Channel Mapping

Channel List RGBImg Channel ABGRImg Channel
-1 none 0 (alpha)

2 2 (blue) 1 (blue)

1 1 (green) 2 (green)

0 0 (red) 3 (red)

The interpretation of the channel list is the same if the direction of the copy is reversed.
If the same channel list were used with a call to copyTile() that specified 0 as the direction
argument, data would be copied from ABGRImg to RGBImg as follows:

= Channel 0 of ABGRImg is not copied at all.

= Channel 1 of ABGRImg is copied to channel 2 of RGBImg.
= Channel 2 of ABGRImg is copied to channel 1 of RGBImg.
= Channel 3 of ABGRImg is copied to channel 0 of RGBImg.

43

Chapter 2: The ImageVision Library Foundation

44

If you need to offset channels, you must use copyTileCfg() instead of copyTile().
copyTileCfg() is discussed in “Three-dimensional Functions” on page 46. To force a
two-dimensional interpretation of copyTileCfg(), specify zero values for the z, nz, and oz
parameters.

The Left-Shift or Output Operator, <<

The C++ language allows you to overload the definition of operators as long as the
arguments of the constructors are different. The IL overloads the operator << so that it
requires a reference to an illmage as an argument and so that it becomes a shorthand for
copyTile(). Here is how you invoke this operator (assume the two illmages srcimage and
destimage are already created):

destimage<<srclmage;

This operator copies srcimage’s data to destimage, aligning the data with destimage‘s
origin. If the two images are different sizes, the size of destimage is equal to the smaller of
destImage or srclmage.

The << operator works for two- and three-dimensional images.

getSubTile() and setSubTile()

One limitation of getTile() and setTile() is that the data buffer must be the exact size
needed to hold the data being read or written. If the buffer you are reading data into or
writing it from is larger than the tiles being read or written, use getSubTile() or
setSubTile() to specify a subtile of the larger buffer. (Be sure the buffer is at least as large
as the tile being read or written and that the tile is completely contained in the buffer.)
The calling sequences for these functions are as follows:

iIStatus getSubTile(int x, int y, int nx, int ny, void* data,
int dx, int dy, int dnx, int dny,
const ilConfig* config=NULL);

iIStatus setSubTile(int x, int y, int nx, int ny, void* data,
int dx, int dy, int dnx, int dny,
const ilConfig* config=NULL);

The X, y, nx, ny, data, and config parameters have the same meanings as they have in
getTile() and setTile(). The remaining parameters specify the origin of the data buffer
(dx,dy) relative to the image and the size of the buffer (dnx and dny), as shown in
Figure 2-10. (This figure assumes that the image’s orientation defines the origin as the
lower left corner.)

Accessing Image Data

Lﬁ Image

< dnx »
T 4“— NX—p —— Data Buffer
dny ny Tile
l (x.y)
(dx,dy)

(0,0)

Figure 2-10 Parameters for getSubTile() and setSubTile()

With either function, if the data buffer is the same size as the source tile, then x=dx, y=dy,
nx=dnx, and ny=dny.

getPixel() and setPixel()

If you would rather read or write pixels than tiles, use getPixel() or setPixel():

iIStatus getPixel(int x, int y, iIPixel& pix);
iIStatus setPixel(int x, int y, ilPixel& pix);

These functions read or write the pixel at location (x,y) in the calling image. When a pixel
of data is read, it is placed in the location referenced by pix. The pix argument for
setPixel() references the data that is written into the calling image at (x,y).

fillTile()

As a special case of writing a tile of data, you can set an arbitrary rectangular area of an
image to a constant value with fill Tile():

iIStatus fillTile(int x, int y, int nx, int ny,
const void* data, const ilConfig* config=NULL,
const iflTile3Dint* fillMask=NULL);

The rectangular area to be filled is specified by its origin (x,y) and size (nx and ny),
measured in pixels. The data argument specifies the value used to fill the tile; it is
typically an ifIPixel object (for C++ programmers). For example, to fill a tile with white,
use an iflPixel with these values: 255, 255, 255. The optional config argument describes the

45

Chapter 2: The ImageVision Library Foundation

46

configuration of data. If it is omitted, data is assumed to have the same configuration as
the image being filled.

The last argument, fillMask, allows you to define a mask that prevents a portion of the tile
from being filled. (See “Auxiliary Classes” on page 342 for a detailed description of the
ifITile class.) If it is not NULL, only the portion outside of the fillMask is filled.

Three-dimensional Functions

The three-dimensional data access functions are the same as their two-dimensional
counterparts, except that they take extra arguments as necessary to handle an image’s z
dimension. For example, getTile3D(), setTile3D(), and copyTile3D() take arguments to
specify the origin and size in the z dimension:

iIStatus getTile3D(int x, int y, int z, int nx, int ny,
int nz, void* data, const ilConfig* config=NULL);

iIStatus setTile3D(int x, inty, int z, int nx, int ny,
int nz, void* data, const ilConfig* config=NULL);

iIStatus copyTile3D(int x, inty, int z,
int nx, int ny, int nz,
illmage* image, int ox, int oy, int oz,
int* chanList=NULL);

The copyTileCfg() function works similarly to the copyTile3D() function, except that it
allows the channels of the copied data to be offset as well as reordered when it is copied:

virtual ilStatus copyTileCfg(int x, inty, int z,
int nx, int ny, int nz,
illmage* image, int ox, int oy, int oz,
const ilConfig* config=NULL);

Note: This function takes an ilConfig* argument rather than an int*. Only fields in the
ilConfig that refer to the number of channels, channel list, and channel offset are used
during the copy; the other fields are ignored.

The getSubTile3D() and setSubTile3D() functions require several additional arguments
to specify the origin and size of the z dimension in both the source and the destination:

iIStatus getSubTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, int dx, int dy, int dz,
int dnx, int dny, int dnz,

Accessing Image Data

const ilConfig* config=NULL) = 0;

iIStatus setSubTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, int dx, int dy, int dz,
int dnx, int dny, int dnz,
const ilConfig* config=NULL) = 0;

The fillTile3D() function takes arguments that are similar to the two-dimensional
versions:

virtual ilStatus fillTile3D(int x, int y, int z,
int nx, int ny, int nz,
void* data, const ilConfig* config=NULL,
const iflTile* fillMask=NULL);

Data Access Support Functions

This section discusses a few functions designed to perform tasks related to accessing
data. getStrides() helps you step through a buffer of image data. clipTile() clips a tile to
the dimensions of the image.

Using getStrides()

In some situations, you might want to step through a buffer of image data pixel by pixel,
rather than simply reading or writing a single tile of data. Or you might want to move
some specific number of pixels in a particular direction. To do this, you need to know
where one pixel’s data ends and the next one’s begins. This information, called the stride,
depends on the image’s data type, pixel ordering, and the size of the data buffer.
getStrides() returns data strides by reference:

void getStrides(int& xs, int& ys, int& zs, int& cs,
int nx=0, int ny=0, int nz=0, int nc=0,
iflOrder ord=iflOrder(0));

You specify the size of the data buffer, nx, ny and nz, and the pixel ordering, ord. The
default value, iflOrder(0), means that the calling image’s ordering should be used. The
remaining values are returned by reference:

= X8, the x stride, steps to the next pixel in the same row.
= ys, the y stride, steps to the next pixel in the same column.

= zs,the z stride, steps to the next pixel along the z axis at the same xy location.

47

Chapter 2: The ImageVision Library Foundation

48

= s, the channel stride, steps to the next channel of the same pixel.

= ncis the number of channels in the data.

clipTile()

Another useful function, clipTile(), clips a specified tile to an image’s boundaries:

iIStatus clipTile(int& x, int& vy, int& z,
int& nx, int& ny, int& nz, int includeBorder=FALSE);

The arguments specify, by reference, the origin (x, y, z) and size (nx, ny, nz) of the tile. The
includeBorder argument specifies whether the page borders of the image should be used
to determine clipping. If includeBorder is TRUE, the clipped tile includes a border at the
edge of the image whose size is determined by the IL (or by setPageBorder() if you
choose to use this function). If includeBorder is FALSE (which it is by default), the tile is
clipped to the actual image edge, not including any borders. If any part of the tile lies
outside the image’s boundaries, the corresponding argument is adjusted as necessary to
clip the tile. You can then use the parameters in a call to getTile() or setTile(), for
example. If the tile is clipped, clipTile() returns iIDATACLIPPED; otherwise, it returns
iIOKAY.

Orientation Support

Several functions are defined to help you translate image data between different
orientations:

iflOrientation mapFlipTrans(iflOrientation fromSpace,
iflFlip& flip, int& transXyY,
iflOrientation workSpace=iflOrientation(0));

void mapTile(iflOrientation fromSpace, iflTile& tile,
iflFlip& flip, int& transXY,
iflOrientation workSpace=iflOrientation(0));

void mapTile(iflOrientation fromSpace, iflTile& tile,
iflOrientation workSpace=iflOrientation(0));

void mapXY();

void mapXY (iflOrientation fromSpace, int& X, int& vy,
iflOrientation workSpace=iflOrientation(0));

void mapXY (iflOrientation fromSpace, float& x, float& y,
iflOrientation workSpace=iflOrientation(0));

void mapXYSign(iflOrientation fromSpace, float& x, float& v,

Accessing Image Data

iflOrientation workSpace=iflOrientation(0));

iflOrientation mapSpace(int flipX, int flipY,
int transXY=FALSE);

void getSize(iflSize &sz, iflOrientation workSpace);

int isMirrorOrientation(iflOrientation otherSpace,
iflOrientation workSpace=iflOrientation(0));

The mapFlipTrans() function determines the flips and/or transpositions necessary to
map coordinates from the fromSpace orientation to workSpace (and returns them by
reference). The mapTile() and mapXY() functions map the specified tile or (x,y) point
from fromSpace to workSpace. The mapXYSign() function reverses the sign of the (x,y)
values if workSpace is flipped with respect to fromSpace; it also swaps the values (that is,
exchanges x for y and vice versa) if the orientations are transposed. The mapSpace()
function returns the orientation that results from performing the specified flips,
transpositions, or both. The other two functions return information related to an image’s
orientation. The getSize() function maps the image’s size to the workSpace orientation
and returns it by reference. The isMirrorOrientation() function returns whether
otherSpace is a mirror image of workSpace.

For more information about these functions, see the illmage reference page.

Geometric Mapping Support

Four functions are defined in illmage to support image processing operators that
perform geometric transformations:

void mapToSource(ifiXYfloat& src, const iflXYfloat& self);
void mapFromSource(iflXYfloat& self, const ifl XYfloat& src);
virtual void evalXY (ifIXYfloat& xy, const iflXYfloat& uv);
virtual void evalUV(ifIXYfloat& uv, const if XYfloat& xy);

mapToSource() transforms the coordinates in self into the source image’s orientation and
places them in src. mapFromSource() transforms the coordinates in src into the calling
image’s orientation and places them in self. evalXY() maps from the calling image’s
orientation to the immediate input image’s orientation. evalUV() maps from the
immediate input image’s orientation to the calling image’s orientation.

49

Chapter 2: The ImageVision Library Foundation

The IL Execution Model

50

This section describes the IL execution model and explains, in general, how it works in
an IL program. Features of the IL execution model are:

= on-demand processing of image data using chains of IL operators
= multi-threading to allow some portions of an IL program to execute in parallel

= the use of hardware acceleration whenever possible to improve the performance of
operators in an IL chain

The IL incorporates these features into your program automatically. You need to
understand them, however, to tune your program for optimum performance.

On-demand Processing

In the IL’s execution model, image data is processed only on demand. This technique
minimizes both the need to store intermediate results and the frequency of disk input
and output operations so that overall program performance is optimized. IL programs
that apply multiple successive image processing operators or that deal with large images
especially benefit from this execution model.

Note: An operator is a class derived from ilOplmg that applies its image processing
algorithm to the data encapsulated in an illmage object. See Chapter 4, “Operating on an
Image,” for more information.

An IL program implements the demand-driven execution model in two stages:

1. Itcreates a chain of image processing operators by creating the desired operator
classes.

2. It pulls data through the chain as it is needed. The impetus for pulling data through
the processor chain is the need for the image data at the end of the chain, either for
display or storage on disk. The data is pulled by processing one to several pages at a
time.

In Example 1-1, a relatively simple image chain is constructed. Figure 2-11 shows this
chain with arrows indicating the path that image data follows as it is read from disk,
processed (sharpened and rotated), displayed, and written to disk.

The IL Execution Model

(iIFilelImg }P@Sharpenlm@—b@oaoomlmg

disk |« iITIFFImg

monitor

Figure 2-11 Image Chain for the Sample Program

An image processing library that uses the conventional execution model shuffles data in
and out of memory at each stage of the chain. Such a program:

Reads the initial image data from disk into a buffer.
Sharpens it.
Writes the sharpened data into a different buffer.

1.

2

3

4. Rotates the sharpened data.

5. Writes the final, processed data into another buffer.
6

Writes the final data into the framebuffer and back to disk.

If the image is too large to be cached in memory, a conventional library will write at least
some of the processed data to disk for each intermediate stage. This data then needs to
be read back in from disk for each successive stage.

In contrast, the IL pulls one or several pages of image data at a time all the way through
the chain. After a page is completely processed—in this example, read from disk,
sharpened, rotated, displayed, and written to a file on disk—the next page is pulled
through the chain. When multi-threading is enabled, several pages can be in process
through the chain at any one time. This execution model eliminates the need to save
intermediate processing results for all images, regardless of their size. The IL's model
also minimizes startup time for IL programs, particularly those that allow the user to
roam around a large image. The data for the entire image is not processed before startup;
it is processed only as needed, which, in this case, is as the user roams.

51

Chapter 2: The ImageVision Library Foundation

52

The arrows in Figure 2-12 show how data is pulled through the image chain in
Example 1-1.

copyTile() iiDisplay

]

monitor

redraw()
getTile() getTile()

iIFilelmg El iISharpenimg iIRotZoomimg

iIMemCachelmg::executeRequest()

getTile(copyTile()

ilFilelmg

setPage()

Figure 2-12 Image Chain Showing Demand-driven Execution Model

In this example, the redraw() and copyTile() function calls issued by the program
instigate the processing of image data. They cause successive tiles of image data to be
pulled through the chain and sent to the display or back to the disk. As each tile is
written, another tile is requested from the previous stage of the chain with a getTile(),
copyTile(), or ilMemCachelmg::executeRequest() calls. If the tile requested does not
already reside in the cache, the page containing that tile is pulled through the chain—
read from disk, sharpened, and rotated. The ilDisplay class manages the transfer of data
from the end of the chain to the framebuffer.

In Example 1-1 in Chapter 1, “Writing an ImageVision Library Program,” the instigating
functions—ilDisplay’s redraw() and iITIFFImg’s copyTile()—are actually called in the
program. The other function calls are generated automatically as the program executes.
Thus, only data that is actually needed is pulled through the chain.

Example 1-1 displays and writes to disk the entire processed image one tile at a time.
Other image processing programs might not even process an entire image. For example,
suppose that instead of simply displaying the entire final image, a program allows the
user to roam around the image, viewing only a fraction of it at a time. This kind of user
interface is typically provided with programs that deal with huge images. Since IL
programs process data only as it is needed, only those portions of the image that the user
demands to see are processed. It is often the case that the user will never view some

The IL Execution Model

portions of a large image; those portions are not read from disk or processed. Thus, the
IL helps minimize your program’s overall processing requirements.

Multi-threading

The multi-threading part of the IL’s execution model optimizes overall program
performance by allowing portions of an IL program to execute in parallel. For example,
when a tile covering several pages is copied from one operator to the next in a chain and
the tiles are not resident in cache, they must be fetched from disk. The IL implements the
parallel fetching of pages by queueing a request for each page and creating a process
thread to service each request.

Figure 2-13 shows how long it takes to read in and perform computations on four pages
in a non-multi-threaded application, a multi-threaded application running on a
single-processor machine, and a multi-threaded application running on a
multiple-processor machine. As you can see, the multi-threaded applications complete
this transaction more quickly than the non-multi-threaded application.

Non-threaded - - - - |

Single-processor thl
th2 ;

thl
2 - ——]

Multi-processor thl
th2

th3
th4

I nput/Output performed

Computations performed
Thread = th

Figure 2-13 Performance Comparison of Non-threaded, Single-processor, and Multi-processor
Applications

IL supports parallel execution on single- and multiple-CPU machines by creating process
threads that execute portions of an IL program simultaneously. This multi-threading
facility is implemented transparently and automatically: there are no special function
calls to make or header files to include. When you derive new classes from the existing
classes in the library, however, you must ensure that the code you produce is reentrant,

53

Chapter 2: The ImageVision Library Foundation

54

that is, able to be called from several process threads running concurrently. Chapter 7,
“Optimizing Your Application,” explains how to do this.

When debugging your application or linking with other libraries that perform
multi-threading, you may want to turn off IL’'s multi-threading facility. The preferred
way to do this is to set the environment variables IL_COMPUTE_THREADS and
IL_SPARE_THREADS to zero by using the convenience function ilMPSetMaxProcs(), as
follows.

iIMPSetMaxProcs(0,0);

This global function does not belong to any class.

How Multi-threading Works

When the IL processes a getTile() or copyTile() call, it determines the pages needed for
the requested tile and dispatches a request for each page. It then maintains these requests
in a queue and creates process threads to service the queue. Figure 2-14 illustrates the
concept of multi-threading as well as the on-demand processing described in the
preceding section.

The IL Execution Model

Request for a tile that spans two
pages is pulled through the image
chain

getTile()

processed

processed
tile

page

getTile()

Retrieved tile is sent
to the buffer

request
queue

requests |

getTile()

processed
tile

Figure 2-14 Operators, Requests for Pages, and Threads

Using Graphics Hardware for Acceleration

The hardware acceleration facility built into the IL allows your application to
automatically take advantage of specialized graphics hardware whenever possible in
order to make certain IL operations more efficient. IL does this by performing one or
more operations at the end of a chain in the graphics hardware instead of the CPU. On
some architectures, it does this by reserving part of the framebuffer as a pixel buffer for
IL. Computations are then performed on the data stored in the framebuffer and
displayed more quickly than if the data were being operated on in the CPU and brought
in from main memory. If the IL needs a tile that is not in the reserved part of the
framebuffer, the tile is brought into the framebuffer from main memory. This model is
implemented transparently and automatically; there are no header files to include or

function calls to make.

55

Chapter 2: The ImageVision Library Foundation

Disabling Hardware Acceleration

Sometimes you need to disable the hardware acceleration facility, for example:

= when you are debugging your program. You cannot debug with this facility
enabled if the operator you need to test is a CPU operation that is accelerated in the
hardware.

= when you need more accurate results. Computing some operations in the CPU (for
example, those that require a resampling method) gives more accurate results at the
expense of speed.

You can enable and disable the hardware acceleration facility:

= globally for all features of the IL

= for specific objects of an operator class

= for all objects of a specified class

“Using Hardware Acceleration” gives detailed information about how to enable and
disable hardware acceleration.

Page Borders

Some image processing operations, for example, those that perform image warps,
require the data in the pages of the cache to overlap a bit. A set of page borders determines
how much the pages in the cache can overlap for these operations. The page borders are
set automatically for you by IL and should rarely be changed. You can use the
setPageBorder() and getPageBorder() functions, however, to query and set page
borders.

Working with Image Chains

Your IL programs always contain image chains. An image chain is a string of operators
that define the operations you want to perform on your images and the order in which
these operations are performed. You can manipulate these chains after they are created.

56

Working with Image Chains

Dynamically Reconfiguring a Chain

Some IL programs need to construct new image chains dynamically as the program

executes. For example, imagine a program with a graphical user interface that allows its

user to specify input images and select operations to be performed on them. Once

processing has been performed, the user can choose to operate further or to start again
with new images and operators. Such a program is most easily implemented by taking

advantage of the IL’s facility for reconfiguring an image chain.

Each image in a chain maintains two lists, one of the images directly preceding it in the
chain (its inputs or parents) and one of the images succeeding it in the chain (its children).
In the chain shown in Figure 2-15, for example, the ilRotZoomImg object has one parent,

the ilSharpenlimg object, and two children, the iITIFFImg and ilDisplay objects.

iIRotZoomimg iIDisplay

ilFilelmg iISharpenimg

A 4

K_\iITIF Fimg)

The first item on a list is at index 0.

A

monitor

Figure 2-15 An Image Chain

Replacing a Chained Operator

Let’s say you want to modify Example 1-1 so that it can dynamically add a threshold

operator in place of the ilSharpenlmg operator. The ilThreshimg operator examines each
pixel in an image and potentially sets each pixel to a new value, depending on whether
its value is higher or lower than a specified threshold value. If a pixel is higher than or

equal to the threshold, it is set to the image’s maximum pixel value; if the pixel is lower,

it is set to the minimum value.

Here is what the code might look like to replace the ilSharpenimg operator with an
ilThreshimg operator (this code can be inserted just before step 3 in Example 1-1 in

Chapter 1, “Writing an ImageVision Library Program”):

57

Chapter 2: The ImageVision Library Foundation

58

/Il set the threshold value to 127.5
float threshValue = 127.5;
iflPixel threshPixel(iflFloat, 1, &threshValue);

/I create the ilIThreshimg operator
iIThreshimg myThresher(inimg, threshPixel);

I replace ilSharpenimg with ilThreshimg
rotatedimg.setinput(&myThresher);

This example is simplified, but it demonstrates the use of setInput() to reconfigure a
chain. A more realistic program would let the user specify the threshold value to be used
and also might let the user specify any of a number of different operators to be replaced
or added to the chain.

In this code fragment, the threshold value is explicitly set to 127.5. An iflPixel object is
created with this value. Next, the ilThreshimg operator is created and given the input
image inlmg (which is the ilFilelmg created in the sample program to read an image file
from disk) and the iflPixel.

The setlnput() function removes the ilSharpenimg operator from the chain by replacing
it with the new ilThreshimg operator. This function, which is declared in illmage, takes
a pointer to the new, already created input illmage as its first argument. In this example,
the ilThreshimg operator is now the input image for the ilRotZoomImg object,
rotatedimg. The old input, which in Example 1-1 was an ilSharpenlimg object, is not
deleted by IL, so you might want to delete it if it is not needed anymore. The attributes
of the new input image are propagated down the operator chain as described in
“Propagating Image Attributes” on page 59.

A second, optional argument for setinput() is of type int. It specifies the index position
where the input should be added. By default, this argument is 0, indicating the first
position on the list. Before the setlnput() call, the ilSharpenimg operator occupies
position 0 on ilRotZoomImg’s list of inputs. Afterward, the ilThreshimg operator is at
position 0, having replaced the ilSharpenimg operator.

Querying Chained Images

Although you probably will not frequently need to query a chained image about the
operators it is chained to, the ilimage base class defines functions for you to do so. The
function getNumInputs() returns an int, indicating the number of inputs or links
backward; getNumChildren() (inherited from ilLink) returns the number of children
which are forward links.

Working with Image Chains

You can also obtain a pointer to the preceding or succeeding linked images using the
following functions:

illmage* mylnput;

illmage* myChild,;

mylnput = thelmg.getinput(0);

myChild = thelmg.getChild(0);

As its name implies, getInput() returns a pointer to the ilimage preceding it in the chain;
getChild() (inherited from ilLink) returns a pointer to the ilimage succeeding it. Since
there can be multiple inputs and children, both of these functions allow you to specify
the indexed position of the image you wish to retrieve. By default, this argument is 0,
indicating the first position on the indexed list.

Adding and Removing Inputs

Some operator images can have a variable number of inputs. For such operators, you
may need to dynamically change the number of inputs as a chain is reconfigured. The
following two functions that are provided for this purpose:

iIStatus addInput(illmage* img);
iIStatus removelnput(int index = 0);

The addInput() function adds the ililmage supplied as an argument to the end of its
current list of inputs. As its name suggests, removelnput() removes the ililmage located
at the specified index from its list of inputs. An illmage object removed from the chain is
not deleted, so you might want to delete it if it will not be used anymore.

The setNumInputs() function sets the maximum number of inputs to the int passed in
as its argument. Since this function is declared protected, you can use it only when you
are deriving a class from illmage.

Propagating Image Attributes

One important property of image chains is that they propagate attribute values to
succeeding stages of the chain. In other words, each stage of the chain receives some or
all of the attributes of the preceding stage. The attributes that are propagated—image
size, data type, order, orientation, color model, lookup table, page size, minimum and
maximum pixel values, and the fill value—are defined in illmage and discussed in
“Image Attributes” on page 20.

59

Chapter 2: The ImageVision Library Foundation

60

Changing Image Attributes

Image attribute values can change, either from being set explicitly or as a result of
performing an operation. You can override a propagated value by explicitly setting it (if
the operator allows you to do so), in which case the IL discards any data residing in the
cache.

Operators can restrict the values for certain attributes. A supported value will not be
overridden by an unsupported propagated one. In addition, chains can be constructed
so that one link has more than one preceding link (for example, ilBlendimg blends two
images). In these cases, the most appropriate value is propagated; usually, this is the
largest (for the size attribute, for example) or the most general value.

Typically, if you have explicitly set an attribute value using one of the appropriate
functions defined in ilimage, for example, setDataType() or setPageSize(), you do not
want it overridden automatically by a propagated value. IL makes this assumption so it
keeps track of any attributes that you have set. These attributes are not allowed to change
through propagation down the chain unless you indicate they should be. To allow an
attribute to change even though you have set it, call clearSet() (inherited from ilLink). In
the following line of code, the call allows the data type to be reset:

mylmg.clearSet(illPdataType);

The argument to clearSet() can be any logical combination of the enumerated type
illmgParam, which is defined in the header file il/ilimage.h and discussed in more detail
in Chapter 6, “Extending ImageVision Library.” For more information about how the
propagation mechanism is implemented, see “Deriving From illmage” on page 202.

Automatic Color Conversion of Inputs

If the input(s) to an operator does not match its color model (either as inherited from
multiple inputs or as set by the user), an ilColorImg object is inserted automatically
between the operator and its input(s). The ilColorimg object converts any mismatched
input to match the operator’s color model.

In some cases, this automatic conversion is not desired, especially for operators such as
ilColorlmg and ilFalseColorimg that perform color conversions as part of their
operations. These operators can prevent the insertion of an ilColorimg by setting the
member variable allowDiffCM to TRUE, either in their constructor or when they initialize
their state. When allowDiffCM is TRUE, the operator must be prepared to handle inputs
of any color model for proper operation to be guaranteed. The default value is FALSE.

Obiject Properties

Object Properties

The IL allows you to assign and query property values and associated property names to
objects derived from ilLink. This functionality allows you to tag an object with arbitrary
attributes. A property value can be an integer, a floating point number, or a pointer. The
property name is a character string.

The IL provides three scope levels for property values:
= illnstanceScope — defines the scope as a specified object
= ilClassScope — defines the scope as an object class

= ilGlobalScope — defines a global scope

IL provides several redundant functions to set and query property values. In each of
these functions, a scope argument specifies the search range for property lookup. This
argument can be any logically OR’ed combination of ilinstanceScope, ilClassScope, and
ilGlobalScope. If ilinstanceScope is specified, the object’s property set is searched. If
ilClassScope is specified, the object’s class property set is searched. Finally, if
ilGlobalScope is specified, the global property set is searched. If more than one of the
search scopes is specified, each of the specified scopes is searched in this order: the object
instance scope, then the object class scope, then the global scope. The default value for
scope is illnstanceScope.

The functions provided for a property value refer to a property associated with a
character string name or, alternatively, with an ilName pointer that is used as a search
key. It is more efficient to look up a property using an ilName pointer than a string
because hashing is avoided. See the ilGlobalName reference page to find out how to
obtain an ilName pointer from a string.

The getIntProp() functions return the integer property value associated with either the
string, s, or an ilName pointer. These functions return 0 if no such property has been
defined.

int getintProp(Char *s, ilScope scope_illnstanceScope);
int getintProp(ilName* n, ilScope scope_ilinstanceScope);

The getFloatProp() functions return the float property value associated with the string,
s, or an ilName pointer. These functions return 0 if no such property has been defined.

float getFloatProp(char* s, iIScope scope=illnstanceScope);
float getFloatProp(ilName* n, iIScope scope=illnstanceScope);

61

Chapter 2: The ImageVision Library Foundation

62

The getPtrProp() functions return the pointer property value associated with the string,
s, or the iIName. These functions return NULL if no such property has been defined.

void* getPtrProp(char* s, ilIScope scope=ilinstanceScope);
void* getPtrProp(ilName* n, ilIScope scope=illnstanceScope);

The getProp() functions return the property associated with the string, s, or an ilName
pointer. These functions return NULL if no such property has been defined.

ilProperty* getProp(char* s, iIScope scope=illnstanceScope);
ilProperty* getProp(ilName* n,
iIScope scope=illnstanceScope);

You can use one of the following setProp() functions to associate a property value with
the string, s, or an iIName pointer. These functions return ilOKAY if scope is one of the
following: ilinstanceScope, ilClassScope, or ilGlobalScope. Otherwise, it returns
ilUNSUPPORTED. The object is not marked altered as a result of setProp().

iIStatus setProp(char* s, int i,

iIScope scope=illnstanceScope);
iIStatus setProp(iIName* n, int i,

iIScope scope=illnstanceScope);
iIStatus setProp(char* s, float f,

iIScope scope=illnstanceScope);
iIStatus setProp(ilName* n, float f,

iIScope scope=illnstanceScope);
iIStatus setProp(char* s, void* p,

iIScope scope=ilinstanceScope;
iIStatus setProp(iIName* n, void* p,

iIScope scope=illnstanceScope);
iIStatus setProp(char* s, const ilPropValue& val,

iIScope scope=illnstanceScope);
iIStatus setProp(iIName* n, const ilPropValue& val,

iIScope scope=illnstanceScope);

The removeProp() functions remove the property associated with the string, s, or the
ilName pointer n from the specified property set.The object is not marked altered as a
result of removeProp().

iIStatus removeProp(char* s, iIScope scope=illnstanceScope);
iIStatus removeProp(ilName* n,
iIScope scope=illnstanceScope);

Obiject Properties

The getClassPropSet() function returns a pointer to the property set associated with the
object’s class.

ilPropSet* getClassPropSet();

The getPropSet() function returns a pointer to the object’s property set.
ilPropSet* getPropSet();

63

Chapter 3

Accessing External Image Data

This chapter describes how to use IL to read and write image data. IL uses the Image
Format Library (IFL) to accomplish all image input and output (1/0). IFL provides an
abstraction of low level image 170 that lets users write applications without dealing with
IL or the details of the image file formats that are being used. It is not even necessary to
know what image file format is being used (though IFL does provide facilities for
determining the format of an image and accessing special features which are not part of
IFL’s image 1/0 abstraction).

IL provides access to images using the ilFilelmg class. Its objects can be part of image
chains. This class caches image data in order to reduce the amount of image 1/0. IL often
provides more flexible access to image data than that provided by IFL since IFL’s focus
is on asimple 170 abstraction. For example, some image formats do not support paging.
When using IFL to access an image stored in such a format, an application is forced to
read the entire image and then extract the portions of the image of interest. IL can provide
this functionality much more simply using its extensive image access facilities.

The rest of this chapter describes how to use IL to access image data. While reference is
often made to IFL, the focus is on using the ilFilelmg class to read and write image data.
To learn more about using IFL directly to access image data, see the IFL(3) manual page.
This chapter contains the following major sections:

= “Supported IFL Image File Formats” on page 66 describes the image file formats
supported by IFL.

e “Using IL to Access an Image” on page 71 tells you how to access data in the file
formats.

= “Importing and Exporting Image Data” on page 77 discusses how to import and
export image data between IL and other libraries or devices.

65

Chapter 3: Accessing External Image Data

Supported IFL Image File Formats

66

IL provides access to images stored in a variety of formats using IFL. Table 1-1 shows all
of the ifl-supported image file formats and their customary suffixes. The sources to many
of the file format modules supported by IFL are located in /usr/share/src/ifl/.

Any image file format that is accessible using IFL is also accessible using IL.

IFL can be extended to accommodate new image file formats. For more information
about adding a new image file format, see Appendix D, “Implementing Your Own Image
File Format.”

The following sections describe the file formats currently supported by the Image Format
Library, and, by extension, the ImageVision Library.

FIT

The FIT file format is a simple, tiled format developed along with IFL. You might use FIT
as a starting point for defining your own file format.

FIT supports the full flexibility of the IFL model: all data types, orders, and page sizes. It
uses a default page size of 128 x 128. FIT allows you to reserve space to hold user
extensions to the file format. FIT is the only format that supports paging in the channel
dimension. This functionality is useful for multispectral imagery.

GIF

The GIF file format is used to read image files stored in the CompusServe Graphics Image
File (GIF) format. GIF does not support paging. It stores images in
palette-color-compressed using the Lempel-Ziv & Welch algorithm®. GIF images are
limited to using unsigned character data and an upper-left coordinate system. To obtain
more information about GIF specifications, contact CompusServe, Incorporated,
Columbus, Ohio.

1 The compression algorithm has become the focus of patent infringement litigation which has inspired
the creation of a new image format to replace GIF. This new format is the Portable Network Graphics
(PNG) image format. It is also supported by IFL.

Supported IFL Image File Formats

JFIF (JPEG)

JFIF implements the JPEG file format using the JPEG library, libjpeg, made available by
the Independent JPEG Group. In addition to providing the IFL image 170 abstraction,
the entire JPEG library is provided as is for use by software that has been developed for
use with libjpeg.

Version 6, 2-Aug-95 of the Independent JPEG Group’s compression library, libjpeg, and
its standard headers, jconfig.h, jpeglib.h, jmorecfg.h, and jerror.h, are installed as part of IFL.

iITCL

The iITCL file format allows you to save an operator chain in a file using a TCL-based
scripting language. That file can then be treated like any other image file.

Kodak Photo CD Image Pac

The PCD file format supports image files produced by the Kodak Photo CD™ system.
Photo CD establishes a system for storing high-resolution, digital photographic images
on compact discs. The Kodak Photo CD system

= scans photographic film

= processes the scanned images (color correction, color encoding, hierarchical
decomposition, and compression)

= records these images as a series of digitally-coded images on a Kodak Photo CD
disc

In addition to digital images, Kodak Photo CD can produce digital audio data and

playback control data. However, IFL only handles the image data files from a Photo CD
disc.

Photo CD Images

A photographic image on a Kodak Photo CD disc is stored as a hierarchy of images, each
of which represents the original image at a different resolution. This image hierarchy is

67

Chapter 3: Accessing External Image Data

68

stored in a structure called an Image Pac. You can get a maximum of seven different
resolutions of an image from an image pack. These resolutions are:

name resolution image index
Base/64 (96x64) 0
Base/16 (192x128) 1
Base/4 (384x256) 2
Base (768x512) 3
4Base (1536x1024) 4
16Base (3072x2048) 5
64Base (6144x4096) 6

An Image Pac file always contains the first four resolutions listed above. The resolutions,
4Base and higher, can be omitted when the Photo CD disc is created. Resolutions Base/64
through Base are stored directly and can be accessed quickly. Resolutions 4Base and
higher, if they are available in the image file, are stored in a compressed form.

You can use the ilFilelmg member function, getNumImgs(), to determine the number of
images in your Photo CD file. You can use the setCurrentlmg() and getCurrentimg()
functions to select and query the current resolution. If you use setCurrentimg() to select
an image resolution that does not exist in the image pack, the function returns the ilStatus
value iflBADPARAMS but does not set the image’s status. The default image resolution
is Base/4.

The page size of a Photo CD Image is the full x dimension of the image by 16 in the y
dimension (16 rows in Kodak Photo CD jargon).

Note: The supplied Photo CD format is not capable of writing Photo CD image files.

Photo CD Color Model

The color model of a Kodak Photo CD image is YCC. Photo YCC is a
luminance/chrominance data metric that is based on video primaries. It is designed to
allow simple video display without compromising the colors available in photographic
media. You can convert from the YCC color model to another color model using IL. You
cannot, however, use IFL to do the reverse: conversion from another color model to YCC.

Supported IFL Image File Formats

Kodak Photo CD Overview Pac

Every Kodak Photo CD contains a file in the Kodak Photo CD Overview Pac format. This
format contains a low resolution representation of each image on the Photo CD. The
ilPCDOImg class allows you to retrieve each of the overview images at either Base/16 or
Base/64 resolution (the default is Base/16).

You can use the ilFilelmg member function, getNumImgs(), to determine the number of
images in your Photo CD Overview file. You can use the setCurrentimg() and
getCurrentlmg() functions to select and query the current resolution. If you use
setCurrentlmg() to select an image resolution that does not exist in the overview pack,
the function returns the ilStatus value iflBADPARAMS but does not set the image’s
status.

Note: The Photo CD Overview format supplied with IFL is not capable of writing Photo
CD image files.

PNG

PNG implements the PNG file format using version 0.88 of the Portable Network
Graphics library, libpng, and version 1.0 of the ZIP deflate/inflate compression library,
libzlib. These libraries and their standard headers, png.h, pngconf.h, zlib.h, and zconf.h, are
installed as part of IFL.

PPM/PGM/PBM

PPM, PGM, and PBM implement the PPM, PGM, and PBM file formats using release 7,
December 1993 of the NETPBM libraries, libppm, libpgm, and libpbm. These libraries
and their standard headers, ppm.h, pgm.h, and pbm.h, are installed as part of IFL.

Raw

The iflRaw image file format accesses raw image data stored in a file. The data must be

organized in raster fashion. If the data is in pages, the pages must be a fixed size (with
partial pages at the image edge padded to fill out the fixed size).

69

Chapter 3: Accessing External Image Data

70

The iflRaw format supports the full flexibility of the IFL model: all data types, color
models, orders, orientations and page sizes are supported. Like all file formats supported
by IFL, you access raw images using the generic object class (or the ilFilelmg object for
IL users).

The default extension for image files in the ilRaw format is .raw.

SGl

SGI is the first format defined by Silicon Graphics for storing image data. SGI files are
typically stored in files suffixed by .bw, .rgb, .rgba, .sgi, or .screen. SGI files support full
color, color palette, and monochrome images of either one or two bytes per color
component. Image data can be stored in either raw form or run-length encoding (RLE)
compression. You can create SGI files with RLE compression but you cannot later rewrite
a portion of a compressed SGil file.

Note: If an SGl-formatted image is RGB Palette, its corresponding color map must be
stored in a separate (also SGl-formatted) file with the name imgName.map, where
imgName is the name of the SGI image.

Page width for SGI files is the width of the image. Page height is a value in the range 16
through 32 that evenly divides the overall height of the image. The SGI format makes the
image order interleaved. SGI supports only unsigned data and a lower-left coordinate
space.

TIFF

The TIFF file format, created by Aldus Corporation, is an extended version of the Tag
Image File Format, using version 3.4beta24 of Sam Leffler’s TIFF library, libtiff. This
library implements version 6.0 of the TIFF specification. The library and its standard
header files, tiff.h and tiffio.h, are installed as part of IFL

The purpose of TIFF is to describe and store raster image data. TIFF can describe bilevel,
grayscale, palette-color, and full-color image data in several color spaces. TIFF includes
a number of compression schemes that allow you to choose the best space or time
trade-offs for your applications. TIFF can also store multiple images per file. IFL uses the
following extensions to TIFF 6.0: Tilewidth, Tilelength, and SampleFormat. These tags
provide necessary support for the image data types and tiles as defined by the IFL.

Using IL to Access an Image

The Introduction of this Programming Guide tells you how to obtain more information
about the TIFF 6.0 specification. Refer to ifl/ifITIFF.h to learn more about TIFF tags and the
TIFF specification.

Using IL to Access an Image

IL allows you to read and write image data in any of the file formats that support the
desired mode of access. (Some image file formats do not support writing.) IL provides
access to image files using the ilFilelmg class. Existing image files can be read and new
ones created simply by constructing an ilFilelmg object.

Opening an Existing File

The following example opens an existing file for reading:
ilIFilelmg myFile("anExistingFileName", O_RDONLY);

The first argument to the constructor is the name of the image file to be opened. The
second argument is the file access mode. The access mode can be either:

= O_RDONLY to indicate that the file is to be opened only for reading

< O_RDWR if the file can be read from and written to. Remember that not all image
file formats allow writing. For example, the IFL cannot write images in the Kodak
Photo CD format.

The ilFilelmg constructor opens the named file. If the named file does not exist, you do
not have read permission, or if it is in an unsupported format, the status of the
constructed ilFilelmg object is set to a value other than ilOKAY.

The filename passed to the ilFilelmg constructor is subject to a standard parsing before
being used as the name of a file to open. The syntax for filenames is as follows:

filename[#format-name][:image-index][%format-specific]

The filename is the name of the file to open. The format-name, if supplied, specifies the
specific image file format to use to access the image file. The format specification is most
frequently used when creating a file and the format cannot be discerned from the filename
using a standard filename extension for the format. The image-index, if supplied, specifies
the index of an image within a multi-image file to access. Image indices start at 0 but not
all formats support storing multiple images in a single file. The format-specific string is

71

Chapter 3: Accessing External Image Data

72

passed unchanged to the IFL image file module for format-specific interpretation. This
string is often used to encode arguments to be used when accessing the image file. For
example, the Raw image format uses this string to specify the parameters, such as the
dimension and color model of a raw image. IFL provides a utility routine to parse this
string as a series of position- and name-qualified values. Itis up to the individual format,
however, to interpret this string.

After you open an image file, you can read the data, as shown in Example 3-1.

Example 3-1 Opening an Image File and Reading Data

/I open the file
iIFilelImg* someFile = new ilFilelmg("someFileName", O_RDONLY);

/I check for errors

if (someFile == NULL || someFile->getStatus() != ilOKAY) {
printf(“file %s could not be opened"”, fname);
exit(1);

}

// obtain image attributes

iflDataType theDataType = someFile->getDataType();

int xsize = someFile->getXsize();

int csize = someFile->getNumChans();

// allocate buffer
char* buf = new charliflIDataSize(theDataType, xsize*csize)];

/l read data into buffer
someFile->getTile(0, 0, xsize, 1, buf);

In this example:

1. Afile is opened for reading and a corresponding ilFilelmg object is created. If the
file cannot be opened, the program exits.

2. The ilFilelmg is queried about some of its attributes to determine what size buffer to
allocate for holding one row of the image’s data.

3. The buffer is allocated. The iflDataSize() function returns the number of bytes
needed for the data type indicated by its first argument, multiplied by the optional
second argument. This function is declared in the header file il/ifI DataSize.h and
described in “Computing the Size of Data Types” on page 347.

4. The getTile() function reads the first row of the image’s data into the buffer.

Using IL to Access an Image

Creating an Image File

To create a new image file, you need to specify the characteristics of the data, such as its
data type, and indicate what file format will be used. The ilFilelmg constructor creates a
new image file, as follows:

iflFileConfig cfg(iflSize(xsize, ysize));
iIFilelmg newFile(“newFileName”, NULL, &cfg);

This constructor creates an image file with the requested size; all of the other attributes
use the default values. The first argument to the ilFilelmg constructor specifies the name
of the file to create. The second argument specifies a pointer to an illmage to use for
default image attributes, In this example, NULL is used which means the file format’s
own preferred defaults are used. The third argument specifies a pointer to an
iflFileConfig argument which is used to specify various image file attributes: the xand y
size of the image in this example.

Here is a more extensive use of the ilFilelmg constructor where many more image
parameters are specified. (All of these attributes are discussed in detail in “Image
Attributes” on page 20, along with the constants that specify particular values for these
attributes.)

iflFileConfig cfg(iflSize(xsize, ysize, zsize, csize), datatype,
dimensionorder, colormodel, orientation, compression,
iflSize(xpsize, ypsize, zpsize, cpsize));

iIFilelImg newFile(“newFileName”, srclmage, &cfg, format);

It is rare that you would specify all of these parameters. In fact, it is likely that such a
fully-specified configuration would be in error, for example, the color model and channel
size would have to agree with one another. Normally, only a few attributes are specified,;
the remainder would take default values:

iflFileConfig cfg(iflSize(xsize, ysize), datatype,
iflOrder(0), colormodel, iflOrientation(0), iflCompression(0),
iflSize(xpsize, ypsize));

ilIFilelImg newFile(“newFileName”, NULL, &cfg);

In this example, the dimension order (iflinterleaved, iflISequential, or iflSeparate), the
orientation, for example, iflLowerLeftOrigin, and the compression are allowed to default
to the format’s preferred values: the z size is set implicitly at 1 and the channel size
matches that of the specified color model. The only attributes specified for the image are
its size, its data type, for example, iflUChar, iflFloat, its color model, for example, ifIRGB,
ifIRGBPalette, and its page size.

73

Chapter 3: Accessing External Image Data

74

The page size argument defines the x, v, z, and ¢ (channel) dimensions of the pages that
the image is broken into as it is stored on disk. The x, y, and z dimensions are specified in
pixels. Paging in the ¢ dimension is specified in channels and is useful for multi-spectral
images with a large number of channels. If no page size is supplied, the default page size
for that particular format and image size is used.

The attributes specified when creating an image file must match those supported by the
file format being used, for example, TIFF files support any data type except iflDouble,
SGl files support only iflUChar and iflUShort, and FIT files can handle any data type. See
the reference pages in for the various image formats supported by IFL for more
information about what they support.

Once you create a file, you can write data to it. The example shown below assumes the
image file, thelmg, of size size was previously created. Its data is written to the file,
outFile.tif, using copyTile().

iIFilelmg tmpFile(“outFile.tif", thelmg);
tmpFile.copyTile(0, O, size.x, size.y, thelmg, 0, 0);

Setting a File’s Compression

Often, images stored on disk are compressed to minimize their size. Such images need to
be decompressed before you can read them. There are many different compression
algorithms and each file format determines which algorithms it supports. From a
programmer’s point of view, as data is read or written in an IL program, its compression
or decompression is handled transparently.

The compression attribute indicates which compression algorithm, if any, is used to
compress the data before it is stored on disk. You should not compress files that will be
interactively modified. Modifying portions of a compressed, existing file is dangerous
because the amount of data written must be the same as what was originally in the file.
In general, the size of a file image, once created, is fixed.

To set a file’s compression algorithm, you must specify the compression algorithm when
the file is created. This can be done either by specifying the compression algorithm
explicitly in the iflFileConfig argument that is passed to the ilFilelmg constructor or by
inheriting the compression algorithm from another image used for the source image
attributes. Since the set of compression algorithms supported by formats is highly
variable, one of the easiest ways to specify that you want the image compressed is to use
iflCompression(0) which specifies the format’s preferred compression.

Using IL to Access an Image

The compression specification used in an iflFileConfig is of type iflCompression.
Table 3-1 lists the iflCompression constants currently defined in the header file
ifl/if Types.h and their corresponding compression algorithms.

Table 3-1 Compression Algorithms Supported for iITIFFImg Files

ifliCompression Constant ~ Compression Algorithm

iflCompression(0) use format’s preferred compression

ifINoCompression no compression

ifICCITTFAX3 CCITT Group 3 fax encoding

ifICCITTFAX4 CCITT Group 4 fax encoding

iflLZW Lempel-Ziv and Welch algorithm

ifIPACKBITS Apple® Computer, Inc., Macintosh® RLE (run-length encoding)
iflSGIRLE SGI’s RLE compression

iflPEG Joint Photographic Expert Group

iflZIP ZIP deflate/inflate

To query an existing file about which compression algorithm it uses, call
getCompression():

iflCompression whichCompression = myFile->getCompression();

This function returns a value of type iflCompression corresponding to one of the
supported algorithms.

Querying a File Image

Once you create an ilFilelmg, you can query its attributes with any of the following
functions:

const char* getFileName();
iflFormat* getimageFormat();

const char* getimageFormatName();
int getFileDesc();

int getFileMode();

int getNumImgs();

75

Chapter 3: Accessing External Image Data

76

int getCurrentimg();

Table 3-2 describes each of these functions.

Table 3-2 File Query Functions

Function Description

getFileName() Returns the name of the file.

getimageFormat() Returns the file format—TIFF, SGI, PhotoCD Image Pack, PhotoCD
Overview Pack, GIF, or FIT.

getimageFormatName() Returns the name of the image format.

getFileDesc() Returns the file descriptor.

getFileMode() Returns either O_RDWR or O_RDONLY, depending on whether

the file was opened for reading and writing or just reading.

getNumimgs() Returns the number of images stored in the file.

Setting and Getting Special Image Properties

The iflFile member functions, getltem() and setltem(), deal with format-dependent
name-value pairs, called items, associated with an image within an image file.

Usage of these functions requires format-specific knowledge of the meaning of the tags
for the specific file format, for example, for ifITIFFImg, the meaning of the tags is given
in the TIFF specification.

