Indigo Magic™ Desktop
Integration Guide

Document Number 007-2006-100

CONTRIBUTORS

Written by Beth Fryer, Jed Hartman, Ken Jones, and Pete Sullivan

Ilustrated by Beth Fryer and Seth Katz

Edited by Christina Cary

Production by Derrald Vogt, Cindy Stief, and Linda Rae Sande

Engineering contributions by Bob Blean, Susan Dahlberg, Susan Ellis, John
Krystynak, Chandra Pisupati, Jack Repenning, CJ Smith, Dave Story, Steve
Strasnick, Rebecca Underwood, Steve Yohanan, and Betsy Zeller

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© Copyright 1994, 1995, 1996 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
IRIS, IRIS GL, IRIS IM, IRIS InSight, IRIS ViewKit, IRIX, GoldenGate, IconSmith,
Indigo Magic, the Graphics Library, OpenGL, Open Inventor, and RapidApp are
trademarks of Silicon Graphics, Inc. Apple is a registered trademark and Apple
Quicktime is a trademark of Apple Computer, Inc. Kodak is a trademark of Eastman
Kodak Company. Microsoft is a registered trademark of Microsoft Corporation.
Motif and OSF/Motif are trademarks of the Open Software Foundation. PostScript is
a registered trademark of Adobe Systems, Inc. Solaris is a registered trademark and
Sun and SunOS are trademarks of Sun Microsystems, Inc. Wavefront is a trademark
of Wavefront Technologies. X Window System is a trademark of the Massachusetts
Institute of Technology.

Indigo Magic™ Desktop Integration Guide
Document Number 007-2006-100

PART I

Contents

List of Examples xv
List of Figures xvii
List of Tables xix

About This Guide xxi
What This Guide Contains xxi
How to Use This Guide xxi
What You Should Know Before Reading This Guide xxi
Suggested Reading xxii
Font Conventions in This Guide xxiii
Integrating an Application Into the Indigo Magic Desktop Environment: An
Introduction xxv
About the Indigo Magic Desktop Environment xxv
Implementation Strategies and Toolkits xxvii
Implementation Checklist xxviii
Using ViewKit and RapidApp xxix
Integrating an Application xxxii

Getting the Right Look and Feel

Getting the Right Look and Feel: An Overview 5
About the Indigo Magic Look and Feel 5
Getting the Right Look and Feel: The Basic Steps 6

Contents

Getting the Indigo Magic Look 9

Using Schemes 13
Schemes Overview 13
Why You Should Use Schemes 14
Basic Scheme Concepts 14
Using Schemes in Your Application 15
Turning on Schemes for Your Application 15
Special Considerations for Programming with Schemes 16
Assigning Non-Default Colors and Fonts to Widgets 17
Directly Accessing Colors and Fonts 18
Pre-Defined Scheme Resources and Symbolic Values 21
Extending a Scheme to Support New Colors 24
Scheme File Organization 24
How to Extend a Scheme 25
Testing Your Application with Schemes 27
Creating New Schemes 27
Hard-Coding a Scheme for an Application 28

Using the Silicon Graphics Enhanced Widgets 31
Using the SGI Enhanced Widgets 31
Using the Widget Demos 31
Location of Widget Demos 32
Instructions for Building the Widget Demos 32
The Enhanced Widgets 33
The File Selection Box Widget 33
The Scale (Percent Done Indicator) Widget 35
The Text and TextField Widgets 36
The Mixed-Model Programming Widgets 37

Contents

The SGI Enhanced Widgets 38
The Color Chooser Widget 39
The Dial Widget 44
The Thumbwheel Widget 46
The Drop Pocket Widget 49
The Finder Widget 51
The Graph Widget 54
The Springbox Widget 55
The Grid Widget 56

HTML Viewer Component 60
Overview of the HTML Viewer Components 62
Viewer Components 62
Supported Tags and Attributes 63

Window, Session, and Desk Management 69
Window, Session, and Desk Management Overview 69
Window Management 69
Session Management 70
Desk Management 74
Further Reading on Window and Session Management 75
Implementing an Application Model 75
Implementing the “Single Document, One Primary” Model 76
Implementing the “Single Document, Multiple Primaries” Model 76
Implementing the “Multiple Document, Visible Main” Model 76
Implementing the “Multiple Document, No Visible Main” Model 77
Interacting With the Window and Session Manager 78
Creating Windows and Setting Decorations 79
Handling Window Manager Protocols 85
Setting the Window Title 89
Controlling Window Placement and Size 90

Contents

6. Customizing Your Application’s Minimized Windows 95
Some Different Sources for Minimized Window Images 95
Creating a Minimized Window Image: The Basic Steps 96
Using mediarecorder to Get an RGB Format Image 97
Resizing the RGB Image Using imgworks 99

Setting the Minimized Window Label 99

Changing the Minimized Window Image 100

7. Interapplication Data Exchange 103
Data Exchange Overview 103
Primary Transfer Model Overview 104
Clipboard Transfer Model Overview 105
Interaction Between the Primary and Clipboard Transfer Models 106
Implementing the Primary Transfer Model 107
Data Selection 107
Requests for the Primary Selection 108
Loss of the Primary Selection 109
Inserting the Primary Selection 109
Implementing the Clipboard Transfer Model 110
Cut Actions 110
Copy Actions 112
Requests for the Clipboard Selection 112
Paste Actions 112
Loss of the Clipboard Selection 113
Supported Target Formats 113
Data Conversion Service 117
The Converter Registry 118
The GoldenGate API 118

Vi

Contents

Monitoring Changes to Files and Directories 121
FAM Overview 121
Theory of Operation 122
FAM Libraries and Include Files 122
The FAM Interface 123
Opening and Closing a FAM Connection 123
Monitoring a File or Directory 124
Suspending, Resuming, and Canceling Monitoring 125
Detecting Changes to Files and Directories 126
FAM Examples 131
Using FAM 132
Waiting for File Changes 133
Polling for File Changes 136

Providing Online Help With SGIHelp 141
Overview of SGIHelp 141
The Help Viewer 142
The SGIHelp Library and Include File 143
Help Document Files 144
Application Helpmap Files 144
The SGIHelp Interface 144
Initializing the Help Session 144
Displaying a Help Topic 146
Displaying the Help Index 147
Implementing Help in an Application 148
Constructing a Help Menu 149
Implementing a Help Button 150
Providing Context-Sensitive Help 151
Application Helpmap Files 153
Helpmap File Conventions 154
Helpmap File Format 154
Widget Hierarchies in the Helpmap File 157

vii

Contents

viii

10.

PART II

11.

Writing the Online Help 159
Overview of Help Document Files 159
Viewing the Sample Help Document Files 160
Creating a Help Document File 161
Preparing to Build the Online Help 161
Building the Online Help 163
Finding and Correcting Build Errors 163
Producing the Final Product 165
Creating the Installable Subsystem 165
Incorporating the Help Subsystem into an Installable Product 165

Incorporating the Help Subsystem into a Product With a Custom Installation Script
166

Bibliography of SGML References 166

Handling Users’ System Preferences 171
Handling the Mouse Double-Click Speed Setting 171
Using the Default Viewer and Editor Utilities Panel 172
Selecting Utilities and Their Values 173
Setting the Preferred Text Editor 173

Creating Desktop Icons

Creating Desktop Icons: An Overview 179
About Indigo Magic Desktop Icons 179
Checklist for Creating an Icon 181
Creating an Icon: The Basic Steps Explained in Detail 182
Step One: Tagging Your Application 183
Step Two: Drawing a Picture of Your Icon 183
Step Three: Programming Your Icon 184
Step Four: Compiling the Source Files 189
Step Five: Installing Your Application in the Icon Catalog 190
Step Six: Restarting the Desktop 191
Step Seven: Updating Your Installation Process 191

Contents

12.

Using IconSmith 195
About IconSmith 196
Where to Install Your Completed Icon 196
Some Definitions 197
Starting IconSmith 198
IconSmith Menus 199
IconSmith Windows 200
Drawing With IconSmith 200
Drawing Paths 202
Drawing Filled Shapes 202
Deleting 203
Keeping the 3-D Look 204
Drawing for All Scales 204
Sharing Design Elements 205
Templates 206
Selecting 206
Partial 207
Deselect Fragments 207
Select Next 208
Select All 208
Transformations 208
Scale 209
Scale Xand Y 209
Rotate 209
Shear Y 210
Concave Polygons 210
Constraints: Gravity (Object) Snap and Grid Snap 211
Controlling the Grid 212
Controlling Gravity 212
Icon Design and Composition Conventions 213
Importing Generic Icon Components (Magic Carpet) 213
Icon Size 214
Selecting Colors 214

Contents

Advanced IconSmith Techniques 215
Drawing a Circle 215
Drawing an Oval 217
Isometric Circles 218

13. File Typing Rules 225
A Table of the FTRs With Descriptions 226
Naming File Types: The TYPE Rule 227
Categorizing File Types: The SUPERTYPE Rule 228
Matching File Types With Applications: The MATCH Rule 229
Matching Tagged Files 230
Matching Files Without the tag Command 231
Matching Non-Plain Files: The SPECIALFILE Rule 235
Adding a Descriptive Phrase: The LEGEND Rule 235
Setting FTR Variables: The SETVAR Rule 236
Programming Open Behavior: The CMD OPEN Rule 237
Programming Alt-Open Behavior: The CMD ALTOPEN Rule 238
Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules 239
Mapping Names: The MAP Rule 242
Programming Print Behavior: The CMD PRINT Rule 242
Adding Menu Items: The MENUCMD Rule 243
Getting the Icon Picture: The ICON Rule 244
Creating a File Type: An Example 246
Open an FTR File for scribble 246
Add the Rules to the scribble FIR File 247
Name the scribble FTR File and Put It in the Appropriate Directory 250
The scribble FTRs 251

Contents

14.

Printing From the Desktop 255
About routeprint 255
Converting a File for Printing 255
The Print Conversion Rules 258
The CONVERT Rule 258
The COST Rule 259
The FILTER Rule 259
The Current Printer 261

Example Programs for SGI Enhanced Widgets 265
Example Program for Color Chooser 266

Makefile for colortest.c 268
Example Program for Dial 268
Example Program for Drop Pocket 271

Makefile for Drop Pocket Example 272
Example Program for Finder 273
Example Program for History Button (Dynamenu) 275
Example Program for ThumbWheel 276
Example Program for File Selection Box 278

Makefile for File Selection Box Example Program 280
Example Programs for Scale (Percent Done Indicator) Widget 281
Example Program for LED Widget 282

Desktop Variables 283
Variables Set By the Desktop 283
Variables Set By the User 284

Online Help Examples 287

A Simple Help Document 287

Allowable Elements in a Help Document 296

An Example of Implementing Help in an Application 311

The Icon Description Language 327

Xi

Contents

E. Predefined File Types 331
Naming Conventions for Predefined File Types 331
The Predefined File Types and What They Do 332
SpecialFile 332
Directory 332
Ascii 332
Source Files 333
Binary 333
ImageFile 334
Executable 334
Scripts 335
GenericWindowedExecutable 335
LaunchExecutable 335
ttyExecutable 336
ttyLaunchExecutable 336
ttyOutExecutable 336
ttyLaunchOutExecutable 337

F. FTR File Directories 339

G. Using GoldenGate Data Conversion Services 341
Converting Data Using the GoldenGate Data Conversion Service 341
Overview of the Conversion Process 342
Selecting a Converter 344
Using GoldenGate to Convert Data 350
Compiling and Linking Your Program with GoldenGate 359
Writing Converters for the GoldenGate Data Conversion Service 360
Overview of the Converter Writing Process 361
Writing Converter Code 361
Building a DSO 368
Testing Your Converter 371
Registering Your Converter 372
Installing Your Converter 373

Some Sample Converters 374

Xii

Contents

Standard Menu Resources 379

Common Menu Bar Resources 379
Standard File Menu Resources 380
Standard Edit Menu Resources 381

Index 383

Xiii

List of Examples

Example 3-1 Retrieving a Scheme Color Value 19

Example 4-1 An Example of Using the Grid Widget 58

Example 4-2 Another Example of Using the Grid Widget 59

Example 5-1 Session Management Example Code: saveyourself.c 73

Example 5-2 Creating a Main Primary Window 80

Example 5-3 Creating a Co-Primary Window 82

Example 5-4 Creating a Support Window 84

Example5-5 Creating a Dialog 85

Example 5-6 Handling the Window Manager Quit Protocol 86

Example 5-7 Handling the Window Manager Delete Window Protocol in
Co-Primary Windows 87

Example 5-8 ~ Handling the Window Manager Delete Window Protocol in
Support Windows and Dialogs 87

Example 5-9 Handling the Window Manager “Save Yourself” Protocol 88

Example 7-1 Asserting Ownership of PRIMARY Selection 107

Example 7-2 ~ Handling Cut Actions in the Clipboard Transfer Model 110

Example 8-1 Using Select With FAM 133

Example 8-2 Polling With FAM 137

Example 8-3 Polling FAM Within an Xt Work Procedure 137

Example 9-1 Initializing a Help Session Using SGIHelpInit() 145

Example 9-2 Requesting a Specific Help Topic Using SGIHelpMsg() 147

Example 9-3 Requesting a Help Topic for a Widget Using SGIHelpMsg() 147

Example 9-4 Displaying a Help Index Using SGIHelpIndexMsg() 148

Example 9-5 Providing a Help Button 150

Example 9-6 Implementing Context-Sensitive Help 151

XV

List of Examples

XVi

Example C-1
Example C-2
Example C-3
Example C-4
Example C-5

An Example of a Help Source File 287

A Description of the Elements Defined by the Help DTD 296
An Example of Integrating SGIHelp With an Application 311
Help Source File for Example Program 322

Helpmap for Example Program 326

List of Figures

Figure i The Indigo Magic Desktop xxvii

Figure 4-1 The File Selection Box Widget 33

Figure 4-2 The Color Chooser Widget 39

Figure 4-3 The Color Chooser Widget With HSV and RGB Sliders 40
Figure 4-4 The Dial Widget in Knob and Pointer Form 44

Figure 4-5 The Thumbwheel Widget 46

Figure 4-6 The Drop Pocket Widget (on left) As Part of the Finder Widget 49
Figure 4-7 The Finder Widget 51

Figure 4-8 The Graph Widget 54

Figure 4-9 The HTML Widget 61

Figure 5-1 Window Settings Control Panel 71

Figure 6-1 Minimized Window Image Examples 96

Figure 6-2 The mediarecorder Tool 97

Figure 9-1 The Help Viewer 142

Figure 9-2 The Help Index Window 143

Figure 10-1 The dtUtilities Panel 172

Figure 12-1 Caret 197

Figure 12-2 Transformation Pin 197

Figure 12-3 Vertex 198

Figure 12-4 Path 198

Figure 12-5 The IconSmith Icon 198

Figure 12-6 The Main IconSmith Window With Popup Menus 199
Figure 12-7 The Import Icon or Set Template Window 201
Figure 12-8 The Palette (Selection Properties) Window 203
Figure 12-9 3-D Icon Axes 204

Figure 12-10 Concave Polygon 210

Figure 12-11 The Constraints Window 211

XVii

List of Figures

Figure 12-12 A Path 215

Figure 12-13 ~ Wheel Spokes 216

Figure 12-14 Connected Spokes 216

Figure 12-15 Finished 2-D Circle 216

Figure 12-16 An Oval 217

Figure 12-17 A Simple, Circular 2-D Icon 217

Figure 12-18 Imported Circles 219

Figure 12-19 Finished Isometric Circle 220

Figure 12-20 Simple, Isometric 2-D Icon 220

Figure 12-21 Icon Centered on Generic Component 221
Figure 12-22 OpenlIcon 222

Figure 14-1 File Conversions for Printing Standard Desktop Files 256

Xviii

List of Tables

Table i
Table ii
Table iii
Table iv
Table 3-1
Table 4-1
Table 4-2
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 10-1
Table 13-1
Table 13-2
Table 13-3
Table 14-1
Table D-1
Table E-1
Table G-1
Table G-2
Table G-3
Table G-4

Checklist of Implementation Tasks and References xxviii
Tasks Requiring Application Changes and/or Motif xxix
Integration and ViewKit xxx

Integration and RapidApp xxxi

Pre-Defined Scheme Resources and Symbolic Values 21
HTML Viewer Tags and Attributes 63

HTML Viewer Character Tags 65

Audio Formats 114

Image Formats 114

Movie Formats 115

3D Graphics Formats 115

Additional Data Types Supported by Silicon Graphics 116
World Wide Web Targets 117

dtUtilities and Their Values 173

Rules That Appear in a Filetype Definition 226
Numerical Representations in Match-Expressions 233
Match-Expression Functions 233

Conversion Costs for Print Conversion Rules 258

Icon Description Functions 329

Predefined File Type Naming Conventions 331
Converter Attributes 345

Query Operators 346

Converter Return Status Values 355

Converter Description File Statements 369

XiX

About This Guide

This book explains how to integrate applications into the Indigo Magic' Deskto
environment. This book assumes that your applications run on Silicon Graphics
workstations.

What This Guide Contains

This book is divided into two sections:

* Part One explains how to achieve the Silicon Graphics look and feel for your
application. (Guidelines for look and feel are provided in the Indigo Magic User
Interface Guidelines.)

e Part Two explains how to create Desktop icons for your application and install them
in the Icon Catalog.

How to Use This Guide

This book is a companion to the Indigo Magic User Interface Guidelines. Silicon Graphics
recommends that you read through the Indigo Magic User Interface Guidelines first, then
use the Indigo Magic Desktop Integration Guide to help you implement the style guidelines.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with the material contained in the OSF/Motif
Style Guide and the Indigo Magic User Interface Guidelines manual. It assumes also that you
have some knowledge of programming in IRIS® IM and Xt (or Xlib).

Silicon Graphics provides both these manuals online. You can view them from the IRIS

InSight"" viewer. To use the IRIS InSight viewer, select “On-line Books” from the Help
toolchest.

XXi

About This Guide

Suggested Reading

XXii

Here are some books that provide information on some of the topics covered in this
guide:

IRIS IM Programming Guide. (This book is included online with the Silicon Graphics
IRIS Development Option.)

IRIS ViewKit Programmer’s Guide. (This book is included online with the Silicon
Graphics C++ option.)

OpenGL on Silicon Graphics Systems. (This book is included online with the Silicon
Graphics IRIS Development Option.)

Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs: Prentice-Hall, Inc., 1992. (This book is included online with the Silicon
Graphics IRIS Development Option.)

Open Software Foundation. OSF/Motif Style Guide, Revision 1.2. Englewood Cliffs:
Prentice-Hall, Inc., 1992. (This book is included online with the Silicon Graphics
IRIS Development Option.)

Nye, Adrian and O’Reilly, Tim. The X Window System, Volume 4: X Toolkit Intrinsics
Programming Manual, OSF/Motif 1.2 Edition for X11, Release 5. Sebastopol: O'Reilly &
Associates, Inc., 1992. (This book is included online with the Silicon Graphics IRIS
Development Option.)

Nye, Adrian. The X Window System, Volume 1: Xlib Programming Manual for Version 11
of the X Window System. Sebastopol: O'Reilly & Associates, Inc., 1992. (This book is
included online with the Silicon Graphics IRIS Development Option.)

Young, Doug. The X Window System, Programming and Applications with Xt,
OSF/Motif Edition, Second Edition. Englewood Cliffs: Prentice Hall, Inc., 1994.

Assente & Swick. The X Toolkit.

Scheifler, Robert and Gettys, Jim. X Window System, Third Edition. Digital Press,
ISBN 1-55558-088-2.

X/Open Company, Ltd. X/Open Portability Guide (set of 7 volumes). Englewood
Cliffs: Prentice Hall Publishing Company, ISBN 0-13-685819-8

About This Guide

Font Conventions in This Guide

These style conventions are used in this guide:

¢ Boldfaced text indicates that a term is an option flag, a data type, a keyword, a
function, a command-line option, or an X resource.

e Jtalic text indicates that a term is a filename, a button name, a variable, an IRIX
command, a document title, or an image or subsystem name.

e “Quoted text” indicates menu items.
® Screen type shows code examples and screen displays.
* Bold screen type indicates user input and nonprinting keyboard keys.

® Regular text shows menu and window names, and X properties.

XxXiii

Integrating an Application Into the Indigo Magic
Desktop Environment: An Introduction

This book describes how to integrate your application into the Indigo Magic Desktop
environment. It assumes that your application already runs on Silicon Graphics
workstations. This is strictly a how-to guide—refer to the Indigo Magic User Interface
Guidelines for style guidelines.

This introduction contains these sections:

e “About the Indigo Magic Desktop Environment” presents a brief overview of the
Indigo Magic Desktop and explains why it’s important to integrate your application
into the Desktop environment.

e “Implementation Strategies and Toolkits” provides a checklist to help developers
focus on the items that most benefit their users.

¢ “Integrating an Application” offers a brief, general list of the basic steps for
integration.

About the Indigo Magic Desktop Environment

The Indigo Magic Desktop environment provides a graphical user interface (GUI) to the
IRIX filesystem and operating system. This interface allows users to interact with the
workstation using a point-and-click interface, based on icons and windows. The Desktop
provides tools and services for the users’ convenience, many of which are accessible
directly from the Desktop’s toolchests.

Integrating your application into the Desktop environment is an important step in
creating your product. Since users are already familiar with the Desktop, they have
certain expectations about how applications should look and behave in the Desktop
environment. By integrating your application into the Desktop, you insure that these
expectations are met—thus helping your users get the most out of your application.

XXV

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

XXVi

Figure i shows an example of the Indigo Magic Desktop, with the following tools
running:

The Toolchest. The Toolchest serves as the primary access point for desktop user
interfaces. For example, users can access interfaces for everyday tasks such as
customizing their desktop, accessing applications and Web tools, backing up and
restoring their files, and finding information (help) on a variety of desktop topics.

The Desks Overview window. With the Desks Overview window, users can switch
from one “desk,” or group of applications, to another. When your application
appears in a desk other than the one currently in use, it’s in a state similar to the
minimized state. You need to be careful about what processes your application runs
while in a minimized state.

The Window Settings window. From the Window Settings window, users can
change aspects of window and session management. You need to set up your
application so that it works as users expect when they change these settings.

The Desktop Settings window. From this window, users can scale Desktop icons
and select a default text editor. You need to design your icons so that they look
reasonable in the maximum and minimum sizes, and set up your application to use
the user’s chosen default utilities where appropriate. The utilities are set on the new
dtUtilities or from the Desktop Ultilities panel. Users can choose a default text editor,
Web browser, image viewer, email reader, book viewer, and PostScript viewer.

The Icon Catalog. Users can access icons from the different pages in the Icon
Catalog. Some of the pages are: Applications, Demos, Desktop Tools, Media Tools,
and Web Tools. Since the Icon Catalog is one of the first places users look when they
need to find an application, you should add your product’s icons to this catalog.

These are just a few examples of the kinds of things you'll need to consider to integrate
your application into the Desktop Environment. This book provides complete and
detailed instructions for integration, while the Indigo Magic User Interface Guidelines gives
you style guidelines. For the best results, use both books together.

Integrating an Application Into the Indigo Magic Desktop Envi-

Toolchest f—— |

Deskiop O B

Minimized m—=

windows |
| FPage Sclected Arrange View

Icon Catalog

Desktop Settings
window Background Icon Size:

T)| r’

Snap to Grid:

[Juiie, [P |

Show Icons as Gallery:

X . Show Launch Effect:
WIndOW Settmgs Remove” Delete Instantly:

WlndOW Toolchest Orientation: > Horizontal Warn on File Overwrite:
<& Vertical Default Viewer & Editor Utilities isplay Application Errors:

Window Settings

Utilities Settings Keyboard Focus: & Ciick to type Enable Remote Display:
<& Paint to type Select your favorites from the menus:

indo

Opaque Window Move:
Auto Window Placement: [¥]

Web Browser:

Image Viewer:

Save Windows & Desks: <& Continuously
& Explicitly

Mailer:

Book Viewer:

PostScript Viewer:

(Dimmed utilities are not installed.)

Desks Overview
window

Figurei The Indigo Magic Desktop

Implementation Strategies and Toolkits

This section presents strategies for implementing your application and suggests some
toolkits that will make the implementation easier. Topics include:
¢ “Implementation Checklist” on page xxviii

¢ “Using ViewKit and Rapid App” on page xxix

XXVii

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

Implementation Checklist
Table i provides a checklist to help you focus your resources on the items that most
benefit your users. The checklist lists tasks in order of importance. Try to adhere to the

user interface guidelines in the order presented in the checklist.

For a summary of user interface guidelines that includes a complete checklist, see,
“Summary of Guidelines” in Indigo Magic User Interface Guidelines.

Table i Checklist of Implementation Tasks and References

Indigo Magic User

Task Interface Guidelines Implementation Reference

Icons and File Typing Rules Chapter 2 Desktop Integration Guide,

(FTRs) Chapters 11-15

Indigo Magic Look* Chapter 3 Desktop Integration Guide,
Chapters 2-3

Menus and Accelerators* Chapter 3 OSE/Motif Programmer’s Guide,
Chapter 6

Copy and Paste* Chapter 5 Desktop Integration Guide,
Chapter 7

Window Management Chapter 3 Desktop Integration Guide,
Chapters 5-6

Software Installation Chapter 4 S/W Packager User’s Guide

Session Management Chapter 3 Desktop Integration Guide,
Chapter 5

Online Help Chapter 4 Desktop Integration Guide,
Chapter 9

Selection, Focus* Chapter 7 OSF/Motif Programmer’s Guide,
Chapter 13

Feedback Chapter 11 OSF Motif Programmer’s Guide

Internationalization Chapter 4 Topics in IRIX Programming,
Chapter 4

* Items requiring use of the Motif toolkit.

XXViii

Integrating an Application Into the Indigo Magic Desktop Envi-

It’s also useful to know which changes you can make without modifying the
application’s source code and which items require the use of the IRIS IM (OSF/Motif)
toolkit. The Silicon Graphics style is based on Motif ', so using the Motif toolkit makes
compliance much easier. Table ii lists which tasks require application code changes and
which require Motif.

Table ii Tasks Requiring Application Changes and/or Motif

Task Application Code Changes Requires Motif
Icons and FTRs

Indigo Magic Look yes

Menus/ Accelerators yes

Copy & Paste yes yes (Xt)

Window Management
Software Installation
Session Management yes

Online Help yes yes
Online help and context sensitive =~ Context sensitive help uses the
help require no code changes with Motif widget hierarchy.

ViewKit.
Selection, Focus yes
Feedback yes
Internationalization yes

Using ViewKit and RapidApp

Besides using Motif, other toolkits and tools can make integrating your application
easier. These include:

e “ViewKit”

e “RapidApp”

XXiX

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

XXX

ViewKit

IRIS ViewKit™ is a C++ based, user-interface toolkit based on OSF/Motif. ViewKit also
runs on Dec, HP, IBM, SCO, SunOS™, and Sun Solaris®.

Table iii lists integration tasks that you can achieve by using ViewKit.

Table iii Integration and ViewKit

Task ViewKit

Icons and FTRs

Indigo Magic Look Color schemes set by default

Menus and Accelerators

Copy and Paste VkCutPaste Class

Window Management

Software Installation

Session Management Initial session management set

Online Help Help menu entry and context sensitive help
Selection, Focus

Feedback Busy state and cursor are easily set

Internationalization

Your application can provide World Wide Web access by using VkWebViewerBase,
which provides basic Web functionality. For more information, see the IRIS ViewKit
Programmer’s Guide.

Note: IRIS ViewKit isn't part of the IRIS Developer’s Option; it's bundled with the C++
Development Option. In the United States and Canada, call SGI Direct at 800-800-SGI1

(7441) for more information about how to order the C++ Development Option; outside
the United States and Canada, please contact your local sales office or distributor.

Integrating an Application Into the Indigo Magic Desktop Envi-

RapidApp

Developer Magic RapidApp™ is an interactive tool for creating applications. It
integrates with other Developer Magic tools, including cvd, cvstatic, cvbuild, and others,
to provide an environment for developing object-oriented applications as quickly as
possible. Rapid App generates C++ code, with interface classes based on the IRIS ViewKit
toolkit. In addition to the conveniences provided by IRIS ViewKit, you can use

Rapid App to help create your application (see Table iv).

Table iv Integration and RapidApp

Task RapidApp

Icons and FTRs Generates an FTR rule and sample icon
Indigo Magic Look sgiMode & schemes set by default
Menus and Accelerators Standard & Common menu entries
Copy and Paste

Window Management

Software Installation Automatically builds an inst image
Session Management Initial session management set
Online Help

Selection, Focus
Feedback

Internationalization

For more information, see the Developer Magic: Rapid App User’s Guide.

Note: RapidApp isn’t part of the IRIS Developer’s Option. In the United States and
Canada, call SGI Direct at 800-800-SGI1 (7441) for more information about how to order
Rapid App; outside the United States and Canada, please contact your local sales office
or distributor.

XXXi

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

Integrating an Application

XXXii

This section lists the basic steps for integrating an existing application into the Indigo
Magic Desktop environment. The steps are listed in a very general way, to give you a
brief overview of the process.

If you're writing a new application, here are a few tips:

If possible, use IRIS ViewKit. Refer to the IRIS ViewKit Programmer’s Guide for
instructions.

Don’t use IRIS GL™. Use OpenGL™ or Open Inventor™ instead.

Note: Open Inventor isn’t part of the IRIS Developer’s Option, it is a separate option.
In the United States and Canada, call SGI Direct at 800-800-SGI1 (7441) for more
information about how to order the Open Inventor Option; outside the United States
and Canada, please contact your local sales office or distributor.

To integrate your application into the Indigo Magic Desktop, follow these steps:

1.

If your application uses IRIS GL, port to OpenGL if possible. If it’s impractical for
you to port to OpenGL at this time, at least switch to mixed-model IRIS GL
programming, if you haven’t already done so. (Mixed-model programs use Xt for
event and window management).

For information on porting from IRIS GL to OpenGL and for switching your
program to mixed-model, refer to the OpenGL Porting Guide. This manual is
included online in the IRIS Developer’s Option (IDO). View it using the IRIS InSight
Viewer.

Set up your application to comply with the Indigo Magic look and feel:

¢ use the Enhanced IRIS IM look

* use Schemes

¢ use the new and enhanced IRIS IM widgets where appropriate

* set up your application for correct window, session, and desks management
* customize the minimize window image for your application (optional)

* use the extensions provided in the Selection Library and the File Alteration
Monitor (optional)

These topics, as well as information on fonts, are covered in Part 1 of this guide.

Integrating an Application Into the Indigo Magic Desktop Envi-

3. Create Desktop icons for your application and add them to the Icon Catalog. You'll

need an icon for the application itself as well as icons for any unusual data formats.
See Part 2 of this manual for instructions.

4. Use swpkg to package your application so that your users can install it easily. See the

Software Packager User’s Guide for information for instructions on using swpkg.

XXXiii

PART ONE

Getting the Right Look and Feel

Chapter 1:
Getting the Right Look and Feel: An Overview

Chapter 2:
Getting the Indigo Magic Look

Chapter 3:
Using Schemes

Chapter 4:
Using the Silicon Graphics Enhanced Widgets

Chapter 5:
Window, Session, and Desk Management

Chapter 6:
Customizing Your Application’s Minimized Windows

Chapter 7:
Interapplication Data Exchange

Chapter 8:
Monitoring Changes to Files and Directories

Chapter 9:
Providing Online Help With SGIHelp

Chapter 10:
Handling Users’ System Preferences

Chapter 1

Getting the Right Look and Feel:
An Overview

This chapter provides a checklist of the steps you need to follow for your
application to have the Indigo Magic look and feel.

Chapter 1

Getting the Right Look and Feel: An Overview

This chapter contains these sections:

¢ “About the Indigo Magic Look and Feel” briefly explains the basics of the Indigo
Magic look and feel and tells you where to find more detailed information.

* “Getting the Right Look and Feel: The Basic Steps” briefly lists the basic steps for
getting the right look and feel and tells you which chapter covers each step.

About the Indigo Magic Look and Feel

One of the most important things you can do to integrate your application into the Indigo
Magic Desktop environment is to get the right look and feel. This look and feel is largely
based on IRIS IM, the Silicon Graphics port of the industry-standard OSF/Motif toolkit.
In particular, the look and feel is based on an enhanced version of IRIS IM and on the
4Dwm window manager (the Silicon Graphics mwm-based window manager). The Indigo
Magic User Interface Guidelines explains the differences between the Indigo Magic look
and feel and the OSF/Motif look and feel.

Users have certain expectations of how applications appear and behave in the Indigo
Magic Desktop environment, and by meeting these expectations, you make your
application much easier and more pleasant to use. The chapters in this part of the manual
explain how to set up your application to provide the Indigo Magic look and feel.

Chapter 1: Getting the Right Look and Feel: An Overview

Getting the Right Look and Feel: The Basic Steps

To provide the correct look and feel for your application, be sure to:

1.

Recompile with libXm (the IRIS IM version that ships with IRIX 5.3 or later). If
your application uses an earlier version of IRIS IM, recompile to make sure that it
runs correctly. See the IRIS IM Release Notes for information on the differences
between the current and previous versions of IRIS IM.

Use the Indigo Magic enhanced appearance. Turn on the Indigo Magic “look,” which
enhances the appearance of standard IRIS IM widgets and gadgets. See Chapter 2,
“Getting the Indigo Magic Look,” for instructions.

Use schemes. The schemes mechanism is a simple method for providing
user-selectable default colors and fonts for your application. For more information
on Schemes, see Chapter 3, “Using Schemes.”

Use the new and extended widgets (optional). Silicon Graphics provides some new
IRIS IM widgets, extensions of some existing widgets, and some mixed-model
programming widgets (for use with IRIS GL and OpenGL). For more information,
see Chapter 4, “Using the Silicon Graphics Enhanced Widgets.”

Set resources for correct window, session, and desks management. By setting a
few important resources, you insure that your application includes the windowing,
session management, and desks features that users expect. For instructions, refer to
Chapter 5, “Window, Session, and Desk Management.”

Customize minimized icons. Silicon Graphics provides tools that allow you to
easily provide your own look for minimize icons (icons for minimized windows).
The tools for creating minimized windows are discussed in Chapter 6,
“Customizing Your Application’s Minimized Windows.”

Implement interapplication data exchange. Interapplication data exchange lets
users cut and paste information between your application and other applications.
For more information, see Chapter 7, “Interapplication Data Exchange.”.

Provide online help. Silicon Graphics provides an online help system for
integrating help with your application. Chapter 9, “Providing Online Help With
SGIHelp,” describes how to use the online help system.

Monitor changes to the filesystem (optional). Silicon Graphics provides a File
Alteration Monitor (FAM) that your application can use to monitor the filesystem.
Chapter 8, “Monitoring Changes to Files and Directories,” explains how to use
FAM.

Chapter 2

Getting the Indigo Magic Look

This chapter describes how to turn on the Indigo Magic “look,” which
enhances the appearance of standard IRIS IM widgets and gadgets.

Chapter 2

Getting the Indigo Magic Look

The simplest step in integrating your application with the Desktop environment is to
turn on the Indigo Magic “look,” which enhances the appearance of standard IRIS IM
widgets and gadgets. “The Indigo Magic Look: Graphic Features and Schemes” in
Chapter 3 of the Indigo Magic User Interface Guidelines describes the enhancements.

To turn on the Indigo Magic look for an application, simply set the application’s sgiMode
resource to “TRUE.” Typically, you should add this line to the /usr/lib/X11/app-defaults file
for your application:

appName* sgi Mode: TRUE
where appName is the name of your application.

The standard IRIS IM library supports the Indigo Magic look. You don’t need to link with
a separate library or call a special function to enable the Indigo Magic look. If you don’t
turn on the Indigo Magic look, your application’s widgets and gadgets have the standard
IRIS IM appearance.

If your application uses the Indigo Magic look, it should also use schemes, which are
described in Chapter 3, “Using Schemes.” Silicon Graphics designed its color and font
schemes to work well with the Indigo Magic look.

Chapter 3

Using Schemes

Schemes allow you to provide default colors and fonts for your application,
while also ensuring that users can easily select other color and font collections
according to their individual needs and preferences. This chapter explains
why and how you should use schemes in your application.

Chapter 3

Schemes Overview

Using Schemes

Schemes provide an easy way to apply a collection of resources to your application. The
scheme mechanism allows your users to select from pre-packaged collections of colors
and fonts that are designed to integrate visually with the Indigo Magic Desktop and
other applications. “Schemes for Colors and Fonts” in Chapter 3 in Indigo Magic User
Interface Guidelines describes the guidelines for using schemes in the Indigo Magic
environment.

This chapter contains the following sections:

e “Schemes Overview” on page 13 provides an overview to schemes.

¢ “Using Schemes in Your Application” on page 15 describes what you need to do to
use schemes in your application.

e “Extending a Scheme to Support New Colors” on page 24 provides tips for testing
how your application responds to different schemes.

* “Creating New Schemes” on page 27 describes how to create new schemes.

e “Hard-Coding a Scheme for an Application” on page 28 describes how to force your
application to use one specific scheme.

Schemes allow you to provide default colors and fonts for your application, while also
ensuring that users can easily select other color and font collections according to their
individual needs and preferences. Silicon Graphics includes some standard system
schemes with the X execution environment, but end users can modify existing schemes
or create new ones, and you can create new schemes or extend existing ones for use with
your application.

This section provides an overview of schemes and explains why you should use schemes
in your application.

13

Chapter 3: Using Schemes

14

Why You Should Use Schemes

As a developer, it is impossible for you to choose colors and fonts for your application
that satisfy all users. Aside from the consideration of individual taste, display
characteristics vary and some users have various degrees of colorblindness. Schemes
allow users to select colors and fonts according to their preferences and needs.

Although users can already use the X resource mechanism to customize colors and fonts,
it is very difficult and time-consuming for most end users to do so, because the task
requires knowledge of the internal structure of the program. On the other hand, if your
application supports schemes, users can use the graphical Schemes Browser, schemebr
(available from the “Color Schemes” option of the Customize menu in Desktop
toolchest), to change colors and fonts.

Using schemes also reduces the time and effort required to develop your application.
Instead of choosing your own colors and fonts and coding them into your application,
you can simply set a resource value to activate schemes and get the distinctive Indigo
Magic appearance.

Basic Scheme Concepts

A scheme simply maps specific colors and fonts to abstract resource names according to
the functions they serve in an application. So instead of using specific colors like “blue”

your application can use symbolic values like TextForeground, TextSelectedColor, and
FixedWidthFont. The exact definition of these symbolic values depends on the scheme
the user chooses to apply to your application. As long as your application uses the
symbolic color and font names for the purposes for which they were intended, users or
graphic designers can design a new palette (a binding of the symbolic values to specific
colors) and the result should look good with your application.

Often, you don't even need to deal with the symbolic colors and fonts yourself. The
schemes mechanism includes a map file that automatically binds the symbolic values to
the various IRIS IM widgets and widget resources. One case where you may need to set
a color or font explicitly is if you need to highlight a component (for example, in a chart).
The schemes mechanism defines special symbolic values such as HighlightColor1
through HighlightColor8 for these purposes. (See “Directly Accessing Colors and Fonts”
on page 18 for more information on the symbolic values.) Another case where you need
to be aware of the symbolic values is if you need to extend a scheme for your application.

Using Schemes in Your Application

(See “Extending a Scheme to Support New Colors” on page 24 for more information on
extending a scheme.)

Using Schemes in Your Application

This section describes how to write your application for use with schemes and includes:
e “Turning on Schemes for Your Application” on page 15

® “Special Considerations for Programming with Schemes” on page 16

e “Assigning Non-Default Colors and Fonts to Widgets” on page 17

e “Directly Accessing Colors and Fonts” on page 18

Turning on Schemes for Your Application

Silicon Graphics incorporates schemes in its implementation of Xt, so you don’t need to
link to a separate schemes library or call a special function to use schemes. All you need
to do to enable schemes is to include in your application’s app-defaults file (in the
fust/lib/X11/app-defaults directory) the line:

AppClass* useSchenes: al |
where AppClass is your application’s class name. This activates all aspects of schemes.

Note: To ensure that users don’t accidently override your settings, be sure to prefix the
useSchemes resource with your application’s class name.

To deactivate schemes, you can set:
AppClass* useSchenes: none
If you wish to activate schemes without using an app-defaults file, or if you want to

guarantee that the schemes setting can’t be changed by users, call the function
SgiUseScheme():

voi d Sgi UseSchene(char *wvalue)

value can be either “all” or “none.” This function requires that you include the header file
<X11/SGIScheme.h>.

15

Chapter 3: Using Schemes

16

For example:

/* schenes.c */
/* cc -0 schemes schenes.c -1 Xm - Xt */

#i ncl ude <X Label . h>
#i ncl ude <X11/ SA Schene. h>

void main(int argc, char** argv)
{

W dget toplevel, |abel;

Xt AppCont ext app_cont ext;

Sgi UseSchemes(“al | ") ;

toplevel = XtApplnitialize(&pp_context, “Hello”,
NULL, O, &argc, argv, NULL, NULL, 0);

| abel = XnCreatelLabel (toplevel, “hello”, NULL, 0);
Xt ManageChi | d(| abel) ;

Xt Real i zeW dget (t opl evel) ;
Xt AppMai nLoop(app_cont ext);

Special Considerations for Programming with Schemes

The schemes map file automatically handles applying colors and fonts to most IRIS IM
widgets based on the widgets’ class names. Unfortunately, IRIS IM doesn’t have unique
class names for menu bars, menu panes, and option menus. To allow schemes to be
applied to these elements, your application should use some simple naming conventions
for these widgets. Name all menu bars “menuBar,” all option menus “optionMenu,” and
the pane of all option menus “optionPane.” Schemes also recognize some other
variations of these names, including “menu_bar,” “menubar,” “menu_Bar,” and so on.

If you need to set a color or a font in your application, use the procedures described in
“Assigning Non-Default Colors and Fonts to Widgets” on page 17 and “Directly
Accessing Colors and Fonts” on page 18. Don’t hard code colors or fonts in your
application because they may not work with the scheme that a user selects. For example,
if you programmatically set a text color to black and a user chooses a scheme that has a
very dark background, your text is unreadable. Also avoid setting colors that IRIS IM

Using Schemes in Your Application

normally computes. For example, if you hard code the top or bottom shadow colors used
by IRIS IM controls, these colors may not be correct if a user changes the scheme.

There are obviously some cases for which this recommendation doesn’t apply. The most
common are windows in which you are rendering images. For example, if your
application uses OpenGL or some other library to render an image in a window, the
colors used in this window aren’t derived from schemes.

Fonts are usually less critical than colors, although the best visual effects are produced if
you use only the fonts defined in the schemes. You should be aware that on
high-resolution screens, the sizes of the fonts defined by schemes can change. Therefore,
you should design the layout of your application to handle variable-sized fonts. This
means you shouldn’t hard-code x, y locations or fixed widths or heights for widgets in
your application. Instead use IRIS IM manager widgets such as the Form to achieve a
flexible layout that can respond to changes in font sizes.

Assigning Non-Default Colors and Fonts to Widgets

Sometimes, you may want to override the default color or font assigned to a widget by a
scheme. For example, all labels are set by default to use a bold font (BoldLabelFont);
however you may decide that a regular font (PlainLabelFont) is more appropriate for
some of your application’s labels.

To assign a non-default font or color to a widget, include a line in your application’s
app-defaults file mapping a different symbolic scheme resource to that widget. For
example, the following line assigns a regular label font (rather than the default bold font)
to a label in your application named “simpleLabel”:

Your App*si npl eLabel *font Li st: SGE _DYNAM C Pl ai nLabel Font

The symbol SGI_DYNAMIC identifies this resource as a dynamically changeable scheme
resource. The actual font assigned to PlainLabelFont can potentially be different in each
scheme. As the user changes schemes, the correct resource is applied to your program.

Note: Remember to prefix the widget hierarchy with your application’s class name to
prevent users from accidentally overriding your setting.

You can use the same technique with colors. For example, suppose you have two types

of label widgets positioned on an IRIS IM XmDrawingArea widget and you want to use
color to give some significance to different labels. Perhaps the application is some type

17

Chapter 3: Using Schemes

18

of a flowchart and some of the labels represent tasks in progress, while other represent
tasks that have been completed. The schemes map file already maps the symbolic scheme
resource DrawingAreaColor to the XmDrawingArea widget. The scheme palette also
provides colors that both provide a nice contrast against the DrawingAreaColor and
allow the current TextForeground color to be readable. These colors are
DrawingAreaContrastl, DrawingAreaContrast2, DrawingAreaContrast3, and
DrawingAreaContrast4. To specify the colors of each label widget in your application,
you can set the following resources:

Your App*| abel 1*background: SG _DYNAM C Dr awi ngAr eaContrast 1
Your App*| abel 2*background: SG _DYNAM C Dr awi ngAr eaContrast 1
Your App* | abel 3*background: SG _DYNAM C Dr awi ngAr eaCont r ast 2

Each scheme also contains a set of basic colors that you can use for simple graphics, icons,
and so on. These colors maintain their basic characteristics, but change slightly from
scheme to scheme to blend with the general flavor of the scheme. For example, you can
set a label widget to be “red” as follows:

Your App* | abel *background: SGE _DYNAM C RedCol or

The exact shade of red changes from scheme to scheme, but always is “reddish” and
always fits with the other colors in the scheme.

If necessary, you can also use non-scheme colors and fonts, although Silicon Graphics
strongly recommends that you don’t do this. If you hard-code a color, the user may select
a scheme in which that color doesn’t provide the contrast you desire. The color can even
be “lost” among the other scheme colors. Non-scheme fonts are less likely to cause
problems, but your application will have an inconsistent appearance if it uses them.

You use the same methods to assign a non-scheme color or font that you normally would
in an X program. For example, you can set a font for a label named “simpleLabel” in your
app-defaults file as follows:

Your App*si npl eLabel *font Li st: 6x12

Directly Accessing Colors and Fonts

When your application uses widgets only, the schemes map file automatically retrieves
all colors and fonts from the current scheme and assigns them to your application’s
widgets. However, you may need to access some of the scheme’s colors or fonts directly

Using Schemes in Your Application

from within a program. For example, you may want to draw a bar chart or other display

using colors that look good no matter what scheme the user has selected.

Example 3-1 shows an example of a function that retrieves a color value given a widget,
the color resource name, and the color resource class.

Example 3-1 Retrieving a Scheme Color Value

Pi xel get Col or Resource(W dget w, char *name, char *cl assnane)

{

Xt Resour ce request _resources;

Di spl ay *dpy XtDisplay (w);

int scr Def aul t Screen (dpy);

Col or map crap Def aul t Col ormap (dpy, scr);
XCol or color, ignore;

char *col or nane;

request _resources. resource_nane = (char *) nane;
request _resources. resource_cl ass (char *) cl assNaneg;
request _resources. resource_type XmRSt ri ng;
request _resources. resource_size si zeof (char *);

request _resources. default_type = XnmRI nedi at e;
request _resources.resource_offset = 0;
request _resources. def aul t _addr = (Xt Poi nter) NULL;

Xt Get Subr esour ces(w,
(Xt Poi nter) &col or nane,
NULL, NULL,
& equest ed_r esour ces,
1, NULL, 0);

if (colornane &
XAl'l ocNanmedCol or (dpy, crmap, col ornane, &col or,
& gnore))
return (color. pixel);
el se
return (Bl ackPi xel (dpy, scr));

19

Chapter 3: Using Schemes

20

You can then retrieve the color defined by the scheme resource
drawingAreaContrastColor1 using getColorResource() as follows:

col orl = get Col or Resour ce(bar Chart W dget,
"drawi ngAr eaCont r ast Col or 1",
XnCFor egr ound) ;

where barChartWidget is the widget that you'll use the color in.

Tip: There is a simple method for retrieving a resource value if you're using the IRIS
ViewKit toolkit. Instead of writing the getColorResource() function listed in
Example 3-1, you can call:

Pi xel colorl = (Pixel) VkGetResource(barChartW dget,
"drawi ngAr eaContrast Col or 1",
XnmCFor egr ound, XnRPi xel ,
"Bl ack");

You must handle some resources programmatically. For example, the Indigo Magic User
Interface Guidelines suggests that your application use a different color for text fields that
are not editable than it uses for editable text fields. The IRIS IM text widget currently does
not change colors automatically when set to read only mode, so your application must
handle this itself. The correct color is provided by schemes as the symbolic name
ReadOnlyBackground, and can be retrieved by the resource readOnlyBackground.
Assuming that you've created the getColorResource() function listed in Example 3-1, the
following code illustrates this process:

ro = get Col or Resource(textw, "readOnlyBackground”,
XmCFor egr ound) ;
Xt VaSet Val ues(textw, XnNeditable, FALSE,
Xm\backgr oundCol or, ro,
NULL) ;

Tip: The equivalent IRIS ViewKit code would be:

Pi xel ro = (Pixel) VkGetResource(textw, "readOnlyBackground",
XnmCFor egr ound, XnRPi xel ,
"White");
Xt VaSet Val ues(textw, XnNeditable, FALSE,
Xm\backgr oundCol or, ro,
NULL) ;

Using Schemes in Your Application

Pre-Defined Scheme Resources and Symbolic Values

Table 3-1 lists the pre-defined scheme resources and symbolic values. You can use the
resources to retrieve color and font values from within your application as described in
“Directly Accessing Colors and Fonts” on page 18. You can use the symbolic values to
assign colors and fonts to widgets in resource files as explained in “Assigning

Non-Default Colors and Fonts to Widgets” on page 17.

Table 3-1 Pre-Defined Scheme Resources and Symbolic Values
Resource Symbolic Value Intended Use
basicBackground BasicBackground Background of application
textForeground TextForeground Color of text characters
textBackground TextBackground Background of multi-line text
widgets
textFieldBackground TextFieldBackground Background of single-line text
field widgets
readOnlyBackground ReadOnlyBackground Background of read-only text

textSelectedBackground

textSelectedForeground

disabledTextForeground

scrolledListBackground

scrollBarTroughColor

scrollBarControlBackground

buttonBackground

selectFillColor

TextSelectedBackground

TextSelectedForeground

DisabledTextForeground

ScrolledListBackground

ScrollBarTroughColor

ScrollBarControlBackground

ButtonBackground

SelectFillColor

and text field widgets

Background when text is
selected with the mouse

Color of text characters when
text is selected with the mouse

For future use, this color will
indicate disabled text instead of

stippling.

Background of scrolled list
widgets

Trough of scrollbar

Scrollbar controls (thumb,
searchbutton)

Background of push buttons

Fill color for standard IRIS IM
radio and toggle buttons

21

Chapter 3: Using Schemes

22

Table 3-1 (continued)

Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

selectColor SelectFillColor IRIS IM toggle and check fill
color

checkColor CheckColor Indigo Magic toggle check mark
color

radioColor RadioColor Indigo Magic radio pip color

indicatorBackground IndicatorBackground Indigo Magic background color
for toggles and radios

warningColor WarningColor Background color for icons in
warning dialogs

errorColor ErrorColor Background color for icons in
error dialogs

informationColor InformationColor Background color for icons in
information dialogs

wMBackground WMBackground Window manager colors. Note
that 4Dwm currently doesn’t

wMActiveBackground WMActiveBackground pick up foreground. “Active”

wMForeground WMForeground colors are used for Wlndow
manager borders with mouse

wMActiveForeground WMActiveForeground focus.

alternateBackground1 AlternateBackground1 Can be used as background
color for widgets or text areas.

alternateBackground?2 AlternateBackground?2 Guaranteed to be different from

alternateBackground3 AlternateBackground3 one another, contrast with basic
background and text

alternateBackground4 AlternateBackground4 background, and can have text
drawn on them.

alternateBackground5 AlternateBackground5

alternateBackground6 AlternateBackground6

drawingAreaBackground

DrawingAreaBackground

Background of drawing area
widgets (typically used for

graphs)

Using Schemes in Your Application

Table 3-1 (continued)

Pre-Defined Scheme Resources and Symbolic Values

Resource

Symbolic Value

Intended Use

drawingAreaContrastColorl
drawingAreaContrastColor2
drawingAreaContrastColor3

drawingAreaContrastColor4

highlightColor1
highlightColor2
highlightColor3
highlightColor4
highlightColor5
highlightColor6
highlightColor7
highlightColor8
redColor
orangeColor
yellowColor
greenColor
blueColor
brownColor
purpleColor
boldLabelFont

smallBoldLabelFont

tinyBoldLabelFont

DrawingAreaContrastColorl
DrawingAreaContrastColor2
DrawingAreaContrastColor3

DrawingAreaContrastColor4

HighlightColor1
HighlightColor2
HighlightColor3
HighlightColor4
HighlightColor5
HighlightColor6
HighlightColor7
HighlightColor8
RedColor
OrangeColor
YellowColor
GreenColor
BlueColor
BrownColor
PurpleColor

BoldLabelFont

SmallBoldLabelFont

TinyBoldLabelFont

Contrast colors for drawing
areas (typically used for graphs
and trees). These colors are
guaranteed to be different from
one another, different from the
drawing area background, and
can have text drawn on them

Bright highlights suitable for
small color spots. The first four
are supposed to be in the same
hue family as the corresponding
DrawingAreaContrast colors so
that the pair may be used for
doing highlights in an annotated
scrollbar.

These colors are typically used
for outlining and drawing
graphs, wherever a small
amount of color needs to be
highly visible.

Colors that can be used for
various graphics purposes.
These colors always
approximate their names, but
may be slightly adjusted to
blend with each scheme.
Typically used in graphs and
charts.

Bold labels, such as column
headings

Labels for tight packing
situations

Labels where space is at a
premium

23

Chapter 3: Using Schemes

Table 3-1 (continued)

Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

plainLabelFont PlainLabelFont Button labels, also can be used
for values in “Name: Value”
pairs

smallPlainLabelFont SmallPlainLabelFont Small buttons

obliqueLabelFont ObliqueLabelFont Menus

smallObliqueLabelFont
fixedWidthFont

smallFixed WidthFont

SmallObliqueLabelFont
FixedWidthFont

SmallFixedWidthFont

Small menus

Text areas where fixed width is
mandatory, for example where
it’s important that columns line

up

Text where a fixed-width font is
appropriate but space is at a
premium

Extending a Scheme to Support New Colors

Silicon Graphics strongly recommends that you use existing scheme colors for your
application. Using the existing scheme colors ensures that your application will work

with all schemes. However, you may need to add colors in some basic cases.This section
explains how to extend Schemes to support new colors when necessary.

To extend a scheme, you create new symbolic values for the resources you need and then
define bindings between these values and resources that your application can retrieve.

This section describes the internal organization of scheme files and then describes how
to define these symbolic values and mappings.

Scheme File Organization

All system scheme files are kept in the directory /usr/lib/X11/schemes by default. This
directory contains several subdirectories, one for each scheme. The directory Base serves
as the basis of all schemes, although it is not a user-identifiable scheme itself. Base
contains at least three files: Base, BaseColorPalette, and FontPalette. You may see other files
as well.

24

Extending a Scheme to Support New Colors

Each of the palette files (BaseColorPalette and FontPalette) contain cpp-style definitions of
symbolic names that represent colors and fonts. The Base file (referred to as a “map” file)
contains the default mappings between these symbolic names and specific resources,
using the same format as all X resource files.

For example, the Base file contains a line like:

*XnText *f or egr ound: Text For egr ound

This says that all Text widgets should use the color represented by TextForeground as
their foreground color. By default, all schemes share the mappings specified in this Base
file. However, the value assigned to each symbolic name can vary from scheme to
scheme. For example the Mendocino scheme defines TextForeground to be #fffffe (white)
whereas the Milan scheme defines TextForeground to be #000000 (black). The scheme
mechanism evaluates these specifications at run time, based on the scheme specified by
the user.

By default, all applications pick up the definitions in the Base file and the palette files
from the selected scheme. However, applications can load additional scheme files as
well.

How to Extend a Scheme

There are two methods for extending a scheme. The first is to add additional mappings
between existing colors and widgets in your application. This may be necessary if you
want to bind colors of fonts to your widgets in a different way, or if you are using custom
widgets that are not handled by the basic scheme mappings. You should do this by
adding resources to your application’s app-defaults file, using the SGI_DYNAMIC
mechanism described earlier.

The second situation occurs when you would like to use colors or fonts that aren’t
provided as a part of the existing schemes. Your should try to avoid this situation when
at all possible, because users can use the scheme editor to create new schemes, and there
is no current mechanism for using the scheme editor to adjust any additional colors your
application may define. The standard scheme palettes contain over 40 colors, which
should be enough for most situations.

25

Chapter 3: Using Schemes

26

To add new colors to the existing schemes, you need to create a new palette file that
contains cpp-style definitions of those colors. To get your application to load this new
palette, you then need to set a resource, paletteFileList, in your application’s app-defaults
files that specifies as a comma-separated list all custom palette files to be loaded.

For example, assume you have an application whose class name is Calendar and that you
need two colors that you refer to in your program symbolically as brightColor and
darkColor. If no color in the exiting schemes satisfies your requirements for this color,
youll need to extend a scheme. Here are the steps you’d follow:

1.

Define the colors in a palette file. By convention, you should name this file
<AppClass>Palette, where <AppClass> is the application class of your application. In
this case, you would name the palette CalendarPalette. It would contain the lines:

#define BrightColor red
#defi ne DarkCol or M dni ght Bl ue

You can use any color names available on your target systems, as well as RGB
specifications. If the resources you are using are dependent on the gamma setting,
you should account for this in the palette file. You can handle the commonly used
gamma settings like this:

#i fdef GAMMA 1 0

#define BrightCol or <color that |ooks right on 1.0 gammua>
#defi ne DarkCol or <col or that |ooks right on 1.0 ganmma>
#endi f

#i fdef GAMMA 1 7

#define BrightCol or <color that |ooks right on 1.7 gama>
#defi ne DarkCol or <color that |ooks right on 1.7 gamma>
#endi f

#ifdef GAMVA 2 4

#define BrightCol or <color that |ooks right on 2.4 gama>
#define DarkCol or <col or that |ooks right on 2.4 gamma>
#endi f

The scheme mechanism handles gamma other than those listed here by finding the
closest match.

Create additional palette files as needed. If your new resources need to change
values when a scheme changes, create a file named CalendarPalette for each scheme
you want to support. For each scheme, choose the colors that look right for that
scheme. Note that if you do not support all existing schemes, the values of your
new scheme resources defaults to the values in Base, so your application may not
look right when a user selects that scheme.

Testing Your Application with Schemes

Set your application’s paletteFileList resource to load the new palettes. In this
example, you would add the following line to your app-defaults file:

Cal endar *scheneFi | ePal etteLi st: Cal endarPal ette

When you install your software on a user’s machine, you need to install the
executable, the app-defaults file, and any other files specific to your application. You
must also install your palette files into the directory of each scheme you support.
You should, at a minimum, support the schemes found in /usr/lib/X11/schemes. You
may also want to support schemes you find installed in /usr/local/schemes.

Testing Your Application with Schemes

For best results, be sure to test your application against all available schemes, and watch
for any anomalies. As an added precaution, you can try using the Scheme Browser,
schemebr (available from the “Color Schemes” option of the Customize menu in Desktop
toolchest), to create some variations on existing schemes and see how your program
reacts. If you have not added any resources and are not setting any colors or fonts in your
program or app-defaults files, any scheme should be reasonable. If you have extended the
schemes or set colors directly in your application, you should watch carefully to see how
your application reacts as colors change. It is always possible to use the scheme editor to
create a very bad scheme, but if your program seems more sensitive than others to
changes, you should think more carefully about your use of color.

Creating New Schemes

You can also include your own new schemes in your software distribution; however, be
aware of the following concerns:

The largest benefit of schemes is the users’ ability to change to schemes of their
choice, so even if you create a scheme that you prefer for your application, make
sure your program looks good with the existing schemes.

If you install your scheme on a user’s system, the user may apply that scheme to
other applications. If you attempt to design a new scheme, make sure the scheme
works reasonably with other applications on the desktop.

