IRIS Digital Media
Programming Guide

Document Number 007-1799-040

CONTRIBUTORS

Written by Patricia Creek; Part III written by Carolyn Curtis

Ilustrated by Patricia Creek, Dany Galgani, Cheri Brown, David Bertrand,
and Dan Young

Edited by Nancy Schweiger and Christina Cary

Production by Derrald Vogt and Chris Everett

Engineering contributions by John Barco, Brian Beach, Don Bennett, David Bertrand,
Mark Callow, Wiltse Carpenter, Andrew Cherenson, Doug Cook, Jonathan Devine,
Grant Dorman, Dan Fink, Ron Fischer, Jeff Glover, Brian Hill, Bryan James, Bruce
Karsh, Robert Keller, Eva Manolis, Ted Marsh, Spencer Murray, Paul Ning,
Candace Obert, Gordon Oliver, Chris Pirazzi, Scott Porter, Mike Portuesi, Scott
Pritchett, Amit Shoham, Paul Spencer, Dave Story, Archer Sully, Ann Sydeman,
Alex Tang, Mike Travis, I-Ching Wang, Jim Wanslow, and Jim Wiggins.

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, Indigo, IRIS, and the Silicon Graphics logo are registered
trademarks and CHALLENGE, Cosmo Compress, Galileo Video, GL, Graphics
Library, Image Vision Library, IndigoVideo, Indigo?, Indigo? Video, Indy, Indy Cam,
Indy Video, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIX, OpenGL,
Personal IRIS, Sirius Video, Showcase, and VINO are trademarks of Silicon Graphics,
Inc. Aware and the Aware logo are registered trademarks and AudioPlayback,
AudioProducer, AudioPublisher, AudioSuite, Archiver, Audition, BrowsFX,

IRIS Digital Media Programming Guide
Document Number 007-1799-040

MultiRate, Psycoder, and Speed-of-Sound are trademarks of Aware, Inc. Betacam
and Sony are registered trademarks and Hi-8mm is a trademark of Sony Corporation.
Macintosh is a registered trademark and AppleTalk and QuickTime are trademarks
of Apple Computer, Inc. MII is a trademark of Panasonic, Inc. Network License
System and NetLS are trademarks of Apollo Computer Inc., a subsidiary of
Hewlett-Packard Company. Prosonus is a registered trademark of Prosonus. MIPS
and R3000 are registered trademarks of MIPS Technologies, Inc. Open Software
Foundation is a registered trademark and OSF/Motif is a trademark of the Open
Systems Foundation. S-VHS is a trademark of JVC, Inc. UNIXis a trademark of AT&T
Bell Labs. X Window System is a trademark of Massachusetts Institute of Technology.

IRIS Digital Media Programming Guide
Document Number 007-1799-040

Contents

List of Examples xxiii
List of Figures xxvii
List of Tables xxxi

About This Guide xxxv
What This Guide Contains xxxv
How to Use This Guide xxxix
Where to Start xxxix
Style Conventions xxxix
How to Use the Sample Programs xxxix
Suggestions for Further Reading xl
References for Using Digital Media with Other Libraries xI
References for Adding a User Interface to Your Program xli

PART ONE Digital Media Programming

1. Programming with the IRIS Digital Media Development Environment 5
About the Digital Media Library 6
About the Digital Audio and MIDI Libraries 6
About the Video Library 7
About the IndigoVideo Library 8
About the Compression Library 8
About the Movie Library 9

Contents

PART TWO

Vi

Programming with the Digital Media Library 13
Digital Media Library Basics 13
Digital Media Type Definitions 13
Digital Media Parameters 15
Compiling and Linking a Digital Media Library Application 15
Debugging a Digital Media Library Application 16
Initializing a Digital Media Application 16
Creating and Destroying Parameter-value Lists 17
Creating Default Audio and Image Configurations 18
Setting and Getting Individual Parameter Values 25
Manipulating Parameter-value Lists 29
Synchronizing Digital Media 33

Digital Audio and MIDI Programming
Introduction to Digital Audio and MIDI Programming 39

Digital Audio System Architecture 43
Indigo Audio System Architecture 43
Indigo Audio Features 43
Indigo Audio I/O Interface 44
Indigo? and Indy Audio System Architecture 46
Indigo? and Indy Audio I/O Interface 46
Indy Workstation Layout 47
4-channel Audio I/O Interface 49
Recommendations for Audio Development System Configurations
Memory 50
Disk Space 50
Peripherals 51

Digital Audio System Software 55

Digital Audio System Software Overview 55
About the Digital Audio Libraries 56
About Shared System-Wide Resources 57

50

Contents

Tools Available for the Audio Application Developer 60
Graphical User Interface Audio Tools 60
Online Source Code Examples 61
Third-party Audio Software and Sound Libraries 61
Compiling and Linking an Audio Application 62

Programming with the Audio Library 67
Audio Library Basics 68
Audio Library Features 68
Audio Library Programming Model 68
Digital Audio Data Representation 69
Handling Audio Library Errors 72
Audio Library Application Programming Concepts 73
Initializing an Audio Library Application 74
About ALports 74
Using ALconfig Structures to Configure ALports 74
Opening and Closing Audio Ports 87
Reading and Writing Audio Data 90
Using Audio Sample Queues 90
Reading and Writing Samples 93
Detecting Errors in the Audio Stream 97
Querying and Controlling the Global Audio Device State 98
Techniques for Working with Global Parameters 102
Sample Code for Querying Features and Values 107
Audio Library Synchronization Facilities 112
Audio Sample Frame Count 112
Relating Audio Sample Frame Count to UST 116
Real-time Programming Techniques for Audio 119
Multiplexing Synchronous I/O 119
Using Scheduling Control to Give Audio High Priority 122
Preventing Memory Swapout 122
Creating Multiple Process Threads 122
Using Shared Arenas and Semaphores 123

vii

Contents

7. Programming with the Audio File Library 127

Audio File Library Basics 128
Audio File Library Programming Model 128
Handling Audio File Library Errors 128
About Audio Files 129

Creating and Configuring Audio Files 132
Creating an Audio File Setup 132
Initializing Audio File Format 133
Initializing Audio Track Data 134
Initializing Instrument Data 140
Initializing Miscellaneous Data 141
Using the Audio Utility Library to Initialize Parameter Lists 143

Opening, Closing, and Updating Audio Files 147
Opening an Audio File 147
Getting an IRIX File Descriptor for an Audio File 148
Closing and Updating Files 149

Reading and Writing Audio Track Information 150
Getting Audio File Format 150
Getting and Setting Audio Track Parameters 152
Seeking, Reading, and Writing Audio Track Frames 160
Reading and Writing Instrument Configurations 163
Handling Miscellaneous Data Chunks 168

Audio File Library Programming Tips 171
Minimizing Data and File Format Dependence 171
Preventing Concurrent Access from Multiple Threads 172
Handling Errors in Multithreaded Applications 176
Sample Audio File Program 177

viii

Contents

Programming with the CD Audio Library 183
CD Audio Library Basics 184

CD Frames, Samples, and Subcodes 184

CD Tracks, Indices, and Time Codes 186

CD Seeking, Reading, and Playing 186

CD Parser 186

Opening and Closing the CD-ROM Device 187

Controlling the CD-ROM Drive Caddy 187
Navigating through a CD 187

Getting CD Locations from the End User 188

Getting CD Locations from Calculations Internal to
Your Application 188

Getting the Current CD Location 189
Seeking to a CD Location 189

Using the CD-ROM Drive 190
Playing an Audio CD from the CD-ROM Drive 190
Reading Audio Data from the CD-ROM Drive 191
Controlling the CD Parser 192
Communicating CD Status to the End User 194
CD Time Code Conversion Routines 195

CD Sample Program 196

Programming with the DAT Audio Library 203
DAT Audio Library Basics 203
DAT Frames, Samples, and Subcodes 204
DAT Audio Program Numbers and Indices 205
DAT Run Time, Absolute Time, and Program Time 205
DAT Seeking and Reading 205
DAT Parser 205
Opening and Closing the DAT Device for Audio 206

Contents

Navigating through a DAT 206
Getting DAT Locations from the End User 207

Getting DAT Locations from Calculations Internal to
Your Application 207

Seeking to a DAT Location 208
Using the DAT Drive 209
Playing a Tape in the DAT Drive 209
Making DAT Recordings for Playback on the DAT Drive 210
Reading Audio Data from the DAT Drive 211
Writing Audio Data to the DAT Drive 211
Controlling the DAT Parser 213
Communicating DAT Status to the End User 217
DAT Sample Program 217
Playing a DAT 217

10. Programming with the MIDI Library 223
MIDI System Architecture 224
Configuring Your System for MIDI Development 224
Connecting Devices to MIDI I/O Interfaces 227
Configuring Serial Ports for MIDI W1Ith the Port Setup Tool 229
MIDI Library Basics 231
Initializing MIDI Library Programs 231
Compiling and Linking MIDI Library Programs 231
MIDI Library Error Handling 231
MIDI Library Programming Model 232
Opening and Closing MIDI Ports 232
Getting the Name of an Available MIDI Port 232
Opening and Closing MIDI Input and Output Ports 233
Programming MIDII/O 234
Hands-On MIDI Output Experience 234
About MIDI Events 235
Sending and Receiving MIDI Events 236
Printing MIDI Events 237
Processing MIDI Event Messages 238

Contents

PART THREE
11.

12.

Multiplexing MIDI I/O with File Descriptors 240
Hands-On Multiplexed MIDI I/O Experience 240
Getting a File Descriptor for a MIDI Port 240
Controlling MIDI Timing 241
Controlling MIDI Timing Mode 241
Controlling MIDI Tempo 243
Controlling MIDI Output Buffering 243
Hands-On MIDI File Player Experience 244
Synchronizing MIDI I/O with Other Media 246
Hands-On MIDI and Audio Synchronization Experience 246

Video Programming

Video Basics 251
Interlacing 251
Broadcast Standards 253
Color Encoding 254

RGB 254

YUV 255

YIQ 255

YC, YC-358, YC-443, or S-Video 256

Composite Video 256
Video Signals 257
Videotape Formats 257

Getting Started with the Video Library 261
VL Features 262
How the VL. Works with Hardware 262
How the VL Works with Other Software 262
VL System Software Architecture 263
Video Daemon 264
Generic Video Tools 265
Library and Header Files 266
VL Architectural Model of Video Devices 267

Xi

Contents

VL Programming Model 269
Opening a Connection to the Video Daemon and Setting up a Data Path 271
Opening a Connection to the Video Daemon 271
Specifying Nodes on the Data Path 272
Creating and Setting Up the Data Path 273
Setting Parameters for Data Transfer to or from Memory 279
Setting Source Node Controls for Data Transfer 280
Setting Drain Node Controls for Data Transfer 284
Displaying Video Data Onscreen 293
Transferring Video Data to and from Devices 294
Creating a Buffer for the Frames 295
Registering the Ring Buffer 296
Starting Data Transfer 296
Reading Data from the Buffer 298
Ending Data Transfer 302
VL Examples 303
Simple Screen Application 304
Video-to-memory Frame Grab 307
Memory-to-video Frame Output 310
Continuous Frame Capture 314

13. Using VL Controls 321

VL Control Type and Values 327

VL Control Fraction Ranges 328

VL Control Classes 328

VL Control Groupings 329

Galileo Video Controls 331
General Controls for Galileo Video 332
Galileo Video IndyCam Controls 336
Galileo Video Encoder and Color-Space Conversion Controls 337
Galileo 601 Video Digital Breakout Box Controls 338

Xii

Contents

14.

15.

PART FOUR
16.

17.

VINO Controls 341
VINO Video Control Panel Controls 341
VINO Analog Input Controls 342
VINO IndyCam Controls 343

VL Event Handling 347

Querying VL Events 348

Creating a VL Event Loop 350

Creating a Main Loop with Callbacks 351

VL Blending 361

The VL Key Generator 362

The VL Blend Node 363

VL Blending Controls 366

VL Keying 367
Galileo Video Luma Keying 368
Galileo Video Chroma Keying 370
Galileo Video Fades, Tiles, and Wipes 371

VL Blending Examples 375
Blending Video and Graphics 375
Creating a Simple Wipe Effect 376

IndigoVideo Programming

Introduction to IndigoVideo Programming 381
Using the IndigoVideo Examples 381
References for Video Programming 382

Getting Started with the IndigoVideo Library 385
IndigoVideo Basics 385

IndigoVideo 385

IndigoVideo Data Formats 386

IndigoVideo I/O 389
A Simple Program for Getting Started with IndigoVideo 392

Xiii

Contents

Xiv

18.

19.

20.

Controlling the IndigoVideo Input Window 399
Setting Input Parameters 399
Selecting an Input Source 400
Selecting the Input Signal Type 401
Freezing and Restarting Video Input 401
Querying Video Parameters 401
Positioning and Scaling the Video Input 402
Setting the Size of the Video Image 403
Positioning the Video Image 405
Preventing Other Programs from Using Video 406
Combining Video and Graphics 406
Video Underlay Mode 407
Video Overlay Mode and Chroma Keying 410

Producing IndigoVideo Output 423

Selecting the IndigoVideo Live Output Area 423

Setting Output Parameters 426
Turning Output On and Off 426
Synchronizing Output with Input 426
Filtering Output 426

Generating Single-frame Output 426

Capturing Video from IndigoVideo 433
Captured Video Data Formats 434
Capturing a Single Video Frame 436
Capturing Video Frames in Burst Mode 439
Capturing Video Frames in Continuous Mode 441
Entering Continuous Capture Mode 442
Accessing Captured Data 442
Leaving Continuous Capture Mode 444
Using Data Conversion Routines 444
Converting YUV Data to RGB 444
Using 8-bit RGB Capture Data 449

Contents

21.

22,

PART FIVE

23.

24.

Handling IndigoVideo Events 455
IndigoVideo Event Handling Basics 456
X Event Handling 458

IRIS GL Event Handling 462

Using the IndigoVideo Utilities 467
Using sucmd, the IndigoVideo Shell-level Tool 468
Making a Movie File from IndigoVideo and Audio Input 469

Compression Programming

Introduction to the Compression Library 475
Overview of the Compression Library 475
Compression Library Applications 476
Compression Library Features 478
Compression Library Basics 478
Compression Library Algorithms 479
Compression Library Data Formats 483
Audio Data Formats 483
Image Data Formats 483
Video Data Formats 484
Movie Data Formats 487
Header Formats 488

Getting Started with the Compression Library 491
Overview of the Compression Library API 492
Still Image API 492
Sequential Access API 492
Buffered Access API 492
About File I/O and Error Handling 493
Using the Still Image Interface 494
Using the Sequential Frame Interface 497
Compressing a Sequence of Frames 497

Decompressing a Sequence of Frames 500

XV

Contents

25.

26.

XVi

Using the Buffering Interface 506
Creating a Buffer 507
Managing Buffers 509
Producing and Consuming Data in Buffers 511
Creating a Buffered Record and Play Application 514
Creating Buffered Multiprocess Record and Play Applications 519
Programming with the Cosmo Compress JPEG Codec 521
Cosmo Compress Basics 521
Cosmo Compress Image Formats 522
Getting Compressed Image Information 524
Memory-to-Memory Compression and Decompression 525

Compressing and Decompressing Video Through External Connections
to Cosmo Compress 527

Controlling JPEG Compressed Image Quality 532

Using Compression Library Algorithms and Parameters 537
Using the Compression Library Algorithms 537

Choosing a Compression Library Algorithm 537

Querying Compression Library Algorithms 540
Using the Compression Library Parameters 543

Compression Library Parameter Definitions 544

Setting and Querying Compression Library Parameters 551

Using Frame Type Parameters 559

Customizing the Compression Library 563

Adding Custom Algorithms to the Compression Library 563
Managing Buffers for Added Algorithms 568
Reading Data Across Buffer Discontinuities 568

Adding Custom Parameters to the Compression Library 572

Contents

PART SIX

27.

28.

29.

Movie Programming

Introduction to the Movie Library 579
Overview of Movie Library Features and Applications 579
Movie Library Features 579
Movie Library Applications 580
Using the Movie Library with Other Silicon Graphics Libraries 581

Getting Started with the Movie Library 585
Movie Library Basics 585
Definitions 585
Movie Library Programming Model 587
Movie File Formats 587
Developing a Movie Library Application 588
Outline for Developing a Movie Library Application 588
Compiling and Linking a Movie Library Application 589
Debugging a Movie Library Application 590
Setting and Getting Movie Properties 591
Setting and Getting Movie and Track Parameters 592
Setting and Getting Global Movie Properties 593
Creating a Default Movie Configuration 596
Adding Your Own Parameters to the Movie Library 598
Setting and Getting Track Properties 601
Setting and Getting General Track Properties 601
Setting and Getting Audio Track Properties 603
Setting and Getting Image Track Properties 606

File I/0 and Editing Movies with the Movie Library 615
Initializing a Movie Library Application 615

Using File Descriptors with Movies 617

Creating a New Movie 617

Checking for the Presence of a Movie 619

Opening an Existing Movie 620

XVii

Contents

Adding, Locating, and Deleting Audio and Image Tracks 622
Adding an Audio or Image Track to a Movie 622
Removing an Audio or Image Track from a Movie 624
Locating an Existing Track 624
Mapping Frames from One Track to Another Track 624

Editing Movies 626
Optimizing a Movie File 627
Using a Buffer for Editing 627
Deleting Frames from a Movie Track 630
Reading and Inserting Compressed Images 631
Copying and Pasting Frames from One Movie into Another 633

Finalizing Changes and Closing Movies 636

30. Playing Movies with the Movie Library 639
Opening a Movie for Playback 640
Creating and Configuring a Playback Window 641
Creating a Window for OpenGL Playback 641
Creating a Window for IRIS GL Playback 641
Configuring the Playback Display 643
Binding a Movie to a Window for Playback 648
Binding a Window to a Movie with an Audio Track 649
Playing Multiple Movies in the Same Window 650
Controlling Movie Playback 651
Starting and Stopping Playback 651
Controlling Audio Playback 651
Looping 653
Playing or Looping a Movie Fragment 657
Scrubbing to a Random Frame During Playback 658
Synchronizing Movie Playback 659
Getting and Setting the Playback Speed 659
Measuring the Current Frame Rate 660
Setting and Getting a Minimum Playback Speed Threshold 660
Forcing Playback of Every Frame 661

Xviii

Contents

31.

32.

Integrating Movies with IRIS GL Graphics 662
Controlling the Frame Display Automatically 662
Controlling the Frame Display Manually 665
Handling Events 668
Preparing an Event Mask 669
Getting a File Descriptor for the Movie Event Queue 670
Creating the Event Loop 671
Handling Movie Events 672
Handling X Window Events 676
Checking and Correcting for Slow Playback 678

Using the Movie Library with QuickTime Movies 681
QuickTime Basics 681

QuickTime Sound 682

QuickTime Compression 682

QuickTime Frame Differencing (Keyframes) 684
Movie Library QuickTime Compatibility Requirements 685

Making a Single-fork Movie 685

Making a Self-contained Movie 686

Transferring Files Between Macintosh and
Silicon Graphics Computers 687

Adding QuickTime Capability to Your Movie Library Application 688
Using the QuickTime Compressor Library 688
Creating a QuickTime Movie 688
Reading Existing QuickTime Movies 693

Using the Movie Library Sample Programs 701
About the Sample Programs 701
Creating Movies 705
Creating a Movie from a Sequence of Images 708
Adding or Replacing a Movie Audio Track 708
Editing Movies 709
Displaying Movie Parameters 712

XiX

Contents

Playing Movies 712
Creating a Simple Keyboard Interface for Playing Movies 712
Playing Multiple Movies 713
Creating a Movie Screensaver Application 714

Using the SMPTE Time Code Sample Application 717
Converting a SMPTE Time Code String to a Frame Number 717
Converting a Frame Number to a SMPTE Time Code String 718
Converting a Time Specification to a Frame Number 719
Converting a Frame Number to a Time Code 720

A. Audio Specifications 723

Indigo Workstation Audio Hardware Specifications 723
Indigo Analog Audio I/O 724
Indigo Digital Audio I/O 725
Indigo Dedicated Real-time Processor 726

Indigo® Workstation Audio Hardware Specifications 726
Indigo? Analog Stereo Line-level Inputs 726
Indigo? Stereo Microphone Input 727
Indigo? Analog Stereo Line-level Outputs 727
Indigo? Analog Stereo Headphone Output/Mono Internal Speaker 727
Indigo? Digital Audio I/O 728

B. Aware Scalable Audio Compression Software 729

Introduction to Aware Audio Compression Software 729

Aware Software Products Features and Applications 731
Aware Products Available in IRIS Digital Media Libraries 731
Other Digital Media Compatible Aware Audio Products 732

Accessing Aware Audio Compression from the Audio File Library 733
Valid Audio Input Data 733
Compression Defaults 733
Compression Custom Configuration 734

XX

Contents

Accessing Aware Audio Compression from the Compression Library 736
Compression Schemes 736
Using Compression Library Parameters 737
Usage Hints 740

Aware Audio Compression Software Specifications 741

Installing a NetLS Nodelocked License 743

Glossary 745
Index 779

XXi

Contents

XXii

108

177

List of Examples
Example 2-1 Creating and Destroying a Parameter-value List 18
Example 2-2 Setting Audio Defaults 21
Example 2-3 Setting Image Defaults 25
Example 2-4 Setting Individual Parameter Values 28
Example 2-5 Printing the Contents of a Digital Media
Parameter-value List 32
Example 6-1 Configuring and Opening an ALport 76
Example 6-2 Opening Input and Output ALports 89
Example 6-3 Querying for the Existence of Other Audio Processes
Example 6-4 Querying for Input and Output Rates 109
Example 6-5 Querying for 4-channel Capability 111
Example 6-6 Synchronizing Audio Between
Two Output Ports: align.c 115
Example 6-7 Calculating UST 117
Example 7-1 Creating, Filling, Querying and Freeing an AUpvlist 146
Example 7-2 Checking Audio Track Sample Format and
Sample Width 154
Example 7-3 Creating a Semaphore 174
Example 7-4 Recording Stereo from an Audio Port: recordexample.c
Example 8-1 Copying CD Data to an Audio File: cdsample.c 196
Example 9-1 Reading DAT Samples 218
Example 10-1 Opening MIDI Input and Output Ports 233
Example 10-2 Sending a MIDI Message 235
Example 10-3 Using MIDI File Descriptors 241
Example 12-1 Sending Live Video to the Screen: simplev2s.c 304
Example 12-2 Video Frame Grabbing: simplegrab.c 307
Example 12-3 Frame Output: simplem2v.c 310
Example 12-4 Continuous Frame Capture: simplecapt.c 314

XxXiii

List of Examples

XXiv

Example 14-1
Example 14-2
Example 15-1
Example 17-1

Example 18-1
Example 18-2
Example 18-3
Example 18-4
Example 18-5
Example 18-6
Example 18-7
Example 18-8
Example 18-9
Example 18-10
Example 18-11
Example 19-1

Example 19-2

Example 19-3
Example 20-1
Example 20-2
Example 20-3
Example 20-4
Example 20-5
Example 20-6
Example 20-7
Example 20-8
Example 20-9
Example 20-10
Example 20-11
Example 20-12

Using VL Callbacks 352

VL Event Handling: eventex.c 353

Setting Up Source, Drain, and Blend Nodes 363
Opening a Window to Display Live

Video Input: simpleinput,c 393

Setting up the IndigoVideo Board for PAL Input 400
Selecting a Video Input Source 400

Getting the Input Source Number 401

Creating a Scalable Video Input Window: sizeinput.c 403
Approximating the Requested Video Window Size 405
Specifying a Video Window Offset 405

Getting Exclusive Use of the IndigoVideo Board 406
Using IndigoVideo Underlay Mode 408

Using Chroma Keying to Key Out Black Pixels 410
Using IndigoVideo Overlay Mode: voverlay.c 411
Using the Chroma Key Map: chromamap.c 414

Setting the Location of the IndigoVideo
Output Window 424

Aligning a Video Output Area with an
IRIS GL Window 425

Sending a RGB Image as a Still Video Frame 427
Determining the Capture Buffer Size 436

Grabbing a Single Frame of 8-bit RGB data: rgbgrab.c 437
Using the SV_GET_FIELD Macro 440

Capturing Frames in Burst Mode 441

Initializing Continuous Capture Mode 442

Accessing and Releasing Captured Frames 443

Setting Top-to-Bottom pixmode for YUV 445

Finding Image Data in YUV with Blanking Frames 445
Grabbing YUV Frames to Save as RGB Images: vgrab.c 446
Interleaving 8-bit RGB Fields with Inversion 450
Displaying Interleaved 8-bit RGB Data 450

Converting 8-bit RGB Capture Data to 32-bit RGB 450

Example 20-13
Example 21-1
Example 21-2
Example 24-1
Example 24-2
Example 24-3
Example 24-4
Example 24-5
Example 24-6
Example 24-7
Example 24-8
Example 24-9
Example 24-10
Example 24-11
Example 24-12
Example 24-13
Example 24-14
Example 25-1
Example 25-2

Example 25-3
Example 25-4

Example 25-5
Example 25-6

Example 26-1
Example 26-2
Example 26-3
Example 26-4
Example 28-1

Example 28-2

Setting up the IRIS GL Color Map to Display 8-bit RGB 451
X Event Handling for IndigoVideo events: xevents.c 459
Handling Video Events with IRIS GL Routines 463

Using a Custom Error Handling Routine 494
Compressing and Decompressing a Single Frame 496
Compressing a Series of Frames 500

Getting the Decompression Scheme from a Header 502
Decompressing a Series of Frames 505

508

Creating and Using an External Buffer 508

Using Buffers for Playback 514

Using Buffers for Nonblocking Playback 515

Using Buffers for Recording 516

Creating and Using an Internal Buffer

Using Buffers for Nonblocking Recording 517

Using Buffers for Multiprocess Playback 519

Using Buffers for Multiprocess Recording 520

Cosmo Compress Memory-to-Memory Compression 526
Getting a List of Compression Library Algorithms 542

Getting a List of Parameters for a
Compressor/Decompressor 553

Getting the Current Values of Selected Parameters 555

Using Macros to Get or Set the Value of a
Floating Point Parameter 556

Getting and Setting Parameter Defaults 557

Getting and Setting Minimum and Maximum
Parameter Values 558

Adding Algorithms to the Compression Library 567
Decompression Buffering 568

Compression Buffering 568

Adding Parameters to the Compression Library 573

Creating and Initializing a Default Movie
Parameter-value List 597

Adding a User-Defined Global Movie Parameter 599

XXV

List of Examples

Example 28-3 Adding a User-Defined Image Track Parameter for a
New Track 600

Example 29-1 Creating a Movie 619
Example 29-2 Adding an Audio Track to a Movie 623
Example 29-3 Determining What Size Buffer to Allocate 628

Example 29-4 Reading a Compressed Image from a Movie
into a Buffer 632

Example 30-1 Creating an IRIS GL Playback Window 642
Example 30-2 Binding a Window for Playing Multiple Movies 650
Example 30-3 Enabling and Muting Audio Playback 652

Example 30-4 Designating a Movie as the Primary Audio
Rate Controller 653

Example 30-5 Setting and Getting the Loop Mode 655

Example 30-6 Using mvGrablIrisGL() and mvReleaselrisGL() 663
Example 30-7 Initializing Movie Playback 667

Example 30-8 Preparing a File Descriptor Set 673

Example 30-9 Handling Movie Frame, Stop, and Error Events 675
Example 30-10 Handling X11 Expose and Resize Window Events 677
Example 31-1 Creating QuickTime Movies with the Movie Library 689
Example 31-2 Converting QuickTime Picture Data to RGBX Format 694

XXVi

List of Figures
Figure 4-1 Audio Icons 44
Figure 4-2 Audio Jacks on the Back Panel of the
Indigo Workstation 45
Figure 4-3 Audio Jacks on the Back Panel of the
Indigo? Workstation 47
Figure 4-4 Volume Control Buttons on the Front of the Indy
Workstation 48
Figure 4-5 Audio Jacks on the Back Panel of the Indy Workstation 48
Figure 4-6 Cabling Setup for 4-channel Audio on the
Indy Workstation 49
Figure 5-1 Interaction of Digital Audio System Components 55
Figure 5-2 Audio Data Flow 58
Figure 6-1 Audio Samples and Frames 70
Figure 6-2 Audio Sample Queues 91
Figure 6-3 Sample Frame Count as Returned
by ALgetframenumber() 114
Figure 6-4 Using Fill Points 121
Figure 7-1 Audio Data Packing Formats 153
Figure 8-1 CD Audio Sample Structure 185
Figure 9-1 DAT Audio Sample Structure 204

Figure 10-1 MIDI Setup 226

Figure 10-2 Serial Ports on the Back Panel of the
Indigo Workstation 227

Figure 10-3 Serial Ports on the Back Panel of the
Indigo? Workstation 228

Figure 10-4 Serial Ports on the Back Panel of the Indy Workstation 228
Figure 10-5 Port Setup Icon 229

Figure 10-6 Port Setup Tool 229

Figure 10-7 Serial Port Connections 230

XXVii

List of Figures

Figure 10-8 MIDI Port Configuration 230
Figure 11-1 Fields and Frame 252

Figure 11-2 Relationships Between Color-encoding Methods and Video
Formats 256
Figure 11-3 Composite Video Waveform 257

Figure 12-1 VL System Components 263
Figure 12-2 Simple VL Path 267

Figure 12-3 Simple VL Blending 268

Figure 12-4 Zoom and Decimation 288

Figure 12-5 Clipping an Image 290

Figure 12-6 Zoom, Size, Offset, and Origin 292

Figure 12-7 vlGetNextValid(), vlGetLatestValid(),
and vlPutFree() 299

Figure 15-1 Setting Up the Blend Node 364

Figure 15-2 Galileo Video Alpha Blender 364

Figure 15-3 Blending Analog Video with Part of a Graphics Screen 365
Figure 15-4 Blending Analog Video with Static Frame Data 365
Figure 15-5 Adding Another Drain to Preview the Blend 365

Figure 15-6 Luma Keying Application: Titling 368

Figure 15-7 Relationships Between Galileo Video Luma Keying
Controls 369

Figure 15-8 Chroma Keying Application: TV Weather Map 370

Figure 15-9 Relationships Between Galileo Video Chroma Keying
Controls 371

Figure 15-10 Galileo Video Keying Controls 374
Figure 17-1 Format of 32-bit RGB Pixels 387
Figure 17-2 Format of 8-bit RGB Pixels 387
Figure 17-3 Format of YUV Data Words 388
Figure 17-4 IndigoVideo I/O Ports 389

Figure 17-5 Connecting Video Equipment to the
Indigo Video Board 390

Figure 23-1 Server-Client Compression Applications 477
Figure 24-1 Ring Buffer 506

XXViii

Figure 24-2 Snapshots of Buffer State During Producing and
Consuming Processes 512

Figure 24-3 Flow of Data in a Buffered Compression and
Decompression Scheme 513

Figure 26-1 Buffer Architecture for Adding Algorithms 571
Figure 28-1 Typical Movie: somersault.mv 586

Figure 29-1 Movie Library File I/O Routines 616

Figure 29-2 Mapping Frames from One Track to Another 625
Figure 29-3 Inserting Frames into a Track 629

Figure 29-4 Pasting Image Frames from One Movie
into Another Movie 634

Figure 30-1 Playback View Settings 643

Figure 32-1 Comments in Movie Library Sample Programs:
createmovie.c++ 703

Figure 32-2 Modularity of Movie Library Sample Programs:
createmovie.c++ 704

Figure 32-3 Call Graph for createmovie 707

Figure 32-4 Call Graph for editmovie.c 711

Figure 32-5 Call Graph for moviescreen.c 716

Figure GI-1 SMPTE Color Bars (75%) 750

Figure GI-2 Color Burst and Chrominance Signal 751
Figure GI-3 Component Video Signals 753

Figure Gl-4 Horizontal Blanking 759

Figure GI-5 Horizontal Blanking Interval 760

Figure Gl-6 Waveform Monitor Readings with and without Setup 768
Figure GI-7 SMPTE Time Code 768

Figure GI-8 Red or Blue Signal 773

Figure GI-9 Y or Green Plus Sync Signal 773

Figure GI-10 ~ Video Waveform: Composite Video Signal
With Setup (Typical NTSC) 774

Figure GI-11 Video Waveform: Composite Video
Signal (Typical PAL) 775

XXiX

List of Figures

XXX

List of Tables

Table 2-1 Digital Media Parameter Types 14
Table 2-2 Audio Parameters 19
Table 2-3 Audio Defaults 20
Table 2-4 Image Parameters 22
Table 2-5 Image Defaults 24
Table 2-6 DM Library Routines for Setting Parameter Values 26
Table 2-7 DM Library Routines for Getting Parameter Values 27
Table 2-8 Routines for Manipulating Parameter-value
Lists and Entries 29
Table 2-9 Methods for Obtaining Unadjusted System Time 33
Table 6-1 Minimum and Maximum Allowable
Queue Sizes for ALports 79
Table 6-2 Input Conversions for ALreadsamps() 95
Table 6-3 Output Conversions for ALwritesamps() 96
Table 6-4 Error Parameters for ALgetstatus() 98
Table 6-5 Core Global Parameters for AL_DEFAULT_DEVICE 99
Table 6-6 Special Global Parameters for System-Dependent
Audio Capabilities 101
Table 6-7 Global Parameter Name Strings 105
Table 7-1 Mapping of AF Library Components to
AIFF-C/AIFF File Chunks 131
Table 7-2 AFfilesetup Parameters and Defaults 132
Table 7-3 AFfilesetup Instrument Parameter
Constants and Defaults 133
Table 7-4 Settable Compression Parameter Values and Types 138
Table 7-5 Miscellaneous Chunk Types and Parameter Values 142
Table 7-6 Audio Utility Library Set and Get Routines 144

XXXi

List of Tables

XXXii

Table 7-7

Table 7-8
Table 10-1
Table 11-1
Table 12-1
Table 12-2
Table 12-3
Table 12-4
Table 12-5
Table 12-6
Table 12-7
Table 12-8
Table 12-9
Table 12-10
Table 12-11
Table 12-12
Table 12-13
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5

Table 13-6

Table 13-7

Table 13-8
Table 13-9
Table 13-10
Table 13-11
Table 14-1
Table 14-2

Valid Return Values for Compression
Algorithms and Parameters 157

Instrument Parameter Constants and Valid Values
MIDI Message Status Bytes 238

Tape Formats and Video Formats 258

Header Files for Video Options 266

Video Library Calls for Data Transfer 271

VL Event Masks 278

Data Transfer Controls for Source Nodes 280
VL_MUXSWITCH Values 281

Default Sources for VINO Inputs 282

VINO Timing Choices 283

Dimensions for Timing Choices 283

Data Transfer Controls for Drain Nodes 284
Packing Types and Their Sizes and Formats 287
VL_RATE Values (Items per Second) 292
Buffer-Related Calls 298

Calls for Extracting Data from a Buffer 299
Device-Independent VL Controls 322

VL Control Groupings 330

Galileo Video vcp Controls 332

Galileo Video IndyCam Controls 336

Galileo Video Encoder and Color-Space
Conversion Controls 337

Galileo 601 Video Digital Breakout Box
General Controls 338

Galileo Video Digital Breakout Box Color-Space
Conversion Controls 339

Galileo Video DAC controls 340
VINO vcp Controls 341

VINO Analog Input Controls 342
IndyCam Controls 343

VL Event Handling Routines 348
VL Event Masks 349

164

Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 20-1
Table 20-2
Table 21-1
Table 21-2
Table 21-3
Table 23-1
Table 23-2
Table 24-1
Table 24-2
Table 24-3
Table 24-4
Table 24-5

Table 24-6
Table 25-1
Table 25-2
Table 28-1
Table 28-2
Table 28-3
Table 28-4
Table 30-1
Table 30-2
Table 32-1
Table B-1

Table GI-1

VL Blend Controls 366
Galileo Video Luma Keying Controls 369

Galileo Video Chroma Keying Controls

370

Controls for Fades, Tiles, and Wipes 372

Galileo Video Controls Specific to Wipes 373
Pixel Sizes for Video Data 435

Fields in the svCapturelnfo Structure 435
Video Activity Event Variable Names 456
Video Parameter Change Event Variable Names

Encoding Attribute Values 458

457

Video Formats Not Requiring Color Conversion 487

Parameters Contained in Header Data 488

Typical Stream Header Contents 502

Additional Video Stream Header Contents 502

Cosmo Compress Image Format Parameters

523

Cosmo Compress Video Field Dimensions 529

Cosmo Compress Field Widths for
Compression With Decimation 530

Cosmo Compress Field Widths for Decompression 531

Capabilities of Image and Video Algorithms

Compression Library Parameters 549

Movie Defaults 597
Audio Defaults 603
Image Defaults 607

Image Packing Formats 610
Movie Library Events 669
Event Structure Fields 670
SMPTE Time Code Types

Built-in Algorithms for Aware Audio Software
Compression Engines 742

Videotape Formats

772

717

540

XXXiii

List of Tables

XXXIV

What This Guide Contains

About This Guide

The IRIS® Digital Media Programming Guide describes the Silicon Graphics®
IRIS Digital Media Development Environment software. The IRIS Digital
Media Development Environment (DMdev) provides an application
programming interface (API) for working with digital audio, MIDI, video,
compression, and movies, using standard and optional Silicon Graphics
workstation hardware and peripherals.