Using getltem()

The getltem() method returns the value of an item associated with the current image in
the image file.

virtual iflStatus getltem(int tag, va_list ap);

The tag argument specifies the name of the item to be set. It is interpreted by the specific
iflFile subclass. The number and types of the remaining arguments are determined by the
particular subclass of iflFile and the tag value.

Importing and Exporting Image Data

The return value is ifl OKAY if the function succeeds or an appropriate iflStatus error
value if it fails.

Using setltem()

The setltem() method sets the value of an item associated with the current image in the
image file.

Calling setltem() may change some image attributes. You can check this by calling
haveAttributesChanged() after calling setltem().

virtual iflStatus setltem(int tag, va_list ap);

The tag argument specifies the name of the item to be set. It is interpreted by the specific
iflFile subclass. The number and types of the remaining arguments are determined by the
particular subclass of iflFile and the tag value.

The return value is ifl OKAY if the function succeeds, or an appropriate iflStatus error
value if it fails.

Using haveAttributesChanged()

You use haveAttributesChanged() to determine whether or not image attributes have
changed.

int haveAttributesChanged();

This function returns TRUE if any attribute has changed since the last call to this method,
otherwise, the function returns FALSE.

Importing and Exporting Image Data

IL provides a convenient mechanism for importing or exporting raw image data between
IL and other libraries or devices. This mechanism is encapsulated in the ilMemorylmg
class, which interprets a contiguous array of data residing in memory as an illmage
object. Since ilMemorylmg inherits from illmage, you can use any of the data access,
guery, and other functions defined in illmage. In addition, ilMemorylmg defines a
function that returns a pointer to its array of data so that you can read the data (for
exporting) or write new data (for importing). The class ilXImage, derived from

77

Chapter 3: Accessing External Image Data

78

ilMemorylmg, allows you to convert an XImage (an X Window data structure that
defines X’s representation of an image) to an illmage and vice versa.

Images in Memory

The ilMemorylmg class provides four constructors. You can use these constructors to:
< allocate an array to hold data that will be written

e use an existing array

e create an ilMemorylmg object from an illmage

= create an empty ilMemorylmg that will be populated later

The first constructor allocates an array large enough to hold size.x*size.y*size.z*size.c
pixels of the indicated data type:

iiIMemorylmg(const iflSize& size, iflDataType datatype,
iflOrder order);

This array is deallocated when the ilMemorylmg object is destroyed.

The second constructor allows you to import data. It takes as an argument an existing
array of data:

iIMemorylmg(void* data, const iflSize& size, iflDataType datatype,
iflOrder order);

This constructor creates an ilMemorylmg object and initializes its data array pointer
with the value passed in data. The size of the specified array is equal to or larger than
size.x*size.y*size.z*size.c pixels of the indicated data type. Since this array was not
allocated by ilMemorylmg, it will not be deallocated automatically when the
ilMemorylmg object is destroyed.

Both of these constructors set the ilMemorylmg’s attributes—size, data type, and
order—to the values passed in the constructor so that you can use the query functions
defined in illmage, such as getDataType(). The minimum and maximum allowable pixel
values are set by default to the minimum and maximum values allowed for the image’s
data type. In addition, the coordinate space attribute is set to iflLowerLeftOrigin. The

Importing and Exporting Image Data

color model is set depending on the number of channels in the image. as shown in
Table 3-3.

Table 3-3 Color Models

channels color model

1 iflLuminance

2 iflLuminanceAlpha
3 iflIRGB

4 ifIRGBA

5or more iflMultiSpectral

The third constructor takes an illmage as an argument:

iiIMemorylmg(illmage* img);

The ilMemorylmg object has the same attributes as the illmage. These attributes and the
source image data are not changed if the source illmage changes (thus, you can think of
the ilMemorylmg as taking a snapshot of the illmage). You can explicitly synchronize
the ilMemorylmg with its source illmage by calling the sync() method on the
ilMemorylmg.

The fourth constructor returns an ilMemorylmg object with no data or attributes:
iIMemorylmg();

You can use this constructor when you need to create an ilMemorylmg before you can
supply its data. Use setDataPtr() to specify the data.

To change the image data residing in an ilMemorylmg object, call setDataPtr() and pass
a pointer to the new data. You must call setSize() if the new data is a different size than
currently noted for the ilMemorylmg object. Finally, you should also call markDirty() to
indicate that the data in the ilMemorylmg object has been altered.

void setDataPtr(void* data);
iIStatus setSize(const iflISize &size);
void markDirty();

79

Chapter 3: Accessing External Image Data

To gain direct access to the image data residing in a ilMemorylmg object, call
getDataPtr(). This function returns a void pointer to the data, as shown below:

void* getDataPtr();

Because an ilMemorylmg resides in memory, you can use it to hold temporary copies of
images that you need to access quickly.

Note: Since the entire image resides in memory, IL’s on-demand execution model is not
used when an ilMemorylmg is accessed.

80

Chapter 4

Operating on an Image

Much of the ImageVision Library implementation consists of image-processing
algorithms, or operators. An operator applies its algorithm to the image data encapsulated
in an illmage object. To maximize the efficiency of the computation required to perform
such an operation, IL uses the demand-driven execution model discussed in Chapter 2,
“The ImageVision Library Foundation.”

This chapter explains how to use each of the operators defined by IL. “Implementing an
Image Processing Operator” on page 215 explains how you can implement your own
image processing algorithm as an IL operator.

This chapter contains the following major sections:

= “Image Processing Operators Provided with IL”” on page 84 describes the set of
approximately 70 image processing operators implemented in IL.

« “Defining a Region of Interest” on page 153 explains how to mask out portions of an
image and restrict processing to a desired area.

81

Chapter 4: Operating on an Image

82

IL classes covered in this chapter are mainly those that derive from ilOplmg. The relevant
portion of IL inheritance hierarchy is shown shaded in Figure 4-1.

iITIFFImg

iISGlimg

iIFITImg

iIPCDImg

iiIMemorylmg iIPCDOImg

illmage iIFilelmg iIGIFImg

r ilCachelmg {(— ilMemCachelmg]]
iISpatiallmg

ilOplmg |—

ilPolyadicimg

ilWarplmg

iIMonadiclmg

Figure 4-1 ilOplmg and IL Inheritance Hierarchy

The ilOpImg class defines the basic support for all operator classes. It provides functions
for setting attributes, accessing data, setting bias and clamp levels, and propagating
attributes down an operator chain. Most of these functions are declared protected, so
while they are available for use in a subclass’s implementation, they are not available (or
needed) directly. ilOplmg defines only three sets of public functions:

iIStatus setBias(double biasVal = 0);
double getBias();

iIStatus setClamp(iflDataType typ=iflDataType(0));
iIStatus setClamp(double min, double max);

int getValidTypes();
int getValidOrders();

Some operators take a bias argument in their constructors and use it in their image
processing algorithms. This bias value is discussed in the sections describing the relevant
operators in the remainder of this chapter. In general, bias is a constant value added to
each pixel luminance value to make it scale correctly. If, for example, the raw pixel
luminance covers values between 100 and 200, some operators are able to scale the
luminance values over the entire depth of pixel luminance values, for example, 0 - 255.
When you scale the luminance values in this way, you need a bias value that adjusts the
initial, raw luminance value, 100, in this example, to zero.

The setClamp() functions allow you to set values that pixels are clamped to if underflow
or overflow occurs. Not all operators allow the clamp values to be modified, so you need
to check that the returned status is not ilUNSUPPORTED if you are assuming you have
changed the values. The first version of setClamp() sets the clamp values to be the
minimum and maximum values allowed for the data type. The default value of typ
means to use the a single bit image type. The second version allows you to specify actual
clamp values. You will not generally need to use either of these functions since most
operators handle overflow and underflow conditions appropriately.

All operators that alter the data range of their inputs compute the worst case minimum
and maximum pixel values to ensure that the processed data can be displayed. For
example, if you multiply two images and then display the result, you can easily end up
with pixel data that is all black. To solve this problem, ilMultiplylmg automatically
computes the worst case minimum and maximum values. When the data is displayed
using ilDisplay, the data is automatically scaled between these values (or those allowed
by the display) so that a meaningful display is produced.

The ilOplmg protected functions that implement these features are
double getlinputMin(int idx=0);
double getinputMax(int idx=0);

double getinputScaleMin(int idx=0);
double getlnputScaleMax(int idx=0);

The getlnput functions return the minimum and maximum luminance values of the

input images. The getinputScale functions return the minimum and maximum
luminance values of the output image.

83

Chapter 4: Operating on an Image

Image Processing Operators Provided with IL

84

This section discusses all the operators provided with IL. they are grouped functionally
as listed below:

“Color Conversion and Transformation” on page 85 describes operators that
convert an image from one color model to another.

“Arithmetic and Logical Transformations” on page 90 describes operators that
perform pixelwise arithmetic or logical computations.

“Geometric Transformations” on page 98 describes operators that warp, rotate, and
zoom (magnify or minify) an image.

“Spatial Domain Transformations” on page 106 describes operators that transform
an image in the spatial domain—for example, by sharpening, blurring, convolving,
or rank filtering it in the spatial domain.

“Edge Detection” on page 117 describes gradient operators such as compass,
Laplace, Roberts, and Sobel.

“Frequency Domain Transformations” on page 120 describes operators that
incorporate forward or inverse Fourier transforms and frequency-domain filters.

“Generation of Statistical Data” on page 132 describes the operator that computes
the histogram, mean, and standard deviation of an image.

“Radiometric Transformations” on page 136 describes operators that perform
radiometric transformations such as histogram normalization and thresholding.

“Combining Images” on page 146 describes operators that blend, merge, or
combine two images.

“Constant-valued Images” on page 152 describes an image class that returns a
constant value for all data accesses.

“Using a Null Operator” on page 152 describes an operator that performs a “null”
operation.

Image Processing Operators Provided with IL

Color Conversion and Transformation

IL provides several operators that perform color conversions and color transformations
of IL images. These operators can be summarized as follows:

< TheilColorimg operator converts an existing image from any IL-supported color
model to a requested color model. (See “Color Model” on page 25 for a description
of the color models supported by IL.)

= Several operators, derived from ilColorlmg, convert an existing image to one of the
more commonly used color models: CMYK, grayscale, HSV, and RGB.

« TheilFalseColorimg operator converts an image from one multispectral color
model to another.

= TheilSaturatelmg operator provides a mechanism to transform the color saturation
of an image.

These color conversion and transformation operators are described in the following
paragraphs. Their positions in IL inheritance hierarchy are shown in Figure 4-2.

iIBGRImg

iIABGRImg

—1 ilSaturatelmg

IICMYKImg

ilGraylmg

-»— ilOplmg |— ilMonadicimg ilColorimg

iIHSVImg

iIRGBImg

L ilFalseColorimg

iISGlPalettelmg

Figure 4-2 Color Conversion Operators Inheritance Hierarchy

85

Chapter 4: Operating on an Image

86

Color Conversion

The base class for the color conversion operators, ilColorimg, defines the generic support
for performing color conversions on image data. It converts data from any supported
color model to any other supported color model, except multispectral.

ilColorimg(illmage* img, iflColorModel cm);

For example, the following code converts an ifIRGB image (theimg) to one whose color
model is iflYCC.

ilColorimg(illmage* theimg, ifiColorModel iflYCC);

The ilColorlmg class is not normally used directly to do color-model conversion. Instead,
use derived classes. Each of the six classes derived from ilColorimg performs a specific
conversion. The algorithms used to perform the various conversions are detailed in the
respective reference pages. The six derived classes are summarized below:

< iIlABGRImg converts data to the ABGR color model used by Silicon Graphics’
framebuffer.

< iIRGBImg converts an image to RGB.

« IICMYKImg converts data to the CMYK color model. This color model is used
primarily as an output format for color printers.

< ilGraylmg converts an image to minBlack.
< iIHSVImg converts to the HSVcolor model.
= iIRGBImg converts an image to the iflIRGB color model.

= iISGIPalettelmg converts data to the iflRGBPalette color model. This color model is
suitable for data that is to be displayed in a color-mapped window.

Using any of these derived classes is simple since the only public member function most
of them define is a constructor. To convert an ilimage, call the constructor for the desired
color model and supply as an argument a pointer to the illmage to be converted. For the
following example, assume that thelmg has already been created and that it uses any one
of the supported IL color models:

iIICMYKImg* cnvrtdimg;
cnvrtdimg = new iICMYKImg(thelmg);

In this example, the constructor for the iICMYKImg class returns a pointer to an
iICMYKImg, which produces image data converted to the CMYK color model. Similarly,
the constructors for any of the derived classes—ilABGRImg, iICMYKImg, ilGraylmg,

Image Processing Operators Provided with IL

ilHSVImg, iIRGBImg, or ilSGIPalettelmg—return a pointer to an object of that class,
which produces converted image data. that is really all there is to it.

If you want to convert to the color models for which there is no derived class (ifIRGBA,
ifICMY, iIBRG or iflYCC), use the ilColorimg operator.

If an operator image has two or more inputs with different color models, the color model
of the resulting image depends on the color models of the input images. IL converts the
color models of the input images to a common color model before performing the
operation. The resulting image has this color model. You can use the diagram in

Figure 4-3 to determine how IL determines the common color model. Just find the nodes
for the input images and follow the paths from these nodes to a common node. This
nodes determines the color model of the resulting image. For example, if the color
models of two inputs to an operator are iflHSV and iflYCC, the color model of the

resulting image is iflIRGB.

ifIRGBPalette

Figure 4-3 Determining the Color Model of Multi-Input Operators

87

Chapter 4: Operating on an Image

88

ilIFalseColorimg

The ilFalseColorimg operator performs false coloring of multispectral images. It
accomplishes this by computing the weighted sum of the input channels for each channel
of the resulting false-color image. The constructors for ilFalseColorimg, except the NULL
constructor, or take a pointer to the input image and the arguments that define the
conversion algorithm:

ilIFalseColorimg();
ilFalseColorimg(illmage *img, int numColumns, int numRows,
const float* xformMatrix, const float* bias=NULL);

The conversion is defined by the transformation matrix, xformMatrix . This matrix has
dimensions numColumns x numRows. Each row of this matrix defines a set of weights
used to produce one channel of the output. Each weight is multiplied by the pixel values
in the corresponding input channel, and the weighted sum forms the output channel.
The conversion may also include a bias vector, bias. This vector contains a constant value
for each input channel that is added to each input value before it is weighted. Thus, the
transformation equation for each channel of the output image is:

Outputc,; = Te,g (INpute,, +Bg,y)
where C and R are numColumns and numRows, respectively.

An image transformed by ilFalseColorimg appears in Figure 4-4.

Image Processing Operators Provided with IL

Figure 4-4 A Falsely Colored Image

iISaturatelmg
This operator performs a color saturation of its input. If the input color model is not RGB,

the input is first converted to RGB. The constructor for ilSaturatelmg takes a pointer to
the input image and an initial saturation value:

iISaturatelmg(illmage* img=NULL, float sat=1);
The transformation is defined as:

Equation 1

lum = 3red;, + .59green;, - .11blue;,
Equation 2

redg ¢ = lum + (red;, - lum)sat

89

Chapter 4: Operating on an Image

90

Equation 3

greeng,; = lum + (green;,, - lum)sat
Equation 4

blueg ¢ = lum + (blue;j, - lum)sat

You can set the saturation value interactively with setSaturation():

void setSaturation(float saturation);

The current value of the saturation factor can be queried with getSaturation():

float getSaturation();

A value of zero completely desaturates the image (equivalent to ilGraylmg), a value of
one leaves the image unchanged, and values greater than one increase the color
saturation of the image. Output values are clamped to the minimum and maximum
values of the operator image, which by default are simply inherited from the input.

Arithmetic and Logical Transformations

There are numerous IL operators that perform pixelwise arithmetic transformations of
image data. Some of these require two input images—for example, to add them
together—while others perform computations on a single image’s data, such as
determining the absolute value. In the inheritance hierarchy shown in Figure 4-5,
operators that inherit from ilPolyadiclmg take two images as inputs and those that
derive from ilMonadiclmg take only one.

Image Processing Operators Provided with IL

«..—| ilOplmg

iIMonadiclmg

Figure 4-5

- — ilPolyadicimg

— ilAbsimg iINeglimg illnvertimg
. | iIPowerimg
: ilLoglmg
ilLutimg | ilArithLutimg —
.| iISquarelmg
_______________________ : ilIExplmg
iIXorimg el . . | iISgRootimg
iIMultiplylmg ilAbsimg ' : -
! | ilHistLutimg
iiDyadiclmg ilAddimg Lo TTTTTrrrne
iISubtractimg iIDivimg :
iIMaximg ilMinimg X
ilAndimg ilorimg :

Arithmetic and Logical Operators Inheritance Hierarchy

When using one of the dual-input operators, you might want to use an ilConstlmg as one
of the inputs. An ilConstimg returns the same value for all of its pixels, so you can use it

to multiply each of an image’s pixels by a constant value, for example. For more

information on how to create an ilConstimg, see “Constant-valued Images” on page 152.

Single-input Operators

The single-input arithmetic operators are listed in Table 4-1, along with the operation
they perform on each pixel of image data and the pixel data types each operation can

91

Chapter 4: Operating on an Image

92

produce. The last five operators in Table 4-1 (ilSquarelmg, ilSqRootIimg, ilExpImg,
ilPowerlmg, and ilLogimg) descend directly from ilArithLutimg. The ilArithLutimg
abstract class optimizes the performance of operators that derive from it by pulling
precomputed square, square root, exponent, power, and log values from a lookup table.
This is much more efficient than computing values on a per-pixel basis.

The ilArithLut class in turn inherits from ilLutimg. Consequently, the last five operators
in Table 4-1 inherit the ability to be accelerated further in the CPU or in specialized
graphics hardware. See “Radiometric Transformations” on page 136 and “Using
Hardware Acceleration” on page 251 for details about ilArithLutimg and hardware
acceleration, respectively.

Table 4-1 Single-input Arithmetic Operators and Their Valid Output Data Types
Operator Operation Performed Valid Data Types
ilAbsimg absolute value iflUChar, iflUShort, iflULong,
iflFloat, iflDouble
iINegimg two’s complement any signed data type?
ilinvertimg one’s complement ifIBit, iflChar, iflUChar, ifIShort,
iflUShort, iflLong, iflULong
ilSquarelmg (pixelvalue)2 any type except ifIBit
ilSgRootIimg Jpixelvalue any type except ifIBit
ilExpImgP base(Pixelvalue) any type except iflBit
ilPowerIimgP (pixelvalue)Power any type except iflBit
ilLoglmg® logpase(Pixelvalue) any type except iflBit

a. ifIChar ifIShort, iflLong, iflFloat, and ifIDouble are the signed data types.

b. These operators allow you to apply scale and bias values to the pixelvalue, so that it becomes
scale*pixelvalue+bias.

An example of processing by an arithmetic operator is given in Figure 4-6, which shows
an original image constructed from simulation data processed with iINeglmg.

Image Processing Operators Provided with IL

Figure 4-6 A Positive and Negative Image Pair

The only public member function defined in ilAbsimg, iINeglmg, ilinvertimg,
ilISquarelmg, and iISqRootImg is a constructor that takes a single argument, the input
image. Thus, to include any of these operators in a chain, you simply call its constructor
and pass, as the argument, a pointer to the input ilimage. In this example, assume that
inputlmg is a pointer to an already existing illmage:

ilAbsimg* someAbsimg = new ilAbsimg(inputimg);

The constructors for the ilAbsimg, ilNegimg, ilinvertimg, ilSquarelmg, and ilSqRootImg
classes all return a pointer to the operator image.

The constructors for the remaining three classes—ilExplmg, ilPowerimg, and
ilLogimg—take three additional arguments, all of type double. The second argument for
each of these constructors specifies base or power, the third specifies scale, and the fourth
bias.

ilIExpImg(illmage* inimg = NULL, double expBase=0,
double scl=1., double bs=0.);

ilPowerimg(illmage* inimg = NULL, double pow = 2,
double scl=1., double bs=0.);

ilLogimg(illmage* inimg = NULL, double logBase=0,
double scl=1., double bs=0.);

The ilExplmg, ilPowerlmg, and ilLoglmg classes define a function for setting the value
of the second parameter after the operator is created, so that you can dynamically alter
the computation:

void setBase(double expBase=0); I/ for iIExplmg
void setPower(double power=2); /[for ilPowerimg
void setBase(double logBase=0); /I for ilLogimg

93

Chapter 4: Operating on an Image

94

Dual-input Operators

As their names suggest, the dual-input operators ilAddIimg, ilSubtractimg,
ilMultiplylmg, and ilIDivimg perform standard arithmetic computations—addition,
subtraction, multiplication, and division of two images. The constructors for each of
these classes take as arguments pointers to the two input images, which can be different
sizes but must have the same number of channels. If they are different sizes, by default
the output image is the larger of the two sizes; the smaller input image is padded with
its fill value, and then the operator performs its computation on corresponding pixels in
the two images. You can explicitly set the desired output size with illmage.setSize().

You may also offset one image with respect to the other using the following
ilPolyadiclmg methods:

void setOffset(int x, inty, int z = 0, int input = 0);
void getOffset(int &x, int &y, int &z, int input = 0);

setOffset() offsets the first image with respect to the second by X, y, and z if input is 0. If
input is 1, the second image is offset with respect to the first. getOffset() queries the
dual-input operator for its offsets. If input is 0, the offset of the first image relative to the
second is given; if input is 1, the offset of the second image relative to the first is given.

Image Processing Operators Provided with IL

Here are the constructors for the dual-input operators:

ilAddIimg(illmage* in1 = NULL, illmage* in2 = NULL,
double bias=0);
iISubtractimg(illmage* in1 = NULL, illmage* in2 = NULL,
double bias=0);
ilMultiplylmg(illmage* in1 = NULL, illmage* in2 = NULL);
iIDivimg(illmage* in1 = NULL, illmage* in2 = NULL, ckDiv=1);

ilAddImg adds the bias value to the sum found by adding the corresponding pixels of
inl and those of in2. The ilSubtractimg operator subtracts the corresponding pixels of in2
from every pixel of in1 and then adds the bias value. ilMultiplylmg multiplies the pixels
in the two input images, and iIDivimg divides the pixels of in1 by the corresponding
pixels of in2. All of these operators can produce an image containing any data type except
ifIBit. An example using ilAddimg appears in Figure 4-7. The two original images appear
as well; one is the flipped version of the other.

The ckDiv argument for iIDivimg’s constructor specifies whether the operator should
check for division by zero. By default, it does check and responds as described below:

= Ifthe divisor is zero and the dividend is positive, the quotient is set to the maximum
value possible for the final image’s data type.

= |Ifthe divisor is zero and the dividend is negative, the quotient is set to the
minimum value possible for the final image’s data type.

= Zero divided by zero produces a zero.

You can use setCheck() to change whether this check is made.

95

Chapter 4: Operating on an Image

96

Original 1 Original 2

Added Images

Figure 4-7 Adding Two Images

The two classes ilIMaxImg and ilIMinlmg compare each corresponding pixel in the two
input images and select the greater or the lesser value, respectively. Their constructors
take pointers to the two input images as arguments. These input illmages must have the
same number of channels. The output image can contain any data type except ifIBit.
(There are also simple, in-line functions defined in the header file il/ilMinMax.h that
compare two values and return the greater or the lesser one. See “Minimum and
Maximum Comparisons” on page 348 for more information about these functions.) An

Image Processing Operators Provided with IL

example of using iIMinImg appears in Figure 4-8. Two original images are shown,
followed by the image that results if you apply ilMinlmg to these images.

Original Image Original Mask

Minimum of Image and Mask

Figure 4-8 Minimum of Two Images

Similarly, the logical-operator classes—ilAndImg, ilOrimg, and ilXorimg—perform their
computations (logical AND, OR, and exclusive-OR) by combining each corresponding
pixel in the two input images. The constructors for these classes take pointers to the two
input images as arguments. The input illmages must have the same number of channels;
the output image can contain any of the following data types: iflIChar, iflUChar, ifIShort,
iflUShort, iflLong, or iflULong. Figure 4-9 shows an example of using ilAndimg and
ilOrImg on the original images from Figure 4-7.

97

Chapter 4: Operating on an Image

98

Original Image 1 Original Image 2

Logical AND Logical OR

Figure 4-9 Logical AND and OR of Two Images

Geometric Transformations

The heart of a geometric transformation, or warp, is the algorithm that maps output
image coordinates to input coordinates. (See Figure 4-10.) The general support for such
transformations is encapsulated in the abstract class, ilWarplmg. Classes that derive from
ilWarplmg— ilTieWarplmg, and ilRotZoomImg—implement specific warping
algorithms;. These algorithms are most efficient for images that are relatively square.

Image Processing Operators Provided with IL

\>

Figure 4-10 A Warped Image

The warping classes are shown in Figure 4-11 and discussed in the following sections.

— iIRotZoomImg
-—| ilOpimg ilWarplmg
L ilTieWarpimg
’— ilPerspWarp
" ilWarp ‘ ilPolyWarp
—1 ilAffineWarp

Figure 4-11 Geometric Operator Inheritance Hierarchy

Warping an Image

The ilWarplmg class, from which ilTieWarplmg, and ilRotZoomImg derive, performs up
to a two-dimensional, seventh-order warp. The output image space is mapped to the

input image space with a transformation defined by two sets of polynomials (which can
be up to seventh order), one for the x-dimension and one for the y-dimension. Since the
coefficients for the polynomials are not always integers, the addresses computed for the
output space sometimes contain fractional components. Therefore, a resampling method
must be applied to convert these fractional addresses into meaningful pixel locations.

To use ilWarplmg, you must choose a resampling algorithm and specify the coefficients

of the warping polynomials. The constructor takes as its arguments a pointer to the input
image and a constant that corresponds to a resampling method:

99

Chapter 4: Operating on an Image

100

ilWarpImg(illmage* img=NULL, iIResampType rs=ilNearNDb,
ilWarp* warp=NULL);

The ilResampType enumerated type is defined in the header file il/iflDataTypes.h and
shown in “Resampling Methods” on page 100. It has these six members:

= iINearNb (nearest neighbor)

= iIBiLinear

< ilBiCubic

< ilMinify

= ilUserDef (for a resampling algorithm you implement)

If you choose a bicubic resampling method, you can use setBicubicFamily() to fine-tune
its algorithm.

ilWarplmg performs output-driven image warps. It uses the abstract. helper class,
ilWarp, to define the specific nature of a given warp. An image of any data type may be
given as input. The proper data conversions will be performed to ensure output is one of
the following valid data types: ilUChar, ilUShort, ilShort or ilFloat.

ilWarplmg is a cached, image operator. It may be linked into operator chains.

Resampling Methods

The ilWarplmg class supports five built-in resampling methods:

= nearest neighbor

« bi-linear (the default)

= bi-cubic interpolation

= filtered minification (ilMinify)

= auto resampling

The resampling type can be altered with setResampType(). ilWarplmgSetResampType().

Support for user-defined resampling methods is also provided by the setResampFunc()
function.

Nearest neighbor is the fastest method, but produces the lowest quality result. This
method merely copies the value of the input pixel that is closest to the computed address.

Image Processing Operators Provided with IL

It is most useful when performance is more important than image quality, as for instance
when the warp is under interactive control by a human. When the warping parameters
have been adjusted to satisfaction, the final output might be produced with the bi-linear
or bi-cubic method.

The bi-linear method interpolates over a 2x2 neighborhood around the computed input
address, using a simple weighted average. This method is somewhat slower than nearest
neighbor, but produces a much higher quality result.

The bi-cubic method interpolates over a 4x4 neighborhood, using an interpolation kernel
that approximates a two-dimensional bi-cubic spline. For a given (X, y) point, the
interpolation is performed by first interpolating four lines starting at floor(y)-1 and
ending at floor(y)+2; each line runs from floor(x)-1 and ends at floor(x)+2. The resulting
values are then processed vertically to produce the resulting output point.

In order to speed up the processing, the cubic convolution co-efficients are precomputed
to a 1/256 pixel accuracy and stored in a table. This provides more than adequate
accuracy for geometric precision. The co-efficient generation is from equation (8) in the

paper:

Mitchell, D. and A. Netravali, “Reconstruction Filters in Computer Graphics.” Computer
Graphics, Vol. 22, No. 4, pp. 221-228.

The setBicubicFamily() function allows the B and C co-efficients of equation (8) in the
cited paper to be defined, allowing a choice of various bicubic resampling.

Filtered minification is used when unaliased minification is desired. The input image is
filtered and minified. The user can specify a filter or, if none is specified, a box filter is
used. The size of the box filter, depends on the minification factor and it ensures that the
entire input image is sampled. If the box filter or kernel is used, the operation can be
speeded up by sub-sampling the kernel. By using the setMaxSamples() function, the
number of image pixels are averaged to produce an output pixel can be set. So if the
number of samples is set to 10, even when using a 5 x 5 kernel, only 10 image pixels used
to compute the filtered result.

Note: When specifying your own kernel, each zero value in the kernel results in one less
multiply/add computation. So, sprinkling zeros around the kernel achieves sub-
sampling.

If you choose the iIMinify resampling method, you can use setMinifyKernel() to specify
your own kernel instead of the default box (all 1s) kernel. In the default case, the kernel

101

Chapter 4: Operating on an Image

102

size is dynamically adjusted so that the entire input is sampled (that is, all the input
image pixels are used to compute the output). If you use the default kernel, you can
speed up the operation by using setMaxSamples() to set the number of input image
pixels to be averaged to produce a single output pixel. For example, if you set the
maximum number of samples to 10 and you are minifying by a factor of 8, thus
necessitating the use of an 8 x 8 kernel, only 10 input pixels (instead of 64) uniformly
interspersed throughout the 8 x 8 area are averaged to produce one output pixel.

To define your own resampling method, use setResampFunc() and pass in a pointer to
your algorithm. The reference page for ilWarplmg explains what the supported
algorithms are, which one you might want to use, and how to define your own
algorithm.

You can dynamically change and retrieve the resampling method with setResampType()
and getResampType(), which are inherited from ilWarplmg:

void setResampType(ilResampType rs);
iIResampType getResampType();

Additionally, ilWarplmg lets you determine the amount of error allowed in a warp
performed in graphics hardware with setAddressError(). Its one parameter,
maxPixelsOff, determines by how many pixels the warped data may be incorrect. The
previously set parameter can be retrieved with getAddressError():

void setAddressError(float maxPixelsOff);
float getAddressError();

For backward compatibility, you can define the coefficients of the warping polynomial
using the ilPolyWarplmg.setCoeff() function:

void setCoeff(const ilCoeff_2d& xcoeff, const ilCoeff_2d& ycoeff);

You can query the ilWarplmg object for its coefficients with ilPolyWarplmg.getCoeff()
and for the order of its polynomial with ilPolyWarplmg.getPolyOrder():

void getCoeff(ilCoeff_2d& xcoeff, ilCoeff_2d& ycoeff);
int getPolyOrder();

The ilPolyCoeff2SD structure contains floating point numbers for the coefficients. It is
defined in the header file il/ilPolyDef.h, as shown below:

struct ilPolyCoeff2D {
float con,

Y, X,
y2, Xy, X2,

Image Processing Operators Provided with IL

y3, Xy2, X2y, X3,

y4, xy3, x2y2, x3y, x4,

y5, xy4, x2y3, x3y2, x4y, x5,

y6, Xy5, x2y4, x3y3, x4y2, x5y, x6,

y7, Xy6, x2y5, x3y4, x4y3, x5y2, x6y, x7;
b

The ilTieWarplmg class performs a two-dimensional warp, but it does not allow you to
specify the coefficients of the warping polynomial directly. Instead, you specify pairs of
tie points in the input and the output images that should match after the image is warped
as shown in Figure 4-12. The coefficients of the polynomial, which you can choose to be
first- to seventh-order, are then computed from these tie points. The minimum number
of pairs of points necessary to determine the coefficients of a polynomial of order ord is
given by the formula:

d+1) (ord +2)

pairs = (or
2

Thus, you need to specify at least three pairs of points for a first-order polynomial, six
pairs for a second-order, and so on.

The constructor for ilTieWarplmg takes the same arguments as that for ilWarpImg. After
creating an ilTieWarplmg operator, you must specify the tie points from which the
warping polynomial is computed. For this, use setTiePoints):

void setTiePoints(const if XYfloat* uv,
const ifIXYfloat* xy, int n);

This function takes pointers to arrays of n tie points in the input image (xy) and the
output image (uv) and computes the polynomial’s coefficients. (The data type ifIXYSfloat
is defined in the header file il/iflCoord.h as an (x, y) coordinate pair of data type float.) The
function isWellDefined() can be used to check if the polynomial coefficients can be
computed from the specified tie points. If the polynomial is successfully computed, one
is returned; if not, zero is returned. Before you call setTiePoints(), you might want to set
the order of the polynomial that will be computed by calling setPolyOrder() and passing
inl,2,3,4,5,6,0r7as the desired order. If you do not explicitly set the order, a first-order
polynomial is used. The function getPolyOrder() returns the order of the warping
polynomial.

To move the tie points, use moveTiePoint(), defined as follows:

iIStatus moveTiePoint(float u, float v, float x, float y, int idx);

103

Chapter 4: Operating on an Image

104

ilWarplmg defines functions (which ilTieWarplmg and ilRotZoomImg inherit) that,
given a point in the input (or output) image, compute the corresponding point in the
output (or input) image, using the mapping specified by the polynomial:

void evalUV(iflXYfloat& uv, const ifIXYfloat& xy);

void evalXY (ifIXYfloat& xy, const ifIXYfloat& uv);

The function evalUV/() takes the input image point xy and returns by reference the
corresponding point uv in the output image. Similarly, evalXY() computes the input
image point, xy, from the output image point, uv.

Figure 4-12 shows the result of applying ilTieWarplmg to an image.

Original Image Warped Image

Figure 4-12 Warping an Image

Rotating, Zooming, and Flipping an Image

Unlike the various warping classes, the ilRotZoomImg operator is limited to performing

two-dimensional affine transformations on an image. This single operator can rotate,
zoom (magnify or minify), and mirror (or flip) image data:

Image Processing Operators Provided with IL

iIRotZoomImg(illmage* img = NULL, float rotAngle=0,
float horizontalZoom=1, float verticalZoom=1,
iIResampType rs=ilNearNb);

The input image, img, is rotated by rotAngle degrees in a counterclockwise direction and
magnified or minified in the appropriate dimension by the horizontalzoom and
verticalzoom factors. The default resampling method is nearest neighbor (ilNearNb). This
method, when there is no hardware acceleration, chooses ilMinify resampling for pure
minification (x and y zoom factors < 1.0 and rotation angle = 0.0) and ilNearNb
otherwise. If there is hardware acceleration, ilBiLinear is chosen for pure minification
and ilNearNb otherwise. This operator is especially efficient when the rotation is a
multiple of 90 degrees and when the resampling method is ilNearNb.

Functions are provided for you to dynamically change all the parameters:

void setAngle(float rotAngle);

void setZoom(float horizontal, float vertical);
void setZoom(float zoom);

void setCenter(float h, float v);

An analogous set of functions is provided to retrieve the parameters:

float getAngle();
void getZoom(float& horizontal, float& vertical);
int getCenter(float& h, float& v);

You can also select a portion of the image to be operated on by using setSize() (inherited
from illmage) and setCenter(). Alternatively, you can ask for only the desired portion
using getTile() or copyTile() with the appropriate arguments, or you can define a region
of interest.

The setSize() and setCenter() functions limit the transformation to the area specified

with setSize(), centered on the point given in setCenter(). The center point is specified in
the input image’s coordinate space. These functions also translate the image’s coordinate
space so that the image’s origin becomes the corner of the region specified by setCenter()
and setSize(). You can clear the center point set with setCenter() by calling clearCenter().

You can zoom the input image to a particular size by calling sizeToFit():

void sizeToFit(float width, float height,
int keepAspect=FALSE);

105

Chapter 4: Operating on an Image

106

You specify the desired image width and height with width and height. If you want the
image to keep its aspect ratio, set keepAspect to TRUE. The default behavior allows the

image’s aspect ratio to change.

Spatial Domain Transformations

Spatial operators transform image data by computing a weighted sum of the pixels in the
neighborhood surrounding the target pixel. The size of the neighborhood and the
weights used for neighboring pixel values are defined by the kernel. Some spatial
operators predefine their kernels while others allow the user to specify them. In addition,
a method for handling pixels at the edge of an image must be specified, since a pixel’s
neighborhood is undefined beyond the edge of a page. The spatial operators provided

with IL are shown in Figure 4-13.

=+ — ilOplmg —

iISpatiallmg

ilConvimg

iIBlurimg

iIDilatelmg

Figure 4-13

The ilSpatiallmg class, which is an abstract class, defines the basic support for spatial
operators that derive from it. The public functions it defines are those that allow you to

ilErodelmg

iIRankFItimg

iISharpenimg

iISepConvimg

iIGBIlurimg

iIMaxFltimg

-

iIMedFItimg

_

iIMinFItimg

Spatial Domain Operator Inheritance Hierarchy

set and retrieve the kernel and the edge-handling method.:

void setKernel(ilKernel* kern=NULL);
void setKernelSize(int x, inty, int z=1);
void getKernelSize(int& x, int& y, int& z);
void getKernelSize(int& X, int& y);

Image Processing Operators Provided with IL

void setEdgeMode(ilEdgeMode eMode = ilPadSrc);
ilEdgeMode getEdgeMode();

Note: Some operators predefine their kernel and thus do not allow you to set it.

The ilKernel class defines a kernel as consisting of the following elements:
= thesize of the kernel in the x, y, and z dimensions

= the size of the data type used to specify kernel weights

= apointer to the data specifying the weights

The x, y, and z dimensions should be odd numbers so that a neighborhood can be exactly
centered on a single, target pixel. If they are even numbers, the data may be shifted. See
the reference page for ilKernel, il/ilKernel.h, and “Auxiliary Classes” on page 342 for more
information about this class.

The origin of an ilKernel normally falls at its center pixel. The origin can be specified with
ilKernel’s setOrigin() function to correspond to any of the pixels in the kernel. The
arguments x, y, and z indicate the origin’s offset from the upper-left-front corner of the
kernel. getOrigin() returns the offset by reference.

void setOrigin(int x, int y, int z=0);

void getOrigin(int &x, int &y, int &z);

iISpatiallmg’s setEdgeMode() function specifies how the neighborhood is defined for
pixels at the edge of the image. Explanations of the supported edge modes, which are
defined in ilTypes.h, follow:

ilReflect Sufficient data near the edge of the image is reflected so that a full-sized
output image can be processed without producing artifacts at the image
edge. This mode gives the best results for most operators.

ilWrap Sufficient data is taken from the opposite edge of the source image so
that a full-sized output image can be processed.

ilPadSrc The edge of the input image is padded with the input image’s fill value
so that a full-sized output image can be processed (see Figure 4-14). See
“Fill Value” on page 29 for more information on an image’s fill value.

107

Chapter 4: Operating on an Image

108

Image Data.
Kernel

Filled Border Page Being Processed

Padded Data

Figure 4-14 The ilPadSrc Edge Mode

ilNoPad No padding is done, and the output image shrinks by the size of the
kernel minus one in each dimension.

ilPadDst Similar to iINoPad, except that the output, image’s border is sufficiently
padded with its fill value so that the final image is the same size as the
source image.

Convolving an Image

The ilConvimg operator performs general image convolution. This class is not an
abstract class, so you can use it directly to convolve image data. The constructor for
ilConvimg, which is its only public member function, is shown below:

ilConvimg(illmage* inputimage=NULL,
ilKernel* inputKernel=NULL, double biasVal = 0.,
iIEdgeMode eMode=ilPadSrc);

This function takes a pointer to the source or input image, a pointer to the kernel, and an
enumerated type that matches one of the supported edge modes. The other argument,
biasValue, is added to the weighted sum (image data multiplied by kernel weight) for
each neighborhood. You can set the bias value with the setBias() function.

You can also perform certain convolutions more efficiently with a separable kernel (one
that is specified by row and column vectors). ilISepConvimg, descended from
ilSpatiallmg, provides this feature. Its constructor accepts the input image, the row and
column kernels, the sizes of the kernels, an optional bias value, and an optional edge
mode:
iISepConvimg(illmage *inputimg = NULL,

float *xkernel=NULL, float *ykernel=NULL, int xsize=1,

int ysize=1, double biasVal=0.0,

Image Processing Operators Provided with IL

iIEdgeMode eMode = ilPadSrc)
float *zkernel = NULL, int zsize = 1);

As shown, the default bias is 0.0, and the default edge mode is ilPadSrc. The default
kernel size for each kernel is 5. This operator is especially efficient for kernel sizes 3 x 3,
5x5,and 7 x 7.

iISepConvimg also defines a set of functions to set and get the kernel vectors:

void setXkernel(float *xval);
void setYkernel(float *yval);
void setZkernel(float *zval, int n = 0);

float* getXkernel();
float* getYkernel();
float* getZkernel();

setXkernel() allows you to change the row kernel; getXkernel() returns its value.
setYkernel() allows you to change the column kernel; getYkernel() returns its value.
setZkernel() allows you to change the depth kernel; getZkernel() returnsits value. If you
replace any kernel with one that has a different size, use ilSpatiallmg.setKernelSize()
(inherited from ilSpatiallmg) to update the sizes.

Blurring or Sharpening an Image

The two blurring operators, ilBlurimg and ilGBlurlmg, both blur an image by
performing a convolution, but they use different kernels and algorithms for the
convolution. iIBlurimg convolves the image with a blurring kernel using the general
convolution algorithm defined by ilConvimg. ilGBlurlmg (descended from
iISepConvimg) convolves an image with a separable two-dimensional Gaussian kernel.
Because ilGBlurlmg uses a separable kernel, it is generally more efficient than ilBlurimg.
Although different methods are used, often the blurred results do not look significantly
different. The reference pages for these classes provide more detailed information on the
kernels and convolution algorithms used. Figure 4-15 shows an original image that is
used as an example in the following pages.

109

Chapter 4: Operating on an Image

110

Figure 4-15 An Original Image

The ilBlurlmg and ilGBlurimg classes have slightly different interfaces:

iIBlurimg(illmage *img = NULL, float blur=1.,

float radius=2., iIEdgeMode e=ilPadSrc);
iIGBIlurimg(illmage *inputimg = NULL,

float blur = 1.0, int xsize = 5, int ysize = 5,

double biasVal = 0., iIEdgeMode eMode = ilPadSrc);

Both constructors take as arguments a pointer to the source image, a blur factor ranging
from 0.0 (no blur) to 1.0 (maximum blur), and an enumerated type specifying the edge
mode. By default, the blur factor is set to 1.0 and the edge mode is ilPadSrc. The radius
argument for ilBlurimg (with a default value of 2.0) and the xsize and ysize arguments for
ilGBlurlmg (with default values of 5) control the size of the kernel used for blurring. (The
iIBlurimg kernel size is equal to 1+radius*2.) ilGBlurlmg’s biasValue argument, which by
default is zero, is added to the final weighted sum.

Both classes allow you to dynamically modify the amount of blur by passing a float value
to the setBlur() function. You can also change the size of the kernel with setBlurRadius()
(for iIBlurlmg) or setBlurKernelSize() (for ilGBlurimg). An image blurred with
iIBlurlmg is shown in Figure 4-16.

Image Processing Operators Provided with IL

Figure 4-16 An Image Blurred with ilBlurimg

The ilSharpenimg class is similar to ilBlurimg, except that instead of using a kernel that
blurs, it uses a kernel that sharpens the image data. Its constructor takes a similar set of
arguments:

iISharpenimg(illmage *img = NULL, float sharpness=.5,
float radius=1.5,ilIEdgeMode e=ilPadSrc);

The sharpness factor indicates the degree of sharpening that should occur. This factor can
have a value between 0.0 and 1.0, with a default value of 0.5. A sharpened image appears
in Figure 4-17.

111

Chapter 4: Operating on an Image

112

Figure 4-17 An Image Sharpened with ilSharpenimg

As with ilBlurimg, you can dynamically change the sharpness factor (with
setSharpness()) and the size of the radius (with setSharpenRadius()). getSharpness()
and getSharpenRadius() are the query methods that return the values of the sharpness
factor and radius. Making the size of the radius too large or repeatedly cycling an image
through the sharpening operation can result in a grainy, high-contrast image. Figure 4-18
shows an example of this.

Figure 4-18 An Over-sharpened Image

Image Processing Operators Provided with IL

To see additional illustrations of the ilIBlurimg and ilGBlurlmg transformations, refer to
“Spatial Domain Transformations” on page 387.

Rank Filtering an Image

The ilRankFItimg class performs two-dimensional rank filtering, which is typically—
though not exclusively—done on black-and-white images. It involves sorting all the
pixel values (for each channel) for a neighborhood of pixels. Then, the target pixel is
assigned the values corresponding to a specified rank. For example, suppose you have
chosen a 3 x 3 neighborhood and a desired rank of 0 (the minimum). In this case, each
pixel is assigned the lowest value found among itself and its eight surrounding pixels.

The classes that derive from ilRankFltimg—ilMinFItimg, ilMaxFltimg, and
ilMedFItimg—assume that the desired rank is the minimum possible rank, the
maximum possible rank, and the median, respectively. Median filtering is useful for
removing binary, or impulse, noise in image data. Minimum and maximum rank filtering
produce morphological erosion and dilation. An example of an image processed with
ilMedFItImg appears in Figure 4-19.

The only public member function defined by these three classes is a constructor, and each
of these constructors takes the same set of arguments. ilMinFItimg’s constructor is shown
below:
iIMinFItimg(illmage* inputimage = NULL,

ilEdgeMode edge=ilPadSrc, ilKernel* inputkernel=0);

As shown, you need to specify the input image, how pixels at the edge of the image are
to be handled, and the kernel. The kernel is treated as a mask. Only nonzero elements are
included in the neighborhood; the rest are ignored, as are the kernel weights.

The constructor for the ilRankFItimg superclass takes the same set of arguments and an
additional one for specifying the desired rank for the target pixel:
iIRankFItimg(illmage* inputimage = NULL, int filterRank = -1,

ilEdgeMode eMode = ilPadSrc, ilKernel* inputKernel=NULL);

The default rank of minus 1 indicates that median rank should be used. You can
dynamically change the desired rank with the setRank() function. You can also
determine what the maximum possible rank is with getMaxRank().

113

Chapter 4: Operating on an Image

114

Original Filtered
Figure 4-19 Median Rank Filtering on an Image

To see additional illustrations of the rank filtering transformations, refer to “Spatial
Domain Transformations” on page 387.

Morphological Operators

Morphological operators include shape-dependent, nonlinear image transformations
such as erosion and dilation. The operators implemented in IL, ilDilatelmg and
ilErodelmg, can be used on 1-D, 2-D or 3-D data sets. More powerful morphological
operations such as “opening” and “closing” can be performed by chaining together
dilation and erosion operations. Opening can be accomplished by an erosion followed by
a dilation. Closing can be done with a dilation followed by an erosion.

These operations are defined on binary or grayscale images. Note that you can operate
on color images if you remember that “binary” and “grayscale” indicate how the pixel
values or intensities in each channel of the image are interpreted. A binary image
contains no more than two levels or intensity values: zero and not zero. An 8-bit image
with 256 pixel intensities can be treated as a binary image by collapsing the intensities
into two groups, for example, a zero pixel intensity could be represented with a zero, and
all intensities between 1 and 255 could be represented with a nonzero value. A grayscale
image, of course, includes more than two intensity values. Thus, an 8-bit image can be
treated as an input image with 256 pixel intensities. Typically, the image has a single
channel. (For multichanneled input, the operations are performed on each channel
independently.)

Image Processing Operators Provided with IL

Both ilErodelmg and ilDilatelmg are derived from ilSpatiallmg and thus involve moving
a kernel across an image, but the operation performed is not a computed sum. Instead,
in morphological operations, the kernel is called a “structuring element” (SE) and is
represented by an ilKernel. The SE, like the input image, can be interpreted as binary or
grayscale. When applied to an image, a morphological operator returns a quantitative
measure of the image’s geometrical structure in terms of the SE.

The interpretation of the numbers that make up an SE depends on the type of
morphological operation being performed. Negative SE elements are always treated as
logical “do not cares” when the operation is in progress, image pixels under negative SE
elements are ignored. Thus, the support of the SE is limited to those elements that are
nonnegative. This permits the creation of odd-shaped SEs. The image pixel under the
origin is the one potentially modified.

Note: You can change the origin of the SE by using ilKernel’s setOrigin() method. The
default is in the center of the SE.

