
Indigo Magic™ Desktop
Integration Guide

Document Number 007-2006-090

Indigo Magic™ Desktop Integration Guide
Document Number 007-2006-090

CONTRIBUTORS

Written by Beth Fryer, Jed Hartman, Ken Jones, and Pete Sullivan
Illustrated by Beth Fryer and Seth Katz
Edited by Christina Cary
Production by Derrald Vogt and Cindy Stief
Engineering contributions by Bob Blean, Susan Dahlberg, Susan Ellis, John

Krystynak, Jack Repenning, CJ Smith, Dave Story, Steve Strasnick, Steve Yohanan,
and Betsy Zeller

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson, Erik
Lindholm, and Kay Maitz

© Copyright 1994, 1995, 1996 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIS, IRIS GL, IRIS IM, IRIS
InSight, IRIS ViewKit, IRIX, GoldenGate, IconSmith, Indigo Magic, the Graphics
Library, OpenGL, Open Inventor, and RapidApp are trademarks of Silicon Graphics,
Inc. Apple is a registered trademark and Apple Quicktime is a trademark of Apple
Computer, Inc. Kodak is a trademark of Eastman Kodak Company. Microsoft is a
registered trademark of Microsoft Corporation. Motif and OSF/Motif are
trademarks of the Open Software Foundation. PostScript is a registered trademark of
Adobe Systems, Inc. Sun is a trademark of Sun Microsystems, Inc. Wavefront is a
trademark of Wavefront Technologies. X Window System is a trademark of the
Massachusetts Institute of Technology.

iii

Contents

List of Examples xiii

List of Figures xv

List of Tables xvii

About This Guide xix
What This Guide Contains xix
How to Use This Guide xix
What You Should Know Before Reading This Guide xix
Suggested Reading xx
Font Conventions in This Guide xxi

Integrating an Application Into the Indigo Magic Desktop Environment: An
Introduction xxiii
About the Indigo Magic Desktop Environment xxiii
Implementation Strategies and Toolkits xxv

Implementation Checklist xxvi
Using ViewKit and RapidApp xxvii

Integrating an Application xxx

PART I Getting the Right Look and Feel

1. Getting the Right Look and Feel: An Overview 5
About the Indigo Magic Look and Feel 5
Getting the Right Look and Feel: The Basic Steps 6

iv

Contents

2. Getting the Indigo Magic Look 9

3. Using Schemes 13
Schemes Overview 13

Why You Should Use Schemes 14
Basic Scheme Concepts 14

Using Schemes in Your Application 15
Turning on Schemes for Your Application 15
Special Considerations for Programming with Schemes 16
Assigning Non-Default Colors and Fonts to Widgets 17
Directly Accessing Colors and Fonts 19
Pre-Defined Scheme Resources and Symbolic Values 21

Extending a Scheme to Support New Colors 24
Scheme File Organization 24
How to Extend a Scheme 25

Testing Your Application with Schemes 27
Creating New Schemes 27
Hard-Coding a Scheme for an Application 28

4. Using the Silicon Graphics Enhanced Widgets 31
Using the SGI Enhanced Widgets 31
Using the Widget Demos 31

Location of Widget Demos 32
Instructions for Building the Widget Demos 32

The Enhanced Widgets 32
The File Selection Box Widget 33
The Scale (Percent Done Indicator) Widget 35
The Text and TextField Widgets 35

The Mixed-Model Programming Widgets 36

Contents

v

The SGI Enhanced Widgets 37
The Color Chooser Widget 38
The Dial Widget 43
The Thumbwheel Widget 45
The Drop Pocket Widget 48
The Finder Widget 50
The Graph Widget 53
The Springbox Widget 54
The Grid Widget 55

5. Window, Session, and Desk Management 63
Window, Session, and Desk Management Overview 63

Window Management 63
Session Management 64
Desk Management 68
Further Reading on Window and Session Management 69

Implementing an Application Model 69
Implementing the “Single Document, One Primary” Model 70
Implementing the “Single Document, Multiple Primaries” Model 70
Implementing the “Multiple Document, Visible Main” Model 70
Implementing the “Multiple Document, No Visible Main” Model 71

Interacting With the Window and Session Manager 71
Creating Windows and Setting Decorations 72
Handling Window Manager Protocols 78
Setting the Window Title 82
Controlling Window Placement and Size 83

6. Customizing Your Application’s Minimized Windows 87
Some Different Sources for Minimized Window Images 87
Creating a Minimized Window Image: The Basic Steps 88

Using snapshot to Get an RGB Format Image 89
Resizing the RGB Image Using imgworks 90

Setting the Minimized Window Label 91
Changing the Minimized Window Image 91

vi

Contents

7. Interapplication Data Exchange 95
Data Exchange Overview 95

Primary Transfer Model Overview 96
Clipboard Transfer Model Overview 97
Interaction Between the Primary and Clipboard Transfer Models 97

Implementing the Primary Transfer Model 99
Data Selection 99
Requests for the Primary Selection 100
Loss of the Primary Selection 101
Inserting the Primary Selection 101

Implementing the Clipboard Transfer Model 102
Cut Actions 102
Copy Actions 104
Requests for the Clipboard Selection 104
Paste Actions 104
Loss of the Clipboard Selection 105

Supported Target Formats 105
Data Conversion Service 109

The Converter Registry 110
The GoldenGate API 110

8. Monitoring Changes to Files and Directories 113
FAM Overview 113

Theory of Operation 114
FAM Libraries and Include Files 114

The FAM Interface 115
Opening and Closing a FAM Connection 115
Monitoring a File or Directory 116
Suspending, Resuming, and Canceling Monitoring 117
Detecting Changes to Files and Directories 118
FAM Examples 122

Using FAM 123
Waiting for File Changes 124
Polling for File Changes 127

Contents

vii

9. Providing Online Help With SGIHelp 131
Overview of SGIHelp 131

The Help Viewer 132
The SGIHelp Library and Include File 133
Help Document Files 134
Application Helpmap Files 134

The SGIHelp Interface 134
Initializing the Help Session 134
Displaying a Help Topic 135
Displaying the Help Index 137

Implementing Help in an Application 138
Constructing a Help Menu 138
Implementing a Help Button 139
Providing Context-Sensitive Help 140

Application Helpmap Files 143
Helpmap File Conventions 144
Helpmap File Format 144
Widget Hierarchies in the Helpmap File 146

Writing the Online Help 147
Overview of Help Document Files 148
Viewing the Sample Help Document Files 148
Creating a Help Document File 149
Preparing to Build the Online Help 150
Building the Online Help 151
Finding and Correcting Build Errors 152

Producing the Final Product 153
Creating the Installable Subsystem 153
Incorporating the Help Subsystem into an Installable Product 153
Incorporating the Help Subsystem into a Product With a Custom Installation Script
154

Bibliography of SGML References 155

10. Handling Users’ System Preferences 159
Handling the Mouse Double-Click Speed Setting 159

viii

Contents

Using the Preferred Text Editor 160

PART II Creating Desktop Icons

11. Creating Desktop Icons: An Overview 165
About Indigo Magic Desktop Icons 165
Checklist for Creating an Icon 166
Creating an Icon: The Basic Steps Explained in Detail 168

Step One: Tagging Your Application 168
Step Two: Drawing a Picture of Your Icon 169
Step Three: Programming Your Icon 170
Step Four: Compiling the Source Files 174
Step Five: Installing Your Application in the Icon Catalog 175
Step Six: Restarting the Desktop 175
Step Seven: Updating Your Installation Process 175

12. Using IconSmith 181
About IconSmith 182
Where to Put Your Completed Icon 183
Some Definitions 183
Starting IconSmith 184
IconSmith Menus 184
IconSmith Windows 186
Drawing With IconSmith 188

Drawing Paths 189
Drawing Filled Shapes 189
Deleting 190
Keeping the 3-D Look 190
Drawing for All Scales 191
Sharing Design Elements 191
Templates 192

Contents

ix

Selecting 192
Partial 193
Deselect Fragments 193
Select Next 193
Select All 194

Transformations 194
Scale 195
Scale X and Y 195
Rotate 195
Shear Y 195

Concave Polygons 196
Constraints: Gravity (Object) Snap and Grid Snap 196

Controlling the Grid 197
Controlling Gravity 198

Icon Design and Composition Conventions 198
Importing Generic Icon Components (Magic Carpet) 198
Icon Size 199
Selecting Colors 199

Advanced IconSmith Techniques 200
Drawing a Circle 200
Drawing an Oval 202
Isometric Circles 203

13. File Typing Rules 211
A Table of the FTRs With Descriptions 212
Naming File Types: The TYPE Rule 213
Categorizing File Types: The SUPERTYPE Rule 214
Matching File Types With Applications: The MATCH Rule 215

Matching Tagged Files 216
Matching Files Without the tag Command 217

Matching Non-Plain Files: The SPECIALFILE Rule 221
Adding a Descriptive Phrase: The LEGEND Rule 221
Setting FTR Variables: The SETVAR Rule 222
Programming Open Behavior: The CMD OPEN Rule 223

x

Contents

Programming Alt-Open Behavior: The CMD ALTOPEN Rule 224
Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules 224
Mapping Names: The MAP Rule 226
Programming Print Behavior: The CMD PRINT Rule 227
Adding Menu Items: The MENUCMD Rule 228
Getting the Icon Picture: The ICON Rule 229
Creating a File Type: An Example 231

Open an FTR File for scribble 231
Add the FTRs to the scribble FTR File 231
Name the scribble FTR File and Put It in the Appropriate Directory 235
The scribble FTRs 235

14. Printing From the Desktop 239
About routeprint 239
Converting a File for Printing 239
The Print Conversion Rules 242

The CONVERT Rule 242
The COST Rule 243
The FILTER Rule 243

The Current Printer 245

A. Example Programs for SGI Enhanced Widgets 249
Example Program for Color Chooser 250

Makefile for colortest.c 252
Example Program for Dial 252
Example Program for Drop Pocket 254

Makefile for Drop Pocket Example 255
Example Program for Finder 257
Example Program for History Button (Dynamenu) 259
Example Program for ThumbWheel 260
Example Program for File Selection Box 262

Makefile for File Selection Box Example Program 264
Example Programs for Scale (Percent Done Indicator) Widget 265
Example Program for LED Widget 266

Contents

xi

B. Desktop Environment Variables 269

C. Online Help Examples 273
A Simple Help Document 273
Allowable Elements in a Help Document 282
An Example of Implementing Help in an Application 297

D. The Icon Description Language 315

E. Predefined File Types 321
Naming Conventions for Predefined File Types 321
The Predefined File Types and What They Do 322

SpecialFile 322
Directory 322
Ascii 322
Source Files 323
Binary 323
ImageFile 323
Executable 324
Scripts 324
GenericWindowedExecutable 324
LaunchExecutable 325
ttyExecutable 325
ttyLaunchExecutable 326
ttyOutExecutable 326
ttyLaunchOutExecutable 326

F. FTR File Directories 331

G. Using GoldenGate Data Conversion Services 335
Converting Data Using the GoldenGate Data Conversion Service 335

Overview of the Conversion Process 335
Selecting a Converter 338
Using GoldenGate to Convert Data 343

Compiling and Linking Your Program with GoldenGate 353

xii

Contents

Writing Converters for the GoldenGate Data Conversion Service 354
Overview of the Converter Writing Process 354
Writing Converter Code 354
Building a DSO 362
Testing Your Converter 365
Registering Your Converter 366
Installing Your Converter 367
Some Sample Converters 367

H. Standard Menu Resources 375
Common Menu Bar Resources 375
Standard File Menu Resources 376
Standard Edit Menu Resources 377

Index 379

xiii

List of Examples

Example 3-1 Retrieving a Scheme Color Value 19
Example 4-1 An Example of Using the Grid Widget 57
Example 4-2 Another Example of Using the Grid Widget 58
Example 5-1 Session Management Example Code: saveyourself.c 67
Example 5-2 Creating a Main Primary Window 73
Example 5-3 Creating a Co-Primary Window 75
Example 5-4 Creating a Support Window 77
Example 5-5 Creating a Dialog 78
Example 5-6 Handling the Window Manager Quit Protocol 79
Example 5-7 Handling the Window Manager Delete Window Protocol in

Co-Primary Windows 80
Example 5-8 Handling the Window Manager Delete Window Protocol in

Support Windows and Dialogs 80
Example 5-9 Handling the Window Manager “Save Yourself” Protocol 81
Example 7-1 Asserting Ownership of PRIMARY Selection 99
Example 7-2 Handling Cut Actions in the Clipboard Transfer Model 102
Example 8-1 Using Select With FAM 124
Example 8-2 Polling With FAM 128
Example 8-3 Polling FAM Within an Xt Work Procedure 128
Example 9-1 Initializing a Help Session Using SGIHelpInit() 135
Example 9-2 Requesting a Specific Help Topic Using SGIHelpMsg() 136
Example 9-3 Requesting a Help Topic for a Widget Using SGIHelpMsg() 137
Example 9-4 Displaying a Help Index Using SGIHelpIndexMsg() 138
Example 9-5 Providing a Help Button 140
Example 9-6 Implementing Context-Sensitive Help 141
Example C-1 An Example of a Help Source File 273
Example C-2 A Description of the Elements Defined by the Help DTD 282

xiv

List of Examples

Example C-3 An Example of Integrating SGIHelp With an Application 297
Example C-4 Help Source File for Example Program 308
Example C-5 Helpmap for Example Program 312

xv

List of Figures

Figure i The Indigo Magic Desktop xxv
Figure 4-1 The File Selection Box Widget 33
Figure 4-2 The Color Chooser Widget 38
Figure 4-3 The Color Chooser Widget With HSV and RGB Sliders 39
Figure 4-4 The Dial Widget in Knob and Pointer Form 43
Figure 4-5 The Thumbwheel Widget 46
Figure 4-6 The Drop Pocket Widget 48
Figure 4-7 The Finder Widget 50
Figure 4-8 The Graph Widget 53
Figure 5-1 Window Settings Control Panel 65
Figure 6-1 Minimized Window Image Examples 88
Figure 6-2 The snapshot Tool 89
Figure 9-1 The Help Viewer 132
Figure 9-2 The Help Index Window 133
Figure 12-1 The IconSmith Icon 184
Figure 12-2 The Main IconSmith Window With Popup Menus 185
Figure 12-3 The Palette (Selection Properties) Window 186
Figure 12-4 The Constraints Window 187
Figure 12-5 The Import Icon or Set Template Window 188
Figure 12-6 3-D Icon Axes 190
Figure 12-7 Splitting a Concave Polygon 196
Figure 12-8 A Path 201
Figure 12-9 Wheel Spokes 201
Figure 12-10 Connected Spokes 201
Figure 12-11 Finished 2-D Circle 202
Figure 12-12 An Oval 203
Figure 12-13 A Simple, Circular 2-D Icon 203

xvi

List of Figures

Figure 12-14 Imported Circles 204
Figure 12-15 Finished Isometric Circle 205
Figure 12-16 Simple, Isometric 2-D Icon 205
Figure 12-17 Icon Centered on Generic Component 206
Figure 12-18 Open Icon 207
Figure 14-1 File Conversions for Printing Standard Desktop Files 240

xvii

List of Tables

Table i Checklist of Implementation Tasks and References xxvi
Table ii Tasks Requiring Application Changes and/or Motif xxvii
Table iii Integration and ViewKit xxviii
Table iv Integration and RapidApp xxix
Table 3-1 Pre-Defined Scheme Resources and Symbolic Values 21
Table 7-1 Audio Formats 106
Table 7-2 Image Formats 106
Table 7-3 Movie Formats 107
Table 7-4 3D Graphics Formats 108
Table 7-5 Additional Data Types Supported by Silicon Graphics 108
Table 7-6 World Wide Web Targets 109
Table 13-1 File Typing Rules 212
Table 13-2 Numerical Representations in Match-Expressions 219
Table 13-3 Match-Expression Functions 219
Table 14-1 Conversion Costs for Print Conversion Rules 242
Table D-1 Icon Description Functions 317
Table E-1 Predefined File Type Naming Conventions 321
Table G-1 Converter Attributes 339
Table G-2 Query Operators 340
Table G-3 Converter Return Status Values 349
Table G-4 Converter Description File Statements 363

xix

About This Guide

This book explains how to integrate applications into the Indigo Magic™ Desktop
environment. This book assumes that your applications run on Silicon Graphics®

workstations.

What This Guide Contains

This book is divided into two sections:

• Part One explains how to achieve the Silicon Graphics look and feel for your
application. (Guidelines for look and feel are provided in the Indigo Magic User
Interface Guidelines.)

• Part Two explains how to create Desktop icons for your application and install them
in the Icon Catalog.

How to Use This Guide

This book is a companion to the Indigo Magic User Interface Guidelines. Silicon Graphics
recommends that you read through the Indigo Magic User Interface Guidelines first, then
use the Indigo Magic Desktop Integration Guide to help you implement the style guidelines.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with the material contained in the OSF/Motif
Style Guide and the Indigo Magic User Interface Guidelines manual. It assumes also that you
have some knowledge of programming in IRIS® IM™ and Xt (or Xlib).

Silicon Graphics provides both these manuals online. You can view them from the IRIS
InSight™ viewer. To use the IRIS InSight viewer, select “On-line Books” from the Help
toolchest.

xx

About This Guide

Suggested Reading

Here are some books that provide information on some of the topics covered in this
guide:

• IRIS IM Programming Guide. (This book is included online with the Silicon Graphics
IRIS Development Option.)

• IRIS ViewKit Programmer’s Guide. (This book is included online with the Silicon
Graphics C++ option.)

• OpenGL on Silicon Graphics Systems. (This book is included online with the Silicon
Graphics IRIS Development Option.)

• Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs: Prentice-Hall, Inc., 1992. (This book is included online with the Silicon
Graphics IRIS Development Option.)

• Open Software Foundation. OSF/Motif Style Guide, Revision 1.2. Englewood Cliffs:
Prentice-Hall, Inc., 1992. (This book is included online with the Silicon Graphics
IRIS Development Option.)

• Nye, Adrian and O’Reilly, Tim. The X Window System, Volume 4: X Toolkit Intrinsics
Programming Manual, OSF/Motif 1.2 Edition for X11, Release 5. Sebastopol: O’Reilly &
Associates, Inc., 1992. (This book is included online with the Silicon Graphics IRIS
Development Option.)

• Nye, Adrian. The X Window System, Volume 1: Xlib Programming Manual for Version 11
of the X Window System. Sebastopol: O’Reilly & Associates, Inc., 1992. (This book is
included online with the Silicon Graphics IRIS Development Option.)

• Young, Doug. The X Window System, Programming and Applications with Xt,
OSF/Motif Edition, Second Edition. Englewood Cliffs: Prentice Hall, Inc., 1994.

• Assente & Swick. The X Toolkit.

• Scheifler, Robert and Gettys, Jim. X Window System, Third Edition. Digital Press,
ISBN 1-55558-088-2.

• X/Open Company, Ltd. X/Open Portability Guide (set of 7 volumes). Englewood
Cliffs: Prentice Hall Publishing Company, ISBN 0-13-685819-8

About This Guide

xxi

Font Conventions in This Guide

These style conventions are used in this guide:

• Boldfaced text indicates that a term is an option flag, a data type, a keyword, a
function, a command-line option, or an X resource.

• Italic text indicates that a term is a filename, a button name, a variable, an IRIX
command, a document title, or an image or subsystem name.

• “Quoted text” indicates menu items.

• Screen type shows code examples and screen displays.

• Bold screen type indicates user input and nonprinting keyboard keys.

• Regular text shows menu and window names, and X properties.

xxiii

Integrating an Application Into the Indigo Magic
Desktop Environment: An Introduction

This book describes how to integrate your application into the Indigo Magic Desktop
environment. It assumes that your application already runs on Silicon Graphics
workstations. This is strictly a how-to guide—refer to the Indigo Magic User Interface
Guidelines for style guidelines.

This introduction contains these sections:

• “About the Indigo Magic Desktop Environment” presents a brief overview of the
Indigo Magic Desktop and explains why it’s important to integrate your application
into the Desktop environment.

• “Implementation Strategies and Toolkits” provides a checklist to help developers
focus on the items that most benefit their users.

• “Integrating an Application” offers a brief, general list of the basic steps for
integration.

About the Indigo Magic Desktop Environment

The Indigo Magic Desktop environment provides a graphical user interface (GUI) to the
IRIX filesystem and operating system. This interface allows users to interact with the
workstation using a point-and-click interface, based on icons and windows. The Desktop
provides tools and services for the users’ convenience, many of which are accessible
directly from the Desktop’s toolchests.

Integrating your application into the Desktop environment is an important step in
creating your product. Since users are already familiar with the Desktop, they have
certain expectations about how applications should look and behave in the Desktop
environment. By integrating your application into the Desktop, you insure that these
expectations are met—thus helping your users get the most out of your application.

xxiv

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

Figure i shows an example of the Indigo Magic Desktop. Take note of several tools that
are running:

• The Desks Overview window. With the Desks Overview window, users can switch
from one “desk,” or group of applications, to another. When your application
appears in a desk other than the one currently in use, it’s in a state similar to the
minimized state. You need to be careful about what processes your application runs
while in a minimized state.

• The Window Settings window. From the Window Settings window, users can
change aspects of window and session management. You need to set up your
application so that it works as users expect when they change these settings.

• The Desktop Settings window. From this window, users can resize Desktop icons
and select a default text editor. You need to design your icons so that they look
reasonable in the maximum and minimum sizes, and set up your application to use
the user’s default editor where appropriate.

• The Icon Catalog. Users can access icons from the different pages in the Icon
Catalog. The standard pages are: Applications, Demos, Desktop Tools, and Media
Tools. Since the Icon Catalog is one of the first places users look when they need to
find an application, you should add your products icons to this catalog.

These are just a few examples of the kinds of things you’ll need to consider to integrate
your application into the Desktop Environment. This book provides complete and
detailed instructions for integration, while the Indigo Magic User Interface Guidelines gives
you style guidelines. For the best results, use both books together.

Integrating an Application Into the Indigo Magic Desktop Envi-

xxv

Figure i The Indigo Magic Desktop

Implementation Strategies and Toolkits

This section presents strategies for implementing your application and suggests some
toolkits that will make the implementation easier. Topics include:

• “Implementation Checklist” on page xxvi

• “Using ViewKit and RapidApp” on page xxvii

Desks Overview

Window Settings

Desktop Settings

Icon Catalog

window

window

window

xxvi

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

Implementation Checklist

Table i provides a checklist to help you focus your resources on the items that most
benefit your users. The checklist lists tasks in order of importance. Try to adhere to the
user interface guidelines in the order presented in the checklist.

For a summary of user interface guidelines that includes a complete checklist, see,
“Summary of Guidelines” in Indigo Magic User Interface Guidelines.

* Items requiring use of the Motif toolkit.

Table i Checklist of Implementation Tasks and References

Task Indigo Magic User
Interface Guidelines

Implementation Reference

Icons and FTRs Chapter 2 Desktop Integration Guide,
Chapters 11-15

Indigo Magic Look* Chapter 3 Desktop Integration Guide,
Chapters 2-3

Menus and Accelerators* Chapter 3 OSF/Motif Programmer’s Guide,
Chapter 6

Copy and Paste* Chapter 5 Desktop Integration Guide,
Chapter 7

Window Management Chapter 3 Desktop Integration Guide,
Chapters 5-6

Software Installation Chapter 4 S/W Packager User’s Guide

Session Management Chapter 3 Desktop Integration Guide,
Chapter 5

Online Help Chapter 4 Desktop Integration Guide,
Chapter 9

Selection, Focus* Chapter 7 OSF/Motif Programmer’s Guide,
Chapter 13

Feedback Chapter 11 OSF Motif Programmer’s Guide

Internationalization Chapter 4 Topics in IRIX Programming,
Chapter 4

Integrating an Application Into the Indigo Magic Desktop Envi-

xxvii

It’s also useful to know which changes you can make without modifying the
application’s source code and which items require the use of the IRIS IM (OSF/Motif)
toolkit. The Silicon Graphics style is based on Motif, so using the Motif toolkit makes
compliance much easier. Table ii lists which tasks require application code changes and
which require Motif.

Using ViewKit and RapidApp

Besides using Motif, other toolkits and tools can make integrating your application
easier. These include:

• “ViewKit”

• “RapidApp”

Table ii Tasks Requiring Application Changes and/or Motif

Task Application Code Changes Requires Moti f

Icons and FTRs

Indigo Magic Look yes

Menus/Accelerators yes

Copy & Paste yes yes (Xt)

Window Management

Software Installation

Session Management yes

Online Help yes
Online help and context sensitive
help require no code changes with
ViewKit.

yes
Context sensitive help uses the
Motif widget hierarchy.

Selection, Focus yes

Feedback yes

Internationalization yes

xxviii

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

ViewKit

IRIS ViewKit™ is a C++ based, user-interface toolkit based on OSF/Motif. ViewKit also
runs on Dec, HP, IBM, SCO, SunOS, and Sun Solaris.

Table iii lists integration tasks that you can achieve by using ViewKit.

Your application can provide World Wide Web access by using VkWebViewerBase,
which provides basic Web functionality. For more information, see the IRIS ViewKit
Programmer’s Guide.

Note: IRIS ViewKit isn’t part of the IRIS Developer’s Option; it’s bundled with the C++
Development Option. In the United States and Canada, call SGI Direct at 800-800-SGI1
(7441) for more information about how to order the C++ Development Option; outside
the United States and Canada, please contact your local sales office or distributor.

Table iii Integration and ViewKit

Task ViewKit

Icons and FTRs

Indigo Magic Look Schemes set by default

Menus and Accelerators

Copy and Paste VkCutPaste Class

Window Management

Software Installation

Session Management Initial session management set

Online Help Help menu entry and context sensitive help

Selection, Focus

Feedback Busy state and cursor are easily set

Internationalization

Integrating an Application Into the Indigo Magic Desktop Envi-

xxix

RapidApp

Developer Magic RapidApp™ is an interactive tool for creating applications. It
integrates with other Developer Magic tools, including cvd, cvstatic, cvbuild, and others,
to provide an environment for developing object-oriented applications as quickly as
possible. RapidApp generates C++ code, with interface classes based on the IRIS ViewKit
toolkit. In addition to the conveniences provided by IRIS ViewKit, you can use
RapidApp to help create your application (see Table iv).

For more information, see the Developer Magic: RapidApp User’s Guide.

Note: RapidApp isn’t part of the IRIS Developer’s Option. In the United States and
Canada, call SGI Direct at 800-800-SGI1 (7441) for more information about how to order
RapidApp; outside the United States and Canada, please contact your local sales office
or distributor.

Table iv Integration and RapidApp

Task RapidApp

Icons and FTRs Generates an ftr rule and sample icon

Indigo Magic Look sgiMode & schemes set by default

Menus and Accelerators Standard & Common menu entries

Copy and Paste

Window Management

Software Installation Automatically builds an inst image

Session Management Initial session management set

Online Help

Selection, Focus

Feedback

Internationalization

xxx

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

Integrating an Application

This section lists the basic steps for integrating an existing application into the Indigo
Magic Desktop environment. The steps are listed in a very general way, to give you a
brief overview of the process.

If you’re writing a new application, here are a few tips:

• If possible, use IRIS ViewKit™. Refer to the IRIS ViewKit Programmer’s Guide for
instructions.

• Don’t use IRIS GL™. Use OpenGL™ or Open Inventor™ instead.

Note: Open Inventor isn’t part of the IRIS Developer’s Option, it is a separate option.
In the United States and Canada, call SGI Direct at 800-800-SGI1 (7441) for more
information about how to order the Open Inventor Option; outside the United States
and Canada, please contact your local sales office or distributor.

To integrate your application into the Indigo Magic Desktop, follow these steps:

1. If your application uses IRIS GL, port to OpenGL if possible. If it’s impractical for
you to port to OpenGL at this time, at least switch to mixed-model IRIS GL
programming, if you haven’t already done so. (Mixed-model programs use Xt for
event and window management).

For information on porting from IRIS GL to OpenGL and for switching your
program to mixed-model, refer to the OpenGL Porting Guide. This manual is
included online in the IRIS Developer’s Option (IDO). View it using the IRIS InSight
Viewer.

2. Set up your application to comply with the Indigo Magic look and feel:

• use the Enhanced IRIS IM™ look

• use Schemes

• use the new and enhanced IRIS IM widgets where appropriate

• set up your application for correct window, session, and desks management

• customize the minimize window image for your application (optional)

• use the extensions provided in the Selection Library and the File Alteration
Monitor (optional)

These topics, as well as information on fonts, are covered in Part 1 of this guide.

Integrating an Application Into the Indigo Magic Desktop Envi-

xxxi

3. Create Desktop icons for your application and add them to the Icon Catalog. You’ll
need an icon for the application itself as well as icons for any unusual data formats.
See Part 2 of this manual for instructions.

4. Use swpkg to package your application so that your users can install it easily. See the
Software Packager User’s Guide for information for instructions on using swpkg.

PART ONE

Getting the Right Look and Feel I

Chapter 1:
Getting the Right Look and Feel: An Overview

Chapter 2:
Getting the Indigo Magic Look

Chapter 3:
Using Schemes

Chapter 4:
Using the Silicon Graphics Enhanced Widgets

Chapter 5:
Window, Session, and Desk Management

Chapter 6:
Customizing Your Application’s Minimized Windows

Chapter 7:
Interapplication Data Exchange

Chapter 8:
Monitoring Changes to Files and Directories

Chapter 9:
Providing Online Help With SGIHelp

Chapter 10:
Handling Users’ System Preferences

This chapter provides a checklist of the steps you need to follow for your
application to have the Indigo Magic look and feel.

Getting the Right Look and Feel:
An Overview

Chapter 1

5

Chapter 1

1. Getting the Right Look and Feel: An Overview

This chapter contains these sections:

• “About the Indigo Magic Look and Feel” briefly explains the basics of the Indigo
Magic look and feel and tells you where to find more detailed information.

• “Getting the Right Look and Feel: The Basic Steps” briefly lists the basic steps for
getting the right look and feel and tells you which chapter covers each step.

About the Indigo Magic Look and Feel

One of the most important things you can do to integrate your application into the Indigo
Magic Desktop environment is to get the right look and feel. This look and feel is largely
based on IRIS IM, the Silicon Graphics port of the industry-standard OSF/Motif™

toolkit. In particular, the look and feel is based on an enhanced version of IRIS IM and on
the 4Dwm window manager (the Silicon Graphics mwm-based window manager). The
Indigo Magic User Interface Guidelines explains the differences between the Indigo Magic
look and feel and the OSF/Motif look and feel.

Users have certain expectations of how applications appear and behave in the Indigo
Magic Desktop environment, and by meeting these expectations, you make your
application much easier and more pleasant to use. The chapters in this part of the manual
explain how to set up your application to provide the Indigo Magic look and feel.

6

Chapter 1: Getting the Right Look and Feel: An Overview

Getting the Right Look and Feel: The Basic Steps

Here are the basic steps for providing the right look and feel for your application:

1. Recompile with IRIS IM version 1.2. If your application uses an earlier version of
IRIS IM, recompile to make sure that it runs correctly with version 1.2. Refer to the
IRIS IM 1.2 Release Notes for information on the differences between version 1.2 and
earlier versions of IRIS IM.

2. Use the Indigo Magic enhanced appearance. Turn on the Indigo Magic “look,” which
enhances the appearance of standard IRIS IM widgets and gadgets. See Chapter 2,
“Getting the Indigo Magic Look,” for instructions.

3. Use schemes. The schemes mechanism is a simple method for providing
user-selectable default colors and fonts for your application. For more information
on Schemes, see Chapter 3, “Using Schemes.”

4. Use the new and extended widgets (optional). Silicon Graphics provides some new
IRIS IM widgets, extensions of some existing widgets, and some mixed-model
programming widgets (for use with IRIS GL and OpenGL). For more information,
see Chapter 4, “Using the Silicon Graphics Enhanced Widgets.”

5. Set resources for correct window, session, and desks management. By setting a
few important resources, you insure that your application includes the windowing,
session management, and desks features that users expect. For instructions, refer to
Chapter 5, “Window, Session, and Desk Management.”

6. Customize minimize icons. Silicon Graphics provides tools that allow you to easily
provide your own look for minimize icons (icons for minimized windows). The
tools for creating minimized windows are discussed in Chapter 6, “Customizing
Your Application’s Minimized Windows.”

7. Implement interapplication data exchange. Interapplication data exchange lets
users cut and paste information between you application and other applications.
For more information, see Chapter 7, “Interapplication Data Exchange.”.

8. Provide online help. Silicon Graphics provides an online help system for
integrating help with your application. Chapter 9, “Providing Online Help With
SGIHelp,” describes how to use the online help system.

9. Monitor changes to the filesystem (optional). Silicon Graphics provides a File
Alteration Monitor (FAM) that your application can use to monitor the filesystem.
Chapter 8, “Monitoring Changes to Files and Directories,” explains how to use
FAM.

This chapter describes how to turn on the Indigo Magic “look,” which
enhances the appearance of standard IRIS IM widgets and gadgets.

Getting the Indigo Magic Look

Chapter 2

9

Chapter 2

2. Getting the Indigo Magic Look

The simplest step in integrating your application with the Desktop environment is to
turn on the Indigo Magic “look,” which enhances the appearance of standard IRIS IM
widgets and gadgets. “The Indigo Magic Look: Graphic Features and Schemes” in
Chapter 3 of the Indigo Magic User Interface Guidelines describes the enhancements.

To turn on the Indigo Magic look for an application, simply set the application’s sgiMode
resource to “TRUE.” Typically, you should add this line to the /usr/lib/X11/app-defaults file
for your application:

appName*sgiMode: TRUE

where appName is the name of your application.

The standard IRIS IM library supports the Indigo Magic look. You don’t need to link with
a separate library or call a special function to enable the Indigo Magic look. If you don’t
turn on the Indigo Magic look, your application’s widgets and gadgets have the standard
IRIS IM appearance.

If your application uses the Indigo Magic look, it should also use schemes, which are
described in Chapter 3, “Using Schemes.” Silicon Graphics designed its color and font
schemes to work well with the Indigo Magic look.

Schemes allow you to provide default colors and fonts for your application,
while also ensuring that users can easily select other color and font collections
according to their individual needs and preferences. This chapter explains
why and how you should use schemes in your application.

Using Schemes

Chapter 3

13

Chapter 3

3. Using Schemes

Schemes provide an easy way to apply a collection of resources to your application. The
scheme mechanism allows your users to select from pre-packaged collections of colors
and fonts that are designed to integrate visually with the Indigo Magic Desktop and
other applications. “Schemes for Colors and Fonts” in Chapter 3 in Indigo Magic User
Interface Guidelines describes the guidelines for using schemes in the Indigo Magic
environment.

This chapter contains the following sections:

• “Schemes Overview” on page 13 provides an overview to schemes.

• “Using Schemes in Your Application” on page 15 describes what you need to do to
use schemes in your application.

• “Extending a Scheme to Support New Colors” on page 24 provides tips for testing
how your application responds to different schemes.

• “Creating New Schemes” on page 27 describes how to create new schemes.

• “Hard-Coding a Scheme for an Application” on page 28 describes how to force your
application to use one specific scheme.

Schemes Overview

Schemes allow you to provide default colors and fonts for your application, while also
ensuring that users can easily select other color and font collections according to their
individual needs and preferences. Silicon Graphics includes some standard system
schemes with the X execution environment, but end users can modify existing schemes
or create new ones, and you can create new schemes or extend existing ones for use with
your application.

This section provides an overview of schemes and explains why you should use schemes
in your application.

14

Chapter 3: Using Schemes

Why You Should Use Schemes

As a developer, it is impossible for you to choose colors and fonts for your application
that satisfy all users. Aside from the consideration of individual taste, display
characteristics vary and some users have various degrees of colorblindness. Schemes
allow users to select colors and fonts according to their preferences and needs.

Although users can already use the X resource mechanism to customize colors and fonts,
it is very difficult and time-consuming for most end users to do so, because the task
requires knowledge of the internal structure of the program. On the other hand, if your
application supports schemes, users can use the graphical Schemes Browser, schemebr
(available from the “Color Schemes” option of the Customize menu in Desktop
toolchest), to change colors and fonts.

Using schemes also reduces the time and effort required to develop your application.
Instead of choosing your own colors and fonts and coding them into your application,
you can simply set a resource value to activate schemes and get the distinctive Indigo
Magic appearance.

Basic Scheme Concepts

A scheme simply maps specific colors and fonts to abstract resource names according to
the functions they serve in an application. So instead of using specific colors like “blue”
or “#123456” and specific fonts like “-*-screen-medium-r-normal--13-*-*-*-*-*-iso8859-1,”
your application can use symbolic values like TextForeground, TextSelectedColor, and
FixedWidthFont. The exact definition of these symbolic values depends on the scheme
the user chooses to apply to your application. As long as your application uses the
symbolic color and font names for the purposes for which they were intended, users or
graphic designers can design a new palette (a binding of the symbolic values to specific
colors) and the result should look good with your application.

Often, you don’t even need to deal with the symbolic colors and fonts yourself. The
schemes mechanism includes a map file that automatically binds the symbolic values to
the various IRIS IM widgets and widget resources. One case where you might need to set
a color or font explicitly is if you need to highlight a component (for example, in a chart).
The schemes mechanism defines special symbolic values such as HighlightColor1
through HighlightColor8 for these purposes. (See “Directly Accessing Colors and Fonts”
on page 19 for more information on the symbolic values.) Another case where you need
to be aware of the symbolic values is if you need to extend a scheme for your application.

Using Schemes in Your Application

15

(See “Extending a Scheme to Support New Colors” on page 24 for more information on
extending a scheme.)

Using Schemes in Your Application

This section describes how to write your application for use with schemes and includes:

• “Turning on Schemes for Your Application” on page 15

• “Special Considerations for Programming with Schemes” on page 16

• “Assigning Non-Default Colors and Fonts to Widgets” on page 17

• “Directly Accessing Colors and Fonts” on page 19

Turning on Schemes for Your Application

Silicon Graphics incorporates schemes in its implementation of Xt, so you don’t need to
link to a separate schemes library or call a special function to use schemes. All you need
to do to enable schemes is to include in your application’s app-defaults file (in the
/usr/lib/X11/app-defaults directory) the line:

AppClass*useSchemes: all

where AppClass is your application’s class name. This activates all aspects of schemes.

Note: To ensure that users don’t accidently override your settings, be sure to prefix the
useSchemes resource with your application’s class name.

To deactivate schemes, you can set:

AppClass*useSchemes: none

If you wish to activate schemes without using an app-defaults file, or if you want to
guarantee that the schemes setting can’t be changed by users, call the function
SgiUseScheme():

void SgiUseScheme(char * value)

value can be either “all” or “none.” This function requires that you include the header file
<X11/SGIScheme.h>.

16

Chapter 3: Using Schemes

For example:

/* schemes.c */
/* cc -o schemes schemes.c -lXm -lXt */

#include <Xm/Label.h>
#include <X11/SGIScheme.h>

void main(int argc, char** argv)
{
 Widget toplevel, label;
 XtAppContext app_context;

 SgiUseSchemes(“all”);

 toplevel = XtAppInitialize(&app_context, “Hello”,
 NULL, 0, &argc, argv, NULL, NULL, 0);

 label = XmCreateLabel(toplevel, “hello”, NULL, 0);
 XtManageChild(label);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app_context);
}

Special Considerations for Programming with Schemes

The schemes map file automatically handles applying colors and fonts to most IRIS IM
widgets based on the widgets’ class names. Unfortunately, IRIS IM doesn’t have unique
class names for menu bars, menu panes, and option menus. To allow schemes to be
applied to these elements, your application must follow some simple naming
conventions for these widgets. Schemes expect applications to name all menu bars
“menuBar,” all option menus “optionMenu,” and the pane of all option menus
“optionPane.” Schemes also recognize some other variations of these names, including
“menu_bar,” “menubar,” “menu_Bar,” and so on.

If you need to set a color or a font in your application, use the procedures described in
“Assigning Non-Default Colors and Fonts to Widgets” on page 17 and “Directly
Accessing Colors and Fonts” on page 19. Don’t hard code colors or fonts in your
application because they might not work with the scheme that a user selects. For
example, if you programmatically set a text color to black and a user chooses a scheme
that has a very dark background, your text is unreadable. Also avoid setting colors that

Using Schemes in Your Application

17

IRIS IM normally computes. For example, if you hard code the top or bottom shadow
colors used by IRIS IM controls, these colors might not be correct if a user changes the
scheme.

There are obviously some cases for which this recommendation doesn’t apply. The most
common are windows in which you are rendering images. For example, if your
application uses OpenGL or some other library to render an image in a window, the
colors used in this window aren’t derived from schemes.

Fonts are usually less critical than colors, although the best visual effects will be
produced if you use only the fonts defined in the schemes. You should be aware that on
high-resolution screens, the sizes of the fonts defined by schemes can change. Therefore,
you should design the layout of your application to handle variable-sized fonts. This
means you shouldn’t hard-code x, y locations or fixed widths or heights for widgets in
your application. Instead use IRIS IM manager widgets such as the Form to achieve a
flexible layout that can respond to changes in font sizes.

Assigning Non-Default Colors and Fonts to Widgets

Sometimes, you might want to override the default color or font assigned to a widget by
a scheme. For example, all labels are set by default to use a bold font (BoldLabelFont);
however you might decide that a regular font (PlainLabelFont) is more appropriate for
some of your application’s labels.

To assign a non-default font or color to a widget, include a line in your application’s
app-defaults file mapping a different symbolic scheme resource to that widget. For
example, the following line assigns a regular label font (rather than the default bold font)
to a label in your application named “simpleLabel”:

YourApp*simpleLabel*fontList: SGI_DYNAMIC PlainLabelFont

The symbol SGI_DYNAMIC identifies this resource as a dynamically changeable scheme
resource. The actual font assigned to PlainLabelFont could potentially be different in
each scheme. As the user changes schemes, the correct resource is applied to your
program.

Note: Remember to prefix the widget hierarchy with your application’s class name to
prevent users from accidentally overriding your setting.

18

Chapter 3: Using Schemes

You can use the same technique with colors. For example, suppose you have two types
of label widgets positioned on an IRIS IM XmDrawingArea widget and you want to use
color to give some significance to different labels. Perhaps the application is some type
of a flowchart and some of the labels represent tasks in progress, while other represent
tasks that have been completed. The schemes map file already maps the symbolic scheme
resource DrawingAreaColor to the XmDrawingArea widget. The scheme palette also
provides colors that both provide a nice contrast against the DrawingAreaColor and
allow the current TextForeground color to be readable. These colors are
DrawingAreaContrast1, DrawingAreaContrast2, DrawingAreaContrast3, and
DrawingAreaContrast4. To specify the colors of each label widget in your application,
you could set the following resources:

YourApp*label1*background: SGI_DYNAMIC DrawingAreaContrast1
YourApp*label2*background: SGI_DYNAMIC DrawingAreaContrast1
YourApp*label3*background: SGI_DYNAMIC DrawingAreaContrast2
...

Each scheme also contains a set of basic colors that you can use for simple graphics, icons,
and so on. These colors maintain their basic characteristics, but change slightly from
scheme to scheme to blend with the general flavor of the scheme. For example, you could
set a label widget to be “red” as follows:

YourApp*label*background: SGI_DYNAMIC RedColor

The exact shade of red will change from scheme to scheme, but will always be “reddish”
and always fit with the other colors in the scheme.

If necessary, you can also use non-scheme colors and fonts, although Silicon Graphics
strongly recommends that you don’t do this. In particular, if you hard-code a color, the
user might select a scheme in which that color doesn’t provide the contrast you desire.
The color could even be “lost” among the other scheme colors. Non-scheme fonts are less
likely to cause problems, but your application will still have an inconsistent appearance
if it uses them.

You use the same methods to assign a non-scheme color or font that you normally would
in an X program. For example, you could set a font for a label named “simpleLabel” in
your app-defaults file as follows:

YourApp*simpleLabel*fontList: 6x12

Using Schemes in Your Application

19

Directly Accessing Colors and Fonts

When your application uses widgets only, the schemes map file automatically retrieves
all colors and fonts from the current scheme and assigns them to your application’s
widgets. However, you might need to access some of the scheme’s colors or fonts directly
from within a program. For example, you might want to draw a bar chart or other display
using colors that look good no matter what scheme the user has selected.

Example 3-1 shows an example of a function that retrieves a color value given a widget,
the color resource name, and the color resource class.

Example 3-1 Retrieving a Scheme Color Value

Pixel getColorResource(Widget w, char *name, char *classname)
{

XtResource request_resources;
Display *dpy = XtDisplay (w);
int scr = DefaultScreen (dpy);
Colormap cmap = DefaultColormap (dpy, scr);
XColor color, ignore;
char *colorname;

request_resources.resource_name = (char *) name;
request_resources.resource_class = (char *) className;
request_resources.resource_type = XmRString;
request_resources.resource_size = sizeof (char *);
request_resources.default_type = XmRImmediate;
request_resources.resource_offset = 0;
request_resources.default_addr = (XtPointer) NULL;

XtGetSubresources(w,
(XtPointer) &colorname,
NULL, NULL,
&requested_resources,
1, NULL, 0);

if (colorname &&
XAllocNamedColor (dpy, cmap, colorname, &color,

&ignore))
return (color.pixel);

else
return (BlackPixel (dpy, scr));

}

20

Chapter 3: Using Schemes

You could then retrieve the color defined by the scheme resource
drawingAreaContrastColor1 using getColorResource() as follows:

color1 = getColorResource(barChartWidget,
"drawingAreaContrastColor1",
XmCForeground);

where barChartWidget is the widget that you’ll use the color in.

Tip: There is a far simpler method for retrieving a resource value if you’re using the IRIS
ViewKit toolkit. Instead of writing the getColorResource() function listed in
Example 3-1, you could simply call:

Pixel color1 = (Pixel) VkGetResource(barChartWidget,
 "drawingAreaContrastColor1",
 XmCForeground, XmRPixel,
 "Black");

You must handle some resources programmatically. For example, the Indigo Magic User
Interface Guidelines suggests that your application use a different color for text fields that
are not editable than it uses for editable text fields. The IRIS IM text widget currently does
not change colors automatically when set to read only mode, so your application must
handle this itself. The correct color is provided by schemes as the symbolic name
ReadOnlyBackground, and can be retrieved by the resource readOnlyBackground.
Assuming that you’ve created the getColorResource() function listed in Example 3-1, the
following code illustrates this process:

ro = getColorResource(textw, "readOnlyBackground",
XmCForeground);

XtVaSetValues(textw, XmNeditable, FALSE,
XmNbackgroundColor, ro,
NULL);

Tip: The equivalent IRIS ViewKit code would be:

Pixel ro = (Pixel) VkGetResource(textw, "readOnlyBackground",
XmCForeground, XmRPixel,
"White");

XtVaSetValues(textw, XmNeditable, FALSE,
XmNbackgroundColor, ro,
NULL);

Using Schemes in Your Application

21

Pre-Defined Scheme Resources and Symbolic Values

Table 3-1 lists the pre-defined scheme resources and symbolic values. You can use the
resources to retrieve color and font values from within your application as described in
“Directly Accessing Colors and Fonts” on page 19. You can use the symbolic values to
assign colors and fonts to widgets in resource files as explained in “Assigning
Non-Default Colors and Fonts to Widgets” on page 17.

Table 3-1 Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

basicBackground BasicBackground Background of application

textForeground TextForeground Color of text characters

textBackground TextBackground Background of multi-line text
widgets

textFieldBackground TextFieldBackground Background of single-line text
field widgets

readOnlyBackground ReadOnlyBackground Background of read-only text
and text field widgets

textSelectedBackground TextSelectedBackground Background when text is
selected with the mouse

textSelectedForeground TextSelectedForeground Color of text characters when
text is selected with the mouse

disabledTextForeground DisabledTextForeground For future use, this color will
indicate disabled text instead of
stippling.

scrolledListBackground ScrolledListBackground Background of scrolled list
widgets

scrollBarTroughColor ScrollBarTroughColor Trough of scrollbar

scrollBarControlBackground ScrollBarControlBackground Scrollbar controls (thumb,
searchbutton)

buttonBackground ButtonBackground Background of push buttons

selectFillColor SelectFillColor Fill color for standard IRIS IM
radio and toggle buttons

22

Chapter 3: Using Schemes

selectColor SelectFillColor IRIS IM toggle and check fill
color

checkColor CheckColor Indigo Magic toggle check mark
color

radioColor RadioColor Indigo Magic radio pip color

indicatorBackground IndicatorBackground Indigo Magic background color
for toggles and radios

warningColor WarningColor Background color for icons in
warning dialogs

errorColor ErrorColor Background color for icons in
error dialogs

informationColor InformationColor Background color for icons in
information dialogs

wMBackground WMBackground Window manager colors. Note
that 4Dwm currently doesn’t
pick up foreground. “Active”
colors are used for window
manager borders with mouse
focus.

wMActiveBackground WMActiveBackground

wMForeground WMForeground

wMActiveForeground WMActiveForeground

alternateBackground1 AlternateBackground1 Can be used as background
color for widgets or text areas.
Guaranteed to be different from
one another, contrast with basic
background and text
background, and can have text
drawn on them.

alternateBackground2 AlternateBackground2

alternateBackground3 AlternateBackground3

alternateBackground4 AlternateBackground4

alternateBackground5 AlternateBackground5

alternateBackground6 AlternateBackground6

drawingAreaBackground DrawingAreaBackground Background of drawing area
widgets (typically used for
graphs)

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

Using Schemes in Your Application

23

drawingAreaContrastColor1 DrawingAreaContrastColor1 Contrast colors for drawing
areas (typically used for graphs
and trees). These colors are
guaranteed to be different from
one another, different from the
drawing area background, and
can have text drawn on them

drawingAreaContrastColor2 DrawingAreaContrastColor2

drawingAreaContrastColor3 DrawingAreaContrastColor3

drawingAreaContrastColor4 DrawingAreaContrastColor4

highlightColor1 HighlightColor1 Bright highlights suitable for
small color spots. The first four
are supposed to be in the same
hue family as the corresponding
DrawingAreaContrast colors so
that the pair may be used for
doing highlights in an annotated
scrollbar.

These colors are typically used
for outlining and drawing
graphs, wherever a small
amount of color needs to be
highly visible.

highlightColor2 HighlightColor2

highlightColor3 HighlightColor3

highlightColor4 HighlightColor4

highlightColor5 HighlightColor5

highlightColor6 HighlightColor6

highlightColor7 HighlightColor7

highlightColor8 HighlightColor8

redColor RedColor Colors that can be used for
various graphics purposes.
These colors will always
approximate their names, but
may be slightly adjusted to
blend with each scheme.
Typically used in graphs and
charts.

orangeColor OrangeColor

yellowColor YellowColor

greenColor GreenColor

blueColor BlueColor

brownColor BrownColor

purpleColor PurpleColor

boldLabelFont BoldLabelFont Bold labels, such as column
headings

smallBoldLabelFont SmallBoldLabelFont Labels for tight packing
situations

tinyBoldLabelFont TinyBoldLabelFont Labels where space is at a
premium

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

24

Chapter 3: Using Schemes

Extending a Scheme to Support New Colors

Silicon Graphics strongly recommends that you use existing scheme colors for your
application. Using the existing scheme colors ensures that your application will work
with all schemes. However, you might need to add colors in some basic cases.This section
explains how to extend Schemes to support new colors when necessary.

To extend a scheme, you create new symbolic values for the resources you need and then
define bindings between these values and resources that your application can retrieve.
This section describes the internal organization of scheme files and then describes how
to define these symbolic values and mappings.

Scheme File Organization

All system scheme files are kept in the directory /usr/lib/X11/schemes by default. This
directory contains several subdirectories, one for each scheme. The directory Base serves
as the basis of all schemes, although it is not a user-identifiable scheme itself. Base
contains at least three files: Base, BaseColorPalette, and FontPalette. You might see other
files as well.

plainLabelFont PlainLabelFont Button labels, also can be used
for values in “Name: Value”
pairs

smallPlainLabelFont SmallPlainLabelFont Small buttons

obliqueLabelFont ObliqueLabelFont Menus

smallObliqueLabelFont SmallObliqueLabelFont Small menus

fixedWidthFont FixedWidthFont Text areas where fixed width is
mandatory, for example where
it’s important that columns line
up

smallFixedWidthFont SmallFixedWidthFont Text where a fixed-width font is
appropriate but space is at a
premium

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

Extending a Scheme to Support New Colors

25

Each of the palette files (BaseColorPalette and FontPalette) contain cpp-style definitions of
symbolic names that represent colors and fonts. The Base file (referred to as a “map” file)
contains the default mappings between these symbolic names and specific resources,
using the same format as all X resource files.

For example, the Base file contains a line like:

*XmText*foreground: TextForeground

This says that all Text widgets should use the color represented by TextForeground as
their foreground color. By default, all schemes share the mappings specified in this Base
file. However, the value assigned to each symbolic name can vary from scheme to
scheme. For example the Mendocino scheme defines TextForeground to be #fffffe (white)
whereas the Milan scheme defines TextForeground to be #000000 (black). The scheme
mechanism evaluates these specifications at run time, based on the scheme specified by
the user.

By default, all applications pick up the definitions in the Base file and the palette files
from the selected scheme. However, applications can load additional scheme files as
well.

How to Extend a Scheme

There are two methods for extending a scheme. The first is to add additional mappings
between existing colors and widgets in your application. This might be necessary if you
want to bind colors of fonts to your widgets in a different way, or if you are using custom
widgets that are not handled by the basic scheme mappings. You should do this by
adding resources to your application’s app-defaults file, using the SGI_DYNAMIC
mechanism described earlier.

The second situation occurs when you would like to use colors or fonts that aren’t
provided as a part of the existing schemes. Your should try to avoid this situation when
at all possible, because users can use the scheme editor to create new schemes, and there
is no current mechanism for using the scheme editor to adjust any additional colors your
application might define. The standard scheme palettes contain over 40 colors, which
should be enough for most situations.

To add new colors to the existing schemes, you need to create a new palette file that
contains cpp-style definitions of those colors. To get your application to load this new

26

Chapter 3: Using Schemes

palette, you then need to set a resource, paletteFileList, in your application’s app-defaults
files that specifies as a comma-separated list all custom palette files to be loaded.

For example, assume you have an application whose class name is Calendar and that you
need two colors that you refer to in your program symbolically as brightColor and
darkColor. If no color in the exiting schemes satisfies your requirements for this color,
you’ll need to extend a scheme. Here are the steps you’d follow:

1. Define the colors in a palette file. By convention, you should name this file
<AppClass>Palette, where <AppClass> is the application class of your application. In
this case, you would name the palette CalendarPalette. It would contain the lines:

#define BrightColor red

#define DarkColor MidnightBlue

You can use any color names available on your target systems, as well as RGB
specifications. If the resources you are using are dependent on the gamma setting,
you should account for this in the palette file. You can handle the commonly used
gamma settings like this:

#ifdef GAMMA_1_0
#define BrightColor <color that looks right on 1.0 gamma>
#define DarkColor <color that looks right on 1.0 gamma>
#endif
#ifdef GAMMA_1_7
#define BrightColor <color that looks right on 1.7 gamma>
#define DarkColor <color that looks right on 1.7 gamma>
#endif
#ifdef GAMMA_2_4
#define BrightColor <color that looks right on 2.4 gamma>
#define DarkColor <color that looks right on 2.4 gamma>
#endif

The scheme mechanism handles gamma other than those listed here by finding the
closest match.

2. Create additional palette files as needed. If your new resources need to change
values when a scheme changes, create a file named CalendarPalette for each scheme
you want to support. For each scheme, choose the colors that look right for that
scheme. Note that if you do not support all existing schemes, the values of your
new scheme resources will default to the values in Base, so your application may
not look right when a user selects that scheme.

Testing Your Application with Schemes

27

3. Set your application’s paletteFileList resource to load the new palettes. In this
example, you would add the following line to your app-defaults file:

Calendar*schemeFilePaletteList: CalendarPalette

4. When you install your software on a user’s machine, you need to install the
executable, the app-defaults file, and any other files specific to your application. You
must also install your palette files into the directory of each scheme you support.
You should, at a minimum, support the schemes found in /usr/lib/X11/schemes. You
might also want to support schemes you find installed in /usr/local/schemes.

Testing Your Application with Schemes

For best results, you should be sure to test your application against all available schemes,
and watch for any anomalies. As an added precaution, you might try using the Scheme
Browser, schemebr, (available from the “Color Schemes” option of the Customize menu in
Desktop toolchest) to create some variations on existing schemes and see how your
program will react. If you have not added any resources and are not setting any colors or
fonts in your program or app-defaults files, any scheme should be reasonable. If you have
extended the schemes or set colors directly in your application, you should watch
carefully to see how your application reacts as colors change. It is always possible to use
the scheme editor to create a very bad scheme, but if your program seems more sensitive
than others to changes, you should think more carefully about your use of color.

Creating New Schemes

You can also include your own new schemes in your software distribution; however, be
aware of:

• The largest benefit of schemes is the users’ ability to change to schemes of their
choice, so even if you create a scheme that you prefer for your application, make
sure your program looks good with the existing schemes.

• If you install your scheme on a user’s system, the user may apply that scheme to
other applications. If you attempt to design a new scheme, make sure the scheme
works reasonably with other applications on the desktop.

The easiest way to design a new scheme is to use the Scheme Browser, schemebr, available
from the “Color Schemes” option of the Customize menu in Desktop toolchest. For best
results, you should base your scheme on an existing scheme, preferably one of the

28

Chapter 3: Using Schemes

standard ones supported by Silicon Graphics. Making only minor changes will reduce
the chances that the new scheme will not work with other programs. Once you have
created and saved your new scheme, you can retrieve the files from your
$HOME/.desktop-<hostname>/scheme directory, where <hostname> is the name of your
system. You can install your scheme in /usr/local/schemes/<SchemeName>, where
<SchemeName> is the name you have chosen for your scheme. Once installed, this scheme
will appear in the Scheme Browser as a local scheme. You can also include this scheme
with your software distribution.

Hard-Coding a Scheme for an Application

In some rare situations, you may want your application to use one particular scheme, not
the one that the user selects. Silicon Graphics strongly recommends that you not use this
approach, but if your application has special needs, the process is simple to do. Specify
the value of the scheme resource in your application’s app-defaults file using a complete
path name. For example:

YourApp*scheme: /usr/lib/X11/schemes/Milan

When using this approach, the location of the scheme directory is unimportant. For
example, if you’ve designed a custom scheme for your application, you could place the
scheme directory in special configuration directory for your application. For example:

YourApp*scheme: /usr/lib/YourApp.config/YourAppScheme

This setting implies that /usr/lib/YourApp.config/YourAppScheme is a scheme directory.
This means that the directory YourAppScheme would need to contain the files
BaseColorPalette (containing the color palette you have defined), a file whose name is the
same as the scheme that contains mappings, and a file named FontPalette. Normally, the
FontPalette file would be a copy of the file in /usr/lib/X11/schemes/Base, and the map file
would be the same as /usr/lib/X11/schemes/Base/Base, but renamed to have the same name
as your scheme.

This chapter discusses the Silicon Graphics enhanced IRIS IM widgets, as well
as the mixed-model programming widgets for using OpenGL in an IRIS IM
application.

Using the Silicon Graphics
Enhanced Widgets

Chapter 4

31

Chapter 4

4. Using the Silicon Graphics Enhanced Widgets

This chapter discusses the Silicon Graphics enhanced IRIS IM widgets, as well as the
mixed-model programming widgets for using OpenGL in an IRIS IM application. This
chapter contains these sections:

• “Using the SGI Enhanced Widgets” explains how your application can access the
SGI enhanced widgets.