Silicon Graphics also supplies desktop media tools for end users, which are
built on top of DMdev. Media tools are described in the online Media Control
Panels User’s Guide, which you can view from the IRIS InSight " viewer.

The IRIS Digital Media Programming Guide is divided into six parts,
corresponding to the functions of the libraries:

Part I, “Digital Media Programming,” has two chapters:

* Chapter 1, “Programming with the IRIS Digital Media Development
Environment,” gives an overview of the IRIS Digital Media
Development Environment.

¢ Chapter 2, “Programming with the Digital Media Library,” describes
the Digital Media (DM) Library, libdmedia, a library that currently
supports parameter setting and ring buffering for applications that use
the DMdev. Currently, you can use the DM routines with the Movie
Library and the Video Library.

Part II, “Digital Audio and MIDI Programming,” has eight chapters;

* Chapter 3, “Introduction to Digital Audio and MIDI Programming,”
introduces the digital audio and MIDI libraries.

XXXV

About This Guide

XXXVi

Chapter 4, “Digital Audio System Architecture,” gives a brief overview
of the audio hardware and provides some recommendations for
development configurations.

Chapter 5, “Digital Audio System Software,” describes the audio
application programming environment and explains how audio
resources are shared.

Chapter 6, “Programming with the Audio Library,” describes the
structure of the Audio Library and explains how to use it to sample
audio data from analog or digital input sources. Real-time
programming techniques are also discussed.

Chapter 7, “Programming with the Audio File Library,” describes the
structure of the Audio File Library and explains how to use it to read
and write audio files.

Chapter 8, “Programming with the CD Audio Library,” describes the
CD Audio Library and explains how to use it to control the CD-ROM
drive for playing and sampling audio from audio compact discs.

Chapter 9, “Programming with the DAT Audio Library,” describes the
DAT Audio Library and explains how to use it to control the DAT drive
for playing, sampling, and recording audio from digital audio tape.

Chapter 10, “Programming with the MIDI Library,” describes
connecting MIDI equipment and describes the MIDI Library,
explaining how to use it for implementing and multiplexing MIDI1/0O,
and synchronizing MIDI and audio.

Part I1I, “Video Programming,” has five chapters:

Chapter 11, “Video Basics,” explains basic video concepts that apply to
both the Video Library and the IndigoVideo Library.

Chapter 12, “Getting Started with the Video Library,” describes the
Video Library and explains how to use it to perform video input and
output for workstations equipped with standard and optional Silicon
Graphics video hardware.

Chapter 13, “Using VL Controls,” describes how to use VL controls to
set video parameters for data transfer and video effects.

Chapter 14, “VL Event Handling,” describes how to handle video
events using the Video Library.

What This Guide Contains

Part IV, “IndigoVideo Programming,” has six chapters:

Chapter 16, “Introduction to IndigoVideo Programming,” introduces
the IndigoVideo library and gives an overview of the features of the
IndigoVideo board.

Chapter 17, “Getting Started with the IndigoVideo Library,” describes
basic concepts for using the IndigoVideo board, and presents a sample
video application that displays live video input in a window.

Chapter 18, “Controlling the IndigoVideo Input Window,” explains
how applications can position and scale the video input. It also explains
how to select different video sources, formats, and broadcast standards.

Chapter 19, “Producing IndigoVideo Output,” explains how to encode
a portion of your screen to video in real time. This chapter also covers
single-frame output.

Chapter 20, “Capturing Video from IndigoVideo,” explains how to
capture frames of video to memory.

Chapter 21, “Handling IndigoVideo Events,” explains how to handle
video events, such as video parameters being changed by another
process.

Chapter 22, “Using the IndigoVideo Utilities,” explains how to use the
IndigoVideo end-user tools.

Part V, “Compression Programming,” has four chapters:

Chapter 23, “Introduction to the Compression Library,” introduces the
CL and describes its applications and features. It provides basic
background information on compression technology and on digital
audio and video data formats.

Chapter 24, “Getting Started with the Compression Library,” describes
how to use the three types of interfaces supplied by the CL and how to
write programs for Cosmo Compress option.

Chapter 25, “Using Compression Library Algorithms and Parameters,”
explains how to use the CL algorithms and global parameters.

Chapter 26, “Customizing the Compression Library,” explains how to
add your own algorithms and parameters to the CL.

XXXVii

About This Guide

XXXViil

Part VI, “Movie Programming,” has six chapters:

Chapter 27, “Introduction to the Movie Library,” introduces the Movie
Library and describes its applications and features.

Chapter 28, “Getting Started with the Movie Library,” explains how to
set up, compile, and debug Movie Library applications.

Chapter 29, “File I/O and Editing Movies with the Movie Library,”
explains how to perform movie file I/O and how to edit movies.

Chapter 30, “Playing Movies with the Movie Library,” describes the
Movie Library playback and event-handling facilities.

Chapter 31, “Using the Movie Library with QuickTime Movies,”
describes basic concepts for working with QuickTime movies, and then
it explains how to add QuickTime capability to a Movie Library
application. It also describes the optional QuickTime compressor
Library, which provides access to QuickTime compressors for Movie
Library applications.

Chapter 32, “Using the Movie Library Sample Programs,” describes the
Movie Library sample programs.

Appendices at the back of this guide provide additional information:

Appendix A, “Audio Specifications,” lists relevant audio and video
hardware specifications.

Appendix B, “Aware Scalable Audio Compression Software,” explains
how to incorporate into your application the built-in licensable
compression software by Aware", Inc.

The Glossary at the end of this guide provides definitions for video terms.

How to Use This Guide

How to Use This Guide

This guide is written for C language programmers. This guide assumes that
you are somewhat knowledgable about digital media concepts. The
discussion of each library begins by presenting the features, applications,
and basic concepts pertaining to that library. Readers unfamiliar with the
basic concepts can refer to the recommended references for each topic.

Where to Start

If you're not sure which library to use for a certain application, read
Chapter 1, “Programming with the IRIS Digital Media Development
Environment,” to get a brief overview of the uses and features of each
library.

If you want to find some code that does what you want your application to
do, browse through the List of Examples to locate a code fragment or a sample
program that performs a particular task.

Style Conventions

These style conventions are used in this guide:
Bold functions, routines

Italics arguments, variables, commands, program and file names,
book titles, and emphasis

Couri er function prototypes, sample code

Courier Bold userinput entered from the keyboard

How to Use the Sample Programs

Code fragments and complete sample programs are used throughout this
guide to demonstrate programming concepts. Source code for the sample
programs is provided in the /usr/people/4Dgifts/examples/dmedia directory,
which is further organized in directories according to topic. For example,
Movie Library programs are in /usr/people/4Dgifts/examples/dmedia/movie.

XXXiX

About This Guide

You must log in as 4Dgifts to be able to compile 4Dgifts programs. README
files in each 4Dgifts directory provide descriptions of the sample programs
and instructions for compiling and running them. You must have the IRIS
Development Option, dev, and the C language software, ¢, loaded before you
can compile the sample programs. Use the versions command to find out
which software is loaded on your system. See the release notes for each
library for additional system software requirements for those libraries.

You should copy any 4Dgifts program that you intend to modify to your
home directory before making any changes.

Suggestions for Further Reading

x|

This section lists references containing information on programming topics
beyond the scope of this guide, which you may find helpful for developing
your digital media application. Additional reference materials are listed in
the introductory chapters for each library.

References for Using Digital Media with Other Libraries

If you are plannin§ to integrate your digital media application with calls
from the OpenGL ", IRIS Graphics Library " (GL) or X Window System
application, you may want to consult the following manuals:

® OpenGL Programming Guide and OpenGL Reference Guide, by Jackie
Neider, Tom Davis, and Mason Woo, Addison-Wesley, 1993

® Graphics Library Programming Guide, by Patricia McLendon Creek,
Silicon Graphics, 1992

* Graphics Library Programming Tools and Techniques, by Patricia
McLendon Creek and Ken Jones, Silicon Graphics, 1993

® IRIS IM Programming Notes, by Patricia McLendon Creek and Ken
Jones, Silicon Graphics, 1993

® The X Window System, Volume 1: Xlib Programming Manual, O’Reilly and
Associates, 1990

* The X Window System, Volume 4: Xt Intrinsics, Motif Edition, O’Reilly and
Associates, 1990

Suggestions for Further Reading

o X Window System: The Complete Reference to Xlib, X Protocol, ICCCM,
XLFD, Third Edition, by Robert W. Scheifler and James Gettys, Digital
Press, 1992

e X Window System Toolkit: The Complete Programmer’s Guide and
Specification, Paul J. Asente and Ralph R. Swick, Digital Press, 1992

References for Adding a User Interface to Your Program

The IRIS Digital Media don’t impose any particular user interface (UI), so
you can use any graphical UI toolkit, such as IRISIM " to build your
interface. IRIS IM is Silicon Graphics’ port of the industry-standard
OSF/Motif " software. Consult these OSF/Motif manuals for more
information:

® OSF/Motif User’s Guide, Revision 1.2, Prentice-Hall, 1993
e OSF/Motif Programmer’s Reference, Revision 1.2, Prentice-Hall, 1992
* OSF/Motif Style Guide, Revision 1.2, Prentice-Hall, 1992

xli

About This Guide

xlii

PART ONE

Digital Media Programming

Chapter 1, “Programming with the IRIS Digital Media Development
Environment,” gives an overview of the IRIS Medjia Libraries.

Chapter 2, “Programming with the Digital Media Library,”

describes the Digital Media (DM) Library, libdmedia, a library that currently
supports parameter setting and ring buffering for applications that use the IRIS
digitial media libraries. Currently, you can use the DM routines with the Movie
Library and the Video Library.

Programming with the IRIS Digital This chapter introduces the IRIS
digital media libraries, briefly

Media Development Environment outlining their uses and features.

Chapter 1

Programming with the IRIS Digital Media
Development Environment

The IRIS Digital Media Development Environment provides a digital media
software development environment that includes audio, video, movie, and
compression libraries.

This chapter provides an overview of the uses and features of these libraries:

Digital Media Library, a base library that provides global type
definitions and utility routines for digital media applications; it
currently supports parameter setting and ring buffering

Digital Audio and MIDI Libraries, a collection of libraries that provides
an API for working with digital audio, audio files, digital compact disc,
digital audio tape, and MIDI

Video Library, a device-independent API for programming Silicon
Graphics on-board video and video options

Indigo Video Library, an API for programming the IndigoVideo option
for IRIS Indigo workstations equipped with Entry graphics

Compression Library, an extensible, algorithm-independent API for
compressing and decompressing audio, video, and images

Movie Library, a file-format-independent API for reading, writing,
playing, and editing movies

You can use these libraries in conjunction with other Silicon Graphics

. . . . ™ . . PR .
libraries, such as the ImageVision ~ Library; see the individual library
descriptions to learn which libraries are compatible.

Chapter 1: Programming with the IRIS Digital Media Development Environment

About the Digital Media Library

The Digital Media (DM) Library, libdmedia.so, is a library that currently
supports parameter setting and ring buffering for applications that use the
IRIS Digital Media software. Currently, you can use the DM routines with
the Movie Library and the Video Library.

The DM Library features:

¢ type definitions for digital media

* routines for creating and configuring digital media parameters

* routines for creating and configuring digital media ring buffers

* adebugging version of the library that lets you check for proper usage

About the Digital Audio and MIDI Libraries

Silicon Graphics offers a collection of libraries designed for developers of
digital audio and MIDI software, as well as those seeking to integrate audio
into their existing applications:

¢ Audio Library (libaudio.a)

* Audio File Library (libaudiofile.so)

¢ Audio Utility Library (libaudioutil.so)
e (D Audio Library (libcdaudio.a)

¢ DAT Audio Library (libdataudio.a)

¢ MIDI Library (libmd.so)

About the Video Library

About the Video Library

The digital audio libraries can be used separately or in combination. Each
library is tailored to a particular set of tasks, as follows:

Audio Library Provides an API for configuring the audio system,
managing audio I/O between the application
program and the audio hardware, specifying
attributes of digital audio data, and facilitating real-
time programming. See Chapter 6, “Programming
with the Audio Library.”

Audio File Library =~ Provides an API for reading and writing two
standard digital audio file formats, AIFF and
AIFF-C. See Chapter 7, “Programming with the
Audio File Library.”

Audio Utility Provides convenience routines for creating and
Library configuring Audio File Library data structures.

CD Audio Library ~ Provides an API for optional Silicon Graphics SCSI
CD-ROM drives. The drive features a special mode
that allows it to read audio CD format as well as
CD-ROM format. See Chapter 8, “Programming
with the CD Audio Library.”

DAT Audio Library Provides an API for optional Silicon Graphics SCSI
DAT drives. See Chapter 9, “Programming with the
DAT Audio Library.”

The Video Library (VL) is a collection of device-independent C language
calls for Silicon Graphics workstations equig&)ed with video options, such as
Sirius Video Irldigo2 Video', Indy Video -, or Galileo Video ™ or
workstations equipped with on-board video, such as Indy .

The VL provides generic video tools, including simple tools for importing
and exporting digital data to and from current and future Silicon Graphics
video hardware, as well as to and from third-party video devices that adhere
to the Silicon Graphics architectural model for video devices. Video tools are
described in the Media Control Panels User’s Guide, which you can view using
the IRIS InSight viewer; similar applications are supplied in source-code

Chapter 1: Programming with the IRIS Digital Media Development Environment

form as examples in the 4Dgifts directory (/usr/people/4Dgifts/examples/
dmedia/video/vl).

The VL provides an API that enables applications to:

e perform video teleconferencing on platforms that support it

* blend computer graphics with frames from videotape or any video
source

* present video in a window on the workstation screen
e digitize video data

Note: The range of VL capabilities you can use depends on the capabilities
of your workstation and the video options installed in it.

About the IndigoVideo Library

The IndigoVideo board provides video input and output for IRIS Indigo
workstations equipped with Entry graphics. The IndigoVideo Library
provides a software interface to the IndigoVideo board, enabling
applications to:

e display live video in a window
® capture live video to system memory
* encode graphics to video in real time

e produce high-quality single-frame video output

About the Compression Library

The Compression Library, libcl.so, provides a flexible, extensible, and
algorithm-independent software interface for compressing and
decompressing audio, video, and image data.

The Compression Library features:

¢ algorithm independence

e hardware independence

About the Movie Library

About the Movie Library

* support of industry standard algorithms

¢ support of Silicon Graphics proprietary algorithms

¢ binary compatibility across Silicon Graphics platforms

The Compression Library provides facilities for working with audio, still

images, sequential frames of data (movies), and a buffering mechanism for
nonsequential compression and decompression.

You can query the Compression Library for the available algorithms, and
you can add your own algorithms and parameters. A pass-through
capability allows you to pass data through the routines without using an
algorithm.

The Compression Library can be used with the Audio File Library, and with
data used by the IRIS Movie Player and Movie Maker tools.

The Movie Library, libmovie, is a collection of routines that provides a C
language API for reading, writing, editing, and playing movies on Silicon
Graphics workstations. The API provides a uniform interface to movies of
various formats and lets you convert movies from one format to another.
The Movie Library features:

¢ the ability to read, write, and play movie files

* afile-format-independent API

e file format conversion capabilities

e support for Silicon Graphics Movie format, versions 2.0 and 3.0

e support for Apple® Computer QuickTime™ movie format

* data compression and decompression

* asynchronous playback support

¢ flexible playback control

* support for movies embedded in applications software

Chapter 1: Programming with the IRIS Digital Media Development Environment

10

Chapter 2

Programming with the
Digital Media Library

This chapter describes the Digital
Media Library, which currently
supports parameter setting and ring
buffering for digital media
applications.

Chapter 2

Digital Media Library Basics

Programming with the Digital Media Library

The Digital Media (DM) Library, libdmedia.so, is a library that provides type
definitions for digital media and currently supports parameter setting and
ring buffering for applications that use the IRIS digital media libraries.

This chapter contains basic concepts for working with the Digital Media
Library. It describes the digital media data types and explains how to use the
digital media parameters.

It is not likely that you’ll use the DM Library by itself. Typically, you call DM
Library routines from an application that is written using one or more of the
IRIS digital media libraries. Currently, you can use the DM routines with the
Movie Library and the Video Library.

The DM Library features:

* type definitions for digital media

¢ routines for creating and configuring digital media parameters

¢ routines for creating and configuring digital media ring buffers

* adebugging version of the library that lets you check for proper usage

Digital Media Type Definitions
The DM Library provides type definitions for digital media. Data types and

constant names have an uppercase DM prefix; routines have a lowercase dm
prefix.

13

Chapter 2: Programming with the Digital Media Library

The dmedia/dmedia.h header file provides these type definitions:
DMboolean integer for conditionals; DM_FALSE is 0 and DM_TRUEis 1

DMfraction integer numerator divided by integer denominator
DMstatus enumerated type consisting of DM_SUCCESS and
DM_FAILURE

Table 2-1 lists the digital media parameter type definitions that are defined

14

in dmedia/dm_params.h.

Table 2-1 Digital Media Parameter Types

Parameter Type

Meaning

DM_TYPE_ENUM
DM_TYPE_ENUM_ARRAY
DM_TYPE_INT
DM_TYPE_INT_ARRAY
DM_TYPE_INT_RANGE
DM_TYPE_STRING
DM_TYPE_STRING_ARRAY
DM_TYPE_FLOAT
DM_TYPE_FLOAT_ARRAY
DM_TYPE_FLOAT_RANGE
DM_TYPE_FRACTION
DM_TYPE_FRACTION_ARRAY
DM_TYPE_FRACTION_RANGE
DM_TYPE_PARAMS
DM_TYPE_TOC_ENTRY

Enumerated type

Array of enumerated types

Integer value
Array of integers
Range of integers
String

Array of strings
Floating point value
Array of floats
Range of floats
Ratio

Array of fractions
Range of fractions

Parameter-value list

Table-of-contents entry for ring buffers

Digital Media Library Basics

Digital Media Parameters

Parameter-value lists are used to store configuration information for movies,
movie tracks, ring buffers, and video paths. A parameter-value list is a list of
pairs, where each pair contains the name of a parameter and the
corresponding value for that parameter.

Typical ways in which you might use a parameter-value list include:
® passing a parameter-value list to a routine that configures a structure

® passing a parameter-value list that contains new parameter settings to a
routine that changes the settings

® using convenience routines provided by one of the IRIS digital media
libraries to set and get parameter values that apply to that library

Every parameter-value list that describes a format includes the parameter
DM_MEDIUM to indicate what kind of data it describes. DM_MEDIUM is
an enumerated type consisting of DM_IMAGE and DM_AUDIO.

The routines described in this chapter follow the general rule that ownership
of data is not passed during procedure calls, except in the routines that create
and destroy parameter-value lists. Functions that take strings copy the
strings if they want to keep them. Functions that return strings or other
structures retain ownership and the caller must not free them.

Compiling and Linking a Digital Media Library Application

Applications that call DM Library routines must include the libdmedia
header files to obtain definitions for the library; however, these files are
usually included in the header file of the library you are using.

This code fragment includes all the libdmedia header files:

#i ncl ude <dnedi a/ dnedi a. h>

#i ncl ude <dnedi a/ dm audi o. h>
#i ncl ude <dnedi a/ dm_i mage. h>
#i ncl ude <dnedi a/ dm par ans. h>

Link with the DM Library when compiling an application that makes DM
Library calls by including -ldmedia on the link line. It’s likely that you'll be

15

Chapter 2: Programming with the Digital Media Library

linking with other libraries as well, and because the linking order is usually
specific, follow the linking instructions for the library you are using.

Debugging a Digital Media Library Application

The debugging version of the DM Library checks for library usage violations
by setting assertions that state the requirements for a parameter or value.

To debug your DM application, link with the debugging version of the DM
Library, libdmedia_d.so, by using -ldmedia_d instead of -ldmedia, and then
run your program. Your application will abort with an error message if it
fails an assertion. The message explains the situation that caused the error
and, by implication or by explicit description, suggests a corrective action.

When you have finished debugging your application, you should relink
with the nondebugging library, libdmedia.a, because the runtime checks
imposed by the debugging library cause an undesirable size and
performance overhead for a packaged application.

Initializing a Digital Media Application

16

This section explains how to use the DM Library routines for:

¢ creating and destroying parameter-value lists

¢ creating default audio and image configurations

¢ setting and getting values in parameter-value lists

* manipulating parameter-value lists

In the initialization section of your application, you create and use

parameter-value lists to configure data structures for your application as
described in the following steps:

1. Create an empty parameter-value list by calling dmParamsCreate().
2. Set the parameter values by one of the methods listed below:

* Use a function that sets up a standard configuration for a particular
type of data: dmSetImageDefaults() for images,
dmSetAudioDefaults() for audio. See “Creating Default Audio

Initializing a Digital Media Application

and Image Configurations” on page 18 for a description of this
method.

¢ Use a generic function such as dmParamsSetInt() to set the values
of individual parameters within an empty parameter-value list or
one that has already been initialized with the standard audio or
image configuration. See “Setting and Getting Individual
Parameter Values” on page 25 for a description of this method.

® Use alibrary function such as mvSetMovieDefaults() to set a
group of parameters specific to that library. See “Creating a Default
Movie Configuration” in Chapter 28 for a discussion of this
method.

3. Free the parameter-value list and its contents by calling
dmParamsDestroy().

These steps are described in detail in the sections that follow.

Creating and Destroying Parameter-value Lists

Some libraries require you to allocate memory for parameter-value lists, but
with the DM library, you need not allocate memory for parameter-value
lists, because memory management is provided for you by the
dmParamsCreate() and dmParamsDestroy() routines. These routines work
together as a self-contained block within which you create the parameter-
value list, set the parameter value(s) and use them, and then destroy the
structure, freeing its associated memory.

dmParamsCreate() is the only function that can create a parameter-value
list, and dmParamsDestroy() is the only function that can free one. This
means that parameter-value lists are managed correctly when every call to
create one is balanced by a call to destroy one.

The creation function can fail because of lack of memory, so it returns an
error code. The destructor can never fail.

To create an empty parameter-value list, call dmParamsCreate(). Its function
prototype is:

DMst at us dnPar ansCreate (DMparans** returnNewLi st)

17

Chapter 2: Programming with the Digital Media Library

18

where:

returnNewList is a pointer to a handle that is returned by the DM Library

If there is sufficient memory to allocate the structure, a pointer to the newly
created structure is put into *returnNewList and DM_SUCCESS is returned;
otherwise, DM_FAILURE is returned.

When you have finished using the parameter-value list, you must destroy it
to free the associated memory. To free both the parameter-value list structure
and its contents, call dmParamsDestroy(). Its function prototype is:

voi d drmPar ansDestroy (DMparans* parans)

where:

params is a pointer to the parameter-value list you want to destroy

Example 2-1 is a code fragment that creates a parameter-value list called
params, then calls a Movie Library routine, mvSetDefaults(), to initialize the
default movie parameters, and then destroys the list, freeing both the
structure and its contents.

Example 2-1 Creating and Destroying a Parameter-value List

Dvpar ans* par ans;
if (dnParansCreate(¶ns) != DM SUCCESS) {
printf("Qut of nenory.\n");
exit(1);
}
if (nmvSet Movi eDef aul t s(params, M/_FORMAT_SA _3) !=
DM SUCCESS) {
printf("Qut of mermory.\n");
exit(1);
}
dmPar ansDestroy (paranms);

Creating Default Audio and Image Configurations

There are standard parameters that apply to images (for video and movies)
and standard parameters that apply to audio (for movies). This section
explains how to use the DM Library convenience routines that initialize
parameter-value lists for standard audio and image configurations.

Initializing a Digital Media Application

Audio Parameters

Audio uses these parameters:

¢ audio channels

* audio compression scheme

¢ audio sample format (e.g., twos-complement binary, floating point)
* audio sample rate

¢ audio sample width (number of bits per sample)

Table 2-2 lists the audio parameters and the valid values for each (not all
values are supported by all libraries).

Table 2-2 Audio Parameters
Parameter Type Values
DM_AUDIO_CHANNELS Integer 1,2,0or4
DM_AUDIO_COMPRESSION String DM_AUDIO_UNCOMPRESSED (default)

DM_AUDIO_G711_U_LAW
DM_AUDIO_G711_A_LAW
DM_AUDIO_MPEG
DM_AUDIO_MPEG1
DM_AUDIO_MULTIRATE
DM_AUDIO_G722

DM_AUDIO_FORMAT DMaudioformat DM_AUDIO_TWOS_COMPLEMENT
(default)
DM_AUDIO_UNSIGNED
DM_AUDIO_FLOAT
DM_AUDIO_DOUBLE

DM_AUDIO_RATE Double Native rates are 8000, 11025, 16000, 22050, 32000,
44100, and 48000 Hz
DM_AUDIO_WIDTH Integer 8,16, or 24

See Part II, “Digital Audio and MIDI Programming,” for complete
definitions of the audio parameters.

19

Chapter 2: Programming with the Digital Media Library

20

See “Setting and Getting Audio Track Properties” in Chapter 28 for a
description of audio parameters that apply to Movie Library programs.

Setting Audio Defaults

To initialize a parameter-value list with the default audio configuration, call
dmSetAudioDefaults(), passing in the desired sample width, sample rate,
and number of channels. Its function prototype is:

DMst at us dnfSet Audi oDef aul ts (DMpar ans* paramns, int w dth,
doubl e rate, int channels)

where:

params is a pointer to a parameter-value list that was returned from
dmParamsCreate()

width is the number of bits per audio sample: 8, 16, or 24

rate is the audio sample rate; the native audio sample rates are
8000, 11025, 16000, 22050, 32000, 44100, and 48000 Hz

channels is the number of audio channels: 1, 2, or 4

dmSetAudioDefaults() returns DM_SUCCESS if there was enough memory
available to set up the parameters; otherwise, it returns DM_FAILURE.

Table 2-3 lists the parameters and values set by dmSetAudioDefaults().

Table 2-3 Audio Defaults

Parameter Default

DM_MEDIUM DM_AUDIO

DM_AUDIO_WIDTH width

DM_AUDIO_FORMAT DM_AUDIO_TWOS_COMPLEMENT
DM_AUDIO_RATE rate

DM_AUDIO_CHANNELS channels
DM_AUDIO_COMPRESSION DM_AUDIO_UNCOMPRESSED

Initializing a Digital Media Application

Determining the Buffer Size Needed to Store an Audio Frame

To determine the audio frame size for a given parameter-value list, call
dmAudioFrameSize(). dmAudioFrameSize() returns the number of bytes
needed to store one audio frame (one sample from each channel). Its
function prototype is:

size_t dnAudi oFraneSi ze (DMpar ams* parans)
Example 2-2 is a code fragment that creates a parameter-value list, fills in the
audio defaults, and then frees the structure and its contents.

Example 2-2 Setting Audio Defaults

DMpar anms* audi oPar ans;

if (dnParansCreate(&audi oParans) != DM SUCCESS) {
printf("Qut of mermory.\n");
exit(1);

if (dnBSet Audi oDefaults (audi oParans,
16, [* width (in bits/sample) */
22050, /* sanpling rate */
2 [* # channels (stereo) */
) !'= DM _SUCCESS) {
printf("Qut of menmory.\n");
exit(1);

printf("%l bytes per audio frane.\n",
dmAudi oFr ameSi ze(audi oParans));
drmPar ansDest roy(audi oParans);

Image Parameters

Images use these parameters:

* image compression scheme

¢ image dimensions (width and height)

* image interlacing

* image orientation (top-to-bottom vs. bottom-to-top)
* image packing format

* image rate (number of frames per second)

21

Chapter 2: Programming with the Digital Media Library

22

Table 2-4 lists the image parameters and the valid values for each (not all
values are supported by all libraries).

Table 2-4 Image Parameters

Parameter Values
DM_IMAGE_HEIGHT Integer value
DM_IMAGE_WIDTH Integer value
DM_IMAGE_RATE Floating point value

DM_IMAGE_COMPRESSION DM_IMAGE_UNCOMPRESSED
DM_IMAGE_RLE
DM_IMAGE_RLE24
DM_IMAGE_JPEG
DM_IMAGE_MPEG1
DM_IMAGE_MV(C1
DM_IMAGE_MVC2
DM_IMAGE_RTR
DM_IMAGE_HDCC
DM_IMAGE_QT_VIDEO
DM_IMAGE_QT_ANIM

DM_IMAGE_INTERLACING DM_IMAGE_NONINTERLACED (full frame)
DM_IMAGE_INTERLACED_EVEN (two fields,
even field first)
DM_IMAGE_INTERLACED_ODD (two fields,
odd field first)
DM_IMAGE_NONINTERLEAVED (obsolete,
use DM_IMAGE_NONINTERLACED instead)
DM_IMAGE_INTERLEAVED(obsolete, use
DM_IMAGE_INTERLACED_ODD instead)

Initializing a Digital Media Application

Table 2-4 (continued) Image Parameters

Parameter

Values

DM_IMAGE_ORIENTATION

DM_IMAGE_PACKING

DM_TOP_TO_BOTTOM
DM_BOTTOM_TO_TOP

DM_PACKING_RGB
DM_PACKING_RGBX
DM_PACKING_RGBA
DM_PACKING_RGB332 (Indigo Entry graphics)
DM_PACKING_RGBS8
DM_PACKING_GRAYSCALE
DM_PACKING_YUV
DM_PACKING_YUV411
DM_PACKING_YUV422
DM_PACKING_YUV422HC
DM_PACKING_APPLE_32
DM_PACKING_APPLE_16
DM_PACKING_Y (equivalent to
DM_PACKING_GRAYSCALE)
DM_PACKING_YCbCr (equivalent to
DM_PACKING_YUV)
DM_PACKING_YCbCr422 (equivalent to
DM_PACKING_YUV422)
DM_PACKING_YCbCr422HC (equivalent to
DM_PACKING_YUV422HC)
DM_PACKING_YUV422DC (equivalent to
DM_PACKING_YUV422HC)
DM_PACKING_YCbCr422DC (equivalent to
DM_PACKING_YUV422HC)

See “Setting and Getting Image Track Properties” in Chapter 28 for a
description of image parameters that apply to Movie Library programs. See
Table 12-10 in Chapter 12, “Getting Started with the Video Library,” for a
description of image parameters that apply to Video Library programs.

23

Chapter 2: Programming with the Digital Media Library

24

Setting Image Defaults

To initialize a parameter-value list with the default image configuration, call
dmSetImageDefaults(), passing in the width and height of the image frame,
and the image packing format. Its function prototype is:

DMst at us dnfSet | mageDef aul ts (DMparans* parans, int wdth,
i nt height, DMacking packing)

where:

params is a pointer to a parameter-value list that was returned from
dmParamsCreate()

width is the width of the image

height is the height of the image

packing is the image packing format

Table 2-5 lists the parameters and values set by dmSetImageDefaults().

Table 2-5 Image Defaults

Parameter Default

DM_MEDIUM DM_IMAGE
DM_IMAGE_WIDTH width

DM_IMAGE_HEIGHT height

DM_IMAGE_RATE 15.0
DM_IMAGE_INTERLACING DM_IMAGE_NONINTERLACED
DM_IMAGE_PACKING packing
DM_IMAGE_ORIENTATION DM_BOTTOM_TO_TOP
DM_IMAGE_COMPRESSION DM_IMAGE_UNCOMPRESSED

Initializing a Digital Media Application

Determining the Buffer Size Needed to Store an Image Frame

To determine the image frame size for a given parameter-value list, call
dmImageFrameSize(). dmImageFrameSize() returns the number of bytes
needed to store one uncompressed image frame in the given format. Its
function prototype is:

size_t dm nmageFraneSi ze (DMpar ams* parans)

Example 2-3 is a code fragment that creates a parameter-value list, fills in the
image defaults, and then frees the structure and its contents.

Example 2-3 Setting Image Defaults

DMpar anms* i magePar ans;

if (dnParansCreate(& mageParans) != DM SUCCESS) {
printf("Qut of mermory.\n");
exit(1);

if (dnBetl mageDefaul ts(i mageParans,
320, [/* width */
240, /* height */
DM _PACKI NG _RGBX) != DM SUCCESS) {
printf("Qut of memory.\n");
exit(1);
}
printf("% bytes per image frane.\n",
dm mageFr aneSi ze(i mageParans));
drmPar ansDest roy(i nageParans);

Setting and Getting Individual Parameter Values
After creating an empty parameter-value list or a default audio or image
configuration, you can use the routines described in this section to set and

get values for individual elements of a parameter-value list.

There is a routine for setting and getting the parameter values for each
parameter data type defined in the DM Library, as listed in Table 2-1.

All of these functions store and retrieve entries in parameter-value lists.

They assume that the named parameter is present and is of the specified
type; the debugging version of the library asserts that this is the case. All

25

Chapter 2: Programming with the Digital Media Library

26

functions that can possibly fail return an error code indicating success or
failure. Insufficient memory is the only reason these routines can fail.

Table 2-6 lists the DM Library routines for setting parameter values. These
routines require three arguments:

params a pointer to a parameter-value list

paramName the name of the parameter whose value you want to set

value a value of the appropriate type for the given parameter

Table 2-6 DM Library Routines for Setting Parameter Values

Routine Purpose

dmParamsSetInt() Sets the value of a parameter whose type is DMint

dmParamsSetIntArray() Sets the value of a parameter whose type is
DMintarray

dmParamsSetIntRange() Sets the value of a parameter whose type is
DMintrange

dmParamsSetEnum() Sets the value of a parameter whose type is DMenum

dmParamsSetEnumArray() Sets the value of a parameter whose type is

DMenumarray

dmParamsSetFloat() Sets the value of a parameter whose type is DMfloat

dmParamsSetFloatArray() Sets the value of a parameter whose type is
DMfloatarray

dmParamsSetFloatRange() Sets the value of a parameter whose type is
DMfloatrange

dmParamsSetFract() Sets the value of a parameter whose type is DMfract

dmParamsSetFractArray() Sets the value of a parameter whose type is

DMfractionarray
dmParamsSetFractRange() Sets the value of a parameter whose type is
DMfractionrange
dmParamsSetParams() Sets the value of a parameter whose type is DMparam
dmParamsSetString() Sets the value of a parameter whose type is DMstring

Initializing a Digital Media Application

Table 2-6 (continued) DM Library Routines for Setting Parameter Values

Routine Purpose

dmParamsSetStringArray() Sets the value of a parameter whose type is
DMstringarray

dmParamsSetTocEntry() Sets the value of a parameter whose type is
DMTocEntry

These routines return either DM_SUCCESS or DM_FAILURE.

Table 2-7 lists the DM Library routines for setting parameter values. These
routines require two arguments:

params a pointer to a parameter-value list

paramName the name of the parameter whose value you want to get

Routines that get values return either a pointer to a value or the value itself.
For strings, parameter-value lists, and table-of-contents entries, the pointer
thatis returned points into the internal data structure of the parameter-value
list. This pointer should never be freed and is only guaranteed to remain
valid until the next time the list is changed. In general, if you need to keep a
string value around after getting it from a parameter-value list, it should be
copied.