The result of erosion or dilation on a binary image (regardless of whether the SE is binary
or grayscale) is to turn every pixel either “on” or “off.” A pixel in the output image can
then be assigned one of two intensities, corresponding to whether it is on or off. These
two intensities are typically the maximum and minimum values of the operator image,
which can be set using setMaxValue() and setMinValue() (inherited from illmage). If
they are not explicitly set, the maximum and minimum values are inherited from the
input image. For the example of an 8-bit image, the minimum value might be 0 and the
maximum 255. A pixel that is 0 in the input image might have a value of 255 in the output
image, and a nonzero input pixel might be 0 in the output.

The interpretation of the image or the SE as binary or grayscale can be controlled through
the enumerated type ilMorphType, as described below.

= If the input image and the SE are binary (ilMorphType = ilBinBin), the SE is used to
perform a hit-or-miss transformation. That is, if a zero image pixel falls under a zero
SE element, or if a nonzero image pixel falls under a nonzero SE element, the image
pixel beneath the SE origin is turned on (assigned the maximum value) for dilation
and turned off (assigned the minimum value) for erosion. Typically, for binary
images, an SE is composed of negative and positive ones.

= Ifthe inputimage is binary and the SE type is grayscale (ilMorphType = ilIBinGray),
the nonnegative SE elements determine the support area. In other words, image
pixels under negative SE elements are ignored, but if a positive image pixel falls
under a non-negative SE element, the target pixel (under the SE origin) is turned on
for dilation or off for erosion.

115

Chapter 4: Operating on an Image

116

= If the input image is grayscale and the SE type is binary (ilMorphType = ilGrayBin),
the maximum or minimum (depending on whether dilation or erosion is being
performed, respectively) of image pixels falling under positive SE elements is
computed.

= Ifthe input image and the SE are grayscale and a “set” operation is desired
(ilMorphType = ilGrayGraySet), the maximum or minimum (depending on
whether dilation or erosion is being performed) of image pixels falling under
nonnegative SE elements is computed.

= Ifa“function” operation is desired (ilMorphType = ilGrayGrayFct), the
computation is the same as for ilGrayGraySet, except that the SE elements are
added to the image pixels before computing the minimum or maximum.

The constructors for erosion and dilation are shown below:

iIDilatelmg(illmage* inputimage = NULL,
iIMorphType mtype = iIBinGray, ilKernel* se = NULL,
ilIEdgeMode eMode = ilPadSrc);

ilErodelmg(illmage* inputimage = NULL,
iIMorphType mtype = iIBinGray, ilKernel* se = NULL,
iIEdgeMode eMode = ilPadSrc);

Each operator accepts a pointer to an input image (inputimage), a specification of the type
of morphological operation (mtype), a structuring element (the ilKernel pointer se), and an
edge mode (eMode).

The morphological transform types, which are members of the enumerated type
ilMorphType (defined in il/iflDataTypes.h), are summarized below. These types define
whether data in the image and the structuring element (SE) is treated as binary (that is,
having a zero or a nonzero value) or as grayscale (that is, with an appropriate range for
its data type).

BinBin Dilation or erosion on a binary image with a binary SE.

BinGray Dilation or erosion of a binary image with a grayscale SE. The operation
is performed over the support of nonnegative SE elements.

GrayBin Dilation or erosion of a grayscale image with a binary SE. The operation
is performed over the positive support of the SE.

GrayGraySet Dilation or erosion of a grayscale image with a grayscale SE. The
operation is performed over the nonnegative support of the SE.

Image Processing Operators Provided with IL

GrayGrayFct Dilation or erosion of a grayscale image with a grayscale SE. The dilation
or erosion is performed as a function operation over the nonnegative
support of the SE; that is, the SE elements are added to the image pixels
before the dilation or erosion is performed.

Both ilDilatelmg and ilErodelmg define these two functions:

void setMorphType(ilMorphType type);
iIMorphType getMorphType();

setMorphType() allows you to set the type of morphological operation and
getMorphType() returns the type of operation.

Edge Detection

The operators described in this section are gradient operators that produce
edge-enhanced images by performing orthogonal convolutions with particular kernels.
This section focuses on how to use these operators rather than on the specific algorithm
implemented by each of these operators. For more information about the algorithms, see
the reference pages for the specific class.

The classes described in this section inherit directly or indirectly from ilSpatiallmg, as
shown in Figure 4-20.

— iIConvimg — ilCompassimg

— ilLaplacelmg

-+— ilOplmg iISpatiallmg —

— ilRobertsimg

L— ilSobellmg

Figure 4-20 Edge Detection Operator Inheritance Hierarchy

The constructors for the ilRobertsimg and ilSobellmg operators take the same
arguments:

iIRobertsImg(illmage *inputimage= NULL, double biasVal = 0.,
iIEdgeMode edgeMode = ilPadSrc);

117

Chapter 4: Operating on an Image

118

iISobellimg(illmage *inputimage = NULL, double biasVal = 0.,
iIEdgeMode edgeMode = ilPadSrc);

The image to be transformed is specified by inImg. The other two arguments, which have
default values, indicate a bias value to be added as each pixelwise convolution is
performed and how pixels at the edge of a page are to be handled. These arguments have
the same meaning as the ones supplied in the ilConvimg constructor, which is described
in the preceding section. As explained in more detail in the reference pages, these
operators perform two orthogonal, two-dimensional convolutions, which are then
combined with predefined kernels. The resulting images are edge-enhanced images. An
example image produced by ilRobertsimg is shown in Figure 4-21.

Original Filtered

Figure 4-21 Edge Image Produced by ilRobertsImg

The constructor for the ilLaplacelmg operator uses the same arguments as the
constructors shown above, plus an additional argument that allows you to select one of
two predefined kernels:

ilLaplacelmg(illmage *inputimage= NULL, double biasVal = 0.,
iIEdgeMode eMode = ilPadSrc, int kerno = 1);

The kerno argument can be either 1 or 2; the corresponding kernels are listed in the
reference page for ilLaplacelmg. You can use setKernel() to specify either kernel after
you have created an ilLaplacelmg object.

Image Processing Operators Provided with IL

A compass operator measures gradients in a specified direction. The ilCompassimg
operator allows you to specify the desired direction as an angle between 0 and 360
degrees or as one of eight compass points. You can also specify the size of the kernel to
be used. Once all this information is supplied, a square kernel is generated, which is then
convolved with the image data. Here’s the class constructor:

ilCompassimg(ilimage *inimg= NULL,
float angleDir = ilCompassN, double biasVal = 0.,
int kernSize = 3,ilIEdgeMode edgeMode = ilPadSrc);

The angleDir argument can be a number or one of the following values (see Table 4-2),
which correspond to the compass points.

Table 4-2 Compass Directions for the ilCompassimg Operator
Value Angle (in degrees

ilCompassN 0

ilCompassNE 45

ilCompassE 90

ilCompassSE 135

ilCompassS 180

ilCompassSwW 225

ilCompasswW 270

ilCompassNW 315

North, or 0 degrees, is the top of an image (as it is displayed using ilDisplay). Angles are
measured from north in a clockwise direction. The bias value and edge mode arguments
for the constructor have the same meaning as those for ilLaplacelmg. Since the kernel is
always square, only one dimension of its size needs to be specified. You can set and
retrieve the bias value with setBias() and getBias(), which are defined by ilOplmg.

Figure 4-22 shows an example image produced by using ilCompassimg.

119

Chapter 4: Operating on an Image

120

Unfiltered Filtered

Figure 4-22 A Compass Filtered Image

Once you have created an ilCompassimg operator, you can dynamically change the
direction of the gradient with either setAngle() or setXYWt():

void setAngle(float angleDir = ilCompassN);
void setXYWst(float Xwt = 0.0, float Ywt = 1.);

The setXYWt() function specifies weights in the x and y dimensions, which are then used
to generate the kernel. The ilCompassimg reference page describes in more detail how
the kernel is generated from the angle or weights.

You can query an ilCompassimg about its angle or weights with these functions:

float getAngle();
void getXYWit(float& Xwt, float& Ywt);

Frequency Domain Transformations

it is often convenient to manipulate data in the frequency domain, particularly when
restoring, enhancing, or removing noise from images. The ilIRFFTfImg operator
described in this section performs a forward fast Fourier transform (FFT) on an image
(containing “real-valued” data, not complex). Once you have converted an image into
the frequency domain, you can use any of the numerous Fourier operators to manipulate
the image data. Then, when you are finished, you can use iIRFFTilmg, which performs

Image Processing Operators Provided with IL

an inverse FFT, to convert back to the spatial domain. Figure 4-23 shows the frequency
domain operators and how they fit into IL inheritance hierarchy.

’— iIFCrCorrimg
fiIFDyadiclmg L iIFDivimg
iIFMultim
--» —ilFPolyadiclmg 9
— ilFConjlimg
iIFMonadiclmg [
— iIFRaisePwrimg
iIFExpFiltimg
— iIFFiltimg {
iIFGaussFiltimg
L— iIFSpecimg
—| ilFMergelmg
««— ilOpimg
| iIRFFTfimg
iIFFTOp
—| iIRFFTilmg
iIFMagimg
— ilFPolarimg {
iIFPhaselmg

Figure 4-23 Frequency Domain Operator Inheritance Hierarchy

Forward and Inverse Fourier Transforms

As shown in Figure 4-23, both iIRFFTfImg and iIRFFTilmg inherit publicly from ilOplmg
and privately from ilFFTOp. You should think of these two classes as operators that
simply use the forward and inverse transform functions defined by ilOpImg. iIRFFTilmg
tries to set the page size large enough to hold an entire channel of the image.

The FFTs are performed using the Prime Factor algorithm, using floating point
arithmetic. (For more information on the specifics of this algorithm, see the ilFFTOp
reference page and the article “Symmetric FFTs,” by Paul N. Swarztrauber, Mathematics
of Computation, Vol. 47, Number 175, July 1986, pp. 323-346.) The only restriction this

121

Chapter 4: Operating on an Image

122

algorithm places on the input image is that it have a real (non-complex) data type other
than ifIBit. However, the algorithm is most efficient if the image already contains floating
point data (so it does not have to be converted for processing and then converted back
again), has an iflSeparate order, and has dimensions that are products of small primes.
Dimensions that are a power of two yield the most efficient computation. The reference
pages for each of the Fourier operators described in this section contain more
information about the methods used to perform the computations as well as hints about
how to achieve the greatest possible efficiency.

The constructor for the iIRFFTfImg operator and the member function, ilFFTOp.ilIRfft(),
perform a forward FFT.

iIRFFTfImg(illmage *img = NULL, short option = iIFFTxform2D);
iIStatus ilRfftf(illmage* src, int srcCh, void* dst,
short opt = iIFFTxform2D, iIMpCacheRequest* req = NULL);

Using the iIRFFTfImg operator to perform a forward FFT is relatively easy. The first
argument is a pointer to the source image that is to be transformed. The second
argument, called option, allows you to choose whether a one- or two-dimensional
transform is performed; if it is:

e 1,aone-dimensional FFT is performed on the rows of data
e 2,aone-dimensional FFT is performed on the columns of data

« 3, atwo-dimensional FFT is performed (the default)
You can dynamically change this parameter with the setOption() function.

The first four arguments to ilIRFFTfImg() function specify which channel of the source
image is to be transformed and into which channel of the destination image the result
should be put. In this example, channel 0 of srcimg is transformed and placed into
channel 0 of destimg. The size of both of these images must be the same. The last
argument for this function specifies which of the three options described above is
desired. (It has the same meaning as the second argument to the iIRFFTfImg constructor.)

Since the source image must contain real data (not complex numbers), the output is
conjugate-symmetric. In other words, only two of the four quadrants are unique, and
only these are computed for the output. The output is complex, however, so both the real
and imaginary results must be reported. Because of this, the destination image has the

Image Processing Operators Provided with IL

same x and y dimensions as the source image. Table 4-3 shows the format of the output
from the iIRFFTflmg operator function. (The origin is in the upper left corner.)

Table 4-3 Output of a Forward Fourier Transform (if nx and ny are even)

0 1 2 3 4 nx-3 nx-2 nx-1
0 real real imag real imag .. real imag real
1 real real imag real imag .. real imag real
2 imag real imag real imag ... real imag imag
3 real real imag real imag ... real imag real
4 imag real imag real imag ... real imag imag
ny-3 real real imag real imag .. real imag real
ny-2 imag real imag real imag ... real imag imag
ny-1 real real imag real imag ... real imag real

Columns 1 through nx-2 contain the real and imaginary components of a complex
transform, for example, column 1 contains the real component and column 2 the
corresponding imaginary component of the first complex FFT output. The column 0
represents the 0-frequency (or DC) component, and column nx-1 represents the highest
(Nyquist) frequency along the x-direction. These two columns resemble the output of a
real-valued FFT. In the example shown, both nx and ny are assumed to be even. If nx were
odd, the Nyquist column would be missing. If ny were odd, the last row shown would
be missing. Table 4-4 shows the output format if both nx and ny are odd.

Table 4-4 Output of a Forward Fourier Transform (if nx and ny are odd)

0 1 2 3 4 nx-2 nx-1
0 real real imag real imag .. real imag
1 real real imag real imag .. real imag
2 imag real imag real imag ... real imag
3 real real imag real imag ... real imag
4 imag real imag real imag ... real imag

123

Chapter 4: Operating on an Image

124

Table 4-4 (continued) Output of a Forward Fourier Transform (if nx and ny are odd)
0 1 2 3 4 nx-2 nx-1

ny-2 real real imag real imag ... real imag

ny-1 imag real imag real imag ... real imag

This format is what is expected as input by all the Fourier operators described in this
section. In particular, the constructor for the iIRFFTilmg operator expects this format in
their source image. They perform an inverse FFT, which is to say they convert the input
Fourier data back to the spatial domain:

iIIRFFTfImg(illmage *img = NULL, short option = iIFFTxform2D);
iIStatus ilRfftf(illmage* src, int srcCh, void* dst,
short opt = iIFFTxform2D, iIMpCacheRequest* req = NULL);

The iIRFFTilmg constructor takes a pointer to the source image and the same option
argument described above. (The iIRFFTilmg operator also defines the same setOption()
function described above.) For the iIRFFTilmg() function, the source and destination
images (src and dst) must be the same size; the srcCh and dstCh arguments specify the
channel to be transformed and the destination channel number. Both the constructor and
the function produce output data that is real. The output of the forward transform is
multiplied by 1.0/ (nx*ny) so that the forward transform followed by the inverse returns
the original image unscaled.

Separating the Magnitude and Phase Components

The operators described in this section allow you to separate the magnitude and phase
components of a complex Fourier image so that you can process or filter them
independently and then combine them into a complete image when you are finished.
Such an operator chain would look like Figure 4-24.

Image Processing Operators Provided with IL

iIFMagimg
iIRFFTflmg

(operators)

iIFMergelmg iIIRFFTilmg

(operators)

iIFPhaselmg

Figure 4-24 Magnitude and Phase Fourier Operators

As you might expect from their names, the ilFMaglmg operator computes the magnitude
of an input complex Fourier image, and ilFPhaselmg determines the phase component.
The constructors for both of these operators expect the format produced by iIRFFTflImg
(which is described above):

iIFMagIimg(illmage *img = NULL);
iIFPhaselmg(illmage *img = NULL);

The x -dimension of the output image for both these operators is half of the input image’s
size, plus one; the y dimension is unchanged. The x dimension shrinks because the input
image uses two columns for each Fourier element, one for the real component and one
for the imaginary, whereas the magnitude and phase are not complex. For a complex
number represented by a + ib,

the magnitude is

Jaz +b?
and the phase is
atan (b/a)

An operator that is similar to ilFMaglmg, ilFSpectimg, computes the spectrum of a
Fourier image. The computation is the same as that performed by ilFMaglmg, but all

125

Chapter 4: Operating on an Image

126

guadrants are represented in the output image, not just the two that are unique. As a
result, the size of the output image is the same as that of the input image, and the origin
of the output image is at its center rather than its upper left corner. You might use an
ilFSpectimg object for displaying, although you probably want to scale the spectral
values using ilHistScalelmg. (This operator is described in “Radiometric
Transformations” on page 136.) An ilFMaglmg object is more efficient for processing
since redundant calculations are not performed.

The constructor for ilFSpectimg simply takes a pointer to the source image:
iIFSpectimg(illmage *img= NULL);

The ilFMergelmg operator merges an ilFMaglmg and an ilFPhaselmg to produce the
original whole Fourier image. The merged image is converted from polar to rectangular
form so that it is in the format expected by iIRFFTilmg. The constructor for ilFMergelmg
takes pointers to the two images and an int that specifies the desired x dimension of the
final image:

iIFMergelmg(illmage *mag, illmage *ph, int xsize);

The xsize argument is required because the x dimension of a merged image can’t be
uniquely determined from the x dimension of mag or phase. For example, if mag and phase
have x dimensions of 129, the merged image could have an x dimension of either 256 or
257. You can explicitly set the x dimension with setXsize().

Filtering

Two filter operators are provided for use on Fourier images: ilFExpFiltimg and
ilFGaussFiltimg. These operators derive from ilFFiltimg, an abstract class that
implements the basic support for frequency domain filtering. (You can derive your own
filter as described in “Deriving From ilFFiltimg” on page 240.) Both ilFExpFiltimg and
ilFGaussFiltimg expect input in the format produced by iIRFFTflmg. Typically, you'll
apply the iIRFFTilmg operator to the filtered image in order to view the results in the
spatial domain.

The constructors for these operators are shown below:

iIFExpFiltimg(illmage *img, float alpha, float beta,
float gamma,float eccent, float theta);

iIFGaussFiltimg(illmage *img, float hfgain, float dcgain,
float minhalf, float majhalf, float theta);

Image Processing Operators Provided with IL

For more information about what these arguments mean, see the filter equations below
and the reference pages for these two operators.

This is the filtering equation used by ilIFExpFiltimg:
H(uv) = a+ Be{\/[(anuMqu)“ (855U +ayv) 7

This is the filtering equation used by ilFGaussFiltimg:
H (V) = h+ (do—hfye o 7o) T (atmead

where for both equations:

H() = transfer function of the filter

u,v = two-dimensional frequency coordinates

04C0s6' 0gsing' o, sin@' o, cos®’
A T —a— Ay T e, 8y T e, 8,y = ——

xSize ' 2 ySize ' % xSize ' 22 ySize
6 = f—g% where 6 = angle in degrees of the filter’s orientation

xSize = x dimension of the source image
ySize =y dimension of the source image
and where for ilFExpFiltimg:

a = high-frequency asymptote

[3 = decay coefficient

y = exponential decay coefficient
1

A1—g2

where € = eccentricity of equal contours of

o,=10and g, =

the filter and where for ilFGaussFiltimg:

hf = gain of filter at the Nlyquist (highest) frequency

127

Chapter 4: Operating on an Image

128

dc = gain of filter at zero frequency
_ 10.693147 _ 10.693147
Os = |— > and o = —
minHalf majHalf
minHalf = frequency of half-power point along the minor elliptical axis
majHalf = frequency of half-power point along the major elliptical axis

Table 4-5 shows two examples of specific values that might be passed in for
ilIFGaussFiltimg.

Table 4-5 Sample Parameter Values for ilFGaussFiltimg
Parameter High-pass Low-pass

dc 0.004 1.0

hf 3.0 0.002

minHalf 0.01 0.05

majHalf 0.01 0.05

0 (theta) 0.0 0.0

The high-pass values create a two-dimensional circular high-pass filter with a cutoff
value of 0.01 on both axes; its DC gain is 0.004, and its gain at the highest frequency is 3.0.
A high-pass filter diminishes the constant or slowly-changing portions of an image and
thereby accentuates the edge portions (creating a high-contrast, edge image). The
low-pass values create a two-dimensional circular low-pass filter with a cutoff value of
0.05 on both axes; its DC gain is 1.0, and its gain at the highest frequency is 0.002. A
low-pass filter diminishes the dramatically changing values at edges in an image and
thereby accentuates the constant or slowly varying portions (creating a blurry image).
See Figure 4-25 and Figure 4-26.

Image Processing Operators Provided with IL

Figure 4-25 Original Image

Figure 4-26 Image Processed with ilFGaussFiltimg

Functions are defined in ilFExpFiltimg.h and ilFGaussFiltimg.h to set the value of all the
parameters used in the constructors for both operators.

In ilFExpFiltimg.h:
void setAlpha(float val);

129

Chapter 4: Operating on an Image

130

void setBeta(float val);
void setGamma(float val);
void setEccent(float val);
void setTheta(float val);

In ilFGaussFiltimg.h:

void setHFgain(float val);
void setDCgain(float val);
void setMinHalf(float val);
void setMajHalf(float val);
void setTheta(float val);

See the reference pages for more information about these functions.

Single-input Operators

The two operators described in this section are ilFConjlmg and ilFRaisePwrimg, both of
which derive from ilFMonadiclmg. (See “Deriving From ilFMonadiclmg or
ilFDyadiclmg” on page 237 for more information about deriving your own operator
from this class.) iIFConjlmg and ilFRaisePwrimg expect a source image in the format
produced by iIRFFTfImg. Typically, you’ll need to convert ilFRaisePwrimg’s output to
the spatial domain by using iIRFFTilmg. (You do not typically need to convert the result
of applying ilFConjimg to an image back to the spatial domain; usually, it is used in the
middle of a chain of operators in the frequency domain.)

As its name suggests, ilFConjlmg computes the complex conjugate of an image; it also
multiplies the complex values by a real factor:

iIFConjlmg(illmage *img=NULL, float scale = 1.0);

The scale argument is used to multiply or scale the values; the default value of 1.0 results
in no scaling. You can change the scaling factor with setScale(). ilFConjlmg is useful in
computing the magnitude squared of the Fourier transform. For example, assume thelmg
is a pointer to a valid illmage in the spatial domain:

iIRFFTfImg forwardimg(thelmg);
iIFConjimg conjugatelmg(&forwardimg);
iIFMultimg magSquaredimg(&forwardimg, &conjugatelmg);

You can then display magSquaredimg.

Image Processing Operators Provided with IL

The ilFRaisePwrlImg operator raises the natural log of the magnitude values of a Fourier
image by a power, exponentiates the result, and writes the values back in complex
rectangular form:

e Inm)*whergm| = magnitude and p = specified power

This root-filtering operation is useful for image sharpening. The constructor for this class
is shown below:

iIFRaisePwrimg(illmage* src, float power);

The log of the magnitude values of the source image, src, are raised by power,
exponentiated, and converted back to complex rectangular form. The valid range for
power is 0.0-1.0. You can set this value dynamically with setPower().

Dual-input Operators

Three operators take two Fourier images as inputs:
= iIFCrCorrlmg, which computes the cross-correlation of two images
< iIFMultimg, which multiplies two images

< iIFDivimg, which divides two images

These classes derive from ilFDyadiclmg, which implements the basic support for
dual-input Fourier operators, and they expect input images in the format produced by
iIRFFTfImg. To convert the processed data back to the spatial domain, you need to apply
the inverse transform implemented by iIRFFTilmg. See “Deriving From ilMonadiclmg or
ilPolyadiclmg” on page 227 for more information about deriving your own dual-input
Fourier operator.

The constructors for ilIFCrCorrimg, ilIFMultimg, and ilFDivimg expect two images,
which must be the same size:

iIFCrCorrimg(illmage *imgl = NULL, illmage *img2 = NULL);
iIFMultimg(illmage *imgl = NULL, illmage *img2 = NULL);
iIFDivimg(illmage *imgl = NULL, illmage *img2 = NULL,

int ckDiv = 1);

To compute the cross-correlation, ilFCrCorrlmg multiplies srcl by the conjugate of src2
and then normalizes the result using the DC (or (0,0)) coefficient of src1. One of the

principal applications of cross-correlation in image processing is in prototype matching,
where one tries to match a given unknown image to a known image. The closest match

131

Chapter 4: Operating on an Image

132

can be found by selecting the image that yields the correlation function with the largest
value.

Multiplying two Fourier images is equivalent to convolving them in the spatial domain.
Since the Fourier algorithm is very efficient, you might want to choose ilFMultimg over
one of ilConvimg’s subclasses if you are using a large kernel for the convolution.

ilIFDivimg divides srcl by src2 and, by default, checks for division by zero according to
the following rules:

= |If the numerator of the real or imaginary part is positive and the denominator is
zero, the result is the largest possible floating point value (3.40282346e+38).

= |If the numerator of the real or imaginary part is negative and the denominator is
zero, the result is the smallest possible floating point value (-3.40282346e+38).

« If both the numerator and the denominator are zero, the result is zero.

You can call setCheck() and pass in a 0 to prevent ilFDivimg from checking for division
by zero.

You can use ilFDivimg in image restoration. Given the Fourier transform of a degraded
or noisy image and the Fourier transform of the noise function (or “noise image”), you
can retrieve a clean image by dividing (in the frequency domain) the degraded image by
the noise image. Once converted back to the spatial domain, you can then display the
clean image.

Generation of Statistical Data

it is often desirable to collect statistical information about an image, such as how
frequently various pixel values occur and what the minimum and maximum pixel values
are. The ilimgStat class computes this kind of information for an entire image or for a
specified region within an image. More specifically, for each channel of image data, it
computes:

= aone-dimensional histogram showing frequency of pixel values
= the minimum and maximum pixel values

< the mean and standard deviation of the data, calculated from the histogram

The illmgStat class inherits from ilLink, as shown in Figure 4-27.

Image Processing Operators Provided with IL

ilLink P ilimgStat

Figure 4-27 The illmgStat Inheritance

The constructor for the illmgStat class allows you to specify whether the data should be
computed for the entire source image or for just a portion of it, as shown in the next code
fragment. The portion is defined as a region of interest (ROI); see “Defining a Region of
Interest” on page 153 for more information about the ilRoi class, which defines an ROI
within an image.
illmgStat(illmage* img=NULL, ilRoi* roi=NULL,

int xoffset=0, int yoffset=0, int zoffset=0);

The xoffset and yoffset parameters represent the offsets into the img image at which the
ROl is placed. They are specified in the coordinate space of the input image, img.

You can also specify an ilRoi and its offsets for the illmgStat with the
ilCombinelmg.setRoi() function, which accepts a pointer to an ilRoi and two integers. If
no ROI is specified, illmgStat performs its computations over the whole image.

You can use the autoCalcEnable parameter to enable or disable recalculation of statistics.
If the parameter is TRUE, the requested statistics are recalculated whenever the input
image or ROI is changed or altered; if FALSE, input changes or alterations are ignored
and statistics are never recalculated. Currently, existing statistics are returned. If no
values currently exist (for example, immediately after construction, after a reset, or if the
input image has changed and the channel size of the new image is different from the
previous one), the requested values are computed based on the current input. You can set
or query the autoCalc feature with the illmgStat.setAutoCalc() and
ilimgStat.isAutoCalc() functions. This feature is very useful if statistics from one part of
an image are to be used to change other parts of an image.

Note: illmgStat does not derive from illmage, so its constructor does not create an
illmage. It derives from ilLink. Thus, an illmgStat object can’t be passed as an image to
another operator, but it might be one of an operator’s input arguments. Multiprocessing

on an illmgStat object can turned on or off and queried using the enableMP() and
isMPenabled() functions.

An Image’s Histogram

An image’s histogram, which is computed for each channel of image data, is defined by:

133

Chapter 4: Operating on an Image

134

= the starting and ending pixel values—these establish the endpoints of the
histogram’s range.

= the number of bins—the range is evenly divided into a specified number of bins.

= the size of each bin—the size is the range covered by each bin; this is computed by
dividing the total range by the number of bins.

Once you have created an ilimgStat object, you can ask it to compute the histogram of
the source image’s pixel values with the getHist() function:

int* getHist(int c=0, int nBins=0);
int* getHist(double start, double end, int c=0, int nBins=0);

This function is overloaded to allow you to specify the lower and upper endpoints of the
range, as start and end. If you use the first constructor, the endpoints are the minimum
and maximum values found. The other two arguments specify the channel (c) and the
number of bins to use (nbins). If nbins has the default value of 0, the number of bins is
equal to the total range indicated by start and end (in other words, the bin size is 1), up to
a maximum of 4096 bins. (If nbins=4096, then the bin size is the range divided by 4096.)
However, if the image’s data type is either iflChar or iflUChar, 256 bins are used and if
the data type is ifIBit, 2 bins are used, regardless of what value is specified for nbins.

The getHist() function returns a pointer to an int array nbins long that is allocated by
illmgsStat. The values in the array correspond to the number of pixels that have values
within each bin’s respective range. To normalize this data, copy the int array into a float
array, and then divide each element of the array by the total number of pixels used to
compute the histogram for that particular channel. You can obtain the number of pixels
used with getTotal():

int totalPixelCount = mylmgStat.getTotal(1);

The argument for this function is an int that specifies the desired channel. (The number
of pixels used for each of the channels might vary if you have specified different
endpoints for the different channels.)

If the image’s pixel ordering is iflSeparate, you can make multiple calls to getHist() for
each channel and specify varying numbers of bins and starting points and endpoints.
However, the histograms for all channels of iflinterleaved or iflSequential images are
computed on the first call to getHist(), so the number of bins and the starting points and
endpoints are fixed for subsequent calls. If you change limits on subsequent calls, status
issetto ilUSEDOLDLIMITS, which is what getStatus() returns. If you need to change the
histogram’s attributes for subsequent calls, use reset(). This function deallocates the

Image Processing Operators Provided with IL

array created with getHist() and enables you to start over. (In general, you should call
reset() or the illmgStat destructor as soon as you are finished with a histogram to
minimize memory usage.) If you need a histogram you have already computed, copy it
into your own buffer before calling reset().

After you have called getHist(), you can obtain the number of bins, the bin size, and the
lower limit of the first bin for any particular channel:

int numBins = mylmgStat.getNbins(1);
double binSize = mylmgStat.getDBinSize(1);
double lowerLimit = mylmgStat.getDStart(1);

The argument for these functions is an int that specifies the desired channel.

You can use getStatus() to check whether any errors occurred while the histogram was
being computed. This function is inherited from ilLink. See “Error Codes” on page 350
for more information about the values returned by getStatus().

Minimum, Maximum, Mean, and Standard deviation

The illmgsStat class defines functions that return the minimum value, maximum value,
mean, and standard deviation of a particular channel:

double getDMin(int c=0);
double getDMax(int c=0);
double getDMean(int c=0);
double getDStDev(int c=0);

These functions all return the desired number as a double, regardless of the data type of
the image. Both getDMean() and getDStDev() perform their calculations using the most
recently computed histogram, so their return values might be only approximations. This
is because a histogram represents a range of pixel values by a single value, the midpoint
of the bin range. The calculations are exact for images with iflIChar, iflUChar, or ifIBit data
types, or for ones with int values that use a bin size of one. If either function is called
before getHist(), the image’s histogram is calculated first (using the minimum and
maximum values as the endpoints), and then the desired statistical quantity is computed.

Other Functions

Two other support functions are provided:

void setHwEnable(ilHwAccelEnable enable);
void setZ(int z, int nz=1);

135

Chapter 4: Operating on an Image

136

You can use the first function shown above to enable and disable hardware acceleration
by passing in TRUE or FALSE, respectively. You can use the second function to limit

processing in the z dimension of the image. The z argument specifies the starting z value,
and nz indicates the size of the z tile. Thus, you can use these values to effectively create

a 3-D ROLI.

Radiometric Transformations

This section describes a set of operators that adjust all the pixels of an image so that
together they have certain specified characteristics. Three of the operators described in
this section—ilHistNormImg, ilHistEglmg, and ilHistScaleimg—modify an image’s
pixel values channel by channel, so that the image’s histogram has certain desired
properties. You can limit the area for which statistics are computed by specifying an ROI
and its offsets when you create these operators; the operators then adjust all the pixels of
the image so that the entire image’s histogram matches that computed for the ROI. (See
“Defining a Region of Interest” on page 153 for more information about ROIs.) If you
have already created an image’s histogram using illmgStat as described in the previous
section, you can pass a pointer to the existing illmgStat object to speed the
transformations performed by these operators.

The following radiometric operators are described in this section:

ilScalelmg

ilHistNormImg

ilHistEglmg

ilHistScalelmg

ilThreshimg

ilLutimg

linearly scales the pixel data of an image so that it falls in a
new specified range

transforms an image so that its histogram is normalized
(Gaussian) and so that it has a specified mean and standard
deviation

transforms an image so that its pixel values are uniformly
distributed (so that the cumulative histogram is linear)

clamps values to a specified percentage distribution of the
high- and low-intensity pixels and scales the remaining data
between the clamp values

sets each pixel to the image’s minimum or maximum value,
depending on whether the pixel is less than or greater than a
specified threshold value

transforms a source image using a specified lookup table

Image Processing Operators Provided with IL

ilPiecewiselmg transforms a source image using a lookup table created with
a piecewise linear mapping function

The operators that perform radiometric scaling, ilScalelmg and ilHistScalelmg, are
accelerated on certain hardware platforms. The ilLutlmg operator and the operators
derived from it, such as ilPiecewiselmg, ilHistNormImg and ilHistEqimg, are also
accelerated provided they meet the constraints specified in “Using Hardware
Acceleration” on page 251. The ilThreshimg operator is also accelerated through the LUT
mechanism, even though it is not derived from ilLutlmg. All these classes derive directly
or indirectly from ilMonadiclmg, as shown in Figure 4-28.

—1 ilScalelmg [ilHistScalelmg
- —1 ilOpimg iIMonadiclmg iIThreshimg
t iIPiecewiselmg
LR { ilHistNormIimg
ilArithLutimg |— ilHistLutimg ~|:
ilHistEgimg

Figure 4-28 Radiometric Operator Inheritance Hierarchy

Scaling an Image

The ilScalelmg operator linearly scales the pixel data of an image so that it falls in a
specified range. If you do not know the range of the input pixels, the first constructor
shown below must be used. This constructor uses the minimum and maximum value
fields of the input image to determine the input range, and it assumes an output range of
0 to 255. If you want to override the range of the input pixel data, you can use the second
constructor and also specify an output range. The default is 0 to 255.
iIScalelmg(illmage* img = NULL);
iIScalelmg(illmage* img, double inMin, double inMax,

double outMin=0, double outMax=255.999);

137

Chapter 4: Operating on an Image

138

Pixels of value inMin are scaled to outMin, while those of value inMax are scaled to
outMax. Pixels channel values lying between these extremes are scaled accordingly.
Pixels outside the input domain are clamped between outMin and outMax.

The scaling function is normally computed based on inMin and inMax (the domain) and
outMin and outMax (the range). To do this scaling, ilScalelmg computes the slope and
intercept of a linear function of the form:

f(x) = (xSlope) +intercept

Thus, an input pixel of value x becomes an output pixel of value f(x). The slope and
intercept are computed as follows:

(outMax —outMin)

I = = —
Slope (inMax —inMin)

intercept = outMin — (slope O0nMin)
You can alter the operator’s parameters with these member functions:

void setRange(double outMin, double outMax);
void setDomain(double inMin, double inMax);

You can control the scaling behavior with these functions:

void resetDomain();

void resetRange();

void resetScaling();

void setScaling(double slope, double intercept);

resetDomain() invalidates the current input levels and, if none are specified using
setDomain(), the minimum and maximum values of the input images are used for the
domain.

resetRange() invalidates the current output levels and, if none are specified using
setRange(), default values are computed using the input domain and the scaling values
(slope and intercept). An example image produced using ilScalelmg is shown in

Figure 4-29.

resetScaling() forces the operator to forget any values explicitly set for slope and intercept
and to compute them as shown above.

setScaling() allows you to explicitly set the values of the slope and intercept of the scaling
function.

Image Processing Operators Provided with IL

Figure 4-29 Using Scaling

Histogram Operators

Both ilHistNormImg and ilHistEqlmg derive from ilHistLutlmg, which itself derives
from ilArithLutlmg. This inheritance allows the histogram operators to use lookup tables
to determine resulting values, rather than perform the computations on a per-pixel basis.
As a result, the histogram operators are more efficient.

The constructors for ilHistNormImg are:

ilHistNormImg(illmage *img, iflPixel &mn, iflPixel &std,
illmgStat *imgstat = NULL, ilRoi *Roi = NULL,
int xoffset = 0, int yoffset = 0, int zoffset = 0);
ilHistNormImg(illmage *img=NULL, illmgStat *imgstat=NULL,
iIRoi *Roi=NULL, int xoffset=0, int yoffset=0,
int zoffset=0);

139

Chapter 4: Operating on an Image

140

The first constructor allows you to specify the source image and the desired mean, mn.
and standard deviation, std. The second constructor takes a source image and computes
default values for the mean and standard deviation. The mean for each channel is
computed as the average of the minimum and maximum values of the source image for
that channel. The standard deviation is set to 1.0 for each channel.

The iflPixels can use any data type, but their number of channels must match that of the
source image. If you have already created an ilimgStat object (for the source or even a
different image), you can pass a pointer to it. This makes ilHistNormImg more efficient.
If you supply both an ilimgStat and an ilRoi, the histogram computed for the ilimgStat
is used and the ilRoi is ignored.

You can dynamically change the mean, the standard deviation, the ilimgStat object, and
the ilRoi and its offsets with the following ilHistNormImg.h functions:

void setMean(iflPixel& mean);

void setStdev(iflPixel& stdev);

void setimgStat(illmgStat* imgstat);

void setRoi(ilRoi* Roi, int xoffset = 0, int yoffset = 0);

The setimgStat() and setRoi() functions are inherited from ilHistLutlmg.

Histogram equalization and histogram scaling of an image are often performed to
enhance the contrast of an image. Histogram equalization results in an image with pixel
values that are more evenly distributed.

The constructor for ilHistEqlmg is shown below:
iIHistEqImg(illmage *img = NULL, illmgStat *imgstat = NULL,
iIRoi *Roi = NULL, int xoffset=0, int yoffset=0,
int zoffset=0);

As shown, you specify the source image, the illmgStat object if one exists, and an optional
ROI along with its offsets. This class also inherits setimgStat() and setRoi() functions as
does ilHistNormImg.

The constructor for ilHistScalelmg is more complicated:

ilHistScalelmg(illmage* img = NULL, double lowClip=0,
double highClip=0, double outMin=0, double outMax=255,
illmgStat* imgstat=NULL, ilRoi* Roi=NULL,
int xoffset = 0, int yoffset = 0);

Image Processing Operators Provided with IL

The src argument specifies the source image. The next four arguments specify how the
source image should be transformed. The highClip and lowClip arguments indicate what
percentage of the high and low intensity pixels should be clamped to the values specified
by outMax and outMin, respectively. Imagine that the pixels are sorted in order of
increasing intensity, as in a histogram. Then, highClip percent of the highest-intensity
pixels are set to the outMax value, and lowClip percent of the lowest-intensity pixels are
set to the outMin value. After the desired pixels have been clipped, the remaining pixels
are scaled linearly between the clamp values. The optional ilimgStat and ilRoi objects
(and offsets) each have the same meaning as with ilHistNormImg.

You can dynamically change all these arguments with the following ilHistScalelmg
functions:

void setimgStat(illmgStat* imgstat);

void setRoi(ilRoi* Roi, int xoffset = 0, int yoffset = 0);
void setClip(double lowClip, double highClip);

void setRange(double outMin, double outMax);

One other useful function, setHistLimits(), allows you to change the limits between
which the histogram is to be computed:

void setHistLimits(double low, double high);
The two arguments, low and high, define the histogram’s limits.

Be careful when changing the input to any of the histogram operators by using
setlnput(). (See “Dynamically Reconfiguring a Chain” on page 57 for more information.)
If an illmgStat has already been specified in a histogram operator constructor and then
setlnput() is called, the old ilimgStat is used unless you call setimgStat() with a new one.
You can use NULL in setimgStat() to force a new one to be computed.

The Threshold Operator

The ilThreshimg operator sets each pixel (on a channel by channel basis) to the image’s
minimum or maximum allowable value, depending on whether the pixel is less than or
greater than a specified threshold value. (See “Minimum and Maximum Pixel Values” on
page 30 for more information about how to set an image’s minimum and maximum pixel
values.)

To create an ilThreshimg operator, you can use one of the following constructors;

iIThreshimg(illimage* img, const iflPixel& thresh);
iIThreshimg(ilimage* img= NULL, float val = 0);

141

Chapter 4: Operating on an Image

142

In the first constructor, the threshold is specified as an iflPixel, and a different threshold
level can be applied to each channel of the source image. In the second constructor, the
same threshold, val, is applied to all channels.

Each channel or each pixel of the source image is compared to the threshold value, thresh
or val. If the channel value is less than the threshold value, it is set to the image’s
minimum channel value. If the channel value is greater than or equal to the threshold
value, it is set to the maximum channel value. (If thresh is a single-channel pixel, its value
is used for all channels of the source image.)

You can query an image about its threshold value and dynamically change this value
with these functions:

void getThresh(iflPixel& thresh);
void setThresh(float val);
void setThresh(const iflPixel& thresh);

getThresh() returns the threshold value by reference, and setThresh() sets the threshold
value.

ilLutimg

The ilLutlmg class transforms a source image using a specified lookup table (LUT). As
mentioned previously, ilArithLutlmg (see “Single-input Operators” on page 91) and
ilHistLutlmg (see “Histogram Operators” on page 139) derive from ilLutimg. Normally,
the LUT and the image have the same number of channels. However, two other
possibilities are allowed: if the LUT has only one channel, it is applied to each channel of
the image. If the source image has only one channel while the LUT has n channels, each
LUT channel is applied to the source image in turn, producing an ilLutimg with n
channels. (For any other combination, the ilStatus value iILUTSIZEMISMATCH is
returned by any data access operations.)

The first constructor below allows you to specify the source image and the LUT. The
second one lets you specify the source image and sets the LUT to NULL. You can later
specify a LUT using the setLookUpTable() function.

ilLutimg(illmage* src, const iflLut& table);
ilLutimg(illmage* src = NULL);

See “Using iflLut” on page 344 for more information about the iflLut class and also for
an explanation of how lookup tables can be stored and retrieved using SGI image files.

Image Processing Operators Provided with IL

You can dynamically change or retrieve the LUT with these functions:
iIStatus setLookUpTable(const iflLut& table);

If you change the LUT, the output number of channels and data type are updated, if
necessary, to accommodate the new LUT.

ilPiecewiselmg

The ilPiecewiselmg class, derived from ilLutlmg, simplifies the task of constructing a
lookup table when only a piecewise linear mapping is needed from the input pixels to
the output data. The constructor accepts the source image, a list of breakpoints, and the
length of that list:
ilPiecewiselmg(illmage* inputimage = NULL,

const ifIXYSfloat* bkpts=NULL, int length=0);

A breakpoint is a point on a piecewise continuous function where two continuous
segments meet, as shown in Figure 4-30.

Output
channel

values O <4— Breakpoint

® <4— Endpoint

»
255
0 Input channel values

Figure 4-30 Breakpoints along a Piecewise Continuous Function

The endpoints, 0 and 255, are made breakpoints by default (this does not affect the length
of the breakpoints list). If a breakpoint is entered outside the range, it is clamped to the
appropriate endpoint.

Several functions are provided to manipulate the breakpoints:

iIStatus setBreakpoints(const ifIXY Sfloat* bkpts=NULL,
int length=0, int chan=-1);
iIStatus insertPoint(const iflXYSfloat& point, int index,
int chan=-1);

143

Chapter 4: Operating on an Image

144

iIStatus replacePoint(const ifIXYSfloat& point, int index,
int chan=-1);
iIStatus removePoint(int index, int chan=-1);

setBreakpoints() allows you to specify a new list of breakpoints (of length). You
can specify a list for a specific channel with the chan argument;
if this is minus 1 (the default), the list is used for all channels in
the image.

insertPoint() inserts a breakpoint point after the one at index in the list for
channel chan.

replacePoint() replaces the breakpoint at index in the breakpoint list for
channel chan with point.

removePoint() removes the breakpoint at index; you specify which channel’s
breakpoint list with chan.

Image Processing Operators Provided with IL

You can query an ilPiecewiselmg about its breakpoints with these functions:

int getBreakpoints(iflXY Sfloat* bkpts, int chan=0);
int getNumBreakpoints(int chan=0);
void getPoint(if XY Sfloat& point, int index, int chan=0);
float findPoint(if XY Sfloat& loc, int& index,
int forlnsert=0, int chan=0);

getBreakpoints() accepts a pointer to a list of breakpoints and returns the
length of the breakpoint list for chan as an int and the
breakpoint list itself through bkpts (you must allocate
enough space in bkpts before this function call).

getNumBreakpoints() returns the number of breakpoints in the breakpoint list
for chan.
getPoint() returns the breakpoint at index in the breakpoint list for

chan by reference in point.

findPoint() accepts a location (loc), an index into the breakpoints list for
chan, and a flag specifying whether the closest breakpoint
should be found (forlnsert = 0) or whether the closest edge
should be found (forInsert = 1). In either case, the distance
between the given location and the found location is
returned as a float, the breakpoint is returned by reference
in loc, and the index of that breakpoint is returned in index.

In all of the above functions, chan is 0 by default, specifying the first channel of the image.

Figure 4-31 shows an example of an application with a graphical user interface (imgview)
that can be written with ilPiecewiselmag.

145

Chapter 4: Operating on an Image

Original Edited LUT Editor RGB Interface

Figure 4-31 Using a Lookup Table Editor to Set Breakpoints

Combining Images
The three operators described in this section—ilBlendlmg, ilMergelmg, and
ilCombinelmg—combine two or more images into one using different methods:

< ilBlendimg blends two images using a specified alpha value or alpha images that
indicate how to weight the images relative to each other.

= iIMergelmg merges a series of images into a single multiple-channel image.

= ilCombinelmg combines two images using a mask to define which portions of the
two images to use in the final combined image.

These three classes have very different pedigrees, as shown in Figure 4-32.

illmage | — ilCachelmg [ilOpImg —— ilPolyadicimg |- ilBlendimg

L iiCombinelmg

Figure 4-32 ilBlendlmg, ilMergelmg, and ilCombinelmg Inheritance Hierarchy

146

Image Processing Operators Provided with IL

iIBlendimg

The constructors for iIBlendImg allow you to specify a constant alpha value or to specify
third and fourth images that contain alpha values for each pixel of the foreground and
background images. You can also select the way in which the foreground and
background images are blended:

iIBlendimg(illmage* fore, illmage* bkgd, float alpha);

iIBlendimg(illmage* fore = NULL, illmage* bkgd = NULL,
illmage* alphaf = NULL, illmage* alphab=NULL,
ilCompose comp=ilAplusB);

The first constructor specifies one constant alpha value (which should fall between 0.0
and 1.0) that is used to calculate a foreground and background alpha. If the second
constructor is used, the alpha values are taken from the first channel of alphaf (for the
foreground alphas) and alphab (for the background alphas). The other channels, if any, are
ignored. In the default mode (ilAplusB), if alphab is NULL, then the background alpha
values for each pixel are computed from alphaf as 1 - alphaf. Figure 4-33 shows an example
image produced using the ilBlendimg operator and the ilAplusB compose mode.

The second constructor also allows you to specify the composition mode. See Figure 4-34

for an explanation of these modes. The default is ilAplusB. The composition modes are
defined in the header file il/iflDataTypes.h.

147

Chapter 4: Operating on an Image

Original 1 Original Mask

Original 2 Blend of 1 and 2

Figure 4-33 Blended Images

The foreground, background, and alpha images must all be the same size. The alpha
values defined by alphaf and alphab are normalized to the range (0-1), based on the
minimum and maximum allowable pixel values of alphaf and alphab. The foreground and
background alphas are calculated as follows:

forea = alpha, backa =1 - alpha or

forea = alphaf, backa = alphab (if alphab is not NULL), and

backa =1 - alphaf (if alphab is NULL)

148

Image Processing Operators Provided with IL

The blending function, which is used for each pixel, is:
F, Qoregroundforea + F, [backgroundbacka

The composition mode determines Fn and Fg. For the default composition mode
(ilAplusB), they are both equal to 1.0, see Figure 4-34.

If illmgA is the foreground image and illmgB is the background image, then

0 = alphaf and ag= alphab .

However, when alphaB=NULL, then

og = alphaf

You may set the composition method with setBlendMode(). It takes one argument of

type ilCompose:

void setBlendMode(ilCompose mode = ilAplusB);

You can explicitly set the minimum and maximum allowable pixel values of the alpha
images alphaf and alphab using these functions:

void setAlphaRange(float fmin, float fmax);
void setAlphaRange(float fmin, float fmax,
float bmin, float bmax);

The first function sets the normalizing values for the foreground alpha. The second sets
the minimum and maximum values of the alpha for the foreground and background
images.