• “Using the Widget Demos” explains how to use the provided demos to experiment
with some of the SGI enhanced widgets.

• “The SGI Enhanced Widgets” lists and discusses each of the new widgets.

• “The Enhanced Widgets” lists and discusses each of the enhanced widgets.

• “The Mixed-Model Programming Widgets” discusses the mixed-model
programming widgets that Silicon Graphics provides for use with your OpenGL or
IRIS GL application.

Using the SGI Enhanced Widgets

To use a new or enhanced widget, first switch on the Indigo Magic enhanced look and
schemes, as described in Chapter 2, “Getting the Indigo Magic Look,” and Chapter 3,
“Using Schemes,” respectively.

Using the Widget Demos

Silicon Graphics provides demos for some of the SGI enhanced widgets. These demos let
you experiment with the different resources for each widget.

32

Chapter 4: Using the Silicon Graphics Enhanced Widgets

Location of Widget Demos

The widget demos are in /usr/src/X11/motif/Sgm. The demos are part of the
motif_dev.sw.demoSgi subsystem—if you can’t find them on your system, check to make
sure this subsystem is installed.

Instructions for Building the Widget Demos

The demo tree is shipped with X11 Imakefiles, not Makefiles. To build the demos:

1. Change to the IRIS IM demos build tree location.

% cd /usr/src/X11/motif/Sgm

2. Build the initial Makefile.

% ../mmkmf

3. Verify that the Makefile is OK.

% make Makefile

4. Update the rest of your Makefiles.

% make Makefiles

5. Clean the directory. If you don’t and this isn’t your first installation, obsolete
binaries might remain, giving unexpected results.

% make clean

6. Update Makefile dependencies. This is also a good confidence test that everything is
installed properly.

% make depend

7. Build the demos.

% make all

The Enhanced Widgets

Silicon Graphics provides enhanced versions of these existing IRIS IM widgets:

• “The File Selection Box Widget”

• “The Scale (Percent Done Indicator) Widget”

The Enhanced Widgets

33

• “The Text and TextField Widgets”

This section describes how to use the enhancements to these widgets. For guidelines on
when to use these widgets, refer to the Indigo Magic User Interface Guidelines.

The File Selection Box Widget

The FileSelectionBox widget (SgFileSelectionBox), shown in Figure 4-1, is an enhanced
version of the existing IRIS IM FileSelectionBox widget (XmFileSelectionBox). The API
is consistent with the IRIS IM version of the widget, but the presentation is different.

Note: To get the enhanced FileSelectionBox, you need to set the SgNuseEnhancedFSB
resource to true (in addition to linking with -lSgm). Typically, you should do this in your
application’s app-defaults file.

Figure 4-1 The File Selection Box Widget

The FileSelectionBox traverses directories, shows files and subdirectories, and selects
files. It has these main areas:

Show menu and Hidden Files toggle
They control what appears in the scrolling list of directories and files
beneath them. The Show menu allows the user to restrict the list to
display only files of a particular type or format. Minimally the list has
two items: All and Custom... . “All” always appears at the top of the

File List

Finder

34

Chapter 4: Using the Silicon Graphics Enhanced Widgets

menu, and “Custom...” always appears at the bottom of the menu
following a separator. All shows an unrestricted view of all files and
directories in the current subdirectory. Custom... launches the custom
filter dialog.

Files and directories list
The scrollable list in the enhanced FileSelectionBox contains both files
and directories. Directories appear in bold at the top of the list. Files
appear after the directories and are sorted alphabetically.

Finder widget
The DropPocket displays the icon and the text field displays the name of
the current directory or file. The user can select a file or directory by
dropping its icon on the DropPocket or typing its name in the text field.
Automatic file completion is supported. Clicking the right mouse over a
path bar button of the path navigation bar shows the directory/file
choices at that level. The user can also recall a previously-selected
directory from the DynaMenu. “The Finder Widget” on page 50
discusses the Finder widget in more detail.

Command panel
The buttons at the bottom of the FileSelectionBox reflect the action name;
the OK, Cancel and Help buttons operate the same in the enhanced
FileSelectionBox as they do in the regular version. The Filter button pops
up a Filter Dialog, which allows a user to enter a shell-style filename
expression as filter pattern. The enhanced FileSelectionBox displays
only those files in the current directory that match the given pattern.
(The FileSelectionBox continues to display any subdirectories in the
current directory.)

The programmatic interface to the enhanced FileSelectionBox differs from the regular
version in the following points:

• You can retrieve the Finder child of the FileSelectionBox using the standard
XmFileSelectionBoxGetChild(3X) by providing the defined constant
SgDIALOG_FINDER as the child. You should check the returned widget for
validity; it is NULL if the FileSelectionBox is not enhanced.

• XmNdirMask is not guaranteed to be exactly the same as the regular version of the
FileSelectionBox in all situations. It does conform to the definition in the
XmFileSelectionBox(3X) reference page. Specifically, the directory portion
XmNdirMask may not be present in the enhanced FileSelectionBox’s
representation.

The Enhanced Widgets

35

• XmNfileTypeMask behavior is different because there is no separate directory list.
In the enhanced FileSelectionBox:

– XmFILE_REGULAR and XmFILE_ANY_TYPE show both files and directories
in the file list

– XmFILE_DIRECTORY shows only directories

For detailed information on the FileSelectionBox widget, refer to the
SgFileSelectionBox(3X) reference page. For an example program using the
FileSelectionBox widget, see “Example Program for File Selection Box” on page 262. See
Chapter 10, “Dialogs,” in the Indigo Magic User Interface Guidelines for guidelines on using
dialogs in your application. For information about standard XmFileSelectionBox
resources, behavior, and callbacks, see the XmFileSelectionBox(3X) reference page.

The Scale (Percent Done Indicator) Widget

The Scale widget (SgScale), is an enhanced version of the IRIS IM Scale widget
(XmScale). The enhanced Scale widget is also referred to as the Percent Done Indicator
or Progress Indicator.

To implement this indicator, set the following resources:

*scale.sliderVisual: flat_foreground
*scale.slidingMode: thermometer
*scale.slanted: true

For an example of code, see “Example Programs for Scale (Percent Done Indicator)
Widget” on page 265. Also see “Indigo Magic Scales” in Chapter 9 of the Indigo Magic
User Interface Guidelines for guidelines on using scales in your application. For more
information on the enhanced Scale widget, refer to the SgScale(3X) reference page. For
more information on the unenhanced version of the widget, refer to the XmScale(3X)
reference page.

The Text and TextField Widgets

The Text and TextField widgets (SgText and SgTextField) are enhanced versions of the
IRIS IM Text and TextField widgets (XmText and XmTextField). In addition to the
standard XmText and XmTextField resources, these widgets provide the following new
resources:

36

Chapter 4: Using the Silicon Graphics Enhanced Widgets

selectionBackground
The background color for selected text.

selectionForeground
The foreground color for selected text.

errorBackground
The background color for text that you select with an “error status” by
using the SgTextSetErrorSelection() or SgTextFieldSetErrorSelection()
function (depending on whether the widget is a SgText or SgTextField
widget).

cursorVisibleOnFocus
If TRUE (the default), the widget displays the text cursor only when the
widget has focus. If FALSE, the cursor is always visible even when the
widget doesn’t have keyboard focus.

The SgTextSetErrorSelection() and SgTextFieldSetErrorSelection() functions operate
almost identically to the XmTextSetSelection() and XmTextFieldSetSelection()
functions. You use them to select a range of text as the primary selection. The only
difference is that the selected text is drawn with the background color specified by the
errorBackground resource instead of that specified by the selectionBackground
resource.

For a detailed description of the new resources for the enhanced versions of these
widgets, refer to the SgText(3X) and SgTextField(3X) reference pages. For information on
the unenhanced versions of these widgets, refer to the XmText(3X) and XmTextField(3X)
reference pages. See “Text Fields” in Chapter 9 of the Indigo Magic User Interface
Guidelines for guidelines on using text fields in your
application.

The Mixed-Model Programming Widgets

Silicon Graphics provides two sets of mixed-model programming widgets: one set for
use with OpenGL and one set for use with IRIS GL.

A mixed-model program, briefly, is an X program that creates one or more subwindows
that use OpenGL or IRIS GL for rendering. Such a program uses Xlib or Xt calls for
windowing, event handling, color maps, fonts, and so on. A “pure” IRIS GL application,
on the other hand, uses IRIS GL calls for windowing, event handling, color maps, and

The SGI Enhanced Widgets

37

fonts. (For a more detailed discussion of mixed-model programming, refer to the OpenGL
Porting Guide.)

If you plan to port your IRIS GL application to OpenGL, a good first step is to port it to
mixed-model. The switch to OpenGL is then much easier. The IRIS GL mixed-model
widgets make it much easier to port pure IRIS GL applications to mixed-model.

If you’re writing a new application, just start with OpenGL and the OpenGL versions of
the mixed-model widgets (or use Open Inventor™ instead of OpenGL—Open Inventor
handles all this for you).

The mixed-model widgets are:

The GlxDraw and GLwDrawingArea widgets are suitable for use with any widget set.
The GlxMDraw and GLwMDrawingArea widgets are designed especially for use with
IRIS IM.

This manual does not tell you how to create a mixed-model program. For instructions on
mixed-model programming, refer to the OpenGL Porting Guide. (The OpenGL Porting
Guide contains mixed-model programming information that’s relevant for both IRIS GL
and OpenGL programmers.)

You can find examples of many mixed-model programs for both OpenGL and IRIS GL in
the 4Dgifts directories. If you have trouble finding the relevant directories, refer to the
README file in /usr/people/4Dgifts. This README file explains the contents and
organization of the 4Dgifts directories.

The SGI Enhanced Widgets

Silicon Graphics provides these new widgets:

• “The Color Chooser Widget”

• “The Dial Widget”

• “The Drop Pocket Widget”

IRIS GL OpenGL

GlxDraw GLwDrawingArea

GlxMDraw GLwMDrawingArea

38

Chapter 4: Using the Silicon Graphics Enhanced Widgets

• “The Finder Widget”

• “The Graph Widget”

• “The Grid Widget”

• “The Springbox Widget”

• “The Thumbwheel Widget”

For guidelines on when to use the different widgets (for example, when to use a
Thumbwheel or a Dial) refer to the Indigo Magic User Interface Guidelines.

This section describes each important new IRIS IM widget. It doesn’t discuss new
widgets that are part of composite widgets, unless they are generally useful.

The Color Chooser Widget

The ColorChooser widget (SgColorChooser) allows users to select colors in RGB or HSV
color spaces. Figure 4-2 shows the ColorChooser’s default configuration.

Figure 4-2 The Color Chooser Widget

The ColorChooser includes these components:

• Menus for setting options and sliders for the color chooser.

The SGI Enhanced Widgets

39

• A color hexagon that provides visual selection of the hue and saturation
components of a color in an HSV color space.

• Color sliders for each of the hue, saturation, value, red, green, and blue color
components. To make the color sliders visible, the user can select items from the
Sliders menu. (Figure 4-3 shows the ColorChooser with all the sliders visible.) You
can also display the color sliders programmatically. Text fields show the exact value
of each current color component and allow users to set these values numerically.

• Two color swatches: one for showing the current selected color and one for enabling
the user to store a second color for reference.

• Three or four buttons. The default button labels are OK, Cancel, Help, and Apply. If
the parent of the ColorChooser widget is a DialogShell, then the Apply button is
managed; otherwise it is unmanaged.

Figure 4-3 The Color Chooser Widget With HSV and RGB Sliders

40

Chapter 4: Using the Silicon Graphics Enhanced Widgets

Users can select a color by manipulating the color hexagon and any of the six sliders, or
by changing the values in any of the text fields.

You must include the header file <Sgm/ColorC.h> in any source file that uses a
ColorChooser widget.

For more detailed information about the ColorChooser widget, refer to the
SgColorChooser(3X) reference page. For an example program using the ColorChooser
widget, see “Example Program for Color Chooser” on page 250. You can also examine,
compile, and experiment with the colorc demonstration program in the directory
/usr/src/X11/motif/Sgm/colorc. See “A Specific Standard Support Window: The Indigo
Magic Color Chooser” in Chapter 6 of the Indigo Magic User Interface Guidelines for
guidelines on using the ColorChooser widget in your application.

Controlling the Color Chooser Interface

By default, the ColorChooser widget uses GL’s Gouraud shading to display the colors in
the hexagon and sliders. You can force the ColorChooser widget not to use GL by setting
the value of the SgNuseGl resource to FALSE. When SgNuseGl is FALSE, the
ColorChooser widget uses only X function calls. In this case, it does not draw a color
hexagon and it uses XmScale widgets instead of the special color sliders.

When using GL, the ColorChooser normally shades the color hexagon and color sliders
so that each point is a true representation of the color that would be selected if the user
were to move the hexagon pointer or color slider to that point. However, if the value of
the SgNwysiwyg resource is FALSE then the ColorChooser always displays the hexagon
colors with a Value (intensity) of 1 (maximum intensity), and the RGB sliders with a color
range of black to the maximum RGB color component value.

For example, if the current selected color RGB value is (100, 200, 50), then the Red color
slider displays the colors (0, 200, 50) through (255, 200, 50) if SgNwysiwyg is TRUE, and
(0, 0, 0) through (233, 0, 0) if SgNwysiwyg is FALSE. (Note that the user can also toggle
the value of SgNwysiwyg by selecting the “WYSIWYG” option from the ColorChooser’s
Options menu.)

The SgNshowSliders resource determines which of the color sliders are visible. Possible
values are:

SgValue Show only the slider for the color Value (the default)

SgRGB_and_Value
Show the Value and RGB sliders

The SGI Enhanced Widgets

41

SgRGB_and_HSV
Show all six sliders, the HSV and RGB sliders

The default labels (in the C locale) for the ColorChooser buttons are “OK,” “Apply,”
“Cancel,” and “Help.” You can change these by setting the values of SgNokLabelString,
SgNapplyLabelString, SgNcancelLabelString, and SgNhelpLabelString respectively.

You can add additional children to the ColorChooser after creation—they’re laid out in
the following manner:

• The first child is used as a work area. The work area is placed just below the menu
bar.

• Buttons—All XmPushButton widgets or gadgets, and their subclasses are placed
after the OK button, in the order of their creation.

• The layout of additional children that are not in the above categories is undefined.

Getting and Setting the Color Chooser’s Colors

In ColorChooser callback functions, the RGB color values are provided as the r, g, and b
parameters of the SgColorChooserCallbackStruct structure passed to the functions.
“Handling User Interaction With the Color Chooser” describes the ColorChooser
callbacks.

ColorChooser also provides several convenience routines for getting and setting both the
current color values and setting the stored color value.

SgColorChooserSetColor() sets both the current and the stored color values to the same
color:

void SgColorChooserSetColor(Widget w, short r, short g,
short b);

SgColorChooserGetColor() retrieves the current color values:

void SgColorChooserGetColor(Widget w, short * r, short * g,
short * b);

SgColorChooserSetCurrentColor() sets the current color but not the stored color:

void SgColorChooserSetCurrentColor(Widget w, short r,
short g, short b);

42

Chapter 4: Using the Silicon Graphics Enhanced Widgets

SgColorChooserSetStoredColor() sets the stored color but not the current color:

void SgColorChooserSetStoredColor(Widget w, short r,
short g, short b);

For each function, w is the ColorChooser widget and r, g, and b are the red, green, and
blue values, respectively.

Handling User Interaction With the Color Chooser

The ColorChooser widget defines the following callback resources:

SgNapplyCallback
Invoked when the user activates the Apply button. The callback reason
is SgCR_APPLY.

SgNcancelCallback
Invoked when the user activates the Cancel button. The callback reason
is SgCR_CANCEL.

SgNokCallback
Invoked when the user activates the OK button. The callback reason is
SgCR_OK.

SgNvalueChangedCallback
Invoked when the user selects a color. The callback reason is
XmCR_VALUE_CHANGED. A color is selected when the user changes
the value of a color component with the color hexagon, one of the color
sliders, or one of the color components text widgets.

SgNdragCallback
Specifies the list of callbacks called when the user drags the mouse over
the color hexagon or one of the color sliders to select a color. The callback
reason is XmCR_DRAG.

A pointer to a SgColorChooserCallbackStruct structure is passed to each ColorChooser
callback function:

typedef struct {
int reason;
XEvent * event;
short r, g, b;

} SgColorChooserCallbackStruct;

reason Indicates why the callback was invoked.

The SGI Enhanced Widgets

43

event Points to the XEvent that triggered the callback.

r Indicates the red color component of the currently selected color.

g Indicates the green color component of the currently selected color.

b Indicates the blue color component of the currently selected
color.

The Dial Widget

The Dial widget (SgDial), shown in Figure 4-4, is a new widget that allows users to input
or modify a value from within a range of values. Figure 4-4 shows two forms of the Dial
widget, one with the input control in the shape of a knob and the other in the shape of a
pointer. The user can modify the Dial’s value by spinning the knob or pointer. The Dial
is usually surrounded by tick marks (marked divisions around the perimeter of the Dial).

Figure 4-4 The Dial Widget in Knob and Pointer Form

You must include the header file <Sgm/Dial.h> in any source file that uses a Dial widget.

For more detailed information about the Dial widget, refer to the SgDial(3X) reference
page. For an example program using the Dial widget, see “Example Program for Dial”
on page 252. You can also examine, compile, and experiment with the dial demonstration
program in the directory /usr/src/X11/motif/Sgm/dial. See “Dials” in Chapter 9 of the Indigo
Magic User Interface Guidelines for guidelines on using the Dial widget in an application.

Controlling the Dial Interface

You control the display characteristics of a Dial through widget resources.

The SgNdialVisual resource determines whether the Dial uses a knob or a pointer. The
default value, SgKNOB, specifies a knob and SgPOINTER specifies a pointer. If you use
a pointer, you can also specify the color of the small “indicator” at the center of the
pointer using the SgNindicatorColor resource; the default color is red.

44

Chapter 4: Using the Silicon Graphics Enhanced Widgets

Specify the position of the lowest value on the Dial with the SgNstartAngle resource. The
value, which must be between 0 and 360 inclusive, specifies the number of degrees
clockwise from the top of the Dial. A default value of 0 corresponds to the top of the Dial.

The SgNangleRange resource determines the range of the Dial in degrees. The value,
which must be between 0 and 360 inclusive, specifies the number of degrees clockwise
from the start angle of the Dial. The default value of 360 allows the Dial to rotate
completely.

The Dial widget displays evenly spaced “tick marks” along the perimeter of the Dial’s
angle range. You control the number of tick marks with the SgNdialMarkers resource;
the default number is 16. The length of the tick marks in pixels is determined by the
SgNmarkerLength resource; the default length is 8 pixels. The SgNdialForeground
resource determines the color of the tick marks; the default is red.

The resources XmNminimum and XmNmaximum determine the minimum and
maximum values of the Dial. The Dial takes on the minimum value at the position
specified by SgNstartAngle and takes on the maximum value at the position
SgNangleRange degrees clockwise from SgNstartAngle. The value of XmNmaximum
must be greater than or equal to the value of XmNminimum. The default value of
XmNminimum is 0 and the default value of XmNmaximum is 360.

Getting and Setting the Dial’s Value

The XmNvalue resource, which must be a value between XmNminimum and
XmNmaximum inclusive, contains the current position of the Dial. You can set or get the
value of a Dial widget at any time by respectively setting or getting its XmNvalue
resource.

In Dial callback functions, the Dial value is provided as the position parameter of the
SgDialCallbackStruct structure passed to the functions. “Detecting Changes in the Dial’s
Value” describes the Dial callbacks.

Dial also provides a convenience routine, SgDialSetValue(), for setting the value of
XmNvalue:

void SgDialSetValue(Widget w, int value);

w is the Dial widget whose value you want to set and value is the new value.

The SGI Enhanced Widgets

45

You can get the current value of a Dial widget at any time by retrieving the value of its
XmNvalue resource. Dial also provides a convenience routine, SgDialGetValue(), for
getting the value of XmNvalue:

void SgDialGetValue(Widget w, int * value);

w is the Dial widget whose value you want to get. Upon returning, value contains the
Dial’s value.

Detecting Changes in the Dial’s Value

The Dial widget defines two callback list resources, XmNvalueChangedCallback and
XmNdragCallback. A Dial widget invokes XmNvalueChangedCallback whenever its
value changes either programmatically (for example, by calling SgDialSetValue()) or
through user interaction. A Dial widget invokes XmNdragCallback whenever the user
clicks and drags, or “spins,” the Dial’s knob or pointer.

A pointer to a SgDialCallbackStruct structure is passed to each Dial callback function:

typedef struct {
int reason;
XEvent * event;
int position;

} SgDialCallbackStruct;

The SgDialCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the event of a
XmNdragCallback.

event A pointer to the XEvent that triggered the callback

position The new Dial value

The Thumbwheel Widget

The ThumbWheel widget (SgThumbWheel), shown in Figure 4-5, is a new widget that
allows users to input or modify a value, either from within a range of values or from an
unbounded (infinite) range.

46

Chapter 4: Using the Silicon Graphics Enhanced Widgets

Figure 4-5 The Thumbwheel Widget

A ThumbWheel has an elongated rectangular region within which a wheel graphic is
displayed. Users can modify the ThumbWheel’s value by spinning the wheel. A
ThumbWheel can also include a home button, located outside the wheel region. This
button allows users to set the ThumbWheel’s value to a known position.

You must include the header file <Sgm/ThumbWheel.h> in any source file that uses a
Thumbwheel widget.

For detailed information on the ThumbWheel widget, refer to the SgThumbWheel(3X)
reference page. For an example program using the ThumbWheel widget, see “Example
Program for ThumbWheel” on page 260. You can also examine, compile, and experiment
with the thumbwheel demonstration program in the directory
/usr/src/X11/motif/Sgm/thumbwheel. See “Thumbwheels” in Chapter 9 of the Indigo Magic
User Interface Guidelines for guidelines on using the ThumbWheel widget in your
application.

Controlling the ThumbWheel Interface

You control the display characteristics of a ThumbWheel through widget resources.

The resources XmNminimum and XmNmaximum determine the minimum and
maximum values of the ThumbWheel. Setting XmNmaximum equal to XmNminimum
indicates an infinite range.

The default value of XmNminimum is 0 and the default value of XmNmaximum is 100.

The SgNangleRange resource specifies the angular range, in degrees, through which the
ThumbWheel is allowed to rotate. The default of 150 represents roughly the visible
amount of the wheel. Thus clicking at one end of the wheel and dragging the mouse to
the other end would give roughly the entire range from XmNminimum to
XmNmaximum.

Home Button

Wheel

The SGI Enhanced Widgets

47

In conjunction with XmNmaximum and XmNminimum, the SgNangleRange resource
controls the fineness or coarseness of the wheel control when it is not infinite. If this value
is 0, the ThumbWheel has an infinite range. If the range of the ThumbWheel is infinite,
you can use the SgNunitsPerRotation resource to specify the change in the
ThumbWheel’s value for each full rotation of the wheel.

If the value of SgNshowHomeButton is TRUE, the default, the ThumbWheel displays a
home button by the slider. The user can click on the home button to set the value of the
ThumbWheel to a known value, which is specified by the SgNhomePosition resource.
The default value of SgNhomePosition is 50.

The XmNorientation resource determines whether the orientation of the ThumbWheel
is vertical, indicated by a value of XmVERTICAL, or horizontal, indicated by a value of
XmHORIZONTAL. The default value is XmVERTICAL.

Getting and Setting the ThumbWheel’s Value

The XmNvalue resource contains the current position of the ThumbWheel. XmNvalue
must be a value between XmNminimum and XmNmaximum if the ThumbWheel is not
“infinite.” You can set or get the value of a ThumbWheel widget at any time by
respectively setting or getting its XmNvalue resource.

In ThumbWheel callback functions, the ThumbWheel value is provided as the value
parameter of the SgThumbWheelCallbackStruct structure passed to the functions.
“Detecting Changes in the ThumbWheel’s Value” describes the ThumbWheel callbacks.

Detecting Changes in the ThumbWheel’s Value

The ThumbWheel widget defines two callback list resources,
XmNvalueChangedCallback and XmNdragCallback. A ThumbWheel widget invokes
XmNvalueChangedCallback whenever its value changes either programmatically (that
is, by setting the value of XmNvalue) or through user interaction. A ThumbWheel
widget invokes XmNdragCallback whenever the user clicks and drags, or “spins,” the
ThumbWheel’s wheel.

A pointer to a SgThumbWheelCallbackStruct structure is passed to each ThumbWheel
callback function:

typedef struct { int reason;
XEvent * event;
int value;

48

Chapter 4: Using the Silicon Graphics Enhanced Widgets

} SgThumbWheelCallbackStruct;

The SgThumbWheelCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the event of a
XmNdragCallback.

event A pointer to the XEvent that triggered the callback.

position The new ThumbWheel value.

The Drop Pocket Widget

The Drop Pocket widget (SgDropPocket), shown in Figure 4-6, receives and displays
Desktop icons.

Figure 4-6 The Drop Pocket Widget

When users drop Desktop file icons onto the Drop Pocket, the Drop Pocket determines
the name of the icon and returns information describing the icon to the application in the
callback.

When users drag an acceptable icon over the Drop Pocket, the Drop Pocket background
changes color and the Drop Pocket displays the dropped icon. If the type of a file is not
known, or if the file doesn’t exist (for example, if the user is specifying a new file), the
Drop Pocket displays the icon for unknown file types (this icon looks like a round
balloon).

For more information on the Drop Pocket widget, refer to the SgDropPocket(3X)
reference page. You can find example code in /usr/src/X11/motif/Sgm/dropPocket directory.
For an example program using the Drop Pocket widget, see “Example Program for Drop
Pocket” on page 254.

The SGI Enhanced Widgets

49

Reference Page Text

SYNOPSIS #include <Sgm/DropPocket.h>

New Resources

SgNDropPocketActivePixel
Specifies the color for the background of the DropPocket when an icon
that can be dropped is above the DropPocket.

SgNiconDataBasePath
Specifies the location of the icon database. The default value is
/usr/lib/filetype/workspace.otr. Setting this resource to a filename that is not
a legal icon database will cause serious problems for the DropPocket.

SgNname Specifies the compound string that is the name of the current icon. By
setting this resource, the application can control the initial icon that
appears in the DropPocket. If this resource is NULL, the DropPocket will
appear empty. Refer to XmString(3X) for more information on the
creation and structure of compound strings.

Callback Information

The Callback structure is SgDropPocketCallbackStruct. A pointer to the following
structure is passed to each callback:

typedef struct { int reason;
XEvent * event;
Window window;
XmString iconName;
char * iconData;

} SgDropPocketCallbackStruct;

reason Indicates why the callback was invoked. The constant
SgCR_ICON_CHANGE is the reason associated with callbacks
generated by a successful icon drop on the DropPocket.

event Points to the XEvent that triggered the callback

window Specifies the window of the DropPocket.

iconName Specifies the name of the icon. For icons representing files, this is the file
name. For other types of icons, the name may not completely specify the
icon. For example a person icon may have the name jake, but the icon
represents a person in /usr/lib/faces/jake.

50

Chapter 4: Using the Silicon Graphics Enhanced Widgets

iconData The full string description of the icon.

The Finder Widget

The Finder widget (SgFinder), shown in Figure 4-7, is a new widget that accelerates text
selection of long objects such as filenames. (A good way to experiment with a Finder
widget is to select “An Icon” from the Find toolchest.)

Figure 4-7 The Finder Widget

The Finder widget is customizable for various applications (it’s not just for looking at
directories; see the SgFinder(3X) reference page for customization details). The Finder
widget includes four components:

Text field Displays the name of a file or directory.

Path navigation bar
Contains buttons representing each directory in the pathname. When
the user clicks on a path bar button, the Finder sets the current directory
to the directory listed underneath that button. The path bar is created
with an SgZoomBar(3X) widget.

Recycle button When users click on the Recycle button, the recycle list appears listing
the directories that the user has selected during the current Finder
session. Selecting an item from the recycle list changes the current
directory to the selected directory. The recycle button is created with an
SgDynaMenu(3X) widget.

Drop pocket Displays the Desktop file icon for the file listed in the text field. The user
can drop Desktop file icons into the drop pocket to find the pathname
for the file and drag icons out of the drop pocket and put them on the
Desktop. The recycle button is created with an SgDropPocket(3X)
widget.

Text field

Path navigation bar

Drop pocket

Recycle button
(DynaMenu)

(Zoom Bar)

The SGI Enhanced Widgets

51

You must include the header file <Sgm/Finder.h> in any source file that uses a Finder
widget.

For more detailed information on the Finder widget, refer to the SgFinder(3X),
SgDropPocket(3X), and SgDynaMenu(3X) reference pages. For an example using the
Finder widget, see “Example Program for Finder” on page 257. You can also examine,
compile, and experiment with the finderTest demonstration program in the directory
/usr/src/X11/motif/Sgm/finder. See “File Finder” in Chapter 9 of the Indigo Magic User
Interface Guidelines for guidelines on using the Finder widget in your application.

Controlling the Finder Interface

If you don’t need the drop pocket feature of the Finder widget, you can set the value of
the resource SgNuseDropPocket to FALSE when you create the widget. This bypasses
the costs of setting up drag and drop and loading the file icon libraries. Note that you
can’t set this resource using XtSetValues(); if you don’t originally create a Finder widget
with a drop pocket, you can’t add one afterwards.

Similarly, if you don’t need the Recycle button, you can set the value of the resource
SgNuseHistoryMenu to FALSE. Note that you can’t set this resource using
XtSetValues(); if you don’t originally create a Finder widget with a Recycle button, you
can’t add one afterwards.

You can customize the appearance of the Recycle button by setting the value of the
SgNhistoryPixmap resource to the pixmap you want to display.

By default, the Finder widget determines where to place the buttons on the path
navigation bar by the location of the forward slash (/) character in the text field. You can
specify a different separator character by providing it as the value of the SgNseparator
resource. This feature is useful if you want to use the Finder widget to display something
other than filenames.

Getting and Setting Finder Values

You can retrieve the current value of the Finder’s text field with
SgFinderGetTextString():

char *SgFinderGetTextString(Widget w);

You can set the value of the text field with SgFinderSetTextString():

void SgFinderSetTextString(Widget w, char * value);

52

Chapter 4: Using the Silicon Graphics Enhanced Widgets

You can add an item to the “history list” of the Recycle button with
SgFinderAddHistoryItem():

void SgFinderAddHistoryItem(Widget w, char * str);

You can clear the Recycle button’s history list with SgFinderClearHistory():

void SgFinderClearHistory(Widget w);

You can access a widget component within a finder using SgFinderGetChild():

Widget SgFinderGetChild(Widget w, int child);

child specifies the component and can take any of the following values:

SgFINDER_DROP_POCKET
The drop pocket

SgFINDER_TEXT
The text field

SgFINDER_ZOOM_BAR
The path navigation bar

SgFINDER_HISTORY_MENUBAR
The Recycle button

Handling User Interaction With the Finder

When the user clicks a button in the path navigation bar, the default action of the Finder
is to set the current directory to the directory listed underneath that button. You can
change this behavior by setting the SgNsetTextSectionFunc resource to the handler you
want to use. The handler function must be of type SgSetTextFunc, which is defined in
<Sg/Finder.h>:

typedef void (*SgSetTextFunc)(Widget finder, int section);

The first argument is the Finder widget and the second is an integer corresponding to the
button pressed. Buttons are numbered sequentially from the left, starting with 0. You can
perform whatever operations you want in this function, but typically you include a call
to SgFinderSetTextString() to set the value of the text field after the user clicks a button.

Additionally, the Finder widget defines two callback list resources:

The SGI Enhanced Widgets

53

XmNactivateCallback
Invoked when the user clicks a path navigation bar button, when the
text field generates an activateCallback (for example, the user presses
the <Return> key in the text field), or when you set the text string by
calling SgFinderSetTextString(). A pointer to an XmAnyCallbackStruct
structure is passed to each callback function. The reason sent by the
callback is XmCR_ACTIVATE.

XmNvalueChangedCallback
Invoked when text is deleted from or inserted into the text field. A
pointer to an XmAnyCallbackStruct structure is passed to each callback
function. The reason sent by the callback is
XmCR_VALUE_CHANGED.

The Graph Widget

The Graph widget (SgGraph) allows you to display any group of widgets as a graph,
with each widget representing a node. Figure 4-8 shows an example of a Graph widget.

Figure 4-8 The Graph Widget

The arcs used to connect the nodes are instances of an Arc widget (SgArc), developed
specifically for use with the Graph widget.

The Graph widget allows you to display any group of widgets as a graph, with each
widget representing a node. The graph can be disconnected and can contain cycles. The
arcs used to connect the nodes are instances of an Arc widget (SgArc), developed
specifically for use with the Graph widget. Arcs may be undirected, directed, or
bidirected. Note that the Graph widget does not understand the semantics of arc

Node

Arc

54

Chapter 4: Using the Silicon Graphics Enhanced Widgets

direction; in other words, for layout and editing purposes, an Arc will always have a
parent and a child regardless of its direction.

The Graph widget has the ability to arrange all nodes either horizontally or vertically
according to an internal layout algorithm, and supports an edit mode in which arcs and
nodes may be interactively repositioned as well as created. There is also a read-only
mode in which all events are passed directly to the children of the Graph widget. In edit
mode, the Graph takes over all device events for editing commands.

The Graph is a complex widget, and a full discuss of its resources, utility functions, and
capabilities is beyond the scope of this document. For detailed information about the
Graph and Arc widgets, refer to the SgGraph(3X) and SgArc(3X) reference pages.

You must include the header file <Sgm/Graph.h> in any source file that uses a Graph
widget. You must include the header files <Sgm/Graph.h> and <Sgm/Arc.h> in any source
file that uses an Arc widget.

The Springbox Widget

The SpringBox widget (SgSpringBox) is a new container widget that arranges its
children in a single row or column based on a set of spring constraints assigned to each
child. You can use the SpringBox widget to create layouts similar to those supported by
the XmForm widget, but the SpringBox widget is usually easier to set up.

The value of the SpringBox widget’s XmNorientation resource determines its
orientation. The default value, XmHORIZONTAL, specifies a horizontal SpringBox and
the value XmVERTICAL specifies a vertical SpringBox.

To use the SpringBox, you set constraint resources on each child of the widget to specify
the “springiness” for both the widget’s size and position relative to its siblings.

You control the springiness of a widget’s size by setting the values of its
XmNverticalSpring and XmNhorizontalSpring resources. A value of zero means the
child cannot be resized in that direction. For non-zero values, the values are compared to
the values of other springs in the overall system to determine the proportional effects of
any resizing. For example, a widget with a springiness of 200 would stretch twice as
much as a widget with a springiness of 100. The default value of both resources is zero.

The values of the resources XmNleftSpring, XmNrightSpring, XmNtopSpring, and
XmNbottomSpring control the springiness of a widget’s position in relation to its

The SGI Enhanced Widgets

55

neighboring boundaries. By default, the value of each of these springs is 50. A value of
zero means that the SpringBox widget cannot add additional space adjacent to that part
of a widget. Larger values are considered in relation to all other spring values in the
system.

You must include the header file <Sgm/SpringBox.h> in any source file that uses a
SpringBox widget. For more detailed information on the SpringBox widget, refer to the
SgSpringBox(3X) reference page.

The Grid Widget

The Grid widget (SgGrid) is a new container widget that arranges its children in a
two-dimensional grid of arbitrary size. You can separately designate each row and
column of the grid as having a fixed size or as having some degree of stretchability. You
can also resize each child in either or both directions, or force a child to a fixed size.

You must include the header file <Sgm/Grid.h> in any source file that uses a Grid widget.
For detailed information on the Grid widget, refer to the SgGrid(3X) reference page.

Setting Grid Characteristics

You specify the number of rows and columns in a Grid by setting the values of its
XmNnumRows and XmNnumColumns resources, respectively. The default value for
each is 1. Note that you can set the size of a Grid only when you create it; you can’t use
XtSetValues() to change the number of rows or columns in a Grid.

The XmNautoLayout resource determines the layout policy for a Grid. If its value is
TRUE (the default), all rows and columns that have a non-zero resizability factor
(described below) are sized according to the desired natural size of the widgets in that
row or column.

If XmNautoLayout is FALSE, all widgets in resizable rows or columns are sized
according to the resizability factor for that row or column. By default, the resizability
factor is “1” for all rows and columns, which results in each cell in the grid having an
equal size. You can change the resizability factor for a row or column by calling
SgGridSetRowMargin() or SgGridSetColumnMargin() respectively:

SgGridSetRowResizability(Widget widget, int row, int factor);

SgGridSetColumnResizability(Widget widget, int column,

56

Chapter 4: Using the Silicon Graphics Enhanced Widgets

int factor);

widget is the Grid widget. The second argument specifies the row or column. Rows are
numbered sequentially from the top starting at 0; columns are numbered sequentially
from the left starting with 0. factor is the resizability factor for the row or column. Setting
this value to 0 establishes the specified row or column as not resizable, regardless of the
setting of XmNautoLayout. Other values are taken relative to all other rows. For
example, if a Grid has three rows whose resizability factors are set to 100, 100, and 200,
the first and second rows will occupy one quarter of the space (100/(100+100+200)),
while the third row will occupy one half of the available space.

The XmNdefaultSpacing resource default spacing between rows and columns. The
default value is 4 pixels. You can override the value on a per row/column basis using
SgGridSetColumnMargin() or SgGridSetRowMargin() respectively:

SgGridSetRowMargin(Widget widget, int row, Dimension margin);

SgGridSetColumnMargin(Widget widget, int column,
Dimension margin);

widget is the Grid widget. The second argument specifies the row or column. margin
specifies the margin in pixels between the row or column’s edges and the widgets it
contains. The margin is added to both sides of each row or column, so adding a 1 pixel
margin increases the relevant dimension of the affected row or column by 2 pixels.

You can display the boundaries of a Grid by setting the value of its XmNshowGrid
resource to TRUE. You might find this useful for debugging resize specifications. The
default value is FALSE.

Setting Constraints on the Child Widget of a Grid

The XmNrow and XmNcolumn resources of a Grid’s child widget specify the row and
column in which the Grid places the child. If you don’t specify these values, the Grid
widget places the child in a randomly selected unoccupied cell.

The XmNresizeVertical and XmNresizeHorizontal resources determine whether the
Grid can resize the child to fill the cell in the vertical and horizontal directions. The
default value of TRUE allows the Grid to resize the child.

If a child is a fixed size, and smaller than the cell that contains it, the child’s position
within the cell is determined by an XmNgravity resource. Gravity may be any of the
gravity values defined by Xlib except StaticGravity and ForgetGravity. The default is

The SGI Enhanced Widgets

57

NorthWestGravity. Note that gravity has no effect if both XmNresizeVertical and
XmNresizeHorizontal are TRUE.

Examples of Using the Grid Widget

Example 4-1 creates a grid of four buttons that all size (and resize) equally to fill one
quarter of their parent.

Example 4-1 An Example of Using the Grid Widget

createGrid(Widget parent)
{

int n;
Arg args[10];
Widget grid, child1, child2, child3, child4;

n = 0;
XtSetArg(args[n], XmNnumRows, 2); n++;
XtSetArg(args[n], XmNnumColumns, 2); n++;
grid = SgCreateGrid(parent, "grid", args, n);

child1 = XtVaCreateManagedWidget("child1",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 0,
NULL);

child2 = XtVaCreateManagedWidget("child2",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 1,
NULL);

child3 = XtVaCreateManagedWidget("child3",
xmPushButtonWidgetClass
grid,
XmNrow, 1,
XmNcolumn, 0,
NULL);

child4 = XtVaCreateManagedWidget("child4",
xmPushButtonWidgetClass
grid,
XmNrow, 1,
XmNcolumn, 1,

58

Chapter 4: Using the Silicon Graphics Enhanced Widgets

NULL);
XtManageChild(grid);

}

Example 4-2 creates four buttons. The top row has a fixed vertical size, while the bottom
row is resizable. The left column has a fixed size, but the right column can be resized. The
button in the lower right can be resized, but the others cannot. The button in the lower
left cell, which can be resized vertically, floats in the middle of its cell. The button in the
upper right stays to the left of its cell.

Example 4-2 Another Example of Using the Grid Widget

createGrid(Widget parent) {
int n;
Arg args[10];
Widget grid, chidl1, child2, child3, child4;

n = 0;
XtSetArg(args[n], XmNnumRows, 2); n++;
XtSetArg(args[n], XmNnumColumns, 2); n++;
grid = SgCreateGrid(parent, "grid", args, n);

SgGridSetColumnResizability(grid, 0, 0);
SgGridSetRowResizability(grid, 0, 0);

child1 = XtVaCreateManagedWidget("child1",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 0,
NULL);

child2 = XtVaCreateManagedWidget("child2",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 1,
XmNresizeHorizontal, FALSE,
XmNgravity, WestGravity,
NULL);

child3 = XtVaCreateManagedWidget("child3",
xmPushButtonWidgetClass,
grid,
XmNrow, 1,
XmNcolumn, 0,
XmNresizeVertical, FALSE,

The SGI Enhanced Widgets

59

XmNgravity, CenterGravity,
NULL);

child4 = XtVaCreateManagedWidget("child4",
xmPushButtonWidgetClass,
grid,
XmNrow, 1,
XmNcolumn, 1,
NULL);

XtManageChild(grid);
}

Users expect applications to interact with the window manager in a consistent
manner. This chapter describes how to implement an appropriate application
model and interact with the window and session manager.

Window, Session, and Desk Management

Chapter 5

63

Chapter 5

5. Window, Session, and Desk Management

This chapter contains these sections:

• “Window, Session, and Desk Management Overview” on page 63 briefly discusses
window, session, and desk management on Silicon Graphics systems.

• “Implementing an Application Model” on page 69 describes how to structure your
application to follow one of the four application models.

• “Interacting With the Window and Session Manager” on page 71 describes how to
create windows and interact with the window and session manager.

Window, Session, and Desk Management Overview

This section briefly discusses features of window, session, and desk management on
Silicon Graphics system:

• “Window Management”

• “Session Management”

• “Desk Management”

This section also provides a list of references for further reading on window and session
management.

Window Management

4Dwm, which is based on mwm (the Motif™ Window Manager), is the window manager
typically used on Silicon Graphics workstations. It provides functions that allow both
users and programmers to control elements of window states such as: placement, size,
icon/normal display, and input-focus ownership. In addition to window management,
4Dwm provides session and desks management.

64

Chapter 5: Window, Session, and Desk Management

Chapter 3, “Windows in the Indigo Magic Environment,” of the Indigo Magic User
Interface Guidelines discusses the interactions and behaviors that your application’s
windows should support. “Interacting With the Window and Session Manager” on
page 71 describes how to comply with the style guidelines.

See IRIS Essentials for more information about the features 4Dwm provides for your
users. See the mwm(1X) and 4Dwm(1X) reference pages for more information about the
features 4Dwm provides.

Session Management

This section describes session management and explains how to add it to your
application. Topics include:

• “Overview of Session Management” on page 64

• “Adding Session Management to Your Application” on page 65

• “Setting the WM_COMMAND String” on page 66

• “Saving Session Information to a File” on page 66

Overview of Session Management

Session management allows users to log out, and any applications that are running at
logout automatically restart when they log back in. The 4Dwm window manager keeps
a list of the applications and desks that were previously running when the user last
logged out and restarts them when the user logs in again.

For your application to be restarted via the 4Dwm session manager, the application must
register its initial state with the session manager and make sure the current state is
registered at all times.

Additionally, your application should restart in the same state it was in when the user
logged out (for example, the same windows open, the same files open, and so on). To
support this, you need to design your application so that when the 4Dwm session
manager restarts it, it can redisplay any of its co-primary or support windows that were
open when the user logged out, reopen any data files that were open, and so on. You can
support this either by providing command-line options to your application or other
mechanisms such as a state file that your application reads when it is launched.

Window, Session, and Desk Management Overview

65

Types of Session Management: Continuous and Explicit

The two types of session management include continuous session management and
explicit session management. Continuous session management restarts the applications
that were running when the user last logged out of the window manager. This is the
default setting.

Explicit session management ignores the windows that were open when the user last
logged out and always opens a particular set of windows that the user has chosen. Users
can configure the windows on the desktop by using the Window Settings Control Panel.
They can launch this panel via the Toolchest. From the Toolchest, open the Desktop
menu, select “Customize,” and then select “Windows.” The Windows Settings dialog
box appears (see Figure 5-1). The “Save Windows & Desks” item on the Window Settings
Control Panel configures either continuous or explicit session management. A user can
select explicit, and then press the “Set Home Session” button to save the (current) explicit
window configuration. Also, users can launch this control panel from the Icon Catalog’s
Control Panel page.

Figure 5-1 Window Settings Control Panel

Adding Session Management to Your Application

Applications can communicate with the window manager by setting properties on the
top level window. The WM_COMMAND property gives the window manager the

66

Chapter 5: Window, Session, and Desk Management

command line that can be used to re-invoke the application in its current state. The
4Dwm window manager sends a WM_SAVE_YOURSELF message to each window that
subscribes to tell it to update its WM_COMMAND property and then reads in the value.
If the user selects continuous session management, 4Dwm sends the message every 10
minutes and at logout. If the user selects explicit session management, the window
manager only queries the applications when the user presses the “Set Home Session”
button.

Setting the WM_COMMAND String

If you use ViewKit or XtAppInitialize(3Xt), the initial WM_COMMAND string is set for
you when the top level window is realized. Use the xprop(1) command to make sure the
WM_COMMAND string is set correctly for the top level window. For example:

WM_COMMAND(STRING) = { “webmagic”, “/usr/tmp/sgiLook.html” }

Even if WM_COMMAND is initially set by your toolkit, you need to keep
WM_COMMAND updated if your program changes its state. For instance, if the user
renames a data file or successfully opens a new data file, you need to change the
WM_COMMAND string with the XSetCommand(3X11):

XSetCommand(Display *display, Window w,char **argv,int argc);

This can be done in the function that changes the state, and is simpler than responding
to the window manager’s WM_SAVE_YOURSELF message.

Saving Session Information to a File

If your application already saves state information to a file instead of using the command
line, this “state file” can also be used for session management. To work correctly with the
user’s Windows Control Panel setting, the application should update the file only in
response to the window manager’s WM_SAVE_YOURSELF message (see Example 5-1,
saveyourself.c). This strategy does not work correctly if several instances of your
application are able to run at the same time. Only applications that enforced a “Run
Once” policy can rely on this strategy.

For more information, see the ViewKit reference page, VkRunOnce(3x), and
XSetCommand(3X11).

Window, Session, and Desk Management Overview

67

Debugging Tips

When debugging:

• Use xprop(1) to see the WM_COMMAND string property.

• Make sure that you use the full pathname for data file arguments, which typically
are not referenced in the user’s path.

• If your application has multiple windows, only set WM_COMMAND for the
top-level window.

Example 5-1 Session Management Example Code: saveyourself.c

/* saveyourself.c */
/* */
/* Example code for handling the window manager’s */
/* WM_SAVE_YOURSELF Protocol */
/* */
/* cc -o saveyourself saveyourself.c -lXm -lXt */

#include <Xm/Protocols.h>
#include <Xm/Label.h>

void saveYourSelfCallback(Widget w, XtPointer client_data,
 XtPointer call_data)
{
 printf(“Update state file if needed, then update WM_COMMAND\n”);
}

void main(int argc, char** argv)
{
 Widget toplevel, label;
 XtAppContext app_context;
 Atom WM_SAVE_YOURSELF;

 toplevel = XtAppInitialize(&app_context, “SaveYourSelf”,
 NULL, 0, &argc, argv, NULL, NULL, 0);

 label = XmCreateLabel(toplevel, “saveme”, NULL, 0);
 XtManageChild(label);

 WM_SAVE_YOURSELF = XmInternAtom(XtDisplay(toplevel),
 “WM_SAVE_YOURSELF”,
 FALSE);

68

Chapter 5: Window, Session, and Desk Management

 XmAddWMProtocolCallback(toplevel, WM_SAVE_YOURSELF,
 saveYourSelfCallback, NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app_context);
}

“Handling the Window Manager Save Yourself Protocol” on page 81 describes what
your application needs to do to support session management. “Session Management” in
Chapter 3 of the Indigo Magic User Interface Guidelines provides further guidelines for
handling session management.

Reference

For more information, see Inter-Client Communication Conventions Manual (ICCCM). The
ICCCM is reprinted as an appendix in O’Reilly and Associates, X Protocol Reference
Manual, Volume Zero.

Desk Management

Users can use “desks” to create multiple virtual screens. They can assign any primary or
support window to any desk, causing that window to appear in the thumbnail sketch in
the Desks Overview window.

“Desks” in Chapter 3 of the Indigo Magic User Interface Guidelines discusses the important
development concerns issues relating to desks. Review the information in “Session
Management,” and adhere to the “Session Management Guidelines,” and the window
manager will take care of desks for you.

The key points to keep in mind are:

• Transient windows appear on every desk and are not shown in the Desks overview
window—so choose your transient windows carefully.

• Application windows that are on a desk other than the current one are in a state
similar to the minimized state—processing continues although the window is no
longer mapped to the screen display. Keep this in mind when selecting which
operations should continue to be processed when your application is in a
minimized state.

• Users can select different backgrounds for different desks, so your application
should not create its own screen background.

Implementing an Application Model

69

Further Reading on Window and Session Management

For more information on window and session management with 4Dwm, refer to the
mwm(1X) and 4Dwm(1X) reference pages. You may also want to look at IRIS Essentials,
since this book explains important window and session management features to your
users.

For more information on window and session management with Xt, refer to the chapters
on Interclient Communication in these manuals:

• The X Window Systems Programming and Applications with Xt, OSF/Motif Edition,
Second Edition, by Doug Young

• O’Reilly Volume Four, X Toolkit Intrinsics Programming Manual, OSF/Motif Edition,
by Adrian Nye and Tim O’Reilly

For more information on window and session management with Xlib, refer to the
chapters on Inter-Client Communication in O’Reilly Volume One, Xlib Programming
Manual, by Adrian Nye. For more detailed information, refer to the Inter-Client
Communications Conventions Manual (ICCCM). (The ICCCM is reprinted as an appendix
of O’Reilly Volume Zero, X Protocol Reference Manual.)

More detailed information on window properties is available in the OSF/Motif
Programmer’s Guide, in the chapter on “Inter-Client Communication Conventions.”

Implementing an Application Model

“Application Models” in Chapter 6 of the Indigo Magic User Interface Guidelines describes
four application models based on four different window categories: main primary
windows, co-primary windows, support windows, and dialogs. It also describes how to
select a model appropriate for your application. This section provides suggestions for
implementing each application model, including recommended shell types for your
primary windows. “Interacting With the Window and Session Manager” on page 71
describes how to create the windows and get them to look and behave in the manner
described in “Application Window Categories and Characteristics” in Chapter 3 of the
Indigo Magic User Interface Guidelines.

70

Chapter 5: Window, Session, and Desk Management

Implementing the “Single Document, One Primary” Model

This model is the simplest to implement. You can use the ApplicationShell returned by
XtAppInitialize() as your application’s main window. This model requires no special
treatment to handle schemes or for window or session management.

Implementing the “Single Document, Multiple Primaries” Model

The simplest way to implement this model is to use the ApplicationShell returned by
XtAppInitialize() as your application’s main window. You can create co-primary
windows as popup children of the main window using TopLevelShells. This approach
requires no special treatment to handle schemes or for window or session management.

You can also choose the implement this model using the techniques described in
“Implementing the “Multiple Document, No Visible Main” Model,” although this
requires more work.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If you do, the
windows don’t pick up the resources specified in schemes.

Implementing the “Multiple Document, Visible Main” Model

Once again, the simplest way to implement this model is to use the ApplicationShell
returned by XtAppInitialize() as your application’s main window. You can create
co-primary windows as popup children of the main window using TopLevelShells. This
approach requires no special treatment to handle schemes or for window or session
management.

You can also choose the implement this model using the techniques described in
“Implementing the “Multiple Document, No Visible Main” Model,” although this
requires more work.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If you do, the
windows don’t pick up the resources specified in schemes.

Interacting With the Window and Session Manager

71

Implementing the “Multiple Document, No Visible Main” Model

This model requires more careful consideration than the other models. Presumably, the
visible windows can be created and destroyed in any order; therefore it is very difficult
to use one as a main window and have the others be children of it.

Instead, the best solution in this case is to leave the ApplicationShell returned by
XtAppInitialize() unrealized. You can then create the visible co-primary windows as
popup children of this invisible shell.

Session management requires a realized ApplicationShell widget so that your
application can store restart information in its XmNargv and XmNargc resources.
Because your application’s visible windows can be created and destroyed dynamically,
you should use ApplicationShells rather than TopLevelShells for your visible windows.
Then you can set the XmNargv and XmNargc resources on any of them. (Another option
would be to use TopLevelShells for the visible windows and then explicitly create and set
WM_COMMAND and WM_MACHINE properties on the windows.)

One complication when using ApplicationShells is that by default, IRIS IM automatically
quits an application when it destroys an ApplicationShell. To avoid this, you must set
each window’s XmNdeleteResponse resource to XmDO_NOTHING, and then explicitly
handle the window manager’s WM_DELETE_WINDOW protocol for each window.
“Handling the Window Manager Delete Window Protocol” on page 79 describes how to
implement these handlers.

Another complication is that the initial values of the XmNargv and XmNargc resources
are stored in the application’s invisible main window rather than a visible window. This
is also true for the XmNgeometry resource if specified by the user. To avoid this, you
should copy these values from the invisible main window to your application’s first
visible window.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If you do, the
windows don’t pick up the resources specified in schemes.

Interacting With the Window and Session Manager

Most communication between an application and a window manager takes place
through properties on an application’s top-level windows. The window manager can

72

Chapter 5: Window, Session, and Desk Management

also generate events that are available to the application. You can use Xlib functions to
set properties and handle window manager events.

In IRIS IM, shell widgets simplify communications with the window manager. The
application can set most window properties by setting shell resources. Shells also select
for and handle most events from the window manager.

Because this guide assumes that you are programming in IRIS IM rather than Xlib, this
chapter describes the IRIS IM mechanisms for creating windows and interacting with the
window and session manager. Topics include:

• “Creating Windows and Setting Decorations”

• “Handling Window Manager Protocols”

• “Setting the Window Title”

• “Controlling Window Placement and Size”

For detailed information about setting window properties using shell resources, consult
Chapter 11, “Interclient Communication,” in O’Reilly’s X Toolkit Intrinsics Programming
Manual and Chapter 16, “Interclient Communication,” in the OSF/Motif Programmer’s
Guide. For detailed information about window properties and setting them using Xlib
routines, consult Chapter 12, “Interclient Communication,” in O’Reilly’s Xlib
Programming Manual.

Creating Windows and Setting Decorations

Chapter 6, “Application Windows,” in the Indigo Magic User Interface Guidelines describes
several application models based on four different window categories: main primary
windows, co-primary windows, support windows, and dialogs. This section describes
how to implement these window categories with proper window decorations and
window menu entries:

• “Creating a Main Primary Window”

• “Creating a Co-Primary Window”

• “Creating a Support Window”

• “Creating a Dialog”

To properly integrate with the Indigo Magic Desktop, you need to use the appropriate
shell widget for each widow category. This section describes which shell widget to use

Interacting With the Window and Session Manager

73

for each window category. Then you need to properly set the shell’s
XmNmwmFunctions resource to control which entries appear in the window menu and
the XmNmwmDecorations resource to remove the window’s resize handles, if
appropriate.

Creating a Main Primary Window

Your application’s main primary window must be an ApplicationShell. Typically, you
use the ApplicationShell widget returned by XtAppInitialize() as your application’s
main primary window.

You should set the main primary window’s XmNmwmFunctions resource to remove the
“Close” option from the window menu. Also, if you don’t want the user to be able to
resize the window, you should set XmNmwmFunctions to remove the “Size” and
“Maximize” options and set XmNmwmDecorations to remove the resize handles.
Example 5-2 shows how you can create a main primary window and set the resource
values appropriately.

“Main and Co-Primary Windows” in Chapter 6 of the Indigo Magic User Interface
Guidelines provides guidelines for using main primary windows.

Example 5-2 Creating a Main Primary Window

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <X11/Shell.h> /* Shell definitions */

void main (int argc, char **argv)
{

Widget mainWindow; /* Main window shell widget */
XtAppContext app; /* An application context, needed by Xt */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/*
* Initialize resource value flags to include all window menu options and
* all decorations.
*/

long functions = MWM_FUNC_ALL;
long handleMask = MWM_DECOR_ALL;

n = 0;

74

Chapter 5: Window, Session, and Desk Management

/*
* The following lines REMOVE items from the window manager menu.
*/

functions |= MWM_FUNC_CLOSE; /* Remove "Close" menu option */

/* Include the following two lines only if the window is *not* resizable */

functions |= MWM_FUNC_RESIZE; /* Remove "Size" menu option */
functions |= MWM_FUNC_MAXIMIZE; /* Remove "Maximize" menu option */

XtSetArg(args[n], XmNmwmFunctions, functions); n++;

/* Include the following two lines only if the window is *not* resizable */

handleMask |= MWM_DECOR_RESIZEH; /* Remove resize handles */

XtSetArg(args[n], XmNmwmDecorations, handleMask); n++

/*
* Initialize Xt and create shell
*/

mainWindow = XtAppInitialize (&app, "WindowTest", NULL, 0,
&argc, argv, NULL, args, n);

/* ... */

}

Creating a Co-Primary Window

Your application’s co-primary windows should be ApplicationShells or TopLevelShells.
“Implementing an Application Model” on page 69 describes which to choose depending
on your application model. The easiest way to implement these windows are as pop-up
children of the shell widget returned by XtAppInitialize() (which is typically your
application’s main primary window).

If the user can’t quit the application from a co-primary window, you should set the
window’s XmNmwmFunctions resource to remove the “Exit” option from the window
menu. Also, if you don’t want the user to be able to resize the window, you should set
XmNmwmFunctions to remove the “Size” and “Maximize” options and set

Interacting With the Window and Session Manager

75

XmNmwmDecorations to remove the resize handles. Example 5-3 shows how you can
create a co-primary window and set the resource values appropriately.

Note: The default action when IRIS IM destroys an ApplicationShell is to quit your
application. To avoid this if you are using ApplicationShells for your co-primary
windows, you must set each window’s XmNdeleteResponse resource to
XmDO_NOTHING, and then explicitly handle the window manager’s
WM_DELETE_WINDOW protocol for each window. You might want to follow this
approach even if you use TopLevelShells for co-primary windows so that you can simply
popdown the window instead of deleting it. This can save time if you might redisplay
the window later. “Handling the Window Manager Delete Window Protocol” on page 79
describes how to implement these handlers.

“Main and Co-Primary Windows” in Chapter 6 of the Indigo Magic User Interface
Guidelines provides guidelines for using co-primary windows.

Example 5-3 Creating a Co-Primary Window

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <X11/Shell.h> /* Shell definitions */

Widget mainWindow; /* Main window shell widget */
Widget coPrimary; /* Co-primary window shell widget */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/*
* Initialize resource value flags to include all window menu options and
* all decorations.
*/

long functions = MWM_FUNC_ALL;
long handleMask = MWM_DECOR_ALL;

/* ... */

n = 0;

/*
* The following lines REMOVE items from the window manager menu.
*/

76

Chapter 5: Window, Session, and Desk Management

/* Remove the "Exit" window menu option if users can *not* quit from this window
*/

functions |= MWM_FUNC_QUIT;

/* Include the following two lines only if the window is *not* resizable */

functions |= MWM_FUNC_RESIZE; /* Remove "Size" menu option */
functions |= MWM_FUNC_MAXIMIZE; /* Remove "Maximize" menu option */

XtSetArg(args, XmNmwmFunctions, functions); n++;

/* Include the following two lines only if the window is *not* resizable */

handleMask |= MWM_DECOR_RESIZEH; /* Remove resize handles */

XtSetArg(args, XmNmwmDecorations, handleMask); n++;

/* You need the following line only if you use an ApplicationShell for the
window */

XtSetArg(args, XmNdeleteResponse, XmDO_NOTHING); n++;

/*
* Assume that the application has already created a main window and assigned

its widget
* to the variable mainWindow
*/

coPrimary = XtCreatePopupShell("coPrimary", applicationShellWidgetClass,
mainWindow, args, n);

/* ... */

Creating a Support Window

Support windows are essentially custom dialogs. The easiest way to create a support
window is to use XmCreateBulletinBoardDialog() to create a DialogShell containing a
BulletinBoard widget, or use XmCreateFormDialog() to create a DialogShell containing
a Form widget. You can then add appropriate controls and displays as children of the
BulletinBoard or Form.