27

Chapter 3: Using Schemes

The easiest way to design a new scheme is to use the Scheme Browser, schemebr, available
from the “Color Schemes” option of the Customize menu in Desktop toolchest. For best
results, you should base your scheme on an existing scheme, preferably one of the
standard ones supported by Silicon Graphics. If you make only minor changes, your new
scheme should work with other programs. Once you have created and saved your new
scheme, you can retrieve the files from your $HOME/.desktop-<hostname>/schemes
directory, where <hostname> is the name of your system. You can install your scheme in
fusr/local/schemes/<SchemeName>, where <SchemeName> is the name you have chosen for
your scheme. Once installed, this scheme appears in the Scheme Browser as a local
scheme. You can also include this scheme with your software distribution.

Hard-Coding a Scheme for an Application

28

In some rare situations, you may want your application to use one particular scheme, not
the one that the user selects. Silicon Graphics strongly recommends that you not use this
approach, but if your application has special needs, the process is simple to do. Specify
the value of the scheme resource in your application’s app-defaults file using a complete
path name. For example:

Your App*schene: /usr/lib/ X11l/ schenes/M 1 an

When using this approach, the location of the scheme directory is unimportant. For
example, if you've designed a custom scheme for your application, you can place the
scheme directory in special configuration directory for your application. For example:

Your App*schene: /usr/1i b/ Your App. confi g/ Your AppSchene

This setting implies that /usr/lib/YourApp.config/Your AppScheme is a scheme directory.
This means that the directory YourAppScheme would need to contain the files
BaseColorPalette (containing the color palette you have defined), a file whose name is the
same as the scheme that contains mappings, and a file named FontPalette. Normally, the
FontPalette file would be a copy of the file in /us#/lib/X11/schemes/Base, and the map file
would be the same as /usr/lib/X11/schemes/Base/Base, but renamed to have the same name
as your scheme.

Chapter 4

Using the Silicon Graphics
Enhanced Widgets

This chapter discusses the Silicon Graphics enhanced IRIS IM widgets, as well
as the mixed-model programming widgets for using OpenGL in an IRIS IM
application.

Chapter 4

Using the Silicon Graphics Enhanced Widgets

This chapter discusses the Silicon Graphics enhanced IRIS IM widgets, the mixed-model
programming widgets for using OpenGL in an IRIS IM application, and the HTML
viewer widget. This chapter contains these sections:

“Using the SGI Enhanced Widgets” explains how your application can access the
SGI enhanced widgets.

“Using the Widget Demos” explains how to use the provided demos to experiment
with some of the SGI enhanced widgets.

“The SGI Enhanced Widgets” lists and discusses each of the new widgets.
“The Enhanced Widgets” lists and discusses each of the enhanced widgets.

“The Mixed-Model Programming Widgets” discusses the mixed-model
programming widgets that Silicon Graphics provides for use with your OpenGL or
IRIS GL application.

“HTML Viewer Component” explains the HTML viewer component that provides
the widgets and libraries necessary for applications to directly access the World
Wide Web to display online help and licensing information.

Using the SGI Enhanced Widgets

To use a new or enhanced widget, first switch on the Indigo Magic enhanced look and
schemes, as described in Chapter 2, “Getting the Indigo Magic Look,” and Chapter 3,
“Using Schemes,” respectively.

Using the Widget Demos

Silicon Graphics provides demos for some of the SGI enhanced widgets. These demos let
you experiment with the different resources for each widget.

31

Chapter 4: Using the Silicon Graphics Enhanced Widgets

32

Location of Widget Demos

The widget demos are in /usr/src/X11/motif/Sgm. The demos are part of the
motif_dev.sw.demoSgi subsystem—if you can’t find them on your system, check to make
sure this subsystem is installed.

Instructions for Building the Widget Demos

The demo tree is shipped with X11 Imakefiles, not Makefiles. To build the demos:
1. Change to the IRIS IM demos build tree location.
% cd /usr/src/ X11/ motif/ Sgm
2. Build the initial Makefile.
% . . / mrknf
3. Verify that the Makefile is OK.
% make Makefile
4. Update the rest of your Makefiles.
% make Makefiles

5. Clean the directory. If you don’t and this isn’t your first installation, obsolete
binaries might remain, giving unexpected results.

% nmake cl ean

6. Update Makefile dependencies to make sure that everything is installed properly.
% make depend

7. Build the demos.

% nake all

The Enhanced Widgets

The Enhanced Widgets

Silicon Graphics provides enhanced versions of these existing IRIS IM widgets:
® “The File Selection Box Widget”

® “The Scale (Percent Done Indicator) Widget”

e “The Text and TextField Widgets”

This section describes how to use the enhancements to these widgets. For guidelines on
when to use these widgets, refer to the Indigo Magic User Interface Guidelines.

The File Selection Box Widget

The FileSelectionBox widget (SgFileSelectionBox), shown in Figure 4-1, is an enhanced
version of the existing IRIS IM FileSelectionBox widget (XmFileSelectionBox). The API
is consistent with the IRIS IM version of the widget, but the presentation is different.

Note: To get the enhanced FileSelectionBox, you need to set the SgNuseEnhancedFSB
resource to true (in addition to linking with -1Sgm). Typically, do this in your
application’s app-defaults file.

Files

File List

r

Selection

e

Figure 4-1 The File Selection Box Widget

Finder

33

Chapter 4: Using the Silicon Graphics Enhanced Widgets

The FileSelectionBox traverses directories, shows files and subdirectories, and selects
files. It has these main areas:

Show menu and Hidden Files toggle

They control what appears in the scrolling list of directories and files
beneath them. The Show menu allows the user to restrict the list to
display only files of a particular type or format. Minimally the list has
two items: All and Custom... . “All” always appears at the top of the
menu, and “Custom...” always appears at the bottom of the menu
following a separator. All shows an unrestricted view of all files and
directories in the current subdirectory. Custom... launches the custom
filter dialog.

Files and directories list

Finder widget

The scrollable list in the enhanced FileSelectionBox contains both files
and directories. Directories appear in bold at the top of the list. Files
appear after the directories and are sorted alphabetically.

The DropPocket displays the icon and the text field displays the name of
the current directory or file. The user can select a file or directory by
dropping its icon on the DropPocket or typing its name in the text field.
Automatic file completion is supported. Clicking the right mouse over a
path bar button of the path navigation bar shows the directory/file
choices at that level. The user can also recall a previously-selected
directory from the DynaMenu. “The Finder Widget” on page 51
discusses the Finder widget in more detail.

Command panel

34

The buttons at the bottom of the FileSelectionBox reflect the action name;
the OK, Cancel and Help buttons operate the same in the enhanced
FileSelectionBox as they do in the regular version. The Filter button pops
up a Filter Dialog, which allows a user to enter a shell-style filename
expression as filter pattern. The enhanced FileSelectionBox displays
only those files in the current directory that match the given pattern.
(The FileSelectionBox continues to display any subdirectories in the
current directory.)

The Enhanced Widgets

The programmatic interface to the enhanced FileSelectionBox differs from the regular
version in the following points:

* You can retrieve the Finder child of the FileSelectionBox using the standard
XmFileSelectionBoxGetChild(3X) by providing the defined constant
SgDIALOG_FINDER as the child. You should check the returned widget for
validity; it is NULL if the FileSelectionBox is not enhanced.

¢ XmNdirMask is not guaranteed to be exactly the same as the regular version of the
FileSelectionBox in all situations. It does conform to the definition in the
XmFileSelectionBox(3X) reference page. Specifically, the directory portion
XmNdirMask may not be present in the enhanced FileSelectionBox’s
representation.

e XmNfileTypeMask behavior is different because there is no separate directory list.
In the enhanced FileSelectionBox:

— XmFILE_REGULAR and XmFILE_ANY_TYPE show both files and directories
in the file list

- XmFILE_DIRECTORY shows only directories

For detailed information on the FileSelectionBox widget, refer to the
SgFileSelectionBox(3X) reference page. For an example program using the
FileSelectionBox widget, see “Example Program for File Selection Box” on page 278. See
Chapter 10, “Dialogs,” in the Indigo Magic User Interface Guidelines for guidelines on using
dialogs in your application. For information about standard XmFileSelectionBox
resources, behavior, and callbacks, see the XmFileSelectionBox(3X) reference page.

The Scale (Percent Done Indicator) Widget
The Scale widget (SgScale), is an enhanced version of the IRIS IM Scale widget
(XmScale). The enhanced Scale widget is also referred to as the Percent Done Indicator

or Progress Indicator.

To implement this indicator, set the following resources:

*scal e. sl i der Vi sual : flat_foreground
*scal e. sl i di nghbde: t her momet er
*scal e. sl ant ed: true

35

Chapter 4: Using the Silicon Graphics Enhanced Widgets

36

For an example of code, see “Example Programs for Scale (Percent Done Indicator)
Widget” on page 281. Also see “Indigo Magic Scales” in Chapter 9 of the Indigo Magic
User Interface Guidelines for guidelines on using scales in your application. For more
information on the enhanced Scale widget, refer to the SgScale(3X) reference page. For
more information on the unenhanced version of the widget, refer to the XmScale(3X)
reference page.

The Text and TextField Widgets

The Text and TextField widgets (SgText and SgTextField) are enhanced versions of the
IRIS IM Text and TextField widgets (XmText and XmTextField). In addition to the
standard XmText and XmTextField resources, these widgets provide the following new
resources:

selectionBackground
The background color for selected text.

selectionForeground
The foreground color for selected text.

errorBackground
The background color for text that you select with an “error status” by
using the SgTextSetErrorSelection() or SgTextFieldSetErrorSelection()
function (depending on whether the widget is a SgText or SgTextField
widget).

cursorVisibleOnFocus
If TRUE (the default), the widget displays the text cursor only when the
widget has focus. If FALSE, the cursor is always visible even when the
widget doesn’t have keyboard focus.

The SgTextSetErrorSelection() and SgTextFieldSetErrorSelection() functions operate
almost identically to the XmTextSetSelection() and XmTextFieldSetSelection()
functions. You use them to select a range of text as the primary selection. The only
difference is that the selected text is drawn with the background color specified by the
errorBackground resource instead of that specified by the selectionBackground
resource.

The Mixed-Model Programming Widgets

For a detailed description of the new resources for the enhanced versions of these
widgets, refer to the SgText(3X) and SgTextField(3X) reference pages. For information on
the unenhanced versions of these widgets, refer to the XmText(3X) and XmTextField(3X)
reference pages. See “Text Fields” in Chapter 9 of the Indigo Magic User Interface
Guidelines for guidelines on using text fields in your application.

The Mixed-Model Programming Widgets

Silicon Graphics provides two sets of mixed-model programming widgets: one set for
use with OpenGL and one set for use with IRIS GL.

A mixed-model program, briefly, is an X program that creates one or more subwindows
that use OpenGL or IRIS GL for rendering. Such a program uses Xlib or Xt calls for
windowing, event handling, color maps, fonts, and so on. A “pure” IRIS GL application,
on the other hand, uses IRIS GL calls for windowing, event handling, color maps, and
fonts. (For a more detailed discussion of mixed-model programming, refer to the OpenGL
Porting Guide.)

If you plan to port your IRIS GL application to OpenGL, a good first step is to port it to
mixed-model. The switch to OpenGL is then much easier. The IRIS GL mixed-model
widgets make it much easier to port pure IRIS GL applications to mixed-model.

If you're writing a new application, just start with OpenGL and the OpenGL versions of
the mixed-model widgets (or use Open Inventor™ instead of OpenGL—Open Inventor

handles all this for you).

The mixed-model widgets are:

IRIS GL OpenGL
GlxDraw GLwDrawingArea
GIxMDraw GLwMDrawingArea

The GlxDraw and GLwDrawingArea widgets are suitable for use with any widget set.
The GIxMDraw and GLwMDrawingArea widgets are designed especially for use with
IRIS IM.

37

Chapter 4: Using the Silicon Graphics Enhanced Widgets

This manual does not tell you how to create a mixed-model program. For instructions on
mixed-model programming, refer to the OpenGL Porting Guide. (The OpenGL Porting
Guide contains mixed-model programming information that’s relevant for both IRIS GL
and OpenGL programmers.)

You can find examples of many mixed-model programs for both OpenGL and IRIS GL in
the 4Dgifts directories. If you have trouble finding the relevant directories, refer to the
README file in /usr/people/4Dgifts. This README file explains the contents and
organization of the 4Dgifts directories.

The SGI Enhanced Widgets

38

Silicon Graphics provides these new widgets:
e “The Color Chooser Widget”

e “The Dial Widget”

e “The Drop Pocket Widget”

e “The Finder Widget”

e “The Graph Widget”

e “The Grid Widget”

e “The Springbox Widget”

e “The Thumbwheel Widget”

For guidelines on when to use the different widgets (for example, when to use a
Thumbwheel or a Dial) refer to the Indigo Magic User Interface Guidelines.

This section describes each important new IRIS IM widget. It doesn’t discuss new
widgets that are part of composite widgets, unless they are generally useful.

The SGI Enhanced Widgets

The Color Chooser Widget

The ColorChooser widget (SgColorChooser) allows users to select colors in RGB or HSV
color spaces. Figure 4-2 shows the ColorChooser’s default configuration.

Options Sliders |

Current

Color:

Al
Stored Color swatch
Color:
Color haxagon
Hue

Saturation

Value | IV —— Coor sidsr

Figure 4-2 The Color Chooser Widget

The ColorChooser includes these components:

Menus for setting options and sliders for the color chooser.

A color hexagon that provides visual selection of the hue and saturation
components of a color in an HSV color space.

Color sliders for each of the hue, saturation, value, red, green, and blue color
components. To make the color sliders visible, the user can select items from the
Sliders menu. (Figure 4-3 shows the ColorChooser with all the sliders visible.) You
can also display the color sliders programmatically. Text fields show the exact value
of each current color component and allow users to set these values numerically.

Two color swatches: one for showing the current selected color and one for enabling
the user to store a second color for reference.

Three or four buttons. The default button labels are OK, Cancel, Help, and Apply. If
the parent of the ColorChooser widget is a DialogShell, then the Apply button is
managed; otherwise it is unmanaged.

39

Chapter 4: Using the Silicon Graphics Enhanced Widgets

40

Options Siiders

Current
Color:

Stored
Color:

Hue

Saturation

Value

Red
Green

Blue

‘ 014 | ‘ Applyl ‘Cancell ‘ Help |

Figure 4-3 The Color Chooser Widget With HSV and RGB Sliders

Users can select a color by manipulating the color hexagon and any of the six sliders, or
by changing the values in any of the text fields.

You must include the header file <Sgm/ColorC.h> in any source file that uses a
ColorChooser widget.

For more detailed information about the ColorChooser widget, refer to the
SgColorChooser(3X) reference page. For an example program using the ColorChooser
widget, see “Example Program for Color Chooser” on page 266. You can also examine,
compile, and experiment with the colorc demonstration program in the directory
fust/src/X11/motif/Sgm/colorc. See “A Specific Standard Support Window: The Indigo
Magic Color Chooser” in Chapter 6 of the Indigo Magic User Interface Guidelines for
guidelines on using the ColorChooser widget in your application.

The SGI Enhanced Widgets

Controlling the Color Chooser Interface

By default, the ColorChooser widget uses GL's Gouraud shading to display the colors in
the hexagon and sliders. You can force the ColorChooser widget not to use GL by setting
the value of the SgNuseGlI resource to FALSE. When SgNuseGl is FALSE, the
ColorChooser widget uses only X function calls. In this case, it does not draw a color
hexagon and it uses XmScale widgets instead of the special color sliders.

When using GL, the ColorChooser normally shades the color hexagon and color sliders
so that each point is a true representation of the color that would be selected if the user
were to move the hexagon pointer or color slider to that point. However, if the value of
the SgNwysiwyg resource is FALSE then the ColorChooser always displays the hexagon
colors with a Value (intensity) of 1 (maximum intensity), and the RGB sliders with a color
range of black to the maximum RGB color component value.

For example, if the current selected color RGB value is (100, 200, 50), then the Red color
slider displays the colors (0, 200, 50) through (255, 200, 50) if SgNwysiwyg is TRUE, and
(0, 0, 0) through (233, 0, 0) if SgNwysiwyg is FALSE. (Note that the user can also toggle
the value of SgNwysiwyg by selecting the “WYSIWYG” option from the ColorChooser’s
Options menu.)

The SgNshowSliders resource determines which of the color sliders are visible. Possible
values are:
SgValue Show only the slider for the color Value (the default)

SgRGB_and_Value
Show the Value and RGB sliders

SgRGB_and_HSV
Show all six sliders, the HSV and RGB sliders

The default labels (in the C locale) for the ColorChooser buttons are “OK,” “Apply,”
“Cancel,” and “Help.” You can change these by setting the values of SgNokLabelString,
SgNapplyLabelString, SgNcancelLabelString, and SgNhelpLabelString respectively.

41

Chapter 4: Using the Silicon Graphics Enhanced Widgets

42

You can add additional children to the ColorChooser after creation—they’re laid out in
the following manner:

e The first child is used as a work area. The work area is placed just below the menu
bar.

* Buttons—All XmPushButton widgets or gadgets, and their subclasses are placed
after the OK button, in the order of their creation.

¢ The layout of additional children that are not in the above categories is undefined.

Getting and Setting the Color Chooser’s Colors

In ColorChooser callback functions, the RGB color values are provided as the r, g, and b
parameters of the SgColorChooserCallbackStruct structure passed to the functions.
“Handling User Interaction With the Color Chooser” describes the ColorChooser
callbacks.

ColorChooser also provides several convenience routines for getting and setting both the
current color values and setting the stored color value.

SgColorChooserSetColor() sets both the current and the stored color values to the same
color:

voi d SgCol or Chooser Set Col or (W dget w, short r, short g,
short b);

SgColorChooserGetColor() retrieves the current color values:

voi d SgCol or Chooser Get Col or (W dget w, short *r, short *g,
short *b);

SgColorChooserSetCurrentColor() sets the current color but not the stored color:

voi d SgCol or Chooser Set Curr ent Col or (Wdget w, short r,
short g, short b);

SgColorChooserSetStoredColor() sets the stored color but not the current color:

voi d SgCol or Chooser Set St or edCol or (W dget w, short 7,
short g, short b);

For each function, w is the ColorChooser widget and r, g, and b are the red, green, and
blue values, respectively.

The SGI Enhanced Widgets

Handling User Interaction With the Color Chooser

The ColorChooser widget defines the following callback resources:

SgNapplyCallback
Invoked when the user activates the Apply button. The callback reason
is SgCR_APPLY.

SgNcancelCallback
Invoked when the user activates the Cancel button. The callback reason
is SgCR_CANCEL.

SgNokCallback
Invoked when the user activates the OK button. The callback reason is
SgCR_OK.

SgNvalueChangedCallback
Invoked when the user selects a color. The callback reason is
XmCR_VALUE_CHANGED. A color is selected when the user changes
the value of a color component with the color hexagon, one of the color
sliders, or one of the color components text widgets.

SgNdragCallback
Specifies the list of callbacks called when the user drags the mouse over

the color hexagon or one of the color sliders to select a color. The callback
reason is XmCR_DRAG.

A pointer to a SgColorChooserCallbackStruct structure is passed to each ColorChooser
callback function:

typedef struct {
int reason;
XEvent *event,
short r, g, b;
} SgCol or Chooser Cal | backStruct;

reason Indicates why the callback was invoked.
event Points to the XEvent that triggered the callback.
r Indicates the red color component of the currently selected color.

Indicates the green color component of the currently selected color.

b Indicates the blue color component of the currently selected
color.

43

Chapter 4: Using the Silicon Graphics Enhanced Widgets

44

The Dial Widget

The Dial widget (SgDial), shown in Figure 4-4, is a new widget that allows users to input
or modify a value from within a range of values. Figure 4-4 shows two forms of the Dial
widget, one with the input control in the shape of a knob and the other in the shape of a
pointer. The user can modify the Dial’s value by spinning the knob or pointer. The Dial
is usually surrounded by tick marks (marked divisions around the perimeter of the Dial).

Figure 4-4 The Dial Widget in Knob and Pointer Form
You must include the header file <Sgm/Dial.h> in any source file that uses a Dial widget.

For more detailed information about the Dial widget, refer to the SgDial(3X) reference
page. For an example program using the Dial widget, see “Example Program for Dial”
on page 268. You can also examine, compile, and experiment with the dial demonstration
program in the directory /usr/src/X11/motif/Sgm/dial. See “Dials” in Chapter 9 of the Indigo
Magic User Interface Guidelines for guidelines on using the Dial widget in an application.

Controlling the Dial Interface
You control the display characteristics of a Dial through widget resources.

The SgNdialVisual resource determines whether the Dial uses a knob or a pointer. The
default value, SgKNOB, specifies a knob and SgPOINTER specifies a pointer. If you use
a pointer, you can also specify the color of the small “indicator” at the center of the
pointer using the SgNindicatorColor resource; the default color is red.

Specify the position of the lowest value on the Dial with the SgNstartAngle resource. The
value, which must be between 0 and 360 inclusive, specifies the number of degrees
clockwise from the top of the Dial. A default value of 0 corresponds to the top of the Dial.

The SgNangleRange resource determines the range of the Dial in degrees. The value,
which must be between 0 and 360 inclusive, specifies the number of degrees clockwise
from the start angle of the Dial. The default value of 360 allows the Dial to rotate
completely.

The SGI Enhanced Widgets

The Dial widget displays evenly spaced “tick marks” along the perimeter of the Dial’s
angle range. You control the number of tick marks with the SgNdialMarkers resource;
the default number is 16. The length of the tick marks in pixels is determined by the
SgNmarkerLength resource; the default length is 8 pixels. The SgNdialForeground
resource determines the color of the tick marks; the default is red.

The resources XmNminimum and XmNmaximum determine the minimum and
maximum values of the Dial. The Dial takes on the minimum value at the position
specified by SgNstartAngle and takes on the maximum value at the position
SgNangleRange degrees clockwise from SgNstartAngle. The value of XmNmaximum
must be greater than or equal to the value of XmNminimum. The default value of
XmNminimum is 0 and the default value of XmNmaximum is 360.

Getting and Setting the Dial’s Value

The XmNvalue resource, which must be a value between XmNminimum and
XmNmaximum inclusive, contains the current position of the Dial. You can set or get the
value of a Dial widget at any time by respectively setting or getting its XmNvalue
resource.

In Dial callback functions, the Dial value is provided as the position parameter of the
SgDialCallbackStruct structure passed to the functions. “Detecting Changes in the Dial’s
Value” describes the Dial callbacks.

Dial also provides a convenience routine, SgDialSetValue(), for setting the value of
XmNvalue:

voi d SgDi al Set Val ue(W dget w, int wvalue);
w is the Dial widget whose value you want to set and value is the new value.
You can get the current value of a Dial widget at any time by retrieving the value of its

XmNvalue resource. Dial also provides a convenience routine, SgDialGetValue(), for
getting the value of XmNvalue:

voi d SgDi al Get Val ue(W dget w, int *wvalue);

w is the Dial widget whose value you want to get. Upon returning, value contains the
Dial’s value.

45

Chapter 4: Using the Silicon Graphics Enhanced Widgets

46

Detecting Changes in the Dial’s Value

The Dial widget defines two callback list resources, XmNvalueChangedCallback and
XmNdragCallback. A Dial widget invokes XmNvalueChangedCallback whenever its
value changes either programmatically (for example, by calling SgDialSetValue()) or
through user interaction. A Dial widget invokes XmNdragCallback whenever the user
clicks and drags, or “spins,” the Dial’s knob or pointer.

A pointer to a SgDialCallbackStruct structure is passed to each Dial callback function:

typedef struct {
int reason;
XEvent *event,
i nt position,
} SgDi al Cal | backStruct;

The SgDialCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the event of a

XmNdragCallback.
event A pointer to the XEvent that triggered the callback
position The new Dial value

The Thumbwheel Widget

The ThumbWheel widget (SgThumbWheel), shown in Figure 4-5, is a new widget that
allows users to input or modify a value, either from within a range of values or from an
unbounded (infinite) range.

Wheel

Home Button.

Figure 4-5 The Thumbwheel Widget

The SGI Enhanced Widgets

A ThumbWheel has an elongated rectangular region within which a wheel graphic is
displayed. Users can modify the ThumbWheel’s value by spinning the wheel. A
ThumbWheel can also include a home button, located outside the wheel region. This
button allows users to set the ThumbWheel’s value to a known position.

You must include the header file <Sgm/ThumbWheel.h> in any source file that uses a
Thumbwheel widget.

For detailed information on the ThumbWheel widget, refer to the SgThumbWheel(3X)
reference page. For an example program using the ThumbWheel widget, see “Example
Program for ThumbWheel” on page 276. You can also examine, compile, and experiment
with the thumbwheel demonstration program in the directory
fusr/src/X11/motif/Sgm/thumbwheel. See “Thumbwheels” in Chapter 9 of the Indigo Magic
User Interface Guidelines for guidelines on using the ThumbWheel widget in your
application.

Controlling the ThumbWheel Interface
You control the display characteristics of a ThumbWheel through widget resources.

The resources XmNminimum and XmNmaximum determine the minimum and
maximum values of the ThumbWheel. Setting XmNmaximum equal to XmNminimum
indicates an infinite range.

The default value of XmNminimum is 0 and the default value of XmNmaximum is 100.

The SgNangleRange resource specifies the angular range, in degrees, through which the
ThumbWheel is allowed to rotate. The default of 150 represents roughly the visible
amount of the wheel. Thus clicking at one end of the wheel and dragging the mouse to
the other end would give roughly the entire range from XmNminimum to
XmNmaximum.

In conjunction with XmNmaximum and XmNminimum, the SgNangleRange resource
controls the fineness or coarseness of the wheel control when it is not infinite. If this value
is 0, the ThumbWheel has an infinite range. If the range of the ThumbWheel is infinite,
you can use the SgNunitsPerRotation resource to specify the change in the
ThumbWheel's value for each full rotation of the wheel.

47

Chapter 4: Using the Silicon Graphics Enhanced Widgets

48

If the value of SgNshowHomeButton is TRUE, the default, the ThumbWheel displays a
home button by the slider. The user can click on the home button to set the value of the
ThumbWheel to a known value, which is specified by the SgNhomePosition resource.
The default value of SgNhomePosition is 50.

The XmNorientation resource determines whether the orientation of the ThumbWheel
is vertical, indicated by a value of XmVERTICAL, or horizontal, indicated by a value of
XmHORIZONTAL. The default value is XmVERTICAL.

Getting and Setting the ThumbWheel’s Value

The XmNvalue resource contains the current position of the ThumbWheel. XmNvalue
must be a value between XmNminimum and XmNmaximum if the ThumbWheel is not
“infinite.” You can set or get the value of a ThumbWheel widget at any time by
respectively setting or getting its XmNvalue resource.

In ThumbWheel callback functions, the ThumbWheel value is provided as the value
parameter of the SgThumbWheelCallbackStruct structure passed to the functions.
“Detecting Changes in the ThumbWheel’s Value” describes the ThumbWheel callbacks.

Detecting Changes in the ThumbWheel’s Value

The ThumbWheel widget defines two callback list resources,
XmNvalueChangedCallback and XmNdragCallback. A ThumbWheel widget invokes
XmNvalueChangedCallback whenever its value changes either programmatically (that
is, by setting the value of XmNvalue) or through user interaction. A ThumbWheel
widget invokes XmNdragCallback whenever the user clicks and drags, or “spins,” the
ThumbWheel’s wheel.

A pointer to a SgThumbWheelCallbackStruct structure is passed to each ThumbWheel
callback function:

typedef struct { int reason;
XEvent * event;
int val ue;
} SgThumbWheel Cal | backSt ruct;

The SGI Enhanced Widgets

The SgThumbWheelCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the event of a

XmNdragCallback.
event A pointer to the XEvent that triggered the callback.
position The new ThumbWheel value.

The Drop Pocket Widget

The Drop Pocket widget (SgDropPocket), shown in Figure 4-6, receives and displays
Desktop icons.

{ { { {
Jusridemossbindbz L%

Figure 4-6 The Drop Pocket Widget (on left) As Part of the Finder Widget

When users drop Desktop file icons onto the Drop Pocket, the Drop Pocket determines
the name of the icon and returns information describing the icon to the application in the
callback.

When users drag an acceptable icon over the Drop Pocket, the Drop Pocket background
changes color and the Drop Pocket displays the dropped icon. If the type of a file is not
known, or if the file doesn’t exist (for example, if the user is specifying a new file), the
Drop Pocket displays the icon for unknown file types (this icon looks like a round
balloon).

For more information on the Drop Pocket widget, refer to the SgDropPocket(3X)
reference page. You can find example code in /usr/src/X11/motif/Sgm/dropPocket directory.
For an example program using the Drop Pocket widget, see “Example Program for Drop
Pocket” on page 270.

49

Chapter 4: Using the Silicon Graphics Enhanced Widgets

50

Reference Page Text
SYNOPSIS #include <Sgm /DropPocket.h>

New Resources

SgNDropPocketActivePixel
Specifies the color for the background of the DropPocket when an icon
that can be dropped is above the DropPocket.

SgNiconDataBasePath
Specifies the location of the icon database. The default value is
Jusr/lib/filetype/workspace.otr. Setting this resource to a filename that is not
a legal icon database will cause serious problems for the DropPocket.

SgNname Specifies the compound string that is the name of the current icon. By
setting this resource, the application can control the initial icon that
appears in the DropPocket. If this resource is NULL, the DropPocket will
appear empty. Refer to XmString(3X) for more information on the
creation and structure of compound strings.

Callback Information

The Callback structure is SgDropPocketCallbackStruct. A pointer to the following
structure is passed to each callback:

typedef struct { int reason;
XEvent * event;
W ndow wi ndow;
Xntring i conNane;
char * iconDat ga;
} SgDr opPocket Cal | backStruct;

reason Indicates why the callback was invoked. The constant
SgCR_ICON_CHANGE is the reason associated with callbacks
generated by a successful icon drop on the DropPocket.

event Points to the XEvent that triggered the callback

window Specifies the window of the DropPocket.

The SGI Enhanced Widgets

iconName Specifies the name of the icon. For icons representing files, this is the file
name. For other types of icons, the name may not completely specify the
icon. For example a person icon may have the name jake, but the icon
represents a person in /usr/lib/faces/jake.

iconData The full string description of the icon.

The Finder Widget

The Finder widget (SgFinder), shown in Figure 4-7, is a new widget that accelerates text
selection of long objects such as filenames. (A good way to experiment with a Finder
widget is to select “An Icon” from the Find toolchest.)

Path navigation bar |
(Zoom Bar) — —

Drop pocket Jusr/demos/hin/bz 5

5%

Text field |

Recycle button
(DynaMenu)

Figure 4-7 The Finder Widget

The Finder widget is customizable for various applications (it’s not just for looking at
directories; see the SgFinder(3X) reference page for customization details). The Finder
widget includes four components:

Text field Displays the name of a file or directory.

Path navigation bar
Contains buttons representing each directory in the pathname. When

the user clicks on a path bar button, the Finder sets the current directory
to the directory listed underneath that button. The path bar is created
with an SgZoomBar(3X) widget.

Recycle button When users click on the Recycle button, the recycle list appears listing
the directories that the user has selected during the current Finder
session. Selecting an item from the recycle list changes the current
directory to the selected directory. The recycle button is created with an
SgDynaMenu(3X) widget.

51

Chapter 4: Using the Silicon Graphics Enhanced Widgets

52

Drop pocket Displays the Desktop file icon for the file listed in the text field. The user
can drop Desktop file icons into the drop pocket to find the pathname
for the file and drag icons out of the drop pocket and put them on the
Desktop. The recycle button is created with an SgDropPocket(3X)
widget.

You must include the header file <Sgm/Finder.h> in any source file that uses a Finder
widget.

For more detailed information on the Finder widget, refer to the SgFinder(3X),
SgDropPocket(3X), and SgDynaMenu(3X) reference pages. For an example using the
Finder widget, see “Example Program for Finder” on page 273. You can also examine,
compile, and experiment with the finderTest demonstration program in the directory
fusr/src/X11/motif/Sgm/finder. See “File Finder” in Chapter 9 of the Indigo Magic User
Interface Guidelines for guidelines on using the Finder widget in your application.

Controlling the Finder Interface

If you don’t need the drop pocket feature of the Finder widget, you can set the value of
the resource SgNuseDropPocket to FALSE when you create the widget. This bypasses
the costs of setting up drag and drop and loading the file icon libraries. Note that you
can’t set this resource using XtSetValues(); if you don’t originally create a Finder widget
with a drop pocket, you can’t add one afterwards.

Similarly, if you don’t need the Recycle button, you can set the value of the resource
SgNuseHistoryMenu to FALSE. Note that you can’t set this resource using
XtSetValues(); if you don’t originally create a Finder widget with a Recycle button, you
can’t add one afterwards.

You can customize the appearance of the Recycle button by setting the value of the
SgNhistoryPixmap resource to the pixmap you want to display.

By default, the Finder widget determines where to place the buttons on the path
navigation bar by the location of the forward slash (/) character in the text field. You can
specify a different separator character by providing it as the value of the SgNseparator
resource. This feature is useful if you want to use the Finder widget to display something
other than filenames.

The SGI Enhanced Widgets

Getting and Setting Finder Values

You can retrieve the current value of the Finder’s text field with
SgFinderGetTextString():

char *SgFi nder Get Text Stri ng(W dget w) ;

You can set the value of the text field with SgFinderSetTextString():
voi d SgFi nder Set Text Stri ng(W dget w, char *wvalue);

You can add an item to the “history list” of the Recycle button with
SgFinderAddHistoryItem():

voi d SgFi nder AddHi storylten(Wdget w, char *str);

You can clear the Recycle button’s history list with SgFinderClearHistory():
voi d SgFi nder d ear Hi st ory(W dget w);

You can access a widget component within a finder using SgFinderGetChild():
W dget SgFi nder Get Chi | d(W dget w, int child);

child specifies the component and can take any of the following values:

SgFINDER_DROP_POCKET
The drop pocket

SgFINDER_TEXT
The text field

SgFINDER_ZOOM_BAR
The path navigation bar

SgFINDER_HISTORY_MENUBAR
The Recycle button

Handling User Interaction With the Finder

When the user clicks a button in the path navigation bar, the default action of the Finder
is to set the current directory to the directory listed underneath that button. You can
change this behavior by setting the SgNsetTextSectionFunc resource to the handler you
want to use. The handler function must be of type SgSetTextFunc, which is defined in
<Sg/Finder.h>:

t ypedef void (*SgSet Text Func) (W dget finder, int section);

53

Chapter 4: Using the Silicon Graphics Enhanced Widgets

54

The first argument is the Finder widget and the second is an integer corresponding to the
button pressed. Buttons are numbered sequentially from the left, starting with 0. You can
perform whatever operations you want in this function, but typically you include a call
to SgFinderSetTextString() to set the value of the text field after the user clicks a button.

Additionally, the Finder widget defines two callback list resources:

XmNactivateCallback
Invoked when the user clicks a path navigation bar button, when the
text field generates an activateCallback (for example, the user presses
the <Ret ur n> key in the text field), or when you set the text string by
calling SgFinderSetTextString(). A pointer to an XmAnyCallbackStruct
structure is passed to each callback function. The reason sent by the
callback is XmCR_ACTIVATE.

XmNvalueChangedCallback
Invoked when text is deleted from or inserted into the text field. A
pointer to an XmAnyCallbackStruct structure is passed to each callback

function. The reason sent by the callback is
XmCR_VALUE_CHANGED.

The Graph Widget

The Graph widget (SgGraph) allows you to display any group of widgets as a graph,
with each widget representing a node. Figure 4-8 shows an example of a Graph widget.

Node
Arc

Figure 4-8 The Graph Widget

The arcs used to connect the nodes are instances of an Arc widget (SgArc), developed
specifically for use with the Graph widget.

The SGI Enhanced Widgets

The Graph widget allows you to display any group of widgets as a graph, with each
widget representing a node. The graph can be disconnected and can contain cycles. The
arcs used to connect the nodes are instances of an Arc widget (SgArc), developed
specifically for use with the Graph widget. Arcs may be undirected, directed, or
bidirected. Note that the Graph widget does not understand the semantics of arc
direction; in other words, for layout and editing purposes, an Arc will always have a
parent and a child regardless of its direction.

The Graph widget has the ability to arrange all nodes either horizontally or vertically
according to an internal layout algorithm, and supports an edit mode in which arcs and
nodes may be interactively repositioned as well as created. There is also a read-only
mode in which all events are passed directly to the children of the Graph widget. In edit
mode, the Graph takes over all device events for editing commands.

The Graph is a complex widget, and a full discuss of its resources, utility functions, and
capabilities is beyond the scope of this document. For detailed information about the
Graph and Arc widgets, refer to the SgGraph(3X) and SgArc(3X) reference pages.

You must include the header file <Sgm/Graph.h> in any source file that uses a Graph
widget. You must include the header files <Sgm/Graph.h> and <Sgm/Arc.h> in any source
file that uses an Arc widget.

The Springbox Widget

The SpringBox widget (SgSpringBox) is a new container widget that arranges its
children in a single row or column based on a set of spring constraints assigned to each
child. You can use the SpringBox widget to create layouts similar to those supported by
the XmForm widget, but the SpringBox widget is usually easier to set up.

The value of the SpringBox widget’s XmNorientation resource determines its
orientation. The default value, XmHORIZONTAL, specifies a horizontal SpringBox and
the value XmVERTICAL specifies a vertical SpringBox.

To use the SpringBox, you set constraint resources on each child of the widget to specify
the “springiness” for both the widget’s size and position relative to its siblings.

55

Chapter 4: Using the Silicon Graphics Enhanced Widgets

56

You control the springiness of a widget’s size by setting the values of its
XmNverticalSpring and XmNhorizontalSpring resources. A value of zero means the
child cannot be resized in that direction. For non-zero values, the values are compared to
the values of other springs in the overall system to determine the proportional effects of
any resizing. For example, a widget with a springiness of 200 would stretch twice as
much as a widget with a springiness of 100. The default value of both resources is zero.

The values of the resources XmNleftSpring, XmNrightSpring, XmNtopSpring, and
XmNbottomSpring control the springiness of a widget’s position in relation to its
neighboring boundaries. By default, the value of each of these springs is 50. A value of
zero means that the SpringBox widget cannot add additional space adjacent to that part
of a widget. Larger values are considered in relation to all other spring values in the
system.

You must include the header file <Sgm/SpringBox.h> in any source file that uses a
SpringBox widget. For more detailed information on the SpringBox widget, refer to the
SgSpringBox(3X) reference page.

The Grid Widget

The Grid widget (SgGrid) is a new container widget that arranges its children in a
two-dimensional grid of arbitrary size. You can separately designate each row and
column of the grid as having a fixed size or as having some degree of stretchability. You
can also resize each child in either or both directions, or force a child to a fixed size.

You must include the header file <Sgm/Grid.h> in any source file that uses a Grid widget.
For detailed information on the Grid widget, refer to the SgGrid(3X) reference page.

Setting Grid Characteristics

You specify the number of rows and columns in a Grid by setting the values of its
XmNnumRows and XmNnumColumns resources, respectively. The default value for
each is 1. Note that you can set the size of a Grid only when you create it; you can’t use
XtSetValues() to change the number of rows or columns in a Grid.

The XmNautoLayout resource determines the layout policy for a Grid. If its value is
TRUE (the default), all rows and columns that have a non-zero resizability factor
(described below) are sized according to the desired natural size of the widgets in that
row or column.

The SGI Enhanced Widgets

If XmNautoLayout is FALSE, all widgets in resizable rows or columns are sized
according to the resizability factor for that row or column. By default, the resizability
factor is “1” for all rows and columns, which results in each cell in the grid having an
equal size. You can change the resizability factor for a row or column by calling
SgGridSetRowMargin() or SgGridSetColumnMargin() respectively:

SgGri dSet RowResi zabi | i ty(W dget widget, int row, int factor);

SgGri dSet Col umResi zabi | i ty(W dget widget, int column,
int factor);

widget is the Grid widget. The second argument specifies the row or column. Rows are
numbered sequentially from the top starting at 0; columns are numbered sequentially
from the left starting with 0. factor is the resizability factor for the row or column. Setting
this value to 0 establishes the specified row or column as not resizable, regardless of the
setting of XmNautoLayout. Other values are taken relative to all other rows. For
example, if a Grid has three rows whose resizability factors are set to 100, 100, and 200,
the first and second rows will occupy one quarter of the space (100/(100+100+200)),
while the third row will occupy one half of the available space.

The XmNdefaultSpacing resource default spacing between rows and columns. The
default value is 4 pixels. You can override the value on a per row/column basis using
SgGridSetColumnMargin() or SgGridSetRowMargin() respectively:

SgGr i dSet Rowvar gi n(W dget widget, int row, Di mension margin);

SgGri dSet Col urmMar gi n(W dget widget, int column,
Di nensi on margin) ;

widget is the Grid widget. The second argument specifies the row or column. margin
specifies the margin in pixels between the row or column’s edges and the widgets it
contains. The margin is added to both sides of each row or column, so adding a 1 pixel
margin increases the relevant dimension of the affected row or column by 2 pixels.

You can display the boundaries of a Grid by setting the value of its XmNshowGrid

resource to TRUE. You might find this useful for debugging resize specifications. The
default value is FALSE.

57

Chapter 4: Using the Silicon Graphics Enhanced Widgets

Setting Constraints on the Child Widget of a Grid

The XmNrow and XmNcolumn resources of a Grid’s child widget specify the row and
column in which the Grid places the child. If you don’t specify these values, the Grid
widget places the child in a randomly selected unoccupied cell.

The XmNresizeVertical and XmNresizeHorizontal resources determine whether the
Grid can resize the child to fill the cell in the vertical and horizontal directions. The
default value of TRUE allows the Grid to resize the child.

If a child is a fixed size, and smaller than the cell that contains it, the child’s position
within the cell is determined by an XmNgravity resource. Gravity may be any of the
gravity values defined by Xlib except StaticGravity and ForgetGravity. The default is
NorthWestGravity. Note that gravity has no effect if both XmNresizeVertical and
XmNresizeHorizontal are TRUE.

Examples of Using the Grid Widget

Example 4-1 creates a grid of four buttons that all size (and resize) equally to fill one
quarter of their parent.

Example 4-1 An Example of Using the Grid Widget

createG i d(Wdget parent)
{ .
int n;
Arg args[10];
Wdget grid, childl, child2, child3, child4;

n = 0;

Xt Set Arg(args[n], XmNnunRows, 2); n++;

Xt Set Arg(args[n], XnmNnunCol umms, 2); n++;
grid = SgCreateGid(parent, "grid", args, n);

childl = XtVaCreat eManagedW dget (" chi |l d1",
xnmPushBut t onW dget d ass,
grid,
Xmi\r ow, O,
XmNcol umrm, 0,
NULL) ;

58

The SGI Enhanced Widgets

}

chil d2

Xt VaCr eat eManagedW dget (" chi | d2",
xnmPushBut t onW dget C ass,
grid,
XmNrow, O,
XmN\col um, 1,
NULL) ;
chil d3 = Xt VaCreat eManagedW dget ("chi | d3",
xnmPushBut t onW dget C ass
grid,
XmNrow, 1,
XmN\col um, O,
NULL) ;
Xt VaCr eat eManagedW dget (" chi | d4",
xnmPushBut t onW dget C ass
grid,
XmNrow, 1,
XmN\col um, 1,
NULL) ;

chi |l d4

Xt ManageChi | d(grid);

Example 4-2 creates four buttons. The top row has a fixed vertical size, while the bottom
row is resizable. The left column has a fixed size, but the right column can be resized. The
button in the lower right can be resized, but the others cannot. The button in the lower
left cell, which can be resized vertically, floats in the middle of its cell. The button in the
upper right stays to the left of its cell.

Example 4-2 Another Example of Using the Grid Widget

createGid(Wdget parent) {

int n;
Arg args[10];
Wdget grid, chidl1, child2, child3, child4;

n = 0;

Xt Set Arg(args[n], XemNnunRows, 2); n++;

Xt Set Arg(args[n], XmNnumCol umms, 2); n++;

grid = SgCreateGid(parent, "grid", args, n);

SgGi dSet Col umResi zability(grid, 0, 0);
SgG i dSet RowResi zabi lity(grid, 0, 0);

59

Chapter 4: Using the Silicon Graphics Enhanced Widgets

chil di

Xt VaCr eat eManagedW dget (" chi | d1",
xnmPushBut t onW dget C ass,
grid,

XmNrow, O,
XmN\col um, O,
NULL) ;

chil d2 = XtVaCreat eManagedW dget ("chi | d2",
xnmPushBut t onW dget d ass,
grid,

XmNrow, O,

XmN\col um, 1,

XmNr esi zeHori zont al , FALSE,
XmNgravity, WestGavity,
NULL) ;

Xt VaCr eat eManagedW dget (" chi | d3",
xnmPushBut t onW dget C ass,
grid,

Xm\r ow, 1,

XmNcol um, O,

XmNr esi zeVertical, FALSE,
Xm\gravity, CenterGavity,
NULL) ;

chil d4 = Xt VaCreat eManagedW dget (" chi | d4",

xnmPushBut t onW dget d ass,

chi |l d3

grid,

Xmi\r ow, 1,
XmNcol um, 1,
NULL) ;

Xt ManageChi | d(grid);

HTML Viewer Component

The HTML viewer component provides the widgets and libraries necessary for
applications to include direct Web access for information from within an application (no
external applications have to be run). Thus, applications can provide direct Web access
to licensing, online help, and information retrieval.

For example, applications can use this component with a form and the post method to
obtain a license for a user on a local or remote server. Also, applications can use the
component to format text and images as read-only text, or provide help to the user.
Figure 4-9 shows an example of the HTML widget.

60

HTML Viewer Component

=.§ Svstem Manager on magicmoose

File

System Administration

About This Svstem
Table of Contents

« Overview
Zofturare

« Hardwrare and Devices

« Security and Access
Control

» Network and
Clonnectivity

« Files and Data

» System Performance

Software

These tasks allow you to install and remove software
products on vour wor kstation.

@ Sofware IManager

% List Installed Products
% Install a Product

% Remove aProduct

These tasks allow you to add, remove and update licenses
for software on your workstation,

@ License IManager
% Install alicense
% Removealicense
e

Update a [l icense

Figure 4-9 The HTML Widget

This section covers the following aspects of the HTML viewer component:

¢ “Overview of the HTML Viewer Components” on page 62

¢ “Viewer Components” on page 62

* “Supported Tags and Attributes” on page 63

61

Chapter 4: Using the Silicon Graphics Enhanced Widgets

62

Overview of the HTML Viewer Components

The HTML viewer makes the World Wide Web accessible from any application. Prior to
the Web, applications had to develop a protocol for remote help and construct a server to
answer the protocol. Today, however, the Web supplies a predesigned protocol. And the
HTML viewer provides the additional components to implement a Web viewer.

The HTML viewer understands how to render HTML markup language. The viewer is
derived from the widget and class library licensed for the Silicon Graphics WebMagic
authoring environment. The library allows each application to decide exactly what it
needs to support. This component is not meant to supplant general Web browsers which
have support for things like bookmarks and search engines. However, the HTML viewer
component answers the need for online access to licensing and help.

Viewer Components

The viewer ViewKit component uses the Motif widget to access Web sites, a prebuilt GUI,
and provides browsing, navigation, and history control. The ViewKit component
requires the use of C++. It is composed of the following components:

* VkWebViewerBase class, which is for programmers who want to provide their
own interface. VkWebViewerBase is, from a widget point of view, just a scrolled
window with a viewer in it. The scrolled window is held in a form. The subclass
uses this form to add the other controls.

* VkWebViewer class, which is a more complete browser for an application
programmer that doesn’t want to do a lot of programming with the component.

The include file is /usr/include/Vk/VkWebViewer.h. For example, to create the widget:

_viewer = new VkWebVi ewer (“Vi ewer”, mai nW ndowW dget ());
addVi ew(_vi ewer);

For more information about ViewKit, see the IRIS ViewKit Programmer’s Guide.

HTML Viewer Component

Supported Tags and Attributes

Table 4-1 lists the HTML viewer supported tags. The tags are basically all of HTML 2,
selective tags of HTML 3, and extended tags from Netscape and Silicon Graphics .

Table 4-1 HTML Viewer Tags and Attributes

Tag Attributes

A HREF, TARGET, NAME

AREA HREF, TARGET, COORDS, SHAPE
BASE HREF, TARGET

BASEFONT SIZE (1..7, or exact size such as 24pt)

BLOCKQUOTE, BQ
BR

BODY

CAPTION

DIV

DIR, OL, MENU, UL
DL

DT

FRAME
FRAMESET

FORM

HEAD

HTML

HR

MG

INPUT

BACKGROUND, VLINK, LINK. ALINK, BGCOLOR, TEXT, LANG
ALIGN

ALIGN

START (for OL). See also P, Hn

SRC, NAME, WIDTH, HEIGHT
COLS, ROWS
METHOD, ACTION, TARGET

SIZE, WIDTH, NOSHADE, ALIGN

SRC, NOFLOW, ALT, ALIGN, WIDTH, HEIGHT, BORDER, VSPACE,
CLEAR

NAME, VALUE, TYPE, SIZE, MAXLENGTH, CHECKED

63

Chapter 4: Using the Silicon Graphics Enhanced Widgets

Table 4-1 (continued)

HTML Viewer Tags and Attributes

Tag Attributes

ISINDEX PROMPT

LI

LISTING Deprecated

MAP NAME

NOBR

NOFRAMES

OPTION VALUE, SELECTED

P, Hn CLEAR

PLAINTEXT Deprecated

PRE

SELECT NAME, SIZE, MULTIPLE

TABLE CELLSPACING, CELLPADDING, BORDER, ALIGN, WIDTH,
NOFLOW, CLEAR, BGCOLOR

D, TH ROWSPAN, COLSPAN, ALIGN, VALIGN, BGCOLOR, NOWRAP

TEXTAREA NAME, ROWS, COLS

TITLE

TR ALIGN, VALIGN, BGCOLOR

WBR

XMP Deprecated

64

HTML Viewer Component

Table 4-2 lists HTML viewer character tags.

Table 4-2 HTML Viewer Character Tags

ADDRESS B BIG
CITE CODE DFN
EM I KBD
FONT SIZE=(0..7)

COLOR="#rrbbgg” @

S SAMP SMALL
STRIKE STRONG SUB
SUP IT U

UL VAR

a. COLOR="#rrbbgg” or COLOR="colorname”

65

Chapter 5

Window, Session, and Desk Management

Users expect applications to interact with the window manager in a consistent
manner. This chapter describes how to implement an appropriate application
model and interact with the window and session manager.

Chapter 5

Window, Session, and Desk Management

This chapter contains these sections:

* “Window, Session, and Desk Management Overview” on page 69 briefly discusses
window, session, and desk management on Silicon Graphics systems.

¢ “Implementing an Application Model” on page 75 describes how to structure your
application to follow one of the four application models.

¢ “Interacting With the Window and Session Manager” on page 78 describes how to
create windows and interact with the window and session manager.

Window, Session, and Desk Management Overview

This section briefly discusses features of window, session, and desk management on
Silicon Graphics system:

¢ “Window Management”
* “Session Management”
¢ “Desk Management”

This section also provides a list of references for further reading on window and session
management.

Window Management

4Dwm, which is based on mwm (the Motif Window Manager), is the window manager
typically used on Silicon Graphics workstations. It provides functions that allow both
users and programmers to control elements of window states such as: placement, size,
icon/normal display, and input-focus ownership. In addition to window management,
4Dwm provides session and desks management.

69

Chapter 5: Window, Session, and Desk Management

70

Chapter 3, “Windows in the Indigo Magic Environment,” of the Indigo Magic User
Interface Guidelines discusses the interactions and behaviors that your application’s
windows should support. “Interacting With the Window and Session Manager” on
page 78 describes how to comply with the style guidelines.

See IRIS Essentials for more information about the features 4Dwm provides for your
users. See the mwm(1X) and 4Dwm(1X) reference pages for more information about the
features 4Dwm provides.

Session Management

This section describes session management and explains how to add it to your
application. Topics include:

e “Overview of Session Management” on page 70
e “Adding Session Management to Your Application” on page 72
e “Setting the WM_COMMAND String” on page 72

® “Saving Session Information to a File” on page 72

Overview of Session Management

Session management allows users to log out, and any applications that are running at
logout automatically restart when they log back in. The 4Dwm window manager keeps
a list of the applications and desks that were previously running when the user last
logged out and restarts them when the user logs in again.

For your application to be restarted via the 4Dwm session manager, the application must
register its initial state with the session manager and make sure the current state is
registered at all times.

Additionally, your application should restart in the same state it was in when the user
logged out (for example, the same windows open, the same files open, and so on). To
support this, you need to design your application so that when the 4Dwm session
manager restarts it, it can redisplay any of its co-primary or support windows that were
open when the user logged out, reopen any data files that were open, and so on. You can
support this either by providing command-line options to your application or other
mechanisms such as a state file that your application reads when it is launched.

Window, Session, and Desk Management Overview

Types of Session Management: Continuous and Explicit

The two types of session management include continuous session management and
explicit session management. Continuous session management restarts the applications
that were running when the user last logged out of the window manager. This is the
default setting.

Explicit session management ignores the windows that were open when the user last
logged out and always opens a particular set of windows that the user has chosen. Users
can configure the windows on the desktop by using the Window Settings Control Panel.
They can launch this panel via the Toolchest. From the Toolchest, open the Desktop
menu, select “Customize,” and then select “Windows.” The Windows Settings dialog
box appears (see Figure 5-1). The “Save Windows & Desks” item on the Window Settings
Control Panel configures either continuous or explicit session management. A user can
select explicit, and then press the “Set Home Session” button to save the (current) explicit
window configuration. Also, users can launch this control panel from the Icon Catalog’s
Control Panel page.

= Window Settings a

Window Settings

Toolchest Orientation: > Hgrizontal
Wertical

Keyboard Focus: > Ciick to type
Paoint to type

Display Windows Overview: [_|
Opaque Window Move: [_]
Auto Window Placement: [¥]

Save Windows & Desks: Continuously

< Explicitly

| Close || Reset...” Help I

The toolchest will appear as a long, thin menubar.

Figure 5-1 Window Settings Control Panel

71

Chapter 5: Window, Session, and Desk Management

72

Adding Session Management to Your Application

Applications can communicate with the window manager by setting properties on the
top level window. The WM_COMMAND property gives the window manager the
command line that can be used to re-invoke the application in its current state. The
4Dwm window manager sends a WM_SAVE_YOURSELF message to each window that
subscribes to tell it to update its WM_COMMAND property and then reads in the value.
If the user selects continuous session management, 4Dwm sends the message every 10
minutes and at logout. If the user selects explicit session management, the window
manager only queries the applications when the user presses the “Set Home Session”
button.

Setting the WM_COMMAND String

If you use ViewKit or XtApplnitialize(3Xt), the initial WM_COMMAND string is set for
you when the top level window is realized. Use the xprop(1) command to make sure the
WM_COMMAND string is set correctly for the top level window. For example:

WM _COMVAND(STRING = { “webmagic”, “/usr/tnmp/sgilLook.htm” }

Even if WM_COMMAND is initially set by your toolkit, you need to keep
WM_COMMAND updated if your program changes its state. For instance, if the user
renames a data file or successfully opens a new data file, you need to change the
WM_COMMAND string with the XSetCommand(3X11):

XSet Command(Di spl ay *di spl ay, Wndow w, char **argv,int argc);

This can be done in the function that changes the state, and is simpler than responding
to the window manager’s WM_SAVE_YOURSELF message.

Saving Session Information to a File

If your application already saves state information to a file instead of using the command
line, this “state file” can also be used for session management. To work correctly with the
user’s Windows Control Panel setting, the application should update the file only in
response to the window manager’s WM_SAVE_YOURSELF message (see Example 5-1,
saveyourself.c). This strategy does not work correctly if several instances of your
application are able to run at the same time. Only applications that enforced a “Run
Once” policy can rely on this strategy.

For more information, see the ViewKit reference page, VkRunOnce(3x), and
XSetCommand(3X11).

Window, Session, and Desk Management Overview

Debugging Tips

When debugging:
¢ Use xprop(1) to see the WM_COMMAND string property.

¢ Make sure that you use the full pathname for data file arguments, which typically
are not referenced in the user’s path.

¢ If your application has multiple windows, only set WM_COMMAND for the
top-level window.

Example 5-1 Session Management Example Code: saveyourself.c

/* saveyourself.c */
/* */
/* Exanpl e code for handling the wi ndow nanager’s */
/* WM_SAVE_YQURSELF Pr ot ocol */
/* */
/* cc -0 saveyoursel f saveyourself.c -1 Xm-I| Xt */

#i ncl ude <Xm Protocol s. h>
#i ncl ude <X Label . h>

voi d saveYour Sel f Cal | back(W dget w, XtPointer client_data,
Xt Poi nter call _data)

{
}

printf(“Update state file if needed, then update WM COMVAND\ n”);

void main(int argc, char** argv)
{

W dget toplevel, |abel;

Xt AppCont ext app_cont ext;

At om WM _SAVE_YOURSELF;

topl evel = XtApplnitialize(&pp_context, “SaveYourSelf”,
NULL, O, &argc, argv, NULL, NULL, 0);

| abel = XnCreatelLabel (topl evel, “savene”, NULL, 0);
Xt ManageChi | d(1 abel) ;

WM_SAVE_YOURSELF = Xml nternAton(XtDi spl ay(toplevel),

“\W_SAVE_YOURSELF
FALSE) ;

73

Chapter 5: Window, Session, and Desk Management

74

XmAddWWPr ot ocol Cal | back(topl evel, WM SAVE YOURSELF,
saveYour Sel f Cal | back, NULL);

Xt Real i zeW dget (t opl evel) ;
Xt AppMai nLoop(app_cont ext);

}

“Handling the Window Manager Save Yourself Protocol” on page 88 describes what
your application needs to do to support session management. “Session Management” in
Chapter 3 of the Indigo Magic User Interface Guidelines provides further guidelines for
handling session management.

Reference

For more information, see Inter-Client Communication Conventions Manual ICCCM). The
ICCCM is reprinted as an appendix in O'Reilly and Associates, X Protocol Reference
Manual, Volume Zero.

Desk Management

Users can use “desks” to create multiple virtual screens. They can assign any primary or
support window to any desk, causing that window to appear in the thumbnail sketch in
the Desks Overview window.

“Desks” in Chapter 3 of the Indigo Magic User Interface Guidelines discusses the important
development concerns issues relating to desks. Review the information in “Session
Management,” and adhere to the “Session Management Guidelines,” and the window
manager will take care of desks for you.

The key points to keep in mind are:

¢ Transient windows appear on every desk and are not shown in the Desks overview
window—so choose your transient windows carefully.

¢ Application windows that are on a desk other than the current one are in a state
similar to the minimized state—processing continues although the window is no
longer mapped to the screen display. Keep this in mind when selecting which
operations should continue to be processed when your application is in a
minimized state.

¢ Users can select different backgrounds for different desks, so your application
should not create its own screen background.

Implementing an Application Model

Further Reading on Window and Session Management

For more information on window and session management with 4Dwm, refer to the
mwm(1X) and 4Dwm(1X) reference pages. You may also want to look at IRIS Essentials,
since this book explains important window and session management features to your
users.

For more information on window and session management with Xt, refer to the chapters
on Interclient Communication in these manuals:

e The X Window Systems Programming and Applications with Xt, OSF/Motif Edition,
Second Edition, by Doug Young

e O'Reilly Volume Four, X Toolkit Intrinsics Programming Manual, OSF/Motif Edition,
by Adrian Nye and Tim O’Reilly

For more information on window and session management with Xlib, refer to the
chapters on Inter-Client Communication in O’'Reilly Volume One, XIib Programming
Manual, by Adrian Nye. For more detailed information, refer to the Inter-Client
Communications Conventions Manual (ICCCM). (The ICCCM is reprinted as an appendix
of O’Reilly Volume Zero, X Protocol Reference Manual.)

More detailed information on window properties is available in the OSF/Motif
Programmer’s Guide, in the chapter on “Inter-Client Communication Conventions.”