To query an ilBlendimg about its normalizing values, use:

void getAlphaRange(float& fmin, float& fmax);
void getAlphaRange(float& fmin, float& fmax,
float& bmin, float& bmax);

The first function returns the normalizing values for the foreground alpha, and the
second function returns the normalizing values for both the foreground and background
alphas. You can also dynamically change the alpha images or the constant alpha value:

iIStatus setAlphaPlane(illmage* alphalmg);
iIStatus setAlphaPlane(ilimage* alphaf, illmage* alphab)
iIStatus setConstAlpha(float val);

149

Chapter 4: Operating on an Image

The first function shown above sets the foreground alpha image, while the second
function sets both the foreground and background alpha images. The third function sets
the constant alpha value. You can also use setOffset() (inherited from ilPolyadiclmg) to
offset the foreground image with respect to the background image.

Mode Diagram Fa Fo
1 0
illmgB 0 1
iIAoverB 1 1-a,
iBoverA 1-a, 1
ilAINB ag 0
iIBinA 0 a,
ilAoutB ’ 1_“5 0
iIBoutA 0 1-a,
ilAatopB ag 1-a,
iBatopA 1-ag a,
ilAxorB 1-ag 1-a,
ilAplusB 1 1

Figure 4-34 Composition Modes for ilBlendimg

150

Image Processing Operators Provided with IL

iIMergelmg

An ilMergelmg consists of a single illmage formed by merging a number of images. The
number of channels of the merged image equals the sum of the number of channels in all
the individual input images. All the input images should be the same size, but you can
assign a different data type or order to the final ilMergelmg as it is created:

iIMergelmg(illmage** imgPtr, int nimg,
iflOrder order=iflinterleaved,
iflDataType dtype=ifiDataType(0));

iIMergelmg(int nimg, illmage** imgPtr);

In both of these constructors, imgPtr is an array of pointers to the ordered input ilimages.
The first nimg illmages in the array are merged and the rest are ignored. (imgPtr should
have at least nimg pointers.) The first constructor lets you specify an order and data type
for the merged image. If the default data type numilTypes is used, the data type of the
merged image is the largest data type of the illmages. If the second constructor is used,
the order and data type of the merged image are the same as those of the first illmage
pointed to in the imgPtr array.

ilCombinelmg

An ilCombinelmg takes two illmages of the same size and uses an ROI (and its offsets)
to determine which pixels to use in the final image (pixels that are inside the ROI are
taken from the foreground image, and pixels that are outside the ROI are taken from the
background image):

ilCombinelmg(illmage* fore=NULL, illmage* bkgd=NULL,
iIRoi* roi=NULL,int xoffset=0, int yoffset=0,
int zoffset=0);

See “Defining a Region of Interest” on page 153 for more information about creating an
ilRoi object. The xoffset and yoffset parameters specify the offsets at which the ROl is
placed in the foreground and background images; they are specified in the coordinate
space of the fore image. You can change the ROI and its offsets after the combined image
is created, and you can obtain a pointer to it with these ilHistScalelmg functions:

void setRoi(ilRoi* roi, int xoffset = 0, int yoffset = 0,
zoffset = 0);
iIRoi* getRoi();

151

Chapter 4: Operating on an Image

152

Constant-valued Images

The ilConstlmg class allows you to create an object that returns a constant value
whenever its data is read. You might use this class as an input to one of the operators
described in the “Dual-input Operators” on page 94, for example, to multiply each pixel
in an image by a constant value. Remember that ilConstImg is not an operator since it
derives directly from ilimage.

The ilConstlmg class defines only one function, its constructor:
ilConstimg(const iflPixel& fill);

The specified iflPixel is the value returned whenever the image’s data is read, regardless
of how much data is read. Since an ilConstlmg stores only one iflPixel, it uses much less
memory than, for example, an ilMemorylmg filled with pixels. To change an
ilConstimg’s pixel value after you have created an ilConstimg object, use the setFill()
function defined in illmage and described in “Fill Value” on page 29.

Using a Null Operator

As its name suggests, the ilNoplmg operator performs no operation at all. It is useful for
caching the results defined by a non-cached class, such as ilMemorylmg (described in
“Importing and Exporting Image Data” on page 77). it is also useful if you just want to
change some of the attributes of any image (for example, data type, data ordering, or
page size) and need to cache the result. Note that this class is a real operator, as it derives
from ilMonadiclmg.

The iINoplmg class defines one public member function, its constructor:
iINopImg(illmage* inputimage = NULL);

An image stored as an ilIMemorylmg cannot take advantage of IL’s on-demand paging
mechanism, since it does not derive from ilCachelmg. iINopIlmg, however, is derived
(indirectly) from ilCachelmg. Thus, storing that iIMemorylmg as an ilNoplmg allows
you to page that image.

Defining a Region of Interest

Defining a Region of Interest

Some IL programs, especially those that deal with large images, may need to apply an
operator to only a portion of an entire image. When this is the case, you can restrict the
processing area to a region of interest (ROI). An ROI allows you to modify irregular
regions of an image. IL provides two principal classes that let you restrict the data that
can be accessed:

= ilRoilmg, which associates a ROl with an image so that subsequent operations on
the image affect only the data inside the ROI

= ilSublmg, which allows a rectangular portion of an image to be treated as if it were
an independent image

In some situations, these two classes might appear to have similar effects, but they
actually achieve their results through very different means, and they have different uses.
ilRoilmg, derived from ilCombinelmg, is the same size as the initial image. The
difference is that portions of the ilRoilmg are “masked out”—set to a specified
background value—so that they will not be affected by processing. You use an ilRoilmg
when you wish to modify a portion of an image while leaving the rest of the image intact.
This is the traditional masking, or ROI, concept.

iISublmg, derived from ilOplmg, does not actually hold any data itself; it merely
implements the standard data access illmage functions—getSubTile3D(),
setSubTile3D(), and copyTileCfg()—so that they access only the data in the subimage.
When you call one of the access functions, you specify the origin and size of the desired
tile in the subimage. The ilSublmg maps the coordinates of the desired tile to the source
image so that the correct data is accessed. An ilSublmg can be used as a rectangular ROI,
but it is most useful for manipulating the input images to an operator to achieve
particular results. For example, you can use an ilSublmg to offset two images relative to
each other before they are fed into an ilAddImg operator to be added together. (You can
also do this with the ilPolyadiclmg.setOffset() function in ilPolyadiclmg.) Or you can
select the red and blue channels of an image using two ilSublmgs and then add them
together.

Once you have created either an ilSublmg or an ilRoilmg, you can use it in an operator
chain just as you would any other illmage. You can also write data back into ilSublmg or
ilRoilmg, which you cannot do with an operator (since all operators are read-only).
When you do write data back into an ilSublmg or an ilRoilmg, the input image is
modified appropriately. The next sections describe how to use these two classes.

153

Chapter 4: Operating on an Image

154

Creating an ilRoilmg

Typically, you use an ilRoilmg when you are displaying processed data or writing itto a
file. By restricting the area that needs to be processed, you can prevent data from being
processed unnecessarily.

Before you can create an ilRoilmg, you need to create the following:
= the source illmage that is to be masked with the ROI

= the actual ROl itself, in the form of an ilRoi object

= the x and y offsets for placing the ROI into the source image

= the background value, an iflPixel, that is used to fill areas outside the ROI

The source image can be any illmage, and it can be part of an already existing operator
chain. The background value defines the ilimage’s values outside the ROI. As shown
below, the constructor for the ilRoilmg class takes pointers to all three of these objects:

iIRoilmg(illmage *Img, ilRoi *Roi, iflPixel &bkgd,
int xoffset=0, int yoffset=0);

This constructor associates the ilRoi with the source illmage and sets the ilRoilmg’s
background value. The xoffset and yoffset values determine where the ROI is placed; they
are specified in the src image’s coordinate space. Subsequent operations to the ilRoilmg
affect only the image data inside the specified ilRoi. Any attribute of an ilRoilmg that is
not explicitly set is inherited from its source image.

Once an ilRoilmg is created, you can modify its associated ilRoi or the background value
by calling ilHistScalelmg.setRoi() or ilRoilmg.setBkgd(). These ilHistScalelmg
functions take a pointer to the desired ilRoi or iflPixel:

void setRoi(ilRoi* roi, int xoffset = 0, int yoffset = 0);
void setBkgd(iflPixel& bkgd);

You can also query an ilRoilmg about its ROI or background value:

iIRoi* getRoi();
void getBkgd(iflPixel& bkgd);

The ilRoi base class defines the basic concept of a region of interest in IL. It is an abstract
class, so you must use one of the classes that derive from it to create an ROI. (You can also
derive your own class to define an ROI that more specifically matches your needs. See

“Deriving From ilRoi” on page 241 to learn more about deriving from ilRoi.) An ilRoi is

Defining a Region of Interest

a two-dimensional object with its own x and y dimensions and its own coordinate space.
If you imagine the ilRoi placed on top of the image and yourself viewing it from above,
you would see regions of the image inside and outside the ilRoi. The regions inside are
considered valid and are accessible for image processing operations; those outside the
ilRoi are invalid and are typically set to a background value for processing. The same
ilRoi can be associated with different images (which can be different sizes), and it can be
placed at different offsets within each image. This functionality is achieved through the
ilRoiMap class, which is described later. You manage the ilRoi’s coordinate space with
ilRoi.setOrientation() and ilRoi.getOrientation().

Currently, IL provides two classes derived from ilRoi, as shown in Figure 4-35.

iIRectRoi

ilLink iIRoi

illmgRoi — ilBitMapRoi

Figure 4-35 IRoi’s Subclasses

An ilRectRoi defines a rectangular ROI, and an ilBitMapRoi defines a bitmap of any
shape that can be used as an ROI.

A Rectangular ROI

As its name suggests, ilRectRoi allows you to define a rectangular ROI:
iIRectRoi myRoi(20, 30, 1);

All the arguments for the ilRectRoi constructor are of type int. The first two specify the
sizes in the x and y dimensions (20 and 30) of the rectangle to be used as the ROI. The
optional last argument, which can be either 1 or 0, indicates whether the area inside or
outside the rectangle should be considered the valid area. The default value is 1, which
defines the inside of the rectangle as the valid area. You specify the image that the
ilRectRoi is associated with and the offsets into the image later so that the same ilRectRoi
can be used for different images at different offsets. In addition, operators that take an
ROI as an input also take the offsets as arguments.

You can also determine which is the valid area (the inside or the outside of the rectangle)
and change the current designation:

int getValidValue();

155

Chapter 4: Operating on an Image

156

iIStatus setValidValue(int val);

The first function returns either a 1 or a 0 to indicate that the inside or the outside is valid,
and the second function sets the valid area.

Creating an ilSublmg

The ilSublmg class defines three constructors that let you create a subimage that is a
different size from the source image. The first constructor is for two-dimensional images,
the second for three-dimensional images, the third for four-dimensional images, and the
last for use as a NULL constructor.

iISubimg(illmage *src, int xs, int ys, int xsz, int ysz,
ilConfig* config = NULL);

iISubimg(illmage *src, int xs, int ys, int zs, int xsz,
int ysz, int zsz, ilConfig* config = NULL);

iISubimg(ilimage *src, ilConfig *config);

iISubimg();

The first argument in all of these functions is a pointer to the source image. The next
arguments specify the location of the origin of the subimage (xs, ys, zs, and cs), measured
in pixels in the source image, and the dimensions of the subimage (xsz, ysz, zsz, and csz),
as shown in Figure 4-36. (This figure assumes that the subimage’s coordinate space is
iflLowerLeftOrigin.) If the dimensions are larger than the source image, the subimage is
padded with the source image’s fill value.

4—— Source Image

T Subimage
-+
ysz
¢ X (xs, ys)
< XSZ—p

Figure 4-36 Source Image and Subimage

The last, optional argument for these constructors is a pointer to an ilConfig object that
specifies the configuration of the subimage. If this argument is not supplied, the
subimage inherits its configuration from the source image.

Defining a Region of Interest

Another constructor is provided for convenience when the subimage has the same size
as the source image but a different configuration:

iISublmg(illmage* src, ilConfig* config);

You can use the ilConfig argument for any of these constructors to select a subset of the
source image’s channels and to reorder them; you can also use it to set the coordinate
space, data type, and pixel ordering of the subimage.

Once you have created an ilSublmg, you can modify several of its attributes—size, data
type, order, color model, and coordinate space—using the functions defined in illmage.
To change an ilSublmg’s configuration after you have created it, use setConfig(). This
function takes a pointer to an ilConfig and modifies the ilSublmg accordingly. Any
attribute of an ilSublmg that is not explicitly set is inherited from its source image.

You can also translate the origin of a subimage after it is been created:
const int xorigin = 20;
const int yorigin = 20;

mySublimg.setMouse(xorigin, yorigin);

As shown, setMouse() expects const int arguments. For a three-dimensional image,
supply a third argument for the z dimension. For a four-dimensional image, supply a
fourth ¢ dimension. The ilSublmg’s origin, not its size, is affected by setMouse(), as
shown in Figure 4-37.

Translated
¥ | Subimage
o Image ——

r— Subimage

Figure 4-37 Translated Subimage

You can also query a subimage about its origin using one of the following methods:

iIDisplay.getMouse(int& X, int& y);
iIDisplay.getMouse(int& X, int& y,
iflOrientation orientation);

157

Chapter 4: Operating on an Image

As shown, the overloaded getMouse() retrieves the origin by reference.

The virtual method, illmage.hasPages(), indicates whether a class implements paging

and is defined by ilSublmg. It returns TRUE if its parent implements paging and FALSE
otherwise.

158

Chapter 5

Displaying an Image

This chapter describes how to display and manage a set of images on the screen using
IL’s display facility. As part of this facility, numerous functions are provided to help you
develop an interactive image-processing program. You can use these functions to move
images, perform wipes, roam around an image, and create split views of multiple
images.

This chapter describes IL’s display facility in the following major sections:

“Overview of the Display Facility” on page 160 describes the sequence of
operations you must perform to display an image.

“A Simple Interactive Display Program” on page 165 lists and describes a program
that opens an image file, performs an operation on it, and allows interactive
viewing of both images.

“Creating an ilDisplay” on page 169 describes in detail how to open a window and
create an ilDisplay.

“View and Display Basics” on page 171 describes basic concepts such as setting
background color and page borders and deferring drawing of a view.

“Managing Views” on page 176 describes how to manage the view stack and how
to retrieve information from views.

“Applying a Display Operator” on page 183 tells you how to use display operators
to draw views, relocate or resize them, and update them.

“A More Complicated Interactive Display Program” on page 195 contains a
program illustrating control of a display.

159

Chapter 5: Displaying an Image

Overview of the Display Facility

IL display classes described in this chapter are shown shaded in Figure 5-1.

illmage

ilLink

ilView iIStereoView

| iIDisplay l— iIViewer

iIGLXConfig

Figure 5-1 IL Display Classes

With IL’s display facility, you can display any combination of IL or X images in an X or
OpenGL window. These images can be positioned anywhere within the window and can

overlap each other.

Overlapped regions are displayed based on a stacking order such that the image on top
is visible, as shown in Figure 5-2.

160

Overview of the Display Facility

4—— X Window

Assuming:
addView(Img1)
addView(Img2)
addView(Img3)
addView(Img4)

— ilViews

Background
(display area)

Figure 5-2 Stacked Images in an X Window

In order to assemble such a display, you must follow these steps:

1.

Create or open the images.

You can display any combination of illmage, ilXImage, or XImage using either
OpenGL or X to render them. (An XImage is an X Window struct.) Often, displayed
images are the product of an image processing chain. For example, you might want
to display the original unprocessed image, an intermediate stage of the chain, and
the final image. In some cases, you might want to display only a portion of an
image.

Configure and open a window.

To open an X window, use the standard X calls. To open a OpenGL window, use the
OpenGL calls explained in “A Sample Program in C++” on page 2.

Create a display.

Use calls to ilDisplay functions.
Add the images to the display.
Use calls to ilDisplay functions.
Cause the images to be displayed.

Use calls to ilView and ilDisplay functions.

161

Chapter 5: Displaying an Image

162

Note: You should assume that any function discussed in this chapter is an IL function,
unless it is explicitly identified as a OpenGL or X function.

The three principal classes within the IL display facility are

= iIDisplay—Manages one or more ilViews in an X or OpenGL window. The entire
window is used for display. An ilDisplay object maintains a stack of ilViews and
provides functions to manipulate them. ilViewer derives from ilDisplay, which
manages the display of images in an X window with X event handling.

= ilView—Maps an illmage or XImage to a region within the ilDisplay. It has various
attributes such as view position, view size, image position, border color, and border
width.

= ilFrameBufferimg—Acts as a base class for images that reside in the frame buffer.
There is one derived classes: iIXWindowlImg.

When an ilDisplay is created, it creates an ilXWindowlImg for X rendering. The display
image is configured to occupy the entire window specified by the application. As
Figure 5-3 illustrates, the creation of an ilDisplay object defines a display area in which
views are drawn.

Memory
<4+— X Window
iIDisplay
object
Display Area
Figure 5-3 ilDisplay Object Creates a Display Area

When you want to add an image to ilDisplay, create an ilView to control where you want
the image to be displayed. This view is pushed onto an indexed view stack and a pointer
to it is returned to your application. As you add more images, you must create an ilView
for each image. These views are pushed onto the view stack. When a view is added to the
stack, it is pushed onto the top by default. However, you can specify a particular index
to control where the view is put in the view stack. An ilView has various attributes, such
as

Overview of the Display Facility

= view position, which controls where in the window the image is displayed

= view size, which controls how much of the image is displayed

= image position, which controls what part of the image is displayed

The position of an ilView in the view stack controls its visibility on the screen, as shown

in Figure 5-2. The view on the top of the stack is fully visible. A view at the bottom of the
stack is obscured by the views above it.

In Figure 5-4, two ilView objects have been created and the positions of the
corresponding views in the display defined. Two images to be displayed have been
added to the view stack.

Memory

ilView
objects Img2

i tack
view stac addView(Img2)
view2 «
Imgl
viewl <)
addView(Img1)
top

Figure 5-4 ilView Objects Map Images to Display Regions

When ilDisplay draws its contents, the position and size of each ilView, as well as the
stacking order, are used to determine what portion of each view is visible.
ilFrameBufferlmg is called to render the images into the frame buffer. Each image is
converted to the proper data type, order, color model, and coordinate space as necessary
for displaying. Figure 5-5 shows the display after the views have been drawn.

163

Chapter 5: Displaying an Image

164

Memory

Img2

view stack

Display(view1) «— |

Imgl

Display(view?2)
top \-

Figure 5-5 Display Area After Views Are Drawn

In addition to the views added by an application, ilDisplay creates a background view.
This background view is the size of the window and is always at the bottom of the view
stack. You cannot control it other than to change its color from the default, which is black.

ilDisplay provides several operators to manipulate ilViews as well as functions to
facilitate interactive display. The display operators enable you to move a view, change its
size, or move the image within the view. The display operators are discussed in detail in
“Applying a Display Operator” on page 183. By default, view manipulation also causes
the display to be redrawn; however, a sequence of display operations can be performed
with drawing deferred. In addition, an application can explicitly control drawing.
ilDisplay is optimized to draw only the areas that have changed or that have been
exposed.

Scrolling Windows

You can change the size of the image by reducing its display size. By making the image
size smaller than the display, you, in effect, create a scrollable window. To set and read
the visible area in which an image can display, you use the setVisibleArea() and
getVisibleArea() functions in ilDisplay, defined as follows:

void setVisibleArea(int x =0, inty =0, int nx = 0,
int ny = 0);
void getVisibleArea(int& X, int& y, int& nx, int& ny);

The arguments define the lower left and upper right coordinates of the visible display
area.

A Simple Interactive Display Program

A Simple Interactive Display Program

Now look at a simple interactive program that shows the IL display facility in action.
This program opens an image file and applies a threshold operator to it. Both the original
image and the processed image are displayed in a window, stacked on top of each other.
You can wipe the original image away gradually so that you can see the processed image
beneath it. Wiping changes the view size. The best way to understand wiping, of course,
is to compile and run the display program. It is available online in

{usr/share/src/il/guide/displayEx.c++

When you run the program, you see a window displaying the original image. The
processed image is actually underneath the original one, but you cannot see it, since the
images are opague and of the same size. If you click in the window with the left mouse
button, a red highlight border appears around the image, indicating that it is ready to be
wiped. To wipe, click the left mouse button near any edge of the image and drag toward
the center of the image. As you drag, the processed image becomes visible as the original
image is wiped away; release the button to stop the wiping. You can wipe any edge or
corner of the original image. To exit the program, use the normal window manager menu
command.

Sample Program Code

The code for the sample program is shown in Example 5-1 and discussed in the
paragraphs following that. All the ilDisplay functions used in the program are explained
in more detail in the appropriate sections in this chapter.

Example 5-1 A Simple Interactive Display Program

#include <stdlib.h>
#include <stdio.h>
#include <il/ilFilelmg.h>
#include <il/ilThreshimg.h>
#include <il/iIDisplay.h>

const int Border = 10; // Threshold in pixels for edge finding
operation

void
main (int argc, char* argv[])

165

Chapter 5: Displaying an Image

166

{
if (argc < 2) {
printf (“Usage: %s in-imagel1\n”, argv[0]);
exit(0);
}

/I Step 1: Open an image file and create a threshold image.

ilFilelmg in(argv[1]);
if (in.getStatus() != ilIOKAY) {
char buf[400];
fprintf(stderr, “Could not open image file %s: %s\n”,
argv[1], ilStatusToString(in.getStatus(), buf,
sizeof(buf)));
exit(0);
}

/I Step 2: Create threshold image, open an X window, and create
/I iIDisplay object.

float threshVal = 100.;
iflPixel threshPix(iflFloat, 1, &threshVal);
iIThreshimg thresh(&in, threshPix);

iflSize size;

in.getSize(size);

Display* dpy = XOpenDisplay(NULL);
iIDisplay disp(dpy, size.x, size.y);
disp.addView(&thresh);

ilView* inView = disp.addView(&in);
disp.setBorders(TRUE);

/I Step 3: Process the image, allowing to wipe between original and
/I processed images using the left mouse button.

int active = TRUE;
int wipemode = 0;
Window win = disp.getWindow();

while (active) {
ifIXYint winSize;

XEvent event;
XNextEvent(dpy, &event);
switch (event.type) {

A Simple Interactive Display Program

}

case MotionNotify:
/I flush the event queue
Window rw, cw;
intrx, ry, X, y;
unsigned int state;
XQueryPointer(dpy, win, &w, &cw, &rx, &ry, &Xx,
&y, &state);

if (event.xmotion.state&Button1Mask)
inView->wipe(x, y, wipemodel|ilClip);
else
wipemode = inView->findEdge(x, y, Border);
break;

case ButtonPress:
disp.setMouse(event.xbutton.x, event.xbutton.y);
break;

case Expose:
disp.display(NULL, ilDeferlilCenter);
disp.redraw();
disp.getSize(winSize.x, winSize.y);
break;

case DestroyNotify:
disp.destroyNotify();
active = FALSE;
break;

}

XCloseDisplay(dpy);

}

Sample Program Comments

The first half of this program should be familiar to you; it is very similar to the sample
program in Chapter 1, “Writing an ImageVision Library Program.” The first several lines
of code include the necessary header files. If the user specifies fewer than two arguments
(the name of the program and the name of the image file), the program prints an error
message and then exits.

167

Chapter 5: Displaying an Image

168

Step 1: Open an Input Image File and Create a Threshold Image

The specified image file is opened as an ilFilelmg object called in. Next, an iflPixel object
is created for use by the threshold operator; the threshold value chosen for this example
is 100.0. The ilThreshimg operator thresh sets each pixel to its maximum possible value if
the pixel value is greater than or equal to the threshold value, or to its minimum possible
value if it is less than the threshold value.

Step 2: Open an X Window and Create an ilDisplay Object

After the threshold image is created, establish a connection to the X server with the X
function XOpenDisplay().

Next, you create an ilDisplay object by passing in the appropriate X window and display
IDs. As shown, the processed image thresh is added first, and then the original image, in,
is added using addView(). The addView() function creates an ilView for the specified
image, adds it to the display’s view stack, and returns a pointer to the ilView. The pointer
to the ilView associated with in is used later in the program.

The order in which images are added determines their stacking order when they are
displayed; the last view added is on top of the others. In this case, the original image is
displayed on top of (and completely obscuring) the processed image. You can reorder the
views as needed.

The setBorders() function is used with default arguments in this example to highlight all
views in the view stack. You can also specify the border color and width.

Step 3: Process Events

Processing events is a critical task for interactive programs. All of the previously
identified inputs (events) must be handled. The event loop in this example processes
events continuously while the program is active.

The code in the event loop uses the following variables:

active Indicates that the window is still active. It becomes FALSE when the user
selects “Quit” from the window menu.

event Holds the event read from the X event queue with XNextEvent().

winSize Indicates the current size of the window.

Creating an ilDisplay

Creating an ilDisplay

wipemode Indicates which edge of the image to wipe.

xandy Hold the x and y positions of the mouse, respectively, as the user drags
to perform a wipe.

The code in the event loop takes the following actions in response to user actions:

= MotionNotify. As the mouse is moved, the x and y values are accessed with the X
function XQueryPointer(). The current xy location of the mouse is passed to wipe(),
which changes the size of the view by moving one or more edges. While the mouse
button is pressed, motion causes a wipe to be performed. If the mouse button is not
pressed, then findEdge() is called. The findEdge() function returns the edge(s) near
the xy location specified and is saved in wipemode. (In this program, the user must
click within 10 pixels of the edge.) When wipe() is called, wipemode specifies which
edges to wipe.

= Button Press. When the user presses the left mouse button to start wiping, the
setMouse() function is called to save the current x and y mouse positions.

= Expose. The first time through the loop, an Expose event is processed, causing the
entire display to be drawn on the screen with the redraw() function.

= DestroyNotify. When the user quits, the active flag is set to FALSE.

To incorporate IL’s display facility in your program, you must follow these steps:
1. Open and configure a window.

2. Create an ilDisplay object to manage the window.

3. Add and manipulate images you want to display.
4

Apply the desired display operator(s) to one or more of the views.

This section discusses the first two of these items. The remaining two items are covered
in detail in following sections.

Opening an X Window and Creating an ilDisplay Object

Before creating an ilDisplay object, you must open a window. To do this, use the standard
X call XOpenDisplay(),. as follows:

169

Chapter 5: Displaying an Image

170

iflSize size;
in.getSize(size);
Display* dpy = XOpenDisplay(NULL);

An ilDisplay object manages views of images within the window passed to it. If an X
window is passed, render mode specifies whether X or OpenGL should be used to render
the images. The constructor for ilDisplay is shown below:

iDisplay(Display* display, int width, int height,
int attr=ilVisDoubleBuffer, int minComponentSize=8,
int mode = iDefault,
long eventMask = ExposureMask | KeyPressMask |
PointerMotionMask | PointerMotionHintMask |
ButtonPressMask | ButtonReleaseMask |
StructureNotifyMask);

The following statement creates an ilDisplay object. It takes as its first argument dpy, the
X connection created with XOpenDisplay(). The other arguments define the size of the
window created by ilDisplay:

iDisplay disp(dpy, size.x, size.y);

The in.getSize() function returns the size of the window to create, and the values of size.x
and size.y define the X and Y dimensions of the window accordingly.

When an ilDisplay object is created, the display origin is the lower left corner. The entire
window is used for drawing, but this window may be a subwindow within an
application.

Note: The ilDisplay class uses many enumerated types, which are listed in “Enumerated
Types and Constants” on page 353 and the header file il/ilDisplayDefs.h.

Adding a View to the ilDisplay Object

Once you have an ilDisplay object bound to an X window, use the ilDisplay member
functions addView() and setBorders() to display the image, as shown in the following
code:

ilView* inView = disp.addView(&in);

disp.setBorders(TRUE);

View and Display Basics

The &in value is the input image that is ready for manipulation and display. The
setBorders() function enables the display of the default border, ilDefault, around the
view.

Deallocating the Display

After the user has finished with the image, you deallocate the ilView object, ilDisplay
object, and the X window by calling XCloseDisplay(displayName), where displayName
is the name of the ilDisplay object.

View and Display Basics

Once you have created a display object, the next step is to add views to this display and
then apply display operators to these views. Before learning more about views, however,
you need to be familiar with some basic concepts that apply to both displays and the
views contained within them.

Background Color
If the images being displayed do not cover the entire display area, the ilDisplay’s
background view is seen in the uncovered areas. The background may also be revealed

if images are dragged around or resized by the user. By default, an ilDisplay uses black
as the background color. You can set the color to any pixel value with setBackground():

myDisp.setBackground(float O, float 1, float 0);

The three arguments correspond to red, green, and blue, respectively. Each color value is
between 0 and 1, inclusive.

In the previous line of code, the background color is set to green.

You can also retrieve an ilDisplay’s current background color:
myDisp.getBackground(float& red, float& green, float& blue);

The returned values for the references are between 0 and 1, inclusive.

171

Chapter 5: Displaying an Image

172

Borders

All ilViews have borders, but by default they are not drawn (that is, they are turned off).
You can use ilView’s setBorders() to turn borders on (TRUE) or off (FALSE):

void setBorders(int flag);

When borders are turned off, the highlight flag (see “Finding a View” on page 180) is also
turned off. The borders are painted or erased immediately unless painting is deferred.
Note that borders are painted inside the view.

In addition, both the borders and the NOP flag can be controlled using the select
functions on ilView (see “Preventing View Operations” on page 173 to learn more about
the nop flag). When select() is called, borders are turned on and its nop flag is turned off.
When unselect() is called, borders are turned off and its nop flag is turned on. The
isSelected() function returns TRUE if the view is selected, or FALSE otherwise:

void select();
void unselect ();
int isSelected();

You can also specify the width and color of the borders:

void setBorderWidth(unsigned int bordWidth);
void setBorderColor(float red, float green, float blue);

The first function sets the width of the border in pixels to bordWidth; by default, a border
has a width of two pixels. (bordWidth should be a number greater than or equal to zero.)
The second function sets the color of the border to the specified colors, each with a value
between 0 and 1, inclusive.

For convenience, you may set border parameters on all the views in an ilDisplay’s view
stack by calling the corresponding functions on ilDisplay. (You can exclude particular
views in the stack from being acted upon by these functions by setting a nop flag in each
view you wish to exclude. See “Deferring Drawing” on page 174.) For example:

myDisp.setBorders(TRUE);
myDisp.setBorderWidth(5);
myDisp.setBorderColor(0, 1, 0);

There are no convenience functions for getBorders(), getBorderwWidth(), or
getBorderColor() in the ilDisplay class since the information may vary from view to
view.

View and Display Basics

Border Styles

You can set and read the style of the border using the setBorderStyle() and
setBorderStyle() functions in ilView, defined as follows:

void setBorderStyle(int style = ilViewBdrSolidLines)
{ bStyle = style; setState(ilViewBorders); }
int getBorderStyle() { return bStyle; }

The possible border styles are defined by the following enum:

enum ilViewBorderStyle {
ilViewBdrSolidLines =0, // Solid lines (old style)
ilViewBdrDashedLines =1, // Dashed lines
ilViewBdrCornerHandles = 2, // Handles on corners
ilViewBdrMiddleHandles =3 // Handles on mid-side

Preventing View Operations

To keep any view in the stack from being operated upon, use the setNop() function to set
the nop flag:

void ilDisplay::setNop(int nop, ilView* view);
void ilView::setNop(int nop);

If the nop argument is TRUE, then the view will not be operated on. To allow operations
to take place on a view, nop should be FALSE. You can use the function isNop() to
determine the state of the nop flag:

int iIDisplay::isNop(ilView* view);
int ilView::isNop();

If you need to perform an operation on each view in the stack regardless of the value of
each view’s nop flag, pass the ilDop flag in the mode for that operation.

If an operation is called on a view, the nop flag is overridden. For example, the statement
below ignores the nop flag on the specified view:

view->wipe();

173

Chapter 5: Displaying an Image

174

Deferring Drawing

Drawing can be deferred by calling setDefer() on ilDisplay or ilView. When used to defer
the display, nothing is drawn; however, each view can be individually deferred as well.
These calls are shown below:

void iDisplay::setDefer(int def, ilView *view=NULL);

void ilView::setDefer(int def);

In the ilDisplay version, you specify the view in which you wish to defer drawing (the
default is all views) by setting the ilView pointer argument to

e NULL, which causes all views in the view stack to be affected

= apointer to an ilView in the view stack

You might want to defer drawing until you have made a series of changes to an
ilDisplay’s attributes (or to those of its views) so that they all take effect simultaneously.
You might also want to defer drawing while you apply more than one display operator
to avoid drawing intermediate results. In addition, most of the display operators allow
you to pass the ilDefer flag (see “Mode Flags” on page 175) to defer drawing. (Display
operators are described in more detail in “Applying a Display Operator” on page 183.)

To defer drawing, call setDefer() and pass TRUE as its def argument. After that, the
display is not redrawn until you call setDefer() with FALSE as its def argument. You can
check whether drawing is deferred with isDefer():

int iIDisplay::isDefer(ilView *view=NULL);
int ilView::isDefer();

This function returns TRUE or FALSE to indicate whether drawing has been deferred or
not.

The Drawing Area

An ilDisplay assumes that it can draw anywhere in the window that is been passed to it.
You can retrieve the current size of the drawing area with getSize(), which returns the x
and y dimensions by reference:

void getSize(int& X, int& y);

View and Display Basics

Managing the Cache

With global cache management, using ilView to manage the cache on its input is
unnecessary. The various cache management methods on ilView have no effect. For more
information, refer to “The Cache” on page 32 and “Optimizing Use of Cache” on

page 245 for a discussion of the global cache management scheme.

Mode Flags

All the display operators use a mode argument to control the display of views. This mode
is a bitwise-OR’d combination of flags that control the operator. You can use the ilDisplay
member functions, setMode() and clrMode() to set and clear the mode flags.

The flags are defined as enumerated values (see il/ilDisplayDefs.h). Some flag types are
described below.

Display Flags

Display flags specify various display modes. Examples are:
= iIClip to clip an image to the edge of the display or view
= ilDefer to defer painting

= ilDop to override the nop flag

Coordinate Flags

Coordinate flags specify how the resizing, relocating, and update operators are to
interpret coordinate values. Examples are:

= ilDelVal where x,y is interpreted as delta relative to the current values

= ilRelVal to interpret the x,y coordinates relative to the starting x,y (starting x,y is
updated)

= ilAbsVal to interpret the x,y coordinates as absolute values

= ilOIdRel to interpret the x,y coordinates relative to the starting x,y (starting x,y is not
updated)

175

Chapter 5: Displaying an Image

Managing Views

176

Wipe Mode Flags

Wipe mode flags specify the edges in a wipe operation. Some examples are:
= ilTopEdge to do the wipe from the top edge
= ilLeftEdge to do the wipe from the left edge

Align Mode Flags

Align mode flags specify image alignment. Some examples are:
= ilTopLeft to align the view from the top left corner

< ilCenter to align the view to the center of the window or the image to the center of
the view

The sample program shown at the beginning of this chapter contains an example of the
use of the mode argument. In this example, the display operator initializes all views in
the view stack, aligns the views to the center of the image, and defers the painting of the
view until later.

disp.display(NULL, ilDefer|ilCenter);

Once an ilDisplay has been created, you can create views of the images you want
displayed. As views are created, they are pushed onto the view stack. You can also
retrieve views from the stack, replace the images within the views with other images,
remove views, and reorder the views in the stack. This section explains how to perform
these tasks.

Note: If an error occurs while rendering part of a view, the offending tile is painted with
the error color (see getErrorColor() or setErrorColor()), and the status is set on ilDisplay.
The error color defaults to magenta, but can be set per view with setErrorColor().

The error color functions are defined in ilView, as follows:

void getErrorColor(float& red, float& green, float& blue)
{ err.get(red, green, blue); }

void setErrorColor(float red, float green, float blue)
{ err.set(red, green, blue); }

Managing Views

The values of the colors are between 0 and 1, inclusive.

Adding Images

The addView() function creates an ilView and adds it to the view stack. The image is
drawn when addView() is called, unless ilDefer is passed in mode. It returns a pointer to
the ilView for the illmage (or XImage) pointer passed in

ilView* addView(illmage* img, int index, int mode);

ilView* addView(illmage* img, int mode=ilCenter);

ilView* addView(XImage* img, int index, int mode);

ilView* addView(XImage* img, int mode=ilCenter);

You can call addView() with just the image or the image and the display mode. In this
case, the view index defaults to 0 (top of the stack). If you use the version of addView()
that takes an index, you can specify the location in the view stack where the image is to

go.

The mode parameter controls the creation and position of the ilView. By default, the view
is centered, not clipped to the display window, and is painted after being added.
However, this behavior can be modified using various display mode flags such as ilClip
and ilDefer. See “Mode Flags” on page 175 and the ilDisplay reference page for more
details.

If an image has a z dimension that is greater than one, you can choose which xy plane of
the image to display. By default, the first plane (z = 0) is displayed. To display a different
plane, call setZ() on ilView:

void setZ(int startZ);

The startZ argument specifies the desired plane of the image in the view that the function
is called on. ilView’s getZ() function takes no arguments and returns the current z plane
being displayed of the corresponding image.

Stereo Viewing

If your machine is capable of stereo and stereo is supported by IL on that machine, you
can turn on stereo viewing mode. A stereo view can be created as shown below:

iIStereoView(ilDisplay* disply, illmage* LImg,
illmage* RImg, int mode = 0);

177

Chapter 5: Displaying an Image

178

iIStereoView(ilDisplay* disply, illmage* img, int zLeft = 0,
int zRight = 1, int mode = 0);

Using the first version of the constructor, pointers to the left and right images are passed
to this method on ilDisplay. The last argument specifies the display mode for the view.
Currently, only OpenGL render mode is supported. This constructor requires that you set
up an IL chain for the left and right images.

The second version of the constructor takes a single image with the left and right images
stored in the z dimension. The parameters zLeft and zRight specify the index in the z
dimension corresponding to the left and right images. The benefit of this approach is that
you can use a single IL chain to process both images.

With either constructor, the relative screen positions of the left and right images can be
adjusted (see the ilStereoView reference page). If the hardware does not support stereo,
or if stereo mode is disabled, only the left image is displayed. Also note that IL can
display a mixture of monoscopic and stereoscopic views in the same stereo window.

To review an example of a stereo view application, see /usr/share/src/il/ilstereoview.c++.

Retrieving Views

You can obtain a pointer to any view in the stack with getView(). There are two versions
of this function, one that takes an index and another that takes a pointer to an illmage:

ilView* getView(int index = 0);
ilView* getView(illmage* img);

Both functions return a pointer to the corresponding ilView. If the image appears in more
than one view, the view that is nearest the top of the stack is returned.

You can also retrieve the index corresponding to a particular view:

int thelndx = myDisp.getViewIndex(someView);
int thelndx = myDisp.getViewIndex(somelmg);

The getViewlIndex() function takes a pointer to an ilView (someView) or a pointer to an
illmage (somelmg) and returns its index as an int (thelndx).

To determine how many views are in the view stack, call getNumViews().

Managing Views

Retrieving Images

You can obtain a pointer to the image in a particular view with getimg() or getXImg():
illmage* mylmg = someView->getimg();
XIlmage* myXimg = someOtherView->getXImg();

A pointer to the illmage or XImage in the view is returned. (Here, someView and
someOtherView are ilView pointers.)

To obtain pointers to the images in a stereo view, use getLImg() and getRImg():

illmage* myLeft = someStereoView->getLImg();
illmage* myRight = someStereoView->getRImg();

A pointer to the left illmage is returned from getLImg() and a pointer to the right from
getRImg(). (Here, someStereoView is an ilStereoView pointer.)

Removing Views

You can remove a view from the stack by deleting the view or by calling deleteView() on
ilDisplay. This function removes the specified view from the stack and deletes it:

void deleteView(ilView* view);

Replacing Images

An ilView object allows you to replace its image:

void setimg(illmage* ilinimg);
void setXImg(XImage* xInimg);

The argument is a pointer to the image you want the view to hold. This image replaces
the image mapped to the view.

Reordering the View Stack

Several functions are provided by ilDisplay to reorder the view stack. The push()

function pushes the specified view down count places in the stack. By default, it pushes
the view to the bottom. Similarly, the pop() function pops the specified view up count

179

Chapter 5: Displaying an Image

180

places in the stack. By default, it pops the view to the top. On both push and pop, when
count is 1, the view is moved one position in the view stack. In addition, the swap()
function swaps two views in the stack. These functions are shown below:

push(ilView *view, int count=0);

pop(ilView *view, int count=0);

swap(ilView *viewl, ilView *view?2);

Finding a View

Sometimes you need to find the view at a specified location. In an interactive program,
the mouse is typically used to select a view. To find the view at a given x,y location,
findView() can be called on ilDisplay, as shown below:

ilView* findView(int x, int y, int mode = ilIDspCoord);

This function returns a pointer to the topmost ilView found at location xy within the
display. If there is no view at xy, it returns NULL. IfilHighlight is passed in mode, the view
is highlighted if found. When a view is highlighted, its borders are turned on. However,
only one view at a time can be highlighted. If ilDspCoord is passed in mode (the default),
the xy coordinates are interpreted relative to the origin of the display area (display
coordinates). If ilScrCoord in passed in mode, then the xy coordinates are interpreted
relative to the screen (screen coordinates). Recall that the origin of the display area
coincides with that of the window.

Finding an Edge

You may need an edge of a view for certain operations. Sometimes, you want to
determine which edge of a view the cursor is near. This is especially useful for wiping,
as described in “Applying a Display Operator” on page 183. For this, use ilView’s
findEdge() function:
int findEdge(int x, int y, int margin = -1,

int mode = iIDspCoord);

This function determines which edge of the view is nearest to the specified xy
coordinates. If the specified point is within margin pixels from an edge, that edge is
returned. By default, the margin is either the default margin (15) or the current border
width, whichever is greater. The mode argument can be either ilDspCoord (the default)
or ilScrCoord to indicate whether x and y are specified in display or screen coordinates.

Managing Views

The value returned by findEdge() is a bitwise-OR’d combination of the following values:
iINoView The coordinates lie outside margin pixels of all views.

ilIRightEdge The coordinates are within margin from the right edge.

ilLeftEdge The coordinates are within margin from the left edge.

ilTopEdge The coordinates are within margin from the top edge.

ilBottomEdge The coordinates are within margin from the bottom edge.

ilAlIEdge The coordinates are within margin from all edges; this is an unusual case
since it implies that margin is very large relative to the image. The
ilAlIEdge value is used primarily as an argument for wipe(), which is
described in “Applying a Display Operator” on page 183.

iINoEdge The coordinates do not lie within margin from any edge.

If a combination of two intersecting edges is returned—for example,

ilRightEdge | ilTopEdge—you can treat the value as corresponding to a corner, in this
case the upper right corner. Note that you can also receive a value such as ilTopRight,
which is equivalent to ilTopEdge | ilRightEdge.

ilDisplay also defines a findEdge() function, which finds the edge on all views. For each
view, it saves the edge for later use with wipeSplit().

Operating on a Pixel

You can obtain the actual pixel data at a specified point in a view with getPixel() (defined
by both ilDisplay and ilView):

iIStatus getPixel(int x, int y, ilPixel& pix, int mode = 0);

InilView’s version, this function copies the pixel data at the point x,y into pix. If the point
lies outside the view, the fill value is returned by reference. In ilDisplay’s version, the
topmost view pointed to by the point x,y is found with findView(); the pixel data from
the point in that view is copied into pix. If the point refers to no view, no pixel data is
returned by reference. (The x,y point is specified in display coordinates.)

You can also set a pixel value with setPixel():

void setPixel(int X, int 'y, ilPixel pix, int mode = 0);

181

Chapter 5: Displaying an Image

182

Locating a Point

You can find out where you are in an image by passing the display coordinates to
getLoc() (defined by both ilDisplay and ilView):

void getLoc(int x, inty, int& ix, int& iy,
int mode = ilLocln);

void getLoc(float x, float y, float& ix, float& iy,
int mode = ilLocln);

void getLoc(float& ix, float& iy,
int mode = ilLoclIn|ilCenter);

The getloc() function returns the location in the image corresponding to x and y. The
location in the image is returned in ix and iy. If ilLocIn is passed in mode, the location is
returned in the input space of the image. If ilLocOut is passed in mode, the location is
returned in the output space of the image. For example, if an ilRotZoomIng is mapped to
the view and ilLocln is specified, ix and iy correspond to the location in the unzoomed
image. However, if ilLocOut is specified, ix and iy correspond to the location in the
zoomed image. If ilLoclmg is specified (default), then the image is moved to the specified
location. If ilLocView is specified, then the view is moved to the specified location.

The second version uses floating point values for more accuracy. The third version
determines the desired location based on mode. For example, if ilCenter is specified, the
location corresponding to the center of the view is returned.

When called on ilDisplay, the topmost view pointed to by X, y is found with findView().
Then the location is returned for that view. On both ilDisplay and ilView, a version is
provided that does not require an xy location to be specified. Instead, the mode is used to
specify the center or a corner.

Similarly, you can set the location of an image within the display by calling setLoc() on
ilDisplay or ilView. This allows you to move a point within the image to a specific
location within the display, as show below:

void setLoc(int ix, int iy, int X, inty,

int mode = ilLocln);
void setLoc(float ix, float iy, int mode = ilLocIn|ilCenter);
void setLoc(float ix, float iy, float x, float y,

int mode = ilLocln);

The relocation can be accomplished by moving the image or the view. If ilLocView is
specified, then the view is moved, otherwise the image is moved (ilLocImg).

Applying a Display Operator

Applying a Display Operator

Display operators alter views, typically in response to input from the user. These
operators may draw all or portions of a view. Also, they can change the size and/or
location of all or some of the displayed views and then update the display accordingly.
These are ImageVision Library’s display operators; they can be called on both ilDisplay
and ilView (except for display(), which may be called only on ilDisplay):

= Drawing operators—Operators whose primary purpose is to draw all or part of the
display. This group includes display(), paint(), gpaint(), redraw(),
setStaticUpdate(), and save().

= Relocating operators—Operators whose primary purpose is to change the location
of views or images. This group includes alignView(), alignimg(), moveView(),
movelmg(), and split().

= Resizing operators—Operators whose primary purpose is to change the size of
views or images. This group includes wipe(), wipeSize(), wipeSplit(), and resize().

= update()—Generalized operator that combines the capabilities of moveView(),
movelmg(), and wipe(). However, because it is a generalized operator, it is not as
optimized as some of the other operators.

There is only one difference between calling a function on ilDisplay and calling it on
ilView. When called on ilView, the function operates only on that view regardless of the
state of the nop flag. In contrast, when called on ilDisplay, a view must be specified. If
NULL is passed, then all views in the stack are operated on (except those with the nop
flag set). If a pointer to a view is passed, the function operates only on that view.

In this section, all operators are given in their iIDisplay forms. The ilView versions are
easily derived by leaving out the argument specifying the view.

Drawing Views

The functions used primarily for drawing are described in this section:

= display() reinitializes the specified view and optionally aligns the view and image.
The specified view is then painted. If NULL is specified, then all views are
initialized (except those with nop flag set).

= paint() does not resize or reposition the view. It simply paints the specified view if it
needs to be painted. If ilPaintExpose is passed, then the view is forced to be painted.

183

Chapter 5: Displaying an Image

184

= gpaint() queues painted views for multi-processor operations.

= redraw() resizes the display image and background view to occupy the entire
window. It then paints all views regardless of the nop flag. It does not resize or
reposition any views.

= save() paints the specified region of the display to an illmage. A starting location
within the display and a pointer to an illmage are passed. The save region is
specified by the starting location and the size of the image.

= setStaticUpdate() sets the staticUpdate mode to paint a rectangular region as one
tile rather than many smaller ones.

display()

The display() function takes three arguments, all of which have default values, as shown
below:
void ilDisplay::display(ilView* view = NULL,

int vmode = ilCenter,

int imode = ilCenter);

view Reinitializes the specified view. If NULL is passed, then it reinitializes all
views (except those with nop flag set). If the ilDop flag is passed in
mode, the nop flag is ignored.

vmode Specifies how to align the view within the display.

imode Specifies how to align the image within the view. As explained above,
only the visible portion of each view is drawn.

Both vmode and imode are a bitwise-OR’d combination of values that allow you to specify
alignment. You can align to any corner or edge using any combination of ilTopEdge,
ilBottomEdge, ilLeftEdge, or iIRightEdge. In addition, ilTopLeft, iIBottomLeft,
ilTopRight, or iIBottomRight can be used to specify a corner. By default, ilCenter is used.
If no alignment is desired, iINoEdge or iINoAlign can be passed instead. See “Relocating
Views and Images” on page 187 for more information about the alignView() and
alignimg() functions.