Interacting With the Window and Session Manager

77

Another advantage to using a DialogShell for support windows is that they
automatically have the proper window menu options and decorations. If you don’t want
the user to be able to resize the window—and you implemented the support window as
a customized dialog—you should set XmNnoResize to “TRUE” to remove the “Size”
and “Maximize” options and to remove the resize handles. Example 5-4 shows how you
can create a support window and set the resource values appropriately.

“Support Windows” in Chapter 6 of the Indigo Magic User Interface Guidelines provides
guidelines for using support windows.

Example 5-4 Creating a Support Window

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <X11/Form.h> /* Form definitions */

Widget parentWindow; /* Parent window of support window */
Widget supportWindow; /* Support window */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/* ... */

n = 0;

/* Include the following line only if the window is *not* resizable */

XtSetArg(args, XmNnoResize, TRUE); n++

supportWindow = XmCreateFormDialog(parentWindow, "supportWindow", args, n);

/* Create the window interface... */

Creating a Dialog

The easiest way to create dialogs is to use the IRIS IM convenience functions such as
XmCreateMessageDialog() and XmCreatePromptDialog(). These functions
automatically set most of the window characteristics required for the Indigo Magic
environment.

Dialogs automatically have the proper window menu options and decorations. If you
don’t want the user to be able to resize the dialog, you should set XmNnoResize to
“TRUE” to remove the “Size” and “Maximize” options and to remove the resize handles.

78

Chapter 5: Window, Session, and Desk Management

Example 5-5 shows an example of creating a WarningDialog and setting the resource
values appropriately.

Chapter 10, “Dialogs,” in the Indigo Magic User Interface Guidelines provides guidelines
for using dialogs.

Example 5-5 Creating a Dialog

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <Xm/MessageB.h> /* Warning dialog definitions */

Widget parentWindow; /* Parent window of dialog */
Widget dialog; /* Dialog */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/* ... */

n = 0;

/* Include the following line only if the window is *not* resizable */

XtSetArg(args, XmNnoResize, TRUE); n++

dialog = XmCreateWarningDialog (parentWindow, "warningDialog", args, n);

Handling Window Manager Protocols

This section describes how to handle window manager protocols:

• “Handling the Window Manager Quit Protocol”

• “Handling the Window Manager Delete Window Protocol”

• “Handling the Window Manager Save Yourself Protocol”

 Protocols allow the window manager to send messages to your application. The window
manager sends these messages only if your application registers callback function to
handle the corresponding protocols.

Interacting With the Window and Session Manager

79

Handling the Window Manager Quit Protocol

When a user selects the “Exit” option from a window menu, the window manager sends
a Quit message to your application. You should install a callback routine to handle this
event. Example 5-6 demonstrates installing such a callback for the window specified by
mainWindow.

Example 5-6 Handling the Window Manager Quit Protocol

Atom WM_QUIT_APP = XmInternAtom(XtDisplay(mainWindow),
"_WM_QUIT_APP",
FALSE);

XmAddWMProtocolCallback(mainWindow, WM_QUIT_APP,
quitCallback, NULL);

/* ... */

quitCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Quit application */

}

Note: You must install the quit callback for each window that contains an “Exit” option
in its window menu. Often the only such window is your application’s main primary
window.

The operations performed by the callback function should be the same as those that
occur when the user quits from within your application (for example, by selecting an
“Exit” option from a File menu). Your application can prompt the user to save any files
that are open, to perform any other cleanup, or even to abort the quit.

Handling the Window Manager Delete Window Protocol

When a user selects the “Close” option from a window menu, the window manager
sends a Delete Window message to your application. How to handle this message
depends on whether the window is a co-primary window, a dialog, or support window.
(A main primary window should not have a “Close” option on its window menu.)

To handle the Delete Window message with a co-primary window, you should make
sure to set the window’s XmNdeleteResponse resource to XmDO_NOTHING.

80

Chapter 5: Window, Session, and Desk Management

Otherwise, IRIS automatically deletes the window and, if the window uses an
ApplicationShell, quits the application.

The callback you install can ask for user confirmation and can decide to comply or not
comply with the request. If it decides to comply, your application can either pop down
or destroy the window. If you think that the user might want to redisplay the window
later, popping down the window is usually the better choice because your application
doesn’t have to re-create it later. Example 5-7 shows an example of installing a callback
to handle the Delete Window message.

Example 5-7 Handling the Window Manager Delete Window Protocol in
Co-Primary Windows

Atom WM_DELETE_WINDOW = XmInternAtom(XtDisplay(window),
"WM_DELETE_WINDOW",
FALSE);

XmAddWMProtocolCallback(window, WM_DELETE_WINDOW,
closeCallback, NULL);

/* ... */

closeCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Delete or pop down window */

}

For support windows and dialogs, you typically want to dismiss the window when the
user selects “Close.” Therefore, the default value of XmNdeleteResponse, XmDESTROY,
is appropriate. Additionally, you should perform whatever other actions are appropriate
for when that support window or dialog is dismissed. Typically, you can accomplish this
by invoking the callback associated with the Cancel button, if it exists. Example 5-8 shows
an example of this.

Example 5-8 Handling the Window Manager Delete Window Protocol in
Support Windows and Dialogs

Atom WM_DELETE_WINDOW = XmInternAtom(XtDisplay(dialog),
"WM_DELETE_WINDOW",
FALSE);

XmAddWMProtocolCallback(dialog, WM_DELETE_WINDOW,
cancelCallback, NULL);

/* ... */

Interacting With the Window and Session Manager

81

cancelCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Perform cancel operations */

}

Handling the Window Manager Save Yourself Protocol

The “Save Yourself” protocol is part of the session management mechanism. The session
manager sends a Save Yourself message to allow your application to update the
command needed to restart itself in its current state. Currently, the session manager
sends Save Yourself messages before ending a session (that is, logging out) and
periodically while a session is active.

Your application doesn’t need to subscribe to the Save Yourself protocol. Instead, your
application can simply update the XmNargv and XmNargc resources on one of its
ApplicationShells whenever it changes state, for example, when it opens or closes a file.
The session manager re-saves its state information whenever your application changes
these resources. (Actually, the session manager monitors the WM_COMMAND and
WM_MACHINE properties, which are set by the ApplicationShell whenever you change
its XmNargv and XmNargc resources.)

If you decide to use Save Yourself for session management, you can handle the protocol
on any realized ApplicationShell. Don’t use Save Yourself with the unrealized main
window of the “Multiple Document, No Visible Main” application model. When the
window manager sends a Save Yourself message to your application, your application
must update the value of the XmNargv and XmNargc resources to specify the command
needed to restart the application in its current state. Once you’ve updated the XmNargv
and XmNargc resources, the session manager assumes that it can safely kill your
application. Example 5-9 shows how to handle Save Yourself messages.

Note: Your application shouldn’t prompt the user for input when it receives a Save
Yourself message.

Example 5-9 Handling the Window Manager “Save Yourself” Protocol

/* saveyourself.c */
/* */
/* Example code for handling the window manager’s */
/* WM_SAVE_YOURSELF Protocol */
/* */

82

Chapter 5: Window, Session, and Desk Management

/* cc -o saveyourself saveyourself.c -lXm -lXt */

#include <Xm/Protocols.h>
#include <Xm/Label.h>

void saveYourSelfCallback(Widget w, XtPointer client_data,
 XtPointer call_data)
{
 printf(“Update WM_COMMAND or state file\n”);
}

void main(int argc, char** argv)
{
 Widget toplevel, label;
 XtAppContext app_context;
 Atom WM_SAVE_YOURSELF;

 toplevel = XtAppInitialize(&app_context, “SaveYourSelf”,
 NULL, 0, &argc, argv, NULL, NULL, 0);

 label = XmCreateLabel(toplevel, “saveme”, NULL, 0);
 XtManageChild(label);

 WM_SAVE_YOURSELF = XmInternAtom(XtDisplay(toplevel),
 “WM_SAVE_YOURSELF”,
 FALSE);

 XmAddWMProtocolCallback(toplevel, WM_SAVE_YOURSELF,
 saveYourSelfCallback, NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app_context);
}

Your application might not be able to fully specify its state using command line options.
In that case, you can design your application to create a state file to save its state and to
read the state file when it restarts.

Setting the Window Title

To set the title of a main primary window or co-primary window in your application, set
the window’s title resource. If the title you specify uses a non-default encoding,

Interacting With the Window and Session Manager

83

remember to also set the value of the titleEncoding resource appropriately. For support
windows and dialogs, set the value of the XmNdialogTitle resource.

Choose the title according to the guidelines in the section “Window Title Bar” in
Chapter 3 of the Indigo Magic User Interface Guidelines. Update the label so that it always
reflects the current information. For example, if the label reflects the name of the file the
user is working on, you should update the label when the user opens a different file.

Controlling Window Placement and Size

Users have the option of specifying window placement and size, either through the
-geometry option interactively using the mouse, or having applications automatically
place their windows on the screen. To support automatic window placement, your
application should provide default placement information for its main primary and
co-primary windows. (Support windows and dialogs appear centered over their parent
widget if the value of their XmNdefaultPosition resources are TRUE, which is the
default.) You can also specify a default window size, minimum and maximum window
sizes, minimum and maximum aspect ratios, and resizing increments for your windows.
Typically, you should set these resources in your application’s app-default file.

Controlling Window Placement

You should provide initial values for the window shell’s x and y resources before
mapping the window to specify its default location. The window manager ignores these
values if the user requests interactive window placement or specifies a location using the
-geometry option when invoking your application. You should not use the window’s
XmNgeometry resource to control initial window placement, either in your application’s
source code or its app-default file.

“Window Placement” in Chapter 3 of the Indigo Magic User Interface Guidelines provides
guidelines for controlling window placement.

Controlling Window Size

If the user doesn’t specify a window size and you don’t explicitly set the window size in
your application, the initial size of the window is determined by geometry management
negotiations of the shell widget’s descendents. Typically, the resulting size is just large
enough for all of the descendent widget to fit “comfortably.” Optionally, you can specify
a default initial size for a window by providing initial values for the window’s width and

84

Chapter 5: Window, Session, and Desk Management

height resources before mapping the window. You should not use the window’s
XmNgeometry resource to control initial window size, either in your application’s
source code or its app-default file.

You can also set several shell resources to specify minimum and maximum window
sizes, minimum and maximum aspect ratios, and resizing increments for a window:

minHeight and minWidth
The desired minimum height and width for the window.

maxHeight and maxWidth
The desired maximum height and width for the window.

minAspectX and minAspectY
The desired minimum aspect ratio (X/Y) for the window.

maxAspectX and maxAspectY
The desired maximum aspect ratio (X/Y) for the window.

baseHeight and baseWidth
The base for a progression of preferred heights and widths for the
window. The preferred heights are baseHeight plus integral multiples
of heightInc, and the preferred widths are baseWidth plus integral
multiples of widthInc. The window can’t be resized smaller or larger
than the values of the min* and max* resources.

heightInc and widthInc
The desired increments for resizing the window.

“Window Size” in Chapter 3 of the Indigo Magic User Interface Guidelines provides
guidelines for controlling window size.

Chapter 6

A unique design helps users to identify your application’s windows easily
when they are minimized. This chapter describes how to create images and
labels for your application’s minimized windows.

Customizing Your Application’s
Minimized Windows

87

Chapter 6

6. Customizing Your Application’s Minimized Windows

Users can minimize (stow) your application’s window on the Desktop, by clicking the
minimize button in the top right corner of the window frame or by selecting “Minimize”
from the Window Menu. When a window is minimized, it is replaced by a 100 x 100 pixel
representation with an identifying label of 13 characters or less. This is referred to as the
minimized window. (It is also commonly called an icon, but this document uses the term
minimized window to prevent confusing it with the Desktop icon.)

This chapter explains how to put the image of your choice on a minimized window. It
contains these sections:

• “Some Different Sources for Minimized Window Images” discusses different
sources from which you can generate a minimize icon picture.

• “Creating a Minimized Window Image: The Basic Steps” gives a step-by-step
explanation of how to customize your minimize icon.

• “Setting the Minimized Window Label” on page 91 describes how to set the label of
your minimized window.

• “Changing the Minimized Window Image” on page 91 mentions some special
considerations if you want to change the image in your minimized window while
your application is running.

Some Different Sources for Minimized Window Images

You can make a minimized window image out of any image that you can display on your
workstation monitor. This means that you can create a picture using showcase or the
drawing/painting tool of your choice, or you can scan in a picture, or you can take a
snapshot of some portion of your application. You can even have an artist design your
stow icons for you. “Choosing an Image for Your Minimized Window” in Chapter 3 of
the Indigo Magic User Interface Guidelines provides some guidelines for designing
minimized window images.

88

Chapter 6: Customizing Your Application’s Minimized Windows

Figure 6-1 shows some different minimized window images that were created in
different ways. From left to right: the top row shows a scanned-in photograph, a snapshot
of the application itself, a scanned-in photograph that was altered with imp, and
scanned-in line art; the bottom row shows a drawing representing the application,
scanned-in line art, and two artist-designed images.

Figure 6-1 Minimized Window Image Examples

Creating a Minimized Window Image: The Basic Steps

It’s important for users to be able to easily identify your application’s windows when
they are minimized, so you should define a specific image and label for each primary and
support window in your application. For guidelines on selecting minimize images, see
“Choosing an Image for Your Minimized Window” in Chapter 3 of the Indigo Magic User
Interface Guidelines.

To make a minimized window image for your application:

1. Create an RGB image. If your image is already in RGB format, then all you have to
do is resize the image to an appropriate size (look at the setting of the
iconImageMaximum resource in 4Dwm to see the maximum size of the stow icon,
currently 85x67). See “Resizing the RGB Image Using imgworks” on page 90 for
instructions on resizing the image.

If your image is not in RGB format, you must convert it to RGB. One way to do this
is to take a snapshot of your image. See “Using snapshot to Get an RGB Format
Image” on page 89 for instructions.

2. Scale the image to the correct size. See “Resizing the RGB Image Using imgworks”
on page 90 for instructions.

Creating a Minimized Window Image: The Basic Steps

89

3. Name the image file. The filename should consist of two parts:

• The application class name (technically, the res_name field of the WM_CLASS
property). You can determine the class name by using xprop and looking at the
WM_CLASS property.

• The .icon suffix.

This gives you a name of the form res_name.icon. For example, if your application’s
name is “chocolate,” the name of your image file should be:

chocolate.icon

4. Put the file in the /usr/lib/images directory.

Using snapshot to Get an RGB Format Image

You can use the snapshot tool to capture an image on your screen for use in your image.
To invoke snapshot, enter:

% snapshot

The snapshot tool, shown in Figure 6-2, appears.

Figure 6-2 The snapshot Tool

To use snapshot, follow these steps:

1. Bring up the desired image on your monitor.

2. Position the cursor over the snapshot tool. The cursor turns into a small red camera.

3. While the cursor is still positioned over the snapshot tool, hold down the <Shift>

key. Don’t release it.

4. Continuing to hold down the <Shift> key, move the cursor over to a corner of the
image you want to snap and, holding down the left mouse button, drag the mouse
to the opposite corner of the image. A red box is formed around the image as you
drag the cursor. Release the mouse button when the box reaches the desired size.

90

Chapter 6: Customizing Your Application’s Minimized Windows

5. After releasing the mouse button, you can adjust the red box from the corners or the
sides by holding the left mouse button down again and resizing just as you would a
window.

Everything in this red box is saved in the snapshot, so make sure you don’t include
any unwanted window borders or screen background. If you have trouble telling
what’s included in the box and what isn’t, bring up the xmag tool by entering:

% xmag

The xmag window shows you a magnified view of the area around the cursor.

6. When the red box is positioned exactly around the correct area of the image, release
the left mouse button and move the cursor back over the snapshot tool.

7. Keeping the cursor positioned over the snapshot tool, release the <Shift> key.

8. Press down the right mouse button to see the snapshot menu and select “Save as
snap.rgb” from the menu. The cursor turns into an hourglass while snapshot saves
your image.

9. To see the image you’ve snapped, enter:

% ipaste snap.rgb

If the image looks good, then you’re ready to resize it. See “Resizing the RGB Image
Using imgworks” on page 90 for instructions.

See the snapshot(1) reference page for more information about using snapshot.

Resizing the RGB Image Using imgworks

You can use imgworks to resize your RGB image to the appropriate size for a minimized
window image. The maximum size is determined by the value of the
iconImageMaximum resource in 4Dwm, which is currently 85x67.

To find the imgworks icon, select “An Icon” from the Find toolchest. When the Find an
Icon window appears, type

imgworks

into the text field. The imgworks icon appears in the drop pocket. Drag the icon to the
Desktop and drop it. Then run imgworks by double-clicking the icon.

To resize your image using imgworks, follow these steps:

Setting the Minimized Window Label

91

1. Open your image file by selecting “Open” from the File menu and selecting your
file from the Image Works: Open Image… window. Your image appears in the main
window.

2. To scale the image, select “Scale…” from the Transformations menu. The Image
Works: Scale window appears.

3. Scale the image by typing in an appropriate scale factor. The dimensions of the new
image (in pixels) are listed in the Scale window.

4. When you’re happy with the dimensions listed in the Scale window, click the Apply
button. The resized image appears in the main window. Save it by selecting “Save”
from the File menu.

Refer to the imgworks(1) reference page for more information on imgworks.

Setting the Minimized Window Label

By default, the 4Dwm window manager reuses the title bar label for the minimized
window label. To explicitly set the label of the minimized window, you simply need to
change the value of the window’s XmNiconName resource. “Labeling a Minimized
Window” in Chapter 3 in the Indigo Magic User Interface Guidelines lists guidelines for
choosing a label.

Changing the Minimized Window Image

Your application can also change its minimized window’s image while it is running (for
example, to indicate application status) by setting the window’s XmNiconWindow
resource. However, it can be very difficult to handle color images without causing visual
and colormap conflicts. If you decide to change the image, the image you install should:

1. Use the default visual.

2. Use the existing colormap without creating any new colors (preferably, your image
should use only the first 16 colors in the colormap). This potentially implies
dithering or color quantization of your image.

92

Chapter 6: Customizing Your Application’s Minimized Windows

Note: The 4Dwm window manager automatically handles your application’s initial
minimized window image (that is, the image automatically loaded from the
/usr/lib/images directory at application start-up).
If you don’t want to change this image while your application is running, your
application doesn’t need to do anything to support displaying the image properly.

Users expect to be able to exchange data between applications using the
standard X mechanisms. This chapter explains to how to support data
exchange in your application.

Interapplication Data Exchange

Chapter 7

95

Chapter 7

7. Interapplication Data Exchange

This chapter describes how to implement the recommended data exchange mechanisms
in your applications. It contains these sections:

• “Data Exchange Overview” on page 95 provides a brief description of how the
Primary and Clipboard Transfer Models should work in your application. You
should implement both.

• “Implementing the Primary Transfer Model” on page 99 describes how to
implement the Primary Transfer Model in your application.

• “Implementing the Clipboard Transfer Model” on page 102 describes how to
implement the Primary Transfer Model in your application.

• “Supported Target Formats” on page 105 provides tables listing the atom names of
supported data formats, along with brief descriptions of what each format is used
for.

• “Data Conversion Service” on page 109 describes the service available for
converting files from one data format to another. For details on the process, refer to
Appendix G, “Using GoldenGate Data Conversion Services.”

Data Exchange Overview

As detailed in Chapter 5, “Data Exchange on the Indigo Magic Desktop,” in the Indigo
Magic User Interface Guidelines, Silicon Graphics recommends that your application
support both the Primary and Clipboard Transfer Models. The Primary Transfer Model
allows users to copy data using mouse buttons, whereas the Clipboard Transfer model
allows users to use the “Cut,” “Copy,” and “Paste” options from the Edit menu (or the
corresponding keyboard accelerators) to transfer data.

Note: Silicon Graphics recommends that you not use the IRIS IM clipboard routines for
handling data exchange.

96

Chapter 7: Interapplication Data Exchange

The data exchange model recommended by Silicon Graphics is based on the standard
mechanisms provided by the X and Xt. You can consult the O’Reilly & Associates book
The X Window System, Volume 4: X Toolkit Intrinsics Programming Manual by Adrian Nye
for more information on the standard Xt data exchange methods.

The following sections describe:

• “Primary Transfer Model Overview”

• “Clipboard Transfer Model Overview”

• “Interaction Between the Primary and Clipboard Transfer Models”

Primary Transfer Model Overview

When the user selects some data in an application, the application should highlight that
data and assert ownership of the PRIMARY selection. Until the application loses the
PRIMARY selection, it should then be prepared to respond to requests for the selected
data in various target formats. “Supported Target Formats” on page 105 describes the
standard target formats.

When the user selects data in another application, your application loses ownership of
the PRIMARY selection. In general, when your application loses the primary selection, it
should keep its current selection highlighted. When a user has selections highlighted in
more than one window at a time, the most recent selection is always the primary
selection. This is consistent with the persistent always selection discussed in Section 4.2,
“Selection Actions,” in the OSF/Motif Style Guide, Release 1.2. There is an exception to this
guideline: those applications that use selection only for primary transfer, for example, the
winterm shell window. The only reason for users to select text in a shell window is to
transfer that text using the primary transfer mechanism. In this case, when the winterm
window loses the primary selection, the highlighting is removed. This is referred to as
nonpersistent selection in Section 4.2, “Selection Actions,” in the OSF/Motif Style Guide,
Release 1.2.

The persistent always selection mechanism allows the user to have data selected in different
applications. The user can still manipulate selected data using application controls.
Furthermore, the user can reassert the selected data as the PRIMARY selection by
pressing <Alt-Insert> .

When the user clicks the middle mouse button (BTransfer) in your application, your
application should attempt to copy the primary selection to the current location of the

Data Exchange Overview

97

mouse pointer. First, your application should request a list of target formats supported
by the primary selection owner. Then your application should select the most
appropriate target format and request the primary selection in that format.

“Supporting the Primary Transfer Model” in Chapter 5 of the Indigo Magic User Interface
Guidelines further discusses use of the Primary Transfer Model.

Clipboard Transfer Model Overview

When the user selects the “Copy” option from your application’s Edit menu (or uses the
keyboard accelerator), your application should assert ownership of the CLIPBOARD
selection. Until the application loses the CLIPBOARD selection, it should then be
prepared to respond to requests for the data selected at the time your application took
ownership of the CLIPBOARD selection. (In other words, your application must
somehow store the value of the selection when the user performs the copy action; the
application can then provide this value even if the user subsequently changes the
application’s selection.)

When the user selects the “Cut” option for your application’s Edit menu (or uses the
keyboard accelerator), your application should assert ownership of the CLIPBOARD
selection. Your application must cut the selected data, but it should store the data and be
prepared to respond to requests for the data until it loses ownership of the CLIPBOARD
selection.

When the user selects the “Paste” option for your application’s Edit menu (or uses the
keyboard accelerator), your application should attempt to copy the clipboard selection to
the current location of the location cursor. First, your application should request a list of
target formats supported by the clipboard selection owner. Then your application should
select the most appropriate target format and request the clipboard selection in that
format.

“Supporting the Clipboard Transfer Model” in Chapter 5 of the Indigo Magic User
Interface Guidelines further discusses use of the Clipboard Transfer Model.

Interaction Between the Primary and Clipboard Transfer Models

Silicon Graphics recommends that you implement the Primary and Clipboard Transfer
Models so that they operate separately. The only complication is maintaining data in the

98

Chapter 7: Interapplication Data Exchange

PRIMARY selection when the user performs a cut action. Consider the following
example:

1. The user selects data in an application. The application asserts ownership of the
PRIMARY selection.

2. The user performs a cut action. The application asserts ownership of the
CLIPBOARD selection and removes the selected data from the display.

3. The user goes to another application that already has data selected.

4. The user cuts the data selected in the second application. The second application
asserts ownership of the CLIPBOARD selection and removes the selected data from
the display.

The clipboard actions described above should not affect the PRIMARY selection. In this
example, the first application should retain ownership of the PRIMARY selection and
continue to be prepared to respond to requests for the value of the PRIMARY selection.
To support this, the application should somehow store the value of the PRIMARY
selection until it no longer owns the PRIMARY selection.

To properly handle the situation described above, your application should implement
the following:

1. In the function that handles the Clipboard Transfer Model’s cut action, test to see
whether the application owns the PRIMARY selection. If it does, you should
preserve the selected data. If selections in your application are typically small (for
example, ASCII text), you might simply copy the data to a buffer. If selections in
your application are typically large (for example, sound or movie clips), you might
remove the data from the display but retain pointers to it.

2. In the function that handles losing the PRIMARY selection, test to see whether you
have data preserved from a cut action. If so, and the application currently doesn’t
own the CLIPBOARD selection, you should free that data or reset the pointers to it.

Implementing the Primary Transfer Model

99

Implementing the Primary Transfer Model

This section describes how to implement support for the Primary Transfer Model in your
application. Topics covered include:

• “Data Selection”

• “Requests for the Primary Selection”

• “Loss of the Primary Selection”

• “Inserting the Primary Selection”

Note: Silicon Graphics recommends that you don’t use the IRIS IM clipboard routines,
because they are not as flexible as the Xt selection routines.

Data Selection

When the user selects data in a window of your application, it should call
XtOwnSelection(3Xt) to assert ownership of the PRIMARY selection and highlight the
selected data.

The code fragment in Example 7-1 shows a simple example of asserting ownership of the
PRIMARY selection. For clarity, this example omits code for manipulating the selection
itself (for example, setting up pointers to the selection).

“Selection” in Chapter 7 of the Indigo Magic User Interface Guidelines discusses guidelines
for allowing users to select data and for hightlighting selected data.

Example 7-1 Asserting Ownership of PRIMARY Selection

Boolean ownPrimary;

/*
w is window in which selection occurred
event is pointer to event that caused selection

*/

void dataSelected(Widget w, XButtonEvent *event)
{
...

/*
Assert ownership of PRIMARY selection.

100

Chapter 7: Interapplication Data Exchange

XA_PRIMARY is the slection.
event->time is timestamp of the event.
primaryRequestCallback is the function called

whenever another application requests the
value of the PRIMARY selection.

lostPrimaryCallback is the function called whenever
the application loses the selection.

*/

ownPrimary = XtOwnSelection(w, XA_PRIMARY, event->time,
primaryRequestCallback,
lostPrimaryCallback,
NULL);

/*
If we successfully obtained ownership, highlight
the data; otherwise, clean up

*/

if (ownPrimary)
highlightSelection();

else
lostPrimaryCallback(w, XA_PRIMARY);

...
}

Requests for the Primary Selection

When you assert ownership of the PRIMARY selection, one of the parameters you pass
to XtOwnSelection() is a callback function to handle requests for the value of the
PRIMARY selection. When another application requests the value of the PRIMARY
selection, the Xt selection mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a requestor first
asks for the special target format TARGETS. Your application should respond with a list
of target formats it supports. The requestor then chooses an appropriate target format
and requests the selection value in that format. “Supported Target Formats” on page 105
describes some of the common target formats your application should support.

Implementing the Primary Transfer Model

101

Loss of the Primary Selection

When your application loses the PRIMARY selection and your application follows the
persistent always selection model discussed in “Primary Transfer Model Overview” on
page 96, don’t remove the highlight from any selected data. The user should still be able
to cut or copy any selected data using the Clipboard Transfer Model. If your application
follows the nonpersistent selection model as discussed in “Primary Transfer Model
Overview,” you should remove the highlight.

Your application should also test to see whether you have data preserved from a cut
action (see “Cut Actions” on page 102). If so, and your application currently doesn’t own
the CLIPBOARD selection, you should free that data or reset the pointers to it.
“Interaction Between the Primary and Clipboard Transfer Models” on page 97 describes
the rationale for this procedure.

Note: To comply with the Indigo Magic User Interface Guidelines, if the user presses
<Alt-Insert> in your application, you should reassert ownership of PRIMARY for your
application.

Inserting the Primary Selection

When the user clicks the middle mouse button in your application, it should perform the
steps described below.

1. Your application should ask the owner of the PRIMARY selection for a list of its
TARGETS, using XtGetSelectionValue() with selection PRIMARY and target
TARGETS.

2. Your application should look through the list of supported targets, select the one
that is appropriate for your application, and call XtGetSelectionValue() again with
that new target.

3. If the selection owner does not support TARGETS, then your application should ask
for the target STRING, if it can support that target.

Silicon Graphics recommends that you support STRING, even if your application
doesn’t support text. For instance, a movie player could get the selection as a string
and try to parse it as a filename. That way users could select a filename in a terminal
emulator window and paste it into another application.

102

Chapter 7: Interapplication Data Exchange

Implementing the Clipboard Transfer Model

This section describes how to implement support for the Clipboard Transfer Model in
your application. Topics include:

• “Cut Actions”

• “Copy Actions”

• “Requests for the Clipboard Selection”

• “Paste Actions”

• “Loss of the Clipboard Selection”

Cut Actions

When the user performs a cut action, your application should:

1. Call XtOwnSelection(3Xt) to assert ownership of the CLIPBOARD selection.

2. Remove the selected data from the display. Retain the selected data until your
application loses ownership of the CLIPBOARD selection.

3. Test to see whether the application owns the PRIMARY selection. If it does, you
should preserve the selected data, even after losing ownership of the CLIPBOARD
selection. You should retain the data until your application also loses ownership of
the PRIMARY selection.

If selections in your application are typically small (for example, ASCII text), you
might simply copy the data to a buffer. If selections in your application are typically
large (for example, sound or movie clips), you might remove the data from the
display but retain pointers to it.

The code fragment in Example 7-2 shows a simple example of handling a cut action and
asserting ownership of the CLIPBOARD selection. For clarity, this example omits code
for manipulating the selection itself (for example, setting up pointers to the selection).

Example 7-2 Handling Cut Actions in the Clipboard Transfer Model

Boolean ownPrimary;
Boolean primaryPreserved;
/*

w is window in which selection occurred
event is pointer to event that caused selection

Implementing the Clipboard Transfer Model

103

*/
void selectionCut(Widget w, XButtonEvent *event)
{
...

/*
Assert ownership of CLIPBOARD selection.

XA_CLIPBOARD is the selection.
event->time is timestamp of the event.
clipboardRequestCallback is the function called

whenever another application requests the
value of the CLIPBOARD selection.

lostClipboardCallback is the function called whenever
the application loses the selection.

*/

ownClipboard = XtOwnSelection(w, XA_CLIPBOARD, event->time,
clipboardRequestCallback,
lostClipboardCallback,
NULL);

if (ownClipboard)
{

/*
 Retain the selected data until the application loses

ownership of the CLIPBOARD selection.
*/

preserveClipboardSelection();

/*
 If we also own the PRIMARY selection, we need to

preserve the selected data separately so that we can
continue to satisfy requests for the PRIMARY selection
even if we lose the CLIPBOARD selection.

*/

if (ownPrimary)
primaryPreserved = preservePrimarySelection();

}
...
}

104

Chapter 7: Interapplication Data Exchange

Copy Actions

When the user performs a copy action, your application should call
XtOwnSelection(3Xt) to assert ownership of the CLIPBOARD selection. No other
actions are required.

Requests for the Clipboard Selection

When you assert ownership of the CLIPBOARD selection, one of the parameters you
pass to XtOwnSelection() is a callback function to handle requests for the value of the
CLIPBOARD selection. When another application requests the value of the CLIPBOARD
selection, the Xt selection mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a requestor first
asks for the special target format TARGETS. Your application should respond with a list
of target formats it supports. The requestor then chooses an appropriate target format
and requests the selection value in that format. “Supported Target Formats” on page 105
describes some of the common target formats your application should support.

Paste Actions

When the user selects “Paste” from the File menu, your application should:

1. Ask the owner of the CLIPBOARD selection for a list of its TARGETS, using
XtGetSelectionValue() with selection CLIPBOARD and target TARGETS.

2. Look through the list of supported targets, select the one that is appropriate for your
application, and call XtGetSelectionValue() again with that new target.

3. If the selection owner doesn’t support TARGETS, then your application should ask
for the target STRING, if it can support that target.

Silicon Graphics recommends that you support STRING, even if your application
doesn’t support text. For instance, a movie player can get the selection as a string
and try to parse it as a filename. That way users can select a filename in a terminal
emulator window and paste it into another application.

Supported Target Formats

105

Loss of the Clipboard Selection

When your application loses the Clipboard selection, don’t remove the highlight from
any selected data. The user should still be able to cut or copy any selected data. Your
application can discard any data it had retained as a result of a cut operation (see “Cut
Actions” on page 102).

Supported Target Formats

Every application should support the TARGETS, TIMESTAMP, MULTIPLE, and STRING
targets. The Xt selection functions support the MULTIPLE targets for you.
XmuConvertStandardSelection() supports the TIMESTAMP target. (Silicon Graphics
recommends that applications use XmuConvertStandardSelection() because it also
supports HOSTNAME, NAME, CLIENT_WINDOW, and a variety of other useful
targets.) Your application must support the TARGETS and STRING targets itself. In
addition, Silicon Graphics has defined other targets for data types used by Silicon
Graphics applications and libraries.

The tables that follow list supported target formats:

• Table 7-1 lists target names for audio formats

• Table 7-2 shows target names for image formats

• Table 7-3 presents target names for movie formats

• Table 7-4 lists target names for 3D graphics formats

• Table 7-5 shows target names for Silicon Graphics data types

106

Chapter 7: Interapplication Data Exchange

• Table 7-6 shows target names for World Wide Web formats

Table 7-1 Audio Formats

Name of Atom/Target Description

AIFF_FILE Audio Interchange Format, used on
Apple systems.

AIFF_C_FILE Modified version of Apple’s AIFF,
compatible with SGI systems.

NEXT_FILE Used on Next and Sun systems.

SD2_FILE Sound Designer 2 format

WAVE_FILE Microsoft Wave format

MPEG_1_AUDIO_FILE MPEG Audio. The name of a file that
contains MPEG-1 audio data.

MPEG_1_AUDIO Stream of audio data, in MPEG-1 Stream
format.

SGI_AUDIO_FILE The name of a file that contains Silicon
Graphics format sound data, that can be
read using libaudiofile. The file is the
responsibility of the receiver, once the
selection owner has generated it.

SGI_AUDIO Stream of audio data, readable with the
SGI audio library.

Table 7-2 Image Formats

Name of Atom/Target Description

FITS_FILE Flexible Image Transport System

GIF_89 Graphics Interchange Format (streaming
bit format)

GIF_89_FILE Graphics Interchange Format (file
format)

JFIF_FILE JPEG File Interchange Format

DIB_FILE Microsoft image format

Supported Target Formats

107

PHOTO_CD_FILE Kodak photo CD

PPM_FILE Portable pixmap format

PNM_FILE Portable anymap format

PGM_FILE Portable graymap format

SGI_RGBIMAGE_FILE The name of a file that contains a Silicon
Graphics format image file. This is an rgb
file. The file is the responsibility of the
receiver, once the selection owner has
generated it.

SGI_RGBIMAGE The rgb image data stream.

TIFF_FILE Tagged Image File Format

Table 7-3 Movie Formats

Name of Atom/Target Description

APPLE_QUICKTIME_FILE Apple Quicktime format

AVID_OMFI_FILE AVID OMFI

AVI_FILE Microsoft AVI format

MPEG_1_VIDEO_FILE Motion Picture Experts Group MPEG-1
file

MPEG_1_VIDEO Stream format

MPEG_1_SYSTEMS_FILE Motion Picture Experts Group MPEG-1
systems file

MPEG_1_SYSTEMS Stream format

SGI_MOVIE_FILE SGI movie format

SGI_MOVIE Stream format

Table 7-2 (continued) Image Formats

Name of Atom/Target Description

108

Chapter 7: Interapplication Data Exchange

Caution: Xt implements a timeout when transferring data using the selection
mechanism. The default is five seconds. Often, this is inadequate for applications
transferring audio, image, or movie data. Therefore, if your application supports

Table 7-4 3D Graphics Formats

Name of Atom/Target Description

INVENTOR_2_1 SGI Open Inventor V2.1 data

INVENTOR_2_1_FILE SGI Open Inventor V2.1 file

AUTODESK_DXF_FILE AUTODESK DXF

AUTODESK_3DS_FILE AUTODESK 3DS

ALIAS_FILE Alias wire file

IGES_FILE IGES file

PIXAR_RIB_FILE Pixar Renderman .RIB file

SOFTIMAGE_HRC_FILE Softimage .hrc file

SOFTIMAGE_DSC_FILE Softimage .dsc file

WAVEFRONT_OBJ_FILE Wavefront .OBJ file

VRML_1_0_FILE VRML 1.0 file

Table 7-5 Additional Data Types Supported by Silicon Graphics

Name of Atom/Target Description

INVENTOR Synonym for INVENTOR_2_0.

_SGI_RGB_IMAGE_FILENAME Replaced by SGI_RGBIMAGE_FILE.

_SGI_RGB_IMAGE Replaced by SGI_RGBIMAGE.

_SGI_AUDIO_FILENAME Replaced by SGI_AUDIO_FILE.

_SGI_AUDIO Replaced by SGI_AUDIO.

_SGI_MOVIE_FILENAME Replaced by SGI_MOVIE_FILE.

_SGI_MOVIE Replaced by SGI_MOVIE.

SGI_SHOWCASE_FILE Name of file containing SGI Showcase data.

Data Conversion Service

109

receiving such selections, you should call XtAppSetSelectionTimeout() to change the
timeout to a larger value.

Note: Silicon Graphics applications should also support the generic X11/ICCCM targets
such as STRING and COMPOUND_TEXT.

Data Conversion Service

Silicon Graphics provides GoldenGate data conversion service to help you convert data
from one format to another, offloading the responsibility for data conversion from your
application. See Appendix G, “Using GoldenGate Data Conversion Services,” for more
information.

The GoldenGate conversion service consists of four elements:

• the header file, /usr/include/convert/SgCvt.h

• the conversion library, libcvt.so

• the converter registry file, /etc/ConverterRegistry

• a set of pluggable converters

The header file and library provide the Application Programmatic Interface (API) for the
service. The converter registry file describes the converters available to the service. The
actual code for the converters is stored in separate Dynamic Shared Objects (DSOs).
When an application program tries to access a converter, the service dynamically loads
the associated DSO.

The GoldenGate API uses Digital Media parameter-value lists to describe data formats.
See the IRIS Media Libraries Programming Guide for information on how to use the Digital
Media library to create and manipulate digital media parameter-value lists.

Table 7-6 World Wide Web Targets

Type of Atom/Target Description

HTML Hypertext Markup Language as an
ASCII Stream.

HTML_FILE Name of the file containing HTML.

110

Chapter 7: Interapplication Data Exchange

The Converter Registry

The converter registry contains entries describing each converter available to the service.
Each converter entry lists the data format that the converter takes as input, the format
that the converter produces as output, and information that allows the service to locate
the converter code.

The converter registry can also contain entries defining pipelines. A pipeline is a set of
converters connected in series, with the output of one converter feeding the next. As far
as application programs are concerned, a pipeline is just another converter.

The GoldenGate API

All programs using the GoldenGate API should include the libSgCvt header file:

#include <convert/SgCvt.h>

The GoldenGate API uses a fairly simple programming model. For application
programs, the most complicated part of the conversion process is picking an appropriate
converter.

Once the application program has picked a converter, it initializes the conversion
pipeline, and proceeds to send data through the pipeline. The pipeline is a “black box.”
It may consist of one converter, or several converters running in series. The API for
application programs using the service is described in Appendix G, “Using GoldenGate
Data Conversion Services.”

Converters, on the other hand, must read data from the pipeline, convert it, and write
data back to the pipeline. Again, the pipeline is a black box. A converter can’t tell if its
input is coming from another converter, or from an application program. Likewise, it
can’t tell if its output is going to another converter or back to the application program.
Designing converters is discussed in Appendix G, “Using GoldenGate Data Conversion
Services.”

Typically, if applications need to monitor the status of a file or directory they
must periodically poll the filesystem. The File Alteration Monitor (FAM)
provides a more efficient and convenient method.

Monitoring Changes to
Files and Directories

Chapter 8

113

Chapter 8

8. Monitoring Changes to Files and Directories

The File Alteration Monitor (FAM) monitors changes to files and directories in the
filesystem and notifies interested applications of these changes. Your application can use
FAM to get an up-to-date view of the filesystem rather than having to poll the filesystem.
This chapter describes the required libraries and provides a basic list of steps for using
FAM. For more detailed information, refer to the fam(1M) and FAM(3X) reference pages.

This chapter contains these sections:

• “FAM Overview” on page 113 provides an overview to FAM including the libraries
and header files needed to use FAM in your application.

• “The FAM Interface” on page 115 describes the FAM API.

• “Using FAM” on page 123 provides a simple example demonstrating FAM.

FAM Overview

Typically, if applications need to monitor the status of a file or directory, they must
periodically poll the filesystem. FAM provides a more efficient and convenient method.

FAM consists of the FAM daemon, fam, and a library for interacting with this daemon.
An application can request fam to monitor any files or directories in the filesystem. When
fam detects changes to these files, it notifies the application.

This section provides an overview of FAM and describes:

• “Theory of Operation” on page 114

• “FAM Libraries and Include Files” on page 114

114

Chapter 8: Monitoring Changes to Files and Directories

Theory of Operation

FAM uses imon, a pseudo device, to monitor filesystem activity on your system on a
file-by-file basis. You can refer to the imon(7) reference page for more information on its
operation, but you should not attempt to access imon directly.

When you provide FAM with the name of a file or directory to monitor, FAM passes the
request to imon, which begins monitoring the inode corresponding to the pathname.
When imon detects a change to an inode that it is monitoring, it notifies FAM, which
matches the inode to a corresponding filename. FAM then generates a FAM event on a
socket. Your application can either monitor the socket or periodically poll FAM to detect
FAM events.

This difference between FAM and imon can produce some unexpected results. For
example, if a user moves a file, FAM reports that the file is deleted. The reason is that
FAM monitors files by name and not inode, so it doesn’t know that the file still exists.

Note: Unlike local files and directories, FAM monitors NFS-mounted files and
directories by name rather than by inode.

As another example, consider the case where FAM is monitoring a file. If the user deletes
the file, FAM correctly reports that fact. Then FAM polls the directory every few seconds
to see if the file has been created. If you need to detect the creation of a given file by name,
you may want to monitor the directory in which it will be created and watch for FAM
events notifying the creation of a file by that name in the directory.

Whenever FAM is asked to monitor a file/directory that resides on a remote (NFS)
filesystem, FAM tries to make a connection to the FAM on the NFS server. If it succeeds,
it asks the server fam to monitor the file. The server FAM sends FAM events, and the
original FAM translates those events to a form its client can use. If FAM can’t connect to
FAM on the server, it monitors the file itself by polling every few seconds. Polling over
NFS has a high overhead.

FAM Libraries and Include Files

The FAM interface routines are in the libfam library. libfam depends on the libC library. Be
sure to specify -lfam before -lC in the compilation or linking command. If you are using
fam from a C++ program, libC is included automatically. You must include libC if you are
using fam from a C program.

The FAM Interface

115

You must include <fam.h> in any source file that uses FAM. You must also include
<sys/select.h> if you use the select(2) system call.

The FAM Interface

This section describes the functions you use to access FAM from your application:

• “Opening and Closing a FAM Connection” on page 115

• “Monitoring a File or Directory” on page 116

• “Suspending, Resuming, and Canceling Monitoring” on page 117

• “Detecting Changes to Files and Directories” on page 118

• “FAM Examples” on page 122

Opening and Closing a FAM Connection

The function FAMOpen() opens a connection to fam:

int FAMOpen(FAMConnection* fc)

FAMOpen() returns 0 if successful and -1 if unsuccessful. FAMOpen() initializes the
FAMConnection structure passed to it, which you must use in all subsequent FAM
procedure calls in your application.

An element of the FAMConnection structure is the file descriptor associated with the
socket that FAM uses to communicate with your application. You need this file descriptor
to perform select() operations on the socket. You can obtain the file descriptor using the
FAMCONNECTION_GETFD() macro:

FAMCONNECTION_GETFD(fc)

The function FAMOpen2 tells FAM the application’s name:

int FAMOpen2(FAMConnection* fc, const char* appName)

FAM uses appName when it prints debugging messages.

The function FAMClose() closes a connection to fam:

int FAMClose(FAMConnection* fc)

116

Chapter 8: Monitoring Changes to Files and Directories

FAMClose() returns 0 if successful and -1 if unsuccessful.

Monitoring a File or Directory

FAMMonitorDirectory() and FAMMonitorFile() tell FAM to start monitoring a
directory or file respectively:

int FAMMonitorDirectory(FAMConnection * fc,
char * filename,
FAMRequest* fr,
void* userData)

int FAMMonitorFile(FAMConnection * fc,
char * filename,
FAMRequest* fr,
void* userData)

FAMMonitorDirectory() monitors not only changes that happens to the contents of the
specified directory file, but also to the files in the directory. If the directory contains
subdirectories, FAMMonitorDirectory() monitors changes to the subdirectory files, but
not the contents of those subdirectories. FAMMonitorFile() monitors only what happens
to the specified file. Both functions return 0 if successful and -1 otherwise.

The first argument to these functions is the FAMConnection structure initialized by
FAMOpen(). The second argument is the full pathname of the directory or file to
monitor. Note that you can’t use relative pathnames.

The third argument is a FAMRequest structure that these functions initialize. You can
pass this structure to FAMSuspendMonitor(), FAMResumeMonitor(), or
FAMCancelMonitor() to respectively suspend, resume, or cancel the monitoring of the
file or directory. “Suspending, Resuming, and Canceling Monitoring” on page 117
further describes these functions.

The fourth argument is a pointer to any arbitrary user data that you want included in the
FAMEvent structure returned by FAMNextEvent() when this file or directory changes.

FAM then generates FAM events whenever it detects changes in monitored files or
directories. “Detecting Changes to Files and Directories” on page 118 describes how to
detect and interpret these events.

Two similar routines are FAMMonitorDirectory2() and FAMMonitorFile2():

The FAM Interface

117

int FAMMonitorDirectory2(FAMConnection *fc,
 char *filename,
 FAMRequest* fr);

int FAMMonitorFile2(FAMConnection *fc,
 char *filename,
 FAMRequest* fr);

In these routines, the caller picks the request number, not libfam. The caller specifies the
request number by putting it in the FAMRequest before calling the routine. For example:

FAMConnection fc;
FAMRequest frq;
...

frq.reqnum = some_number_associated_with_tmp;
if (FAMMonitorDirectory2(&fc, “/tmp”, &frq) < 0)
 perror(“can’t monitor /tmp”);

If you use the -2 routines, you must choose unique request numbers. See
FAMAcknowledge below.

It’s up to you to determine which routines to use: the -2 routines or the original routines.

Suspending, Resuming, and Canceling Monitoring

Once you’ve begun monitoring a file or directory, you can cancel monitoring or
temporarily suspend and later resume monitoring.

FAMSuspendMonitor() temporarily suspends monitoring a file or directory.
FAMResumeMonitor() resumes monitoring the file or directory. Suspending file
monitoring can be useful when your application does not need to display information
about a file (for example, when your application is iconified).

Note: FAM queues any changes that occur to the file or directory while monitoring is
suspended. When your application resumes monitoring, FAM notifies it of any changes
that occurred.

The syntax for these functions is:

int FAMSuspendMonitor(FAMConnection * fc, FAMRequest * fr);

118

Chapter 8: Monitoring Changes to Files and Directories

int FAMResumeMonitor(FAMConnection * fc, FAMRequest * fr);

fc is the FAMConnection returned by FAMOpen(), and fr is the FAMRequest returned by
either FAMMonitorFile() or FAMMonitorDirectory(). Both functions return 0 if
successful and -1 otherwise.

When your application is finished monitoring a file or directory, it should call
FAMCancelMonitor():

int FAMCancelMonitor(FAMConnection * fc, FAMRequest * fr)

FAMCancelMonitor() instructs FAM to no longer monitor the file or directory specified
by fr. It returns 0 if successful and -1 otherwise.

After you call FAMCancelMonitor(), FAM sends a FAMAcknowledge event. When
you’ve seen the FAMAcknowledge event, you know it’s safe to re-use the request
number (if you’re using the -2 form monitoring routines).

Detecting Changes to Files and Directories

Whenever FAM detects changes in files or directories that it is monitoring, it generates a
FAM event. Your application can receive FAM events in one of two ways:

The Select approach
Your application performs a select(2) on the file descriptor in the
FAMConnection structure returned by FAMOpen(). When this file
descriptor becomes active, the application calls FAMNextEvent() to
retrieve the pending FAM event.

The Polling approach
Your application periodically calls FAMPending() (typically when the
system is waiting for input). When FAMPending() returns with a
positive return value, your application calls FAMNextEvent() to retrieve
the pending FAM events.

FAMPending() has the following syntax:

int FAMPending(FAMConnection * fc)

It returns 1 if there is a FAM event queued, 0 if there is no queued event, and -1 if there
is an error. FAMPending() returns immediately (that is, it does not wait for an event).

The FAM Interface

119

Once you have determined that there is a FAM event queued, whether by using the select
or polling approach, call FAMNextEvent() to retrieve it:

int FAMNextEvent(FAMConnection * fc, FAMEvent * fe)

FAMNextEvent() returns 0 if successful and -1 if there is an error. The first argument to
FAMNextEvent() is the FAMConnection structure initialized by FAMOpen(). The
second argument is a pointer to a FAMEvent structure, which FAMNextEvent() fills in
with information about the FAM event. The format of the FAMEvent structure is:

typedef struct {
FAMConnection* fc;
FAMRequest fr;
char * hostname;
char filename[PATH_MAX];
void * userdata;
FAMCodes code;
} FAMEvent;

fc is the FAMConnection structure initialized by FAMOpen().

fr is the FAMRequest structure returned by either FAMMonitorFile() or
FAMMonitorDirectory() when you requested that FAM monitor the file or directory that
changed.

hostname is an obsolete field. Don’t use it in your applications.

filename is either the full pathname of the file or directory that you monitored or the name
of a file in a directory that you monitored.

userdata is the arbitrary data pointer that you provided when you called either
FAMMonitorFile() or FAMMonitorDirectory() to monitor this file or directory. If you
used the -2 routine, FAMMonitorDirectory2() or FAMMonitorFile2(), userdata is
undefined.

code is an enumerated value of type FAMCodes that describes the change that occurred.
It can take any of the following values:

FAMChanged Some value of the file or directory that can be obtained with lstat(2)
changed.

FAMDeleted A file or directory being monitored was deleted.

120

Chapter 8: Monitoring Changes to Files and Directories

FAMStartExecuting
A monitored, executable file started executing. The event occurs only the
first time the file is executed.

FAMStopExecuting
A monitored, executable file that was running finished. If multiple
processes from an executable are running, this event is generated only
when the last one finishes.

FAMCreated A file was created in a directory being monitored.

FAMAcknowledge
FAM generates a FAMAcknowledge event in response to a call to
FAMCancelMonitor(). If you specify an invalid request, that is, a
relative path, FAM automatically cancels the request and immediately
sends a FAMAcknowledge event.

FAMExists When the application requests that a file be monitored, FAM generates
a FAMExists event for that file (if it exists). When the application
requests that a directory be monitored, FAM generates a FAMExists
event for that directory (if it exists) and every file contained in that
directory.

FAMEndExist When the application requests a file or directory be monitored, FAM
generates a FAMEndExist event after the last FAMExists event.
(Therefore if you monitor a file, FAM generates a single FAMExists event
followed by a FAMEndExist event.)

Note: Prior to IRIX 6.2, FAMNextEvent() did not initialize the filename
field in a FAMEndExist event. You should use the request number to
find the file or directory these events reference.

Symbolic Links

If you specify the pathname of a symbolic link to FAMMonitorDirectory() or
FAMMonitorFile(), FAM monitors only the symbolic link itself, not the target of the link.
Although it might seem logical to automatically monitor the target of a symbolic link,
consider that if the target is on an automounted filesystem, monitoring the target triggers
and holds an automount. Another reason to monitor the link instead of the target is that
the target may not exist.

There is no general solution for monitoring targets of symbolic links. You might decide
that it’s appropriate for your application to monitor a target even if it’s automounted.

The FAM Interface

121

Tip: The libc routine realpath(3C) is useful when you need to resolve a link into its
ultimate target.

Tip: Use statvfs(2) to recognize a remote file.

On the other hand, to avoid triggering and holding an automount, you can manually
follow symbolic links until you reach either a local target, which you can then monitor,
or a non-existent filesystem, in which case you might decide not to monitor the target.
Another option is to test the target once to see if it is local, which triggers an automount
only once if the target is automounted.

For example, the following routine determines if a given path is nonexistent, a dangling
link, local, or remote.

#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/statvfs.h>

/*
 * determine a file’s location
 */

enum location { ERROR, NONEXISTENT, DANGLING, LOCAL, REMOTE };

enum location
file_location(const char *path)
{
 char target_path[PATH_MAX];
 struct stat statbuf;
 struct statvfs svfsbuf;

 if (!realpath(path, target_path))
 {
 /*
 * realpath failed -- probably a permission
 * problem, dangling link or nonexistent file.
 */
 if (errno == EACCES)
 return ERROR;
 if (lstat(path, &statbuf) == 0)
 return DANGLING;
 else if (errno == ENOENT)

122

Chapter 8: Monitoring Changes to Files and Directories

 return NONEXISTENT;
 else
 return ERROR;
 }
 /*
 * Realpath succeeded. Find out if file is local.
 */
 if (statvfs(target_path, &svfsbuf) < 0)
 return ERROR;
 if (svfsbuf.f_flag & ST_LOCAL)
 return LOCAL;
 else
 return REMOTE;
}

FAM Examples

The following examples show event streams that FAM sends in certain situations.

Example: A client monitors an existing file. Later, another program appends data to the
file. Even later, the client cancels the monitoring request.

User calls FAMMonitorFile(... “/a/b/c” ...)
FAM events: FAMExists /a/b/c
 FAMEndExist /a/b/c

Other program appends to file.
FAM event: FAMChanged /a/b/c

User calls FAMCancelMonitor(...)
FAM event: FAMAcknowledge /a/b/c

Example: A client monitors a directory containing two files. Later, another program
creates a third file.

User calls FAMMonitorDirectory(... “/a/b” ...)
FAM events: FAMExists /a/b
 FAMExists file_one
 FAMExists file_two
 FAMEndExist /a/b
Third file created.
 FAMCreated file_three

Using FAM

123

Example: A client monitors an executable file which is already running. Later, the
program exits.

User calls FAMMonitorFile(... “/a/b/program” ...)
FAM events: FAMExists /a/b/program
 FAMEndExist /a/b/program
 FAMStartExecuting /a/b/program
Program exits.
FAM event: FAMStopExecuting /a/b/program

Example: A client makes an invalid request.

User calls FAMMonitorDirectory(... “relative/path” ...)
FAM event: FAMAcknowledge relative/path

Example: A client monitors a nonexistent file. Later, another program creates the file.

User calls FAMMonitorFile(... “/a/b/c” ...)
FAM events: FAMDeleted /a/b/c
 FAMEndExist
File is created.
FAM event: FAMCreated /a/b/c

Example: A client monitors a directory containing some files. Another program deletes
the directory, then creates a new file with the same name as the directory.

User calls FAMMonitorDirectory(... “/a/b” ...)
FAM events: FAMExists /a/b
 FAMExists file_one
 FAMExists file_two
 FAMEndExist /a/b
Directory and files are deleted.
FAM events: FAMDeleted /a/b
 FAMChanged /a/b
 FAMDeleted file_one
 FAMDeleted file_two
File with same name created.
FAM events: FAMCreated /a/b
 FAMChanged /a/b

Using FAM

As noted in “Detecting Changes to Files and Directories” on page 118, your application
can check for changes in files in directories that it monitors in two ways:

124

Chapter 8: Monitoring Changes to Files and Directories

• use select() to wait until the FAM socket is active, indicating a change, which is
described in “Waiting for File Changes.”

• use FAMPending() to periodically poll FAM, which is explained in “Polling for File
Changes.”

This section describes how to use both approaches.

Waiting for File Changes

Follow these steps to use FAM in your application, using the select approach to detect
changes:

1. Call FAMOpen() to create a connection to fam. This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMMonitorFile() and FAMMonitorDirectory() to tell fam which files and
directories to monitor.

3. Select on the fam socket file descriptor and call FAMNextEvent() when the fam
socket is readable.

4. When the application is finished monitoring a file or directory, call
FAMCancelMonitor(). If you want to temporarily suspend monitoring of a file or
directory, call FAMSuspendMonitor(). When you’re ready to start monitoring
again, call FAMResumeMonitor().

5. When the application no longer needs to monitor files and directories, call
FAMClose() to release resources associated with files still being monitored and to
close the connection to fam. This step is optional if you simply exit your application.

Example 8-1 demonstrates this process in a simple program.

Example 8-1 Using Select With FAM

/*
* monitor.c -- monitor arbitrary file or directory

 * using fam
*/

#include <fam.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>

Using FAM

125

#include <sys/select.h>

/* event_name() - return printable name of fam event code */

const char *event_name(int code)
{

static const char *famevent[] = {
"",
"FAMChanged",
"FAMDeleted",
"FAMStartExecuting",
"FAMStopExecuting",
"FAMCreated",
"FAMMoved",
"FAMAcknowledge",
"FAMExists",
"FAMEndExist"

};
static char unknown_event[10];

if (code < FAMChanged || code > FAMEndExist)
{

sprintf(unknown_event, "unknown (%d)", code);
return unknown_event;

}
return famevent[code];

}

void main(int argc, char *argv[])
{

int i, nmon, rc, fam_fd;
FAMConnection fc;
FAMRequest *frp;
struct stat status;
FAMEvent fe;
fd_set readfds;

/* Allocate storage for requests */

frp = malloc(argc * sizeof *frp);
if (!frp)
{

perror("malloc");
exit(1);

}

126

Chapter 8: Monitoring Changes to Files and Directories

/* Open fam connection */

if ((FAMOpen(&fc)) < 0)
{

perror("fam");
exit(1);

}

/* Request monitoring for each program argument */

for (nmon = 0 , i = 1; i < argc; i++)
{

if (stat(argv[i], &status) < 0)
{

perror(argv[i]);
status.st_mode = 0;

}
if ((status.st_mode & S_IFMT) == S_IFDIR)

rc = FAMMonitorDirectory(&fc, argv[i], frp + i,
NULL);

else
rc = FAMMonitorFile(&fc, argv[i], frp + i, NULL);

if (rc < 0)
{

perror("FAMMonitor failed");
continue;

}
nmon++;

}
if (!nmon)
{

fprintf(stderr, "Nothing monitored.\n");
exit(1);

}

/* Initialize select data structure */

fam_fd = FAMCONNECTION_GETfd(&fc);
FD_ZERO(&readfds);
FD_SET(fam_fd, &readfds);

/* Loop forever. */

while(1)

Using FAM

127

{
if (select(fam_fd + 1, &readfds,

NULL, NULL, NULL) < 0)
{

perror("select failed");
exit(1);

}
if (FD_ISSET(fam_fd, &readfds))
{

if (FAMNextEvent(&fc, &fe) < 0)
{

perror("FAMNextEvent");
exit(1);

}
printf("%-24s %s\n", fe.filename,

event_name(fe.code));
}

}
}

Polling for File Changes

Follow these steps to use FAM in your application, using the polling approach to detect
changes:

1. Call FAMOpen() to create a connection to fam. This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMMonitorFile() and FAMMonitorDirectory() to tell fam which files and
directories to monitor.