Table 2-7 DM Library Routines for Getting Parameter Values

Routine Purpose

dmParamsGetInt() Returns an integer value for the given parameter
dmParamsGetIntArray/() Returns a pointer to a value of type DMintarray for

the given parameter

dmParamsGetIntRange() Returns a pointer to a value of type DMintrange for
the given parameter

dmParamsGetEnum)() Returns an integer value for the given parameter

dmParamsGetEnumArray() Returns a pointer to a value of type DMenumarray
for the given parameter

dmParamsGetString() Returns a pointer to a value of type const char for the
given parameter

27

Chapter 2: Programming with the Digital Media Library

Table 2-7 (continued) DM Library Routines for Getting Parameter Values

Routine Purpose

dmParamsGetStringArray() Returns a pointer to a value of type DMstringarray
for the given parameter

dmParamsGetFloat() Returns a value of type double for the given
parameter

dmParamsGetFloatArray() Returns a pointer to a value of type DMfloatarray for
the given parameter

dmParamsGetFloatRange() Returns a pointer to a value of type DMfloatrange for
the given parameter

dmParamsGetFract() Returns a value of type DMfraction for the given
parameter

dmParamsGetFractArray() Returns a pointer to a value of type DMfractionarray
for the given parameter

dmParamsGetFractRange() Returns apointer to a value of type DMfractionrange
for the given parameter

dmParamsGetParams() Returns a pointer to a value of type DMparams for
the given parameter

dmParamsGetTocEntry() Returns a value of type DMTocEntry for the given
parameter

Example 2-4 shows two equivalent ways of setting up a complete image
format description; the first sets the parameter values individually, the
second creates a default image configuration with the appropriate values.

Example 2-4 Setting Individual Parameter Values

DMpar ans* f or mat ;

dnPar ansCreat e(&f ormat);

dnParanmsSetInt (format, DM |MAGE W DTH, 320);

dnParansSetInt (format, DM | MAGE HEI GHT, 240);

dnPar ansSet Fl oat (format, DM I MAGE RATE, 15.0);

dnParansSet String(format, DM | MAGE_COVPRESSI ON, DM | MAGE_UNCOVPRESSED) ;
dnPar anmsSet Enun(fornmat, DM | MAGE_| NTERLACI NG, DM _| MAGE_NONI NTERLEAVED) ;
dnPar ansSet Enum (format, DM | MAGE_PACKI NG DM PACKI NG RGBX);

dnPar ansSet Enum (format, DM | MAGE_ORI ENTATI ON, DM BOTTOM TO TOP);

dnPar ansDestroy (format);

28

Initializing a Digital Media Application

The following is equivalent:

DMpar ans* f or mat ;

dmPar ansCreate (& ormat);

dntet | mageDef aul ts (format, 320, 240, DM PACKI NG RGBX);
dmPar ansDestroy (format);

Manipulating Parameter-value Lists

This section explains how to manipulate parameter-value lists.

Table 2-8 lists the routines that perform operations on parameter-value lists
and the entries within them.

Table 2-8 Routines for Manipulating Parameter-value Lists and Entries

Routine Purpose

dmParamsCopyAllElems() Copy the entire contents of one list to another

dmParamsCopyElem() Copy one parameter-value pair from one list to
another
dmParamsGetElem() Get the name of a given parameter

dmParamsGetElemType() Get the data type of a given parameter
dmParamsGetNumElems() Get the number of parameters in a list
dmParamslIsPresent() Determine if a given parameter is in the list

dmParamsRemoveElem() Remove a given parameter from the list

The sections that follow explain how to use each routine.

Determining the Number of Elements in a Parameter-value List

To perform any task that requires your application to loop through the
contents of a parameter-value list—for example, to print out a list of
parameters and their values—you need to know how many parameters are
in the list in order to set up a loop to step through the entries one-by-one.

29

Chapter 2: Programming with the Digital Media Library

30

To get the total number of elements present in a parameter-value list, call
dmParamsGetNumElems(). Its function prototype is:

i nt dnParansGet Nuntl ens (DMpar ans* parans)

The number of elements and their position in a list is guaranteed to remain
stable unless the list is changed by using one of the “set” functions, by
copying an element into it, or by removing an element from it.

Copying the Contents of One Parameter-value List into Another

To copy the entire contents of the fromParams list into the toParams list, call
dmParamsCopyAllElems(). Its function prototype is:

DMVst at us dnPar ansCopyAl | El ens (DVpar ans* fronPar ans,
DMpar ans* t oPar ans)

If there are any parameters of the same name in both lists, the corresponding
value(s) in the destination list are overwritten. DM_SUCCESS is returned if
there is enough memory to hold the copied data; otherwise, DM_FAILURE
is returned.

Copying an Individual Parameter Value from One List into Another

If a parameter appears in more than one parameter-value list, it is sometimes
more convenient to copy the individual parameter or group of parameters
from one list to another, rather than individually setting the parameter
value(s) for each list.

To copy the parameter-value pair for the parameter named paramName from
the fromParams list into the toParams list, call dmParamsCopyElem(). Its
function prototype is:

DMVt at us dnPar ansCopyEl em (DVpar ansf r onPar ans,
const char* paranmNaneg,
DMpar ans* t oPar ans)

If there is a preexisting parameter with the same name in the destination list,
that value is overwritten. DM_SUCCESS is returned if there is enough
memory to hold the copied element; otherwise, DM_FAILURE is returned.

Initializing a Digital Media Application

Determining the Name of a Given Parameter

To get the name of the entry occupying the position given by index in the
params list, call dmParamsGetElem(). Its function prototype is:

const char* dnParansGet El em (DMVpar anms* params, int index)

The index must be from 0 to one less than the number of elements in the list.

Determining the Data Type of a Given Parameter

To get the data type of the value occupying the position given by index in the
params list, call dmParamsGetElemType(). Its function prototype is:

DMpar ant ype dnPar ansCet El enifype (DMpar ans* parans, int
i ndex)

See Table 2-1 for a list of valid return values.

Determining if a Given Parameter Exists

To determine whether the element named paramName exists in the params
list, call dmParamsIsPresent(). Its function prototype is:

DMbool ean dnPar ansl sPresent (DMparans* parans, const char* pa
ramNane)

DM_TRUE is returned if paramName is in params; otherwise, DM_FALSE is
returned.

Removing an Element from a Parameter-value List

To remove the paramName entry from the params list, call
dmParamsRemoveElem(). Its function prototype is:

const char* dnParanmsRenoveEl en{ DMpar ans* parans, const
char* paramNane)

The element named paramName must be present.

31

Chapter 2: Programming with the Digital Media Library

Example 2-5 prints the contents of a parameter-value list.

Example 2-5 Printing the Contents of a Digital Media Parameter-value List

voi d PrintParanms(DVparans* parans)
{
int i;
int nunkEl ens = dnPar ansGet NunEl ens(parans);

for (i =0, i <nunElens; i++) {
const char* name = dnParansCet El en{ parans, i);
DMVpar ant ype type = dnPar ansGet El enType(parans, i);
printf(" %®0s: ", nane);
switch(type)
{
case DM TYPE_ENUM
printf("%l", dnParansGet Enun{ parans, nanme));
br eak;
case DM TYPE | NT:
printf("%", dnParansGetlnt(parans, name));
br eak;
case DM TYPE_STRI NG
printf("%", dnmParansGetString(paranms, nane));
br eak;
case DM TYPE FLQOAT:
printf("%", dnParansGetFl oat(parans, nane));
br eak;
case DM TYPE_FRACTI ON:
{
DM raction f = dnParansGet Fract(params, nane);
printf("%/ %", f.nunerator, f.denom nator);
}
br eak;
case DM TYPE_PARAMNES:
printf("... paramlist ... ");
br eak;
case DM TYPE TOC ENTRY:
printf("... toc entry ...");
br eak;
defaul t:
assert(DM FALSE);

}
printf("\n");

32

Synchronizing Digital Media

Synchronizing Digital Media

Most digital media applications use more than one medium in conjunction,
for example, audio and video. Handling concurrent media streams requires
the ability to process coincident data. This section explains how the data can
be related to each other for the various IRIS digital media functions that
perform capture and presentation of data.

The Digital digital media libraries provide their own temporal reference,
called unadjusted system time (UST). The UST is an unsigned 64-bit number
that measures the number of nanoseconds since the system was booted. UST
values are guaranteed to be monotonically increasing and are readily
available for all the IRIS digital media libraries.

Typically, the UST is used as a timestamp, that is, it is paired with a specific
item or location in a digital media stream. Because each type of media, and
similarly each of the libraries, possess unique attributes, the UST
information is presented in a different manner in each library. Table 2-9
describes how UST information is provided by each of the libraries.

Table 2-9 Methods for Obtaining Unadjusted System Time

Library UST Method

Digital Media Library dmGetUST()

Audio Library ALgetframenumber() and ALgetframetime()
MIDI Library mdTell() and mdSetTimestampMode()
Video Library ustime field in the DMedialnfo structure
Compression Library ustime field in the CLimagelnfo structure

The DM Library routine, dmGetUSTY(), returns a high-resolution, unsigned
64-bit number to processes using the digital media subsystem. Typically, you
use the appropriate routine for the library that handles the type of media
being processed, as listed in Table 2-9, rather than dmGetUST(). However,
dmGetUST() is useful for correlating UST to system time for events that are
not related to a media stream, such as pushing a button or making a network
connection.

33

Chapter 2: Programming with the Digital Media Library

34

PART TWO

Digital Audio and MIDI Programming

Chapter 3, “Introduction to Digital Audio and MIDI Programming,”
introduces the digital audio and MIDI libraries.

Chapter 4, “Digital Audio System Architecture,”
gives a brief overview of the audio hardware and provides some
recommendations for development configurations.

Chapter 5, “Digital Audio System Software,” describes the audio application
programming environment and explains how audio resources are shared.

Chapter 6, “Programming with the Audio Library,”

describes the structure of the Audio Library and explains how to use it to sample
audio data from analog or digital input sources. Real-time programming
techniques are also discussed.

Chapter 7, “Programming with the Audio File Library,”
describes the structure of the Audio File Library and explains how to use it to
read and write audio files.

Chapter 8, “Programming with the CD Audio Library,”
describes the CD Audio Library and explains how to use it to control the
CD-ROM drive for playing and sampling audio from audio compact discs.

Chapter 9, “Programming with the DAT Audio Library,”
describes the DAT Audio Library and explains how to use it to control the DAT
drive for playing, sampling, and recording audio from digital audio tape.

Chapter 10, “Programming with the MIDI Library,”

describes connecting MIDI equipment and describes the MIDI Library,
explaining how to use it for implementing and multiplexing MIDI I/O, and
synchronizing MIDI and audio.

Chapter 3

Introduction to Digital Audio This chapter outlines the features of
the digital audio system and

and MIDI Programming describes the audio I/0 interface.

Chapter 3

Introduction to Digital Audio and MIDI
Programming

Silicon Graphics offers a collection of libraries designed for developers of
digital audio and MIDI software, as well as those seeking to integrate audio
into their existing applications.

Part II, “Digital Audio and MIDI Programming,” describes in detail the
application programming interfaces (APIs) for these libraries, which are
included in the IRIS Digital Media Development Environment:

¢ Audio Library (libaudio.q)

¢ Audio File Library (libaudiofile.so)

¢ Audio Utility Library (libaudioutil.so)
* (D Audio Library (libcdaudio.a)

¢ DAT Audio Library (libdataudio.a)

e MIDI Library (libmd.so)

Each chapter presents the digital audio and MIDI libraries from a task-
oriented perspective. Chapters are organized to cover topics in roughly the
order you are concerned about them as you write audio or MIDI programs.
To illustrate the use of the various component libraries, sample code
fragments and demonstration programs are used throughout.

Digital audio programs typically access analog or digitally recorded sound
data that is either input directly to the workstation audio hardware or stored
on disk, digital audio tape, or CD. The application then manipulates the data
and outputs the result to analog or digital line-out jacks, to disk, or to tape.
MIDI programs read, process, and produce MIDI data streams, which are in
turn interpreted by MIDI devices such as synthesizers and drum machines
that are distributed across a MIDI network. The libraries described in this
part of this guide provide all the necessary features to create audio and MIDI
applications for Silicon Graphics workstations that support audio.

39

Chapter 3: Introduction to Digital Audio and MIDI Programming

40

Reference documentation on the digital audio and MIDI routines is
contained in online reference pages. These provide a concise, thorough
description of each library function and are available through the use of the
man or Xman command.

This guide assumes that you're somewhat familiar with principles of digital
audio and MIDI. This section lists additional references that cover
background material and topics beyond the scope of this part.

Although some background material is provided in the chapters on digital
audio and MID]I, you may want to do some more in-depth reading. The
following texts may provide useful supplementary information:

e AES, Journal of the Audio Engineering Society, edited by Daniel R. von
Recklinghausen, Audio Engineering Society.

e The Art of Digital Audio, by John Watkinson, Focal Press, 1988.
e Computer Music Journal, edited by Steven Travis Pope, MIT Press.
® Elements of Computer Music, F. Richard Moore, Prentice-Hall, 1990.

® MIDI Sequencing for Musicians, compiled by the staff of Keyboard
Magazine, H. Leonard Publishing Corp., 1989.

* MIDI Sequencing in C, by Jim Conger, M & T Books, 1989.

e MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0, International
MIDI Association, 5316 W. 57th St., Los Angeles, CA 90056.

® Music Through MIDI, by Michael Boom, Microsoft Press, 1991.
® Musical Applications of Microprocessors, by Hal Chamberlin, Hayden
Books, 1985.

If you plan on using the MIDI C++ classes, you may want to use the
following books as references:

® The Annotated C++ Reference Manual, by Margaret Ellis and Bjarne
Stroustrup, AT&T Bell Laboratories, 1990—the official C++ language
reference manual.

e C++ Primer, by Stanley Lippman, AT&T Bell Laboratories, 1989—An
introductory-level, tutorial-style presentation of C++.

® The C++ Programming Guide—an online manual provided with the
Silicon Graphics C++ library.

Digital Audio System Architecture This chapter outlines the features of
the digital audio system and

describes the audio I/O interface.

Chapter 4

Digital Audio System Architecture

Before you start to program, you should familiarize yourself with your
workstation’s audio hardware and the peripherals with which you will be
working. This chapter describes the audio capabilities and the audio I/O
interfaces available on IRIS Indigo, Indigo?, and Indy workstations. This
chapter also provides recommendations for minimal and optimal
configurations of memory, hard disk, and other peripherals useful for audio
development and testing.

See Appendix A, “Audio Specifications,” and your workstation owner’s
guide for complete details on audio hardware features. See the online release
notes for audiodev, the audio development environment of the IRIS Media
Libraries, for information about system software requirements.

Indigo Audio System Architecture

The standard audio hardware supplied with Indigo workstations supports
24-bit digital stereo and 16-bit analog stereo sound. A dedicated real-time
processor works in tandem with the CPU to ensure that audio timing isn’t
degraded by other system demands.

Indigo Audio Features

Indigo audio features include:

¢ Dbuilt-in speaker

* stereo line-level analog input and output
* stereo headphone output

¢ microphone input with phantom power

e AES/EBU digital audio input and output

43

Chapter 4: Digital Audio System Architecture

Figure 4-1

44

Audio Icons

* sampling rates include 8000, 11025, 16000, 22050, 32000, 44100, and
48000 Hz.

e independent input and output rates
* output rate can be synchronized to the digital input rate

* low-latency operation for highly interactive applications

Indigo Audio I/O Interface

The audio hardware interface on the back panel of Indigo workstations
includes these 3.5-mm audio input and output jacks, which are labeled with
icons (see Figure 4-1):

¢ monaural microphone input jack for mic-level audio input

e stereo line-level input (line in) jack for analog audio input from a tape
deck, CD player, or similar source

* stereo line-level output (line out) jack for analog audio output, for
example, to a tape deck or amplifier

e stereo headphone output jack

stereo digital I/O jack for digital audio input and output

An internal switching mechanism selects one active input source from the
three available inputs. All three outputs are always enabled; each transmits
a copy of the same output signal, but the volume is adjusted on the
headphone/speaker output. Using the headphone jack preempts output to
the internal speaker, which normally outputs the sum of the left and right
signals.

Digital input and output signals are simultaneously transmitted over a
stereo cable. The Audio Engineering Society (AES) standard supports mono
and stereo streams of 20-bit or 24-bit samples. Each of the digital input and
output streams contains two interleaved channels (left and right) of audio
samples.

Indigo Audio System Architecture

Figure 4-2 shows the location of the audio jacks on the back panel of the
Indigo workstation.

OJO

(H

+

©O@0®

Figure 4-2 Audio Jacks on the Back Panel of the Indigo Workstation

45

Chapter 4: Digital Audio System Architecture

Indigo2 and Indy Audio System Architecture

46

The audio hardware supplied standard with the Indigo® and Indy
workstations provides the same basic audio capabilities as that of the Indigo
workstation, plus:

* stereo microphone input

* 4-channel mode that supports full-speed, simultaneous 4-channel
analog input and 4-channel analog output

Indigo? and Indy Audio 1/O Interface

The audio hardware interface on Indigo? and Indy workstations includes
these 3.5-mm audio input and output jacks (see Figure 4-3 for the Indigo?
back panel layout, and Figure 4-5 for the Indy back panel layout):

¢ microphone/line-in; jack for mono and stereo mic-level audio input

¢ stereo line-in jack for analog audio input from a tape deck, CD player,
or similar source

* stereo line-out jack for analog audio output, for example, to a tape deck
or amplifier

¢ stereo headphone/line-out, output jack

stereo digital in/out jack for digital audio input and output

As in the Indigo workstation, all three outputs are enabled, and an internal
switching mechanism selects one active input source from the three
available inputs. In addition, a software-controllable internal switching
mechanism permits 4-channel audio I/O through the standard I/O
interface. See “4-channel Audio I/O Interface” on page 49 for details on
4-channel audio.

Indigo2 and Indy Audio System Architecture

Figure 4-3 shows the location of the audio jacks on the back panel of the
Indigo?® workstation.

& o O (e

DIGITAL

Figure 4-3 Audio Jacks on the Back Panel of the Indigo2 Workstation

Indy Workstation Layout

The Indy workstation features a slightly different layout for its audio I/O
interface. Two triangular pushbuttons on the front of the Indy workstation
let you adjust the volume of the internal speaker/headphone output up or
down, as desired. Pressing both buttons at the same time mutes the speaker/
headphone output.

47

Chapter 4: Digital Audio System Architecture

Figure 4-4 shows the volume control buttons on the front of the Indy
workstation.

Power button

Volume buttons

Reset button

Figure 4-4 Volume Control Buttons on the Front of the Indy Workstation

Figure 4-5 shows the location of the audio jacks on the back panel of the Indy
workstation.

-

—

Headphone output
Microphone input
Line input
Line output Digital input/output

Figure 4-5 Audio Jacks on the Back Panel of the Indy Workstation

48

Indigo2 and Indy Audio System Architecture

4-channel Audio I/O Interface

A software-controllable internal switching mechanism permits 4-channel
audio I/0 through the standard I/O interface. When a system is operating
in 4-channel mode, the electrical properties of the microphone jack can be
configured to accept either line-level or mic-level input, and the electrical
properties of the headphone jack can be configured to produce line-level
output.

Figure 4-6 shows an Indy workstation cabling setup for 4-channel audio.

Output

Output

Ly

Figure 4-6 Cabling Setup for 4-channel Audio on the Indy Workstation

49

Chapter 4: Digital Audio System Architecture

Cables like the ones shown in Figure 4-6 can be purchased from audio
accessory dealers. One end of the cable has 3.5-mm audio plugs that plug
into the Indigo? or Indy workstation jacks; the other end independently
terminates each of the two independent signals with RCA phono plugs.

Note: Do not confuse these cables with “Y” connectors that route the same
signal to multiple connections.

When the system is configured (either from apanel or from the Audio
Library) to use 4-channel mode, (L, R;) samples are input to the line-in jack
and (L,, R,) samples are input to the microphone/line-in, jack. Similarly, in
4-channel mode, (L, R;) samples are output from the line-out jack, and (L,,
R,) samples are output from the headphone/line-out, jack.

Recommendations for Audio Development System Configurations

50

The primary considerations in setting up your system for digital audio
software development are memory and disk space. Because of the large sizes
of audio sample files, disk space in particular is crucial.

Memory

A minimum of 32 MB is recommended for digital audio development. The
more memory installed, the more responsive your workstation will be when
handling large amounts of sample data, as well as during compilation.

Disk Space

Be sure to allow an adequate amount of disk space. These statistics should
help give you an idea of the kind of disk space required for your application:

* mono 8-bit, CCITT/TSB G.711 p-law encoded 8 kHz (speech quality)
audio = 8 kBytes/sec

* mono 16-bit (15-bit range, 14-bit resolution), CCITT/TSB G.722
compressed 16 kHz (high-quality speech with more computationally
expensive compression) audio = 8 kBytes/sec

Recommendations for Audio Development System Configurations

* stereo 16-bit 44.1 kHz (CD-quality digitized analog input) audio =
176 kBytes/sec

* stereo 24-bit 48 kHz (highest-quality digital, 4-byte word) audio =
384 kBytes/sec

® 4-channel 16-bit 44.1 kHz (CD-quality digitized analog input) audio =
352 kBytes/sec

® 4-channel 24-bit 48 kHz (highest-quality digital, 4-byte word) audio =
768 kBytes/sec

A minimum of 600 MB is suggested; 800 MB or more is recommended,
especially if your development work involves storing large amounts of high-
quality sample data on disk.

Peripherals

If you do not alreadé?l have a CD-ROM drive, you may want to purchase one.
Prosonus”, Aware", Inc., and other companies supply CD-ROM libraries of
audio sample data (see “Third-party Audio Software and Sound Libraries”
in Chapter 5 for information on ordering these CD-ROM libraries). You can
also use the drive for sampling from audio CDs (obtain permission before
using copyrighted material).

A DAT drive is recommended both for general data archiving and for
transferring audio from hard disk.

51

Chapter 4: Digital Audio System Architecture

52

Chapter 5

Digit al Audio System Software This chapter describes the digital

audio system software features and
explains shared audio resources.

Chapter 5

Digital Audio System Software

This chapter describes the components of the digital audio system software:
digital audio libraries, device drivers, and system-wide resources, and
explains how these components interact. This chapter also describes other
resources available to application developers, such as end-user audio tools,
third-party audio software and sound libraries, and sample programs.

Digital Audio System Software Overview

Figure 5-1 diagrams the interaction between an audio application and the
audio libraries, the device drivers, the IRIX file system, the audio hardware,
and the optional SCSI devices.

Audio
application

! } } }

Audio File Library|
libaudiofile
Audio Library CD Audio Library DAT Audio Library
libaudo | | ___w_ libcdaudio libdataudio
' libaudioutil
Lo |
Audio driver IRIX file system SCSI drivers
A A A
h 4 h 4 h 4
. SCSI SCsSlI
Audio hardware CD-ROM drive DAT drive
Figure 5-1 Interaction of Digital Audio System Components

55

Chapter 5: Digital Audio System Software

56

About the Digital Audio Libraries

The digital audio libraries can be used separately or in combination. Each
library is tailored to a particular set of tasks, as follows:

Audio Library

Audio File Library

CD Audio Library

DAT Audio
Library

provides an API for configuring the audio system,
managing audio I/O between the application program
and the audio hardware, specifying attributes of digital
audio data, and facilitating real-time programming. See
Chapter 6, “Programming with the Audio Library.”

provides an API for reading and writing two standard
digital audio file formats, AIFF and AIFF-C. See
Chapter 7, “Programming with the Audio File Library.”

provides an API for optional Silicon Graphics SCSI CD-
ROM drives. The drive features a special mode that
allows it to read audio CD format as well as CD-ROM
format. See Chapter 8, “Programming with the CD
Audio Library.”

provides an API for optional Silicon Graphics SCSI
DAT drives. See Chapter 9, “Programming with the
DAT Audio Library.”

Digital Audio System Software Overview

About Shared System-Wide Resources

Audio applications share CPU resources with other processes, and they
share audio resources with other audio applications running concurrently.

How Audio Applications Share CPU Resources

CPU resources are managed by the IRIX kernel, which gives some resources
higher priority than others. Programming style can affect CPU usage, so to
get the best performance from your application, use native data formats
whenever possible (to avoid internal conversion), and free system resources
as soon as they are no longer needed (see the individual chapters on each
library for details). You can also request exclusive resources or upgrade the
priority of your application by using the special IRIX real-time
programming techniques described in “Real-time Programming Techniques
for Audio” in Chapter 6.

How Audio Applications Share Audio System Resources

Figure 5-2 shows how the IRIS audio utilities apanel, soundeditor, and
soundfiler share the system’s audio resources. Similarly, your audio
application must share the audio resources with other audio applications
running concurrently.

How Outputs from Multiple Audio Applications Are Combined

In Figure 5-2, three audio applications are running simultaneously. A
recording engineer is using soundeditor to combine live input from a
microphone with a prerecorded sound file stored on the disk. She is using
apanel to monitor the input level and soundfiler to audition sound files
through her headphones.

Note that while the input is selected from among three possible inputs, all of
the outputs are added together and clipped to generate the final output,
which is presented to all three outputs. This means that an audio application
is responsible for determining if other audio applications are running
concurrently, and limiting its output signal accordingly to avoid
unnecessary clipping.

57

Chapter 5: Digital Audio System Software

Audio Panel: 1 input (monitor)

Ao fnput Bate Options Help

Input: Aicrophons Speaker
L R L R

T

|
=]

48 kHz 44.1 kH=z

Figure 5-2 shows how the IRIS audio utilities apanel, soundeditor, and
soundfiler share the system’s audio resources.

Sound Editor: 1 input, 1 output

g% 58 lewl Gfeotz Yew goons 0 020000 pew |
e
zoon: [| [selecon| (356] e e [[- < = =]

Sound Filer: 1

Play Time: 86043 44,100 WMz I-ch 1E-bAE
!lllllﬂlh 88048 - ‘.l’lll

! a7 e

Meter konitar Mute

output

[3F Show anty seend fies
Filbe Hame:

File Format: fuclo Interchange Fle Fomat

Slre: 143132 sample frames, 125

Sampling Rate: 44100 ke,

Format: 2 channel 16-bit integer (2°5 compiement, tig endian) fie.

seconds, 5535 kBytes.

Nmim‘-’l Stop

58

kHz

Cnnwﬂl it | Heln |

44.1kHz 44.1kHz
44,1 kHz i A/
® - _Monitor s (+ 44.1]
J\
Audio device driver

44.1kHz 44.1kHz

Audio hardware

(®)
T T Internal
speaker

Mic Linein Digital Line out Headphones Digital

Figure 5-2 Audio Data Flow

Digital Audio System Software Overview

How Global Audio Settings Are Established and Maintained

The system-wide digital audio hardware and software settings are
initialized to reasonable defaults when the system is powered on and
whenever it is rebooted.

In Figure 5-2, the input rate and output rate are set at 44.1 kHz and remain
fixed unless changed from apanel. soundfiler and soundeditor both allow the
user to control the volume from apanel. soundfiler changes the input and
output rates when needed, and soundeditor has the ability to change the rates
but asks for confirmation before making any changes.

The values of the global audio settings are known collectively as the audio
system state. Certain audio settings can be initialized and modified in
software. The AL has routines for querying which elements of state can be
controlled by software, and for getting and setting the values of the global
state parameters. It is good programming practice to query for the existence
of other audio processes before changing global settings.

Programming Guidelines for Managing System-Wide Resources

Keep these guidelines in mind when writing audio applications:

¢ Determine the availability of special features before attempting to use
them.

* Monitor the existence of concurrent audio applications and process
output accordingly.

* Manage system-wide settings that rely on personal preference, such as
volume, through a global audio control program such as apanel;
otherwise, query for the existence of other audio processes before
changing settings such as data rates that can affect other applications.

* Manage memory allocation for efficient use of system-wide resources.

59

Chapter 5: Digital Audio System Software

Tools Available for the Audio Application Developer

60

This section describes additional tools that you may find helpful for
developing audio applications.

Graphical User Interface Audio Tools

End-user audio tools are provided for playing, recording, and manipulating
digital audio signals. These audio tools were created using the digital audio
libraries and therefore support AIFF and AIFF-C file formats. These tools are
provided as part of the standard system software and feature online help.

See the Media Control Panels User’s Guide for a complete description of these

tools:

apanel

cdman

datman

soundeditor

soundfiler

the audio control panel for selecting inputs, input and
output levels, and sampling rates

for playing audio CDs on a CD-ROM through your
workstation’s audio outputs, and for recording CD audio
tracks to disk

for playing and recording digital audio tapes using the
optional internal DAT drive, and for recording DAT audio
tracks to disk

a simple editor for viewing, manipulating, and combining
multiple tracks of recorded samples, as live input or from a
sound file

an audio file librarian for organizing and previewing
sample sound files and converting between different sound
file formats

In addition, the system Toolchest contains a tool for performing confidence
tests on system components, including the audio system, and the CD-ROM
and DAT drives. See the owner’s guide for your workstation for more
information about confidence tests.

Tools Available for the Audio Application Developer

Online Source Code Examples

Source code examples are located online in /usr/people/4Dgifts/examples/
dmedia, in directories labeled audio, cd+dat, dmplay, dmrecord, and midi.
README files in these directories explain how to use and compile these
programs. When a program from one of these directories is included in this
guide, it is referred to as the 4Dgifts programname.c program. Because the
online source for these programs can get updated more frequently than the
printed version of this guide, you should consider the online source code as
the most recent version if there is a discrepancy between them.

Third-party Audio Software and Sound Libraries

This section describes third-party audio software and libraries that are made
available to the developer as part of the IRIS digital media libraries. Contact
the companies directly for licensing and use rights.

Aware Audio Compression Software and Audio Products

Aware, Inc. scalable audio compression software is provided with the and
can be accessed from Audio File Library routines or Compression Library
routines. Two Aware codecs (compressor-decompressors) that provide ISO/
MPEG and Aware MultiRate'" lossless and near-lossless compression are
built into the Audio File Library as compression parameters, and additional
Aware audio compression software can be accessed through other
parameters in the Audio File and Compression Libraries. Aware also offers
other licensable audio products and a CD-ROM library; see Appendix B,
“Aware Scalable Audio Compression Software,” for details.

For more information about Aware products, contact Aware at:

Aware, Inc.

One Memorial Drive
Cambridge, MA 02142
Phone: (617) 577-1700
Fax: (617) 577-1710
Email: sales@aware.com

61

Chapter 5: Digital Audio System Software

The Prosonus Sound Library

The Prosonus Sound Library, which is included with the end user media
tools, contains more than 10 MB of professional quality music and sound
samples. These files are located in /usr/lib/sounds/prosonus, and they
represent a small subset of the music, sound effects, and instrument samples
created by Prosonus. All included files are sampled at 44.1 kHz and stored
in AIFF format. The complete Prosonus Sound Library is separately
available on CD-ROM from Prosonus.

For more information about Prosonus products, contact Prosonus at:

Prosonus

11126 Weddington Street

North Hollywood, CA 91601

Phone: (800) 999-6191 or (818) 766-5221
Fax: (818) 766-6098

Prosonus files are license-free when used in private presentations. They may
be shared via NFS with other Silicon Graphics computers but may not be
copied to other systems. If you intend to ship the Prosonus files with a
product intended for resale or broadcast, copyrights and royalties may
apply. Please contact Prosonus for questions concerning licensing and resale
of Prosonus files.

Compiling and Linking an Audio Application

62

This section lists compiling and linking commands for digital audio and
MIDI programs.

To compile an Audio Library program, enter:
cc —g ALsample.c - o ALsample | audi o
To compile an Audio File Library program, enter:

cc —g AFLsample.c - o AFLsample —| audi ofil e -laudioutil -Im

Compiling and Linking an Audio Application

The Audio File Library also requires linking with libm.a, the math library,
and with libaudioutil.so, the Audio Utility Library.

To compile a CD Audio Library program, enter:
cc —g CDsample.c - o CDsample —| cdaudio -1ds -1ibnedi ad

The CD Audio Library also requires linking with /ibds.a, the SCSI device
library and libmediad, the media library daemon.

To compile a DAT Audio Library program, enter:
cc —g DATsample.c - o DATsample —| dat audi o

Programs making use of more than one of these libraries must link to all of
the ones they use (the linking order is often specific):

cc —g prog.c-o prog—l audi o -1 audi ofile-Icdaudio-Ids-Iibnediad

Depending on the application you are writing, you may also have to link
with other libraries such as the GL shared library, the math library, and the
C shared library. You can use fast malloc() routines by including malloc.h and
linking with libmalloc.a.

The audio and MIDI libraries are compatible with both ANSI C and the

standard C. To compile code that is not ANSI-compliant, add —cckr to the
command line.

63

Chapter 5: Digital Audio System Software

64

Chapter 6

Programming with the Audio Library

This chapter begins by presenting
basic digital audio concepts. It
describes the Audio Library (AL)
programming model and how to use
the AL for audio I/0O, and then it
discusses how to apply real-time
programming techniques to audio
applications.

Chapter 6

Programming with the Audio Library

The Audio Library (AL) provides a uniform application programming
interface (API) for audio input to and output from Silicon Graphics
workstations that feature high-quality digital audio systems.

The AL comprises routines that provide these basic capabilities:

creating digital audio input and output connections

reading and writing digital audio data

querying and controlling digital audio data attributes
querying and controlling the configuration of the audio system

handling errors

In this chapter:

“Audio Library Basics” on page 68 discusses fundamental audio
concepts and explains the features, programming model, error handler,
and audio sampling methods of the Audio Library.

“Initializing an Audio Library Application” on page 74 explains how to
create and configure audio ports.

“Reading and Writing Audio Data” on page 90 explains how to read
and write audio samples.

“Querying and Controlling the Global Audio Device State” on page 98
explains how to query and set global audio parameters.

“Audio Library Synchronization Facilities” on page 112 explains how to
synchronize audio ports with one another and with other media.

“Real-time Programming Techniques for Audio” on page 119 explains
how to use IRIX real-time programming facilities in conjunction with
AL routines for providing optimal audio performance.

67

Chapter 6: Programming with the Audio Library

Audio Library Basics

68

This section discusses the basic concepts and data structures used by the
AL— with particular attention devoted to the programming model, sample
data formats, error handling, and programming concepts.

Audio Library Features

Features of the AL include:

¢ Binary compatibility—AL programs written on one Silicon Graphics
workstation equipped with an audio system are executable on other
audio-equipped workstations across the product line.

® Shared audio resources—more than one audio application can be active
at a time, and multiple programs can have input and output streams
open concurrently.

¢ Real-time performance—a special group of AL functions useful
specifically for writing real-time code.

Audio Library Programming Model

The AL programming model has two basic objects:

Audio device Theaudio hardware used by the AL, which is shared among
audio applications. The audio device contains settings
pertaining to the configuration of both the internal audio
system and the external electrical connections.

ALport A one-way (input or output) audio data connection
between an application program and the host audio system.
An ALport contains:

* an audio sample queue, which stores audio samples
awaiting input or output

* settings pertaining to the attributes of the digital audio
data it transports

Audio Library Basics

Some of the settings of an ALport are static; they cannot be
changed once the ALport has been opened. Other settings
are dynamic; they can be changed while an ALport is open.

ALconfig An opaque data structure for configuring these settings of
an ALport:

* audio device (static setting)

* size of the audio sample queue (static setting)
* number of channels (static setting)

¢ format of the sample data (dynamic setting)

* width of the sample data (dynamic setting)

e range of floating point sample data (dynamic setting)

Digital Audio Data Representation

The digital representation of an audio signal is generated by periodically
sampling the amplitude (voltage) of the audio signal. The samples represent
periodic “snapshots” of the signal amplitude. The Nyquist Theorem
provides a way of determining the minimum sampling frequency required
to accurately represent the information (in a given bandwidth) contained in
an analog signal. Typically, digital audio information is sampled at a
frequency that is at least double the highest interesting analog audio
frequency. See The Art of Digital Audio or a similar reference on digital audio
for more information.