By default, a view is the size of its image; however, if iIClip is passed in vmode, then the
view is clipped to the size of the display or window.

Applying a Display Operator

paint()

The paint() function is typically used when a view needs to be redrawn after several
deferred operations. This function takes a view pointer and a mode as arguments:

void paint(ilView* view = NULL, int mode = 0);

The view argument has the same meaning as that for display(). The mode argument can
include any of the generic display flags.

You can get the change of position and size from one painting to another using the
getDel() (get delta) function in ilView, defined as follows:

void getDel(iflXYint& dVPos, iflXYint& dVSize, ifIXYfloat&
diPos);

void getDel(iflXYint& dVPos, iflXYint& dVSize, ifIXYZfloat&
diPos);

The first and third references provide the delta of the image’s position since the last
paint(). The second reference provides the delta of the image’s size since the last paint().
The two constructors provide two- and three-dimensional alternatives.

qpaint()

The gpaint() function is used to queue the painting of a specified view. It is used most
often to optimize performance in multi-processor operations. The function is defined as
follows:

void gPaint(iMpNode* parent, int X, inty, int nx, int ny,
ifOrientation orientation = iflUpperLeftOrigin,
iView* view = NULL, int mode =0,
iIMpManager= pMgr = NULL);

void gPaint(IMpNode* parent, iiView* view = NULL, int mode =0,
iMpManager pMgr = NULL)

gPaint(parent,
VisArea.x, VisArea.y, VisArea.nx, visArea.ny,
workOrientation, view, mode, pMgr);

}

The first constructor allows you to define or specify the view being queued. The second
constructor is for use with scrolling lists where the view is clipped by the size of the
scrolling list.

185

Chapter 5: Displaying an Image

186

redraw()

The redraw() function is called when a REDRAW (OpenGL) or Expose (X) event occurs
(for example, if the window is exposed or resized):

void redraw(int mode = ilDefault);

The redraw() function resizes the drawing area (display image) and the background
view to match the new size of the window, and paints all views.

save()

The save() function saves a region of the display by painting to an illmage. The region
saved is specified by the origin x,y and is the size of the image passed in

iIStatus save(illmage* img, int x =0, inty =0,
int mode = ilDefault);

By default, borders are not painted. However, if ilPaintBorder is passed in mode, the
borders are painted. Note that on 8-bit graphics systems, displayed images may be
dithered. Therefore, the save function provides a higher quality result than copying from
the screen.

setStaticUpdate()

The setStaticUpdate() function allows you to enable or disable the staticUpdate mode.
Static update paints a rectangular region as one large tile rather than as many smaller
tiles. When staticUpdate mode is enabled, it forces a static update to occur whenever the
view is painted.

void setStaticUpdate(int enable)

The setAutoStaticUpdate() function forces a static update after a reset has occurred. A
reset is caused by changing inputs or processing parameters in the chain. In this case,
since the entire exposed region of the view must be painted, the performance can be
improved by painting the region as one large tile. After the static update has been
completed, normal tiled painting resumes. By default, automatic static update is enabled.

void setAutoStaticUpdate(int enable)

The isStaticUpdate() function allows you to retrieve the current staticUpdate mode:
isStaticUpdate()

Applying a Display Operator

Note: Static update mode only has effect for hardware acceleration.

Relocating Views and Images

The functions used to relocate views and images are described in this section:

< alignlmg() aligns an image within its view.

- alignView() aligns a view with a reference view.

< movelmg() moves an image within a view.

< moveView() moves a view within the display area.

= split() repositions all views into rows and/or columns and resizes the views to fit.
The following mode flags are also used in conjunction with the functions discussed in
this section:

ilAbsVal The xy pair represents absolute values. In other words, the view is
simply moved to the location specified.

ilDelVal The coordinates represent a change (delta) in the current view or image
position. For example, if moveView is called with (2,5) and the specified
view is located at (1,1), then the view is moved to (3,6).

ilRelVal The xy pair is interpreted relative to the starting xy set by calling
setMouse(). The starting X,y values are updated. The setMouse()
function must have been called previously to initialize ilDisplay’s
coordinate values. This is the default mode for most functions.

ilOldRel Same as ilRelVal except that the starting xy values are not updated.

alignimg()

The alignlmg() function is defined on both ilDisplay and ilView. This function aligns the
image in view. If view is NULL (the default), the function aligns the images in all the views
in the view stack (except those with the nop flag set). It is called as shown below:

void alignimg(ilView* view=NULL, int mode=ilCenter);
Alignment means that an edge, corner, or center of an image is aligned within the view,

as shown in Figure 5-6. The mode argument specifies how to align the image. For
example, the default, ilCenter, indicates that the image is to be centered in the view. In

187

Chapter 5: Displaying an Image

Figure 5-6, ilBottomLeft is passed in mode, causing the lower left corner of the image to
be aligned to the lower left corner of the view.

4—— Image —— !

A

View

v

Unaligned Image Aligned Image

Figure 5-6 Aligning an Image to Bottom Left Corner

alignView()

The alignView() function is defined on both ilDisplay and ilView. This function aligns
the specified view with a reference view. If NULL is passed, all views are aligned (except
those with the nop flag set). The function is called as shown below:

void alignView(ilView* view = NULL, int mode = ilCenter,
ilView* rView = NULL);

The reference view is specified by rview. If it is NULL, then the back view is used.
Alignment means that edges, corners, or centers of the views are aligned, as shown in
Figure 5-7. The mode argument specifies how to align the views. By default, ilCenter
causes views to be aligned by their centers. In Figure 5-7, the views are aligned by their
lower left corners with ilBottomLeft.

«—— Display ———pf

+— Reference
View

Unaligned Views Aligned Views

Figure 5-7 Aligning Views

188

Applying a Display Operator

movelmg()

The movelmg() function changes the location of images within their respective views. To
use this function, you need to specify the desired location and the view to which the
image corresponds:

void movelmg(float x, float y, ilView* view = NULL,
int mode = ilRelVal);

This function moves the image within the specified view. In other words, the view
remains fixed relative to the display while the corresponding image moves within the
view. This function allows a user to roam around an image. This is particularly useful for
large images that are bigger than the screen. Thus, the coordinate values X,y specify the
desired location of the image’s origin. they are interpreted according to the relevant flags
passed in mode (such as ilDelVal, ilRelVal, and so on). The mode argument can also include
flags indicating that drawing should be deferred (ilDefer) and that the image should not
be moved beyond its edge (ilClip). By default, the image can be moved beyond its view,
in which case the image’s fill value is used to paint the view.

When roam is enabled, the speed with which you can roam around a picture is related to
the displacement of the mouse: the farther you move the mouse, the greater the
displacement between consecutively-displayed frames.

You can change this behavior by calling setRoamLimit(). This function limits the
displacement between consecutively-displayed frames for example, if the limit is set to
four, regardless of how far you move your mouse, consecutively displayed frames will
always be displaced by four pixels. This function has the effect of smoothing out roam
motion.

float getRoamLimit();
void setRoamLimit(float maxRoamDel = 0.0);
void getRoamRate(float& x, float& y);

The getRoamRate() returns the displacement, in pixels, in the X and Y directions
between consecutively-displayed frames.

moveView()

The moveView() function changes the location of views within the display. You might
use this function to allow a user to drag a view around the display area using one of the
mouse buttons. To use this function, specify the desired location and the view to be
moved:

189

Chapter 5: Displaying an Image

void moveView(int x, int y, ilView* view = NULL,
int mode = ilRelVal);

The view pointer argument view specifies which view to move (or all the views if NULL,
the default). The x and y arguments indicate where to move the view, and mode specifies
how these arguments should be interpreted (with ilDelVal, ilRelVal, and so on).

You can include ilDefer in the mode argument if you do not want the display updated.
Also, by default, you can move the views out of the window. For example, a user can
continue dragging a view past the edge of the window; the view will not be visible, but
ilDisplay keeps track of its location so that if the user drags it in the opposite direction,
eventually the view becomes visible in the window. You can prevent a view from being
moved past the window’s edge by specifying ilClip as part of the mode argument.

split()

The split() function allows you to display all views next to one another in rows and/or
columns rather than randomly overlapping one another. All views are resized and
repositioned based on the number of views in the view stack. Starting at the bottom of
the stack, views are positioned starting at the lower left corner of the display. The split()
function is called as shown below:

void split(int mode = ilAbsSplit|iIRowSplit|iIColSplit)

The mode argument controls the layout. It can be a combination of the following modes:

ilAbsSplit Aligns images to the origin regardless of the view position. (See
Figure 5-8.)

ilRelSplit Positions images relative to view position. (See Figure 5-9.)

ilRowSplit Divides the drawing area into rows. (See Figure 5-8.)

ilColSplit Divides the drawing area into columns.

ilPackSplit Clips views to an image if needed and packs them together.

190

Applying a Display Operator

Views to be displayed Displayed with the Displayed with
default mode ilAbsSplit | iilAbsSplit | ilColSplit
iIRowSplit | iIColSplit

Figure 5-8 split() with ilAbsSplit | ilRowSplit | ilColSplit

Figure 5-9 split() with ilRelSplit | ilRowSplit | ilColSplit

If both ilRowSplit and ilColSplit are specified, split() divides the drawing area into
equal-sized rectangles such that the number of rows and columns is nearly equal. (See
Figure 5-9.) Note that if both ilAbsSplit and ilRelSplit are specified, split defaults to
ilAbsSplit. In addition, an alignment mode can be specified with ilAbsSplit, such as
ilCenter.

Resizing Views

The functions used to resize one or more views are shown below and are described in this
section:

= resize() resizes a view (defined only on ilView).

191

Chapter 5: Displaying an Image

192

= wipe() moves one or more edges of a view.
= wipeSplit() wipes the nearest edge of all views.

= wipeSize() wipes an edge or corner and the opposite edge or corner.

As with the relocating functions, if ilAbsVal is passed in mode, the xy values specify the
new size of the view. For ilDelVal, the xy values represent changes to the current size of
the view. iIRelVal means that the xy values are interpreted relative to the start values
previously set with setMouse(). The start values are then updated by ilDisplay unless
ilOldRel is specified.

resize()

The resize() function reinitializes the size of a view to the size of the image it displays.
This useful after setting the image in ilView. The resize() function is called as shown
below:

void resize(int mode = 0);

If ilClip is passed in mode, then the view is clipped to the size of the display. After the
view is resized, it is painted unless ilDefer is passed.

wipe()

The wipe() function moves one or more edges on the specified view. It is called as shown
below:

void wipe(int X, int y, ilView* view = NULL,
int mode = ilRelVal);

The values x and y specify how to move the specified edge of the view. they are
interpreted according to the flags passed in mode (such as ilRelVal, ilDelVal, and so on).
The default is ilRelVal. If NULL is passed for view, then all views are wiped (except those
with nop flag set).

The edge to wipe is specified in mode. Any combination of the following edge modes can
be used: ilRightEdge, ilLeftEdge, ilTopEdge, or ilBottomEdge. For example,

ilTopEdge | ilRightEdge (or iITopRight) allows the user to wipe the upper right corner,
thus resizing the view. In addition, the value returned by findEdge() can be used directly.
(See “Finding an Edge” on page 180.)

Applying a Display Operator

If ilAlIEdge (or a bitwise OR of all four edges) is used, the effect is slightly different from
a normal wipe. In this mode, called an inset, the view moves while the image remains
fixed (opposite of movelmg()). This mode is useful to move a processed view of an image
around on top of the original image for comparison.

By default, the view is painted after it is wiped unless ilDefer is passed in mode. Also by
default, the edge of a view can be moved beyond the edge of the image, unless ilClip is
passed. When the view is allowed to be wiped beyond the edge of the image, the image’s
fill value is used to paint the exposed region. Note that the wipe function is optimized to
paint only the wiped region.

wipeSplit()

The wipeSplit() function is used in conjunction with findEdge() on ilDisplay to wipe the
nearest edge of all views. It is called as shown below:

void wipeSplit(int x, int y, int mode = ilRelVal);

The x and y parameters control how the edges are moved. No view is specified because
it operates on all views in the view stack. The mode parameter specifies only how to
interpret x and y. Note that the edge on each view is not specified by mode. Instead,
findEdge() must be called on ilDisplay first to find the edge on all views. If no edge is
found for a particular view, then that view is not wiped.

This function is useful after a split operation. For example, if the display is split to show
two views side by side, it allows you to wipe the right edge of the left view and the left
edge of the right view simultaneously. This is useful when comparing two or more
images. In general, adjacent views can be wiped using this function.

wipeSize()

The wipeSize() function wipes the specified edge and the opposite edge to resize the
view. It is called as shown below:

void wipeSize(int x, int y, ilView* view = NULL,
int mode = ilDelVal | iITopRight);

The x and y parameters control which way to move the edge specified in mode. In
addition, the opposite edge is moved in the opposite direction, causing the view to grow
or shrink in size. For example, if the right edge is moved to the right, then the left edge
is moved to the left as well. In this case, the view would grow in width, as show in
Figure 5-10.

193

Chapter 5: Displaying an Image

194

Previous size of view

[¢— New wiped size of view

Figure 5-10 Using wipeSize()

Updating Views

The update() function can change the view position, view size, and image position as
shown below:
void update(int x=0, int y=0, int nx=0, int ny=0,

int imgX=0, int imgY=0,

ilView* view=NULL, int mode=ilRelVal);

The view is moved to the position specified by x and y and is resized to nx and ny. The
image within the view is moved to the position specified by imgX and imgY. If view is
NULL, then all views in the view stack are updated (except those with nop flag set).

The first six of these parameters are interpreted as specified by mode. For example, if
ilDelVal is specified, then all six parameters are interpreted as changes from the current
configuration. In addition, the parameters are used as specified. However, if ilClip is
passed in mode, then the view position, size, and image position are clipped. After the
view has been updated, it is painted unless ilDefer is passed in mode. The update function
combines the functionality of moveView(), wipe(), and movelmg().

Using setMouse()

A display support function that you might find useful as you apply display operators is
setMouse():

void setMouse(int x, int y, int mode = 0);

This function is typically used in an interactive loop to initialize the starting x and y
coordinate values that the ilDisplay keeps track of. The coordinates passed to any
function with ilRelVal or ilOIdRel are interpreted relative to the current mouse position.
If iIRelVal is specified, the old start values are updated; however, if ilOldRel is specified,

A More Complicated Interactive Display Program

the start values are not updated. This is useful if several operations are needed and you
do not want to update the start values until you are finished. This model is used in the
program presented in “A Simple Interactive Display Program” on page 165. To retrieve
the previously set start values, use getMouse(). This function returns the start values by
reference:

void getMouse(int& x, int& y);

You can achieve many different effects by judiciously deferring drawing while you apply
a combination of these and/or any of the other display operators.

A More Complicated Interactive Display Program

The ilview interactive display program (which is installed in /usr/shin when you install
the Image Tools) allows a user to drag, roam, and wipe several images in a display
window. (See ilview’s reference page for more information.) A simplified version of
ilview’s source code is provided online in:

[usr/share/src/il/ilview.c++
The C version of this program named ilcview.c is located in the same directory.

Example 5-2 shows the portion of this program that processes events and calls display
operators. It uses an ilViewer to handle events. The ilViewer class is a higher-level object
derived from ilDisplay. It calls ilDisplay functions and operators based on X events. It
calls moveView() for left mouse button movement and movelmg() for middle mouse
button movement. The cursor changes shape near the edges and corners to indicate that
wipe mode is enabled on the left mouse button. If you press the left mouse button and
perform a wipe, this changed cursor remains for the duration of the wipe. See the
ilViewer reference page and the header file il/ilViewer.h for details.

Example 5-2 A More Complicated Interactive Display Program

I/ Create X window viewer
iViewer viewer(dpy, winsize.x, winsize.y, attr);

for (idx = 0; idx < nimg; idx++)
viewer.addView(imgfid], ilLast, iClip|iiCenter|ilDefer);
viewer.setStop(TRUE);

/I Execute the Ul event loop

195

Chapter 5: Displaying an Image

/I XXX need event call back on ilViewer to make this easier to do
int done=FALSE;

while ('done) {

XEvent e,
XNextEvent(dpy, &e);
switch (e.type) {

case KeyPress:
switch(XLookupKeysym(&e.xkey, 0)) {
Il center the selected view(s) in the viewer
case XK_Home:
viewer display(NULL, iiCenter|ilClip);
break;

/I control-Q and escape exit the program
case XK_q:

if ({(e.xkey.state&ControlMask))

break;

FFALLTHROUGH?
case XK_Escape:

done =TRUE;

break;

Il raise and lower the current view(s)
case XK_Up:

viewer.raise();

break;
case XK_Down:

viewer.lower();

break;

/I enable/disable paint pipelining

case XK _p:
viewer.enableQueueing(lviewer.isQueueingEnabled());
break;

}
break;

case DestroyNotify:
viewer.destroyNotify();
done = TRUE;
break;

196

A More Complicated Interactive Display Program

default:
viewer.event(&e);
break;

}

}
exit(EXIT_SUCCESS);

197

Chapter 6

Extending ImageVision Library

Since ImageVision Library (IL) is implemented in C++, you can easily extend it by
deriving new classes that provide support for the capabilities you need; for instance, to
include another file format or image processing algorithm. You can derive from any C++
class, but you are most likely to want to derive from the foundation classes. Figure 6-1
shows the types of classes you are most likely to derive.

Note: If you are using the C interface to IL, extending the library is not quite so simple.
You have to implement a new class in C++ and then generate a C interface for it.
This chapter contains the following major sections:

= “Deriving From illmage” on page 202 tells you how to derive new classes from
illmage.

= “Deriving From ilCachelmg” on page 212 tells you how to derive new caching
classes to manage data.

« “Deriving From ilMemCachelmg” on page 212 tells you how you can derive from
ilIMemCachelmg to manage images in main memory.

< “Implementing an Image Processing Operator” on page 215 tells you how to define
operators that implement new image processing algorithms.

= “Deriving From ilRoi” on page 241 describes how you define new regions of
interest in your images.

199

Chapter 6: Extending ImageVision Library

IL classes from which you might want to derive your own new classes are shown in

Figure 6-1.
—| newFileFormat
] —1 ifITIFFFile
- — iflFormat -
——| newlmgClass
— ifJFIFFILE
o iIFilelImg —
— [Memoryimg | IFLfitiLE
| IFLrAWfILE
ilLink —— illmage iiCachelmg {— ilIMemCachelmg [—
| ilFrameBufferimg — -+ — ilSharpenimg
— ilOpImg .. —| ilRotZoomimg
— illmgRoi
L| ilRoi |—
] iIRectRoi L. ._| newOperator
L_| newRoiClass L_| newCacheClass

Figure 6-1 User-Defined Classes in IL

Each extension to IL can be designed to provide a certain set of capabilities and require
the implementation of a matching set of functions, as described below:

< newlmgClass—A class derived from illmage inherits all of its functions for
handling an image’s attributes; it needs to implement illmage’s pure virtual

200

functions for reading and writing data. More information on deriving from ilimage
is provided in “Deriving From illmage” on page 202.

= newCacheClass—A class derived from ilCachelmg inherits its caching mechanism;
such a class is useful for managing a large amount of data that is accessed a portion
at a time. More information on deriving from ilCachelmg is provided in “Deriving
From ilCachelmg” on page 212.

= new ilMemCachelmg class—A class derived from ilMemCachelmg inherits its main
memory caching mechanism. Implement the pure virtual functions for storing and
retrieving pages of image data. More information on deriving from
ilMemCachelmg is provided in “Deriving From ilMemCachelmg” on page 212.

< newOperator—To define a new operator, you need to implement the desired image
processing algorithm and ensure that the processed image has the correct attributes.
You can derive directly from ilOplmg or from one of its generalized subclasses. See
“Implementing an Image Processing Operator” on page 215 for more information.

= newRoi—To define a new region of interest (ROI), you need to derive from ilRoi
and implement functions that describe valid and invalid regions with respect to this
new ROI. See “Deriving From ilRoi”” on page 241 for more information.

The classes illmage, ilCachelmg, iIMemCachelmg, ilOplmg, and ilRoi declare virtual
functions that subclasses may be redefined to alter class behavior. Other functions can be
added as necessary to provide the desired capabilities of the class.

The remaining sections in this chapter explain how to derive from illmage, ilCachelmag,
ilMemCachelmag, iflFilelmg, ilOpImg, or ilRoi (or one of their generalized subclasses).
Remember that when you derive from a class, you inherit all its public and protected
data members and member functions, as well as the public and protected members from
its superclasses. You should review beforehand the header files and the reference pages
for any class you plan to derive from in order to become familiar with its data members
and member functions. Many of the functions described in the following sections are
protected, so they are available for use only by derived classes.

201

Chapter 6: Extending ImageVision Library

Deriving From illmage

202

A class derived from illmage must assign values to the image’s attributes and implement
illmage’s virtual functions. The image’s attributes (data members) are listed in Table 6-1;
they are generally initialized in the constructor.

Table 6-1 Image Attributes Needing Initialization in illmage Subclass

Name Data Type Meaning

pageSize iflSize size of the image’s pages in pixels

dtype iflDataType pixel data type

order iflOrder pixel data ordering

cm iflColorModel image’s color model

orientation iflOrientation location of origin and orientation of axes
fillValue iflPixel value used to fill pixels beyond the image’s edge
minValue, double minimum and maximum allowable pixel values
maxValue

status ilStatus image’s status (for example, ilOKAY)2

a. Inherited from ilLink.

Typically, you will just set these attributes directly. However, there are convenience
functions—for setting minValue, maxValue, cm, and status—that you might want to use
(these functions are protected, so they are available only to classes derived from ilimage):

void initMinMax(int force=FALSE);

void initColorModel(int noAlpha=FALSE);

void initPagesize(const iflSize& pageSize);

iIStatus setStatus(ilStatus val); //inherited from ilLink

void clearStatus(); /l inherited from ilLink

The initMinMax() function simultaneously sets both the minimum and maximum
allowable pixel values. They are set to the smallest and largest possible values,
respectively, allowed by the image’s data type. Therefore, you must set the image’s data
type before you call initMinMax(). By default, this function’s argument is FALSE, which
means that the minimum and maximum values will not be changed if they have already

Deriving From ilimage

been explicitly set; if you pass in TRUE as the argument to this function, both values will
be set regardless of whether they have been set before.

The initColorModel() function sets the color model based on the channel dimension of
the image. If the channel dimension is 1, the color model is iflLuminance; if it is 2, the
color model is iflLuminanceAlpha (or iflultiSpectral if noAlpha is TRUE); if it is 3, the
color model is ifIRGB. If the channel dimension is 4 and the default value of FALSE is
used for the noAlpha argument, the color model is ifRGBA. Otherwise, the color model
is iflMultiSpectral.

The setStatus() function simply sets and returns the image’s status. The clearStatus()
function sets the image’s status to ilOKAY. (Both of these functions are inherited from
ilLink.) See “Error Codes” on page 350 for a list of the error codes that IL defines as being
of type ilStatus.

Another function you may want to use in a constructor is setNumInputs(). This function
sets the maximum possible number of inputs to an image. Typically, you will use this
function only when deriving an operator. See “Implementing an Image Processing
Operator” on page 215 for more information about doing this.

Data Access Functions

Image data can be accessed as pixels or as a rectangular region of arbitrary size called a
tile. Both 2-D and 3-D tile access functions are provided.

The virtual access functions present a queued request model, which allows an
application to issue non-blocking requests for image 1/0 and later inquire the status or
wait for the operation to complete. The queued model also provides derived classes with
the “hooks” needed to automatically distribute operations across multiple processors.
These queued functions are distinguished by the prefix “q” on the function name. For
convenience, there are access functions that do wait for their operation to complete,
hiding the details of the queued model.

There are several different functions to read image data, all based on qGetSubTile3D().
ilIQGetSubTile3D(). Similarly, there are several different functions to write image data
based on gSetSubTile3D(). ilQSetSubTile3D(). Two fast-paths called qCopyTileCfg() and
gCopyTile3D() ilQCopyTileCfg() and ilQCopyTile3D() are available for copying a tile
from another illmage.

Most of the virtual functions in illmage are data access functions:

203

Chapter 6: Extending ImageVision Library

204

virtual ilStatus qGetSubTile3D(IMpNode* parent, int x, inty, int z,
int nx, int ny, int nz, void*& data, int dx, int dy, int dz, int dnx,
int dny, int dnz,const ilConfig* config=NULL, iMpManager* pMgr=NULL);

virtual ilStatus gSetSubTile3D(IMpNode* parent, int x, inty, int z,
int nx, int ny, int nz, void* data, int dx, int dy, int dz, int dnx,
int dny, int dnz, const ilConfig* config=NULL, iMpManager® pMgr=NULL);

virtual iIStatus gCopyTileCfg(iIMpNode* parent, int X, int y, int z,
int nx, int ny, int nz, illmage* other, int ox, int oy, int 0z,
const ilConfig* config=NULL, iMpManager* pMgr=NULL);

virtual iIStatus gDrawTile(iMpNode* parent, int x, int y, int nx, int ny,
illmage* src, float sx, float sy, float sz, IMpManager™ pMgr=NULL);

virtual iIStatus gFillTile3D(IMpNode* parent, int x, inty, int z,
int nx, int ny, int Nz, const void* data, const iiConfig* config=NULL,
const ifiTile3Dint* fillMask=NULL, iIMpManager* pMgr=NULL);

virtual ilStatus gFillTieRGB(IMpNode* parent, int x, inty, int z,
int nx, int ny, int nz, float red, float green, float blue,
const ifiTile3Dint* fillMask=NULL,
ifiCrientation orientation=iflOrientation(0), iIMpManager* pMgr=NULL);

virtual ilStatus glLockPageSet(iMpNode* parent, ilLockRequest* set,
int mode=ilLMread, int count=1, iIMpManager* pMgr=NULL,
iICallback* perPageCh=NULL);

iIStatus qGetTile3D(IMpNode* parent, int x, inty, int z, int nx, int ny,
int nz, void*& data, const iiConfig* config=NULL, iIMpManager* pMgr=NULL)

iIStatus gSetTile3D(IMpNode* parent, int x, inty, int z, int nx, int ny,
int nz, void* data, const iIConfig* config=NULL, iMpManager* pMgr=NULL)

When calling the base functions listed above, the caller must specify the origin (X, y, z)
and size (nx, ny, nz) of the desired tile. For 2-D operations, z is set to 0 and nz is set to 1.
For pixel operations, nx, ny and nz are set to 1. An object called iflConfig, is used to
specify the configuration (that is, data type, order, number of channels and so forth) of
the desired tile. If required, the image data is converted to a specified configuration while
getting a tile, or converted from a specified configuration to that of the image while
setting a tile.

All of these functions have default implementations that you can choose to override. The
rest of this section explains how to implement these functions.

Deriving From ilimage

Implementing qGetSubTile3D()

You should implement gGetSubTile3D() so that it retrieves an arbitrary tile of data from
the source image and puts it into the location indicated by data. The tile is located at
position (X, y, z) in the source image and has the size indicated by nx, ny, and nz. The dx,
dy, and dz parameters specify the data buffer’s origin relative to the image; dnx, dny, and
dnz specify the buffer’s size. The optional config argument indicates how the data should
be configured in the buffer. See “Three-dimensional Functions” on page 46 for more
information about qGetSubTile3D().

This function has a default implementation that returns ilUNSUPPORTED.

Implementing gSetSubTile3D()

Your version of the qSetSubTile3D() function should write the tile of data pointed to by
data into the destination image. The arguments for qSetSubTile3D() have analogous
meanings to those for qGetSubTile3D(): (x,y,z) and (nx, ny, nz) indicate the desired
origin and size of the tile in the destination image; dx, dy, and dz specify the data buffer’s
origin relative to the image; and dnx, dny, and dnz specify the size of the data buffer. The
optional config argument describes the configuration of the tile being passed or written;
if itis NULL, assume that the tile’s configuration matches that of the destination image.
See “Three-dimensional Functions” on page 46 for more information about
qSetSubTile3D().

This function has a default implementation that returns ilUNSUPPORTED.

Implementing qCopyTileCfg()

The default implementation of qCopyTileCfg() copies a tile of data from one image to
another. This implementation is not as efficient as possible, since it allocates a temporary
buffer for holding the data as it performs the copy and then deletes the buffer when it
completes the copy. You might want to override this function to provide a more efficient
version.

Implementing gFillTile3D() and gFillTileRGB()
The default versions of gFillTile3D() and gFillTileRGB() do nothing; you will need to

override them if you want their functionality. Your implementations should fill a
specified tile with the specified pixel value or color.

205

Chapter 6: Extending ImageVision Library

206

Implementing gLockPageSet()

Your implementation of gLockPageSet() should set a read-only lock for a set of pages
when accessing image data. A pointer to each page in the set is deposited in each
corresponding ilLockRequest. As a result, the image data for all of the pages is
computed. If all of the requests succeed, ilOKAY is returned. If one or more fail, an error

code will be returned and the ilLockRequest structures will contain individual status
codes.

Implementing qGetTile3D()

This function places the destination of a tile, pointed at by data, at coordinates, X, v, z
using the size of the source image defined by dx, dy, dz.

Your class must overwrite qGetTile3D(). Its default function returns ilUNSUPPORTED.

Implementing qSetTile3D()

This function allows the source buffer to have a different position and size, specified by
dx, dy, dnx, dny, dz, and dnz.

Your class must overwrite qGetTile3D(). Its default function returns ilUNSUPPORTED.

Support Functions

The outOfBound() support functions are provided to help implement the data access
functions:

int outOfBound(int x, int y);
int outOfBound(int x, int y, int z);

These functions return TRUE if the specified point lies outside the image.

If you implement any of the data access functions, you need to hook them into the reset
mechanism, which is described next.

Color Conversion

The checkColorModel() function matches the color model of an image with the number
of channels. If there is a mismatch, the number of channels is updated to match the color

Deriving From ilimage

model. However, if the number of channels was set and there is a mismatch, a status of
iIBADCOLFMT is set.

void checkColorModel();

The needColorConv() function returns TRUE if the image’s color model does not match
the color model of other. The from flag indicates the direction that data is copied:

needColorConv(ililmage* other, int from, const ilConfig* cfg);

The getCopyConverter() function chains one image to another provided the two images
have different color models. If the images have the same color model, there is no color
conversion. getCopyConverter() is defined as follows:

int getCopyConverter(illmage*& other,const ilConfig* cfg)

The getCopyConverter() function returns TRUE if the other image has a different color
model than this image. In this case, a color converter operator is chained onto the other
image.

The getCopyConverter() function returns FALSE if the color models are compatible, or
if the cfg specifies a channel list or channel offset. In this case a converter operator is not
chained to the other image.When cfg specifies a channel list or offset, no color conversion
is performed.

Managing Image Attributes

An image has numerous attributes associated with it that describe the image. You can
change some attributes; some change as a side effect of changing some other attribute.
This section describes functions you can use to manage attribute values in a class derived
from illmage.

The reset() Function

An important virtual function in illmage that you must be concerned with is reset():

virtual void reset(); // inherited from ilLink
This function is designed to adjust or validate an image’s attributes if they have been

altered, for example, by applying an operator or by setting an attribute explicitly. This
function plays a key role in IL’s execution model, which propagates image attribute

207

Chapter 6: Extending ImageVision Library

208

values down an operator chain. (See “Propagating Image Attributes” on page 59 for
more information on propagating image attributes.)

The reset mechanism is triggered whenever an image is queried about its attributes or
when its data is accessed. The query and access functions all call resetCheck() (which is
inherited from ilLink) to initiate the reset process. If you implement qGetSubTile3D(),
qSetSubTile3D(), qCopyTileCfg(), gFillTile3D(), qFillTileRGB(), qLockPageSet(),
qGetTile3D(), gSetTile3D() or any attribute query, you need to call resetCheck() before
you do anything else in your versions of these functions. This ensures that correct
information about an image’s attributes is returned and that image data is always valid
before it is read, written, copied, filled, or updated.

The reset() function must be defined by derived classes to perform any necessary reset
tasks. For example, the iIMemCachelmg class’s version of reset() throws out any existing
datain the cache since it is invalid; ilOplmg performs several chores in its reset() function
and then calls resetOp(), which needs to be implemented by derived classes to perform
more specific reset tasks.

Allowing Attributes to Change

Not every image attribute can be changed; by default, the fill value and the maximum
and minimum pixel values are allowed to change. Each illmage derived class can choose
which attributes it allows to be modified by using the setAllowed() function (inherited
from ilLink), typically in the constructor:

setAllowed(illPcolorModel|illPorientation);

The argument passed to setAllowed() is a mask composed of a logical combination of the
enumerated type, illmgParam, which is defined in the header file il/ilimage.h. The
illmgParam constants defined in IL are listed in Table 6-2. Each image attribute listed in
the table is described elsewhere in this guide. Derived classes can add members to this
structure to trace whether particular parameter values have changed and to control
whether they can be explicitly modified.

Table 6-2 illmgParam Constants

Defining Class illmgParam Image Attribute

illmage illPdataType data type
illPorder pixel ordering
illPpageSize page size

Deriving From ilimage

Table 6-2 (continued)

illmgParam Constants

Defining Class illmgParam Image Attribute

“ illPxsize x dimension of page size
“ illIPysize y dimension of page size
“ illPzPageSize z dimension of page size

ilFilelmg

ilOpimg

iISublmg

illPxyPageSize
illPcPageSize

illPpageSize

illPchans
illPdepth
illPorientation
illPcolorModel
illPminValue
illPmaxValue
illPscale

illPfill
illPcompression
illPcmap
illPpageBorder
ilFPimageldx
illIPbias
illPclamp
illPworkingType

illPconfig

X,y dimension of page size
component value of a pixel

red values of illPzPageSize,
illPxyPageSize, and illPcPageSize

number of channels

z dimension of the image
orientation

color model

minimum pixel value
maximum pixel value
color scaling value

fill value

compression

look-up table color map
page border for overlapping pages
image index

bias value

clamp value

working data type

configuration

209

Chapter 6: Extending ImageVision Library

210

Table 6-2 (continued) illmgParam Constants

Defining Class illmgParam Image Attribute
illmgStat ilISPzBounds z dimension bounds
ilRoi ilIROlorientation orientation

Preventing Attributes From Changing

An image can explicitly disallow any of these attributes to be modified. For this, it uses
the clearAllowed() function (from ilLink) and passes in a logical combination of the
illmgParam parameters that should be disallowed.

Another function, isAllowed() (inherited from ilLink), checks whether a particular
attribute can be modified:

canChange = mylmg.isAllowed(illPsize);

This function takes the same sort of argument as clearAllowed() and returns TRUE if the
attributes specified are not allowed to be modified.

Setting Altered and Stuck Flags

When an attribute’s value is changed by the user (by calling the appropriate attribute
setting function), setAltered() (from ilLink) should be called to set a flag indicating that
areset is needed. Thus, you must call setAltered() within any attribute setting functions
you define. This function takes a mask of ilimgParam parameters as an argument and
sets the altered flags for the specified attributes.

You can check whether any particular attributes have been altered with isAltered()
(inherited from ilLink). This function takes an ilimgParam mask as an argument and
returns TRUE if any of the specified attributes have been altered.

As explained in “Propagating Image Attributes” on page 59, IL programs need to keep
track of attributes that have been explicitly set by the user so that they remain fixed
during the reset process. To keep track of these attributes, you should call markSet()
(inherited from ilLink) with an illmgParam mask as an argument. This function marks
the specified attributes with a stuck flag (yet another item inherited from the ilLink class),
which indicates that their values should not be changed during a reset operation.
markSet() is invoked automatically for you when setAltered() is called, so generally you
do not need to call markSet() yourself.

Deriving From ilimage

You can determine whether any attributes are fixed with isSet() (inherited from ilLink).
This function returns TRUE if any of the attributes specified in the mask passed in have
been explicitly set.

Setting Attributes Directly

Sometimes within a derived class’s implementation, you may want to change an
attribute’s value without triggering the reset mechanism and without causing the value
to become fixed. You have already seen one situation where you want to do this: within
a constructor, when attributes are being initialized. Another case is when you are
computing attribute values during the reset operation itself. In these situations, you do
not use a attribute setting function since it calls setAltered(), which in turn calls
markSet(). Since derived classes have access to protected data members, simply set the
value of the desired attribute directly:

dtype = iflFloat; /I changes value; no flag set

The initMinMax(), initColorModel(), and setStatus() functions described earlier in this
section all set attributes directly.

Adding New Attributes

Itis quite easy to add attributes to a newly derived class. You can use the header files for
the already existing IL classes for examples. This an example is from the il/ilOpImg.h
header file:

enum ilOplmgParam {
illPbias = illmgParamLast<<1,
illPclamp = illmgParamLast<<2,
illPworkingType = illmgParamLast<<3,
ilOpimgParamLast = illPworkingType

2
The pattern is simple. Suppose you were to derive a new class from ilOplmg and add
parameters to it. You might do the following:

enum iIMyClassParam {
illPparaml = ilOplmgParamLast<<1,
illPparam?2 = ilOplmgParamLast<<2,

illPparam5 = ilOplmgParamLast<<5,
iIMyClassParamLast = illPparam5

211

Chapter 6: Extending ImageVision Library

Deriving From ilCachelmg

The ilCachelmg class implements an abstract model of cached image data. The main
purpose of this class is the definition of a common API for cached image objects. You can
implement your own caching mechanism by deriving from ilCachelmg. The
ilMemCachelmg class, derived from ilCachelmg, provides an example of the
implementation of a caching mechanism.

If you derive from ilCachelmg, you must implement the data access methods inherited
from illmage. You must also implement the flush(), getCacheSize(), and listResident()
functions if you derive from ilCachelmg.

The flush() function causes any modified data in the cache to be written out. Derived
classes that access an image file can call this function in their destructor before they close
the file to ensure that all data is written:

virtual ilStatus flush(int discard=FALSE);

The getCacheSize() function returns the amount of cache memory, in bytes, currently
allocated by this image object:

virtual size_tgetCacheSize();

The listResident() function returns a list of all the resident pages:

virtual ilStatus listResident(ilCallback* cb);

The callback specified in cb is invoked once for each page resident in memory. The
callback function should have prototype as defined in addPagingCallback().

Deriving From iIMemCachelmg

212

The iIMemCachelmg class implements a caching mechanism for efficiently manipulating
image data in main memory. In managing the interface to an image’s cache,
ilMemCachelmg implements all of the illmage virtual data access functions. The
ilMemCachelmg class also implements the virtual function hasPages(), which is defined
in illmage. hasPages() should return TRUE only for classes that implement IL’s paging
mechanism (ilMemCachelmg does).

Classes that derive from ilMemCachelmg do not need to implement these functions;
instead, they need to implement some or all of the following virtual functions:

Deriving From ilMemCachelmg

virtual ilStatus prepareRequest(ilMpCacheRequest* req);
virtual ilStatus executeRequest(ilIMpCacheRequest* req);
virtual ilStatus finishRequest(ilMpCacheRequest* req);
virtual ilStatus getPage(ilIMpCacheRequest* req);

virtual ilStatus setPage(ilMpCacheRequest* req);

Image data requests are processed through the multi-processing scheme defined by the
ilIMpManager and ilMpRequest classes. The virtual functions, prepareRequest(),
executeRequest(), and finishRequest(), define the API for multi-processing. To maintain
the multi-processing scheme, you must sub-divide processing operations into these three
stages:

= prepareRequest() queues requests for required input pages.
= executeRequest() reads or computes the requested page.

= finishRequest() unlocks the input pages.

Derived classes must re-define these virtual functions. These functions are described in
greater detail in “Defining the Request Processing Virtual Functions” on page 221.

The other virtual functions handle the 1/0 operation of moving image data between the
disk and the cache.

=« getPage() is called when a page of image data needs to be retrieved from disk and
put into the cache. The data should be placed in the page-sized buffer that is
accessed using the getData() function.

= setPage() is called when the cache is full and a page needs to be written back to
disk. The data argument is a pointer to a page-sized buffer that is accessed using the
getData() function.

The iIMpCacheRequest class (defined in the header file il/ilMemCachelmg.h) defines the
page’s location within the image and the amount of data to be processed:

class ilMpCacheRequest : public iIMpRequest, public iflXYZCint {
public:
iIMpCacheRequest(iiMpManager* parent, int x, inty, int z, int c,
int mode = ilLMread);

/I methods to access mode fields

int isRead() { return mode&ilLMread; }

int isWrite() { return mode&ilLMwrite; }

int isSeek() { return mode&ilLMseek; }

int getPriority() { return mode&ilLMpriority; }

213

Chapter 6: Extending ImageVision Library

214

/l method to access page data
void* getData() { return page->getData(); }

int nx, ny, nz, nc; // size of valid data in page

h

Since an image’s size is not generally an exact multiple of the page size, you are likely to
encounter pages that are only partially full of data. The nx, ny, nz, and nc members define
the actual limits of the data that you need to read or write within a given page buffer. You
might want to use the getStrides() function to help you step through a page buffer. See
“Data Access Support Functions” on page 47 for more information about getStrides().

Table 6-3 lists additional attributes you might need to initialize for a class derived from
ilMemCachelmg.

Table 6-3 Additional Attributes Needing Initialization in ilMemCachelmg Derived Classes

Name Data Type Meaning

pageSizeBytes size t size of a page in bytes

pageSize iflSize pixel dimensions of the pages used to store data on
disk

pageBorder ifIXYZint pixel dimensions of page borders as stored on disk

(default is zero)

You can also implement the allocPage() and freePage() functions. These functions
allocate or free a page in main memory whose pixel includes (x,y,z,c). If you implement
the function allocPage(), you must also call the function doUserPageAlloc() in the
function that calls allocPage() to notify IL that the pages need to be defined.

The flush() function (defined by iIMemCachelmg) flushes data from an image’s cache; it
calls setPage() to ensure that the data is written to the proper place:

virtual ilStatus flush(int discard=FALSE);

This function takes one optional argument and returns an ilStatus to indicate whether the
flush was successful. Calling flush() with a TRUE argument discards all data in the cache.
This is useful for freeing up memory if you know you are never going to use the cached
data again. When discard is FALSE, flush() writes any modified data from the cache to
the image. The destructor for any class derived from ilIMemCachelmg may need to call

Implementing an Image Processing Operator

ilMemCachelmg’s flush() (with discard equal to FALSE) before the class object is deleted
to ensure that any modified data is written back to the image.

For more information about deriving from either of iIMemCachelmg’s derived class
ilOpImg, see “Implementing an Image Processing Operator” on page 215.

Implementing an Image Processing Operator

IL is designed to be easily extendable in C++ to include image processing algorithms you
implement. You can derive a new operator directly from ilOplmg, or you can take
advantage of the support provided by its subclasses, some of which are specifically
designed to be derived from. This section explains in detail how to derive your own
operator. It contains these sections:

e “Deriving From ilOplmg” on page 216

« “Deriving From ilMonadiclmg or ilPolyadiclmg” on page 227

« “Deriving From ilSpatiallmg” on page 233

= “Deriving New Classes From ilWarplmg and ilWarp” on page 236

« “Deriving From ilFMonadiclmg or ilFDyadicimg” on page 237

= “Deriving From ilFFiltimg” on page 240

The subclasses of ilOpImg handle the tasks of reading raw data from the cache and
writing processed data back to the cache; if you derive from these classes, you are
responsible for writing only the function that processes the data in a given input buffer
and writes it to a given output buffer. If you derive directly from ilOplmg, you need to
supply your own interface to the cache as well as your processing algorithm. Figure 6-2
shows the operator classes you are most likely to derive from.

215

Chapter 6: Extending ImageVision Library

216

ilColorimg
—| ilMonadiclmg
ilLutimg ilArithLutimg —|
iIFFiltimg L -
ilHistLutimg
iIFMonadiclmg
—liIFPonadicImg{
iIFDyadiclmg
-+ — ilOplmg
—— ilWarplmg
ilConvimg
— ilSpatiallmg 4|:
iISepConvimg
— ilPolyadiclmg iiDyadiclmg
Figure 6-2 ilOpImg and Its Subclasses for Deriving

Remember that when you derive from a class, you inherit all of its public and protected
data members and member functions. You also inherit members from its superclasses.
You should review the header file and the reference page for any class you plan to derive
from (as well as the header file and reference pages of its superclasses) to become familiar
with its data members and member functions. It is also a good idea to look at a few of its
subclasses to see what general tasks they perform and what functions they implement.
Finally, you might want to take a look at the selected IL source code that is provided

online in /usr/share/src/il/src.

The next section contains information that is useful whether you derive directly from
ilOpImg or from one of its subclasses. The sections that follow contain more detailed
information about deriving from each of ilOpImg’s subclasses shown in Figure 6-2.

Deriving From ilOpimg

A class derived from ilOplmg needs to implement these member functions:

Implementing an Image Processing Operator

= The constructor, which creates the object, declares which data types and pixel
orders are valid for the output, and sets the working data type.

= prepareRequest(), which queues the data accessed from the input image(s) for a

requested page of the operator. It also allocates the buffer(s) to hold the input image

data.

=« executeRequest() which performs the operator’s processing when the input data is

ready. The result is placed directly in a page of the operator’s cache.

= finishRequest() frees any resources allocated in prepareRequest(). This is separate

from executeRequest() so that aborted operations that have already done
prepareRequest() can clean up without bothering with the work done in
executeRequest().

= resetOp(), which adapts to any attributes that have been altered, such as changing

the input image

= Any public setParam() and getParam() parameter set or get functions provided to

control the operator’s algorithm.

You also need to implement a destructor if you allocate any memory or change state
within the constructor or any other function you implement. Example 6-1 shows a
typical header file for an ilOplmg subclass.

Example 6-1 Typical Header for a Class Derived From ilOpIlmg
#include <il/ilOplmg.h>
class myOperator : public ilOpImg {

public:
myOperator(illmage* img, float param1l);
void setParaml(float val)
{ paraml = val; setAltered(); }
float getParam1()
{ resetCheck(); return param1l; }

2
protected:
void resetOp();
iIStatus prepareRequest(iiMpCacheRequest *req);
iIStatus executeRequest(ilIMpCacheRequest *req);
iIStatus finishRequest(iiIMpCacheRequest *req);
private:

float param1;

217

Chapter 6: Extending ImageVision Library

218

The resetOp() function should be declared protected if other programmers are likely to
want to derive a class from the myOperator class.

The Constructor

The constructor takes a pointer to the source illmage(s) and additional arguments as
needed to provide parameters to control the operator’s processing algorithm (for
example, paraml). If you do use additional parameters, you might want to define
corresponding functions that allow the user to alter and retrieve the value of those
parameters (such as setParam1() and getParaml()). These functions should probably
take advantage of IL’s reset mechanism by calling setAltered() and resetCheck(),
respectively. (See “The reset() Function” on page 207 for more information about how
IL’s reset mechanism works.) Example 6-2 shows you what a simple constructor might
look like.

Example 6-2 Typical Constructor for a Class Derived From ilOplmg

myOperator::myOperator(ilimage* img=NULL, float param1=Param1Default)

setValidType(ifiFloat|ifiDouble);
setValidOrder(ffiinterleaved|iiSequentiallifiSeparate);
setWorkingType(ifiDouble);

setNuminputs(1);

setinput(img);

setParaml(param1l);

}

In this example, myOperator can produce output of either iflIFloat or iflDouble data type;
the output has the same pixel ordering as the input image. Input image data that is of
type iflFloat is cast to ifIDouble before it is processed; this is the meaning of an operator’s
working type. Some operators can handle multiple inputs, but the setNumInputs()
function is used here to limit myOperator to one input. The setlnput() function sets the
input to be the ilimage passed in; this step chains myOperator to the input image. Finally,
paraml’s value is initialized.

The setValidType(), setValidOrder(), and setWorkingType() functions are all defined as
protected in ilOpImg. They are discussed in more detail in ilOplmg’s reference page. The
illmage class defines setNumInputs() (protected) and setlnput().

The constructor should not contain any calculations that are based on the value of
arguments passed in, since these arguments might change. Most operators that require
arguments other than the input image in their constructors define functions for

Implementing an Image Processing Operator

dynamically changing the value of those arguments (like setParam1()). Such calculations
should be done in the resetOp() function described below. The resetOp() function is
declared in ilOpImg, but its implementation is left to derived operators. Note that when
any illmage is created, it is considered “altered,” so resetOp() is always called before any
data is computed.