3. Call FAMPending() to determine when there is a pending FAM event and then call
FAMNextEvent() when an event is detected.

4. When the application is finished monitoring a file or directory, call
FAMCancelMonitor(). If you want to temporarily suspend monitoring of a file or
directory, call FAMSuspendMonitor(). When you’re ready to start monitoring
again, call FAMResumeMonitor().

5. When the application no longer needs to monitor files and directories, call
FAMClose() to free resources associated with files still being monitored and to close
the connection to fam. This step is optional if you simply exit your application.

128

Chapter 8: Monitoring Changes to Files and Directories

For example, you could use the polling approach in the monitor.c program listed in
Example 8-1 by deleting the code pertaining to the select data structure and replacing the
while loop with the code shown in Example 8-2, which demonstrates this process in a
simple program.

Example 8-2 Polling With FAM

while(1)
{

rc = FAMPending(&fc);
if (rc == 0)

break;
else if (rc == -1)

perror("FAMPending");
if (FAMNextEvent(&fc, &fe) < 0)
{

perror("FAMNextEvent");
exit(1);

}
printf("%-24s %s\n", fe.filename,

event_name(fe.code));
}

This is a particularly useful approach if you want to poll for changes from within an Xt
work procedure. Example 8-3 shows the skeleton code for such a work procedure.

Example 8-3 Polling FAM Within an Xt Work Procedure

Boolean monitorFiles(XtPointer clientData)
{

int rc = FAMPending(&fc);

if (rc == 0)
return(FALSE);

else if (rc == -1)
XtAppError(app_context, "FAMPending error");

if (FAMNextEvent(&fc, &fe) < 0)
{

XtAppError(app_context, "FAMNextEvent error");
}

handleFileChange(fe);
return(FALSE);

}

This chapter describes how to use Silicon Graphics’ online help system,
SGIHelp, to deliver the online help for your product.

Providing Online Help With SGIHelp

Chapter 9

131

Chapter 9

9. Providing Online Help With SGIHelp

This chapter describes how to use the Silicon Graphics online help system, SGIHelp, to
deliver the online help for your product. It describes how to prepare the help and
integrate it into your application. It contains the following sections:

• “Overview of SGIHelp” on page 131 provides an overview of the help system.

• “The SGIHelp Interface” on page 134 describes the SGIHelp API.

• “Implementing Help in an Application” on page 138 provides some examples of
implementing online help in an application.

• “Application Helpmap Files” on page 143 describes the format and use of
application helpmap files.

• “Writing the Online Help” on page 147 describes how to write the source files
containing your application’s online help.

• “Producing the Final Product” on page 153 describes how to compile your help files
into viewable form and package them for installation on your users’ systems.

• “Bibliography of SGML References” on page 155 list additional references.

The section “Online Help” in Chapter 4 of the Indigo Magic User Interface Guidelines
provides interface and content guidelines for adding online help to your application.

Overview of SGIHelp

The SGIHelp system consists of a help viewer, a help library and include file, help
document files, and optional application helpmap files. This section describes:

• “The Help Viewer”

• “The SGIHelp Library and Include File”

• “Help Document Files”

• “Application Helpmap Files”

132

Chapter 9: Providing Online Help With SGIHelp

Note: To develop online help for your application, you must install the insight_dev
product, which contains the SGIHelp library and include file, help generation tools,
examples, and templates.

The Help Viewer

The SGIHelp viewer, sgihelp(1), also referred to as the help server, displays help text in
easy-to-use browsing windows. Figure 9-1 shows an example of a help window.

Figure 9-1 The Help Viewer

sgihelp can also display an index of all help topics available in a help document and allow
the user to select a particular topic from the list. Figure 9-2 shows an example of a help
index.

Overview of SGIHelp

133

Figure 9-2 The Help Index Window

sgihelp is a separate application that gets started automatically whenever an application
makes a help request. Neither users nor your application should ever need to explicitly
start sgihelp. After the user closes all help windows, sgihelp remains running in the
background for a few minutes. If it receives no other help requests within that time, it
automatically exits.

The SGIHelp Library and Include File

The Silicon Graphics help library, libhelpmsg, handles communication with the help
server. libhelpmsg depends on the libX11 library. Be sure to specify -lhelpmsg before -lX11
in the compilation or linking command.

For example, to compile a file hellohelp.c++ to produce the executable hellohelp, you would
enter:

CC -o hellohelp hellohelp.c++ -lhelpmsg -lX11

134

Chapter 9: Providing Online Help With SGIHelp

You must include <helpapi/HelpBroker.h> in any source file that accesses online help. Both
the library and include file were developed in C, and can be used with either the C or
C++ programming languages.

Help Document Files

Help document files contain the actual help text in Standard Generalized Markup
Language (SGML) format. In addition to text, help documents can contain graphics and
hypertext links to other help topics.

Application Helpmap Files

Application helpmap files are optional; an application can request specific help topics
directly. Applications helpmap files provide a level of indirection that allows you to
structure your help presentation independently of your application code. The SGIHelp
library also uses helpmaps to make it easier for you to implement context-sensitive help
in your application.

Note: You must provide a helpmap for your application if you want a help index.

The SGIHelp Interface

This section describes the functions you use to access the help server from your
application:

• “Initializing the Help Session”

• “Displaying a Help Topic”

• “Displaying the Help Index”

Initializing the Help Session

Before calling any other help functions, your application must first call SGIHelpInit():

int SGIHelpInit (Display * display, char * appClass, char * separator);

display The application’s Display structure.

The SGIHelp Interface

135

appClass The application’s class name. Use the same name as you provide to
XtAppInitialize().

separator The separator character used by the application to separate the widget
hierarchy when a context-sensitive help request is made. At this time,
you must use the period (.).

SGIHelpInit() does not start or communicate with the help server process; it simply
initializes data structures for the other SGIHelp functions. SGIHelpInit() returns 1 on
success, and 0 on failure.

Example 9-1 shows an example of how to use SGIHelpInit().

Example 9-1 Initializing a Help Session Using SGIHelpInit()

#include <Xm/Xm.h>
#include <helpapi/HelpBroker.h>

void main (int argc, char **argv)
{

Widget mainWindow; /* Main window shell widget */
XtAppContext app; /* An application context,

* needed by Xt
*/

int status; /* Return status */

/* ... */

mainWindow = XtAppInitialize (&app, "MyApp", NULL, 0,
&argc, argv, NULL,
NULL, 0);

/* Initialize the help session */

status = SGIHelpInit(XtDisplay(mainWindow),
"MyApp", ".");

/* ... */
}

Displaying a Help Topic

To request display of a help topic from within your application, call SGIHelpMsg():

136

Chapter 9: Providing Online Help With SGIHelp

int SGIHelpMsg (char * key, char * book, char * userData);

key Specifies either 1) the ID of a particular help topic in a help document,
or 2) a widget hierarchy.

If you provide a help ID, the help server displays the help topic
identified in the help document specified by the book argument. You
must provide a help book name in this case. See “Writing the Online
Help” on page 147 for an explanation of help IDs.

If you provide a widget hierarchy, the help server looks in the
application’s helpmap file to find a mapping. If it doesn’t find an exact
match, it uses a fallback algorithm to determine which is the “closest”
hierarchy found. Typically you use this technique to provide
context-sensitive help. See “Application Helpmap Files” on page 143
for more information about the helpmap file.

book Gives the short name of the help document containing the application’s
help information. See “Writing the Online Help” for a description of
help document short names.

If you set this to NULL or asterisk (*), the help server looks in the
application’s helpmap file for the book name. In this case, a helpmap
file must exist. See “Application Helpmap Files” for more information
about the helpmap file.

userData Reserved for future use. You should always set this field to NULL.

If a copy of the help server is not already running, SGIHelpMsg() automatically starts
the server. SGIHelpMsg() returns 1 on success, and 0 on failure.

Example 9-2 shows an example of using SGIHelpMsg() to display the help topic
identified by the help ID “help_save_button” in the help document with the short name
“MyAppHelp.”

Example 9-2 Requesting a Specific Help Topic Using SGIHelpMsg()

#include <helpapi/HelpBroker.h>

/* Assume initialization of help session is complete */

/*
* This call displays the help topic with a key of
* "help_save_button" (found in the "HelpId=" field).
* It will look for this section in the help document

The SGIHelp Interface

137

* "MyAppHelp".
*/

status = SGIHelpMsg("help_save_button", "MyAppHelp", NULL);

Example 9-3 shows an example of using SGIHelpMsg() to request help given a widget
hierarchy. In this case, the application must have a helpmap file, and the help file must
contain an entry mapping the given hierarchy to a help topic for this call to succeed.

Example 9-3 Requesting a Help Topic for a Widget Using SGIHelpMsg()

#include <helpapi/HelpBroker.h>

/* Assume initialization of help session is complete */

/*
* This call displays the help topic specified by the
* mapping for the widget hierarchy
* "MyApp.mainWindow.controlPane.searchButton"
* as given in the application's helpmap file.
*/

status = SGIHelpMsg("MyApp.mainWindow.controlPane",
NULL, NULL);

Displaying the Help Index

The SGIHelpIndexMsg() call causes the help server to look for the application’s
helpmap file and to display the Help Index window:

int SGIHelpIndexMsg (char * key, char * book);

key You should always set this field to NULL or “index.”

book Reserved for future use. You should always set this field to NULL.

The index displays all the help topics in the helpmap file in the order they appear in the
file. You must have a helpmap file for this call to work properly. See “Application
Helpmap Files” on page 143 for more information about the helpmap file.
SGIHelpIndexMsg() returns 1 on success, and 0 on failure.

Example 9-4 shows an example of how to use SGIHelpIndexMsg().

138

Chapter 9: Providing Online Help With SGIHelp

Example 9-4 Displaying a Help Index Using SGIHelpIndexMsg()

/* Assume initialization of help session is complete */

/*
* This call will look in the application’s helpmap
* file for a list of topics to display to the user in
* sgihelp’s index window.
*/

status = SGIHelpIndexMsg("index", NULL);

Implementing Help in an Application

The section “Types of Online Help” in Chapter 4 of the Indigo Magic User Interface
Guidelines describes the user interfaces to online help that your application should
provide. In summary, these services are:

• Help menus in all application windows with menu bars

• Help buttons in all applications without menu bars

• Context-sensitive help available through both the help menus and the <Shift+F1>

keyboard accelerator.

This section contains specific suggestions for implementing these help interfaces to your
application:

• “Constructing a Help Menu”

• “Implementing a Help Button”

• “Providing Context-Sensitive Help”

Constructing a Help Menu

For those windows in your application with a menu bar, you should provide a Help
menu. “Providing Help through a Help Menu” in Chapter 4 of the Indigo Magic User
Interface Guidelines recommends that the following entries appear in the Help menu:

“Click for Help”
Provides context-sensitive help. This option should also use the
<Shift+F1> keyboard accelerator. When a user selects “Click for Help,”

Implementing Help in an Application

139

the cursor should turn into a question mark (?). The user can then move
the cursor over an item or area of interest and click. Your application
should then display a help topic describing the purpose of the item or
area.

“Providing Context-Sensitive Help” on page 140 provides detailed
instructions for implementing context-sensitive help.

“Overview” Displays overview information. The main primary window should
provide an overview of the application. For other windows, this option
should appear as “Overview for <window name>” and provide an
overview of the current window only.

A list of topics and tasks
This section should contain a list of topics and tasks that the user can
perform in your application. When the user selects one of the options,
your application should display a help topic for that item. To reduce the
size of this section, you can move some of the tasks to submenus.

You can hard code the entries in this section or, if you have a helpmap
file for your application, you can parse the helpmap and dynamically
create the task and subtask entries.

“Index” Displays Help Index window for the application. You must have an
application helpmap file to support this option.

“Keys & Shortcuts”
Displays the application’s accelerator keys, keyboard shortcuts, and
other actions in the application.

“Product Information”
Displays a dialog box showing the name, version, and any copyright
information or other related data for your application. Typically, you
should present this information using an IRIS IM dialog rather than
using online help.

Separators are added automatically. See the program listing in Example C-4 for an
example of creating a Help menu.

Implementing a Help Button

For those windows in your application that don’t contain a menu bar, you should
provide a Help button. Example 9-5 shows how you can use the SGIHelp API to

140

Chapter 9: Providing Online Help With SGIHelp

communicate with the help server from a pushbutton within your application.
“Providing Help Through a Help Button” in Chapter 4 of the Indigo Magic User Interface
Guidelines provides guidelines for when to implement a Help button.

Example 9-5 Providing a Help Button

/* required include file for direct communication with help server */
#include <helpapi/HelpBroker.h>
#include <Xm/Xm.h>

/* ... */

/* initialize help server information */
SGIHelpInit(display, "MyWindowApp", ".");

...

/* create help pushbutton for your window */
Widget helpB = XmCreatePushButton(parent, "helpB", NULL, 0);
XtManageChild(helpB);

XtAddCallback(helpB, XmNactivateCallback,
(XtCallbackProc)helpCB, (XtPointer)NULL);

/* ... */

/* help callback */
void helpCB(Widget w, XtPointer clientData, XtPointer callData)
{

/*
* communicate with the help server; developer
* may wish to pass the "key" in as part of the
* callback’s callData parameter...
*/

SGIHelpMsg("key", "book", NULL);
}

Providing Context-Sensitive Help

To provide context-sensitive help from within your application, you need to write code
that tracks the cursor and interrogates the widget hierarchy. Additionally, you need to
make a mapping between what the user has clicked, and the help card that’s displayed.

Implementing Help in an Application

141

The best way to provide the mapping is with the application helpmap file. The SGIHelp
library provides a fallback algorithm for finding help topics that simplifies the process
mapping widgets to topics. If the help system can’t find an exact match to the widget
string in the helpmap file, it drops the last widget from the string and tries again. The
help system reiterates this process until it finds a match in the helpmap file. This
eliminates the need to explicitly map a help topic for every widget in your application.
Instead you can map a help topic to a higher-level manager widget and have that topic
mapped to all of its descendent widgets as well.

For more information on the structure of application helpmap files, see “Application
Helpmap Files” on page 143.

Example 9-6 shows the code used to implement context-sensitive help in the example
program listed in Example C-4, which simply installs clickForHelpCB() as the callback
function for the “Click for Help” option of the Help menu. As long as you create a
helpmap file for your application, you can use this routine as listed in your application
as well.

Example 9-6 Implementing Context-Sensitive Help

void clickForHelpCB(Widget wid, XtPointer clientData, XtPointer callData)
{

static Cursor cursor = NULL;
static char path[512], tmp[512];
Widget shell, result, w;

strcpy(path, "");
strcpy(tmp, "");

/*
* create a question-mark cursor
*/

if(!cursor)
cursor = XCreateFontCursor(XtDisplay(wid), XC_question_arrow);

XmUpdateDisplay(_mainWindow);

/*
* get the top-level shell for the window
*/

shell = _mainWindow;
while (shell && !XtIsShell(shell)) {

shell = XtParent(shell);
}

142

Chapter 9: Providing Online Help With SGIHelp

/*
* modal interface for selection of a component;
* returns the widget or gadget that contains the pointer
*/

result = XmTrackingLocate(shell, cursor, FALSE);

if(result) {
w = result;

/*
* get the widget hierarchy; separate with a '.';
* this also puts them in top-down vs. bottom-up order.
*/

do {
if(XtName(w)) {

strcpy(path, XtName(w));

if(strlen(tmp) > 0) {
strcat(path, ".");
strcat(path, tmp);

}

strcpy(tmp, path);
}

w = XtParent(w);
} while (w != NULL && w != shell);

/*
* send msg to the help server-widget hierarchy;
* OR
* provide a mapping to produce the key to be used
*
* In this case, we'll let the sgihelp process do
* the mapping for us, with the use of a helpmap file
*
* Note that parameter 2, the book name, can be found
* from the helpmap file as well. The developer need
* not hard-code it, if a helpmap file is present for
* the application.
*
*/
if(strlen(path) > 0) {

SGIHelpMsg(path, NULL, NULL);

Application Helpmap Files

143

}
}

}

Application Helpmap Files

Application helpmap files provide a level of indirection that allows you to structure your
help presentation independently of your application code.

• “Helpmap File Conventions”

• “Helpmap File Format”

• “Widget Hierarchies in the Helpmap File”

You don’t have to create a helpmap for your application, but doing so gives you the
following benefits:

• Your application can display a Help Index window, allowing the user to select a
particular topic directly from the list.

• You can write the code that generates your application’s Help menu to create the
“list of topics and tasks” options dynamically from the helpmap. You can then add
and restructure your task help without recompiling your application. See
“Constructing a Help Menu” on page 138 for details on the Help menu’s list of
topics.

• You can provide context-sensitive without hard-coding in your source code a help
topic to each widget. The SGIHelp library provides a fallback algorithm for finding
help topics that simplifies the process mapping widgets to topics. If the help system
can’t find an exact match to the widget string in the helpmap file, it drops the last
widget from the string and tries again. The help system reiterates this process until
it finds a match in the helpmap file. This eliminates the need to explicitly map a help
topic for every widget in your application. Instead you can map a help topic to a
higher-level manager widget and have that topic mapped to all of its descendent
widgets as well. See “Providing Context-Sensitive Help” on page 140 for
information on implementing context-sensitive help in your application.

144

Chapter 9: Providing Online Help With SGIHelp

Helpmap File Conventions

Helpmap files are ASCII text files. The name of your application helpmap file must be
“appClass.helpmap”, where appClass is your application’s class name as provided in your
application’s call to SGIHelpInit(). See “Initializing the Help Session” on page 134 for
more information on SGIHelpInit().

If you create a helpmap file for your application, you must create a subdirectory named
help in the directory containing your help document and put all of your document’s
figures in that subdirectory. See “Preparing to Build the Online Help” on page 150 for
more information.

Helpmap File Format

Each entry, or help topic, in a helpmap consists of a single line containing at least six fields,
each field separated by semicolons:

type; book; title; level; helpID; widget-hierarchy[; widget-hierarchy …]

All fields are required for each entry. Their purpose is as follows:

type The type of help topic. Its value can be:

book The name of the help document that contains this help topic. Help topics
can reside in different books. Each individual help topic can point to
only one help book.

title The title of the help topic. This appears in the Help Index window. If
your application parses the helpmap file to generate the “list of topics
and tasks” area of the Help menu, you can use this as the label for the
menu option.

0 A context-sensitive topic.

1 The overview topic.

2 A task-oriented entry that could show up in the
“list of topics and tasks” area of the Help menu.
See “Constructing a Help Menu” on page 138 for
details on the Help menu’s list of topics.

3 The Keys and Shortcuts topic.

Application Helpmap Files

145

level A number determining the topic level. A value of 0 indicates a main
topic, a value of 1 a sub-topic, a value of 2 a sub-sub-topic, and so forth.
This produces an expandable/collapsible outline of topics for the Help
Index window.

If your application parses the helpmap file to generate the “list of topics
and tasks” area of the Help menu, you can also use these values to
construct “roll-over” submenus as part of a Help menu.

helpID The unique ID, as specified by the “HelpID” attribute, of the specific
help topic in the help document.

widget-hierarchy
One or more fully-qualified widget specifications for use with
context-sensitive help. You can provide multiple specifications,
delimited by semicolons, to associate different areas with the same
topics.

For example, the following entry in Swpkg.helpmap specifies the overview topic:

1;IndigoMagic_IG;Overview;0;Overview;Swpkg.swpkg.overview

The following entries from Swpkg.helpmap specify several context-sensitive help topics.
In this case, the first entry appears as a main topic in the Help Index window and the next
three appear as sub-topics:

0;Swpkg_UG;Using the swpkg Menus;0;menu.bar;Swpkg.swpkg.menuBar
0;Swpkg_UG;The File Menu;1;menu.bar.file;Swpkg.swpkg.menuBar.File
0;Swpkg_UG;The View menu;1;menu.bar.view;Swpkg.swpkg.menuBar.View
0;Swpkg_UG;The Help menu;1;menu.bar.help;Swpkg.swpkg.menuBar.helpMenu

The following shows a more complex hierarchy from Swpkg.helpmap:

2;Swpkg_UG;Tagging Files;0;tag.files.worksheet;Swpkg.swpkg
2;Swpkg_UG;Selecting Product
Files;1;file.browser;Swpkg.swpkg.view.viewPanedWindow.viewForm.\
leftForm.filesBody.addBody.FileListAdd.selectionGrid

0;Swpkg_UG;Setting the Browsing
Directory;2;file.browser.dirfield;Swpkg.swpkg.view.\
viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.directoryLabel;S

wpkg.swpkg.\
view.viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.directoryTe

xtField
0;Swpkg_UG;Selecting Files From the File
List;2;file.browser.filelist;Swpkg.swpkg.view.\

146

Chapter 9: Providing Online Help With SGIHelp

viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.scrolledWindow.f
ilesList;\
Swpkg.swpkg.view.viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd

.\
scrolledWindow.VertScrollBar

Note: The backslashes (\) indicate linewraps; they do not actually appear in the
helpmap file. Each helpmap entry must be a single line.

In the example above, the first entry is a task-oriented topic (2 in the type field). swpkg
parses the helpmap file to create its Help menu, so “Tagging Files” appears as a selection.
The second entry is also a task-oriented topic. It’s a sub-topic of the first entry and
appears in a submenu off the “Tagging Files” selection. The last two entries are marked
as context-sensitive only (0 in the type field). These entries don’t appear anywhere in the
application’s Help menu, but they do appear as sub-sub-topics in the Help Index
window. Also note that the last two entries have two widget specifications, providing
context-sensitive help for two different widgets.

Note: The order of the entries in the application helpmap file determines the order in
which help topics appear in the Help Index window.

Widget Hierarchies in the Helpmap File

At least one widget hierarchy must accompany every point in the application helpmap
file. That one (default) point should be set to “application_classname.top-level_shell”.

Note that the application class name must always be the first component of a widget
hierarchy string. All widget ID’s within the string must be delimited by a period (.).

Widget hierarchies can be as fine-grained as you wish to make them. A fall-back
algorithm is in place (to go to the closest available entry) when the user clicks a widget
in context-sensitive help mode. For example, suppose your application includes a row or
set of buttons. When the user asks for help on a button, you pass that widget string to
SGIHelp. If the widget string is not found in the mappings, the last widget is dropped off
the string (in this case, the widget ID for the button itself). The new string is compared to
all available mappings. This loop continues until something is found. At the very least,
you should fall back to an “Overview” card.

To get a sample widget hierarchy (help message) from an application, you can run the
SGIHelp help server process in debug mode. Before doing this, you need to add the

Writing the Online Help

147

SGIHelp API call, SGIHelpMsg(), to your application and implement context-sensitive
help. Make sure that you send a widget hierarchy string for the “key” parameter in the
SGIHelpMsg() call. (See “Providing Context-Sensitive Help within an Application” and
“Understanding Available Calls” for details on this call.)

To get a sample widget hierarchy from an application that implements context-sensitive
help, follow these steps:

1. Bring up a shell.

2. Make sure the help server process isn’t running. Type:

% /etc/killall sgihelp

3. Type the following to make the help server process run in the foreground in debug
mode:

% /usr/sbin/sgihelp -f -debug

4. Run your application, and then choose “Click for Help” from the help menu. The
cursor should change into a question mark (?), or whatever cursor you’ve
implemented for context sensitive help.

5. Click a widget or an area of the application.

6. Check the shell from which SGIHelp is being run. You should see a line such as:

REQUEST= client="Overview" command="view" book=""
keyvalue="DesksOverview.MainView.Frame.viewport.Bboard"
separator="." user_data=""

The “keyvalue” field contains the widget hierarchy that you can add to the helpmap
file. Remember to add the application class name to the front of the string. For the
example above, the full widget hierarchy string would be:

Overview.DesksOverview.MainView.Frame.viewport.Bboard

Writing the Online Help

This section describes how you prepare the online help document. It provides an
explanation of the standard format you must use, as well as the steps you take to actually
prepare the file. Topics include:

• “Overview of Help Document Files”

• “Viewing the Sample Help Document Files”

148

Chapter 9: Providing Online Help With SGIHelp

• “Creating a Help Document File”

• “Preparing to Build the Online Help”

• “Building the Online Help”

• “Finding and Correcting Build Errors”

For guidelines on structuring and writing your online help text, see “Writing Online
Help Content for SGIHelp” in Chapter 4 of the Indigo Magic User Interface Guidelines.

Overview of Help Document Files

Help document files contain the actual help text in Standard Generalized Markup Language
(SGML) format. When you write the online help for your product, you need to embed
SGML tags to describe the structure of your document.

The file /usr/share/Insight/XHELP/samples/sampleDoc/sample.sgm is an example of a file
with embedded SGML tags. (Example C-1 also lists this file.) Notice the tags surrounded
by angle brackets (<>). These tags describe how each item fits into the structure of the
overall document. For example, a paragraph might be tagged as a list item, and a word
within that paragraph may be tagged as a command.

The Document Type Definition (DTD) outlines the tagging rules for your online
documentation. In other words, it specifies which SGML tags are allowed, and in what
combination or sequence. The file /usr/share/Insight/XHELP/dtd/XHELP.dtd lists the legal
structure for your online help.

A DTD can be difficult to read, so you might instead want to look at the file
/usr/share/Insight/XHELP/samples/XHELP_elements/XHELP_elements.sgm, which lists the
legal elements in a help document and describes when to use them in your documents.
(Example C-2 also lists this file.)

For a more complete understanding of SGML, refer to the bibliography in “Bibliography
of SGML References” on page 155. It lists several of the many books on SGML.

Viewing the Sample Help Document Files

Before beginning to write your own help documents, you might find it helpful to
examine the source of the sample help documents and then view resulting online

Writing the Online Help

149

versions. You can compile and view the help documents in Insight. To do so, follow these
steps:

1. Go to a directory in which you want to build the sample help book.

2. Copy the necessary directories and files by entering:

% cp -r /usr/share/Insight/XHELP/samples .

3. Enter:

% cd samples/sampleDoc

4. Build the file sample.sgm by entering:

% make help

5. To view this file, enter:

% iiv -b . -v sample

6. Change to the exampleApp directory by entering:

% cd ../exampleApp

7. Build the file exampleAppXmHelp.sgm by entering:

% make help

8. To view this file, enter:

% iiv -b . -v exampleAppXmHelp

Creating a Help Document File

To create the help document file for your application:

1. Create a new directory for the online help, then go to this directory.

2. Create a text file and name the file “title.sgm”, where title is one word that identifies
the online help.

3. Write the online help.

You can include figures as described in the example help documents. If your document
contains figures, create a subdirectory named either figures or online in your help
document directory and put all of your document’s figures in that subdirectory.

150

Chapter 9: Providing Online Help With SGIHelp

Preparing to Build the Online Help

After writing your online help you must build it, similarly to the way you compile a
program. When you build the online help, you transform the raw SGML file into a
viewable, online document. To get started, you need to create two files: a Makefile and a
spec file. The Makefile specifies:

• the name of file that contains the online help

• the name you want to assign to the help book

• the version number of the product

The spec file specifies:

• the title of your product

• the official release and version numbers

• other information that is used when you create the final, installable images

To create these files, follow these steps:

1. Go to the directory that contains the online help file.

2. Copy /usr/share/Insight/XHELP/templates/Makefile_xhelp by typing:

cp /usr/share/Insight/XHELP/templates/Makefile_xhelp Makefile

3. Copy /usr/share/Insight/XHELP/templates/spec_xhelp by typing:

cp /usr/share/Insight/XHELP/templates/spec_xhelp spec

4. Edit the Makefile:

■ Next to the label TITLE, type the name of the file that contains the online help.

■ Next to the label FULL_TITLE, type the name you want to assign to the help
book. This name can contain several words, and is used only if you decide to
display the help as a “book” on the Insight bookshelf.

■ Next to the label VERSION, type the version number for the product.

■ Next to the label HIDDEN, remove the comment character (#) if you want the
online help to appear as a book on an Insight bookshelf. Change this if you
want users to be able to browse the help information using Insight, and not just
from within your application.

5. Edit the spec file:

Writing the Online Help

151

■ Replace the string ${RELEASE} with the release number for the product. This
should match what you’ve entered in the Makefile for the VERSION.

■ Replace the string <ProductName> with a one-word name for the product.

■ Replace the string <Shortname> with the TITLE you specified in the Makefile.

■ Replace the string <SHORTNAME> with the TITLE you specified in the
Makefile. Capitalize all letters.

■ Replace the string <SHORTNAME_HELP> with the TITLE followed by
“_HELP”.

■ Replace the string <Book title> with the FULL_TITLE you specified in the
Makefile.

Once you have edited these files, the directory containing your help document should
contain:

• your help document

• the Makefile

• the spec file

• if you included figures in your help document, a subdirectory named either figures
or online containing all of the figures

• if you created a helpmap file for you application, a subdirectory named help
containing the helpmap file

Building the Online Help

Once you have written the online help and done the preparation described in “Preparing
to Build the Online Help” on page 150, you can build and view the online help. To do so,
follow these steps:

1. Go to the directory that contains the online help files.

2. Enter:

% make help

If the help is formatted properly, the online help will build. You should see a file
called booklist.txt and a directory called books.

152

Chapter 9: Providing Online Help With SGIHelp

If the SGML file contains errors, you will see them displayed in the shell window.
See “Finding and Correcting Build Errors” for details.

3. View the book by typing

% iiv -b . -v title

Where title is the value of TITLE from the Makefile.

Finding and Correcting Build Errors

The SGML tags come in pairs. Each pair contains an opening tag and a closing tag, and
the tag applies to everything between the opening tag and the closing tag. If you use
these tags incorrectly, you’ll get error messages when you build the help file. The most
common errors are the result of misspelled tag names, mismatched end tags, or tags used
out of sequence.

Some examples of common error messages are:

mkhelperror: not authorized to add tag ’PAR’, ignoring content.

This error appears if you specify an invalid tag. In this case, the invalid tag is “PAR.” The
valid tag name is “PARA.”

mkhelperror: Start-tag for ’HELPLABEL’ is not valid in this context.
mkhelp Location: Line 37 of entity ’#DOCUMENT’
Context: ’hor point for the link
syntax.</>&#RS;</HelpTopic>&#RS;&#RS;<Helplabel>’...
 ’<Anchor Id="AI003">Using Notes, Warnings or Tips Within a P’
 FQGI: DOCHELP

This error message occurs when the parser sees a tag it isn’t expecting. In this case it
found a HELPLABEL that was not preceded by a HELPTOPIC start tag. The error
message specifies the line number of the error (37), the context in the file, and the Fully
Qualified Generic Identifier (FQGI) of the context. You can probably ignore the FQGI; it
describes where the error occurs within the SGML structure.

mkhelperror: No ’WARNING’ is open, so an end-tag for it is not valid.
The last one was closed at line 46.
mkhelp Location: Line 46 of entity ’#DOCUMENT’
Context: ’<warning>Missing open para. This is a
warning.</></warning>’...
 ’&#RS;<note><para>For your information, this is a note.</></note’
 FQGI: DOCHELP,DESCRIPTION,PARA,PARA

Producing the Final Product

153

This message can occur if you close items with the generic end tag, </>. In this case, the
</> closes the <warning> because the start tag for <para> is missing. This may occur if
you leave out a start tag or accidentally spell it incorrectly.

If you want additional information about the errors, use the command make verify. It
produces a more detailed error log.

Producing the Final Product

This section describes how to package your online help as a subsystem that users can
install using Software Manager (swmgr), the Silicon Graphics software installation utility.
Topics include:

• “Creating the Installable Subsystem”

• “Incorporating the Help Subsystem into a Product With a Custom Installation
Script”

• “Incorporating the Help Subsystem into an Installable Product”

Creating the Installable Subsystem

After you’ve finished writing and building your online help, you need to package it so
that users can install it with the rest of your product. To do so:

1. Go to the directory that contains the online help.

2. Enter:

% make images

This produces a directory called images. This directory contains all of the files you
need to let users install the online help using Software Manager.

Incorporating the Help Subsystem into an Installable Product

If you use the Software Packager utility (swpkg) to package your product so that users can
install it using Software Manager, you need to merge the online help subsystem with the
rest of your product. Consult the Software Packager User’s Guide for detailed instructions
for using swpkg.

154

Chapter 9: Providing Online Help With SGIHelp

You don’t need to use swpkg to create spec or IDB files for your online help subsystem.
By following the instructions in “Preparing to Build the Online Help” on page 150, you
created the spec file. The process of building your online help, described in “Building the
Online Help” on page 151 automatically created an IDB file and tagged the files; set the
permissions and destinations; and assigned the necessary attributes. The online help
build tools use “/” as the Source and Destination Tree Root directories when generating
the IDB file. (The Software Packager User’s Guide defines all of these terms.)

If you’ve not already created the spec and IDB files for the rest of your product using
swpkg, you can use swpkg to open the existing help subsystem spec and IDB files, and
expand them as needed to handle the rest of your product. Consult the Software Packager
User’s Guide for instructions.

If you’ve already created the spec and IDB files for your product, you can merge the help
subsystem with the existing files as described in “Combining Existing Products Into a
Single Product” in Chapter 7 of the Software Packager User’s Guide.

Incorporating the Help Subsystem into a Product With a Custom
Installation Script

If you don’t use swpkg to package your product for installation with Software Manager,
do one of the following.

• If users install your product using the tar command, have them use tar to copy the
online help images as well. After copying the images, the user needs to type:

inst -af < inst_product>

where inst_product is the location of the images.

• If you’ve created a script, enhance the script so that it extracts all of the help images
onto disk, and then invokes the command:

inst -af < inst_product>

where inst_product is the location of the images.

Bibliography of SGML References

155

Bibliography of SGML References

1. *SoftQuad, Inc. The SGML Primer. SoftQuad’s Quick Reference Guide to the Essentials
of the Standard: The SGML Needed for Reading a DTD and Marked-Up Documents and
Discussing Them Reasonably. Version 2.0. Toronto: SoftQuad Inc., May 1991. 36 pages.
Available from SoftQuad Inc.; 56 Aberfoyle Crescent, Suite 810; Toronto, Ontario;
Canada M8X 2W4; TEL: +1 (416) 239-4801; FAX: +1 (416) 239-7105.

2. Bryan, Martin. SGML: An Author’s Guide to the Standard Generalized Markup
Language. Wokingham/Reading/New York: Addison-Wesley, 1988. ISBN:
0-201-17535-5 (pbk); LC CALL NO: QA76.73.S44 B79 1988. 380 pages. A highly
detailed and useful manual explaining and illustrating features of ISO 8879. The
book: (1) shows how to analyze the inherent structure of a document; (2) illustrates
a wide variety of markup tags; (3) shows how to design your own tag set; (4) is
copiously illustrated with practical examples; (5) covers the full range of SGML
features. Technical and non-technical authors, publishers, typesetters and users of
desktop publishing systems will find this book a valuable tutorial on the use of
SGML and a comprehensive reference to the standard. It assumes no prior
knowledge of computing or typography on the part of its readers.

3. Goldfarb, Charles F. The SGML Handbook. Edited and with a foreword by Yuri
Rubinsky. Oxford: Oxford University Press, 1990. ISBN: 0-19-853737-1. 688 pages.
This volume contains the full annotated text of ISO 8879 (with amendments),
authored by IBM Senior Systems Analyst and acknowledged “father of SGML,”
Charles Goldfarb. The book was itself produced from SGML input using a DTD
which is a variation of the “ISO.general” sample DTD included in the annexes to
ISO 8879. The SGML Handbook includes: (1) the up-to-date amended full text of
ISO 8879, extensively annotated, cross-referenced, and indexed; (2) a detailed
structured overview of SGML, covering every concept; (3) additional tutorial and
reference material; and (4) a unique “push- button access system” that provides
paper hypertext links between the standard, annotations, overview, and tutorials.

4. Herwijnen, Eric van. Practical SGML. Dordrecht/Hingham, MA: Wolters Kluwer
Academic Publishers. 200 pages. ISBN: 0-7923- 0635-X. The book is designed as a
“practical SGML survival-kit for SGML users (especially authors) rather than
developers,” and itself constitutes an experiment in SGML publishing. The book
provides a practical and painless introduction to the essentials of SGML, and an
overview of some SGML applications. See the reviews by (1) Carol Van Ess-Dykema
in Computational Linguistics 17/1 (March 1991) 110-116, and (2) Deborah A.
Lapeyre in <TAG> 16 (October 1990) 12-14.

156

Chapter 9: Providing Online Help With SGIHelp

5. Smith, Joan M.; Stutely, Robert S. SGML: The Users’ Guide to ISO 8879.
Chichester/New York: Ellis Horwood/Halsted, 1988. 173 pages. ISBN:
0-7458-0221-4 (Ellis Horwood) and ISBN: 0-470-21126-1 (Halsted). LC CALL NO:
QA76.73.S44 S44 1988. The book (1) supplies a list of some 200 syntax productions,
in numerical and alphabetical sequence; (2) gives a combined abbreviation list; (3)
includes highly useful subject indices to ISO 8879 and its annexes; (4) supplies
graphic representations for the ISO 8879 character entities; and (5) lists SGML
keywords and reserved names. An overview of the book may be found in the SGML
Users’ Group Newsletter 9 (August 1988).

6. ISO 8879:1986. Information Processing—Text and Office System—Standard Generalized
Markup Language (SGML). International Organization for Standardization. Ref. No.
ISO 8879:1986 (E). Geneva/New York, 1986. A subset of SGML became a US FIPS
(Federal Information Processing Standard) in 1988. The British Standards Institution
adopted SGML as a national standard (BS 6868) in 1987, and in 1989 SGML was
adopted by the CEN/CENELEC Standards Committees as a European standard,
#28879. Australia has dual numbered versions of ISO 8879 SGML and ISO 9069
SDIF (AS 3514—SGML 1987; AS 3649—1990 SDIF).

7. ISO 8879:1986 / A1:1988 (E). Information Processing—Text and Office Systems—
Standard Generalized Markup Language (SGML), Amendment 1. Published 1988-07-01.
Geneva: International Organization for Standardization, 1988.

Users can set several preferences for system operation in the Indigo Magic
Desktop. This chapter describes how to use these preference settings.

Handling Users’ System Preferences

Chapter 10

159

Chapter 10

10. Handling Users’ System Preferences

This chapter describes how your application can recognize and use various system
preferences that users can set through Desktop control panels. Whenever possible, your
application should follow these preferences to provide a consistent interface for your
users. In particular, this chapter contains:

• “Handling the Mouse Double-Click Speed Setting” describes how to recognize the
preferred mouse double-click speed.

• “Using the Preferred Text Editor” describes how to use the preferred visual text
editor whenever your application needs to let users edit text.

Handling the Mouse Double-Click Speed Setting

The Mouse Settings control panel (available from the “Customize” submenu of the
Desktop toolchest) allows users to set various parameters that affect the operation of the
mouse. The setting of importance to applications is “Click Speed,” which determines the
maximum interval between double-clicks. “Click Speed” sets the *multiClickTime X
resource.

In most cases, you don’t need to do anything to handle this setting. IRIS IM widgets
automatically use the multiClickTime value as appropriate. Only if your application
needs to handle double-clicks explicitly (for example, to select a word in a word
processing application) does it need to call XtGetMultiClickTime() to determine the
double-click time. See the XtGetMultiClickTime(3Xt) reference page for more
information on XtGetMultiClickTime().

Note: Don’t call XtSetMultiClickTime(), which sets the double-click time for the entire
display.

160

Chapter 10: Handling Users’ System Preferences

Using the Preferred Text Editor

The Desktop Settings control panel (available from the “Customize” submenu of the
Desktop toolchest) contains a “Default Editor” setting, which allows users to select a
preferred visual editor for editing ASCII text. This sets the value of the WINEDITOR
environment variable.

Whenever your application needs to let users edit text, you should:

1. Call getenv() to check whether the WINEDITOR environment variable is set. See
the getenv(3c) reference page for more information on getenv().

2. If WINEDITOR is set, save the text to edit in a temporary file. Typically, you should
check the value of the environment variable TMPDIR and, if it is set, put the
temporary file in that directory.

3. Execute the editor, providing it the new of the temporary file as an argument.

4. When the user quits the editor, read the temporary file and delete it.

PART TWO

Creating Desktop Icons II

Chapter 11:

Creating Desktop Icons: An Overview

Chapter 12:

Using IconSmith

Chapter 13:

File Typing Rules

Chapter 14:

Printing From the Desktop

This chapter provides a checklist of the steps you need to follow to create
Desktop icons for your application.

Creating Desktop Icons: An Overview

Chapter 11

165

Chapter 11

11. Creating Desktop Icons: An Overview

This chapter offers an overview of the basic steps for creating Indigo Magic Desktop
icons and adding them to the Icon Catalog. If you don’t feel you need much background
information, you can skip to the brief list of instructions provided in “Checklist for
Creating an Icon” on page 166.

This chapter contains these sections:

• “About Indigo Magic Desktop Icons” on page 165 briefly discusses the Indigo
Magic Desktop and lists what kinds of icons you’ll need to provide for your
application.

• “Checklist for Creating an Icon” on page 166 lists the basic steps for drawing,
programming, compiling, and installing an icon.

• “Creating an Icon: The Basic Steps Explained in Detail” on page 168 explains each of
the basic icon creation steps in more detail.

Note: Minimized windows, which represent running applications, aren’t Desktop icons.
To learn how to customize the image on a minimized window, refer to Chapter 6,
“Customizing Your Application’s Minimized Windows.”

About Indigo Magic Desktop Icons

Files on the Desktop are represented by icons. Users can manipulate these icons to run
applications, print documents, and perform other actions. “How Users Interact With
Desktop Icons” in Chapter 1 of the Indigo Magic User Interface Guidelines describes some
of the common user interactions.

The Desktop displays different icons to represent the different types of files. For example,
the default icon for binary executables is the “magic carpet,” and the default icon for
plain text files is a stack of pages.

166

Chapter 11: Creating Desktop Icons: An Overview

When you create your own application, by default the Desktop uses an appropriate
“generic” icon to represent the application and its associated data files (for example, the
magic carpet icon for the executable and the stack of pages icon for text files). You can
also design your own custom icons to promote product identity and to indicate
associated files.

Another advantage of creating custom icons is that you can program them to perform
certain actions when users interact with them on the Desktop. For example, you can
program a custom data file icon so that when a user opens it, the Desktop launches your
application and opens the data file.

The Desktop determines which icon to display for a particular file by finding a matching
file type. A file type consists of a set of File Typing Rules (FTRs) that describe which files
belong to the file type and how that type’s icon looks and acts on the Desktop.

The Desktop reads FTRs from compiled versions of special text files called FTR files. An
FTR file is a file in which one or more file types are defined (typically, you define more
than one file type in a single file). FTR files can also contain print conversion rules, which
define any special filters needed to print given file types. Chapter 13, “File Typing
Rules,” discusses the syntax of FTRs, and Chapter 14, “Printing From the Desktop,”
discusses print conversion rules.

Checklist for Creating an Icon

To provide a comprehensive Desktop icon interface for your application:

1. Tag your application. You need to tag the application with its own unique
identification number so that the Desktop has a way of matching the application
with the corresponding FTRs. See “Step One: Tagging Your Application” on
page 168 for instructions.

2. Draw a picture of your icon. Create a distinctive Desktop icon to help users
distinguish your application from other applications on the Desktop. Optionally,
create an icon for the data files associated with your application. Use the IconSmith
application to draw your icons. IconSmith allows you to draw an icon and then
convert it into the icon description language used by the Desktop. IconSmith is the
only tool you can use to create an icon picture. For guidelines on designing icons,
see the Indigo Magic User Interface Guidelines. For information on how to use
IconSmith, see Chapter 12, “Using IconSmith.”

Checklist for Creating an Icon

167

3. Program your icon. Create the FTRs to define your icons’ Desktop interaction.
Chapter 13, “File Typing Rules,” describes FTRs in detail. Before programming your
icon, think about what users expect from the application and, with that in mind,
decide how you want the icon to behave within the Desktop. Before you make these
decisions, read the icon programming guidelines in “Defining the Behavior of Icons
With FTRs” in Chapter 2 of the Indigo Magic User Interface Guidelines. In particular:

■ Program your Desktop icon to run your application with the most useful
options. Include instructions for launching your application when the user
opens the icon; opens the icon while holding down the <Alt> key; and drags
and drops other icons on the application icon.

■ If there are several useful combinations of options that users might want to use
when invoking your application, you can incorporate them into a Desktop
menu. (These Desktop menu items appear only when the icon is selected.)
Users can then select the menu item that corresponds to the behavior they
want—without having to memorize a lot of option flags.

■ Where appropriate, provide print conversion rules that describe how to convert a
data file for printing into a type recognized by the Desktop. To print output,
users can then just select the appropriate data file icon and choose “Print” from
the Desktop menu rather than having to remember specialized filter
information. Chapter 14, “Printing From the Desktop,” describes print
conversion rules.

4. Compile the source files. Compile the .otr files, which contain the compiled source
for all existing FTRs. For more information on .otr files, see “Step Four: Compiling
the Source Files” on page 174.

5. Add your application to the Icon Catalog. This makes it easier for your users to
locate your icon in the Icon Catalog and helps maintain a consistent look for your
application in the Desktop. “Step Five: Installing Your Application in the Icon
Catalog” on page 175 explains how to do this.

6. Restart the Desktop. You can view your changes after you restart the Desktop.
“Step Six: Restarting the Desktop” on page 175 explains how to restart the Desktop.

7. Update your installation process. If you want to install your application on other
Silicon Graphics workstations, include in your installation all of the files that you
created in the preceding steps. Silicon Graphics recommends you use swpkg to
package your files for installation. See the Software Packager User’s Guide for
information for instructions on using swpkg. See “Step Seven: Updating Your
Installation Process” on page 175 for guidelines.

168

Chapter 11: Creating Desktop Icons: An Overview

Note: You cannot create your own device, host, or people icons. These are special icons
used by the Desktop and can currently be created only by Silicon Graphics.

Creating an Icon: The Basic Steps Explained in Detail

This section describes in detail each of the basic steps listed in “Checklist for Creating an
Icon” on page 166. The steps are:

• “Step One: Tagging Your Application”

• “Step Two: Drawing a Picture of Your Icon”

• “Step Three: Programming Your Icon”

• “Step Four: Compiling the Source Files”

• “Step Five: Installing Your Application in the Icon Catalog”

• “Step Six: Restarting the Desktop”

• “Step Seven: Updating Your Installation Process”

Step One: Tagging Your Application

The first step is to tag the application with its own unique identification number so that
the Desktop has a way of matching the application with the corresponding FTRs. The
easiest way to tag your application is to use the tag command. In order to use tag, your
application must be an executable or a shell script, and you must have write and execute
permissions for the file.

Note: You do not tag data or configuration files used by your application. Instead, you
provide rules as described in “Matching Files Without the tag Command” on page 217 to
identify these files.

If your application does meet the criteria for using the tag command, then select a tag
number from your block of registered tag numbers. If you do not have a block of
registered tag numbers, you can get one by calling 415/933-TAGS or sending an e-mail
request to Silicon Graphics at this mail address:

desktoptags@sgi.com

Creating an Icon: The Basic Steps Explained in Detail

169

After Silicon Graphics sends you a block of registered tag numbers, use the tag(1)
command to assign one to your application. To do this, change to the directory
containing your application and enter:

% tag tagnumber filename

where tagnumber is the number you’re assigning to the application and filename is the
name of the application. For more detailed information on the tag command, see the
tag(1) reference page.

Step Two: Drawing a Picture of Your Icon

The next step is to create the picture for your icon. An icon picture generally consists of
a unique badge plus a generic component (for example, the “magic carpet” designating
executables). The badge is the part of the icon picture that appears in front of the generic
component and that uniquely identifies your application. The generic components are
pre-drawn and installed by default when you install the Indigo Magic Desktop
environment.

“Designing the Appearance of Icons” in Chapter 2 of the Indigo Magic User Interface
Guidelines provides guidelines for drawing your icon images. If possible, consult with a
designer or graphics artist to produce an attractive, descriptive icon. Chapter 12, “Using
IconSmith,” describes exactly how to draw such an icon. Save the badge in a file called
<<IconName>>.fti, where IconName is any name you choose. Choose a meaningful name
(such as the name of the application or data format). If you have separate pictures
representing the open and closed states of the icon, it’s a good idea to name them
<<IconName>>.open.fti and <<IconName>>.closed.fti, respectively.

After drawing your badge with IconSmith (described in Chapter 12) save the picture—
the filename should end in .fti—and put the saved file in the correct directory. The
appropriate directory depends on where you put your FTR files:

• If you put your FTR (.ftr) files in the /usr/lib/filetype/install directory (where you
typically should install your FTR files), then put your badge (.fti) files in the
/usr/lib/filetype/install/iconlib directory.

• If you put your FTR files in one of the other directories listed in Appendix F, then
put your badge file in a subdirectory of that directory. Name the subdirectory iconlib
if the subdirectory doesn’t already exist.

170

Chapter 11: Creating Desktop Icons: An Overview

Step Three: Programming Your Icon

Programming an icon means creating a file type. Each file type consists of a set of file
typing rules, each of which defines some aspect of the look or behavior of the icon. Your
file type includes rules that name the file type, tell the Desktop where to find the
associated icon files, what to do when users double-click the icon, and so on. Chapter 13,
“File Typing Rules,” describes how to create the FTR file that defines your file type.
“Defining the Behavior of Icons With FTRs” in Chapter 2 of the Indigo Magic User Interface
Guidelines describes the types of behaviors your icons should support.

(This section assumes that you are writing your FTRs completely from scratch. You
might prefer instead to modify an existing file type. To learn how to find the FTRs for an
existing icon, see “Add the FTRs: An Alternate Method” on page 171.)

Where to Put FTR Files

Most FTR files that are not created at Silicon Graphics belong in the /usr/lib/filetype/install
directory. There are also specific FTR directories set aside for site administration. For a
list of all FTR directories, see Appendix F, “FTR File Directories.”

If you want to have a look at some existing FTR files, check out the /usr/lib/filetype/install
directory.

Naming FTR Files

If you have an existing FTR file, you can add the new file type to this file. Otherwise, you
need to create a new FTR file, which you should name according to the standard naming
convention for application vendors’ FTR files. The convention is:

vendor-name[.application-name].ftr

where vendor-name is the name of your company and application-name is the name of your
application.

Name the File Type

Each file type must have a unique name. To help insure that your file type name is
unique, base it as closely as possible on your application name.

Creating an Icon: The Basic Steps Explained in Detail

171

As an extra check, you can search for your file type name in the /usr/lib/filetype directory,
to make sure that the name is not already in use:

1. Change to the /usr/lib/filetype directory:

% cd /usr/lib/filetype

2. Search for the file type name:

% grep " your_name_here" */*.ftr

where your_name_here is the name you’ve selected for your file type.

If you find another file type of the name you have chosen, pick a new name.

Add the FTRs

To create a file type, either add the file type definition to an existing FTR file or create a
new FTR file. You can define all the necessary file types for your application in a single
FTR file.

Each file type definition must include:

• the TYPE rule, to tell the Desktop that you are declaring and naming a new type
(the TYPE rule must go on the first line of the FTRs)—a type is a unique type of icon,
such as an email icon

• the LEGEND rule, to provide a text description when users view icons as a list

• the MATCH rule, to allow the Desktop to match files with the corresponding file
type

• the ICON rule, to tell the Desktop how to draw the icon to use for this file type

In addition to these basic components, you can add other FTRs as necessary.

Add the FTRs: An Alternate Method

If you don’t want to write the file type from scratch, you can modify an existing file type.

The first step is to choose a file type that produces icon behavior similar to what you want
from your new file type (that is, does the same thing when you double-click the icon, acts
the same way when you drop the icon on another icon, and so on.)

172

Chapter 11: Creating Desktop Icons: An Overview

To find the set of FTRs that define the file type for the an icon, first locate the icon on the
Desktop. If the icon isn’t already on the Desktop select “An Icon” from the Find toolchest
and use the Find an Icon window to find the icon. (When the icon appears in the drop
pocket, drag it onto the Desktop.

Select the icon by clicking the left mouse button on it, then hold down the right mouse
button to get the Desktop menu. When the menu appears, select the “Get Info” menu
item. A window appears. In the window, look at the line labeled, “Type.”

For example, if you’d selected the jot icon, the line would read:

Type: jot text editor

The string “jot text editor” is produced by the LEGEND rule; you can use this string to
find the FTRs that define the jot file type. To do this, open a shell and follow these steps:

1. Change to the /usr/lib/filetype directory

% cd /usr/lib/filetype

2. Search for “jot text editor”

% grep "jot text editor" */*.ftr

The system responds with this line:

system/sgiutil.ftr LEGEND jot text editor

This tells you that the jot FTRs are in the /usr/lib/filetype/system directory in a file named
sgiutil.ftr. Now you can open the sgiutil.ftr file using the text editor of your choice, and
search for the “jot text editor” string again. This tells you exactly where the jot FTRs are
in the sgiutil.ftr file.

Note: If jot file type did not have its own icon, this search would not give you the
filename.

Now you can go to the file with the jot FTRs and copy them into the FTR file for your new
file type. Then rename and modify these copied FTRs to fit your new file type, as
described in “Step Three: Programming Your Icon” on page 170.

An Example File Type

Here is an example of a simple file type definition:

TYPE scrimshaw

Creating an Icon: The Basic Steps Explained in Detail

173

 MATCH tag == 0x00001005;
 LEGEND the scrimshaw drawing program
 SUPERTYPE Executable
 CMD OPEN $LEADER
 CMD ALTOPEN launch -c $LEADER
 ICON {
 if (opened) {
 include("../iconlib/generic.exec.open.fti");

 } else {
 include("../iconlib/generic.exec.closed.fti");
 }
 include("/iconlib/scrimshaw.fti");
 }

Here’s a brief description of what each of these lines does:

• The first line contains the TYPE rule, which you use to name the file type. In this
case, the file type is named, scrimshaw. Always place the TYPE rule on the first line
of your FTRs. The TYPE rule is described in “Naming File Types: The TYPE Rule”
on page 213.

• The second line contains the MATCH rule. Use the MATCH rule to tell the Desktop
which files belong to this file type. In this example, we are just writing in the
identification (tag) number that we have already assigned to the application. The
MATCH rule is described in “Matching File Types With Applications: The MATCH
Rule” on page 215.

• The third line contains the LEGEND rule. Use this rule to provide a brief descriptive
phrase for the file type. This phrase appears when users view a directory in list
form. It also appears when users select the “Get File Info” item from the Desktop
pop-up menu. In this case, the descriptive phrase is “the scrimshaw drawing
program.” The LEGEND rule is described in “Adding a Descriptive Phrase: The
LEGEND Rule” on page 221.

• The fourth line contains the SUPERTYPE rule. Use this rule to name a file type
superset for your FTRs. In this example, the SUPERSET is “Executable.” The
SUPERTYPE rule is described in “Categorizing File Types: The SUPERTYPE Rule”
on page 214.

• The fifth line contains the CMD OPEN rule. This rule tells the Desktop what to do
when users double-click the icon. In this example, double-clicking the icon opens
the scrimshaw application. The $LEADER variable is a Desktop environment
variable. The Desktop environment variables are listed and defined in Appendix B,
“Desktop Environment Variables.” The CMD OPEN rule is described in
“Programming Open Behavior: The CMD OPEN Rule” on page 223.

174

Chapter 11: Creating Desktop Icons: An Overview

• The sixth line contains the CMD ALTOPEN rule. This rule tells the Desktop what to
do when users double-click the icon while holding down the <Alt> key. In this
example, the Desktop runs launch(1), which brings up a text edit window so that
users can type in command-line arguments to the scrimshaw executable. Again,
$LEADER is a Desktop environment variable. These are listed in Appendix A. For
more information on the launch command, see the launch(1) reference page. The
CMD ALTOPEN rule is described in “Programming Alt-Open Behavior: The CMD
ALTOPEN Rule” on page 224.

• The final lines contain the ICON rule. These lines tell the Desktop where to find the
generic component of the open and closed versions of the “scrimshaw” icon. Note
that this rule combines the generic component for open and closed executables with
the unique “scrimshaw” badge that identifies it as a distinctive application. The
ICON rule is described in “Getting the Icon Picture: The ICON Rule” on page 229.

Step Four: Compiling the Source Files

The Desktop compiles FTR source files into files called .otr (and .ctr) files. These files are
kept in the /usr/lib/filetype directory.

Any time you add or change FTRs (or print conversion rules) you must recompile the .otr
and .ctr files by following these steps:

1. Change to the /usr/lib/filetype directory:

% cd /usr/lib/filetype

2. Become superuser:

% su

3. Recompile the files:

make -u

(If you don’t use the -u option when you make the files, some of your changes might not
take effect.)

To activate the new FTRs, quit and restart the Desktop. For instructions on restarting the
Desktop, see “Step Six: Restarting the Desktop” on page 175.

Creating an Icon: The Basic Steps Explained in Detail

175

Step Five: Installing Your Application in the Icon Catalog

Add your icon to the Icon Catalog, using the iconbookedit command. The iconbookedit
command accepts a file that contains a layout for the Icon Catalog window. This layout
file declares which icons should be in the window. To add your application’s icon to the
Icon Catalog, enter:

% iconbookedit -add "Category:File Name: myApplication" -syspage whichPage

where myApplication is your application name and path and whichPage is a particular
page in the Icon Catalog.

For example, suppose your application is called pastry and it’s in /usr/sbin. To add the
pastry application to the Applications page of the Icon Catalog (assuming you’ve already
created the icon), enter:

% iconbookedit -add "Category:File Name:/usr/sbin/pastry" -syspage
Applications

Similarly, you can remove an icon using the -remove flag.

For more information, see “Making Application Icons Accessible” in Chapter 2 of the
Indigo Magic User Interface Guidelines, which describes the Icon Catalog and how to select
the appropriate page of the Icon Catalog for your application.

Step Six: Restarting the Desktop

To view your changes and additions, you must restart the Desktop. To restart the
Desktop, first kill it by typing:

% /usr/lib/desktop/telldesktop quit

Then, restart the Desktop by selecting “Home Directory” from the Desktop toolchest.

Step Seven: Updating Your Installation Process

Silicon Graphics recommends you use swpkg to package your files for installation.The
Software Packager User’s Guide describes how to package your application for installation.

176

Chapter 11: Creating Desktop Icons: An Overview

Set up your installation process to execute the iconbookedit command (see “Step Five:
Installing Your Application in the Icon Catalog” on page 175) so that your icon appears
in the Icon Catalog on your users’ workstations when they install your application.

To do this, (assuming you’re using swpkg to package your product for installation), select
the exitop attribute on the Add Attributes worksheet and specify the iconbookedit
command described earlier:

iconbookedit -add "Category:File Name: myApplication" -syspage whichPage

where myApplication is your application name and path and whichPage is a particular
page in the Icon Catalog.

Run the iconbookedit command as an exit operation (exitop) from a Software Manager
(inst) install. Associate the exitop with the applications binary, not the icon or ftr file. For
example, if you have an application named /usr/sbin/webjumper (you must specify the full
path name) that you’d like to install on the WebTools Icon Catalog page, use this exitop:

exitop(“if [-x \$$rbase/usr/sbin/iconbookedit]; then
chroot \$$rbase /usr/sbin/iconbookedit -add ‘Category:File
Name:/usr/sbin/webjumper’ -syspage WebTools; fi”)

The $rbase variable allows this exitop to function correctly from a mini-root installation.