Implementing an Application Model

“Application Models” in Chapter 6 of the Indigo Magic User Interface Guidelines describes
four application models based on four different window categories: main primary
windows, co-primary windows, support windows, and dialogs. It also describes how to
select a model appropriate for your application. This section provides suggestions for
implementing each application model, including recommended shell types for your
primary windows. “Interacting With the Window and Session Manager” on page 78
describes how to create the windows and get them to look and behave in the manner
described in “Application Window Categories and Characteristics” in Chapter 3 of the
Indigo Magic User Interface Guidelines.

75

Chapter 5: Window, Session, and Desk Management

76

Implementing the “Single Document, One Primary” Model

This model is the simplest to implement. You can use the ApplicationShell returned by
XtApplnitialize() as your application’s main window. This model requires no special
treatment to handle schemes or for window or session management.

Implementing the “Single Document, Multiple Primaries” Model

The simplest way to implement this model is to use the ApplicationShell returned by
XtApplnitialize() as your application’s main window. You can create co-primary
windows as popup children of the main window using TopLevelShells. This approach
requires no special treatment to handle schemes or for window or session management.

You can also choose the implement this model using the techniques described in
“Implementing the “Multiple Document, No Visible Main” Model,” although this
requires more work.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If you do, the
windows don’t pick up the resources specified in schemes.

Implementing the “Multiple Document, Visible Main” Model

Once again, the simplest way to implement this model is to use the ApplicationShell
returned by XtApplnitialize() as your application’s main window. You can create
co-primary windows as popup children of the main window using TopLevelShells. This
approach requires no special treatment to handle schemes or for window or session
management.

You can also choose the implement this model using the techniques described in
“Implementing the “Multiple Document, No Visible Main” Model,” although this
requires more work.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If you do, the
windows don’t pick up the resources specified in schemes.

Implementing an Application Model

Implementing the “Multiple Document, No Visible Main” Model

This model requires more careful consideration than the other models. Presumably, the
visible windows can be created and destroyed in any order; therefore it is very difficult
to use one as a main window and have the others be children of it.

Instead, the best solution in this case is to leave the ApplicationShell returned by
XtApplnitialize() unrealized. You can then create the visible co-primary windows as
popup children of this invisible shell.

Session management requires a realized ApplicationShell widget so that your
application can store restart information in its XmNargv and XmNargc resources.
Because your application’s visible windows can be created and destroyed dynamically,
you should use ApplicationShells rather than TopLevelShells for your visible windows.
Then you can set the XmNargv and XmNargc resources on any of them. (Another option
would be to use TopLevelShells for the visible windows and then explicitly create and set
WM_COMMAND and WM_MACHINE properties on the windows.)

One complication when using ApplicationShells is that by default, IRIS IM automatically
quits an application when it destroys an ApplicationShell. To avoid this, you must set
each window’s XmNdeleteResponse resource to XmDO_NOTHING, and then explicitly
handle the window manager’s WM_DELETE_WINDOW protocol for each window.
“Handling the Window Manager Delete Window Protocol” on page 86 describes how to
implement these handlers.

Another complication is that the initial values of the XmNargv and XmNargc resources
are stored in the application’s invisible main window rather than a visible window. This
is also true for the XmNgeometry resource if specified by the user. To avoid this, you
should copy these values from the invisible main window to your application’s first
visible window.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If you do, the
windows don’t pick up the resources specified in schemes.

77

Chapter 5: Window, Session, and Desk Management

Interacting With the Window and Session Manager

78

Most communication between an application and a window manager takes place
through properties on an application’s top-level windows. The window manager can
also generate events that are available to the application. You can use Xlib functions to
set properties and handle window manager events.

In IRIS IM, shell widgets simplify communications with the window manager. The
application can set most window properties by setting shell resources. Shells also select
for and handle most events from the window manager.

Because this guide assumes that you are programming in IRIS IM rather than Xlib, this
chapter describes the IRIS IM mechanisms for creating windows and interacting with the
window and session manager. Topics include:

* “Creating Windows and Setting Decorations”

¢ “Handling Window Manager Protocols”

* “Setting the Window Title”

¢ “Controlling Window Placement and Size”

For detailed information about setting window properties using shell resources, consult
Chapter 11, “Interclient Communication,” in O’Reilly’s X Toolkit Intrinsics Programming
Manual and Chapter 16, “Interclient Communication,” in the OSF/Motif Programmer’s
Guide. For detailed information about window properties and setting them using Xlib

routines, consult Chapter 12, “Interclient Communication,” in O’Reilly’s XIib
Programming Manual.

Interacting With the Window and Session Manager

Creating Windows and Setting Decorations

Chapter 6, “Application Windows,” in the Indigo Magic User Interface Guidelines describes
several application models based on four different window categories: main primary
windows, co-primary windows, support windows, and dialogs. This section describes
how to implement these window categories with proper window decorations and
window menu entries:

e “Creating a Main Primary Window”
e “Creating a Co-Primary Window”

e “Creating a Support Window”

e “Creating a Dialog”

To properly integrate with the Indigo Magic Desktop, you need to use the appropriate
shell widget for each widow category. This section describes which shell widget to use
for each window category. Then you need to properly set the shell’s
XmNmwmFunctions resource to control which entries appear in the window menu and
the XmNmwmDecorations resource to remove the window’s resize handles, if
appropriate.

Creating a Main Primary Window

Your application’s main primary window must be an ApplicationShell. Typically, you
use the ApplicationShell widget returned by XtApplnitialize() as your application’s
main primary window.

You should set the main primary window’s XmNmwmFunctions resource to remove the
“Close” option from the window menu. Also, if you don’t want the user to be able to
resize the window, you should set XmNmwmFunctions to remove the “Size” and
“Maximize” options and set XmNmwmDecorations to remove the resize handles.
Example 5-2 shows how you can create a main primary window and set the resource
values appropriately.

“Main and Co-Primary Windows” in Chapter 6 of the Indigo Magic User Interface
Guidelines provides guidelines for using main primary windows.

79

Chapter 5: Window, Session, and Desk Management

Example 5-2 Creating a Main Primary Window

#i ncl ude <Xl Xm h> /* Required by all Mtif applications */
#i ncl ude <X Mk | . h> /* Required to set w ndow nenu and decorations */
#i ncl ude <X11/ Shel | . h> [* Shell definitions */

void main (int argc, char **argv)

{
W dget mai nWndow, /* Main w ndow shel | wi dget */
Xt AppCont ext app; /* An application context, needed by Xt */
Arg args[10] ; [* Argurent list */
i nt n; /* Argurent count */
/*

* |Initialize resource value flags to include all w ndow nenu options and
* all decorations.
*/

I ong functions = MAM FUNC ALL;
| ong handl eMask = MAM DECCR ALL;

n=0;

/*

* The following lines REMD/E itens fromthe w ndow manager nenu.

*/

functions |= MAM FUNC OLCBE /* Rermove "d ose" menu option */

/* Include the following two lines only if the windowis *not* resizable */

functions |= MAM FUNC RESI ZE; /* Rermove "S ze" nenu option */
functions |= MAM FUNC_ MAXI M ZE /* Renove "Maxin ze" menu option */

Xt Set Arg(args[n], XniNmwnfunctions, functions); n++;

/* Include the following two lines only if the windowis *not* resizable */
handl eMask | = MMV DECCR RES| ZEH /* Renove resize handl es */

Xt Set Arg(args[n], XniNmwnbDecorati ons, handl eMask); n++

/*

* |nitialize X and create shell
*/

80

Interacting With the Window and Session Manager

mai nWndow = Xt Applnitialize (&pp, "WndowTest", NULL, O,
&rgc, argv, NUL, args, n);

1* .0 %

Creating a Co-Primary Window

Your application’s co-primary windows should be ApplicationShells or TopLevelShells.
“Implementing an Application Model” on page 75 describes which to choose depending
on your application model. The easiest way to implement these windows are as pop-up
children of the shell widget returned by XtApplInitialize() (which is typically your
application’s main primary window).

If the user can’t quit the application from a co-primary window, you should set the
window’s XmNmwmFunctions resource to remove the “Exit” option from the window
menu. Also, if you don’t want the user to be able to resize the window, you should set
XmNmwmFunctions to remove the “Size” and “Maximize” options and set
XmNmwmDecorations to remove the resize handles. Example 5-3 shows how you can
create a co-primary window and set the resource values appropriately.

Note: The default action when IRIS IM destroys an ApplicationShell is to quit your
application. To avoid this if you are using ApplicationShells for your co-primary
windows, you must set each window’s XmNdeleteResponse resource to
XmDO_NOTHING, and then explicitly handle the window manager’s
WM_DELETE_WINDOW protocol for each window. You might want to follow this
approach even if you use TopLevelShells for co-primary windows so that you can simply
popdown the window instead of deleting it. This can save time if you might redisplay
the window later. “Handling the Window Manager Delete Window Protocol” on page 86
describes how to implement these handlers.

“Main and Co-Primary Windows” in Chapter 6 of the Indigo Magic User Interface
Guidelines provides guidelines for using co-primary windows.

81

Chapter 5: Window, Session, and Desk Management

Example 5-3 Creating a Co-Primary Window

#i ncl ude <Xl Xm h> /* Required by all Mtif applications */
#incl ude <Xmi Mmtil.h> /* Required to set w ndow nenu and decorations */
#include <X11/ Shell.h> /* Shell definitions */

W dget mai nWndow, /* Min w ndow shel |l w dget */

W dget coPrimary; /* Qo-prinmary w ndow shell w dget */
Ag args[10] ; /* Argurent |ist */

int n; /* Argunent count */

/*

* Initialize resource value flags to include all w ndow nenu options and
* all decorations.
*/

long functions = MAVM FUNC ALL;
I ong handl eMask = MAM DECCR ALL;

[* ... %]

n=0o;

/*

* The following lines REMD/E itens fromthe w ndow nanager nenu.
*/

/* Rermove the "Exit" w ndow nenu option if users can *not* quit fromthis w ndow
*/

functions |= MMM FUNC QUT;
/* Include the followng two lines only if the windowis *not* resizable */

functions |= MAVM FUNC RESl ZE; /* Renove "Si ze" nenu option */
functions |= MAM FUNC MAXI M ZE; /* Renove "Maxi mize" nenu option */

Xt Set Arg(args, Xmi\hwrunctions, functions); n++
/* Include the following two lines only if the windowis *not* resizable */
handl eMask | = MAVM DECCR RES| ZEH /* Renove resize handl es */

Xt Set Arg(args, XmiNhwrDecorations, handl eMask); n++;

82

Interacting With the Window and Session Manager

/* You need the following Iine only if you use an ApplicationShell for the
w ndow */

Xt Set Arg(args, Xmi\del et eResponse, XDO NOTH NG ; n++;

/*

* Assune that the application has al ready created a nai n wi ndow and assi gned
its w dget

* to the variabl e mai nWndow

*/

coPrimary = Xt O eat ePopupShel | ("coPrinary", applicationShel | Wdget A ass,
nai nWWndow, args, n);

A
Creating a Support Window

Support windows are essentially custom dialogs. The easiest way to create a support
window is to use XmCreateBulletinBoardDialog() to create a DialogShell containing a
BulletinBoard widget, or use XmCreateFormDialog() to create a DialogShell containing
a Form widget. You can then add appropriate controls and displays as children of the
BulletinBoard or Form.

Another advantage to using a DialogShell for support windows is that they
automatically have the proper window menu options and decorations. If you don’t want
the user to be able to resize the window—and you implemented the support window as
a customized dialog—you should set XmNnoResize to “TRUE” to remove the “Size”
and “Maximize” options and to remove the resize handles. Example 5-4 shows how you
can create a support window and set the resource values appropriately.

“Support Windows” in Chapter 6 of the Indigo Magic User Interface Guidelines provides
guidelines for using support windows.

83

Chapter 5: Window, Session, and Desk Management

84

Example 5-4 Creating a Support Window

#i ncl ude <Xl Xm h> /* Required by all Mtif applications */

#i ncl ude <X Mk | . h> /* Required to set w ndow nenu and decorations */
#i ncl ude <x11/ For m h> [* Formdefinitions */

W dget parentWndow, /* Parent wi ndow of support w ndow */

W dget supportWndow, /* Support w ndow */

Ag args[10] ; /* Argurent |ist */

int n; /* Argurent count */

[* .00

n=0;

/* Include the following line only if the windowis *not* resizable */
Xt Set Arg(args, Xm\hoResi ze, TRUE); n++
suppor t Wndow = XnOr eat eFor nD al og(par ent Wndow, "supportWndow', args, n);

/* Oeate the windowinterface... */

Creating a Dialog

The easiest way to create dialogs is to use the IRIS IM convenience functions such as
XmCreateMessageDialog() and XmCreatePromptDialog(). These functions
automatically set most of the window characteristics required for the Indigo Magic
environment.

Dialogs automatically have the proper window menu options and decorations. If you
don’t want the user to be able to resize the dialog, you should set XmNnoResize to
“TRUE” to remove the “Size” and “Maximize” options and to remove the resize handles.
Example 5-5 shows an example of creating a WarningDialog and setting the resource
values appropriately.

Chapter 10, “Dialogs,” in the Indigo Magic User Interface Guidelines provides guidelines
for using dialogs.

Interacting With the Window and Session Manager

Example 5-5 Creating a Dialog

#i ncl ude <Xl Xm h> /* Required by all Mtif applications */
#i ncl ude <X Manuki | . h> /* Required to set w ndow nenu and decorations */
#i ncl ude <Xm MessageB. h> /* Vérning dialog definitions */

W dget parentWndow, /* Parent wi ndow of dial og */
W dget di al og; /* Dialog */

Ag args[10] ; /* Argurent |ist */

int n; /* Argurent count */

[* .00

n=0;

/* Include the following line only if the windowis *not* resizable */
Xt Set Arg(args, Xm\hoResize, TRUE); n++

di al og = Xnr eat eVr ni nghi al og (parent Wndow, "warni ngh al og", args, n);

Handling Window Manager Protocols

This section describes how to handle window manager protocols:

¢ “Handling the Window Manager Quit Protocol”

¢ “Handling the Window Manager Delete Window Protocol”

¢ “Handling the Window Manager Save Yourself Protocol”

Protocols allow the window manager to send messages to your application. The window

manager sends these messages only if your application registers callback function to
handle the corresponding protocols.

Handling the Window Manager Quit Protocol

When a user selects the “Exit” option from a window menu, the window manager sends
a Quit message to your application. You should install a callback routine to handle this
event. Example 5-6 demonstrates installing such a callback for the window specified by
mainWindow.

85

Chapter 5: Window, Session, and Desk Management

86

Example 5-6 Handling the Window Manager Quit Protocol

At om WM _QUI T_APP = Xml nt er nAt om(Xt Di spl ay(nmai nW ndow) ,
" WM QUI T_APP",
FALSE);
XmAddWWPr ot ocol Cal | back(mai nW ndow, WV QUI T_APP,
qui t Cal | back, NULL);

[* o0

qui t Cal | back(W dget w, XtPointer clientData,
XmAnyCal | backStruct chs)
{

}

/* Quit application */

Note: You must install the quit callback for each window that contains an “Exit” option
in its window menu. Often the only such window is your application’s main primary
window.

The operations performed by the callback function should be the same as those that
occur when the user quits from within your application (for example, by selecting an
“Exit” option from a File menu). Your application can prompt the user to save any files
that are open, to perform any other cleanup, or even to abort the quit.

Handling the Window Manager Delete Window Protocol

When a user selects the “Close” option from a window menu, the window manager
sends a Delete Window message to your application. How to handle this message
depends on whether the window is a co-primary window, a dialog, or support window.
(A main primary window should not have a “Close” option on its window menu.)

To handle the Delete Window message with a co-primary window, you should make
sure to set the window’s XmNdeleteResponse resource to XmDO_NOTHING.
Otherwise, IRIS automatically deletes the window and, if the window uses an
ApplicationShell, quits the application.

The callback you install can ask for user confirmation and can decide to comply or not
comply with the request. If it decides to comply, your application can either pop down
or destroy the window. If you think that the user might want to redisplay the window
later, popping down the window is usually the better choice because your application

Interacting With the Window and Session Manager

doesn’t have to re-create it later. Example 5-7 shows an example of installing a callback
to handle the Delete Window message.

Example 5-7 Handling the Window Manager Delete Window Protocol in Co-Primary
Windows

At om WM _DELETE_W NDOW = Xm nt er nAt om(Xt Di spl ay(w ndow) ,
"W _DELETE_W NDOW ,
FALSE) ;
XmAddWWPr ot ocol Cal | back(w ndow, WV DELETE_W NDOW
cl oseCal | back, NULL);

[* .00

cl oseCal | back(Wdget w, XtPointer clientData,
XmAnyCal | backStruct chs)

{
}

/* Delete or pop down wi ndow */

For support windows and dialogs, you typically want to dismiss the window when the
user selects “Close.” Therefore, the default value of XmNdeleteResponse, XmDESTROY,
is appropriate. Additionally, you should perform whatever other actions are appropriate
for when that support window or dialog is dismissed. Typically, you can accomplish this
by invoking the callback associated with the Cancel button, if it exists. Example 5-8 shows
an example of this.

Example 5-8 Handling the Window Manager Delete Window Protocol in Support Windows
and Dialogs

At om WM _DELETE_W NDOW = Xm nt er nAt om(Xt Di spl ay(di al og),
"WWM_DELETE_W NDOW ,
FALSE) ;
XmAddWWPr ot ocol Cal | back(di al og, WV DELETE_W NDOW
cancel Cal | back, NULL);

[|
cancel Cal | back(Wdget w, XtPointer clientData,

XmAnyCal | backStruct cbs)
{

}

/* Perform cancel operations */

87

Chapter 5: Window, Session, and Desk Management

88

Handling the Window Manager Save Yourself Protocol

The “Save Yourself” protocol is part of the session management mechanism. The session
manager sends a Save Yourself message to allow your application to update the
command needed to restart itself in its current state. Currently, the session manager
sends Save Yourself messages before ending a session (that is, logging out) and
periodically while a session is active.

Your application doesn’t need to subscribe to the Save Yourself protocol. Instead, your
application can simply update the XmNargv and XmNargc resources on one of its
ApplicationShells whenever it changes state, for example, when it opens or closes a file.
The session manager re-saves its state information whenever your application changes
these resources. (Actually, the session manager monitors the WM_COMMAND and
WM_MACHINE properties, which are set by the ApplicationShell whenever you change
its XmNargv and XmNargc resources.)

If you decide to use Save Yourself for session management, you can handle the protocol
on any realized ApplicationShell. Don’t use Save Yourself with the unrealized main
window of the “Multiple Document, No Visible Main” application model. When the
window manager sends a Save Yourself message to your application, your application
must update the value of the XmNargv and XmNargc resources to specify the command
needed to restart the application in its current state. Once you've updated the XmNargv
and XmNargc resources, the session manager assumes that it can safely kill your
application. Example 5-9 shows how to handle Save Yourself messages.

Note: Your application shouldn’t prompt the user for input when it receives a Save
Yourself message.

Example 5-9 Handling the Window Manager “Save Yourself” Protocol

/* saveyourself.c */
/* */
/* Exanpl e code for handling the wi ndow nanager’s */
/* WM_SAVE_YQURSELF Pr ot ocol */
/* */
/* cc -0 saveyoursel f saveyourself.c -1 Xm-I| Xt */

#i ncl ude <Xm Protocol s. h>
#i ncl ude <X Label . h>

voi d saveYour Sel f Cal | back(W dget w, XtPointer client_data,
Xt Poi nter call _data)

Interacting With the Window and Session Manager

{
printf(“Update WM COWAND or state file\n");
}
void main(int argc, char** argv)
{
W dget toplevel, |abel;
Xt AppCont ext app_cont ext;
At om WM _SAVE_YQURSELF;
topl evel = XtApplnitialize(&pp_context, “SaveYourSelf”,
NULL, O, &argc, argv, NULL, NULL, 0);
| abel = XnCreatelLabel (topl evel, “savene”, NULL, 0);
Xt ManageChi | d(| abel) ;
WM_SAVE_YOURSELF = Xm nternAton(XtDi spl ay(toplevel),
“WM_SAVE_YOURSELF",
FALSE) ;
XmAddWWPr ot ocol Cal | back(topl evel, WM SAVE YOURSELF,
saveYour Sel f Cal | back, NULL);
Xt Real i zeW dget (t opl evel) ;
Xt AppMai nLoop(app_context);
}

Your application might not be able to fully specify its state using command line options.
In that case, you can design your application to create a state file to save its state and to
read the state file when it restarts.

Setting the Window Title

To set the title of a main primary window or co-primary window in your application, set
the window’s title resource. If the title you specify uses a non-default encoding,
remember to also set the value of the titleEncoding resource appropriately. For support
windows and dialogs, set the value of the XmNdialogTitle resource.

Choose the title according to the guidelines in the section “Window Title Bar” in
Chapter 3 of the Indigo Magic User Interface Guidelines. Update the label so that it always
reflects the current information. For example, if the label reflects the name of the file the
user is working on, you should update the label when the user opens a different file.

89

Chapter 5: Window, Session, and Desk Management

90

Controlling Window Placement and Size

Users have the option of specifying window placement and size, either through the
-geometry option interactively using the mouse, or having applications automatically
place their windows on the screen. To support automatic window placement, your
application should provide default placement information for its main primary and
co-primary windows. (Support windows and dialogs appear centered over their parent
widget if the value of their XmNdefaultPosition resources are TRUE, which is the
default.) You can also specify a default window size, minimum and maximum window
sizes, minimum and maximum aspect ratios, and resizing increments for your windows.
Typically, you should set these resources in your application’s app-default file.

Controlling Window Placement

You should provide initial values for the window shell’s x and y resources before
mapping the window to specify its default location. The window manager ignores these
values if the user requests interactive window placement or specifies a location using the
-geometry option when invoking your application. You should not use the window’s
XmNgeometry resource to control initial window placement, either in your application’s
source code or its app-default file.

“Window Placement” in Chapter 3 of the Indigo Magic User Interface Guidelines provides
guidelines for controlling window placement.

Controlling Window Size

If the user doesn’t specify a window size and you don’t explicitly set the window size in
your application, the initial size of the window is determined by geometry management
negotiations of the shell widget’s descendents. Typically, the resulting size is just large
enough for all of the descendent widget to fit “comfortably.” Optionally, you can specify
a defaultinitial size for a window by providing initial values for the window’s width and
height resources before mapping the window. You should not use the window’s
XmNgeometry resource to control initial window size, either in your application’s
source code or its app-default file.

Interacting With the Window and Session Manager

You can also set several shell resources to specify minimum and maximum window
sizes, minimum and maximum aspect ratios, and resizing increments for a window:

minHeight and minWidth
The desired minimum height and width for the window.

maxHeight and maxWidth
The desired maximum height and width for the window.

minAspectX and minAspectY
The desired minimum aspect ratio (X/Y) for the window.

maxAspectX and maxAspectY
The desired maximum aspect ratio (X/Y) for the window.

baseHeight and baseWidth
The base for a progression of preferred heights and widths for the
window. The preferred heights are baseHeight plus integral multiples
of heightInc, and the preferred widths are baseWidth plus integral
multiples of widthInc. The window can’t be resized smaller or larger
than the values of the min* and max* resources.

heightInc and widthInc
The desired increments for resizing the window.

“Window Size” in Chapter 3 of the Indigo Magic User Interface Guidelines provides
guidelines for controlling window size.

91

Chapter 6

Customizing Your Application’s
Minimized Windows

A unique design helps users to identify your application’s windows easily
when they are minimized. This chapter describes how to create images and
labels for your application’s minimized windows.

Chapter 6

Customizing Your Application’s Minimized Windows

Users can minimize (stow) your application’s window on the Desktop, by clicking the
minimize button in the top right corner of the window frame or by selecting “Minimize”
from the Window Menu. When a window is minimized, it is replaced by a 100 x 100 pixel
representation with an identifying label of 13 characters or less. This is referred to as the
minimized or stowed window. (It is also commonly called an icon, but this document uses
the term minimized window to prevent confusing it with the Desktop icon.)

This chapter explains how to put the image of your choice on a minimized window. It
contains these sections:

* “Some Different Sources for Minimized Window Images” discusses different
sources from which you can generate a minimize icon picture.

* “Creating a Minimized Window Image: The Basic Steps” gives a step-by-step
explanation of how to customize your minimize icon.

* “Setting the Minimized Window Label” on page 99 describes how to set the label of
your minimized window.

¢ “Changing the Minimized Window Image” on page 100 mentions some special
considerations if you want to change the image in your minimized window while
your application is running.

Some Different Sources for Minimized Window Images

You can make a minimized window image out of any image that you can display on your
workstation monitor. This means that you can create a picture using showcase or the
drawing/painting tool of your choice, or you can scan in a picture, or you can use the
capture tool to capture of some portion of your application. You can even have an artist
design your minimized window for you. “Choosing an Image for Your Minimized
Window” in Chapter 3 of the Indigo Magic User Interface Guidelines provides some
guidelines for designing minimized window images.

95

Chapter 6: Customizing Your Application’s Minimized Windows

Figure 6-1 shows some different minimized window images that were created in
different ways. From left to right: the top row shows a scanned-in photograph, a
mediarecorder snapshot of the application itself, a scanned-in photograph that was altered
with imp, and scanned-in line art; the bottom row shows a drawing representing the
application, scanned-in line art, and two artist-designed images.

ColorView

Figure 6-1 Minimized Window Image Examples

Creating a Minimized Window Image: The Basic Steps

96

It’s important for users to be able to easily identify your application’s windows when
they are minimized, so you should define a specific image and label for each primary and
support window in your application. For guidelines on selecting minimize images, see
“Choosing an Image for Your Minimized Window” in Chapter 3 of the Indigo Magic User
Interface Guidelines.

To make a minimized window image for your application:

1. Create an RGB image. If your image is already in RGB format, then all you have to
do is resize the image to an appropriate size (look at the setting of the
iconlmageMaximum resource in 4Dwm to see the maximum size of the stow icon,
currently 85x67). See “Resizing the RGB Image Using imgworks” on page 99 for
instructions on resizing the image.

If your image is not in RGB format, you must convert it to RGB. One way to do this
is to use the Media Recorder tool to obtain your image. See “Using mediarecorder to
Get an RGB Format Image” on page 97 for instructions.

2. Scale the image to the correct size. See “Resizing the RGB Image Using imgworks”
on page 99 for instructions.

Creating a Minimized Window Image: The Basic Steps

3. Name the image file. The filename should consist of two parts:

The application class name (technically, the res_name field of the WM_CLASS

property). You can determine the class name by using xprop on your application

window and looking at the WM_CLASS property.

The .icon suffix.

This gives you a name of the form res_name.icon. For example, if your application’s

name is “chocolate,” the name of your image file should be:

chocol ate.icon

4. Put the file in the /usr/lib/images directory.

Using mediarecorder to Get an RGB Format Image

You can use the mediarecorder tool to capture an image on the screen. To invoke
mediarecorder, enter:

% nedi ar ecor der

An example of the mediarecorder tool is shown in Figure 6-2.

=| Media Recorder fail]
file Edit Jasks Options Help
7
7 8

@ noaudio.movie AI
@ kam.gt

@ somersault.movie
B fig2-11rgo
@ image1.rgh

_@ imageZ.rgh E7

”@?

Pt
§ i

Eadh
i

&,

[-

Media: Image Source: Screen Task: Custom Settings..

Figure 6-2

The mediarecorder Tool

97

Chapter 6: Customizing Your Application’s Minimized Windows

98

Taking a Screen Snapshot With mediarecorder

You can create a new image file of your minimized window by taking a snapshot of it on
the screen.

1.
2.
3.

Display the desired image on the screen.
Click the Image menu button and choose “Still Image from Screen.”
Choose one of the following from the “Still Image from Screen” rollover menu:

¢ Select Area...: Allows you to hold down the left mouse button and drag out a
selection outline to mark the area you wish to record.

* Window Area...: Allows you to select a particular window on the screen to
record. When you choose this menu item, the cursor changes to resemble a
camera. To choose a window to record, simply click inside of it.

A dashed outline appears on the screen: the space inside the outline is what will be
captured.

Note: To cancel any selection, position the cursor over an edge of the selection outline
and click the right mouse button. To bring the selection outline back once it is
cancelled, select Edit menu and choose “Show Selection Frame.”

Open the Tasks menu, choose Image, and select Screen Snapshot from the Image
rollover menu. The snapshot adjusts the capturing file format and frame size so that
they are ideally suited for a screen snapshot.

Tip: Once you choose Screen Snapshot, you can view those specific settings by
selecting “Show Task Settings” from the Tasks menu.

After you select the area, click the Record button.

If you have the Clip Bin open, the image filename appears in the clip bin as soon as
the snapshot has been taken.

Your file is given a default name and saved in the directory from which you
launched Media Recorder.

To see the image, click the Play button.

If the image looks good, then you're ready to resize it. See “Resizing the RGB Image
Using imgworks” on page 99 for instructions.

See the mediarecorder(1) reference page for more information about using mediarecorder.
The mediarecorder is described fully in the Digital Media Tools Guide.

Setting the Minimized Window Label

Resizing the RGB Image Using imgworks

You can use imgworks to resize your RGB image to the appropriate size for a minimized
window image. The maximum size is determined by the value of the
iconImageMaximum resource in 4Dwm, which is currently 85x67.

To find the imgworks icon, select “File QuickFind” from the Find toolchest. When the
QuickFind window appears, type:

i mgwor ks

into the text field. The imgworks icon appears in the drop pocket. Drag the icon to the
Desktop and drop it. Then run imgworks by double-clicking the icon.

To resize your image using imgworks, follow these steps:

1. Open your image file by selecting “Open” from the File menu and selecting your
file from the Image Works: Open Image... window. Your image appears in the main
window.

2. To scale the image, select “Scale...” from the Transformations menu. The Image
Works: Scale window appears.

3. Scale the image by typing in an appropriate scale factor. The dimensions of the new
image (in pixels) are listed in the Scale window.

4. When you're happy with the dimensions listed in the Scale window, click the Apply
button. The resized image appears in the main window. Save it by selecting “Save”
from the File menu.

Refer to the imgworks(1) reference page for more information on imgworks.

Setting the Minimized Window Label

By default, the 4Dwm window manager reuses the title bar label for the minimized
window label. To explicitly set the label of the minimized window, change the value of
the window’s XmNiconName resource. For example, in your application’s

fusr/lib/X11/app-defaults file, type:
appnane*i conName: mnmyApp

“Labeling a Minimized Window” in Chapter 3 in the Indigo Magic User Interface
Guidelines lists guidelines for choosing a label.

99

Chapter 6: Customizing Your Application’s Minimized Windows

Changing the Minimized Window Image

100

Your application can also change its minimized window’s image while it is running (for
example, to indicate application status) by setting the window’s XmNiconWindow

resource. However, it can be very difficult to handle color images without causing visual
and colormap conflicts. If you decide to change the image, the image you install should:

1. Use the default visual.

2. Use the existing colormap without creating any new colors (preferably, your image
should use only the first 16 colors in the colormap). This potentially implies
dithering or color quantization of your image.

Note: The 4Dwm window manager automatically handles your application’s initial
minimized window image (that is, the image automatically loaded from the
fusr/lib/images directory at application start-up).

If you don’t want to change this image while your application is running, your
application doesn’t need to do anything to support displaying the image properly.

Chapter 7

Interapplication Data Exchange

Users expect to be able to exchange data between applications using the
standard X mechanisms. This chapter explains to how to support data
exchange in your application.

Chapter 7

Interapplication Data Exchange

This chapter describes how to implement the recommended data exchange mechanisms
in your applications. It contains these sections:

* “Data Exchange Overview” on page 103 provides a brief description of how the
Primary and Clipboard Transfer Models should work in your application. You
should implement both.

¢ “Implementing the Primary Transfer Model” on page 107 describes how to
implement the Primary Transfer Model in your application.

¢ “Implementing the Clipboard Transfer Model” on page 110 describes how to
implement the Primary Transfer Model in your application.

e “Supported Target Formats” on page 113 provides tables listing the atom names of
supported data formats, along with brief descriptions of what each format is used
for.

* “Data Conversion Service” on page 117 describes the service available for
converting files from one data format to another. For details on the process, refer to
Appendix G, “Using GoldenGate Data Conversion Services.”

Data Exchange Overview

As detailed in Chapter 5, “Data Exchange on the Indigo Magic Desktop,” in the Indigo
Magic User Interface Guidelines, Silicon Graphics recommends that your application
support both the Primary and Clipboard Transfer Models. The Primary Transfer Model
allows users to copy data using mouse buttons, whereas the Clipboard Transfer model
allows users to use the “Cut,” “Copy,” and “Paste” options from the Edit menu (or the
corresponding keyboard accelerators) to transfer data.

Note: Silicon Graphics recommends that you not use the IRIS IM clipboard routines for
handling data exchange.

103

Chapter 7: Interapplication Data Exchange

104

The data exchange model recommended by Silicon Graphics is based on the standard
mechanisms provided by the X and Xt. You can consult the O’Reilly & Associates book
The X Window System, Volume 4: X Toolkit Intrinsics Programming Manual by Adrian Nye
for more information on the standard Xt data exchange methods.

The following sections describe:
¢ “Primary Transfer Model Overview”
¢ “Clipboard Transfer Model Overview”

¢ “Interaction Between the Primary and Clipboard Transfer Models”

Primary Transfer Model Overview

When the user selects some data in an application, the application should highlight that
data and assert ownership of the PRIMARY selection. Until the application loses the
PRIMARY selection, it should then be prepared to respond to requests for the selected
data in various target formats. “Supported Target Formats” on page 113 describes the
standard target formats.

When the user selects data in another application, your application loses ownership of
the PRIMARY selection. In general, when your application loses the primary selection, it
should keep its current selection highlighted. When a user has selections highlighted in
more than one window at a time, the most recent selection is always the primary
selection. This is consistent with the persistent always selection discussed in Section 4.2,
“Selection Actions,” in the OSE/Motif Style Guide, Release 1.2. There is an exception to this
guideline: those applications that use selection only for primary transfer, for example, the
winterm shell window. The only reason for users to select text in a shell window is to
transfer that text using the primary transfer mechanism. In this case, when the winterm
window loses the primary selection, the highlighting is removed. This is referred to as
nonpersistent selection in Section 4.2, “Selection Actions,” in the OSF/Motif Style Guide,
Release 1.2.

The persistent always selection mechanism allows the user to have data selected in different
applications. The user can still manipulate selected data using application controls.
Furthermore, the user can reassert the selected data as the PRIMARY selection by
pressing <Al t - | nsert >.

Data Exchange Overview

When the user clicks the middle mouse button (BTransfer) in your application, your
application should attempt to copy the primary selection to the current location of the
mouse pointer. First, your application should request a list of target formats supported
by the primary selection owner. Then your application should select the most
appropriate target format and request the primary selection in that format.

“Supporting the Primary Transfer Model” in Chapter 5 of the Indigo Magic User Interface
Guidelines further discusses use of the Primary Transfer Model.

Clipboard Transfer Model Overview

When the user selects the “Copy” option from your application’s Edit menu (or uses the
keyboard accelerator), your application should assert ownership of the CLIPBOARD
selection. Until the application loses the CLIPBOARD selection, it should then be
prepared to respond to requests for the data selected at the time your application took
ownership of the CLIPBOARD selection. (In other words, your application must
somehow store the value of the selection when the user performs the copy action; the
application can then provide this value even if the user subsequently changes the
application’s selection.)

When the user selects the “Cut” option for your application’s Edit menu (or uses the
keyboard accelerator), your application should assert ownership of the CLIPBOARD
selection. Your application must cut the selected data, but it should store the data and be
prepared to respond to requests for the data until it loses ownership of the CLIPBOARD
selection.

When the user selects the “Paste” option for your application’s Edit menu (or uses the
keyboard accelerator), your application should attempt to copy the clipboard selection to
the current location of the location cursor. First, your application should request a list of
target formats supported by the clipboard selection owner. Then your application should
select the most appropriate target format and request the clipboard selection in that
format.

“Supporting the Clipboard Transfer Model” in Chapter 5 of the Indigo Magic User
Interface Guidelines further discusses use of the Clipboard Transfer Model.

105

Chapter 7: Interapplication Data Exchange

106

Interaction Between the Primary and Clipboard Transfer Models

Silicon Graphics recommends that you implement the Primary and Clipboard Transfer
Models so that they operate separately. The only complication is maintaining data in the
PRIMARY selection when the user performs a cut action. Consider the following
example:

1. The user selects data in an application. The application asserts ownership of the
PRIMARY selection.

2. The user performs a cut action. The application asserts ownership of the
CLIPBOARD selection and removes the selected data from the display.

3. The user goes to another application that already has data selected.

4. The user cuts the data selected in the second application. The second application
asserts ownership of the CLIPBOARD selection and removes the selected data from
the display.

The clipboard actions described above should not affect the PRIMARY selection. In this
example, the first application should retain ownership of the PRIMARY selection and
continue to be prepared to respond to requests for the value of the PRIMARY selection.
To support this, the application should somehow store the value of the PRIMARY
selection until it no longer owns the PRIMARY selection.

To properly handle the situation described above, your application should implement
the following:

1. In the function that handles the Clipboard Transfer Model’s cut action, test to see
whether the application owns the PRIMARY selection. If it does, you should
preserve the selected data. If selections in your application are typically small (for
example, ASCII text), you might simply copy the data to a buffer. If selections in
your application are typically large (for example, sound or movie clips), you might
remove the data from the display but retain pointers to it.

2. In the function that handles losing the PRIMARY selection, test to see whether you
have data preserved from a cut action. If so, and the application currently doesn’t
own the CLIPBOARD selection, you should free that data or reset the pointers to it.

Implementing the Primary Transfer Model

Implementing the Primary Transfer Model

This section describes how to implement support for the Primary Transfer Model in your
application. Topics covered include:

* “Data Selection”

* “Requests for the Primary Selection”
* “Loss of the Primary Selection”

¢ “Inserting the Primary Selection”

Note: Silicon Graphics recommends that you don’t use the IRIS IM clipboard routines,
because they are not as flexible as the Xt selection routines.

Data Selection

When the user selects data in a window of your application, it should call
XtOwnSelection(3Xt) to assert ownership of the PRIMARY selection and highlight the
selected data.

The code fragment in Example 7-1 shows a simple example of asserting ownership of the
PRIMARY selection. For clarity, this example omits code for manipulating the selection
itself (for example, setting up pointers to the selection).

“Selection” in Chapter 7 of the Indigo Magic User Interface Guidelines discusses guidelines
for allowing users to select data and for hightlighting selected data.

Example 7-1 Asserting Ownership of PRIMARY Selection
Bool ean ownPri nary;
/*

w i s window in which selection occurred

event is pointer to event that caused sel ection
*/

voi d dat aSel ect ed(Wdget w, XButtonEvent *event)
{

/*

107

Chapter 7: Interapplication Data Exchange

Assert ownership of PRI MARY sel ecti on.

XA_PRI MARY is the slection.

event->tine is timestanp of the event.

pri maryRequest Cal | back is the function called
whenever anot her application requests the
val ue of the PRI MARY sel ection.

| ost PrimaryCal | back is the function called whenever
the application | oses the selection.

*/

ownPri mary = Xt OwmnSel ection(w, XA PRI MARY, event->tineg,
pri mar yRequest Cal | back,
| ost Pri maryCal | back,
NULL) ;

/*
If we successfully obtained ownership, highlight
the data; otherw se, clean up

*/

if (ownPrinmary)
hi ghl i ght Sel ecti on();
el se
l ostPrimaryCal | back(w, XA PRI MARY);

Requests for the Primary Selection

When you assert ownership of the PRIMARY selection, one of the parameters you pass
to XtOwnSelection() is a callback function to handle requests for the value of the
PRIMARY selection. When another application requests the value of the PRIMARY
selection, the Xt selection mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a requestor first
asks for the special target format TARGETS. Your application should respond with a list
of target formats it supports. The requestor then chooses an appropriate target format
and requests the selection value in that format. “Supported Target Formats” on page 113
describes some of the common target formats your application should support.

108

Implementing the Primary Transfer Model

Loss of the Primary Selection

When your application loses the PRIMARY selection and your application follows the
persistent always selection model discussed in “Primary Transfer Model Overview” on
page 104, don’t remove the highlight from any selected data. The user should still be able
to cut or copy any selected data using the Clipboard Transfer Model. If your application
follows the nonpersistent selection model as discussed in “Primary Transfer Model
Overview,” you should remove the highlight.

Your application should also test to see whether you have data preserved from a cut
action (see “Cut Actions” on page 110). If so, and your application currently doesn’t own
the CLIPBOARD selection, you should free that data or reset the pointers to it.
“Interaction Between the Primary and Clipboard Transfer Models” on page 106 describes
the rationale for this procedure.

Note: To comply with the Indigo Magic User Interface Guidelines, if the user presses
<Al t- | nsert >in your application, you should reassert ownership of PRIMARY for your
application.

Inserting the Primary Selection

When the user clicks the middle mouse button in your application, it should perform the
steps described below.

1. Your application should ask the owner of the PRIMARY selection for a list of its
TARGETS, using XtGetSelectionValue() with selection PRIMARY and target
TARGETS.

2. Your application should look through the list of supported targets, select the one
that is appropriate for your application, and call XtGetSelectionValue() again with
that new target.

3. If the selection owner does not support TARGETS, then your application should ask
for the target STRING, if it can support that target.

Silicon Graphics recommends that you support STRING, even if your application
doesn’t support text. For instance, a movie player could get the selection as a string
and try to parse it as a filename. That way users could select a filename in a terminal
emulator window and paste it into another application.

109

Chapter 7: Interapplication Data Exchange

Implementing the Clipboard Transfer Model

110

This section describes how to implement support for the Clipboard Transfer Model in
your application. Topics include:

“Cut Actions”

“Copy Actions”

“Requests for the Clipboard Selection”
“Paste Actions”

“Loss of the Clipboard Selection”

Cut Actions

When the user performs a cut action, your application should:

1.
2.

Call XtOwnSelection(3Xt) to assert ownership of the CLIPBOARD selection.

Remove the selected data from the display. Retain the selected data until your
application loses ownership of the CLIPBOARD selection.

Test to see whether the application owns the PRIMARY selection. If it does, you
should preserve the selected data, even after losing ownership of the CLIPBOARD
selection. You should retain the data until your application also loses ownership of
the PRIMARY selection.

If selections in your application are typically small (for example, ASCII text), you
might simply copy the data to a buffer. If selections in your application are typically
large (for example, sound or movie clips), you might remove the data from the
display but retain pointers to it.

The code fragment in Example 7-2 shows a simple example of handling a cut action and
asserting ownership of the CLIPBOARD selection. For clarity, this example omits code
for manipulating the selection itself (for example, setting up pointers to the selection).

Example 7-2 Handling Cut Actions in the Clipboard Transfer Model

Bool ean ownPri nary;
Bool ean pri maryPreserved;

/*

w i s window in which selection occurred
event is pointer to event that caused sel ection

Implementing the Clipboard Transfer Model

*/

voi d sel ectionCut (Wdget w, XButtonEvent *event)

.}*

Assert ownership of CLIPBOARD sel ecti on.

XA CLI PBOARD i s the selection.
event->time is timestanp of the event.
cl i pboar dRequest Cal | back is the function called

*/

whenever anot her application requests the
val ue of the CLIPBOARD sel ection.

ost Cl i pboardCal | back is the function called whenever
the application | oses the selection.

ownCl i pboard = Xt OmSel ection(w, XA CLI PBOARD, event->tine,

if
{
/*
*/
pr

/*

*/

if

cl i pboar dRequest Cal | back,
| ost d i pboar dCal | back,
NULL) ;

ownCl i pboar d)

Retain the selected data until the application |oses
ownershi p of the CLIPBQARD sel ection.

eserveC i pboardSel ection();

If we al so own the PRI MARY sel ection, we need to
preserve the selected data separately so that we can
continue to satisfy requests for the PRI MARY sel ection
even if we | ose the CLI PBOARD sel ecti on.

(ownPri mary)
primaryPreserved = preservePrimarySel ection();

111

Chapter 7: Interapplication Data Exchange

112

Copy Actions

When the user performs a copy action, your application should call
XtOwnSelection(3Xt) to assert ownership of the CLIPBOARD selection. No other
actions are required.

Requests for the Clipboard Selection

When you assert ownership of the CLIPBOARD selection, one of the parameters you
pass to XtOwnSelection() is a callback function to handle requests for the value of the
CLIPBOARD selection. When another application requests the value of the CLIPBOARD
selection, the Xt selection mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a requestor first
asks for the special target format TARGETS. Your application should respond with a list
of target formats it supports. The requestor then chooses an appropriate target format
and requests the selection value in that format. “Supported Target Formats” on page 113
describes some of the common target formats your application should support.

Paste Actions

When the user selects “Paste” from the File menu, your application should:

1. Ask the owner of the CLIPBOARD selection for a list of its TARGETS, using
XtGetSelectionValue() with selection CLIPBOARD and target TARGETS.

2. Look through the list of supported targets, select the one that is appropriate for your
application, and call XtGetSelectionValue() again with that new target.

3. If the selection owner doesn’t support TARGETS, then your application should ask
for the target STRING,, if it can support that target.

Silicon Graphics recommends that you support STRING, even if your application
doesn’t support text. For instance, a movie player can get the selection as a string
and try to parse it as a filename. That way users can select a filename in a terminal
emulator window and paste it into another application.

Supported Target Formats

Loss of the Clipboard Selection

When your application loses the Clipboard selection, don’t remove the highlight from
any selected data. The user should still be able to cut or copy any selected data. Your
application can discard any data it had retained as a result of a cut operation (see “Cut
Actions” on page 110).

Supported Target Formats

Every application should support the TARGETS, TIMESTAMP, MULTIPLE, and STRING
targets. The Xt selection functions support the MULTIPLE targets for you.
XmuConvertStandardSelection() supports the TIMESTAMP target. (Silicon Graphics
recommends that applications use XmuConvertStandardSelection() because it also
supports HOSTNAME, NAME, CLIENT_WINDOW, and a variety of other useful
targets.) Your application must support the TARGETS and STRING targets itself. In
addition, Silicon Graphics has defined other targets for data types used by Silicon
Graphics applications and libraries.

The tables that follow list supported target formats:

e Table 7-1 lists target names for audio formats

¢ Table 7-2 shows target names for image formats

e Table 7-3 presents target names for movie formats

¢ Table 7-4 lists target names for 3D graphics formats

e Table 7-5 shows target names for Silicon Graphics data types

¢ Table 7-6 shows target names for World Wide Web formats

113

Chapter 7: Interapplication Data Exchange

114

Table 7-1 Audio Formats

Name of Atom/Target

Description

ATFF_FILE

AIFF_C_FILE

NEXT_FILE

SD2_FILE

WAVE_FILE
MPEG_1_AUDIO_FILE

MPEG_1_AUDIO
SGI_AUDIO_FILE

SGI_AUDIO

Audio Interchange Format, used on Apple systems.

Modified version of Apple’s AIFF, compatible with SGI
systems.

Used on Next and Sun systems.
Sound Designer 2 format
Microsoft Wave format

MPEG Audio. The name of a file that contains MPEG-1 audio
data.

Stream of audio data, in MPEG-1 Stream format.

The name of a file that contains Silicon Graphics format sound
data, that can be read using libaudiofile. The file is the
responsibility of the receiver, once the selection owner has
generated it.

Stream of audio data, readable with the SGI audio library.

Table 7-2 Image Formats

Name of Atom/Target

Description

FITS_FILE

GIF_89
GIF_89_FILE
JFIF_FILE
DIB_FILE
PHOTO_CD_FILE
PPM_FILE

PNM_FILE

Flexible Image Transport System

Graphics Interchange Format (streaming bit format)
Graphics Interchange Format (file format)

JPEG File Interchange Format

Microsoft image format

Kodak photo CD

Portable pixmap format

Portable anymap format

Supported Target Formats

Table 7-2 (continued) Image Formats

Name of Atom/Target Description
PGM_FILE Portable graymap format
SGI_RGBIMAGE_FILE The name of a file that contains a Silicon Graphics format

image file. This is an rgb file. The file is the responsibility of the
receiver, once the selection owner has generated it.

SGI_RGBIMAGE The rgb image data stream.
TIFF_FILE Tagged Image File Format
Table 7-3 Movie Formats

Name of Atom/Target Description

APPLE_QUICKTIME_FILE Apple Quicktime[format

AVID_OMFI_FILE AVID OMFIJ

AVI_FILE Microsoft AVIO format
MPEG_1_VIDEO_FILE Motion Picture Experts Group MPEG-1 file
MPEG_1_VIDEO Stream format

MPEG_1_SYSTEMS_FILE Motion Picture Experts Group MPEG-1 system:s file

MPEG_1_SYSTEMS Stream format
SGI_MOVIE_FILE SGI movie format
SGI_MOVIE Stream format

Table 7-4 3D Graphics Formats

Name of Atom/Target Description

INVENTOR_2_1 SGI Open Inventor V2.1 data
INVENTOR_2_1_FILE SGI Open Inventor V2.1 file
AUTODESK_DXF_FILE AUTODESK DXFO
AUTODESK_3DS_FILE AUTODESK 3DSO
ALIAS_FILE Alias wire file

115

Chapter 7: Interapplication Data Exchange

Table 7-4 (continued) 3D Graphics Formats

Name of Atom/Target Description
IGES_FILE IGES file
PIXAR_RIB_FILE Pixar Renderman .RIB file

SOFTIMAGE_HRC_FILE Softimage .hrc file
SOFTIMAGE_DSC_FILE Softimage .dsc file
WAVEFRONT_OBJ_FILE Wavefront .OB]J file
VRML_1_0_FILE VRML 1.0 file

Table 7-5 Additional Data Types Supported by Silicon Graphics

Name of Atom/Target Description

INVENTOR Synonym for INVENTOR_2_0.
_SGI_RGB_IMAGE_FILENAME Replaced by SGI_RGBIMAGE_FILE.
_SGI_RGB_IMAGE Replaced by SGI_RGBIMAGE.
_SGI_AUDIO_FILENAME Replaced by SGI_AUDIO_FILE.
_SGI_AUDIO Replaced by SGI_AUDIO.
_SGI_MOVIE_FILENAME Replaced by SGI_MOVIE_FILE.
_SGI_MOVIE Replaced by SGI_MOVIE.
SGI_SHOWCASE_FILE Name of file containing SGI Showcase data.

116

Data Conversion Service

Caution: Xtimplements a timeout when transferring data using the selection
mechanism. The default is five seconds. Often, this is inadequate for applications
transferring audio, image, or movie data. Therefore, if your application supports
receiving such selections, you should call XtAppSetSelectionTimeout() to change the
timeout to a larger value.

Table 7-6 World Wide Web Targets

Type of Atom/Target Description

HTML Hypertext Markup Language as an
ASCII Stream.

HTML_FILE Name of the file containing HTML.

Note: Silicon Graphics applications should also support the generic X11/ICCCM targets
such as STRING and COMPOUND_TEXT.

Data Conversion Service

Silicon Graphics provides GoldenGate data conversion service to help you convert data
from one format to another, offloading the responsibility for data conversion from your
application. See Appendix G, “Using GoldenGate Data Conversion Services,” for more
information.

The GoldenGate conversion service consists of four elements:

the header file, /usr/include/convert/SgCut.h

the conversion library, libcvt.so

the converter registry file, /etc/ConverterRegistry

a set of pluggable converters

The header file and library provide the Application Programmatic Interface (API) for the
service. The converter registry file describes the converters available to the service. The
actual code for the converters is stored in separate Dynamic Shared Objects (DSOs).
When an application program tries to access a converter, the service dynamically loads
the associated DSO.

117

Chapter 7: Interapplication Data Exchange

118

The GoldenGate API uses Digital Media parameter-value lists to describe data formats.
See the IRIS Media Libraries Programming Guide for information on how to use the Digital
Media library to create and manipulate digital media parameter-value lists.

The Converter Registry

The converter registry contains entries describing each converter available to the service.
Each converter entry lists the data format that the converter takes as input, the format
that the converter produces as output, and information that allows the service to locate
the converter code.

The converter registry can also contain entries defining pipelines. A pipeline is a set of
converters connected in series, with the output of one converter feeding the next. As far
as application programs are concerned, a pipeline is just another converter.

The GoldenGate API

All programs using the GoldenGate API should include the libSgCut header file:
#i ncl ude <convert/ SgCvt. h>

The GoldenGate API uses a fairly simple programming model. For application
programs, the most complicated part of the conversion process is picking an appropriate
converter.

Once the application program has picked a converter, it initializes the conversion
pipeline, and proceeds to send data through the pipeline. The pipeline is a “black box.”
It may consist of one converter, or several converters running in series. The API for
application programs using the service is described in Appendix G, “Using GoldenGate
Data Conversion Services.”

Converters, on the other hand, must read data from the pipeline, convert it, and write
data back to the pipeline. Again, the pipeline is a black box. A converter can’t tell if its
input is coming from another converter, or from an application program. Likewise, it
can't tell if its output is going to another converter or back to the application program.
Designing converters is discussed in Appendix G, “Using GoldenGate Data Conversion
Services.”

Chapter 8

Monitoring Changes to
Files and Directories

Typically, if applications need to monitor the status of a file or directory they
must periodically poll the filesystem. The File Alteration Monitor (FAM)
provides a more efficient and convenient method.

Chapter 8

FAM Overview

Monitoring Changes to Files and Directories

The File Alteration Monitor (FAM) monitors changes to files and directories in the
filesystem and notifies interested applications of these changes. Your application can use
FAM to get an up-to-date view of the filesystem rather than having to poll the filesystem.
This chapter describes the required libraries and provides a basic list of steps for using
FAM. For more detailed information, refer to the fam(1M) and FAM(3X) reference pages.
This chapter contains these sections:

* “FAM Overview” on page 121 provides an overview to FAM including the libraries
and header files needed to use FAM in your application.

¢ “The FAM Interface” on page 123 describes the FAM API.
* “Using FAM” on page 132 provides a simple example demonstrating FAM.

Typically, if applications need to monitor the status of a file or directory, they must
periodically poll the filesystem. FAM provides a more efficient and convenient method.

FAM consists of the FAM daemon, fam, and a library for interacting with this daemon.
An application can request fam to monitor any files or directories in the filesystem. When
fam detects changes to these files, it notifies the application.

This section provides an overview of FAM and describes:

¢ “Theory of Operation” on page 122

¢ “FAM Libraries and Include Files” on page 122

121

Chapter 8: Monitoring Changes to Files and Directories

122

Theory of Operation

FAM uses imon, a pseudo device, to monitor filesystem activity on your system on a
file-by-file basis. You can refer to the imon(7) reference page for more information on its
operation, but you should not attempt to access imon directly.

When you provide FAM with the name of a file or directory to monitor, FAM passes the
request to imon, which begins monitoring the inode corresponding to the pathname.
When imon detects a change to an inode that it is monitoring, it notifies FAM, which
matches the inode to a corresponding filename. FAM then generates a FAM event on a
socket. Your application can either monitor the socket or periodically poll FAM to detect
FAM events.

This difference between FAM and imon can produce some unexpected results. For
example, if a user moves a file, FAM reports that the file is deleted. The reason is that
FAM monitors files by name and not inode, so it doesn’t know that the file still exists.

Note: Unlike local files and directories, FAM monitors NFS-mounted files and
directories by name rather than by inode.

As another example, consider the case where FAM is monitoring a file. If the user deletes
the file, FAM correctly reports that fact. Then FAM polls the directory every few seconds
to see if the file has been created. If you need to detect the creation of a given file by name,
you may want to monitor the directory in which it will be created and watch for FAM
events notifying the creation of a file by that name in the directory.

Whenever FAM is asked to monitor a file/directory that resides on a remote (NFS)
filesystem, FAM tries to make a connection to the FAM on the NFS server. If it succeeds,
it asks the server fam to monitor the file. The server FAM sends FAM events, and the
original FAM translates those events to a form its client can use. If FAM can’t connect to
FAM on the server, it monitors the file itself by polling every few seconds. Polling over
NFS has a high overhead.

FAM Libraries and Include Files

The FAM interface routines are in the libfam library. libfam depends on the [ibC library. Be
sure to specify -Ifam before -1C in the compilation or linking command. If you are using
fam from a C++ program, libC is included automatically. You must include /ibC if you are
using fam from a C program.

The FAM Interface

The FAM Interface

You must include <fam.h> in any source file that uses FAM. You must also include
<sys/select.h> if you use the select(2) system call.

This section describes the functions you use to access FAM from your application:
* “Opening and Closing a FAM Connection” on page 123

* “Monitoring a File or Directory” on page 124

* “Suspending, Resuming, and Canceling Monitoring” on page 125

e “Detecting Changes to Files and Directories” on page 126

e “FAM Examples” on page 131

Opening and Closing a FAM Connection

The function FAMOpen() opens a connection to fam:
i nt FAMOpen(FAMConnect i on* fc)

FAMOpen() returns 0 if successful and -1 if unsuccessful. FAMOpen() initializes the
FAMConnection structure passed to it, which you must use in all subsequent FAM
procedure calls in your application.

An element of the FAMConnection structure is the file descriptor associated with the
socket that FAM uses to communicate with your application. You need this file descriptor

to perform select() operations on the socket. You can obtain the file descriptor using the
FAMCONNECTION_GETFD() macro:

FAMCONNECTI ON_GETFIX fc)

The function FAMOpen2 tells FAM the application’s name:
i nt FAMOpen2(FAMConnecti on* fc, const char* appNane)

FAM uses appName when it prints debugging messages.

123

Chapter 8: Monitoring Changes to Files and Directories

124

The function FAMClose() closes a connection to fam:
i nt FAMC ose(FAMConnect i on* fc)

FAMClose() returns 0 if successful and -1 if unsuccessful.

Monitoring a File or Directory

FAMMonitorDirectory() and FAMMonitorFile() tell FAM to start monitoring a
directory or file respectively:

i nt FAMMbni t or Di r ect or y(FAMConnecti on *fc,
char *filename,
FAMRequest * fr,
voi d* userData)

i nt FAM\Vbni t or Fi | e(FAMConnecti on *fc,
char *filename,
FAMRequest * fr,
voi d* userData)

FAMMonitorDirectory() monitors not only changes that happens to the contents of the
specified directory file, but also to the files in the directory. If the directory contains
subdirectories, FAMMonitorDirectory() monitors changes to the subdirectory files, but
not the contents of those subdirectories. FAMMonitorFile() monitors only what happens
to the specified file. Both functions return 0 if successful and -1 otherwise.

The first argument to these functions is the FAMConnection structure initialized by
FAMOpen(). The second argument is the full pathname of the directory or file to
monitor. Note that you can’t use relative pathnames.

The third argument is a FAMRequest structure that these functions initialize. You can
pass this structure to FAMSuspendMonitor(), FAMResumeMonitor(), or
FAMCancelMonitor() to respectively suspend, resume, or cancel the monitoring of the
file or directory. “Suspending, Resuming, and Canceling Monitoring” on page 125
further describes these functions.

The fourth argument is a pointer to any arbitrary user data that you want included in the
FAMEvent structure returned by FAMNextEvent() when this file or directory changes.

The FAM Interface

FAM then generates FAM events whenever it detects changes in monitored files or
directories. “Detecting Changes to Files and Directories” on page 126 describes how to
detect and interpret these events.

Two similar routines are FAMMonitorDirectory2() and FAMMonitorFile2():

int FAMMoni torDirectory2(FAMConnection *fc,
char *filenaneg,
FAMRequest* fr);

int FAWMoni torFi|l e2(FAMConnection *fc,
char *fil enane,
FAMRequest* fr);

In these routines, the caller picks the request number, not libfam. The caller specifies the
request number by putting it in the FAMRequest before calling the routine. For example:

FAMConnecti on fc;
FAMRequest fraq;

frg.regnum = sone_nunber _associ ated_wi th_tnp;
if (FAWbnitorDirectory2(&c, “/tmp”, &rq) < 0)
perror(“can’t nonitor /tnp”);

If you use the -2 routines, you must choose unique request numbers. See
FAMA cknowledge below.