The resetOp() Function

Since resetOp() is guaranteed to be called before prepareRequest(), executeRequest(),
and finishRequest(), it can—and should—be used to calculate the values of variables
needed by these methods, particularly if those variables depend on arguments passed in
the operator’s constructor. The resetOp() function also needs to reset any image
attributes that change as a result of the image’s data being processed, so that the proper
attribute values can be propagated down an operator chain. As an example, imagine an
operator that defined the following variables (probably as protected) in its header file
(ilMonadiclmg defines these variables):

ifIXYZCint str; // output (page) buffer strides
ifIXYZCint istr; [/l input image strides

int bufferSize; /I size of input buffer in bytes

int cBuffSize; // number of channels in input buffer

As you might expect, these variables are used to determine the size of the internal buffer
needed for reading in the image’s data that is to be processed. This buffer is actually
allocated in prepareRequest(), but the values for these variables are calculated in
resetOp(), since they depend on the input image’s page size and data type attributes.
Example 6-3 illustrates this with ilMonadiclmg’s implementation of resetOp(). (The
ifLlXYZCint struct holds four integers, one for each of an image’s dimensions; see
“Convenient Structures” on page 349 for more information.)

Example 6-3 The resetOp() Function of iIMonadiclmg

iMonadicimg::resetOp()
/I make sure we have a valid input
ilimage* img = getinput();
if img==NULL || getOrder() == ifiSeparate && getCsize() = img->getCsize())
{ setStatus(ilStatusEncode(IBADINPUT)); return; }

/I make sure page size info is in sync with color model/number channels
checkColorModel();

/I determine whether or not we can use lockPage on our input

219

Chapter 6: Extending ImageVision Library

220

int cps, icps;
ifiXYZint pgSize, pgDel, ipgSize, ipgDel;
getPageSize(pgSize.x, pgSize.y, pgSize.z, cps);
getPageDelta(pgDel.x, pgDelyy, pgDel.z, cps);
img->getPageSize(ipgSize.x, ipgSize.y, ipgSize.z, icps);
img->getPageDelta(ipgDel.x, ipgDel.y, ipgDel.z, icps);
iflCrder inord = img->getOrder();
useslstr = 0; // XXX not supported yet
uselLock = linPlace && (useslstr || pgSize == ipgSize && pgDel == ipgDel) &&
(cps ==icps || cps == size.c && icps == img->getCsize()) &&
img->getDataType() == wType &&
img->getOrientation() == orientation &&
(order ==inord ||
useslstr & (order == ifiSeparate) == (inord == ifiSeparate));

/I get buffer strides
getStrides(str.x, str.y, str.z, str.c);
if (useLock)
img->getStrides(istr.x, istr.y, istr.z, istr.c);
else
img->getStrides(istr.x, istr.y, istr.z, istr.c,
pgSize.x, pgSize.y, pgSize.z, icps, getOrder());

As shown, the resetOp() function performs three tasks:

makes sure the input is valid

determines whether to use lockPage() or getTile()

computes the stride parameters used in most calcPage() implementations

The size of the internal buffer depends on the operator’s working data type, on its page
size, and on the input image’s channel stride. Note that for this operator, the input and
output buffers are the same size. (All the functions used in this example are described in
Chapter 2, “The ImageVision Library Foundation,” except for iflDataSize(), which is
described in the reference pages.) In this example, none of the image’s attributes change
as a result of this operator’s image processing algorithm. An example of an operator that
does change attributes is ilIRotZoomImg, which changes the image’s size, unless the user
has explicitly specified a desired size:

if (lisSet(illPsize)) {

/I calculate newXsize and newYsize
size.x = newXsize;
size.y = newYsize;

Implementing an Image Processing Operator

}

Notice that the attributes are set directly; the setSize() function is not used since it would
flag the size attribute as having been altered. You can use isDiff() to determine whether
any parameters changed as a result of propagation. This function takes a mask of
illmgParam values and returns TRUE if any of the specified attributes changed.

Defining the Request Processing Virtual Functions

The ImageVision Library (IL) performs computation under a demand-driven model in
which image operators respond to requests for pages of processed data. These requests
are encapsulated by the iIMpRequest class and its subclasses. A processing request
generally passes through the following stages:

prepare Requests the data required to generate the output page(s) from the
operator’s inputs. These requests must complete before the next stage
can start. Usually these requests are made by a call to gLockPageSet() or
getTile().

execute Computes the requested output pages using the data that was requested
during the prepare phase. Usually this processing involves a call to
some form of the calcPage() virtual function.

finish Frees any resources that were allocated and releases any cache page
locks that were necessary to perform this request. For example, if
qLockPageSet() was called during the prepare phase, unlockPageSet()
should be called during finish to release the page locks.

Operator classes implement the execute phase in various ways. For file images, the
virtual functions getPage() or setPage() (defined by the ilMemCachelmg class) are called
to read or write a page of data. Most operator images (those that derive from ilOpImg)
call a form of calcPage(). The arguments to calcPage() vary according to the needs of the
specific operator type. Deriving a new monadic operator, for example, requires defining
a new calcPage() function that implements the desired algorithm.

Other types of operators have already implemented the calcPage() method and have a
more specialized virtual function that defines the algorithm. For example, ilHistLutlmg,
(which is the base class for operators that define a lookup-table based on the input’s
statistics) implements the calcPage() function that it inherits from ilMonadiclmg and
defines the pure virtual function, calcBreakpoints(), which is called to compute the
appropriate lookup-table after the input’s statistics have been computed.

221

Chapter 6: Extending ImageVision Library

New classes that you derive do not have to follow this model exactly (although they do
have to abide by the request-processing scheme), but it does make the library consistent
to maintain this convention. Some examples of abstract image operator classes (and the
pure virtual functions that implement their specific algorithms) are shown in Table 6-4.

Table 6-4 ilOpImg Subclasses and Their Algorithm Functions

ilOpImg Subclass Function That Implements the Image Processing Algorithm

ilArithLutimg void calcRow(ifIDataType inType, void* inBuf, void* outBuf,
int sx, int lim, int idx);

ilHistLutlmg ilStatus calcBreakpoints(illmage *src, illmgStat *imgstat,
double **brPoints);

ilSpatiallmg ilStatus calcPage(void* inBuf, void* outBuf, ifIXYZCint start,
ifLIXYZCint end)

ilWarplmg void addrGen(int xpos, int ypos, int zpos = 0, int count,
int xstep, int ystep, iflXYfloat* addrs)

ilDyadiclmg ilStatus calcPage(void* inBufl, void* inBuf2, void* outBuf,
iIMpCacheRequest& req)

ilMonadiclmg ilStatus calcPage(void* inBuf, void* outBuf,
iIMpCacheRequest& req)

ilPolyadiclmg virtual ilStatus calcPage(void** inBuf, int numlIn, void* outBuf,
ilPgCB& cb);

ilFDyadiclmg void cmplxVectorCalc(float* vect, int rr, int ri, int ril,

float* vect2, int rr2, int ri2, int size, int ch, int dc)
ilFMonadiclmg void cmplxVectorCalc(float* vect, int rr, int ri, int size)

ilFPolyadiclmg virtual ilStatus calcPage(void** inBuf, int numIn, void* outBuf,
ilPgCB& cb);

Example 6-4 shows what a request-processing implementation might look like under

this model.

Example 6-4 A Request-Processing Implementation for a Class Derived From ilOplmg
iIStatus

iMonadicimg::prepareRequest(iMpCacheRequest* req)

{

222

Implementing an Image Processing Operator

/I do not proceed if things look bad
if (status = IOKAY) retum status;

/I get the input image to read data from
illmage* im = getinput(0);
assert(im '= NULL);

iIMpMonadicRequest* r = (IMpMonadicRequest*)req;

/I queue request for the input data, either lockPage or getTile
iIStatus sts;
if (useLock) {
/I doing lockPage, the page in the inputimage is the input buffer
r=>lck.init(->X, r->y, r->z, r->c);
sts = im->gLockPageSet(r, &r->Ick);

}

else {
/I doing getTile: if in place use our own page as destination, otherwise
I allocate an input buffer

int nc = im->getCsize();

if (order == ifiSeparate && nc == getCsize()) nc = getPageSizeC();

iIiConfig cfg(wType, order, nc, NULL, r->c, getOrientation());

if (inPlace) r->in = r->getData();

sts = im->qGetSubTile3D(r, r->X, I->y, ->z, I->nX, I->ny, r->nz,
r-=>in, r->X, ->y, 1>z,
pageSize.x, pageSize.y, pageSize.z, &cfg);

}

retum sts;

}

iIStatus
iIMonadicimg::executeRequest(iiMpCacheRequest* req)

{
/I do not proceed if things look bad

if (status = lOKAY) retum status;
iIMpMonadicRequest* r = (IMpMonadicRequest*)req;

Jlfind the input buffer,

void* src;

if (useLock) {
/I doing lock page, input page is the input buffer
if (Ir->Ick.isLocked()) retumn r->Ick.getStatus();
src = r->Ick.getData();

223

Chapter 6: Extending ImageVision Library

224

}

else
I normal getTile, data was read into allocated buffer (or in place)
Src=r->in;

Il'et the real operator code in derived class do it is thing
return calcPage(src, r->getData(), *);
}

iIStatus
iMonadicimg:-finishRequest(iIMpCacheRequest* req)

{
iIMpMonadicRequest* r = (IMpMonadicRequest*)req;

I/ free up any allocations or locks

if (r->in && linPlace) {
Il junk the input buffer
delete r->in;

}

else if (->Ick.getPage() I= NULL) {
Il unlock the page
illmage* im = getinput(0);
assert(im '= NULL);
im->unlockPageSet(&r->Ick);

}

retumn iIOKAY;
}

The calcPage() function implements the image processing algorithm, taking care to
handle each valid data type appropriately. For example, Example 6-5 shows how
ilAddImg computes the pixelwise sum of two images.

Example 6-5 Computing the Pixelwise Sum of Two Images
#define doAdd(type) \
if (1) {\

type tb = type(bias); \
if (hnumin == 2) {\
void *ib0 = ib[0], *ib1 = ib[1]; \
for (; idx < lim; idx +=sx) \
((type*)ob)[idx] = ((type*)ib0)[idx]+((type*)ib1)[idx] +
tb; \
}else\

Implementing an Image Processing Operator

for (; idx < lim; idx +=sx) {\
type sum = th; \
for (int in=0; in < numIn; in++) \
sum += ((type®)ib[in])[idx]; \
((type*)ob)[idx] = sum; \
JA

} else

iIStatus
ilAddImg::calcPage(void** ib, int numin, void* ob, iIMpCacheRequest&
req)
{
/I for interleaved case: combine x/c loops to improve performance
int nc = req.nc, sc = str.c, nx = reg.nx, SX = Str.x;
if (sc==1&&sx==nc){nx*=nc;nc=1;sx=1;sc=0;}

for (int z = 0; z < req.nz; z++) {
for (inty = 0; y <req.ny; y++) {
for (intc =0; c<nc; c++) {
int idx = z*str.z + y*str.y + c*sc, lim = idx + nx*sx;
switch (dtype) {
case iflUChar: doAdd(u_char); break;
case iflUShort: doAdd(u_short); break;
case ifIShort: doAdd(short); break;
case iflLong: doAdd(long); break;
case iflFloat: doAdd(float); break;
case iflDouble: doAdd(double); break;
}
}
}
}

return ilOKAY;
}

Since ilAddImg is derived from ilPolyadiclmg, this function uses ilPolyadiclmg’s stride
data members—str.x, str.y, str.z, and str.c—to step through the data.

Because IL programs can be multi-threaded, the prepareRequest(), executeRequest(),
finishRequest(), and calcPage() functions should not alter any member variables or do
anything else that would make the algorithm non-reentrant. For example, the input
buffer used by prepareRequest() is allocated locally and stored as a member of the
request, rather than as a member in resetOp() so that concurrent execution of

225

Chapter 6: Extending ImageVision Library

226

prepareRequest() uses unique buffers for the different portions of the input image at the
same time.

Clamping Processed Data

Some operators might trigger overflow or underflow conditions as they process data. To
solve this potential problem, you should set clamp values that will then be used
automatically when overflow or underflow arises, as described below.

In your implementation of resetOp(), call setClamp():

void setClamp(ifiDataType type = numilTypes);
void setClamp(double min, double max);

This function sets the values that pixels will be clamped to if underflow or overflow
occurs. The first version sets the clamp values to be the minimum and maximum values
allowed for the data type type; the default value of numilTypes means to use the
operator’s current data type. The second version allows you to specify actual clamp
values.

In the calcPage() function, use the initClamp() macro, passing in the operator’s data type
(for example, int or float). This macro initializes two temporary variables to hold the
minimum and maximum clamp values. Then, after you process each pixel of data, call
the clamp() macro and pass in the processed pixel value. This function clamps the pixel
value, if necessary, to the minimum or maximum clamp value.

To allow a user to set clamp values, you need to add illPclamp to the illmgParam mask
passed to setAllowed() in the constructor.

Setting Minimum and Maximum Pixel Values

Another problem that might arise as a result of processing data is that the processed
values might exceed the range of values. For example, if you multiply two images (the
pixel values of which fall in the 0 to 255 range) and then display the result, you mightend
up with pixel data that appears to be invalid if the pixel values exceed 255. To solve this
potential problem, operators that alter the data range of their inputs need to set the
minValue and maxValue data members (inherited from illmage) to ensure that the
processed data can be displayed. When the data is displayed using ilDisplay, it is
automatically scaled between these values so that a meaningful display is produced.

Implementing an Image Processing Operator

Here is how ilAddImg computes minValue and maxValue in its resetOp() function
(ilAddImg performs pixelwise addition on two images; a user-specified bias value can
also be added to each pixel of the output):

/I compute worst case min/max values
double min = getinputMin(0) + getinputMin(1);
double max = getlnputMax(0) + getinputMax(1);

setStatus(checkMinMax(min+bias, max+bias));

The getlnputMin() and getinputMax() functions return the minimum and maximum
pixel value attributes of the input image. The argument for these functions is the index
of the desired image in the list of inputs (the first input is at index 0). These values are
added (since that is what ilAddImg does), combined with the bias value, and then passed
to checkMinMax(). This function first attempts to set the operator’s data type to the
smallest supported data type that can hold the range specified by its arguments. If the
data type is explicitly set by the user, however, it will not be changed. Then, if minValue
and maxValue are not explicitly set, they are set to the values passed to checkMinMax().
If checkMinMax() returns ilUNSUPPORTED, it is not able to change the data type to
support the range; in this case, minValue and maxValue are set to the maximum range
of the current data type.

Deriving From ilIMonadiclmg or ilPolyadicimg

Both ilMonadiclmg and ilPolyadicimg follow the getPage()/calcPage() model described
above. These two classes provide support for operators that take a single input image
(ilMonadiclmg) or multiple input images (ilPolyadiclmg) and operate on all pixels of the
input image data. Table 6-5 shows the classes that derive from ilMonadiclmg and
ilPolyadicimg.

Table 6-5 Classes Derived from ilMonaDiclmg and ilPolyadiclmg
Classes That Derive from Classes That Derive from

iIMonadiclmg ilPolyadicimg

ilAbsimg ilAddImg

ilFalseColorimg ilANDImg

ilFFiltimg ilBlendimg

illinvertimg ilDivimg

iINegimg ilMaximg

227

Chapter 6: Extending ImageVision Library

228

Table 6-5 (continued) Classes Derived from ilMonaDiclmg and ilPolyadicimg
Classes That Derive from Classes That Derive from

iIMonadiclmg ilPolyadiclmg

ilThreshimg ilMinImg

ilColorImg (& subclasses) ilMultiplylmg

ilLutlmg (& subclasses) ilORImMg
ilScalelmg (& subclasses) ilSubtractimg
ilXorimg

Here are some things you need to keep in mind if you derive from either of these classes:

= Do not redefine prepareRequest(), executeRequest(), or finishRequest(); use the
version defined in ilMonadiclmg or ilPolyadiclmg. Just implement your algorithm
in calcPage().

= If you redefine resetOp(), call the superclass version in your resetOp() (so that
buffers and page sizes are reset appropriately):

/I either
iIMonadiclmg::resetOp();
Il or
ilPolyadiclmg::resetOp();

= Use setWorkingType() if you want the input buffer to be read in as a type different
from the operator image’s data type. Note that the output buffer always uses the
operator’s data type.

Example 6-5 shows that ilAddImg’s implementation of calcPage() takes three
arguments. Similarly, ilMonadiclmg’s calcPage() function takes three arguments:

virtual ilStatus calcPage(void* inBuf, void* outBuf,
iIMpCacheRequest& req) = 0;

inBuf is the input buffer of data that needs to be processed, outBuf is the output buffer into
which the processed data should be written, and req is the request that describes the page
of data being processed. Your implementation of calcPage() (for any class derived
directly or indirectly from ilMonadiclmg) must accept this argument list.

Implementing an Image Processing Operator

Since ilPolyadiclmg processes more than one input image at a time, its calcPage()
function supplies an array of input buffers. As above, your implementation of calcPage()
must accept this argument list:

virtual ilStatus calcPage(void* inBufl, void* outBuf,
iIMpCacheRequest& req) = 0;

When you derive from a class, you inherit all of its public and protected data members
and member functions. All the public members for iIMonadiclmg and ilPolyadicimg
have been discussed in previous sections. The protected member functions are resetOp(),
getPage(), and calcPage(). For reference purposes, here are ilMonadiclmg’s protected
data members:

ifIXYZCint str; // output (page) buffer strides
ifIXYZCint istr; /I input image strides

int bufferSize; /I size of input buffer in bytes

int cBuffSize; /l number of channels in input buffer

The protected data members defined in ilPolyadicimg are similar:

ifIXYZCint str; // output buffer strides
ifIXYZCint istrl, istr2; /I input image strides

int buffSizel, buffSize2; // size of input buffers in bytes
int cBuffSizel, cBuffSize2; // number of channels in input
/I buffers

Deriving From ilArithLutlmg

As an abstract class, ilArithLutlmg defines how to use look-up tables when performing
arithmetic or radiometric operations. To derive from it, you implement your algorithm
in calcRow() rather than in calcPage():

void calcRow(iflDataType intype, void *inBuf, void *outBuf,
int sx, int lim, int idx);

The intype parameter indicates the input image’s data type. The next two arguments are
the input buffer of data that needs to be processed and the output buffer into which
processed data should be written. The next three arguments specify how to step through
the data: sx is the x stride of the output buffer, lim is the maximum x stride, and idx is the
starting index. The calcRow() function contains the algorithm for processing one row of
input data. For efficiency, you can use the defined macro doRow() to obtain the proper
data type and feed it to the macro doCalc(). (The doRow() macro is defined in

229

Chapter 6: Extending ImageVision Library

230

ilArithLutlmg’s header file.) If you use these macros, your calcRow() definition would
be just a call to doRow():

iIMyOpImg::calcRow(ifIDataType inType, void* inBuf,
void* outBuf,int sx, int lim, int idx)
{ doRow(); }

and you would actually implement the computation algorithm in the macro doCalc(), as
ilPowerlmg does, for example, as shown in Example 6-6.

Example 6-6 Implementation of ilArithDoCalc() in ilPowerlmg

#define ilArithDoCalc(outype, intype) \
if (1) {\
if (inType == iflDouble || dtype == ifiDouble) {\
for (; x < lim; x +=sx) \
((outype*)outBuf)[x] =\
(outype)pow((double)((intype*)inBuf)[x]*scale+bias,
power); \
JA
else {\
for (; x < lim; x +=sx) \
((outype*)outBuf)[x] =\
(outype)powf((double)((intype*)inBuf)[x]*scale+bias,
power); \
JA

} else

You also need to implement loadLut() to compute and load the appropriate values into
the LUT. Example 6-7 shows ilPowerIlmg’s version of loadLut().

Example 6-7 Implementation of loadLut() in ilPowerimg
void

ilPowerimg::loadLut()

{

double low, high;

lut->getDomain(low,high);

double dstep = lut->getDomainStep();

double lim = high+dstep/2;

for (double i = low; i < lim; i += dstep)
lut->setVal(pow(i*scale + bias, power), i);

Implementing an Image Processing Operator

For your convenience, ilArithLutlmg has functions for scaling and biasing the input data
before the LUT is applied:

void setScale(double scale);
double getScale();

void setBias(double bias);
double getBias();

Deriving From ilHistLutimg

The ilHistLutlmg class provides support for operators that compute a look-up table from
the histogram of the source image and then apply this table to the source image. It
derives from ilArithLutimg and implements its own versions of calcPage(), calcRow(),
and loadLut(). The only pure virtual function in ilHistLutlmg is calcBreakpoints(),
which all derived classes must implement:

virtual ilStatus calcBreakpoints(illmage *src, illmgStat *imgstat,
double **brPoints) = 0;

This function computes the breakpoints (brPoints) of a piecewise LUT. You can think of
it as a pointer to a two-dimensional array whose members can be accessed by

double val = brPoints[i][j] where:
i=0,12,..,nc-1
j=0,1,2,...,nbins i

nc = number of channels in the source image
nbins ; = number of bins in the histogram of channel i

You can obtain the number of bins by using imgstat’s getNbins() function. The variable
val in the example shown above represents what the pixel intensity represented by the
jth bin of the histogram for channel i maps to. For example, to invert pixel intensities of
an image containing unsigned char data, you can use

brPoints][i][j] = 255-j;

All the members of brPoints need to be evaluated in calcBreakpoints(), using both the
source image and a pointer to its associated data as inputs. Derived classes do not need
to allocate and manage memory for brPoints, since ilHistimg does this for them. In
addition, ilHistimg provides convenience functions for setting the illmgStat and ilRoi
objects:

void setimgStat(illmgStat *imgstat);
void setRoi(ilRoi *roi, int xoffset=0, int yoffset=0);

231

Chapter 6: Extending ImageVision Library

232

If you implement resetOp() in a derived class, be sure to explicitly call ilHistLutlmg’s
version of resetOp().

An example of a class derived from ilHistLutlmg might be an operator called
ilPixelCountlmg, which replaces each pixel intensity by the number of times it occurs in
that particular channel. Such an operator might be implemented as shown in

Example 6-8.

Example 6-8 A Class Derived From ilHistLutlmg to Count Pixels

class ilPixelCountimg:public ilHistLutimg {
private:
iIStatus calcBreakpoints (illmage *src,
illmgStat *imgstat, double **brPoints);
public:
ilPixelCountimg(illmage *src);

}

iIPixelCountimg::ilPixelCountimg(illmage *src)
silHistLutlmg(src)

{

}

iIStatus calcBreakpoints (illmage *src, illmgStat *imgstat,
double **brPoints)

{
if (src==NULL) return iIBADINPUT;
int nch=src->getNumChans();
for (int i=0; i<nch ; i++) {
int *hist = imgstat->getHist(i);
int nbins = imgstat->getNbins(i);
int total = imgstat->getTotal(i);
double max = src->getMaxValue(i);
for (int j=0; j<nbins; j++) {
brPoints[i][j]=(hist[j]*max)/total;
}
return iIOKAY;
}

Implementing an Image Processing Operator

Deriving From ilSpatiallmg

The ilSpatiallmg class provides basic support for operators that adjust a pixel’s value
based on a weighted sum of its surrounding pixels. The kinds of operators that can use
this support perform convolutions for particular purposes—for example, they calculate
gradients or perform rank filtering. Table 6-6 shows ilSpatiallmg’s subclasses.

Table 6-6 ilSpatiallmg’s Subclasses

iISepConvimg iISepConvimg RankFltimg
Subclasses Subclasses

ilLaplacelmg iIBlurimg ilMaxFltimg

ilRobertsimg ilCompassimg ilMedFItimg

ilSobellmg ilSharpenimg ilIMinFItimg

The ilSpatiallmg class follows the same getPage()/calcPage() model as ilMonadiclmg
does. All the following hints are also true about deriving from ilSpatiallmg (and any of
its subclasses):

= Do not redefine prepareRequest(), executeRequest(), or finishRequest(), just
implement your algorithm in calcPage().

= If you redefine resetOp(), call the superclasses in your resetOp() (so that buffers
and page sizes are reset appropriately):

iISpatiallmg::resetOp();

= Use wType as the working data type, but be sure the data you write into the output
buffer is of type dType.

The calcPage() function for ilSpatiallmg takes these arguments:

virtual ilStatus calcPage(void* inBuf, void* outBuf,
ifIXYZCint start, iflXYZCint end) = 0;

The input buffer inBuf points to a buffer containing the data that needs to be processed,
and outBuf points to a page in the cache where the processed data should go. Depending
on the edge mode, some of the data in inBuf may have been set to the image’s fill value.
(Refer to “Spatial Domain Transformations” on page 106 for further explanation of the

possible edge modes.) start and end demarcate the beginning and the end of source data
in inBuf that needs to be computed, so you should use them to delimit the computation.

233

Chapter 6: Extending ImageVision Library

234

ilSpatiallmg provides several protected member variables that are likely to be useful as
you implement your algorithm. These include strides, for use in stepping through the
input and output buffers:

ifIXYZCint inStr; I/l input strides
ifIXYZCint outStr; I/l output strides

The ifEIXYZCint struct holds four integers; for more information about it, see “Convenient
Structures” on page 349. ilSpatiallmg also constructs a kernel offset table and a kernel
value table based on the data in the kernel. The offset table contains offsets into the input
buffer to access data corresponding to nonzero kernel elements. The value table contains
the nonzero elements and corresponds to the offset table. These data members are shown
below:

ilIKernel* kernel; /I kernel object

int kernSz; /I number of nonzero kernel elements
int* kernOff; /I kernel offset table

void* kernVal; /I kernel value table

You can use these tables to improve the efficiency of your algorithm—for example, by
avoiding multiplications by 0. A related function, setKernFlags(), allows you to set flags
indicating that the offset table and/or value table must be created:

void setKernFlags(int of=0, int vf=0);

If you pass in a 1 for either the offset flag of or the value flag vf, the corresponding table
will be created to match the current kernel. You should call this function in the
constructor of your class (with ones as arguments) so that the tables are built.

The following code might be part of a calcPage() implementation for a convolution. It
shows how kernel values multiply data values and how this result is accumulated. It also
demonstrates how inBuf, outBuf, and the kernel are offset with respect to one another.
This example is a bit simplified in that it assumes both wType and dtype are iflFloat, and
it assumes that the kernel weights sum to 1.0 so that no clamping is necessary. Also, if
you actually need to implement a convolution-based algorithm, consider deriving from
ilConvimg, as described in Example 6-9.

Example 6-9 A Class Derived From ilConvimg to Multiply and Accumulate Data
/I cast the buffers to be of type wType

float* in = (float*)inBuf;

float* out = (float*)outBuf;

/I iterate through all channels
for (int ci = start.c; ci < end.c; ci++) {

Implementing an Image Processing Operator

int cSrcindex = ci*inStr.c;
int cDstindex = ci*outStr.c;

/I iterate through z dimension

for (int zi = start.z; zi < end.z; zi++) {
int zSrclndex = zi*inStr.z + cSrclndex;
int zDstIndex = zi*outStr.z + cDstIndex;

/I iterate through y dimension

for (int yi = start.y; yi < end.y; yi++) {
int srcindex = start.x*inStr.x + yi*inStr.y + zSrclndex;
int dstindex = start.x*outStr.x + yi*outStr.y + zDstIndex;

/I iterate through x dimension

for (int xi = start.x; xi < end.x;
Xi++, srcindex += inStr.x, dstindex += outStr.x) {
float sum = bias;// bias is inherited from ilOplmg
/Il cast kernVal to a float
float* kr = (float*)kernVal;

/literate through nonzero kernel values
for (intk =0 ; k <kernSz ; k++) {

sum += in[srcIndex+kernOff[k]] * kr[K];
}

/I note use of kernOff to access the correct input value
out[dstindex] = sum;
}
}
}
}

Deriving From ilConvimg or ilSepConvimg

The ilConvimg class performs general convolution on an image, and the ilISepConvimg
class performs separable convolution. You might want to derive from these classes if
kernel values are not available at the time the operator is constructed because they
depend on certain input parameters. In this case, you would define a resetOp() function
in the derived class that computes the x and y kernel values from input parameters. Then
you could use the inherited functions setXKernel(), setYKernel(), and setKernelSize()
to specify the kernel and its size, after which you would need to explicitly call
ilConvimg’s or ilISepConvimg’s version of resetOp(). Remember that the kernel for
ilConvimg should be a two-dimensional matrix, while that for ilSepConvimg should be
two separate vectors. You should also set the edge mode and bias value.

235

Chapter 6: Extending ImageVision Library

236

Deriving New Classes From ilWarplmg and ilWarp

ilWarplmg is an abstract, base class derived from ilOplmg. ilWarplmg provides basic
support for warping an image using up to seventh-order polynomials. Often, users know
the kind of warp effect they want to achieve, but they do not know how to specify
coefficients to achieve this effect. The two operators that derive from ilWarplmg—
ilRotZoomImg and ilTieWarplmg—provide the user with an indirect way of specifying
the coefficients. For example, ilRotZoomImg lets you specify an angle of rotation, and
then it performs the work necessary to compute the coefficients needed to achieve the
rotation.

There are three reasons for deriving your own warp operator:

= You need a warping algorithm that uses higher-order polynomials (eighth-order
and above).

= You want to define a new way of specifying the warping coefficients.

Different types of warps are defined by deriving from ilWarp.

Deriving New Classes From ilWarp

The ilWarp class encapsulates general 3D coordinate transformations for use by
ilWarplmg and its subclasses. A particular warp is defined by overriding the x(), y(), and
z() virtual functions:

virtual float x(float u, float v=0,float w=0);
virtual float y(float u, float v=0, float w=0);
virtual float z(float u, float v=0, float w=0);

The x() function evaluates the x component of the warp function at a point. The default
implementation is to return u.

The y() virtual function evaluates the y component of the warp function at a point. The
default implementation is to return v.

The z() virtual function evaluates the y component of the warp function at a point. The
default implementation is to return w.

Any derived warp class that transforms any of the x, y, or z components should
overwrite the corresponding virtual function.

Implementing an Image Processing Operator

Deriving From ilFMonadicimg or ilFDyadicimg

The ilFMonadiclmg and ilFDyadiclmg classes provide the basic support for operators
that perform pixelwise computations on images that have been converted to the
frequency domain. To implement a frequency domain filter, derive from ilFFiltimg, as
explained in “Deriving From ilFFiltimg” on page 240 (or use ilFMultimg). Both
ilFMonadiclmg and ilFDyadiclmg expect the input image(s) to be in the format
produced by iIRFFTfImg. As their names suggest, ilIFMonadiclmg expects a single input
image, and ilFDyadiclmg expects two input images. Table 6-7 shows their subclasses.

Table 6-7 The Subclasses of iIFMonadiclmg and ilfDyadicimg
iIFMonadiclmg’s Subclasses iIFDyadiclmg’s Subclasses
ilFConjimg ilFCrCorrimg

ilFRaisePwrimg ilFDivimg

ilFSpectimg ilFMultimg

ilFFiltimg

Both classes implement prepareRequest(), executeRequest(), or finishRequest()
functions for you so that you have to implement your algorithm only in
cmplxVectorCalc(). This function processes a vector of complex values;
executeRequest() calls it as needed to process an entire page of data. The calling
sequence for ilFMonadiclmg’s cmplxVectorCalc() is shown below:

virtual void cmplxVectorCalc(float* vect,
int rr, int ri, int size);

The first argument, vect, is a pointer to a vector of size number of complex values. On
input, vect holds the data to be processed, and on output it holds the processed data. Use
rr and ri to step through this vector: rr is the stride between the real parts of two
consecutive complex numbers in vect, and ri is the stride between the real and imaginary
part of a complex number in vect.

An example of a class derived from ilFMonadiclmg would be an operator that converts
rectangular coordinates to polar coordinates. Such an operator would need to declare
only two member functions:

class ilFPolarlmg : public iIFMonadicimg {
protected:
void cmplxVectorCalc(float* vect, int rr, int ri,

237

Chapter 6: Extending ImageVision Library

238

int size);
public:
iIFPolarimg(illmage* src);

}

In this example, cmplxVectorCalc() is declared protected since it is assumed that
ilFPolarimg will have subclasses. Example 6-10 shows how the constructor and
cmplxVectorCalc() functions might be implemented.

Example 6-10 Constructor and Member Functions of a Class Derived From ilFMonadiclmg to
Convert Coordinates

iIFPolarimg::ilFPolarimg(illmage* srcl)

{
setValidType(iflFloat);
addValidOrder(iflSeparate);
setNuminputs(1);
addInput(srcl);

}

void

iIFPolarimg::cmplxVectorCalc(float* vect, int rr, int ri,

int size)

{

inti, k;

for (i=k =0; k <size; i +=rr, k++) {
float real = vect[i];
float imag = vect[i + ri];
vect[i] = fsqrt (real*real + imag*imag);
vect[i+ri] = fatan2 (imag, real);

}

}

For classes derived from ilFDyadiclmg, cmplxVectorCalc() takes more arguments since
there are two input vectors that need processing:

virtual void cmplxVectorCalc(float* vectl, int rrl, int ril,
float* vect2, int rr2, int ri2,
int size, int ch, int dc) = 0;

In this case, vectl and vect2 are pointers to the input vectors, which are of the same size.
On input, they hold data to be processed, and on output, vectl holds the output data and
vect2 is unchanged. You can use rrl, ril, rr2, and ri2 to step through these vectors. The
argument ch indicates which channel is currently being processed. This argument is
ignored in most cases, but you can use it when the computation being performed

Implementing an Image Processing Operator

depends on the channel. For example, when a cross-correlation is computed, each
channel’s output is normalized by the average value of that channel. The last argument,
dc, indicates whether or not the vector includes a dc value.

Below is an example of what the declaration of ilIFMultimg (which multiplies two Fourier
images) might look like:

class ilFMultimg : iIFDyadicimg {
private:
void cmplxVectorCalc(float* vectl, int rrl, int ril,
float* vect2, int rr2, int ri2,
int size, int ch, int dc);
public:
iIFMultimg(illmage* srcl, illmage* src2);

}
A possible implementation of this class is shown in Example 6-11.

Example 6-11 A Class Derived From ilFDyadiclmg to Multiply Two Fourier Images
iIFMultimg::ilFMultimg(illmage* srcl, illmage* src2)

setValidType(iflFloat);
addValidOrder(ifISeparate);
setNuminputs(2);
addInput(srcl);
addInput(src2);

}
void
iIFMultimg::cmplxVectorCalc(float* vectl, int rrl, int ril,
float* vect2, int rr2, int ri2, int size, int)
{
inti, j, k;
for(i=j=k=0; k<size;i+=rrl,j+=rr2, k++) {
float reall = vectl][i];
float imagl = vectl[i + ril];
float real2 = vect2[j];
float imag2 = vectl[j + ri2];
vect[i] = reall*real2 + imagl*imag2;
vect[i+ril] = real2*imagl - imag2*reall,;

239

Chapter 6: Extending ImageVision Library

240

Deriving From ilFFiltimg

The ilFFiltimg class provides basic support for operators that perform frequency
filtering, such as ilFExpFiltimg and ilFGaussFiltimg. This class is particularly useful
when the filter can be described as a real-valued analytic function. The input image must
be in the format produced by iIRFFTfImg or by ilFFTOp’s iIRfftf() function.

Since ilFFiltimg implements prepareRequest(), executeRequest(), or finishRequest()
functions, all you have to do to derive from this class is provide your algorithm in the
fregFilt() function:

virtual float fregFilt(int u, int v) = 0;

This function returns the filter value at the frequency coordinates u and v, which are the
coordinates in the x and y directions, respectively. If nx and ny are the x and y dimensions
of the original spatial-domain image, the following is true:

nx ny—1 ny
< — [A— < 2
0_u<2+land 5 sv_2

The following example shows a low-pass frequency filter implementation:

class ilFLowPassImg : public ilFFiltimg {

private:

float cutoff;

float fregFilt(int u, int v)

{return fexp(-(u**2 + v**2)/cutoff**2);}

public:

iIFLowPassImg(illmage* src, float cutoff);

void setCutOff(float val) {cutoff = val; setAltered();}

}

iIFLowPassImg::ilFLowPassImg(illmage* src, float cutoff)
{

setValidType(iflFloat);

addValidOrder(iflSeparate);

setNuminputs(1);

addInput(src);

setCutoff(cutoff);

}

Deriving From ilRoi

Deriving From ilRoi

The constructor for this class takes an input source image and a cutoff level as arguments.
The fregFilt() function is implemented as shown below:

Ou?+v2Q

E._E'Eutoffz':I

ilRoi is an abstract base class, which means that an ilRoi cannot be created as an object. It
is intended to be used as a base class for deriving new types of region of interests (ROIs).
However, a pointer to an ilRoi can be declared for accessing any type of ROI.

ilRoi is derived from ilLink. As a consequence, ilRoi operators can be part of a chain of
objects with parent and child dependencies.

ilRoi abstracts the idea of a “region of interest” by defining various functions common to
all types of ROls. A ROl is a 3-D object with its own X, y and z dimensions and its own
orientation. One can imagine a ROI being laid on top of an ilimage.

valid region —

invalid region ———

illmage

Figure 6-3 Visualizing a ROI

All pixels of the illmage falling inside the valid regions are ones that are operated on; the
rest are not affected. The same ilRoi object can be associated with differentimages (which
can be of different sizes), and it can be placed at different offsets within each image. An
ilRoi or any object derived from it can be associated with an illmage through a class
called ilRoilmg.

241

Chapter 6: Extending ImageVision Library

242

You can use the getOrientation() and setOrientation() functions to manage the
orientation of the ilRoi object.

Different types of ROIs have different ways of describing valid (or foreground) and
invalid (or background) regions. A rectangular ROI (ilRectRoi) defines the valid region
as being inside or outside a rectangular area. An image-mapped ROI (illmgRoi) uses an
input image as a ROI map; each pixel in the map is compared against a threshold value
to determine if it is valid or not; the comparison may be any of the Boolean operators
(equal, not equal, greater than, greater or equal, less than, less or equal). Alternatively,
you can use an illmgRoi to divide an image into many different regions, each one
corresponding to a distinct pixel value in the image map.

Using an ROI: The ilRoilter class

In order to apply an ilRoi object to an image, an iterator is required. The pure virtual
method createlter() maps the ROI object onto an image at a given offset, then constructs
and returns an iterator that can be used to step through the regions of the ilRoi.

Deriving New Classes From ilRoi

In order to define a new type of ROI, the developer must derive a new class of ilRoi as
well as a new class of ilRoilter. You must define the virtual function, createlter(), to
construct and return an object of the new iterator class. The new ilRoi class usually needs
some other methods specific to its behavior; for example, the ilimgRoi class has methods
to set and get the image map, and set or get the comparison operator. These parameters
may also be passed to the illmgRoi constructor.

Deriving New Classes From ilRoilter

The ilRoilter class provides functions that can iterate through an ROI. These functions
can be used within a specified rectangle (clip box) or an entire image. Once you create an
ROI, you can construct an iterator that binds the ROI to an image at a specified offset.

An ilRoilter object provides the following functions to cycle through valid or invalid
data:
= next()

= nextMatch()

Deriving From ilRoi

< ilRoilterNext()
= ilRoilterNextMatch()

The following functions return the starting location and lengths of the run lengths:

= getX()
= getY()
= getZ()
= getLen()

= ilRoilterGetX()
= ilRoilterGetY()
= ilRoilterGetZ()
= ilRoilterGetLen()

Once you create an ilRoilter object, it may be used to step through the valid or invalid
regions defined by the ROI.

Each derived class of ilRoi requires a derived ilRoilter class that iterates over the
run-lengths of the ROI. Deriving a new class requires only that you define the pure
virtual next() to advance to the next segment of the ROI.

An ROI segment is a length of pixels, consecutive in the X dimension, that lie entirely
inside or entirely outside the valid region. The iterator should advance in X first, then Y,
and finally Z (for 3D ROI’s).

The protected method update() performs some common post-processing that all
iterators need to do. A typical recipe for next() is shown below:
1. checkif done

if so return FALSE

set last = pos

set fore flag based on first pixel in segment;

2

3

4. remember where this segment started

5

6. (foreground/valid -> TRUE; background/invalid -> FALSE)
7

scan pixels while foreground state remains the same

243

Chapter 6: Extending ImageVision Library

8. call update()
9. return TRUE;

244

Chapter 7

Optimizing Your Application

This chapter is intended for programmers who are somewhat familiar with the IL and
who want to optimize their applications. This chapter has two major sections:

= “Managing Memory Usage” on page 245 describes how to optimize the memory
usage of your application.

= “Using Hardware Acceleration” on page 251 describes what operations can be
accelerated on different graphics hardware.

Managing Memory Usage

You can optimize the performance of your application by making knowledgable
decisions about the use of memory resources. Three areas in which you can optimize use
of memory are:

e use of cache
= page size

= Dbuffer size

The following sections describe these three areas in greater detail.

Optimizing Use of Cache

You can optimize the use of cache in your application in a number of ways. You can
change the size of the cache, control the automatic growth of cache that can occur if
multi-threading is turned on, set priority on an image in cache, and use tools to monitor
the use of cache.

Before reading further, you might want to refer to other parts of this manual that describe
caching. To learn about:

= caching and paging, read “The Cache” on page 32.

245

Chapter 7: Optimizing Your Application

246

= changing cache size using the functions ilSetMaxCacheSize() and
ilSetMaxCacheFraction(), read “Managing Cache” on page 35.

= using the ilCompactCache() and ilFlushCache() functions to compact global cache
memory, read “Managing Cache” on page 35

Cache Size

This section describes how to determine the cache size that is most appropriate to your
application. Every class descended from ilMemCachelmg (including all the image
operators) needs memory for a cache, which holds pages of image data. By default, the
IL cache size is 30% of the total user memory on the system. In some applications this is
too large, in others it is too small.

The optimum cache size for any particular IL program depends on the size of the images
that the program manipulates and on the type of operations it performs on the data.

If your application:

= operates on small images, you can set the size of the cache to be the size of the
image, minimizing both memory and total processing needs.

= operates on large images, you will need a larger cache. A program with a large
image cache improves performance because it saves the processing overhead
required to move data in and out of memory. However, if the cache is too large and
uses up main memory, you could potentially be swapping pages in and out of
virtual memory on your system, which degrades performance.

= displays image data, its cache should be large enough to hold the displayed
window of data.

= just produces a reduced resolution version of an image in another image file, you
can get by with a smaller cache.

Typically, the cache will not be able to hold everything needed for an operation. For these

cases, set the cache at least large enough to hold both:

= one page of output data

= the number of pages of input data required to produce that page

For example, suppose that you are copying an image with pages that are 128 pixels

square (these are the default page dimensions for FIT images) to an image that sets the
page width to match the width of the image (this is true for SGI RGB images). Further,

Managing Memory Usage

suppose that both images are 2K pixels wide and that the SGI image sets its page height
to 64 pixels. Figure 7-1 shows the two images and the pages contained in them. (This
figure is not drawn to scale.)

128 «— 2K 5
64

128

FIT Image Page SGI Image

Figure 7-1 Varying Page Dimensions

To write a single 2 KB x 64 SGI page, you need data from all the FIT pages that span the
width of the image. Thus, in this example, set the cache size to (2 KB x 64 + 2 KB x 128) x
3 bytes (assuming that there are 3 channels and that the data type is iflChar). Add about
10% to this figure to allow for the size of page descriptors and other overhead. This
allows all needed pages to be held in the cache. If the cache is smaller than this, the data
can still be processed, but FIT pages are bumped out of the cache and then read back in
as successive SGI pages are written.

Effect of Multi-threading on Cache

The use of multi-threading can affect the size of cache in an application (see
“Multi-threading” on page 53). With multi-threading enabled, the cache can grow larger
than its preset limit if all the pages contained within it are locked down and another page
must be brought into the cache. This growth of cache prevents deadlock, but can cause
the application to use more memory than you wish. To prevent this behavior, do one of
the following:

< reduce the number of threads (so that there are never more threads than pages in
the cache)

= reduce the size of each page (so that there are enough pages in the cache for all the
threads)

= increase the size of the cache (so that there is one page for each thread)

247

Chapter 7: Optimizing Your Application

248

For example, if there is room in the cache for only two of the operator’s pages but there
are four threads, the cache may be grown so that it contains four pages. If this is
unacceptable, either reduce the number of threads to two or reduce the size of a page by
half (so that the cache can contain twice as many, or four, pages). Multi-threaded
applications always need more memory to run efficiently; the best solution is to add
more memory to your system. If this is not possible, the next best solution is to reduce
the page size.

Cache Priority

As explained in “Priority” on page 36, the pages of an image that are brought into cache
as the result of an operation on the image are kept there until the cache becomes full.
When the cache is full, decisions must be made about which pages are kept in cache and
which are discarded and replaced by new pages.

The IL attempts to optimize the use of cache. You can also affect the caching process by
using the setPriority() and lockPage() methods. It is helpful, when you are optimizing
your use of cache, to understand actions the IL is also taking to accomplish this. The IL
considers these factors as it manages the contents of cache:

= time since the last reference to a page. Pages most recently referenced are least likely
to be overwritten.

= number of references made to a page. Pages that are frequently referenced are least
likely to be overwritten.

= the destination of a page. The IL automatically raises the priority of a page request
for data that is directly displayed. This has the effect of caching data at the end of a
displayed chain.

Sometimes it makes sense to cache data at points other than at the end of a chain. The
reference counting used in the page replacement algorithm can help to accomplish this
caching, but in cases where explicit knowledge of the application is required, you can use
the setPriority() method of illmage to set the priority of the image containing the
specified page. For instance, you may want to raise the priority of the file input to a long
chain to avoid rereading the input if the chain is expected to be altered.

You may also want to raise the priority of the input to an operator that is having its
parameters interactively modified, although again the reference counting built into 1L
will tend to automatically increase the priority for you.

Managing Memory Usage

Monitoring the Cache

You can monitor image data cache usage in two ways:

= by using the image tool ilMonitor. This provides an interactive means for you to
monitor the use of the cache. See “Image Tools” on page 266 for more information
about ilMonitor.

= by setting the environment variable IL_ MONITOR_CACHE to a value of 1. This
causes the IL to print a message for each page loaded into the cache or deleted from
the cache. The message identifies the page location in its associated image and the
class and address of that image.

It is often important to know about the operator images (such as color converters) that
are automatically inserted by IL. You can use ilDumpChain() to print out a simple
description of an IL chain.

An example using this environment variable is shown below:

% setenv IL_MONITOR_CACHE 1

% imgview /usr/demos/data/images/weather.fit
Page (0,0,0,0) loading in Color(0x10034ec8)
Page (0,0,0,0) loading in FIT(0x1001d010)

This example shows that a color converter operator image has been used to cache the
data from the FIT image in frame-buffer format. It also shows the background view with
ilConstantimg as input that is automatically created by ilDisplay. You can use this
technique to identify cache thrashing if you suspect it is occurring. You can eliminate
such problems by one of the techniques described in the preceding sections.

For more challenging situations, you may want to use the setPagingCallback() method
in ilCachelmg. Refer to the ilCachelmg reference page for more details.

Note: Do not attempt to use setPagingCallback() and ilMonitor at the same time since
ilMonitor uses the setPagingCallback() mechanism.

Page Size

Image data is always cached in pages. A file image’s page dimensions match those used
to store the image on disk. By default, an operator’s page size is defined by its input

images. Certain operators override this default size, which can affect the caching of
images. Some images also let you set the size of the pages in the cache and the data type

249

Chapter 7: Optimizing Your Application

250

and ordering of the cached data. The data type and ordering affect how data is cached,
so if you change these attributes, you might also want to change the size of the cache.

Operators (ilOplmg objects) can set minimum pages sizes to increase efficiency.
ilSpatiallmg, for example, sets the minimum page size to a multiple of the kernel size.

Optimum Page Size

Operators are usually the only images that allow you to set the page size. The ideal page
size depends on the particular application, but in general you want an image’s page size
to be as close as possible to that of whichever image it is being copied to or read from. If
the application involves roaming on a large image, however, the page size should be
relatively square. The functions that change page size are defined by illmage and are
explained in “Page Size” on page 38.

Large pages use up more memory, which is a problem when the cache grows beyond its
limit and starts allocating extra pages to get around deadlock. See the previous section
for suggested solutions. Making pages too small, however, forces too much processing
overhead. A page should not be smaller than 32 x 32 pixels, and in general the total
number of bytes in a page should be between 16KB and 64KB. This range typically works
out to be 128 x 128 to 256 x 256 when measured in pixels. Some operators, such as the
frequency domain ones, are more efficient when the page size is a power of 2.