See Chapter 6, “Adding Attributes,” in the Software Packager User’s Guide for more
information on setting the exitop attribute in swpkg.

Your installation process must:

• Tag the executables it produces (“Step One: Tagging Your Application” on page 168
explains how to tag executables). With swpkg, you can do this using the exitop
attribute from the Add Attributes worksheet. Set up the exitop attribute to run the
tag command (assuming you’re using the tag command to tag your executable). See
Chapter 6, “Adding Attributes,” in the Software Packager User’s Guide for
instructions.

• Copy .fti and .ftr files to the appropriate directories (“Where to Put FTR Files” on
page 170 and “Where to Put Your Completed Icon” on page 183 explain which
directories these files belong in). With swpkg, you can do this by setting the
appropriate destination directory and destination filename for each file, using the
Edit Permissions and Destinations worksheet. See Chapter 5, “Editing Permissions
and Destinations,” in the Software Packager User’s Guide for instructions.

Creating an Icon: The Basic Steps Explained in Detail

177

• Invoke make in /usr/lib/filetype to update the Desktop's database (“Step Four:
Compiling the Source Files” on page 174 explains how to update the database).
With swpkg, you can do this using the exitop attribute from the Add Attributes
worksheet. Set up the exitop attribute to run the make command. See Chapter 6,
“Adding Attributes,” in the Software Packager User’s Guide for instructions.

• Add your icon to the Icon Catalog, using the iconbookedit command. See “Step Five:
Installing Your Application in the Icon Catalog” on page 175 for instructions on
using the iconbookedit command.

See the make(1), sh(1), and tag(1) reference pages for more information on these
commands.

This chapter explains how to use the IconSmith tool to draw a Desktop icon for
your application.

Using IconSmith

Chapter 12

181

Chapter 12

12. Using IconSmith

This chapter explains how to use the IconSmith tool to draw an icon for your application.
This chapter contains these sections:

• “About IconSmith” on page 182 briefly describes the IconSmith tool.

• “Where to Put Your Completed Icon” on page 183 explains where to put your icon
file, after you’ve finished drawing your icon.

• “Some Definitions” on page 183 defines some terms you’ll need to use IconSmith.

• “Starting IconSmith” on page 184 explains how to start the IconSmith tool.

• “IconSmith Menus” on page 184 discusses IconSmith’s main menus: the IconSmith
menu and the Preview menu.

• “IconSmith Windows” on page 186 describes IconSmith’s windows: the main
window, the Palette window, the Constraints window, and the Import Icon (Set
Template) window.

• “Drawing With IconSmith” on page 188 describes IconSmith’s drawing tools.

• “Selecting” on page 192 describes IconSmith’s selection features.

• “Transformations” on page 194 describes IconSmith’s transformation features.

• “Concave Polygons” on page 196 explains how to construct concave polygons in
IconSmith.

• “Constraints: Gravity (Object) Snap and Grid Snap” on page 196 explains how to
use IconSmith’s gravity snap and grid snap features to guide your drawing.

182

Chapter 12: Using IconSmith

• “Icon Design and Composition Conventions” on page 198 explains how to make
sure that your icon complies with the basic icon design and composition
conventions described in “Designing the Appearance of Icons” in Chapter 2 of the
Indigo Magic User Interface Guidelines.

• “Advanced IconSmith Techniques” on page 200 describes some advanced
techniques, such as drawing circles and ovals in IconSmith.

About IconSmith

IconSmith is a program for drawing Desktop icons. Icons drawn with IconSmith are
saved in an icon description language. The icon description language is described in
Appendix D, “The Icon Description Language.”

Designed for the specific requirements of the Desktop, Iconsmith produces icons that
draw quickly and display properly on the Desktop on all Silicon Graphics workstations.

An icon picture generally consists of a unique badge plus a generic component (for
example, the “magic carpet” designating executables). The badge is the part of the icon
picture that appears in front of the generic component and that uniquely identifies your
application. The generic components are pre-drawn and installed by default when you
install the Indigo Magic Desktop environment.

You don’t need to draw the generic components of your icons. When using IconSmith to
draw your icon badge, you can import the generic component as a template as described
in “Importing Generic Icon Components (Magic Carpet)” on page 198.

Note: Iconsmith is not a general-use drawing application. Use it only to draw Desktop
icons.

Where to Put Your Completed Icon

183

Where to Put Your Completed Icon

After drawing your badge with IconSmith, save the badge—the filename should end in
.fti—and put the saved file in the correct directory:

• If you put your FTR (.ftr) files in the /usr/lib/filetype/install directory (where you
typically should install your FTR files), then put your icon (.fti) files in the
/usr/lib/filetype/install/iconlib directory.

• If you put your FTR files in one of the other directories listed in Appendix F, then
put your badge in a subdirectory of that directory. Name the subdirectory iconlib if
the subdirectory doesn’t already exist.

After you put the badge in the appropriate directory, see the following for more
information:

• “Step Three: Programming Your Icon” on page 170

• “Step Four: Compiling the Source Files” on page 174

• “Step Five: Installing Your Application in the Icon Catalog” on page 175

• “Step Six: Restarting the Desktop” on page 175

• “Step Seven: Updating Your Installation Process” on page 175

Some Definitions

IconSmith uses some terms that may not be familiar to you. This section defines some
terms used in the rest of this chapter.

Caret

The caret is a small red and blue cross. The caret always shows the location of the last
mouse click—when you click the left mouse button, the caret appears where the cursor
is pointed. Unlike the cursor, the caret shows the effects of grids and gravity (described
in “Constraints: Gravity (Object) Snap and Grid Snap” on page 196).

184

Chapter 12: Using IconSmith

Transformation Pin

The transformation pin indicates the point from which an object is scaled or sheared and
around which an object is rotated. It is a blue and white cross, larger than the caret. It can
be dropped anywhere to affect a transform.

Vertex

A vertex is a selectable point, created when the mouse is clicked in the IconSmith window
while the <Ctrl> key is held down.

Path

A path is one or more line segments between vertices. Paths can be open or closed. A
closed path can be filled or unfilled.

Starting IconSmith

To start IconSmith from the Desktop, double-click the IconSmith icon, shown in
Figure 12-1.

Figure 12-1 The IconSmith Icon

To start IconSmith from the command line, type:

% /usr/sbin/iconsmith

IconSmith Menus

The IconSmith main window, shown in Figure 12-2, provides two popup menus, the
IconSmith menu and the Preview menu:

• Access the IconSmith menu by holding down the right mouse button anywhere in
the main window drawing area.

IconSmith Menus

185

• Access the Preview menu by holding the right mouse button down within the blue
preview square located in the lower left-hand corner of the IconSmith main
window.

Figure 12-2 The Main IconSmith Window With Popup Menus

186

Chapter 12: Using IconSmith

IconSmith Windows

Besides the main window, IconSmith provides three other primary windows: the Palette
(Selection Properties) window, the Constraints window, and the Import Icon or Set Template
window.

Clicking the Palette button displays the Palette window, shown in Figure 12-3.

Figure 12-3 The Palette (Selection Properties) Window

Clicking the Constraints button displays the Constraints window, shown in Figure 12-4.

IconSmith Windows

187

Figure 12-4 The Constraints Window

Clicking the Import Icon button displays the Import Icon or Set Template window, shown
in Figure 12-5

188

Chapter 12: Using IconSmith

Figure 12-5 The Import Icon or Set Template Window

Drawing With IconSmith

IconSmith provides tools for drawing paths, selecting colors, importing design elements
from other icons, drawing shapes, and using template images. This section covers the
following topics:

• “Drawing Paths”

• “Deleting”

• “Keeping the 3-D Look”

• “Drawing Filled Shapes”

• “Sharing Design Elements”

• “Templates”

Before you begin drawing, it’s often useful to set up the preview box to represent the
Desktop as closely as possible. This helps you choose colors and draw your icon to look
its best when it appears on the Desktop and in the Icon Catalog. To do this:

Drawing With IconSmith

189

1. Set the Background color to WorkSpace. This gives the preview area the
background color of the Icon Catalog.

2. Import an appropriate template from the Import menu. For example, if you are
drawing an icon for a new application, import the Closed Application template.
This helps you center and size your design appropriately.

When drawing in IconSmith, it is easy to select the wrong object. One technique that you
can use is to draw adjacent icon components separately to prevent confusion when
selecting and editing an object. When you have finished working with the parts, you can
move them together.

There is an “Undo” option in the IconSmith popup menu. To bring up the IconSmith
popup menu, hold down the right mouse button. You can undo up to nine operations
using the <F1> key. To redo something you have undone, hold the <Shift> key and press
the <F1> key.

No single polygon can contain more than 255 vertices.

Also, be careful not to draw outside the royal blue boundary that appears in the preview
box and in the drawing area. The Desktop doesn’t display correctly outside those areas.

Drawing Paths

To draw a path with IconSmith:

1. Select a starting point by clicking the left mouse button.

2. Move the mouse to a new position.

3. Hold down the <Control> key and click the left mouse button.

This process creates a line segment. To add more line segments connected to the first,
repeat steps 2 and 3 as many times as necessary. To create a disconnected line segment,
repeat from step 1.

Drawing Filled Shapes

In IconSmith, you can fill a closed path (one in which the beginning and end points meet)
with a color. To draw a filled shape, make sure that you have selected a fill color from the
Palette menu, and proceed to draw. When you finish creating the closed path, the shape

190

Chapter 12: Using IconSmith

is filled with the current fill color. To change the fill color of an existing polygon, select it
by clicking on one of its vertices. Then choose a new fill color from the Pallet. Also, you
can change the fill color of a path by selecting the path and then selecting a new fill color.

Fill does not work properly with concave closed paths, nor with paths in which the
beginning point does not meet the end point. See “Concave Polygons” on page 196.

Deleting

To delete any path or vertex, select it and press the <Back Space> key, or use “Delete” in
the IconSmith popup menu.

Keeping the 3-D Look

Icons created by Silicon Graphics are drawn in the same isometric view, which provides
an illusion of 3-D, even though the polygons composing the icons are 2-D. If you draw
icons facing the screen at right angles, they look 2-D. To generate a 3-D effect, draw
“horizontal” lines so that they move up 1 unit in the y-axis for every 2 units they extend
along the true x-axis. See Figure 12-6.

Figure 12-6 3-D Icon Axes

Use the same projection that the original icon set uses. Icons tilted in the wrong direction
look off-balance, and destroy the 3-D appearance. For your convenience, IconSmith
provides an isometric grid. By following the diagonals of this grid, as shown, you can
create an icon that fits in exactly with other isometric icons in the Desktop. You can count
along these diagonal grid dots, to help measure, align, or center pieces of your icon.

Drawing With IconSmith

191

Drawing for All Scales

Desktop icons can be displayed in many sizes. It is easier to draw an icon that looks good
small, but you might consider the details that appear when a user enlarges your icon.

IconSmith includes two features useful in designing your icon for display at all sizes, the
Preview box and the slider on the right side of the drawing area.

The Preview Box

You can use the Preview box to see your icon design in common sizes and background
colors. The Preview box is the blue box in the lower left corner of the main IconSmith
window. By default, the Preview box shows your drawing at the default Desktop icon
display size and no background color. You can change the icon size and background
color in this window using the Preview box popup menu.

Changing Drawing Size

You can change the size of your design in the IconSmith drawing area using the slider on
the right side of the drawing area. Use the slider to look at your design at all sizes. At
particularly small sizes, some features may not be visible. At large sizes, design
imperfections may appear.

Sharing Design Elements

You can import design elements such as circles into your badge. Importing elements
where possible saves you work and makes it easy to include common design elements in
all the icons for one application.

To import an existing icon or icon element, click the Import button. This brings up the
Import Icon or Set Template window. Use the “Import to Icon Editing Layer” area to
specify the icon file you want.

Generic and sample material can be found in the /usr/lib/filetype/iconlib directory. For
example, to import a sample circle, type in the filename:

/usr/lib/filetype/iconlib/sample.circle.fti

Other icons can be found in:

192

Chapter 12: Using IconSmith

• /usr/lib/filetype/default/iconlib

• /usr/lib/filetype/system/iconlib

• /usr/lib/filetype/vadmin/iconlib

All icons are potential sources for design elements. However, if you are designing a
unique set of executable or document badges, you should make use of templates as
described in “Templates” on page 192 and “Icon Design and Composition Conventions”
on page 198.

Templates

You can use templates to help you design your icons or for tracing. You can import a
template so that you can see it in the IconSmith drawing window, without saving or
displaying as part of the design. This is most useful for getting position information
while you are designing a unique badge to use in conjunction with the generic executable
and document icons.

Note: You cannot move or change an icon template in IconSmith.

To display a template, click the Import button. In the Import Icon or Set Template window,
type the name of the template icon file you want in the area labeled “Set Template Layer.”
Note that three template images are available from buttons in this window. These
template images are the most often used, and they are discussed in “Icon Design and
Composition Conventions” on page 198.

Selecting

Before you edit, move, delete, or change the color of an object or vertex, you have to tell
IconSmith which object you want. This section describes aspects of selecting:

• “Partial”

• “Deselect Fragments”

• “Select Next”

• “Select All”

Selecting

193

Selecting can be difficult in a complex composition. The following tips can make the task
easier:

• To select an object or vertex, move the cursor on top of the object and click the left
mouse button. The vertices highlight blue and white when the object is selected. To
move the vertex or object, double-click, hold down the left mouse button and move
with the mouse. The vertices highlight green and yellow when you can move the
object.

• You can select more than one object or vertex by holding down the <Shift> key
during the selection process. To move the objects or vertices, move only one and the
rest will follow.

• You can select all vertices in an area with your mouse. Hold down the left mouse
button and sweep the cursor across the vertices you want. The area you select is
indicated by a box. When you let go of the left mouse button, all vertices are
selected.

• You can deselect a vertex by holding down the <Shift> key and clicking the vertex.

Partial

When you use the mouse to select an area with objects in it, you can include only some
vertices of some objects. When you toggle on the Partial button, objects partially selected
are highlighted. When you toggle off the Partial button, only objects that fall entirely
within the swept-out area are selected.

Deselect Fragments

In compositions with many objects, you can use “Deselect Fragments” to make selection
easier. When selecting the objects in the drawing area, you can also select adjacent
objects, then deselect what you don’t want. Hold the <Shift> key down and click one
vertex of each object you don’t want. This deselects the vertex, which makes the object
partially selected. Then you can use “Deselect Fragments” from the IconSmith popup
menu to deselect the entire object.

Select Next

“Select Next” allows you to select a vertex that is covered by another vertex. When two
or more trajectories (lines) each have a vertex at a common location, such as two triangles

194

Chapter 12: Using IconSmith

with a coincident edge, the “Select Next” operator is useful for selecting a trajectory other
than the top one. “Select Next” is also useful in images with tiled parts, where most
vertices share a location.

Select a shared vertex by clicking its location. That vertex is highlighted in yellow and
green (and the red and blue caret appears at that spot). The other vertices of the trajectory
selected are highlighted in white to indicate the trajectory to which the selected vertex
belongs. Now each time you choose “Select Next” from the IconSmith menu, you step
through all the other vertices of all the other trajectories which have a vertex at that point.

Select All

You can select all vertices in the main IconSmith window drawing area using the “Select
All” option in the IconSmith popup menu. You can select all vertices in an area by
holding down the left mouse button and sweeping out a box to surround the desired
area.

Transformations

The Transform buttons let you shrink, enlarge, stretch, and rotate portions of your icon
design. These features can make drawing easier and more precise.

To use any Transform button, follow this procedure.

1. Choose the Transform option you want using any of the six transform buttons.

2. Choose a point in the main IconSmith window drawing area as a reference point for
the transformation by positioning the cursor and clicking the left mouse button.

3. Bring up the IconSmith popup menu and select “Move to Caret” from the
Transform Pin rollover menu.

4. To select an entire object for transformation, hold down the <Alt> key and
double-click the object you want to transform. Otherwise, you may select
individual vertices by holding down the <Alt> and <Shift> keys while clicking
each desired vertex. Do not release the <Alt> key when you have finished selecting
vertices.

5. While still holding down the <Alt> key, position the cursor inside the object you
want to transform. Press and hold down the left mouse button and move the mouse
to transform the object.

Transformations

195

For example, here is how you enlarge a circle:

1. Choose “Scale” from the Transform menu.

2. Choose a point on the perimeter of the circle.

3. Bring up the IconSmith popup menu and select “Move to Caret” from the
“Transform Pin” rollover menu.

4. Hold down the <Alt> key and double-click the circle. All vertices on the circle are
now highlighted in green and yellow.

5. Continue to hold down the <Alt> key. Position the cursor on a vertex of the circle.
Press and continue to hold down the left mouse button while you sweep the mouse
out of the circle. The circle perimeter follows the cursor, enlarging the circle.

6. Release the left mouse button and <Alt> key when the circle is the size you want.

Scale

The Scale button changes the size of an object without changing its shape.

Scale X and Y

The buttons marked Scale X and Scale Y limit scaling transformations to either horizontal
or vertical, respectively. Unlike the Scale button, the Scale XY button allows you to stretch
your object both horizontally and vertically.

Rotate

Using the Rotate button, you can rotate a selected object around the Transform Pin.

Shear Y

The Shear Y transformation transforms rectangles into parallelograms with one pair of
sides parallel to the y axis. The Shear Y button is useful for transforming art that is drawn
in a face-on view to an isometric view.

196

Chapter 12: Using IconSmith

Note that strictly speaking, the Shear Y transformation performs two transformations:
shear in y and scale in x.

Concave Polygons

Do not use concave polygons when designing your icons; the Desktop does not display
concave polygons properly. If your icon does not display as you designed it, check for
concave polygons. You must break any such polygons into two or more convex
polygons. One method for creating concave polygons is to draw the polygon with no fill
color to serve as an outline, and then draw several separate convex polygons to fill the
outline, as shown in Figure 12-7.

Figure 12-7 Splitting a Concave Polygon

By default, IconSmith, like the Desktop, does not fill concave polygons properly. If you
would prefer to have concave polygons filled properly while drawing your icon design,
you can tell IconSmith to draw concave polygons. Bring up the IconSmith popup menu
with the right mouse button. Select “Concave” and pull out the rollover menu. Select
“No GL Check” from the rollover menu. IconSmith will not check for concave polygons
until you select “GL Check” from the Concave menu.

Constraints: Gravity (Object) Snap and Grid Snap

You can use gravity snap and grid snap to guide your drawing in IconSmith, allowing you
to align and compose objects perfectly. This makes drawing easier and more precise. Grid
snap causes the caret to “snap” to vertices or to the edges of the grid pattern displayed

Constraints: Gravity (Object) Snap and Grid Snap

197

behind the objects you are editing. Gravity snap causes the caret to snap to vertices and
the edges of objects you have already drawn. It is a good idea to make use of these
features to ensure that your icon looks clean and precise at all sizes.

Typically, it’s sufficient to toggle on gravity snap and grid snap. However, you can
control gravity snap and grid snap properties by using the Constraints window. When
using the Constraints window, remember to click either the Apply or Accept button to
implement your changes. The Accept button implements your changes and closes the
Constraints window, and the Apply button leaves the window on your screen.

Controlling the Grid

In the main IconSmith window, the Snap button under the heading “Grid” lets you turn
on or off the grid setting you’ve made in the Constraints window. The Show button lets
you display or hide the grid. To change the grid behavior, use the settings in the “Grid
Constraints” portion of the Constraints window.

You can change grid properties by selecting various buttons in the Grid Constraints
section of the Constraints window. Selections include:

• Grid Basis buttons control the shape of the grids. IconSmith includes two types of
grids. The isometric grid provides guidance in the perspective described in
“Keeping the 3-D Look” on page 190. IconSmith also provides a traditional square
grid. To change the type of grid you are using, select a Grid Basis button, and then
click the Apply button.

• Snap to Grid buttons affect what the caret gets snapped to: either vertices or edges.
These changes are reflected in the appearance of the grid after you click the Apply
button the appearance of the grid changes.

• Grid Spacing controls the distance between points in the grid. You can type in the
number of pixels you want, or base the distance on a selected line in your icon
design. Measure from Line measures the grid spacing from the line you select in the
drawing area. When you copy an object using “Duplicate,” the copy is placed one
grid space down and to the right from the original (or the previous copy). You can
use Grid Spacing to control where IconSmith places duplicate objects.

• Snap Influence allows you to adjust the area influenced by the “magnetic field” of the
grid.

198

Chapter 12: Using IconSmith

Controlling Gravity

The controls in the “Gravity Constraints” portion of the Constraints window control how
gravity snap behaves. In the main IconSmith window, the Snap button under the
“Gravity” heading lets you turn on or off the influence of gravity on objects.

• Snap to Object allows you assemble objects in your design smoothly. The object’s
edge, vertex, or both attract other objects when they are moved within range of
gravity.

• Snap Influence allows you to determine the range, in pixels, of the gravity influence
of objects in your design.

Icon Design and Composition Conventions

The standard set of Desktop icons has been designed to establish a clear, predictable
visual language for end users. As you extend the Desktop by adding your own
application-specific icons, it is important to make sure that your extensions fit the overall
look of the Desktop and operate in a manner consistent with the rest of the Desktop. This
section discusses:

• “Importing Generic Icon Components (Magic Carpet)”

• “Icon Size”

• “Selecting Colors”

 “Designing the Appearance of Icons” in Chapter 2 of the Indigo Magic User Interface
Guidelines contains extensive guidelines for designing the look of your icon.

Importing Generic Icon Components (Magic Carpet)

Many icons share common components. One example is the “magic carpet” component
used as a background component by most executable files; individual applications can
add unique badges.

Rather than redrawing the common “generic” component in each individual icon, you
can instead draw only the unique badges, and then use the ICON directive in the FTR file
to combine the badge with the generic component. “Getting the Icon Picture: The ICON
Rule” in Chapter 13 describes how to do this. An advantage to this approach is that you
don’t have to create separate icons to identify open or closed states. You can simply create

Icon Design and Composition Conventions

199

the unique badge and then set up the FTR file to include either the generic open
component or the generic closed component as appropriate.

While designing your icon, you can import the appropriate generic component as a
template using the “Set Template Layer” of the “Import or Set Template” window; this
helps you achieve the correct icon placement and perspective. When you import a
component into the template layer, the template component is displayed in the drawing
area, but not saved as part of the icon. When you are finished, you can save your icon in
a .fti file, and combine it with the generic component in the FTR file.

If you import a generic component using the “Icon Editing Layer” section of the “Import
or Set Template” window, the component becomes part of your icon. In general, you
shouldn’t do this; if you do, you use more disk space and icon design is more difficult.
Instead, you should draw only the badge. Then in your FTR file, you use the ICON rule
to display the appropriate generic component before displaying your badge. (See
“Getting the Icon Picture: The ICON Rule” on page 229 for information on the ICON
rule.)

Icon Size

The blue boundary box in the IconSmith drawing area indicates the area of your design
that draws in the Desktop and is sensitive to mouse input. You must confine your icon to
the area within this boundary. You can display or hide the box by using the Show button
under Bounds in the main IconSmith window.

Selecting Colors

You can select or change the color of any outlined or filled object by using the features in
the Selection Properties window. To bring up this window, click the Palette button. The
currently selected outline and fill colors are displayed under the “Current Colors”
heading.

There are two palettes in the Selection Properties window: one for the outline color, and
another for the fill color. The outline color palette consists of the first 16 entries in the IRIS
color map. The fill color palette gives you 128 colors created by dithering between the
color values of the first 16 colormap entries.

In addition to the colors on these palette, there are three special colors available that you
should use extensively when drawing your icon. The Desktop changes these colors to

200

Chapter 12: Using IconSmith

provide visual feedback when users select, locate, drag, and otherwise interact with your
icon. These colors and their uses are:

Icon Color Use extensively for drawing the main icon body

Outline Color Use for outlining and line work in your icon

Shadow Color Use for contrasting drop shadows below your icon

Select outline and fill colors displayed in the palettes by clicking them. If you want
subsequent objects to use your color selections, click “Apply to Pen.” If you current
objects to be updated with colors already in your pen, click an existing object with the left
mouse button, and then select “Get from Pen” from the Selection Properties window. The
object will get the outline and fill colors currently assigned to the pen.

Note that the icon color turns yellow when the icon is selected and royal blue when an
object is dropped on it. For more information on the use of color in designing icons, refer
to “Icon Colors” in Chapter 2 of the Indigo Magic User Interface Guidelines.

Advanced IconSmith Techniques

This section contains hints that make common IconSmith operations easier. This section
also provides a step-by-step example of creating an icon. Topics include:

• “Drawing a Circle”

• “Drawing an Oval”

• “Isometric Circles”

Drawing a Circle

Here is a trick for drawing a circle using lines:

Advanced IconSmith Techniques

201

1. Draw a path the length of the radius of the circle you want. Figure 12-8 shows an
example.

Figure 12-8 A Path

2. Select “Grid Spacing” of 0 pixels in the Constraints window.

3. Duplicate the line 12 times. Because grid spacing is set to 0, the duplicate lines stack.

4. Select one vertex, bring up the IconSmith popup menu, and select “Push Pin” from
the Transform Pin rollover menu.

5. Click the Rotate button from the Transform menu.

6. Hold down the <Alt> key and select the other vertex of the stack of paths.

7. Sweep out each path until the figure resembles a wheel, as shown in Figure 12-9.

Figure 12-9 Wheel Spokes

8. Connect the outside vertices, as shown in Figure 12-10.

Figure 12-10 Connected Spokes

9. Delete the inside “spoke” paths, to get a circle like the one in Figure 12-11.

202

Chapter 12: Using IconSmith

Figure 12-11 Finished 2-D Circle

Circles and other shapes can be time-consuming to create. Another way of adding circles
to your icon is to import a circle from another icon or from the icon parts library. See
“Sharing Design Elements” on page 191 for more information.

Drawing an Oval

To create an oval, stretch the circle you have already drawn.

1. Double-click a circle.

2. Bring up the IconSmith menu, and select “Move to Caret” from the Transform Pin
menu.

3. Place the pin directly above the circle.

4. Select Scale Y from the Transform menu.

5. Hold down the <Alt> key and use the mouse to stretch the circle to the oval shape
you want. Figure 12-12 shows an example.

Advanced IconSmith Techniques

203

Figure 12-12 An Oval

You can now assemble the parts to make a simple icon, as shown in Figure 12-13.

Figure 12-13 A Simple, Circular 2-D Icon

Isometric Circles

The circular icon created above is not a good central icon design because it is not
isometric. The circle looks awkward in the context of isometric icons. Here are two ways
to make the same design in isometric space.

Isometric Transformation

You can use the Shear Y button with an isometric grid to make any object seem 3-D.

204

Chapter 12: Using IconSmith

1. Duplicate your circle.

2. Click Shear Y in the Transform menu.

3. Bring up the IconSmith menu, and select “Push Pin” from the Transform Pin menu.

4. Place the pin on one of the vertices at the bottom of the circle.

5. Hold down the <Alt> key and align the bottom line of the circle using the grid.

Import Existing Object

If another icon contains the shape you need, recycle it.

1. Click the Import button.

2. Import the icon file /usr/lib/filetype/iconlib/sample.big.3circles.fti. You should now have
the design shown in Figure 12-14 in your IconSmith drawing area.

Figure 12-14 Imported Circles

3. Delete all parts of this icon except the lower right circle.

Using either method, you can create an isometric circle, shown in Figure 12-15. Starting
with the isometric circle, you can easily create isometric ovals, using the procedure in
“Drawing an Oval” on page 202.

Advanced IconSmith Techniques

205

Figure 12-15 Finished Isometric Circle

The final, isometric version of the icon is shown in Figure 12-16. Note that the design still
looks flat. However, if you want to show a sphere, create a straight-on circle, as was done
for the WebMagic icon.

Figure 12-16 Simple, Isometric 2-D Icon

Finishing Your Icon

A finished application icon is actually three or four .fti files: one or two badges, plus
generic components for the open (running) and closed (not running) icon states. You
need two badges rather than one if you want to animate your icon by changing its
appearance which the user double-clicks it. Figure 12-18 shows a possible open version
for the example icon created in the previous section. When the icon appears on the
Desktop, the generic executable icon component appears if you correctly define the

206

Chapter 12: Using IconSmith

ICON rule in the FTR file, as discussed in “Getting the Icon Picture: The ICON Rule” on
page 229.

To see how your finished application icon appears on the Desktop:

1. Import the generic closed executable component using the Import button. In the
“Import” dialogue box, under “Set Template Layer”, press the Closed Application
button. The generic icon component appears under your closed badge design.

2. Center your design on the generic component template you have imported, as
shown in the example illustrated in Figure 12-17.

Figure 12-17 Icon Centered on Generic Component

3. (Optional, but recommended.) Follow the same two steps to create an open badge.
You might want to give the appearance of animation by changing your design
slightly and saving the changed version as an open badge.

Advanced IconSmith Techniques

207

Figure 12-18 Open Icon

4. Save your icon designs to files with the suffix .fti.

For a discussion of icon file installation, see “Where to Put Your Completed Icon” on
page 183. To learn how to integrate your icon into an FTR file, see “Getting the Icon
Picture: The ICON Rule” on page 229.

The Desktop uses file typing rules (FTRs) to evaluate all files that are presented
within the Desktop. This chapter describes each of the file typing rules in
detail, and offers suggestions for good file typing style and strategies.

File Typing Rules

Chapter 13

211

Chapter 13

13. File Typing Rules

The Desktop uses file typing rules (FTRs) to evaluate all files that are presented within
the Desktop. This chapter describes each of the file typing rules in detail, and offers
suggestions for good file typing style and strategies. “Defining the Behavior of Icons
With FTRs” in Chapter 2 in Indigo Magic User Interface Guidelines describes the behaviors
your icon should support.

This chapter contains these sections:

• “A Table of the FTRs With Descriptions” on page 212 provides a reference table
listing the FTRs along with brief descriptions.

• “Naming File Types: The TYPE Rule” on page 213 describes the TYPE rule, used to
name a file type.

• “Categorizing File Types: The SUPERTYPE Rule” on page 214 describes the
SUPERTYPE rule, used to categorize file types.

• “Matching File Types With Applications: The MATCH Rule” on page 215 describes
the MATCH rule, used to match the application with the corresponding file type.

• “Matching Non-Plain Files: The SPECIALFILE Rule” on page 221 describes the
SPECIALFILE rule, used to match non-plain files.

• “Adding a Descriptive Phrase: The LEGEND Rule” on page 221 describes the
LEGEND rule, used to provide a brief phrase describing the application or data file.

• “Setting FTR Variables: The SETVAR Rule” on page 222 describes how to set
variables that affect the way your icon behaves.

• “Programming Open Behavior: The CMD OPEN Rule” on page 223 describes the
CMD OPEN rule, used to define what happens when users open the icon.

• “Programming Alt-Open Behavior: The CMD ALTOPEN Rule” on page 224
describes the CMD ALTOPEN rule, used to define what happens when users
double-click your icon while pressing the <Alt> key.

• “Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules” on
page 224 describes the CMD DROP rule, used to define what happens when a user
drags another icon and drops it on top of your application’s icon

212

Chapter 13: File Typing Rules

• “Programming Print Behavior: The CMD PRINT Rule” on page 227 describes the
CMD PRINT rule, used to tell the Desktop what to do when a user selects your icon,
then selects “Print” from the Desktop popup menu.

• “Adding Menu Items: The MENUCMD Rule” on page 228 describes the
MENUCMD rule, used to add menu items to the Desktop menu

• “Getting the Icon Picture: The ICON Rule” on page 229 describes how to tell the
Desktop where to find the file(s) containing the picture(s) of the icon for a file type

• “Creating a File Type: An Example” on page 231 provides a detailed example of
how to program an icon.

A Table of the FTRs With Descriptions

Table 13-1 lists the file typing rules along with brief descriptions.

Table 13-1 File Typing Rules

File Typing Rules Function

TYPE Declares a new type.

SUPERTYPE Tells the Desktop to treat the file as a subset of another
type under certain circumstances.

MATCH Lets the Desktop determine if a file is of the declared
type.

SPECIALFILE Tells the Desktop to use the file typing rule only on
non-plain files.

LEGEND Provides a text description of the file type.

SETVAR Sets variables that affect the operation of your icon.

CMD OPEN Defines a series of actions that occur when a user
double-clicks the mouse on an icon or selects “open”
from the main menu.

CMD ALTOPEN Defines a series of actions that occur when a user
alt-double-clicks the mouse on an icon.

CMD DROP Defines a series of actions that occur when a user
“drops” one icon on top of another.

Naming File Types: The TYPE Rule

213

All file types must begin with a TYPE rule. Aside from that, the rules can appear in any
order; however, the most efficient order for parsing is to include the MATCH rule second
and the ICON rule last.

Naming File Types: The TYPE Rule

It is important that your file type have a unique name so that it doesn’t collide with
Silicon Graphics types or types added by other developers. A good way to generate a
unique file type name is to base your file type name on your application name (which is
presumably unique). Another method is to include your company’s initials or stock
symbol in the file type name. You can also use the grep(1) command to search through
existing .ftr files:

% grep name /usr/lib/filetype/*/*.ftr

Substitute your proposed new type name for the words name. If grep doesn’t find your
name, then go ahead and use it.

You name a file type by using the TYPE rule. You can define more than one file type in a
single file, as long as each new file type begins with the TYPE rule. The TYPE rule always
goes on the first line of the file type definition.

DROPIF Defines a set of file types that the icon will allow to be
dropped on it.

CMD PRINT Defines a series of actions that occur when a user
chooses “Print” from the Desktop or Directory View
menus.

MENUCMD Defines menu entries that appear in the Desktop
menu and the Selected toolchest when an icon is
selected.

ICON Defines the appearance (geometry) of the file type’s
icon.

MAP Maps the Desktop file-type name with the ICCCM
target-type name.

Table 13-1 (continued) File Typing Rules

File Typing Rules Function

214

Chapter 13: File Typing Rules

Here is the syntax and description for the TYPE rule:

Syntax: TYPE type-name

Description: type-name is a one-word ASCII string. You can use an legal C language
variable as a type name. Choose a name that is in some way descriptive
of the file type it represents. All rules that follow a TYPE declaration
apply to that type, until the next TYPE declaration is encountered in the
FTR file. Each TYPE declaration must have a unique type name.

Example: TYPE GenericExecutable

Categorizing File Types: The SUPERTYPE Rule

Use the SUPERTYPE rule to tell other file types that your file type should be treated as a
“subset” of a larger type such as executables or directories. For example, you can create
an executable with a custom icon, then use the SUPERTYPE rule to tell other Desktop file
types that the icon represents an executable.

Note: In general, file types don’t “inherit” icons, rules, or any other behavior from
SUPERTYPEs. Directories are a special case. The Desktop automatically handles the
DROP, OPEN, and ALTOPEN behavior for all directories marked as “SUPERTYPE
Directory.” You can’t override the DROP, OPEN, or ALTOPEN behavior if you include
“SUPERTYPE Directory.”

You can use any existing file type as a SUPERTYPE. Appendix E, “Predefined File
Types,” lists some of the file types defined by Silicon Graphics. You can generate a
complete list of file types installed on your system using the grep(1) command:

% grep TYPE /usr/lib/filetype/*/*.ftr

Note: The list of file types generated by the above command is very long and unsorted.

Here is the syntax and description for the SUPERTYPE rule:

Syntax: SUPERTYPE type-name [type-name …]

Description: type-name is the TYPE name of any valid file type. Use SUPERTYPE to
identify the file type as a “subset” of one or more other file types. This
information can be accessed by other file types by calling isSuper(1) from
within their CMD rules (OPEN, ALTOPEN, and so on). A file type can

Matching File Types With Applications: The MATCH Rule

215

have multiple SUPERTYPEs. (For example, the Script file type has both
Ascii and SourceFile SUPERTYPES.) See the isSuper(1) reference page for
more information.

Example: SUPERTYPE Executable

A common use for SUPERTYPEs is to allow users to drag data files onto other application
icons to open and manipulate them. For example, if your application uses ASCII data
files but you create a custom data type for those files, you can include in the file type
declaration:

SUPERTYPE Ascii

This allows users to drag your application’s data files onto any text editor to open and
view them. If your application creates images files, you could make a similar declaration
to allow users to drag data file icons to appropriate image viewers such as ipaste(1).

Matching File Types With Applications : The MATCH Rule

The Desktop needs some way to figure out which FTRs pair up with which files. Your
FTRs will not work if they don’t include some way for the Desktop to match them with the
appropriate files. To do this, include the MATCH rule in your file type definition. This
section explains how to use the MATCH rule to identify your files. The method you use
depends on the kind of file you are matching and on the file permissions. First, here’s the
MATCH rule syntax and description:

Syntax: MATCH match-expression;

Description: match-expression is a logical expression that should evaluate to true if,
and only if, a file is of the type declared by TYPE. The match-expression
must consist only of valid MATCH functions, as described later in this
section. The match-expression can use multiple lines, but must
terminate with a semicolon (;). Multiple match-expressions are not
permitted for a given type. The MATCH rule is employed each time a
file is encountered by the Desktop, to assign a type to that file.

Example: MATCH tag == 0x00001005;

216

Chapter 13: File Typing Rules

Matching Tagged Files

The easiest way to match your application with its FTRs is to use the tag(1) command to
assign a unique number to the application itself. You can then label the associated FTRs
with this same unique number, using the MATCH rule, as shown in the example above.

There are a few situations in which you cannot use tag to label your files. You cannot use
tag if:

• your file is neither an executable nor a shell script

• you don’t have the necessary permissions to change the file

For more information on matching your files without using the tag command, see
“Matching Files Without the tag Command” on page 217.

To tag your application and its associated FTRs using the tag command, follow these
steps:

1. The tag command attaches an identification number to your application. Before you
tag your application, select a number that is not already in use. Silicon Graphics
assigns each company (or individual developer) a block of ID numbers for tagging
files. If your company doesn’t already have an assigned block of numbers, just send
a request to Silicon Graphics. The best way is to e-mail your request to this address:

desktoptags@sgi.com

2. Once you have your block of numbers, you can select a number from the block of
numbers assigned to your company. Make sure that you select a number that no one
else in your company is using.

3. After you select a unique tag number for your application, go to the directory that
contains your application and tag it using the tag command. This is the syntax:

% tag number filename

Replace the word number with the number that you are assigning to the application
and filename with the name of your application. For more information on the tag
command, see the tag(1) reference page.

4. After tagging the application itself, include the tag in your application’s FTRs, using
the MATCH rule. Just include a line like this in your FTR file:

MATCH tag == number;

where number is the unique tag number assigned to your application.

Matching File Types With Applications: The MATCH Rule

217

You can also use the tag command to automatically assign a tag number for a predefined
file type. Silicon Graphics provides a set of generic types, called predefined types, that
you can use for utilities that do not require a personalized look. These predefined file
types come complete with icons, FTRs, and tag numbers. Use the appropriate tag
command arguments to get the desired file type features. For more information on tag
arguments, see the tag(1) reference page. The predefined file types are listed in
Appendix E, “Predefined File Types.”

Matching Files Without the tag Command

If you cannot use the tag command to match your application with the corresponding
FTRs, you need to write a sequence of expressions that check files for distinguishing
characteristics. Once you have written a sequence of expressions that adequately defines
your application file, include that sequence in your FTR file, using the MATCH rule. For
example, you can use this MATCH rule to match a C source file:

MATCH glob("*.c") && ascii;

The glob function returns TRUE if the filename matches the string within the quotes. The
ascii function returns TRUE if the first 512 bytes of the file are all printable ASCII
characters. (Table 13-3 lists all of the available match-expression functions.) The &&
conditional operator tells the Desktop that the functions on either side of it must both
return TRUE for a valid match. See “Valid Match-Expressions” on page 218 for a list of
all of the operators, constants, and numerical representations that you can use in your
match-expressions.

Writing Effective Match Expressions

The most effective way to order match-expressions in a single MATCH rule is to choose
a set of expressions, each of which tests for a single characteristic, and conjoin them all
using “and” conditionals (&&).

The order in which you list the expressions in a MATCH rule is important. Order the
expressions so that the maximum number of files are “weeded out” by the first
expressions. This is advised because the conditional operator, &&, stops evaluation as
soon as one side of the conditional is found to be false. Therefore, the more likely an
expression is to be false, the further to the left of the MATCH rule you should place it.

218

Chapter 13: File Typing Rules

For instance, in the previous MATCH expression example, it is more efficient to place the
glob("*.c") expression first because there are many more ASCII text files than there are
files that end in .c.

Since the Desktop scans FTR files sequentially, you must make sure that your match rule
is specific enough not to “catch” any unwanted files. For example, suppose you define a
type named “myDataFile” using this MATCH rule:

MATCH ascii;

Now every text file in your system will be defined as a file of type “myDataFile.”

Valid Match-Expressions

This section describes the syntax and function of valid match-expressions. You can use
these C language operators in a match-expression:

You can use these C language conditional operators in a match-expression:

The ‘==’ operator works for string comparisons in addition to numerical comparisons.

You can use these constants in a match-expression:

true false

+ -

* /

& |

^ !

% ()

&& ||

== !=

< >

<= >=

Matching File Types With Applications: The MATCH Rule

219

You can represent numbers in match-expressions in decimal, octal, or hexadecimal
notation. See Table 13-2.

Functions

Table 13-3 lists the valid match-expression functions.

Table 13-2 Numerical Representations in Match-Expressions

Representation Syntax

decimal num

octal 0num

hexadecimal 0xnum

Table 13-3 Match-Expression Functions

Function Syntax Definition

ascii Returns TRUE if the first 512 bytes of the file are all printable
ASCII characters.

char(n) Returns the nth byte in the file as a signed character; range is
-128 to 127.

dircontains("string"
)

Returns TRUE if the file is a directory and contains the file
named by string (see below for more information).

glob("string") Returns TRUE if the file’s name matches string; allows use of
the following expansions in string for pattern matching: { } []
* ? and backslash (see sh(1) filename expansion).

linkcount Returns the number of hard links to the file.

long(n) Returns the nth byte in the file as a signed long integer; range
is -231 to 231 - 1.

mode Returns the mode bits of the file (see chmod(1)).

print(expr or
"string")

Prints the value of the expression expr or string to stdout each
time the rule is evaluated; used for debugging. Always
returns true.

short(n) Returns the nth byte of the file as a signed short integer; range
is -32768 to 32767.

220

Chapter 13: File Typing Rules

Using dircontains()

In order to use the dircontains() function, you need to include these two lines in your
FTR file:

SUPERTYPE SpecialFile
SPECIALFILE

You can declare more than one SUPERTYPE in a file type, so the following would be a
legal FTR file:

TYPE scrimshawToolsDir
MATCH dircontains(".toolsPref");
LEGEND Scrimshaw drawing tools directory
SUPERTYPE Directory
SUPERTYPE SpecialFile
SPECIALFILE
ICON {

if (opened) {
include("../iconlib/generic.folder.open.fti");

} else {
include("../iconlib/generic.folder.closed.fti");

}
include("iconlib/scrimshaw.tools.dir.fti");

}

size Returns the size of the file in bytes.

string(n,m) Returns a string from the file that is m bytes (characters) long,
beginning at the nth byte of the file.

uchar (n) Returns the nth byte of the file as an unsigned character;
range is 0 to 255.

tag Returns the specific Desktop application tag injected into an
executable file by the tag injection tool (see the tag(1) reference
page.) Returns -1 if the file is not a tagged file.

ushort(n) Returns the nth byte of the file as an unsigned short integer;
range is 0 to 65535.

Table 13-3 (continued) Match-Expression Functions

Function Syntax Definition

Matching Non-Plain Files: The SPECIALFILE Rule

221

Predefined File Types

For some applications, you may not want to create a unique file type and icon. Several
predefined file types exist and you can use them as necessary. If you use a predefined file
type for your application, tag can automatically assign it a tag number. Just use the
appropriate command line arguments as described in the tag(1) reference page. The
predefined file types and their tag numbers are listed in Appendix E.

Matching Non-Plain Files: The SPECIALFILE Rule

SPECIALFILE is used to distinguish a file typing rule used for matching non-plain files.
Device files and other non-plain files can cause damage to physical devices if they are
matched using standard file typing rules (which might alter the device state by opening
and reading the first block of the file).

Syntax: SPECIALFILE

Description: Special files are matched using only rules containing SPECIALFILE,
which are written so as not to interfere with actual physical devices.
Similarly, plain files are not matched using rules containing a
SPECIALFILE rule.

Example: SPECIALFILE

Note: When you include the SPECIALFILE rule in your file type, you should also
include the line:

SUPERTYPE SpecialFile

The SUPERTYPE declaration allows applications to use isSuper(1) to test whether your
file type is a SPECIALFILE.

Adding a Descriptive Phrase: The LEGEND Rule

Use the LEGEND rule to provide the Desktop with a short phrase that describes the file
type. This phrase appears when users view your icon’s directory as a list. It also appears
when a user selects your icon, then selects the “Get File Info” item from the Desktop
menu. Make your legend simple and informative and keep it to 25 characters or less.

Here is the syntax and description for the LEGEND rule:

222

Chapter 13: File Typing Rules

Syntax: LEGEND text-string

Description: text-string is a string that describes the file type in plain language that a
user can understand. Legends that are longer than 25 characters might
be truncated in some circumstances.

Example: LEGEND C program source file

You might also see a LEGEND rule that is prepended with a number between two
colons—something like this:

LEGEND :290:image in RGB format

The colons and the number between them are used for internationalization. For more
information, refer to “Internationalizing File Typing Rule Strings” in Chapter 4 of the
Topics in IRIX Programming.

Setting FTR Variables: The SETVAR Rule

The SETVAR rule allows you to set variables that affect operation of your icon.

Syntax: SETVAR variable value

Description: variable is a FTR variable and value is the value to assign to the variable.
Currently, there are two FTR variable supported: noLaunchEffect and
noLaunchSound. Set noLaunchEffect to True to turn off the visual launch
effect when the user opens your icon. Set noLaunchSound to True to turn
off the launch sound effect when the user opens your icon.

Example: SETVAR noLaunchEffect True

Programming Open Behavior: The CMD OPEN Rule

223

Programming Open Behavior: The CMD OPEN Rule

Use the CMD OPEN rule to tell the Desktop what to do when a user opens your icon.
Users can open an icon in any of these ways:

• double-clicking it

• selecting it and then choosing the “Open” item from the Desktop popup menu (the
Desktop menu is the menu that appears when you hold down the right mouse
button while the cursor is over the Desktop background)

• selecting it and then choosing the “Open Icon” selection in the Selected tool chest.

Note: Directories are a special case. The Desktop automatically handles the OPEN
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the OPEN
behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMD OPEN rule:

Syntax: CMD OPEN sh-expression[; sh-expression; … ; sh-expression]

Description: The OPEN rule should reflect the most frequently used function that
would be applied to a file of the given type. sh-expression can be any valid
Bourne shell expression. Any expression can use multiple lines. Any
number of expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a semicolon.
Variables can be defined and used as in a Bourne shell script, including
environment variables. See Appendix B for a list of special environment
variables set by the Desktop. These environment variables can be used
to refer to the currently selected icons within the Desktop or Directory
View.

Example: CMD OPEN $WINEDITOR $SELECTED

The CMD OPEN rule for the “Makefile” file type is a more complex example:

TYPE Makefile
...
CMD OPEN echo "make -f $LEADER |& tee $LEADER.log; rm $LEADER.run" \

> $LEADER.run; winterm -H -t make -c csh -f $LEADER.run

224

Chapter 13: File Typing Rules

Programming Alt-Open Behavior: The CMD ALTOPEN Rule

By using the CMD ALTOPEN rule, you can tell the Desktop what to do when users
double-click your icon while pressing the <Alt> key.

Note: Directories are a special case. The Desktop automatically handles the ALTOPEN
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the
ALTOPEN behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMD ALTOPEN rule:

Syntax: CMD ALTOPEN sh-expression[; sh-expression; … ; sh-expression]

Description: The ALTOPEN rule provides added functionality for power users.
Typically, you set ALTOPEN to pop up a launch window to let the user
edit arguments. sh-expression can be any valid Bourne shell expression.
Any expression can use multiple lines. Any number of expressions can
be used, and must be separated by semicolons (;). The final expression
should not end with a semicolon. Variables can be defined and used as
in a Bourne shell script, including environment variables. See
Appendix B for a list of special environment variables set by the
Desktop. These environment variables can be used to refer to the
currently selected icons within the Desktop or Directory View.

Example: CMD ALTOPEN launch -c $LEADER $REST

The CMD ALTOPEN rule for the “SGIImage” file type is a more complex example:

TYPE SGIImage
CMD OPEN if test -x /usr/sbin/imgview

then
imgview $LEADER $REST

else
ipaste $LEADER $REST

fi

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

Users can perform certain functions by dragging an icon and dropping it on top of
another icon. For example, users can move a file from one directory to another by
dragging the icon representing the file and dropping it onto the icon representing the

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

225

new directory. You use the CMD DROP rule to tell the Desktop what to do when a user
drags another icon and drops it on top of your application’s icon.

Note: Directories are a special case. The Desktop automatically handles the DROP
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the DROP
behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMP DROP rule:

Syntax: CMD DROP sh-expression[; sh-expression; … ; sh-expression]

Description: The DROP rule is invoked whenever a selected (file) icon is “dropped”
onto another icon in the Desktop or Directory View windows. When this
happens, the Desktop checks to see if the file type being dropped upon
has a DROP rule to handle the files being dropped. In this way, you can
write rules that allow one icon to process the contents of other icons.
Simply drag the selected icons that you want processed and put them on
top of the target icon (that is, the one with the DROP rule).

Example: CMD DROP $TARGET $SELECTED

By default, the CMD DROP rule handles all icons dropped on the target icon. However,
if you include a DROPIF rule in your file type, only those icons whose file types are listed
in the DROPIF rule are accepted as drop candidates; the Desktop doesn’t allow the user
to drop other types of icons on the target icon. Here is the syntax and description for the
DROPIF rule:

Syntax: DROPIF file-type [file-type … file-type]

Description: Specifies the allowable file types that a user can drop on the icon.

Example: DROPIF MailFile

Using the DROPIF rule in conjunction with the CMD DROP rule is a good practice to
follow to ensure that the file types of selected icons are compatible with the selected icon.
You can also use the environment variables set by the Desktop, listed in Appendix B, to
determine other attributes of the selected icons.

For example, the following CMD DROP and DROPIF rules accept only a single icon with
the type “MyAppDataFile”:

DROPIF MyAppDataFile
CMD DROP if [$ARGC -gt 1]
 then

inform "Only one data file allowed."

226

Chapter 13: File Typing Rules

else
$TARGET $SELECTED

In the example above, the DROPIF rule prevents users from dropping any file on the
target icon except those with the type “MyAppDataFile.” The CMD DROP rule is
invoked only after a successful drop. It checks the value of the environment variable
ARGC to see how many icons were dropped on the target icon. If more than one icon
were dropped, it displays an error message; if only one was dropped, it invokes the
application with the dropped file as an argument.

Note: The DROPIF rule doesn’t “follow” SUPERTYPES. If you specify a file type in a
DROPIF rule, only files of that type are accepted, not files that have that type as a
SUPERTYPE.

If you want to handle all files with a given SUPERTYPE, you must use isSuper(1) to test
for that SUPERTYPE in the CMD DROP rule. The following CMD DROP definition
demonstrates this by accepting one or more files with an “Ascii” SUPERTYPE:

CMD DROP okfile=’true’
for i in $SELECTEDTYPELIST
do

 if isSuper Ascii $i > /dev/null
 then

okfile=’true’
else

okfile=’false’
fi

done
if [$okfile = ’true’]

 then
$TARGET $SELECTED

else
xconfirm "$TARGET accepts only ASCII files."

fi

Mapping Names: The MAP Rule

If you want your datafile to work with the GoldenGate conversion, which is based on
ICCCM target type names, you need to use the MAP rule to associate the desktop
file-type name with the ICCCM target-type name. Then GoldenGate can access the
ICCCM type.

Programming Print Behavior: The CMD PRINT Rule

227

Syntax: MAP namespace value

Description: The MAP rules specify a list of all mappings from desktop name space
to a non-desktop name. Desktop namespace is defined by the TYPE
names. The value is mapped onto the desktop type, which you can
obtain based on the value or TYPE name. You can use the MAP rule to
translate from a desktop TYPE to another name space, such as ICCCM.
In the example below, the keyword SelectionTarget indicates a
ICCCM name space.

ICCCM Example:

TYPE AIFFSoundFile
MAP SelectionTarget AIFF_FILE

For more information about GoldenGate conversion, see, “Using GoldenGate Data
Conversion Services,” and “Data Conversion Service” on page 109.

Programming Print Behavior: The CMD PRINT Rule

Use the CMD PRINT rule to tell the Desktop what to do when a user selects your icon,
then selects “Print” from the Desktop popup menu. Here is the syntax and description
for the CMD PRINT rule; see also Chapter 14, “Printing From the Desktop,” for
information on writing rules to convert your new file type into one of the printable types.

Syntax: CMD PRINT sh-expression[; sh-expression; … ; sh-expression]

Description: sh-expression can be any valid Bourne shell expression. Any expression
can use multiple lines. Any number of expressions can be used, and
must be separated by semicolons (;). The final expression should not end
with a semicolon. Variables can be defined and used as in a Bourne shell
script, including environment variables. See Appendix B for a list of
special environment variables set by the Desktop. These environment
variables can be used to refer to the currently selected icons within the
Desktop or Directory View. The recommended method of implementing
the PRINT rule is to use routeprint, the Desktop’s print-job routing
utility, as in the example below. routeprint uses print conversion rules to
automatically convert the selected files into formats accepted by the
system’s printers. See the routeprint(1) reference page for details on its
syntax. See Chapter 14 for information on setting up print conversion
rules.

Example: CMD PRINT routeprint $LEADER $REST

228

Chapter 13: File Typing Rules

Adding Menu Items: The MENUCMD Rule

Use the MENUCMD rule to add items to both the Desktop menu and the Selected
toolchest menu. The Desktop menu is the menu that appears when you hold down the
right mouse button while the cursor is positioned on the Desktop. The Selected toolchest
menu is the menu that appears when you hold down the right mouse button while the
cursor is positioned over the Selected toolchest.

Menu items added to the Desktop menu and the Selected toolchest menu appear only
when the icon is selected (highlighted in yellow) on the Desktop.

You can add as many menu items as you like by adding multiple MENUCMD rules to
your file type. Any menu items added using the MENUCMD rule are added both to the
Desktop menu and the Selected toolchest menu—you can’t add menu items to just one
of these menus.

 Here is the syntax and description for the MENUCMD rule:

Syntax: MENUCMD "string" sh-expression[; sh-expression; … ; sh-expression]

Description: MENUCMD inserts the menu entry string into the Desktop or Directory
View menu if a single file of the appropriate type is selected, or if a group
of all of the same, appropriate type is selected. If the menu entry is
chosen, the actions described by the sh-expressions are performed on each
of the selected files.

Example: MENUCMD "Empty Dumpster" compress $LEADER $REST

You might also see a MENUCMD rule that is prepended with a number between two
colons—something like this:

MENUCMD :472:"make install" winterm -H -t ’make install’ \
-c make -f $LEADER install

The colons and the number between them are used for internationalization. For more
information, refer to “Internationalizing File Typing Rule Strings” in Chapter 4 of the
Topics in IRIX Programming.

To add more than one menu item to the Desktop popup menu, just add a MENUCMD
rule for each item. For example, the “Makefile” file type includes all of the following
MENUCMD rules:

MENUCMD "make install" winterm -H -t ’make install’ \
-c make -f $LEADER install

Getting the Icon Picture: The ICON Rule

229

MENUCMD "make clean" winterm -H -t ’make clean’ \
-c make -f $LEADER clean

MENUCMD "make clobber" winterm -H -t ’make clobber’ \
-c make -f $LEADER clobber

MENUCMD "Edit" $WINEDITOR $LEADER $REST

Getting the Icon Picture: The ICON Rule

Use the ICON rule, described in this section, to tell the Desktop where to find the file(s)
containing the picture(s) of the icon for a file type. The simplest way to do this is to
provide the full IRIX pathname. For example, if the .fti file is in the directory called
/usr/lib/filetype/install/iconlib, you would simply write that pathname directly into your
FTR file.

If you prefer not to use the absolute pathname in your FTR, you can use a relative
pathname, as long as the icon file resides anywhere within the /usr/lib/filetype directory
structure. To make use of relative pathnames, list the pathname relative to the directory
containing the FTR file that contains the ICON rule. If you choose to do this, take care to
keep path names used in FTR files synchronized with icon locations.

The Desktop sets Boolean status variables to indicate the state of an icon. You can use
conditional statements that test these variables to alter the appearance of an icon based
on its state. The state variables are: opened, which is True when the icon is opened; and
selected, which is True when the icon is selected.

As described in “Importing Generic Icon Components (Magic Carpet)” in Chapter 12, a
common technique is to draw a unique badge to identify an application and then
combine that badge with a generic icon component. This works well if you also use
conditional statements to change the appearance of an icon depending on its state. You
can then combine the unique badge with a generic icon component appropriate to the
icon’s state. The example shown below demonstrates this technique.

Use the basic format from the example below to tell the Desktop where to find your icon
files (the files that you created using IconSmith). Here is the syntax and description for
the ICON rule:

Syntax: ICON icon-description-routine

230

Chapter 13: File Typing Rules

Description: icon-description-routine is a routine written using the icon description
language, detailed below. The routine can continue for any number of
lines. The ICON rule is invoked any time a file of the specified type
needs to be displayed in the Desktop or Directory View. The rule is
evaluated each time the icon is painted by the application that needs it.

Example: ICON {

if (opened) {
include("../iconlib/generic.exec.open.fti");
} else {
include("../iconlib/generic.exec.closed.fti");
}
include("iconlib/ack.fti");

}

The example above shows you exactly how to write the standard ICON rule. The first
line invokes the ICON rule. The next two lines tell the Desktop where to find the parts of
the icon representing the open and closed “magic carpet” that makes up the generic
executable icons. The unique badge is in a file named ack.fti.

Note: You must include your badge after including the generic component so that it
appears over the generic components when displayed on the Desktop.

If you had two separate badges, one for the open and one for the closed state, your ICON
rule would appear as:

ICON {
if (opened) {

include("../iconlib/generic.exec.open.fti");
include("iconlib/ack.open.fti");

} else {
include("../iconlib/generic.exec.closed.fti");
include("iconlib/ack.closed.fti");

}
}

Notice that this example gives the pathname of the icon files (.fti files) relative to the
directory in which the FTR file is located. You can use the full pathname if you prefer.
Your icon description routine would then look like this, assuming that ack.fti was placed
in /usr/lib/filetype/install/iconlib:

ICON {
if (opened) {

include("/usr/lib/filetype/iconlib/genericexec.open..fti");

Creating a File Type: An Example

231

else {
include("/usr/lib/filetype/iconlib/generic.exec.close.fti");

}
include("/usr/lib/filetype/install/iconlib/ack.fti");

}

Creating a File Type: An Example

This section provides an example that demonstrates how to write a file type. In this
example, assume we’re writing a file type for a simple text editor called scribble and that
we’ve decided on these behaviors for the scribble icon:

• When a user double-clicks the scribble icon, the Desktop runs the application.

• When a user drops another icon onto the scribble icon, the Desktop brings up the
scribble application with the file represented by the dropped icon. Users can then use
the scribble application to edit this file.

Note: We’re making no provision for rejecting icons that represent files unsuitable
for editing. You could enhance the scribble file type by including a line that tells the
Desktop to notify users when they drop an icon of the wrong type onto the scribble
icon.