Digital Audio Sample Rates

The sample rate is the frequency at which samples are taken from the analog
signal. Sample rates are measured in hertz (Hz). A sample rate of 1 Hz is
equal to one sample per second. For example, when a mono analog audio
signal is digitized at a 48 kilohertz (kHz) sample rate, 48,000 digital samples
are generated for every second of the signal.

To understand how the sample rate relates to sound quality, consider the fact

that a telephone transmits voice-quality audio in a frequency range of about
320 Hz to 3.2 kHz. This frequency range can be represented accurately with

69

Chapter 6: Programming with the Audio Library

70

1-channel data

2-channel data

4-channel data

a sample rate of 6.4 kHz. The range of human hearing, however, extends up
to approximately 18-20 kHz, requiring a sample rate of at least 40 kHz.

The sample rate used for music-quality audio, such as the digital data stored
on audio CDs is 44.1 kHz. A 44.1 kHz digital signal can theoretically
represent audio frequencies from 0 kHz to 22.05 kHz, which adequately
represents sounds within the range of normal human hearing. The most
common sample rates used for DATs are 44.1 kHz and 48 kHz. Higher
sample rates result in higher-quality digital signals; however, the higher the
sample rate, the greater the signal storage requirement.

Digital Audio Sample Frames

A sample frame is a set of audio samples that are coincident in time. A sample
frame for mono data is a single sample. A sample frame for stereo data
consists of a left-right sample pair. A sample frame for 4-channel data has
two left-right sample pairs (L, Ry, Ly, Ry).

Stereo samples are interleaved; left-channel samples alternate with right-
channel samples. 4-channel samples are also interleaved, but each frame has
two left-right sample pairs.

Figure 6-1 shows the relationship between the number of channels and the
frame size of audio sample data.

Frame
L R L R
Frame
Ly Ry Ly R
Frame
Figure 6-1 Audio Samples and Frames

Audio Library Basics

Digital Audio Sample Formats

The AL uses a digital data format called linear pulse code modulation (PCM)
(see the audio references for a definition of this term) to represent digital
audio samples.

The formats supported by the AL and the audio system are:
¢ 8-bit and 16-bit signed integer

* 24-bit signed, right-justified within a 32-bit integer

¢ 32-bit and 64-bit floating point

Note: The audio hardware supports 16-bit I/O for analog data and 24-bit
I/0 for AES/EBU digital data.

For floating point data, the application program specifies the desired range
of values for the samples; for example, from -1.0 to 1.0.

Digital Audio Input and Output Sample Resolutions

The native data format used by the audio hardware is 24-bit two’s
complement integers. The audio hardware sign-extends each 24-bit quantity
into a 32-bit word before delivering the samples to the Audio Library.

Audio input samples delivered to the Audio Library from the Indigo,
Indigoz, and Indy audio hardware have different levels of resolution,
depending on the input source that is currently active; the AL provides
samples to the application at the desired resolution. You can also write your
own conversion routine if desired.

Microphone/line-level input samples come from analog-to-digital (A /D)
converters, which have 16-bit resolution. These samples are treated as 24-bit
samples with 0’s in the low 8 bits.

AES/EBU digital input samples have either 20-bit or 24-bit resolution,
depending on the device that is connected to the digital input; for the 20-bit
case (the most common), samples are treated as 24-bit samples, with 0’s in
the least significant 4 bits. The AL passes these samples through to the
application if 24-bit two’s complement is specified. If two’s complement
with 8-bit or 16-bit resolution is specified, the AL right-shifts the samples so

71

Chapter 6: Programming with the Audio Library

72

that they will fit into a smaller word size. For floating point data, the AL
converts from the 24-bit format to floating point, using a scale factor
specified by the application to map the peak integer values to peak float
values.

For audio output, the AL delivers samples to the audio hardware as 24-bit
quantities sign-extended to fill 32-bit words. The actual resolution of the
samples from a given output port depends on the application program
connected to the port. For example, an application may open a 16-bit output
port, in which case the 24-bit samples arriving at the audio processor will
contain 0’s in their least significant 8 bits.

The Audio Library is responsible for converting between the output sample
format specified by an application and the 24-bit native format of the audio
hardware. For 8-bit or 16-bit integer samples, this conversion is
accomplished by left-shifting each sample written to the output port by 16
bits and 8 bits, respectively. For 32-bit or 64-bit floating point samples, this
con version is accomplished by rescaling each sample from the range of
floating point values that is specified by the application to the full 24-bit
range and then rounding the sample to the nearest integer value.

Handling Audio Library Errors
This section describes techniques for error handling in AL applications.

When the AL encounters an error, it:

1. Checks to see whether an error handler is set, and if so, calls the
specified routine.

2. Sets an error code, and returns a failure from the function call.

The default error handler prints a message to stderr. Although these error
messages may be helpful for debugging during the development phase, you
should turn off the default error handler in order to provide more effective
error handling by using the IRIX oserror(3C) system call to retrieve function
return codes.

Audio Library Basics

To turn off the default error handler, call ALseterrorhandler(). Its function
prototype is:

ALerrfunc ALseterrorhandler (ALerrfunc efunc)

where:

efunc is a pointer to an alternate error-handling routine of type
ALerrfunc that is declared as:

void errorfunc (long argl, const char* arg2, [args])
Substituting zero for efunc turns off the error handler.

Most AL routines set error codes when they fail. Throughout this guide, the
return values and relevant error codes are listed along with the description
of each routine. You can retrieve these error codes by calling oserror(3C).
Based on these return codes, programs can adapt or recover, and/or alert the
user by displaying a dialog box type of notifier or by printing information to
the shell window from which the application was launched.

Audio Library Application Programming Concepts

Typically, your AL program must:

¢ initialize data structures

¢ set up buffers for passing data between your application and the CPU
* query for available features

¢ configure and open audio connections

* pass data to and from the ALport and operate on that data

® process errors

* close audio connections

* free system resources

The sections that follow explain these concepts in detail.

73

Chapter 6: Programming with the Audio Library

Initializing an Audio Library Application

74

To enable audio input and output, your application must create and
configure the required audio I/O connections. This section describes how to
set up and use the AL data structures that provide audio I/O capability.

About ALports

The AL provides an opaque data structure called an ALport for audio I/O
connections. An ALport provides a one-way (input or output) mono, stereo,
or 4-channel audio data connection between an application program and the
host audio system. More than one ALport can be opened by the same
application; the number of ALports that can be active at the same time
depends on the hardware and software configurations you are using.

An ALport consists of a sample queue and static and dynamic state
information. For audio input, the hardware places audio samples in an input
port’s queue at a constant rate, and your application program reads the
samples from the queue. Similarly, for audio output, your application writes
audio samples to an output port’s queue, and the audio hardware removes
the samples from the queue. A minimum of two ALports are necessary to
provide input and output capability for an audio application.

Using ALconfig Structures to Configure ALports

You can open an ALport with the default configuration or you can customize
an ALconfig for configuring an ALport suited to your application needs.

The default ALconfig has:

* abuffer size of 100,000 samples

e stereo data

* atwo’s complement sample format
® a16-bit sample width

These settings provide an ALport that is compatible with CD- and DAT-
quality data, but if your application requires different settings, you must

Initializing an Audio Library Application

create an ALconfig with the proper settings before opening a port. The
device, channel, and queue-size settings for an ALport are static—they
cannot be changed after the port has been opened.

The steps involved in configuring and opening an ALport are listed below,
followed by a sample code fragment that illustrates each of these steps. The
sample program is followed by subsections that describe these concepts
more fully and explain the use of each routine listed here.

1. Turn off the default error handler by passing a 0 to
AlLseterrorhandler().

2. If the default ALconfig settings are satisfactory, you can simply open a
default ALport by using 0 for the configuration in the ALopenport()
routine; otherwise, create a new ALconfig by calling ALnewconfig().

3. If nondefault values are needed for any of the ALconfig settings, set the
desired values as follows:

» Call ALsetchannels() to change the number of channels (page 77).
« Call ALsetqueuesize() to change the sample queue size (page 79).
« Call ALsetsampfmt() to change the sample data format (page 80).
» Call ALsetwidth() to change the sample data width (page 82).

» Call ALsetfloatmax() to set the maximum amplitude of floating
point data (not necessary for integer data formats) (page 84).

4. Open an ALport by passing the ALconfig to the ALopenport() routine.

5. Create additional ALports with the same settings by using the same
ALconfig to open as many ports as are needed.

75

Chapter 6: Programming with the Audio Library

76

Example 6-1 demonstrates how to configure and open an output ALport
that accepts floating point mono samples.

Example 6-1 Configuring and Opening an ALport

ALconfi g audi oconfi g;
AlLport audi oport;
int err;

void audioinit /* Configure an audio port */
{

ALset errorhandl er (0);

audi oconfig = ALnewconfig();

ALset sanpf nt (audi oconfi g, AL_SAVPFMI_FLQAT) ;
ALset f | oat max(audi oconfi g, 10.0);

ALset queuesi ze(audi oconfi g, 44100);

ALset channel s(audi oconfi g, AL_MONO) ;

audi oport = ALopenport("surreal","w', audi oconfi g);
if (audi oport == (ALport) 0) {

err = oserror();

if (err == AL_BAD NO PORTS) {

fprintf(stderr, " Systemis out of audio ports\n");
} else if (err == AL_BAD DEVI CE_ACCESS) {
fprintf(stderr, " Couldn’t access audi o device\n");

} else if (err == AL_BAD QUT_OF MEM {
fprintf(stderr, " Qut of nenory\n");

}
exit(1);

}

The sections that follow explain how to use ALconfigs in greater detail.

Creating a New ALconfig

To create a new ALconfig structure that is initialized to the default settings,
call ALnewconfig(). Its function prototype is:

ALconfig ALnewconfig (void)

The ALconfig that is returned can be used to open a default ALport, or you
can modify its settings to create the configuration you need. In Example 6-1,

Initializing an Audio Library Application

the channel, queue size, sample format, and floating point data range
settings of an ALconfig named audioconfig are changed.

ALnewconfig() returns an ALconfig structure upon successful completion;
otherwise, it returns 0 and sets an error code that you can retrieve by calling
oserror(3C). Possible errors include:

AL_BAD_OUT_OF_MEM insufficient memory available to allocate
the ALconfig structure

Setting and Getting the Number of Channels for an ALconfig

An ALport can be configured for one, two, or four audio channels. The
channel setting remains in effect as long as the port is open.

Note: Configuring an ALport to use four channels does not depend on the
hardware configuration of the system on which the application is running.
See “Querying and Controlling the Global Audio Device State” on page 98
for information on configuring the hardware for 4-channel mode.

To set the number of channels for an ALconfig structure, call
AlLsetchannels(). Its function prototype is:

int ALsetchannels (ALconfig config, |ong channels)

where:
config is the ALconfig for which you want to set the channels
channels is the number of channels to configure: 1, 2, or 4

Any ALport that you open with this config will have the number of channels
that you set in channels.

AlLsetchannels() returns 0 upon successful completion; otherwise, it returns
-1 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_CONFIG config is either invalid or null
AL_BAD_CHANNELS channelsisnot1,2, or 4

77

Chapter 6: Programming with the Audio Library

78

To retrieve the channel setting of a given ALconfig structure, call
AlLgetchannels(). Its function prototype is:

| ong ALget channels (ALconfig config)

where:

config is the ALconfig structure being queried

ALgetchannels() returns the channel setting of config, upon successful
completion; otherwise, it returns —1 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

AL_BAD_CONFIG config is either invalid or null

Setting and Getting the Sample Queue Size for an ALconfig

Selecting the proper size for the sample queue is very important, because
continuous sound output depends on the ability of the application to fill the
queue at least as fast as the hardware empties it. For example, if the queue is
too small, the application may take too long supply new samples, resulting
in audible breaks that sound like pops or clicks. The size of the queue
determines the maximum delay that can be tolerated while waiting for the
application to get more samples at the given sample rate. To determine how
much space to allocate for the sample queue, consider the data type and rate.
For example, the default queue size of 100,000 samples provides buffer space
for slightly more than one second of 48 kHz stereo audio data, and a little
more than three seconds of 32 kHz mono data. To better understand these
phenomena, see Figure 6-2 on page 91 for an illustration of a sample queue
and read the associated discussion.

Tip: The main point to be concerned about is how full to keep the queue,
regardless of its size. If the queue is full, more time passes before samples are
played. The ideal situation is to keep enough samples in the queue to allow
for the longest possible delay that will be experienced in retrieving the next
batch of samples. See “Real-time Programming Techniques for Audio” on
page 119 for an explanation of how to set the fill threshold for a queue.

Initializing an Audio Library Application

The noninclusive values for minimum and maximum allowable queue sizes
for ALports on Indigo, Indigo?, and Indy workstations are listed in Table 6-1.

Table 6-1 Minimum and Maximum Allowable Queue Sizes for ALports
ALport Type Minimum Size Maximum Size
Mono 510 131,069

Stereo 1019 262,139

4-channel on Indigo 2038 524,278

4-channel on Indigo® or Indy 1019 262,139

To specify an ALconfig with a sample queue size other than the default for
an ALport, call ALsetqueuesize(). Its function prototype is:

int AlLsetqueuesize (ALconfig config, const long size)

where:

config is the ALconfig structure for which you want to change the
sample queue size

size is the number of sample locations to allocate for the queue

Any ALport that you open with this config will have a queue size of size.

ALsetqueuesize() returns 0 upon successful completion; otherwise, it
returns —1 and sets an error code that you can retrieve by calling oserror(3C).
Possible errors include:

AL_BAD_CONFIG config is either invalid or null
AL_BAD_QSIZE size is either negative or larger than the

maximum allowable queue size

To retrieve the size of the sample queue in a given ALconfig structure, call
AlLgetqueuesize(). Its function prototype is:

| ong ALget queuesi ze (ALconfig config)

where:

config is the ALconfig structure being queried

79

Chapter 6: Programming with the Audio Library

ALgetqueuesize() returns the queuesize of config upon successful
completion; otherwise, it returns —1 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

AL_BAD_CONFIG config is either invalid or null

Setting and Getting the Sample Data Format for an ALconfig

The AL allows you to choose between three sample formats:
* two’s complement (default)
¢ floating point

¢ double-precision floating point

To set the sample format type of a given ALconfig structure, call
ALsetsampfmt(). Its function prototype is:

int ALsetsanpfmt (Alconfig config, |ong sanpleformt)

where:

config is the ALconfig structure for which you want to change the
sample format

sampleformat must be one of three symbolic constants:

AL_SAMPFMT_TWOSCOMP two’s complement linear
PCM format, for which
the width is specified by
AlLsetwidth()

AL_SAMPFMT_FLOAT 32-bit IEEE double-
precision floating point
scaled linear PCM format

AL_SAMPFMT_DOUBLE 64-bit IEEE double-
precision floating point
scaled linear PCM format

Any ALport that you open with this config will have a sample format of
sampleformat.

80

Initializing an Audio Library Application

ALsetsampfmt() returns 0 upon successful completion; otherwise, it returns
-1 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_CONFIG config is either invalid or null

AL_BAD_SAMPFMT sampleformat is not one of
AL_SAMPFMT_TWOSCOMP,
AL_SAMPFMT_FLOAT, or
AL_SAMPFMT_DOUBLE

To retrieve the sample format of a given ALconfig structure, call
ALgetsampfmt(). Its function prototype is:

I ong ALgetsanpfmt (ALconfig config)

where:

config is the ALconfig structure being queried

ALgetsampfmt() returns the sampleformat setting of config upon successful
completion; otherwise, it returns —1 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

AL_BAD_CONFIG config is either invalid or null

Setting and Getting the Integer Sample Width for an ALconfig

The sample width represents the degree of precision to which the full-scale
range of an audio signal can be sampled. You can specify the width of two’s
complement integer sample data, but you can’t specify the width of floating
point samples. Thus, setting the sample width has no effect when the sample
format is AL_SAMPFMT_FLOAT or AL_SAMPFMT_DOUBLE; however,
the width setting does have an effect if the sample format is subsequently
changed to AL_SAMPFMT_TWOSCOMP.

81

Chapter 6: Programming with the Audio Library

The sample width also determines which data type the AL uses when
reading and writing samples. The sample widths available for two’s
complement data, and their associated resolutions and data types, are:

8-bit samples

16-bit samples

24-bit samples

representing a total of 28 quantized signal values. The AL
treats 8-bit samples as packed, signed characters (chars).

representing a total of 2'® quantized signal values. The AL
treats 16-bit samples as packed, signed short integers
(shorts).

representing a total of 22* quantized signal values. The AL
treats 24-bit samples as right-justified, sign-extended,
signed 32-bit integers (longs).

For all sample widths, sample values map linearly to intermediate signal

amplitudes.

To specify the sample width setting of two’s complement data for an
ALconfig structure, call ALsetwidth(). Its function prototype is:

int ALsetwidth (ALconfig config, |ong sanplesize)

where:

config

samplesize

is the ALconfig structure for which you want to change the
sample width

is a symbolic constant denoting the sample width:

AL_SAMPLE_8 1-byte sample width of range -128 to
127

AL_SAMPLE_16 2-byte sample width of range —32768 to
32767

AL_SAMPLE_24 4-byte sample width of range —8388608
to 8388607

Any ALport that you open with this config will have a sample width of

samplesize.

82

Initializing an Audio Library Application

ALsetwidth() returns 0 upon successful completion; otherwise it returns -1
and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_CONFIG config is either invalid or null

AL_BAD_WIDTH samplesize is not one of AL_SAMPLE_S,
AL_SAMPLE_16, or AL_SAMPLE_24

To retrieve the current sample width setting of an ALconfig structure, call
ALgetwidth(). Its function prototype is:

I ong ALgetwi dth (ALconfig config)

where:

config is the ALconfig structure being queried

ALgetwidth() returns the samplesize of config upon successful completion;
otherwise, it returns —1 and sets an error code that you can retrieve by calling
oserror(3C). Possible errors include:

AL_BAD_CONFIG config is either invalid or null

Getting and Setting the Floating Point Data Range

If you configure an ALport to use floating point data (a sample format of
either AL SAMPFMT_FLOAT or AL_SAMPFMT_DOUBLE), you need to
define a maximum value in order to set the upper and lower bounds of the
samples that pass through that port. Setting the floating point maximum
value specifies a symmetrical range that is centered about zero.

Tip: To have more control over the scaling, you can program your

application to perform its own floating point-to-integer conversion before
passing samples through the ALport.

83

Chapter 6: Programming with the Audio Library

84

To set the maximum value of floating point data, call ALsetfloatmax(). Its
function prototype is:

int AlLsetfloatmax (ALconfig config, double maxi mum val ue)

where:

config is the ALconfig structure for which you want to set the
floating point maximum value

maximum_value is an IEEE double-precision floating point value,
which defines the range of floating point data for the
ALreadsamps() or ALwritesamps() functions

Samples read into any ALport that you open with this config are scaled to the
range [-maximum_value, maximum_value]. Samples output from this ALport
should be in the range [-maximum_value, maximum_value] to avoid limiting.
The default maximum value is 1.0.

Note: The number of quantization steps that can be represented by floating
point samples is a function of the value of maximum_value. If maximum_value
is too small, you will not be able to represent 2'¢ evenly spaced amplitude
levels.

AlLsetfloatmax() has no function when the sample format is
AL_SAMPFMT_TWOSCOMP; however, the maximum_value setting takes
effect if the sample format is subsequently changed to
AL_SAMPEFMT_FLOAT or AL_SAMPFMT_DOUBLE.

AlLsetfloatmax() returns 0 upon successful completion; otherwise, it returns
-1 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_CONFIG config is either invalid or null
AL _BAD_FLOATMAX maximum_value is zero

To retrieve the floating point maximum value, call ALgetfloatmax(). Its
function prototype is:

doubl e ALgetfl oatnmax (Al config config)

where:

config is the ALconfig structure being queried

Initializing an Audio Library Application

AlLgetfloatmax() returns the maximum_value of config upon successful
completion; otherwise, it returns 0 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

AL_BAD_CONFIG config is either invalid or null

Retrieving the Setup of an Existing ALport

You can retrieve an ALconfig whose settings match those of an existing
ALport. This is an easy way to create an ALconfig to use for changing the
dynamic settings of an ALport, as described next in “Modifying the Audio
Data Attributes of an Open ALport” on page 85.

To retrieve a new ALconfig structure that is a clone of an existing ALconfig
structure already in use by an existing audio port, call ALgetconfig(). Its
function prototype is:

ALconfig ALgetconfig (ALport port)

where:

port is the audio port whose ALconfig structure is being cloned

You should call ALfreeconfig() to deallocate the ALconfig when it is no
longer needed.

ALgetconfig() returns an ALconfig structure upon successful completion;
otherwise, it returns 0 and sets an error code that you can retrieve by calling
oserror(3C). Possible errors include:

AL_BAD_PORT port is either invalid or null

AL_BAD_OUT_OF _MEM insufficient memory available to allocate
AlLcontfig structure

Modifying the Audio Data Attributes of an Open ALport

In general, you don’t change the settings for an ALport while it is open, but
sometimes you might need to modify the audio data attributes of an ALport
while it is open. For example, to create continuous output from multiple

sound files that have different sample widths, such as 8-bit and 16-bit data,
an application might need to change the sample width of the output port to

85

Chapter 6: Programming with the Audio Library

86

match the output data, without closing and reopening the port, in order to
prevent interruptions in the output.

To change the data attributes of an ALport instantaneously, use
ALsetsampfmt(), ALsetfloatmax(), and ALsetwidth() as needed to define
the settings of an ALconfig, which you then pass to the ALsetconfig()
routine. The only settings that can be modified with this method are the
sample format, the sample width, and the maximum floating point value.
You can’t use this method to change the audio device, the queue size, or the
number of channels in an ALport.

AlLsetconfig() changes an audio port’s ALconfig structure to match that of a
given ALconfig. Its function prototype is:

int ALsetconfig (ALport port, ALconfig config)

where:

port is the audio port for which you want to change the ALconfig
settings

config is the ALconfig from which the new settings are copied

AlLsetconfig() returns 0 upon successful completion; otherwise, it returns -1
and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_PORT port is either invalid or null

AL_BAD_CONFIG config is either invalid or null

AL_BAD_DEVICE port and config have conflicting device
settings

AL_BAD_QSIZE port and config have conflicting values

for queuesize

AL_BAD_CHANNELS port and config have conflicting values
for channels setting

Freeing Resources Associated with an ALconfig

To minimize memory consumption, you should free the memory associated
with an ALconfig thatis no longer needed. An ALconfig is no longer needed
if the application is not going to open any more ports with it.

Initializing an Audio Library Application

To deallocate an ALconfig structure, call ALfreeconfig(). Its function
prototype is:

int ALfreeconfig (ALconfig config)

where:

config is the ALconfig to deallocate. Freeing an ALconfig structure
does not affect any port(s) that have already been opened
using that ALconfig

AlLfreeconfig() returns 0 on successful completion; otherwise, it returns -1
and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_CONFIG config is either invalid or null

Opening and Closing Audio Ports

An ALport provides a one-way (input or output) mono, stereo, or 4-channel
audio data connection between an application program and the host audio
system. More than one ALport can be opened by the same application; the
number of ALports that can be active at the same time depends on the
hardware and software configurations you are using. Open ALports use
CPU resources, so be sure to close an ALport when I/0 is completed and
free the ALconfig when it is no longer needed.

Audio ports are opened and closed by using ALopenport() and
ALcloseport(), respectively. Unless you plan to use the default port
configuration, you should set up an ALconfig structure by using
ALnewconfig() and then use the routines for setting ALconfig fields, such as
ALsetchannels(), ALsetqueuesize(), and ALsetwidth() before calling
ALopenport().

87

Chapter 6: Programming with the Audio Library

88

To allocate and initialize an ALport structure, call ALopenport(). Its function
prototype is:

ALport ALopenport (char *name, char *direction,
ALconfig config)

where:

name is an ASCII string used to identify the port for humans
(much like a window title in a graphics program). The name
is limited to 20 characters and should be both descriptive
and unique, such as an acronym for your company name or
the application name, followed by the purpose of the port

direction specifies whether the port is for input or output:

n_n

r configures the port for reading (input)

"_.n

w configures the port for writing (output)

config is an ALconfig that you have previously defined or is
null (0) for the default configuration.

Upon successful completion, ALopenport() returns an ALport structure for
the named port; otherwise, it returns a null-valued ALport, and sets an error
code that you can retrieve by calling oserror(3C). Possible errors include:

AL_BAD_CONFIG config is either invalid or null
AL_BAD_DIRECTION direction is invalid
AL_BAD_OUT_OF_MEM insufficient memory available to allocate
the ALport structure
AL_BAD_DEVICE_ACCESS audio hardware is inaccessible
AL_BAD_NO_PORTS no audio ports currently available

AlLcloseport() closes and deallocates an audio port—any samples remaining
in the port will not be output. Its function prototype is:

int AlLcl oseport (AlLport port)

where:

port is the ALport you want to close

Initializing an Audio Library Application

Example 6-2 opens an input port and an output port and then closes them.

Example 6-2 Opening Input and Output ALports

i nput _port = ALopenport ("waycoolinput", "r", 0);
if (input_port == (ALport) O {

err = oserror();

if (err == AL_BAD NO PORTS) {

fprintf(stderr, " Systemis out of audio ports\n");
} else if (err == AL_BAD DEVI CE_ACCESS) ({
fprintf(stderr, " Couldn’t access audi o device\n");
} else if (err == AL_BAD QUT_OF_MEM {
fprintf(stderr, " Qut of nenory: port open failed\n");
}
exit(1);
}
out put _port = AlLopenport("killeroutput”, "w', 0);

if (input_port == (ALport) O {
err = oserror();
if (err == AL_BAD_NO _PCRTS) {

fprintf(stderr, " Systemis out of audio ports\n");
} else if (err == AL_BAD DEVI CE_ACCESS) ({
fprintf(stderr, " Couldn’t access audio device\n");
} else if (err == AL_BAD QUT_OF_MEM {
fprintf(stderr, " Qut of nenory: port open failed\n");
}
exit(1);

ALcl oseport (i nput _port);
ALcl oseport (out put _port);

89

Chapter 6: Programming with the Audio Library

Reading and Writing Audio Data

90

This section explains how an audio application reads and writes audio
samples to and from ALports.

Using Audio Sample Queues

Audio samples are placed in the sample queue of an ALport to await input
or output (see Figure 6-2). The audio system uses one end of the sample
queue; the audio application uses the other end.

During audio input (left side of Figure 6-2), the audio hardware
continuously writes audio samples to the tail of the input queue at the
selected input rate, for example, 44,100 sample pairs per second for 44.1 kHz
stereo data. If the application can’t read the samples from the head of the
input queue at least as fast as the hardware writes them, the queue fills up
and some incoming sample data is irretrievably lost.

During audio output (right side of Figure 6-2), the application writes audio
samples to the tail of the queue. The audio hardware continuously reads
samples from the head of the output queue at the selected output rate, for
example, 44,100 sample pairs per second for 44.1 kHz stereo data, and sends
them to the outputs. If the application can’t put samples in the queue as fast
as the hardware removes them, the queue empties, causing the hardware to
send 0-valued samples to the outputs (until more data is available), which
are perceived as pops or breaks in the sound.

For example, if an application opens a stereo output port with a queue size
of 100,000, and the output sample rate is set to 48 kHz, the application needs
to supply (2 % 48,000 = 96,000) samples to the output port at the rate of at
least 1 set of samples per second, because the port contains enough space for
about one second of stereo data at that rate. If the application fails to supply
data at this rate, an audible break occurs in the audio output.

On the other hand, if an application tries to put 40,000 samples into a queue
that already contains 70,000 samples, there isn’t enough space in the queue
to store all the new samples, and the program will block (wait) until enough
of the existing samples have been removed to allow for all 40,000 new
samples to be put in the queue. The AL routines for reading and writing
block; they do not return until the input or output is complete.

Reading and Writing Audio Data

Figure 6-2 shows how input and output ports use audio sample queues.

INPUT OUTPUT
Application Application

Application writes samples

Application reads samples to output port

Output ALport

from input port

Input ALport

Audio hardware places Head Audio hardware removes
samples into queue continuously samples from queue continuously
(for example, 44,100 pairs/second) (for example, 44,100 pairs/second)
Audio hardware Audio hardware
Overflow Underflow

B s
=~

/ Tai / \

Head
. Head Tail

Samples sent to full queue are lost .: Hardware pulls 0-valued samples from empty queue

Figure 6-2 Audio Sample Queues

91

Chapter 6: Programming with the Audio Library

92

Monitoring the Audio Sample Queue Status to Provide Nonblocking I/O

This section explains how to use the AL routines for monitoring the status of
an ALport’s sample queue.

The AL maintains the following status information about the queue:

filled the number of queue locations that contain valid data
fillable the number of empty locations in the queue

The sum of the empty locations and the full locations is the total size of the
queue:

filled + fillable = queuesize

Checking the filled and fillable statuses before reading and writing prevents
blocking and helps prevent overflow and underflow errors.

AlLgetfillable() and ALgetfilled() provide instantaneous information on the
state of an audio port’s queue.

To prevent blocking during output, you can determine how many samples
will fit into the queue by calling ALgetfillable() before writing any samples,
and then write only that many samples to the queue.

To get the number of empty queue locations in a given ALport, call
AlLgetfillable(). Its function prototype is:

long AlLgetfillable (ALport port)

where:

port is the audio port whose queue is being examined

The value returned indicates how many samples can still be written without
blocking.

To prevent blocking during input, you can determine how many samples are
in the queue by calling ALgetfilled() before reading any samples, then read
only that many samples from the queue. You can also periodically check
Al getfilled() to find out whether all of your output data has drained before
you shut down a port by calling ALcloseport().

Reading and Writing Audio Data

To find out how many queue locations in a given audio port currently have
valid samples in them at a given instant, call ALgetfilled(). Its function
prototype is:

long ALgetfilled (ALport port)

where:

port is the audio port whose queue is being examined

The value returned indicates how many samples can still be read without
blocking if port is an input port or how many samples have yet to be played
if it is an output port.

More Methods for Working with Queues

Besides using these routines, you can use ALgetstatus() to check for
underflow and overflow errors, as described in “Detecting Errors in the
Audio Stream” on page 97.

“Real-time Programming Techniques for Audio” on page 119 discusses how
to use several other routines that allow an application to view and modify
the dynamic state of an audio port. These routines are most useful in
developing real-time audio applications.

Reading and Writing Samples

Audio input is accomplished by reading audio data samples from an input
ALport’s sample queue. Similarly, audio output is accomplished by writing
audio data samples to an output ALport’s sample queue.

ALreadsamps() and ALwritesamps() provide mechanisms for transferring
audio samples to and from sample queues. They are blocking routines, which
means that a program will halt execution within the ALreadsamps() or
ALwritesamps() call until the request to read or write samples can be
completed.

93

Chapter 6: Programming with the Audio Library

94

Reading Samples from an Input ALport

ALreadsamps() reads a specified number of samples from an input port to a
sample data buffer, blocking until the requested number of samples have
been read from the port. Its function prototype is:

int ALreadsanps(const ALport port, void *sanples,
const | ong sanpl ecount)

where:

port is an audio port configured for input

samples is a pointer to a buffer into which you want to transfer the
samples read from input. samples is treated as one of the
following types, depending on the configuration of the
ALport:

char * for integer samples of width AL_SAMPLE_8

short* for integer samples of width AL_SAMPLE_16

long * for integer samples of width AL_SAMPLE_24

float* for floating point samples

double * for double-precision floating point samples
samplecount is the number of samples to read

To prevent blocking, samplecount must be less than the return value of
AlLgetfilled().

Note: When the application is reading samples into an ALport that has
channels set to 4, samplecount must be an integer multiple of the frame size, or
an error will be returned and no samples will be transferred.

When 4-channel data is input on systems that do not support 4 line-level
electrical connections, that is, when setting AL_CHANNEL_MODE to
AL_4CHANNEL is not possible, ALreadsamps() will provide 4 samples per
frame, but the second pair of samples will be set to 0.

Reading and Writing Audio Data

Table 6-2 shows the input conversions that are applied when reading mono,
stereo, and 4-channel input in stereo mode (default) and in 4-channel mode
hardware configurations. Each entry in the table represents a sample frame.

Table 6-2 Input Conversions for ALreadsamps()

Hardware Configuration

Input Indigo, and Indigo2 or Indy in Indigo2 or Indy in 4-channel Mode
Stereo Mode

Frame at (L1, Ry) (L1, Ry, Ly, Ry)
physical inputs
Frameasreadby (L;+R;) /2 (Clip (Ly + Ly), Clip (R; + Ry)) /2

a mono port

Frameasreadby (L, Ry) (Clip (Lq + Ly), Clip (Ry + Ry))
a stereo port

Frameasread by (L, Rq,0,0) (L1, Ry, Ly, Ry)
a 4-channel port

Note: If the summed signal is greater than the maximum allowed by the
audio system, it is clipped (limited) to that maximum, as indicated by the
Clip function.

Writing Samples to an Output ALport

Samples placed in an output queue are played by the audio hardware after
a specificamount of time, which is equal to the number of samples that were
present in the queue before the new samples were written, divided by the
(sample rate x number of channels) settings of the ALport.

95

Chapter 6: Programming with the Audio Library

96

ALwritesamps() writes a specified number of samples to an output port
from a sample data buffer, blocking until the requested number of samples
have been written to the port. Its function prototype is:

int ALwitesanps (AlLport port, void *sanples,
| ong sanpl ecount)

where:

port is an audio port configured for input

samples is a pointer to a buffer from which you want to transfer the
samples to the audio port

samplecount is the number of samples you want to read

Note: When the application is writing samples from an ALport that has
channels set to 4, samplecount must be an integer multiple of the frame size, or
an error will be returned and no samples will be transferred.

Table 6-3 shows the output conversions that are applied when writing mono,
stereo, and 4-channel data to stereo mode (default) and 4-channel mode

hardware configurations.

Table 6-3 Output Conversions for ALwritesamps()

Hardware Configuration

Output Frame as Indigo, and Indigo? or Indy in Indigo? or Indy in
Written into Port Stereo Mode 4-channel Mode

Mono Port (L) (Ly, Ly) (L1, L1, 0,0)

Stereo Port (Ll, Rl) (Ll, Rl) (Ll, Rl/ 0, O)

4-channel (L1, Ry, Ly, Ry) (Clip (Ly +Ly), Clip (R; +Ryp)) (L1, Ry, Ly, Ro)
Port

Reading and Writing Audio Data

Detecting Errors in the Audio Stream

Errors in an input or output audio stream may occur if an application is
unable to read samples from or write samples to a queue fast enough to
satisfy the demands of the real-time hardware.

This section explains how to use two AL routines that let you identify errors
and define custom error-reporting functions.

If a program cannot provide samples to an output port fast enough to keep
up with the hardware, an audible break in the output may be heard.
Likewise, if an application does not read input samples as fast as the
hardware puts them in the queue, some samples will be lost.

The audio system detects such discontinuities in audio sample streams, and
information concerning these breaks can be gathered by the application.
This information can be used to dynamically tune the application execution,
to increase the priority of a process, or merely to alert the user to errors.

AlLgetstatus() provides access to information regarding the most recent
error in the audio stream associated with a port. Its function prototype is:

int ALgetstatus (Al port port, long *PVbuffer,
I ong bufferlength)

where:
port is the audio port being queried
PVbuffer is an array of longs, the even elements of which should

contain the error parameters you want to read

bufferlength is the number of elements in the PVbuffer array

The odd element directly following each parameter will then be written with
the current values associated with each corresponding parameter.

AlLgetstatus() lets you determine the number of errors associated with the
stream, the type of the last error, the length of the last error, and the location

of the error relative to the total lifetime of the port.

The location of the error marks the point in the port’s lifetime, that is, the
time since the port was opened, at which the error was detected. This value

97

Chapter 6: Programming with the Audio Library

is a 48-bit number representing the number of sample frames sent through
the port. The value is generated by concatenating the least significant 24 bits
of the values associated with AL_ERROR_LOCATION_LSP and
AL_ERROR_LOCATION_MSP.