It’s up to you to determine which routines to use: the -2 routines or the original routines.

Suspending, Resuming, and Canceling Monitoring

Once you've begun monitoring a file or directory, you can cancel monitoring or
temporarily suspend and later resume monitoring.

FAMSuspendMonitor() temporarily suspends monitoring a file or directory.
FAMResumeMonitor() resumes monitoring the file or directory. Suspending file
monitoring can be useful when your application does not need to display information
about a file (for example, when your application is iconified).

Note: FAM queues any changes that occur to the file or directory while monitoring is
suspended. When your application resumes monitoring, FAM notifies it of any changes.

125

Chapter 8: Monitoring Changes to Files and Directories

126

The syntax for these functions is:
i nt FAMBuspendMoni t or (FAMConnection *fc, FAVMRequest *fr);

i nt FAMResureMoni t or (FAMConnection *fc, FAMRequest *f);

fcis the FAMConnection returned by FAMOpen(), and fr is the FAMRequest returned by
either FAMMonitorFile() or FAMMonitorDirectory(). Both functions return 0 if
successful and -1 otherwise.

When your application is finished monitoring a file or directory, it should call
FAMCancelMonitor():

i nt FAMCancel Moni t or (FAMConnecti on *fc, FAVRequest *fr)

FAMCancelMonitor() instructs FAM to no longer monitor the file or directory specified
by fr. It returns 0 if successful and -1 otherwise.

After you call FAMCancelMonitor(), FAM sends a FAMAcknowledge event. When
you've seen the FAMAcknowledge event, you know it’s safe to re-use the request
number (if you're using the -2 form monitoring routines).

Detecting Changes to Files and Directories

Whenever FAM detects changes in files or directories that it is monitoring, it generates a
FAM event. Your application can receive FAM events in one of two ways:

The Select approach
Your application performs a select(2) on the file descriptor in the
FAMConnection structure returned by FAMOpen(). When this file
descriptor becomes active, the application calls FAMNextEvent() to
retrieve the pending FAM event.

The Polling approach
Your application periodically calls FAMPending() (typically when the
system is waiting for input). When FAMPending() returns with a
positive return value, your application calls FAMNextEvent() to retrieve
the pending FAM events.

FAMPending() has the following syntax:
i nt FAMPendi ng(FAMConnect i on *fc)

The FAM Interface

It returns 1 if there is a FAM event queued, 0 if there is no queued event, and -1 if there
is an error. FAMPending() returns immediately (that is, it does not wait for an event).

Once you have determined that there is a FAM event queued, whether by using the select
or polling approach, call FAMNextEvent() to retrieve it:

i nt FAWNext Event (FAMConnection *fc, FAMEvent *fe)

FAMNextEvent() returns 0 if successful and -1 if there is an error. The first argument to
FAMNextEvent() is the FAMConnection structure initialized by FAMOpen(). The
second argument is a pointer to a FAMEvent structure, which FAMNextEvent() fills in
with information about the FAM event. The format of the FAMEvent structure is:

t ypedef struct {
FAMConnecti on* fc;
FAMRequest fr;
char *hostname;
char filename[PATH_MAX] ;
voi d *userdata;

FAMCodes code;
} FAMEvent;

fc is the FAMConnection structure initialized by FAMOpen().

fr is the FAMRequest structure returned by either FAMMonitorFile() or
FAMMonitorDirectory() when you requested that FAM monitor the file or directory that
changed.

hostname is an obsolete field. Don’t use it in your applications.

filename is either the full pathname of the file or directory that you monitored or the name
of a file in a directory that you monitored.

userdata is the arbitrary data pointer that you provided when you called either
FAMMonitorFile() or FAMMonitorDirectory() to monitor this file or directory. If you
used the -2 routine, FAMMonitorDirectory2() or FAMMonitorFile2(), userdata is
undefined.

127

Chapter 8: Monitoring Changes to Files and Directories

128

code is an enumerated value of type FAMCodes that describes the change that occurred.
It can take any of the following values:

FAMChanged Some value of the file or directory that can be obtained with Istat(2)
changed.

FAMDeleted A file or directory being monitored was deleted.

FAMStartExecuting
A monitored, executable file started executing. The event occurs only the
first time the file is executed.

FAMStopExecuting
A monitored, executable file that was running finished. If multiple
processes from an executable are running, this event is generated only
when the last one finishes.

FAMCreated A file was created in a directory being monitored.

FAMAcknowledge
FAM generates a FAMAcknowledge event in response to a call to
FAMCancelMonitor(). If you specify an invalid request, that is, a
relative path, FAM automatically cancels the request and immediately
sends a FAMAcknowledge event.

FAMExists When the application requests that a file be monitored, FAM generates
a FAMEXxists event for that file (if it exists). When the application
requests that a directory be monitored, FAM generates a FAMExists
event for that directory (if it exists) and every file contained in that
directory.

FAMEndExist When the application requests a file or directory be monitored, FAM
generates a FAMEndExist event after the last FAMEXxists event.
(Therefore if you monitor a file, FAM generates a single FAMExists event
followed by a FAMEndExist event.)

Note: Prior to IRIX 6.2, FAMNextEvent() did not initialize the filename
field in a FAMEndExist event. You should use the request number to
find the file or directory these events reference.

The FAM Interface

Symbolic Links

If you specify the pathname of a symbolic link to FAMMonitorDirectory() or
FAMMonitorFile(), FAM monitors only the symbolic link itself, not the target of the link.
Although it might seem logical to automatically monitor the target of a symbolic link,
consider that if the target is on an automounted filesystem, monitoring the target triggers
and holds an automount. Another reason to monitor the link instead of the target is that
the target may not exist.

There is no general solution for monitoring targets of symbolic links. You might decide
that it’s appropriate for your application to monitor a target even if it’s automounted.

Tip: The libc routine realpath(3C) is useful when you need to resolve a link into its
ultimate target.

Tip: Use statvfs(2) to recognize a remote file.

On the other hand, to avoid triggering and holding an automount, you can manually
follow symbolic links until you reach either a local target, which you can then monitor,
or a non-existent filesystem, in which case you might decide not to monitor the target.
Another option is to test the target once to see if it is local, which triggers an automount
only once if the target is automounted.

For example, the following routine determines if a given path is nonexistent, a dangling
link, local, or remote.

#i ncl ude <errno. h>
#include <linmts. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/stat.h>

#i ncl ude <sys/statvfs. h>

/*

* determine a file' s |location

*/

enum | ocation { ERROR, NONEXI STENT, DANGLI NG LOCAL, REMOTE };

enum | ocati on
file_location(const char *path)

129

Chapter 8: Monitoring Changes to Files and Directories

{
char target_pat h[PATH_MAX] ;
struct stat statbuf;
struct statvfs svfsbuf;
if (!real path(path, target_path))
{
/*
* realpath failed -- probably a perm ssion
* problem dangling link or nonexistent file.
*/
if (errno == EACCES)
return ERROR;
if (Istat(path, &statbuf) == 0)
return DANGLI NG
else if (errno == ENOCENT)
return NONEXI STENT;
el se
return ERROR;
}
/*
* Real path succeeded. Find out if file is |ocal.
*/
if (statvfs(target_path, &svfsbuf) < 0)
return ERROR;
if (svfsbuf.f_flag & ST_LOCAL)
return LOCAL;
el se
return REMOTE;
}

130

The FAM Interface

FAM Examples

The following examples show event streams that FAM sends in certain situations.

Example: A client monitors an existing file. Later, another program appends data to the
file. Even later, the client cancels the monitoring request.

User calls FAMVbnitorFile(... “/alblc” ...)
FAM event s: FAMEXi st's lalblc
FAMENdEXi st lalblc

O her program appends to file.

FAM event : FAMChanged lalblc
User calls FAMCancel Monitor(...)
FAM event: FAMAcknowl edge /al/b/c

Example: A client monitors a directory containing two files. Later, another program
creates a third file.

User calls FAMVbni torDirectory(... “/alb” ...)
FAM event s: FAMEXi st s lalb

FAMEXi st's file_one

FAMEXi st's file_two

FAMENdEXi st lalb
Third file created.

FAMCr eat ed file_ three

Example: A client monitors an executable file which is already running. Later, the
program exits.

User calls FAMVbnitorFile(... “/alb/progrant ...)
FAM event s: FAMEXi st's [al b/ program
FAMENdEXi st [al b/ program

FAMSt ar t Executing /al/ b/ program
Programexits.
FAM event : FAMSt opExecuting /al/ b/ program

Example: A client makes an invalid request.

User calls FAMMVbni torDirectory(... “relative/path” ...)
FAM event: FAMAcknow edge rel ative/path

131

Chapter 8: Monitoring Changes to Files and Directories

Using FAM

132

Example: A client monitors a nonexistent file. Later, another program creates the file.

User calls FAMVbni torFile(... “/alblc” ...)
FAM event s: FAMDel et ed /alblc
FAMENdEXi st
File is created.
FAM event : FAMCr eat ed /alblc

Example: A client monitors a directory containing some files. Another program deletes
the directory, then creates a new file with the same name as the directory.

User calls FAMMVbni torDirectory(... “/alb” ...)

FAM event s: FAMEXi st s lalb
FAMEXi st s file_one
FAMEXi st s file two
FAVENdEXi st lalb

Directory and files are del eted.

FAM event s: FAMDel et ed lalb
FAMChanged lalb
FAMDel et ed file_one
FAMDel et ed file two

File with same name created.

FAM event s: FAMCr eat ed lalb
FAMChanged lalb

As noted in “Detecting Changes to Files and Directories” on page 126, your application
can check for changes in files in directories that it monitors in two ways:

¢ use select() to wait until the FAM socket is active, indicating a change, which is
described in “Waiting for File Changes.”

* use FAMPending() to periodically poll FAM, which is explained in “Polling for File
Changes.”

This section describes how to use both approaches.

Using FAM

Waiting for File Changes

Follow these steps to use FAM in your application, using the select approach to detect
changes:

1. Call FAMOpen() to create a connection to fam. This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMMonitorFile() and FAMMonitorDirectory() to tell fam which files and
directories to monitor.

3. Select on the fam socket file descriptor and call FAMNextEvent() when the fam
socket is readable.

4. When the application is finished monitoring a file or directory, call
FAMCancelMonitor(). If you want to temporarily suspend monitoring of a file or
directory, call FAMSuspendMonitor(). When you're ready to start monitoring
again, call FAMResumeMonitor().

5. When the application no longer needs to monitor files and directories, call
FAMClose() to release resources associated with files still being monitored and to
close the connection to fam. This step is optional if you simply exit your application.

Example 8-1 demonstrates this process in a simple program.

Example 8-1 Using Select With FAM

/*

* monitor.c -- nonitor arbitrary file or directory
* using fam

*/

#i ncl ude <fam h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/stat.h>
#i ncl ude <sys/sel ect. h>

/* event _nane() - return printable name of fam event code */
const char *event _nane(int code)
{

static const char *famevent[] = {

"FAMChanged",
"FAMDel et ed",

133

Chapter 8: Monitoring Changes to Files and Directories

"FAMSt ar t Executi ng"”,
" FAMSt opExecut i ng",
"FAMCr eat ed",
"FAMVvbved",
"FAMAcknowl edge",
"FAMEXi sts",
" FAMEndEXxi st "

s

static char unknown_event[10];

if (code < FAMChanged || code > FAMENndExi st)

{
sprintf(unknown_event, "unknown (%l)", code);
return unknown_event;

}

return fanevent[code];

}

void main(int argc, char *argv[])
{

int i, nmon, rc, famfd;

FAMConnecti on fc;

FAMRequest *frp;

struct stat status;

FAMEvent fe;

fd_set readfds;

/* Al'locate storage for requests */

frp = malloc(argc * sizeof *frp);

if ('frp)

{
perror("malloc");
exit(1);

}

/* Open fam connection */
if ((FAMpen(&fc)) < 0)
{

perror("fant);
exit(1);

134

Using FAM

/* Request nonitoring for each program argunent */

for (nmon =0, i =1; i < argc; i++)
{
if (stat(argv[i], &status) < 0)
{
perror(argvl[i]);
status. st_node = 0;
}

if ((status.st_node & S IFMI) == S I FD R)
rc = FAMbnitorDirectory(&c, argv[i], frp + i,

NULL) ;
el se
rc = FAMnitorFile(&c, argv[i], frp + i, NULL);
if (rc <0)
{
perror("FAWMni tor failed");
conti nue;
}
nnon++;
if (!nnon)
{
fprintf(stderr, "Nothing nonitored.\n");
exit(1);
}

/* Initialize select data structure */

famfd = FAMOONNECTI ON GETf d(& c) ;
FD_ZERQ(&r eadf ds) ;
FD SET(fam fd, &readfds);

/* Loop forever. */

whi | e(1)
{
if (select(famfd + 1, &readfds,
NULL, NULL, NULL) < 0)

{

perror("select failed");
exit(1);

}
if (FD_I SSET(fam fd, &readfds))
{

135

Chapter 8: Monitoring Changes to Files and Directories

136

if (FAWNext Event (& c, & e) < 0)
{
perror (" FAM\Next Event ") ;
exit(1);
}
printf("%24s %\n", fe.filenane,
event _nane(fe.code));

Polling for File Changes

Follow these steps to use FAM in your application, using the polling approach to detect

changes:

1. Call FAMOpen() to create a connection to fam. This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMMonitorFile() and FAMMonitorDirectory() to tell farmn which files and
directories to monitor.

3. Call FAMPending() to determine when there is a pending FAM event and then call
FAMNextEvent() when an event is detected.

4. When the application is finished monitoring a file or directory, call
FAMCancelMonitor(). If you want to temporarily suspend monitoring of a file or
directory, call FAMSuspendMonitor(). When you're ready to start monitoring
again, call FAMResumeMonitor().

5. When the application no longer needs to monitor files and directories, call

FAMClose() to free resources associated with files still being monitored and to close
the connection to fam. This step is optional if you simply exit your application.

For example, you could use the polling approach in the monitor.c program listed in
Example 8-1by deleting the code pertaining to the select data structure and replacing the
whi | e loop with the code shown in Example 8-2, which demonstrates this process in a
simple program.

Using FAM

Example 8-2 Polling With FAM

whi | e(1)
{
rc = FAMPendi ng(&f c) ;
if (rc == 0)
br eak;
elseif (rc == -1)

}

perror (" FAMPendi ng") ;

if (FAWNext Event (& c, &fe) < 0)

{
perror (" FAMNext Event ") ;
exit(1);

}

printf("%24s %\n", fe.filenane,

event _name(fe.code));

This is a particularly useful approach if you want to poll for changes from within an Xt
work procedure. Example 8-3 shows the skeleton code for such a work procedure.

Example 8-3 Polling FAM Within an Xt Work Procedure

Bool ean nonitorFil es(Xt Pointer clientData)

{

int rc = FAMPendi ng(&fc);

if (rc == 0)
return(FALSE) ;
elseif (rc == -1)

Xt AppEr r or (app_cont ext, "FAMPending error");

if (FAWVNext Event (& c, &fe) < 0)
{

}

handl eFi | eChange(fe);
return(FALSE) ;

Xt AppError (app_context, "FAMNextEvent error");

137

Chapter 9

Providing Online Help With SGIHelp

This chapter describes how to use Silicon Graphics” online help system,
SGIHelp, to deliver the online help for your product.

Chapter 9

Providing Online Help With SGIHelp

This chapter describes how to use the Silicon Graphics online help system, SGIHelp, to
deliver the online help for your product. It describes how to prepare the help and
integrate it into your application. It contains the following sections:

“Overview of SGIHelp” on page 141 provides an overview of the help system.
“The SGIHelp Interface” on page 144 describes the SGIHelp APIL.

“Implementing Help in an Application” on page 148 provides some examples of
implementing online help in an application.

“Application Helpmap Files” on page 153 describes the format and use of
application helpmap files.

“Writing the Online Help” on page 159 describes how to write the source files
containing your application’s online help.

“Producing the Final Product” on page 165 describes how to compile your help files
into viewable form and package them for installation on your users’ systems.

“Bibliography of SGML References” on page 166 list additional references.

The section “Online Help” in Chapter 4 of the Indigo Magic User Interface Guidelines
provides interface and content guidelines for adding online help to your application.

Overview of SGIHelp

The SGIHelp system consists of a help viewer, a help library and include file, help
document files, and optional application helpmap files. This section describes:

“The Help Viewer”
“The SGIHelp Library and Include File”
“Help Document Files”

“Application Helpmap Files”

141

Chapter 9: Providing Online Help With SGIHelp

Note: To develop online help for your application, you must install the insight_dev
product, which contains the SGIHelp library and include file, help generation tools,
examples, and templates.

The Help Viewer

The SGIHelp viewer, sgihelp(1), also referred to as the help server, displays help text in
easy-to-use browsing windows. Figure 9-1 shows an example of a help window.

File Options

Resizing Windows

You can rezize windows to help you manage sereen
#pace on your desktop. Figure 1-6 shows a
window and the areas of the border that you use to
make the window narrower, ghorter, taller, or
wider.

Horizontal Border *

=| /usripeople/debbie (ver.70)

Selecled Arrange Mew
1 1 1
Ausr/people/debbie

[+ Active Viewer

Figure 9-1 The Help Viewer

sgihelp can also display an index of all help topics available in a help document and allow
the user to select a particular topic from the list. Figure 9-2 shows an example of a help
index.

142

Overview of SGIHelp

rnes [e [rciar |

Double—click on an entry to view Help.

8 Actve nde:

Figure 9-2 The Help Index Window

sgihelp is a separate application that gets started automatically whenever an application
makes a help request. Neither users nor your application should ever need to explicitly
start sgihelp. After the user closes all help windows, sgihelp remains running in the
background for a few minutes. If it receives no other help requests within that time, it
automatically exits.

The SGIHelp Library and Include File
The Silicon Graphics help library, libhelpmsg, handles communication with the help
server. libhelpmsg depends on the [ibX11 library. Be sure to specify -lhelpmsg before -1X11

in the compilation or linking command.

For example, to compile a file hellohelp.c++ to produce the executable hellohelp, you would
enter:

CC -0 hellohel p hell ohel p.c++ -1hel pnsg -1 X11

143

Chapter 9: Providing Online Help With SGIHelp

You must include <helpapi/HelpBroker.h> in any source file that accesses online help. Both
the library and include file were developed in C, and can be used with either the C or
C++ programming languages.

Help Document Files

Help document files contain the actual help text in Standard Generalized Markup
Language (SGML) format. In addition to text, help documents can contain graphics and
hypertext links to other help topics.

Application Helpmap Files

Application helpmap files are optional; an application can request specific help topics
directly. Applications helpmap files provide a level of indirection that allows you to
structure your help presentation independently of your application code. The SGIHelp
library also uses helpmaps to make it easier for you to implement context-sensitive help
in your application.

Note: You must provide a helpmap for your application if you want a help index.

The SGIHelp Interface

144

This section describes the functions you use to access the help server from your
application:

¢ “Initializing the Help Session”
¢ “Displaying a Help Topic”
¢ “Displaying the Help Index”

Initializing the Help Session

Before calling any other help functions, your application must first call SGIHelpInit():
int SAHelplnit (Display *display, char *appClass, char *separator);

The SGIHelp Interface

display
appClass

separator

The application’s Display structure.

The application’s class name. Use the same name as you provide to
XtApplnitialize().

The separator character used by the application to separate the widget
hierarchy when a context-sensitive help request is made. At this time,
you must use the period (.).

SGIHelpInit() does not start or communicate with the help server process; it simply
initializes data structures for the other SGIHelp functions. SGIHelpInit() returns 1 on
success, and 0 on failure.

Example 9-1 shows an example of how to use SGIHelpInit().

Example 9-1

Initializing a Help Session Using SGIHelpInit()

#i ncl ude <Xm Xm h>
#i ncl ude <hel papi/ Hel pBr oker. h>

void main (int argc, char **argv)

{
W dget mai NW ndow, /* Main wi ndow shell w dget */
Xt AppCont ext app; /* An application context,
* needed by Xt
*/
int st at us; /* Return status */
/*
mai NW ndow = Xt Applnitialize (&pp, "MApp", NULL, O,
&argc, argv, NULL,
NULL, O);
/* Initialize the help session */
status = SG Hel plnit(XtD splay(mai nW ndow),
“MApp", ML)
/*
}

145

Chapter 9: Providing Online Help With SGIHelp

146

Displaying a Help Topic

To request display of a help topic from within your application, call SGIHelpMsg():
int SGA Hel pMsg (char *key, char *book, char *userData);

key Specifies either 1) the ID of a particular help topic in a help document,
or 2) a widget hierarchy:.

If you provide a help ID, the help server displays the help topic
identified in the help document specified by the book argument. You
must provide a help book name in this case. See “Writing the Online
Help” on page 159 for an explanation of help IDs.

If you provide a widget hierarchy, the help server looks in the
application’s helpmap file to find a mapping. If it doesn’t find an exact
match, it uses a fallback algorithm to determine which is the “closest”
hierarchy found. Typically you use this technique to provide
context-sensitive help. See “Application Helpmap Files” on page 153
for more information about the helpmap file.

book Gives the short name of the help document containing the application’s
help information. See “Writing the Online Help” for a description of
help document short names.

If you set this to NULL or asterisk (*), the help server looks in the
application’s helpmap file for the book name. In this case, a helpmap
file must exist. See “Application Helpmap Files” for more information
about the helpmap file.

userData Reserved for future use. You should always set this field to NULL.

If a copy of the help server is not already running, SGIHelpMsg() automatically starts
the server. SGIHelpMsg() returns 1 on success, and 0 on failure.

Example 9-2 shows an example of using SGIHelpMsg() to display the help topic
identified by the help ID “help_save_button” in the help document with the short name
“MyAppHelp.”

The SGIHelp Interface

Example 9-2 Requesting a Specific Help Topic Using SGIHelpMsg()
#i ncl ude <hel papi / Hel pBr oker. h>

/* Assune initialization of help session is conmplete */

/*

* This call displays the help topic with a key of

* "hel p_save_button" (found in the "Hel pld=" field).
* 1t will look for this section in the hel p docunent
/" MyAppHel p.

*

status = SG Hel pMsg("hel p_save_button", "M/AppHel p", NULL);

Example 9-3 shows an example of using SGIHelpMsg() to request help given a widget
hierarchy. In this case, the application must have a helpmap file, and the help file must
contain an entry mapping the given hierarchy to a help topic for this call to succeed.

Example 9-3 Requesting a Help Topic for a Widget Using SGIHelpMsg()
#i ncl ude <hel papi / Hel pBr oker. h>

/* Assune initialization of help session is conmplete */

/
This call displays the help topic specified by the
mappi ng for the w dget hierarchy

"MyApp. mai nW ndow. cont r ol Pane. sear chBut t on"

* as given in the application's hel pmap file.

*/

* % X X

status = SG Hel pMsg(" MyApp. mai nW ndow. cont r ol Pane",
NULL, NULL);

Displaying the Help Index

The SGIHelpIndexMsg() call causes the help server to look for the application’s
helpmap file and to display the Help Index window:

int SA Hel pl ndexMsg (char *key, char *book);
key You should always set this field to NULL or “index.”
book Reserved for future use. You should always set this field to NULL.

147

Chapter 9: Providing Online Help With SGIHelp

The index displays all the help topics in the helpmap file in the order they appear in the
file. You must have a helpmap file for this call to work properly. See “Application
Helpmap Files” on page 153 for more information about the helpmap file.
SGIHelpIndexMsg() returns 1 on success, and 0 on failure.

Example 9-4 shows an example of how to use SGIHelpIndexMsg().

Example 9-4 Displaying a Help Index Using SGIHelpIndexMsg()

/* Assune initialization of help session is conplete */

/*
* This call will look in the application s hel pmap
* file for alist of topics to display to the user in
* sgihel p’s i ndex wi ndow.
*
/

status = SG Hel pl ndexMsg("index", NULL);

Implementing Help in an Application

148

The section “Types of Online Help” in Chapter 4 of the Indigo Magic User Interface
Guidelines describes the user interfaces to online help that your application should
provide. In summary, these services are:

e Help menus in all application windows with menu bars

e Help buttons in all applications without menu bars

¢ Context-sensitive help available through both the help menus and the <Shi f t +F1>
keyboard accelerator.

This section contains specific suggestions for implementing these help interfaces to your

application:

e “Constructing a Help Menu”

¢ “Implementing a Help Button”

e “Providing Context-Sensitive Help”

Implementing Help in an Application

Constructing a Help Menu

For those windows in your application with a menu bar, you should provide a Help
menu. “Providing Help through a Help Menu” in Chapter 4 of the Indigo Magic User
Interface Guidelines recommends that the following entries appear in the Help menu:

“Click for Help”

“Overview”

Provides context-sensitive help. This option should also use the

<Shi f t +F1> keyboard accelerator. When a user selects “Click for Help,”
the cursor should turn into a question mark (?). The user can then move
the cursor over an item or area of interest and click. Your application
should then display a help topic describing the purpose of the item or
area.

“Providing Context-Sensitive Help” on page 151 provides detailed
instructions for implementing context-sensitive help.

Displays overview information. The main primary window should
provide an overview of the application. For other windows, this option
should appear as “Overview for <window name>" and provide an
overview of the current window only.

A list of topics and tasks

This section should contain a list of topics and tasks that the user can
perform in your application. When the user selects one of the options,
your application should display a help topic for that item. To reduce the
size of this section, you can move some of the tasks to submenus.

You can hard code the entries in this section or, if you have a helpmap
file for your application, you can parse the helpmap and dynamically
create the task and subtask entries.

“Index” Displays Help Index window for the application. You must have an
application helpmap file to support this option.
“Keys & Shortcuts”

Displays the application’s accelerator keys, keyboard shortcuts, and
other actions in the application.

“Product Information”

Displays a dialog box showing the name, version, and any copyright
information or other related data for your application. Typically, you
should present this information using an IRIS IM dialog rather than
using online help.

149

Chapter 9: Providing Online Help With SGIHelp

150

Separators are added automatically. See the program listing in Example C-4 for an
example of creating a Help menu.

Implementing a Help Button

For those windows in your application that don’t contain a menu bar, you should
provide a Help button. Example 9-5 shows how you can use the SGIHelp API to
communicate with the help server from a pushbutton within your application.
“Providing Help Through a Help Button” in Chapter 4 of the Indigo Magic User Interface
Guidelines provides guidelines for when to implement a Help button.

Example 9-5 Providing a Help Button

/* required include file for direct communication with hel p server */
#i ncl ude <hel papi / Hel pBroker . h>
#i ncl ude <X Xm h>

[* .00

/* initialize help server infornation */
SA Hel plnit (di splay, "MWndowApp", ".");

/* create hel p pushbutton for your w ndow */
Wdget hel pB = XmQr eat ePushBut t on(parent, "hel pB', NULL, 0);
Xt ManageChi | d(hel pB);

Xt AddCal | back(hel pB, Xm\act i vat eCal | back,
(Xt Gal | backProc) hel p@B, (Xt Pointer)NJL);
[* ... %

/* hel p call back */
voi d hel pCB(Wdget w, XtPointer clientData, Xt Pointer call Data)
{

/*

* conmmuni cate with the hel p server; devel oper

* may wish to pass the "key" in as part of the

* cal |l back’ s cal | Data paraneter. ..

*/

SA Hel pMsg(" key", "book", NULL);

Implementing Help in an Application

Providing Context-Sensitive Help

To provide context-sensitive help from within your application, you need to write code
that tracks the cursor and interrogates the widget hierarchy. Additionally, you need to
make a mapping between what the user has clicked, and the help card that’s displayed.

The best way to provide the mapping is with the application helpmap file. The SGIHelp
library provides a fallback algorithm for finding help topics that simplifies the process
mapping widgets to topics. If the help system can’t find an exact match to the widget
string in the helpmap file, it drops the last widget from the string and tries again. The
help system reiterates this process until it finds a match in the helpmap file. This
eliminates the need to explicitly map a help topic for every widget in your application.
Instead you can map a help topic to a higher-level manager widget and have that topic
mapped to all of its descendent widgets as well.

For more information on the structure of application helpmap files, see “Application
Helpmap Files” on page 153.

Example 9-6 shows the code used to implement context-sensitive help in the example
program listed in Example C-4, which simply installs clickForHelpCB() as the callback
function for the “Click for Help” option of the Help menu. As long as you create a
helpmap file for your application, you can use this routine as listed in your application
as well.

Example 9-6 Implementing Context-Sensitive Help

voi d clickFor Hel pCB(Wdget wid, Xt Pointer clientData, Xt Pointer call Data)
{

static Qursor cursor = NULL;
static char path[512], tnp[512];
Wdget shell, result, w

strepy(path, "");
strepy(tnp, "");

/*
* create a question-mark cursor
*/
i f(!cursor)
cursor = X eat eFont Qursor (Xt D spl ay(w d), XC question_arrow;

Xnipdat eD spl ay(_mai nWndow) ;

151

Chapter 9: Providing Online Help With SGIHelp

/*
* get the top-level shell for the w ndow
*/
shell = _mai nWndow;
while (shell & !'Xt1sShell(shell)) {
shell = Xt Parent(shell);
}
/*

* modal interface for selection of a conponent;
* returns the widget or gadget that contains the pointer

*/
result = Xnmiracki ngLocat e(shel |, cursor, FALSE);
if(result) {
w=result;
/*

* get the widget hierarchy; separate with a'.';
* this also puts themin top-down vs. bottomup order.
*/
do {
Hf(XeNae(w) {
strcpy(path, Xt Nanme(w));

if(strlen(tnp) >0) {
strcat(path, ".");
strcat(path, tnp);

}

strcpy(tnp, path);
}

w = Xt Parent (w;
} while (w!= NJLL & w!= shell);

/

send nsg to the hel p server-w dget hierarchy;
R

provide a mappi ng to produce the key to be used

Inthis case, we'll let the sgihel p process do
the nmapping for us, with the use of a helpmap file

L T T N

Note that parameter 2, the book nane, can be found

152

Application Helpmap Files

* fromthe helpmap file as well. The devel oper need
* not hard-code it, if a helpmap file is present for
* the application.

*/
if(strlen(path) >0) {

SA Hel pMsg(pat h, NULL, NULL);
}

Application Helpmap Files

Application helpmap files provide a level of indirection that allows you to structure your
help presentation independently of your application code.

¢ “Helpmap File Conventions”

¢ “Helpmap File Format”

¢ “Widget Hierarchies in the Helpmap File”

You don’t have to create a helpmap for your application, but doing so gives you the
following benefits:

* Your application can display a Help Index window, allowing users to select a
particular topic directly from the list.

* You can write the code that generates your application’s Help menu to create the
“list of topics and tasks” options dynamically from the helpmap. You can then add
and restructure your task help without recompiling your application. See
“Constructing a Help Menu” on page 149 for details on the Help menu’s list of
topics.

* Your application’s Help menu can launch a browser and access a URL on the World
Wide Web. See “Example of Helpmap Entry to Access a Web Browser” for more
information.

153

Chapter 9: Providing Online Help With SGIHelp

154

* You can provide context-sensitive without hard-coding in your source code a help
topic to each widget. The SGIHelp library provides a fallback algorithm for finding
help topics that simplifies the process mapping widgets to topics. If the help system
can’t find an exact match to the widget string in the helpmap file, it drops the last
widget from the string and tries again. The help system reiterates this process until
it finds a match in the helpmap file. This eliminates the need to explicitly map a help
topic for every widget in your application. Instead you can map a help topic to a
higher-level manager widget and have that topic mapped to all of its descendent
widgets as well. See “Providing Context-Sensitive Help” on page 151 for
information on implementing context-sensitive help in your application.

Helpmap File Conventions

Helpmap files are ASCII text files. The name of your application helpmap file must be
“appClass.helpmap”, where appClass is your application’s class name as provided in your
application’s call to SGIHelpInit(). See “Initializing the Help Session” on page 144 for
more information on SGIHelpInit().

If you create a helpmap file for your application, you must create a subdirectory named
help in the directory containing your help document and put all of your document’s
figures in that subdirectory. See “Preparing to Build the Online Help” on page 161 for
more information.

Helpmap File Format

Each entry, or help topic, in a helpmap consists of a single line containing at least six fields,
each field separated by semicolons:

type; book; title; level; helpID; widget-hierarchy| ; widget-hierarchy ..]

Application Helpmap Files

Helpmap Fields

All fields are required for each entry. Their purpose is as follows:

type

book

title

level

helpID

widget-hierarchy

The type of help topic. Its value can be:

0 A context-sensitive topic.
1 The overview topic.
2 A task-oriented entry that could show up in the

“list of topics and tasks” area of the Help menu.
See “Constructing a Help Menu” on page 149 for
details on the Help menu’s list of topics.

3 The Keys and Shortcuts topic.

The name of the help document that contains this help topic. Help topics
can reside in different books. Each individual help topic can point to
only one help book.

The title of the help topic. This appears in the Help Index window. If
your application parses the helpmap file to generate the “list of topics
and tasks” area of the Help menu, you can use this as the label for the
menu option.

A number determining the topic level. A value of 0 indicates a main
topic, a value of 1 a sub-topic, a value of 2 a sub-sub-topic, and so forth.
This produces an expandable/collapsible outline of topics for the Help
Index window.

If your application parses the helpmap file to generate the “list of topics
and tasks” area of the Help menu, you can also use these values to
construct “roll-over” submenus as part of a Help menu.

The unique ID, as specified by the “HelpID” attribute, of the specific
help topic in the help document.

One or more fully-qualified widget specifications for use with
context-sensitive help. You can provide multiple specifications,
delimited by semicolons, to associate different areas with the same
topics.

155

Chapter 9: Providing Online Help With SGIHelp

156

Examples of Helpmap Entries

For example, the following entry in Swpkg.helpmap specifies the overview topic:

1; I ndi goMagi c_| G Over vi ew, 0; Over vi ew, Sapkg. swpkg. over vi ew

The following entries from Swpkg.helpmap specify several context-sensitive help topics.
In this case, the first entry appears as a main topic in the Help Index window and the next
three appear as sub-topics:

0; Sapkg_UG Wsi ng the swpkg Menus; O; menu. bar ; Sapkg. swpkg. nenuBar

0; Sapkg_UG The Fil e Menu; 1; nenu. bar . fi | e; Sapkg. swpkg. menuBar . Fi | e

0; Sapkg_UG The Vi ew nenu; 1; nenu. bar . vi ew, Sapkg. swpkg. nenuBar . Vi ew

0; Swpkg_UG The Hel p nenu; 1; nenu. bar . hel p; Sapkg. swpkg. nenuBar . hel pMenu

The following shows a more complex hierarchy from Swpkg.helpmap:

2; Sapkg_UG Taggi ng Fil es; 0;tag. fil es. worksheet ; Sapkg. swpkg
2; Sapkg_UG Sel ecting Product
Files;1;file.browser; Sapkg. swpkg. vi ew vi enPanedW ndow. vi ewFor m\
| eft Formfil esBody. addBody. Fi | eLi st Add. sel ecti onGid
0; Sapkg_UG Setting the Browsi ng
Drectory; 2;file.browser.dirfiel d; Sapkg. swpkg. vi ew \
vi ewPanedW ndow. vi ewFor m | ef t Form fi | esBody. addBody. Fi | eLi st Add. di rect oryLabel ; S
wpkg. swpkg. \
vi ew, vi ewPanedW ndow vi ewForm | ef t Form fi | esBody. addBody. Fi | eLi st Add. di rect oryTe
xtField
0; Sapkg_UG Sel ecting Files Fromthe File
List;2;file. browser.filelist; Sapkg. swpkg. vi ew \
vi ewPanedW ndow. vi ewFor m | ef t Form fi | esBody. addBody. Fi | eLi st Add. scrol | edW ndow. f
ilesList;\
Snpkg. swpkg. vi ew, vi ewPanedW ndow vi ewForm | ef t Form fi | esBody. addBody. Fi | eLi st Add
\

scrol | edWndow. Vert Scrol | Bar

Note: The backslashes (\) indicate linewraps; they do not actually appear in the
helpmap file. Each helpmap entry must be a single line.

Application Helpmap Files

In the example above, the first entry is a task-oriented topic (2 in the type field). swpkg
parses the helpmap file to create its Help menu, so “Tagging Files” appears as a selection.
The second entry is also a task-oriented topic. It’s a sub-topic of the first entry and
appears in a submenu off the “Tagging Files” selection. The last two entries are marked
as context-sensitive only (0 in the type field). These entries don’t appear anywhere in the
application’s Help menu, but they do appear as sub-sub-topics in the Help Index
window. Also note that the last two entries have two widget specifications, providing
context-sensitive help for two different widgets.

Note: The order of the entries in the application helpmap file determines the order in
which help topics appear in the Help Index window.

Example of Helpmap Entry to Access a Web Browser

You can put an entry into a helpmap file to launch a Web browser and access a URL. An
example entry in the showcase helpmap file looks like this:

2; HREF=ht t p: / / ww. sgi . coni Product s/ SA Hel p_Hub/ Showcase_3. 3. 2. htmi ;\
Showcase Web Page; 0; showcase_web; Showcase3D. showcase2; ShowcaseUG \
About G znos; 0; about _gi zno; Showcase3D. showcase

Note: The backslashes (\) indicate linewraps; do not actually enter them in the helpmap
file. Each helpmap entry must be a single line.

When SGlhelp encounters this type of entry, it uses a Web browser such as Netscape (or
$WEBBROWSER) to show the URL specified by the entry.
Widget Hierarchies in the Helpmap File

At least one widget hierarchy must accompany every point in the application helpmap
file. That one (default) point should be set to “application_classname.top-level_shell” .

Note that the application class name must always be the first component of a widget
hierarchy string. All widget ID’s within the string must be delimited by a period (.).

157

Chapter 9: Providing Online Help With SGIHelp

158

Widget hierarchies can be as fine-grained as you wish to make them. A fall-back
algorithm is in place (to go to the closest available entry) when the user clicks a widget
in context-sensitive help mode. For example, suppose your application includes a row or
set of buttons. When the user asks for help on a button, you pass that widget string to
SGIHelp. If the widget string is not found in the mappings, the last widget is dropped off
the string (in this case, the widget ID for the button itself). The new string is compared to
all available mappings. This loop continues until something is found. At the very least,
you should fall back to an “Overview” card.

To get a sample widget hierarchy (help message) from an application, you can run the
SGIHelp help server process in debug mode. Before doing this, you need to add the
SGIHelp API call, SGIHelpMsg(), to your application and implement context-sensitive
help. Make sure that you send a widget hierarchy string for the “key” parameter in the
SGIHelpMsg() call. (See “Providing Context-Sensitive Help within an Application” and
“Understanding Available Calls” for details on this call.)

To get a sample widget hierarchy from an application that implements context-sensitive
help, follow these steps:

1. Bring up a shell.

2. Make sure the help server process isn’t running. Type:
% /etc/killall sgihelp

3. Type the following to make the help server process run in the foreground in debug
mode:

% / usr/ sbin/sgihelp -f -debug

4. Run your application, and then choose “Click for Help” from the help menu. The
cursor should change into a question mark (?), or whatever cursor you've
implemented for context sensitive help.

5. Click a widget or an area of the application.

6. Check the shell from which SGIHelp is being run. You should see a line such as:

REQUEST= cl i ent="CQvervi ew' conmand="vi ew' book=""
keyval ue="DesksOvervi ew. Mai nVi ew. Fr ane. vi ewport . Bboar d"

separator="." user_data=""

The “keyvalue” field contains the widget hierarchy that you can add to the helpmap
file. Remember to add the application class name to the front of the string. For the
example above, the full widget hierarchy string would be:

Overvi ew. DesksOver vi ew. Mai nVi ew. Fr ane. vi ewport . Bboard

Writing the Online Help

Writing the Online Help

This section describes how you prepare the online help document. It provides an
explanation of the standard format you must use, as well as the steps you take to actually
prepare the file. Topics include:

¢ “Overview of Help Document Files”

¢ “Viewing the Sample Help Document Files”
* “Creating a Help Document File”

* “Preparing to Build the Online Help”

¢ “Building the Online Help”

¢ “Finding and Correcting Build Errors”

For guidelines on structuring and writing your online help text, see “Writing Online
Help Content for SGIHelp” in Chapter 4 of the Indigo Magic User Interface Guidelines.

Overview of Help Document Files

Help document files contain the actual help text in Standard Generalized Markup Language
(SGML) format. When you write the online help for your product, you need to embed
SGML tags to describe the structure of your document.

The file /usr/share/Insight/XHELP/samples/sampleDoc/sample.sgm is an example of a file
with embedded SGML tags. (Example C-1 also lists this file.) Notice the tags surrounded
by angle brackets (<>). These tags describe how each item fits into the structure of the
overall document. For example, a paragraph might be tagged as a list item, and a word
within that paragraph may be tagged as a command.

The Document Type Definition (DTD) outlines the tagging rules for your online
documentation. In other words, it specifies which SGML tags are allowed, and in what
combination or sequence. The file /usr/share/Insight/XHELP/dtd/XHELP.dtd lists the legal
structure for your online help.

A DTD can be difficult to read, so you might instead want to look at the file
fust/share/Insight/XHELP/samples/XHELP_elements/XHELP_elements.sgm, which lists the
legal elements in a help document and describes when to use them in your documents.
(Example C-2 also lists this file.)

159

Chapter 9: Providing Online Help With SGIHelp

160

For a more complete understanding of SGML, refer to the bibliography in “Bibliography
of SGML References” on page 166. It lists several of the many books on SGML.

Viewing the Sample Help Document Files

Before beginning to write your own help documents, you might find it helpful to
examine the source of the sample help documents and then view resulting online
versions. You can compile and view the help documents in Insight. To do so, follow these
steps:

1. Go to a directory in which you want to build the sample help book.
2. Copy the necessary directories and files by entering;:
% cp -r /usr/sharel/lnsight/XHELP/ sanpl es .
3. Enter:
% cd sanpl es/ sanpl eDoc
4. Build the file sample.sgm by entering:
% make hel p
5. To view this file, enter:
%iiv -b . -v sanple
6. Change to the exampleApp directory by entering;:
% cd ../ exanpl eApp
7. Build the file exampleAppXmHelp.sgm by entering:
% make hel p
8. To view this file, enter:

%iiv -b . -v exanpl eAppXnHel p

Writing the Online Help

Creating a Help Document File

To create the help document file for your application:
1. Create a new directory for the online help, then go to this directory.

2. Create a text file and name the file “title.sgm”, where title is one word that identifies
the online help.

3. Write the online help.
You can include figures as described in the example help documents. If your document

contains figures, create a subdirectory named either figures or online in your help
document directory and put all of your document’s figures in that subdirectory.

Preparing to Build the Online Help

After writing your online help you must build it, similarly to the way you compile a
program. When you build the online help, you transform the raw SGML file into a
viewable, online document. To get started, you need to create two files: a Makefile and a
spec file.

The Makefile specifies:

* the name of file that contains the online help

¢ the name you want to assign to the help book

® the version number of the product

The spec file specifies:
¢ the title of your product
e the official release and version numbers

* other information that is used when you create the final, installable images

To create these files, follow these steps:

1. Go to the directory that contains the online help file.

2. Copy /usr/share/Insight/XHELP/templates/Makefile_xhelp by typing:

cp /usr/share/lnsight/XHELP/t enpl at es/ Makefil e_xhel p Makefile

161

Chapter 9: Providing Online Help With SGIHelp

162

3. Copy /usr/share/Insight/XHELP/templates/spec_xhelp by typing:

cp /usr/sharel/lnsight/XHELP/t enpl at es/ spec_xhel p spec
Edit the Makefile:

4.

Next to the label TITLE, type the name of the file that contains the online help.

Next to the label FULL_TITLE, type the name you want to assign to the help
book. This name can contain several words, and is used only if you decide to
display the help as a “book” on the Insight bookshelf.

Next to the label VERSION, type the version number for the product.

Next to the label HIDDEN, remove the comment character (#) if you want the
online help to appear as a book on an Insight bookshelf. Change this if you
want users to be able to browse the help information using Insight, and not just
from within your application.

Edit the spec file:

Replace the string ${RELEASE} with the release number for the product. This
should match what you’ve entered in the Makefile for the VERSION.

Replace the string <ProductName> with a one-word name for the product.
Replace the string <Shortname> with the TITLE you specified in the Makefile.

Replace the string <SHORTNAME> with the TITLE you specified in the
Makefile. Capitalize all letters.

Replace the string <SHORTNAME_HELP> with the TITLE followed by
“_HELP”.

Replace the string <Book title> with the FULL_TITLE you specified in the
Makefile.

Writing the Online Help

Once you have edited these files, the directory containing your help document should
contain:

e your help document
o the Makefile
* the spec file

e if you included figures in your help document, a subdirectory named either figures
or online containing all of the figures

e if you created a helpmap file for you application, a subdirectory named help
containing the helpmap file

Building the Online Help

Once you have written the online help and done the preparation described in “Preparing
to Build the Online Help” on page 161, you can build and view the online help. To do so,
follow these steps:

1. Go to the directory that contains the online help files.
2. Enter:
% make hel p

If the help is formatted properly, the online help will build. You should see a file
called booklist.txt and a directory called books.

If the SGML file contains errors, you will see them displayed in the shell window.
See “Finding and Correcting Build Errors” for details.

3. View the book by typing
%iiv -b . -v title

Where title is the value of TITLE from the Makefile.

Finding and Correcting Build Errors

The SGML tags come in pairs. Each pair contains an opening tag and a closing tag, and
the tag applies to everything between the opening tag and the closing tag. If you use
these tags incorrectly, you'll get error messages when you build the help file. The most
common errors are the result of misspelled tag names, mismatched end tags, or tags used
out of sequence.

163

Chapter 9: Providing Online Help With SGIHelp

164

Some examples of common error messages are:

nkhel perror: not authorized to add tag ' PAR, ignoring content.

This error appears if you specify an invalid tag. In this case, the invalid tag is “PAR.” The
valid tag name is “PARA.”

nkhel perror: Start-tag for 'HELPLABEL' is not valid in this context.
nkhel p Location: Line 37 of entity ' #DOCOUMENT
Gont ext : "hor point for the Iink
synt ax. </ >&#RS; </ Hel pTopi c>&#RS; &#RS; <Hel pl abel >' . . .
" <Anchor |d="Al 003">Usi ng Nbtes, Warnings or Tips Wthin a P
FQ3: DOCHELP

This error message occurs when the parser sees a tag it isn’t expecting. In this case it
found a HELPLABEL that was not preceded by a HELPTOPIC start tag. The error
message specifies the line number of the error (37), the context in the file, and the Fully
Qualified Generic Identifier (FQGI) of the context. You can probably ignore the FQGI; it
describes where the error occurs within the SGML structure.

nkhel perror: No "WARNNG is open, so an end-tag for it is not valid.
The | ast one was closed at |ine 46.
nkhel p Location: Line 46 of entity ' #DOOUMENT
Gont ext : " <war ni ng>M ssing open para. This is a
war ni ng. </ ></warni ng>'. ..
" &#RS; <not e><par a>For your information, this is a note.</></note’
FQQ : DOCHELP, DESCR PTI QN, PARA, PARA

This message can occur if you close items with the generic end tag, </>. In this case, the
</> closes the <warning> because the start tag for <para> is missing. This may occur if
you leave out a start tag or accidentally spell it incorrectly.

If you want additional information about the errors, use the command make verify. It
produces a more detailed error log.

Producing the Final Product

Producing the Final Product

This section describes how to package your online help as a subsystem that users can
install using Software Manager (swmgr), the Silicon Graphics software installation utility.
Topics include:

* “Creating the Installable Subsystem”

* “Incorporating the Help Subsystem into a Product With a Custom Installation
Script”

* “Incorporating the Help Subsystem into an Installable Product”

Creating the Installable Subsystem

After you've finished writing and building your online help, you need to package it so
that users can install it with the rest of your product. To do so:

1. Go to the directory that contains the online help.
2. Enter:

% make i nmages

This produces a directory called images. This directory contains all of the files you
need to let users install the online help using Software Manager.

Incorporating the Help Subsystem into an Installable Product

If you use the Software Packager utility (swpkg) to package your product so that users can
install it using Software Manager, you need to merge the online help subsystem with the
rest of your product. Consult the Software Packager User’s Guide for detailed instructions
for using swpkg.

You don’t need to use swpkg to create spec or IDB files for your online help subsystem.
By following the instructions in “Preparing to Build the Online Help” on page 161, you
created the spec file. The process of building your online help, described in “Building the
Online Help” on page 163 automatically created an IDB file and tagged the files; set the
permissions and destinations; and assigned the necessary attributes. The online help
build tools use “/” as the Source and Destination Tree Root directories when generating
the IDB file. (The Software Packager User’s Guide defines all of these terms.)

165

Chapter 9: Providing Online Help With SGIHelp

If you've not already created the spec and IDB files for the rest of your product using
swpkg, you can use swpkg to open the existing help subsystem spec and IDB files, and
expand them as needed to handle the rest of your product. Consult the Software Packager
User’s Guide for instructions.

If you've already created the spec and IDB files for your product, you can merge the help
subsystem with the existing files as described in “Combining Existing Products Into a
Single Product” in Chapter 7 of the Software Packager User’s Guide.

Incorporating the Help Subsystem into a Product With a Custom
Installation Script

If you don’t use swpkg to package your product for installation with Software Manager,
do one of the following.

¢ If users install your product using the tar command, have them use tar to copy the
online help images as well. After copying the images, the user needs to type:

inst -af <inst_product>
where inst_product is the location of the images.

e If you've created a script, enhance the script so that it extracts all of the help images
onto disk, and then invokes the command:

inst -af <inst_product>

where inst_product is the location of the images.

Bibliography of SGML References

166

1. *SoftQuad, Inc. The SGML Primer. SoftQuad’s Quick Reference ~ Guide to the Essentials
of the Standard: The SGML Needed for Reading a DTD and Marked-Up Documents and
Discussing Them Reasonably. Version 2.0. Toronto: SoftQuad Inc., May 1991. 36 pages.
Available from SoftQuad Inc.; 56 Aberfoyle Crescent, Suite 810; Toronto, Ontario;
Canada M8X 2W4; TEL: +1 (416) 239-4801; FAX: +1 (416) 239-7105.

2. Bryan, Martin. SGML: An Author’s Guide to the Standard Generalized Markup
Language. Wokingham /Reading/New York: Addison-Wesley, 1988. ISBN:
0-201-17535-5 (pbk); LC CALL NO: QA76.73.544 B79 1988. 380 pages. A highly
detailed and useful manual explaining and illustrating features of ISO 8879. The
book: (1) shows how to analyze the inherent structure of a document; (2) illustrates

Bibliography of SGML References

a wide variety of markup tags; (3) shows how to design your own tag set; (4) is
copiously illustrated with practical examples; (5) covers the full range of SGML
features. Technical and non-technical authors, publishers, typesetters and users of
desktop publishing systems will find this book a valuable tutorial on the use of
SGML and a comprehensive reference to the standard. It assumes no prior
knowledge of computing or typography on the part of its readers.

Goldfarb, Charles F. The SGML Handbook. Edited and with a foreword by Yuri
Rubinsky. Oxford: Oxford University Press, 1990. ISBN: 0-19-853737-1. 688 pages.
This volume contains the full annotated text of ISO 8879 (with amendments),
authored by IBM Senior Systems Analyst and acknowledged “father of SGML,”
Charles Goldfarb. The book was itself produced from SGML input using a DTD
which is a variation of the “ISO.general” sample DTD included in the annexes to
ISO 8879. The SGML Handbook includes: (1) the up-to-date amended full text of
ISO 8879, extensively annotated, cross-referenced, and indexed; (2) a detailed
structured overview of SGML, covering every concept; (3) additional tutorial and
reference material; and (4) a unique “push- button access system” that provides
paper hypertext links between the standard, annotations, overview, and tutorials.

Herwijnen, Eric van. Practical SGML. Dordrecht/Hingham, MA: Wolters Kluwer
Academic Publishers. 200 pages. ISBN: 0-7923- 0635-X. The book is designed as a
“practical SGML survival-kit for SGML users (especially authors) rather than
developers,” and itself constitutes an experiment in SGML publishing. The book
provides a practical and painless introduction to the essentials of SGML, and an
overview of some SGML applications. See the reviews by (1) Carol Van Ess-Dykema
in Computational Linguistics 17/1 (March 1991) 110-116, and (2) Deborah A.
Lapeyre in <TAG> 16 (October 1990) 12-14.

Smith, Joan M.; Stutely, Robert S. SGML: The Users” Guide to 1SO 8879.
Chichester/New York: Ellis Horwood /Halsted, 1988. 173 pages. ISBN:
0-7458-0221-4 (Ellis Horwood) and ISBN: 0-470-21126-1 (Halsted). LC CALL NO:
QA76.73.544 544 1988. The book (1) supplies a list of some 200 syntax productions,
in numerical and alphabetical sequence; (2) gives a combined abbreviation list; (3)
includes highly useful subject indices to ISO 8879 and its annexes; (4) supplies
graphic representations for the ISO 8879 character entities; and (5) lists SGML
keywords and reserved names. An overview of the book may be found in the SGML
Users’ Group Newsletter 9 (August 1988).

167

Chapter 9: Providing Online Help With SGIHelp

6. 15O 8879:1986. Information Processing—Text and Office System—Standard Generalized
Markup Language (SGML). International Organization for Standardization. Ref. No.
ISO 8879:1986 (E). Geneva/New York, 1986. A subset of SGML became a US FIPS
(Federal Information Processing Standard) in 1988. The British Standards Institution
adopted SGML as a national standard (BS 6868) in 1987, and in 1989 SGML was
adopted by the CEN/CENELEC Standards Committees as a European standard,
#28879. Australia has dual numbered versions of ISO 8879 SGML and ISO 9069
SDIF (AS 3514—SGML 1987; AS 3649—1990 SDIF).

7. ISO 8879:1986 / A1:1988 (E). Information Processing—Text and Offfice Systems—
Standard Generalized Markup Language (SGML), Amendment 1. Published 1988-07-01.
Geneva: International Organization for Standardization, 1988.

168

Chapter 10

Handling Users” System Preferences

Users can set several preferences for system operation in the Indigo Magic
Desktop. This chapter describes how to use these preference settings.

Chapter 10

Handling Users’ System Preferences

This chapter describes how your application can recognize and use various system
preferences that users can set through Desktop control panels. Whenever possible, your
application should follow these preferences to provide a consistent interface for your
users. In particular, this chapter contains:

¢ “Handling the Mouse Double-Click Speed Setting” describes how to recognize the
preferred mouse double-click speed.

e “Using the Default Viewer and Editor Utilities Panel” describes the dtUltilities panel,
lists utility variables and their values, and provides an example of how to set the
preferred visual text editor when your application needs to let users edit text.

Handling the Mouse Double-Click Speed Setting

The Mouse Settings control panel (available from the “Customize” submenu of the
Desktop toolchest) allows users to set various parameters that affect the operation of the
mouse. The setting of importance to applications is “Click Speed,” which determines the
maximum interval between double-clicks. “Click Speed” sets the *multiClickTime X
resource.

In most cases, you don’t need to do anything to handle this setting. IRIS IM widgets
automatically use the multiClickTime value as appropriate. Only if your application
needs to handle double-clicks explicitly (for example, to select a word in a word
processing application) does it need to call XtGetMultiClickTime() to determine the
double-click time. See the XtGetMultiClickTime(3Xt) reference page for more
information on XtGetMultiClickTime().

Note: Don’t call XtSetMultiClickTime(), which sets the double-click time for the entire
display.

171

Chapter 10: Handling Users’ System Preferences

Using the Default Viewer and Editor Utilities Panel

Users who select Toolchest->Customize->Utilities invoke /usr/sbin/dtUtilities. This
application displays the “Default Viewer and Editor Utilities” panel (shown in
Figure 10-1).

= Default Viewer & Editor Utilities ia

Ir/g Default Viewer & Editor Utilities

Select your favorites from the menus:

Text Editor: Jot =
Web Browser: | Mefscape =
Image Viewer: | lmgview =

Mailer: | Medialdaif =
Book Viewer: | Insight =

PostSeript Viewer:

w
:
|
¥
0

(Dimmed utilities are not installed.)

| Close || Reset .. || Help I

Choose a default text editor.

Figure 10-1 The dtUtilities Panel

Using the dtUtilities panel, users can select installed utilities, including the following:
¢ Text Editor (for example, xwsh, Jot, or Vi)

* Web Browser (for example, Netscape)

¢ Image Viewer (for example, Imgview)

* Mailer (for example, MediaMail or Netscape)

* Book Viewer (for example, Insight)

® PostScript Viewer (for example, ShowPS)

172

Using the Default Viewer and Editor Utilities Panel

Selecting Utilities and Their Values
The dtUtilities variables and their values are listed in Table 10-1. An example of providing
programmatic access to one of these utilities is in “Setting the Preferred Text Editor,”

which is below the table.

Table 10-1 dtUtilities and Their Values

dtUtility Variable Value

WINEDITOR Path to a window editor (for example, /usr/sbin/jot).

WEBBROWSER Path to an X Window System application that is a World Wide
Web visual browser (for example, /ust/bin/X11/netscape).

IMGVIEWER Path to an application that displays image files (for example,
Jusr/bin/X11/imgview).

MAILBOXPROG Path to a mail reader application (for example,

fusr/bin/X11/MediaMail -gus).

BOOKVIEWER Path to an application for displaying InSight books (for
example, /usr/sbin/insight).

PSVIEWER Path to an application for viewing PostScript files (for
example, /usr/bin/X11/showps).

Setting the Preferred Text Editor

The “Text Editor” setting on the dtUtilities control panel allows users to select a preferred
visual editor for editing ASCII text. This setting sets the value of the WINEDITOR
environment variable.

The following instructions explain how to set the value of WINEDITOR. You can use the

same instructions for the other utilities on the control panel. Just refer to Table 10-1 for
the utility and value you wish to set.

173

Chapter 10: Handling Users’ System Preferences

Whenever your application needs to let users edit text, you should:

1. Call getenv() to check whether the WINEDITOR environment variable is set. See
the getenv(3c) reference page for more information on getenv().

2. If WINEDITOR is set, save the text to edit in a temporary file. Typically, you should
check the value of the environment variable TMPDIR and, if it is set, put the
temporary file in that directory.

Execute the editor, providing it the name of the temporary file as an argument.

4. When the user quits the editor, read the temporary file and delete it.

174

PART TWO

Creating Desktop Icons

Chapter 11:

Creating Desktop Icons: An Overview
Chapter 12:

Using IconSmith

Chapter 13:

File Typing Rules

Chapter 14:

Printing From the Desktop

Chapter 11

Creating Desktop Icons: An Overview

This chapter provides a checklist of the steps you need to follow to create
Desktop icons for your application.

Chapter 11

Creating Desktop Icons: An Overview

This chapter offers an overview of the basic steps for creating Indigo Magic Desktop
icons and adding them to the Icon Catalog. If you don’t feel you need much background
information, you can skip to the brief list of instructions provided in “Checklist for
Creating an Icon” on page 181.

This chapter contains these sections:

e “About Indigo Magic Desktop Icons” on page 179 briefly discusses the Indigo
Magic Desktop and lists what kinds of icons you’ll need to provide for your
application.

® “Checklist for Creating an Icon” on page 181 lists the basic steps for drawing,
programming, compiling, and installing an icon.

® “Creating an Icon: The Basic Steps Explained in Detail” on page 182 explains each of
the basic icon creation steps in more detail.

Note: Minimized windows, which represent running applications, aren’t Desktop icons.
To learn how to customize the image on a minimized window, refer to Chapter 6,
“Customizing Your Application’s Minimized Windows.”

About Indigo Magic Desktop Icons

Files on the Desktop are represented by icons. Users can manipulate these icons to run
applications, print documents, and perform other actions. “How Users Interact With
Desktop Icons” in Chapter 1 of the Indigo Magic User Interface Guidelines describes some
of the common user interactions.

The Desktop displays different icons to represent the different types of files. For example,

the default icon for binary executables is the “magic carpet,” and the default icon for
plain text files is a stack of pages.