(This section assumes that we’re writing the file type completely from scratch. You might
prefer instead to modify an existing file type. To learn how to find the FTRs for an
existing icon, see “Add the FTRs: An Alternate Method” on page 171.)

Open an FTR File for scribble

For the purposes of this example, assume we’re creating a new FTR file, rather than
adding to an existing one. We just open a new file using any editor we choose, then type
in whatever file typing rules we decide to use.

Add the FTRs to the scribble FTR File

Now that we’ve opened a file for the FTRs, we just type in the FTRs we need to program
the icon. The file type has to begin with the TYPE rule on the first line. The TYPE rule
names the file type. This section discusses each line we use to create the file type.

232

Chapter 13: File Typing Rules

Line 1: Name the File Type

Each file type has to have a unique name. Since our application is called scribble, assume
that we decide to name the new file type “scribbleExecutable.” By basing the file type
name on the application name, we help insure a unique file type name.

Before using the name, scribbleExecutable, we search for it in the /usr/lib/filetype directory,
to make sure that the name is not already in use:

1. Change to the /usr/lib/filetype directory:

% cd /usr/lib/filetype

2. Search for the name scribbleExecutable:

% grep "scribbleExecutable" */*.ftr

Assume that we do not find an existing file type with the name “scribbleExecutable,” so
that’s what we name the new file type.

Now we use the TYPE rule to name the file type by typing this line into our FTR file:

TYPE scribbleExecutable

For more information on the TYPE rule, see “Naming File Types: The TYPE Rule” on
page 213.

Line 2: Classify the Icon

Next we use the SUPERTYPE rule to tell the Desktop what type of file the icon represents.
Since scribble is an executable, we add this line to the FTRs:

SUPERTYPE Executable

For more information on the SUPERTYPE rule, see “Categorizing File Types: The
SUPERTYPE Rule” on page 214.

Line 3: Match the File Type

Now we add the scribble executable’s tag number to the file type definition by adding
this line to the FTRs:

MATCH tag == 0x00001001;

Creating a File Type: An Example

233

This step assumes that we’ve already tagged the executable itself, as described in “Step
One: Tagging Your Application” on page 168.

(Since scribble is an executable, we’re able to use the tag command to tag it. If we were
unable to use the tag command to assign an identification number to the application
itself, we would need a slightly more complicated MATCH rule to match the application
with its FTRs. For more information, see “Matching File Types With Applications: The
MATCH Rule” on page 215 and “Matching Non-Plain Files: The SPECIALFILE Rule” on
page 221.)

Line 4: Provide a Descriptive Phrase

Next we use the LEGEND rule to provide a legend for the file type. The legend is a brief
descriptive phrase that appears when users view a directory as a list or select “Get File
Info” from the Desktop menu. It should be simple, informative, and 25 characters or less.
To add the legend for scribble, add this line to the FTRs:

LEGEND scribble text editor

For more information on using the LEGEND rule, see “Adding a Descriptive Phrase: The
LEGEND Rule” on page 221.

Line 5: Define Icon-Opening Behavior

We use the CMD OPEN rule to tell the Desktop what to do when users open the scribble
icon. In this example we want the Desktop to run the scribble application when the icon is
opened, so we include this line in the FTRs:

CMD OPEN $LEADER $REST

$LEADER refers to the opened application, in this case scribble. The Desktop uses
$LEADER to open $REST. In this case, $REST means any other selected icons in the same
window. $LEADER and $REST are Desktop environmental variables. These variables are
listed and described in Appendix B, “Desktop Environment Variables.”

For more information on using the CMD OPEN rule, see “Programming Open Behavior:
The CMD OPEN Rule” on page 223.

234

Chapter 13: File Typing Rules

Line 6: Define Drag and Drop Behavior

We use the CMD DROP rule to tell the Desktop what to do when users drop another icon
onto the scribble icon. In this example we want the Desktop to open the scribble application
with the contents of the dropped file, so we include this line in the FTRs:

CMD DROP $TARGET $SELECTED

$TARGET refers to the icon that the user dropped another icon on, in this case scribble;
$SELECTED refers to the icon that the user dropped onto the scribble icon. $TARGET and
$SELECTED are Desktop environmental variables. These variables are listed and
described in Appendix B.

For more information on the CMD DROP rule, see “Programming Drag and Drop
Behavior: The CMD DROP and DROPIF Rules” on page 224.

Line 7: Define Alt-Open Behavior

We use the ALTOPEN rule to tell the Desktop what to do when users open the scribble
icon while holding down the <Alt> key. In this example, we want the Desktop to run the
launch(1) program, so we include this line in the FTRs:

CMD ALTOPEN launch -c $LEADER $REST

Again, $LEADER refers to the opened application, scribble and $REST refers to any other
selected icons in the same window. launch runs the launch program, and -c is a command
line argument to launch.

For more information on the CMD ALTOPEN rule, see “Programming Alt-Open
Behavior: The CMD ALTOPEN Rule” on page 224. See the launch(1) reference page for
more information about using the launch command.

Creating a File Type: An Example

235

Line 8: Add the Icon Picture

We use the ICON rule to tell the Desktop where to find the picture for the scribble icon.
Assume we have an icon picture in the file /usr/local/lib/install/iconlib/scribble.fti. In this
example, we add these lines to the FTRs:

ICON{
if (opened) {
 include("../iconlib/generic.open.fti");
} else {
 include("../iconlib/generic.closed.fti");
}
include("iconlib/scribble.fti");
}

These lines tell the Desktop how to find pictures for the scribble icon in the opened and
closed states.The pathname of the icon (.fti) files is listed relative to the location of the
FTR file containing the ICON rule. Relative pathnames work as long as the icon files are
located within the /usr/lib/filetype directory structure. Alternatively, you can use the
absolute pathnames to the files:

• /usr/local/lib/iconlib/generic.open.fti

• /usr/local/lib/iconlib/generic.closed.fti

• /usr/local/lib/iconlib/scribble.fti

For more information on the ICON rule, see “Getting the Icon Picture: The ICON Rule”
on page 229.

Name the scribble FTR File and Put It in the Appropriate Directory

Assume the name of our company is Shakespeare. Then according to the naming
conventions in “Naming FTR Files” on page 170, we should name our FTR file
Shakespeare.scribble.ftr. We put the file in the /usr/lib/filetype/install directory.

The scribble FTRs

Here is the set of FTRs that we created to define the file type called “scribbleExecutable.”

TYPE scribbleExecutable
 SUPERTYPE Executable

236

Chapter 13: File Typing Rules

 MATCH tag == 0x00001001;
 LEGEND scribble text editor
 CMD OPEN $LEADER $REST
 CMD ALTOPEN launch -c $LEADER $REST
 CMD DROP $TARGET $SELECTED
 ICON {
 if (opened) {
 include("../iconlib/generic.open.fti");
 } else {
 include("../iconlib/generic.closed.fti");
 }
 include("iconlib/scribble.fti"):
}

This chapter describes how to create print conversion rules so that users can
print your application’s data files from the desktop.

Printing From the Desktop

Chapter 14

239

Chapter 14

14. Printing From the Desktop

The desktop provides printing services so that users can print from an application. This
chapter covers these topics:

• “About routeprint” on page 239 discusses the routeprint command, which converts
files into printable form.

• “Converting a File for Printing” on page 239 explains how the Desktop converts a
file for printing.

• “The Print Conversion Rules” on page 242 explains the print conversion rules.

• “The Current Printer” on page 245 discusses the Desktop’s concept of the current,
or default, printer and the Desktop environment variable $CURRENTPRINTER.

About routeprint

To print a file, the Desktop invokes the routeprint(1) command. routeprint knows how to
convert most files into printable form, even if the conversion requires several steps.

You can show routeprint how to convert your application’s data files into printable format
by adding one or more CONVERT rules to your application’s FTR file.

This chapter explains the process routeprint uses to convert data files into a printable
format, what file types routeprint already recognizes, and how to write your own print
CONVERT rule to allow your application to tap into routeprint’s powerful printing
capabilities.

Converting a File for Printing

The Desktop already has rules for printing many types of files, such as ASCII, PostScript,
and RGB image files. The easiest method for printing a file of arbitrary format is to break
down the printing process into small, modular steps.

240

Chapter 14: Printing From the Desktop

For example, instead of writing dozens of specialized rules to print reference pages
directly for each kind of printer, you can instead convert reference pages to nroff format
and then convert the nroff format to the format required for the current printer.

The diagram shown in Figure 14-1 illustrates the steps by which some of the supported
Desktop file types are converted for printing. Each box represents one or more file types;
the arrows between them indicate the steps by which the file types are converted. The
values associated with the arrows represent the cost of the conversion. This concept is
talked about more in “Print Costs” on page 241 later in this chapter.

Figure 14-1 File Conversions for Printing Standard Desktop Files

This modular approach to printing has two major advantages:

• The modular steps are reusable. Because you can reuse each modular printing step,
you write fewer rules.

Converting a File for Printing

241

• routeprint can pick the most efficient route for printing. There is often more than
one sequence of conversion steps to print a file. routeprint chooses the sequence of
steps that provides the best possible image quality.

This modular, multi-step conversion to printable form is called the print conversion
pipeline, a series of IRIX commands that process a copy of the file’s data in modular
increments. The print conversion rules are designed to take advantage of this method of
processing printable files.

In addition, applications or software packages can add new arcs to the CONVERT rule
database whenever they define new types or have a better way of converting existing
types. For example, Impressario includes a filter to go directly from NroffFile to
PostScriptFile—this new filter has a lower cost than the default conversion, which goes
from NroffFile to Ascii to PostScriptFile.

The Desktop already has rules for printing a large number of file types. You can use grep
to list all of these print conversions definitions by typing:

% grep -i convert /usr/lib/filetype/*/*.ftr

Note: The list of print conversion definitions generated by the above command is long
and unsorted.

Print Costs

Frequently, there is more than one set of steps that routeprint can use to print your file. To
compare different ways of printing a file of a particular type, routeprint associates cost
numbers with each conversion, then chooses the series of conversions with the lowest
total cost. The cost of a conversion represents image degradation and processing cost,
and is specified by a number between 0 and 1000 inclusive. The higher the cost of a
conversion, the more routeprint attempts to avoid that conversion method if it has
alternative methods.

242

Chapter 14: Printing From the Desktop

The conventions for determining the cost assigned to a given conversion are described in
Table 14-1.

The Print Conversion Rules

There are three parts to a complete print conversion rule:

• the CONVERT rule

• the COST rule

• the FILTER rule

The CONVERT Rule

Syntax: CONVERT source-type-name destination-type-name

Description: source-type-name is the file type you are converting from.
destination-type-name is the file type you are converting to.

Example: CONVERT NroffFile PostScriptFile

Do not use the convert rule to convert directly to a new printer type; convert to a
standard Desktop file type instead. Silicon Graphics reserves the right to alter printer
types, so converting to a standard file type (for example, PostScriptFile) is a more
portable solution. Appendix E, “Predefined File Types,” lists some of the file types

Table 14-1 Conversion Costs for Print Conversion Rules

Cost Reason

0 Equivalent filetypes, or a SETVAR rule (described in “The Print
Conversion Rules”)

50 Default conversion cost

125 Trivial data loss, or conversion is expensive

200 Minor data loss, but conversion is not expensive

300 Noticeable data loss and conversion is expensive

500 Obvious data loss (for example, color to monochrome)

The Print Conversion Rules

243

defined by Silicon Graphics. You can generate a complete list of file types installed on
your system using the grep(1) command:

% grep TYPE /usr/lib/filetype/*/*.ftr

Note: The list of file types generated by the above command is very long and unsorted.

The COST Rule

Syntax: COST non-negative-integer

Description: non-negative-integer represents the arc cost, or incremental cost of the
conversion. This cost is used to reflect processing complexity or can also
be used inversely to reflect the output quality. When routeprint selects a
conversion sequence, it takes the arc costs into account, choosing the
print conversion sequence with the least total cost. The COST rule is
required; if you omit it, routeprint assumes the cost of the conversion is
zero, which may result in an inappropriate choice of printers. The
default cost is 50.

Example: COST 50

The FILTER Rule

Syntax: FILTER filter-expression

Description: The FILTER rule represents part of an IRIX pipeline that prepares a file
for printing. filter-expression can be any single IRIX command line
expression, and generally takes the form of one or more piped
commands. In the general case, the first command within a single
FILTER rule receives input from stdin; the last command in the rule
sends its output to stdout. routeprint concatenates all the FILTER rules in
the print conversion pipeline to form one continuous command that
sends the selected file to its destination printer.

244

Chapter 14: Printing From the Desktop

There are three special cases in creating FILTER rules:

• “first” case

• “last” case

• “setvar” case

In a “first” case rule, the FILTER rule is the very first rule in the print conversion pipeline.
In this case, routeprint passes the list of selected files to the first command in the FILTER
rule as arguments. If a first case FILTER rule begins with a command that does not accept
the files in this fashion, prepend the cat command to your rule:

FILTER cat | tbl - | psroff -t

The files will then be piped to the next command’s stdin.

In a “last” case rule, the FILTER rule is the very last rule in the print conversion pipeline.
This rule contains a command that sends output directly to a printer (such as lp).
Last-case rules are already provided for many file types. To ensure compatibility between
your application and future printing software releases, you should refrain from writing
your own last-case rules. Instead, write rules that convert from your file type to any of
the existing file types, and let the built-in print conversion rules do the rest.

In a “setvar” case rule, the FILTER rule is used to set an environment variable used later
in the print conversion pipeline. The first CONVERT rule in the example below sets a
variable that defines an nroff macro used in the second rule. In all setvar cases, stdin is
passed to stdout transparently. Thus, you can include setvar as part of the pipeline in a
single FILTER rule.

CONVERT mmNroffFile NroffFIle
COST 1
FILTER setvar MACRO=mm

CONVERT NroffFile PostScriptFile
COST 50
FILTER eqn | tbl | psroff -$MACRO -t

The Current Printer

245

The Current Printer

The current printer is the system default printer that the user sets with the Print Manager
or, alternatively, the printer specified by the -p option to routeprint. If no default is set and
-p is not used, an error message is returned by routeprint to either stdout or a notifier
window (if the -g option to routeprint was set). The Desktop environment variable
$CURRENTPRINTER is set to the currently selected default printer.

Appendix A

This appendix contains example programs for some of the SGI extended IRIS
IM widgets.

Example Programs For SGI Enhanced Widgets

249

Appendix A

A. Example Programs for SGI Enhanced Widgets

This appendix contains example programs for some of the SGI extended IRIS IM
widgets.

Makefiles are provided for some of these examples, but to use these examples, you need
to:

• Link with -lXm and -lSgm, making sure to put the -lSgm before -lXm. (To replace
an unenhanced widget with the enhanced version of that widget in an existing
program, you need to re-link.)

LLDLIBS = -lSgm -lXm -lXt -lX11 -lPW

You must include -lSgm to get the enhanced look and the new widgets. If you do
not include -lfileicon, you will get a runtime error, since the runtime loader won’t be
able to find needed symbols. The -lXm represents the enhanced version of libXm
(IRIS IM).

• Run the program with these resources:

*sgiMode: true
*useSchemes: all

Set them in your .Xdefaults file or create a file for your application in
/usr/lib/X11/app-defaults.

This appendix provides example programs for:

• “Example Program for Color Chooser” on page 250

• “Example Program for Dial” on page 252

• “Example Program for Drop Pocket” on page 254

• “Example Program for Finder” on page 257

• “Example Program for History Button (Dynamenu)” on page 259

• “Example Program for ThumbWheel” on page 260

• “Example Program for File Selection Box” on page 262

250

Appendix A: Example Programs for SGI Enhanced Widgets

• “Example Programs for Scale (Percent Done Indicator) Widget” on page 265

• “Example Program for LED Widget” on page 266

Example Program for Color Chooser

/*
 * colortest.c --
 * demonstration of quick-and-easy use of the color
 * chooser widget.
 */

#include <stdio.h>

#include <Xm/Xm.h>

#include <Xm/Label.h>
#include <Xm/Form.h>
#include <Sgm/ColorC.h>

static void ColorCallback();
Widget label, colorc;
XtAppContext app;

#if 0

int sgidladd()
{
 return 1;
}
#endif

main (argc, argv)
int argc;
char *argv[];
{
 Widget toplevel, form;
 Arg args[25];
 int ac = 0;

 toplevel = XtVaAppInitialize(&app, argv[0], NULL, 0, &argc, argv, NULL, NULL);
 if (toplevel == (Widget)NULL) {
 printf("AppInitialize failed!\n");
 exit(1);

Example Program for Color Chooser

251

 }

 colorc = SgCreateColorChooserDialog(toplevel, "colorc", NULL, 0);
 XtAddCallback(colorc, XmNapplyCallback, ColorCallback, (XtPointer)NULL);
 XtManageChild(colorc);

 form = XmCreateForm(toplevel, "Form", NULL, 0);
 XtManageChild(form);

 label = XmCreateLabel(form, "I am a color!", NULL, 0);
 XtManageChild(label);
 ac = 0;

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

void ColorCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{
 Pixel white; /* fallback */
 SgColorChooserCallbackStruct *cbs =(SgColorChooserCallbackStruct *)call_data;
 Display *dpy = XtDisplay(label);
 Screen *scr = XtScreen(label);
 /*
 * If we were willing to use private structure members,
 * we could be sure to get the correct colormap by using
 * label->core.colormap. For this demo, however,
 * the default colormap will suffice in most cases.
 */
 Colormap colormap = XDefaultColormapOfScreen(scr);
 XColor mycolor;
 Arg args[1];

 white = WhitePixelOfScreen(scr);

 mycolor.red = (unsigned short)(cbs->r<<8);
 mycolor.green = (unsigned short)(cbs->g<<8);
 mycolor.blue = (unsigned short)(cbs->b<<8);
 mycolor.flags = (DoRed | DoGreen | DoBlue);

 if (XAllocColor(dpy, colormap, &mycolor)) {
 XtSetArg(args[0], XmNbackground, mycolor.pixel);
 }

252

Appendix A: Example Programs for SGI Enhanced Widgets

 else {
 fprintf(stderr, "No more colors!\n"); fflush(stderr);
 XtSetArg(args[0], XmNbackground, white);
 }

 XtSetValues(label, args, 1);
}

Makefile for colortest.c
ROOT = /
MYLIBS =
XLIBS = -lSgw -lSgm -lXm -lXt -lX11 -lgl
SYSLIBS = -lPW -lm -ll -ly
INCLUDES = -I. -I$(ROOT)usr/include

LDFLAGS = -L -L. -L$(ROOT)usr/lib $(MYLIBS) $(XLIBS) $(SYSLIBS)

all: colortest

colortest: colortest.o
 cc -o colortest colortest.o $(LDFLAGS)

colortest.o: colortest.c
 cc -g $(INCLUDES) -DDEBUG -D_NO_PROTO -c colortest.c

Example Program for Dial

/*
 * Mytest.c --
 * create and manage a dial widget.
 * Test its resource settings through menu/button actions.
 */

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/DialogS.h>
#include <Xm/Label.h>
#include <Sgm/Dial.h>

/*

Example Program for Dial

253

 * Test framework procedures and globals.
 */

#ifdef _NO_PROTO
static void DragCallback();
#else
static void DragCallback(Widget w, void *client_data, void *call_data);
#endif /* _NO_PROTO */

XtAppContext app;

main (argc, argv)
int argc;
char *argv[];
{
 Widget toplevel, form, dial, label;
 Arg args[25];
 int ac = 0;

 /*
 * Create and realize our top level window,
 * with all the menus and buttons for user input.
 */
 toplevel = XtVaAppInitialize(&app, "Dialtest", NULL, 0, &argc, argv, NULL,
NULL);
 if (toplevel == (Widget)NULL) {
 printf("AppInitialize failed!\n");
 exit(1);
 }

 form = XmCreateForm(toplevel, "Form", NULL, 0);

 /* Set up arguments for our widget. */
 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_FORM); ac++;

 /*
 * We use all-default settings.
 * Do not set any of the dial-specific resources.
 */
 dial = SgCreateDial(form, "dial", args, ac);
 XtManageChild(dial);

254

Appendix A: Example Programs for SGI Enhanced Widgets

 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_WIDGET); ac++;
 XtSetArg(args[ac], XmNtopWidget, dial); ac++;
 XtSetArg(args[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple("0")); ac++;
 label = XmCreateLabel(form, "valueLabel", args, ac);
 XtManageChild(label);

 /*
 * Set up callback for the dial.
 */
 XtAddCallback(dial, XmNdragCallback, DragCallback, label);

 XtManageChild(form);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

void DragCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{
 SgDialCallbackStruct *cbs = (SgDialCallbackStruct *) call_data;
 Widget label = (Widget)client_data;
 static char new_label[256];
 Arg args[2];
 int ac = 0;

 if ((cbs != NULL) && (label != (Widget)NULL)) {
 sprintf(new_label, "%d", cbs->position);
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple(new_label)); ac++;
 XtSetValues(label, args, ac);
 }
}

Example Program for Drop Pocket

/*
 * Demonstrate the use of the DropPocket
 */

Example Program for Drop Pocket

255

#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <Sgm/DropPocket.h>

static void droppedCB(Widget w, XtPointer clientData, XtPointer cbs) {
 SgDropPocketCallbackStruct * dcbs = (SgDropPocketCallbackStruct *)cbs;
 char * name;

 if (dcbs->iconName)
 if (!XmStringGetLtoR(dcbs->iconName, XmFONTLIST_DEFAULT_TAG, &name))
 name = NULL;

 printf("Dropped file: %s\nFull Data: %s\n", name, dcbs->iconData);
 XtFree(name);
}

main(int argc, char * argv[]) {
 Widget toplevel, exitB, dp, topRC;
 XtAppContext app;

 XtSetLanguageProc(NULL, (XtLanguageProc)NULL, NULL);
 toplevel = XtVaAppInitialize(&app, "DropPocket", NULL, 0, &argc, argv, NULL,
NULL);
 topRC = XtVaCreateManagedWidget("topRC", xmFormWidgetClass, toplevel, NULL);
 dp = XtVaCreateManagedWidget("dp",
 sgDropPocketWidgetClass, topRC,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNheight, 100,
 XmNwidth, 100,
 NULL);
 XtAddCallback(dp, SgNiconUpdateCallback, droppedCB, NULL);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

Makefile for Drop Pocket Example
#!smake
#
include /usr/include/make/commondefs

256

Appendix A: Example Programs for SGI Enhanced Widgets

HFILES = \\p DropPocketP.h \\p DropPocket.h

CFILES = \\p DropPocket.c

TARGETS = dpt

CVERSION = -xansi
MALLOC = /d2/stuff/lib/Malloc
CVERSION = -xansi
OPTIMIZER = -g
#-I$(MALLOC) -wlint,-pf -woff 813,826,828

LLDLIBS = -lSgm -lXm -lXt -lX11 -lPW
#LLDLIBS = -u malloc -u XtRealloc -u XtMalloc -u XtCalloc -L /d2/stuff/lib
 -ldbmalloc -lSgm -lXm -lXt -lX11

LCDEFS = -DFUNCPROTO -DDEBUG

targets: $(TARGETS)

include $(COMMONRULES)

#dpt: dpTest.o $(OBJECTS)
$(CC) -o $@ dpTest.o $(OBJECTS) $(LDFLAGS)

dpt: dpTest.o
 $(CC) -o $@ dpTest.o $(LDFLAGS)

#dpt2: dpTest2.o $(OBJECTS)
$(CC) -o $@ dpTest2.o $(OBJECTS) $(LDFLAGS)

dpt2: dpTest2.o
 $(CC) -o $@ dpTest2.o $(LDFLAGS)

#dpt3: dpTest3.o $(OBJECTS)
$(CC) -o $@ dpTest3.o $(OBJECTS) $(LDFLAGS)

dpt3: dpTest3.o
 $(CC) -o $@ dpTest3.o $(LDFLAGS)

#tdt: tdt.o $(OBJECTS)
$(CC) -o $@ tdt.o $(OBJECTS) $(LDFLAGS)

tdt: tdt.o

Example Program for Finder

257

 $(CC) -o $@ tdt.o $(LDFLAGS)

depend:
 makedepend -- $(CFLAGS) -- $(HFILES) $(CFILES)

Example Program for Finder

/*
 * Finder.c demonstrates the use of the SgFinder widget
 */
#include <stdlib.h>
#include <stdio.h>
#include <Xm/RowColumn.h>
#include <Xm/Label.h>
#include <Sgm/Finder.h>
#include <Sgm/DynaMenu.h>

static char * items[] = { "Archer’s favorite songs:",
 "Draft dodger rag",
 "Le Roi Renaud",
 "/usr/sbin",
 "/lib/libc.so.1",
 "Calvinist Headgear Expressway",
 };

static void valueChangeCB(Widget w, XtPointer clientData, XmAnyCallbackStruct *
cbs) {
 printf("App value change callback\n");
}

static void activateCB(Widget w, XtPointer clientData, XmAnyCallbackStruct *
cbs) {
 printf("App activate callback\n");
}
main(int argc, char * argv[]) {
 Widget toplevel, rc, label, finder, history;
 XtAppContext app;
 XmString * list;
 int listSize, i;

 XtSetLanguageProc(NULL, (XtLanguageProc)NULL, NULL);
 toplevel = XtVaAppInitialize(&app, "Finder", NULL, 0, &argc, argv, NULL,
NULL);

258

Appendix A: Example Programs for SGI Enhanced Widgets

 rc = XtVaCreateWidget("rc",
 xmRowColumnWidgetClass, toplevel,
 XmNresizeWidth, False,
 XmNresizeHeight, True,
 NULL);

 /* create the original list for the historyMenu */
 listSize = XtNumber(items);
 list = (XmString *)XtMalloc(sizeof(XmString) * listSize);
 for (i = 0; i < listSize; i++)
 list[i] = XmStringCreateLocalized(items[i]);

 label = XtVaCreateManagedWidget("Things:",
 xmLabelWidgetClass, rc,
 NULL);
 finder = XtVaCreateManagedWidget("finder", sgFinderWidgetClass, rc, NULL);
 history = SgFinderGetChild(finder, SgFINDER_HISTORY_MENUBAR);
 if (history && SgIsDynaMenu(history)) {
 XtVaSetValues(history,
 SgNhistoryListItems, list,
 SgNhistoryListItemCount, listSize,
 NULL);
 }

 for (i = 0; i < listSize; i++)
 if (list[i])
 XmStringFree(list[i]);
 if (list)
 XtFree((char *)list);

 XtAddCallback(finder, XmNvalueChangedCallback, (XtCallbackProc)valueChangeCB,
finder);
 XtAddCallback(finder, XmNactivateCallback, (XtCallbackProc)activateCB,
finder);

 XtManageChild(rc);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

Example Program for History Button (Dynamenu)

259

Example Program for History Button (Dynamenu)

#include <Sgm/DynaMenu.h>
#include <Xm/RowColumn.h>

static char * items[] = { "illegal smile", "/usr/people/stone",
 "Fish and whistle", "help I’m trapped in the
 machine", "9th & Hennepin" };

static void dynaPushCB(Widget w, XtPointer clientData, XtPointer cbd) {
 SgDynaMenuCallbackStruct * cbs = (SgDynaMenuCallbackStruct *) cbd;
 int num = cbs->button_number;
 printf("Selected item number %d\n", num);
}

main(int argc, char * argv[]) {
 XtAppContext app = NULL;
 Widget toplevel, rc, dynaMenu;
 XmString * list;
 int listSize, i;

 toplevel = XtVaAppInitialize(&app, "DynaMenu", NULL, 0, &argc,argv, NULL,
NULL);
 rc = XtVaCreateManagedWidget("rc", xmRowColumnWidgetClass, toplevel, NULL);

 /* create the original list for the dynaMenu */
 listSize = XtNumber(items);
 list = (XmString *)XtMalloc(sizeof(XmString) * (unsigned int)listSize);
 for (i = 0; i < listSize; i++)
 list[i] = XmStringCreateLocalized(items[i]);

 dynaMenu = XtVaCreateManagedWidget("dynaMenu",
 sgDynaMenuWidgetClass, rc,
 SgNhistoryListItems, list,
 SgNhistoryListItemCount, listSize,
 NULL);
 XtAddCallback(dynaMenu, SgNdynaPushCallback, dynaPushCB, NULL);

 for (i = 0; i < listSize; i++)
 XmStringFree(list[i]);
 XtFree((char *)list);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

260

Appendix A: Example Programs for SGI Enhanced Widgets

Example Program for ThumbWheel

/*
 * Thumbwheel.c --
 * create and manage a thumbwheel.
 */

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/DialogS.h>
#include <Xm/Label.h>
#include <Sgm/ThumbWheel.h>

/*
 * Test framework procedures and globals.
 */

#ifdef _NO_PROTO
static void DragCallback();
#else
static void DragCallback(Widget w, void *client_data, void *call_data);
#endif /* _NO_PROTO */

XtAppContext app;

main (argc, argv)
int argc;
char *argv[];
{
 Widget toplevel, form, thumbwheel, label;
 Arg args[25];
 int ac = 0;

 /*
 * Create and realize our top level window,
 * with all the menus and buttons for user input.
 */
 toplevel = XtVaAppInitialize(&app, "Thumbwheeltest", NULL, 0, &argc, argv,
NULL, NULL);
 if (toplevel == (Widget)NULL) {
 printf("AppInitialize failed!\n");
 exit(1);
 }

Example Program for ThumbWheel

261

 form = XmCreateForm(toplevel, "Form", NULL, 0);

 /* Set up arguments for our widget. */
 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_FORM); ac++;

 /*
 * We use all-default settings, with the exception of orientation.
 * Do not set any other thumbwheel-specific resources.
 */
 ac = 0;
 XtSetArg(args[ac], XmNorientation, XmHORIZONTAL); ac++;
 thumbwheel = SgCreateThumbWheel(form, "thumbwheel", args, ac);
 XtManageChild(thumbwheel);

 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_WIDGET); ac++;
 XtSetArg(args[ac], XmNtopWidget, thumbwheel); ac++;
 XtSetArg(args[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple("0")); ac++;
 label = XmCreateLabel(form, "valueLabel", args, ac);
 XtManageChild(label);

 /*
 * Set up callback for the thumbwheel.
 */
 XtAddCallback(thumbwheel, XmNdragCallback, DragCallback, label);

 XtManageChild(form);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

void DragCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{
 SgThumbWheelCallbackStruct *cbs = (SgThumbWheelCallbackStruct *) call_data;
 Widget label = (Widget)client_data;
 static char new_label[256];
 Arg args[2];

262

Appendix A: Example Programs for SGI Enhanced Widgets

 int ac = 0;

 if ((cbs != NULL) && (label != (Widget)NULL)) {
 sprintf(new_label, "%d", cbs->value);
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple(new_label)); ac++;
 XtSetValues(label, args, ac);
 }
}

Example Program for File Selection Box

To run this program, add these lines to your .Xdefaults file:

fsb*sgiMode: true
fsb*useSchemes: all

then type:

xrdb -load

Here’s the sample program:

/*------- fsb.c -------*/
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <stdlib.h>
#include <stdio.h>
#include <Xm/FileSB.h>

void printDirF(Widget w, XtPointer clientData, XmFileSelectionBoxCallbackStruct
* cbs) {

 char * filename = NULL, * dirname = NULL;

 XmStringGetLtoR(cbs->value, XmFONTLIST_DEFAULT_TAG, &filename);

 XmStringGetLtoR(cbs->dir, XmFONTLIST_DEFAULT_TAG, &dirname);

 printf(“Filename selected: %s\n”, filename);

 if (filename)
 XtFree(filename);

Example Program for File Selection Box

263

 if (dirname)
 XtFree(dirname);
}

static void showDialog(Widget w, XtPointer clientData, XtPointer callData) {

 Widget dialog = (Widget) clientData;
 XtManageChild(dialog);

}

main (int argc, char *argv[]) {
 Widget toplevel, fsb, b1, b2, rc;
 XtAppContext app;
 XmString textStr;

 XtSetLanguageProc(NULL, (XtLanguageProc)NULL, NULL);

 toplevel = XtVaAppInitialize(&app, “Fsb”, NULL, 0, &argc, argv, NULL, NULL);

 rc = XtVaCreateManagedWidget(“rc”, xmFormWidgetClass, toplevel, NULL);

 /* Set up a dialog */
 if (argc > 1) {

 b1 = XtVaCreateManagedWidget(“FSB”,
 xmPushButtonWidgetClass,
 rc,
 XmNtopAttachment,
 XmATTACH_FORM,
 XmNbottomAttachment,
 XmATTACH_FORM,
 XmNleftAttachment,
 XmATTACH_FORM,
 XmNrightAttachment,
 XmATTACH_FORM,
 NULL);

 fsb = XmCreateFileSelectionDialog(b1, “FSB Dialog”, NULL, 0);

 XtAddCallback(b1, XmNactivateCallback, showDialog, fsb);

 } else {
 fsb = XmCreateFileSelectionBox(rc, “Select A File”, NULL, 0);
 XtVaSetValues(fsb,

264

Appendix A: Example Programs for SGI Enhanced Widgets

 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);
 XtManageChild(fsb);

 }

 XtAddCallback(fsb, XmNokCallback, (XtCallbackProc)printDirF, fsb);
 XtAddCallback(fsb, XmNcancelCallback, (XtCallbackProc)exit, NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);

}

Makefile for File Selection Box Example Program
#!smake
#
include /usr/include/make/commondefs

CFILES = fsb.c

TARGETS = fsb

CVERSION = -xansi
OPTIMIZER = -g

LLDLIBS = -lSgm -lXm -lXt -lX11 -lPW

LCDEFS = -DFUNCPROTO -DDEBUG

LCINCS = -I. -I$(MOTIF_HEADERS)

targets: $(TARGETS)

include $(COMMONRULES)

fsb: $(OBJECTS)
$(CC) -o $@ $(OBJECTS) $(LDFLAGS)

Example Programs for Scale (Percent Done Indicator) Widget

265

Example Programs for Scale (Percent Done Indicator) Widget

The following code produces a simple motif scale widget:

/* progress.c */
/* cc -o progress progress.c -lXm -lXt */
 #include <Xm/Scale.h>
 void main(int argc, char** argv) {
 Widget toplevel, scale;
 XtAppContext app_context;
 Arg args[5];
 int nargs=0;

 toplevel = XtAppInitialize(&app_context, “Progress”,
 NULL, 0, &argc, argv, NULL, NULL, 0);

 XtSetArg(args[nargs], XmNvalue, 50); nargs++;
 XtSetArg(args[nargs], XmNorientation, XmHORIZONTAL); nargs++;
 scale = XmCreateScale(toplevel, “scale”, args, nargs);
 XtManageChild(scale);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app_context);
}

The following resource file (named “Progress”) produces the slanted, thermometer look
of the SGI percent done indicator. Also see the IRIS Viewkit VkProgressDialog class.

!Progress - App-default resources for the progress sample program

*sgiMode: true
*useSchemes: all

!Change the appearance o the slider
*scale.sliderVisual: flat_foreground
*scale.slidingMode: thermometer
*scale.slanted: true

!Set the correct scheme colors
Progress*scale*foreground: SGI_DYNAMIC BasicBackground
Progress*scale*troughColor: SGI_DYNAMIC TextFieldBackground

266

Appendix A: Example Programs for SGI Enhanced Widgets

Example Program for LED Widget

/* ledbutton.c */
/* cc -o ledbutton ledbutton.c -lXm -lXt */
/* ledbutton -xrm “*sgiMode: true” -xrm “*useSchemes: all” */

#include <Xm/ToggleB.h>

void main(int argc, char** argv)
{
 Widget toplevel, toggle;
 XtAppContext app_context;
 Arg args[5];
 int nargs=0;

 toplevel = XtAppInitialize(&app_context, “LEDButton”,
 NULL, 0, &argc, argv, NULL, NULL, 0);

 XtSetArg(args[nargs], XmNindicatorSize, 10); nargs++;
 XtSetArg(args[nargs], XmNindicatorType, Xm3D_N_OF_MANY); nargs++;
 toggle = XmCreateToggleButton(toplevel, “toggle”, args, nargs);
 XtManageChild(toggle);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app_context);
}

Appendix B

This appendix lists the various environment variables used by the desktop.

Desktop Environment Variables

269

Appendix B

B. Desktop Environment Variables

Here is a list of environment variables used by the Desktop. You can use any of these
variables as part of the OPEN, ALTOPEN, or PRINT file typing rules, or as part of the
FILTER print conversion rule.

$LEADER
If one or more icons are currently selected from the Desktop, LEADER is
set to the icon whose text field is highlighted. If no icons are selected, it
is set to null.

$REST
If more than one icon is currently selected from the Desktop, REST
contains the list of names of all selected icons except the highlighted icon
(see LEADER above). Otherwise, it is set to null.

$LEADERTYPE
If one or more icons are currently selected from the Desktop,
LEADERTYPE is set to the TYPE of the icon whose text field is
highlighted. If no icons are selected, it is set to null.

$RESTTYPE
When more than one icon is currently selected from the Desktop,
RESTTYPE contains the TYPE for all selected icons except the
highlighted icon, if the remainder of the selected icons are all of the same
TYPE. If they are not the same TYPE, or only one icon is selected,
RESTTYPE is set to null.

$RESTTYPELIST
Contains the list of TYPEs corresponding to the arguments in REST. If
only one icon is selected, RESTTYPELIST is set to null.

$ARGC
Contains the number of selected icons.

$TARGET
Set only for the CMD DROP rule, TARGET contains the name of the icon
being dropped upon; otherwise it is set to null.

270

Appendix B: Desktop Environment Variables

$TARGETTYPE
Set only for the CMD DROP rule, TARGETTYPE contains the TYPE of
the icon being dropped upon; otherwise it is set to null.

$SELECTED
Contains the names of the icons being dropped on TARGET, or null, if
none are being dropped.

$SELECTEDTYPE
If all of the icons named in SELECTED are of the same TYPE,
SELECTEDTYPE contains that TYPE; otherwise it is set to null.

$SELECTEDTYPELIST
Contains a list of TYPEs corresponding to the TYPEs of the selected
icons named in SELECTED. If only one icon is selected, it is set to null.

$WINEDITOR
Contains the name for the text editor invoked from the Desktop. The
default editor is jot. To use an editor that does not generate its own
window by default, you must set WINEDITOR to the appropriate
winterm command line sequence. Thus, for vi, you would set
WINEDITOR by typing:

setenv WINEDITOR ’winterm -c vi’

$WINTERM
Contains the name of the window terminal invoked from the Desktop
using winterm(1). Currently supported window terminals are wsh and
xterm. The default window terminal is wsh.

This appendix contains listings of several online help document files. It also
lists the source of an example program that implements many online help
features, along with its accompanying help document and helpmap file.

Online Help Examples

Appendix C

273

Appendix C

C. Online Help Examples

This appendix contains listings of several online help document files.

• “A Simple Help Document”

• “Allowable Elements in a Help Document”

• “An Example of Implementing Help in an Application”

This appendix also lists the source of an example program that implements many online
help features, along with its accompanying help document and helpmap file. All of these
files are available online. Their locations are given before each listing.

To view these examples on your system, you must install the insight_dev product, which
contains the SGIHelp library and include file, help generation tools, examples, and
templates.

A Simple Help Document

Example C-1 lists a simple help document. It’s intended as a primer for writing online
help documents. You can find this file online at
/usr/share/Insight/XHELP/samples/sampleDoc/sample.sgm.

Example C-1 An Example of a Help Source File

<dochelp>

<!--
==
This block denotes a SGML-style comment.

For those that are unfamiliar with SGML, this sample file
will try to cover the usage of a variety of the tags that
are used in the XHELP DTD. The examples shown in this sample
should be sufficient for a writer to produce a very high-quality,
functional help document for use with an application.

274

Appendix C: Online Help Examples

It is best to view this sample once it has been published,
and then compare what you see in the viewing software to
the actual tags displayed in this file.

Each HelpTopic block written below displays how to use the
DTD to implement specific elements/constructs. It should be
fairly self-explanatory.

A couple of things to look for when constructing/editing
your SGML file:

o Make sure a starting element tag has an associated
end tag! If not, then the file will not compile
properly. This is analagous to missing a bracket
or paranthesis i n a C program!

o SGML is NOT case sensitive! "HELPTOPIC" is the same
as "helptopic", which is the same as "HelpTopic", etc.

==
-->

<HelpTopic HelpID="intro">
<Helplabel>SGI Sample SGML File</Helplabel>
<Description>
<para>This file contains examples using many of the constructs used
in the XHELP DTD.</para>
<para>Notice that the general outline used for putting together
a help "card" is defined by this particular SGML block. The preceding tag
defines the title that will be displayed for this card. The area you
are currently reading is a description for the feature or function you
are documenting. It is not necessary to use each of these tags, although
the "HelpTopic" tag is required.</para>

<para>A writer of help information may also wish to include a glossary
of terms. In that way, the documenter can tag terms within the text,
and have them display a specified definition from within the viewer.
A sample of this is: <glossterm>sgihelp</glossterm>.</para>
<para>The actual definition for the term is found at the end of this
SGML sample.</para>
</Description>
</HelpTopic>

A Simple Help Document

275

<!--
==
It's important to point out that the "HelpID" is the glue that
binds the help text to the application, through the use of the
provided Help API (library, header file).
==

-->

<HelpTopic HelpID="helpid_info">
<Helplabel>What is a HelpID?</Helplabel>
<Description>
<para>The HelpID attribute is used to by your application to
instruct the help server which help "card" to display. In this
case, sending the help server an ID of "helpid_info" would bring up
this particular block (or "card").</para>
<para>The other "ID" is often used as an anchor point
(and should be used within an "ANCHOR" tag) for hypertext
links within your text. If you wish to refer to a particular card
one simply uses the ID as the anchor point for the link syntax.</para>
</Description>
</HelpTopic>

<!--
==
This section illustrates the simple usage of specifying a note,
warning, tip, or caution within your help document.
==

-->

<HelpTopic HelpID="note_example">
<Helplabel><Anchor Id="AI003">Using Notes, Warnings or Tips Within a Paragraph</H
elplabel>
<Description>
<para>Within the paragraph tag, there are a variety of text marking
mechanisms. Each of these delineations must appear as part of the
paragraph ("para") element.</para>
<para>This area shows the documentor how a warning, note or "tip"
can be used within a persons's help text.</para>

<para>
<warning><para>Be Careful. This is a warning.</para></warning>
<note><para>For your information, this is a note.</para></note>
<tip><para>When you prepare your help file, you may wish to include a tip.</para>

276

Appendix C: Online Help Examples

</tip>
<caution><para>Use a caution tag when you wish to have the user use caution!</par
a>
</caution>
</para>
</Description>
</HelpTopic>

<!--
==
This next section illustrates how to display computer output,
program listings, etc. within your help document.
==

-->

<HelpTopic HelpID="literal_example">
<Helplabel>Using Literals or Examples Within a Paragraph</Helplabel>
<Description>
<para>
This area shows the documentor how to implement specific examples within
their help text. It also describes how to the "literal" tag.</para>
<para>
When used within a paragraph, the LiteralLayout tag
tells the viewing software to take this next block "as is",
with all accompanying new-lines and spacing left intact.</para>
<Example>
<Title>Various Examples: ComputerOutput, LiteralLayout, ProgramListing</Title>

<para>
What follows is a computer output listing from when a
user typed <userInput>ls</userInput> :
<ComputerOutput>
% ls -l
total 6777
-rwxr-xr-x 1 guest guest 29452 Mar 8 19:12 menu*
-rw-r--r-- 1 guest guest 2375 Mar 8 19:11 menu.c++
%
</ComputerOutput>
</para>

<para>
Each of the subsequent three entries should be indented and on their
own line:

A Simple Help Document

277

<LiteralLayout>
Here is line one.
This is line two.
This is line three.

</LiteralLayout>
</para>

<para>
The following is a listing from a "C" program:
<ProgramListing>

#include "X11/Xlib.h"
#include "helpapi/HelpBroker.h"

void main(int, char**)
{

/* default to the value of the DISPLAY env var */
Display *display = XOpenDisplay(NULL);

if(display) {
/* initialize the help server */
SGIHelpInit(display, "MyApp", ".");

}
...

}
</ProgramListing>
</para>
</Example>

</Description>
</HelpTopic>

<!--
==
This next section illustrates how to incorporate graphics within
your help text.
==

-->

<HelpTopic HelpID="graphic_example">
<Helplabel>Using Graphics or Figures Within Your Help Text</Helplabel>
<Description>
<para>
This area displays how a graphics or figure can be used within the flow of

278

Appendix C: Online Help Examples

your information. The following figure is in the "GIF" format:
</para>

<Figure ID="figure_01" Float="Yes">
<title>A GIF Raster Image</title>
<Graphic fileref="sample1.gif" format="GIF"></Graphic>

</Figure>

<para>
Currently, support is provided for <emphasis>raster</emphasis> graphics in
the GIF and TIF formats. Support is provided for <emphasis>vector</emphasis>
graphics utilizing the CGM format.
</para>
<para>
This next figure in the CGM (Computer Graphics Metafile) format:
</para>

<Figure ID="figure_02">
<title>A CGM Vector Image</title>
<Graphic fileref="sample2.cgm" format="CGM"></Graphic>

</Figure>

<para>
A special note that all equations are treated as inline images, as shown
here:
<equation>

<Graphic fileref="matrix.gif" format="GIF"></Graphic>
</equation>
</para>

</Description>
</HelpTopic>

<!--
==
Hyperlinks can be a very powerful navigation mechanism!
Liberal usage is encouraged.
==

-->

<HelpTopic HelpID="link_example">
<Helplabel>Using HyperLinks</Helplabel>
<Description>

A Simple Help Document

279

<para>One of the most powerful capabilities of the sgihelp viewer
is the use of hyperlinks to associate like pieces of information.
Constructing these links in SGML is trivial.</para>
<para>Notice that the "Link" element requires an attribute called
"Linkend". This defines the area (anchor) to link to. The "Linkend"
attribute points to the ID of some SGML element. In composing
help text, it is probably best to assign an ID to each "HelpTopic"
element, and use those same ID's when specifying a Link.</para>
<para>A link is defined below:</para>
<para>For more information about using Notes, refer to the area
entitled <Link Linkend="AI003">"Using Notes, Warnings or Tips
Within a Paragraph"</Link></para>
<para>Note that the "Anchor" tag can also be used within a
document to point to any level of granularity the author
wishes to link to.</para>
</Description>
</HelpTopic>

<!--
==
Note that there are *many* ways to specify lists. This example
shows some commonly-used permutations.
==

-->

<HelpTopic HelpID="list_example">
<Helplabel>Using Lists Within Your Help Text</Helplabel>
<Description>
<para>This area displays how a person can author
various types of lists within their help text.</para>

<para>Here is an itemized list that uses a dash to preface each item:</para>
<ItemizedList Mark="dash">
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry</para></ListItem>
<ListItem><para>Third Entry</para></ListItem>
</ItemizedList>

<para>Here is an itemized list that uses a bullet to preface each item:</para>
<ItemizedList Mark="bullet">
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry</para></ListItem>
</ItemizedList>

280

Appendix C: Online Help Examples

<para>Here is an ordered list, using standard enumeration:</para>
<OrderedList>
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry</para></ListItem>
<ListItem><para>Third Entry</para></ListItem>
</OrderedList>

<para>Here is another ordered list, using upper-case Roman enumeration,
showing nesting (sub-items) within the list (outline format):</para>
<OrderedList Numeration="Upperroman">
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry

<OrderedList Numeration="Upperalpha" InheritNum="Inherit">
<ListItem><para>First SubItem</para></ListItem>
<ListItem><para>Second SubItem</para></ListItem>
<ListItem><para>Third SubItem</para></ListItem>
<ListItem><para>Fourth SubItem</para></ListItem>

</OrderedList>
</para></ListItem>
<ListItem><para>Third Entry</para></ListItem>
</OrderedList>

<para>Here is a variable list of terms:</para>
<VariableList>
<VarListEntry>
<term>SGI</term>
<ListItem><para>Silicon Graphics, Inc.</para></ListItem>
</VarListEntry>
<VarListEntry>
<term>SGML</term>
<ListItem><para>A Meta-language for defining documents.</para></ListItem>
</VarListEntry>
</VariableList>

</Description>
</HelpTopic>

<!--
==
Some final examples...
==

-->

A Simple Help Document

281

<HelpTopic HelpID="misc_example">
<Helplabel>Other Miscellaneous Textual Attributes</Helplabel>
<Description>
<para>This area displays some miscellaneous tags that can be used
within the context of your help document.</para>

<para>
<Comment>This is a comment that is not to be confused
with the SGML-style comment! Instead, this comment will be
parsed and carried into the text of your document. Usually it's
used in production, for specifying to someone an area of concern,
an area that needs editing, etc.
</Comment>
</para>

<para>Within your text, you may wish to denote a footnote.
<Footnote id="foot1"><para>This block is a footnote!</para></Footnote>
The XHELP DTD will allow you to do that.
</para>

<para>
You may wish to add a copyright symbol to your text, such as:
Silicon Graphics, Inc.<trademark Class="Copyright"></trademark>
</para>
</Description>
</HelpTopic>

<!--
==
If you wish to use/have a glossary of terms within your help text,
it is advised to put it at the end of your help "book", as shown
here. NOTE: CR or other characters (#PCDATA) is NOT allowed
between the <Glossary> and <Title> tags! (mixed content model)
==

-->

<Glossary>
<Title>Glossary</Title>
<GlossEntry>
<GlossTerm>help</GlossTerm>
<GlossDef>
<para>To give assistance to; to get (oneself) out of a difficulty;

282

Appendix C: Online Help Examples

a source of aid.</para>
</GlossDef>
</GlossEntry>
<GlossEntry>
<GlossTerm>sgihelp</GlossTerm>
<GlossDef>
<para>This is Silicon Graphics, Inc. version of a "Xhelp" compatible
server. Through the use of an available API, and a help text
compiler, books can be constructed that can be used to render
help information for the given application.</para>
</GlossDef>
</GlossEntry></Glossary>

<!--
==
Don't forget the very last ending tag...!!!
==

-->

</dochelp>

Allowable Elements in a Help Document

Example C-2 lists a help document that describes the legal structures defined by the help
DTD. You can find this file online at
/usr/share/Insight/XHELP/samples/XHELP_elements/XHELP_elements.sgm.

Example C-2 A Description of the Elements Defined by the Help DTD

<DOCHELP>
<HELPTOPIC HelpID="">
<HELPLABEL>The Elements Alphabetized</HELPLABEL>
<DESCRIPTION>
<PARA>Emphasized entries indicate block-oriented elements.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>Common Attributes </HELPLABEL>
<DESCRIPTION>
<PARA>Common attributes include ID.</PARA>

<PARA>ID is an identifier, which must be a

Allowable Elements in a Help Document

283

string that is unique at least within the document and
which must begin with a letter.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>Other Attributes</HELPLABEL>
<DESCRIPTION>
<PARA>Certain other attributes occur regularly. PageNum is
the number of the page on which a given element begins
or occurs in a printed book. Label holds some text
associated with its element that is to be output when
the document is rendered.
Type is used with links,
as it is clear that different types of links may be
required; it duplicates the function of Role.</PARA>

<PARA>The Class attribute has been introduced in an attempt to
control the number of computer-specific in-line elements.
The elements that bear the Class attribute, such as
Interface, have general
meanings that can be made more specific
by providing a value for Class from the delimited list
for that element. For example, for the Interface element
one may specify Menu, or Button; for the MediaLabel
element one may specify CDRom or Tape. Each element
has its own list of permissible values for Class, and
no default is set, so you can ignore this attribute
if you wish.</PARA>

<PARA>An attribute that has the keyword IMPLIED bears no
processing expections if it is absent or its
value is null. Application designers might wish to
supply plausible defaults, but none is specified here.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>cptrphrase.gp</HELPLABEL>
<DESCRIPTION>

<PARA>This parameter entity has been introduced to provide
some structure for in-line elements related to computers.
Its contents are: plain text,
Anchor, Comment, Link, ComputerOutput, and UserInput.</PARA>

<PARA>Many of these elements now have attributes

284

Appendix C: Online Help Examples

with delimited value lists; some former in-line elements now appear as
values for those attributes.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>"In-line" vs. "In flow"</HELPLABEL>
<DESCRIPTION>

<PARA>In this document, "in-line" means "occuring within a line
of text, like a character or character string, not causing
a line break." This term is sometimes used to
refer to objects such as an illustration around which
something like a paragraph is wrapped; here that circumstance
will be called "in flow." There is no provision yet
for indicating that an object is in flow, but one could
make creative use of the Role attribute to do so.</PARA>

<PARA>A related point: formal objects have titles; informal
objects do not. That an object is informal does not mean
that it is in-line: these are two different
characteristics.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>List of Elements</HELPLABEL>
<DESCRIPTION>

<VARIABLELIST>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Actions</EMPHASIS></TERM>
<LISTITEM>

<PARA>A set of entries, usually in a list form, that comprise
the appropriate set of functions or steps to perform a corrective
action for a situation that is described as part of a help card.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Anchor</TERM>
<LISTITEM>

<PARA>Marks a target for a Link.
Anchor may appear almost anywhere, and has no content.

Allowable Elements in a Help Document

285

Anchor has ID, Pagenum, Remap, Role, and XRefLabel attributes;
the ID is required.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Caution</EMPHASIS></TERM>
<LISTITEM>

<PARA>An admonition set off from the text;
Tip, Warning, Important, and Note all share its model.
Its contents may include paragraphs, lists, and so forth,
but not another admonition.
Caution and its sisters have common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Comment</EMPHASIS></TERM>
<LISTITEM>

<PARA>A remark made within the document file that
is intended for use during interim stages of production.
A Comment should not be displayed to the reader of the
finished, published work. It may appear almost anywhere,
and may contain almost anything
below the Section level. Note that,
unlike an SGML comment, unless you take steps
to suppress it, the Comment element
will be output by an SGML parser
or application. You may wish to do this to display Comments
along with text during the editorial process.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>ComputerOutput</TERM>
<LISTITEM>

<PARA>Data presented to the user by
a computer.
It may contain elements from cptrphrase.gp,
and has common and
MoreInfo attributes For the MoreInfo attribute
see <EMPHASIS>Application.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

286

Appendix C: Online Help Examples

<VARLISTENTRY>
<TERM>
<EMPHASIS>Copyright</EMPHASIS></TERM>
<LISTITEM>

<PARA>Copyright information about
a document. It consists of one or
more Years followed by any number of Holders.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Date</TERM>
<LISTITEM>

<PARA>Date of publication or revision.
It contains plain text. (No provision
has been made for representing eras; you could include this
information along with the date data.)</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Description</EMPHASIS></TERM>
<LISTITEM>

<PARA>A part of a HelpTopic element.
Description may contain in-line elements.
The body may be comprised of paragraphs.
It is used to contain the body of text that
is used as a help card.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>DocHelp</EMPHASIS></TERM>
<LISTITEM>

<PARA>A collection of help document components.
A DocHelp entry may have a series of HelpTopic(s).
All back matter is optional, and at this time includes
a Glossary.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>

Allowable Elements in a Help Document

287

<TERM>
<EMPHASIS>DocInfo</EMPHASIS></TERM>
<LISTITEM>

<PARA>Metainformation for a book
component, in which it may appear. Only Title and AuthorGroup
are required. DocInfo may contain, in order:
the required Title, optional TitleAbbrev and
Subtitle, followed by one or more
AuthorGroups, any number of
Abstracts, an optional RevHistory, and any number of
LegalNotices. DocInfo has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Emphasis</TERM>
<LISTITEM>

<PARA>Provided for use where you would
traditionally use italics
or bold type to emphasize a word or phrase.
It contains plain text and
has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Equation</EMPHASIS></TERM>
<LISTITEM>

<PARA>A titled mathematical equation displayed
on a line by itself, rather than in-line. It has an optional
Title and TitleAbbrev, followed by either
an InformalEquation or a Graphic (see
<EMPHASIS>Graphic</EMPHASIS>).
Equation has common and Label attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Example</EMPHASIS></TERM>
<LISTITEM>

<PARA>Intended for sections of program source code
that are provided as examples in the text.

288

Appendix C: Online Help Examples

It contains a required Title and an
optional TitleAbbrev, followed by one or more block-oriented
elements in any combination. It has common and Label
attributes. A simple Example might contain a Title
and a ProgramListing.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Figure</EMPHASIS></TERM>
<LISTITEM>

<PARA>An illustration.
It must have a Title, and may have a
TitleAbbrev, followed by one or more of
BlockQuote,
InformalEquation, Graphic,
InformalTable, Link, LiteralLayout,
OLink, ProgramListing, Screen, Synopsis, and ULink,
in any order. Figure has common,
Label, and Float attributes; Float indicates
whether the Figure is supposed to be rendered
where convenient (yes) or at
the place it occurs in the text (no, the default). To
reference an external file containing graphical
content use the Graphic element within Figure.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Footnote</EMPHASIS></TERM>
<LISTITEM>

<PARA>The contents of a footnote, when
the note occurs outside the block-oriented element in
which the FootnoteRef occurs.
(Compare <EMPHASIS>InlineNote.</EMPHASIS>)
The point in the text where the mark for a specific
footnote goes is indicated by FootnoteRef.
Footnote may contain Para, SimPara, BlockQuote, InformalEquation, InformalTable,
Graphic, Synopsis, LiteralLayout, ProgramListing,
Screen, and any kind of list.
It has ID, Label, Lang, Remap, Role, and XRefLabel
attributes; the ID attribute is required, as
a FootnoteRef must point to it.</PARA>

Allowable Elements in a Help Document

289

</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Glossary</EMPHASIS></TERM>
<LISTITEM>

<PARA>A glossary of terms. Glossary
may occur within a Chapter, Appendix, or Preface,
or may be a book component in its own right.
It contains in order an optional DocInfo, optional
Title, and optional TitleAbbrev, followed by
any number of block-oriented elements, followed by
one or more GlossEntries or one or more GlossDivs.
It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>GlossDef</EMPHASIS></TERM>
<LISTITEM>

<PARA>The definition attached to a GlossTerm
in a GlossEntry. It may contain Comments, GlossSeeAlsos,
paragraphs, and other block-oriented elements, in
any order; it has common and Subject attributes. The Subject
attribute may hold a list of subject areas (e.g., DCE RPC
General) as keywords.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>GlossEntry</EMPHASIS></TERM>
<LISTITEM>

<PARA>An entry in a Glossary.
It contains, in order, a required
GlossTerm, an optional Acronym,
an optional Abbrev, and either a
GlossSee or any number of GlossDefs.
It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>GlossTerm</TERM>

290

Appendix C: Online Help Examples

<LISTITEM>

<PARA>A term in the text of a Chapter (for example) that is
glossed in a Glossary; also used for those terms in GlossEntries, in the
Glossary itself. As you may not want to tag all occurrences
of these words outside of Glossaries, you might consider
GlossTerm, when used outside of Glossaries, to be similar
to FirstTerm, except that GlossTerm may contain other
in-line elements. GlossTerm contains in-line elements
and has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Graphic</TERM>
<LISTITEM>

<PARA>Encloses graphical data or
points via an attribute to an external file containing such data,
and is to be rendered as an object, not in-line.
It has Format,
Fileref, Entityref, and ID attributes.
The format attribute may have the value of
any of the formats defined at the head of the DTD,
including CGM-CHAR, CGM-CLEAR, DITROFF, DVI, EPS,
EQN, FAX, FAXTILE, GIF, IGES, PIC, PS, TBL, TEX,
TIFF.</PARA>

<PARA>The value of Fileref should be a filename, qualified by
a pathname if desired; the value of Entityref should be that of an
external data entity. If data is given as the
content of Graphic, both Entityref and Fileref,
if present at all, should
be ignored, but a Format value should be supplied.
if no data is given as the content of
Graphic and a value for Entityref
is given, Fileref, if present, should be ignored
but no Format value should be supplied.
Finally, if there is no content for Graphic and
Entityref is absent or null, Fileref must be
given the appropriate value, and again no
Format value should be supplied.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>

Allowable Elements in a Help Document

291

<EMPHASIS>HelpTopic</EMPHASIS></TERM>
<LISTITEM>

<PARA>A part of a DocHelp document.
HelpTopic contains a HelpLabel, followed in order by
a Description, and optionally an Actions area.
HelpTopic has common and HelpId attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>HelpLabel</EMPHASIS></TERM>
<LISTITEM>

<PARA>The text of a heading or the title of the HelpTopic
block-oriented element. HelpLabel may contain
in-line elements, and has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>
<VARLISTENTRY>
<TERM>InlineEquation</TERM>
<LISTITEM>

<PARA>An untitled mathematical equation
occurring in-line or as the content of an Equation.
It contains a Graphic, and has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>InlineGraphic</TERM>
<LISTITEM>

<PARA>Encloses graphical data or
points via an attribute to an external file containing such data,
and is to be rendered in-line.
InlineGraphic has Format, Fileref, Entityref, and ID attributes.
The format attribute may have the value of
any of the formats defined at the head of the DTD, under "Notations."
If it is desired to point to an external file, a filename may
be supplied as the value of the Fileref attribute, or an
external entity name may be supplied as the value of the
Entityref attribute.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>

292

Appendix C: Online Help Examples

<EMPHASIS>ItemizedList</EMPHASIS></TERM>
<LISTITEM>

<PARA>A list in which each item is marked with
a bullet, dash, or other dingbat (or no mark at all).
It consists of one or more ListItems. A ListItem in an
ItemizedList contains paragraphs and other
block-oriented elements, which
may in turn contain other lists; an ItemizedList may be
nested within other lists, too. It has common attributes and
a Mark attribute. Your application might supply the mark to be used
for an ItemizedList, but you can use this attribute to
indicate the mark you desire to be used; there
is no fixed list of these.hfill\break <EMPHASIS>Usage Note:</EMPHASIS>
You might want to use one of the ISO text entities
that designates an appropriate dingbat.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Link</TERM>
<LISTITEM>

<PARA>A hypertext link. At present, all
the link types represented in the DTD are
provisional. Link is less provisional than the
others, however. In HyTime parlance, Link is a
clink. It may contain in-line elements
and has Endterm, Linkend, and Type attributes. The required
Linkend attribute specifies the target of the link,
and the optional Endterm attribute specifies
text that is to be fetched from elsewhere in the document
to appear in the Link. You can also supply this text directly as
the content of the Link, <EMPHASIS>in which case the
Endterm attribute is to be ignored (new and tentative
rule for this version, comments invited)</EMPHASIS>.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>ListItem</EMPHASIS></TERM>
<LISTITEM>

<PARA>A wrapper for the elements of
items in an ItemizedList or OrderedList; it also
occurs within VarListEntry in VariableList.