Table 6-4 lists and describes the error parameters.

Table 6-4 Error Parameters for ALgetstatus()
Error Parameter Description
AL_ERROR_LENGTH Current length in sample frames of the current

error. Consecutive values of this variable may
differ if the current error has not completed. Only
the least significant 24 bits of this variable are
valid.

AL_ERROR_LOCATION_LSP Least significant portion (LSP) of the location of
the beginning of the current error. Only the least
significant 24 bits of this variable are valid.

AL_ERROR_LOCATION_MSP Most significant portion of the location of the
beginning of the current error (in sample frames).
Only the least significant 24 bits of this variable are
valid.

AL_ERROR_NUMBER Number of errors associated with the port since it
was opened.

AL_ERROR_TYPE Type of error that has most recently occurred on
the port. Supported types are
AL_ERROR_INPUT_OVERFLOW and
AL_ERROR_OUTPUT_UNDERFLOW.

Querying and Controlling the Global Audio Device State

This section explains how to use the AL routines for querying and modifying
the global audio device state. Your application should query for the
availability of special audio features because different workstations have
different capabilities, and because programming in this way makes it easy to
update your application when new features are added.

98

Querying and Controlling the Global Audio Device State

Because the audio device is a shared resource, it is especially important to
query whether other audio applications are running, so that your
application does not inadvertently change a setting upon which another
application relies. If no other audio applications are running, your program
can use the AL routines described in this section to modify the settings of the
state variables, but an application should always verify that it is the only
audio application in use before changing any system-wide settings.

There is a core set of parameters that exists on every system and special
parameters for capabilities such as 4-channel mode and stereo mic mode that
don’t exist on all configurations. To query for the availability of a noncore
parameter, you have to query for both its existence and whether it supports
the settings that you require. It is not necessary to query for the existence of
core parameters.

Table 6-5 lists the core set of global parameters, describes their roles, and
provides valid values.

Table 6-5 Core Global Parameters for AL_DEFAULT_DEVICE

Global Parameter

Description and Valid Values

AL_INPUT_SOURCE

AL_LEFT_INPUT_ATTEN

AL_RIGHT_INPUT_ATTEN

AL_INPUT_RATE

Selects the active input source:
AL_INPUT_LINE—line-level input jack
AL_INPUT_MIC—microphone input jack
AL_INPUT_DIGITAL—serial digital input jack

Controls the left input attenuation level for both the line-in level and the microphone level.
Range = 0-255, 0 = no attenuation, 255 = maximum attenuation.

Controls the right input attenuation level for both the line-in level and the microphone level.
Range = 0-255, 0 = no attenuation, 255 = maximum attenuation.

Indicates the sample rate at the analog (line or microphone) inputs. A positive value indicates
a specific sampling rate in Hz. The AL rounds unsupported values to the nearest supported
value.

A negative value indicates a logical value, including AL_RATE_AES_1, meaning to match the
analog sampling rate to the rate at which data is arriving at the digital input.

Note that AL_INPUT_RATE does not apply when the digital input jack is in use. The digital
input data stream has its own sample rate, which is determined strictly by the device
generating the digital data.

99

Chapter 6: Programming with the Audio Library

Table 6-5 (continued) Core Global Parameters for AL_DEFAULT_DEVICE

Global Parameter

Description and Valid Values

AL_OUTPUT_RATE

AL_LEFT_SPEAKER_GAIN

AL_RIGHT_SPEAKER_GAIN

AL_INPUT_COUNT
AL_OUTPUT_COUNT
AL_UNUSED_COUNT
AL_MONITOR_CTL

AL_SPEAKER_MUTE_CTL

Indicates the sample rate at the analog and digital outputs. A positive value indicates a specific
sampling rate in Hz. The AL rounds unsupported values to the nearest supported value.

A negative value indicates a logical value, such as AL_RATE_INPUT_RATE, meaning to match
the output sample rate to the rate used by the currently active input, or AL_RATE_AES_1,
meaning to match the output sample rate to the rate at which samples are arriving at the digital
input.

Controls the left speaker and headphone volume levels; does not affect line-level and digital
outputs. Range = 0-255, 0 = no gain, 255 = maximum gain. Zero gain does not necessarily mean
zero volume.

Controls the right speaker and headphone volume levels; does not affect line-level and digital
outputs. Range = 0-255, 0 = no gain, 255 = maximum gain. Zero gain does not necessarily mean
zero volume.

Read-only value that indicates the number of system-wide open input ALports.
Read-only value that indicates the number of system-wide open output ALports.
Read-only value that indicates the number of system-wide unopened ALports.

Controls monitoring. When monitoring is enabled, audio input is passed through to the output.
Input and output sample rates must be precisely matched to prevent distortion.
AL_MONITOR_ON enables monitoring; AL_MONITOR_OFF disables monitoring.

AL_SPEAKER_MUTE_ON mutes speaker and headphones; AL_SPEAKER_MUTE_OFF
unmutes speaker and headphones. Any change to AL_LEFT_SPEAKER_GAIN or
AL_RIGHT_SPEAKER_GAIN shuts off speaker muting.

100

Querying and Controlling the Global Audio Device State

Table 6-6 lists and describes special parameters that are available on some
systems. You should query for the existence of these parameters and whether
they support the required values before using them.

Table 6-6 Special Global Parameters for System-Dependent Audio Capabilities

Global Parameter

Description and Valid Values

AL_CHANNEL_MODE

AL_MIC_MODE

AL_LEFT2_INPUT_ATTEN

AL_RIGHT2_INPUT_ATTEN

AL_LEFT_MONITOR_ATTEN

AL_RIGHT_MONITOR_ATTEN

AL_DIGITAL_INPUT_RATE

Configures the audio hardware. AL_STEREO
configures the hardware for stereo audio;
AL_4CHANNEL configures the hardware for 4-
channel audio on systems that support it.

Selects the microphone mode. AL_MONO selects the
mono microphone; AL_STEREO selects stereo mic
input on systems that support it.

Controls the attenuation for the L, line-level or mic-
level input.

Controls the attenuation for the R, line-level or mic-
level input.

Controls the attenuation for the left half of the
monitor signal. Range = 0-255, 0 = no attenuation,
255 = maximum attenuation.

Controls the attenuation for the right half of the
monitor signal. Range = 0-255, 0 = no attenuation,
255 = maximum attenuation.

Read-only value; sample rate at which data is
arriving at the digital input. The rate is that signified
by the nonaudio bits of the incoming digital signal; it
is not actually measured. A positive value indicates a
specific sampling rate in Hz.

A negative value indicates a logical value, including
AL_RATE_UNDEFINED, meaning that the audio
system could not determine the digital input data
rate, or the device generating the digital data has
marked the data as having an indeterminate rate.

Note that the digital input data stream contains its
own clock signal; thus, its notion of a given rate will
differ slightly from an internally generated version of
the same rate.

101

Chapter 6: Programming with the Audio Library

102

Techniques for Working with Global Parameters

The AL routines for working with parameters are:

ALqueryparams() determines possible hardware parameters

ALgetparams() gets current settings of hardware parameters
AlLsetparams() sets hardware parameters

ALgetminmax() gets bounds of hardware parameters
ALgetdefault() gets default values of hardware parameters
AL getname() returns name for an audio device state variable

All of these routines expect a device argument of type long, representing the
particular audio device whose state you want to know or change. The only
currently supported device is AL_DEFAULT_DEVICE.

Several of these routines expect parameter-value buffer (PVbuffer)
arguments. A PVbuffer is simply an array of long integers, where the integers
are logically organized as pairs of elements. The first element of each pair is
a parameter constant defined in the include file audio.h. The second element
of each pair stores a value associated with the parameter. The second
location can be used to pass a value for a parameter into a routine or to return
a value for a given parameter from a routine.

Tip: You don’t have to pass an array containing all of the possible
parameters; create an array that contains only the values of interest.

Some methods for using these routines are:

e If you need a complete list of all available parameters, call
ALqueryparams(). To be certain that you have a large enough buffer to
contain the parameter-value pairs, you can pass a zero in place of the
buffer, then call malloc() to allocate a buffer the size of the returned
value.

e If you are interested only in certain values, create an array that is twice
the size of the number of parameters you are querying, and fill the even
locations with the parameters of interest, then:

— call ALgetparams() to determine the current settings of the state
variables.

Querying and Controlling the Global Audio Device State

— fill in the even entries with the values that you want to change, and
then call ALsetparams() to change the values.

* Some parameters might exist but might not allow the needed settings,
so call ALgetminmax() to get the parameter bounds and check to be
sure that the values you want to use exist.

Getting a List of Available Parameters

ALqueryparams() asks the audio device to supply a list of descriptors and
corresponding descriptions for all the currently available global state
variables. Its function prototype is:

| ong ALqueryparans (

where:
device

PVbuffer

bufferlength

| ong devi ce,

| ong *PVbuffer,

| ong bufferlength)

is the audio device (AL_DEFAULT_DEVICE)

is an array of longs, into which ALqueryparams() writes a
descriptor/description pair for each state variable
associated with device. The even (0, 2, 4, ...) entries receive
the descriptors. The odd entries (1, 3, 5, ...) receive one of
two description values (negative values indicate read-only

parameters):

+ AL_RANGE_VALUE

+ AL_ENUM_VALUE

means that the associated
device state variable can
assume a range of values in
which the relative magnitude of
a value has a meaning; that is,
larger values mean an increase
in whatever the parameter
controls

means that the associated
device state variable assumes
values from an enumerated
type—the range is limited, but
there is no inherent relationship
between values

is the number of elements in the PVbuffer array

103

Chapter 6: Programming with the Audio Library

104

ALqueryparams() returns a long value representing the buffer size
necessary to hold all parameters and their values. If your PVbuffer is of
smaller dimensions than this value, you have not received a complete set of
descriptor/description pairs for device. See Table 6-5 for a list of currently
supported core global parameters. See Table 6-6 for a list of special global
parameters that are not supported on all systems.

ALsetparams() lets you modify the values of many of these global
parameters, though you should take care in using these functions. See the
description of ALsetparams() at the end of this section for details.

Getting the Bounds of Global Parameters

ALgetminmax() obtains maximum and minimum values for a given global
parameter. Its function prototype is:

int ALgetm nmax(| ong device, |ong param |ong *m nparam
| ong *maxparam)

where:

device is the audio device (AL_DEFAULT_DEVICE)

param is the parameter whose range you want to know

minparam is a pointer to a variable into which the minimum value will
be written

maxparam is a pointer to a variable into which the maximum value will
be written

Getting the Defaults of Global Parameters

AlLgetdefault() returns the default value for a given audio hardware device
state parameter. Its function prototype is:

Il ong ALgetdefault (long device, |ong paraneter)

where:
device is the audio device (AL_DEFAULT_DEVICE)
parameter is the parameter whose default value you want to obtain

Querying and Controlling the Global Audio Device State

Getting the Names Corresponding to the Global Parameters

ALgetname() returns a pointer to a null-terminated string that can be used
to label an audio hardware device state parameter. Treat this string as a read-
only string. Its function prototype is:

char* AlLgetnane (|ong device,

device

parameter

| ong paraneter)

is the audio device (AL_DEFAULT_DEVICE)

is the parameter whose name you want to know

Table 6-7 lists the global parameter name strings.

Table 6-7 Global Parameter Name Strings

Global Parameter Name String
AL_INPUT_SOURCE "Line/MIC/AES"
AL_LEFT_INPUT_ATTEN "Left Input Atten"
AL_RIGHT_INPUT_ATTEN "Right Input Atten"
AL_INPUT_RATE "Input Rate"
AL_OUTPUT_RATE "Output Rate"
AL_LEFT_SPEAKER_GAIN "Left Output Gain"
AL_RIGHT_SPEAKER_GAIN "Right Output Gain"
AL_INPUT_COUNT "Input Count"
AL_OUTPUT_COUNT "Output Count"

AL_UNUSED_COUNT
AL_MONITOR_CTL

"Unused Count"

"Monitor Control"

AL_LEFT_MONITOR_ATTEN "Left Monitor Atten"
AL_RIGHT_MONITOR_ATTEN "Right Monitor Atten"
AL_SPEAKER_MUTE_CTL "Speaker Mute Control"
AL_MIC_MODE "Microphone Mode"

105

Chapter 6: Programming with the Audio Library

106

Table 6-7 (continued) Global Parameter Name Strings

Global Parameter Name String
AL_CHANNEL_MODE "System Channel Mode"
AL_DIGITAL_INPUT_RATE "Digital Input Rate"

Getting Current Parameter Settings

AlLgetparams() gets the current value(s) of the device parameters referenced
in the PVbuffer. Its function prototype is:

int ALgetparans (|ong device, |ong *PVbuffer,
Il ong bufferlength)

where:
device is the audio device (AL_DEFAULT_DEVICE)
PVbuffer is an array of pairs of longs, the even (0, 2, 4, ...) entries of

which should contain the global parameters whose values
you want to obtain

bufferlength is the number of elements in the PVbuffer array

ALgetparams() fills the odd (1, 3, 5, ...) entries in the PVbuffer array with the
current values associated with each corresponding parameter.

See Table 6-5 for a description of the currently supported core global
parameters. See Table 6-6 for a list of special global parameters that are not
supported on all systems.

Modifying the Values of the Global Parameters
AlLsetparams() sets the current value(s) of one or more audio hardware
device parameters. Its function prototype is:
int ALsetparans (|ong device, |ong *PVbuffer,
Il ong bufferlength)
where:

device is the audio device (AL_DEFAULT_DEVICE)

Querying and Controlling the Global Audio Device State

PVbuffer is an array of pairs of longs, the even (0, 2, 4, ...) entries of
which should contain the global parameters whose values
you want to change to the corresponding values listed in the
odd (1, 3, 5, ...) entries.

bufferlength is the number of elements in the PVbuffer array

See Table 6-5 for a description of the currently supported core global
parameters. See Table 6-6 for a list of special global parameters that are not
supported on all systems.

When an application program modifies a global state parameter such as the
output sample rate, it may affect other processes on the system that are also
engaged in audio processing. For example, if one application is playing a
44.1 kHz recording through an output port, and a second application
changes the global output sample rate from 44.1 kHz to 16 kHz, the output
of the original application will be distorted.

Sample Code for Querying Features and Values

This section provides sample code fragments that demonstrate the proper
methods to use when querying for certain attributes.

Determining Whether Other Audio Applications Are Running

To determine whether other audio applications are running, query the
system for open input or output ports. To determine the total number of
ports available on your system, add the values returned for
AL_INPUT_COUNT, AL_OUTPUT_COUNT, and AL_UNUSED_COUNT.

107

Chapter 6: Programming with the Audio Library

Example 6-3 demonstrates querying for other active audio output.

Example 6-3 Querying for the Existence of Other Audio Processes

/*
* "Nonrude’ behavior is defined as follows: before nodifying global values, first check
* to see whether any other output ports are currently active; if any other processes have
* open output ports, don’'t nodify anything.
*/
rude = 0;
I
* Need to determ ne whether audio is in use. |f not, then we
* can just go ahead and be "rude."
*/
pvbuf[0] = AL_QOUTPUT_CQOUNT;
pvbuf [2] = AL_MONI TOR_CTL;
i f (ALget parans(AL_DEFAULT_DEVI CE, pvbuf, 4) < 0) {

if (oserror() == AL_BAD DEVI CE_ACCESS) ({

fprintf(stderr,"%: Can't play -- could not access audio hardware.\n");

return -1;

}
}
if ((pvbuf[1l] == 0) &&% (pvbuf[3] == AL_MONI TOR OFF)) {

rude = 1;

}

Determining the Input and Output Rates

Querying the system for an input or output rate must be done carefully in
order to obtain a valid result. Example 6-4 contains two routines,
get_input_rate() and get_output_rate(), each of which returns a rate either
in Hz or AL_RATE_UNDEFINED if the rate cannot be determined. A
minimal main() program calls the routines. See ratequery.c in /usr/people/
4Dgifts/examples/dmedia/audio for another example of rate querying.

108

Querying and Controlling the Global Audio Device State

#i nc
I
* T
*
*/

int

get _
{

i nt
get _

Example 6-4 Querying for Input and Output Rates

| ude <audi o. h>

hese routines expect to be run with the AL error handl er shut off.
call ALseterrorhandler(0)).

i nput _rate()

| ong buf[6];

buf[0] = AL_I NPUT_RATE;

buf [2] = AL_I NPUT_SOURCE;
buf[4] = AL_DI G TAL_I NPUT_RATE;

ALget par ans(AL_DEFAULT_DEVI CE, buf, 6) ;

if (buf[1] == AL_RATE_AES 1 || buf[3] == AL_INPUT_DI G TAL) {
/*
* W& are clocked off of the digital input. Find the
* real input rate, if we can.
*/
i f (ALgetdefault(AL_DEFAULT_DEVI CE, AL_DI G TAL_I NPUT_RATE) >= 0) {
return buf[5];

}
}
else if (buf[1] > 0) {
/*
* |nput rate is in Hz and we're using an analog input -- return rate.
*/
return buf[1];
}

return AL_RATE UNDEFI NED;

out put _rate()
| ong buf[4];
buf [0] AL_QUTPUT_RATE;

buf [2] AL_DI G TAL_I NPUT_RATE;
ALget par ans(AL_DEFAULT_DEVI CE, buf, 4) ;

109

Chapter 6: Programming with the Audio Library

if (buf[1] > 0) {

track down what it neans.

Find the
return AL_RATE_UNDEFI NED

/*
* Qutput rate is in Hz -- return it.
*/
return buf[1];
}
el se {
/*
* Qutput rate is a logical rate --
*/
if (buf[1] == AL_RATE AES 1) {
/*
* We are clocked off of the digital input.
* real input rate, if we can. If we can't,
*/
if (ALgetdefaul t (AL_DEFAULT_DEVI CE, AL_DI G TAL_I NPUT_RATE) >= 0) {
return buf[3];
}
}
else if (buf[1l] == AL_RATE_| NPUTRATE) {
return get _input_rate();
}
return AL_RATE UNDEFI NED;
}
}
mai n()
{ .
int x;
ALset errorhandl er (0);
X = get_output_rate();
if (x == AL_RATE_UNDEFI NED) {
printf("can’t get output rate\n");
}
el se {
printf("output rate = %\ n", x);
}
X = get_input_rate();
if (x == AL_RATE_UNDEFI NED) {
printf("can't get input rate\n");
}
el se {
printf("input rate = %\ n", x);
}
}

110

Querying and Controlling the Global Audio Device State

Determining Whether 4-channel Capability Exists

Although you can open a 4-channel ALport on any system, you cannot
change the system’s electrical configurations if it does not support 4-channel
mode.

To determine whether a system has 4-channel capability, use
ALgetminmax(), then verify that the maximum value is 4.

Example 6-5 demonstrates how to query for 4-channel hardware capability.

Example 6-5 Querying for 4-channel Capability

/*
Query to see if we are on a machine with 4-channel
HW capability. If so,switch into 4-channel node.

I f AL_CHANNEL_MODE bot h exists (ALgetmnm nnmax doesn’t
fail) AND has a nmexi mum of 4,then we're K

*

*

*

*

*

* |f we wanted to be really nice, we could check,

* by querying AL_I NPUT_COUNT and AL_OUTPUT_COUNT, to
* see if any other apps were doing audio. If so, we
* mght not want to switch to 4-channel node, |est
* we introduce artifacts into their audio streans.
*/

if (ALgetm nmax(AL_DEFAULT_DEVI CE, AL_CHANNEL_MODE,
&mn, &max) >= 0 && max == 4) {

I ong buf[2];
buf [0] = AL_CHANNEL_MODE;
buf[1] = 4;
ALset par ans(AL_DEFAULT_DEVI CE, buf, 2);
}
/*
* Even if we don’t have 4-channel HWcapability,
* the AL will let us use a 4-channel buffer, so
* we can continue at this point without regard to
* HWtype.
*

/

111

Chapter 6: Programming with the Audio Library

Audio Library Synchronization Facilities

112

The AL provides two different facilities for synchronization:

¢ The AL allows for multiple audio ports (ALports) to be synchronized in
a sample accurate manner, by using the absolute sample frame count.

e The AL allows audio data to be related to other media based on
common time line, by using the unadjusted system time (UST).

The AL provides a method of determining the absolute sample count of the
current sample frame under program control (that is, the sample frame
which can be read / written with a call to the Audio Library) and a method of
relating UST values to the count of samples which have entered or exited the
audio device.

As mentioned in Chapter 2, “Programming with the Digital Media
Library,”the digital media libraries provide a single time line, UST, through
which media may be related. This time value is the number of nanoseconds
since the operating system was started. As an absolute time value, UST is not
particularly useful. However, it is extremely useful for relating different
media types and for evaluating the relative timing of events.

Audio Sample Frame Count

Absolute sample frame count is the basis for timing within the AL.
Whenever audio is input or output on a device, a count is kept of the sample
frames elapsed. This sample frame count is the absolute number of sampling
periods elapsed since input or output started. If the audio sample rate is set
to 44100 kHz, the sample frame count advances at the nominal rate of 44100
counts per second, regardless of the channel setting for the port (see
AlLsetchannels() for more details on setting the number of channels for a

port).

The sample frame count increases regardless of whether an application is
reading or writing audio samples using the ALreadsamps() or
ALwritesamps() function calls, respectively. As long as an audio port
(ALport) is open, the sample frame count advances.

Audio Library Synchronization Facilities

The AL function ALgetframenumber() provides a way for an application to
query the absolute sample frame count associated with the current sample
frame to be written (in the case of an output port) or read (in the case of an
input port).

The function prototype for ALgetframenumber() is:

int ALgetfranmenunber(const AlLport port,
unsi gned |l ong | ong *framenun;

where:
port is the audio port of interest
framenum is a pointer to a 64-bit number in which to hold the resultant

frame count value
If ALgetframenumber() succeeds, 0 is returned; otherwise a —1 is returned.

Since the sample frame count is an absolute value of sample frames entering
or exiting an audio device, two audio ports (ALports) can be synchronized

by reading/writing samples at the identical sample frame count. This “port-
to-port” synchronization is guaranteed to be sample accurate.

In general, ALgetframenumber() does not return equal values for the
sample frame count for different ports. In order to synchronize two audio
ports, you will need to make the sample frame count of the two ports match
by reading/writing samples from/to one of the sample queues. Example 6-
7 demonstrates synchronizing two audio ports.

Note: The absolute sample frame count is valid only if the port in question
does not overflow (in the case of input) or underflow (in the case of output).
When your port underflows or overflows, the value of the sample frame
count continuously changes, and you cannot reliably place samples in the
queue at a desired location. In order to reestablish a valid value for sample
frame count (and hence synchronization) your application must recover
from the underflow or overflow (read or write samples as appropriate) and
then query for the value of sample frame count again.

113

Chapter 6: Programming with the Audio Library

Figure 6-3 shows the relationship of the sample frame count returned by
ALgetframenumber() to sample frames in the queue associated with an
input or output audio port (ALport).

Input Port Sample Queue:

Filled sample frames
“—>

¥
Device:
Audio device
S places samples at the

Application: first unfilled location
Audio application removes samples in sample queue
from the first filled location in the sample
queue.

ALgetframenumber() provides the absolute sample frame
count associated with current sample frame the application
will read with ALreadsamps().

OQutput Port Sample Queue:

Filled sample frames
 —)

Device:
Audio device

removes samples from

Application: the first filled location
Audio application places samples in sample queue

at the first unfilled location in the sample
queue.

~N

ALgetframenumber() provides the absolute sample frame
count associated with the current sample frame the application
will write with ALwritesamps().

Figure 6-3 Sample Frame Count as Returned by ALgetframenumber()

114

Audio Library Synchronization Facilities

In Example 6-6, the first two ALwritesamps() calls are used to bring the
audio ports out of an underflow condition. This ensures that subsequent
calls to ALgetframenumber() will result in valid sample frame counts.

Example 6-6 Synchronizing Audio Between Two Output Ports: align.c

/* align.c - synchronize audio of two output audio ports */

#i ncl ude <stdi o. h>
#i ncl ude <dnedi a/ audi 0. h>

nmai n(voi d)

{

ALport port_1, port_2;

short buf _1[10000], buf_2[10000];

short zil ch[10000];

unsi gned |l ong | ong count _1, count_2, delta_count;
int i;

/* get two output ports with default configurations */
port_1 = ALopenport("port_1", "w', NULL);
port_2 = AlLopenport("port_2", "w', NULL);

if (port_1 == NULL || port_2 == NULL) {
printf("oops...no audio ports\n");
exit(-1);

}

/* set up the output sanmple buffers */
for (i =0; i < 10000; i++) {
buf _1[i] i;
buf _2[i]
zilch[i]

0;

}

/* bring the output ports out of underflow state */
ALwr i tesanps(port_1, zilch, 10000);
ALwr it esanps(port_2, zilch, 5000);

ALget f ranmenunber (port _1, &count_1);
AlLget f ranmenunber (port_2, &count_2);

/* count_1 should be > count_2 at this point */

delta _count = count_1 - count_2;
printf("frame count difference = %I1d\n", delta_count);

115

Chapter 6: Programming with the Audio Library

116

/* wite delta_count frames of zeroes to port_2 */
ALwr it esanps(port_2, zilch, delta_count*2);

ALget f ramenunber (port _1, &count_1);

ALget f ramenunber (port_2, &count_2);

delta _count = count_1 - count_2;

printf("frame count difference = %I1d\n", delta_count);

while (1) {

ALwr it esanps(port_1, buf_1, 10000);

ALwr it esanps(port_2, buf_2, 10000);

ALget f ranenunber (port_1, &count_1);

ALget f ranenunber (port_2, &count_2);

if (count_1 !'= count_2) {

printf("lost synchronization of audio port.\n");

}

}
ALcl oseport (port_1);

AlLcl oseport (port_2);

Relating Audio Sample Frame Count to UST

The IRIS digital media libraries provide a time line called unadjusted system
time (UST) for relating media to one another. The UST is a 64-bit count of the
number of nanoseconds elapsed since the workstation operating system was
started.

The AL provides a way for application programs to relate the number of
audio sample frames input to or output from a device to UST values, by
providing a pair of values (UST, sample frame count) simultaneously. The UST
value is the time when the samples in the frame entered the audio device (in
the case of input) or exited the audio device (in the case of output). That is,
the UST is the time at which the samples physically “hit the jacks.” The audio
system software accounts for any latency in hardware and intermediate
buffering.

Audio Library Synchronization Facilities

The AL function ALgetframetime() provides both UST and sample frame
count for an audio port (ALport) to an application. The function prototype
for ALgetframetime() is:

int AlLgetfranetine(const AlLport port,
unsi gned | ong long *fnum
unsi gned |l ong | ong *ustine);

where:

port is the audio port of interest

ustime is a pointer to a 64-bit number to hold the value of UST
Sfrum is a pointer to a 64-bit number to hold the value of sample

frame count

If ALgetframetime() succeeds, it returns 0 to the application; otherwise, it
returns a —1 and sets an error number which can be retrieved with
oserror(3C).

When an application program calls the ALgetframetime() function, the AL
provides the most recent pair of (UST, sample frame count) that it has
calculated. In general, the value of sample frame count returned by
ALgetframetime() is not the same as the sample frame count value returned
by ALgetframenumber(). However, a UST value corresponding to the
sample frame count returned by ALgetframenumber() can be calculated
from (UST, sample frame count) pairs.

Example 6-7 demonstrates calculating the UST value for the next sample to
be read from an input port.

Example 6-7 Calculating UST

/* getust.c - get ustine for first sanple in input port */

#i ncl ude <stdio. h>
#i ncl ude <audi 0. h>

117

Chapter 6: Programming with the Audio Library

118

mai n(voi d)

{
AlLport port;
long long count_1, count_2, ustinme_1, ustine_2;
doubl e nrate;

nrate = 1e+9/44100.0; /* nanosecs per sanple @44.1 kHz*/

port = ALopenport("ny_input",
if (port == NULL) exit(-1);

r', NULL);

ALget f ranenunber (port, (unsigned |ong |ong*)&count_2);

ALget franeti me(port, (unsigned |Iong |ong*)&count_1,
(unsigned |l ong | ong*)&ustine_1);

ustine_2 = ustime_1 - (count_1 - count_2)*nrate;

[* ustime_2 corresponds to the first sanple frane in port */

printf("ust(1l) = 9%Ild nmsc(l) = %1d\n",
ustinme_1, count_1);
printf("ust(2) = %ld msc(2) = %I1d\n",

ustime_2, count_2);

ALcl oseport (port);
}

This example code could have calculated the sample frame rate from
multiple (UST, sample frame count) pairs and used that value instead of
calculating it from the nominal audio frame rate.

Note: The sample frame value returned by ALgetframenumber() is valid
only if the port does not overflow /underflow. In the case of underflow or
overflow, the (UST, sample frame count) pair will continue to be valid (though
you may wish to request a new, more recent, pair). Note, however, that two
back-to-back invocations of ALgetframetime() are not guaranteed to result
in unique (UST, sample frame count) pairs.

For a more involved use of UST and sample frame count, see recordmidi.c++
in /usr/people/4Dgifts/examples/dmedia/midi/syncrecord. This code
demonstrates synchronization of audio and MIDI using the UST to relate the
two streams of data and is discussed further in “Hands-On MIDI and Audio
Synchronization Experience” in Chapter 10.

Real-time Programming Techniques for Audio

Real-time Programming Techniques for Audio

The Audio Library provides several routines that modify or return
information about the dynamic state of an audio port. These routines,
together with the select() or poll() IRIX system calls, make it possible to
write applications that can multiplex audio processing tasks with other
processing such as user interfaces, audio signal processing, or graphics.
Other IRIX system calls, such as prctl(), schedctl(), and sproc(), also help
audio applications to achieve efficient real-time performance. This section
discusses these routines and techniques for using them effectively. See the
online book, Topics in IRIX Programming, for a description of the IRIX real-
time programming facilities.

Multiplexing Synchronous I/O

The select() system call makes it possible for an application to multiplex
synchronous I/O tasks. An application passes select() three (optionally null)
lists of file descriptors, along with an optional timeout parameter. select()
blocks until one or more of the following conditions occur:

* one or more of the file descriptors in the “read list” are ready for
reading

* one or more of the file descriptors in the “write list” are ready for
writing

* an exceptional condition is pending for one of the file descriptors in the
“exception list”

* atimeout occurs (if specified)

When select() returns, it replaces the original file descriptor lists with
subsets containing the file descriptors for which requested events have
occurred. See the select(2) man page for details.

The AL provides a mechanism to control the behavior of select() such that
you can wake a process before an output queue runs out of samples or before
an input sample queue overflows. The functions described in this section
control the behavior of select().

119

Chapter 6: Programming with the Audio Library

120

Getting a File Descriptor for an ALport

ALgetfd() returns an IRIX file descriptor for a port that may be used with the
select() call. Its function prototype is:

int ALgetfd (AlLport port)

where:

port is the audio port whose file descriptor you want. This
descriptor can then be used to construct the arguments for
a call to select() or poll()

When using select(), an input port’s file descriptor is used in a read fdset and
an output port’s file descriptor is used in a write fdset.

When using poll(), an input port’s file descriptor is used with the POLLIN
event flag and an output port’s file descriptor is used with the POLLOUT
event flag.

These select() and poll() system calls are used to give up application control
of the CPU until the audio port is emptied or filled past a previously set fill
point (see the description of ALsetfillpoint() below).

Setting and Getting the Fill Point for a Queue

AlLsetfillpoint() allows an application to set a threshold level for an input or
output port that controls the behavior of the select() function. Its function
prototype is:

int ALsetfillpoint (ALport port, long fillpoint)

where:
port is the audio port whose fill point you want to set
fillpoint is the fill point value, in number of samples

For an input port, the fill point is the number of locations in the sample
queue that must be filled in order to trigger a return from select(). For an
output port, the fill point is the number of locations that must be free in order
to wake up from select().

Real-time Programming Techniques for Audio

When used in conjunction with ALgetfd() and select() or poll(),
ALsetfillpoint() lets you programmatically relinquish control from an audio
application to other processes.

Note: ALreadsamps() and ALwritesamps() may alter the fill point, so you
should (re)set it just before you call select() or poll().

AlLgetfillpoint() returns the current fill point of a port. Its function prototype
is:

long ALgetfillpoint (ALport port)

where:

port is the audio port being queried

Figure 6-4 shows how the relationship between the number of samples and
the fill point affects the behavior of the select() call during input and output.

OUTPUT (writing samples)

} Fillable
Fillable
. o .
Flll point Flll point -
o .
) Filled Py e
e ille
L] L
Process stopped in select() call select() returns
INPUT (reading samples)
} Fillable
Fillable
. . o
Flll point = Flll point
® illed
° . P Fille
Filled
L L)
Process stopped in select() call select() returns

Figure 6-4 Using Fill Points

121

Chapter 6: Programming with the Audio Library

122

Using Scheduling Control to Give Audio High Priority

IRIX provides control of process scheduling through the use of the schedctl()
function. This function allows the program to change its execution priority.
To maintain real-time audio processing, an application may need to be
placed at a high priority relative to other jobs in the system. See the
schedctl(2) manual page and for more information on usage. See “Using
Shared Arenas and Semaphores” on page 123 for an example program that
demonstrates how to use schedctl().

Preventing Memory Swapout

pretl() is an IRIX function that gives you control of certain attributes of a
process. By using the PR_RESIDENT argument, you can make your audio
process immune to kernel memory swapout, thus helping to ensure
uninterrupted audio input and output. See the prctl(2) man page for more
details.

You can also use mpin() or plock() to lock user pages into memory. See the
man pages for those functions for more information.

Creating Multiple Process Threads

The sproc() system call lets you split a process into two threads. sproc() is an
IRIX system call similar to fork(), except that it makes use of shared memory.
The shared memory features of sproc() allow sharing of data, file
descriptors, and address space between the two process threads. When
using sproc() in an application with audio, you can create one thread that
services audio and another thread that handles the user interface. Using
sproc() permits the use of graphical user interfaces without interrupting the
audio data stream. See “Using Shared Arenas and Semaphores” on page 123
for an example program that demonstrates how to use sproc() in
conjunction with an IRIS IM menu (IRIS IM is Silicon Graphics’ port of the
industry-standard OSF/Motif).

Real-time Programming Techniques for Audio

Using Shared Arenas and Semaphores

Another real-time programming technique is to use an IRIX shared arena. In
essence, a shared arena is a memory-mapped file that you can access just like
regular memory.

This section provides some hints for working with shared arenas; more
information is available in Topics in IRIX Programming.

Shared arenas allow:
¢ shared memory between unrelated processes

e shared synchronization tools: locks for controlling access, and
semaphores for process communication

Create a shared arena by calling usinit(). (The “us” prefix stands for user
space.) The first process that calls usinit() creates an arena with the given file
name; subsequent calls to usinit() invoking the same file name attach to the
existing arena.

Using shared memory can create data dependency situations such as
different process writing to the same memory location at the same time, or
one process trying to read from a memory location before another has
finished writing to that location. Areas where a potential data dependency
exists are called critical regions.

Critical regions can be protected with locks, which keep trying until access
is gained, or semaphores, which sleep until access is available. Semaphores
can be used to allow multiple processes into a critical region at the same
time. Processes waiting on a semaphore are queued on a first-come, first-
served basis. To acquire (decrement) a semaphore, call uspsema); to release
(increment) call usvsema(). When uspsema causes the semaphore count to
go negative, the process will block until some other process calls usvsemaf().

The motifexample.c program in /usr/people/4Dgifts/examples/dmedia/audio
demonstrates the Audio Library programming concepts presented in this
chapter and some Audio File programming concepts that are discussed in
Chapter 7, “Programming with the Audio File Library.”

123

Chapter 6: Programming with the Audio Library

124

Several real-time programming techniques are used in motifexample.c:

* The sproc() system call creates two separate threads: a user interface
thread, and an audio thread. The PR_SALL argument specifies the
sharing of all data. Everything that pertains to handling audio is kept in
the separate audio process.

¢ Scheduling control gives the audio process high-priority, nondegrading
scheduling.

* Memory swapout is prevented by using mpin() to lock samples in
memory.

® A shared memory arena is used to share data.