179

Chapter 11: Creating Desktop Icons: An Overview

180

When you create your own application, by default the Desktop uses an appropriate
“generic” icon to represent the application and its associated data files (for example, the
magic carpet icon for the executable and the stack of pages icon for text files). You can
also design your own custom icons to promote product identity and to indicate
associated files. For example, the custom ShowCase icons over a generic.exec.closed.fti and
a generic.exec.open.fti look like this:

showcase showcase

Another advantage of creating custom icons is that you can program them to perform
certain actions when users interact with them on the Desktop. For example, you can
program a custom data file icon so that when a user opens it, the Desktop launches your
application and opens the data file.

The Desktop determines which icon to display for a particular file by finding a matching
file type. A file type consists of a set of File Typing Rules (FTRs) that describe which files
belong to the file type and how that type’s icon looks and acts on the Desktop.

The Desktop reads FTRs from compiled versions of special text files called FTR files. An
FTR file is a file in which one or more file types are defined (typically, you define more
than one file type in a single file). FTR files can also contain print conversion rules, which
define any special filters needed to print given file types. Chapter 13, “File Typing
Rules,” discusses the syntax of FTRs, and Chapter 14, “Printing From the Desktop,”
discusses print conversion rules.

Checklist for Creating an Icon

Checklist for Creating an Icon

To provide a comprehensive Desktop icon interface for your application:

1.

Tag your application. You need to tag the application with its own unique
identification number so that the Desktop has a way of matching the application
with the corresponding FTRs. See “Step One: Tagging Your Application” on
page 183 for instructions.

Draw a picture of your icon. Create a distinctive Desktop icon to help users
distinguish your application from other applications on the Desktop. Optionally,
create an icon for the data files associated with your application. Use the IconSmith
application to draw your icons. IconSmith allows you to draw an icon and then
convert it into the icon description language used by the Desktop. IconSmith is the
only tool you can use to create an icon picture. For guidelines on designing icons,
see the Indigo Magic User Interface Guidelines. For information on how to use
IconSmith, see Chapter 12, “Using IconSmith.”

Program your icon. Create the FTRs to define your icons” Desktop interaction.
Chapter 13, “File Typing Rules,” describes FTRs in detail. Before programming your
icon, think about what users expect from the application and, with that in mind,
decide how you want the icon to behave within the Desktop. Before you make these
decisions, read the icon programming guidelines in “Defining the Behavior of Icons
With FTRs” in Chapter 2 of the Indigo Magic User Interface Guidelines. In particular:

» Program your Desktop icon to run your application with the most useful
options. Include instructions for launching your application when the user
opens the icon; opens the icon while holding down the <Al t > key; and drags
and drops other icons on the application icon.

« If there are several useful combinations of options that users may want to use
when invoking your application, you can incorporate them into a Desktop
menu. (These Desktop menu items appear only when the icon is selected.)
Users can then select the menu item that corresponds to the behavior they
want—without having to memorize a lot of option flags.

= Where appropriate, provide print conversion rules that describe how to convert a
data file for printing into a type recognized by the Desktop. To print output,
users can then just select the appropriate data file icon and choose “Print” from
the Desktop menu rather than having to remember specialized filter
information. Chapter 14, “Printing From the Desktop,” describes print
conversion rules.

181

Chapter 11: Creating Desktop Icons: An Overview

Compile the source files. Compile the .ftr files into an .otr file. In particular, the
desktop.otr file contains the compiled source for existing FTRs. For more information
on .otr files, see “Step Four: Compiling the Source Files” on page 189.

Add your application to the Icon Catalog. This makes it easier for your users to
locate your icon in the Icon Catalog and helps maintain a consistent look for your
application in the Desktop. “Step Five: Installing Your Application in the Icon
Catalog” on page 190 explains how to do this.

Restart the Desktop. You can view your changes after you restart the Desktop.
“Step Six: Restarting the Desktop” on page 191 explains how to restart the Desktop.

Update your installation process. If you want to install your application on other
Silicon Graphics workstations, include in your installation all of the files that you
created in the preceding steps. Silicon Graphics recommends you use swpkg to
package your files for installation. See the Software Packager User’s Guide for
information for instructions on using swpkg. See “Step Seven: Updating Your
Installation Process” on page 191 for guidelines.

Note: You cannot create your own device, host, or people icons. These are special icons
used by the Desktop and can currently be created only by Silicon Graphics.

Creating an Icon: The Basic Steps Explained in Detalil

182

This section describes in detail each of the basic steps listed in “Checklist for Creating an
Icon” on page 181. The steps are:

“Step One: Tagging Your Application”

“Step Two: Drawing a Picture of Your Icon”

“Step Three: Programming Your Icon”

“Step Four: Compiling the Source Files”

“Step Five: Installing Your Application in the Icon Catalog”
“Step Six: Restarting the Desktop”

“Step Seven: Updating Your Installation Process”

Creating an Icon: The Basic Steps Explained in Detail

Step One: Tagging Your Application

The first step is to tag the application or shell script with its own unique identification
number so that the Desktop has a way of matching the application with the
corresponding FIRs. The easiest way to tag your application is to use the tag command.
In order to use tag, your application must be an executable or a shell script, and you must
have write and execute permissions for the file.

Note: You do not tag data or configuration files used by your application. Instead, you
provide rules as described in “Matching Files Without the tag Command” on page 231 to
identify these files.

If your application does meet the criteria for using the tag command, then select a tag
number from your block of registered tag numbers. If you do not have a block of
registered tag numbers, you can get one by calling 415/933-TAGS or sending an e-mail
request to Silicon Graphics at this mail address:

deskt opt ags@gi . com

After Silicon Graphics sends you a block of registered tag numbers, use the tag(1)
command to assign one to your application. To do this, change to the directory
containing your application and enter:

% tag tagnumber filename

where tagnumber is the number you assign to the application and filename is the name of
the application.

For example:

% / usr/sbin/tag 0X0101011 nyapp

For more detailed information on the tag command, see the tag(1) reference page.

Step Two: Drawing a Picture of Your Icon

The next step is to create the picture for your icon. An icon picture generally consists of
a unique badge plus a generic component (for example, the “magic carpet” designating
executables). The badge is the part of the icon picture that appears in front of the generic
component and that uniquely identifies your application. The generic components are
pre-drawn and installed by default when you install the Indigo Magic Desktop
environment.

183

Chapter 11: Creating Desktop Icons: An Overview

184

“Designing the Appearance of Icons” in Chapter 2 of the Indigo Magic User Interface
Guidelines provides guidelines for drawing your icon images. If possible, consult with a
designer or graphics artist to produce an attractive, descriptive icon. Chapter 12, “Using
IconSmith,” describes exactly how to draw such an icon. Save the badge in a file called
<lconName>.fti, where IconName is any name you choose. Choose a meaningful name
(such as the name of the application or data format). If you have separate pictures
representing the open and closed states of the icon, it's a good idea to name them
<lconName>.open.fti and <IconName>.closed.fti, respectively.

After drawing your badge with IconSmith (described in Chapter 12) save the picture—
the filename should end in .fti—and put the saved file in the correct directory. The
appropriate directory depends on where you put your FIR files:

e If you put your FIR (.ftr) files in the /usr/lib/filetype/install directory (where you
typically should install your FTR files), then put your badge (.fti) files in the
fusr/lib/filetype/install/iconlib directory.

* If you put your FIR files in one of the other directories listed in Appendix F, then
put your badge file in a subdirectory of that directory. Name the subdirectory iconlib
if the subdirectory doesn’t already exist.

Step Three: Programming Your Icon

Programming an icon means creating a file type. Each file type consists of a set of file
typing rules, each of which defines some aspect of the look or behavior of the icon. Your
file type includes rules that name the file type, and tells the Desktop where to find the
associated icon files, what to do when users double-click the icon, and so on. Chapter 13,
“File Typing Rules,” describes how to create the FTR file that defines your file type.
“Defining the Behavior of Icons With FTRs” in Chapter 2 of the Indigo Magic User Interface
Guidelines describes the types of behaviors your icons should support.

(This section assumes that you are writing your FTRs completely from scratch. You may
prefer instead to modify an existing file type. To learn how to find the FTRs for an
existing icon, see “Add the FTRs: An Alternate Method” on page 186.)

Where to Put FTR Files

Most FIR files that are not created at Silicon Graphics belong in the /usr/lib/filetype/install
directory. There are also specific FTR directories set aside for site administration. For a
list of all FTR directories, see Appendix F, “FTR File Directories.”

Creating an Icon: The Basic Steps Explained in Detail

If you want to have a look at some existing FTR files, check out the /usr/lib/filetype/install
directory.

Naming FTR Files

If you have an existing FIR file, you can add the new file type to this file. Otherwise, you
need to create a new FIR file, which you should name according to the standard naming
convention for application vendors’ FTR files. The convention is:

vendor - name[. appl i cati on-nane] . ftr

where vendor-name is the name of your company and application-name is the name of your
application.

Name the File Type

Each file type must have a unique name. To help insure that your file type name is
unique, base it as closely as possible on your application name.

As an extra check, you can search for your file type name in the /usr/lib/filetype directory,
to make sure that the name is not already in use:

1. Change to the /usr/lib/filetype directory:
% cd /usr/lib/filetype

2. Search for the file type nane:
% grep "your_name_here" *[*.ftr

where your_name_here is the name you’ve selected for your file type.

If you find another file type of the name you have chosen, pick a new name.

Add the FTRs
To create a file type, either add the file type definition to an existing FIR file or create a

new FTR file. You can define all the necessary file types for your application in a single
FIR file.

185

Chapter 11: Creating Desktop Icons: An Overview

186

Each file type definition must include the following rules:

the TYPE rule, to tell the Desktop that you are declaring and naming a new type
(the TYPE rule must go on the first line of each filetype definition)—a type is a
unique type of icon, such as an email icon. For example, the file myftrs.ftr contains
two filetypes:
TYPE FOO

MATCH . ..

TYPE FOC2
MATCH . ..

the LEGEND rule, to provide a text description when users view icons as a list

the MATCH rule, to allow the Desktop to match files with the corresponding file
type
the ICON rule, to tell the Desktop how to draw the icon to use for this file type

Note: The TYPE, LEGEND, and other rules are typically referred to as “rules,” and the
entire set of rules defining a single file type is called a “filetype,” or an “FTR.”

In addition to these basic components, you can add other rules as necessary for each
different filetype you define.

Add the FTRs: An Alternate Method

If you don’t want to write the file type from scratch, you can modify an existing file type.

The first step is to choose a file type that produces icon behavior similar to what you want
from your new file type (that is, does the same thing when you double-click the icon, acts
the same way when you drop the icon on another icon, and so on.)

To find the set of FTRs that define the file type for the an icon, first locate the icon on the
Desktop. If the icon isn’t already on the Desktop select “File QuickFind” from the Find
toolchest and use the Find an Icon window to find the icon. (When the icon appears in
the drop pocket, drag it onto the Desktop.

Select the icon by clicking the left mouse button on it, then hold down the right mouse
button to get the Desktop menu. When the menu appears, select the “Get Info” menu
item. A window appears. In the window, look at the line labeled, “Type.”

Creating an Icon: The Basic Steps Explained in Detail

For example, if you’d selected the jot icon, the line would read:

Type: jot text editor

The string “jot text editor” is produced by the LEGEND rule. You can use this string to
find the FTR that defines the jot file type. To do this, open a shell and follow these steps:
1. Change to the /usr/lib/filetype directory

% cd /usr/lib/filetype
2. Search for “jot text editor”

%grep "jot text editor" */*. ftr

The system responds with this line:

systenisgiutil.ftr: LEGEND :308:jot text editor

This line tells you that the jot FTR is in the /usr/lib/filetype/system directory in a file named
sgiutil.ftr. The : 308: is to allow the jot LEGEND to be localized (translated into languages
other than English). The 308 refers to line number 308 in the uxsgidesktop message
catalog. See the gettxt(1) reference page for a description of how to use such message
files. If you only intend to ship your application in English speaking countries, you can
omit the line number designation (for example, : 308:) from your filetype.

Now you can open the sgiutil.ftr file using the text editor of your choice, and search for
the “jot text editor” string again. This shows exactly where the jot FTR is in the sgiutil.ftr
file.

Note: If the jot file type did not have its own icon, this search would not give you the
filename.

Now you can go to the file with the jot FTR and copy it into the FIR file for your new file

type. Then rename and modify the copied FIR to fit your new file type, as described in
“Step Three: Programming Your Icon” on page 184.

187

Chapter 11: Creating Desktop Icons: An Overview

188

An Example File Type

Here is an example of a simple file type:
TYPE Scri nShaw

MATCH tag == 0x00001005;

LEGEND the scrinshaw draw ng program
SUPERTYPE Execut abl e

CVD OPEN $LEADER

CVMD ALTOPEN | aunch -c¢ $LEADER

I CON {

if (opened) {
include("../iconlib/generic.exec.open.fti");
} else {
include("../iconlib/generic.exec.closed.fti");
}
i nclude("/iconlib/scrimhaw fti");

}

Here’s a brief description of what each of these lines does:

The first line contains the TYPE rule, which you use to name the file type. In this
case, the file type is named, ScrimShaw. Always place the TYPE rule on the first line
of your FTR. The TYPE rule is described in “Naming File Types: The TYPE Rule” on
page 227.

The second line contains the MATCH rule. Use the MATCH rule to tell the Desktop
which files belong to this file type. In this example, we are just writing in the
identification (tag) number that we have already assigned to the executable. The
MATCH rule is described in “Matching File Types With Applications: The MATCH
Rule” on page 229.

The third line contains the LEGEND rule. Use this rule to provide a brief descriptive
phrase for the file type. This phrase appears when users view a directory in list
form. It also appears when users select the “Get File Info” item from the Desktop
pop-up menu. In this case, the descriptive phrase is “the scrimshaw drawing
program.” The LEGEND rule is described in “Adding a Descriptive Phrase: The
LEGEND Rule” on page 235.

The fourth line contains the SUPERTYPE rule. Use this rule to name a file type
superset for your FTR. In this example, the SUPERSET is “Executable.” The
SUPERTYPE rule is described in “Categorizing File Types: The SUPERTYPE Rule”
on page 228.

Creating an Icon: The Basic Steps Explained in Detail

The fifth line contains the CMD OPEN rule. This rule tells the Desktop what to do
when users double-click the icon. In this example, double-clicking the icon opens
the scrimshaw application. The $LEADER variable is a Desktop variable, usually
set to the full name of the first selected icon. The Desktop variables are listed and
defined in Appendix B, “Desktop Variables.” The CMD OPEN rule is described in
“Programming Open Behavior: The CMD OPEN Rule” on page 237.

The sixth line contains the CMD ALTOPEN rule. This rule tells the Desktop what to
do when users double-click the icon while holding down the <Al t > key. In this
example, the Desktop runs launch(1), which brings up a small dialog window
containing a single text field, so that users can type in command-line arguments to
the scrimshaw executable. Again, SLEADER is a Desktop variable (variables are
listed in Appendix B). For more information on the launch command, see the
launch(1) reference page. The CMD ALTOPEN rule is described in “Programming
Alt-Open Behavior: The CMD ALTOPEN Rule” on page 238.

The final lines contain the ICON rule. These lines tell the Desktop where to find the
generic components (open and closed) as well as the unique application-specific
badge. The generic components together with the badge comprise the scrimshaw
icon appearance. Note that this rule combines the generic component for open and
closed executables with the unique “scrimshaw” badge that identifies it as a
distinctive application. The ICON rule is described in “Getting the Icon Picture: The
ICON Rule” on page 244.

Step Four: Compiling the Source Files

The Desktop compiles FTR source files into files called .otr files. These files are in the
fusr/lib/filetype directory.

Note: The .ctr files are obsolete as of IRIX release 6.3.

Any time you add or change FTRs (or print conversion rules) you must recompile the .otr
files by following these steps:

Change to the /usr/lib/filetype directory:
%cd /usr/lib/filetype

2. Become superuser:

% su

189

Chapter 11: Creating Desktop Icons: An Overview

190

3. Recompile the files:
make -u

(If you don’t use the -u option when you make the files, some of your changes may not
take effect.)

To activate the new FIRs, quit and restart the Desktop. For instructions on restarting the
Desktop, see “Step Six: Restarting the Desktop” on page 191.

Step Five: Installing Your Application in the Icon Catalog

It’s easy to add your icon to the icon catalog. Just install a symbolic link to your
application in the /usr/lib/desktop/iconcatalog/C/Applications directory.

Note: The iconbookedit command is obsolete as of IRIX release 6.3.

Then, add the install rule in your Makefile. For example, enter:

/etc/install -idb nyldbTag -F \
/usr/1i b/ deskt op/i concat al og/ pages/ T Applications -1ns /usr/sbin/nyapp M/App

where Cis the $SLANG environment variable, Appl i cat i ons is the page on which the
icon will appear in the icon catalog, and MyApp is the name to appear under your icon in
the icon catalog (the name can be different from the name of the executable).

Another example:
/etcl/install -idb nyldbTag -F /usr/lib/desktop/iconcatal og/ pages/ T Vé¢bTool s \
-1 ns /usr/sbin/ nywebapp M/\V¢bApp

In this example, the application, mywebapp, will appear on the WebTool s icon catalog
page, with the name M/WebApp under the icon.

For additional information, see “Making Application Icons Accessible” in Chapter 2 of
the Indigo Magic User Interface Guidelines, which describes the Icon Catalog and how to
select the appropriate page of the Icon Catalog for your application.

Creating an Icon: The Basic Steps Explained in Detail

Step Six: Restarting the Desktop

To view your changes and additions, you must restart the Desktop. To restart the
Desktop, first kill it by typing:

% /usr/libl/desktop/telldesktop quit

Then, restart the Desktop by selecting “In my Home Directory” from the Access Files
menu on the Desktop toolchest.

Step Seven: Updating Your Installation Process

Silicon Graphics recommends you use swpkg to package your files for installation.The
Software Packager User’s Guide describes how to package your application for installation.

Your installation process must:

Tag the executables it produces (“Step One: Tagging Your Application” on page 183
explains how to tag executables). Put the tag in the Makefile before the command
that installs your application in the appropriate directory. For example:

TAG = 0x000010741

$(TARCGET) : $(OBJECTS)
$(C++) $(C++FLAGS) $(OBIJECTS) $(LDFLAGS) -0 $@
$(TOOLROOT) / usr/ shin/tag $(TAG $(TARGCET)

Copy .fti and .ftr files to the appropriate directories (“Where to Put FTR Files” on
page 184 and “Where to Install Your Completed Icon” on page 196 explain which
directories these files belong in). With swpkg, you can do this by setting the
appropriate destination directory and destination filename for each file, using the
Edit Permissions and Destinations worksheet. See Chapter 5, “Editing Permissions
and Destinations,” in the Software Packager User’s Guide for instructions.

Invoke make in /usr/lib/filetype to update the Desktop's database (“Step Four:
Compiling the Source Files” on page 189 explains how to update the database).
With swpkg, you can do this using the exitop attribute from the Add Attributes
worksheet. Set up the exitop attribute to run the make command. See Chapter 6,
“Adding Attributes,” in the Software Packager User’s Guide for instructions.

191

Chapter 11: Creating Desktop Icons: An Overview

* Add your icon to the Icon Catalog, creating a symbolic link in the
fusr/lib/desktop/iconcatalog/C/Applications directory. See “Step Five: Installing Your
Application in the Icon Catalog” on page 190 for instructions.

See the make(1), sh(1), and tag(1l) reference pages for more information on these
commands.

192

Chapter 12

Using IconSmith

This chapter explains how to use the IconSmith tool to draw a Desktop icon for
your application.

Chapter 12

Using IconSmith

This chapter explains how to use the IconSmith tool to draw an icon for your application.
This chapter contains these sections:

* “About IconSmith” on page 196 briefly describes the IconSmith tool.

* “Where to Install Your Completed Icon” on page 196 explains where to put your
icon file, after you've finished drawing your icon.

* “Some Definitions” on page 197 defines some terms you'll need to use IconSmith.
e “Starting IconSmith” on page 198 explains how to start the IconSmith tool.

* “IconSmith Menus” on page 199 discusses IconSmith’s main menus: the IconSmith
menu and the Preview menu.

¢ “IconSmith Windows” on page 200 lists IconSmith’s windows: the main window,
the Palette window, the Constraints window, and the Import Icon (Set Template)
window.

¢ “Drawing With IconSmith” on page 200 describes IconSmith’s drawing tools.
* “Selecting” on page 206 describes IconSmith’s selection features.
¢ “Transformations” on page 208 describes IconSmith’s transformation features.

* “Concave Polygons” on page 210 explains how to construct concave polygons in
IconSmith.

* “Constraints: Gravity (Object) Snap and Grid Snap” on page 211 explains how to
use IconSmith’s gravity snap and grid snap features to guide your drawing.

* “Icon Design and Composition Conventions” on page 213 explains how to make
sure that your icon complies with the basic icon design and composition
conventions described in “Designing the Appearance of Icons” in Chapter 2 of the
Indigo Magic User Interface Guidelines.

¢ “Advanced IconSmith Techniques” on page 215 describes some advanced
techniques, such as drawing circles and ovals in IconSmith.

195

Chapter 12: Using IconSmith

About IconSmith

IconSmith is a program for drawing Desktop icons. Icons drawn with IconSmith are
saved in an icon description language. The icon description language is described in
Appendix D, “The Icon Description Language.”

Designed for the specific requirements of the Desktop, IconSmith produces icons that
draw quickly and display properly on the Desktop on all Silicon Graphics workstations.

An icon picture generally consists of a unique badge plus a generic component (for
example, the “magic carpet” designating executables). The badge is the part of the icon
picture that appears in front of the generic component and that uniquely identifies your
application. The generic components are pre-drawn and installed by default when you
install the Indigo Magic Desktop environment.

You don’t need to draw the generic components of your icons. When using IconSmith to
draw your icon badge, you can import the generic component as a template as described
in “Importing Generic Icon Components (Magic Carpet)” on page 213. Then your ICON
rule in your FIR can include the generic components so they appear behind your
badge(s) when the icon is rendered on the Desktop.

Note: Iconsmith is not a general-use drawing application. Use it only to draw Desktop
icons.

Where to Install Your Completed Icon

196

After drawing your badge with IconSmith, save the badge—the filename should end in
fti—and install the saved file in the correct directory:

e If youinstall your FIR (.ftr) files in the /usr/lib/filetype/install directory (where you
typically should install your FIR files), then install your icon (.ft) files in the
fust/lib/filetype/install/iconlib directory.

¢ Ifyouinstall your FIR files in one of the other directories listed in Appendix F, then
install your badge in a subdirectory of that directory. Name the subdirectory iconlib
if the subdirectory doesn’t already exist.

Some Definitions

Some Definitions

After you install the badge in the appropriate directory, see the following for more
information:

e “Step Three: Programming Your Icon” on page 184

e “Step Four: Compiling the Source Files” on page 189

* “Step Five: Installing Your Application in the Icon Catalog” on page 190
® “Step Six: Restarting the Desktop” on page 191

* “Step Seven: Updating Your Installation Process” on page 191

IconSmith uses some terms that may not be familiar to you. This section defines some
terms used in the rest of this chapter.

Caret

The caret (shown in Figure 12-1) is a small red and blue cross. The caret always shows the
location of the last mouse click—when you click the left mouse button, the caret appears
where the cursor is pointed. Unlike the cursor, the caret shows the effects of grids and

gravity (described in “Constraints: Gravity (Object) Snap and Grid Snap” on page 211).

-

Figure 12-1 Caret

Transformation Pin

The transformation pin (shown in Figure 12-2) indicates the point from which an object is
scaled or sheared and around which an object is rotated. It is a blue and white cross,
larger than the caret. It can be dropped anywhere to affect a transform.

Figure 12-2 Transformation Pin

197

Chapter 12: Using IconSmith

Starting lconSmith

198

Vertex

A vertex (shown in Figure 12-3) is a selectable point, created when the mouse is clicked
in the IconSmith window while the <Ct r | > key is held down.

L

Figure 12-3 Vertex

Path

A path (shown in Figure 12-4) is one or more line segments between vertices. Paths can
be open or closed. A closed path can be filled or unfilled.

+
+
+

Figure 12-4 Path

To start IconSmith from the Desktop, double-click the IconSmith icon, shown in
Figure 12-5.

<

iconsmith

Figure 12-5 The IconSmith Icon

To start IconSmith from the command line, type:

% /usr/sbhin/iconsmth

IconSmith Menus

IconSmith Menus

The IconSmith main window, shown in Figure 12-6, provides two popup menus, the

IconSmith menu and the Preview menu:

* Access the IconSmith menu by holding down the third (typically the right) mouse
button anywhere in the main window drawing area.

* Access the Preview menu by holding the third (right) mouse button down within
the blue preview square located in the lower left corner of the IconSmith main

window.
Boundary
(do not draw b R . . R .
outside it . . . -
) r . . feon Smith
. F ’ N + * *
IconSmith . . . Undo
¥ T N ;
menu R . R Duplicate
r M * Delete
. . .
b . .
+ + * Pop to Front
b . .
. . . Push to Back
F + *
L LT, Select Next
* M * Deselect Fragments
b . .
| * + s * s Select Alf
* * *
b . . Transformation Pin
Main window = R Concave
drawing area S L. " N N
* * * + + +

. - .

+ + +

<P

Preview menu

Blue preview
square Background =

Figure 12-6 The Main IconSmith Window With Popup Menus

199

Chapter 12: Using IconSmith

IconSmith Windows

Besides the main window, IconSmith provides three other primary windows:

Palette (Selection Properties) window, which is described in “Drawing Filled
Shapes.”

Constraints window, which is described in“Constraints: Gravity (Object) Snap and
Grid Snap.”

Import Icon or Set Template window, which is described in “Templates.”

Drawing With lconSmith

200

IconSmith provides tools for drawing paths, selecting colors, importing design elements
from other icons, drawing shapes, and using template images. This section covers the
following topics:

“Drawing Paths”
“Deleting”

“Keeping the 3-D Look”
“Drawing Filled Shapes”
“Sharing Design Elements”

“Templates”

Before you begin drawing, it’s often useful to set up the preview box to represent the
Desktop as closely as possible. This helps you choose colors and draw your icon to look
its best when it appears on the Desktop and in the Icon Catalog. To do this:

1.

2.

3.

Set the Background color to WorkSpace from the Preview popup menu. This gives
the preview area the background color of the Icon Catalog.

Click the Import button at the bottom of the IconSmith window to display the
Import Icon or Set Template window (shown in Figure 12-7).

Import an appropriate template from the Import menu. For example, if you are
drawing an icon for a new application, import the Closed Application template by
clicking that button. This helps you center and size your design appropriately.

Drawing With IconSmith

Replace lcon Add to lcon

ication (A Closed Document

Figure 12-7 The Import Icon or Set Template Window

Tip: Draw your icon design on a clear transparency, and tape the transparency to the top
of the monitor housing. Using the drawing as a guide, trace it using IconSmith.

Tip: When drawing in IconSmith, it is easy to select the wrong object. One technique that
you can use is to draw adjacent icon components separately to prevent confusion when
selecting and editing an object. When you have finished working with the parts, you can
move them together.

There is an “Undo” option in the IconSmith popup menu. To bring up the IconSmith
popup menu, hold down the right mouse button. You can undo up to nine operations
using the <F1> key. To redo something you have undone, hold the <Shi f t > key and press
the <F1> key.

No single polygon can contain more than 255 vertices.

Also, be careful not to draw outside the royal blue boundary that appears in the preview
box and in the drawing area. The Desktop doesn’t display correctly outside those areas.

201

Chapter 12: Using IconSmith

202

Drawing Paths

To draw a path with IconSmith:
1. Select a starting point by clicking the primary (usually the left) mouse button.
2. Move the mouse to a new position.

3. Hold down the <Cont r ol > key and click the primary (left) mouse button.

This process creates a line segment. To add more line segments connected to the first,
repeat steps 2 and 3 as many times as necessary. To create a disconnected line segment,
repeat from step 1.

Drawing Filled Shapes

In IconSmith, you can fill a closed path (one in which the beginning and end points meet)
with a color. To begin, click the Palette button at the bottom of the IconSmith window to
display the Palette window, shown in Figure 12-8.

To draw a filled shape, select a fill color from the Palette menu, and proceed to draw.
When you finish creating the closed path, the shape is filled with the current fill color. To
change the fill color of an existing polygon, select it by clicking on one of its vertices. Then
choose a new fill color from the Palette. Also, you can change the fill color of a path by
selecting the path and then selecting a new fill color.

Fill does not work properly with concave closed paths, nor with paths in which the
beginning point does not meet the end point. See “Concave Polygons” on page 210.

The default fill color is “Icon,” a special white color, and the default line color is
“Outline,” a special black color (see “Selecting Colors” on page 214).

Drawing With IconSmith

_Applyto Pen Get from Pen

Figure 12-8 The Palette (Selection Properties) Window
Deleting

To delete any path or vertex, select it and press the <Back Space> key, or use “Delete” in
the IconSmith popup menu.

203

Chapter 12: Using IconSmith

204

Keeping the 3-D Look

Icons created by Silicon Graphics are drawn in the same isometric view, which provides
an illusion of 3-D, even though the polygons composing the icons are 2-D. If you draw
icons facing the screen at right angles, they look 2-D. To generate a 3-D effect, draw
“horizontal” lines so that they move up 1 unit in the y-axis for every 2 units they extend
along the true x-axis. See Figure 12-9.

M i o ." crl, e e

S| Teielri%e e horizontal
T 2 piwed run

true
vertical

Figure 12-9 3-D Icon Axes

Use the same projection that the original icon set uses. Icons tilted in the wrong direction
look off-balance, and destroy the 3-D appearance. For your convenience, IconSmith
provides an isometric grid. By following the diagonals of this grid, as shown, you can
create an icon that fits in exactly with other isometric icons in the Desktop. You can count
along these diagonal grid dots, to help measure, align, or center pieces of your icon.

Drawing for All Scales
Desktop icons can be displayed in many sizes. IconSmith includes two features useful in

designing your icon for display at all sizes, the Preview box and the slider on the right
side of the drawing area.

Drawing With IconSmith

The Preview Box

You can use the Preview box to see your icon design in common sizes and background
colors. The Preview box is the blue box in the lower left corner of the main IconSmith
window. By default, the Preview box shows your drawing at the default Desktop icon
display size and no background color. You can change the icon size and background
color in this window using the Preview box popup menu.

As you design your icon, periodically check its appearance in the Preview box. Because
users can enlarge icons only to a maximum size of about 1x1 inch, many details will not
appear or will become distorted at normal icon size. Also, keep in mind that the more
detail your icon has, the longer it takes for the Desktop to render the icon.

Changing Drawing Size

You can change the size of your design in the IconSmith drawing area using the slider on
the right side of the drawing area. Use the slider to look at your design at all sizes. At
particularly small sizes, some features may not be visible. At large sizes, design
imperfections may appear.

Sharing Design Elements

You can import design elements such as circles into your badge. Importing elements
where possible saves you work and makes it easy to include common design elements in
all the icons for one application.

To import an existing icon or icon element, click the Import button. This brings up the
Import Icon or Set Template window. Use the “Import to Icon Editing Layer” area to
specify the icon file you want.

Generic and sample material can be found in the /usr/lib/filetype/iconlib directory. For
example, to import a sample circle, type the filename:

lusr/lib/filetypeliconlib/sanmple.circle.fti

Other icons can be found in:

e Jusr/lib/filetype/default/iconlib
e Jusr/lib/filetype/system/iconlib
e Just/lib/filetype/vadmin/iconlib

205

Chapter 12: Using IconSmith

Selecting

206

All icons are potential sources for design elements. However, if you are designing a
unique set of executable or document badges, you should make use of templates as
described in “Templates” on page 206 and “Icon Design and Composition Conventions”
on page 213.

Templates

You can use templates to help you design your icons or for tracing. You can import a
template so that you can see it in the IconSmith drawing window, without saving or
displaying as part of the design. This is most useful for getting position information
while you are designing a unique badge to use in conjunction with the generic executable
and document icons.

Note: You cannot move or change an icon template in IconSmith.

To display a template, click the Import button. In the Import Icon or Set Template window
(shown in Figure 12-7), type the name of the template icon file you want in the textfield
“Template File” in the area labeled “Set Template Layer.” Alternately, click any of the
three template buttons to retrieve common generic components. These template images
are the most often used, and they are discussed in “Icon Design and Composition
Conventions” on page 213.

Before you edit, move, delete, or change the color of an object or vertex, you have to tell
IconSmith which object you want. This section describes aspects of selecting:

e “Partial”

* “Deselect Fragments”

“Select Next”
“Select All”

Selecting

Selecting can be difficult in a complex composition. The following tips can make the task
easier:

* To select an object or vertex, move the cursor on top of the object’s outline and click
the left mouse button. The vertices highlight blue and white when the object is
selected. To move an object, double-click, hold down the left mouse button and
move with the mouse. The vertices highlight green and yellow when you can move
the object.

¢ To move a vertex, click once on the vertex, then drag it to a new location.

* You can select more than one object or vertex by holding down the <Shi f t > key
during the selection process. To move the objects or vertices, move only one and the
rest will follow.

* You can select all vertices in an area with your mouse. Hold down the left mouse
button and sweep the cursor across the vertices you want. The area you select is
indicated by a box. When you let go of the left mouse button, all vertices are
selected.

* You can deselect a vertex by holding down the <Shi f t > key and clicking the vertex.

Partial

When you use the mouse to select an area with objects in it, you can include only some
vertices of some objects. When you toggle on the Partial button, objects partially selected
are highlighted. When you toggle off the Partial button, only objects that fall entirely
within the swept-out area are selected.

Deselect Fragments

In compositions with many objects, you can use “Deselect Fragments” to make selection
easier. When selecting the objects in the drawing area, you can also select adjacent
objects, then deselect what you don’t want. Hold the <Shi ft > key down and click one
vertex of each object you don’t want. This deselects the vertex, which makes the object
partially selected. Then you can use “Deselect Fragments” from the IconSmith popup
menu to deselect the entire object.

207

Chapter 12: Using IconSmith

Transformations

208

Select Next

“Select Next” allows you to select a vertex that is covered by another vertex. When two
or more trajectories (lines) each have a vertex at a common location, such as two triangles
with a coincident edge, the “Select Next” operator is useful for selecting a trajectory other
than the top one. “Select Next” is also useful in images with tiled parts, where most
vertices share a location.

Select a shared vertex by clicking its location. That vertex is highlighted in yellow and
green (and the red and blue caret appears at that spot). The other vertices of the trajectory
selected are highlighted in white to indicate the trajectory to which the selected vertex
belongs. Now each time you choose “Select Next” from the IconSmith menu, you step
through all the other vertices of all the other trajectories which have a vertex at that point.

Select All

You can select all vertices in the main IconSmith window drawing area using the “Select
All” option in the IconSmith popup menu. You can select all vertices in an area by
holding down the left mouse button and sweeping out a box to surround the desired
area.

The Transform buttons let you shrink, enlarge, stretch, and rotate portions of your icon
design. These features can make drawing easier and more precise.

To use any Transform button, follow this procedure.

1. Choose the Transform option you want using any of the six transform buttons
located on the left side of the IconSmith window: Scale, Scale XY, Scale X, Scale Y,
Rotate, or Shear Y.

2. Choose a point in the main IconSmith window drawing area as a reference point for
the transformation by positioning the cursor and clicking the left mouse button.

3. Bring up the IconSmith popup menu and select “Move to Caret” from the
Transform Pin rollover menu.

Transformations

4. To select an entire object for transformation, hold down the <Al t > key and
double-click the object you want to transform. Otherwise, you may select
individual vertices by holding down the <Al t > and <Shi f t > keys while clicking
each desired vertex. Do not release the <Al t > key when you have finished selecting
vertices.

5. While still holding down the <Al t > key, position the cursor inside the object you
want to transform. Press and hold down the left mouse button and move the mouse
to transform the object.

For example, here is how you enlarge a circle:

1. Choose “Scale” from the Transform menu.

2. Choose a point on the perimeter of the circle.

3. Bring up the IconSmith popup menu and select “Move to Caret” from the
“Transform Pin” rollover menu.

4. Hold down the <Al t > key and double-click the circle. All vertices on the circle are
now highlighted in green and yellow.

5. Continue to hold down the <Al t > key. Position the cursor on a vertex of the circle.
Press and continue to hold down the left mouse button while you sweep the mouse
out of the circle. The circle perimeter follows the cursor, enlarging the circle.

6. Release the left mouse button and <Al t > key when the circle is the size you want.

Scale

The Scale button changes the size of an object without changing its shape.

Scale Xand Y

The buttons marked Scale X and Scale Y limit scaling transformations to either horizontal
or vertical, respectively. Unlike the Scale button, the Scale XY button allows you to stretch
your object both horizontally and vertically.

Rotate

Using the Rotate button, you can rotate a selected object around the Transform Pin.

209

Chapter 12: Using IconSmith

Concave Polygons

210

Shear Y
The Shear Y transformation transforms rectangles into parallelograms with one pair of
sides parallel to the y axis. The Shear Y button is useful for transforming art that is drawn

in a face-on view to an isometric view.

Note that strictly speaking, the Shear Y transformation performs two transformations:
shear in y and scale in x.

Figure 12-10 shows a concave polygon.

Figure 12-10 Concave Polygon

By default, IconSmith does not fill concave polygons properly. If you prefer to have
concave polygons filled properly while drawing your icon design, you can tell IconSmith
to draw concave polygons. Bring up the IconSmith popup menu with the right mouse
button. Select “Concave” and pull out the rollover menu. Select “No GL Check” from the
rollover menu. IconSmith will not check for concave polygons until you select “GL
Check” from the Concave menu.

Constraints: Gravity (Object) Snap and Grid Snap

Constraints: Gravity (Object) Snap and Grid Snap

You can use gravity snap and grid snap to guide your drawing in IconSmith, allowing you
to align and compose objects perfectly. This makes drawing easier and more precise. Grid
snap causes the caret to “snap” to vertices or to the edges of the grid pattern displayed
behind the objects you are editing. Gravity snap causes the caret to snap to vertices and
the edges of objects you have already drawn. It is a good idea to make use of these
features to ensure that your icon looks clean and precise at all sizes.

Typically, it’s sufficient to toggle on gravity snap and grid snap. However, you can
control gravity snap and grid snap properties by using the Constraints window.

Click the Constraints button at the bottom of the IconSmith window to display the
Constraints window, shown in Figure 12-11.

Figure 12-11 The Constraints Window
When using the Constraints window, remember to click either the Apply or Accept button

to implement your changes. The Accept button implements your changes and closes the
Constraints window, and the Apply button leaves the window on your screen.

211

Chapter 12: Using IconSmith

212

Controlling the Grid

In the main IconSmith window, the Snap button under the heading “Grid” lets you turn
on or off the grid setting you've made in the Constraints window. The Show button lets
you display or hide the grid. To change the grid behavior, use the settings in the “Grid
Constraints” portion of the Constraints window.

You can change grid properties by selecting various buttons in the Grid Constraints
section of the Constraints window. Selections include:

Grid Basis buttons control the shape of the grids. IconSmith includes two types of
grids. The isometric grid provides guidance in the perspective described in
“Keeping the 3-D Look” on page 204. IconSmith also provides a traditional square
grid. To change the type of grid you are using, select a Grid Basis button, and then
click the Apply button.

Snap to Grid buttons affect what the caret gets snapped to: either vertices or edges.
These changes are reflected in the appearance of the grid after you click the Apply
button the appearance of the grid changes.

Grid Spacing controls the distance between points in the grid. You can type in the
number of pixels you want, or base the distance on a selected line in your icon
design. Measure from Line measures the grid spacing from the line you select in the
drawing area. When you copy an object using “Duplicate,” the copy is placed one
grid space down and to the right from the original (or the previous copy). You can
use Grid Spacing to control where IconSmith places duplicate objects.

Snap Influence allows you to adjust the area influenced by the “magnetic field” of the
grid.

Controlling Gravity

The controls in the “Gravity Constraints” portion of the Constraints window control how
gravity snap behaves. In the main IconSmith window, the Snap button under the
“Gravity” heading lets you turn on or off the influence of gravity on objects.

Snap to Object allows you assemble objects in your design smoothly. The object’s
edge, vertex, or both attract other objects when they are moved within range of
gravity.

Snap Influence allows you to determine the range, in pixels, of the gravity influence
of objects in your design.

Icon Design and Composition Conventions

Icon Design and Composition Conventions

The standard set of Desktop icons has been designed to establish a clear, predictable
visual language for end users. As you extend the Desktop by adding your own
application-specific icons, it is important to make sure that your extensions fit the overall
look of the Desktop and operate in a manner consistent with the rest of the Desktop. This
section discusses:

¢ “Importing Generic Icon Components (Magic Carpet)”
¢ “Icon Size”

* “Selecting Colors”

“Designing the Appearance of Icons” in Chapter 2 of the Indigo Magic User Interface
Guidelines contains extensive guidelines for designing the look of your icon.

Importing Generic lcon Components (Magic Carpet)

Many icons share common components. One example is the “magic carpet” component
used as a background component by most executable files; individual applications can
add unique badges.

Rather than redrawing the common “generic” component in each individual icon, you
can instead draw only the unique badges, and then use the ICON directive in the FTR file
to combine the badge with the generic component. “Getting the Icon Picture: The ICON
Rule” in Chapter 13 describes how to do this. An advantage to this approach is that you
don’t have to create separate icons to identify open or closed states. You can simply create
the unique badge and then set up the FIR file to include either the generic open
component or the generic closed component as appropriate.

While designing your icon, you can import the appropriate generic component as a
template using the “Set Template Layer” of the “Import or Set Template” window; this
helps you achieve the correct icon placement and perspective. When you import a
component into the template layer, the template component is displayed in the drawing
area, but not saved as part of the icon. When you are finished, you can save your icon in
a fti file, and combine it with the generic component in the FTR file.

If you import a generic component using the “Icon Editing Layer” section of the “Import

or Set Template” window, the component becomes part of your icon. In general, you
shouldn’t do this; if you do, you use more disk space and icon design is more difficult.

213

Chapter 12: Using IconSmith

214

Instead, you should draw only the badge. Then in your FIR file, you use the ICON rule
to display the appropriate generic component before displaying your badge. (See
“Getting the Icon Picture: The ICON Rule” on page 244 for information on the ICON
rule.)

Icon Size

The blue boundary in the IconSmith drawing area indicates the area of your design that
draws in the Desktop and is sensitive to mouse input. You must confine your final icon
design to the area within this boundary. You can display or hide the boundary by using
the Show button under Bounds in the main IconSmith window.

Selecting Colors

You can select or change the color of any outlined or filled object by using the features in
the Selection Properties window. To bring up this window;, click the Palette button. The
currently selected outline and fill colors are displayed under the “Current Colors”
heading.

There are two palettes in the Selection Properties window: one for the outline color, and
another for the fill color. The outline color palette consists of the first 16 entries in the IRIS
color map. The fill color palette gives you 128 colors created by dithering between the
color values of the first 16 colormap entries.

In addition to the colors on these palette, there are three special colors available that you
should use extensively when drawing your icon. The Desktop changes these colors to
provide visual feedback when users select, locate, drag, and otherwise interact with your
icon. These colors and their uses are:

Icon Color Use extensively for drawing the main icon body

Outline Color Use for outlining and line work in your icon

Shadow Color Use for contrasting drop shadows below your icon

Select outline and fill colors displayed in the palettes by clicking the appropriate buttons.
If you want subsequent objects to use your color selections, click “Apply to Pen.” If you
want to update current objects with colors already in your pen, click an existing object

with the left mouse button, and then select “Get from Pen” from the Selection Properties
window. The object gets the outline and fill colors currently assigned to the pen.

Advanced IconSmith Techniques

On the Desktop and in the Preview box, the icon color turns yellow when the icon is
selected and royal blue when an object is dropped on it. For more information on the use
of color in designing icons, refer to “Icon Colors” in Chapter 2 of the Indigo Magic User
Interface Guidelines.

Advanced IconSmith Techniques

This section contains hints that make common IconSmith operations easier. This section
also provides a step-by-step example of creating an icon. Topics include:

e “Drawing a Circle”
e “Drawing an Oval”

e “Isometric Circles”

Drawing a Circle

Here is a trick for drawing a circle using lines:

1. Draw a path the length of the radius of the circle you want. Figure 12-12 shows an

example.

* * +*
- +

* * +*
A —

* * *
* +

* * +*

Figure 12-12 A Path

2. Select “Grid Spacing” of 0 pixels in the Constraints window.
3. Duplicate the line 12 times. Because grid spacing is set to 0, the duplicate lines stack.

4. Select one vertex, bring up the IconSmith popup menu, and select “Push Pin” from
the Transform Pin rollover menu.

5. Click the Rotate button from the Transform menu.

6. Hold down the <Al t > key and select the other vertex of the stack of paths.

215

Chapter 12: Using IconSmith

7. Sweep out each path until the figure resembles a wheel, as shown in Figure 12-13.

Figure 12-13 Wheel Spokes

8. Connect the outside vertices, as shown in Figure 12-14.

VAR

*
Figure 12-14 Connected Spokes

9. Delete the inside “spoke” paths, to get a circle like the one in Figure 12-15.

* *

Figure 12-15 Finished 2-D Circle
Circles and other shapes can be time-consuming to create. Another way of adding circles

to your icon is to import a circle from another icon or from the icon parts library. See
“Sharing Design Elements” on page 205 for more information.

216

Advanced IconSmith Techniques

Drawing an Oval

To create an oval, stretch the circle you have already drawn.

1.
2.

Double-click a circle.

Bring up the IconSmith menu, and select “Move to Caret” from the Transform Pin
menu.

Place the pin directly above the circle.
Select Scale Y from the Transform menu.

Hold down the <Al t > key and use the mouse to stretch the circle to the oval shape
you want. Figure 12-16 shows an example.

*

Figure 12-16 An Oval

You can now assemble the parts to make a simple icon, as shown in Figure 12-17.

Figure 12-17 A Simple, Circular 2-D Icon

217

Chapter 12: Using IconSmith

Isometric Circles

The circular icon created above is not a good central icon design because it is not
isometric. The circle looks awkward in the context of isometric icons and may be
misconstrued to be a sphere. Here are two ways to make the same design in isometric
space.

Isometric Transformation

You can use the Shear Y button with an isometric grid to make any object seem 3-D.

1. Duplicate your circle.

2. Click Shear Y in the Transform menu.

3. Bring up the IconSmith menu, and select “Push Pin” from the Transform Pin menu.
4. Place the pin on one of the vertices at the bottom of the circle.
5

Hold down the <Al t > key and align the bottom line of the circle using the grid.

218

Advanced IconSmith Techniques

Import Existing Object

If another icon contains the shape you need, recycle it.

1. Click the Import button.

2. Import the icon file /ust/lib/filetype/iconlib/sample.big.3circles.fti. You should now have
the design shown in Figure 12-18 in your IconSmith drawing area.

+

Figure 12-18 Imported Circles

219

Chapter 12: Using IconSmith

220

3. Delete all parts of this icon except the lower right circle.

Using either method, you can create an isometric circle, shown in Figure 12-19. Starting
with the isometric circle, you can easily create isometric ovals, using the procedure in
“Drawing an Oval” on page 217.

Figure 12-19 Finished Isometric Circle

The final, isometric version of the icon is shown in Figure 12-20. Note that the design still
looks flat. However, if you want to show a sphere, create a straight-on circle, as was done
for the WebMagic icon.

Figure 12-20 Simple, Isometric 2-D Icon

Advanced IconSmith Techniques

Finishing Your Icon

A finished application icon is actually three or four .fti files: one or two badges, plus
generic components for the open (running) and closed (not running) icon states. You
need two badges rather than one if you want to animate your icon by changing its
appearance which the user double-clicks it. Figure 12-22 shows a possible open version
for the example icon created in the previous section. When the icon appears on the
Desktop, the generic executable icon component appears if you correctly define the
ICON rule in the FTR file, as discussed in “Getting the Icon Picture: The ICON Rule” on
page 244.

To see how your finished application icon appears on the Desktop:

1. Import the generic closed executable component using the Import button. In the
“Import” dialogue box, under “Set Template Layer”, press the Closed Application
button. The generic icon component appears under your closed badge design.

2. Center your design on the generic component template you have imported, as
shown in the example illustrated in Figure 12-21.

Figure 12-21 Icon Centered on Generic Component

221

Chapter 12: Using IconSmith

3. (Optional, but recommended.) Follow the same two steps to create an open badge.
You can give the appearance of animation by changing your design slightly and
saving the changed version as an open badge.

Figure 12-22 Open Icon
4. Save your icon designs to files with the suffix .fti.

For a discussion of icon file installation, see “Where to Install Your Completed Icon” on
page 196. To learn how to integrate your icon into an FIR file, see “Getting the Icon
Picture: The ICON Rule” on page 244.

222

Chapter 13

File Typing Rules

The Desktop uses file typing rules (FTRs) to evaluate all files that are presented
within the Desktop. This chapter describes each of the file typing rules in
detail, and offers suggestions for good file typing style and strategies.

Chapter 13

File Typing Rules

The Desktop uses file typing rules (FTRs) to evaluate all files that are presented within
the Desktop. This chapter describes each of the file typing rules in detail, and offers
suggestions for good file typing style and strategies. “Defining the Behavior of Icons
With FTRs” in Chapter 2 in Indigo Magic User Interface Guidelines describes the behaviors
your icon should support.

This chapter contains these sections:

“A Table of the FTRs With Descriptions” on page 226 provides a reference table
listing the FTRs along with brief descriptions.

“Naming File Types: The TYPE Rule” on page 227 describes the TYPE rule, used to
name a file type.

“Categorizing File Types: The SUPERTYPE Rule” on page 228 describes the
SUPERTYPE rule, used to categorize file types.

“Matching File Types With Applications: The MATCH Rule” on page 229 describes
the MATCH rule, used to match the application with the corresponding file type.

“Matching Non-Plain Files: The SPECIALFILE Rule” on page 235 describes the
SPECIALFILE rule, used to match non-plain files.

“Adding a Descriptive Phrase: The LEGEND Rule” on page 235 describes the
LEGEND rule, used to provide a brief phrase describing the application or data file.

“Setting FTR Variables: The SETVAR Rule” on page 236 describes how to set
variables that affect the way your icon behaves.

“Programming Open Behavior: The CMD OPEN Rule” on page 237 describes the
CMD OPEN rule, used to define what happens when users open the icon.

“Programming Alt-Open Behavior: The CMD ALTOPEN Rule” on page 238
describes the CMD ALTOPEN rule, used to define what happens when users
double-click your icon while pressing the <Al t > key.

“Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules” on
page 239 describes the CMD DROP rule, used to define what happens when a user
drags another icon and drops it on top of your application’s icon.

225

Chapter 13: File Typing Rules

* “Mapping Names: The MAP Rule” on page 242 describes the MAP rule, used to
specify a list of all mappings from the desktop name space.

* “Programming Print Behavior: The CMD PRINT Rule” on page 242 describes the
CMD PRINT rule, used to tell the Desktop what to do when a user selects your icon,
then selects “Print” from the Desktop popup menu.

e “Adding Menu Items: The MENUCMD Rule” on page 243 describes the
MENUCMD rule, used to add menu items to the Desktop menu

* “Getting the Icon Picture: The ICON Rule” on page 244 describes how to tell the
Desktop where to find the file(s) containing the picture(s) of the icon for a file type

* “Creating a File Type: An Example” on page 246 provides a detailed example of
how to program an icon.

A Table of the FTRs With Descriptions

226

Table 13-1 lists the rules that appear in a filetype definition along with brief descriptions.

Table 13-1 Rules That Appear in a Filetype Definition

Rules Function

TYPE Declares a new type.

SUPERTYPE Tells the Desktop to treat the file as a subset of another type under
certain circumstances.

MATCH Lets the Desktop determine if a file is of the declared type.

SPECIALFILE Tells the Desktop to use the file typing rule only on non-plain files.

LEGEND Provides a text description of the file type.

SETVAR Sets variables that affect the operation of your icon.

CMD OPEN Defines a series of actions that occur when a user double-clicks the

mouse on an icon or selects “open” from the main menu.

CMD ALTOPEN Defines a series of actions that occur when a user alt-double-clicks
the mouse on an icon.

CMD DROP Defines a series of actions that occur when a user “drops” one icon
on top of another.

Naming File Types: The TYPE Rule

Table 13-1 (continued) Rules That Appear in a Filetype Definition

Rules Function
DROPIF Defines a set of file types that the icon will allow to be dropped on it.
CMD PRINT Defines a series of actions that occur when a user chooses “Print”

from the Desktop or Directory View menus.

MENUCMD Defines menu entries that appear in the Desktop menu and the
Selected toolchest when an icon is selected.

ICON Defines the appearance (geometry) of the file type’s icon.

MAP Maps the Desktop file-type name with the ICCCM or MIME

target-type names.

All file types must begin with a TYPE rule. Aside from that, the rules can appear in any
order; however, the most efficient order for parsing is to include the MATCH rule second
and the ICON rule last.

Naming File Types: The TYPE Rule

It is important that your file type have a unique name so that it doesn’t collide with
Silicon Graphics types or types added by other developers. A good way to generate a
unique file type name is to base your file type name on your application name (which is
presumably unique). Another method is to include your company’s initials or stock
symbol in the file type name. You can also use the grep(1) command to search through
existing .ftr files:

% grep name /usr/lib/filetypel/*/*. ftr

Substitute your proposed new type name for the words name. If grep doesn’t find your
name, then go ahead and use it.

You name a file type by using the TYPE rule. You can define more than one file type in a

single file, as long as each new file type begins with the TYPE rule. The TYPE rule always
goes on the first line of the file type definition.

227

Chapter 13: File Typing Rules

Here is the syntax and description for the TYPE rule:
Syntax: TYPE type-name

Description: type-name is a one-word ASCII string. You can use a legal C language
variable as a type name. Choose a name that is in some way descriptive
of the file type it represents. All rules that follow a TYPE declaration
apply to that type, until the next TYPE declaration is encountered in the
FTR file. Each TYPE declaration must have a unique type name.

Example: TYPE Generi cExecut abl e

Categorizing File Types: The SUPERTYPE Rule

228

Use the SUPERTYPE rule to tell other file types that your file type should be treated as a
“subset” of a larger type such as executables or directories. For example, you can create
an executable with a custom icon, then use the SUPERTYPE rule to tell other Desktop file
types that the icon represents an executable.

Note: In general, file types don’t “inherit” icons, rules, or any other behavior from
SUPERTYPEs. Directories are a special case. The Desktop automatically handles the
DROP, OPEN, and ALTOPEN behavior for all directories marked as “SUPERTYPE
Directory.” You can’t override the DROP, OPEN, or ALTOPEN behavior if you include
“SUPERTYPE Directory.”

You can use any existing file type as a SUPERTYPE. Appendix E, “Predefined File
Types,” lists some of the file types defined by Silicon Graphics. You can generate a
complete list of file types installed on your system using the grep(1) command:

% grep TYPE /usr/lib/filetypel/*/*.ftr
Note: The list of file types generated by the above command is very long and unsorted.

Here is the syntax and description for the SUPERTYPE rule:
Syntax: SUPERTYPE type-name [type-name ...]

Description: type-name is the TYPE name of any valid file type. Use SUPERTYPE to
identify the file type as a “subset” of one or more other file types. This
information can be accessed by other file types by calling isSuper(1) from
within their CMD rules (OPEN, ALTOPEN, and so on). A file type can

Matching File Types With Applications: The MATCH Rule

have multiple SUPERTYPEs. (For example, the Script file type has both
Ascii and SourceFile SUPERTYPES.) See the isSuper(1) reference page
for more information.

Example: SUPERTYPE Execut abl e

A common use for SUPERTYPEs is to allow users to drag data files onto other application
icons to open and manipulate them. For example, if your application uses ASCII data
files but you create a custom data type for those files, you can include in the file type
declaration:

SUPERTYPE Asci i

This allows users to drag your application’s data files onto any text editor to open and
view them. If your application creates images files, you could make a similar declaration
to allow users to drag data file icons to appropriate image viewers such as ipaste(1).

Matching File Types With Applications: The MATCH Rule

The Desktop needs some way to figure out which FTRs pair up with which files. Your
FTRs will not work if they don’t include some way for the Desktop to match them with the
appropriate files. To do this, include the MATCH rule in your file type definition. This
section explains how to use the MATCH rule to identify your files. The method you use
depends on the kind of file you are matching and on the file permissions. First, here’s the
MATCH rule syntax and description:

Syntax: MATCH match-expression;

Description: match-expression is a logical expression that should evaluate to true if,
and only if, a file is of the type declared by TYPE. The match-expression
must consist only of valid MATCH functions, as described later in this
section. The match-expression can use multiple lines, but must
terminate with a semicolon (;). Multiple match-expressions are not
permitted for a given type. The MATCH rule is employed each time a
file is encountered by the Desktop, to assign a type to that file.

Examples: MATCH tag == 0x00001005;
MATCH gl ob(“ myExecut abel ") ;

229

Chapter 13: File Typing Rules

230

Matching Tagged Files

The easiest way to match your application with its FTRs is to use the tag(1) command to
assign a unique number to the application itself. You can then label the associated FTRs
with this same unique number, using the MATCH rule, as shown in the example above.

There are a few situations in which you cannot use tag to label your files. You cannot use
tag if:

e vyour file is neither an executable nor a shell script

e you don’t have the necessary permissions to change the file

For more information on matching your files without using the tag command, see
“Matching Files Without the tag Command” on page 231.

To tag your application and its associated FITRs using the tag command, follow these
steps:

1. The tag command attaches an identification number to your application. Before you
tag your application, select a number that is not already in use. Silicon Graphics
assigns each company (or individual developer) a block of ID numbers for tagging
files at no cost. If your company doesn’t already have an assigned block of numbers,
just send a request to Silicon Graphics. The best way is to e-mail your request to this
address:

deskt opt ags@gi . com

2. Once you have your block of numbers, you can select a number from the block of
numbers assigned to your company. Make sure that you select a number that no one
else in your company is using.

3. After you select a unique tag number for your application, go to the directory that
contains your application and tag it using the tag command. This is the syntax:

% tag number filename

Replace the word number with the number that you are assigning to the application
and filename with the name of your application. For more information on the tag
command, see the tag(1) reference page.

4. After tagging the application itself, include the tag in your application’s FIRs, using
the MATCH rule. Just include a line like this in your FIR file:

MATCH tag == number;

where number is the unique tag number assigned to your application.

Matching File Types With Applications: The MATCH Rule

You can also use the tag command to automatically assign a tag number for a predefined
file type. Silicon Graphics provides a set of generic types, called predefined types, that
you can use for utilities that do not require a personalized look. These predefined file
types come complete with icons, FTRs, and tag numbers. Use the appropriate tag
command arguments to get the desired file type features. For more information on tag
arguments, see the tag(1) reference page. The predefined file types are listed in
Appendix E, “Predefined File Types.”

Matching Files Without the tag Command

If you cannot use the tag command to match your application with the corresponding
FTRs, you need to write a sequence of expressions that check files for distinguishing
characteristics. Once you have written a sequence of expressions that adequately defines
your application file, include that sequence in your FTR file, using the MATCH rule. For
example, you can use this MATCH rule to match a C source file:

MATCH gl ob("*.c") && ascii;

The glob function returns TRUE if the filename matches the string within the quotes. The
ascii function returns TRUE if the first 512 bytes of the file are all printable ASCII
characters. (Table 13-3 lists all of the available match-expression functions.) The &&
conditional operator tells the Desktop that the functions on either side of it must both
return TRUE for a valid match. See “Valid Match-Expressions” on page 232 for a list of
all of the operators, constants, and numerical representations that you can use in your
match-expressions.

Writing Effective Match Expressions

The most effective way to order match-expressions in a single MATCH rule is to choose
a set of expressions, each of which tests for a single characteristic, and conjoin them all
using “and” conditionals (&&).