Allowable Elements in a Help Document

293

It may contain just about anything except Sects and book components.
It has common attributes and an Override attribute, which
may have any of the values of ItemizedList's
Mark attribute; use Override to override the mark
set at the ItemizedList level, when you desire to create
ItemizedLists with varying marks.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>LiteralLayout</EMPHASIS></TERM>
<LISTITEM>

<PARA>The wrapper for lines set off from
the main text that are not tagged as Screens, Examples,
or ProgramListing, in which line breaks and leading
white space are to be regarded as significant.
It contains in-line elements, and has common
and Width attributes, for specifying a number representing
the maximum width of the contents.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Note</EMPHASIS></TERM>
<LISTITEM>

<PARA>A message to the user, set off from the text.
See <EMPHASIS>Caution.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>OrderedList</EMPHASIS></TERM>
<LISTITEM>

<PARA>A numbered or lettered list, consisting of
ListItems. A ListItem in an
OrderedList contains paragraphs and other
block-oriented elements, which
may in turn contain other lists; an OrderedList may be
nested within other lists, too.
OrderedList has common attributes, along with
a Numeration attribute, which
may have the value Arabic, Upperalpha, Loweralpha,

294

Appendix C: Online Help Examples

Upperroman, or Lowerroman. The default is Arabic (1, 2, 3 , . . .).
It has an InheritNum attribute, for which the value Inherit specifies for a
nested list that the numbering of ListItems should include the
number of the item within which they are nested (2a, 2b, etc.,
rather than a, b, etc.); the default value is Ignore.
It has a Continuation attribute, with values
Continues or Restarts (the default), which may be used to
indicate whether the numbering of a list begins afresh (default)
or continues that of the immediately preceding list (Continues).
You need supply the Continuation attribute only
if your list continues the numbering of the preceding list.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Para</EMPHASIS></TERM>
<LISTITEM>

<PARA>A paragraph. A Para may not
have a Title: to attach a Title to a Para use FormalPara. Para
may contain any in-line element and almost
any block-oriented element. Abstract, AuthorBlurb, Caution,
Important, Note, and Warning are excluded, as are Sects and higher-level
elements. Para has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>ProgramListing</EMPHASIS></TERM>
<LISTITEM>

<PARA>A listing of a program.
Line breaks and leading
white space are significant in a ProgramListing, which
may contain in-line elements, including LineAnnotations.
(LineAnnotations are a document author's
comments on the code, not the comments written
into the code itself by the code's author.)
ProgramListing has common and Width attributes, the
latter for specifying a number representing the maximum
width of the contents.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Term</TERM>

Allowable Elements in a Help Document

295

<LISTITEM>

<PARA>The hanging term attached to a ListItem
within a VarListEntry in a
VariableList; visually, a VariableList
is a set of Terms with attached items such as paragraphs. Each
ListItem may be associated with a set of Terms. Term may contain
in-line elements. It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Tip</EMPHASIS></TERM>
<LISTITEM>

<PARA>A suggestion to the user, set off from
the text. See <EMPHASIS>Caution.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Title</EMPHASIS></TERM>
<LISTITEM>

<PARA>The text of a heading or the title of a
block-oriented element. Title may contain
in-line elements, and has common and PageNum attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Trademark</TERM>
<LISTITEM>

<PARA>A trademark. It may contain members of cptrphrase.gp,
and has common and Class attributes.
Class may have the values Service, Trade, Registered,
or Copyright; the default is Trade.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>UserInput</TERM>
<LISTITEM>

<PARA>Data entered by the user.
It may contain elements from cptrphrase.gp,

296

Appendix C: Online Help Examples

and has common and MoreInfo attributes. For the MoreInfo attribute
see <EMPHASIS>Application.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>VariableList</EMPHASIS></TERM>
<LISTITEM>

<PARA>An optionally
titled list of VarListEntries, which are
composed of sets of one or more Terms with associated
ListItems; ListItems contain paragraphs and other block-oriented
elements in any order. Inclusions
are as for OrderedList (see <EMPHASIS>OrderedList</EMPHASIS>).
VariableList has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>VarListEntry</EMPHASIS></TERM>
<LISTITEM>

<PARA>A component of VariableList (see
<EMPHASIS>VariableList</EMPHASIS>). It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Warning</EMPHASIS></TERM>
<LISTITEM>

<PARA>An admonition set off from the text.
See <EMPHASIS>Caution.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>XRef</TERM>
<LISTITEM>

<PARA>Cross reference link to another part of the document.
It has Linkend and Endterm attributes, just like Link,
but like Anchor, it may have no content.
XRef must have a Linkend, but the Endterm is optional.
If it is used, the content of the element it points

An Example of Implementing Help in an Application

297

to is displayed as the text of the cross reference;
if it is absent, the XRefLabel of the cross-referenced
object is displayed. To include in the cross reference
generated text associated with the object referred to,
use your application's style sheet. See <EMPHASIS>Link.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

</VARIABLELIST>
</DESCRIPTION></HELPTOPIC>
</DOCHELP>

An Example of Implementing Help in an Application

This section provides a complete example of help integrated with an application.

Example C-3 lists a C program that implements a Help menu, a Help button, and
context-sensitive help. You can find this file online at
/usr/share/Insight/XHELP/samples/exampleApp/exampleAppXm.c.

Example C-4 lists the help document for exampleAppXm. You can find it online at
/usr/share/Insight/XHELP/samples/exampleApp/exampleAppXm.sgm.

Example C-5 lists the helpmap file for exampleAppXm. You can find it online at
/usr/share/Insight/XHELP/samples/exampleApp/help/exampleAppXm.helpmap.

Example C-3 An Example of Integrating SGIHelp With an Application

/*___
*
* File: exampleAppXm.c
*
* Date: 3/25/94
*
* Compile with: cc -o exampleAppXm exampleAppXm.c -lhelpmsg -lXm -lXt -lX11
*
* Purpose: An simple example program that shows how to use the SGI
* Help system from a Motif application.
*
* This program displays a few buttons on a bulletin board
* alongwith a help menu. The use of context sensitive help
* is also demonstrated.
*___

298

Appendix C: Online Help Examples

*/

/*
* standard include files
*/

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <X11/cursorfont.h>
#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>
#include <Xm/MessageB.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/CascadeB.h>
#include <Xm/Separator.h>

/*
* include for for calling/using SGIHelp
*/

#include <helpapi/HelpBroker.h>

/*
* forward declarations of functions
*/

Widget initMotif(int *argcP, /* Initializes motif and */
char *argv[], /* and returns the top level*/
XtAppContext *app_contextP, /* shell. */
Display **displayP);

void createInterface(Widget parent); /*creates the main window, */
/*menus, and the buttons */
/*on the main window */

void clickForHelpCB(); /*callbacks for each of */
void overviewCB(); /*the help menu's */
void taskCB();
void indexCB();
void keysAndShortcutsCB();

An Example of Implementing Help in an Application

299

void productInfoCB();

void infoDialogCB();

Widget _mainWindow, _infoDialog=NULL;

/*___
*
* main()
*___
*/

main(int argc, char *argv[])
{

Display *display;
XtAppContext app_context;
Widget toplevel;

toplevel = initMotif (&argc,argv,&app_context,&display);

createInterface(toplevel);

XtRealizeWidget(toplevel);

XtAppMainLoop(app_context);
}

/*___
*
* Function: initMotif()
*
* Purpose: Initializes Motif and creates a top level shell.
* Returns the toplevel shell.
*
* Makes the call to initialize variables for the SGIHelp
* interface...note that it does not *start* the sgihelp
* process. That is done when a request for help is made,
* if and only if the sgihelp process is not already
* running.
*
*___
*/

300

Appendix C: Online Help Examples

Widget initMotif(int *argcP,char *argv[],XtAppContext *app_contextP,
Display **displayP)

{
Widget toplevel;

XtToolkitInitialize();
*app_contextP = XtCreateApplicationContext();
*displayP = XtOpenDisplay(*app_contextP,NULL,"exampleAppXm",

"exampleAppXmClass",NULL,
0,argcP, argv);

if (*displayP == NULL) {
fprintf (stderr,"Could not open display.\n");
fprintf (stderr,"Check your DISPLAY environment variable.\n");
fprintf (stderr,"Exiting...\n");
exit(-1);

}

toplevel = XtAppCreateShell("exampleAppXm", NULL,
applicationShellWidgetClass,
*displayP, NULL,0);

/*
* initialize variables for SGIHelp
*/

SGIHelpInit(*displayP, "exampleAppXm", ".");

return (toplevel);
}

/*___
*
* Function: createInterface()
*___
*/

void createInterface(Widget parent)
{

Arg args[10];
int i;
Widget baseForm;
Widget menuBar;
Widget demoLabel, demoButton;
Widget pulldown1,pulldown2, cascade1, cascade2;
Widget menuButtons[6]; /*we will create at max 6 buttons on a menu*/

An Example of Implementing Help in an Application

301

XmString xmStr;

/*
* mainWindow is an XmMainWindow
* on which the whole interface is built
*/

i=0;
_mainWindow = XmCreateMainWindow(parent,"mainWindow",args,i);
XtManageChild(_mainWindow);

/*
* baseForm is the workArea for the
* mainWindow above.
*/

i=0;
XtSetArg (args[i],XmNwidth,400);i++;
XtSetArg (args[i],XmNheight,300);i++;
XtSetArg (args[i],XmNverticalSpacing,40);i++;
baseForm = XmCreateForm(_mainWindow,"baseForm",args,i);
XtManageChild(baseForm);

/*
* On this bulletin board, put a label and a button
* for demonstrating callbacks and context sensitive
* help.
*/

i=0;
xmStr = XmStringCreateSimple("SGI Help!");
XtSetArg (args[i],XmNlabelString,xmStr);i++;
XtSetArg (args[i],XmNtopAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNrightAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNleftAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNalignment,XmALIGNMENT_CENTER);i++;
demoLabel = XmCreateLabel(baseForm,"sgiHelpLabel",args,i);
XtManageChild(demoLabel);
XmStringFree(xmStr);

i=0;
xmStr = XmStringCreateSimple("Click Here For Help");
XtSetArg (args[i],XmNlabelString,xmStr);i++;
XtSetArg (args[i],XmNrightAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNbottomAttachment,XmATTACH_FORM);i++;
demoButton = XmCreatePushButton(baseForm,"sgiHelpPushButton",args,i);
XtManageChild(demoButton);
XmStringFree(xmStr);

302

Appendix C: Online Help Examples

XtAddCallback(demoButton,XmNactivateCallback,taskCB,NULL);

/*
* build a pulldown menu system, including the "help" menu
*/

menuBar = XmCreateMenuBar(_mainWindow,"menuBar",NULL,0);
XtManageChild(menuBar);

pulldown1 = XmCreatePulldownMenu(menuBar,"pulldown1",NULL,0);
pulldown2 = XmCreatePulldownMenu(menuBar,"pulldown2",NULL,0);

i=0;
XtSetArg (args[i],XmNsubMenuId,pulldown1);i++;
cascade1 = XmCreateCascadeButton(menuBar,"File",args,i);
XtManageChild(cascade1);

i=0;
XtSetArg (args[i],XmNsubMenuId,pulldown2);i++;
cascade2 = XmCreateCascadeButton(menuBar,"Help",args,i);
XtManageChild(cascade2);

/*
* Declare this to be the Help menu
*/

i=0;
XtSetArg (args[i],XmNmenuHelpWidget,cascade2);i++;
XtSetValues(menuBar,args,i);

menuButtons[0] = XmCreatePushButton(pulldown1,"Exit",NULL,0);
XtManageChildren(menuButtons,1);
XtAddCallback(menuButtons[0],XmNactivateCallback,(XtCallbackProc)exit,0);

menuButtons[0] = XmCreatePushButton(pulldown2,"Click for Help",NULL,0);
menuButtons[1] = XmCreatePushButton(pulldown2,"Overview",NULL,0);
XtManageChild(XmCreateSeparator(pulldown2, "separator1",NULL,0));
menuButtons[2] = XmCreatePushButton(pulldown2,"Sample Help Task",NULL,0);
XtManageChild(XmCreateSeparator(pulldown2, "separator2",NULL,0));
menuButtons[3] = XmCreatePushButton(pulldown2,"Index",NULL,0);
menuButtons[4] = XmCreatePushButton(pulldown2,"Keys and Shortcuts",NULL,0);
XtManageChild(XmCreateSeparator(pulldown2, "separator3",NULL,0));
menuButtons[5] = XmCreatePushButton(pulldown2,"Product Information",NULL,0);

XtManageChildren(menuButtons,6);

/*

An Example of Implementing Help in an Application

303

* add callbacks to each of the help menu buttons
*/

XtAddCallback(menuButtons[0],XmNactivateCallback,clickForHelpCB,NULL);
XtAddCallback(menuButtons[1],XmNactivateCallback,overviewCB,NULL);
XtAddCallback(menuButtons[2],XmNactivateCallback,taskCB,NULL);
XtAddCallback(menuButtons[3],XmNactivateCallback,indexCB,NULL);
XtAddCallback(menuButtons[4],XmNactivateCallback,keysAndShortcutsCB,NULL);
XtAddCallback(menuButtons[5],XmNactivateCallback,productInfoCB,NULL);

/*
* set the bulletin board and menubar into
* the main Window.
*/

XmMainWindowSetAreas(_mainWindow,menuBar,NULL,NULL,NULL,baseForm);
}

/*___
*
* void clickForHelpCB()
*
* Purpose: Provides context-sensitivity within an application;
* makes a request to the sgihelp process.
*
*___
*/

void clickForHelpCB(Widget wid, XtPointer clientData, XtPointer callData)
{

static Cursor cursor = NULL;
static char path[512], tmp[512];
Widget shell, result, w;

strcpy(path, "");
strcpy(tmp, "");

/*
* create a question-mark cursor
*/

if(!cursor)
cursor = XCreateFontCursor(XtDisplay(wid), XC_question_arrow);

XmUpdateDisplay(_mainWindow);

/*

304

Appendix C: Online Help Examples

* get the top-level shell for the window
*/

shell = _mainWindow;
while (shell && !XtIsShell(shell)) {

shell = XtParent(shell);
}

/*
* modal interface for selection of a component;
* returns the widget or gadget that contains the pointer
*/

result = XmTrackingLocate(shell, cursor, FALSE);

if(result) {
w = result;

/*
* get the widget hierarchy; separate with a '.';
* this also puts them in top-down vs. bottom-up order.
*/

do {
if(XtName(w)) {

strcpy(path, XtName(w));

if(strlen(tmp) > 0) {
strcat(path, ".");
strcat(path, tmp);

}

strcpy(tmp, path);
}

w = XtParent(w);
} while (w != NULL && w != shell);

/*
* send msg to the help server-widget hierarchy;
* OR
* provide a mapping to produce the key to be used
*
* In this case, we'll let the sgihelp process do
* the mapping for us, with the use of a helpmap file
*
* Note that parameter 2, the book name, can be found
* from the helpmap file as well. The developer need

An Example of Implementing Help in an Application

305

* not hard-code it, if a helpmap file is present for
* the application.
*
*/
if(strlen(path) > 0) {

SGIHelpMsg(path, NULL, NULL);
}

}
}

/*___
*
* void overviewCB()
*___
*/

void overviewCB()
{

/*
* Using the mapping file allows us to specify
* a "Overview" help card for each window in
* our application. In this case, we will point
* to a specific one. Note that the book name is
* specified, but not necessary if a helpmap file
* exists for this application.
*/

SGIHelpMsg("overview", "exampleAppXmHelp", NULL);
}

/*___
*
* void indexCB()
*___
*/

void indexCB()
{

/*
* For the index window to work for this application,
* a helpmap file MUST be present!
*/

SGIHelpIndexMsg("index", NULL);
}

306

Appendix C: Online Help Examples

/*___
*
* void taskCB()
*___
*/

void taskCB()
{

/*
* For the task found in the help menu or a pushbutton, we
* use a specific key/book combination.
*/

SGIHelpMsg("help_task", "exampleAppXmHelp", NULL);
}

/*___
*
* void keysAndShortcutsCB()
*___
*/

void keysAndShortcutsCB()
{

/*
* This would point to the help card that contains
* information about the use of keys/accelerators, etc.
* for your application.
*/

SGIHelpMsg("keys", "exampleAppXmHelp", NULL);
}

/*___
*
* void productInfoCB()
*___
*/

void productInfoCB()
{

/*
* Pops up a dialog showing product version information.

An Example of Implementing Help in an Application

307

*
* This area has nothing to do with SGIHelp, but is included
* for completeness.
*/

void buildInfoDialog();

XmString xmStr;
Arg args[10];
int i;

if(_infoDialog == NULL) {
buildInfoDialog();
XtRealizeWidget(_infoDialog);

}

xmStr=XmStringCreateSimple("Example Motif App Using SGIHelp version 1.0");
i=0;
XtSetArg (args[i],XmNmessageString,xmStr);i++;
XtSetValues(_infoDialog, args, i);
XmStringFree(xmStr);

XtManageChild(_infoDialog);
}

void buildInfoDialog()
{

Arg args[10];
int i;

/*
* Build the informational dialog to display the version info
*/

i=0;
XtSetArg (args[i],XmNautoUnmanage,True);i++;
XtSetArg (args[i],XmNdialogType,XmDIALOG_WORKING);i++;
XtSetArg (args[i],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);i++;
_infoDialog = XmCreateInformationDialog(_mainWindow,"infoDialog",args,i);

XtAddCallback(_infoDialog, XmNokCallback, infoDialogCB, NULL);

XtUnmanageChild(XmMessageBoxGetChild(_infoDialog, XmDIALOG_CANCEL_BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(_infoDialog, XmDIALOG_HELP_BUTTON));

}

308

Appendix C: Online Help Examples

void infoDialogCB()
{

if (_infoDialog) {
XtUnmanageChild(_infoDialog);

/* Explicitly set the input focus */
XSetInputFocus(XtDisplay(_mainWindow), PointerRoot,

RevertToParent, CurrentTime);
}

}

Example C-4 Help Source File for Example Program

<dochelp>

<HelpTopic HelpID="overview">
<Helplabel>Example Motif Application Using SGIHelp</Helplabel>
<Description>
<para>
This application is intended to show the developer how
the <glossterm>SGIHelp</glossterm> system can work for you.
It displays (in the included
sample code, exampleAppXm.c) usage of various widgets, a sample
help menu, full-context-sensitivity, and calls to
the <glossterm>SGIHelp</glossterm> server process via the API.
</para>

<Figure ID="figure_01">
<title>exampleAppXm Main Window</title>
<Graphic fileref="mainwnd.gif" format="GIF"></Graphic>

</Figure>

<para>
The application itself is very simple, composed of
a <Link Linkend="ID002">File menu,</Link>
a <Link Linkend="ID003">Help menu,</Link>
a <Link Linkend="ID005">Pushbutton,</Link>
and a <Link Linkend="ID004">Label</Link>.
The user can choose items from the
<Link Linkend="ID003">Help menu</Link> to
contact the <glossterm>SGIHelp</glossterm> server process to
cause different help cards to be rendered.
</para>

An Example of Implementing Help in an Application

309

<para>To quit the application, use the "Exit" command
found under the <Link Linkend="ID002">File menu</Link>.
</para>
</Description>
</HelpTopic>

<HelpTopic HelpID="file_menu">
<Helplabel><Anchor Id="ID002">The File Menu</Helplabel>
<Description>
<para>The following items (and their functions) are part of
the File menu:</para>
<VariableList>
<VarListEntry>
<term>Exit</term>
<ListItem><para>Used to quit the exampleAppXm application.</para></listitem>
</VarListEntry>
</VariableList>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_menu">
<Helplabel><Anchor Id="ID003">The Help Menu</Helplabel>
<Description>
<para>The following items (and their functions) are part of
the Help menu:</para>
<VariableList>
<VarListEntry>
<term>Click for Help</term>
<ListItem><para>Used to put the application in context sensitive mode.
Will cause the cursor to turn into a "?" at which point the user can
click on any entry in the application's window to obtain help.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Overview</term>
<ListItem><para>Used to display a help overview card for the current
window.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Index</term>
<ListItem><para>Used to display from SGIHelp an Index of help topics for
the given application.</para></listitem>
</VarListEntry>
<VarListEntry>

310

Appendix C: Online Help Examples

<term>Keys & Shortcuts</term>
<ListItem><para>Used to display a help card that describes any special
key combinations this application uses.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Product Info</term>
<ListItem><para>Pops up a dialog that displays to the user any version or
copyright information for this application.</para></listitem>
</VarListEntry>
</VariableList>
<para>To access any menu items, click on the menu item
that is a part of the menubar. When the menu pops-up,
highlight the desired item, and release the mouse button.
</para>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_label">
<Helplabel><Anchor Id="ID004">A Label</Helplabel>
<Description>
<para>You have clicked on a Label. It simply displays information
to the user and serves no other useful pourpose.</para>
<tip><para>Basically, a label is useless. For information only.</para></tip>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_button">
<Helplabel><Anchor Id="ID005">A Pushbutton</Helplabel>
<Description>
<para>You have clicked on a Pushbutton. A pushbutton, when
clicked, will activate some type of command within the application.</para>
</Description>
</HelpTopic>

<HelpTopic HelpID="keys">
<Helplabel><Anchor Id="ID006">Keys and Shortcuts</Helplabel>
<Description>
<para>This card displays all known keys and shortcuts for this
application.</para>
<warning><para>This application has no shortcuts.</para></warning>
</Description>
</HelpTopic>

An Example of Implementing Help in an Application

311

<HelpTopic HelpID="help_task">
<Helplabel><Anchor Id="ID007">A Sample Help Task</Helplabel>
<Description>
<para>
When creating your application and help text, you may wish
to highlight certain common tasks. This help card was
displayed from either a menu item or a pushbutton.
</para>
<para>
To perform such an operation within your code, the
associated callback that contacts the <glossterm>SGIHelp</glossterm> server
can be constructed as shown below.</para>
<Example>
<Title>Sample Help Task Callback</Title>

<para>
The following is a listing derived from a "C" program:
<ProgramListing>

/* create menu items, pushbuttons, etc. */

void taskCB()
{

/*
* For the task found in the help menu,
* we'll use a specific key/book
* combination.
*/

SGIHelpMsg("key", "myBook", NULL);
}

</ProgramListing>
</para>
</Example>
<para>It's relatively simple process to integrate help
into your application. In fact, the <glossterm>SGIHelp</glossterm>
process only requires <emphasis>two</emphasis> function calls.
</para>
</Description>
</HelpTopic>

<Glossary>
<Title>Glossary</Title>

312

Appendix C: Online Help Examples

<GlossEntry>
<GlossTerm>SGIHelp</GlossTerm>
<GlossDef>
<para>This is Silicon Graphics, Inc. version of a "Xhelp" compatible
server. Through the use of an available API, and a help text
compiler, books can be constructed that can be used to render
help information for the given application.</para>
</GlossDef>
</GlossEntry>

</Glossary>

</dochelp>

Example C-5 Helpmap for Example Program

1;exampleAppXmHelp;Example Motif App
Overview;0;overview;exampleAppXm.overview;exampleAppXm.mainWindow.baseForm;exampl
eAppXm.mainWindow.menuBar;exampleAppXm.mainWindow
2;exampleAppXmHelp;File Menu;1;file_menu;exampleAppXm.mainWindow.menuBar.File
2;exampleAppXmHelp;Help Menu;1;help_menu;exampleAppXm.mainWindow.menuBar.Help
2;exampleAppXmHelp;A Label
Entry;1;help_label;exampleAppXm.mainWindow.baseForm.sgiHelpLabel
2;exampleAppXmHelp;A Pushbutton
Entry;1;help_button;exampleAppXm.mainWindow.baseForm.sgiHelpPushButton
2;exampleAppXmHelp;Keys and Shortcuts;0;keys;exampleAppXm.keys
2;exampleAppXmHelp;A Sample Help Task;0;help_task;exampleAppXm.exampleAppXm

This appendix describes the icon description language that IconSmith uses to
write the ICON rule. This information is provided for completeness. Don’t try
to write the ICON rule directly in the icon description language.

The Icon Description Language

Appendix D

315

Appendix D

D. The Icon Description Language

Use IconSmith to draw your icons. To learn how to use IconSmith, see Chapter 12, “Using
IconSmith.” After you draw your icon, include it in the FTR file using the ICON rule
described in Chapter 13, “File Typing Rules.” IconSmith writes the ICON rule for you
using the icon description language. This appendix describes the icon description language
that IconSmith uses to write the ICON rule. This information is provided for
completeness. Do not try to write the ICON rule directly in the icon description language.

The icon description language is a restricted subset of the C programming language. It
includes line and polygon drawing routines from the IRIS Graphics Library™ (GL), as
well as some additional routines that are not in the GL. The description routine for a
given icon is similar in structure to a C subroutine without the subroutine and variable
declarations. The valid symbols and functions in the icon description language are
described below.

Operators

You can use these C language operators in an icon description routine:

+
-
*
/
&
|
^
!
%
=
()
{ }

316

Appendix D: The Icon Description Language

You can use these C language conditional operators in an icon description routine:

&&
||
==
!=
<
>
<=
>=

Constants

You can use these logical constants in an icon description routine:

true false

Variables

The following icon status variables are set by the Desktop. You can use them in an icon
description routine:

opened located selected current disabled

These variables have values of either true or false. You can use them in a conditional
statement to alter the appearance of an icon when it has been manipulated in various
ways from the Desktop.

You can use other legal C variables in an icon description routine, without a declaration;
all variables are represented as type float. Any variable name is acceptable, provided it
does not collide with any of the predefined constants, variables, or function names in the
icon description language.

317

Functions

The icon description functions comprise, for the most part, a very restricted subset of the
C language version of the IRIS Graphics Library, modified for 2-D drawing. See Table D-1
for a list of all the icon description functions.

Table D-1 Icon Description Functions

Function Definition

arc(x, y, r, startang, endang) Draw an arc starting at icon coordinates x, y; with
radius r; starting at angle startang; ending at angle
endang. Angle measures are in tenths of degrees.

arcf(x, y, r, startang, endang) Like arc, but filled with the current pen color.

bclos(color) Like pclos, but uses color for the border (outline) color
of the polygon.

bgnclosedline() Begin drawing a closed, unfilled figure drawn in the
current pen color. Used in conjunction with vertex
and endclosedline.

bgnline() Like bgnclosedline, except the figure is not closed.
Used in conjunction with vertex and endline.

bgnoutlinepolygon Begin drawing a polygon filled with the current pen
color. The polygon is outlined with a color specified
by endoutlinepolygon. Also used in conjunction with
vertex.

bgnpoint() Begin drawing a series of unconnected points defined
using calls to vertex. Used in conjunction with vertex
and endpoint.

bgnpolygon() Like bgnoutlinepolygon except the polygon is not
outlined. Used in conjunction with vertex and
endpolygon.

color(n) Set current pen color to color index n.

draw(x, y) Draw a line in the current color from the current pen
location to x, y.

endclosedline() Finish a closed, unfilled figure started with
bgnclosedline.

318

Appendix D: The Icon Description Language

endline() Finish an open, unfilled figure started with bgnline.

endoutlinepolygon(color) Finish a filled polygon started with
bgnoutlinepolygon and outline it with color.

endpoint() Finish a series of points started with bgnpoint.

endpolygon() Finish a filled, unoutlined polygon started with
bgnpolygon.

for (expr; expr; expr) expr Note that shorthand operators such as ++ and -- are
not part of the icon description language, so longer
hand expressions must be used.

if (expr) expr [else expr] Standard C language if-statement.

include("path") Tell the Desktop to find the icon geometry in the file
with pathname path.

move(x, y) Move current pen location to x, y.

pclos() Draw a line in the current pen color that closes the
current polygon, and fill the polygon with the current
color.

pdr(x, y) Draw the side of a filled polygon in the current pen
color, from the current pen location to x, y.

pmv(x, y) Begin a filled polygon at location x, y.

print(expr or "string") Print the value of the expression expr or string to
stdout; used for debugging.

vertex(x,y) Specify a coordinate used for drawing points, lines
and polygons by bgnpoint, bgnline, bgnpolygon, and
so forth.

Table D-1 (continued) Icon Description Functions

Function Definition

This appendix lists the predefined file types and their associated tag numbers
that are available for your use. You can use these predefined file types for
utilities that do not need a unique, personalized look.

Predefined File Types

Appendix E

321

Appendix E

E. Predefined File Types

This appendix lists the predefined file types and their associated tag numbers that are
available for your use. Topics include:

• “Naming Conventions for Predefined File Types”

• “The Predefined File Types and What They Do”

You can use these predefined file types for utilities that do not need a unique,
personalized look. You may also want to use these file types as SUPERTYPEs for your
own custom file types.

Naming Conventions for Predefined File Types

The file types listed in this appendix are named according to the conventions listed in
Table E-1.

In all cases, if the expected number of arguments is not received, launch is run so that
users can type in the desired options. For more information on the launch command, see
the launch(1) reference page.

Table E-1 Predefined File Type Naming Conventions

If the file type name includes: Then

1-Narg it requires at least one argument

1arg it requires exactly one argument

2arg it requires exactly two arguments

3arg it requires exactly three arguments

322

Appendix E: Predefined File Types

The Predefined File Types and What They Do

In this section, file types that are essentially the same, except for the number of
arguments they require, are grouped together by the “base” file type name, meaning the
file type name without the argument codes described in “Naming Conventions for
Predefined File Types” on page 321.

For example, to find the file type named “ttyLaunchOut1argExecutable,” look under
“ttyLaunchOutExecutable.” These two file types are identical, except that
“ttyLaunchOut1argExecutable” requires exactly one argument.

SpecialFile

“SpecialFile” is a predefined SUPERTYPE, not an actual file type. When you include the
SPECIALFILE rule in your file type, you should also declare the “SpecialFile”
SUPERTYPE. This allows applications to use isSuper(1) to test whether your file type is a
SPECIALFILE.

Directory
TYPE Directory
MATCH (mode & 0170000) == 040000;

The “Directory” type. Any custom file types you define for directories should include
“Directory” as a SUPERTYPE. “Directory” is defined in
/usr/lib/filetype/default/sgidefault.ftr.

Ascii
TYPE Ascii

“Ascii” is a pseudotype defined to support routeprint conversions. Actual ASCII text files
have the type “AsciiTestFile”:

TYPE AsciiTextFile
MATCH ascii;

“Ascii” is defined in /usr/lib/filetype/system/sgisystem.converts.ftr and “AsciiTextFile” is
defined in /usr/lib/filetype/default/sgidefault.ftr.

The Predefined File Types and What They Do

323

Source Files
TYPE SourceFile

“SourceFile” is a pseudotype defined to support routeprint conversions. Actual source
files have more specific types such as:

TYPE Makefile
MATCH (glob("[mM]akefile") || glob("*.mk")) && ascii;

TYPE HeaderFile
MATCH glob("*.h") && ascii;

TYPE CPlusPlusProgram
MATCH glob("*.c++") && ascii;

TYPE CProgram
MATCH glob("*.c") && ascii;

TYPE Program
MATCH (glob("*.[pfrasly]") || glob("*.pl[i1]")) && ascii;

“SourceFile” is defined in /usr/lib/filetype/system/sgisystem.converts.ftr and the specific
types shown above are defined in /usr/lib/filetype/system/sgisystem.ftr.

Binary

“Binary” is a predefined SUPERTYPE, not an actual file type. You can create custom file
types using “Binary” as a SUPERTYPE.

ImageFile
TYPE ImageFile

“ImageFile” is a top-level image pseudotype. You can create custom file types using
ImageFile as a SUPERTYPE, or you can use a more specific file type such as:

TYPE SGIImage
MATCH short(0) == 000732 ||
normal SGI image
short(0) == 0155001;
#byte-swapped SGI image

324

Appendix E: Predefined File Types

TYPE TIFFImage
MATCH long(0) == 0x49492a00 || long(0) == 0x4d4d002a;
TIFF image

TYPE FITImage
MATCH string(0,2) == "IT";
FIT image

TYPE PCDimage
MATCH string(2048,7) == "PCD_IPI";
Kodak Photo CD image pack

TYPE PCDOimage
MATCH string(0,7) == "PCD_OPA";
Kodak Photo CD overview pack

TYPE GIF87Image
MATCH string(0,6) == "GIF87a";
GIF image (GIF87a format)

TYPE GIF89Image
MATCH string(0,6) == "GIF89a";
GIF image (GIF89a format)

These file types are defined in /usr/lib/filetype/system/sgiimage.ftr.

Executable

“Executable” is a predefined SUPERTYPE, not an actual file type. You can create custom
file types using “Executable” as a SUPERTYPE.

Scripts
TYPE Script
MATCH (mode & 0111) && ascii;

This is the file type for shell scripts, defined in /usr/lib/filetype/default/sgidefault.ftr.

GenericWindowedExecutable
TYPE GenericWindowedExecutable
MATCH tag == 0x00000000;

The Predefined File Types and What They Do

325

TYPE Generic1-NargExecutable
MATCH tag == 0x00000020;

TYPE Generic1argExecutable
MATCH tag == 0x00000001;

TYPE Generic2argExecutable
MATCH tag == 0x00000002;

TYPE Generic3argExecutable
MATCH tag == 0x00000003;

Simply runs the command. No output or terminal emulation windows are used. These
file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

LaunchExecutable
TYPE LaunchExecutable
MATCH tag == 0x00000100;

TYPE Launch1-NargExecutable
MATCH tag == 0x00000120;

TYPE Launch1argExecutable
MATCH tag == 0x00000101;

TYPE Launch2argExecutable
MATCH tag == 0x00000102;

Same as “GenericWindowedExecutable,” except that it runs launch to allow user to enter
options prior to running the command. These file types are defined in
/usr/lib/filetype/system/sgicmds.ftr.

ttyExecutable
TYPE ttyExecutable
MATCH (tag == 0x00000400) || (tag == 0x00000410);

TYPE tty1-NargExecutable
MATCH tag == 0x00000420;

TYPE tty2argExecutable
MATCH tag == 0x00000402;

326

Appendix E: Predefined File Types

Runs the command in a window that allows terminal I/O. The output window (which
is where the terminal emulation is being done) exits immediately upon termination of the
command. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

ttyLaunchExecutable
TYPE ttyLaunchExecutable
MATCH tag == 0x00000500;

TYPE ttyLaunch1-NargExecutable
MATCH tag == 0x00000520;

TYPE ttyLaunch1argExecutable
MATCH tag == 0x00000501;

Same as “ttyExecutable,” except that it runs launch to allow user to enter options before
running the command. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

ttyOutExecutable
TYPE ttyOutExecutable
MATCH (tag == 0x00000600) || (tag == 0x00000610);

TYPE ttyOut1-NargExecutable
MATCH tag == 0x00000620;

TYPE ttyOut1argExecutable
MATCH tag == 0x00000601;

TYPE ttyOut2argExecutable
MATCH tag == 0x00000602;

Same as “ttyExecutable,” except that the output window persists until the user explicitly
dismisses it. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

ttyLaunchOutExecutable
TYPE ttyLaunchOutExecutable
MATCH (tag == 0x00000700) || (tag == 0x00000710);

TYPE ttyLaunchOut1-NargExecutable
MATCH tag == 0x00000720;

TYPE ttyLaunchOut1argExecutable
MATCH tag == 0x00000701;

The Predefined File Types and What They Do

327

TYPE ttyLaunchOut2argExecutable
MATCH tag == 0x00000702;

TYPE ttyLaunchOut3argExecutable
MATCH tag == 0x00000703

Same as “ttyOutExecutable,” except that it runs launch to allow user to enter options
before running the command. These file types are defined in
/usr/lib/filetype/system/sgicmds.ftr.

This appendix describes where FTR files are stored on your system.

FTR File Directories

Appendix F

331

Appendix F

F. FTR File Directories

There are four possible files in which Desktop file types are defined. They are listed here
in the order the Desktop scans them:

1. /usr/lib/filetype/local

2. /usr/lib/filetype/install

3. /usr/lib/filetype/system

4. /usr/lib/filetype/default

These files are listed in order of precedence. For example, a file type defined in the
/usr/lib/filetype/install directory overrides a file type of the same name in the
/usr/lib/filetype/system and /usr/lib/filetype/default directories.

In particular, Silicon Graphics uses the /usr/lib/filetype/system and /usr/lib/filetype/default
directories to define and maintain system standards. Be especially careful not to override
important defaults set in these directories.

This appendix describes how to use the Golden Gate conversion services.

Using Golden Gate Services

Appendix G

335

Appendix G

G. Using GoldenGate Data Conversion Services

This appendix describes how to use the GoldenGate data conversion services. It covers
these topics:

• “Converting Data Using the GoldenGate Data Conversion Service” on page 335
explains how to use the converters provided.

• “Compiling and Linking Your Program with GoldenGate” on page 353 describes
the header file to use when compiling and linking a program.

• “Writing Converters for the GoldenGate Data Conversion Service” on page 354
explains how to customize your own converters.

Converting Data Using the GoldenGate Data Conversion Service

This section describes how you can use the GoldenGate data conversion service in your
application. Specifically, it explains:

• “Overview of the Conversion Process” on page 335 describes the steps involved in
converting data using GoldenGate.

• “Selecting a Converter” on page 338 describes how to select a converter by querying
the converter registry and setting up the conversion context.

• “Using GoldenGate to Convert Data” on page 343 describes how to initialize the
conversion pipeline, send data through it, and clean up after the conversion.

Overview of the Conversion Process

To convert data using GoldenGate, follow these steps:

1. Choose a converter.

■ Obtain a list of converters that read the source format and write the target
format.

336

Appendix G: Using GoldenGate Data Conversion Services

■ Create a conversion context structure and set conversion parameters.

■ Evaluate the list of converters to determine which one is best suited for the
current conversion.

2. Convert data.

There are two methods of converting data, depending on whether the data is in a
stream or in a file.

Converting Stream Data

■ Initialize the selected converter.

■ Send data through the converter and read results back.

■ Clean up resources by destroying the conversion context.

Converting Data Files

■ Call the file conversion function.

■ Clean up resources by destroying the conversion context.

The Converter Registry

GoldenGate maintains a list of available converters in the converter registry. This registry
contains an entry for each converter, specifying characteristics such as the type of input
data it takes and the type of output data it produces. To find out if there are any
converters that will convert from format “A” to format “B,” you can query the registry.

GoldenGate returns a list of converters that take the specified input and produce the
specified output. You can be as specific as you like when querying the registry, to ensure
that only relevant converters are listed. You should also use the query to eliminate
inappropriate categories of converter, such as those of type StreamToStream if you are
converting a file. If the list contains more than one converter, you may need to evaluate
the converters to see which one best meets your needs. Even if the list contains only one
converter, you should evaluate it to make sure it can handle your conversion request.

Creating a Conversion Context

To communicate with a converter, you must create a conversion context. The conversion
context is a data object that stores conversion parameters. The conversion context is
passed to subsequent library calls that set input and output parameters, evaluate
converters, initialize the conversion pipeline, and move data through it.

Converting Data Using the GoldenGate Data Conversion Service

337

Once you have created a conversion context and specified the desired conversion
parameters, you can evaluate the list of converters you obtained when you queried the
registry. For example, suppose you want to convert from one audio format to another
and change the sample rate at the same time. Querying the registry returns a list of
converters that will convert between the specified input and output formats. To
determine if any of these converters will perform the desired sample rate conversion,
you have to create a conversion context, set the desired parameters (including input and
output sample rate) and then evaluate the individual converters.

Evaluating a Converter

It’s best to evaluate a converter before you invoke it to perform a conversion. You do this
for the following reasons:

• Evaluation gives the converter an opportunity to inspect your data parameters.
Some converters will have more functionality than others, even though their input
and output types are the same. A well-designed converter will know just by looking
at parameters whether it can do the conversion.

• Conversion is typically an expensive operation. If your attempt to convert fails, you
can still choose a different converter and try again, but you could have avoided lost
time by trying a converter that can accept your specific request.

Depending on your needs, you can select the first converter on the list that passes the
evaluation stage, or evaluate the whole list and use your own rules to choose between
those that pass.

Converting Data In a File or Stream

Once you determine the converter to use, the final stage depends on whether you are
converting data in a file or a stream.

If you are converting a stream, initialize a conversion pipeline that reads your stream and
passes back results as they are available. Then you send all your data through the
pipeline and read the results until you see the end of stream marker for the pipeline. At
this point, terminate the pipeline. This causes GoldenGate to clean up data structures it
keeps for maintaining a stream conversion.

If you are converting a file, the procedure is simpler. You call a single GoldenGate
function to perform the operation, and wait for results. If necessary you can provide a

338

Appendix G: Using GoldenGate Data Conversion Services

callback function that will notify you when results become available. This allows you to
service other events going on in your application during what may be a long conversion.

Selecting a Converter

This section describes how to select a converter by querying the converter registry and
setting up the conversion context. Specifically, this section covers:

• “Querying the Converter Registry” on page 338, which explains how to obtain a list
of possible converters.

• “Setting Up the Conversion Context” on page 341, which describes how to create a
conversion context.

• “Evaluating Converters” on page 342, which explains how to find a converter that
performs the specified conversion.

• “Getting Converter Details” on page 343, which describes how to get a description
of a converter.

• “Converter Return Status Values” on page 349, which lists return status values.

Querying the Converter Registry

To query the converter registry, you specify a set of constraints. Each constraint consists
of an attribute (such as input format), a value for the attribute, and a comparison
operator. For example, you can ask for a converter that has input format equal to
“AIFF_FILE,” and version number greater than 2. Use the SgCvtSetQueryConstraint()
function to fill in an array of SgCvtQueryConstraint structures, then pass the array to the
SgCvtQueryRegistry() function. The following code fragment demonstrates a simple
query that locates converters capable of converting AIFF_FILE to WAVE_FILE:

SgCvtQueryConstraint constraints[2];
SgCvtStatus status;
SgCvtConverterId *converters;
int num_constraints, num_converters;
SgCvtRegistry registry = NULL;
status = SgCvtSetQueryConstraint(constraints[0],
 SG_CVT_ATTR_INPUT_TYPE, "AIFF_FILE", SG_CVT_OP_EQ);
status = SgCvtSetQueryConstraint(constraints[1],
 SG_CVT_ATTR_OUTPUT_TYPE, "WAVE_FILE", SG_CVT_OP_EQ);
num_constraints = 2;
status = SgCvtQueryRegistry(constraints, num_constraints,
 ®istry, &converters, &num_converters);

Converting Data Using the GoldenGate Data Conversion Service

339

The SgCvtQueryRegistry() function returns an array of converter IDs that can be used to
identify the individual converters.

The registry argument specifies the GoldenGate converter registry to be queried. During
this call, the registry is located on disk (/etc/ConverterRegistry by default), and its contents
parsed to find a converter that matches your requirements.

The first time you call SgCvtQueryRegistry, specify registry as NULL as in the previous
example, which causes this lookup. When you have finished converting, you can either
call SgCvtFreeRegistry to release the resources that GoldenGate may have cached after
reading the file, or you can re-use the value returned in registry for subsequent queries,
avoiding the overhead of looking up the file.

If you choose to free the registry between queries, your program will always have the
latest information, even if the registry changes while your program is running. If you
choose to re-use the registry handle, you have no control over whether or not
GoldenGate will re-parse the registry. It will try to use its cache first. If for any reason the
cache is invalid, GoldenGate may at its discretion rebuild it by reading the disk-based
registry again.

The converters argument returns an array of matching converter IDs, of which the first
num_converters are valid and matched the query. You should free this array when you are
finished using it, using free(3).

Table G-1 lists the attributes you can query.

Table G-1 Converter Attributes

Attribute Name Description

SG_CVT_ATTR_NAME Converter name

SG_CVT_ATTR_INPUT_FORMAT Input format

SG_CVT_ATTR_OUTPUT_FORMAT Output format

SG_CVT_ATTR_IO_METHOD StreamToStream or FileToFile

SG_CVT_ATTR_INPUT_LABEL Input format, human readable version

SG_CVT_ATTR_OUTPUT_LABEL Output format, human readable version

SG_CVT_ATTR_VENDOR Vendor’s name

340

Appendix G: Using GoldenGate Data Conversion Services

Most of the time, you’ll be interested in the input format and output format attributes.
“Supported Target Formats” on page 105 lists common data formats. Other attributes
may be useful when listing converters for users. For example, if you want the user to
choose between two converters that perform the same conversion, you can display the
vendor names and version numbers.

Table G-2 lists the operators you can use in your query.

Note that if more than one constraint is specified on a single attribute, a logical AND is
implied. For example, you can select a range of version numbers by setting “version
greater than or equal to one” as one constraint and “version less than or equal to three”
as a second constraint.

SgCvtQueryConstraint can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

SgCvtQueryRegistry can return the following status values:

SG_CVT_ATTR_VERSION Vendor’s version information

SG_CVT_ATTR_DESCRIPTION Description of converter

Table G-2 Query Operators

Operator Symbol

equal to SG_CVT_OP_EQ

not equal to SG_CVT_OP_NE

less than SG_CVT_OP_LT

less than or equal to SG_CVT_OP_LE

greater than SG_CVT_OP_GT

greater than or equal to SG_CVT_OP_GE

Table G-1 (continued) Converter Attributes

Attribute Name Description

Converting Data Using the GoldenGate Data Conversion Service

341

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
Could not find the registry, or failed to parse it. Most likely when the
default registry has been edited to add new converters, and a syntax
error introduced. You may also be loading the wrong file. Make sure that
if there is a file called ConverterRegistry on your path, it is a valid
registry using the CDF syntax. Also make sure the
CVT_REGISTRY_OVERRIDE variable is not set.

Setting Up the Conversion Context

Before you can evaluate or use a converter, you must create a conversion context and set
parameters governing the conversion. Use the SgCvtCreateConversionContext()
function to create a conversion context:

SgCvtStatus
SgCvtCreateConversionContext(SgCvtConversionContext *context)

SgCvtCreateConversionContext can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_NOMEM
Insufficient memory to allocate a context.

Next, set any digital media parameters that affect your conversion by calling
SgCvtSetContextInfo.

SgCvtStatus SgCvtSetContextInfo
 (
 SgCvtConversionContext context,
 unsigned long valuemask,
 SgCvtContextInfo *context_data
);

where

context specifies the context you created with SgCvtCreateConversionContext

valuemask specifies which fields in the SgCvtContextInfo structure are being set in
the context. This is specified as any of the following OR’ed together:

SG_CVT_INFO_INPUT_PARAMS

342

Appendix G: Using GoldenGate Data Conversion Services

SG_CVT_INFO_OUTPUT_PARAMS
SG_CVT_INFO_META_PARAMS
SG_CVT_INFO_INPUT_FILE
SG_CVT_INFO_INPUT_HOST
SG_CVT_INFO_OUTPUT_FILE
SG_CVT_INFO_OUTPUT_HOST

context_data specifies the values being set

SgCvtSetContextInfo can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

See the IRIS Media Libraries Programming Guide for information on setting DMparams.

Evaluating Converters

To evaluate a converter, call SgCvtEvaluateConverter():

SgCvtStatus
SgCvtEvaluateConverter(SgCvtConverterId converter_id,
 SgCvtConversionContext context
 DMparams **output_params)

where

converter_id is a converter ID returned by the SgCvtQueryRegistry() function

context is a valid conversion context obtained from
SgCvtCreateConversionContext()

output_params returns the output of the request. Converters may set these parameters,
even though they accept the request.

SgCvtEvaluateConverter() can return the following status values:

SG_CVT_E_ACCEPT
The converter can perform the conversion specified by the conversion
context.

SG_CVT_E_REJECT
The converter can’t perform the requested conversion.

When evaluating a converter returns a status of SG_CVT_E_ACCEPT, you should take
one final step before calling the converter. You should inspect the output_params

Converting Data Using the GoldenGate Data Conversion Service

343

argument, which returns a DMparams list describing the result that the converter will
produce. If your program has very strict requirements, this will help protect you if the
converter has accepted the request but cannot honor what it considers a minor
parameter, or if you passed a parameter it could not understand.

Getting Converter Details

If your program needs to display information about available converters, or do other
processing based on the data stored about a converter in the converter registry, call
SgCvtGetConverterAttributes() to get a description of it. The function prototype for
SgCvtGetConverterAttributes() is shown below.

SgCvtStatus
SgCvtGetConverterAttributes(SgCvtConverterId converter_id,
 unsigned long converter_attr_mask,
 SgCvtConverterAttrs *attributes)

When you are finished using the fields of the SgCvtConverterAttrs structure, you should
free the string attributes and the structure itself (if you allocated it dynamically) using
free(3C).

SgCvtGetConverterAttributes can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

Using GoldenGate to Convert Data

This section describes the different methods you can use to convert data. Topics include:

• “Converting Data Using File Converters”

• “Converting Data Using Stream Data Converters”

Converting Data Using File Converters

Your file-based data is always converted using the function SgCvtConvertFileToFile.
Before you call it however, you need to decide whether you want the function to block
while the conversion is going on, or return immediately and let you know later that the
conversion is complete.

344

Appendix G: Using GoldenGate Data Conversion Services

In many cases blocking mode is sufficient, and it is much simpler to use if your program
is not naturally event driven. However, if your application has a GUI, you may prefer
non-blocking mode because it allows your event loop to keep running while conversion
is going on. When conversion is complete, you are notified through a callback function
that you supply, and you can use the converted data.

Both modes are invoked using SgCvtConvertFileToFile:

typedef void (*SgCvtCallback)(SgCvtConversionContext context,
 void *client_data,
 void *callback_data);

SgCvtStatus SgCvtConvertFileToFile
 (
 SgCvtConversionContext context,
 SgCvtConverterId converter_id,
 char *input_file,
 char *output_file,
 unsigned long callback_mask,
 SgCvtCallback callback,
 void *client_data
);

where

context the conversion context, holding the I/O filenames and parameters

converter_id the converter ID, returned by SgCvtQueryConverter

input_file pathname of input file. You must have read permission.

output_file pathname of output file. You must have write permission.

callback_mask mask indicating when callback should be called. It should be some
logical combination of the following values:

SG_CVT_CB_FLAG_CONVERSION_DONE
 (after completion)
SG_CVT_CB_FLAG_STAGE_DONE
 (after each stage if multi-stage pipeline)

callback specifies the callback function

client_data a pointer to application-defined data structure that will be passed to the
callback when invoked

Converting Data Using the GoldenGate Data Conversion Service

345

If specified, the callback argument is the address of the function to call when conditions
specified by the callback_mask arise. If the callback function is not specified, or the mask
is zero, the function executes in blocking mode.

SgCvtConvertFileToFile can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_BAD_CONVERTER_TYPE
The converter was not registered as FileToFile IO method.

SG_CVT_E_READ_FAILED
The input file could not be read. It may be missing, or the permissions
are insufficient for reading.

SG_CVT_E_WRITE_FAILED
The output file could not be written. This can happen if the user does not
have write permission for the target directory, or if the supplied
pathname was invalid.

Converting Data Using Stream Data Converters

To convert data using your specified converter, you must initialize the conversion
pipeline, and then send the data through. After reading the last block of converted data,
clean up by destroying the conversion context to free the resources associated with the
pipeline. This section covers the following topics:

• “Initializing the Pipeline”

• “Sending and Receiving Data”

• “Cleaning Up”

Initializing the Pipeline

Prepare the converter to receive data by calling SgCvtInitializePipeline():

SgCvtStatus
SgCvtInitializePipeline(SgCvtConversionContext context,
 SgCvtConverterId converter_id)

where

346

Appendix G: Using GoldenGate Data Conversion Services

context is a valid conversion context obtained from
SgCvtCreateConversionContext()

converter_id is a converter ID returned by the SgCvtQueryRegistry() function

SgCvtInitializePipeline can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
The context or its contents is bad or one of the subprocesses required to
host a converter function could not be launched.

SG_CVT_E_BAD_CONVERTER_TYPE
The converter was not registered as StreamToStream. Converters that
are designed to work with streaming data advertise themselves as using
the StreamToStream method of I/O in the registry.

Sending and Receiving Data

You may send and receive arbitrarily sized blocks of data, so use a block size that is
convenient.

Send data to the converter using SgCvtSendData(). The function prototype for
SgCvtSendData() is shown below:

SgCvtStatus SgCvtSendData(
 SgCvtConversionContext context,
 void *data,
 size_t length,
 DMparams *params,
 boolean_t canwait
)

where

context is a valid conversion context

data is a pointer to the data block to be converted

length is the length of the data block

params is a DMparams structure describing the data to be converted

Converting Data Using the GoldenGate Data Conversion Service

347

canwait is a boolean value that indicates what the function should do if it cannot
send the data immediately. If you specify B_TRUE, SgCvtSendData()
will block until it can send the data to the conversion pipeline. If you
specify B_FALSE, SgCvtGetData() will return immediately with a status
of SG_CVT_E_AGAIN. This status indicates that you should try again.

SgCvtSendData can return with the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
An I/O error occurred while trying to send data through the pipe
connecting two pipeline components.

SG_CVT_E_AGAIN
Required resources were temporarily unavailable. The caller should
retry later.

Read data from the converter using SgCvtGetData(). The function prototype for
SgCvtGetData() is shown below:

SgCvtStatus SgCvtGetData(
 SgCvtConversionContext context,
 size_t buf_len,
 void *buffer,
 size_t *length_returned,
 DMparams **params_returned,
 boolean_t canwait
)

where

context is a valid conversion context

buf_len specifies the size of buffer

buffer is a pointer to a pre-allocated buffer of at least buf_len bytes.

length_returned is the actual length of the returned data (this may be less than
bytes_requested if non-blocking mode is specified, or if the converter
encounters end-of-stream) SgCvtGetData

params_returned
is a DMparams structure describing the converted data.

348

Appendix G: Using GoldenGate Data Conversion Services

canwait is a boolean value that indicates what the function should do if no data
is available. If you specify B_TRUE, SgCvtGetData() will block until
data becomes available from the conversion pipeline. If you specify
B_FALSE, SgCvtGetData() will return immediately with a status of
SG_CVT_E_QUEUE_EMPTY. This status indicates that you should try
again.

SgCvtGetData can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
An I/O error occurred while trying to read data from the pipe
connecting two pipeline components.

SG_CVT_E_AGAIN
Required resources were temporarily unavailable. The caller should
retry later.

SG_CVT_E_END_OF_STREAM
The operation succeeded, and the end of the data has been reached.

The non-blocking mode of SgCvtSendData() and SgCvtGetData() allows programs to
continue working on other tasks (such as handling events from a graphical interface)
while waiting to send data to or read data from the conversion pipeline.

Cleaning Up

When you’ve sent the last of the data to the converter, call SgCvtSendEndOfStream() to
indicate the end of the data. After you’ve read the last of the converted data, free the
resources associated with the conversion context by calling
SgCvtDestroyConversionContext():

SgCvtStatus SgCvtSendEndOfStream(
 SgCvtConversionContext context
);

SgCvtStatus SgCvtDestroyConversionContext(
 SgCvtConversionContext context
)

If you need to terminate the conversion process before reaching the end of the data, call
SgCvtDestroyConversionContext().

Converting Data Using the GoldenGate Data Conversion Service

349

SgCvtSendEndOfStream can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

SgCvtDestroyConversionContext can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

Converter Return Status Values

Table G-3 lists converter functions and their return status values.

Table G-3 Converter Return Status Values

Function Return Value Description

SgCvtSetQueryConstraint SG_CVT_E_SUCCESS The operation succeeded.

SgCvtQueryRegistry SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_FAILURE Could not find the registry, or
failed to parse it. Most likely
when the default registry has
been edited to add new
converters, and a syntax error
introduced. You may also be
loading the wrong file. Make
sure that if there is a file called
ConverterRegistry on your
path, it is a valid registry
using the converter
description file syntax. Also
make sure the
CVT_REGISTRY_OVERRIDE
variable is not set.

SgCvtGetConverterAttributes SG_CVT_E_SUCCESS The operation succeeded.

SgCvtCreateConversionContext SG_CVT_E_SUCCESS The operation succeeded.

350

Appendix G: Using GoldenGate Data Conversion Services

SG_CVT_E_NOMEM Insufficient memory to
allocate a context.

SgCvtDestroyConversionContext SG_CVT_E_SUCCESS The operation succeeded.

SgCvtSetContextInfo SG_CVT_E_SUCCESS The operation succeeded.

SgCvtGetContextInfo SG_CVT_E_SUCCESS The operation succeeded.

SgCvtEvaluateConverter SG_CVT_E_ACCEPT The converter can perform the
requested conversion.

SG_CVT_E_REJECT The converter cannot perform
the requested conversion.

SgCvtInitializePipeline SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_FAILURE The context or its contents is
bad or one of the subprocesses
required to host a converter
function could not be
launched.

SG_CVT_E_BAD_
CONVERTER_TYPE

The converter was not
registered as StreamToStream.
Converters that are designed
to work with streaming data
advertise themselves as using
the StreamToStream method
of I/O in the registry.