* Semaphores provide interprocess communication for handling
commands from the application.

e Polling is used to monitor two kinds of events: commands from the
application and the need for more samples in the queue.

Programming with the
Audio File Library

This chapter describes how to use the
Audio File Library to store and
retrieve audio on disk in AIFF or
AIFC files.

Chapter 7

Programming with the Audio File Library

The Audio File (AF) Library, libaudiofile.so, provides a uniform programming
interface for reading and writing audio files. Currently, the AF Library
supports the Apple Computer Inc. Audio Interchange File Format (AIFF)
and the Audio Interchange File Format with Compression (AIFF-C).

The AF Library currently supports read-only and write-only file access (but
not both simultaneously). Therefore, to alter an existing file, you must create
a new file and copy data from the original file. Sample code that
demonstrates how to copy the logical components of a file, and other
concepts, is available online in /usr/people/4Dgifts/examples/dmedia/soundfile.
The Audio File Library comprises routines that handle four basic tasks:

* creating and configuring new audio files

¢ reading and writing track information to and from audio files

¢ reading and writing instrument configurations to and from audio files

¢ reading and writing miscellaneous data to and from audio files

In this chapter:

¢ “Audio File Library Basics” on page 128 discusses the basics of
programming with the AF Library.

* “Creating and Configuring Audio Files” on page 132 explains how to
initialize AF Library data structures.

* “Opening, Closing, and Updating Audio Files” on page 147 explains
how to create and use audio files.

¢ “Reading and Writing Audio Track Information” on page 150 explains
how to work with audio file tracks.

¢ “Audio File Library Programming Tips” on page 171 contains
important programming tips for making AF Library programs format
independent and multithread /multiprocessor safe.

127

Chapter 7: Programming with the Audio File Library

Audio File Library Basics

128

This section explains fundamental AF Library concepts.

Audio File Library Programming Model

The AF Library has two basic data structures:

e AFfilesetup, an audio file setup that stores initialization parameters
used when creating a new audio file handle

* AFfilehandle, an audio file handle that provides access to the audio file

The basic steps required for setting up an audio file for writing are:
1. Initialize an AFfilesetup, by calling AFnewfilesetup().

2. Configure the AFfilesetup for your data, as described in “Creating an
Audio File Setup” on page 132.

3. Open an audio file for reading or writing, as described in “Creating an
Audio File Setup” on page 132 by calling either AFopenfile() or
AFopenfd(). These routines return an AFfilehandle whose data
configuration matches the settings in the AFfilesetup.

Handling Audio File Library Errors

The AF Library provides an error handling mechanism that directs error
messages to stderr. You can replace the default AF Library error handler with
one of your own.

AFseterrorhandler() lets you replace the default error handler function with
one of your own. Its function prototype is:

AFerrfunc AFseterrorhandl er (AFerrfunc errfunc)

where errfunc is a pointer to an alternate error handling routine of type
AFerrfunc that is declared as:

void errfunc(long argl, const char* arg2)

Audio File Library Basics

About Audio Files

This section explains basic concepts for working with audio files. It describes
data structures used by the Audio File Library and in particular, the
structure of AIFF-C files and the higher-level abstraction that the AF Library
API uses to read and write AIFF-C (and AIFF) files.

The AF Library breaks audio files into the following four functional
components:

Audio file format Allows applications to identify audio file formats and
format versions.

Audio tracks Contain audio sample data, parameters that
characterize the data format (such as sample rate,
channel configuration, and compression type), and
marker structures that store sample frame locations in
the track for looping and other purposes.

Instrument Contain instrument parameters for configuring digital
configurations samples when playing back audio track data, and loop
markers for repeating tracks or portions of a track.

Miscellaneous Include text strings (author, copyright, name,
data annotation, and so on) and other non-audio information
(such as MIDI data and application-specific data).

The two portions of an audio file you will make most use of are audio tracks
and instrument configurations.

Audio File Formats

Audio file format is typically indicated by header information preceding the
actual data that describes the nature of the data in that file. The file format of
an audio file constrains the data format of each of its tracks to one of a set of
track formats supported by that file format, but you do not necessarily know
which one. You must therefore set and query the track format for each of an
audio file’s tracks independently of its file format. It is often possible and

desirable to write your application so that it queries only the data format(s)
of the track(s) (instead of querying the file format) of the audio files it opens.

129

Chapter 7: Programming with the Audio File Library

130

Audio Tracks, Sample Frames, and Track Markers

Audio tracks contain the recorded samples that produce sound when sent to
the audio hardware. These samples are stored linearly for mono recordings
and as interleaved left-right pairs (left channel in even locations, right
channel in odd locations) for stereo recordings. These pairs are called sample
frames (this term is also used for mono tracks, but a sample frame is the same
thing as a sample when mono data is used).

Audio tracks also contain track markers, which can be set to point to arbitrary
locations in the audio track. These markers, which are identified by a long
integer ID number and (optionally) a name string, point to locations
between sample frames.

Audio Track Format Parameters

Data format information, including sample rate, sample format, sample
width, and sample compression type is stored as part of the audio track.
Several kinds of compression are supported (you can also choose not to use
compression). The AF Library automatically compresses samples being
written to a file and decompresses samples read from a file. The ability of the
AF Library to perform compression/decompression of audio data in real
time is dependent on system overhead. To guarantee real-time performance,
you should make use of scheduling control as described in “Using
Scheduling Control to Give Audio High Priority” in Chapter 6.

Instrument Configurations and Loops

Instrument configurations contain a set of parameters that define the aspects
of a sampler, including detuning, key velocity, and gain. They also contain
loop markers, which identify the beginning and ending points of loops that
allow all or part of the audio track to be repeated. These loop markers point
to previously created audio track markers, which in turn refer to locations in
the audio track that comprise the beginning and ending of the loop. AIFF
and AIFF-C files support two kinds of loops, sustain and release, each with a
beginning and ending marker, which can be used in audio tracks and track
markers.

Audio File Library Basics

AIFF-C and the AF Library API

Silicon Graphics has adopted AIFF-C as its standard digital audio file
format. AIFF-C is based on Apple Computer’s Audio Interchange File
Format (AIFF), which conforms to the EA IFF 85 Standard for Interchange
Format Files developed by Electronic Arts. Unlike the older AIFF standard,
AIFF-C files can store compressed sample data as well as two’s complement
linear PCM sample data.

AIFF-C provides a standard file format for storing sampled sounds on
magnetic media. The format can store any number of channels of sampled
sound at a variety of sample rates and sample widths. The format is
extensible, allowing future support of new compression types and
application-specific data, while maintaining backward compatibility.

An AJFF-C file is composed of a series of different kinds of data chunks. For
the most part, the AF Library API handles low-level chunk manipulation.
For complete information on the types of chunks supported by AIFF-C, see
the Audio Interchange File Format with Compression (AIFF-C) Specification.

Both AIFF and AIFF-C files consist of similar component structures. The
chunks in an AIFF-C file are grouped together inside a special container
chunk. The EA IFF 85 specification defines several types of container chunks,
but the kind used by AIFF-C is of type 'FORM'.

Table 7-1 shows the mapping between the Audio File Library API functional
components and the low-level AIFF-C/AIFF data chunks.

Table 7-1 Mapping of AF Library Components to AIFF-C/AIFF File Chunks

AF Library Functional Component AIFF-C/AIFF Chunks

File format information 'FVER', ' FORM'

Audio tracks 'SSND', 'COMM’, MARK', 'AESD', 'COMT"

Instrument configurations 'INST

Miscellaneous data 'AUTH', ' NAME!, '(c) ', 'ANNO',' MIDI ',
'APPL'

a. 'COMT’ chunks are not currently supported by the AF Library.

131

Chapter 7: Programming with the Audio File Library

Creating and Configuring Audio Files

132

This section explains how to initialize an AF Library application, including
how to create, configure, and free AF Library data structures for working
with audio files.

Creating an Audio File Setup

The AFfilesetup structure stores initialization parameters used when
creating a new audio file. When you open an audio file for reading or writing
the AF Library returns another structure, an AFfilehandle, which provides

access to the audio file and is used as an argument by all AF Library routines.

AFnewfilesetup() creates and initializes an AFfilesetup structure that you
configure for your data, and then use to open an audio file:

AFfil esetup AFnewfil esetup(void)
AFnewfilesetup() returns a default AFfilesetup structure.

Table 7-2 lists the AFfilesetup configuration parameters and their defaults.

Table 7-2 AFfilesetup Parameters and Defaults

Parameter Default

File format AF_FILE_AIFFC
Audio track AF_DEFAULT_TRACK

Audio track sample format, sample width AF_SAMPFMT_TWOSCOMP, 16-bit

Audio track channels (interleaved) 2 (stereo)

Audio track compression AF_COMPRESSION_NONE

Audio track markers Four markers with IDs: 1,2,3,4
Instrument AF_DEFAULT_INST

Instrument Parameters (See Table 7-3)

Loops Two loops with IDs: 1,2; default mode

is AF_LOOP_MODE_NOLOOP

Creating and Configuring Audio Files

Table 7-3 lists the AFfilesetup instrument parameters and their defaults.

Table 7-3 AFfilesetup Instrument Parameter Constants and Defaults
Instrument Parameter Constant Default
AF_INST_MIDI_BASENOTE 60

AF_INST_MIDI_HINOTE 127
AF_INST_MIDI_HIVELOCITY 127

AF_INST_MIDI_LONOTE 0
AF_INST_MIDI_LOVELOCITY 1

AF_INST_NUMCENTS_DETUNE 0

AF_INST_NUMDBS_GAIN 0
AF_INST_SUSLOOPID 1 (loop ID for sustain loop)
AF_INST_RELLOOPID 2 (loop ID for release loop)

Your application should free an AFfilesetup that is no longer needed.
AFfreefilesetup() deallocates an AFfilesetup structure. Its function
prototype is:

voi d AFfreefil esetup(AFfil esetup setup)

where setup is an AFfilesetup previously created by a call to
AFnewfilesetup(). This does not affect any file previously opened using the
same AFfilesetup structure.

Before using the new AFfilesetup to open an audio file, you might need to
modify the default AFfilesetup in order to create the configuration you want.
The sections that follow explain how to change the default AFfilesetup
configuration.

Initializing Audio File Format

You need to set the file format in an AFfilesetup structure before passing the
structure to AFopenfile().

133

Chapter 7: Programming with the Audio File Library

134

AFinitfilefmt() configures the file format parameter in an AFfilesetup
structure. Its function prototype is:

void AFinitfilefnt (AFfil esetup setup, long fnt)

where setup is the AFfilesetup structure, and fmt is an integer constant which
specifies an audio format supported by the AF Library. Two valid format
types are currently available:

e AF _FILE_AIFFC (AIFF-C format)
e AF FILE_AIFF (AIFF format)

A new audio file that is opened by calling AFopenfile() with this AFfilesetup
as an argument will then be formatted accordingly.

Initializing Audio Track Data

This section explains how to change the default settings for audio track
parameters in an AFfilesetup structure before passing the structure to
AFopenfile().

Note: Each of the functions in this section contains a trackid argument, which
identifies an audio track in the AFfilesetup structure being initialized. In the
current release of the AF Library, the value of trackid must always be
AF_DEFAULT_TRACK.

Initializing Audio Track Sample Rate

The AF Library requires that you specify the sample rate for a new file before
you pass the AFfilesetup structure to AFopenfile().

AFinitrate() configures the sample rate in Hz for an audio track in an
AFfilesetup structure. Its function prototype is:

void AFinitrate(AFfil esetup setup, long trackid, double rate)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, and rate is a positive double-precision
integer that specifies the sample rate in Hz. For example, to configure setup
for a CD-quality AIFF-C file, initialize the rate for AF_DEFAULT_TRACK to
44100.0.

Creating and Configuring Audio Files

Initializing Audio Track Sample Format and Sample Width

AFinitsampfmt() initializes the sample format and width parameters for an
audio track in an AFfilesetup structure. Its function prototype is:

voi d AFinitsanpfnt (AFfil esetup setup, long trackid, long fnt,
| ong wi dt h)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, and fmt is a long integer constant that
denotes a sample format. Currently, only one format is supported:
AF_SAMPEMT_TWOSCOMP. width is a positive long integer value from 1
to 32 that specifies the width (in bits) of the sample data. See “Getting Audio
Track Sample Format and Sample Width” on page 152 for more details about
sample format and sample width.

Note: If the audio track in an AIFF-C file is configured for compression, fmt
and width should match the data format specified by the compression
algorithm. See Table 7-4 for a list of compression algorithms.

Initializing Audio Track Channels

AFinitchannels() configures the number of interleaved audio channels for
an audio track within an AFfilesetup structure. This information is then used
by AFopenfile() when it is called with the AFfilesetup structure as an
argument. Its function prototype is:

voi d AFi ni tchannel s(AFfil esetup setup, |ong trackid,
I ong channel s)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, and channels is a long integer representing
the number of interleaved audio channels. Valid values for channels are 1
(mono) or 2 (stereo); the default value is 2.

Initializing AES Data

AES channel status bytes are embedded in AES audio samples to provide
additional information about that data, such as whether an emphasis has
been added to a sample. For example, on early CD recordings, high
frequencies were sometimes emphasized to compensate for the nature of CD
players. You might want to reverse compensate for that emphasis if you are

135

Chapter 7: Programming with the Audio File Library

136

loading AES stream data directly from a CD player through the AES serial

input of your workstation for playback on a different source, such as DAT.

See the AES3-1985 (ANSI 54.40-1985) document for more information about
AES channel status bytes.

AFinitaeschanneldata() sets a flag, which is off by default, in an AFfilesetup
structure to indicate that space should be reserved for the 24 AES channel
status bytes that are embedded in all AES data. Its function prototype is:

voi d AFi ni t aeschannel data(AFfil esetup setup, |ong trackid)

where setup is the AFfilesetup structure, and trackid is a long integer that
identifies an audio track in setup.

AFsetaeschanneldata() sets the values of the AES channel status bytes. Its
function prototype is:

voi d AFset aeschannel dat a(AFfil ehandl e file, long trackid,
unsi gned char buf[24])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
buf is a 24-element array that specifies the AES channel status bytes. If no
header space has been reserved in the file (by calling
AFinitaeschanneldata() before creating the file), AFsetaeschanneldata()
ignores the data and returns without error.

Initializing Audio Track Compression

AFinitcompression() and AFinitcompressionparams() let you configure an
audio track in an AFfilesetup structure to store compressed audio data. All
compression encoding is handled automatically by AFwriteframes();

therefore your application program need only work with linear PCM data.

Note: AIFF files do not support compression. It is an error to try to open an
AIFF file using an AFfilesetup whose compression setting is other than
AF_COMPRESSION_NONE.

AFinitcompression() lets you select from among several built-in default
codec (compressor-decompressor) configurations that are preconfigured. If
you use AFinitcompression() to select one of the default codecs that are built

Creating and Configuring Audio Files

in to the Audio File Library, you don't have to worry about setting the
individual compression parameters, because they are automatically set to
the proper values for each default configuration.

AFinitcompressionparams() lets you chose the codec configuration and set
the associated codec-specific compression parameters yourself, although it
does supply the defaults listed in Table 7-4. If you use
AFinitcompressionparams(), you have to create and fill in an Audio Utility
Library parameter-value list (AUpvlist), as described in “Using the Audio
Utility Library to Initialize Parameter Lists” on page 143.

You may also select from additional audio codecs from Aware, Inc. that
provide ISO/MPEG I and Aware MultiRate I audio compression, which are
built in to the Audio File Library and can be accessed under license from
Aware, Inc. by using the parameters in Table 7-4. See Appendix B, “Aware
Scalable Audio Compression Software,” for more information.

The function prototypes are:

voi d AFinitconpression(AFfilesetup setup, |ong track,
| ong conpressi on)

| ong AFi ni t conpressi onparans(AFfil esetup setup, long track,
| ong conpressi on,
AUpvlist pvlist, long numtens)

where:

setup is the AFfilesetup structure that was previously created by
calling AFnewfilesetup().

track is a positive long integer that identifies an audio track in
setup. Because AIFF-C files contain only one audio track per
file, you should use the constant AF_DEFAULT_TRACK to
access the track.

compression is a positive integer symbolic constant that indicates the
type of audio compression being used. See Table 7-4 for a
list of valid compression values.

polist is an Audio Utility Library parameter-value list (AUpvlist)

structure, filled with parameters and values related to the
compression scheme compression. Currently, the only
compression schemes that have any parameters are those
supplied by Aware, Inc.

137

Chapter 7: Programming with the Audio File Library

numitems is the number of valid entries in the povlist.

Table 7-4 lists the valid compression values that you can set for AIFF-C files;
compression must be AF_ COMPRESSION_NONE for AIFF files.

Table 7-4 Settable Compression Parameter Values and Types
Parameter Value Compression Type
AF_COMPRESSION_NONE No compression.
AF_COMPRESSION_G722 64 Kbps ADPCM for 16 kHz 16-bit.
AF_COMPRESSION_G711_ULAW 64 Kbps PCM encoding for 8 kHz 16-bit.
AF_COMPRESSION_G711_ALAW 64 Kbps PCM encoding for 8 kHz 16-bit.
AF_COMPRESSION_AWARE_MPEG? Aware implementation of ISO/MPEG I-audio, Layers I and II.

The default setting for this parameter is
AF_COMPRESSION_AWARE_DEFAULT_MPEG_II).

AF_COMPRESSION_AWARE_MULTIRATE? Aware MultiRate I lossless or near-lossless algorithm
The default setting for this parameter is
AF_COMPRESSION_AWARE_DEFAULT_MULTIRATE).

AF_COMPRESSION_AWARE_DEFAULT_MPEG_IP Aware implementation of ISO/MPEG I-audio layer I, joint-stereo,
fixed rate at 192 Kbps per channel.

AF_COMPRESSION_AWARE_DEFAULT_MPEG_II” Aware implementation of ISO/MPEG I-audio layer II, joint-stereo,
fixed rate at 128 Kbps per channel.

AF_COMPRESSION_AWARE_DEFAULT_MULTIRATE? Aware MultiRate I operating in high-resolution near-lossless (near
perfect reconstruction) mode.

AF_COMPRESSION_AWARE_DEFAULT_LOSSLESS®? Aware MultiRate I operating in lossless (perfect reconstruction)
mode.

a. These values are intended for use with AFinitcompressionparams().

b. These values are intended for use with AFinitcompression().

138

Creating and Configuring Audio Files

Initializing Audio Track Markers

Audio track marker structures store sample frame locations in the track for
looping and other purposes. Markers are identified by a long integer ID
number and (optionally) a name string. Markers point to a location between
two samples in the audio track: position 0 is before the first sample, position
1is between the first and second sample, and so on. You can assign positions
to the markers by calling AFsetmarkpos(). By default, AFnewfilesetup()
allocates space for four markers, which is sufficient to store the beginning
and end points for both a sustain loop and a release loop.

AFinitmarkids() initializes a list of unique marker IDs corresponding to
marker structures in a given audio track. Its function prototype is:

voi d AFi ni t marki ds(AFfil esetup setup, |ong trackid,
long markids[], |ong nmarks)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, markids is an array of unique positive long
integers that will be used as handles for the marker structures in the file
opened with setup, nmarks is a long integer that specifies the number of
marker IDs in the markids array, that is, the total number of marker structures
that will be allocated for the audio track. AIFF-C (and AIFF) files can contain
up to 65535 markers in a track.

AFinitmarkname() specifies a name string for a marker structure. Marker
names default to empty strings. Its function prototype is:

voi d AFi ni t mar kname(AFfil esetup setup, |ong trackid,
l ong markid, char *nane)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, markid is a positive long integer that
identifies a marker structure configured previously by AFinitmarkids(),
name is a string that will be written into the marker structure when an audio
file is created by passing setup to AFopenfile().

139

Chapter 7: Programming with the Audio File Library

140

Initializing Instrument Data

This section explains how to initialize the instrument parameters in an
AFfilesetup structure before passing the structure to AFopenfile().

AFinitinstids() initializes a list of unique instrument IDs that are used to
reference the instrument configurations in an AFfilesetup. Its function
prototype is:

void AFinitinstids(AFfil esetup setup, long instids[],
| ong ninsts)

where setup is the AFfilesetup structure, instids is an array of positive long
integers that are used as handles for the instrument configurations in an
audio file, and ninsts is the number of entries in instids.

Note: Currently, the AF Library supports only one instrument configuration
per file, which is the maximum allowed by both AIFF and AIFF-C formats;
therefore, ninsts should be set to either 0 or 1 and instids contains at most one
element, whose value must be AF_DEFAULT_INST. If you set ninsts to 0
(meaning that no instrument configuration will be in the audio file you plan
to open), AFinitinstids() will ignore the instids argument, and instids can be
made a null pointer in this case.

AFinitloopids() initializes a list of unique instrument loop IDs that
correspond to the loops supplied for a specified instrument in an audio file.
Its function prototype is:

voi d AFinitl oopi ds(AFfil esetup setup, long instid,
l'ong | oopids[], |ong nloops)

where setup is the AFfilesetup structure, instid is a long integer that identifies
an instrument configuration in an audio track. In the current release of the
AF Library, the value of instid should always be AF_DEFAULT_INST. loopids
is an array of unique, positive long integers that will identify individual
loops within an audio file opened using setup. nloops is a long integer that
indicates the number of elements in loopids.

Creating and Configuring Audio Files

The values set in loopids can be used by other AF Library functions to set the
start point, end point, and play mode for each loop (see “Reading and
Writing Instrument Configurations” on page 163).

Note: In the current release of the AF Library, both AIFF and AIFF-C files
must contain exactly 2 loops: a “sustain” loop and a “release” loop. nloops is
currently ignored, since its value is always 2.

Initializing Miscellaneous Data

Use these functions to initialize miscellaneous data chunks in an AFfilesetup
structure, including file name, author, copyright, and annotation strings,
MIDI data, and application-specific data.

AFinitmiscids() initializes a list of unique miscellaneous chunk IDs that are
then used to reference various file format-dependent data chunks in an
audio file. Its function prototype is:

voi d AFinitm scids(AFfil esetup setup, long mscids[],
| ong nmi sc)

where setup is the AFfilesetup structure, miscids is an array of unique,
positive long integers used to reference the miscellaneous data chunks in an
audio file opened using setup, nmisc is the number of elements in miscids, that
is, the total number of miscellaneous chunks in the file configuration. The
default number of miscellaneous IDs in an AFfilesetup structure is 0.

AFinitmisctype() initializes a miscellaneous data chunk with a given ID to
one of a variety of supported chunk types in AIFF and AIFF-C files. Its
function prototype is:

voi d AFinitm sctype(AFfil esetup setup, |ong miscid,
| ong type)

where setup is the AFfilesetup structure, miscid is a positive long integer that
identifies a miscellaneous chunk in setup, and fype is a long integer constant
that defines the chunk type.

141

Chapter 7: Programming with the Audio File Library

142

Table 7-5 lists the valid parameters for each chunk type.

Table 7-5 Miscellaneous Chunk Types and Parameter Values
Parameter Value Miscellaneous Chunk Type
AF_MISC_AIFF_ANNO Annotation string
AF_MISC_AIFF_APPL Application-specific data
AF_MISC_AIFF_AUTH Author string
AF_MISC_AIFF_COPY Copyright string
AF_MISC_AIFF_MIDI MIDI data
AF_MISC_AIFF_NAME Name string

A single AIFF or AIFF-C file may contain any number of ANNO, APPL, or
MIDI chunks, but only one of each of the other (NAME, AUTH, and (c))
miscellaneous chunks.

AFinitmiscsize() initializes the amount of space reserved for miscellaneous
chunks of data in an AFfilesetup structure. This space is then reserved
(written as a zero-filled area) in the header structure of an audio file that is
opened using the specified AFfilesetup structure.

Use AFwritemisc() to write the data after the file has been opened. The
application program is responsible for managing the contents of the header
space reserved for each chunk. Its function prototype is:

voi d AFinitm scsize(AFfil esetup setup, |ong mscid,
I ong size)

where setup is the AFfilesetup structure, miscid is a positive long integer that
identifies a miscellaneous chunk in setup, and size is a non-negative long
integer that specifies the number of bytes to reserve for the chunk data
identified by miscid. It is not necessary to add a trailing “zero pad byte”
normally required by chunks in AIFF/AIFF-C files with odd numbers of
data bytes (see the description for AFreadmisc()); the AF Library handles
this transparently.

Creating and Configuring Audio Files

Using the Audio Utility Library to Initialize Parameter Lists

The Audio Utility Library, libaudioutil.so, provides routines for getting and
setting parameters, parameter types, and parameter values contained in
lists. Currently, these routines are used only when initializing and querying
parameters for the built-in licensable audio compression software from
Aware Inc., which is accessible from AF routines. Licenses can be verified by
using the AUchecklicense() routine.

These routines use the Audio Utility Library parameter-value list (AUpvlist)
data structure, which is an array of structures, each of which contains a list
of parameters, parameter types, and parameter values.

Creating and Configuring an Audio Utility Parameter-value List

Use AUpvnew() to create an empty AUpvlist with the specified number of
blank structures. Its function prototype is:

AUpvlist AUpvnew(int numtens)

where:

numitems is an integer number of list items to use when creating a new
AUpvlist—one list item contains the parameter, parameter
type, and parameter value entries.

AUpvnew() returns an empty AUpvlist structure. If an error occurs— either

because numitems is less than or equal to zero, or because of a memory
allocation error—a null pointer, AU_NULL_PVLIST, is returned.

Freeing an Audio Utility Parameter-value List

When an AUpvlist is no longer needed, you should free the memory
associated with it by calling AUpvfree(). Its function prototype is:

int AUpvfree(AUpvlist pvlist)

where puvlist is the structure for which memory should be freed.

143

Chapter 7: Programming with the Audio File Library

Getting and Setting Parameter Values

Use the AUpvlist structure when setting and getting a parameter, its type,
and its value. The “set” routines fill in the structure entries for the designated
list item with the specified information; the “get” routines return the
requested information in pointers corresponding to the item being queried.

Table 7-6 lists and describes the AU Library get and set routines.

Table 7-6 Audio Utility Library Set and Get Routines

Routine Description

AUpvgetmaxitems() Returns the number of list entries allocated for pvlist when
it was created by AUpvnew()

AUgetparam() Gets the parameter of the itemth entry in polist and returns
it in param_ptr

AUpvgetval() Gets the value of the ifemth entry in pvlist and returns it in
val_ptr

AUpvgetvaltype() Gets the value type of the itemth entry in pvlist and returns
it in type_ptr

AUpvsetparam() Sets the parameter of the itemth entry in pvlist to param
AUpvsetval() Sets the value of the itemth entry in polist to the value stored
in val_ptr

AUpvsetvaltype() Sets the type of the value of the itemth entry in pvlist to type

The function prototypes of the routines in Table 7-6 are:

int AUpvget maxi t ens(AUpvli st pvlist)

int AUpvget paran(AUpvlist pvlist, int item int *paramptr)
int AUpvgetval (AUpvlist pvlist, int item void *val _ptr)

int AUpvgetvaltype(AUpvlist pvlist, int item int *type ptr)
int AUpvset paran(AUpvlist pvlist, int item int param

int AUpvsetval (AUpvlist pvlist, int item void *val _ptr)

int AUpvsetvaltype(AUpvlist pvlist, int item int type)

144

Creating and Configuring Audio Files

polist
item

type

param

val

param_ptr

value_ptr

is an Audio Utility Library parameter-value list data type
created by a previous call to AUpvnew().

is an integer zero-based index into an AUpvlist. The index
should be a non-negative value that is less than numitems-1.

is a symbolic constant describing the type of parameter.
Currently supported types are:

e AU_PVTYPE_LONG—values are longs

¢ AU_PVTYPE_DOUBLE—values are double-precision
floating points

is an integer that will become the parameter or the
parameter-value pair.

is a pointer to a void type. Data is read from this pointer,
interpreted according to the type associated with this entry,
and stored in the AUpvlist.

is a pointer to an integer that is filled with the value of the
parameter portion of a parameter-value pair.

is a pointer to a void type. Data representing the value
portion of a parameter-value pair is copied to this address
as interpreted by this entry's type.

Verifying a License

Use AUchecklicense() to verify whether a license for a particular audio
product is available. Its function prototype is:

int AUchecklicense(int product, int *errorval,

where:

product

char **message)

is a constant symbol for the product license that is being
queried. Currently defined licenses are:

e AU_LICENSE_AWARE_MPEG_ENCODER
e AU_LICENSE_AWARE_MPEG_DECODER
e AU_LICENSE_AWARE_MULTIRATE_ENCODER
e AU_LICENSE_AWARE_MULTIRATE_DECODER

145

Chapter 7: Programming with the Audio File Library

errorval

message

is a pointer to an integer describing a NetLS error, which
will be set only if the return value is AU_LICENSE_ERR.

is a pointer to a character pointer, which is changed to point
to an informative string only if the return value is
AU_LICENSE_ERR. The string contains the NetLS error
that occurred and contact information on how to obtain
support or a license.

On successful completion, AUchecklicense() returns AU_LICENSE_OK. If
product is unknown, then AU_BAD_PRODUCT is returned. If a NetLS error
occurs, then AU_LICENSE_ERR is returned and *errorval and *message are

set, describing the error. See Appendix B for more information about NetLS.

Example 7-1 contains a listing of a portion of code from the aifcinfo.c demo
program that is provided in /usr/people/4Dgifts/examples/dmedia/soundfile.
This portion of code creates an AUpvlist with 3 items, fills those items with
the pertinent information, then frees the memory associated with the
AUpvlist when it is no longer required.

Example 7-1

{

Creating, Filling, Querying and Freeing an AUpvlist

AUpvnew(&pvlist, 3);

AUpvset paranm(pvlist, 0, AF_AWARE PARAM LAYER);

AUpvset val type(pvlist, 0, AU PVTYPE LONG ;

AUpvset paran(pvlist, 1, AF_AWARE PARAM BI TRATE_POLI CY);
AUpvset val type(pvlist, 1, AU PVTYPE_LONG ;

AUpvset paran(pvlist, 2, AF_AWARE PARAM Bl TRATE_TARGET) ;
AUpvset val type(pvlist, 2, AU PVTYPE LONG;

AFget conpr essi onparans(file, AF_DEFAULT_TRACK,
& rack_desc->conpressi ontype, pvlist, 3);
AUpvget val (pvlist, 0, &rack_desc->aware_desc. | ayer);
AUpvget val (pvlist, 1,
& rack_desc->awar e_desc. bitratepolicy);
AUpvget val (pvlist, 2,
& rack_desc->awar e_desc. bitratetarget);

AUpvfree(pvlist);

146

Opening, Closing, and Updating Audio Files

Opening, Closing, and Updating Audio Files

Before opening a new audio file using AFopenfile(), create and configure an
appropriate AFfilesetup structure (as described in “Creating and
Configuring Audio Files” on page 132). Audio files can be opened either for
reading or writing (but not both simultaneously). In order to change an
existing file, you must copy the contents of the file to a new file, writing edits
as you go. See the sample source code in /usr/people/4Dgifts/examples/dmedia/
soundfile for a demonstration of this process.

Opening an Audio File

AFopenfile() allocates and initializes an AFfilehandle structure for a named
file. The audio track logical read /write pointer used by AFreadframes() and
AFwriteframes() is initialized to point to the location of the first sample in
the audio file. Its function prototype is:

AFfil ehandl e AFopenfil e(char *nane, char *node,
AFfil esetup setup)

where name is a character string that names the file to be opened, and mode
identifies whether the file is being opened for read or write access. Valid
values for mode are:

e 'r"—read-only access
e "w"-—write-only access
setup is an AFfilesetup structure previously created using AFnewfilesetup()

and configured using various AF Library initialization functions described
in previous sections. setup is ignored when mode is set to "r".

AFopenfile() returns an AFfilehandle structure for the named file. If an error
occurs, AFopenfile() returns the value AF_NULL_FILEHANDLE.

147

Chapter 7: Programming with the Audio File Library

148

Getting an IRIX File Descriptor for an Audio File

Another way of opening a file is to call the IRIX system function open() to
open the file, and then get a handle to the file descriptor from the AF Library.

AFopenfd() returns an AFfilehandle structure for a file that has already been
opened. Its function prototype is:

AFfil ehandl e AFopenfd(int fd, char *node, AFfilesetup setup)

where fd is an IRIX file descriptor previously returned by open(), mode
identifies whether the file is being opened for read or write access (see
AFopenfile()), and setup is an AFfilesetup structure previously created using
AFnewfilesetup() and configured using various AF Library initialization
functions described in previous sections. setup is ignored when mode is set

n_n

to'r".

AFopenfd() returns an AFfilehandle structure for the named file. If an error
occurs, AFopenfd() returns the value AF_NULL_FILEHANDLE.

AFgetfd() returns the IRIX file descriptor associated with the audio file
referred to by the given AFfilehandle structure. Its function prototype is:

int AFgetfd(AFfilehandle file)

where file is the AFfilehandle structure previously created by a call to
AFopenfile().

The file descriptor returned by AFgetfd() is intended for use in a select()
loop. It is not intended to allow reading, writing, and seeking in an audio file
without the knowledge of the Audio File Library. Doing so causes
unpredictable results unless you save and restore the file position whenever
you modify it.

The AF does not reposition the file to the correct place before reading from
(using AFreadframes()) or writing to (using AFwriteframes()) it. If you
modify the file position of the file descriptor given by AFgetfd(), you should
save the file position and restore it to its previous position before reading or
writing data to the file. Alternately, you can use one of two different file
descriptors opened to the same file. The file must be re-opened in order to
get a separate file descriptor (dup(2) will not work because it gives you two
file descriptors that share the same file offset).

Opening, Closing, and Updating Audio Files

In addition, if you attempt to write to the file, no matter how the
AFfilehandle was opened, the results are undefined.

Closing and Updating Files

AFclosefile() releases a file's resources back to the system. It also updates the
headers of files opened for write access. The AFfilehandle structure
deallocated by AFclosefile() should not be used by any subsequent AF
Library function calls. Its function prototype is:

I ong AFcl osefil e(AFfil ehandle file)

where file is the AFfilehandle structure to be deallocated. This structure was
returned by AFopenfile() when the file being closed was created.

AFclosefile() returns a negative value if an error occurs while closing a file
and updating the header fields. If compression was used to write a file, a
negative value indicates that some sample frames were lost due to the filter
delay of the compressor. If no error occurs, the return value is 0.

AFsyncfile() updates the complete contents of an audio file opened for
writing without actually closing the file. This is useful for maintaining
consistent header information between writing samples to the file's audio
track. Its function prototype is:

I ong AFsyncfile(AFfilehandle file)

where file is the AFfilehandle structure to be updated. This structure was
returned by AFopenfile() when the file being closed was created.

AFsyncfile() returns a negative value if an error occurs while trying to

update file. If the update is successful, or if file was opened as read-only,
AFsyncfile() returns 0.

149

Chapter 7: Programming with the Audio File Library

Reading and Writing Audio Track Information

150

This section describes functions that read and manipulate audio track data
and parameters in an audio file. Your application should query for audio file
characteristics before opening a file and reading and writing data.

Getting Audio File Format

This section describes functions that query the file format from either a file
handle or from an IRIX file descriptor of an opened audio file.

AFgetfilefmt() returns an integer value indicating the format of the file and
returns a separate version number for AIFF-C files. Its function prototype is:

| ong AFgetfilefnt (AFfilehandl e file, |1ong *version)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and version is used to return a file format
version number in the form of a non-negative long integer. AIFF files do not
use version numbers, so a value of 0 is always returned as the AIFF version
number.

AFgetfilefmt() returns a non-negative long integer indicating the format of
the file. Currently supported values include:

e AF_FILE_AIFFC (AIFF-C format)

¢ AF_FILE_AIFF (AIFF format)

but your application should allow for the possibility of other (or unknown)
file formats being returned.

AFidentifyfd() returns the file format of a given IRIX file descriptor. Its
function prototype is:

| ong AFidentifyfd(int fd)
where fd is an IRIX file descriptor previously returned by open().
AFidentifyfd() returns a long integer value representing the audio file

format (see AFgetfilefmt() for the return values for supported formats). If
AFidentifyfd() does not recognize the format, AF_FILE_UNKNOWN is

Reading and Writing Audio Track Information

returned. If the format is not one supported by the AF Library,
AF_FILE_UNSUPPORTED is returned.