Maximizing Efficiency When Copying Pages

The copyTile() method is an efficient way to copy a tile of data from one ilimage to
another:

iIStatus copyTile(int X, inty, int nx, int ny,
illmage* other, int ox, int oy,
int* chanList=NULL);

By default, the tile is copied to the calling image from the image pointed to by other. The
x and y arguments specify the origin of the tile in the destination image, and nx and ny
specify the size of the tile. The tile that is to be copied is located at (0x,0y) in the other
image. (If the tile is at the same location in both the source and destination images, then
x=0x and y=oy.) If the source and destination images have different orientations, the data
is transformed automatically as necessary.

Using Hardware Acceleration

Buffer Space

You may sometimes need a temporary buffer to work on image data. Using copyTile()
instead of getTile() or setTile() to transfer data between images eliminates the need for
temporary buffers, saving you memory. copyTile() is explained in “Accessing Image
Data” on page 40.

In addition to temporary buffers you may allocate to hold data, the IL allocates buffers
to operate on data internally. The amount of buffer space that the IL can allocate at any
one time depends on the number of threads running concurrently. If three threads are
performing image processing operations on three tiles, in general, three buffers of the
necessary sizes must be used. However, extra buffer space is not used if the operator in
guestion is locking down pages, transferring data from input cache to output cache, and
operating on the data “in-place.” Certain operators derived from ilMonadiclmg do this.
If you derive a new operator from ilMonadiclmg or any of its descendants, you might
want to ensure that your derived class operates on its data in-place by setting its inPlace
member variable in the constructor.

Using Hardware Acceleration

The IL can accelerate some image processing sequences on SGI computers that result in
a displayed image (as opposed to sequences that result in a file). This section describes
which IL operations can be accelerated, the constraints on these operations, and the
underlying graphics resource required for these operations.

Using Accelerated Operators

This section describes the operators that can be accelerated for display and the related
OpenGL functions that are required to accomplish the operators.

Accelerating ilAddIimg, iIBlendimg, iIMaxImg, iIMinImg, ilMultiplylmg, and
iISubtractimg Operators

These operators use the OpenGL blend facility to arithmetically combine two or more
input images. The primary (zero-th) input is rendered first to the frame buffer. Then the
subsequent inputs are rendered to the same location with the appropriate OpenGL blend
function enabled to accomplish the operation.

251

Chapter 7: Optimizing Your Application

252

ilMultiplylmg can only be accelerated if both input min values are zero.

ilISubtractlmg is accomplished by negating the secondary input. Only
constant-alpha-type blending can be accelerated.

In some cases, the operation cannot be accelerated if the input data ranges differ.

Accelerating ilAndimg, ilinverimg, and ilXorimg Operators

These operators use the OpenGL logic OP facility to logically combine two or more
images. They use multi-stage rendering operations similar to that of ilBlendimg.
ilinvertimg, however, is done in a single rendering operation.

Accelerating ilConvimg and iISepConvimg Operators

Convolution operators use the OpenGL 2D convolution extension. To facilitate
acceleration, the kernel data must

< be of type float

= be of one of the following sizes: 3x3, 5x5, 7x7

= have the origin in the center of the kernel

Using the ilFalseColorimg Operator

IL uses the OpenGL color matrix. The matrix size must be less than or equal to 4x4. The
bias must be zero. Some matrices with negative weights may not be accelerated because

they cannot be scaled correctly.

Using ilLutimg, ilHistLutimg, and ilThreshimg Operators

IL uses OpenGL color tables. OpenGL provides four color tables (see Table 3-3). The color
table that is used for a particular operator depends on the LUT input (see Composition).

LUTs can be up to 4K long.

Using ilScalelmg, ilHistScalelmg, and iINeglmg Operators

IL uses OpenGL pixel scale, bias, and clamping facilities. These facilities are also used to

normalize input data ranges to the intrinsic zero to one ranges and to compensate for
convolution kernel and colormetric affects on the operator value ranges.

Using Hardware Acceleration

Accelerating ilWarplmg Operators

IL uses OpenGL texture rendering. There are two cases, depending on the type of warp,
associated with operators:

= affine or perspective warp

= any other type of warp

The first case sets the modelview matrix to perform the desired warp. The second case
represents the warp with a regular triangular mesh. For certain simple zooms, for

example, affine and perspective warp, the OpenGL pixel zoom facility is used instead of
texture.

The texture required for other warp cases is associated with the input of the warp
operator. Thus, multiple warp operators that share input also share the same texture. See
for more information about IL’s use of texture.

Accelerating the illmgStat Operator

IL uses OpenGL’s histogram and minmax facility. The number of histogram bins must be
less than or equal to 4096. The input data order must be interleaved. An ImgStat with a
rectangular ROI can be accelerated, but one with any other kind of ROI cannot.

Note: ilHistLutlmg and ilHistScalelmg use ilimgStat. Therefore, they accelerate
statistics-gathering and the rendering parts of the operations.

Understanding the OpenGL Imaging Pipeline

The OpenGL Imaging Extension (OIE) specifies a sequence of image processing
operations that can be enabled during a pixel transfer operation. A pixel-transfer
operation can be one of the following:

= animage is drawn from the host memory to the frame buffer
= animage is copied from one frame buffer to another

= animage is loaded from the host to texture

= animage is copied from the frame buffer to texture

In each case, a rectangle of pixels is transferred from one buffer to another. During the
transfer, any of the image processing operations shown in Figure 7-2 can be active.

253

Chapter 7: Optimizing Your Application

254

Lut,

Color matrix,
S/BIC4
Lutg

Input buffer

Output buffer
Figure 7-2 OpenGL Image Processing Pipeline

In Figure 7-2, the input can be the host memory or a GL buffer, the output can be a GL
buffer, texture, or host memory, and S/B/C stands for scale/bias/clamp operators. To
use hardware acceleration, the operators must follow the order in Figure 7-2. Not all of
the operators need to be enabled. What is not allowed, for example, is Lut; to precede
S/B/C;. If you need to use operators out of order, you need to use pixel buffers, as
described in “Pixel Buffers and Multi-Pass Acceleration” on page 256.

Most of the accelerated IL operators use one or more elements in the Image Processing
pipeline.

Composing Operators

Since the OGLIP supports a sequence of operations in a single operation, it is possible to
compose several IL operators for acceleration, provided they occur in the right order, for
example, the IL chain shown in Figure 7-3 can be displayed by copying the file image
cache directly to the frame buffer while enabling the subsection of the OGLIP pipeline
shown in Figure 7-4.

Using Hardware Acceleration

ilPlecewiselmg

iISharpenilmg
ilIFalseColorimg

Figure 7-3 IL Chain Mapped to the OGLIP Pileline

Figure 7-4 shows that all three operators are accelerated. ilPiecewiselmg, ilSharpenimg,
and ilFalseColorimg correspond to Lut;, Conv, and ColorMatrix, respectively.

Color matrix

Host
memory

Frame buffer
Figure 7-4 Mapping onto the OGLIP in a Single Transfer

However, if the chain is reordered, as shown in Figure 7-5, so that the sharpen occurs
after the FalseColor, the sequence cannot be fully accelerated because it does not match

the sequence of operators in the OGLIP pipeline. When a sequence cannot be wholly
mapped to the OGLIP, the IL selects the longest subsequence to run as a single operator.

255

Chapter 7: Optimizing Your Application

256

iIPlecewiselmg

ilIFalseColorimg
iISharpenilmg

Figure 7-5 Running a Subsection of an IL Chain

Given the IL chain shown in Figure 7-5, only the sharpen operator would be accelerated
with a single-pixel transfer. The other two operators would be evaluated in the normal,
unaccelerated manner.

The next section describes how chains as shown in Figure 7-5 can be fully accelerated
through the use of pixel buffers.

Pixel Buffers and Multi-Pass Acceleration

OpenGL provides non-volatile, off-screen framebuffer memory, called pixel buffers, for
storing intermediate results. This feature enables IL to fully accelerate chains that do not
completely map onto the OGLIP as a single transfer operation. For example, the IL chain,
shown in Figure 7-5, is accelerated with the two-pass sequence of transfer operations.

Using Hardware Acceleration

Lut,
Color matrix

Pixel buffer

Convolve

Host
memory

glDrawPixels()

glCopyPixels()

Frame buffer

Figure 7-6 Two-Pass Transfer Operations

Pixel buffers are, in general, eight to twelve bits per component. The exact depth of the
pixel buffers can be determined by examining the attributes of the glx visual associated
with the pixel buffer. The command

% glxinfo -fbcinfo

prints a summary of the available visuals. The limited depth of the pixel buffers limits
the precision of the stored image data.

Pixel buffers are allocated by IL in units of the display size. The total number of allocated
pixel buffers can be limited either programmatically through calls to
ilSetNumPBuffers() and ilGetNumPBuffers(), or through the environment variable
IL_NUM_PBUFFERS.

Texture

IL employs the OpenGL texture facility to accelerate warp operators. From the
standpoint of hardware accelerators, a texture is an intermediate storage buffer similar
to a pixel buffer. However, the size of the texture is usually smaller and the component
depth is shallower. The component depth is dependent on the resampling mode for the
warp (for example, iINearNb, ilBiLinear, and iIBiCubic) and the color model.

257

Chapter 7: Optimizing Your Application

258

A texture is associated with the input of a warp. If several warp operators share the same
input, they also share the same texture. The texture cache is unaffected if the warp is
interactively altered to enable fast, interactive displays of changing warps.

IL provides limited support for displaying a combination of warps in a single rendering
pass. Specifically, you can string together any number of perspective (ilPerspWarp) and
affine (ilAffineWarp) warps into a single step. This combination of warps is called a
transform matrix. Figure 7-7 shows an IL chain of operators.

ilWarpimg

iIRotZoom
ilAffineWarp
ilPerspWarp

iIRotZoom
ilAffineWarp
ilPerspWarp

Any number, n,
of warps

View
Figure 7-7 Accelerating an IL Chain Using Texture

Figure 7-8 shows the underlying data path of the IL chain in Figure 7-7.

Using Hardware Acceleration

Transform matrix

Figure 7-8 Data Path of the IL Chain in Figure 7-7

Figure 7-8 shows that IL associates a texture with the ilFilelmg object and derives a
triangular mesh from the user-defined warp. All of the perspective warps, affines, and
rotzooms are combined into the transform matrix. When any of these warp values
change the images change accordingly, however, changing the transform matrix does not
change the cached values for the texture and the triangular mesh. By preserving these
cached values, the use of the transform matrix accelerates image processing.

When the input image is larger than the texture, the data must be paged into texture
according to what is currently being viewed. When the texture requirement for a
particular rendering operation greatly exceeds the texture capacity, performance
degrades. In this situation, rendering is limited by the rate that texture can be loaded into
the cache rather than by the rate that it can be rendered.

The triangular mesh associated with a general warp is also paged into memory so that

only the displayed portion of the warp is evaluated. The results are cached and reused in
subsequent rendering operations.

259

Chapter 8

The Programming Environment

This chapter describes the programming environment available on Silicon Graphics
workstations. Special tools are also described that may help you in writing, compiling,
and debugging your IL program.

This chapter contains the following major sections:

= “Compiling and Linking an IL Program” on page 261 describes what you need to
do to compile an IL program written in C++, C, or Fortran.

« “Reading the Reference Pages” on page 263 explains how to read the class reference
pages. These reference pages do not follow the standard UNIX reference page
format.

= “Image Tools” on page 264 describes some image tools that were developed using
the IL.

« “Online Source Code” on page 265 describes the IL-related code that is available
online.

= “Environment Variables” on page 266 describes how to configure the global IL
environment.
Compiling and Linking an IL Program

The following sections show you how to compile and link IL programs written in C++
and C.

Programs Written in C++

To compile an IL program, in this example, sample.c++, use the following command line:

cc -g sample.c++ -0 sample -lil

261

Chapter 8: The Programming Environment

262

By default, the *.so libraries are used to link your programs, however, you must link to
the IL library itself.

In general, you should not link to the static, *.a, libraries unless you want to keep your
application in one complete binary. If you do choose to use the static libraries, use the
following command to compile your program:

cc -g sample.c++ -0 sample /usr/lib/libil.a /usr/lib/libifl.a -lil
-Im -IGL -IX11

If you link to the static libraries, include the IL library, the GL shared library, the X
Window library, the math library, and the C++ library.

A Sample Makefile
Example 8-1 shows a sample Makefile for compiling IL programs.

Example 8-1 Makefile for a C++ Program
Makefile for IL test programs

SHELL = /bin/sh
If you want to debug,turn on the “-g” option.
FLAGS = -g

MAINS= sample.c++
OBJS = ${FILES:.c++=.0}
PROGS = ${MAINS:.c++=}
LIBS = -lil
.CH+:
CC $(FLAGS) $< -0 $@ $(LIBS)
.C++.0:
CC $(FLAGS) -c $<

clean:
rm -rf $(OBJS) $(PROGS)
rm -rf core

Programs Written in C

Link your C program to the libcil.so library, the C version of the IL. For example, to
compile a C program called ctest.c, use this line:

Reading the Reference Pages

cc -g ctest.c -o carprot -Icil

IL is compatible with ANSI C. To use the older, pre-ANSI dialect, add —cckr to the
command line. Ignore any warnings generated during compilation.

Refer to the C reference page for more information about the C compilers.

A Sample Makefile
Example 8-2 shows a sample Makefile for compiling IL programs written in C.

Example 8-2 Makefile for a C Program
A very simple Makefile for IL test programs

SHELL = /bin/sh
FLAGS = -g

CMAINS = csample.c
COBJS = ${CMAINS:.c=.0}
CPROGS = ${CMAINS:.c=}
CLIBS = -[cil

.C.
cc $(FLAGS) $< -0 $@ $(CLIBS)

clean:
rm -rf $(COBJS)
rm -rf core

clobber: clean
rm $(CPROGS)

Reading the Reference Pages

IL reference pages look atypical because they are class reference pages. They are available
online by typing the following on the command line:

man -d ClassName
ClassName is the name of the IL or IFL class that you want to read about.

A printed version of the reference pages is available as an option; see the Introduction for
ordering information.

263

Chapter 8: The Programming Environment

Image Tools

264

The C++and C versions of the class reference pages share a similar format. The following
list describes the main sections of each reference page:

Name The class name and a one-line description of the class.
Inherits From A colon-separated list of superclasses, beginning with the base class.
Header File The class’s header file.

Class Description
Describes how the class fits into the IL and how to use it. This section
briefly mentions the most important functions associated with the class.
The C++ version also contains information about deriving from the
class, if appropriate.

Class Member Function Summary
Lists the prototypes of the functions associated with the class. They are
grouped functionally with headings that indicate the general task they
perform. Functions that are protected are identified as such. This section
should be a synopsis of the class.

Function Descriptions
Describes what each function does and what its arguments mean.
Sometimes code examples are included. This section is arranged
alphabetically so that you can easily find the description of a particular
function of interest.

Inherited Member Functions
Contains an alphabetical list of the functions inherited from
superclasses.

See Also Lists other reference pages of interest.

Notes (optional)
Contains special information about the class.

IL provides several useful utilities for displaying, copying, and manipulating images.
Since these image tools are based on IL, they support TIFF, SGI, PCD (Photo CD), PCDO,
TCL, PNG, GIF, and FIT file formats. These tools are installed in /usr/sbin and most of
them are documented in the IRIS Utilities User’s Guide. (They also have reference pages.)

Online Source Code

Online Source Code

imgcopy Image Copy copies a specified region of an input image file to an output

image file. It can also be used to convert between IL-supported file
formats. See the imgcopy reference page.

imginfo Image Info reports image information such as size, data type, color

model, and file format for any IL-supported file format. See the imginfo
reference page.

imgview Image View allows you to display and manipulate any combination of

IL-supported image files. Images can be roamed, dragged, cropped, or
wiped separately or simultaneously. See the imgview reference page.

imgformats Image Formats lists all the IL-compatible formats currently installed.

To provide you with source code examples, IL installs several directories in
lusr/share/scr/il. They are as follows:

guide contains the whole-program examples presented in this guide. They are
provided so that you can compile and run them as you read the relevant discussion
in the guide.

apps contains sample IL applications, such as imgcopy and imgview. These
applications serve as examples of how to program with the IL and serve as possible
templates for developing new applications.

src contains IL source code that may use to derive your own classes. The directory
includes the source for several operators, including the ilViewer class. The
corresponding header files are in /usr/include/il or /usr/include/ifl.

tutorial contains a series of programs that build on one another. The first in the series
(ex0.c++) simply opens and displays an IL image file. The other programs use
various operators and display techniques.

You can examine the README files in the various directories for more information on
each of the code examples. Also, each of the directories containing complete programs
has an appropriate Makefile. To compile any of the programs, type:

make program_name

where program_name is the name of the file minus its .c++ suffix.

265

Chapter 8: The Programming Environment

Environment Variables

266

You use environment variables to configure the global IL environment. Environment
variables configure such things as the file format, multi-processing, graphics hardware

acceleration, caching capabilities, and monitoring functions.

Table 8-1 provides a brief description of the environment variables with their default

values.

Table 8-1 Environment Variable Definitions

Environment Variable

Definition and Default Value

IFL_DATABASE

IL_ARENA_MAXUSERS

IL_CACHE_FRACTION

IL_CACHE_SIZE

IL_COMPUTE_THREADS

IL_DEBUG

IL_HW_ACCELERATE

IL_HW_DISPLAY

IL_HW_RENDERER

Specifies the file location where the
IFL-supported image file formats are defined;
default is ifl/src/ifl_database.

Specifies the maximum number of threads that
can share a multi-processing arena; default is
40.

Specifies the amount of user memory reserved
for the cache; default is .3 (30%).

Specifies the size of the cache; default is
IL_CACHE_FRACTION.

Specifies the number of threads generated;
default is the number of processors in the
system.

Specifies the debug level; default is 0.

Specifies whether or not hardware is used to
accelerate image processing; default is all
enabled.

Specifies the X display used by IL to obtain a
display connection which is then passed to
XOpenDisplay().

Overrides the return value of
glGetString(GL_RENDERER) which forces
IL to treat the display as a different type of
renderer.

Environment Variables

Table 8-1 (continued) Environment Variable Definitions

Environment Variable

Definition and Default Value

IL_MONITOR

IL_MONITOR_CACHE

IL_MONITOR_COMPACTION

IL_MONITOR_RESET

IL_MONITOR_LOCKS

IL_MP_ARENA SIZE

IL_MP_LOCKS

IL_NUM_PBUFFERS

IL_READ_THREADS

Specifies whether or not all monitors are on;
default is off. Monitors print messages when
specific events occur.

Specifies whether or not a log entry is
generated when the cache is used; default is
off.

Specifies whether or not a log entry is
generated when the cache is compacted,;
default is off.

Specifies whether or not a log entry is
generated when an operator resets; default is
off.

Specifies whether or not a log entry is
generated each time a lock is created or
destroyed; default is off.

Specifies the size of the arena; default is
2 Mb.

Specifies whether or not concurrent access to
IL data structures is allowed for threads;
default is on.

Specifies how many pbuffers to try to allocate;
defaultis 1. IL tries to get as many as can up to
this value.

Specifies the number of read threads used per
processor to handle disk 170; default is one.

The following sections describe the uses of some of the environment variables.

Caching Configuration Issues

You can use the environment variable IL_CACHE_FRACTION to specify the size of the
IL image data cache. The default size is 30% of available user memory. For example, you

267

Chapter 8: The Programming Environment

268

could set the cache size to 20% of available user memory by issuing the following
command prior to running an IL-based application:

% setenv IL_CACHE_FRACTION .2

Alternatively, you can use the environment variable IL_CACHE_SIZE to set the size of
the cache in bytes. For example, you could set the cache size to 4 million bytes by issuing
the following command prior to running an IL-based application:

% setenv IL_CACHE_SIZE 4000000

The IL_CACHE_SIZE variable takes precedence over IL_CACHE_FRACTION if both
are set.

Hardware-Acceleration Configuration Issues

You can use the environment variable IL_ HW_ACCELERATE to override the default
behavior of using the graphics hardware to perform processing whenever possible. For
example, you can disable the hardware acceleration feature of IL by issuing the following
command prior to running an IL based application:

% setenv IL_HW_ACCELERATE O

You might turn off hardware acceleration when debugging operators that are accelerated
by the hardware.

Hardware Display Configuration Issues

When you open a display using IL, you first use the X call, XOpenDisplay(), to return a
pointer to the display device. The return value is then passed into ilDisplay to open a
window to display an image. You can use IL_HW_DISPLAY to set the value of the
display which the return value of XOpenDisplay() points to.

The rendering machine returned by glGetString(GL_RENDERER) is generally the
machine you are using. You can override the value returned by glGetString(), however,
by setting the IL_HW_RENDERER value. For example, you might be running on an
InfiniteReality but want to see what the display would be like on an Impact. In this case,
you would set IL_HW_RENDERER to Impact.

Caution: Make sure your machine supports the platform you are setting
IL_HW_RENDERER to.

Environment Variables

Monitoring Control Issues

You can use the IL_MONITOR environment variable to turn on the IL Monitor. The IL
Monitor logs an entry wherever one of the following events occurs:

= The cache is used.
= The cache is compacted.
= An operator is reset.

< Alock is either created or destroyed.

If you want a less-complete level of monitoring is needed, or you need to capture a log
of the operations, you can use any combination of the following environment variables:

- IL_MONITOR_CACHE

- IL_MONITOR_COMPACTION
- IL_MONITOR_RESET

- IL_MONITOR_LOCKS

If you set IL_MONITOR_CACHE to 1, a log entry is generated each time the cache is
used, for example:

Page (0,0,0,0) loading in File(0x1000a858)
Page (0,32,0,0) loading in File(0x1000a858)
Page (253,29,0,0) loading in Nop(0x100c8108)

If you set IL_MONITOR_COMPACTION to 1, a log entry is generated each time the
cache is compacted, for example:

Compaction reclaimed 144K.
Compaction reclaimed OK.
Compaction reclaimed 160K.
Compaction reclaimed 144K.
Compaction reclaimed OK.
Compaction reclaimed 64K.
Compaction reclaimed 176K.
Compaction reclaimed OK.
Compaction reclaimed OK.

If you set IL_MONITOR_RESET to 1, a log entry is generated each time an operator is
reset, for example:

(brandt@chaos:tests) convrz

269

Chapter 8: The Programming Environment

270

File(0x1000a858) initialized
Convolve(0x1000db98) initialized
Rotate/Zoom(0x1000e1a0) initialized

X Window(0x100813f0) initialized
PBuffer(0x10099668) initialized

X Window(0x100ad9a8) initialized

X Window(0x100ad9a8) altered
View(0x100a3218) initialized

X Window(0x100ad9a8) altered

OpenGL Hardware Pass(0x100c1088) initialized
OpenGL Hardware Pass(0x100c1870) initialized
OpenGL Hardware Pass(0x100c1870) altered
Pixel Cache(0x100c2058) initialized

If you set IL_MONITOR_LOCKS to 1, a log of lock creations and destructions is
generated. Additionally, at program exit, any remaining locks are displayed. For locks
that are created, a short message is printed with the name of the lock. The name consists
of the address of the lock optionally followed by a parenthetical comment describing
what the lock is used for, for example:

Created lock 4001fa0 (ilMpNode cache)
Created lock 4002070 (ilMpParkedGroup cache)
Created lock 4002140 (iIMpPool cache)

Created lock 4002210 (ilLink mutex)

Created lock 40022€0 (illmage evalLock)
Created lock 40023b0 (ilLink mutex)

For the destruction of locks as they exit, the name of the lock and its metering
information are displayed. The metering information measures such things as how many
attempts were made to acquire the lock, how many of those attempts were successful,
and how many times the software was forced to start spinning on the lock.

Multi-Threading Configuration Issues

You can use the environment variables IL_COMPUTE_THREADS and
IL_READ_THREADS to specify the number of compute threads and file read threads
used by each processor. By default, one compute thread is created for each processor on
the host system (including the user’s thread), and one read thread is created to perform
disk 170 in the background. For example, you can disable all multi-processing features
in IL by issuing the following commands prior to running an IL-based application:

% setenv IL_COMPUTE_THREADS 0
% setenv IL_READ_THREADS 0

Environment Variables

You can set the size of the arena used to allocate spin-locks and semaphores for
multi-processing control with the IL_MP_ARENA_SIZE variable. You might set this
variable if, for example, you create a large number of objects derived from ilLink.

By default, IL allows up to forty threads to share multi-processing arenas. If you need
more, you can set the IL_ ARENA_MAXUSERS environment variable to a larger value.

271

Appendix A

What is New in Version 3.0

This appendix describes the differences between versions 2.5 and 3.0 of the ImageVision
Library. If you are new to ImageVision, you should skip this appendix. The changes
mentioned in this appendix are integrated into the remainder of this manual.

This appendix is split into the following sections:

“Overview of Changes in 3.0” describes the major changes in IL 3.0.

“Understanding the New Features” describes in detail all of the features added to IL
3.0

“Understanding the Changes to the Existing Features” describes in detail all of the
enhancements made to 2.x features.

“Backwards Compatibility with IL 2.5” describes in detail the conversions between
IL 2.5 and 3.0.

“New Derivations for Classes” describes in detail the new class hierarchy structure.

Overview of Changes in 3.0

The major new features in IL 3.0 are:

Support for OpenGL with transparent use of X rendering when OpenGL is not
available.

Support for 64-bit address space.
Support for a configurable error reporting mechanism.

Support for a generalized callback mechanism.

The major changes to existing features are:

IRIS GL rendering is no longer supported.

273

Appendix A: What is New in Version 3.0

= The Fortran API. is no longer supported. It is still possible, however, to use the C
API from Fortran.

= File format support is now provided by the Image Format Library (IFL).

= Some base functions of IL were moved to IFL with corresponding name changes.
= Hardware acceleration is now user extensible.

= Scalability to larger numbers of processors has been improved.

= Asynchronous operations are now supported.

= Long operations can be aborted.

= Handling of image warping has been generalized.

The following sections provide more detail on all of the changes and additions made in
IL 3.0.

Understanding the New Features

274

This section describes the new features in IL version 3.0.

Support for OpenGL and Hardware Acceleration

IL 3.0 is built on top of OpenGL instead of IRIS GL. Applications that were using IRIS GL
must be ported to OpenGL because the two graphics libraries are not compatible.
Moving to OpenGL also means that IL 3.0 performs optimally on new graphics hardware
that has a native OpenGL implementation. On older platforms, such as RealityEngine,
there will be some degradation in performance.

IL 3.0 maintains its own, internal OpenGL context which minimizes interactions between
hardware-accelerated operations and user rendering to the same window.

ilGLDisplaylmg, ilGLViewer, and ilGLXConfig are gone. Programs that used those
classes must be ported to OpenGL and the iIXWindowlmg and ilViewer classes.

IL 3.0 automatically manages a hardware rendering thread. ilHwIsSGI,
ilHwThreadEnable, ilHwThreadSuspend, ilHwThreadResume are also gone.

Understanding the New Features

64-bit Address Space Support

size_t, defined in /usr/include/sys/types.h, is used in IL 3.0 to specify the size of an object in
memory. Depending on the maximum size that an object in the virtual memory, size_t can
be either unsigned 32 bit or 64 bit. The return types of all functions returning the size of
an object used to be int; now they return size _t.

Understanding New Classes

The following classes have been added to IL.

ilAffineWarp

ilAffineWarp is a subclass of ilWarp that extracts the first degree polynomial coordinate
transformations that were formally embedded in ilPolyWarplmg. ilIRotZoomImg uses
this warp class to represent its transformations.

ilCallback

ilCallback is a new base class with two derived classes: ilFunctionCallback and
ilMethodCallback. The derived classes provide a standard way to encode new function
callbacks. The external interface uses derived classes from ilFunctionCallback and
ilIMethodCallback.

ilFunctionCallback creates a callback to a function that takes an argument, userArg. This
argument is supplied when the callback is created and a second argument, callerArg, is
passed from the callsite of the callback (when doit() is called).

ilIMethodCallback is similar to ilFunctionCallback. You use both to create a callback to a
method on an object of a specified class.

iflColormap

iflColormap is derived from iflLut. The only difference between the two is that
iflColormap cannot have a one-to-one mapping onto the domain of the LUT. You use
iflColormap to represent the colormap for image files that have an ifIRGBPalette color
model. All methods getting or setting colormaps now pass an iflColormap object instead
of anilLut.

275

Appendix A: What is New in Version 3.0

276

ilCompoundimg

ilCompoundlmg is an abstract class that can be used to manage an IL subchain as if it
were a single object. This can be useful for encapsulating an IL subchain used repeatedly
in an application. You can use IL to create variable subchains since the parents and
children of ilCompoundimg are attached to ilCompoundlimg itself rather than internal
subchains. For example, an ilCompoundimg could encapsulate two subchains which
share common output processing but process input differently.

ilIELTImg

iIlELTImg, together with ilDisplay, il View, and ilStereoView, provide functions needed by
Electronic Light Table (ELT) applications. ELT applications provide real time
manipulation of images, compressed or not. ilELTImg is derived from ilCompoundimg
and manages an image chain consisting of dewarp, convolution, table look-up and
histogram. Image manipulation, such as roaming and wiping as well as multi-image
display and stereo display, is supported in ilDisplay.

iIFPolarimg

ilFPolarimg is a new base class for ilFMaglmg and ilFPhaselmg that operate on fourier
domain images.

iIFPolyadicimg
ilFPolyadiclmg is a new base class for ilFMonadicimg and ilFDyadiclmg that work on

fourier domain images. ilFMonadiclmg and ilFDyadiclmg are now derived from
ilFPolyadiclmg as special cases.

ilFrameBufferimg
ilFrameBufferlmg, derived from illmage, is the basis for all IL access to frame buffer

memory. IL maintains internal display and GL contexts to isolate its rendering from the
user's code.

ilMath

In ilMath.h, some useful mathematical templates for integer types are defined, for
example, ilMod, ilDiv, iIDivUp, ilRoundUp, and ilRoundDown.

Understanding the New Features

ilPolyWarp

ilPolyWarp is a subclass of ilWarp that extracts the seventh-degree polynomial
coordinate transformations that were formally embedded in ilPolyWarplmag.

ilPolyadiclmg

ilPolyadicimg, derived from ilOpIlmg, is the base class for N-input operators. Many
formerly ilDyadicimg-derived operators, for example, ilAddImg, ilAndimg, iIBlendimg,
ilMaxImg, ilMinImg, ilMultiplylmg, ilOrimg, and ilXorImg, now allow multiple inputs.
ilDyadiclmg is now derived from ilPolyadiclmg as a special case.

iITiePointList

ilTiePointList manages a set of tie points used by ilTiePointImg. It provides methods to
add, remove, and locate tie points.

iITimeoutTimer

ilTimeoutTimer provides a simple and efficient means of implementing a timeout period
for a polling loop. The timer automatically adapts its internal time checking to avoid
excessive reads of the hardware timer. Because of this optimization, the timeout period
is within 10% of the actual period.

iITimer

ilTimer provides an interface to the high-resolution interval timer. On most SGI machines
this has a resolution of 1 usec or better.

ilWarp

ilWarp provides an abstract class to one-, two-, and three- dimensional coordinate system
warps from, respectively, (u), (u, v), and (u, v, w) space to (x), (X, y), and (X, y, z) space.
The subclasses ilPolyWarp, ilAffineWarp, and ilPerspWarp implement particular
instances of the ilWarp abstraction. The ilWarp class hierarchy enables more convenient
control of ilWarplmag.

277

Appendix A: What is New in Version 3.0

Understanding the Changes to the Existing Features

278

This section explains how IL version 2.5 features have changed.

Multi-threading Architecture Changes

The MP architecture of IL has been completely redesigned for IL 3.0. This redesign
enables

= Dbetter scalability to larger numbers of processors

= Dbetter integration of a dedicated rendering thread for improved graphics
performance

= long operations to be aborted
The old ilDispatcher and ilRequest classes are replaced by the new ilMpManager and

iIMpRequest classes. The ilIMpSetMaxProcs parameter, spare, which specified the
number of spare 1/0 threads is gone. IL 3.0 now uses a dedicated read thread.

Asynchronous Operations

All of the tile access methods, including getTile3D, setTile3D, copyTile, now have
asynchrounous versions, for example, gGetTile3D, gSetTile3D, qCopyTile, respectively,
that can access a tile without waiting for an operation to complete.

The caller can add a queued operation as a dependent operation on some other
ilMpManager or iIMpRequest. In this way, image operators handle input data tile
requests when processing a request to compute a page.

In addition, queued operations can return an ilMpManager object. This process allows a
number of synchronization options:

=< you can add a completion callback to the operation

= you can explictly wait for the operation to complete at a later time

= an operation can be aborted before it completes

Understanding the Changes to the Existing Features

Deriving Image Operators

To support asynchronous operations and aborting, the getPage() virtual function in
ilOpImg has been replaced by three new virtual functions that break the processing of a
page into three phases: prepareRequest(), executeRequest() and finishRequest().

In the prepare phase, an operator allocates input buffers and queues tile operations for
input data as dependents of the page request. In the execute phase, the queued
operations have completed and the operator can do the actual processing of the image
data to create a page of the operator image. In the finish phase, any allocated buffers or
locked pages are freed. The finish phase is separate from the execute phase to allow
aborted requests that have been prepared, but not executed, to skip the processing phase
and just free up any allocated resources.

These changes are only visible to operators derived directly from ilOplmg. Operators

derived from more typical classes, such as ilMonadiclmg or ilSpatiallmg, still use the
calcPage() API.

Image Format library

The image file format functionality has been separated into a library called Image Format
Library (IFL). This library takes care of all /0 image processing. IL uses IFL to perform
image 1/0. IFL applications do not have to use IL, however, IFL also simplifies and
standardizes the process of adding support for new image file formats.

The external interface to the IFL is encapsulated in two classes: iflFile and iflFormat. Note

that IL users will normally continue to use ilFilelmg directly; not the IFL API. Refer to the
IFL man pages and release notes for more information on using IFL directly.

File formats

New image file formats such as PPM (portable pixmap file format) and PNG (new public
domain replacement for GIF) are supported in IFL.

JPEG compression support in TIFF files had been added as has the ability to decompress
JFIF images at reduced resolution and increased speed.

IFL also supports GIF file format writing, which was not supported in IL 2.5.

279

Appendix A: What is New in Version 3.0

280

Renamed Types Now Defined in IFL

File format types, tile descriptors, list objects, vectors, and other generic types, such as
iIBitArray, ilColor, ilConfig, ilCoord, ilDataSize, ilDictionary, ilHashTable, ilList, ilLut,

iIMinMayx, ilPixel, ilSize, ilSpace, ilTile, and ilTypes, shared by both IL and IFL are how
in IFL. Consequently, the class name prefixes have changed from “il”” to “ifl”.

A complete list of the name changes can be found in “Automatic Class Name
Conversion” on page 294.

Changes to the Display Facility

The biggest change to the IL display facility is that OpenGL has replaced IrisGL. IL no
longer supports GL windows or GL events. Additional changes to the display facility
include the addition of callbacks, queued paint operations, and new border styles.

All support for GL windows and GL event handling has been removed. Now only
support for X windows and X event handling is provided. Since X rendering and
OpenGL rendering can be mixed in the same X window, IL no longer has a render mode.
If the visual supports OpenGL, rendering is done with OpenGL. Otherwise, X is used to
render the images.

ilDisplay, ilViewer (and ilXWindowlImg) can now create a window for the user with an
appropriate visual for the server they are connected to. ilViewer has a new eventLoop()
method that runs the event loop to make coding a simple IL application as easy as
possible. Callbacks have been added to ilDisplay and to ilView. Each has a post-render
callback and ilView also has a border callback. Paint operations can now be queued
which is useful for enhancing GUI response in applications. To turn on this feature, call
ilDisplay::enableQueueing(True).

All methods to get and set color for backgrounds, errors, and borders now take a float
rgb triplet (normalized to a range of 0-1) instead of ilPixel.

ilDisplaylmg, ilGLDisplaylmg, and ilXDisplaylmg have been replaced by
ilFrameBufferImg and iIXWindowlImg. Users no longer need to tell IL to use X rendering
since both OpenGL and X do their rendering to X drawables. Instead, IL determines if
the visual supports OpenGL; if it does, IL uses it to display a window.

Understanding the Changes to the Existing Features

Error handling

ilError provides a standard interface to handle error processing, notification, and
recovery. In the new interface, unexpected or exceptional conditions are classified
according to severity:

- MM_HALT
- MM_ERROR

- MM_WARNING
- MM_INFO

These severity levels are defined in pfmt.h; MM_HALT is the most severe, MM_INFO is
the lease severe.

When an error condition is encountered, the default behavior, defined in
ilNaiveErrorHandler, is to print a message to stderr. If the severity is MM_ERROR or
MM_HALT, IL exits the program.

IL provides three error handling functions:

ilNaiveErrorHandler Prints message to stderr and aborts the program if
the severity is MM_ERROR or MM_HALT.

ilRobustErrorHandler Prints message to stderr and aborts if severity is
MM_HALT.

ilSilentErrorHandler Prints a message to stderr and aborts if severity is
MM_HALT. Otherwise, remains silent and
continue execution.

The behavior of the error handling functions can be overridden by using
ilSetErrorHandler to supply a user’s error handler. If such a handler is not supplied, one
of the standard error handling functions is selected according to the environment
variable, for example, if IL_SILENT is set, ilSilentErrorHandler is selected if IL_ROBUST
is set, ilRobustErrorHandler is selected, otherwise, ilNaiveErrorHandler is selected by
default.

The current global error handling function can be queried using ilGetErrorHandler.

IL single-threads calls to error handlers. If an error happens in a thread, the thread blocks
until no other errors are being handled in other threads. One benefit of the blocking is

281

Appendix A: What is New in Version 3.0

282

that an error handler can send a message to an error stream in multiple fprintf()
statements without fear that the pieces will be shuffled together with messages from
another error handler running in a different thread.

Asin IL 2.X, the type ilStatus is overloaded to represent both a function return value and
an object’s state. However, in IL 3.0, rather than being an enumerated type with only a
few dozen possible values, ilStatus is now a 32-bit quantity composed of 3 components:

unsigned int mainStatus:12 -- il status code
unsigned int subDomain:4 -- domain of subStatus
unsigned int subStatus:16 -- subdomain status code

mainStatus encodes a value of enumerated type ilMainStatus, similar to the 2.51 ilStatus
enumerated type. subStatus encodes an elaboration of the main status from another
domain. In order to determine what subStatus means, one must examine subdomain to
see what subStatus contains, for example, UNIX error numbers’s or iflStatus values.

The status code 0, ilOKAY, is reserved. Callers can check the ilStatus value without
worrying about specific return values.

ilError.h contains the definition of ilStatus (32-bit unsigned int) and the enumerated types
ilMainStatus and ilSubDomain; they represent the possible values of the mainstatus and
subStatus fields, respectively. ilError.h also contains inline functions and macros to
manipulate the following composite ilStatus values:

iIStatusEncode,
iIGetMainStatus,
ilIGetSubDomain,
ilGetSubStatus,
iIStatusToString, and
iIStatusFromlfiStatus.

Polynomial Coordinate Structures

Most of the polynomial coordinate structures defined in ilPolyDef.h have been removed.
Specifically, declarations for polynomials of degree 2 through 6 no longer exist. In
addition, the cubic polynomial evaluation routines in il\Vector.h (ilVG3Poly and
ilVG3Poly2D) no longer exist.

Understanding the Changes to the Existing Features

The coefficient structures for first- and seventh-degree polynomial structures, defined in
ilPolyDef.h, have been renamed, as shown in Table A-1.

Table A-1 New Names for Polynomial Structures
Old Name New Name

ilCoeffl_2d ilAffine2D

ilCoeff7 ilPolyCoefflD
ilCoeff7_2d ilPolyCoeff2D

ilCoeff_1d ilPolylD

ilCoeff_2d ilPoly2D

Run-time Object-Type Query Macros

The declaration and implementation for run-time object-type inquiries are generalized to
support any class, not just classes derived from ilLink, as the names in Table A-2 suggest.

Table A-2 Run-time Object Inquiries

Old Name New Name
ilDeclareDerivedClass ilClassListDeclare
illmplementDerivedClass ilClassListimplementBase (or

ilClassListimplementDerived)

At run time, a statically-created class inheritance chain supports run-time object type
inquiries. To acquire this capability, put the ilClassListDeclare macro in the public section
of a class declaration derived from a base class and the ilClassListimplementBase (for all
base classes) or ilClassListimplementDerived (for all derived classes) macro in the
implementation file. In addition, the methods declared in ilClassListDeclare are of const
type. Therefore, it is possible to call these methods on a const object.

Changes to Existing Classes

The following miscellaneous changes have been made to existing IL classes:

283

Appendix A: What is New in Version 3.0

284

ilCachelmg

In ilCachelmg, all callback-related functionality has been changed to use the standard
ilCallback interface. Specifically, the following callback-related functionality has been
replaced: setPagingCallback, setPagingCallbackDefaultEnabled, getPagingCallback,
getPagingCallbackArg, getPagingCallbackDefaultEnabled, enablePagingCallback,
isPagingCallbackEnabled, and listResident. These callback-related routines are replaced
by addPagingCallback, removePagingCallback, hasPagingCallbacks, and
doPagingCallbacks. Either ilPagingMethodCallback or ilPagingFunctionCallback
(newly defined) can be used with ilCachelmg::addPagingCallback().

iIClassld

ilClassld has changed to a const pointer to the ilClassList structure. ilConfig is now a
derived class of iflConfig instead of a base class. The color model parameter in the
constructor is now gone.

iIDilatelmg

In ilDilatelmg, the biasValue parameter in the constructor is gone.

iIDisplay

ilDisplay uses an overloaded constructor to specify visual attributes and to automatically
create an X window. getStart() and setStart() have been renamed to getMouse() and
setMouse() because their values are updated by the current mouse position after one or
more display operations.

ilDisplay::getVisibleArea() and ilDisplay::setVisibleArea() were added to clip painting
for scrolled window support.

ilDisplay::mapXY() was added to handle from and to orientations. Note that
ilCoordSpace has been renamed to iflOrientation.

enableFrontRedraw() and isFrontRedrawEnabled() were added to allow redraws to the
front buffer in double buffer mode. This improves an application’s perceived
responsiveness.

Understanding the Changes to the Existing Features

setMode() and clrMode() were added to control the display mode used for adding new
ilViews. New ilViews inherit dispMode() which makes it easier to defer painting while
adding many new views.

Post-render callbacks were added which are called after all views have been rendered.
There are three callbacks: prepare, render, and finish. The prepare and finish callbacks are
called by an IL compute thread. The render callback is called by the IL render thread to
maximize rendering performance. The prepare and finish callbacks can be NULL.

You can set and query a roam rate limit using setRoamLimit() and getRoamLimit(). You
use the roam limit to smooth the roam motion. The limit sets the displacement, in pixels,
between consecutively-rendered frames. Since the displacement is constant, regardless
of the motion of the mouse, the roam speed is constant. For example, if the roam limit is
four pixels, consecutively-rendered frames will be separated by four pixels regardless of
how much or little the mouse moves.

ilDisplay no longer supports autoSwap. Instead, pass iINoSwap in the mode argument
to disable swapping.

ilIDisplay::getScreenNum() was removed.

ilErodelmg

In ilErodelmg, the biasVal parameter in the constructor is gone.

iIFDyadiclmg
cmplxVectorCalc() now has an extra argument to indicate whether the vector includes a

dc value. getPage() is gone and its functionality is replaced by prepareRequest(),
executeRequest(), and finishRequest().

iIFFTOp

ilIFFTOp is no longer a public class. Forward and inverse transform, iIRfftf and ilRffti, can
be done only using iIRFFTflmg and ilIRFFTilmg.

iIFFiltimg

getPage() has been replaced by prepareRequest(), executeRequest(), and
finishRequest().

285

Appendix A: What is New in Version 3.0

286

iIFMonadicimg

getPage() has been replaced by prepareRequest(), executeRequest(), and
finishRequest().

ilIFalseColorimg

In ilFalseColorimg, a NULL constructor was added.

iIFilelmg

ilFilelmg was the abstract base class for various file format subclasses, for example,
ilJFIFImg, iIPCDImg, ilPCDOImg, ilFITImg, ilGIFImg, iISGIImg, and iITIFFImg. Those
subclasses are now gone.

ilGenericlmgFile and ilFilelmg have been replaced by ilFilelmg. ilFilelmg provides a
standard interface for opening or creating image files of all format types. All file
format-specific implementations are hidden inside the IFL.

There are major changes in ilFilelmg.

iIFsDitherer

ilFsDitherer generates an optimal colormap for a full-color image and performs a high
quality dithering to produce a color index image. The algorithm that generates this
colormap is based on Heckbert's median cut algorithm. The function takes a pointer to
the source image and to the number of colors you want in the color-index image. The
function returns an optimal colormap based on the distribution of pixel values in the
source image. The input image can be dithered using the Floyd-Steinberg algorithm. IL
now maintains a global dithering mode that can be set and queried using two new, utility
methods: ilSetDither() and ilGetDither(). So, when creating a color index image, one
can either set the dithering to iINoDither for no dithering, ilFSDither for Floyd-Steinberg
dithering, or iISGIDither for standard SGI dithering.

These functions and the ilDither enum are defined in ilConfigure.h.

iIGBlurimg

In ilGBIlurlmg, getBlur() was added and setBlurKernelSize() was removed.

Understanding the Changes to the Existing Features

[HistLutimg

In IHistLutlmg, getimgStat() and getRoi() were added.

ilHistScalelmg

In ilHistScalelmg, getimgStat() and getRoi() were added.

illmage

In illmage, the following methods were added: hwAccelerate(), isAccelerated(), copy(),
q[Get/Set]SubTile3D(), qCopyTileCfg(), gDrawTile(), gFillTile[3D/RGB](),
q[Get/Set]Tile3D(), gLockPageSet(), drawTile(), [alloc/get/free]FillData(),
fillTileRGB(), getDimensions(), getCopyConverter(), getHwOp(), getHwPassTable(),
getLockTileSet(), getPageOrigin(), hwDefine(), isIntegral(),
[get/set]MaxColormapLevels(), and [is/set]Writable().

The methods map[To/From]Input() replace the methods eval[XY/UV]().
The new methods accept 3D arguments which enables tracking of 3D coordinate
transformations through a chain. Numerous overloaded versions of these methods,

including the old 2D versions, are also provided.

Methods with a different argument or return type, for example, clipTile(), take a new
parameter of type iflITile3Dint which embodies offsets and dimensions.

getColormap() returns cmap through a return instead of a reference parameter. getFill()
returns fillValue through a return instead of a reference parameter.

The following methods are obsolete: [get/set]CacheSize(),
[get/set]Cache[Window/WindowCopy](), copyConverted(), isDisplaylmg(),
needColorConv(), operator<<(), seekTile[/3D](), and eval[XY/UV].

map[To/From]Source() now supports 3D coordinate transformations. Numerous
overloaded versions of this method, including the 2D one, are also provided.

[map/isMirror]Space() has been replaced by [map/isMirror]Orientation().

287

Appendix A: What is New in Version 3.0

288

minValue() and maxValue() changed from ilPixel to scalar double.
[get/set][Min/Max]Value no longer have the channel parameter which means that
minimum and maximum values are no longer maintained separately for each channel.
getPageSize() now uses a return of type size_t instead of int.

getPageSize() returns nx and ny through reference parameters.

copyTile[/3D/Cfg]() methods no longer have the fromOther parameter. Operations are
now always from the “other" image to "this" image.

getStrides3D() is replaced by getStrides().

setPageSize() is overloaded to allow only x and y page sizes to be set (and individual
flags added to reflect this). setPageSizeZ() and setPageSizeC() were added.

[get/set]SubTile3D(), copyTileCfg(), fillTile3D(), lockTile3D(), and lockPageSet() are
no longer virtuals.

lockPageSet() takes a new parameter, perPageCb.
hwGetPass() replaces hwEval().d

getColorImg() no longer has the optional parameter, img.

illmgStat

In illmgsStat, the isAccelerated() method was added.

illndexableList

illndexableList is now a stand-alone class instead of a derived class from ilList. The new
methods, get[Next/Prev](), were added.

ilLink
InilLink, all callback related methods have been simplified to use the standard ilCallback

interface. Specifically, setResetCallback(), setResetCallbackDefaultEnabled(),
getResetCallback(), getResetCallbackArg(), getResetCallbackDefaultEnabled(),

Understanding the Changes to the Existing Features

enableResetCallback(), and isResetCallbackEnabled() have been replaced by
addResetCallback(), removeResetCallback(), and hasResetCallbacks().