SgCvtTerminatePipeline SG_CVT_E_SUCCESS The operation succeeded.

SgCvtSendData SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_FAILURE An I/O error occurred while
trying to send data through
the pipe connecting two
pipeline components.

Table G-3 (continued) Converter Return Status Values

Function Return Value Description

Converting Data Using the GoldenGate Data Conversion Service

351

SG_CVT_E_AGAIN The required resources were
temporarily unavailable. The
caller should retry later.

SgCvtGetData SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_FAILURE An I/O error occurred while
trying to read data from the
pipe connecting two pipeline
components.

SG_CVT_E_AGAIN The required resources were
temporarily unavailable. The
caller should retry later.

SG_CVT_E_END_OF_
STREAM

The operation succeeded, and
the end of the data has been
reached.

SgCvtSendEndOfStream SG_CVT_E_SUCCESS The operation succeeded.

SgCvtEncodeParams SG_CVT_E_SUCCESS The operation succeeded.

SgCvtDecodeParams SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_NOMEM Insufficient memory to
allocate structures.

SgCvtFreeEncodedParams SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_FAILURE The data could not be
decoded.

SgCvtConvertFileToFile SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_BAD_
CONVERTER_TYPE

The converter was not
registered as FileToFile I/O
method.

Table G-3 (continued) Converter Return Status Values

Function Return Value Description

352

Appendix G: Using GoldenGate Data Conversion Services

SG_CVT_E_READ_
FAILED

The input file could not be
read. It may be missing, or the
permissions are insufficient
for reading.

SG_CVT_E_WRITE_FAILED The output file could not be
written. This can happen if the
user does not have write
permission for the target
directory, or if the supplied
pathname was invalid.

SgCvtGetFileSelectionTarget SG_CVT_E_SUCCESS The operation succeeded.

SG_CVT_E_UNKNOWN_
TYPE

The file type could not be
determined.

SG_CVT_E_NO_TARGET The selection target for the
type of file could not be
determined, or there is none.

SG_CVT_E_FAILURE The operation could not be
performed for another reason,
such as the underlying file
typing database library could
not be accessed, or the
database itself was corrupt or
missing.

SgCvtIsPipeline B_TRUE The translator is a multi-stage
pipeline.

B_FALSE The translator is a single-stage
converter.

Table G-3 (continued) Converter Return Status Values

Function Return Value Description

Compiling and Linking Your Program with GoldenGate

353

Compiling and Linking Your Program with GoldenGate

To compile and link your program, you need to include the header file SgCvt.h and
include the library libcvt in your link line.

An example of a simple GoldenGate program follows. It includes the required header
file, enumerates the registered converters, and prints their input and output labels.

#include <SgCvt.h>
main(int argc, char **argv)
{
 SgCvtRegistry registry = NULL;
 int n=0;
 SgCvtStatus s;
 SgCvtConverterId *cvtrs;
 int ncvtrs;

 s = SgCvtQueryRegistry(NULL, 0, ®istry, &cvtrs, &ncvtrs);
 for (n=0; n<ncvtrs; n++) {
 SgCvtConverterAttrs attrs;

 SgCvtGetConverterAttributes(cvtrs[n],
 SG_CVT_ATTR_FLAG_INPUT_LABEL |
 SG_CVT_ATTR_FLAG_OUTPUT_LABEL,
 &attrs);

 printf(“%d %25s -> %s\n”,
 n+1, attrs.input_label, attrs.output_label);

 free(attrs.input_label);
 free(attrs.output_label);
 }

 SgCvtFreeRegistry(registry);
}

The following Makefile illustrates the compile and link requirements for this program.

#
Makefile for GoldenGate Listing sample program
#
CC = cc
TARGET = gg_listing
SOURCES = $(TARGET).

354

Appendix G: Using GoldenGate Data Conversion Services

INCLUDES= -I/usr/include/convert

REQLIBS = -lcvt
all:
 $(CC) -o $(TARGET) $(INCLUDES) $(SOURCES) $(REQLIBS)

Writing Converters for the GoldenGate Data Conversion Service

This section describes how to write converters that can integrate with GoldenGate and
become available to any component that is aware of GoldenGate. The following
information assumes that you are familiar with the interfaces described in “Converting
Data Using the GoldenGate Data Conversion Service” on page 335. Both converters and
applications use many of the functions and data structures.

Overview of the Converter Writing Process

Creating a GoldenGate data converter involves writing the converter and building the
DSO, then testing, registering, and installing the converter. The topics below describe:

• “Writing Converter Code” on page 354 explains how to write the code that converts
the data, or choose an existing command that you want to make available through
the conversion service.

• “Building a DSO” on page 362 describes how to create a Dynamic Shared Object
(DSO) and write a registry entry using converter description file syntax.

• “Testing Your Converter” on page 365 explains how to test your converter.

• “Registering Your Converter” on page 366 describes how to register your converter
to make it available to GoldenGate clients.

• “Installing Your Converter” on page 367 lists the library location for converter
DSOs.

“Some Sample Converters” on page 367 shows annotated code for two converters.

Writing Converter Code

This section describes how to write converter code and includes the following topics:

• “Implementing Your Converter - Handling Evaluation Requests”

Writing Converters for the GoldenGate Data Conversion Service

355

• “Implementing Your Converter - Handling Conversion Requests”

• “Input and Output Formats”

• “Process Blocking”

• “Programming Constraints”

• “Example of a Simple Stream Converter”

Implementing Your Converter - Handling Evaluation Requests

When the operation field of the SgCvtConverterData structure passed to your converter
is equal to SG_CVT_REQ_EVALUATE, your converter should inspect the input, output,
and meta parameters held in the conversion context and determine whether or not it can
satisfy the request, without actually performing conversion.

If your converter can satisfy the request, it should set the status_return field of the
SgCvtConverterData structure to SG_CVT_E_ACCEPT before returning. Otherwise it
should set status_return to SG_CVT_E_REJECT.

Implementing Your Converter - Handling Conversion Requests

When the operation field of the SgCvtConverterData structure is equal to
SG_CVT_REQ_CONVERT, your converter must extract the necessary information from
the SgCvtConverterData structure it is passed, and perform the conversion if possible.
If conversion is successful, it should return with the status_return field set to
SG_CVT_E_SUCCESS, and if it is unsuccessful, the status_return field should be set to
either SG_CVT_E_FAILURE or a more specific error code if appropriate (see the error
codes available in SgCvt.h).

How the converter is implemented depends on whether you are writing the conversion
code yourself, or simply using an existing command-line converter.

If you are creating a “wrapper” to make an existing UNIX command available through
the GoldenGate conversion service, the procedure is quite straightforward.

In this case, your converter is a function that gathers the input and output requirements
from its arguments, and executes the external UNIX command (for instance, by calling
the system(2) function).

356

Appendix G: Using GoldenGate Data Conversion Services

Your function should do as much checking as possible to ensure that the external
command can work. For instance, you should verify that the command is installed before
calling it, and that you have execute permission.

Also check for appropriate permissions to read input files and write output files, in the
case of file converters. If you detect an error before calling the command, return an error
status in the status field of the data argument.

For example, the code below shows a FileToFile converter that wraps an existing UNIX
command rtf2html. You will find other fully annotated examples at the end of this section.

#include <libgen.h>
#include <SgCvt.h>

void RtfToHtml(void *arg)
{
 SgCvtConverterData *data = (SgCvtConverterData *) arg;
 SgCvtContextInfo ctx_info;
 char cmd[BUFSIZ];
 int sys_status = 0;
 char *xlator_path;

 /* Evaluation - just accept for this example */
 if (data->operation == SG_CVT_REQ_EVALUATE) {
 data->status_return = SG_CVT_E_ACCEPT;
 return;
 }

 /* Conversion */

 /* depends on ‘rtf2html’ command being available */
 xlator_path = pathfind(getenv (“PATH”), “rtf2html”, “rx”);
 if (xlator_path == NULL) {
 data->status_return = SG_CVT_E_MISSING_COMMAND;
 return;
 }

 (void) SgCvtGetContextInfo(data->context,
 SG_CVT_INFO_INPUT_FILE |
 SG_CVT_INFO_OUTPUT_FILE,
 &ctx_info);

 /* cmd syntax is ‘rtf2html inputfile outputfile’
 sprintf(cmd, “%s %s %s 2> /dev/null”, xlator_path,

Writing Converters for the GoldenGate Data Conversion Service

357

 ctx_info.input_file, ctx_info.output_file);

 sys_status = system(cmd);

 data->status_return =
 sys_status ? SG_CVT_E_FAILURE : SG_CVT_E_SUCCESS;

 return;
}

Notice that GoldenGate passes the necessary information to a converter by reference. The
SgCvtConverterData structure is the mechanism for this. It is defined as follows:

typedef struct {
 SgCvtRequestType operation;
 SgCvtConversionContext context;
 DMparams *output_params;
 SgCvtStatus status_return;
} SgCvtConverterData;

If your converter does not use an external command to translate the data, but does the
conversion itself, the structure of the converter function is essentially the same.

You still use the SgCvtConverterData structure to communicate with GoldenGate.
Between extracting the necessary arguments from the structure and returning from the
function, you just call your own functions that do the conversion.

Input and Output Formats

Your converter should use standardized names for its input and output types wherever
possible. This is important because applications are written to request data by a
particular name. If your converter uses a different name for the same data format,
GoldenGate will not find your converter and the conversion may fail.

See “Supported Target Formats” on page 105 for the data formats supported by the
default Silicon Graphics converters.

You can also use your own data format names. However, the name your application uses
must match the name you registered so GoldenGate ca l find the converter. However, if
you use your own data format names, it is unlikely that other applications will be able to
take advantage of your converter. Do this only if the format name is well understood
among all the applications you intend to cooperate with.

358

Appendix G: Using GoldenGate Data Conversion Services

Process Blocking

You can use SgCvtGetData() and SgCvtSendData() in either blocking or non-blocking
mode, depending on your requirements. Both modes are described in “Converting Data
Using File Converters” on page 343.

If your converter needs to return immediately to do other work, such as tracking activity
on an I/O device, you should set the canwait argument to these functions to B_FALSE. If
the conversion pipeline is not ready for an immediate read or write operation, the call
will return immediately with a status value indicating that nothing happened and that
you should try the same operation again. For additional information on the canwait
argument, see “Sending and Receiving Data” on page 346.

If SgCvtSendData() cannot send data immediately and canwait is B_FALSE, it returns
SG_CVT_E_AGAIN. This indicates that your data has not been sent, and you should try
the operation again, using the same data.

SgCvtGetData() returns SG_CVT_E_QUEUE_EMPTY if there is no data immediately
available and canwait is B_FALSE. You should try the operation again later.

If your converter has no other I/O requirements, you can simplify your code slightly by
setting the canwait argument to B_TRUE. You should use this option by default, because
it can eliminate redundant context switching to your idling converter, and improve
system performance.

There are two categories of converter: FileToFile and StreamToStream.

A FileToFile converter uses the input and output file attributes of the conversion context
to get its input and save its output, as shown in the example above.

A StreamToStream converter follows this general procedure after extracting the required
parameters from the context:

• Fetch a block of input data using SgCvtGetData

• Convert the data to the new format

• Send converted data back to GoldenGate

The converter repeats these steps until it receives a status of
SG_CVT_E_END_OF_STREAM from SgCvtGetData, and it successfully sends all the

Writing Converters for the GoldenGate Data Conversion Service

359

converted data. Then it calls SgCvtSendEndOfStream to tell GoldenGate it is finished
converting, and finally it returns.

The functions used for stream conversion are the same ones used by applications to work
with conversion streams:

• To fetch input and output parameters to be used in the conversion, use
SgCvtGetContextInfo.

• To fetch a block on data for conversion, use SgCvtGetData.

• To send a block of converted data back to GOldenGate, use SgCvtSendData.

• To break your connection to the stream and tell GoldenGate your converter is
finished, use SgCvtSendEndOfStream.

Programming Constraints

Keep in mind the following constraints when writing converters:

• You must not use libraries that are unsafe for threads. For instance, you should not
use Motif or other GUI libraries that are not “multi-thread-safe.”

• You should be careful if installing global event handlers, such as timers and signal
handlers, if they override those that may already be installed by the host
application. The safest policy is to avoid this altogether.

• Where possible, you should avoid intentionally locking system resources such as
physical memory blocks by using low-level UNIX calls or device drivers, because
this can result in deadlock.

• Your code should be reentrant. This means it should not rely on global state
between calls, because it is possible for more than one instance of your converter to
be running at the same time.

Converters are free to choose the size of the data blocks they read and write. GoldenGate
writes into the buffer that your converter supplies during a SgCvtGetData() call. Your
converter must allocate and free this buffer space as necessary. During a
SgCvtSendData() call, your converter again supplies a buffer of data. The
SgCvtSendData() call does not alter your buffer. If the call returns SG_CVT_E_SUCCESS
to indicate that your data has been sent, or SG_CVT_E_FAILURE to indicate a general
failure, free the buffer or re-use it as appropriate. If the call returns SG_CVT_E_AGAIN
(you passed B_FALSE as the canwait argument) your data has not been sent, and you
should retain it to try again later.

360

Appendix G: Using GoldenGate Data Conversion Services

Example of a Simple Stream Converter

The following example shows a simple stream converter. It expects a stream of ASCII text
characters, and outputs the stream with any uppercase characters replaced by their
lowercase equivalents.

#include <SgCvt.h>
#include <dmedia/dm_params.h>

void CvtToLower
 (
 void *arg
)
{
 SgCvtConverterData *data = (SgCvtConverterData *) arg;
 SgCvtStatus s;
 char buf[BUFSIZ];
 size_t nreq = BUFSIZ;
 unsigned int len=0;
 int start = 0;
 int i;

 /* Evaluation */
 if (data->operation == SG_CVT_REQ_EVALUATE) {

 /*
 * In less trivial converters, we would check for
 * valid params in the context, but in this case all
 * we’re doing is byte translation, so we can always
 * say yes.
 */

 data->status_return = SG_CVT_E_ACCEPT;
 return;
 }

 /*
 * Conversion Loop. A similar construct will appear in
 * all streaming converters. The model is fetch data,
 * convert it and forward it, until we have forwarded the
 * end of stream, then jump out the loop.
 */
 for (;;) {

 s = SgCvtGetData(data->context, nreq, buf, &len, NULL, B_TRUE);

Writing Converters for the GoldenGate Data Conversion Service

361

 if (s == SG_CVT_E_FAILURE) {
 fprintf(stderr, “converter: failed to get data\n”);
 return;
 }

 if (s == SG_CVT_E_END_OF_STREAM) {
 SgCvtSendEndOfStream(data->context);
 break;
 }

 /*** start converter-specific part ***/

 for (i=0; i<len; i++)
 buf[i] = tolower(buf[i]);

 /*** end converter-specific part ***/

 s = SgCvtSendData(data->context, (void *)buf,
 len, NULL, B_TRUE);

 if (s == SG_CVT_E_FAILURE) {
 fprintf(stderr, “converter: failed to get data\n”);
 return;
 }
 start += (len);
 }
 /*
 * When we get here, this converter’s work
 * is complete. Others in the same pipeline may
 * still be running, but that’s irrelevant to us.
 * We simply return. If we were invoked in a dedicated
 * sproc “thread”, which is always the case for
 * streaming converters, this terminates it.
 */

 return;
}

Note the above comment about other converters: Others in the same pipeline may

still be running . It is important to remember that your converter is almost always
invoked as a subprocess of the application. “Programming Constraints” on page 359 lists
some considerations when writing converter code.

362

Appendix G: Using GoldenGate Data Conversion Services

Building a DSO

GoldenGate converters reside in Dynamic Shared Object (DSO) libraries.

After you have written and tested your conversion function by calling it directly from a
test program, you are ready package it as a GoldenGate converter.

This section covers the following topics:

• “Creating a DSO For Your Converter”

• “Creating a Converter Description File”

Creating a DSO For Your Converter

Create a DSO for your converter. A simple Makefile (below) for the previous example,
“Example of a Simple Stream Converter” on page 360, illustrates the compilation and
linkage requirements for a GoldenGate DSO.

#
Makefile for GoldenGate Sample Converter DSO
#
CVTR = CvtToLower
all:
 cc -c -I/usr/include/convert $(CVTR).c
 ld -no_unresolved -o libUserCvtrs.so -shared $(CVTR).o

Creating a Converter Description File

After you compile your converter, you must create a converter description file that
identifies your converter to GoldenGate. You use this file to test your converter, and
intimately to register it with GoldenGate. A simple example for the CvtToLower converter
follows.

#
Lowercase Text Stream
#
Converter {
 Name: “CvtToLower”
 IOMethod: StreamToStream
 Input: “MIXEDCASE”
 InputLabel: “ASCII bytes, any case”
 Output: “LOWERCASE”
 OutputLabel: “ASCII bytes, lower case”

Writing Converters for the GoldenGate Data Conversion Service

363

 Vendor: “SGI (Sample)”
 Version: “1.0”
 Description: “Lowercases chars in input stream”
 DSO: “/usr/people/fred/libFredsCvtrs.so”
 Function: “CvtToLower”
}

Make sure the DSO field is set to the full pathname for the DSO you have built.

The grammar of the converter description file is fairly simple. Three types of statements
exist; they are identified by the keywords Parameter, Converter, and Pipeline. Table G-4
defines the statements.

Some example descriptions follow. The easiest way to write a converter description file
is to copy an existing one. You can use these examples, or copy entries from the default
registry file, /etc/ConverterRegistry.

#
Lowercase Text Stream
#
Converter {
 Name: “CvtToLower”
 IOMethod: StreamToStream
 Input: “MIXEDCASE”
 InputLabel: “ASCII bytes, any case”
 Output: “LOWERCASE”
 OutputLabel: “ASCII bytes, lower case”
 Vendor: “SGI (Sample)”
 Version: “1.0”
 Description: “Lowercases chars in input stream”
 DSO: “/usr/people/fred/libFredsCvtrs.so”
 Function: “CvtToLower”

Table G-4 Converter Description File Statements

Statement Description

Parameter statement Defines a single parameter

Converter statement Describes a converter and may include
Parameter statements

Pipeline statement Defines a series of converters to be used
together, and may contain both
Converter and Parameter statements

364

Appendix G: Using GoldenGate Data Conversion Services

}

#
Windows BMP to XWD
#
Converter {
 Name: “BMP_FILE_TO_XWD_FILE”
 IOMethod: FileToFile
 Input: “BMP_FILE”
 InputLabel: “BMP_FILE”
 Output: “XWD_FILE”
 OutputLabel: “XWD_FILE”
 Vendor: “SGI”
 Version: “1.0”
 Description: “BMP_FILE to XWD_FILE”
 DSO: “libcvt_SGI.so”
 Function: “xwdout”
}

#
Windows BMP to Compuserv GIF-89, through JPEG (JFIF)
This isn’t necessary, since the default converters
can go directly to GIF 89 from BMP, but it illustrates the
Pipeline syntax for chaining converters together.

Pipeline {
 Name: “BMP_FILE_TO_GIF_89_FILE”
 IOMethod: FileToFile
 Input: “BMP_FILE”
 InputLabel: “Windows BMP”
 Output: “GIF_89_FILE”
 OutputLabel: “Compuserve GIF”
 Vendor: “SGI”
 Version: “1.0”
 Description: “Windows BMP to GIF, via JPG”
 Converter {
 Name: “BMP_FILE_TO_JFIF_FILE”
 IOMethod: FileToFile
 Input: “BMP_FILE”
 InputLabel: “BMP_FILE”
 Output: “JFIF_FILE”
 OutputLabel: “JFIF_FILE”
 Vendor: “SGI”
 Version: “1.0”
 Description: “BMP_FILE to JFIF_FILE”

Writing Converters for the GoldenGate Data Conversion Service

365

 DSO: “libcvt_SGI.so”
 Function: “jfifout”
 }
 Converter {
 Name: “JFIF_FILE_TO_GIF_89_FILE”
 IOMethod: FileToFile
 Input: “JFIF_FILE”
 InputLabel: “JFIF_FILE”
 Output: “GIF_89_FILE”
 OutputLabel: “GIF_89_FILE”
 Vendor: “SGI”
 Version: “1.0”
 Description: “BMP_FILE to GIF_89_FILE”
 DSO: “libcvt_SGI.so”
 Function: “gifout”
 }
}

Testing Your Converter

To test your converter, first verify that your converter description file is valid and does
not cause the GoldenGate built-in registry parser to fail.

Set the environment variable CVT_REGISTRY_OVERRIDE to the full pathname of the
converter description file you just created:

setenv CVT_REGISTRY_OVERRIDE /usr/people/fred/my_registry.cdf

Then run a test program that will exercise the parser. The gg_query demo program that
comes with GoldenGate is good for this. Find it in /usr/share/src/GoldenGate (if you
haven’t already done so, install the demo programs from your IRIX distribution media).
Copy the demo programs to your own directory, go into the Query subdirectory, and type
make. Then execute the gg_query program. The output should look like this:

Converter (CvtToLower):
 method: Stream To Stream
 input: MIXEDCASE (ASCII bytes, any case)
 output: LOWERCASE (ASCII bytes, lower case)
 vendor: SGI (Sample)
 version: 1.0
 descr.: Lowercases chars in input stream
 DSOname: /usr/people/fred/libFredsCvtrs.so
 Function: CvtToLower

366

Appendix G: Using GoldenGate Data Conversion Services

If you see an error message, go back and check that your converter description file is
valid, checking especially that all string values are properly quoted. Also check that the
GoldenGate software is properly installed by unsetting the
CVT_REGISTRY_OVERRIDE variable and re-executing the gg_query program. It should
list the default converters installed on the system (over 100 of these exist).

Once the test runs successfully, you are ready to try executing your converter. You can
use your own program, or the demo programs in the ConvertFile and ConvertStream
directories to do this. Each program prints a help message describing its arguments if
you run it with no arguments.

After you are satisfied that your converter works when executed via GoldenGate, you are
ready to make it available to other applications on the system. Unset the
CVT_REGISTRY_OVERRIDE variable; you are finished unit-testing your converter.

Registering Your Converter

To register your converter, you must add your converter description file to the system
registry.

The System Registry

The system registry is a text file that uses the same syntax as your converter description
file. Just edit the file /etc/ConverterRegistry (you must be a privileged user to do this) and
add your entry wherever you like.

Look at the attributes of the converters already registered. If there are potential clashes
with your converter, you may wish to insert your converter closer to the beginning of the
registry. Some applications may decide to convert using the first converter they find that
appears to satisfy their requirements, rather than evaluating the alternatives. If you want
to make sure this kind of application executes your converter rather than another one
that could do that same conversion, insert your entry closer to the beginning of the file.

Some Registry Syntax Details

The most important fields are those that the service uses to locate the executable
converter module: the DSO name and the Function name. The other fields are primarily
for display by administration tools, and for applications to query the registry. The Input
and Output fields are strings that must exactly match the format names that applications

Writing Converters for the GoldenGate Data Conversion Service

367

will use to search for converters. For instance, where there are naming conventions such
as ICCCM target names, these should be used exactly.

See “Supported Target Formats” on page 105 for a list of standard input and output
formats supported by the default converters supplied with GoldenGate.

Parameters can be one of two types: Constraint or Programmable.

Constraint parameters are used to specify constant values for a data attribute in the
description file. When you see a constraint parameter, it means that this converter always
sets the corresponding data attribute to the stored value, overriding its current value in
the input.

Programmable parameters are used to specify parameters that are set at runtime based
upon the requested input and output parameters. Programmable parameters are used to
pass a runtime parameter to one of the stages of a pipeline. For example, if you have a
two-stage pipeline designed to scale an SGI image to an arbitrary size, then convert it to
JPEG, you want to pass one of the output parameters (the required output size) to the
first stage of the converter. You do this by specifying a programmable parameter for the
first stage.

Installing Your Converter

Make sure your installation copies the DSO containing your converter to the standard
location for converter DSOs: /usr/lib/convert. If you install your library there, you can use
a relative DSO name in your converter description file. If you install anywhere else, you
must use a full path name in the registry to ensure that the service will find your
converter.

See the GoldenGate Release Notes (type relnotes goldengate) for information about
installation.

Some Sample Converters

This section presents annotated sample code for two different converters:

• The first example, “A Simple StreamToStream Converter - UpperCase” on page 368,
directly modifies data flowing through it.

368

Appendix G: Using GoldenGate Data Conversion Services

• The second example, “A FileToFile Converter - UNIX Man Page File to HTML File”
on page 370, illustrates two techniques. First it serves as a basic template for
FileToFile converters, and second it shows how you can wrap an external IRIX
command to make it available as a GoldenGate converter.

A Simple StreamToStream Converter - UpperCase

This type of converter can often offer the best performance in many circumstances,
because all the knowledge of the conversion operation is in the converter itself, and
because it typically does not need to access the filesystem to achieve conversion. It is
appropriate when the data format is naturally streamable, such as ASCII text or other
self-identifying or raw data.

The converter used in this example performs a simple mapping of mixed-case text to
uppercase text. The converter-specific parts are clearly marked. These are the lines that
you will replace with your own task-specific conversion code. The remainder is
boilerplate code that can be re-used in many different converters.

/* converter function */
void UpperCase
(
 void *arg
)
{
 SgCvtConverterData *data = (SgCvtConverterData *) arg;
 SgCvtStatus s;

The next 2 lines are somewhat task-specific. Your converter should use a buffer size
appropriate to the data type and the task. Careful selection of a buffer size will yield
better performance in many cases. For instance, if your converters needs to operate on
audio or movie “frames,” then you may choose to read and write buffers that represent
whole numbers of frames.

 char buf[BUFSIZ];
 size_t nreq = BUFSIZ;

 unsigned int len=0;
 int start = 0;
 int i;

The next part is the Evaluation section. Our converter operates on a byte stream: if a byte
represents a lower-case character in the current locale, we are going to uppercase it.

Writing Converters for the GoldenGate Data Conversion Service

369

Otherwise it passes through untouched. It is appropriate for this converter to accept any
stream; it does not need to evaluate parameters.

 /* Evaluation */
 if (data->operation == SG_CVT_REQ_EVALUATE) {
 data->status_return = SG_CVT_E_ACCEPT;
 return;
 }

The following loop does the conversion, one block at a time. The loop terminates when
the end of stream is detected.

 /* Conversion */
 for (;;) {

 s = SgCvtGetData(data->context, nreq, buf, &len,
 NULL, B_TRUE);

 if (s == SG_CVT_E_END_OF_STREAM) {
 SgCvtSendEndOfStream(data->context);
 break;
 }

These two lines show the entire task-specific code requirements for the uppercase text
converter. Your converter will substitute its own conversion-specific code for these lines.
The model is the same in each case; the converter generates a buffer to be sent from the
buffer it has received, by applying a specific conversion algorithm.

 for (i=0; i<len; i++)
 buf[i] = toupper(buf[i]);

When the new buffer has been generated, your converter sends it into the pipeline. In this
example, the data was converted in place. Sometimes that is not possible, because the
converted data will not fit in the original buffer. In these cases, your converter may
allocate, populate, send, then free a dynamic buffer each time through the loop.

 s = SgCvtSendData(data->context, (void *)buf, len,
 NULL, B_TRUE);

 start += (len);
 }

After sending all the converted data, and calling SgCvtSendEndOfStream, your
converter can return. You should always set the status_return field.

 data->status_return = SG_CVT_E_SUCCESS;

370

Appendix G: Using GoldenGate Data Conversion Services

 return;
}

A FileToFile Converter - UNIX Man Page File to HTML File

Often, to convert data from one application into a form usable by another, you need to
save the data to a file in one format, convert it using an IRIX command-line translator
program, then open the new file using the application you want to use.

Applications using components that are integrated with GoldenGate can eliminate the
intermediate end-user steps. The same external translator command can be packaged as
a GoldenGate converter and invoked automatically on behalf of the user.

It is quite straightforward to integrate an existing IRIX command with GoldenGate. Your
main task is to write a function that the service can invoke, which constructs from its
parameters a command line for the translator program.

The converter described here provides GoldenGate access to a command named
man2html, which converts troff source files for UNIX man pages into HTML files that can
be viewed using a Web browser. It can be used by a CGI script that implements an online
help system for remote users running Web browsers.

The command itself takes one argument: the input file name. It writes its output to
stdout. The job of our converter is to make this interface look like any other GoldenGate
converter.

Converter functions always require the SgCvt.h header file and always have the have the
same calling convention:

#include <libgen.h>
#include <SgCvt.h>

void ManToHtml(void *arg)
{

First, cast the data argument to the right type.

 SgCvtConverterData *data = (SgCvtConverterData *) arg;

Then, define some other local variables. Most of these are the same in every converter of
this type that you write.

 SgCvtStatus s;
 SgCvtContextInfo ctx_info;

Writing Converters for the GoldenGate Data Conversion Service

371

 char cmd[BUFSIZ];
 int sys_status = 0;
 char *cmdpath;

Next, handle converter evaluation requests. This converter is very simplistic: there are no
parameters, and it just ACCEPTs the request. In real converters, always provide proper
evaluation of any parameters, especially if it is expensive for the application to try the
conversion and fail.

 /* Evaluation */
 if (data->operation == SG_CVT_REQ_EVALUATE) {
 data->status_return = SG_CVT_E_ACCEPT;
 return;
 }

The remaining code handles conversion requests. Note that it is never reached unless the
caller requests conversion because the evaluate section has its own return statement.

The first thing to do is check that the program you are wrapping is installed and that you
can execute it.

 /* conversion */
 cmdpath = pathfind(getenv (“PATH”), “man2html”, “rx”);
 if (cmdpath == NULL) {
 data->status_return = SG_CVT_E_MISSING_COMMAND;
 return;
 }

Then, extract the input and output filenames from the conversion context.

 (void) SgCvtGetContextInfo(data->context,
 SG_CVT_INFO_INPUT_FILE |
 SG_CVT_INFO_OUTPUT_FILE,
 &ctx_info);

At this point you know everything needed to construct the command you are going to
execute. You use the UNIX system(2) call to execute the conversion, so the next step is to
create the command line.

 sprintf(cmd, “%s %s > %s 2> /dev/null”, cmdpath,
 ctx_info.input_file, ctx_info.output_file);

Finally, execute the command, and set the return status to indicate whether it worked
before returning.

 sys_status = system(cmd);

372

Appendix G: Using GoldenGate Data Conversion Services

 data->status_return =
 sys_status ? SG_CVT_E_FAILURE : SG_CVT_E_SUCCESS;

 return;
}

Note that your converter is normally run as a subprocess of the invoking application. You
should not call exit(2) to terminate your converter; you should simply return, allowing
GoldenGate and the operating system to take care of managing conversion threads.

This appendix provides example code of menu bar, file, and edit menu
resources.

Standard Menu Resources

Appendix H

375

Appendix H

H. Standard Menu Resources

This appendix provides examples of standard menu resources including:

• “Common Menu Bar Resources”

• “Standard File Menu Resources”

• “Standard Edit Menu Resources”

Common Menu Bar Resources

The following code defines the common menu bar resources.

!!
! Common Menu Bar Resources !
!!

! Standard Menubar
! File Selected Edit View Tools Options Help

! <your_widget_name_goes_here>

*<file>.labelString: File
*<file>.mnemonic: F

*<selected>.labelString: Selected
*<selected>.mnemonic: S

*<edit>.labelString: Edit
*<edit>.mnemonic: E

*<view>.labelString: View
*<view>.mnemonic: V

*<tools>.labelString: Tools
*<tools>.mnemonic: T

376

Appendix H: Standard Menu Resources

*<options>.labelString: Options
*<options>.mnemonic: O

*<help>.labelString: Help
*<help>.mnemonic: H

Standard File Menu Resources

The following code defines the standard file menu resources.

!!
! Standard File Menu Resources !
!!

*<new>.labelString: New
*<new>.mnemonic: N
*<new>.acceleratorText: Ctrl+N
*<new>.accelerator: Ctrl<Key>N

*<open>.labelString: Open...
*<open>.mnemonic: O
*<open>.acceleratorText: Ctrl+O
*<open>.accelerator: Ctrl<Key>O

*<reopen>.labelString: Reopen
*<reopen>.mnemonic: R

*<import>.labelString: Import
*<import>.mnemonic: I

*<save>.labelString: Save
*<save>.mnemonic: S
*<save>.acceleratorText: Ctrl+S
*<save>.accelerator: Ctrl<Key>S

*<saveas>.labelString: Save As...
*<saveas>.mnemonic: A

*<revert>.labelString: Revert
*<revert>.mnemonic: v

*<print>.labelString: Print...

Standard Edit Menu Resources

377

*<print>.mnemonic: P
*<print>.acceleratorText: Ctrl+P
*<print>.accelerator: Ctrl<Key>P

*<close>.labelString: Close
*<close>.mnemonic: C
*<close>.acceleratorText: Ctrl+W
*<close>.accelerator: Ctrl<Key>W

*<exit>.labelString: Exit
*<exit>.mnemonic: x
*<exit>.acceleratorText: Ctrl+Q
*<exit>.accelerator: Ctrl<Key>Q

Standard Edit Menu Resources

The following code defines the standard edit menu resources.

!!
! Standard Edit Menu Resources !
!!

*<undo>.labelString: Undo
*<undo>.mnemonic: U
*<undo>.acceleratorText: Ctrl+Z
*<undo>.accelerator: Ctrl<Key>Z

*<redo>.labelString: Redo
*<redo>.mnemonic: R
*<redo>.acceleratorText: Shift+Ctrl+Z
*<redo>.accelerator: Shift<Key>Ctrl<Key>Z

*<cut>.labelString: Cut
*<cut>.mnemonic: t
*<cut>.acceleratorText: Ctrl+X
*<cut>.accelerator: Ctrl<Key>X

*<copy>.labelString: Copy
*<copy>.mnemonic: C
*<copy>.acceleratorText: Ctrl+C
*<copy>.accelerator: Ctrl<Key>C

*<paste>.labelString: Paste

378

Appendix H: Standard Menu Resources

*<paste>.mnemonic: P
*<paste>.acceleratorText: Ctrl+V
*<paste>.accelerator: Ctrl<Key>V

*<clear>.labelString: Clear
*<clear>.mnemonic: e

*<delete>.labelString: Delete
*<delete>.mnemonic: D

*<select>.labelString: Select All
*<select>.mnemonic: A
*<select>.acceleratorText: Ctrl+A
*<select>.accelerator: Ctrl<Key>A

*<deselect>.labelString: Deselect All
*<deselect>.mnemonic: l
*<deselect>.acceleratorText: Shift+Ctrl+A
*<deselect>.accelerator: Shift<Key>Ctrl<Key>A

*<promote>.labelString: Promote
*<promote>.mnemonic: m
*<promote>.acceleratorText: Alt+Insert
*<promote>.accelerator: Alt<Key>Insert<Key>

*<colorEdit>.labelString: Color Editor...
*<colorEdit>.mnemonic: o

379

schemes, 15
applications

automatically restart, 64
communication, 65
creating icons. See icons
data exchange, 95-110, 335-372
exchanging data, 95-110, 335-372
help, integrating, 297
icon ID number, 168
implementation strategy, xxv
logging out, 64
re-invoke, 65
restarting, 64
save yourself example, 81
states, 64
toolkits for integration, xxv
window manager, 65
window placement, 83-84
window size, 83-84

ApplicationShell, 73
application testing

with schemes, 27
Arc widget, 53
ASCII, 239
Ascii predefined file type, 322
atom

3D graphics, 108
audio, 106
image, 106
movie, 107
SGI, 105

audio formats, 106

Numbers

3D graphics formats, 108
3D look

icons, 190
4Dwm window manager, 5, 63-84

A

adding
icon to Icon Catalog, 175

AIFF data, 106
ALIAS data, 108
alignment

IconSmith, 196
<Alt> key, 224
API

GoldenGate, 110
Apple data, 106
Apple Quicktime data, 107
application integration

checklist, xxx
overview, xxiii-xxxi, 5-6
schemes, 13-28

application models, 69-71
”multiple document, no visible main”, 71
”multiple document, visible main”, 70
”single document, multiple primary”, 70
”single document, one primary”, 70

application programming

Index

380

Index

AUTODESK data, 108
AVID data, 107

B

banners
in window title, 82

Binary predefined file type, 323
blocking

processes, data exchange, 358
browser

color schemes, 14
buttons

recycle, 50
recycle. See also recycle button

C

callback
Color Chooser, 42

caret cursor, 183
catalog

icon, xxiv
changing

icon design size, 191
checklist

creating icons, 166-177
Child widget

Grid widget, 56
circles

drawing, IconSmith, 200
C language operators, 315
Clipboard Selection

ownership, 104
Clipboard Transfer

CLIPBOARD selection, 97
”Copy” actions, 104

”Cut” actions, 102
data exchange, 97-105
implementation, 102-105
loss of Clipboard Selection, 105
”Paste” actions, 104

close
window, 79

”Close” option, 79
CMD ALTOPEN rule, 173, 224
CMD DROP rule, 224
CMD OPEN rule, 173, 223
CMD PRINT rule, 227
Color Chooser, 38-43

callback resources, 42
components, 38
example program, 250
interface, 40
Makefile example, 252
user interaction, 42
widget, 38-43

color image
resize, 90

colors, 38-43
and hues, 38
and saturation, 38
and values, 38
and widgets, 38
desktop, 13-28
get and set, 41
HSV, 38
icon fill color, 200
icon outline, 199
icons, 199
icon shadow color, 200
programming, 41
RGB, 38, 40
See also widgets

communication
window and session manager, 71

381

Index

compiling
.ctr files, 174
.otr files, 174
programs with GoldenGate, 353

concave polygons
IconSmith, 196

constants
logical, 316

context-sensitive help. See help
continuous session management, 65
conventions

style, xxi
conversion rules

printing, 242
converter registry, 110

GoldenGate, 336-338
converters

data exchange, 110
description file, 362
DSO, 362
evaluation, 342
evaluation requests, 355
examples, 367
FileToFile example, 370
input and output formats, 357
installing, 367
process blocking, 358
registering, 366
stream converter example, 360
stream data, 345-353
StreamToStream example, 368
testing, 365
writing, 354-367

converting data
GoldenGate, 109, 335-372

converting files
for printing, 239

CONVERT rule
printing, 239, 242

co-primary windows, 74
delete protocol, 80
example, 75

“Copy” option, 97, 104
copy text. See data exchange
COST rule

printing, 243
creating

FTR file type, 231-236
creating help

See help
cross

red and blue caret, 183
.ctr files, 174
cursor

caret symbol, 183
customizing windows, 87-92
“Cut” option, 97, 102

D

data
exchange, 335-372
exchange transferring of data, 95-110

data conversion
GoldenGate, 109, 335-372

data exchange, 95-110, 335-372
3D graphics, 108
audio, 106
Clipboard Transfer, 97-105
compiling, 353
conversion context, 336
conversion context, setting up, 341
conversion overview, 335
converter, examples, 367
converter, FiletoFile example, 370
converter, registering, 366
converter, testing, 365

382

Index

converter attributes, 339
converter description file, 362
converter evaluation, 337
converter evaluation requests, 355
converter example, 360
converter registry, 336-338
converter registry query, 338-341
converters, 110
converters, evaluating, 342
converters, installing, 367
converters, writing, 354-367
converter selection, 338
converting data, 337
display converter details, 343
DSO, 362
example converters, 367
file converters, 343-345
FileToFile example, 370
image, 106
input and output formats, 357
installing converters, 367
linking, 353
movie, 107
operators, 340
Primary Transfer, 96-97
process blocking, 358
querying converter registry, 338-341
registering converters, 366
SGI, 105
stream converter example, 360
stream data converters, 345-353
StreamToStream converter, example, 368
StreamToStream example, 368
target formats, 105-109
testing converters, 365
writing converters, 354-367

data selection
Primary Transfer, 99

debugging
session manager, 67

default printer, 245
delete

window, 79, 80
”Delete” option, 79, 80
deleting

path, IconSmith, 190
”Deselect” button

IconSmith, 193
design elements

icons, sharing, 191
desk management, 68

screens, 68
virtual screens, 68

Desks Overview window, xxiv
desktop

and fonts, 13-28
CMD PRINT rule, 227
colors, 13-28
Desks Overview window, xxiv
Desktop Settings window, xxiv
environment variables, 269-270
example, xxiv
Icon Catalog, xxiv
icons, 165-177, 181-207
implementation strategies, xxv
integration checklist, xxx
integration of windows, 72
look and feel, 5-6
look and feel, basic steps, 6
menu, MENUCMD rule, 228
printing, 227, 239-245
schemes, 13-28
toolkits, xxv
tools, xxiv
turn on look and feel, 9
widgets, 31-59
Window Settings. See also windows
Window Settings window, xxiv

desktop environment

383

Index

introduction, xxiii-xxxi, 5-6
Desktop Settings window, xxiv
Developer Magic RapidApp, xxvii-xxix
device files

FTRs, 221
dialogs

creating, 76, 77
delete example, 80
”Delete” option, 80
example, 78
notification, 77
windows, 77

Dial widget, 43-45
appearance, 43
callback function, 44
characteristics, 43
detecting changes in value, 45
example program, 252
getting and setting values, 44
interface, 43
values, 44

DIB data, 106
dimensional look

3D and IconSmith, 190
dircontains function, 220
directories

detecting changes, FAM, 118
monitoring changes, 113-128

Directory predefined file type, 322
drag and drop icons, 224
DROPIF rule, 225
Drop Pocket, 50

widget, 48-50
drop pocket

example program, 254
Makefile example, 255

DSO
GoldenGate converters, 362

Dynamenu
example program, 259

E

Edit menu
”Copy” option, 97
”Cut” option, 97
”Paste” option, 97

edit menu
resources, 377-378

enlarging
icons, 191

environment variables
desktop, 269-270

example programs
help, 273-312
widgets, 249-266

exchanging data, 335-372
See also data exchange
target formats, 105-109

Executable predefined file type, 324
”Exit” option, 79
explicit session management, 65

F

FAM, 113-128
See also File Alteration Monitor

File Alteration Monitor, 113-128
cancel monitoring, 117
closing a connection, 115
detecting changes, 118
examples, 122-123
fam daemon, 113
include files, 114
interface, 115-123

384

Index

libraries, 114
monitoring a file, 116
opening a connection, 115
polling for changes, 127
resume monitoring, 117
suspend monitoring, 117
symbolic links, 120
theory of operation, 114
using FAM, 123-128
waiting for changes, 124

file menu
resources, 376-377

files
converting to print, 239
creating file type, FTR, 231-236
detecting changes, FAM, 118
device files, 221
.ftr, 213
icons, 165
monitoring changes, 113-128
predefined file types naming conventions, 321
printing, 239
printing from Desktop, 239
selecting, 33
types, predefined, 321-327
types, predefined. See also predefined file types

File Selection Box
example program, 262
Makefile example, 264

File Selection Box widget, 33
file type

definition, 171
example, 172
icons, 170

file types
predefined, FTRs, 221

File Typing Rules, 211-236
Also see FTRs
description of, 212

fill color

icons, 200
FILTER rule

printing, 243
Finder widget, 50-53

callback, 52
components, 50
Drop Pocket, 50
example program, 257
interface, 51
path navigation, 50
recycle button, 50
user interaction, 52
values, 51

FITS data, 106
fonts

and desktop, 13-28
format

files for printing, 239
formats

3D graphics, 108
audio, 106
converting data, 109, 335-372
image, 106
movie, 107
SGI, 105

.ftr files, 213
FTRs, 211-236

adding, 171
CMD ALTOPEN rule, 212, 224
CMD DROP rule, 212, 224
CMD OPEN rule, 212, 223
CMD OPEN rule, Makefile, 223
CMD PRINT rule, 213, 227
compiling source files, 174
CONVERT rule, printing, 239
creating a file type, 231-236
device files, 221
dircontains function, 220
directory location, 170
DROPIF rule, 213, 225

385

Index

example, creating file type, 231-236
file directories, 331
file type, creating, 231-236
file type definition, 171
file type example, 172
file types, predefined, 221
icon, file type, 170
ICON rule, 213, 229
icons, 166, 223
LEGEND rule, 212, 221
MAP rule, 213, 226
MATCH expressions, 218-220
matching files, 217
matching non-plain files, 221
matching tagged files, 216
MATCH rule, 212, 215
MENUCMD rule, 213, 228
naming files, 170
naming file type, 170
predefined file types, 221
set variables, 222
SETVAR rule, 212, 222
SPECIALFILE rule, 212, 221
SUPERTYPE rule, 212, 214
TYPE rule, 212, 213
writing MATCH expressions, 217

functions
icon descriptive functions, 317

G

generic icons, 198
GenericWindowExecutable predefined file type, 324
-geometry option, 83
GIF data, 106
gizmos. See widgets
GoldenGate, 335-372

API, 110
compiling programs, 353

conversion overview, 335
converter description file, 362
converter header filedata exchange

API, 110
converter registry, 110, 336-338
data conversion, 109, 335-372
DSO, 362
example converters, 367
FileToFile example, 370
linking programs, 353
registering converter, 366
See also data exchange
stream converter example, 360
StreamToStream example, 368
testing converter, 365

Graph widget, 53-54
gravity

controlling in IconSmith, 198
gravity snap

IconSmith, 196
grids

controlling in IconSmith, 197
grid snap

IconSmith, 196
Grid widget, 55-59

characteristics, 55
child, 56
examples, 57
layout, 55

H

help, 131-156
application integration, 297
building, 150, 151
compiling, 150, 151
constructing the menu, 138
context-sensitive, 140
creating files, 149

386

Index

creating installable subsystem, 153
custom installation, 154
debugging, 152
displaying a help topic, 135
displaying help index, 137
document files, 134
DTD, 148
DTD elements, 282
errors, 152
examples, 148
files, 143-147
help button, 139
help document example, 273
helpmap file conventions, 144
helpmap file format, 144
helpmap files, 134, 143-147
implementation, 138-143
include file, 133
initializing help, 134
installation

custom, 154
installing, 153-154
integrating in application, 297
interface, 134-138
library, 133
Makefile, 150
messages, 152
online examples, 273-312
overview, 131
packaging, 153-154
references, 155
SGML references, 155
spec file, 150
subsystem, 153-154
valid elements in Help DTD, 282
viewer, 132-133
widget hierarchies, 146
widgets and helpmap, 146
windows, 132
writing, 147-153
writing overview, 148

writing samples, 148
History Button

example program, 259
HSV colors, 38
HTML data, 109
hypertext data, 109

I

ICCCM targets, 226
iconbookedit command, 175
Icon Catalog

adding icons, 175
Icon Catalog window, xxiv
ICON rule, 173, 229
icons, 165-177, 181-207

3D look, 190
adding FTRs, 171
and FTRs, 166
badge, 169, 182
binary executables, 165
caret symbol, 183
checklist, 166-177
circles, 200
C language operators, 315
CMD OPEN rule, 223
compiling source files, 174
composition conventions, 198
conditional operators, 316
creating, 165-177, 181-207
creating file type, 170
custom, 166
design conventions, 198
directory, 183
double-clicking, 224
drag and drop, 224
drawing, 169
files, 165, 183

387

Index

files type, 166
fill color, 200
.fti file, 183
FTR file type example, 172
functions, 317
generic, 166, 182
generic components, 198
icon description language, 315-318
ICON rule, 229
icon status variables, 316
identification number, 168
installing in Icon Catalog, 175
isometric circles, 203
logical constants, 316
Magic Carpet, 198
naming file type, 170
naming FTR files, 170
of windows, 87-92
outline color, 199
ovals, 202
programming, 170
See also desktop
See also IconSmith
segments or lines, 184
shadow color, 200
size, 199
steps to creating, 166-177

IconSmith, 181-207
3D look, 190
advanced techniques, 200
align objects, 196
caret, 183
changing design size, 191
circles, 200
colors, 199
composition conventions, 198
concave polygons, 196
deleting path or vertex, 190
”Deselect” button, 193
design conventions, 198
drawing filled shapes, 189

drawing paths, 189
drawing tools, 188-192
enlarge icon, 194
generic components, 198
gravity, 198
gravity snap, 196
grids, 197
grid snap, 196
icon description language, 315-318
icon size, 199
”Import” button, 191
invoking, 184
isometric circles, 203
menus, 184-185
ovals, 202
”Partial” button, 193
paths, 184
polygons, 189, 196
previewing icons, 191
rotate icon, 194
scaling, 191
“Select All” option, 194
selecting an object, 192
“Select Next” option, 193
shapes, 189
sharing design elements, 191
”Shear Y” transformation, 195
shrink icon, 194
slider, 191
starting, 184
stretch icon, 194
techniques, 200
templates, 192
tools for drawing, 188-192
Transformation buttons, 194
Transformation example, 195
transformation pin, 184
”Undo” option, 189
vertex, 184
windows, 186-188

identification number

388

Index

application icons, 168
IGES data, 108
image

resize, 90
scale, 90

ImageFile predefined file type, 323
image formats, 106
imgworks tool, 90
implementation

checklist, xxvi
schemes, 15
tasks, xxvi

importing
icon design elements, 191

information
references, xx

installing
converters, 367
icon in Icon Catalog, 175

integration
application, xxiii-xxxi, 5-6
checklist, xxx
desktop, 72
Motif, xxvii
schemes, 13-28
strategies and toolkits, xxv

interapplication data exchange, 95-110, 335-372
GoldenGate conversion, 109, 335-372
See also data exchange
target formats, 105-109

introduction
desktop, xxiii-xxxi

INVENTOR data, 108
IRIS GL, xxx
IRIS ViewKit, xxvii-xxix
isometric circles

drawing, IconSmith, 203

J

JIFF data, 106
JPEG data, 106

K

keys
<Alt>, 224

knob widget. See Dial widget
Kodak data, 107

L

labels
minimized window, 91

LaunchExecutable predefined file type, 325
LED widget

example program, 266
LEGEND rule, 173, 221
libraries

GoldenGate DSO, 362
line segments, 184
linking

programs with GoldenGate, 353
logical constants

icon description language, 316
look and feel

basic steps, 6
introduction, xxiii-xxxi
overview, 5-6
schemes, 13-28
turn on, 9

389

Index

M

Magic Carpet
icons, 198

main windows, 73
example, 73

Makefile
CMD OPEN rule, 223

MAP rule, 226
matching tagged files, 216
MATCH rule, 173, 215
menu bar

resources, 375-376
MENUCMD rule, 228
menus

”Close” option, 79
”Delete” option, 79, 80
edit menu resources, 377-378
”Exit” option, 79
file menu resources, 376-377
IconSmith, 184-185
menu bar resources, 375-376
standard resources, 375-378

Microsoft data, 106
middle mouse button

inserting text, 101
minimized windows, 87

creating, 88
examples, 87
using imgworks, 90
using snapshot, 89

mixed-model programming widgets, 36
monitor file changes. See File Alteration Monitor
Motif

desktop integration, xxvii
Motif window manager, 63
movie formats, 107
MPEG data, 106, 107

”multiple document, no visible main”
application model, 71

”multiple document, visible main”
application model, 70

N

naming conventions
predefined file types, 321

navigation
path, 50

NEXT data, 106
notification dialogs, 77

O

online help
examples, 273-312
See also help
See help

OpenGL, xxx
reference, xx

operators
conditional, 316
icon description routines, 315

OSF/Motif, 5
desktop integration, xxvii
reference, xx

.otr files, 174
outline color

icons, 199
ovals

drawing, IconSmith, 202
overview

of desktop, xxiii-xxxi, 5-6
ownership

Clipboard Selection, 104

390

Index

P

pages
icon catalog, xxiv

“Partial” button
IconSmith, 193

“Paste” option, 97, 104
path navigation, 50
paths

drawing, IconSmith, 189
segments, 184

Percent Done Indicator
example program, 265

percent done indicator, 35
persistent selection

See Primary Transfer
PHOTO data, 107
PIXAR data, 108
pixmap data, 107
placement

of windows, 83
point

vertex, 184
pointer widget. See Dial widget
polling

for file changes, 127
polygons

IconSmith, 189, 196
pop-up windows, 74
PostScript files

printing, 239
PPM data, 107
predefined file types, 321-327

Ascii, 322
Binary, 323
Directory, 322
Executable, 324
GenericWindowExecutable, 324

ImageFile, 323
LaunchExecutable, 325
naming conventions, 321
Script, 324
SourceFile, 323
SpecialFile, 322
ttyExecutable, 325
ttyLaunchExecutable, 326
ttyLaunchOutExecutable, 326
ttyOutExecutable, 326

predefined file types, FTRs, 221
predesigned

icon templates, 192
preview icons, 191
Primary Selection

inserting, 101
See also Primary Transfer

Primary Transfer
callback function, 100
data exchange, 96-97
data selection, 99
implementation, 99-101
loss of, 101
requests for, 100

primary windows, 73
example, 73

printing, 239-245
ASCII files, 239
converting files, 239, 239-242
CONVERT rule, 242
COST rule, 243
current printer, 245
default printer, 245
FILTER rule, 243
PostScript files, 239
print conversion rules, 242
RGB files, 239
routeprint command, 239
routing a job, 239

Print Manager

391

Index

default printer, 245
process blocking

data exchange, 358
programming

mixed model widgets, 36
programs

widget examples, 249-266
progress indicator, 35
protocols

close, 79
delete, 79
delete, example, 80
quit, 79
quit, example, 79
saving state information, 81
window manager, 78-82

Q

quit
window, 79

R

RapidApp, xxvii-xxix
recycle button, 50

customize, 51
references

list, xx
removing

path, IconSmith, 190
resize

image, 90
windows, 83

resources
menus, 375-378
schemes, 21

restarting applications, 81
session management, 64
states, 64

RGB colors, 38, 40
RGB files

printing, 239
RGB image

resize, 90
rotation

transformation pin, 184
routeprint command, 239

S

saving state information, 81
scale

image, 90
Scale widget, 35

example program, 265
scaling

icons, 191
transformation pin, 184

schemes, 13-28
application testing, 27
basic concepts, 14
browser, 27
Color Schemes option, 27
considerations, 16
creating new, 27
customization, 14
defaults, 13
designing new, 27
direct access, 19
ease of use, 14
implementation, 15
new, 27
non-default colors, 17
override the default, 17

392

Index

overview, 13
pre-defined resources, 21
programming, 15
schemebr browser, 14, 27
symbolic values, 21
turn on, 15
user customization, 14
why use, 14

Script predefined file type, 324
SD2 data, 106
segments

IconSmith, 184
“Select All” option

IconSmith, 194
selecting

IconSmith, 192
“Select Next” option

IconSmith, 193
session management, 64-68

communication with window manager, 71
continuous, 65, 81
debugging, 67
example, 67
explicit, 65
overview, 64
saving state information, 66, 81
WM_COMMAND, 66

session manager
and window manager, 71

SETVAR rule, 222
SGI audio data, 106
SGI data, 107
SGI help

See help
sgiMode resource, 9
shadow color

icons, 200
shapes

filled, IconSmith, 189
”Shear Y” transformation, 195
”single document, multiple primary”

application model, 70
”single document, one primary”

application model, 70
size, 83-84

image, 90
of windows, 83

sizing
icons, 191

slider
IconSmith, 191

sliders
color, 40

slider widget, 35
snapshot tool, 89
SOFTIMAGE data, 108
SourceFile predefined file type, 323
SpecialFile predefined file type, 322
SPECIALFILE rule, 221
Springbox widget, 54-55
states

saving, 66
stream converter example, 360
stream data converters, 345-353
style

conventions, xxi
SUPERTYPE rule, 173, 214
support windows, 76

”Delete” option, 80
example, 77

symbolic links
File Alteration Monitor, 120

symbolic values
schemes, 21

syntax

393

Index

conventions, xxi
system

default printer, 245

T

tag command, 216
target formats

3D graphics formats, 108
audio formats, 106
image formats, 106
movie formats, 107
SGI formats, 105

targets
data exchange, 105-109
ICCCM, 226

telldesktop command, 175
templates

icons, 192
testing

application with schemes, 27
text

copy. See data exchange
text field widget, 35
text widget, 35
ThumbWheel widget, 45-48

callback structure, 47
detecting changes, 47
example program, 260
interface, 46
interface values, 46
values, 47

TIFF data, 107
title

minimized window, 91
titles

of windows, 82
tools

application integration, xxv
IRIS GL, xxx
OpenGL, xxx
RapidApp, xxvii-xxix
ViewKit, xxvii-xxix, xxx

topics
additional references, xx

tracing
design templates, 192

transferring data, 95-110, 335-372
See Primary Transfer

Transformation button
IconSmith, 194

transformation pin, 184
ttyExecutable predefined file type, 325
ttyLaunchExecutable predefined file type, 326
ttyLaunchOutExecutable predefined file type, 326
ttyOutExecutable predefined file type, 326
TYPE rule, 173, 213
types

predefined file types, 321-327
predefined file types. See also predefined file types

U

”Undo” option
IconSmith, 189

user interaction
Finder widget, 52

V

variables
desktop, 269-270
icon status, 316
set, FTRs, 222

vertex, 184

394

Index

ViewKit, xxvii-xxix
desktop integration, xxx
reference, xx
retrieve resource, 20

views
desktop, xxiv

virtual reality data, 108
virtual screens, 68
VRML data, 108

W

WAVE data, 106
WAVEFRONT data, 108
wheel widget. See ThumbWheel widget
widgets, 31-59

ApplicationShell, 73
Arc, 53
building demos, 32
ColorChooser, 38-43
Color Chooser example program, 250
Color Chooser Makefile example, 252
ColorChooser. See also colors
demos, 31-32
Dial, 43-45
Dial example program, 252
Dial. See also Dial widget
Drop Pocket, 48-50
Drop Pocket example program, 254
Drop Pocket Makefile example, 255
enhanced, 32-36
example programs, 249-266
File Selection Box, 33
File Selection Box example program, 262
File Selection Box Makefile example, 264
Finder, 50-53
Finder example program, 257
Finder. See also Finder widget
Graph, 53-54

Grid, 55-59
Grid. See also Grid widget
History Button example program, 259
knob, 43-45
LED example program, 266
OpenGL, 36
percentage done, 35
Percent Done Indicator example, 265
programming mixed-model, 36
progress indicator, 35
Scale, 35
Scale example program, 265
SgColorChooser, 38
slider, 35
Springbox, 54-55
text, 35
text field, 35
ThumbWheel, 45-48
ThumbWheel example program, 260
ThumbWheel. See also ThumbWheel widget

window categories, 69-71
implementation, 72

window management, 63-84
communication with session manager, 71
debugging, 67

window manager, 5
and session manager, 71
protocols, 78-82
sending messages, 78

windows, 83-84
Also see IconSmith, windows
banner, 82
co-primary, 74
customizing, 87-92
Desks Overview, xxiv
desktop, xxiv
Desktop Settings, xxiv
dialogs, 76, 77
example, creating a co-primary, 75
example, creating a dialog, 78

395

Index

example, creating a main primary, 73
example, creating a support, 77
example, delete protocol, 80
example, quit protocol, 79
example, save yourself protocol, 81
help, 132
Icon Catalog, xxiv
iconified, 87-92
iconified, changing state, 91
iconified, creating, 88
iconified, examples, 87
iconified, labeling, 91
iconified, using imgworks, 90
iconified, using snapshot, 89
integration with desktop, 72
main, 73
minimized, 87-92

creating, 88
examples, 87
using imgworks, 90
using snapshot, 89

minimized, changing state, 91
minimized, labeling, 91
placement, 83-84
pop-up, 74
primary, 73
protocol, 78
save yourself example, 81
save yourself protocol, 81
sending messages, 78
session management, 81
support, 76
title, 82, 91
Window Settings, xxiv

Window Settings window, xxiv
WM_COMMAND

session management, 66
writing help

See help

X

Xt help
See help

X Window System
reference, xx

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on. The
part number for this document is
007-2006-090.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:
415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