To determine whether a file is a sound file that can be opened by the AF,
check for an unrecognizable format rather than a recognizable format. For
example, rather than testing whether the file format is either AF_FILE_AIFF
or AF_FILE_AIFC, use this code:

if (filefm == AF_FILE_UNSUPPORTED | |
filefm == AF_FI | LE_UNKNOMN)
{
printf("file is not supported by the AF library!");
exit(0);
}

Applications that branch depending on the file format should still check for
unrecognized formats:

switch (AFidentifyfd(fd))
{
case AF_FILE_AlFF: do_aiff_thing(); break;
case AF_FILE AIFC. do_aiffc_thing(); break;
case AF_FI LE_UNKNOMN:
case AF_FI LE_UNSUPPORTED:
printf("this file is not supported by AF library!!");

exit(0);

defaul t:
printf("programcannot handle this file format!");
exit(0);

}

Tip: Sometimes, instead of checking the file format, you should check the
sampling format and other track parameters from the audio file track, as
described in “Getting and Setting Audio Track Parameters” on page 152. For
example, a program that simply reads 16-bit AF_SAMPFMT_TWOSCOMP
audio data out of an AIFF file should be able to correctly read that type of
data out of a file whose file format is not AIFF, as long as it does not also
intend to read AIFF-specific chunks from the data (for example, certain
MISC and INST chunks). Such a program has no need to call AFidentifyfd()
or AFgetfilefmt() to get the file format.

151

Chapter 7: Programming with the Audio File Library

152

Getting and Setting Audio Track Parameters

Most audio track parameters (except markers) must be initialized before a
new audio file is opened and cannot be modified after that point, but you
should query an audio file for its track parameters.

Getting Audio Track Sample Rate

AFgetrate() returns the sample rate of an audio track in an opened audio file.
Its function prototype is:

doubl e AFgetrate(AFfil ehandle file, |long trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and trackid is the ID for the audio track (for
AIFF and AIFF-C files, this value should always be AF_DEFAULT_TRACK).

AFgetrate() returns a double-precision floating point value that describes in
Hz the audio sampling rate of the audio track.

Getting Audio Track Sample Format and Sample Width

AFgetsampfmt() retrieves the sample format and sample width for an audio
track in an opened audio file. Its function prototype is:

voi d AFget sanpfnt (AFfil ehandle file, long trackid,
long *sanpfnt, |long *w dth)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_ DEFAULT_TRACK),
sampfmt is a pointer to a long integer denoting the format of the sample data
(for AIFF and AIFF-C files, this value is always
AF_SAMPEMT_TWOSCOMP), and width is a pointer to a long integer that
denotes the sample width in bits (for AIFF and AIFF-C files, this value is
between 1 and 32).

Tip: Donotassume that AF_SAMPFMT_TWOSCOMP is the only value that
can be returned by AFgetsampfmt(). Write your application so that it rejects
files with sample formats it does not support.

Reading and Writing Audio Track Information

Sample width may or may not have meaning, depending on the value of
sampfmt. For AF_SAMPFMT_TWOSCOMP data, you can use the sample
width value to determine the data type used to pass samples to
AFwriteframes() and from AFreadframes(): 1-8 bit samples are packed into
chars, 9-16 bit samples are packed into shorts, and 17-32 bit samples are
packed into longs. Data formats whose sample width is not a multiple of
eight are augmented by zero-bit-padding on the right (see Figure 7-1).

There is a special case for reading 24-bit integer data. The AF automatically
converts 3-byte data into 4-byte quantities in a manner that is compatible
with the Audio Library (AL) by sign-extending the left-most bits of 17 to
24-bit data.

Figure 7-1 shows the data packing for twos complement integer data
(AF_SAMPEMT_TWOSCOMP).

MSB LSB
Byte 3 Byte 2 Byte 1 Byte O
III,IIIIII,IIIIII,IIIIII,IIISampIeFormat

6-bit data

2e2222 000 (ightpad)
) char

o o o o o e 8-bit data

(no padding)

o0 0000000000 0000

12-bit data 9-16
(right pad) short

20-bit data
(left sign extend | 17_4 int
and right pad) special

24-bitdata | %8¢
(left sign extend)

fTe——————00000000000000000000e 0000

T 10 0000000 0000006000006060600O0

® 0000000000000 0060060600000000000¢ (00 30—b|tdata
(right padding)
25-32
int
32-bit data
® 0 0 0000000000000 00000000 00000 0 0 0 .
(no padding)

Figure 7-1 Audio Data Packing Formats

153

Chapter 7: Programming with the Audio File Library

154

Tip: Don’t assume that the maximum size of integers in files opened by the
AF Library is 32 bits or that the number of bits will be a multiple of 8. Even
for AIFF files, the sample width is not necessarily a multiple of 8. Generally,
this can be ignored, because audio samples that do not take up an integral
number of bytes are left-justified inside the next larger integral number of
bytes (with the remaining bits set to 0). But you should write your
application so that it does not assume the sample width is a multiple of 8, as
demonstrated in Example 7-2.

Example 7-2 checks for the audio track sample format, and then classifies
integer data according to its sample width.

Example 7-2 Checking Audio Track Sample Format and Sample Width

#i ncl ude <dnedi a/ audi ofil e. h>

AFfilehandl e h = AFopenfile(....);
if ('h) return;

AFget sanpfm (h, AF_DEFAULT_TRACK, &sampfnt, &sanpw dth);
if (sanpfnt != AF_SAVPFMI_TWOSCOWP)

printf("This programcan’t read audio files of this "
sanple format");
exit(0);

/* round sanpwi dth up to nearest number of bytes */
int nbytes = ((sampwidth-1) / 8) + 1;
swi tch (nbytes)
{
case 1: do_8 thing(); break;
case 2: do_16_thing(); break;
case 3: do_24_thing(); break;
case 4: do_32_thing(); break;
defaul t:
printf("This programcan't read audio files of this "
sanple width %\ n", sanmpw dth);
exit(0);
}

Reading and Writing Audio Track Information

Getting Audio Track Channels

The number of channels in an audio track is initially set by AFinitchannels()
before the file is created.

AFgetchannels() returns the number of interleaved audio channels in the
audio track of an opened audio file. Its function prototype is:

| ong AFget channel s(AFfil ehandl e file, |ong trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and trackid is the ID for the audio track (for
AIFF and AIFF-C files, this value should always be AF_DEFAULT_TRACK).
AFgetchannels() returns 1 if frackid is monaural, 2 if it is stereo, or any other
positive integer (even for AIFF/AIFF-C files).

Tip: Your application should be able to handle audio files containing an
arbitrary number of channels. For example, the application could reject a file
that has more than the supported number of channels, or it could combine
channels selectively or use certain channels while ignoring others.

Getting AES Data

AFgetaeschanneldata() retrieves AES channel status information from an
opened audio file. Its function prototype is:

| ong AFget aeschannel data(AFfil ehandle file, long trackid,
unsi gned char buf[24])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_ DEFAULT_TRACK), and
buf is a 24-element array that receives the AES channel status bytes.

AFgetaeschanneldata() returns a 1 if there is AES channel data, or a 0 if there
is no data.

Tip: There isno guarantee whether a given file format will contain AES data,

so your application should call AFgetaeschanneldata() to determine
whether AES channel bytes are encoded in an audio file.

155

Chapter 7: Programming with the Audio File Library

156

Getting Audio Track Compression

This section describes routines that let you get compression information for
an audio track from an AFfilehandle structure.

When reading or writing a file (even an AIFF-C file) containing compressed
data, first call AFgetsampfmt() to get the native sample format of the codec,
and check that it is able to be read /written using that format. The native
sample format of a codec is the sample format of the data it produces on
decompression or expects on compression.

Tip: Your application should reject compressed files with native sample
formats it does not support. Check for an unrecognized format rather than a
defined format. The currently defined codecs all convert the compressed
data to and from 16-bit AF_SAMPEMT_TWOSCOMP data, but you should
not assume that a certain format is guaranteed for future codecs. For
example, if you know that the file is AF_ COMPRESSION_G711_ULAW,
then the native format for that codec is 16-bit AF_SAMPFMT_TWOSCOMP.
However, you should call AFgetsampfmt() in any case, to allow for the
possibility of future codecs whose native sample format is something other
than 16-bit signed integer or which have more than one native sample
format (some may be configurable or may vary depending on what kind of
data was originally compressed).

AFgetcompression() and AFgetcompressionparams() return the
compression type used in the audio track of an opened audio file. In
addition, AFgetcompressionparams() scans a requested number of items
and returns codec-specific parameters for the audio track.
AFgetcompression() returns a long integer representing the compression
algorithm used for the audio track’s data; AFgetcompressionparams()
returns this value in the compression pointer.

The function prototypes are:
| ong AFget conpressi on(AFfil ehandl efile file, |ong trackid)
| ong AFget conpr essi onparans(AFfil ehandle file, long trackid,
| ong *conpression, AUpvlist pvlist, |ong numtens)

where:

file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd().

Reading and Writing Audio Track Information

trackid is the ID for the audio track (for AIFF and AIFF-C files, this
value should always be AF_DEFAULT_TRACK).

compression is a pointer to a positive long integer that will be filled in
with the symbolic constant that indicates the type of audio
compression being used for the specified audio track. See
Table 7-7 for a list of possible return values.

polist is an AUpvlist structure, to be filled with parameters and
values related to the compression scheme compression.
Currently, the only compression schemes that have any
parameters are those supplied by Aware, Inc.

numitems is the number of valid entries in the povlist.

Table 7-7 lists the valid return values for AIFF-C files. AIFF files always
return AF_COMPRESSION_NONE.

Table 7-7 Valid Return Values for Compression Algorithms and Parameters
Parameter Value Compression Type
AF_COMPRESSION_UNKNOWN Unrecognized compression scheme
AF_COMPRESSION_NONE No compression
AF_COMPRESSION_G722 64 Kbps ADPCM for 16 kHz 16-bit
AF_COMPRESSION_G711_ULAW 64 Kbps encoding for 8 kHz 16-bit
AF_COMPRESSION_G711_ALAW 64 Kbps encoding for 8 kHz 16-bit
AF_COMPRESSION_AWARE_MPEG Aware implementation of ISO/

MPEG I-audio Layers I and II

AF_COMPRESSION_AWARE_MULTIRATE Aware MultiRate I lossless or near-
lossless algorithm

AF_COMPRESSION_APPLE_ACE3 Not currently supported
AF_COMPRESSION_APPLE_ACES Not currently supported
AF_COMPRESSION_APPLE_MAC3 Not currently supported
AF_COMPRESSION_APPLE_MAC6 Not currently supported

157

Chapter 7: Programming with the Audio File Library

158

The Audio File Library provides built-in codec support for five compression
algorithms: CCITT G.722, CCITT G.711 p-law and A-law, and the Aware, Inc.
ISO/MPEG I-audio and MultiRate I algorithms. To get more specific
information about the Aware algorithms, such as MPEG I layers, see
Appendix B, “Aware Scalable Audio Compression Software.”

Note: The four Apple compression algorithms listed in Table 7-7 are
proprietary to Apple Computer Inc., and are not currently supported by the
Audio File Library.

AFgetcompressionname() returns a null-terminated string containing the
name of the compression algorithm used for an audio track in an opened
audio file. Its function prototype is:

char *AFget conpressi onnane(AFfil ehandl e file, |ong trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and trackid is the ID for the audio track (for
AIFF and AIFF-C files, this value should always be AF_DEFAULT_TRACK).

If compression is not used, as is the case with AIFF files,
AFgetcompressionname() returns a null string.

Getting Audio Track Sample Frame Count

AFgetframecnt() returns the total number of sample frames in the audio
track of an opened audio file. Its function prototype is:

| ong AFgetfranecnt (AFfilehandle file, |ong trackid)

where file is the AFfilehandle structure previously created by a call to
AFopentfile() or AFopenfd(). trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_ DEFAULT_TRACK).

AFgetframecnt() returns a long integer value that is the current total of
sample frames in the track.

Getting and Setting Audio Track Markers

This section describes functions that get information about the markers in a
given audio track and explains how to set the position of those markers.
Markers point to positions between adjacent sample frames. For a track

Reading and Writing Audio Track Information

containing n sample frames, position 0 is before the first sample frame, and
position 7 is after the last sample frame in the track.

AFgetmarkids() retrieves an array of marker IDs from a given audio track in
an opened audio file. It returns the number of marker structures in the
specified audio track. Its function prototype is:

| ong AFget mar ki ds(AFfilehandle file, |ong trackid,
long markids[])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
markids is an array of long integers that receives the marker IDs for the
marker structures in the audio track.

AFgetmarkids() returns a non-negative integer value specifying the number
of marker structures in the given audio track.

Tip: Check for unrecognized mark return values rather than recognized
values. Write your application so that it expects any number of marks and
any type of mark (not just the currently defined types) and rejects files
containing marks it does not support.

Typically, you call AFgetmarkids() twice. The first time, you pass markids a
null pointer and check the return value of the function. This value tells you
how many locations to allocate in the markids array, which you pass back to
AFgetmarkids() to obtain the list of marker IDs.

AFgetmarkname() returns the name string of a given marker within the
audio track of an opened audio file. Its function prototype is:

char *AFget mar knane(AFfil ehandl e file, |ong trackid,
| ong nmar ki d)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
markid is the ID of the marker whose name you want to retrieve.

AFgetmarkname() returns a null-terminated character string that is the
name associated with the given markid.

159

Chapter 7: Programming with the Audio File Library

160

AFgetmarkpos() returns the frame location of a given marker in the audio
track of an opened audio file. Its function prototype is:

| ong AFget mar kpos(AFfil ehandle file, long trackid, |ong
mar ki d)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
markid is the ID of the marker whose position you want to discover.

AFgetmarkpos() returns a non-negative long integer value indicating the
position of the marker in the track.

AFsetmarkpos() sets the frame location of a given marker in the audio track
of an audio file opened for write access. Its function prototype is:

voi d AFset mar kpos(AFfilehandle file, |ong track, |ong nmarkid,
| ong mar kpos)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK),
markid is the ID of the marker whose position you want to move, and markpos
is a non-negative long integer that describes the position to which you want
to move the marker in the track.

Seeking, Reading, and Writing Audio Track Frames

This section describes functions that position the read pointer in a file's
audio track and functions that read and write frames. You can read and seek
only from a file opened for reading. Similarly, you can write frames only to
a file opened for writing.

Seeking to a Position in an Audio File Track

When a file is opened for read access by AFopenfile() or AFopenfd(), the
logical track pointer for the audio track is initialized to point to the first
frame in the track. This location can be changed by calling AFseekframe().
Before returning, AFreadframes() moves the logical track pointer so that it
points to the frame following the one last copied into frames.

Reading and Writing Audio Track Information

Caution: The logical track pointer is not the same thing as the IRIX file
pointer which you position by calling the IRIX Iseek(2) command.

AFseekframe() moves the logical track pointer in the audio track of an audio
file opened for read-only access to a specified frame. Its function prototype
is:
| ong AFseekframe(AFfilehandle file, long trackid,

| ong of fset)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
offset is the number of frames from the beginning of the track that the pointer
will be moved to. This value is between 0 and the total number of frames in
the track, minus 1. The total number of frames in the track can be determined
by calling AFgetframecnt().

When AFseekframe() succeeds, it returns the actual offset value; otherwise,
it returns a negative value.

Reading Audio Frames from an Audio Track

AFreadframes() copies sample frames from an audio file opened for reading
to a buffer. Its function prototype is:

I ong AFreadframes(AFfilehandle file, |ong trackid,
voi d *frames, |ong count)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_ DEFAULT_TRACK),
frames is a pointer to a buffer into which you want to transfer copies of
sample frames from file, and count is the number of sample frames you want
to read from file.

AFreadframes() returns a long value indicating the number of frames
successfully read from the audio track.

The data copied into frames must be interpreted according to the sample

format and sample width parameter returned by AFgetsampfmt() and
channel count returned by AFgetchannels(), as described in “Getting Audio

161

Chapter 7: Programming with the Audio File Library

162

Track Sample Format and Sample Width” on page 152. For
AF_SAMPFMT_TWOSCOMP, AFreadframes() copies the frames to the
buffer using the smallest data type (char, short, or long) that capable of
holding the data. AFreadframes() automatically decompresses data
encoded using any of the supported compression algorithms. (For Aware
compression, an Aware license must be installed.)

Tip: Query for the sample format, sample width, and channels. Don’t
assume that a particular file format determines the sample format, sample
width, or number of channels. Provide a mechanism for detecting and
handling unsupported file configurations.

Writing Audio Frames to an Audio Track

When a file is opened for write access by AFopenfile() or AFopenfd(), the
logical track pointer for the file’s audio track is initialized to point to the first
frame in the track. Before returning, AFwriteframes() moves the logical
track pointer so that it points to the frame following the one last copied into
samples.

Caution: The logical track pointer is not the same thing as the IRIX file
pointer which you position by calling the IRIX Iseek(2) command.

AFwriteframes() copies frames from a buffer to an audio file opened for
writing. Its function prototype is:

long AFwriteframes(const AFfilehandle file, long track,
voi d sanpl es, const |ong count)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), track is a long integer which identifies the
audio track (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_TRACK), samples is a pointer to a buffer containing sample
frames that you want to write to file, and count is the number of sample
frames you want to write to file.

For AF_SAMPFMT_TWOSCOMP data, AFwriteframes() expects the frames
to be buffered using the smallest data type (char, short, or long) capable of
holding the data. AFwriteframes() automatically compresses data encoded
using any of the supported compression algorithms.

Reading and Writing Audio Track Information

AFwriteframes() returns a long value indicating the number of frames
successfully written to the audio track. The return value is normally greater
than or equal to 0; however, when a codec is being used and buffered data
cannot be written to disk, that data is lost. In such a case, AFwriteframes()
returns a negative value, indicating the number of sample frames lost.

Reading and Writing Instrument Configurations

Use the functions in this section to retrieve and manipulate instrument
configuration data and parameters.

Getting and Setting Instrument Parameters

Use the functions described in this section to retrieve and set the instrument
configuration parameters of an audio file. The parameters can be read from
any opened audio file and written to any audio file opened as write-only.

AFgetinstids() retrieves an array of instrument IDs corresponding to the
instrument chunks in a given audio file. It returns the number of instrument
chunks in the file. Its function prototype is:

| ong AFgetinstids(AFfilehandle file, long instids[])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and instids is an array of long integer
instrument IDs that reference instrument chunks within the file.

Typically, you call AFgetinstids() twice. The first time, you pass instids a null
pointer and check the return value of the function. This value tells you how
many locations to allocate in the instids array, which you pass back to
AFgetinstids() to obtain the list of instrument IDs.

Note: The AF Library currently supports only AIFF and AIFF-C file types,
so the number of instrument chunks is always either 0 or 1. If the file does
contain an instrument chunk, its ID will always be AF_DEFAULT_INST for
ATFF and AIFF-C files. But other instrument configurations could be
returned in future releases of the AF Library.

Tip: Write your application so that it checks for and rejects instrument
configurations that you don’t want to support.

163

Chapter 7: Programming with the Audio File Library

164

AFgetinstparamlong() retrieves a long instrument configuration parameter
value from an instrument configuration in an open audio file. Its function
prototype is:

| ong AFgeti nst param ong(AFfilehandle file, long instid,
| ong param

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(). instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST). param is a symbolic constant that identifies an
instrument parameter. See Table 7-3 and Table 7-8 for a list of valid
parameter constants and values associated with them.

AFgetinstparamlong() returns the long integer value associated with the
parameter specified in param. If instid or param is not valid, the value

returned is 0.

Table 7-8 lists the instrument parameter constants and their valid values.

Table 7-8 Instrument Parameter Constants and Valid Values
Instrument Parameter Constant Valid Values
AF_INST_MIDI_BASENOTE 0-127
AF_INST_NUMCENTS_DETUNE =50 to 50

AF_INST_MIDI LONOTE 0-127
AF_INST_MIDI_HINOTE 0-127
AF_INST_MIDI_LOVELOCITY 1-127
AF_INST_MIDI_HIVELOCITY 1-127
AF_INST_NUMDBS_GAIN -32768 to 32767
AF_INST_SUSLOOPID Any positive long integer value
AF_INST_RELLOOPID Any positive long integer value

Reading and Writing Audio Track Information

Tip: Check for unrecognized instrument configuration and parameters
rather than recognized types. Write your application so that it expects any
type of instrument configuration (not just the currently defined types) and
rejects files containing instruments it does not recognize.

AFsetinstparamlong() writes a long instrument configuration parameter
value to a given instrument configuration chunk in an audio file that has
been opened for writing. Its function prototype is:

voi d AFseti nstparam ong(AFfil ehandle file, long instid,
I ong param |ong val ue)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), param is a symbolic constant that identifies an
instrument parameter, and value is the long integer value you want to assign
to parameter named by param. See Table 7-3 and Table 7-8 for a list of valid
parameter constants and values associated with them.

Getting and Setting Loop Information

This section describes functions that retrieve and set the positions of
instrument loops within an opened audio file. The loop information may be
read from any opened audio file and written to any audio file opened as
write-only. To get and set instrument loop IDs, use AFgetinstparamlong()
and AFsetinstparamlong(), as described in “Reading and Writing
Instrument Configurations” on page 163.

AFgetloopmode() returns the loop mode of a given loop in the instrument
configuration of an opened audio file. Its function prototype is:

| ong AFget| oopnode(AFfil ehandle file, long instid, |ong
| oopi d)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), and loopid is the ID number associated with the loop
whose mode you wish to read.

165

Chapter 7: Programming with the Audio File Library

166

AFgetloopmode() returns a long integer value representing the loop mode.
Current valid values for loop mode are:

e AF_LOOP_MODE_NOLOOP (no loop)
e AF_LOOP_MODE_FORW (forward loop)
e AF_LOOP_MODE_FORWBAKW (alternating forward /backward)

AFsetloopmode() sets the loop mode of a given loop in the instrument
configuration of an audio file opened as write-only. Its function prototype is:

voi d AFset| oopnode(AFfil ehandle file, long instid,
I ong | oopid, |ong node)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), loopid is the ID number associated with the loop
whose mode you wish to write, and mode is the long integer value you wish
to set for the loop mode. See AFgetloopmode() for the list of valid mode
values.

AFgetloopstart() returns an audio track marker ID associated with the
starting point of a given instrument loop. Its function prototype is:

| ong AFget| oopstart(AFfilehandle file, long instid, |ong
| oopi d)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), and loopid is the ID number associated with the loop
whose starting point you wish to read.

AFgetloopstart() returns a long integer value, which is a marker ID in the
audio track. See “Getting and Setting Audio Track Markers” on page 158 in
“Reading and Writing Audio Track Information” on page 150 for
information on how to manipulate the position of the markers referred to by
the marker IDs.

Reading and Writing Audio Track Information

AFsetloopstart() causes an audio track marker ID to be associated with the
starting point of a given instrument loop. Its function prototype is:

voi d AFsetl| oopstart(AFfilehandle file, long instid,
I ong | oopid, |ong markid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), loopid is the ID number associated with the loop
whose starting point you wish to write, and markid is the audio track marker
that you wish to assign as the starting point of the given loop.

AFgetloopend() returns an audio track marker ID associated with the
ending point of a given instrument loop. Its function prototype is:

| ong AFget| oopend(AFfilehandle file, long instid, |ong
| oopi d)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), and loopid is the ID number associated with the loop
whose ending point you wish to read.

AFgetloopend() returns a long integer value which is a marker ID in the
audio track. See “Getting and Setting Audio Track Markers” on page 158 in
“Reading and Writing Audio Track Information” on page 150 for
information on how to manipulate the position of the markers referred to by
the marker IDs.

AFsetloopend() causes an audio track marker ID to be associated with the
ending point of a given instrument loop. Its function prototype is:

voi d AFset| oopend(AFfil ehandle file, long instid,
long loopid, [ong markid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), loopid is the ID number associated with the loop
whose ending point you wish to write, and markid is the audio track marker
that you wish to assign as the ending point of the given loop.

167

Chapter 7: Programming with the Audio File Library

168

Tip: Loop queries can return any configuration of loops within an
instrument, not just the fixed value of 2 in AIFF/AIFF-C files. Have your
application check for and reject loop configurations it does not support.

Handling Miscellaneous Data Chunks

The following sections describe how to read to, write from, and get
information about the miscellaneous data chunks in an audio file.

Getting Miscellaneous Data Parameters

This section describes functions that get information about the number, size
and type of miscellaneous data chunks in an opened audio file.

AFgetmiscids() returns the number of miscellaneous data chunks in a file
and an array containing the IDs of each miscellaneous chunk. Its function
prototype is:

| ong AFgetmi sci ds(AFfilehandle file, long mscids[])

file is the AFfilehandle structure previously created by a call to AFopenfile()
or AFopenfd(). miscids is an array of positive long integers that contains the
IDs for the miscellaneous data chunks in file.

AFgetmiscids() returns a long integer value equal to the number of
miscellaneous data chunks in file.

To fill the miscids array with the corresponding IDs, you first call
AFgetmiscids() with a null miscids pointer, and then allocate a miscids buffer
according to the return value. You can then call AFgetmiscids() again,
passing the properly dimensioned miscids buffer to obtain the list of IDs.

AFgetmisctype() returns the type of a given miscellaneous chunk. Its
function prototype is:

| ong AFget i sctype(AFfil ehandle file, |ong chunkid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and chunkid is a positive long integer
miscellaneous chunk ID from the miscids array returned by AFgetmiscids().

Reading and Writing Audio Track Information

AFgetmisctype() returns a long integer constant that describes the chunk
type. See Table 7-5 for the list of valid chunk types and constants. If the
chunk is not of any of the types listed in Table 7-5, AFgetmisctype() will
return the value AF_MISC_AIFF _UNRECOGNIZED.

Tip: The set of chunk types may expand at any time. Check for
unrecognized chunk types rather than recognized chunk types. Write your
application so that it expects any type of MISC chunk (not just the currently
defined types) and rejects miscellaneous chunks it does not recognize.

AFgetmiscsize() returns the size of a given miscellaneous data chunk in
bytes. Its function prototype is:

| ong AFget mi scsi ze(AFfil ehandl e file, |ong chunki d)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and chunkid is a positive long integer
miscellaneous chunk ID from the miscids array returned by AFgetmiscids().

AFgetmiscsize() returns a long integer value that describes the size of the
data in the chunk in bytes. This number does not take into account null-
terminators in strings, so you will need to add one to the value returned
when actually reading string data (see AFreadmisc()).

Reading, Writing, and Seeking Miscellaneous Data

This section describes functions that read and write miscellaneous data and
to position the read /write location pointer within the data portion of a
miscellaneous chunk. The AFfilehandle structure maintains a logical read/
write pointer for each miscellaneous data chunk in the file. Each pointer is
initialized to point at the first data byte with the chunk when the
AFfilehandle structure is created.

Tip: To avoid file corruption, don’t copy MISC chunks from one file to
another unless the content of those chunks is known. A chunk can contain
references to other parts of the file that have been modified by the
application, in which case attempting to copy it without properly modifying
its contents would cause an error.

169

Chapter 7: Programming with the Audio File Library

170

AFreadmisc() reads data from a given miscellaneous chunk into a buffer,
and returns the number of bytes read. Its function prototype is:

| ong AFreadmi sc(AFfilehandle file, [ong chunkid,
voi d *buf, |ong nbytes)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), chunkid is a positive long integer miscellaneous
chunk ID from the miscids array returned by AFgetmiscids(), bufis a pointer
to a buffer that will receive the data from the miscellaneous chunk, and
nbytes is the number of bytes you want to read from the audio file into buf,
beginning at the current position of file's logical read pointer for the data in
miscid. AFreadmisc() will not read past the end of the chunk’s data area.
After reading the data, AFreadmisc() updates the position of the read /write
pointer to point to the data byte following the last one read.

AFwritemisc() writes data from a buffer to a given miscellaneous chunk,
and returns the number of bytes successfully written. Its function prototype
is:
long AFwritem sc(AFfil ehandle file, |1ong chunkid,

voi d *buf, |ong nbytes)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), chunkid is a positive long integer miscellaneous
chunk ID from the miscids array returned by AFgetmiscids(), bufis a pointer
to a buffer that contains the data you want to write to the miscellaneous
chunk, and nbytes is the number of bytes you want to write to the audio file
from buf, beginning at the current position of file’s logical write pointer for
the data in miscid. AFwritemisc() will not write past the end of the chunk’s
data area. After writing the data, AFreadmisc() updates the position of the
read /write pointer to point to the data byte following the last one written.

It is up to the application to fill the data area of a chunk with consistent
information (for example, if you don’t use all the bytes you allocated in a
MIDI data chunk, you need to fill the remaining bytes with no-ops).

AFseekmisc() moves the logical read /write pointer for a miscellaneous
chunk to a specified offset from the beginning of the chunk’s data area. Its
function prototype is:

voi d AFseekm sc(AFfilehandle file, long chunkid, |ong offset)

Audio File Library Programming Tips

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), chunkid is a positive long integer miscellaneous
chunk ID from the miscids array returned by AFgetmiscids(), offset is a non-
negative long integer specifying the number of bytes past the start of the
data area the read /write pointer should be moved, and offset should always
be less than the size of the total data area (in bytes).

AFseekmisc() returns the new location of the logical read /write pointer,
measured as the number of bytes from the beginning of the chunk data area.

Audio File Library Programming Tips

This section describes important Audio File Library programming tips:

e “Minimizing Data and File Format Dependence” on page 171 describes
how to maximize application compatibility by minimizing format
dependence.

e “Preventing Concurrent Access from Multiple Threads” on page 172
explains how to write a multithreaded AF application in order to
prevent simultaneous access to an AFfilehandle from multiple threads.

¢ “Handling Errors in Multithreaded Applications” on page 176 explains
how to prevent an error handler from reporting simultaneous errors
from a multithreaded application.

Minimizing Data and File Format Dependence

Currently, the Audio File Library supports the AIFF and AIFF-C file formats.
As the AF Library evolves to support new file formats (beyond AIFF and
ATFF-C) and new data formats (beyond 2's complement integer and
compressed data formats), file-format dependent applications will require
more modifications to maintain compatibility than file-format independent
programs. Making your application file format independent decreases the
likelihood of compatibility problems with future releases of the library and
minimizes future modifications. Programming tips presented throughout
this chapter call attention to methods you can use to make your application
format independent.

171

Chapter 7: Programming with the Audio File Library

172

Preventing Concurrent Access from Multiple Threads

The AF is not multithread /multiprocessor safe. Making multiple,
simultaneous, uncoordinated AF calls on different AFfilehandles from
different threads is possible and correct. Each AFfilehandle completely
encapsulates the state (except for error handling, which is global) needed to
perform operations on that AFfilehandle. In contrast, making multiple,
simultaneous, uncoordinated AF calls on the same AFfilehandle from
different threads is currently possible, but it is not proper programming
practice.

In the following code, two threads are using one AFfilehandle:

Thread 1 Thread2

e Some amount of time e Some amount of time

¢ No semaphore locking ¢ No semaphore locking

. o
AFseekfrane(h, track, pl acel; AFseekfrane(h, track, pl ace2);
AFreadf ranes(h, track, ...); AFreadfranes(h, track, ...);

e Some amount of time e Some amount of time

¢ No semaphore locking ¢ No semaphore locking

. o

It is possible that these calls would be executed in the following order, in
which case both threads would read the wrong data.:

AFseekframe(h, track, pl acel); ||
AFreadfranmes(h, track, ...); 'l AFseekfrane(h,track, pl ace2);
Il AFreadframes(h,track,...);

The only way to ensure that concurrent operations take place in the correct
order is to use a process coordination facility such as semaphore locking.

Audio File Library Programming Tips

Proper multithreading looks like this:

Thread 1 Thread 2

[] []

e Some amount of time e Some amount of time

[] []
Lock Semaphore that guards h Lock Semaphore that guards h
AFseekframe(h, track, pl acel; AFseekframe(h, track, pl ace2);
AFreadframes(h,track,...); AFreadframes(h,track,...);

Unlock Semaphore that guards h Unlock Semaphore that guards h

[] []
e Some amount of time e Some amount of time
[] []

IRIX guarantees that only one of the Lock Semaphore calls will succeed
immediately. The thread whose lock does not succeed waits in the Lock
Semaphore call (and thus does not proceed to the AFseekframe() call) until
the other thread has unlocked the semaphore (after it has finished seeking
and reading). When the first thread unlocks the semaphore, the thread that
is waiting can now proceed.

Follow these steps to add semaphore locking to a multithreaded application:
1. Use usnewsema(3P) to code to create a semaphore whose value is 1.

2. Use uspsema(3P) to lock the semaphore.

3. Use usvsema(3P) to unlock the semaphore.

173

Chapter 7: Programming with the Audio File Library

174

Example 7-3 is a code fragment that demonstrates how to create a
semaphore for protecting critical regions.

Example 7-3 Creating a Semaphore

#i ncl ude <ul ocks. h>

AFfil ehandl e h; /* global file handle */
usema_t *HSens; /* gl obal semaphore to protect h */
/* Initialize semaphore support -- do this once. */

{

usptr_t *usptr;
char *arenafil e;

/* Use the fastest type (nondebuggi ng) senmaphores. */
usconfi g(CONF_LOCKTYPE, US_NODEBUG) ;

/* Create a shared arena to hold the senmaphore. */

arenafile = tnpnan(NULL);
usptr = usinit(arenafile);

/*
Create the semaphore with count 1 in that arena.
There is 1 resource (h) initially avail able. */

HSema = usnewsema(usptr, 1);
/* No need to refer to arena again, so unlink file */

unlink(arenafile);

}

Audio File Library Programming Tips

To use the semaphore created in Example 7-3 do this:

Thread 1 Thread 2

o o

¢ Some amount of time ¢ Some amount of time

o o
uspsema(HSerma); /* |ock */ uspsema(HSema); /* |ock */
AFseekframe(h, track, pl acel; AFseekframe(h, track, pl ace2);
AFreadframes(h,track,...); AFreadframes(h,track,...);

usvsema(HSema); /* unlock */ usvsema(HSema); /* unlock */

[] []
e Some amount of time e Some amount of time
[] []

Semaphore locking can prevent a worst-case scenario such as seeking from
the second thread before the first thread has finished reading. Currently, an
AF application without semaphores might not cause any problems when
making simultaneous, uncoordinated AF calls on the same AFfilehandle
from different threads. But this is because—by chance—the CPU scheduler
timing has arranged the process timing so that both threads don’t use the
handle at the same time. Another time, the CPU scheduling might not be
favorable, so it’s best to protect the critical regions with semaphores.

In summary, you cannot make multiple, simultaneous, uncoordinated AF
calls on the same AFfilehandle from different threads, even if the order of
execution of those calls does not matter. Doing so is likely to cause a core
dump, or at least corruption of the AFfilehandle. The application is
responsible for implementing any semaphore protection that is needed; such
protection is not built in to the AF calls themselves.

175

Chapter 7: Programming with the Audio File Library

176

Handling Errors in Multithreaded Applications

You cannot make multiple, simultaneous, uncoordinated AF calls from
different threads that affect the library's global state—namely, the error
handler function. If two threads simultaneously try to set the error handler
(even if it is the same error handler), the behavior is undefined.

If you write your own error handler and then make multiple, simultaneous,
uncoordinated AF calls on different file handles from different threads (and
both AF calls issue an error simultaneously), then two instances of your error
handler are called in a simultaneous, uncoordinated manner in both threads.
If this situation is possible in your program, you should use semaphores in
your error handler (in addition to the semaphores in your main program) to
prevent simultaneous error reporting or handling.