The order in which you list the expressions in a MATCH rule is important. Order the
expressions so that the maximum number of files are “weeded out” by the first
expressions. This is advised because the conditional operator, &&, stops evaluation as
soon as one side of the conditional is found to be false. Therefore, the more likely an
expression is to be false, the further to the left of the MATCH rule you should place it.

231

Chapter 13: File Typing Rules

232

For instance, in the previous MATCH expression example, it is more efficient to place the
glob("*.c") expression first because there are many more ASCII text files than there are
files that end in .c.

Since the Desktop scans FTR files sequentially, you must make sure that your match rule

is specific enough not to “catch” any unwanted files. For example, suppose you define a
type named “myDataFile” using this MATCH rule:

MATCH ascii;

Now every text file in your system will be defined as a file of type “myDataFile.”

Valid Match-Expressions

This section describes the syntax and function of valid match-expressions. You can use
these C language operators in a match-expression:

+ -
* /
& |
A !
%o 0

You can use these C language conditional operators in a match-expression:

&& Il

<= >=
The ‘==" operator works for string comparisons in addition to numerical comparisons.

You can use these constants in a match-expression:

true fal se

Matching File Types With Applications: The MATCH Rule

You can represent numbers in match-expressions in decimal, octal, or hexadecimal
notation. See Table 13-2.

Table 13-2 Numerical Representations in Match-Expressions

Representation Syntax
decimal num
octal Onum
hexadecimal Oxnum
Functions

Table 13-3 lists the valid match-expression functions.

Table 13-3 Match-Expression Functions

Function Syntax Definition

ascii Returns TRUE if the first 512 bytes of the file are all printable ASCII
characters.

char(n) Returns the nth byte in the file as a signed character; range is -128 to 127.

dircontains('string") Returns TRUE if the file is a directory and contains the file named by
string (see below for more information).

glob("string") Returns TRUE if the file’s name matches string; allows use of the
following expansions in string for pattern matching: { } [1* ? and
backslash (see sh(1) filename expansion).

linkcount Returns the number of hard links to the file.

long(n) Returns the nth byte in the file as a signed long integer; range is -2%! to
281

mode Returns the mode bits of the file (see chmod(1)).

print(expr or "string") Prints the value of the expression expr or string to stdout each time the
rule is evaluated; used for debugging. Always returns true.

short(n) Returns the nth byte of the file as a signed short integer; range is -32768
to 32767.
size Returns the size of the file in bytes.

233

Chapter 13: File Typing Rules

234

Table 13-3 (continued) Match-Expression Functions

Function Syntax Definition

string(n,m) Returns a string from the file that is m bytes (characters) long, beginning
at the nth byte of the file.

uchar (1) Returns the nth byte of the file as an unsigned character; range is 0 to
255.
tag Returns the specific Desktop application tag injected into an executable

file by the tag injection tool (see the tag(1) reference page.) Returns -1 if
the file is not a tagged file.

ushort(n) Returns the nth byte of the file as an unsigned short integer; range is 0
to 65535.

Using dircontains()

In order to use the dircontains() function, you need to include these two rules in your
filetype definition:

SUPERTYPE Speci al Fil e
SPECI ALFI LE

You can declare more than one SUPERTYPE in a file type, so the following would be a
legal FTR file:

TYPE scri nshawTool sDi r
MATCH dircontains(".tool sPref");
LEGEND Scrimshaw drawi ng tools directory
SUPERTYPE Directory
SUPERTYPE Special File
SPECI ALFI LE
I CON {
if (opened) {
include("../iconlib/generic.fol der.open.fti");
} else {
include("../iconlib/generic.folder.closed.fti");

i nclude("iconlib/scrinmshaw tools.dir.fti");

Matching Non-Plain Files: The SPECIALFILE Rule

Predefined File Types

For some applications, you may not want to create a unique file type and icon. Several
predefined file types exist and you can use them as necessary. If you use a predefined file
type for your application, tag can automatically assign it a tag number. Just use the
appropriate command line arguments as described in the tag(1) reference page. The
predefined file types and their tag numbers are listed in Appendix E.

Matching Non-Plain Files: The SPECIALFILE Rule

SPECIALFILE is used to distinguish a file typing rule used for matching non-plain files.
Device files and other non-plain files can cause damage to physical devices if they are
matched using standard file typing rules (which might alter the device state by opening
and reading the first block of the file).

Syntax: SPECIALFILE

Description: Special files are matched using only rules containing SPECIALFILE,
which are written so as not to interfere with actual physical devices.
Similarly, plain files are not matched using rules containing a
SPECIALFILE rule.

Example: SPECI ALFI LE

Note: When you include the SPECIALFILE rule in your file type, you should also
include the line:

SUPERTYPE Speci al Fil e

The SUPERTYPE declaration allows applications to use isSuper(1) to test whether your
file type is a SPECIALFILE.

Adding a Descriptive Phrase: The LEGEND Rule

Use the LEGEND rule to provide the Desktop with a short phrase that describes the file
type. This phrase appears when users view your icon’s directory as a list. It also appears
when a user selects your icon, then selects the “Get File Info” item from the Desktop
menu. Make your legend simple and informative and keep it to 25 characters or less.

235

Chapter 13: File Typing Rules

Here is the syntax and description for the LEGEND rule:

Syntax:

Description:

Example:

LEGEND text-string

text-string is a string that describes the file type in plain language that a
user can understand. Legends that are longer than 25 characters might
be truncated in some circumstances.

LEGEND C program source file

You might also see a LEGEND rule that is prepended with a number between two
colons—something like this:

LEGEND : 290:inmage in RGB fornat

The colons and the number between them are used for internationalization. For more
information, refer to “Internationalizing File Typing Rule Strings” in Chapter 4 of the
Topics in IRIX Programming.

Setting FTR Variables: The SETVAR Rule

236

The SETVAR rule allows you to set variables that affect operation of your icon.

Syntax:

Description:

Example:

SETVAR wvariable value

variable is a FTR variable and value is the value to assign to the variable.
Currently, two FIR variables are supported: noLaunchEffect and
noLaunchSound. Set noLaunchEffect to True to turn off the visual launch
effect when the user opens your icon. Set noLaunchSound to True to turn
off the launch sound effect when the user opens your icon.

SETVAR noLaunchEf fect True

Programming Open Behavior: The CMD OPEN Rule

Programming Open Behavior: The CMD OPEN Rule

Use the CMD OPEN rule to tell the Desktop what to do when a user opens your icon.
Users can open an icon in any of these ways:

* double-clicking it

* selecting it and then choosing the “Open” item from the Desktop popup menu (the
Desktop menu is the menu that appears when you hold down the right mouse
button while the cursor is over the Desktop background)

* selecting it and then choosing the “Open Icon” selection in the Selected tool chest.

Note: Directories are a special case. The Desktop automatically handles the OPEN
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the OPEN
behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMD OPEN rule:

Syntax:

Description:

Examples:

TYPE Makefile

CMD OPEN sh-expression|; sh-expression; ... ; sh-expression]

The OPEN rule should reflect the most frequently used function that
would be applied to a file of the given type. sh-expression can be any valid
Bourne shell expression. Any expression can use multiple lines. Any
number of expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a semicolon.
Variables can be defined and used as in a Bourne shell script, including
environment variables. See Appendix B for a list of special environment
variables set by the Desktop. These environment variables can be used
to refer to the currently selected icons within the Desktop or Directory
View.

CVMD OPEN $W NEDI TOR $SELECTED
The CMD OPEN rule for the “Makefile” file type is more complex:

CMD OPEN echo "nmake -f $LEADER | & tee $LEADER | og; rm $LEADER run" \

> $LEADER. run;

winterm-H -t nake -c¢ csh -f $LEADER run

237

Chapter 13: File Typing Rules

Programming Alt-Open Behavior: The CMD ALTOPEN Rule

238

By using the CMD ALTOPEN rule, you can tell the Desktop what to do when users
double-click your icon while pressing the <Al t > key.

Note: Directories are a special case. The Desktop automatically handles the ALTOPEN
behavior for all files marked as “SUPERTYPE Directory.” You can’t override the
ALTOPEN behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMD ALTOPEN rule:
Syntax: CMD ALTOPEN sh-expression|; sh-expression; ... ; sh-expression]

Description: ~ The ALTOPEN rule provides added functionality for power users.
Typically, you set ALTOPEN to pop up a launch window to let the user
edit arguments. sh-expression can be any valid Bourne shell expression.
Any expression can use multiple lines. Any number of expressions can
be used, and must be separated by semicolons (;). The final expression
should not end with a semicolon. Variables can be defined and used as
in a Bourne shell script, including environment variables. See
Appendix B for a list of special environment variables set by the
Desktop. These environment variables can be used to refer to the
currently selected icons within the Desktop or Directory View.

Examples: CVMD ALTOPEN | aunch -c $LEADER $REST

The CMD ALTOPEN rule for the “SGIImage” file type, defined in
fust/lib/filetype/system/sgiimage.ftr, is more complex:

TYPE SA | mage
CMD ALTOPEN i f test -n “$I MGVI EVER’
t hen
| MGVI EVER $LEADER $REST
el se
if test -x /usr/sbin/inmview
t hen
i mgvi ew $LEADER $REST
el se
if test -x /usr/sbin/ipaste
t hen
i past e $LEADER $REST
el se
xconfirm-t “ gettxt uxsgi desktop: 650
‘/usr/sbhin/ingviewis mssing.

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

Pl ease install ingtools.swtools.” " \
-B ““gettxt uxsgidesktop: 736 ‘ Continue ™" >
/ dev/ nul |
fi
fi
fi

In the example above:

e This filetype uses the IMGVIEWER environment variable. This is one of six
environment variables the user can set on the Desktop Utilities panel
(/usr/sbin/dtUtilities). Your filetype should make use of such utilities as well, if
appropriate. For example, if your application needs to open some data into an
editor for one of its rules, then the rule should check for the WINEDITOR variable
and use it to open the data. For more information on dtUtilities, see Chapter 10,
“Using the Default Viewer and Editor Utilities Panel.”

e This filetype posts a dialog if it can’t find any appropriate applications in which to
open the SGIImage file. This dialog has text that you can translate into other
languages; the embedded get t xt commands retrieve the text in the appropriate
language from the specified uxsgidesktop message catalog. You can make a message
catalog to hold your own messages, then use get t xt to make your filetypes use
these messages. For more information, see Chapter 11, “Step Three: Programming
Your Icon.”

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

Users can perform certain functions by dragging an icon and dropping it on top of
another icon. For example, users can move a file from one directory to another by
dragging the icon representing the file and dropping it onto the icon representing the
new directory. You use the CMD DROP rule to tell the Desktop what to do when a user
drags another icon and drops it on top of your application’s icon.

Note: Directories are a special case. The Desktop automatically handles the DROP

behavior for all files marked as “SUPERTYPE Directory.” You can’t override the DROP
behavior if you include “SUPERTYPE Directory.”

239

Chapter 13: File Typing Rules

240

Here is the syntax and description for the CMP DROP rule:
Syntax: CMD DROP sh-expression[; sh-expression; ... ; sh-expression]

Description: The DROP rule is invoked whenever a selected (file) icon is “dropped”
onto another icon in the Desktop or Directory View windows. When this
happens, the Desktop checks to see if the file type being dropped upon
has a DROP rule to handle the files being dropped. In this way, you can
write rules that allow one icon to process the contents of other icons.
Simply drag the selected icons that you want processed and put them on
top of the target icon (that is, the one with the DROP rule).

Example: CVD DROP $TARGET $SELECTED

By default, the CMD DROP rule handles all icons dropped on the target icon. However,
if you include a DROPIF rule in your file type, only those icons whose file types are listed
in the DROPIF rule are accepted as drop candidates; the Desktop doesn’t allow the user
to drop other types of icons on the target icon. Here is the syntax and description for the
DROPIF rule:

Syntax: DROPIEF file-type [file-type ... file-type]
Description: ~ Specifies the allowable file types that a user can drop on the icon.

Example: DROPI F MailFile

Using the DROPIF rule in conjunction with the CMD DROP rule is a good practice to
follow to ensure that the file types of selected icons are compatible with the selected icon.
You can also use the environment variables set by the Desktop, listed in Appendix B, to
determine other attributes of the selected icons.

For example, the following CMD DROP and DROPIF rules accept only a single icon with
the type “MyAppDataFile”:

DROPI F MyAppDat aFi | e
CMVD DROP if [$ARCC -gt 1]
t hen
inform"Only one data file allowed. ™"
el se
$TARCGET $SELECTED

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

In the example above, the DROPIF rule prevents users from dropping any file on the
target icon except those with the type “MyAppDataFile.” The CMD DROP rule is
invoked only after a successful drop. It checks the value of the environment variable
ARGC to see how many icons were dropped on the target icon. If more than one icon is
dropped, it displays an error message; if only one is dropped, it invokes the application
with the dropped file as an argument.

Note: The DROPIF rule doesn’t “follow” SUPERTYPES. If you specify a file type in a
DROPIF rule, only files of that type are accepted, not files that have that type as a
SUPERTYPE.

If you want to handle all files with a given SUPERTYPE, you must use isSuper(1) to test
for that SUPERTYPE in the CMD DROP rule. The following CMD DROP definition
demonstrates this by accepting one or more files with an “Ascii” SUPERTYPE:

CVD DROP okfile="true’
for i in $SELECTEDTYPELI ST

do
if isSuper Ascii $i > /dev/nul
t hen
okfile="true
el se
okfil e="fal se’
f
done
if [$okfile = "true]
t hen
$TARCGET $SELECTED
el se

xconfirm "$TARGET accepts only ASCII files."
f

241

Chapter 13: File Typing Rules

Mapping Names: The MAP Rule

If you want your datafile to work with the GoldenGate conversion, which is based on
ICCCM target type names, you need to use the MAP rule to associate the desktop
file-type name with the ICCCM target-type name. Then GoldenGate can access the
ICCCM type.

Syntax: MAP namespace value

Description: ~ The MAP rules specify a list of all mappings from desktop name space
to a non-desktop name. Desktop namespace is defined by the TYPE
names. The value is mapped onto the desktop type, which you can
obtain based on the value or TYPE name. You can use the MAP rule to
translate from a desktop TYPE to another name space, such as ICCCM
or MIME types. In the example below, the keyword Sel ect i onTar get
indicates a ICCCM name space.

ICCCM Example:

TYPE Al FFSoundFi |l e
MAP Sel ectionTarget Al FF_FILE

For more information about GoldenGate conversion, see, “Using GoldenGate Data
Conversion Services,” and “Data Conversion Service” on page 117.

Programming Print Behavior: The CMD PRINT Rule

242

Use the CMD PRINT rule to tell the Desktop what to do when a user selects your icon,
then selects “Print” from the Desktop popup menu. Here is the syntax and description
for the CMD PRINT rule; see also Chapter 14, “Printing From the Desktop,” for
information on writing rules to convert your new file type into one of the printable types.

Syntax: CMD PRINT sh-expression[; sh-expression; ... ; sh-expression]

Description: sh-expression can be any valid Bourne shell expression. Any expression
can use multiple lines. Any number of expressions can be used, and
must be separated by semicolons (;). The final expression should not end
with a semicolon. Variables can be defined and used as in a Bourne shell
script, including environment variables. See Appendix B for a list of
special environment variables set by the Desktop. These environment
variables can be used to refer to the currently selected icons within the
Desktop or Directory View. The recommended method of implementing

Adding Menu Items: The MENUCMD Rule

Adding Menu Items:

the PRINT rule is to use routeprint, the Desktop’s print-job routing
utility, as in the example below. routeprint uses print conversion rules to
automatically convert the selected files into formats accepted by the
system’s printers. See the routeprint(1) reference page for details on its
syntax. See Chapter 14 for information on setting up print conversion
rules.

Example: CMD PRINT routeprint $LEADER $REST

The MENUCMD Rule

Use the MENUCMD rule to add items to the bottom of both the Desktop menu and the
Selected toolchest menu. The Desktop menu is the menu that appears when you hold
down the right mouse button while the cursor is positioned on the Desktop. The Selected
toolchest menu is the menu that appears when you hold down the left mouse button
while the cursor is positioned over the Selected toolchest menu.

Menu items added to the Desktop menu and the Selected toolchest menu appear only
when the icon is selected (highlighted in yellow) on the Desktop.

You can add as many menu items as you like by adding multiple MENUCMD rules to
your file type. Any menu items added using the MENUCMD rule are added both to the
Desktop menu and the Selected toolchest menu—you can’t add menu items to just one
of these menus.

Here is the syntax and description for the MENUCMD rule:
Syntax: MENUCMD "string" sh-expression[; sh-expression; ... ; sh-expression]

Description: MENUCMD inserts the menu entry string into the Desktop or Directory
View menu if a single file of the appropriate type is selected, or if a group
of all of the same, appropriate type is selected. If the menu entry is
chosen, the actions described by the sh-expressions are performed on each
of the selected files.

Example: MENUCMD "Enpty Dunpster" conpress $LEADER $REST

You might also see a MENUCMD rule that is prepended with a number between two
colons—something like this:

MENUCMD : 472: "nmake install" winterm-H -t "make install’ \
-c make -f $LEADER install

243

Chapter 13: File Typing Rules

The colons and the number between them are used for internationalization. For more
information, refer to “Internationalizing File Typing Rule Strings” in Chapter 4 of the
Topics in IRIX Programming.

To add more than one menu item to the Desktop popup menu, just add a MENUCMD
rule for each item. For example, the “Makefile” file type includes all of the following
MENUCMD rules:

MENUCMD "make install" winterm-H -t 'nmake install’ \
-c make -f $LEADER install
MENUCMD "rmake clean” winterm-H -t 'nmake clean’ \
-c make -f $LEADER cl ean
MENUCMD "nake cl obber” winterm-H -t ' nmake cl obber’ \
-c make -f $LEADER cl obber
MENUCMD "Edit" $W NEDI TOR $LEADER $REST

Getting the Icon Picture: The ICON Rule

244

Use the ICON rule, described in this section, to tell the Desktop where to find the file(s)
containing the picture(s) of the icon for a file type. The simplest way to do this is to
provide the full IRIX pathname. For example, if the .fti file is in the directory called
fusr/lib/filetype/install/iconlib, you would simply write that pathname directly into your
FIR file.

If you prefer not to use the absolute pathname in your FIR, you can use a relative
pathname, as long as the icon file resides anywhere within the /usr/lib/filetype directory
structure. To make use of relative pathnames, list the pathname relative to the directory
containing the FTR file that contains the ICON rule. If you choose to do this, take care to
keep path names used in FTR files synchronized with icon locations.

The Desktop sets Boolean status variables to indicate the state of an icon. You can use
conditional statements that test these variables to alter the appearance of an icon based
on its state. The state variables are: opened, which is True when the icon is opened; and
selected, which is True when the icon is selected.

As described in “Importing Generic Icon Components (Magic Carpet)” in Chapter 12, a
common technique is to draw a unique badge to identify an application and then
combine that badge with a generic icon component. This works well if you also use
conditional statements to change the appearance of an icon depending on its state. You
can then combine the unique badge with a generic icon component appropriate to the
icon’s state. The example shown below demonstrates this technique.

Getting the Icon Picture: The ICON Rule

Use the basic format from the example below to tell the Desktop where to find your icon
files (the files that you created using IconSmith). Here is the syntax and description for

the ICON rule:
Syntax:

Description:

Examples:

ICON icon-description-routine

icon-description-routine is a routine written using the icon description
language, detailed below. The routine can continue for any number of
lines. The ICON rule is invoked any time a file of the specified type
needs to be displayed in the Desktop or Directory View. The rule is
evaluated each time the icon is painted by the application that needs it.

I CON {
if (opened) {
include("../iconlib/generic.exec.open.fti");

} else {
include("../iconlib/generic.exec.closed. fti");

include("iconlib/ack.fti");

}

The example above shows you exactly how to write the standard ICON
rule. The first line invokes the ICON rule. The next two lines tell the
Desktop where to find the parts of the icon representing the open and
closed “magic carpet” that makes up the generic executable icons. The
unique badge is in a file named ack.fti.

Note: You must include your badge after including the generic component so that it
appears over the generic components when displayed on the Desktop.

If you have two separate badges, one for the open and one for the closed state, your

ICON rule is:
| CON {

if (opened) {
include("../iconlib/generic.exec.open.fti");
i nclude("iconlib/ack.open.fti");

} else {

include("../iconlib/generic.exec.closed.fti");
include("iconlib/ack.closed. fti");

245

Chapter 13: File Typing Rules

Notice that this example gives the pathname of the icon files (.fti files) relative to the
directory in which the FTR file is located. You can use the full pathname if you prefer.
Your icon description routine would then look like this, assuming that ack.fti was placed
in fusr/lib/filetype/install/iconlib:

I CON {
if (opened) {
include("/usr/lib/filetypel/iconlib/genericexec.open..fti");
el se {
include("/usr/lib/filetypel/iconlib/generic.exec.close.fti");

}
include("/usr/lib/filetypel/install/iconlib/ack.fti");

Creating a File Type: An Example

246

This section provides an example that demonstrates how to write a file type. In this
example, assume we're writing a file type for a simple text editor called scribble and that
we’ve decided on these behaviors for the scribble icon:

* When a user double-clicks the scribble icon, the Desktop runs the application.

* When a user drops another icon onto the scribble icon, the Desktop brings up the
scribble application with the file represented by the dropped icon. Users can then use
the scribble application to edit this file.

Note: We're making no provision for rejecting icons that represent files unsuitable
for editing. You could enhance the scribble file type by including a line that tells the
Desktop to notify users when they drop an icon of the wrong type onto the scribble
icon.

(This section assumes that we're writing the file type completely from scratch. You might
prefer instead to modify an existing file type. To learn how to find the FTRs for an
existing icon, see “Add the FTRs: An Alternate Method” on page 186.)

Open an FTR File for scribble

For the purposes of this example, assume we’re creating a new FTIR file, rather than
adding to an existing one. We just open a new file using any editor we choose, then type
in whatever file typing rules we decide to use.

Creating a File Type: An Example

Add the Rules to the scribble FTR File

Now that we’ve opened a file for the FTRs, we just type in the rules we need to program
the icon. The file type has to begin with the TYPE rule on the first line. The TYPE rule
names the file type. This section discusses each line we use to create the file type.

Line 1: Name the File Type

Each file type has to have a unique name. Since our application is called scribble, assume
that we decide to name the new file type “scribbleExecutable.” By basing the file type
name on the application name, we help insure a unique file type name.

Before using the name, scribbleExecutable, we search for it in the /usr/lib/filetype directory,
to make sure that the name is not already in use:

1. Change to the /usr/lib/filetype directory:
% cd /usr/lib/filetype

2. Search for the name scribbleExecutable:

% grep "scribbl eExecutabl e” */*.ftr

Assume that we do not find an existing file type with the name “scribbleExecutable,” so
that’s what we name the new file type.

Now we use the TYPE rule to name the file type by typing this line into our FTR file:
TYPE scri bbl eExecut abl e

For more information on the TYPE rule, see “Naming File Types: The TYPE Rule” on
page 227.

Line 2: Classify the Filetype

Next we use the SUPERTYPE rule to tell the Desktop what type of file the icon represents.
Since scribble is an executable, we add this line to the FTRs:

SUPERTYPE Execut abl e

For more information on the SUPERTYPE rule, see “Categorizing File Types: The
SUPERTYPE Rule” on page 228.

247

Chapter 13: File Typing Rules

248

Line 3: Match the File Type

Now we add the scribble executable’s tag number to the file type definition by adding
this line to the FIRs:

MATCH tag == 0x00001001,

This step assumes that we’ve already tagged the executable itself with the tag 0X001001,
as described in “Step One: Tagging Your Application” on page 183.

(Since scribble is an executable, we're able to use the fag command to tag it. If we were
unable to use the fag command to assign an identification number to the application
itself, we would need a slightly more complicated MATCH rule to match the application
with its FTRs. For more information, see “Matching File Types With Applications: The
MATCH Rule” on page 229 and “Matching Non-Plain Files: The SPECIALFILE Rule” on
page 235.)

Line 4: Provide a Descriptive Phrase

Next we use the LEGEND rule to provide a legend for the file type. The legend is a brief
descriptive phrase that appears when users view a directory as a list or select “Get File
Info” from the Desktop menu. It should be simple, informative, and 25 characters or less.
To add the legend for scribble, add this line to the FTRs:

LEGEND scribble text editor

For more information on using the LEGEND rule, see “Adding a Descriptive Phrase: The
LEGEND Rule” on page 235.

Line 5: Define Icon-Opening Behavior

We use the CMD OPEN rule to tell the Desktop what to do when users open the scribble
icon. In this example we want the Desktop to run the scribble application when the icon is
opened, so we include this line in the FTRs:

CVD OPEN $LEADER $REST

$LEADER refers to the opened application, in this case scribble. The Desktop uses
$LEADER to open $REST. In this case, SREST means any other selected icons in the same
window. $LEADER and $REST are Desktop environmental variables. These variables are
listed and described in Appendix B, “Desktop Variables.”

Creating a File Type: An Example

For more information on using the CMD OPEN rule, see “Programming Open Behavior:
The CMD OPEN Rule” on page 237.

Line 6: Define Drag and Drop Behavior

We use the CMD DROP rule to tell the Desktop what to do when users drop another icon
onto the scribble icon. In this example we want the Desktop to open the scribble application
with the contents of the dropped file, so we include this line in the FTRs:

CVD DROP $TARGET $SELECTED

$TARGET refers to the icon that the user dropped another icon on, in this case scribble;
$SELECTED refers to the icon that the user dropped onto the scribble icon. $TARGET and
$SELECTED are Desktop environmental variables. These variables are listed and
described in Appendix B.

For more information on the CMD DROP rule, see “Programming Drag and Drop
Behavior: The CMD DROP and DROPIF Rules” on page 239.

Line 7: Define Alt-Open Behavior

We use the ALTOPEN rule to tell the Desktop what to do when users open the scribble
icon while holding down the <Al t > key. In this example, we want the Desktop to run the
launch(1) program, so we include this line in the FTRs:

CVD ALTOPEN | aunch -c¢ $LEADER $REST

Again, SLEADER refers to the opened application, scribble and $REST refers to any other
selected icons in the same window. launch runs the launch program, and -c is a command
line argument to launch.

For more information on the CMD ALTOPEN rule, see “Programming Alt-Open

Behavior: The CMD ALTOPEN Rule” on page 238. See the launch(1) reference page for
more information about using the launch command.

249

Chapter 13: File Typing Rules

250

Line 8: Add the Icon Picture

We use the ICON rule to tell the Desktop where to find the picture for the scribble icon.
Assume we have an icon picture in the file /usr/local/lib/install/iconlib/scribble.fti. In this
example, we add these lines to the FTRs:
| CON{
if (opened) {

include("../iconlib/generic.open.fti");

} else {
include("../iconlib/generic.closed.fti");

}

include("iconlib/scribble.fti");

}

These lines tell the Desktop how to find pictures for the scribble icon in the opened and
closed states.The pathname of the icon (.fti) files is listed relative to the location of the
FTR file containing the ICON rule. Relative pathnames work as long as the icon files are
located within the /usr/lib/filetype directory structure. Alternatively, you can use the
absolute pathnames to the files:

e Jusr/local/lib/iconlib/generic.open.fti
e Jusr/local/lib/iconlib/generic.closed.fti
e Jusr/local/lib/iconlib/scribble.fti

For more information on the ICON rule, see “Getting the Icon Picture: The ICON Rule”
on page 244.

Name the scribble FTR File and Put It in the Appropriate Directory

Assume the name of our company is Shakespeare. Then according to the naming
conventions in “Naming FTR Files” on page 185, we should name our FIR file
Shakespeare.scribble.ftr. We put the file in the /usr/lib/filetype/install directory.

Creating a File Type: An Example

The scribble FTRs

Here is the set of FTRs that we created to define the file type called “scribbleExecutable.”

TYPE scri bbl eExecut abl e

SUPERTYPE Execut abl e

MATCH tag == 0x00001001;

LEGEND scribble text editor

CMD OPEN $LEADER $REST

CMD ALTOPEN | aunch -c¢ $LEADER $REST

CVD DROP $TARGET $SELECTED

I CON {

if (opened) {
include("../iconlib/generic.open.fti");

} else {
include("../iconlib/generic.closed.fti");

}

include("iconlib/scribble.fti"):

251

Chapter 14

Printing From the Desktop

This chapter describes how to create print conversion rules so that users can
print your application’s data files from the desktop.

Chapter 14

Printing From the Desktop

The desktop provides printing services so that users can print from an application. This
chapter covers these topics:

* “About routeprint” on page 255 discusses the routeprint command, which converts
files into printable form.

* “Converting a File for Printing” on page 255 explains how the Desktop converts a
file for printing.

® “The Print Conversion Rules” on page 258 explains the print conversion rules.

® “The Current Printer” on page 261 discusses the Desktop’s concept of the current,
or default, printer and the Desktop environment variable §CURRENTPRINTER.

About routeprint

To print a file, the Desktop invokes the routeprint(1) command. routeprint knows how to
convert most files into printable form, even if the conversion requires several steps.

You can show routeprint how to convert your application’s data files into printable format
by adding one or more CONVERT rules to your application’s FTR file.

This chapter explains the process routeprint uses to convert data files into a printable
format, what file types routeprint already recognizes, and how to write your own print
CONVERT rule to allow your application to tap into routeprint’s powerful printing
capabilities.

Converting a File for Printing

The Desktop already has rules for printing many types of files, such as ASCII, PostScript,
and RGB image files. The easiest method for printing a file of arbitrary format is to break
down the printing process into small, modular steps.

255

Chapter 14: Printing From the Desktop

256

For example, instead of writing dozens of specialized rules to print reference pages
directly for each kind of printer, you can instead convert reference pages to nroff format
and then convert the nroff format to the format required for the current printer.

The diagram shown in Figure 14-1 illustrates the steps by which some of the supported
Desktop file types are converted for printing. Each box represents one or more file types;
the arrows between them indicate the steps by which the file types are converted. The
values associated with the arrows represent the cost of the conversion. This concept is
talked about more in “Print Costs” on page 257 later in this chapter.

manHroffFile

meHMroffFile 50
msHroffFile HroffFile
mmHroffFile 500
mvHNroffFile
MailFile
transferDev Shell
N\
transferDev . 0 125
o AsciiTextFile — g™ accii —— g PostScriptFile
tty Script 0 i}
FileTypeRuleFile SGlimage
FileTypelconFile
Script 200
Makefile 200
HeaderFile 200
CProgram —— = SourceFile
CPlusPlusProgram
Program
a0
ftrFil
Dumpster \ ile
PackFile Directory 5o 0
CompressFile
cpioArchive al
Catal
tarArchive t -
bruArchive
arfrchive

Figure 14-1 File Conversions for Printing Standard Desktop Files

This modular approach to printing has two major advantages:

* The modular steps are reusable. Because you can reuse each modular printing step,
you write fewer rules.

* routeprint can pick the most efficient route for printing. There is often more than
one sequence of conversion steps to print a file. routeprint chooses the sequence of
steps that provides the best possible image quality.

Converting a File for Printing

This modular, multi-step conversion to printable form is called the print conversion
pipeline, a series of IRIX commands that process a copy of the file’s data in modular
increments. The print conversion rules are designed to take advantage of this method of
processing printable files.

In addition, applications or software packages can add new arcs to the CONVERT rule
database whenever they define new types or have a better way of converting existing
types. For example, Impressario includes a filter to go directly from NroffFile to
PostScriptFile—this new filter has a lower cost than the default conversion, which goes
from NroffFile to Ascii to PostScriptFile.

The Desktop already has rules for printing a large number of file types. You can use grep
to list all of these print conversions definitions by typing:

% grep -i convert /usr/lib/filetypel/*/*. ftr

Note: The list of print conversion definitions generated by the above command is long
and unsorted.

Print Costs

Frequently, there is more than one set of steps that routeprint can use to print your file. To
compare different ways of printing a file of a particular type, routeprint associates cost
numbers with each conversion, then chooses the series of conversions with the lowest
total cost. The cost of a conversion represents image degradation and processing cost,
and is specified by a number between 0 and 1000 inclusive. The higher the cost of a
conversion, the more routeprint attempts to avoid that conversion method if it has
alternative methods.

257

Chapter 14: Printing From the Desktop

The conventions for determining the cost assigned to a given conversion are described in
Table 14-1.

Table 14-1 Conversion Costs for Print Conversion Rules

Cost Reason

0 Equivalent filetypes, or a SETVAR rule (described in “The Print
Conversion Rules”)

50 Default conversion cost

125 Trivial data loss, or conversion is expensive

200 Minor data loss, but conversion is not expensive

300 Noticeable data loss and conversion is expensive

500 Obvious data loss (for example, color to monochrome)

The Print Conversion Rules

258

There are three parts to a complete print conversion rule:
* the CONVERT rule

* the COST rule

e the FILTER rule

The CONVERT Rule
Syntax: CONVERT source-type-name destination-type-name

Description: source-type-name is the file type you are converting from.
destination-type-name is the file type you are converting to.

Example: CONVERT NroffFile PostScriptFile

The Print Conversion Rules

Do not use the convert rule to convert directly to a new printer type; convert to a
standard Desktop file type instead. Silicon Graphics reserves the right to alter printer
types, so converting to a standard file type (for example, PostScriptFile) is a more
portable solution. Appendix E, “Predefined File Types,” lists some of the file types
defined by Silicon Graphics. You can generate a complete list of file types installed on
your system using the grep(1) command:

% grep TYPE /usr/lib/filetypel/*/*. ftr

Note: The list of file types generated by the above command is very long and unsorted.

The COST Rule

Syntax:

Description:

Example:

COST non-negative-integer

The non-negative-integer represents the arc cost, or incremental cost of the
conversion. This cost is used to reflect processing complexity or can also
be used inversely to reflect the output quality. When routeprint selects a
conversion sequence, it takes the arc costs into account, choosing the
print conversion sequence with the least total cost. It is highly
recommended that you specify a COST rule. If you omit it, routeprint
assumes the cost of the conversion is zero, which may cause routeprint to
return an inappropriate print conversion pipeline. The default cost is 50.

COST 50

The FILTER Rule

Syntax:

Description:

FILTER filter-expression

The FILTER rule represents part of an IRIX pipeline that prepares a file
for printing. filter-expression can be any single IRIX command line
expression, and generally takes the form of one or more piped
commands. In the general case, the first command within a single
FILTER rule receives input from stdin; the last command in the rule
sends its output to stdout. routeprint concatenates all the FILTER rules in
the print conversion pipeline to form one continuous command that
sends the selected file to its destination printer.

259

Chapter 14: Printing From the Desktop

260

There are three special cases in creating FILTER rules:
e “first” case
¢ “last” case

e “getvar” case

In a “first” case rule, the FILTER rule is the very first rule in the print conversion pipeline.
In this case, routeprint passes the list of selected files to the first command in the FILTER
rule as arguments. If a first case FILTER rule begins with a command that does not accept
the files in this fashion, prepend the cat command to your rule:

FILTER cat | tbl - | psroff -t
The files will then be piped to the next command’s stdin.

In a “last” case rule, the FILTER rule is the very last rule in the print conversion pipeline.
This rule contains a command that sends output directly to a printer (such as Ip).
Last-case rules are already provided for many file types. To ensure compatibility between
your application and future printing software releases, you should refrain from writing
your own last-case rules. Instead, write rules that convert from your file type to any of
the existing file types, and let the built-in print conversion rules do the rest.

In a “setvar” case rule, the FILTER rule is used to set an environment variable used later
in the print conversion pipeline. The first CONVERT rule in the example below sets a
variable that defines an nroff macro used in the second rule. In all setvar cases, stdin is
passed to stdout transparently. Thus, you can include setvar as part of the pipeline in a
single FILTER rule.

CONVERT mmNroffFile NroffFlle
COST 1
FILTER setvar MACRO=mm

CONVERT NroffFile PostScriptFile
COST 50
FILTER eqgn | tbl | psroff -$MACRO -t

The Current Printer

The Current Printer

The current printer is the system default printer that the user sets with the Print Manager
or, alternatively, the printer specified by the -p option to routeprint. If no default is set and
-p is not used, an error message is returned by routeprint to either stdout or a notifier
window (if the -g option to routeprint was set). The Desktop environment variable
$CURRENTPRINTER is set to the currently selected default printer.

261

Appendices

Appendix A, “Example Programs for SGI Enhanced Widgets,” contains
example programs for some of the SGI extended IRIS IM widgets.

Appendix B, “Desktop Variables,” lists the various environment variables
used by the desktop.

Appendix C, “Online Help Examples,” contains listings of several online help
document files. It also lists the source of an example program that implements
many online help features, along with its accompanying help document and
helpmap file.

Appendix D, “The Icon Description Language,” describes the icon description
language that IconSmith uses to write the ICON rule. This information is
provided for completeness. Don’t try to write the ICON rule directly in the
icon description language.

Appendix E, “Predefined File Types,” lists the predefined file types and their
associated tag numbers that are available for your use. You can use these
predefined file types for utilities that do not need a unique, personalized look.

Appendix F, “FTR File Directories,” describes where FTR files are stored on
your system.

Appendix G, “Using GoldenGate Data Conversion Services,” describes how to
use the Golden Gate conversion services.

Appendix H, “Standard Menu Resources,” provides example code of menu
bar, file, and edit menu resources.

Appendix A

Example Programs for SGI Enhanced Widgets

This appendix contains example programs for some of the SGI extended IRIS IM
widgets.

Makefiles are provided for some of these examples, but to use these examples, you need

to:

Link with -IXm and -1Sgm, making sure to put the -1ISgm before -1Xm. (To replace
an unenhanced widget with the enhanced version of that widget in an existing
program, you need to re-link.)

LLDLIBS = -1 Sgm -1 Xm - Xt -1 X11 -| PW

You must include -1Sgm to get the enhanced look and the new widgets. If you do
not include -Ifileicon, you will get a runtime error, since the runtime loader won’t be
able to find needed symbols. The -1Xm represents the enhanced version of libXm
(IRIS IM).

Run the program with these resources:

*sgi Mode: true

*useSchenes: all

Set them in your . Xdefaults file or create a file for your application in
Jusr/lib/X11/app-defaults.

This appendix provides example programs for:

“Example Program for Color Chooser” on page 266

“Example Program for Dial” on page 268

“Example Program for Drop Pocket” on page 270

“Example Program for Finder” on page 273

“Example Program for History Button (Dynamenu)” on page 275
“Example Program for ThumbWheel” on page 276

“Example Program for File Selection Box” on page 278

265

Appendix A: Example Programs for SGI Enhanced Widgets

e “Example Programs for Scale (Percent Done Indicator) Widget” on page 281
¢ “Example Program for LED Widget” on page 282

Example Program for Color Chooser

/*

* colortest.c --

* denonstration of quick-and-easy use of the col or
* chooser wi dget.

*/

#i ncl ude <stdio. h>
#i ncl ude <X Xm h>

#i ncl ude <X Label . h>
#i ncl ude <X For m h>
#i ncl ude <Sgni ol or C h>

static void ol orCal | back();
Wdget |abel, colorc;
Xt AppCont ext app;

#if 0

int sgidl add()
{

return 1;

}
#endi f

nain (argc, argv)
int argc;
char *argv[];

Wdget toplevel, form
Arg args[25];
int ac = 0;

toplevel = XtVaApplnitialize(&pp, argv[0], NULL, 0, &irgc, argv, NULL, NULL);
if (toplevel == (Wdget)NJL) {

printf("Applnitialize failed'\n");

exit(1);

266

Example Program for Color Chooser

}

col orc = SgQ eat eCol or Chooser D al og(topl evel , "colorc", NALL, 0);
Xt AddCal | back(col orc, XmNappl yCal | back, Col or Cal | back, (Xt Poi nter)NULL);
Xt ManageChi | d(col orc);

form= XnQreat eForn{topl evel, "Forni, NULL, 0);
Xt ManageChi | d(forn);

| abel = XmOreatelLabel (form "I ama color!", NULL, 0);
Xt ManageChi | d(| abel) ;
ac = 0;

Xt Real i zeWdget (t opl evel) ;
Xt AppMai nLoop(app) ;

}

voi d Col orCal I back(w, client_data, call_data)
Wdget w,

Xt Pointer client_data, call _data;

{

Pixel white; /* fallback */

SgCol or Chooser Cal | backSt ruct *cbs =(SgQol or Chooser Cal | backStruct *)cal | _dat a;
D splay *dpy = Xt D spl ay(l abel);

Screen *scr = Xt Screen(| abel);

/*

* |f we were willing to use private structure nenbers,
* we could be sure to get the correct col ormap by using
* | abel ->core. col ormap. For this deno, however,

* the default colormap will suffice in nost cases.

*/

Gol ornap col ornmap = Xbef aul t Col or mapCF Scr een(scr) ;

XCol or nycol or;

Arg args[1];

white = Wi tePi xel Cf Screen(scr);

nycol or.red = (unsi gned short) (cbs->r<<8);

nycol or. green = (unsi gned short) (cbs->g<<8);
nycol or. bl ue = (unsi gned short) (cbhs->b<<8);
nycol or.flags = (DoRed | DoGeen | DoBl ue);

if (XAl ocColor(dpy, colornmap, &mycolor)) {

Xt Set Arg(args[0], XniNbackground, nycol or. pi xel);
}

267

Appendix A: Example Programs for SGI Enhanced Widgets

el se {
fprintf(stderr, "No more colors!\n"); fflush(stderr);
Xt Set Arg(args[0], Xmi\background, white);

}

Xt Set Val ues(l abel , args, 1);
}

Makefile for colortest.c

ROOT =/

MYLI BS =

XLIBS = -1 Sgw -1 Sgm -1 Xm -1 X% -1X11 -1 gl
SYSLIBS = -IPW-Im-Il -ly
INCLUDES = -1. -1$(Ra0T) usr/incl ude

LDFLAGS = -L -L. -L$(ROONusr/lib $(MLIBS) $(XIBS) $(SYSLIBS)
all: colortest

colortest: colortest.o
cc -o colortest colortest.o $(LDFLA)

colortest.o: colortest.c
cc -g $(INOLUDES) -DDEBUG -D NO PROTO -c colortest.c

Example Program for Dial

/*

* Mtest.c --

* create and manage a dial w dget.

* Test its resource settings through nenu/button actions.
*/

#i ncl ude <stdi o. h>

#i ncl ude <Xmi Xm h>

#i ncl ude <X For m h>

#i ncl ude <X D al ogS. h>
#i ncl ude <Xni Label . h>
#i ncl ude <Sgni O al . h>

/*

268

Example Program for Dial

* Test franework procedures and gl obal s.
*/

#i fdef _NO PROTO

static void DragCal | back();

#el se

static void DragCal | back(Wdget w void *client_data, void *call_data);
#endi f /* _NO PROTO */

Xt AppCont ext app;

main (argc, argv)
int argc;
char *argv[];

Wdget toplevel, form dial, |abel;
Arg args| 25];
int ac = 0;

/*
* eate and realize our top | evel w ndow
* with all the nenus and buttons for user input.
*/
toplevel = XtVaApplnitialize(&pp, "Daltest”, NULL, 0, &rgc, argv, NULL,
NULL) ;
if (toplevel == (Wdget)NLL) {
printf("Applnitialize failed\n");
exit(1);
}

form= Xnreat eForn{topl evel, "Forni, NULL, 0);

/* Set up argunents for our wdget. */

ac = 0;

Xt Set Arg(args[ac], XN eftAttachnent, XnATTACH FCRV); ac+t,
Xt Set Arg(args[ac], Xmi\right Attachrment, XmATTACH FCRV); ac++;
Xt Set Arg(args[ac], XnmiNopAttachnent, XMATTACH FCRV); ac++;

/*

* \i¢ use all-default settings.

* Do not set any of the dial-specific resources.
*/

dial = SgOeateb al (form "dial", args, ac);
Xt ManageChi | d(di al);

269

Appendix A: Example Programs for SGI Enhanced Widgets

ac = 0;

Xt Set Arg(args[ac], XN eftAttachnent, XnATTACH FCRV); ac++,

Xt Set Arg(args[ac], Xni\ight Attachnent, XmATTACH FCRV); ac++;

Xt Set Arg(args[ac], Xm\topAttachrent, XmATTACH WDCGET); ac++;

Xt Set Arg(args[ac], XmiNopWdget, dial); ac+t

Xt Set Arg(args[ac], Xmi\bottonAttachnent, XWATTACH FCRV); ac++;

Xt Set Arg(args[ac], XmN abel String, XnStringQeateS nple("0")); ac++,
| abel = XmOreatelLabel (form "val ueLabel ", args, ac);

Xt ManageChi | d(| abel) ;

/*
* Set up callback for the dial.
*/
Xt AddCal | back(di al , XmNdragCal | back, DragCal | back, |abel);

Xt ManageChi | d(form;
Xt Real i zeWdget (t opl evel);
Xt AppMai nLoop(app) ;

}

voi d DragCal | back(w, client_data, call_data)
Wdget w,

XtPointer client_data, call _data;

{

SgD al Cal | backStruct *cbs = (SgD al Cal | backStruct *) call _dat a;
Wdget |abel = (Wdget)client_data;

static char new | abel [256] ;

Arg args[2];

int ac = 0;

if ((cbs !'= NULL) && (label !'= (Wdget)NUL)) {
sprintf(new|abel, "%l", cbs->position);
Xt Set Arg(args[ac], XnN abel String, XngtringQ eateS npl e(new | abel)); ac++
Xt Set Val ues(| abel , args, ac);
}
}

270

Example Program for Drop Pocket

Example Program for Drop Pocket

/*
* Denonstrate the use of the DropPocket
*/

#i ncl ude <Xmi For m h>
#i ncl ude <X PushB. h>
#i ncl ude <Sgmi Dr opPocket . h>

static void droppedCB(Wdget w, Xt Pointer clientData, Xt Pointer cbs) {

SgDx opPocket Cal | backStruct * dchs = (SgDr opPocket Cal | backSt ruct *) cbs;
char * nane;

i f (dcbs->i conNane)
if (!'XnBtringGetLtoR dcbs->i conName, XmFONTLI ST DEFAULT_TAG &nane))
name = NULL;

printf("Dropped file: %\nFull Data: %\n", nane, dcbs->iconData);
Xt Free(nane);

}

main(int argc, char * argv[]) {
Wdget toplevel, exitB, dp, topRC
Xt AppCont ext app;

Xt Set LanguagePr oc(NULL, (Xt LanguageProc) NOLL, NULL);
toplevel = XtVaApplnitialize(&pp, "DropPocket”, NUL, 0, &rgc, argv, NULL,
NULL) ;
t opRC = Xt VaQr eat eManagedW dget ("t opRC', xnior mWdget d ass, toplevel, NULL);
dp = Xt VaQ eat eManagedW dget (" dp",
sgDr opPocket Wdget d ass, topRG
XNt opAt t achnent, XnATTACH FCRV
Xmi\bot t omAt t achnent, XmATTACH FCRV)
XN ef t At tachnent, XmATTACH FCRV
Xni\ri ght At t achnent, XnATTACH FCRV
Xmhei ght, 100,
XmNni dt h, 100,
NULL) ;
Xt AddCal | back(dp, SgN conUpdat eCal | back, dropped(B, NULL);
Xt Real i zeWdget (topl evel);
Xt AppMai nLoop(app);
}

271

Appendix A: Example Programs for SGI Enhanced Widgets

Makefile for Drop Pocket Example

#! snake
#
i ncl ude /usr/i ncl ude/ make/ coomondef s

HFILES = \\p DropPocket P. h \\ p Dr opPocket . h
CFILES = \\p Dr opPocket . ¢
TARGETS = dpt

CVERSI ON = - xansi

MALLQC = /d2/stuff/lib/Mlloc

CVERSI ON = - xansi

CPTIMZER = -g

1 $(MALLAD -wint,-pf -woff 813,826, 828

LLOLIBS = -1 Sgm-I Xm-1 X -1X11 -1 PW

#LLOLIBS = -u mal loc -u XtRealloc -u XtMalloc -u XtCalloc -L /d2/stuff/lib
-ldbnal loc -1Sgm-I Xm-I Xt -1 X11

LCDEFS = - DFUNCPROTO - DDEBUG

targets: $(TARCETS)

i ncl ude $(COMINRULES)

#dpt: dpTest.o $(CBIECTS)
$(Q0) -0 $@dpTest. o $(CRIECTS) $(LDFLAGS)

dpt: dpTest.o
$(QO -0 $@dpTest. o $(LDFLACS)

#dpt 2: dpTest 2. o $(CBIECTS)
$(Q) -0 $@dpTest2. 0 $(CBIECTS) $(LDFLACS)

dpt2: dpTest2.0
$(QO -0 $@dpTest2.0 $(LOFLA)

#dpt 3: dpTest 3. 0 $(CBIECTS)
$(Q) -0 $@dpTest3. 0 $(CBIECTS) $(LDFLACS)

dpt3: dpTest3.0

272

Example Program for Finder

$(QO -0 $@dpTest3. 0 $(LDFLAD)

#dt: tdt.o $(CBIECTS)
$(C0) -0 $@tdt.o $(CBIECTS) $(LDFLAGS)

tdt: tdt.o
$(C0) -0 $@tdt.o $(LOFLAGS)

depend:
makedepend -- $(CFLAGS) -- $(HFILES) $(CFILES)

Example Program for Finder

/ *
* Finder.c denonstrates the use of the SgF nder w dget
*/

#incl ude <stdlib. h>

#i ncl ude <stdio. h>

ncl ude <Xm RowCol umm. h>

#i ncl ude <Xmi Label . h>

#i ncl ude <Sgni Fi nder . h>

#i ncl ude <Sgnd DynaMenu. h>

static char * itens[] ={ "Archer’s favorite songs:",
"Draft dodger rag",

"Le Roi Renaud",

"[usr/shin",

"/lib/libc.so.1",

"Cal vi ni st Headgear Expressway",

b
static void val ueChangeCB(Wdget w, Xt Pointer clientData, XmAnyCall backStruct *
cbs) {
printf("App val ue change cal | back\n");

}
static void activateCB(Wdget w, Xt Pointer clientData, XmAnyCal | backStruct *
cbs) {

printf("App activate cal |l back\n");
nain(int argc, char * argv[]) {

Wdget toplevel, rc, label, finder, history;
Xt AppCont ext app;

273

Appendix A: Example Programs for SGI Enhanced Widgets

XnBtring * list;
int listSze, i;

Xt Set LanguagePr oc(NULL, (Xt LanguageProc) NOLL, NULL);
toplevel = XtVaApplnitialize(&pp, "F nder", NJL, 0, &rgc, argv, NULL,
NULL) ;
rc = XtVaQeateWdget("rc",
xnmRowCol um\W dget A ass, topl evel ,
Xni\r esi zeWdt h, Fal se,
X\ esi zekei ght, True,
NULL) ;

/* create the original list for the historyMenu */
listSize = XXt Nunber(itens);
list = (Xn8tring *)Xt Malloc(sizeof (XnBtring) * listS ze);
for (i =0; i <listSze; i++)

list[i] = XnBtringQeatelLocalized(itens[i]);

| abel = Xt VaQr eat eManagedWdget (" Thi ngs: ",
xniabel Wdget d ass, rc,
NULL) ;
finder = Xt VaQ eat eManagedWdget ("finder", sgFi nderWdgetd ass, rc, NULL);
hi story = SgFi nder Get Chi | d(finder, SgFl NDER H STCRY_MENUBAR) ;
if (history & Sgl sDynaMenu(history)) {
Xt VaSet Val ues(hi story,
Sghhi storyListltens, |ist,
Sghhi st oryLi st1temCount, |istS ze,

NULL) ;
}
for (i =0; i <listSze; i++)
if (list[i 1)
XnstringFree(list[i 1);
if (list)

XtFree((char *)list);

Xt AddCal | back(finder, Xm\val ueChangedCal | back, (Xt Cal | backProc)val ueChangeCB,
finder);

Xt AddCal | back(finder, Xm\activateCall back, (Xt CallbackProc)activateCB,
finder);

Xt ManageChi | d(rc);
Xt Real i zeWdget (topl evel);
Xt AppMai nLoop(app) ;

}

274

Example Program for History Button (Dynamenu)

Example Program for History Button (Dynamenu)

#i ncl ude <Sgml DynaMenu. h>
#i ncl ude <Xm RowCol unn. h>

static char * itens[] ={ "illegal smle", "/usr/peopl el stone",
"Fish and whistle", "help |'mtrapped in the
nmachi ne", "9th & Hennepin" };

static void dynaPushCB(Wdget w, Xt Pointer clientData, Xt Pointer chd) {
SgDynaMenuCal | backStruct * cbs = (SgDynaMenuCal | backStruct *) chbd;
int num = chs->button_nunber;
printf("Selected i temnunber %l\n", num;

}

main(int argc, char * argv[]) {
Xt AppCont ext app = NULL;
Wdget toplevel, rc, dynaMenu;
XnBtring * list;
int listSze, i;

toplevel = XtVaApplnitialize(&pp, "DynaMenu", NUL, O, &argc,argv, NULL,
NULL) ;
rc = Xt VaQ eat eManagedWdget ("rc", xnRowCol unmWdget A ass, toplevel, NULL);

/* create the original list for the dynaMenu */
listSize = XtNunber(itens);
list = (Xn&tring *)Xt Mal | oc(sizeof (XnBtring) * (unsigned int)listS ze);
for (i =0; i <listSze; i++)
list[i] = Xn&tringQeatelLocalized(itens[i]);

dynaMenu = Xt VaQr eat eManagedW dget (" dynaMenu",
sgbynaMenuWdget d ass, rc,
Sghhi storyListitens, |ist,
Sghhi storyLi stltenQount, |istS ze,
NULL) ;
Xt AddCal | back(dynaMenu, SgNdynaPushCal | back, dynaPushCB, NULL);

for (i =0; i <listSze; i++)
Xn8tringFree(list[i]);
Xt Free((char *)list);

Xt Real i zeWdget (topl evel);
Xt AppMai nLoop(app) ;

275

Appendix A: Example Programs for SGI Enhanced Widgets

Example Program for ThumbWheel

/*

* Thunbwheel . c --

* create and manage a thunbwheel .
*/

#i ncl ude <stdio. h>

#i ncl ude <Xmi Xm h>

#i ncl ude <X For m h>

#i ncl ude <X D al ogS. h>

#i ncl ude <Xni Label . h>

ncl ude <Sgni ThunbWeel . h>

/*
* Test franmework procedures and gl obal s.
*/

fdef _NO PROTO

static void DragCal | back();

#el se

static void DragCal | back(Wdget w void *client_data, void *call_data);
#endi f /* _NO PROTO */

Xt AppCont ext app;

nmain (argc, argv)

int argc;

char *argv[];

{
Wdget toplevel, form thunbwheel, |abel;
Arg args[25];
int ac = 0;

/*
* eate and realize our top | evel w ndow
* with all the nenus and buttons for user input.
*/
toplevel = XtVaApplnitialize(&pp, "Thumbwheeltest”, NJUL, 0, &rgc, argv,
NULL, NULL);
if (toplevel == (Wdget)NLL) {
printf("Applnitialize failed'\n");
exit(1);
}

276

Example Program for ThumbWheel

}

form= XnQreat eForn{topl evel, "Forni, NULL, 0);

/* Set up argunents for our wdget. */

ac = 0;

Xt Set Arg(args[ac], XN eftAttachnent, XnATTACH FCRV); ac++,
Xt Set Arg(args[ac], Xni\right Attachnent, XmATTACH FCRV); ac++
Xt Set Arg(args[ac], XnNopAttachnent, XMATTACH FCRV); ac++;

/*

* \i¢ use all-default settings, with the exception of orientation.
* Do not set any other thunbwheel -specific resources.

*/

ac = 0;

Xt Set Arg(args[ac], XmNorientation, XmHOR ZONTAL); ac++;

t hunbwheel = SgC eat eThunbWeel (form "thunbwheel ", args, ac);

Xt ManageChi | d(t hunbwheel) ;

ac = 0;

Xt Set Arg(args[ac], XnN eftAttachnent, XnATTACH FCRV); ac++;

Xt Set Arg(args[ac], Xmi\right Atachment, XmATTACH FCRV); ac++;

Xt Set Arg(args[ac], XniN opAttachrent, XmATTACH WDCET); ac++;

Xt Set Arg(args[ac], Xmi\topWdget, thunbwheel); ac++;

Xt Set Arg(args[ac], Xm\bottomAttachnent, XnATTACH FCRV); ac+t;

Xt Set Arg(args[ac], XN abel Siring, XnBtringQeateS nple("0")); ac++
| abel = XnOreatelabel (form "val ueLabel ", args, ac);

Xt ManageChi | d(1 abel) ;

/*

* Set up callback for the thunbwheel .

*/
Xt AddCal | back(t hunbwheel , XnmiNdragCal | back, DragCal | back, | abel);

Xt ManageChi | d(fornj;
Xt Real i zeWdget (t opl evel) ;
Xt AppMai nLoop(app) ;

voi d DragCal | back(w, client_data, call_data)
Wdget w,
XtPointer client _data, call _data;

{

SgThunbWieel Cal | backStruct *cbs = (SgThunbWeel Cal | backStruct *) cal |l _data;

Wdget |abel = (Wdget)client_data;
static char new | abel [256] ;
Arg args[2];

277

Appendix A: Example Programs for SGI Enhanced Widgets

int ac = 0;

if ((cbs !'= NALL) && (label !'= (Wdget)NUL)) {
sprintf(new | abel, "%l", cbs->value);
Xt Set Arg(args[ac], XnN abel String, XngtringQ eateS npl e(new | abel)); ac++
Xt Set Val ues(| abel , args, ac);
}
}

Example Program for File Selection Box

278

To run this program, add these lines to your . Xdefaults file:

f sb*sgi Mbde: true
f sb*useSchenes: all

then type:
xrdb -1 oad

Here’s the sample program:

[*eeeem-- fsb.c ------- */
#i ncl ude <X RowCol urm. h>
#i ncl ude <X For m h>

#i ncl ude <Xni PushB. h>

#incl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <Xm F | eSB. h>

void printDrF Wdget w, XtPointer clientData, XnH |eSel ecti onBoxCal | backSt ruct
* cbs) {

char * filenane = NULL, * dirnane = NULL;

Xn&tri ngGet Lt oR chs->val ue, XnFONTLI ST_DEFAULT _TAG &fil enane);

Xn8tringGet Lt oR chs->dir, XnFONTLI ST DEFAULT TAG &dirnane);

printf(“Filenane sel ected: %\n", filenane);

if (filenane)
XtFree(filenane);

Example Program for File Selection Box

if (dirnane)
XtFree(dirname);

}
static void showD al og(Wdget w, Xt Pointer clientData, Xt Pointer callData) {

Wdget dial og = (Wdget) clientData;
Xt ManageChi | d(dial og);

}

main (int argc, char *argv[]) {
Wdget toplevel, fsh, bl, b2, rc;
Xt AppCont ext app;
XnBtring textStr;

Xt Set LanguagePr oc(NULL, (Xt LanguageProc)NULL, NULL);
toplevel = XtVaApplnitialize(&pp, “Fsb”, NULL, 0, &urgc, argv, NULL, NULL);
rc = Xt VaQ eat eManagedWdget (“rc”, xniFormWdget d ass, toplevel, NUL);

/* Set up a dialog */
if (argc > 1) {

bl = Xt VaQ eat eManagedWdget (“FSB’,
xnPushBut t onWdget A ass,
rc,
XmNt opAt t achnent
XnATTACH FCRV
XmiNbot t onAt t achnent
XnATTACH FCRM
XN ef t At t achnent ,
XMATTACH FCRM
Xmi\ri ght At t achnent,
XnATTACH FCRV
NULL) ;

fsb = XmreateFi |l eSel ectionD al og(bl, “FSB DO alog”, NULL, 0);
Xt AddCal | back(bl, XmactivateCal | back, showh al og, fsb);
} else {

fsb = XmOreateFi |l eSel ectionBox(rc, “Select AFile”, NULL, 0);
Xt VaSet Val ues(fsb,

279

Appendix A: Example Programs for SGI Enhanced Widgets

280

XnNt opAt t achnent, XnATTACH FCRV
Xmi\bot t ont t achnent, XmATTACH FCRV
XN ef t ALt achrment, XmATTACH FCRV
Xmi\ri ght At t achnent, XnATTACH FCRV
NULL) ;

Xt ManageChi | d(fsb);

}

Xt AddCal | back(fsb, XmNokCal | back, (Xt CallbackProc)printDrF, fsb);
Xt AddCal | back(fsb, XmN\cancel Cal | back, (Xt Cal | backProc)exit, NULL);

Xt Real i zeWdget (topl evel);
Xt AppMai nLoop(app) ;

Makefile for File Selection Box Example Program
#! smake

#

i ncl ude /usr/i ncl ude/ make/ cormondef s

CFILES = fsh.c

TARGETS = fsb

CVERSI ON = - xansi
CPTIMZER = -g

LLOLIBS = -1Sgm -1 Xm-IX -IX11 -1 PW
LCDEFS = - DFUNCPROTO - DDEBUG
LANCS = -1. -1$(MOTl F_HEADERS)
targets: $(TARCETS)

i ncl ude $(COMONRULES)

fsb: $(CBIECTS)
$(00) -0 $S@$(CBIECTS) $(LDFLAGS)

Example Programs for Scale (Percent Done Indicator) Widget

Example Programs for Scale (Percent Done Indicator) Widget

The following code produces a simple motif scale widget:

/* progress.c */
/* cc -0 progress progress.c -l Xm-IXt */
#i ncl ude <Xnf Scal e. h>
void main(int argc, char** argv) ({
W dget toplevel, scale;
Xt AppCont ext app_cont ext;
Arg args[5];
i nt nargs=0;

topl evel = XtApplnitialize(&pp_context, “Progress”,
NULL, O, &argc, argv, NULL, NULL, 0);

Xt Set Arg(args[nargs], XmNval ue, 50); nargs++;

Xt Set Arg(args[nargs], XmNorientation, XnHORI ZONTAL); nargs++;
scal e = XnCreateScal e(topl evel, “scale”, args, nargs);

Xt ManageChi | d(scal e);

Xt Real i zeW dget (t opl evel) ;
Xt AppMai nLoop(app_cont ext);
}

The following resource file (named “Progress”) produces the slanted, thermometer look

of the SGI percent done indicator. Also see the IRIS Viewkit VkProgressDialog class.