The following functions were removed: get[Depth/Child]() and [add/remove]Parent().

ilDumpChain is now the dumpChain() method. The mpLock() method does not take the
parameter, wait, anymore. The default value for parameter, spins, has changed.

The runtime type query methods are now const.

iflLut

iflLut was formerly ilLut. iflLut now supports scale and bias on index which allows a
LUT to have a different length than its domain, for example, a LUT can have floating
point input values ranging from 0-1 and have 256 entries. [get/set]Val() now takes an

index as a double. A new constructor takes LUT length. You can now use
getDomainStep() to access sequential LUT entries.

ilLutimg

getLookUpTable() now returns a pointer to the LUT through a function return instead
of a reference parameter.

iIMemCachelmg

In iMemCachelmg, the method getPageTime() was added which returns the average
time to compute a page in the cache. The listResident() method now takes ilCallback as
a parameter. lockPageSet() is now inherited from illmage and has one extra parameter,
perPageCh. [prepare/execute/finish]Request() methods now replace getPage().

ilFilelmg, derived from ilMemCachelmg, is the only class still using getPage().

iIMemorylmg

In ilMemorylmg, setAutoSync() was removed as was the parameter, autoSyncEnable, in
the constructor.

289

Appendix A: What is New in Version 3.0

290

ifIName

A new method was added to ifIName: setlD().

ilOpImg

In ilOpImg, checkDataType() was removed. getValidTypes() and getValidOrders()
were added to query attribute values. The inherit() logic has been tuned to only
re-inherit when inputs change.

ilPage

In ilPage, the null constructor was removed. [get/set]PID() was added that gets or sets
the process id that computes this page.

ilPropSet

ilPropSet is a pure virtual class. Two subclasses of ilPropSet are provided, ilPropList and
ilPropTable, which implement the abstract class as a linked list and as a hash table,
respectively. ilPropList is now derived from iflList instead of illndexableList. Interface
changes involved are: virtual functions, iterlnit() and iterNext(), are removed from
ilPropSet. To iterate through all of the elements in the set, use the methods provided in
either iflList or iflHashTable.

iISepConvimg

The iISepConvimg constructor takes two new parameters, zKernzel and zsize, to support
three dimensional kernel specifications. Two methods, setZkernel() and getZkernel(),
were added that support three dimensional kernels. set[X/Y/Z]kernel() takes a new,
optional parameter, kernSize.

iISpatiallmg

The constructor for ilSpatiallmg no longer takes the parameters inputKernel and biasVal.
It does, however, take a new parameter, inlmg.

Understanding the Changes to the Existing Features

iISpinLock

The atomicCreate() method takes one new optional parameter, name. The type of lockp in
the same method is now declared differently. ilSpinLock objects now have names for
monitoring (turned on with IL_MONITOR_LOCKS). New methods were added,
including lock(), unlock(), cset(), getName(), monitoringLocks(), dumpLockStats(), and
dumpLocks(). set() and unset() no longer return values.

iISubimg

ilISublmg now has a NULL constructor. ilSublmg is now derived from ilOplmg so its
result is cached in memory.

iIRoilmg

ilRoilmg is now derived from ilCombinelmg so its result is cached in memory.

iIMergelmg

ilMergelmg is now derived from ilOplmg so its result is cached in memory.

iITieWarpimg

ilTieWarplmg now uses the generic warp functionality of ilWarp that is built into
ilWarplmg. It is possible to specify the warp using tie points, providing the underlying
ilWarp class supports warp inference using tie points. Also, ilTieWarplmg uses
ilTiePointList internally to maintain tie points.

The moveTiePoint() method is obsolete because it is no longer possible to reference atie
point by an index.

ilView

Three border callbacks and three post-render callbacks were added to ilView. The border
callbacks draw the view borders; the post-render callbacks are called after the view has
been rendered. The three border and post-render callbacks are defined as follows:

borderPrepareCB = prepare;
borderRenderCB = render;
borderFinishCB = finish;

201

Appendix A: What is New in Version 3.0

postPrepareCB = prepare;
postRenderCB = render;
postFinishCB = finish;

The prepare and finish callbacks are called by an IL compute thread. The render callback
is called by the IL render thread to maximize rendering performance. The border
callbacks as well as the post-render callbacks can be enabled or disabled.

Note: The prepare and finish callbacks may be NULL.

Several new border styles were added, including BdrSolidLines, BdrDashedLines,
BdrCornerHandles, and BdrMiddleHandles. Use setBorderStyle() to change the border
style.

getDel() is now protected instead of private. Its return value is overloaded to XYZ or XY
image position (now in floating point). getimgLoc(), a new method, returns the location
of an image relative to its window.

ilViewer

Added ability to get/set X event window. This is used to support events that occur in
overlay drawables.

ilWarplmg

ilWarplmg has been substantially rearchitected. The addrGen() method is obsolete, and
there are no longer any pure virtuals in ilWarplmg. The warp is now specified by the
setWarp() method. The current warp can be accessed using getWarp(). Numerous other
internal changes were made to support the new MP methodology.

Backwards Compatibility with IL 2.5

292

IL 3.0 is not binary-compatible with earlier versions of the ImageVision Library (IL 2.5.1
and earlier). In addition, there are many source level differences. The largest difference is
the wholesale movement of core typing from IL to the IFL subsystem. IFL performs all

image reading and writing for IL. Consequently, all types dealing with image data types,
pixel channel ordering, color models, and coordinate systems have been moved into IFL.

Backwards Compatibility with IL 2.5

There is some IL 2.5 source-level compatibility available in IL 3.0, as described in
“Automatic Class Name Conversion” on page 294. You can turn on this compatibility by
compiling your source code with IL2_ 5 COMPAT defined. When IL2_5 COMPAT is
defined the following source level incompatibilities remain:

In IL 2.5, the ilConfig class contained an ilColorModel (now iflColorModel) field
named cm that is no longer present.

The old illmage coordinate system member variable, space, has been renamed
orientation.

Note: IL2_5 COMPAT automatically changes the variable type from ilSpace to
iflOrientation.

The types iIXYS*, iIXYZS*, and iIXYZCS* are now defined in terms of the
corresponding IFL types which have constructors. As a result, using C style
initialization is not legal for these types. Code that uses such initialization must be
changed to use C++ style initialization, for example,

iIXYSint xy[2] = {{ 1, 2}, {3, 4}};
becomes
iIXYSint xy[2] = {iIXYSint(1, 2), iIIXYSint(3, 4)};

The global functions ilSetDefaultFileFormat() and ilGetDefaultFileFormat() are
not supported.

Transparent pixels are not supported by ilMedianCutCmapLut().

The ilList, ilListlter, and ilListlterRev classes (now the iflList, iflListlter, and
iflListlterRev classes) have become template classes. You must use them with a
template argument that declares what object types are linked into the lists, for
example, iflList<illmage>.

ilStatus is no longer an enum. It now returns a major error code, a subsystem ID,
and a subsystem error code. As a result, any method which is declared to return an
ilStatus value must now return ilStatusEncode(), for example,

return ilStatusEncode(iIIBADINPUT);

Note: There is a setStatus(int) method which automatically encodes the int
parameter and sets the illmage object's status to that result.

293

Appendix A: What is New in Version 3.0

Automatic Class Name Conversion

When you define DIL2_5 COMPAT in your program, the IL compiler automatically
converts the 2.5 class names into their 3.0 equivalents, as shown in Table A-3.:

294

Table A-3 Class Name Conversions

Old Type Names 3.0 Type Names

iIBitArray ifIBitArray

ilColorModel iflColorModel
iIMinWhite ifINegative
ilMinBlack iflLuminance
iIRGB ifIRGB
iIRGBPalette iflIRGBPalette
iIRGBA ifIRGBA
ilHSV ifl[HSV
iICMY iflCMY
iICMYK ifICMYK
iIBGR ifBGR
ilABGR liflABGR

ilMultiSpectral
ilycc

ilCompress
iINoCompression
iISGIRLE
iICCITTFAX3
iICCITTFAX4
iliLzZw

iIPACKBITS

ifIMultiSpectral
iflyCC

iflCompression

ifINoCompression
iflSGIRLE
ifICCITTFAX3
ifICCITTFAX4
iflLzZwW

iflPACKBITS

Backwards Compatibility with IL 2.5

Table A-3 (continued)

Class Name Conversions

Old Type Names

3.0 Type Names

ilConvlter
ilConverter
ilCoordSpace
ilUpperLeftOrigin
ilUpperRightOrigin
ilLowerRightOrigin
ilLowerLeftOrigin
ilLeftUpperOrigin
iIRightUpperOrigin
ilIRightLowerQOrigin
ilLeftLowerOrigin
ilDictionary
ilFileFormat
ilFillMode
ilFilAI
ilFillSome
ilFillNone
ilFlip
iINoFlip
ilXFlip
ilYFlip
ilHashTable
ilLinkItem

ilList

iflConvliter
iflConverter
iflOrientation
iflUpperLeftOrigin
iflUpperRightOrigin
iflLowerRightOrigin
iflLowerLeftOrigin
iflLeftUpperOrigin
iflRightUpperOrigin
ifIRightLowerOrigin
iflLeftLowerOrigin
ifIDictionary
iflDatabase
iflFillMode
ifIFillAIl
iflFillSome
iflFillNone
iflFlip
ifINoFlip
ifIXFlip
iflYFlip
ifl[HashTable
iflListitem

iflList

295

Appendix A: What is New in Version 3.0

296

Table A-3 (continued) Class Name Conversions
Old Type Names 3.0 Type Names
ilListltem iflListitem
ilListlter iflListlter
ilListlterRev iflListlterRev
ilLut iflIColormap
ilName iflName
ilOrder iflOrder
ilinterleaved iflinterleaved
ilSequential iflSequential
ilSeparate iflSeparate
ilPixel iflPixel
ilSize iflSize
ilStackBuffer use ilStackAlloc()
ilTile ifITile3Dint
ilTileFloat ifITile3Dfloat
ilType ifIDataType
iIBit ifIBit
ilUChar ifluChar
ilChar ifliChar
ilUShort ifluShort
ilShort iflShort
ilULong ifluLong
ilLong iflLong
ilFloat iflFloat
ilDouble ifiDouble

Backwards Compatibility with IL 2.5

Table A-3 (continued)

Class Name Conversions

Old Type Names

3.0 Type Names

ilColorModelChans
ilColorModelName
ilCompressionName
ilCoordSpaceName
ilCreatelmgFile
ilDataAnySign
ilDataClosestType
ilDataDemote
ilDatalsIntegral
ilDatalsSigned
ilDataMax
ilDataMin

ilDataSize
ilDataType
ilDataTypeName
iIDataWantSigned
ilGetDefaultFileFormat
ilGetNextFileFormat
ilGlobalDict
ilGlobalName

ilMax
ilMedianCutCmapLut
ilMin

ilOpenimgFile

iflColorModelChans
iflColorModelName
iflCompressionName
iflOrientationName
use ilFilelmg constructor
iflDataAnySign
iflDataClosestType
iflDataDemote
ifIDatalsIntegral
ifIDatalsSigned
iflIDataMax
iflDataMin
iflDataSize
iflDataTypeFromRange
ifIDataTypeName
iflDataWantSigned
not supported
iflFormat::findNext()
iflGlobalDict
iflGlobalName
iflMax

use ilFsDitherer class
iflMin

use ilFilelmg constructor

297

Appendix A: What is New in Version 3.0

298

Table A-3 (continued)

Class Name Conversions

Old Type Names

3.0 Type Names

ilOrderName
iISGICmapLut
ilSetDefaultFileFormat
iISpcGetTransform
ilSpclsLeft
iISpcisLow
iISpclsMirrorSpace
iISpclsTrans
ilISpcMapFlipTrans
ilISpcMapSize
ilISpcMapSpace
iISpcMapTile
iISpcMapXY
iISpcMapXYSign
iIXYs

iIXy

iIXYZSs

iIXyz

iIXYZCS

iIXyzc

ilDot

ilCross

iIXY[char, int, float, double]

iflOrderName

use iflISGIColormap class
not supported
iflOrientationTransform
iflOrientationlsLeft
iflOrientationlsLow
iflOrientationIsMirror
iflOrientationlsTrans
iflMapFlipTrans
ifIMapSize
iflMapOrientation
ifIMapTile

ifIMapXY
ifIMapXYSign

ifIXYS

ifIXyY

ifIXYzS

ifIXyz

ifIXYZCS

ifIXyzC

iflDot

iflCross

iflXY[char, int, float, double]

New Derivations for Classes

Table A-3 (continued) Class Name Conversions

Old Type Names 3.0 Type Names

iIXYZ[char, int, float, ifLlXYZ[char, int, float, double]
double]

iIXYZC|[char, int, float, ifLIXYZC[char, int, float, double]
double]

iIXYS[char, int, float, double] ifIXYS[char, int, float, double]

iIXYZS[char, int, float, ifLIXYZS[char, int, float, double]
double]

iIXYZCS|[char, int, float, ifIXYZCS[char, int, float,
double] double]

ilMultiListlterRev ifIMultiListlterRe

ilMultiList ifIMultiList

ilGenericList iflGenericList

ilTile[2D, 3D, Float,2Dint, iflTile2D[2D, 3D, Float,2Dint,

2Dfloat, 3Dint, 3Dfloat, 2Dfloat, 3Dint, 3Dfloat, 2Dint,
2Dint, 2Dfloat, 3Dint, 2Dfloat, 3Dint, 3Dfloat]
3Dfloat]

New Derivations for Classes

Because of the introduction of many new classes, the inheritance between classes has
changed, as shown in Table A-4.

Table A-4 New Class Hierarchies

Class Old Base Class New Base Class
ilAddIimg ilDyadiclmg ilPolyadiclmg
ilAndImg ilDyadicimg ilPolyadiclmg
ilBlendimg ilDyadicimg ilPolyadiclmg
ilCombinelmg ilOplmg ilDyadiclmg

299

Appendix A: What is New in Version 3.0

Table A-4 (continued) New Class Hierarchies
Class Old Base Class New Base Class
ilConfig none iflConfig
ilDyadicimg ilOpImg ilPolyadiclmg
ilFDyadiclmg ilOpImg ilFPolyadicimg
ilFFiltimg ilOplmg ilMonadiclmg
ilFMaglmg ilOpImg ilFPolarimg
ilFMonadiclmg ilOplmg ilPolyadiclmg
ilFPhaselmg ilOplmg ilFPolarimg
ilFSpectimg ilOpImg ilMonadiclmg
ilindexableList ilList None

ilLink None iflListitem
ilMaximg ilDyadiclmg ilPolyadiclmg
ilMergelmg illmage ilOpImg
ilMinImg ilDyadiclmg ilPolyadiclmg
ilMonadiclmg ilOpImg ilPolyadiclmg
ilMultiplylmg ilDyadicimg ilPolyadiclmg
ilOrimg ilDyadiclmg ilPolyadiclmg
ilPropList ilindexableList iflList
ilRoilmg illmage ilCombinelmg
ilISublmg illmage ilOplmg
ilXorimg ilDyadicimg ilPolyadiclmg

300

Appendix B

Objects and Classes

Introduction to C++

This chapter introduces the basic concepts of programming in C++. It briefly covers the
principal concepts that differentiate C++ from non-object-oriented languages. Rather
than providing a definitive overview, it gives C programmers a basic grasp of the C++
concepts and phrases that are occasionally used in this guide. If it has the side benefit of
piquing the interest of C programmers enough to give C++ a try, so much the better. One
primary benefit of programming in C++ is that you can extend the IL as you wish, for
example, to include support for your image file format or for an image processing
algorithm.

If you know that C++ is an object-oriented language, you correctly assume that objects
play a major role in a C++ program. An object is an instance of a C++ class. Asa C
programmer, you are familiar with structures which provide a convenient grouping of
variables. A class is a fancy data type that defines not only data elements, as in a data
structure, but functions that manipulate those data elements. These data elements are
called the class’s data members, since they belong to the class; similarly, the functions that
manipulate the data members are called member functions.

One key member function is the constructor, which contains instructions about how to
create a class object. Typically, the constructor initializes the values of the data members.
The class destructor deallocates the class object. In C++, you can have the compiler
automatically create objects for you:

goodClass myGoodClass(anArg);

This statement defines the variable myGoodClass as being an instance of the class
goodClass; it invokes the goodClass constructor to create myGoodClass, passing in the
variable anArg as an argument to the constructor. Since storage is allocated for
myGoodClass, you can now invoke any of its member functions;

myGoodClass.doltNow(someArg, anotherArg);

301

Appendix B: Introduction to C++

302

This statement invokes the doltNow() member function, explicitly passing in two
arguments and implicitly passing the data elements of myGoodClass. Note the use of the
dot operator (““.””) to access the doltNow() member function of the goodClass. You can also
use this operator to access a data member of a class object, for example,

int defaultValue = myGoodClass.goodDefault;
where goodDefault is defined in the goodClass class.

Since the myGoodClass object is created automatically, it is also deleted (its storage freed)
automatically, that is, the class destructor is called automatically when the function goes
out of scope.

You can explicitly create an object as shown below:

goodClass* myGoodClassP = new goodClass(anArg);

Here, the goodClass constructor is explicitly called with anArg as the argument; note that
the constructor has the same name as the class and that it returns a pointer to the class
object. So, instead of a class object, you now have a pointer to a class. In this case, to access
one of its members, you have to use the arrow operator (“->"):

myGoodClass->doltNow(someArg, anotherArg);

Since you have explicitly created the myGoodClassP object, it is not automatically deleted.
You have to do this yourself:

delete myGoodClassP;

This statement calls the goodClass destructor to delete the object.

Overloaded Functions

A function in C can only be declared once. In C++, however, it is permissible to provide
more than one declaration of a function as long as the arguments in each function are
different. Since the function has more than one declaration, it is called overloaded.

Overloaded functions are used most commonly to declare class constructors. For
example, you might have the following constructors:

myClass();
myClass(int argl, float arg2);
myClass(myType type);

Inheritance

Inheritance

The arguments that you pass into the constructor determine which version of the
constructor is used. You cannot, however, make the following declaration because the
arguments have the same form:

myClass(int serialNumber, float accuracy);
myClass(int imageNumber, float resolution);

Classes can inherit data members and member functions from other classes. Inherited
members are available for use by a class just as though they were defined in the class
itself. Inheritance occurs when one class is derived from another. The derived class
inherits the member functions and data from its parent, unless those members are
marked as private. (“Public versus Protected versus Private” on page 304 describes the
meaning of “private.”) Thus, classes exist in an inheritance hierarchy. As shown in the
inheritance hierarchy in Figure B-1, bestClass inherits from betterClass, which itself
inherits from goodClass.

goodClass betterClass bestClass

Figure B-1 Sample Inheritance Hierarchy

In this example, betterClass is “better” since it inherits members from goodClass and also
defines its own; similarly, bestClass inherits members from goodClass and betterClass,
and it defines its own. The root of a hierarchy is called the base class—in this example, the
base class is goodClass. Typically, the base class has several subclasses that derive from it;
it defines general capabilities common to every class in the hierarchy. A subclass then
adds definitions of whatever members it needs to implement in order to provide its
specific functionality.

A superclass can declare a member function as virtual, giving a subclass the opportunity
to provide its own definition of that function. In some cases, virtual functions are simply
declared but not implemented at all in a superclass. These are called pure virtual
functions, and they must be overridden by a subclass’s own version. You cannot create
an object of a class that contains pure virtual functions; such a class is called an abstract
class.

303

Appendix B: Introduction to C++

Public versus Protected versus Private

A class cannot use all of its superclass’s members. Some of a class’s members are declared
private, and they are available for use only by the member functions of that class. Other
members are declared protected, and these are available for use by derived classes. Yet
other members are declared public, and they are accessible anywhere in the program.

Passing by Reference

Default Values

304

The C++ language allows variables to be passed by reference (as Fortran does). For
example, here is the declaration of a query function getAttribute(), which returns an
attribute’s value by reference:

void getAttribute(int& val);

Here is how you use this function:
int x;
myGoodClass.getAttribute(x);

It looks like getAttribute() is taking the variable itself, but behind the scenes, C++
actually passes a pointer to x.

Another handy thing C++ allows you to do is to specify default values for a function’s
arguments. You do this when you declare the function:

void thisFunction(int argl, int arg2 = 5);

Subsequently, you can call thisFunction() without explicitly specifying the second
argument:

myGoodClass.thisFunction(3);

This statement invokes the function, passing in 3 as the first argument and 5 as the
second. Additionally, you can specify whatever value you wish for the second argument
instead of relying on the default, as shown below:

myGoodClass.thisFunction(3, 7);

Class Declaration Format

Class Declaration Format

Example B-1 is a skeletal example of a class declaration to give you an idea of the
declaration format.

Example B-1 Class Declaration Format

#include <ilfilLink.h>
#include <il/illmage.h>

class ilViewTile : ParentClass {
public:
float red, green, blue;
iIViewTile()
{tile.x =tile.y = tile.nx = tile.ny = 0; mode = 0; }
ilViewTile(const ifl Tile2D<int>& t, int m)
{ init(t, m); }

protected:

void gRender(ilMpNode* parent,
const iflTile2D<int>& tile, int mode);

private:
void init(int mode);
void initSize(int mode);

h

In Example 1-1, ilViewTile class derives from ParentClass. The constructor for the class,
ilViewTile() is overloaded: it has two forms. The constructors are public functions.

The function gRender() is protected. The init() and initSize() functions are used
internally in the class and so are marked private.

Linking with Libraries in Other Languages

If you program in C++, you probably want to link with object files and libraries written
in languages other than C++, especially C. In order to do so, you must include in your

305

Appendix B: Introduction to C++

306

program declarations for the functions you wish to call. In most cases, you can do this by
including appropriate header files with the #include directive. For the standard C header
files supplied by Silicon Graphics, using #include is all you need to do. For example, if
you are going to use C standard 170 and the Graphics Library, write:

#include <stdio.h>
#include <GL/gl.h>

If you want to call C functions from within a C++ program, either directly or by file
inclusion, make sure that the C++ program contains correctly prototyped declarations
for the functions. Also, the function declarations need to be recognizable by the C++
translator as declaring functions whose definitions are in C.

These steps are necessary because C++ normally encodes function names to support
overloading. For example, the real name of a function declared in a C++ program as:

void printf(char?, ...) is printf__FPce.

The printf() function in libc.so, however, is called printf. To allow a C++ program to call
functions written in C, C++ provides linkage specifications. To use the standard printf()
function, for example, write:

extern "C" {
void printf(char *, ...);

}

within the C++ source file that calls printf(), or within a header file that is included by
the source file. The extern C statement tells the translator that the function linkage should
be done according to the conventions used by the C programming language.

If you want to adapt an existing C header file or create a header file of your own
containing C function declarations, and you want to be able to include it in either C or
C++ programs, you can use the symbol __cplusplus (with two underscores preceding it).
__cplusplus is always defined for C++ compilations and is otherwise undefined. Thus,
you can enclose C function declarations with:

#ifdef __cplusplus
extern "C" {
#endif

and

#ifdef __cplusplus

}
#endif

Referring to Function Names

This scheme is used to create the C and Fortran interfaces to the IL.

Referring to Function Names

The most important thing you need to know when debugging C++ programs with dbx is
how to refer to functions and data members:

Member functions. Refer to these as classname::functionName. For example, to set a
breakpoint in class C’s member function f(), type:

stop in C::f
If there is more than one member function named f(), this command will set a

breakpoint in every such function. (However, you cannot set a breakpoint in an
in-line function.)

Global C++ functions. Refer to these as ::functionname. For example, to set a
breakpoint in the global function f(), type:

stop in ::f

Non-C++ functions. Refer to these as functionname. For example, to set a breakpoint
in printf(), type:

stop in printf

Data members. You cannot refer to a data member by its name alone, even if the
program is stopped in a member function. To refer to data member m, use this—>m.

The following example illustrates various possibilities:

#include <stdio.h>

class foo {

intn;

public:

h

foo() {n = O;}// this is an inline function
foo(int x);

int bar();

int bar(int);

int foo:: bar()

{
}

return n;

307

Appendix B: Introduction to C++

int foo:: bar(int x)

{
return n +x;
}
foo::foo(int x)
{
n=x;
}
int square(int x) // this is a global function
{
return X * x;
}
main()
{
foo a;
foo b =11;
int x = a.bar();
inty = b.bar(x) + square(x);
printf("y = %d\n", y);
}
If you type:

stop in foo::foo

execution will stop in the constructor for the variable b but not in the constructor for the
variable a because you cannot set a breakpoint by name in an in-line function.

If you type:

stop in foo::bar

execution will stop both when a.bar is called and when b.bar is called because the
debugger is unable to distinguish between the overloaded functions.

To stop in square, type:

stop in ::square

To stop in printf (a C function), type:
stop in printf

308

Appendix C

Summary of All Classes

This appendix lists all the classes that make up the IL. Each of these classes has its own
reference page. Convenience functions that do not belong to any particular class are also
listed here. These functions have reference pages as well.

Table C-1

Summary of All Classes

Class or Function

Description

ifIBitArray
ifIClassList

iflIColor

iflColormap
iflConfig

iflConvlter

iflConverter

iflCoord

iflDataSize()

iflDatabase

iflDefs

ifIDictionary

Provides a limited, subscriptable bit array
Creates a class inheritance chain.

Defines a few convenience functions for obtaining info
on color models.

Provides the base class for lookup tables.
Defines configuration of pixel data

Provides an iterator for converters. It is used to step to
the beginning of each row shared in common between
two converters. The iterator also steps through the
channels.

Handles type conversion and reorganization between
arbitrary rectangular data buffers.

Contains structures to hold coordinates with
arithmetic operations.

Manipulates the size of IL data types

Describes the capabilities of a particular image file
format.

Contains standard definitions required by the Image
Format Library.

Implements a dictionary of named elements

309

Appendix C: Summary of All Classes

310

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

iflError

iflFile
iflFileConfig

iflFormat

ifl[HashTable

iflList
iflLut

ifIMinMax

iflOrientation
iflPixel

iflSGIColormap()

iflSize
iflTile
iflTilelter

ifITypeNames

ifl Types

ilABGRImg

Contains error codes, error handling, and assertion
macros used by the IFL library.

Contains an abstraction of a handle to an image file.

Describes the configuration of an iflFile. It is used with
the iflFile::create() calls to query file configurations.

Describes the capabilities of a particular image file
format.

Contains the base class from which hash table
implementations can be derived.

Contains the base class for a simple doubly-linked list.
Defines a lookup table.

Contains the functions for performing minimum and
maximum comparisons

Transposes the orientation of an image’s axis.
Defines a pixel.

Contains the functions that create or access color
maps.

Defines the size of an image.
Defines a three-dimensional rectangle of image data.
Cycles through the pages spanning a tile.

Provides a some convenience functions to get the
ASCII string for some of the enumerated types used
by IFL.

Defines the image data types, pixel component
ordering, supported Color Models, supported
orientations, supported compression schemes, and
flip modes.

Converts to the ABGR color model.

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilAbsimg
ilAddimg
ilAndImg

ilArena

ilArenaltem

ilArenaSem

ilArenaSmallBitArray

ilArenaSpin

ilArithLutimg

ilArrayAlloc

ilAtomicOps

iIBGRImg
iIBitMapRoi
ilBlendimg
ilBlurimg
ilIBoundingBox
ilBuffer

iICMYKImg

Computes the pixelwise absolute value of an image.
Computes the pixelwise addition of two images.
Computes the pixelwise logical AND of two images.

Defines an area of CPU memory shared by multiple
threads.

Creates a shared memory version of your favorite
objects.

Provides an interface to the user mode semaphore
services.

Provides a shared memory version of the
ilSmallBitArray class.

Provides an interface to the user mode spin lock
services.

Performs a generalized arithmetic operation using a
look-up table.

Allocates memory for arrays.

Provides inline functions to define some useful atomic
operations. This header file is mainly intended to ease
portability of code using these operations.

Converts to the BGR color model.

Defines a bitmap-based region of interest (ROI).
Blends images.

Blurs an image.

Accumulate 2D bounding box of a set of points.
Provides a four-dimensional resizable buffer.

Converts to the CMYK color model.

311

Appendix C: Summary of All Classes

312

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilCache

ilCachelmg
ilCallback

ilChromaKeylmg

ilColorConv
ilColorimg
ilCombinelmg
ilCompassimg
ilConfigure
ilConstimg
ilConvimg
ilConvPixel
ilDilatelmg
ilDisplay
ilDisplayDefs

ilIDisplayMgr

ilIDivimg

Implements the new and delete operators to allow
objects of derived classes to be cached. This can be
used to minimize calls to malloc() and free() for
objects that are frequently constructed and destroyed.

Implements image data caching.

Implements callback method which is a abstraction of
a pointer-to-function parameter.

Compares each input pixel against a statistical
measure of the “background”. If the pixel is close
enough to the mean value of the background it is
marked as being in the background.

Converts between color models.

Converts to the ABGR color model.

Combines two images controlled by an ROI.
Performs a directional gradient transform of an image.
Contains routines to configure the IL environment.
Defines a constant-valued image.

Performs general image convolution.

Converts a pixel to different color models.

Performs morphological dilation on an image.
Manages the display of images in an X window.

Defines various binary flags common to ilDisplay and
ilView. Many display operators take a mode
parameter that is the bitwise OR of one or more of
these flags (e.g. mode = ilCenter | ilDefer).

Handles cleanup of ilViewCbArg. Created for ilView
callbacks.

Computes pixelwise division of two images

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilDyadiclmg

ilELTImg

iIELTRoamer

ilELTrset
ilEnviron
ilErodelmg
ilExplmg

ilFConjimg

ilFCrCorrimg
ilFDivimg

ilFDyadiclmg

ilIFExpFiltimg

ilFFiltimg

ilIFFTOp

ilFFiltimg

ilFGaussFiltimg

ilFileFormat
ilFileimg
ilFMagimg

ilFMergelmg

Provides basic support for dual-input operators

Implements the functions needed for Electronic Light
Table applications.

Supports roaming look-ahead and zooming
look-ahead for ELT applications.

Encapsulates all information related to an R-set.
Provides support for environment variables.

Performs a morphological erosion on an image.
Performs pixelwise exponentiation of an image.

Computes the conjugate of a Fourier image and
normalizes the complex value by a real factor.

Computes the cross-correlation of two Fourier images.

Divides two Fourier images.

Provides basic support for dual-input Fourier
operators.

Applies an exponential Fourier filter to a Fourier
image.

Provides basic support for Fourier filter operators.

Performs a forward, inverse, or average fast Fourier
transform of an image.

Provides the base class for frequency filters.
Applies a Gaussian Fourier filter to a Fourier image.
Registers supported image file formats.

Provides basic support for image files.

Computes the magnitude values of a Fourier image.

Merges magnitude and phase images into a Fourier
image.

313

Appendix C: Summary of All Classes

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilFMonadiclmg

ilFMultimg
ilFPhaselmg

ilFPolarimg

ilFPolyadiclimg

ilFRaisePwrimg

ilFSpectimg
ilFalseColorimg

ilFrameBufferimg

ilFsDitherer

ilGBIlurlmg

ilGraylmg
ilHistEqlmg

ilHistLutlmg

ilHistNormimg
ilHistScalelmg
ilHSVImg

ilHSVconverter

Provides basic support for single-input Fourier
operators.

Multiplies two Fourier images.
Computes the phase values of a Fourier image.

Provides the base class for single input fourier
operators.

Provides the base class for multiple input fourier
operators.

Raises the magnitude values of a Fourier image by a
power.

Computes the spectrum of a Fourier image.
Performs false coloring of multispectral images.

Provides the basis for IL access to frame buffer
memory. IL maintains internal Display* and GL
contexts to isolate its rendering from the user’s code.

Allocates and returns an optimized color map.

Performs a two-dimensional Gaussian blur of an
image.

Converts to the gray-scale color model.
Performs histogram equalization of an image.

Provides the base class for operators that compute a
lookup table based on a histogram.

Performs histogram normalization of an image.
Performs histogram scaling of an image.
Converts to the HSV color model.

Converts HSV to RGB file format.

314

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilHwConnection

ilHwContext

ilHwDefs

ilHwManager

ilHwManagerGL

ilHWMgreELT

ilHwPass

ilHwPassELT

ilHwPassGL
ilHwTexture
illmage
illmgRoi

illmgStat

ilindexableList
ilindexableStack
illnvertimg

ilKernel

Provides private connections to the display server and
serves as a graphics hardware capability query
mechanism.

Provides the foundation for all of IL’s rendering to
graphics hardware.

Defines some types and enums for hardware
acceleration.

Provides the base class for various types of hardware
accelerated rendering. This header file includes a
couple of miscellaneous managers for fillTile and
gBarrier operators.

Implements those rendering operations that can be
accomplished with the OpenGL drawPixels function.

Provides the ilMpManager for Electronic Light Table
applications.

Encodes the hardware acceleration for an ilimage (or
an illmgStat).

Implements hardware acceleration for the ELT
application.

Implements hardware acceleration in OpenGL.
Represents a single GL texture.

Provides basic support for images.

Defines the image-mapped Roi class.

Computes the histogram, minimum, maximum,
mean, and standard deviation of an image.

Provides an indexable linked list.
Manages an indexable list as a stack.
Performs one’s complement of an image.

Defines kernels.

315

Appendix C: Summary of All Classes

316

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilLaplacelmg
ilLink

ilLinklter
ilLockPageCache
ilLoglmg
ilLutimg
ilMachDep

ilMath
ilMatrix
ilMaxFltimg
ilMaxImg
ilMedFItimg
ilMemCachelmg
ilMemorylmg
ilMergelmg
iIMinFItimg
ilMinImg
ilMonadiclmg

ilMpLock

ilMpManager

Performs edge detection using Laplacian kernels.
Provides chaining and setting attributes.

Provides an iterator for ilLink.

Manages a toroidal cache of lock requests on an image.
Computes the pixelwise logarithm of an image.
Translates an image using a lookup table.

Provides definitions and typedefs used to detect
machine dependencies and compensate for them to
ease the difficulty of porting the IL to other platforms.

Facilitates the mod operation for integer types.
Defines matrices.

Performs max filtering of an image

Computes the pixelwise maximum of two images
Performs median filtering of an image
Implements data caching in main memory.
Defines an image array resident in memory.
Merges several images into one.

Performs minimum filtering of an image.
Computes the pixelwise minimum of two images.
Provides basic support for single-input operators.

Provides an encapsulated version of ilSpinLock with a
different API that is more suitable for deriving from,
for example, to make a lockable list.

Provides a generalized method to execute work in
parallel using a configurable number of threads
created with sproc.

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilMpPool

iIMpQueue

ilMpThread

ilMultiplylmg
iINegimg
iINoplmg
ilOpImg
ilOrimg
ilPage

ilPager

ilPCDImg

ilPerspWarp
ilPiecewiselmg

ilPixelBufferFrag

ilPixelBufferimg

ilPixelCachelmg

ilPolyDef

Manages a shared pool of resources, for example,
buffers. Groups of requests can acquire a particular
resource or get queued until the resource becomes
available.

Provides an abstract API for queueing ilMpRequest’s
to be executed by iIMpThread::run().

Implements the abstraction of an execution thread
created with sproc.

Computes the pixelwise multiplication of two images.

Performs two’s complement of an image.
Provides caching on non-cached images.
Provides basic support for operators.

Computes a pixelwise logical OR of two images.

Defines a page of image data in a cache.

Implements a page table and manages an image cache.

Provides support for the Kodak Photo CD image pack
file format class.

Manages a perspective warp.
Performs a linear mapping of lookup table images.

Provides support to hardware managers for
allocating, locking, and drawing to pbuffer memory.

Implements the illmage model for images whose data
resides in off-screen frame buffer memory, that is, GL
p-buffers.

Implements the illmage model for images whose
data resides in off-screen frame buffer memory, that
is, GL p-buffers.

Defines some structures and methods for
polynomials.

317

Appendix C: Summary of All Classes

318

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilPolyWarp

ilPolyWarplmg

ilPolyadiclmg

ilPool

ilPowerlmg
ilPriorityList
ilPropSet
ilRankFItimg
ilRectRoi
iIRFFTflmg
iIRFFTilmg
iIRGBImg
ilRobertsimg
ilRoi
ilRoilmg

ilRoilter

ilRotZoomImg

ilSaturatelmg

ilScale

ilScalelmg

ilSemaphore

Specifies a two-dimensional seventh-order
polynomial warp.

Performs a two-dimensional seventh-order warp.
Provides the base class for N-input operators.

Implements a pooled memory allocation scheme with
facilities for compaction and reclamation of free space.

Raises image data to a specified power.

Lists items sorted by priority.

Creates a collection of properties.

Performs two-dimensional rank filtering on an image
Defines a rectangular region of interest (ROI).
Performs a real forward fast Fourier transform.
Performs a real inverse fast Fourier transform.
Converts to the RGB color model.

Performs edge detection using Roberts kernels.
Defines an ROI.

Associates an ROI with an image.

Cycles through run lengths in an ROI.

Rotates, zooms, and flips an image.

Performs color saturation of an image.

Implements simple linear scaling operations, for
example: f(x) = ax + b.

Performs a linear scaling of an image.

Limits the number of process threads that can access a
shared data structure.

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

iISepConvimg

ilISepKernel

iISGIPalettelmg
ilSharpenimg
ilSmallBitArray
ilSobellmg
ilSpace
ilSpatiallmg
ilISpinLock
iISqRootImg
ilSquarelmg
ilStackAlloc

ilStackBuffer

iIStereoView

ilISublmg

ilSubtractimg

ilISwitchimg

iITOTAL

ilTexImg

Performs an image convolution using a separable
kernel.

Manages a separable kernel. A separable kernel is one
that can be separated into independent X and Y
components to optimize computation.

Converts to the RGB Palette color model.
Sharpens an image.

Defines a bit array.

Performs edge detection using Sobel kernels.
Contains a list of IL to IFL compatibility #defines.
Provides basic support for spatial operators.
Manages spinlock services.

Computes the pixelwise square root of an image.
Computes the pixelwise square of an image.
Provides a wrapper for alloca.

Provides a four-dimensional, resizable buffer with
better performance than an ilBuffer.

Associates a stereo view (two images) with aregion in
an ilDisplaylmg.

Defines a rectangular portion of an image as an
independent image.

Computes the pixelwise subtraction of two images.

Implements a switch construct in an image operator
chain.

Implements the user interface portion of the interface
builder. Normally, it is not used directly. Instead the
subclass, FmtAttForm is instantiated.

Implements a paged image stored in texture memory.

319

Appendix C: Summary of All Classes

320

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

ilThread
ilThreshimg
ilTiePointList
ilTieWarplmg
iITIFFImg
ilTilelmglter

iITimeoutTimer

ilTimer

ilVector
ilVectorUtil
ilView

ilViewCallback

ilViewer

ilViewlter

ilWarp

ilWarp3img

ilWarplmg
ilWarpRoamer
iIXDisplaylmg

ilXImage

Manages a shared group of processes.
Applies a threshold to an image.
Manages a list of tie points.

Warps an image by specifying tie points.
Creates an image file in the TIFF format.
Cycles through the pages spanning a tile.

Provides a simple and efficient means of
implementing a timeout period for a polling loop.

Provides an interface to the high-resolution interval
timer. On most SGI machines, this timer has a
resolution of 1 usec or better.

Provides a resizable Vector class.
Provides vector utility routines.
Associates an image with a region in an ilDisplaylmg.

Provides easy access to view state information as well
as other information needed for graphics callbacks.

Handles standard operations on ilDisplay objects
triggered by X events.

Iterates through ilDisplay’s view stack.

Provides an abstract base class used to define 3D warp
functions.

Derives from ilWarplmg and defines addrGen() to
evaluate a 3rd order polynomial.

Provides basic support for warping an image.
Provides an object that roams a warped image.
Defines an image that exists in the frame buffer.

Translates between an XImage and an illmage.

Table C-1 (continued)

Summary of All Classes

Class or Function

Description

iIXWindowlImg

ilXorlmg

ilYCCconverter

Manages an IL interface to X Windows. IL maintains
internal ilDisplay and GL contexts to isolate rendering
from user code.

Computes the pixelwise exclusive-OR of two images.

Provides a YCC/RGB conversion object.

321

Appendix D

Implementing Your Own Image File Format

IFL supports a wide variety of image formats, including .tiff, .rgb, .rgba, .jpeg, and .gif. (For
a complete list of supported file formats, see “Supported IFL Image File Formats” on
page 66.) IFL is extensible, however, so that you can easily add support for additional file
formats. You do that by

1. deriving your file format class from iflFile and iflFormat

2. implementing your derived class

3. adding your file format to the file format database, ifl_database

The file format supplied with IFL, FIT, provides the sample code described throughout

this chapter that demonstrates how you can extend IFL to implement your own file
format. The code for the FIT format is also available in the software distribution in

lusr/share/srclifl/src/ifIFITFile.c++

Although the C++ code might differ slightly from the excerpts shown in this chapter, the
functionality remains the same.

This chapter describes how to add and implement your own image file format.

Deriving and Implementing Your Image File Format Class

iflFile is an abstract, base class that you use to derive your image file format class. Every
iflFile object is an image file format class, such as ifITIFFFile (.tiff) and iflFITFile (fit).
iflFile does not have a public constructor or destructor, so you cannot use iflFile directly.
In your new image file format class, you need to provide functions that

= create a new file or open an existing one

= read data from a file into the cache, one page at a time, decompressing it if necessary

= write data from the cache into a file, one page at a time, compressing it if necessary

323

Appendix D: Implementing Your Own Image File Format

324

* close afile
= allow your format to be registered
To accomplish these tasks, your derived class will typically use the following inherited

member functions of iflFile that open, create, and close the file, flush the buffer, and parse
the file name:

< open()
- create()
« close()
e flush()

« parseFileName()

These functions (and a class destructor) are the minimum number of functions your class
must provide. Very likely, your class will provide more capabilities including, perhaps,
your own version of reset() (declared in ilLink and illmage) to handle altered parameters

properly.

The remainder of this section describes how the iflFile methods implement these
necessary tasks.

Opening an Existing File

You can specify a file by a filename, a file descriptor, or both. If both are specified, the file
descriptor is used to open the file. In this case, the filename is stored for use with error
messages and the iflFile::getfileName() method.

The iflFile::open() method is defined as follows:

iflFile* open(fileDesc, filename, mode, format, status);
where fileDesc is the file descriptor.

The name of the file, filename, can be followed by an index to specify sub-images using
the following syntax:

filename:index

Deriving and Implementing Your Image File Format Class

For more information about changing the index after a file is open, see “Functions that
Manipulate the Image Index” on page 334.

The mode argument specifies the read-write permissions set on the file. The two valid
mode are read-only, O_RDONLY, and read-write, O_RDWR.

The format argument specifies the file format for the opened file. If you set this argument
to NULL, the usual implementation, the file format is deduced from the file’s contents,

in particular, its magic number. You can, however, use the format argument to specify a

file format.

The status argument is set to an error value if the open() method fails. If you have not
implemented error messages, you should set this argument to NULL. If the method fails,
the return value of the method is NULL.

If the open() method succeeds, an iflFile* pointer is returned to a derived class of iflFile,
such as ifITIFFFile. The object created with open() can then be manipulated by the
methods in the derived class. It is the application’s responsibility to deallocate the object
using the iflFile::close() method, for example,

newFileObject->close();

The ifIFITFile file format uses two constructors to open a file. The first constructor uses
just the filename to open the file, the second uses the file descriptor:

static iflFile* open(const char* filename, int mode = O_RDONLY,
iflStatus* status = NULL);

static iflFile* open(int fileDesc, const char* filename,
int mode = O_RDONLY, ifIFormat* format = NULL,
ifIStatus* status = NULL);

Example D-1 shows how ilFITFile.c++ implements opening a file.

Example D-1 Opening a File

ifiStatus iflFITFile::openFile()
{
intfd_opened_here =0;
ifiStatus status;

if (fd < 0) {
assert(flename = NULL);
fd = (ifiStatus)::open(flename, accessmode);
if (fd < 0)

325

Appendix D: Implementing Your Own Image File Format

326

retumn ifiStatusEncode(flOPENFAILED, ifiSubDomainUNIX, ::oserror());
fd_opened_here=1;
}

needHeader =0; // must be initialized for destructor!
dataWritten=1; // so extensions can't be reserved

Il read the header
if ((status = readHeader()) != flOKAY) {
if (fd_opened_here) {
(void)::close(fd);
fd=-1;
}
return status;

}

Jillin other info
compression = fiNoCompression;
calcPageParams();

return flOKAY;

Creating a New Image File

You can create a new file by specifying many of the same values you used in the open()
method. You can create a new file using a filename, a file descriptor, or both. If both are
specified, the file descriptor is used to create the file and the filename is stored for use
with error messages and the iflFile::getfileName() method.

The iflFile::create() method is defined as follows:

iflFile* create(fileDesc, filename, source, config, format, status);

All of the arguments in the create() method have the same mean as those described for
the open() method. Only the source and config arguments are different.

The config argument is a structure defined in iflFileConfig that specifies a wide range of
file characteristics, including the file’s
= dimensions

e datatype

Deriving and Implementing Your Image File Format Class

= dimension order
< color model

= orientation

= compression

« page dimensions

If any of these characteristics are not given, the source argument is used to define them.
If the source value is not defined, the characteristics default to the preferred values for the
file format.

The source argument points at an iflFile object. If any of the file’s characteristics are not
defined in the config structure, the characteristics are set to be the same as those of the
source object.

If the create() method succeeds, an iflFile pointer is returned to a derived class of iflFile,
such as ifIFITFile. If the method fails, the method returns NULL and you can use the
status argument to set an error value.

Example D-2 shows how ilFITFile.c++ implements creating a file.

Example D-2 Creating a File
ifiStatus ifiFITFile::createFile()

/I validate the ¢ page size

if (pageSize.c == 0)
pageSize.c = order—=ifiSeparate? 1:size.c;

else if (order = ifiSeparate && pageSize.c = size.c)
retumn ifiStatusEncode(fIBADPARAMS);

if (fd < 0) {

assert(flename = NULL);

fd = ::open(filename, accessmode|O_CREAT|O_TRUNC, 0666);

if (fd < 0)

retumn ifiStatusEncode(flOPENFAILED, ifiSubDomainUNIX, ::oserror());

}else {

(void):-ftruncate(fd, (off_t)0);
}

dataOffset = userOffset = sizeof(FIThead02);

327

Appendix D: Implementing Your Own Image File Format

328

Iflag the header/data as not written
needHeader = 1;

datawritten = 0;
calcPageParams();

scaleMinValue = ifiDataMin(dtype);
scaleMaxValue = ifiDataMax(dtype);

retum iflOKAY;

Closing a File

Whether you open or create a new file object, you must write a destructor that terminates
it. This destructor needs to:

< finish writing out any modified pages of image data to disk

close the file and release the file descriptor

- free any temporary buffers that were allocated

You use the iflFile::close() member function to close files, defined as follows:

iflStatus close(int flags = 0);

where flags can be set to IFL_CLOSE_DISCARD which means that iflFile::flush() is not
automatically called so that buffered file data is not flushed when the file object is closed.
The close() method performs the following tasks:

= flushes any buffered file data (unless the IFL_CLOSE_DISCARD flag is set)

= closes the file

= destroys the file object

The close() method automatically calls the iflFile::flush() and iflFile::.closeFile() methods

to carry out these tasks. Even if any of these three methods returns an error, the above
tasks are performed.

Deriving and Implementing Your Image File Format Class

Note: The file descriptor is closed even if it is opened prior to the original iflFile::open()
or iflFile::create() call. To keep a file descriptor open, use dup() on the file descriptor
before closing the file and then pass the duplicated file descriptor to an open() or create()
method.

The following code shows how you might implement a destructor for a file format:

iflFileFormat::~iflFileFormat() {FileFormat->close();}

Example D-3 shows how ilFITFile.c++ implements closing a file.

Example D-3 Closing a File
ifiStatus ifiFITFile::closeFile()

assert(fd >=0);

if (::close(fd) 1= 0)
retumn ifiStatusEncode(fiCLOSEFAILED, ifiSubDomainUNIX, ::oserror());

return iflOKAY;
}

Flushing the Buffer

The iflFile::flush() method is a virtual function that displays any buffered data associated
with an iflFile object. It is automatically called by iflFile::close() unless the environment
variable, IFL_CLOSE_DISCARD, is set. In this case, the data in the buffer is flushed but
not displayed.

You might like to call flush() before closing an image file if, for example, you want to
optimize memory space or system performance.

If flush() succeeds, it returns ifl OKAY; if not, it returns an appropriate iflStatus error
value.

Example D-4 shows how ilFITFile.c++ implements flushing a bu