Audio File Library Programming Tips

#i ncl ude <stdio. h>

#i ncl ude <signal . h>

#i ncl ude <dnedi a/ audi 0. h>

#i ncl ude <dnedi a/ audi of il e. h>

/

0% X X X X X X X X X

/

]
—

i caught _si gi nt;
/*
* catch interrupt signal
*/
static void
catch_sigint()
{

}

caught _si gi nt ++;

mai n(int argc, char **argv)

{

char *nynane;

char *port nane;
ALconfig portconfig;
ALport port;

| ong port channel s;
| ong portrate;

Sample Audio File Program

Example 7-4 contains a listing of recordexample.c, in /usr/people/4Dgifts/
examples/dmedia/audio/ program, which records stereo data from an audio
port. If you incorporate this code in a program, use the method of rate
querying shown in ratequery.c instead of the method used in recordexample.c.

Example 7-4 Recording Stereo from an Audio Port: recordexample.c

smal | exanpl e program "recordexanpl e"

record an AIFF-C file froman audi o i nput port
stop recordi ng when user sends an interrupt

file is configured for 16-bit stereo data at the current
sanpling rate of the audi o hardware

usage: "recordexanple <fil ename>"

/* name of this program */
/* audi o port nane */
/* audi o port configuration */
/* audi o port */
/* audi o port channels */
/* audio port sanpling rate */

177

Chapter 7: Programming with the Audio File Library

| ong port sanpw dt h;
| ong port sanpfnt;
AFfilesetup filesetup;
AFfil ehandle file;

char *fil enane;

| ong fil echannel s;
doubl e filerate;

| ong fil esampwi dt h;
| ong filesampfnt;

| ong pvbuf[2] ;

voi d *puf ;

i nt nunframeswit;
i nt done;

i nt sanpl esper buf;
int f ramesper buf ;
i nt sanpl esper sec;
nmynane = argv[O0];

portnane = nynane;

if (argc !'= 2)
{

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

audi o port sanple w dth
audi o port sanple format
audio file setup

audio file handle

audio file nanme

audio file channels
audio file sanpling rate
audio file sanple width
audio file sanple format
par anet er - val ue buffer

sanmpl e transfer buffer

nunber of franmes witten
flag
sanpl es transfered per |oop

sanpl e frames transfered pe
sanpl es transfered per sec

r

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

fprintf(stderr, "Usage: % fil enane\n", nynane);
exit(1);
}
sigset (SI G NT, catch_sigint);
filename = argv[1];
/*
* get the global IR'S Audio Processor input rate
*/
pvbuf[0] = AL_I NPUT_RATE;

ALget par anms(AL_DEFAULT_DEVI CE, pvbuf,
portrate = pvbuf[1];

2);

178

/*

* initialize the audio port and audio file configuration

*/

portchannel s = AL_STEREQ, /* port channel s */
port sanpw dt h = AL_SAMPLE 16; [* port sanple width */
port sanpf nt = AL_SAMPFMI_TWOSCOWP; /[* port sanple format */
fil echannel s = 2; /* file channels */
fil esanpwi dth = 16; /* file sanple width */
fil esanpfnt = AF_SAMPFMT_TWOSCOVP; /[* file sanple format */

Audio File Library Programming Tips

/*

* configure file sanple rate to match IRI'S audi o processor input rate
*/

switch (portrate)

{
case AL_RATE 48000: filerate = 48000.0; break
case AL_RATE 44100: filerate = 44100.0; break
case AL_RATE_32000: filerate = 32000.0; break
case AL_RATE 22050: filerate = 22050.0; break
case AL_RATE_16000: filerate = 16000.0; break
case AL_RATE 11025: filerate = 11025.0; break
def aul t:
case AL_RATE 8000: filerate = 8000.0; break;

}

/*

* conpute the nunber of input sanples equal to half a
* second and allocate a transfer buffer
*/

sanpl espersec = ((long)filerate) * 2; /* stereo */
sanpl esper buf = sanpl espersec / 2; /* half second buffer */
f ramesper buf = sanpl esperbuf / 2; /* stereo */
buf = (short *)mal |l oc(sanpl esperbuf * sizeof(short));
/*

* open the audio port

*

/
portconfig = ALnewconfig();

ALset channel s(portconfig, portchannels);
ALset wi dt h(portconfig, portsanpw dth);

ALset queuesi ze(portconfig, sanpl esperbuf);
port = ALopenport(portnane, "r", portconfig);

/*
* configure an audio file
*/
filesetup = AFnewfil esetup();

AFinitfilefnt (fil esetup, AF_FILE_Al FFC);

AFi nitchannel s(fil esetup, AF_DEFAULT_TRACK, filechannels);
AFinitrate(fil esetup, AF_DEFAULT_TRACK, filerate);
AFi ni t sanpfnt (fil esetup, AF_DEFAULT_TRACK
AF_SAVMPFMI_TWOSCOWP, filesampwidth); /*in bits */

/*

* open the audio file

*/
file = AFopenfile(filenane, "w', filesetup);

179

Chapter 7: Programming with the Audio File Library

/*

* play the buffer

*/

done = O;

caught _sigint = 0;

whil e (!done && !caught_sigint)

{

ALr eadsanps(port, buf, sanpl esperbuf);

if ((nunframeswrit

= AFwriteframes(file, AF_DEFAULT_TRACK,
buf, framesperbuf)) < franmesperbuf)
{
done++,;

}
}
AFcl osefile(file); /* this is inmportant: it updates the file header */
ALcl oseport (port);
exit(0);

180

Chapter 8

Programming with the
CD Audio Library

This chapter describes the CD Audio
Library, which lets you play and
sample audio from CDs using your
CD-ROM drive.

Chapter 8

Programming with the CD Audio Library

The IRIS Media Libraries have two libraries that help you retrieve and
process digital audio and related information from two sources. This chapter
describes the CD Audio Library, libcdaudio.a, which gives you access to the
data on an audio compact disc (CD), including nonaudio information.
Chapter 9, “Programming with the DAT Audio Library,” describes the DAT
Audio Library, libdataudio, which helps you process audio information
stored on digital audio tape (DAT).

Because these libraries deal with digital audio information, they contain
many analogous routines for processing audio data. But the libraries diverge
when it comes to writing audio data and controlling their respective devices.
libcdaudio includes calls that control the CD-ROM drive; the DAT drive uses
the standard IRIX device drivers.

In this chapter:

* “CD Audio Library Basics” on page 184 explains basic concepts for
using the CD Audio Library.

* “Navigating through a CD” on page 187 explains getting locations from
and seeking to locations on a CD.

¢ “Using the CD-ROM Drive” on page 190 explains how to use the CD-
ROM drive for playing audio CDs, reading and parsing CD
information, and communicating CD status to the end user.

e “CD Sample Program” on page 196 presents a CD sample program.

183

Chapter 8: Programming with the CD Audio Library

CD Audio Library Basics

184

The CD Audio Library lets you:
¢ control the CD-ROM drive (eject CDs, prohibit ejection of CDs)
¢ read or play information from that drive

¢ parse and process digital information

This section describes the basic concepts that underlie libcdaudio. Because
both CDs and DATSs digitally encode an audio signal as a series of samples,
the concepts and terms used when dealing with these media are similar;
however, there are differences between the two.

CD Frames, Samples, and Subcodes

Per second of playing time, a CD contains 75 CD frames, each containing 588
stereo audio frames (that is, pairs of left and right channel audio samples). A
CD frame has both audio and nonaudio information. The sum of the
nonaudio information in a frame composes a single complete chunk of
subcode. When in audio mode and reading from a CD, you need complete
subcodes. Thus, in audio mode, a CD frame is the smallest parcel of
information you can read from a CD.

To give you controlled access to either the audio data or the subcode ina CD
frame, libcdaudio hands you a CDFRAME structure:

t ypedef struct cdframe {
char audi o[CDDA_DATASI ZE] ;
struct subcodeQ ; subcode;
} ; CDFRAME,

An audio sample is linearly encoded in a 16-bit two’s-complement format.
Because a complete stereo audio sample contains two interleaved channels,
it takes four bytes of audio[] to contain a complete stereo audio sample.

CD Audio Library Basics

Figure 8-1 shows the structure of a CD audio sample.

least significant most significant least significant most significant
byte, left channel byte, left channel byte, right channel byte, right channel
audio[0] audio[1] audio[2] audio[3]

Figure 8-1 CD Audio Sample Structure

The byte ordering of the samples in audio[] is the raw data from the CD; its
byte ordering is reversed from that on the Indigo workstation. The sampling
rate at which CD audio data is originally recorded is 44.1 kHz; therefore,
CDDA_DATASIZE (the size of audio[]) is defined as 2352. This allows for 588
stereo audio samples per CD frame, which, at 75 frames per second, allows
for a sample rate of 44.1 kHz.

The subcode member has three information modes:

model for reporting on the track, index, and timing for the current
CD track; or, if the current track is the nonaudio lead-in
track (see “CD Tracks, Indices, and Time Codes” on
page 186), model contains a table of contents for the CD

mode2 for reporting the catalog number for the CD as well as an
absolute CD frame count

mode3 for reporting the International Standard Recording Code
(ISRC) identification information: country, owner, year, and
serial number

Thus, the subcodeQ structure in the CDFRAME structure contains a union
of three structures: model, mode2, and mode3. Which mode is used depends

on the information from the CD.

For more information on the CDFRAME structure and the subcodeQ
structure, see the CDFRAME(4) man page.

185

Chapter 8: Programming with the CD Audio Library

186

CD Tracks, Indices, and Time Codes

As many as 99 audio program tracks are allowed on a CD. These tracks are
numbered 01 through 99. Two nonaudio tracks of general interest are also

available: the lead-in track (numbered 00) and the lead-out track (numbered
AA). Track 00, the lead-in track, contains a table of contents in its subcodes.

A track can have up to 99 subdivisions containing audio information. These
subdivisions use the index numbers 01 through 99. Index number 00 is used
for the pause between the tracks. The time code gives the current minute,
second, and CD frame for the current track. The subcodeQ structure with
model uses a cdtimecode structure to contain time codes.

CD Seeking, Reading, and Playing

Accessing information from a CD-ROM drive is analogous to accessing
information from a standard disk drive. To read a particular piece of
information from the CD, you must move to that location. The process of
moving to a location on the CD is known as seeking.

Reading from a CD-ROM drive is analogous to reading from a disk drive—
you copy information from the device to a memory-resident buffer for
further processing.

Playing the CD is a variation on reading it. But instead of transferring the
information to a buffer for processing, the information is dumped out the
audio jacks on the back of the CD-ROM drive, with a minimum of buffering
and with no real chance to process it. For information on processing audio
from a CD through the workstation’s audio hardware, see “Reading Audio
Data from the CD-ROM Drive” on page 191.

CD Parser

The parser lets your application change state in response to changes in the
subcode data on a CD. This lets you deal with the audio data in a way that
is based on its content. To use the parser, you must give it callback routines
that can deal the subcode changes that interest you. Then you set up a loop
that reads CD frames from the CD and calls the parser for each CD frame.

Navigating through a CD

Navigating through a CD

The parser checks the subcode in every submitted CD frame. If the parts of
the subcode you care about have changed from the previous CD frame, the
parser executes one of your callbacks and hands it the new subcode
information. Within your callback, you can examine the subcode
information and change the state of your application as needed.

Opening and Closing the CD-ROM Device

The CD-ROM device does not use a standard IRIX device driver. So, a
session with the CD-ROM device starts by calling CDclose(). For detailed
information on these routines, see the man pages CDopen(3) and CDclose(3).

Controlling the CD-ROM Drive Caddy

To give your application control over the caddy-eject feature on the CD-
ROM drive, libcdaudio defines the following routines:

CDeject() to eject the caddy from the CD-ROM drive

CDpreventremoval() to lock the CD-ROM drive eject button to prevent
end users from ejecting the caddy at an
inopportune moment

CDallowremoval() to unlock the CD-ROM drive eject button

For more information on these routines, see the appropriate man pages.

To move through a CD, you use one of the libcdaudio calls: CDseek(),
CDseektrack(), or CDseekblock(). But before you can call these routines,
you need to know where you are going. For most applications, locations can
come from either of two sources, the end user or calculations internal to your
application.

187

Chapter 8: Programming with the CD Audio Library

188

Seek destinations can be in any one of three forms:
¢ integer CD frame counts
* <minute, second, CD frame> integer triples

e "minute:second:CD frame" ASCII strings

The ASCII format is the one you receive from an end user of your
application; the other two formats are used for internal calculation.

Getting CD Locations from the End User

If your application wants to give end users the option of seeking to a CD
location defined in terms of time, your application can prompt the user for
the time and then call CDatomsf() to convert the ASCII string to a <minute,
second, CD frame> triple that you can use for seeking. You can also let the
user specify a track number, convert that track number to an integer and
seek to that track.

Getting CD Locations from Calculations Internal to Your
Application

Generally, the pure CD frame count is the most convenient format to use
when comparing two locations.

To convert to pure CD frame counts, call:

CDmsftoframe() to convert a <minute, second, CD frame> triple
into a pure CD frame count

CDtctoframe() to generate a pure CD frame count from a
cdtimecode structure

CDatomsf() followed by to convert an ASCII "minute:second:CD frame"
CDmsftoframe() string into a pure frame count

You can then make your calculations and determine the destination to which
you want to seek. Despite the convenience of pure CD frame counts for
calculation, they are not suitable for seeking. To seek, you must call
CDframetomsf() to convert the pure CD frame count to a <minute, second,
CD frame> triple.

Navigating through a CD

Itis also possible to make comparisons between locations expressed in terms
of minutes, seconds, and CD frames. In that case, you can convert locations
into <minute, second, CD frame> triples by calling:

CDatomsf() to convert an ASCII string to a
<minute, second, CD frame> triple

CDframetomsf() to convert a pure CD frame count to a
<minute, second, CD frame> triple

CDtctoframe() followed by to convert a time code to a
CDframetomsf() <minute, second, CD frame> triple

After making these calculations, the location is in terms suitable for seeking.

Getting the Current CD Location

To get your current location within a CD, call CDgetstatus(). This routine
takes a CDSTATUS structure and fills it with information on current track,
minute, second, CD frame, and additional data. To make it easier to compare
your current location to another location, you should express the locations
in terms of pure CD frame counts. But depending on how you got a location,
it could be expressed as three separate integers giving the minute, second,
and CD frame, or as an ASCII string, or as a cdtimecode structure. For more
information on this routine, see the appropriate man pages.

Seeking to a CD Location

Seeking sets up the read pointer to retrieve data from a particular location on
the CD. You can define the seek location in terms of:

track To seek to a track, call CDseektrack().

absolute time To seek to a location defined in terms of minute, second, and
CD frame, call CDseek().

logical block To seek to a location defined in terms of a logical block
number, call CDseekblock(). (On a CD-ROM, one logical
block contains a single CD frame, which is 588 stereo audio
samples plus one complete subcode.)

189

Chapter 8: Programming with the CD Audio Library

Using the CD-ROM Drive

190

To do a series of consecutive seeks, your first seek can be defined in any of
the formats mentioned above. But, because all seek routines return the
logical block number of the next logical block, it is often more convenient to
define the subsequent seeks in terms of logical blocks.

If you want to do all seeks using CDseekblock(), but your first seek is
defined in terms of time, call CDmsftoblock() to convert time to logical
block number.

Note: Although logical blocks and CD frames are the same size, you cannot
use CD frame counts as if they were logical block counts. The CD frame
counts are relative to the start of the CD. A logical block count is offset from
the start of the CD. In addition, the size of the offset varies from device to
device.

This section explains how to use the CD Audio Library routines for:
¢ playing an audio CD from the CD-ROM drive

¢ reading audio data from the CD-ROM drive

e parsing CD information

e communicating CD status to the end user

Playing an Audio CD from the CD-ROM Drive

This section explains how to use these libcdaudio routines to play audio from
the CD-ROM as if it were a standard CD player:

CDplay() plays an audio CD through CD-ROM audio jacks

CDtogglepause() toggles a CD-ROM drive between pause and play

CDstop() stops play of an audio CD in CD-ROM

CDplaytrack() plays a single track of an audio CD through CD-
ROM audio jacks

Using the CD-ROM Drive

CDplayabs() plays an audio CD through CD-ROM audio jacks
starting at a particular minute, second, and CD
frame

CDplaytrackabs() plays a single track of an audio CD starting at a
particular minute, second, and CD frame

When these routines play a CD, they direct the sound to the drive’s
headphones and to the audio jacks.

Reading Audio Data from the CD-ROM Drive

Once you have set the read pointer with a call to one of the seek routines, you
are ready to read data from the CD. But how much data should you read at
a time in order to create a continuous flow of data from the CD? To
determine this, call CDbestreadsize(). The returned value of this function is
the number of CD frames to request in your read call. To actually read data
from the CD, call CDreadda().

Because libcdaudio already includes routines for playing audio data from the
CD, you might think that you would never need to read from the CD;
however, the libcdaudio play routines allow for only a very simple CD-player
application—one that cannot even display the current program time while
the CD is playing.

Thus, if you are writing a real-world application, you probably want to read
samples from the CD into the workstation’s memory through the CD-ROM’s
SCSI interface, play the audio samples from the audio hardware using the
Audio Library, parse the CD frames for the current program time, and
display the program time in a continuously updated field of the control
panel for your application.

To do this, you can write your own play routine that executes as a cd_audio

callback. You should also write a cd_ptime callback to get the current
program time and to update your “program time” display.

191

Chapter 8: Programming with the CD Audio Library

192

Controlling the CD Parser

After you have read data from the CD into a buffer, you can start to process
it. Typically, how you process the audio data depends on what its associated
subcodes tell you about the data. To make it possible for your application to
avoid dealing with the complex CDFRAME structure directly, libcdaudio
includes a parser.

If you write a loop that passes all read CD frames through the parser, the
parser can examine all CD frames for changes in the subcode. When the
parser finds a change (seeing a subcode for the first time counts as a change),
it executes the appropriate callback routine—depending on what sort of
subcode change occurred—and passes the new subcode data into your
callback routine.

The CD parser distinguishes among eight categories of subcode
information. Thus, if you are interested in subcode changes for only one
category of subcode data, the parser does not bother your application with
subcode changes that you consider irrelevant.

Allocating and Initializing the CD Parser

To allocate and initialize the parser data structures, call CDcreateparser(). To
reset the parser after the user changes the CD in the CD-ROM drive, call
CDresetparser(). This clears out any information the parser has about the
last CD frame but leaves the callback routines in place.

Defining Callbacks for the CD Parser

When you define a callback for the parser, write a function of the form:

My CDSonet hi ngCal | Back(voi d* arg, CDDATATYPES type,
voi d* data) {
/* your code here */

}

The parser uses the third parameter to pass in information it reads from the
subcodes. The parser uses the second parameter to pass in the type of
callback it thinks it is calling. You can use this to assign the same function to
different types of callbacks. Internally, you can switch on the type. This

Using the CD-ROM Drive

feature is useful if two callbacks are essentially the same, with the exception
of a few lines.

The parser does not use the first parameter. You can use that to pass in
information if your application needs to call the callback directly.

Adding Callbacks to the CD Parser

To add callback routines to the parser, call CDaddcallback(). If you do not
specify a callback for a category, the parser assumes that you are not
interested in changes of that type. You can add callbacks that respond to
changes in any of the following categories of subcode data:

cd_audio callbacks respond to changes in the audio data in a CD
frame. You can use this class of callback to notify you when
you are beyond the lead-in track and have started to see
audio samples. When the parser calls this routine, it passes
in the audio sample data. If this callback routine is a play
routine for your application, it should write the audio
sample to an audio port using the Audio Library. See the
ALwritesamps(3) man page and Chapter 6, “Programming
with the Audio Library.”

cd_pnum callbacks respond to changes in the program number. You
can use this callback to notice when you have moved from
one program (track) to the next.

cd_index callbacks respond to changes in the index number. You can
use this callback to notice when you have moved from one
subsection of a track to the next.

cd_ptime callbacks respond to changes in the program time. You can
use this callback to continuously update a “program time
display” in a CD-playing application.

cd_atime callbacks respond to changes in the absolute time elapsed
since the start of the CD. You can use this callback to
continuously update your application’s information about
total elapsed time.

cd_catalog callbacks respond to changes in the catalog number for the
CD. Because this information should not change within the
CD, this sort of callback executes only once—typically
during the lead-in track for the CD.

193

Chapter 8: Programming with the CD Audio Library

194

cd_ident callbacks respond to changes in the ISRC identification
number for the recording on the CD. Because this
information should not change within the CD, this sort of
callback executes only once—typically during the lead-in
track for the CD.

cd_control callbacks respond to changes in the control bits. These bits
can tell you things such as whether the CD is copy protected
and whether preemphasis is off or on. Because this
information should not change within the CD, this sort of
callback executes only once—typically during the lead-in
track.

For more information on each callback type, see the CDaddcallback(3) man
page.

Deleting and Changing a CD Parser Callback

To delete a callback, call CDremovecallback(). To change a callback, call
CDremovecallback() followed by CDaddcallback().

Parsing CD Frames

To submit a group of CD frames to the parser, your loop should set up a loop
that calls CDparseframe() for each frame that you have read into your
buffer.

Freeing the Memory Allocated for the Parser

If you are done with the parser and want to free the memory it uses, call
CDdeleteparser() to delete the parser.

Communicating CD Status to the End User

In addition to playing a CD or processing the information read from a CD,
your application probably needs to tell the user something about the CD
(even if it is only the number of the current track). Also, sometimes your
application must take data from the end user and convert it to a form that
the CD-ROM device can understand.

Using the CD-ROM Drive

To get information for the end user, call:
CDgettrackinfo() to get information about a particular track

CDgetstatus() to get information about the CD as a whole

The CD frames, however, sometimes contain information that is not
accessible to the routines mentioned above. For example, the subcodes of
track 00 on a CD contain a table of contents. To access this information, you
can inspect the subcodes in the CDFRAME structures, or, better still, you can
submit that track to the parser. If you have added callbacks for the categories
of subcode information that you want, the parser passes that information
into your callbacks.

To help you present the information the parser hands to your callbacks (or
that you read directly from a COFRAME structure), libcdaudio contains the
routines:

CDsbtoal() for converting the 6-bit ISRC country and owner code to
an ASCII string

CDtimetoa() for expressing the contents of a cdtimecode structure as an
ASCII string

For more information on the CDFRAME structure and the format of its data,
set the CDFRAME(4) man page.
CD Time Code Conversion Routines

Other libcdaudio routines that you might find useful are:
CDframetotc() for converting a CD frame number to a time code

CDatotime() for converting an ASCII string to a time code

195

Chapter 8: Programming with the CD Audio Library

CD Sample Program

Example 8-1 contains a listing of cdsample.c, a program that lets you copy
timed amounts of data from a CD to an audio file.

Example 8-1 Copying CD Data to an Audio File: cdsample.c

~

* 0% kX X X X X

cdsanpl e--comand line tool to read audi o data of f CD,
record it in an AIFF file. Hacked together fromvarious
ot her sanpl e prograns.

Conpile with
cc -o cdsanple cdsanple.c -lcdaudio -l1ds -laudiofile -Im
/

#i ncl ude <sys/types. h>
#i ncl ude <cdaudi o. h>
#i ncl ude <audi 0. h>

#i ncl ude <audi ofile. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>

AFfi | ehandl e audi ofil e;
openAudi oFi | e(char *fil enane)

{
AFfilesetup fil esetup;
filesetup = AFnewfil esetup();
AFinitfilefm (fil esetup, AF_FILE_Al FFC);
AFi ni t channel s(fil esetup, AF_DEFAULT_TRACK, 2);
AFinitrate(fil esetup, AF_DEFAULT_TRACK, 44100.0);
AFi ni tsanpfnt (fil esetup, AF_DEFAULT_TRACK, AF_SAVPFMI_TWOSCOWP, 16);
AFi nitconpression(fil esetup, AF_DEFAULT_TRACK, AF_COVPRESSI ON_G722);
audi ofil e = AFopenfile(filename, “w, filesetup);
}
cl oseAudi oFi | e()
{
AFcl osefil e(audiofile);
}

196

CD Sample Program

writ eAudi oFil e(void *arg, CDDATATYPES type,

AF_DEFAULT_TRACK, audio,

voi d parseTi me(char *tinmestr, int *mn, int *sec)

)

{
AFwri t esanmps(audi of il e,
}
{
char *tnp, buf[5];
int n;
tnp = strchr(tinestr,
if (tnp == NULL) {
*sec = atoi(tinmestr);
} else {
*tnp = *\0';
t np++;
*mn = atoi (timestr);
*sec = atoi(tnp);
}
}

mai n(i nt argc, char **argv)

{
CDPLAYER *cd;

CDPARSER *cdp;
CDSTATUS st at us;
CDTRACKI NFO t r acki nf o;
CDFRAME buf[12];

int i, n;

int track, nunfranes, frane;

char *fil enane;

char *tnp, strbuf[12];
int startmn, startsec,
extern int errno;

if (argc !'=5) {

fprintf(stderr, “Usage:

exit(1);
}

filename = argv[1];
track = atoi(argv[2]);

endm n, endsec, total sec;

short *audi o)

CDDA_NUNMBAMPLES) ;

cdsanple filenane track start_tinme end_tine\n”);

197

Chapter 8: Programming with the CD Audio Library

198

/*

* Note that we do not check if the argunents are sane ...

*/

parseTime(argv[3], &startnin, &startsec);

parseTi me(argv[4], &endmin, &endsec);

if ((cd = CDopen(NULL, “r”)) == NULL) {
fprintf(stderr, “Can’'t open CD device\n”);
exit(1l);

}

if ((cdp = CDcreateparser()) == NULL) {
fprintf(stderr, “Can't create parser\n”);

exit(1);
}
*
* Set up a callback function to process the CD data.
* In this case, CDparsefrane() will feed the data to the
* writeAudi oFile() function (defined above).

>/
CDset cal | back(cdp, cd_audi o, (CDCALLBACKFUNC) writeAudioFile, 0);

openAudi oFi | e(fil enane);

/*
* Determne the nunber of franes in the requested
* snippet (75 franes/sec)
*/
nunfranmes = ((endmn * 60 + endsec) - (startmin * 60 + startsec)) * 75;
if (CDgetstatus(cd, &status) == 0) {
fprintf(stderr, “Couldn’t get status\n”);
exit(1);
} else {
if (!status.scsi_audio) {
fprintf(stderr, “This CD-ROM can’t do SCSI audio\n”);
exit(1);
}
/*
* Convert relative time (in track) to absolute tine
* (on disk) so we can seek to the proper position.
*/
CDget tracki nfo(cd, track, &t rackinfo);
total sec = (trackinfo.start_mn + startmn) * 60 +
trackinfo.start_sec + startsec;

startmn total sec / 60;
startsec total sec % 60;

CD Sample Program

CDseek(cd, startmn, startsec, 0);
for (frame=0;franme<nunfranes;frane += 12) {
n = CDreadda(cd, buf, 12);
if (n<0) {
fprintf(stderr, “Error reading CD data\n”);
exit(1);

if (n==0) /* Wre at the end of the disc */
br eak;
for (i =0; i < 12; i++)
CDpar seframe(cdp, &buf[i]);
}
CDcl ose(cd);
cl oseAudi oFi l e();
exit(0);
}

199

Chapter 8: Programming with the CD Audio Library

200

Chapter 9

Programming with the
DAT Audio Library

This chapter describes the DAT
Audio Library, which lets you play,
record, and sample audio from
digital audio tapes (DATs) using your
DAT drive.

Chapter 9

DAT Audio Library Basics

Programming with the DAT Audio Library

This chapter describes the DAT Audio Library, libdataudio, which you can
use to process audio information stored on digital audio tape (DAT).

In this chapter:

“DAT Audio Library Basics” on page 203 explains basic concepts for
using libdataudio.

* “Navigating through a DAT” on page 206 explains getting locations
from and seeking to locations on a DAT.

e “Using the DAT Drive” on page 209 explains how to use the DAT drive
for playing and recording DATSs, reading, writing and parsing DAT
information, and communicating DAT status to the end user.

¢ “DAT Sample Program” on page 217 presents a DAT sample program.

The DAT Audio Library (libdataudio) supports processing the data from a
digital audio tape (DAT). Because the device driver for the DAT drive is a
standard IRIX tape device driver, the libdataudio library does not need the
special positioning and status calls. Instead, you can use the standard
open(), close(), read(), write(), and ioctl() system calls.

This section describes the basic concepts that underlie libdataudio. Because
both CDs and DATs digitally encode an audio signal as a series of samples,
the concepts and terms used when dealing with these media are similar;
however, there are some differences between them.

203

Chapter 9: Programming with the DAT Audio Library

204

DAT Frames, Samples, and Subcodes

A DAT contains 33.33 DAT frames per second of playing time. A DAT frame
has both audio and nonaudio information. The sum of the nonaudio
information in a DAT frame composes a single complete DAT subcode.
When in audio mode and reading from a DAT, you need complete subcodes.
Thus, in audio mode, a DAT frame is the smallest parcel of information you
should read from a DAT.

To give you controlled access to either the audio data or the subcode in a
DAT frame, libdataudio hands you a DTFRAME structure:

typedef struct dtframe {
char audi o[DTDA_DATASI ZE] ;
struct dtsubcode sc;

} DTFRAME;

A DAT audio sample is linearly encoded in a 16-bit two’s-complement
format. Because a complete stereo audio sample contains two interleaved
channels, it takes four bytes of audio[] to contain a complete stereo audio
sample (see Figure 9-1).

least significant most significant least significant most significant
byte, left channel byte, left channel byte, right channel byte, right channel
audio[0] audio[1] audio[2] audio[3]

Figure 9-1 DAT Audio Sample Structure

The byte ordering of audio sample frames in audio[] is based on the raw data
from the DAT; its byte ordering is reversed from that on the IRIS
workstation. DTDA_DATASIZE (the size of audio[]) is defined as 5760. This
allows for 1440 audio sample frames per DAT frame, which, at 33.33 DAT
frames per second, is enough to deal with audio sampled at rates of up to
48 kHz.

The subcode member uses a dtsubcode structure to contain the subcode read
from the DAT. The subcodes contain information on sampling frequency, the
number of channels, table of contents, catalog number, and more. For more
information on the dtsubcode structure, see the DATFRAME(3) man page.

DAT Audio Library Basics

DAT Audio Program Numbers and Indices

A DAT can have as many as 99 audio programs, each typically
corresponding to a single song or musical piece. These programs are
numbered 01 through 99. An audio program can have up to 99 subdivisions
containing audio information. These subdivisions use the index numbers 01
through 99. Index number 00 is used for the pause between the audio
programs.

DAT Run Time, Absolute Time, and Program Time

A time code gives the hour, minute, second, and DAT frame offset into a
DAT. When dealing with program time, the time code is a measure of the
time elapsed since the start of the audio program. When dealing with
absolute time, the time code measures the time elapsed since the start of the
DAT. When dealing with run time, the time code measures the time elapsed
since the beginning of the recording and contains several audio programs.

DAT Seeking and Reading

Accessing information from a DAT drive is analogous to reading
information from a standard tape drive. To read a particular piece of
information from the DAT, you must move to that location. The process of
moving to a location on the DAT is known as seeking. Reading from the DAT
is analogous to reading from a tape drive. You copy information from the
device to a memory-resident buffer for further processing.

DAT Parser

The parser lets your application change state in response to changes in the
subcode data on a DAT. This lets you deal with the audio data in a way that
is based on its content. To use the parser, you must give it callback routines
that can deal with the subcode changes that interest you. Then you set up a
loop that reads DAT frames from the DAT and calls the parser for each DAT
frame.

205

Chapter 9: Programming with the DAT Audio Library

Navigating through a DAT

206

The parser checks the subcode in every submitted DAT frame. If the parts of
the subcode you care about have changed from the previous DAT frame, the
parser executes one of your callbacks and hands it the new subcode
information. Within your callback, you can examine the subcode
information and change the state of your application as needed.

Opening and Closing the DAT Device for Audio

The DAT device driver is a standard IRIX device, so you can use the generic
openl(), close(), and ioctl() calls that you would use for any other tape device;
however, unlike a standard tape drive, the DAT drive has an audio mode in
addition to a straight data mode.

To put the DAT drive in audio mode, use ioctl() with MTIOCTOP and an
mtop type structure, but set the mt_count member of the mtop structure to 1
before submitting that mtop structure to ioctl(). For example:

struct nmtop nt_com

m_comnt_op = MIAUD;

nt_comnt_count = 1; /* 1 == audio node, 0 == data node */
ioctl (fd, MIIOCTOP, &nt_com;

To move through a DAT tape, you use ioctl(), a standard IRIX system call.
But before you can call ioctl(), you need to know where you are going. For
most applications, destinations can come from either of two sources, the end
user or calculations internal to your application.

Destinations from the end user come to your application in the form of
ASCII strings. Destinations from internal calculations typically come in the
form of a DAT frame count or, sometimes, as four values that specify the
location in terms of hours, minutes, seconds, and DAT frames.
Unfortunately, these forms are not suitable for seeking, so you must convert
them before you can use them.

Navigating through a DAT

Getting DAT Locations from the End User

If your application wants to give end users the option of seeking to a DAT
location defined in terms of time, your application can prompt the user for
the time and then call DTatotime() to convert the string to a time code that
you can submit to ioctl() for seeking.

Getting DAT Locations from Calculations Internal to Your
Application

Generally, the pure DAT frame count is the most convenient format to use
when comparing two locations.

To convert to pure DAT frame counts, call:

DTtctoframe() to extract a pure DAT frame count from a
dttimecode structure

DThmsftoframe() to convert hours, minutes, seconds, and DAT
frames to a pure DAT frame count

DTatohmsf() followed to convert an ASCII string to a pure DAT frame
by DThmsftoframe() count

You can then make your calculations and call DTframetotc() to convert the
DAT frame count to a time code suitable for seeking.

Itis also possible to make comparisons between locations expressed in terms
of hours, minutes, seconds, and DAT frames. In that case, you can convert all
locations into hours, minutes, seconds, DAT frames format by calling:

DTatohmsf() to convert an ASCII string to hours, minutes,
seconds, and DAT frames

DTframetohmsf(to convert a pure frame count to hours,
minutes, seconds, and frames

DTtctoframe() followed by to convert a time code to hours, minutes,
DTframetohmsf() seconds, and frames

After making your calculations, convert the destination to a time code
suitable for seeking by calling DThmsftoframe() followed by
DTframetotc().

207

Chapter 9: Programming with the DAT Audio Library

208

Seeking to a DAT Location

To seek to a location on a DAT, call ioctl() with MTSETAUDIO and an
mtaudio type structure.

To specify the type of seek, set the seektype member of the mtaudio type
structure to the appropriate MTAUDPOSN_* constant:

MTAUDPOSN_PROG to seek to a program number
MTAUDPOSN_ABS to seek to an absolute time
MTAUDPOSN_RUN to seek to a running time
MTAUDPOSN_PTIME to seek to a program time (within program)

To seek to a particular audio program on the DAT, set seektype to
MTAUDPOSN_PROG, and use pnol, pno2, and pno3 members to pass in the
three BCD numbers that identify the audio program you want. Program
numbers range from 001 to 799. The pnol member contains the most
significant digit and pn3 contains the least significant digit. Thus, to seek to
program 578, set the pn* members as follows:

struct mntaudi o Audi oProgNum

Audi oPr ogNum pnl = 5;
Audi oPr ogNum pn2 = 7;
Audi oPr ogNum pn3 = 8;

To seek to a location on the tape defined in terms of time, set the mtaudio
seektype member to MTAUDPOSN_ABS, MTAUDPOSN_RUN, or
MTAUDPOSN_PTIME and then specify the time location in the mtaudio
members:

atime for MTAUDPOSN_ABS
rtime for MTAUDPOSN_RUN
ptime for MTAUDPOSN_PTIME

Using the DAT Drive

Using the DAT Drive

These atime, rtime, and ptime members contain structures of type
mtaudtimecode:

struct ntaudtinmecode {
unchar hhi: 4, hlo:4; /* hours */
unchar mhi:4, mo:4; /* mnutes */
unchar shi:4, slo:4; /* seconds */
unchar fhi:4, flo:4; /[* DAT frame # */

}s

The hhi and hlo members expect two digits that specify the hour to which
you want to seek. The valid range for these two digits is from 00 to 99. The
mhi and mhl expect the two digits that specify the minute to which you want
to seek. The valid range for these two digits if from 00 to 59. The shi and slo
expect the two digits that specify the second to which you want to seek. The
valid range for these two digits is