I Progress - App-default resources for the progress sanple program

*sgi Mobde: true
*useSchenes: all

I Change the appearance o the slider

*scal e.sliderVisual: flat_foreground
*scal e. sl i di nghbde: t her momet er
*scal e. sl ant ed: true

1Set the correct schene colors
Pr ogress*scal e*f or egr ound: SA _DYNAM C Basi cBackgr ound
Progress*scal e*troughCol or: SG _DYNAM C Text Fi el dBackgr ound

Appendix A: Example Programs for SGI Enhanced Widgets

Example Program for LED Widget

/* | edbutton.c */
/* cc -0 |ledbutton | edbutton.c -1 Xm -1| Xt */
/* ledbutton -xrm “*sgi Mode: true” -xrm “*useSchenes: all” */

#i ncl ude <Xn Toggl eB. h>

void main(int argc, char** argv)

{
W dget toplevel, toggle;
Xt AppCont ext app_cont ext;
Arg args[5];
i nt nargs=0;
toplevel = XtApplnitialize(&pp_context, “LEDButton”,
NULL, O, &argc, argv, NULL, NULL, 0);
Xt Set Arg(args[nargs], XnmNindicatorSize, 10); nargs++;
Xt Set Arg(args[nargs], XmNi ndicatorType, XnBD N _OF _MANY); nargs++;
toggl e = XnCreat eToggl eButton(topl evel, “toggle”, args, nargs);
Xt ManageChi | d(t oggl e);
Xt Real i zeW dget (t opl evel) ;
Xt AppMai nLoop(app_context);
}

282

Appendix B

Desktop Variables

Variables that are used by the Desktop are listed below. Some of these variables can be
customized by the user. You can use any of these variables as part of the OPEN,
ALTOPEN, or PRINT file typing rules, or as part of the FILTER print conversion rule. In
IRIX 6.3 and above, variable substitution is done by the libraries; typically you do not set
environment variables. However, if a variable would expand to null, the desktop
automatically sets an empty environment variable.

Variables Set By the Desktop

The variables listed below are preset by the Desktop (that is, the Desktop sets their
values).

$LEADER If one or more icons are currently selected from the Desktop, LEADER is
set to the icon that is selected first. If no icon is selected, it is set to null.

$REST If more than one icon is currently selected from the Desktop, REST
contains the list of names of all selected icons except the highlighted icon
(see LEADER above). Otherwise, it is set to null.

$SLEADERTYPE
If one or more icons are currently selected from the Desktop,
LEADERTYPE is set to the TYPE of the icon whose text field is
highlighted. If no icons are selected, it is set to null.

$RESTTYPE When more than one icon is currently selected from the Desktop,
RESTTYPE contains the TYPE for all selected icons except the
highlighted icon, if the remainder of the selected icons are all of the same
TYPE. If they are not the same TYPE, or only one icon is selected,
RESTTYPE is set to null.

$RESTTYPELIST
Contains the list of TYPEs corresponding to the arguments in REST. If
only one icon is selected, RESTTYPELIST is set to null.

$ARGC Contains the number of selected icons.

283

Appendix B: Desktop Variables

$TARGET Set only for the CMD DROP rule, TARGET contains the name of the icon
being dropped upon; otherwise it is set to null.

$TARGETTYPE
Set only for the CMD DROP rule, TARGETTYPE contains the TYPE of
the icon being dropped upon; otherwise it is set to null.

$SELECTED Contains the names of the selected icons (whether or not a drop occurs
on TARGET).

$SELECTEDTYPE
If all of the icons named in SELECTED are of the same TYPE,
SELECTEDTYPE contains that TYPE; otherwise it is set to null.

$SELECTEDTYPELIST
Contains a list of TYPEs corresponding to the TYPEs of the selected
icons named in SELECTED. If only one icon is selected, it is set to null.

$WINTERM
Contains the name of the window terminal invoked from the Desktop
using winterm(1). Currently supported window terminals are wsh (the
default) and xterm.

Variables Set By the User

284

The variables listed below can be set by the user and the Desktop passes these
customizable variables to the FTRs. Users set these variables from the
Toolchest->Desktop->Customize->Ultilities panel (or by the command, dtUtilities). See
“Using the Default Viewer and Editor Utilities Panel” for more information.

$WINEDITOR Contains the path to and name for the text editor invoked from the
Desktop. The default editor is /usr/sbin/jot.

$WEBBROWSER
Contains the path to and name of an X Window System application that
is a World Wide Web visual browser (for example, /ust/bin/X11/netscape).

$IMGVIEWER Contains the path to and name of an application that displays image files
(for example, /usr/bin/X11/imguiew).

$MAILBOXPROG
Contains the path to and name of a mail reader application (for example,
fusr/bin/X11/MediaMail -gui).

Variables Set By the User

$BOOKVIEWER
Contains the path to and name of an application that displays InSight
books (for example, /usr/sbin/insight).

$PSVIEWER Contains the path to and name of an application for viewing PostScript
files (for example, /usr/bin/X11/showps).

285

Appendix C

Online Help Examples

This appendix contains listings of several online help document files.

¢ “A Simple Help Document”

¢ “Allowable Elements in a Help Document”

e “An Example of Implementing Help in an Application”

This appendix also lists the source of an example program that implements many online

help features, along with its accompanying help document and helpmap file. All of these
files are available online. Their locations are given before each listing.

To view these examples on your system, you must install the insight_dev product, which
contains the SGIHelp library and include file, help generation tools, examples, and
templates.

A Simple Help Document

Example C-1 lists a simple help document. It’s intended as a primer for writing online
help documents. You can find this file online at
Jusr/share/Insight/XHELP/samples/sampleDoc/sample.sgm.

Example C-1 An Example of a Help Source File

<dochel p>

< --

This bl ock denotes a SGM.-styl e comment .

For those that are unfamliar with SGM, this sanple file

will try to cover the usage of a variety of the tags that

are used in the XHELP DID. The exanpl es shown in this sanpl e
shoul d be sufficient for a witer to produce a very high-quality,
functional hel p document for use with an application.

287

Appendix C: Online Help Examples

288

It is best to viewthis sanple once it has been publi shed,
and then conpare what you see in the view ng software to
the actual tags displayed in this file.

Each Hel pTopi ¢ bl ock witten bel ow di spl ays how to use the
DID to inpl enent specific el enents/constructs. It should be
fairly self-explanatory.

A couple of things to | ook for when constructing/editing
your SGW file:

o Make sure a starting elenment tag has an associ at ed
end tag! If not, then the file will not conpile
properly. This is anal agous to nmssing a bracket
or paranthesis in a C program

0 SGW is NOT case sensitivel "HELPTCPIC' is the sane
as "hel ptopic", which is the sane as "Hel pTopi c", etc.

-->

<Hel pTopi ¢ Hel pl D="i ntro">

<Hel pl abel >SA@ Sanpl e SGW. Fi | e</ Hel pl abel >

<Descri pti on>

<para>This file contai ns exanpl es using many of the constructs used

in the XHELP DID. </ par a>

<para>Notice that the general outline used for putting together

a help "card" is defined by this particul ar SGWL bl ock. The precedi ng tag
defines the title that will be displayed for this card. The area you

are currently reading is a description for the feature or function you
are docurmenting. It is not necessary to use each of these tags, although
the "Hel pTopi ¢c" tag is required. </ para>

<para>A witer of help information may al so wish to include a gl ossary
of terms. In that way, the docunenter can tag terns within the text,
and have themdisplay a specified definition fromw thin the viewer.

A sanpl e of this is: <glossternpsgi hel p</ gl osst er ne. </ par a>

<para>The actual definition for the termis found at the end of this
SGW. sanpl e. </ par a>

</ Descri pti on>

</ Hel pTopi c>

A Simple Help Document

< --

It's inportant to point out that the "Hel pID' is the gl ue that
bi nds the hel p text to the application, through the use of the
provided Help APl (library, header file).

-->

<Hel pTopi ¢ Hel pl D="hel pi d_i nf 0">

<Hel pl abel >What is a Hel pl D?</ Hel pl abel >

<Descri pti on>

<para>The Hel plD attribute is used to by your application to
instruct the hel p server which help "card" to display. Inthis
case, sending the hel p server an ID of "hel pid_i nfo" would bring up
this particular block (or "card").</para>

<para>The other "ID' is often used as an anchor poi nt

(and shoul d be used within an "ANCHOR' tag) for hypertext

links within your text. If you wish to refer to a particular card
one sinply uses the ID as the anchor point for the Iink syntax.</para>
</ Descri pti on>

</ Hel pTopi c>

< --

This section illustrates the sinple usage of specifying a note,
warning, tip, or caution wthin your hel p docunent.

-->

<Hel pTopi ¢ Hel pl D="not e_exanpl ">

<Hel pl abel ><Anchor 1d="A 003">Usi ng Notes, Vérnings or Tips Wthin a Paragraph</H
el pl abel >

<Descri pti on>

<para>Wthin the paragraph tag, there are a variety of text narking

nechani sns. Each of these delineations nust appear as part of the

paragraph ("para") el enent.</para>

<para>Thi s area shows the docunentor how a warning, note or "tip
can be used within a persons's hel p text.</para>

<par a>

<war ni ng><para>Be Careful. This is a warning. </ para></war ni ng>

<not e><par a>For your information, this is a note. </ para></note>

<ti p><par a>Wien you prepare your help file, you may w sh to include a tip. </ para>

289

Appendix C: Online Help Examples

</tip>

<caut i on><para>lse a caution tag when you w sh to have the user use caution! </ par
a>

</ caut i on>

</ par a>

</ Descri pti on>

</ Hel pTopi c>

<l--

This next section illustrates howto display conputer output,
programlistings, etc. within your hel p docurent.

-->

<Hel pTopi ¢ Hel pl D="1iteral _exanpl e">

<Hel pl abel >Wsing Literal s or Exanpl es Wthin a Paragraph</ Hel pl abel >
<Descri pti on>

<par a>

Thi s area shows the docurmentor how to inpl enent specific exanples wthin
their help text. It also describes howto the "literal " tag.</para>

<par a>

Wien used within a paragraph, the Literal Layout tag

tells the view ng software to take this next block "as is",

with all acconpanying newlines and spacing | eft intact.</para>

<BExanpl e>

<Title>Various Exanpl es: ConputerQutput, Literal Layout, Programiisting</Title>

<par a>

Wiat follows is a conputer output listing fromwhen a
user typed <user | nput >l s</userl nput> :

<Conput er Qut put >

%ls -1

total 6777

-rWKr-xr-x 1 guest guest 29452 Mar 8 19:12 nenu*
-rwr--r-- 1 guest guest 2375 Mar 8 19:11 nenu. c++
%

</ Conput er Qut put >

</ par a>

<par a>

Each of the subsequent three entries should be indented and on their
own |ine:

290

A Simple Help Document

<Li t er al Layout >
Here is |ine one.
This is line two.
This is line three.

</ Li teral Layout >

</ par a>

<par a>
The following is alisting froma "C' program
<Progr anti sti ng>

#include "X11/ X i b. h"

#i ncl ude "hel papi / Hel pBr oker. h"

void mai n(int, char**)

{
/* default to the value of the D SPLAY env var */
D splay *display = XCpenD spl ay(NULL);
if(display) {
/* initialize the hel p server */
SA Hel plnit (display, "MApp", ".");
}
}
</ Progranti sti ng>
</ par a>
</ Exanpl e>
</ Descri pti on>
</ Hel pTopi c>
<--

This next section illustrates howto incorporate graphics within
your hel p text.

-->

<Hel pTopi ¢ Hel pl D="gr aphi c_exanpl ">

<Hel pl abel >si ng G-aphics or Figures Wthin Your Hel p Text </ Hel pl abel >
<Descri pti on>

<par a>

This area displays how a graphics or figure can be used wthin the flow of

201

Appendix C: Online Help Examples

your information. The following figure is inthe "AF' fornat:
</ par a>

<Figure ID="figure_01" H oat="Yes">

<title>A QF Raster Inage</title>

<@ aphic fileref="sanpl el.gif" fornmat="Qa F'></ Q aphi c>
</ Fi gur e>

<par a>

Qurrently, support is provided for <enphasi s>raster</enphasi s> graphics in
the AF and TIF formats. Support is provided for <enphasi s>vect or </ enphasi s>
graphics utilizing the GaMfornat.

</ par a>

<par a>

This next figure in the GaM (Conputer G aphics Metafile) fornat:

</ par a>

<Figure ID="figure 02">

<title>A GGV Vector |nage</title>

<@ aphic fileref="sanpl e2.cgm fornat =" CaM ></ @ aphi c>
</ F gure>

<par a>
A special note that all equations are treated as inline inages, as shown
her e:
<equat i on>
<Qaphic fileref="natrix.gif" format="Qa F'></ G aphi c>
</ equat i on>
</ par a>

</ Descri pti on>
</ Hel pTopi c>

<I--

Hyperlinks can be a very powerful navigation mechani sm
Li beral usage is encouraged.

-->
<Hel pTopi ¢ Hel pl D="1 i nk_exanpl ">

<Hel pl abel >Usi ng Hyper Li nks</ Hel pl abel >
<Descri pti on>

292

A Simple Help Document

<para>e of the most powerful capabilities of the sgihel p viewer
is the use of hyperlinks to associate |ike pieces of infornation.
Gonstructing these links in SGW is trivial.</para>

<para>Notice that the "Link" elenent requires an attribute called
"Linkend". This defines the area (anchor) to link to. The "Linkend"
attribute points to the ID of some SGW el enent. In conposi ng

hel p text, it is probably best to assign an IDto each "Hel pTopi c"
el ement, and use those same | D s when specifying a Link. </ para>
<para>A link is defined bel ow </ para>

<para>For nore information about using Notes, refer to the area
entitled <Link Li nkend="Al 003">"Usi ng Notes, Vérnings or Tips
Wthin a Paragraph”</Li nk></ par a>

<para>Note that the "Anchor" tag can al so be used within a
docunent to point to any level of granularity the author

wi shes to link to.</para>

</ Descri pti on>

</ Hel pTopi c>

<l--

Note that there are *many* ways to specify lists. This exanpl e
shows sone comonl y-used per mut ati ons.

-->

<Hel pTopi ¢ Hel pl D="1i st _exanpl ">

<Hel pl abel >Wsi ng Lists Wthin Your Hel p Text</Hel pl abel >
<Descri pti on>

<par a>Thi s area di spl ays how a person can aut hor

various types of lists within their help text.</para>

<para>Here is an itemzed list that uses a dash to preface each item </ para>
<ltem zedLi st Mark="dash">

<Li stltemp<para>First Entry</para></Listltenr

<Li st | t emp<par a>Second Entry</ para></Listltenr

<Li st | t emp<par a>Thi rd Entry</ para></Listltenr

</1tem zedLi st >

<para>Here is an itemzed list that uses a bullet to preface each item </ para>
<l tem zedLi st Mark="bul | et">

<Li stltemp<para>First Entry</para></Listltenr

<Li st | t emp<par a>Second Ent ry</para></Listlten»

</Item zedLi st >

293

Appendix C: Online Help Examples

294

<para>Here is an ordered list, using standard enunerati on: </ para>
<O der edLi st >

<Li stltemp<para>First Entry</para></Listltenmr

<Li st | t emp<par a>Second Entry</ para></Listltemr

<Li st | t emp<par a>Thi rd Entry</ para></Li stlten»

</ OrderedLi st >

<para>Here i s another ordered |ist, using upper-case Roman enunerati on,
showi ng nesting (sub-itens) within the list (outline format):</para>
<Cr der edLi st Nunrer at i on=""Upper r onan" >
<Li st | t emp<par a>Fi rst Entry</ para></Listltenr
<Li st It emp<par a>Second Entry
<O deredLi st Nurer ati on="Upper al pha" | nheritNun"Inherit">
<Li st | t emp<par a>Fi rst Subl t enx/ par a></ Li stlten»
<Li st | t emp<par a>Second Subl t enx/ par a></ Li stltem»
<Li st | t emp<par a>Thi rd Subl t enx/ par a></Li st t en»
<Li st It emp<para>Fourth Sublt enx/ para></Listltenm»
</ O deredLi st >
</ para></Listltenr
<Li st | t emp<par a>Thi rd Entry</ para></Li stltenr
</ O der edLi st >

<para>Here is a variable list of terns: </ para>

<Vari abl eLi st >

<VarLi st Entry>

<terneSd </ternvy

<Li stltemp<para>S | i con G aphics, Inc.</para></Listltenr
</ Var Li st Entry>

<VarLi st Entry>

<t er mPSAWL</ t er m»

<Li st | t emp<par a>A Met a- | anguage for defini ng docunents. </ para></Listlteny
</ Var Li st Entry>

</Vari abl eLi st >

</ Descri pti on>
</ Hel pTopi c>

<l--

Sone final exanples...

-->

A Simple Help Document

<Hel pTopi ¢ Hel pl D="n sc_exanpl ">

<Hel pl abel >G her M scel | aneous Textual Attributes</Hel pl abel >
<Descri pti on>

<par a>Thi s area di spl ays sone m scel | aneous tags that can be used
within the context of your hel p docunent. </ para>

<par a>

<Comrent >This is a comment that is not to be confused

with the SGML-styl e conment! Instead, this corment wll be
parsed and carried into the text of your docunent. Wsually it's
used in production, for specifying to soneone an area of concern,
an area that needs editing, etc.

</ Conment >

</ par a>

<para>Wthi n your text, you may w sh to denote a footnote.

<Foot not e i d="f oot 1"><para>Thi s bl ock i s a foot not e! </ par a></ Foot not e>
The XHELP DID wi Il all ow you to do that.

</ par a>

<par a>

You nmay wi sh to add a copyright synbol to your text, such as:

S licon Qaphics, Inc.<trademark d ass="Copyright"></tradenar k>
</ par a>

</ Descri pti on>

</ Hel pTopi c>

< --

If you wish to use/ have a gl ossary of terns wthin your help text,
it is advised to put it at the end of your hel p "book", as shown
here. NOTE CR or other characters (#PCDATA) is NOTI al |l oned
between the <A@ ossary> and <Title> tags! (mxed content nodel)

-->

<d ossary>

<Title>d ossary</Titl e>

<d ossEntry>

<@ ossTer nrhel p</ @ ossTer n»

<d ossDef >

<para>To gi ve assistance to; to get (oneself) out of a difficulty;

295

Appendix C: Online Help Examples

Allowable Elements

296

a source of aid.</para>

</ A ossDef >

</ @ ossEntry>

<d ossEnt ry>

<@ ossTer mrsgi hel p</ @ ossTer m»

<d ossDef >

<para>This is S licon Gaphics, Inc. version of a "Xhel p* conpatible
server. Through the use of an available AP, and a hel p text
conpi | er, books can be constructed that can be used to render
hel p information for the given application. </ para>

</ @ ossDef >

</ Q@ ossknt ry></ d ossar y>

<l--

Don't forget the very last ending tag...!!!

-->

</ dochel p>

in a Help Document

Example C-2 lists a help document that describes the legal structures defined by the help
DTD. You can find this file online at
Jusr/share/Insight/XHELP/samples/XHELP_elements/XHELP_elements.sgm.

Example C-2 A Description of the Elements Defined by the Help DTD

<DOHELP>

<HELPTCPI C Hel pl D="">

<HELPLABEL>The H enents Al phabeti zed</ HELPLABH >

<DESCR PTI ON>

<PARA>Enphasi zed entries indicate bl ock-oriented el enents. </ PARA>
</ DESCR PTI O\></ HELPTCPI &

<HELPTCPI C Hel pl D="">

<HELPLABEL>Common Attri butes </ HELPLABH. >
<DESCR PTI ON>

<PARA>Conmon attributes include | D </ PARA>

<PARA>IDis an identifier, which nust be a

Allowable Elements in a Help Document

string that is unique at |east wthin the document and
which nust begin with a letter. </ PARA>
</ DESCR PTI O\></ HELPTCPI C&

<HELPTCPI C Hel pl D="">

<HELPLABHL>Qt her Attri but es</ HELPLABEL>

<DESCR PTI ON\>

<PARA>Certain other attributes occur regularly. PageNumis
the nunber of the page on which a given el ement begins
or occurs in a printed book. Label hol ds sore text
associated with its elenent that is to be output when
the docunent is rendered.

Type is used with links,

as it is clear that different types of links nay be
required; it duplicates the function of Role.</ PARA>

<PARA>The d ass attribute has been introduced in an attenpt to
control the nunber of conputer-specific in-line el ements.
The el enents that bear the dass attribute, such as
Interface, have general

nmeani ngs that can be nade nore specific

by providing a value for Qass fromthe delimted |ist
for that element. For exanple, for the Interface el enent
one nmay specify Menu, or Button; for the Medi aLabel

el enent one nay specify CDRomor Tape. Each el enent

has its own list of permssible values for dass, and

no default is set, so you can ignore this attribute

if you w sh. </ PARA>

<PARA>AN attribute that has the keyword | MPLI ED bears no
processing expections if it is absent or its

value is null. Application designers mght wishto

suppl y plausible defaults, but none is specified here. </ PARA>
</ DESCR PTI O\></ HELPTCPI &

<HELPTCPI C Hel pl D="">
<HELPLABEL>cpt r phr ase. gp</ HELPLABEL >
<DESCR PTI ON>

<PARA>SThi s paraneter entity has been introduced to provide
some structure for in-line elenents related to conputers.
Its contents are: plain text,

Anchor, Gomment, Link, GConputerQutput, and Userl nput. </ PARA>

<PARA>Many of these el enents now have attributes

297

Appendix C: Online Help Examples

with delimted value lists; sone former in-line el enents now appear as
val ues for those attributes. </ PARA>
</ DESCR PTI O\></ HELPTCPI C&

<HELPTCPI C Hel pl D="" >
<HELPLABEL>"In-line" vs. "In flow </ HELPLABEL>

<DESCR PTI ON>
<PARA>In this docunent, "in-line" neans "occuring within a line
of text, like a character or character string, not causing

aline break." This termis sometimes used to

refer to objects such as an illustration around whi ch

sonmet hing |ike a paragraph i s wapped; here that circunstance
will becalled "inflow" There is no provision yet

for indicating that an object is in flow but one coul d

nake creative use of the Role attribute to do so. </ PARA>

<PARA>A rel ated point: formal objects have titles; infornal
objects do not. That an object is informal does not nean
that it isin-line: these are two different
characteristics. </ PARA>

</ DESCR PTI O\></ HELPTCPI C&

<HELPTCPI C Hel pl D="">
<HELPLABEL>Li st of H enent s</ HELPLABEL>
<DESCR PTI O\>

<VAR ABLELI ST>

<VARL| STENTRY>

<TERW>

<BEMPHASI S>Act | ons</ BEMPHASI SS</ TERW
<LI STI TEM>

<PARA>A set of entries, usually in alist form that conprise

the appropriate set of functions or steps to performa corrective
action for a situation that is described as part of a hel p card. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERVWPANchor </ TERV®
<LI STI TEW»

<PARA>Marks a target for a Link.
Anchor may appear al nost anywhere, and has no content.

298

Allowable Elements in a Help Document

Anchor has I D, Pagenum Renap, Role, and XRef Label attributes;
the IDis required. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<BEMPHASI S>Caut i on</ EMPHAS| S></ TERW>
<LI STI TBEMP

<PARA>AN adnoni tion set off fromthe text;

Tip, Vrning, Inportant, and Note all share its nodel.
Its contents may include paragraphs, lists, and so forth,
but not anot her admonition.

Caution and its sisters have common attribut es. </ PARA>
</ LI STI TEMb</ VARLI STENTRY>

<VARL| STENTRY>

<TERW®

<BEMPHAS S>Coment </ EMPHAS] S></ TERW
<LI STI TBEVP

<PARA>A renark rmade within the docurent file that

is intended for use during interimstages of production.
A Conmment shoul d not be displayed to the reader of the
finished, published work. It nmay appear al nost anywhere,
and nay contain al nost anythi ng

belowthe Section level. Note that,

unli ke an SGVML comrent, unl ess you take steps

to suppress it, the Comment el enent

will be output by an SGW par ser

or application. You may wish to do this to display Comments
along with text during the editorial process. </ PARA>

</ LI STI TEMb</ VARLI STENTRY>

<VARL| STENTRY>
<TERV+Conput er Qut put </ TERW>
<LI STI TEM>

<PARA>Dat a presented to the user by

a conputer.

It may contain el enents from cptrphrase. gp,

and has common and

Mrelnfo attributes For the Mrelnfo attribute
see <BEMPHASI S>Appl i cat i on. </ EMPHAS S></ PARA>

</ LI STI TEMb</ VARLI STENTRY>

299

Appendix C: Online Help Examples

<VARL| STENTRY>

<TERW?

<EMPHAS S>Copyr i ght </ EMPHASI S></ TERW
<LI STI TEW®

<PARA>Copyri ght i nformation about

a docurrent. It consists of one or

nore Years followed by any nunber of Hbolders. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERW»Dat e</ TERW>
<LI STI TEM>

<PARA>Dat e of publication or revision.

It contains plain text. (No provision

has been nade for representing eras; you could include this
information along with the date data.)</ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW

<BEMPHASI S>Descr i pt i on</ EMPHAS! S></ TERW®
<LI STI TEM>

<PARA>A part of a Hel pTopi c el enent.
Description may contain in-line el enents.
The body may be conprised of paragraphs.

It is used to contain the body of text that
is used as a hel p card. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW»

<BEMPHASI S>DochHel p</ EMPHASI S></ TERW>
<LI STI TBEMWP

<PARA>A col | ection of hel p docunent conponents.

A DocHel p entry may have a series of Hel pTopic(s).

Al back natter is optional, and at this tine includes
a d ossary. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

300

Allowable Elements in a Help Document

<TERW
<BEMPHASI S>Docl nf o</ EMPHAS S></ TERW>
<LI STl TEV>

<PARASMet ai nf ormati on for a book

conponent, in which it nay appear. nly Title and Aut hor G oup
are required. Doclnfo nmay contain, in order:

the required Title, optional TitleAbbrev and

Subtitle, followed by one or nore

Aut hor G oups, any nunber of

Abstracts, an optional RevH story, and any nunber of

Legal Notices. Doclnfo has conmon attri butes. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERWbEnphasi s</ TERW>
<LI STI TEV+

<PARA>Pr ovi ded for use where you woul d
traditionally use italics

or bold type to enphasize a word or phrase.
It contains plain text and

has common attri but es. </ PARA>

</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>

<TERW»

<EMPHASI S>Equat i on</ EMPHAS S></ TERW
<LI STI TEV+

<PARA>A titl ed nathemati cal equation displ ayed

onaline by itself, rather than in-line. It has an optional
Title and Titl eAbbrev, followed by either

an Informal Equati on or a Gaphic (see

<EMPHAS! S>@ aphi c</ EMPHAS] S>) .

Equati on has common and Label attributes. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARLI STENTRY>

<TERV»

<EMPHAS! S>Exanpl e</ EMPHASI S></ TERW-
<LI STI TBEVWP

<PARA>| nt ended for sections of program source code
that are provided as exanples in the text.

301

Appendix C: Online Help Examples

It contains arequired Title and an

optional TitleAbbrev, followed by one or nore bl ock-oriented
el enents in any conbination. It has comon and Label
attributes. A sinple Exanple mght contain a Title

and a Prograntii sting. </ PARA>

</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<EMPHASI S>Fi gur e</ EMPHAS] S></ TERW
<LI STI TBEW-

<PARA>AN il lustration.

It must have a Title, and nay have a

Titl eAbbrev, followed by one or nore of

ockQuot e,

I nformal Equati on, @ aphic,

Infornal Tabl e, Link, Literal Layout,

CQLink, Prograniisting, Screen, Synopsis, and Wi nk,
in any order. Figure has conmon,

Label, and Hoat attributes; Hoat indicates

whet her the Figure is supposed to be rendered

where conveni ent (yes) or at

the place it occurs in the text (no, the default). To
reference an external file containing graphical
content use the Gaphic el ement within F gure. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<BEMPHASI S>Foot not e</ BEMPHASI S></ TERW
<LI STI TBEMW>

<PARA>The contents of a footnote, when

the note occurs outside the block-oriented el enent in
whi ch the Foot not eRef occurs.

(Conpare <EMPHASI S>I nl i neNot e. </ EMPHAS] S>)

The point in the text where the nark for a specific
footnote goes is indicated by FootnoteRef.

Footnote nay contain Para, S nPara, B ockQuote, |nfornal Equation, |nfornal Tabl e,
@ aphi c, Synopsis, Literal Layout, Prograniisting,
Screen, and any kind of list.

It has ID, Label, Lang, Remap, Role, and XRef Label
attributes; the IDattribute is required, as

a FootnoteRef nust point to it.</ PARA>

302

Allowable Elements in a Help Document

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW»

<EMPHAS S>d ossar y</ EMPHAS S></ TERW
<LI STI TEV®

<PARA>A gl ossary of terns. @ ossary

nmay occur wthin a Chapter, Appendix, or Preface,
or nmay be a book conponent in its own right.

It contains in order an optional Doclnfo, optional
Title, and optional TitleAbbrev, followed by

any nunber of bl ock-oriented el enents, followed by
one or nore @ ossEntries or one or nore @ ossD vs.
It has conmon attributes. </ PARA>

</ LI STI TEM</ VARLI STENTRY>

<VARL| STENTRY>

<TERW

<BEMPHAS| S>@ ossDef </ EMPHAS| S></ TERW>
<LI STl TEV>

<PARA>The definition attached to a @ ossTerm
ina@osskntry. It nmay contain Comments, @ ossSeeA sos,

par agr aphs, and other bl ock-oriented el enents, in

any order; it has cormon and Subject attributes. The Subject
attribute nay hold a list of subject areas (e.g., DCE RPC
General) as keywords. </ PARA>

</ LI STI TEM</ VARLI STENTRY>

<VARLI STENTRY>

<TERW

<BEMPHASI S>3 ossEnt r y</ EMPHASI S></ TERW
<Ll STl TEM>

<PARA>AN entry in a Qossary.

It contains, in order, a required

A ossTerm an optional Acronym

an optional Abbrev, and either a

3 ossSee or any nunber of Q ossDefs.
It has common attri butes. </ PARA>

</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>
<TERW»A ossTer nx/ TERW

303

Appendix C: Online Help Examples

<LI STI TEM>

<PARA>A termin the text of a Chapter (for exanple) that is

glossed in a Qossary; also used for those terns in QossEntries, in the
Qossary itself. As you nay not want to tag all occurrences

of these words outside of A ossaries, you mght consider

A ossTerm when used outside of Qossaries, to be sinilar

to FirstTerm except that dossTermnay contai n ot her

in-line elements. dossTermcontains in-line el enents

and has common attri but es. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARLI STENTRY>
<TERV>@ aphi c</ TERW>
<LI STI TEM>

<PARA>SENcl oses graphi cal data or

points via an attribute to an external file containing such data,
and is to be rendered as an object, not in-line.

It has Fornat,

Fileref, Entityref, and ID attributes.

The format attribute nmay have the val ue of

any of the fornats defined at the head of the DID,

including CGMCHAR GV LEAR D TRCFF, DV, EPS,

EQN FAX, FAXTILE QF, I1GS PIC PS TBL, TEX

TI FF. </ PARA>

<PARA>The val ue of Fileref should be a filenane, qualified by
a pathname if desired; the value of Entityref should be that of an
external data entity. If datais given as the

content of Gaphic, both Entityref and Fil eref,

if present at all, should

be ignored, but a Fornmat val ue shoul d be suppli ed.

if nodata is given as the content of

@G aphic and a value for Entityref

is given, Fileref, if present, should be ignored

but no Fornmat val ue shoul d be suppli ed.

Finally, if there is no content for Gaphic and

Entityref is absent or null, Fileref nust be

given the appropriate val ue, and agai n ho

Format val ue shoul d be supplied. </ PARA>

</ LI STI TEMp</ VARLI STENTRY>

<VARL| STENTRY>
<TERW

304

Allowable Elements in a Help Document

<EMPHAS| S>Hel pTopi c</ EMPHAS S></ TERW>
<LI STI TEM>

<PARA>A part of a DocHel p docunent .

Hel pTopi ¢ contai ns a Hel pLabel , followed in order by
a Description, and optionally an Actions area.

Hel pTopi ¢ has comon and Hel pld attri butes. </ PARA>
</ LI STI TEMb</ VARLI STENTRY>

<VARL| STENTRY>

<TERW®

<EMPHAS| S>Hel pLabel </ BEMPHASI S></ TERW
<LI STI TBEVWP

<PARA>The text of a heading or the title of the Hel pTopic
bl ock-oriented el enent. Hel pLabel may contain

in-line elenents, and has common attri but es. </ PARA>

</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>

<TERWI nl i neEquat i on</ TERV>

<Ll STI TEMW-

<PARA>AN untitled mathenatical equation

occurring in-line or as the content of an Equati on.

It contains a Qaphic, and has common attri but es. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARLI STENTRY>
<TERW®I nl i ne@ aphi c</ TERW
<LI STI TEV®

<PARA>ENcl oses graphi cal data or

points via an attribute to an external file containing such data,
and is to be rendered in-line.

InlineGaphic has Format, Fileref, Entityref, and ID attri butes.
The format attribute nay have the val ue of

any of the fornats defined at the head of the DID, under "Notations."
If it is desired to point to an external file, a filenane may

be supplied as the value of the Fileref attribute, or an
external entity nane nay be supplied as the val ue of the
Entityref attribute. </ PARA>

</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>
<TERW

305

Appendix C: Online Help Examples

306

<BEMPHAS S>I t eni zedLi st </ EMPHAS| S></ TERW>
<LI STI TEM»

<PARA>A list in which each itemis marked with

a bullet, dash, or other dingbat (or no mark at all).

It consists of one or nore Listltens. A Listltemin an

It em zedLi st contai ns paragraphs and ot her

bl ock-oriented el enents, whi ch

nay in turn contain other lists; an Item zedList nmay be

nested within other lists, too. It has common attributes and

a Mark attribute. Your application mght supply the mark to be used
for an Item zedList, but you can use this attribute to

indicate the nark you desire to be used; there

is no fixed list of these.hfill\break <EMPHASI S>lsage Not e: </ EMPHASI S>
You might want to use one of the ISOtext entities

that designates an appropriate di ngbat. </ PARA>

</ LI STI TEM</ VARLI STENTRY>

<VARL| STENTRY>
<TERWrLi nk</ TERW>
<LI STI TEWP

<PARA>A hypertext link. At present, all

the link types represented in the DID are

provisional. Link is less provisional than the

others, however. In HyTine parlance, Link is a

clink. It nay contain in-line elenents

and has Endterm Linkend, and Type attributes. The required
Linkend attribute specifies the target of the Iink,

and the optional Endtermattribute specifies

text that is to be fetched fromel sewhere in the docunent

to appear in the Link. You can also supply this text directly as
the content of the Link, <EMPHAS S>in which case the
Endtermattribute is to be ignored (new and tentative

rule for this version, conments invited)</ EMPHAS S>. </ PARA>
</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>

<TERW»

<EMPHASI S>Li st | t enx/ EMPHASI S></ TERV®
<LI STI TBEWP

<PARA>SA wrapper for the el enents of
itens in an |tem zedList or OderedList; it also
occurs within VarListEntry in Variabl eLi st.

Allowable Elements in a Help Document

It may contain just about anything except Sects and book conponents.
It has common attributes and an Qverride attribute, which

nay have any of the values of ItenmzedList's

Mark attribute; use OQverride to override the mark

set at the Item zedList |evel, when you desire to create

Item zedLists with varying narks. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW»

<BEMPHASI S>Li t er al Layout </ EMPHAS! S></ TERW
<LI STI TEV+

<PARA>The wrapper for lines set off from

the nain text that are not tagged as Screens, Exanpl es,

or Prograniisting, in which line breaks and | eadi ng

white space are to be regarded as significant.

It contains in-line elenents, and has conmon

and Wdth attributes, for specifying a nunber representing
the maxi numwi dth of the contents. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW

<BEMPHASI S>Not e</ EMPHAS! S></ TERW
<LI STI TEM>

<PARA>A nmessage to the user, set off fromthe text.
See <EMPHAS S>Caut i on. </ EMPHAS S></ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<BEMPHASI S>Q der edLi st </ BEMPHASI S></ TERW
<LI STI TBEW>

<PARA>A nunbered or lettered |ist, consisting of
Listitens. A Listltemin an

QO deredLi st contai ns paragraphs and ot her

bl ock-oriented el enents, which

may in turn contain other lists; an OderedList may be
nested within other lists, too.

Q deredLi st has common attributes, along with

a Nuneration attribute, which

nay have the val ue Arabic, Wperal pha, Loweral pha,

307

Appendix C: Online Help Examples

Woperronan, or Lowerronan. The default is Arabic (1, 2, 3, . . .).
It has an InheritNumattribute, for which the value Inherit specifies for a
nested list that the nunbering of Listltens shoul d include the
nunber of the itemw thin which they are nested (2a, 2b, etc.,
rather than a, b, etc.); the default value is |gnore.

It has a Continuation attribute, wth val ues

Gontinues or Restarts (the default), which nay be used to

i ndi cate whet her the nunbering of a list begins afresh (default)

or continues that of the i mmediately preceding Iist (Continues).
You need supply the Gontinuation attribute only

if your list continues the nunbering of the preceding |ist.</PARA>
</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<BEMPHAS| S>Par a</ EMPHAS! S></ TERW
<LI STI TBEW

<PARA>A paragraph. A Para nay not

have a Title: to attach a Title to a Para use Fornal Para. Para

nmay contain any in-line el enent and al nost

any bl ock-oriented el enent. Abstract, AuthorB urb, Caution,

Important, Note, and Wrning are excluded, as are Sects and hi gher-| evel
el enents. Para has common attributes. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW»

<BEMPHASI S>Pr ogr anti st i ng</ EMPHASI S></ TERW>
<LI STI TEV®

<PARA>A listing of a program

Li ne breaks and | eadi ng

white space are significant in a Progranii sting, which
may contain in-line el enents, including LineAnnot ati ons.
(Li neAnnot ations are a docunent author's

comments on the code, not the comments witten

into the code itself by the code's author.)

Progranii sting has common and Wdth attributes, the
latter for specifying a nunber representing the maxi num
wi dth of the contents. </ PARA>

</ LI STI TEM-</ VARLI STENTRY>

<VARL| STENTRY>
<TERW®Ter nx/ TERW

308

Allowable Elements in a Help Document

<LI STI TEM>

<PARA>The hanging termattached to a Listltem

within a VarListEntry in a

Variabl eLi st; visually, a Variabl eLi st

is aset of Terns with attached itens such as paragraphs. Each
Listltemnay be associated with a set of Terns. Termnay contain
in-line elenents. It has comon attributes. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<BEMPHAS S>Ti p</ EWHASI S></ TERW>
<LI STI TEM>

<PARA>A suggestion to the user, set off from
the text. See <BEMPHAS S>Cauti on. </ EMPHAS S></ PARA>
</ LI STI TEMb</ VARLI STENTRY>

<VARL| STENTRY>

<TERW>

<BEMPHASI S>Ti t | e</ EMPHASI S></ TERM>
<LI STI TBEVW

<PARA>The text of a heading or the title of a

bl ock-oriented element. Title may contain

in-line elements, and has common and PageNum attri but es. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERM>Tr adenar k</ TERW>
<LI STI TEM>

<PARASA tradenmark. It nay contain nmenbers of cptrphrase. gp,
and has conmon and d ass attributes.

d ass may have the val ues Service, Trade, Registered,

or Copyright; the default is Trade. </ PARA>

</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERWUser | nput </ TERW>
<LI STI TEW®

<PARA>Dat a entered by the user.
It may contain el enents from cptrphrase. gp,

309

Appendix C: Online Help Examples

and has common and Morelnfo attributes. For the Mrelnfo attribute
see <BEMPHASI S>Appl i cati on. </ EMPHASI S></ PARA>
</ LI STI TEvk</ VARLI STENTRY>

<VARL| STENTRY>

<TERW

<BEMPHASI S>Var i abl eLi st </ EMPHASI S></ TERM>
<LI| STI TEM>

<PARA>AN optional |y

titled list of VarListEntries, which are

conposed of sets of one or more Terns with associ at ed

Listltens; Listltens contain paragraphs and ot her bl ock-oriented
el enents in any order. |nclusions

are as for OderedList (see <BMPHAS S>Q der edLi st </ EMPHASI S>) .
Vari abl eLi st has common attri but es. </ PARA>

</ LI STI TEM</ VARLI STENTRY>

<VARL| STENTRY>

<TERW

<BEMPHAS! S>Var Li st Ent r y</ EMPHASI S></ TERW>
<LI STI TEV®

<PARA>A conponent of Vari abl eLi st (see
<BEMPHASI S>Vari abl eLi st</ EMPHASI S>). It has comon attri but es. </ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>

<TERW

<BEMPHASI S>Wr ni ng</ EMPHASI S></ TERW>
<Ll STl TEV>

<PARA>AN adrmonition set off fromthe text.
See <EMPHASI S>Caut i on. </ EMPHAS| S></ PARA>
</ LI STI TEM></ VARLI STENTRY>

<VARL| STENTRY>
<TERVPXRef </ TERW>
<Ll STI TEWP

<PARA>O oss reference link to another part of the docunent.
It has Linkend and Endtermattributes, just |ike Link,

but |ike Anchor, it may have no content.

XRef must have a Linkend, but the Endtermis optional .

If it is used, the content of the elenent it points

310

An Example of Implementing Help in an Application

tois displayed as the text of the cross reference;

if it is absent, the XRefLabel of the cross-referenced

object is displayed. To include in the cross reference

generated text associated with the object referred to,

use your application's style sheet. See <BEMPHASI SsLi nk. </ EMPHAS S></ PARA>
</ LI STI TEM-</ VARLI STENTRY>

</ VAR ABLELI ST>

</ DESCR PTI ON></ HELPTCPI &
</ DOCHELP>

An Example of Implementing Help in an Application

This section provides a complete example of help integrated with an application.
Example C-3 lists a C program that implements a Help menu, a Help button, and
context-sensitive help. You can find this file online at

fusr/share/Insight/XHELP/samples/example App/exampleAppXm.c.

Example C-4 lists the help document for exampleAppXm. You can find it online at
fusr/share/Insight/XHELP/samples/example App/exampleAppXm.sgm.

Example C-5 lists the helpmap file for exampleAppXm. You can find it online at
Jusr/share/Insight/XHELP/samples/example App/help/example App Xm.helpmap.

Example C-3 An Example of Integrating SGIHelp With an Application

/*

*

* Fle: exanpl eAppXm ¢

*

* Date: 3/ 25/ 94

*

* Conpile with: cc -o exanpl eAppXm exanpl eAppXmc -l hel pnsg -1 Xm-1 Xt -1X11
*

* Pur pose: An sinpl e exanpl e programthat shows howto use the SQ
* Hel p systemfroma Mtif application.

*

* This programdi spl ays a few buttons on a bulletin board
* alongwith a hel p menu. The use of context sensitive help
* is also denonstrat ed.

*

311

Appendix C: Online Help Examples

*/

/*

* standard include files

*/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/*

<stdio. h>

<uni std. h>
<fcntl. h>
<X11/cursorfont. h>
<X Xm h>

<Xnd Label . h>

<X PushB. h>
<Xnmi For m h>

<Xm MessageB. h>
<Xmi Mai nW h>
<Xm RowCol umm. h>
<Xl CascadeB. h>
<Xmi Separ at or . h>

* include for for calling/using SA Hel p

*/

#i ncl ude <hel papi / Hel pBr oker . h>

/*

* forward decl arations of functions

*/

Wdget initMtif(int

*argcP,
char *argv[],

Xt AppCont ext *app_cont ext P,
**di spl ayP) ;

D spl ay

voi d createl nterface(Wdget parent);

voi d cli ckFor Hel pCB();

voi d overvi ew(B();

voi d taskaB();

voi d i ndexCB();

voi d keysAndshort cut sCB() ;

312

/* Initializes notif and

*/

/* and returns the top |evel */

/* shell.

/*creates the mai n w ndow,
/*menus, and the buttons
/*on the mai n wi ndow

/*cal | backs for each of
/*the hel p nenu' s

*/

*/
*/
*/

*/
*/

An Example of Implementing Help in an Application

voi d product | nf oCB() ;

voi d i nf oD al ogCB() ;

Wdget _mai nWndow, _i nfoD al og=NULL;

/*
*
* mai n()
*
*/
mai n(int argc, char *argv[])
{
D spl ay *di spl ay;
Xt AppCont ext app_cont ext ;
W dget topl evel ;
toplevel = initMtif (&argc,argv, &pp_cont ext, &i spl ay) ;
createl nterface(topl evel);
Xt Real i zeWdget (t opl evel);
Xt AppMai nLoop(app_cont ext) ;
}
/*
*
* Function: initMtif()
*
* Purpose: Initializes Mtif and creates a top | evel shell.
* Returns the topl evel shell.
*
* Makes the call to initialize variables for the SA Hel p
* interface...note that it does not *start* the sgihel p
* process. That is done when a request for help is nade,
* if and only if the sgihelp process is not already
* runni ng.
*
*

*
~

313

Appendix C: Online Help Examples

314

Wdget initMtif(int *argcP, char *argv[], Xt AppCont ext *app_cont ext P,

D spl ay **di spl ayP)

topl evel ;

XtToolkitlnitialize();
*app_context P = Xt Or eat eAppl i cati onContext ();

Xt enD spl ay(*app_cont ext P, NLLL, " exanpl eAppXni,
"exanpl eAppXnd ass", NULL,
0,argcP, argv);

if (*displayP == NULL) {
fprintf (stderr,"Could not open display.\n");
fprintf (stderr,"Check your D SPLAY environnent variable.\n");
fprintf (stderr,"Exiting...\n");
exit(-1);

topl evel = Xt AppQr eat eShel | (" exanpl eAppXt, NULL,

appl i cati onShel | Wdget A ass,
*di spl ayP, NULL, 0);

* initialize variables for S Help

SA Hel plnit (*di spl ayP, "exanpl eAppXnt, ".");

return (toplevel);

{
W dget
*di spl ayP
}

/*

*/
}
/*

* Functi on: createl nterface()

*/

voi d createl nterface(Wdget parent)

{
Ag
i nt
W dget
W dget
W dget
W dget
W dget

args[10];

(e

baseForm

nenuBar ;

denoLabel , denoButt on;

pul | downl, pul | down2, cascadel, cascade2;

nenuBut t ons[6] ; /*we will create at nax 6 buttons on a nenu*/

An Example of Implementing Help in an Application

/*

XnBtring xngtr;

* mai nWndow i s an Xnivki nW ndow
* on which the whole interface is built

*/

/*

i =0;
_mai nWndow = XnQr eat eMai nW ndow(par ent , " mai nWndow', args, i) ;
Xt ManageChi | d(_mai nWndow) ;

* baseFormis the workArea for the
* mai nWndow above.

*/

/*

i =0;

Xt Set Arg (args[i], XnNai dt h, 400) ;i ++;

Xt Set Arg (args[i], Xmi\hei ght, 300) ;i ++;

Xt SetArg (args[i], Xmi\verti cal Spaci ng, 40) ;i ++;

baseFor m = XnQr eat eFor n{ _nai nWndow, " baseForni, args, i) ;
Xt ManageChi | d(baseForn);

* O this bulletin board, put a | abel and a button
* for denonstrating cal l backs and context sensitive
* hel p.

*/

i =0;

xngtr = XnBtringOeateS nple("SA Help!");

Xt Set Arg (args[i], XnN abel String, xn&tr);i++

Xt Set Arg (args[i], XniN opAt t achnent , XnATTACH FCRV) ; i ++;

Xt SetArg (args[i], Xni\ri ght Att achnent , XnATTACH FCRV) ; i ++;
Xt Set Arg (args[i], XnN ef t Attachnment , XmATTACH FCRV) ; i ++;
XtSet Arg (args[i], XmN\al i gnnent, XmALI GNMENT_CENTER) ; i ++;
denoLabel = XnQr eat eLabel (baseFor m "sgi Hel pLabel ", args,i);
Xt ManageChi | d(denoLabel) ;

Xn8&tringFree(xngtr);

i =0;

xngtr = Xn8tringQeateS nple("Aick Hre For Hel p");

Xt SetArg (args[i], XnN abel String, xn&tr);i++

Xt Set Arg (args[i], Xni\ri ght At t achnent , XmATTACH FCRN) ; i ++;
Xt Set Arg (args[i], Xmi\oot t ont t achrent , XnATTACH FCRV) ; i ++;

dermoBut t on = XnOr eat ePushBut t on(baseFor m " sgi Hel pPushButton”, args,i);

Xt ManageChi | d(denoBut t on) ;
Xn&tringFree(xngtr);

315

Appendix C: Online Help Examples

Xt AddCal | back(denoBut t on, Xm\act i vat eCal | back, t askCB, NULL) ;

/ *
* pbuild a pul l down nenu system including the "hel p" menu
*/
nenuBar = XnOr eat eMenuBar (_nmai nWndow, " nenuBar ", NULL, 0) ;
Xt ManageChi | d(nenuBar) ;
pul | downl = XnCr eat ePul | downMenu(nenuBar , " pul | down1", NULL, 0) ;
pul | down2 = XmCr eat ePul | downMenu(nenuBar , " pul | down2", NULL, 0) ;
i =0;
Xt SetArg (args[i], XniNsubMenul d, pul | downl) ;i ++;
cascadel = XnOr eat eCascadeButt on(nenuBar,"Fi | e",args,i);
Xt ManageChi | d(cascadel);
i =0;
Xt SetArg (args[i], XmiNsubMenul d, pul | down2) ;i ++;
cascade2 = Xn(r eat eCascadeBut t on(nenuBar, "Hel p", args,i);
Xt ManageChi | d(cascade?) ;
/ *
* Declare this to be the Hel p nenu
*/
i =0;
Xt Set Arg (args[i], Xni\nenuHel pWdget , cascade?) ; i ++;
Xt Set Val ues(nenuBar, args, i);
nmenuButt ons[0] = XnOr eat ePushBut t on(pul | downl, "Exi t", NULL, 0);
Xt ManageChi | dren(menuBut t ons, 1) ;
Xt AddCal | back(nenuBut t ons[0] , XmiNact i vat eCal | back, (Xt Cal | backProc) exit, 0);
nmenuButt ons[0] = XnOr eat ePushBut t on(pul | down2, "Aick for Hel p", NULL, 0);
nmenuButt ons[1] = XnOr eat ePushBut t on(pul | down2, " Qver vi ew', NULL, 0) ;
Xt ManageChi | d(XmOr eat eSepar at or (pul | down2, "separator1”, NLL, 0));
nenuButt ons[2] = XnOr eat ePushBut t on(pul | down2, " Sanpl e Hel p Task", NULL, 0) ;
Xt ManageChi | d(XnOr eat eSepar at or (pul | down2, "separator2", NILL, 0));
nenuButt ons[3] = XnOr eat ePushBut t on(pul | down2, "1 ndex", NLLL, 0) ;
nmenuButt ons[4] = XnOr eat ePushBut t on(pul | down2, "Keys and Short cuts", NULL, 0) ;
Xt ManageChi | d(XmOr eat eSepar at or (pul | down2, "separator3", NILL, 0));
nenuButt ons[5] = XnOr eat ePushBut t on(pul | down2, " Product | nfornation", NULL, 0);
Xt ManageChi | dr en(menuBut t ons, 6) ;
/ *

316

An Example of Implementing Help in an Application

* add cal | backs to each of the hel p nenu buttons
*/
Xt AddCal | back(menuBut t ons[0] , XmiNact i vat eCal | back, cl i ckFor Hel pCB, NULL) ;
Xt AddCal | back(menuBut t ons[1] , XniNact i vat eCal | back, over vi enCB, NULL) ;
Xt AddCal | back(nenuBut t ons[2] , XniNact i vat eCal | back, t askCB, NULL) ;
Xt AddCal | back(menuBut t ons[3] , Xni\act i vat eCal | back, i ndexCB, NULL) ;

Xt AddCal | back(nenuBut t ons[4] , Xmi\act i vat eCal | back, keysAndShor t cut sCB, NULL) ;

Xt AddCal | back(nmenuBut t ons[5] , Xmi\act i vat eCal | back, pr oduct | nf oCB, NULL) ;

/*
* set the bulletin board and nmenubar into
* the main Wndow.

*/
XmMai W ndowSet Ar eas(_mai nW ndow, menuBar , NULL, NULL, NULL, baseFor n) ;

}
/ *

*

* voi d clickForHel pCB()

*

* Purpose: Provides context-sensitivity within an application;

* nmakes a request to the sgihel p process.

*

*

*
~

voi d clickForHel pCB(Wdget wid, XtPointer clientData, Xt Pointer callData)
{

static Qursor cursor = NULL;
static char path[512], tnp[512];
Wdget shell, result, w

strcepy(path, "");
strepy(tmp, "");

*
/* create a question-nark cursor
*
: i f(!cursor)
cursor = X eat eFont Qursor (Xt D spl ay(w d), XC question_arrow;
Xmpdat eD spl ay(_mai nWndow) ;
/%

317

Appendix C: Online Help Examples

* get the top-level shell for the w ndow

*
/
shell = _mai nWndow,
while (shell & !'Xt1sShell(shell)) {
shell = Xt Parent(shell);
}
/*

* modal interface for selection of a conponent;
* returns the widget or gadget that contains the pointer

*/
result = Xnmiracki ngLocat e(shel |, cursor, FALSE);
if(result) {
w=result;
/*

* get the widget hierarchy; separate with a'.';
* this also puts themin top-down vs. bottomup order.
*/
do {
Hf(XeNae(w) {
strcpy(path, Xt Name(w));

if(strlen(tnp) >0) {
strcat(path, ".");
strcat(path, tnp);
}

strepy(tnp, path);
}

w = Xt Parent(w;
} while (w!= NJLL & w!= shell);

/

send nsg to the hel p server-wi dget hierarchy;
R

provi de a mappi ng to produce the key to be used

Inthis case, we'll let the sgihel p process do
the nmapping for us, with the use of a helpmap file

Note that parameter 2, the book nare, can be found
fromthe helpnap file as well. The devel oper need

L R S T T I

318

An Example of Implementing Help in an Application

* not hard-code it, if a helpmap file is present for
* the application.
*/
if(strlen(path) >0) {
SA Hel pMsg(pat h, NULL, NULL);
}

/ *
*
* voi d overvi enCB()
*
*/
voi d overvi enCB()
{

/

Wsing the mapping file allows us to specify

a "Overview' hel p card for each w ndow in

our application. In this case, we wll point
to a specific one. Note that the book nane is
speci fied, but not necessary if a hel pnap file
exists for this application.

* 0% ok F X X

SA Hel pMsg(" over vi ew', "exanpl eAppXmtel p*, NULL);

/ *
* voi d i ndexCB()
*/

voi d i ndexCB()

{

/*

* For the index windowto work for this application,
* a hel pnap file MJT be present!

*/

SA Hel pl ndexMsg("i ndex", NULL);

319

Appendix C: Online Help Examples

/*

*

* voi d taskCB()

*

*/
voi d taskCB()
{

/ *
* For the task found in the hel p nenu or a pushbutton, we
* use a specific key/book conbinati on.
*/
SA Hel pMsg(" hel p_task", "exanpl eAppXmiel p", NULL);

/*

*

* voi d keysAndShort cut sCB()

*

*/
voi d keysAndShort cut sCB()
{

/*
* This woul d point to the hel p card that contains
* information about the use of keys/accelerators, etc.
* for your application.
*/
SA Hel pMsg(" keys", "exanpl eAppXniel p", NULL);

/*

*

* voi d product | nf oCB()

*

*

/

voi d product I nf oCB()
{

/*
* Pops up a dial og showi ng product version infornation.

320

An Example of Implementing Help in an Application

*/

This area has nothing to do with S@Help, but is included
for conpl et eness.

voi d bui | dI nfoD al og();

XnBtring xngtr;
Arg args[10];
int i;

voi

{

if(_infoDalog == NLL) {
bui I dIl nfoD al og();
Xt Real i zeWdget (_infoD alog);
}
xngtr=Xn8t ri ngQr eat eS npl e("Exanpl e Motif App Wsing SA Hel p version 1.0");
i =0;
Xt SetArg (args[i], Xni\nessageString, xn8tr) ;i ++;
Xt Set Val ues(_infoD al og, args, i);
Xn8tringFree(xngtr);

Xt ManageChi | d(_i nf oD al og) ;

d bui I dI nf oD al og()

Arg args[10];

i
/ *

*/

nt i;

Build the informational dialog to display the version info

i =0;

Xt Set Arg (args[i], XniNaut olhnanage, True) ;i ++;

Xt SetArg (args[i], XmiN\di al ogType, XnD ALOG WIRKI NG ; i ++;

Xt Set Arg (args[i], Xni\di al ogStyl e, XnDl ALOG APPLI CATI ON_MIDAL) ; i ++;

_infoD al og = XmOreat el nfor mati onD al og(_nai nWndow, "i nfoD al og", args,i);

Xt AddCal | back(_i nfoD al og, Xm\okCal | back, infobD al ogCB, NULL);

Xt UhmanageChi | d(XmMessageBoxGet Chi | d(_i nfoDi al og, XnDl ALOG CANCEL_BUTTCN)) ;
Xt UhmanageChi | d(XnMessageBoxGet Chi | d(_i nfoDi al og, XnD ALGG HELP BUTTCN)) ;

321

Appendix C: Online Help Examples

322

voi d i nfoD al ogCB()

{
if (_infoDalog) {
Xt UhmanageChi | d(_i nfoD al og) ;
/* Explicitly set the input focus */
XSet | nput Focus(Xt D spl ay(_nai nWndow), Poi nt er Root ,
Revert ToParent, QurrentTime);
}
}

Example C-4 Help Source File for Example Program

<dochel p>

<Hel pTopi ¢ Hel pl D="over vi ew' >

<Hel pl abel >Exanpl e Motif Application Wsing SA Hel p</ Hel pl abel >
<Descri pti on>

<par a>

This application is intended to show the devel oper how

t he <gl osst er m»SA Hel p</ gl osst er n» system can work for you.

It displays (in the included

sanpl e code, exanpl eAppXmc) usage of various widgets, a sanple
hel p nenu, full-context-sensitivity, and calls to

the <gl osst erm»SA Hel p</ gl osstern» server process via the APl .
</ par a>

<Figure ID="figure 01">

<titl e>exanpl eAppXm Mai n Wndow</ titl e>

<@ aphic fileref="mai nwnd. gi f" fornat="Q F'></ G aphi c>
</ H gure>

<par a>

The application itself is very sinple, conposed of
a <Li nk Li nkend="1D002">Fi | e nenu, </ Li nk>

a <Link Li nkend="1D003">Hel p nenu, </ Li nk>

a <Li nk Li nkend="1D005">Pushbut t on, </ Li nk>

and a <Link Li nkend="1D004">Label </ Li nk>.

The user can choose itens fromthe

<Li nk Li nkend="1D003">Hel p nmenu</Li nk> to

contact the <gl osstermSA Hel p</ gl osst erm> server process to
cause different help cards to be rendered.

</ par a>

An Example of Implementing Help in an Application

<para>To quit the application, use the "Exit" comrand
found under the <Link Li nkend="1D002">Fi | e menu</ Li nk>.
</ par a>

</ Descri pti on>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="fi | e_nenu">

<Hel pl abel ><Anchor |d="1D002">The File Menu</ Hel pl abel >
<Descri pti on>

<para>The following itens (and their functions) are part of
the File nenu: </ para>

<Vari abl eLi st >

<VarLi st Entry>

<ternpExit</terny

<Li stltemp<para>Used to quit the exanpl eAppXm application. </ para></listitenr
</ Var Li st Entry>

</ Vari abl eLi st >

</ Descri pti on>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="hel p_nenu" >

<Hel pl abel ><Anchor | d="1D003">The Hel p Menu</ Hel pl abel >

<Descri pti on>

<para>The following itens (and their functions) are part of

the Hel p nmenu: </ par a>

<Vari abl eLi st >

<VarLi st Entry>

<termpQick for Hel p</tern»

<Li stltemp<para>Used to put the application in context sensitive node.
WI I cause the cursor to turn into a "?" at which point the user can
click on any entry in the application's windowto obtain hel p.</para></listiten»
</ Var Li st Entry>

<VarLi st Entry>

<t er mpQver vi ews/ t er e

<Li st1temp<para>Used to display a hel p overview card for the current
w ndow </ para></listitenp

</ Var Li st Entry>

<VarLi st Entry>

<t er el ndex</ t er n»

<Li stltemp<para>Used to display fromSd Hel p an I ndex of help topics for
the gi ven application. </para></listiteny

</ Var Li st Entry>

<VarLi st Entry>

323

Appendix C: Online Help Examples

<ternpKeys & Shortcuts</tern»y

<Li stltemp<para>Used to display a hel p card that describes any speci al
key conbi nations this application uses.</para></listiten»

</ Var Li st Entry>

<Var Li st Entry>

<ternpProduct |nfo</ternvy

<Li st1temp<para>Pops up a dial og that displays to the user any version or
copyright information for this application.</para></listiteny

</ Var Li st Entry>

</Vari abl eLi st >

<par a>To access any nenu itens, click on the nenu item

that is a part of the nenubar. Wen the nenu pops- up,

highlight the desired item and rel ease the nouse button.

</ par a>

</ Descri pti on>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="hel p_| abel ">

<Hel pl abel ><Anchor | d="1D004">A Label </ Hel pl abel >

<Descri pti on>

<par a>You have clicked on a Label. It sinply displays information

to the user and serves no other useful pourpose.</para>
<tip><para>Basically, a label is useless. For information only. </ para></tip>
</ Descri pti on>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="hel p_but t on">

<Hel pl abel ><Anchor | d="1D005">A Pushbut t on</ Hel pl abel >

<Descri pti on>

<para>You have clicked on a Pushbutton. A pushbutton, when

clicked, will activate sone type of command wi thin the application. </ para>
</ Descri pti on>

</ Hel pTopi c>

<Hel pTopi ¢ Hel pl D="keys" >

<Hel pl abel ><Anchor | d="1D006">Keys and Short cut s</ Hel pl abel >
<Descri pti on>

<para>Thi s card displays all known keys and shortcuts for this
appl i cati on. </ par a>

<war ni ng><para>Thi s appl i cati on has no shortcuts. </ par a></ war ni ng>
</ Descri pti on>

</ Hel pTopi c>

324

An Example of Implementing Help in an Application

<Hel pTopi ¢ Hel pl D="hel p_t ask">

<Hel pl abel ><Anchor | d="1D007">A Sanpl e Hel p Task</ Hel pl abel >
<Descri pti on>

<par a>

Wien creating your application and hel p text, you nay w sh
to highlight certain common tasks. This help card was

di spl ayed fromeither a nenu itemor a pushbutton.

</ par a>

<par a>

To performsuch an operation wthin your code, the

associ ated cal | back that contacts the <gl osstern»SQ Hel p</ gl osst er n» server
can be constructed as shown bel ow </ para>

<Exanpl e>

<Title>Sanpl e Hel p Task Cal | back</Titl e>

<par a>
The following is a listing derived froma "C' program
<Pr ogr anti sti ng>

/[* create nenu itens, pushbuttons, etc. */

voi d taskCB()
{

/*
* For the task found in the hel p nenu,
* we'll use a specific key/book
* conbi nati on.
*/
SA Hel pMsg(" key", "nyBook", NULL);
}
</ Progranii sti ng>
</ par a>
</ Exanpl e>
<para>lt's relatively sinple process to integrate hel p
into your application. In fact, the <gl ossternmSA Hel p</ gl osst er n»
process only requires <enphasi s>two</ enphasi s> function calls.
</ par a>
</ Descri pti on>
</ Hel pTopi c>

<d ossary>
<Title>d ossary</Titl e>

325

Appendix C: Online Help Examples

326

<d ossEntry>

<d ossTer m»SA Hel p</ @ ossTer m»

<@ ossDef >

<para>This is S licon Gaphics, Inc. version of a "Xnel p* conpatible
server. Through the use of an available APl, and a hel p text

conpi | er, books can be constructed that can be used to render

hel p information for the given application. </ para>

</ G ossDef >

</ d ossEntry>

</ d ossary>

</ dochel p>

Example C-5 Helpmap for Example Program

1; exanpl eAppXnitl p; Exanpl e Moti f App

Qver vi ew, 0; over vi ew;, exanpl eAppXm over vi ew, exanpl eAppXm nai nW ndow baseFor m exanpl
eAppXm nai nW ndow nenuBar ; exanpl eAppXm rmai nW ndow

2; exanpl eAppXnil p; Fi | e Menu; 1; fi | e_nenu; exanpl eAppXm nai nWndow nenuBar . Fi | e
2; exanpl eAppXnil p; Hel p Menu; 1; hel p_nenu; exanpl eAppXm nai nWndow. nenuBar . Hel p
2; exanpl eAppXnil p; A Label

Entry; 1; hel p_| abel ; exanpl eAppXm nai nW ndow baseFor m sgi Hel pLabel

2; exanpl eAppXnikl p; A Pushbut t on

Entry; 1; hel p_but t on; exanpl eAppXm nai nW ndow baseFor m sgi Hel pPushBut t on

2; exanpl eAppXnil p; Keys and Short cut s; 0; keys; exanpl eAppXm keys

2; exanpl eAppXiEl p; A Sanpl e Hel p Task; 0; hel p_t ask; exanpl eAppXm exanpl eAppXm

Appendix D

The Icon Description Language

Use IconSmith to draw your icons. To learn how to use IconSmith, see Chapter 12, “Using
IconSmith.” After you draw your icon, include it in the FTR file using the ICON rule
described in Chapter 13, “File Typing Rules.” IconSmith writes the ICON rule for you
using the icon description language. This appendix describes the icon description language
that IconSmith uses to write the ICON rule. This information is provided for
completeness. Do not try to write the ICON rule directly in the icon description language.

The icon description language is a restricted subset of the C programming language. It
includes line and polygon drawing routines from the IRIS Graphics Library™ (GL), as
well as some additional routines that are not in the GL. The description routine for a
given icon is similar in structure to a C subroutine without the subroutine and variable
declarations. The valid symbols and functions in the icon description language are
described below.

Operators

You can use these C language operators in an icon description routine:

+

,-'-\A”o\o-— >/ o~ *

— —

327

Appendix D: The Icon Description Language

328

You can use these C language conditional operators in an icon description routine:

Constants

You can use these logical constants in an icon description routine:

true fal se

Variables

The following icon status variables are set by the Desktop. You can use them in an icon
description routine:

opened | ocated sel ected current disabled

These variables have values of either true or false. You can use them in a conditional
statement to alter the appearance of an icon when it has been manipulated in various
ways from the Desktop.

You can use other legal C variables in an icon description routine, without a declaration;
all variables are represented as type float. Any variable name is acceptable, provided it
does not collide with any of the predefined constants, variables, or function names in the
icon description language.

Functions

The icon description functions comprise, for the most part, a very restricted subset of the
Clanguage version of the IRIS Graphics Library, modified for 2-D drawing. See Table D-1
for a list of all the icon description functions.

Table D-1 Icon Description Functions

Function

Definition

arc(x, y, r, startang, endang)

arcf(x, y, v, startang, endang)

bclos(color)

bgnclosedline()

bgnline()

bgnoutlinepolygon

bgnpoint()

bgnpolygon()

color(n)

draw(x, v)

endclosedline()

Draw an arc starting at icon coordinates x, y; with
radius r; starting at angle startang; ending at angle
endang. Angle measures are in tenths of degrees.

Like arc, but filled with the current pen color.

Like pclos, but uses color for the border (outline) color
of the polygon.

Begin drawing a closed, unfilled figure drawn in the
current pen color. Used in conjunction with vertex
and endclosedline.

Like bgnclosedline, except the figure is not closed.
Used in conjunction with vertex and endline.

Begin drawing a polygon filled with the current pen
color. The polygon is outlined with a color specified

by endoutlinepolygon. Also used in conjunction with
vertex.

Begin drawing a series of unconnected points defined
using calls to vertex. Used in conjunction with vertex
and endpoint.

Like bgnoutlinepolygon except the polygon is not
outlined. Used in conjunction with vertex and
endpolygon.

Set current pen color to color index .

Draw a line in the current color from the current pen
location to x, v.

Finish a closed, unfilled figure started with
bgnclosedline.

329

Appendix D: The Icon Description Language

330

Table D-1 (continued)

Icon Description Functions

Function

Definition

endline()

endoutlinepolygon(color)

endpoint()

endpolygon()

for (expr; expr; expr) expr

if (expr) expr [else expr]

include("path")

move(x,)

pclos()

pdr(x, v)

pmv(x, y)

print(expr or "string")

vertex(x,y)

Finish an open, unfilled figure started with bgnline.

Finish a filled polygon started with
bgnoutlinepolygon and outline it with color.

Finish a series of points started with bgnpoint.

Finish a filled, unoutlined polygon started with
bgnpolygon.

Note that shorthand operators such as ++ and -- are
not part of the icon description language, so longer
hand expressions must be used.

Standard C language if-statement.

Tell the Desktop to find the icon geometry in the file
with pathname path.

Move current pen location to x, .

Draw a line in the current pen color that closes the
current polygon, and fill the polygon with the current
color.

Draw the side of a filled polygon in the current pen
color, from the current pen location to x, v.

Begin a filled polygon at location x, .

Print the value of the expression expr or string to
stdout; used for debugging.

Specify a coordinate used for drawing points, lines
and polygons by bgnpoint, bgnline, bgnpolygon, and
so forth.

Appendix E

Predefined File Types

This appendix lists the predefined file types and their associated tag numbers that are
available for your use. Topics include:

¢ “Naming Conventions for Predefined File Types”
® “The Predefined File Types and What They Do”
You can use these predefined file types for utilities that do not need a unique,

personalized look. You may also want to use these file types as SUPERTYPEs for your
own custom file types.

Naming Conventions for Predefined File Types

The file types listed in this appendix are named according to the conventions listed in
Table E-1.

Table E-1 Predefined File Type Naming Conventions

If the file type name includes: Then

1-Narg it requires at least one argument
larg it requires exactly one argument
2arg it requires exactly two arguments
3arg it requires exactly three arguments

In all cases, if the expected number of arguments is not received, launch is run so that
users can type in the desired options. For more information on the launch command, see
the launch(1) reference page.

331

Appendix E: Predefined File Types

The Predefined File Types and What They Do

332

In this section, file types that are essentially the same, except for the number of
arguments they require, are grouped together by the “base” file type name, meaning the
file type name without the argument codes described in “Naming Conventions for
Predefined File Types” on page 331.

For example, to find the file type named “ttyLaunchOutlargExecutable,” look under
“ttyLaunchOutExecutable.” These two file types are identical, except that
“ttyLaunchOutlargExecutable” requires exactly one argument.

SpecialFile

“SpecialFile” is a predefined SUPERTYPE, not an actual file type. When you include the
SPECIALFILE rule in your file type, you should also declare the “SpecialFile”
SUPERTYPE. This allows applications to use isSuper(1) to test whether your file type is a
SPECIALFILE.

Directory

TYPE Directory
MATCH (node & 0170000) == 040000;

The “Directory” type. Any custom file types you define for directories should include
“Directory” as a SUPERTYPE. “Directory” is defined in
Jusr/lib/filetype/default/sgidefault.ftr.

Ascii
TYPE AsCi i

“Ascii” is a pseudotype defined to support routeprint conversions. Actual ASCII text files
have the type “AsciiTestFile”:

TYPE Ascii TextFile
MATCH ascii;

The Predefined File Types and What They Do

“Ascii” is defined in /usr/lib/filetype/system/sgisystem.converts.ftr and “AsciiTextFile” is
defined in /ust/lib/filetype/default/sgidefault.ftr. The Ascii icon is
fusr/lib/filetype/default/iconlib/AsciiText.closed.fti superimposed over
fusr/lib/filetype/iconlib/generic.doc.fti.

Source Files
TYPE SourceFile

“SourceFile” is a pseudotype defined to support routeprint conversions. Actual source
files have more specific types such as:

TYPE Makefile
MATCH (gl ob("[nM akefile") || glob("*.nk")) && ascii;

TYPE HeaderFile
MATCH gl ob("*. h") && ascii;

TYPE CPl usPl usProgram
MATCH gl ob("*.c++") && ascii;

TYPE CProgram
MATCH glob("*.c") && ascii;

TYPE Program
MATCH (glob("™*.[pfrasly]") | | glob("*.pl[il]")) && ascii;

“SourceFile” is defined in /usr/lib/filetype/system/sgisystem.converts.ftr and the specific
types shown above are defined in /usr/lib/filetype/system/sgisystem.ftr.

Binary

“Binary” is a predefined SUPERTYPE, not an actual file type. You can create custom file
types using “Binary” as a SUPERTYPE.

333

Appendix E: Predefined File Types

ImageFile
TYPE | mageFil e

“ImageFile” is a top-level image pseudotype. You can create custom file types using
ImageFile as a SUPERTYPE, or you can use a more specific file type such as:

TYPE Sd | mage

MATCH short (0) == 000732 ||
normal SA image

short (0) == 0155001;

#byt e- swapped SA i mage
TYPE TI FFl mage

MATCH | ong(0) == 0x49492a00 || |ong(0) == 0x4d4d002a;
TIFF i mage

TYPE FI Tl mage
MATCH string(0,2) == "IT";
FIT i mage

TYPE PCDi mage
MATCH string(2048,7) == "PCD_IPI";
Kodak Photo CD i nage pack

TYPE PCDO nmage

MATCH string(0,7) == "PCD_OPA";
Kodak Photo CD overvi ew pack
TYPE G F87I1 mage

MATCH string(0,6) == "G F87a";
G F image (G F87a fornat)

TYPE G F89I nage
MATCH string(0,6) == "G F89a";
G F imge (G F89a fornmat)

These and other file types are defined in /usr/lib/filetype/system/sgiimage.ftr.
Executable

“Executable” is a predefined SUPERTYPE, not an actual file type. You can create custom
file types using “Executable” as a SUPERTYPE.

334

The Predefined File Types and What They Do

Scripts

TYPE Scri pt
MATCH (npde & 0111) && ascii;

This is the file type for shell scripts, defined in /ust/lib/filetype/default/sgidefault.ftr.

GenericWindowedExecutable

TYPE Generi cW ndowedExecut abl e
MATCH tag == 0x00000000;

TYPE Generi cl- Nar gExecut abl e
MATCH tag == 0x00000020;

TYPE Generi clar gExecut abl e
MATCH tag == 0x00000001;

TYPE Generi c2ar gExecut abl e
MATCH tag == 0x00000002;

TYPE Generi c3ar gExecut abl e
MATCH tag == 0x00000003;

Simply runs the command. No output or terminal emulation windows are used. These
file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

LaunchExecutable

TYPE LaunchExecut abl e
MATCH tag == 0x00000100;

TYPE Launchl- Nar gExecut abl e
MATCH tag == 0x00000120;

TYPE Launchlar gExecut abl e
MATCH tag == 0x00000101;

TYPE Launch2ar gExecut abl e
MATCH tag == 0x00000102;

Same as “GenericWindowedExecutable,” except that it runs launch to allow user to enter

options prior to running the command. These file types are defined in
fust/lib/filetype/system/sgicmds. ftr.

335

Appendix E: Predefined File Types

336

ttyExecutable

TYPE ttyExecutabl e
MATCH (tag == 0x00000400) || (tag == 0x00000410);

TYPE ttyl- Nar gExecut abl e
MATCH tag == 0x00000420;

TYPE tty2ar gExecut abl e
MATCH tag == 0x00000402;

Runs the command in a window that allows terminal I/O. The output window (which
is where the terminal emulation is being done) exits immediately upon termination of the
command. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

ttyLaunchExecutable

TYPE ttylLaunchExecut abl e
MATCH tag == 0x00000500;

TYPE ttylLaunchl- Nar gExecut abl e
MATCH tag == 0x00000520;

TYPE ttylLaunchlar gExecut abl e
MATCH tag == 0x00000501;

Same as “ttyExecutable,” except that it runs launch to allow user to enter options before
running the command. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

ttyOutExecutable

TYPE ttyQut Execut abl e
MATCH (tag == 0x00000600) || (tag == 0x00000610);

TYPE ttyQut 1- Nar gExecut abl e
MATCH tag == 0x00000620;

TYPE ttyQut lar gExecut abl e
MATCH tag == 0x00000601;

TYPE ttyQut 2ar gExecut abl e
MATCH tag == 0x00000602;

Same as “ttyExecutable,” except that the output window persists until the user explicitly
dismisses it. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

The Predefined File Types and What They Do

ttyLaunchOutExecutable

TYPE ttylLaunchQut Execut abl e
MATCH (tag == 0x00000700) || (tag == 0x00000710);

TYPE ttylLaunchCut 1- Nar gExecut abl e
MATCH tag == 0x00000720;

TYPE ttylLaunchQut 1ar gExecut abl e
MATCH tag == 0x00000701;

TYPE ttylLaunchCQut 2ar gExecut abl e
MATCH tag == 0x00000702;

TYPE ttylLaunchQut 3ar gExecut abl e
MATCH tag == 0x00000703

Same as “ttyOutExecutable,” except that it runs launch to allow user to enter options

before running the command. These file types are defined in
fust/lib/filetype/system/sgicmds. ftr.

337

Appendix F

FTR File Directories

There are four possible files in which Desktop file types are defined. They are listed here
in the order the Desktop scans them:

1. /Jusr/lib/filetype/local

2. fust/lib/filetype/install

3. Jusr/lib/filetype/system

4. /Jusr/lib/filetype/default

These files are listed in order of precedence. For example, a file type defined in the

fust/lib/filetype/install directory overrides a file type of the same name in the
fust/lib/filetype/system and /ust/lib/filetype/default directories.

In particular, Silicon Graphics uses the /usr/lib/filetype/system and /usr/lib/filetype/default

directories to define and maintain system standards. Be especially careful not to override
important defaults set in these directories.

339

Appendix G

Using GoldenGate Data Conversion Services

This appendix describes how to use the GoldenGate data conversion services. It covers
these topics:

¢ “Converting Data Using the GoldenGate Data Conversion Service” on page 341
explains how to use the converters provided.

¢ “Compiling and Linking Your Program with GoldenGate” on page 359 describes
the header file to use when compiling and linking a program.

¢ “Writing Converters for the GoldenGate Data Conversion Service” on page 360
explains how to customize your own converters.

Converting Data Using the GoldenGate Data Conversion Service
This section describes how you can use the GoldenGate data conversion service in your
application. Specifically, it explains:

¢ “Overview of the Conversion Process” on page 342 describes the steps involved in
converting data using GoldenGate.

* “Selecting a Converter” on page 344 describes how to select a converter by querying
the converter registry and setting up the conversion context.

¢ “Using GoldenGate to Convert Data” on page 350 describes how to initialize the
conversion pipeline, send data through it, and clean up after the conversion.

341

Appendix G: Using GoldenGate Data Conversion Services

342

Overview of the Conversion Process

To convert data using GoldenGate, follow these steps:

1.

Choose a converter.

= Obtain a list of converters that read the source format and write the target
format.

= Create a conversion context structure and set conversion parameters.

= Evaluate the list of converters to determine which one is best suited for the
current conversion.

Convert data.

There are two methods of converting data, depending on whether the data is in a
stream or in a file.

Converting Stream Data

» Initialize the selected converter.

= Send data through the converter and read results back.

» Clean up resources by destroying the conversion context.
Converting Data Files

» Call the file conversion function.

» Clean up resources by destroying the conversion context.

The Converter Registry

GoldenGate maintains a list of available converters in the converter registry. This registry
contains an entry for each converter, specifying characteristics such as the type of input
data it takes and the type of output data it produces. To find out if there are any

converters that will convert from format “A” to format “B,” you can query the registry.

GoldenGate returns a list of converters that take the specified input and produce the
specified output. You can be as specific as you like when querying the registry, to ensure
that only relevant converters are listed. You should also use the query to eliminate
inappropriate categories of converter, such as those of type StreamToStream if you are
converting a file. If the list contains more than one converter, you may need to evaluate
the converters to see which one best meets your needs. Even if the list contains only one
converter, you should evaluate it to make sure it can handle your conversion request.

Converting Data Using the GoldenGate Data Conversion Service

Creating a Conversion Context

To communicate with a converter, you must create a conversion context. The conversion
context is a data object that stores conversion parameters. The conversion context is
passed to subsequent library calls that set input and output parameters, evaluate
converters, initialize the conversion pipeline, and move data through it.

Once you have created a conversion context and specified the desired conversion
parameters, you can evaluate the list of converters you obtained when you queried the
registry. For example, suppose you want to convert from one audio format to another
and change the sample rate at the same time. Querying the registry returns a list of
converters that will convert between the specified input and output formats. To
determine if any of these converters will perform the desired sample rate conversion,
you have to create a conversion context, set the desired parameters (including input and
output sample rate) and then evaluate the individual converters.

Evaluating a Converter

It’s best to evaluate a converter before you invoke it to perform a conversion. You do this
for the following reasons:

¢ Evaluation gives the converter an opportunity to inspect your data parameters.
Some converters will have more functionality than others, even though their input
and output types are the same. A well-designed converter will know just by looking
at parameters whether it can do the conversion.

¢ Conversion is typically an expensive operation. If your attempt to convert fails, you
can still choose a different converter and try again, but you could have avoided lost
time by trying a converter that can accept your specific request.

Depending on your needs, you can select the first converter on the list that passes the

evaluation stage, or evaluate the whole list and use your own rules to choose between
those that pass.

Converting Data In a File or Stream

Once you determine the converter to use, the final stage depends on whether you are
converting data in a file or a stream.

343

Appendix G: Using GoldenGate Data Conversion Services

344

If you are converting a stream, initialize a conversion pipeline that reads your stream and
passes back results as they are available. Then you send all your data through the
pipeline and read the results until you see the end of stream marker for the pipeline. At
this point, terminate the pipeline. This causes GoldenGate to clean up data structures it
keeps for maintaining a stream conversion.

If you are converting a file, the procedure is simpler. You call a single GoldenGate
function to perform the operation, and wait for results. If necessary you can provide a
callback function that will notify you when results become available. This allows you to
service other events going on in your application during what may be a long conversion.

Selecting a Converter

This section describes how to select a converter by querying the converter registry and
setting up the conversion context. Specifically, this section covers:

* “Querying the Converter Registry” on page 344, which explains how to obtain a list
of possible converters.

e “Setting Up the Conversion Context” on page 347, which describes how to create a
conversion context.

e “Evaluating Converters” on page 348, which explains how to find a converter that
performs the specified conversion.

e “Getting Converter Details” on page 349, which describes how to get a description
of a converter.

* “Converter Return Status Values” on page 355, which lists return status values.

Querying the Converter Registry

To query the converter registry, you specify a set of constraints. Each constraint consists
of an attribute (such as input format), a value for the attribute, and a comparison
operator. For example, you can ask for a converter that has input format equal to
“AIFF_FILE,” and version number greater than 2. Use the SgCvtSetQueryConstraint()
function to fill in an array of SgCvtQueryConstraint structures, then pass the array to the
SgCvtQueryRegistry() function. The following code fragment demonstrates a simple
query that locates converters capable of converting AIFF_FILE to WAVE_FILE:

SgCvt QueryConstrai nt constraints[2];
SgCvt St at us st at us;
SgCvt Converterld *converters;

Converting Data Using the GoldenGate Data Conversion Service

int numconstraints, numconverters;
SgCvt Regi stry registry = NULL;
status = SgCvt Set QueryConstraint (constraints[0],

SG CVT_ATTR_I NPUT_TYPE, "Al FF_FILE", SG_CVT_OP_EQ;
status = SgCvt Set QueryConstraint (constraints[1],

SG CVT_ATTR_OUTPUT_TYPE, "WAVE FI LE", SG_CVT_OP_EQ;
numconstraints = 2;
status = SgCvt QueryRegi stry(constraints, numconstraints,

®istry, &converters, &num.converters);

The SgCvtQueryRegistry() function returns an array of converter IDs that can be used to
identify the individual converters.

The registry argument specifies the GoldenGate converter registry to be queried. During
this call, the registry is located on disk (/var/GoldenGate/ConverterRegistry by default), and
its contents parsed to find a converter that matches your requirements.

The first time you call SgCvtQueryRegistry, specify registry as NULL as in the previous
example, which causes this lookup. When you have finished converting, you can either
call SgCvtFreeRegistry to release the resources that GoldenGate may have cached after
reading the file, or you can re-use the value returned in registry for subsequent queries,
avoiding the overhead of looking up the file.

If you choose to free the registry between queries, your program will always have the
latest information, even if the registry changes while your program is running. If you
choose to re-use the registry handle, you have no control over whether or not
GoldenGate will re-parse the registry. It will try to use its cache first. If for any reason the
cache is invalid, GoldenGate may at its discretion rebuild it by reading the disk-based
registry again.

The converters argument returns an array of matching converter IDs, of which the first
num_converters are valid and matched the query. You should free this array when you are

finished using it, using free(3).

Table G-1 lists the attributes you can query.

Table G-1 Converter Attributes

Attribute Name Description
SG_CVT_ATTR_NAME Converter name
SG_CVT_ATTR_INPUT_FORMAT Input format

345

Appendix G: Using GoldenGate Data Conversion Services

Table G-1 (continued) Converter Attributes

Attribute Name Description

SG_CVT_ATTR_OUTPUT_FORMAT Output format

SG_CVT_ATTR_IO_METHOD StreamToStream or FileToFile
SG_CVT_ATTR_INPUT_LABEL Input format, human readable version
SG_CVT_ATTR_OUTPUT_LABEL Output format, human readable version
SG_CVT_ATTR_VENDOR Vendor’s name
SG_CVT_ATTR_VERSION Vendor’s version information
SG_CVT_ATTR_DESCRIPTION Description of converter

Most of the time, you’ll be interested in the input format and output format attributes.
“Supported Target Formats” on page 113 lists common data formats. Other attributes
may be useful when listing converters for users. For example, if you want the user to
choose between two converters that perform the same conversion, you can display the
vendor names and version numbers.

Table G-2 lists the operators you can use in your query.

Table G-2 Query Operators

Operator Symbol

equal to SG_CVT_OP_EQ
not equal to SG_CVT_OP_NE
less than SG_CVT_OP_LT
less than or equal to SG_CVT_OP_LE
greater than SG_CVT_OP_GT
greater than or equal to SG_CVT_OP_GE

Note that if more than one constraint is specified on a single attribute, a logical AND is
implied. For example, you can select a range of version numbers by setting “version
greater than or equal to one” as one constraint and “version less than or equal to three”
as a second constraint.

346

Converting Data Using the GoldenGate Data Conversion Service

SgCvtQueryConstraint can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

SgCvtQueryRegistry can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
Could not find the registry, or failed to parse it. Most likely when the
default registry has been edited to add new converters, and a syntax
error introduced. You may also be loading the wrong file. Make sure that
if there is a file called ConverterRegistry on your path, it is a valid
registry using the CDF syntax. Also make sure the
CVT_REGISTRY_OVERRIDE variable is not set.

Setting Up the Conversion Context

Before you can evaluate or use a converter, you must create a conversion context and set
parameters governing the conversion. Use the SgCvtCreateConversionContext()
function to create a conversion context:

SgCvt St at us
SgCvt Cr eat eConver si onCont ext (SgCvt Conver si onCont ext *cont ext)

SgCvtCreateConversionContext can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_NOMEM
Insufficient memory to allocate a context.

Next, set any digital media parameters that affect your conversion by calling
SgCvtSetContextInfo.

SgCvt St at us SgCvt Set Cont ext I nfo
(

SgCvt Conver si onCont ext cont ext,
unsi gned | ong val uemask,
SgCvt Cont ext I nf o *cont ext _data

)

347

Appendix G: Using GoldenGate Data Conversion Services

348

where
context specifies the context you created with SgCvtCreateConversionContext
valuemask specifies which fields in the SgCvtContextInfo structure are being set in

the context. This is specified as any of the following OR’ed together:

SG_CVT_I NFO_| NPUT_PARANS
SG_CVT_I NFO_OUTPUT_PARAMS
SG_CVT_I NFO_META_PARAMS
SG CVT_I NFO_| NPUT_FI LE
SG_CVT_I NFO_| NPUT_HOST
SG_CVT_I NFO_OUTPUT_FI LE
SG_CVT_I NFO_OUTPUT_HOST

context_data specifies the values being set

SgCvtSetContextInfo can return the following status value:
SG_CVT_E_SUCCESS
The operation succeeded.

See the IRIS Media Libraries Programming Guide for information on setting DMparams.

Evaluating Converters

To evaluate a converter, call SgCvtEvaluateConverter():

SgCvt St at us

SgCvt Eval uat eConverter (SgCvt Converterld converter_id,
SgCvt Conver si onCont ext cont ext
DMpar ams **out put _par ans)

where
converter_id is a converter ID returned by the SgCvtQueryRegistry() function

context is a valid conversion context obtained from
SgCvtCreateConversionContext()

output_params returns the output of the request. Converters may set these parameters,
even though they accept the request.

Converting Data Using the GoldenGate Data Conversion Service

SgCvtEvaluateConverter() can return the following status values:

SG_CVT_E_ACCEPT
The converter can perform the conversion specified by the conversion
context.

SG_CVT_E_REJECT
The converter can’t perform the requested conversion.

When evaluating a converter returns a status of SG_CVT_E_ACCEPT, you should take
one final step before calling the converter. You should inspect the output_params
argument, which returns a DMparams list describing the result that the converter will
produce. If your program has very strict requirements, this will help protect you if the
converter has accepted the request but cannot honor what it considers a minor
parameter, or if you passed a parameter it could not understand.

Getting Converter Details

If your program needs to display information about available converters, or do other
processing based on the data stored about a converter in the converter registry, call
SgCvtGetConverterAttributes() to get a description of it. The function prototype for
SgCvtGetConverterAttributes() is shown below.

SgCvt St at us

SgCvt Cet ConverterAttri but es(SgCvt Converterld converter_id,
unsi gned | ong converter_attr_mask,
SgCvt ConverterAttrs *attributes)

When you are finished using the fields of the SgCvtConverterAttrs structure, you should
free the string attributes and the structure itself (if you allocated it dynamically) using
free(3C).

SgCvtGetConverterAttributes can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

349

Appendix G: Using GoldenGate Data Conversion Services

350

Using GoldenGate to Convert Data

This section describes the different methods you can use to convert data. Topics include:
e “Converting Data Using File Converters”

* “Converting Data Using Stream Data Converters”

Converting Data Using File Converters

Your file-based data is always converted using the function SgCvtConvertFileToFile.
Before you call it however, you need to decide whether you want the function to block
while the conversion is going on, or return immediately and let you know later that the
conversion is complete.

In many cases blocking mode is sufficient, and it is much simpler to use if your program
is not naturally event driven. However, if your application has a GUI, you may prefer
non-blocking mode because it allows your event loop to keep running while conversion
is going on. When conversion is complete, you are notified through a callback function
that you supply, and you can use the converted data.

Both modes are invoked using SgCvtConvertFileToFile:

t ypedef void (*SgCvtCal | back) (SgCvt Conver si onCont ext cont ext,
void *client_data,
voi d *cal | back_dat a) ;

SgCvt St at us SgCvt ConvertFil eToFil e

(

SgCvt Conver si onCont ext cont ext,

SgCvt Converterld converter_id,

char *input _file,

char *out put _file,

unsi gned | ong cal | back_nask,

SgCvt Cal | back cal | back,

voi d *client_data

);
where
context the conversion context, holding the I/O filenames and parameters
converter_id the converter ID, returned by SgCvtQueryConverter
input_file pathname of input file. You must have read permission.

Converting Data Using the GoldenGate Data Conversion Service

output_file pathname of output file. You must have write permission.

callback_mask mask indicating when callback should be called. It should be some
logical combination of the following values:

SG_CVT_CB_FLAG _CONVERSI ON_DONE
(after conpletion)
SG CVT_CB_FLAG_STAGE_DONE
(after each stage if multi-stage pipeline)

callback specifies the callback function

client_data a pointer to application-defined data structure that will be passed to the
callback when invoked

If specified, the callback argument is the address of the function to call when conditions
specified by the callback_mask arise. If the callback function is not specified, or the mask
is zero, the function executes in blocking mode.

SgCvtConvertFileToFile can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_BAD_CONVERTER_TYPE
The converter was not registered as FileToFile IO method.

SG_CVT_E_READ_FAILED
The input file could not be read. It may be missing, or the permissions
are insufficient for reading.

SG_CVT_E_WRITE_FAILED
The output file could not be written. This can happen if the user does not
have write permission for the target directory, or if the supplied
pathname was invalid.

Converting Data Using Stream Data Converters

To convert data using your specified converter, you must initialize the conversion
pipeline, and then send the data through. After reading the last block of converted data,
clean up by destroying the conversion context to free the resources associated with the
pipeline. This section covers the following topics:

351

Appendix G: Using GoldenGate Data Conversion Services

352

e “Initializing the Pipeline”
¢ “Sending and Receiving Data”

e “Cleaning Up”

Initializing the Pipeline

Prepare the converter to receive data by calling SgCvtInitializePipeline():

SgCvt St at us
SgCvtiInitializePipeline(SgCvt Conversi onCont ext context,
SgCvt Converterld converter_id)

where

context is a valid conversion context obtained from
SgCvtCreateConversionContext()

converter_id is a converter ID returned by the SgCvtQueryRegistry() function

SgCvtlnitializePipeline can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
The context or its contents is bad or one of the subprocesses required to
host a converter function could not be launched.

SG_CVT_E_BAD_CONVERTER_TYPE
The converter was not registered as StreamToStream. Converters that
are designed to work with streaming data advertise themselves as using
the StreamToStream method of I/O in the registry.

Sending and Receiving Data

You may send and receive arbitrarily sized blocks of data, so use a block size that is
convenient.

Converting Data Using the GoldenGate Data Conversion Service

Send data to the converter using SgCvtSendData(). The function prototype for
SgCvtSendData() is shown below:

SgCvt Status SgCvt SendDat a(
SgCvt Conver si onCont ext cont ext,

voi d *dat a,
size_t | engt h,
DMpar ans *par ans,
bool ean_t canwai t
)
where
context is a valid conversion context
data is a pointer to the data block to be converted
length is the length of the data block
params is a DMparams structure describing the data to be converted
canwait is a boolean value that indicates what the function should do if it cannot

send the data immediately. If you specify B_TRUE, SgCvtSendData()
will block until it can send the data to the conversion pipeline. If you
specify B_FALSE, SgCvtGetData() will return immediately with a status
of SG_CVT_E_AGAIN. This status indicates that you should try again.

SgCvtSendData can return with the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
An1/0 error occurred while trying to send data through the pipe
connecting two pipeline components.

SG_CVT_E_AGAIN
Required resources were temporarily unavailable. The caller should
retry later.

Read data from the converter using SgCvtGetData(). The function prototype for
SgCvtGetData() is shown below:

353

Appendix G: Using GoldenGate Data Conversion Services

SgCvt Status SgCvt Get Dat a(
SgCvt Conver si onCont ext cont ext,

size_t buf _I en,
voi d *puf f er,
size t *| engt h_r et ur ned,
DMpar ans **par anms_r et ur ned,
bool ean_t canwai t
)
where
context is a valid conversion context
buf len specifies the size of buffer
buffer is a pointer to a pre-allocated buffer of at least buf_len bytes.

length_returned is the actual length of the returned data (this may be less than
bytes_requested if non-blocking mode is specified, or if the converter
encounters end-of-stream) SgCvtGetData

params_returned
is a DMparams structure describing the converted data.

canwait is a boolean value that indicates what the function should do if no data
is available. If you specify B_TRUE, SgCvtGetData() will block until
data becomes available from the conversion pipeline. If you specify
B_FALSE, SgCvtGetData() will return immediately with a status of
SG_CVT_E_QUEUE_EMPTY. This status indicates that you should try
again.

SgCvtGetData can return the following status values:

SG_CVT_E_SUCCESS
The operation succeeded.

SG_CVT_E_FAILURE
An1/0 error occurred while trying to read data from the pipe
connecting two pipeline components.

SG_CVT_E_AGAIN
Required resources were temporarily unavailable. The caller should
retry later.

SG_CVT_E_END_OF_STREAM
The operation succeeded, and the end of the data has been reached.

354

Converting Data Using the GoldenGate Data Conversion Service

The non-blocking mode of SgCvtSendData() and SgCvtGetData() allows programs to
continue working on other tasks (such as handling events from a graphical interface)
while waiting to send data to or read data from the conversion pipeline.

Cleaning Up

When you've sent the last of the data to the converter, call SgCvtSendEndOfStream() to
indicate the end of the data. After you've read the last of the converted data, free the
resources associated with the conversion context by calling
SgCvtDestroyConversionContext():

SgCvt St at us SgCvt SendEndCF St r eand(
SgCvt Conver si onCont ext cont ext

)

SgCvt St atus SgCvt Dest r oyConver si onCont ext (
SgCvt Conver si onCont ext cont ext

)

If you need to terminate the conversion process before reaching the end of the data, call
SgCvtDestroyConversionContext().

SgCvtSendEndOfStream can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

SgCvtDestroyConversionContext can return the following status value:

SG_CVT_E_SUCCESS
The operation succeeded.

Converter Return Status Values

Table G-3 lists converter functions and their return status values.

Table G-3 Converter Return Status Values

Function Return Value Description
SgCvtSetQueryConstraint SG_CVT_E_SUCCESS The operation succeeded.
SgCvtQueryRegistry SG_CVT_E_SUCCESS The operation succeeded.

355

Appendix G: Using GoldenGate Data Conversion Services

356

Table G-3 (continued) Converter Return Status Values

Function

Return Value

Description

SgCvtGetConverterAttributes

SgCvtCreateConversionContext

SgCvtDestroyConversionContext
SgCvtSetContextInfo
SgCvtGetContextInfo

SgCvtEvaluateConverter

SgCvtlnitializePipeline

SG_CVT_E_FAILURE

SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_NOMEM

SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_ACCEPT

SG_CVT_E_REJECT

SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE

Could not find the registry, or
failed to parse it. Most likely
when the default registry has
been edited to add new
converters, and a syntax error
introduced. You may also be
loading the wrong file. Make
sure that if there is a file called
ConverterRegistry on your
path, it is a valid registry using
the converter description file
syntax. Also make sure the
CVT_REGISTRY_OVERRIDE
variable is not set.

The operation succeeded.
The operation succeeded.

Insufficient memory to allocate
a context.

The operation succeeded.
The operation succeeded.
The operation succeeded.

The converter can perform the
requested conversion.

The converter cannot perform
the requested conversion.

The operation succeeded.

The context or its contents is bad
or one of the subprocesses
required to host a converter
function could not be launched.

Converting Data Using the GoldenGate Data Conversion Service

Table G-3 (continued)

Converter Return Status Values

Function

Return Value

Description

SgCvtTerminatePipeline

SgCvtSendData

SgCvtGetData

SgCvtSendEndOfStream

SgCvtEncodeParams

SgCvtDecodeParams

SG_CVT_E_BAD_
CONVERTER_TYPE

SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE

SG_CVT_E_AGAIN

SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE

SG_CVT_E_AGAIN

SG_CVT_E_END_OF_

STREAM

SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_SUCCESS
SG_CVT_E_NOMEM

The converter was not
registered as StreamToStream.
Converters that are designed to
work with streaming data
advertise themselves as using
the StreamToStream method of
I/0 in the registry.

The operation succeeded.
The operation succeeded.

An1/0 error occurred while
trying to send data through the
pipe connecting two pipeline
components.

The required resources were
temporarily unavailable. The
caller should retry later.

The operation succeeded.

An I/0 error occurred while
trying to read data from the pipe
connecting two pipeline
components.

The required resources were
temporarily unavailable. The
caller should retry later.

The operation succeeded, and
the end of the data has been
reached.

The operation succeeded.
The operation succeeded.
The operation succeeded.

Insufficient memory to allocate
structures.

357

Appendix G: Using GoldenGate Data Conversion Services

Table G-3 (continued)

Converter Return Status Values

Function

Return Value

Description

SgCvtFreeEncodedParams

SgCvtConvertFileToFile

SgCvtGetFileSelectionTarget

SgCvtlsPipeline

SG_CVT_E_SUCCESS
SG_CVT_E_FAILURE
SG_CVT_E_SUCCESS
SG_CVT_E_BAD_
CONVERTER_TYPE

SG_CVT_E_READ_
FAILED

SG_CVT_E_WRITE_
FAILED

SG_CVT_E_SUCCESS

SG_CVT_E_UNKNOWN_
TYPE

SG_CVT_E_NO_TARGET

SG_CVT_E_FAILURE

B_TRUE

B_FALSE

The operation succeeded.
The data could not be decoded.
The operation succeeded.

The converter was not
registered as FileToFile I/O
method.

The input file could not be read.
It may be missing, or the
permissions are insufficient for
reading.

The output file could not be
written. This can happen if the
user does not have write
permission for the target
directory, or if the supplied
pathname was invalid.

The operation succeeded.

The file type could not be
determined.

The selection target for the type
of file could not be determined,
or there is none.

The operation could not be
performed for another reason,
such as the underlying file
typing database library could
not be accessed, or the database
itself was corrupt or missing.

The translator is a multi-stage
pipeline.

The translator is a single-stage
converter.

358

Compiling and Linking Your Program with GoldenGate

Compiling and Linking Your Program with GoldenGate

To compile and link your program, you need to include the header file SgCvt.h and
include the library libcot in your link line.

An example of a simple GoldenGate program follows. It includes the required header
file, enumerates the registered converters, and prints their input and output labels.

#i ncl ude <SgCvt. h>
mai n(int argc, char **argv)

{
SgCvt Regi stry regi stry = NULL;
int n=0;
SgCvt St at us S;
SgCvt Converterld *cvirs;
int ncvtrs;
s =SgCvt Quer yRegi stry(NULL, O, & egistry, &vtrs, &ncvtrs);
for (n=0; n<ncvtrs; n++) {
SgCvt ConverterAttrs attrs;
SgCvt Get ConverterAttri butes(cvtrs[n],
SG CVT_ATTR_FLAG | NPUT_LABEL |
SG _CVT_ATTR_FLAG OQUTPUT_LABEL,
&attrs);
printf(“%l 9%5s -> %\n",
n+l, attrs.input_|abel, attrs.output_|abel);
free(attrs.input_|abel);
free(attrs. output_| abel);
}
SgCvt FreeRegi stry(registry);
}
The following Makefile illustrates the compile and link requirements for this program.
#
Makefile for GoldenGate Listing sanple program
#
cC = cc
TARGET = gg_listing
SOURCES = $(TARGET) .

359

Appendix G: Using GoldenGate Data Conversion Services

| NCLUDES= -1/ usr/includel/ convert

REQLI BS = -l cvt
al | :
$(CO -0 $(TARGET) $(!NCLUDES) $(SOURCES) $(REQLIBS)

Writing Converters for the GoldenGate Data Conversion Service

360

This section describes how to write converters that can integrate with GoldenGate and
become available to any component that is aware of GoldenGate. The following
information assumes that you are familiar with the interfaces described in “Converting
Data Using the GoldenGate Data Conversion Service” on page 341. Both converters and
applications use many of the functions and data structures.

Overview of the Converter Writing Process
Creating a GoldenGate data converter involves writing the converter and building the
DSO, then testing, registering, and installing the converter. The topics below describe:

¢ “Writing Converter Code” on page 361 explains how to write the code that converts
the data, or choose an existing command that you want to make available through
the conversion service.

* “Building a DSO” on page 368 describes how to create a Dynamic Shared Object
(DSO) and write a registry entry using converter description file syntax.

¢ “Testing Your Converter” on page 371 explains how to test your converter.

* “Registering Your Converter” on page 372 describes how to register your converter
to make it available to GoldenGate clients.

¢ “Installing Your Converter” on page 373 lists the library location for converter
DSOs.

“Some Sample Converters” on page 374 shows annotated code for two converters.

Writing Converters for the GoldenGate Data Conversion Service

Writing Converter Code

This section describes how to write converter code and includes the following topics:
e “Implementing Your Converter - Handling Evaluation Requests”

¢ “Implementing Your Converter - Handling Conversion Requests”

¢ “Input and Output Formats”

e “Process Blocking”

e “Programming Constraints”

e “Example of a Simple Stream Converter”

Implementing Your Converter - Handling Evaluation Requests

When the operation field of the SgCvtConverterData structure passed to your converter
is equal to SG_CVT_REQ_EVALUATE, your converter should inspect the input, output,
and meta parameters held in the conversion context and determine whether or not it can
satisfy the request, without actually performing conversion.

If your converter can satisfy the request, it should set the st at us_r et ur n field of the
SgCvtConverterData structure to SG_CVIT_E_ACCEPT before returning. Otherwise it
should set st at us_r et urn to SG_CVT_E_REJECT.

Implementing Your Converter - Handling Conversion Requests

When the operation field of the SgCvtConverterData structure is equal to
SG_CVT_REQ_CONVERT, your converter must extract the necessary information from
the SgCvtConverterData structure it is passed, and perform the conversion if possible.
If conversion is successful, it should return with the st at us_r et ur n field set to
SG_CVT_E_SUCCESS, and if it is unsuccessful, the st at us_r et ur n field should be set to
either SG_CVT_E_FAILURE or a more specific error code if appropriate (see the error
codes available in SgCut.h).

How the converter is implemented depends on whether you are writing the conversion
code yourself, or simply using an existing command-line converter.

If you are creating a “wrapper” to make an existing UNIX command available through
the GoldenGate conversion service, the procedure is quite straightforward.

361

Appendix G: Using GoldenGate Data Conversion Services

362

In this case, your converter is a function that gathers the input and output requirements
from its arguments, and executes the external UNIX command (for instance, by calling
the system(2) function).

Your function should do as much checking as possible to ensure that the external
command can work. For instance, you should verify that the command is installed before
calling it, and that you have execute permission.

Also check for appropriate permissions to read input files and write output files, in the
case of file converters. If you detect an error before calling the command, return an error
status in the status field of the data argument.

For example, the code below shows a FileToFile converter that wraps an existing UNIX
command rtf2html. You will find other fully annotated examples at the end of this section.

#i ncl ude <l i bgen. h>
#i ncl ude <SgCvt. h>

void R fToHt m (void *arQg)
{
SgCvt ConverterData *data = (SgCvt ConverterData *) arg;
SgCvt Context I nfo ctx_i nfo;
char cmd[BUFSI Z] ;
int sys_status = O;
char *xl| at or _pat h;

/* Evaluation - just accept for this exanple */

i f (data->operation == SG CVT_REQ EVALUATE) ({
dat a- >status_return = SG CVT_E_ACCEPT;
return;

}

/* Conversion */

/* depends on ‘rtf2htm’ comrand being avail able */
xl ator_path = pathfind(getenv (“PATH), “rtf2html”, “rx”);
if (xlator_path == NULL) {

data- >status_return = SG CVT_E_M SSI NG_COVVAND;

return;

}

(voi d) SgCvt Get Cont ext | nf o(dat a- >cont ext,
SG _CVT_I NFO_I NPUT_FI LE
SG_CVT_I NFO_QUTPUT_FI LE,

Writing Converters for the GoldenGate Data Conversion Service

&ct x_i nfo);

/* cmd syntax is ‘rtf2html inputfile outputfile’
sprintf(cmd, “% % % 2> /dev/null”, xlator_path,
ctx_info.input_file, ctx_info.output_file);

sys_status = system(cnd);

data->status_return =
sys_status ? SG CVT_E_FAI LURE : SG_CVT_E_SUCCESS;

return;

}

Notice that GoldenGate passes the necessary information to a converter by reference. The
SgCvtConverterData structure is the mechanism for this. It is defined as follows:

typedef struct {

SgCvt Request Type oper ati on;
SgCvt Conver si onCont ext cont ext;

DMpar ans *out put _par ans;
SgCvt St at us status_return;

} SgCvt Convert er Dat a;

If your converter does not use an external command to translate the data, but does the
conversion itself, the structure of the converter function is essentially the same.

You still use the SgCvtConverterData structure to communicate with GoldenGate.
Between extracting the necessary arguments from the structure and returning from the
function, you just call your own functions that do the conversion.

Input and Output Formats

Your converter should use standardized names for its input and output types wherever
possible. This is important because applications are written to request data by a
particular name. If your converter uses a different name for the same data format,
GoldenGate will not find your converter and the conversion may fail.

See “Supported Target Formats” on page 113 for the data formats supported by the
default Silicon Graphics converters.

363

Appendix G: Using GoldenGate Data Conversion Services

364

You can also use your own data format names. However, the name your application uses
must match the name you registered so GoldenGate ca 1 find the converter. However, if
you use your own data format names, it is unlikely that other applications will be able to
take advantage of your converter. Do this only if the format name is well understood
among all the applications you intend to cooperate with.

Process Blocking

You can use SgCvtGetData() and SgCvtSendData() in either blocking or non-blocking
mode, depending on your requirements. Both modes are described in “Converting Data
Using File Converters” on page 350.

If your converter needs to return immediately to do other work, such as tracking activity
on an I/0 device, you should set the canwait argument to these functions to B_FALSE. If
the conversion pipeline is not ready for an immediate read or write operation, the call
will return immediately with a status value indicating that nothing happened and that
you should try the same operation again. For additional information on the canwait
argument, see “Sending and Receiving Data” on page 352.

If SgCvtSendData() cannot send data immediately and canwait is B_FALSE, it returns
SG_CVT_E_AGAIN. This indicates that your data has not been sent, and you should try
the operation again, using the same data.

SgCvtGetData() returns SG_CVT_E_QUEUE_EMPTY if there is no data immediately
available and canwait is B_LFALSE. You should try the operation again later.

If your converter has no other I/O requirements, you can simplify your code slightly by
setting the canwait argument to B_TRUE. You should use this option by default, because
it can eliminate redundant context switching to your idling converter, and improve
system performance.

There are two categories of converter: FileToFile and StreamToStream.

A FileToFile converter uses the input and output file attributes of the conversion context
to get its input and save its output, as shown in the example above.

Writing Converters for the GoldenGate Data Conversion Service

A StreamToStream converter follows this general procedure after extracting the required
parameters from the context:

e Fetch a block of input data using SgCvtGetData

e Convert the data to the new format

e Send converted data back to GoldenGate

The converter repeats these steps until it receives a status of
SG_CVT_E_END_OF_STREAM from SgCvtGetData, and it successfully sends all the

converted data. Then it calls SgCvtSendEndOfStream to tell GoldenGate it is finished
converting, and finally it returns.

The functions used for stream conversion are the same ones used by applications to work
with conversion streams:

* To fetch input and output parameters to be used in the conversion, use
SgCvtGetContextInfo.

e To fetch a block on data for conversion, use SgCvtGetData.
e To send a block of converted data back to GOldenGate, use SgCvtSendData.

¢ To break your connection to the stream and tell GoldenGate your converter is
finished, use SgCvtSendEndOfStream.

Programming Constraints

Keep in mind the following constraints when writing converters:

* You must not use libraries that are unsafe for threads. For instance, you should not
use Motif or other GUI libraries that are not “multi-thread-safe.”

* You should be careful if installing global event handlers, such as timers and signal
handlers, if they override those that may already be installed by the host
application. The safest policy is to avoid this altogether.

¢ Where possible, you should avoid intentionally locking system resources such as
physical memory blocks by using low-level UNIX calls or device drivers, because
this can result in deadlock.

* Your code should be reentrant. This means it should not rely on global state
between calls, because it is possible for more than one instance of your converter to
be running at the same time.

365

Appendix G: Using GoldenGate Data Conversion Services

Converters are free to choose the size of the data blocks they read and write. GoldenGate
writes into the buffer that your converter supplies during a SgCvtGetData() call. Your
converter must allocate and free this buffer space as necessary. During a
SgCvtSendData() call, your converter again supplies a buffer of data. The
SgCvtSendData() call does not alter your buffer. If the call returns SG_CVT_E_SUCCESS
to indicate that your data has been sent, or SG_CVT_E_FAILURE to indicate a general
failure, free the buffer or re-use it as appropriate. If the call returns SG_CVT_E_AGAIN
(you passed B_FALSE as the canwait argument) your data has not been sent, and you
should retain it to try again later.

Example of a Simple Stream Converter

The following example shows a simple stream converter. It expects a stream of ASCII text
characters, and outputs the stream with any uppercase characters replaced by their
lowercase equivalents.

#i ncl ude <SgCvt. h>
#i ncl ude <dnedi a/ dm par ans. h>

voi d Cvt ToLower
(
void *arg

)

SgCvt ConverterData *data = (SgCvt ConverterData *) arg;
SgCvt St at us s;

char buf[BUFSI Z] ;

size_t nreq = BUFSI z;

unsi gned int | en=0;

int start = O;

int i;

/* Eval uation */
i f (data->operation == SG CVT_REQ EVALUATE) {

/
In less trivial converters, we would check for
valid parans in the context, but in this case all
we're doing is byte translation, so we can al ways
say yes.

/

* X X X X X

dat a- >status_return = SG_CVT_E_ACCEPT;
return;

Writing Converters for the GoldenGate Data Conversion Service

}
/*
* Conversion Loop. A simlar construct will appear in
* all stream ng converters. The nodel is fetch data,
* convert it and forward it, until we have forwarded the
* end of stream then junp out the | oop.
*/
for (;;) {
s = SgCvt Get Dat a(dat a- >context, nreq, buf, & en, NULL, B TRUE);
if (s == SG CVT_E FAILURE) {
fprintf(stderr, “converter: failed to get data\n”);
return;
}
if (s == SG_ CVT_E END OF_STREAM {
SgCvt SendEndOF St r ean(dat a- >cont ext) ;
br eak;
}
/*** start converter-specific part ***/
for (i=0; i<len; i++)
buf[i] = tol ower(buf[i]);
/*** end converter-specific part ***/
s = SgCvt SendDat a(dat a- >cont ext, (void *)buf,
I en, NULL, B_TRUE);
if (s == SG_ CVT_E _FAILURE) {
fprintf(stderr, “converter: failed to get data\n”);
return;
}
start += (len);
}
/*
* When we get here, this converter’s work
* is conplete. Ohers in the sanme pipeline may
* still be running, but that’s irrelevant to us.
* W sinply return. |If we were invoked in a dedicated
* sproc “thread”, which is always the case for
* stream ng converters, this termnates it.
*

~

367

Appendix G: Using GoldenGate Data Conversion Services

368

return;

}

Note the above comment about other converters: & hers in the same pi pel i ne may
still be running.Itis important to remember that your converter is almost always
invoked as a subprocess of the application. “Programming Constraints” on page 365 lists
some considerations when writing converter code.

Building a DSO
GoldenGate converters reside in Dynamic Shared Object (DSO) libraries.

After you have written and tested your conversion function by calling it directly from a
test program, you are ready package it as a GoldenGate converter.

This section covers the following topics:

* “Creating a DSO For Your Converter”

* “Creating a Converter Description File”

Creating a DSO For Your Converter

Create a DSO for your converter. A simple Makefile (below) for the previous example,
“Example of a Simple Stream Converter” on page 366, illustrates the compilation and
linkage requirements for a GoldenGate DSO.

#

Makefile for Gol denGate Sanpl e Converter DSO
#

CVTR = Cvt ToLower

all:

cc -c -l/usr/include/convert $(CVIR).c
Id -no_unresolved -o libUserCvtrs.so -shared $(CVTR). o

Creating a Converter Description File

After you compile your converter, you must create a converter description file that
identifies your converter to GoldenGate. You use this file to test your converter, and
intimately to register it with GoldenGate. A simple example for the CotToLower converter
follows.

Writing Converters for the GoldenGate Data Conversion Service

#
Lowercase Text Stream
#
Converter ({
Nane: “Cvt ToLower”
| Ovet hod: St reanToSt r eam
I nput : “M XEDCASE"
I nput Label : “ASCI | bytes, any case”
Qut put : “ LOWERCASE"
Qut put Label : “ASCI | bytes, |ower case”
Vendor : “SE (Sanple)”
Ver si on: “1.0"
Descri pti on: “Lowercases chars in input streant
DSO “/usr/people/fred/libFredsCvtrs. so”
Functi on: “Cvt ToLower”
}

Make sure the DSO field is set to the full pathname for the DSO you have built.

The grammar of the converter description file is fairly simple. Three types of statements
exist; they are identified by the keywords Parameter, Converter, and Pipeline. Table G-4
defines the statements.

Table G-4 Converter Description File Statements

Statement Description

Parameter statement Defines a single parameter

Converter statement Describes a converter and may include Parameter statements
Pipeline statement Defines a series of converters to be used together, and may

contain both Converter and Parameter statements

Some example descriptions follow. The easiest way to write a converter description file
is to copy an existing one. You can use these examples, or copy entries from the default
registry file, /var/GoldenGate/ConverterRegistry.

#

Lowercase Text Stream

#

Converter ({
Nare: “Cvt ToLower”
| Ovet hod: St reamToSt ream
I nput : “M XEDCASE”

369

Appendix G: Using GoldenGate Data Conversion Services

I nput Label : “ASCI | bytes, any case”
Qut put : “ LONERCASE”
Qut put Label : “ASCI | bytes, |ower case”
Vendor : “SE (Sanple)”
Ver si on: “1.0”
Descri ption: “Lower cases chars in input streanf
DSO “/usr/people/fred/libFredsCvtrs. so”
Functi on: “Cvt ToLower”
}
#
Wndows BMP to XVD
#
Converter {
Nane: “BMP_FI LE_TO XWD _FI LE”
| Ovet hod: FileToFile
I nput : “BMP_FI LE"
I nput Label : “BMP_FI LE"
Qut put : “XWD_FI LE"
Qut put Label : “XWD_FI LE"
Vendor : “8a
Ver si on: “1.0”
Descri pti on: “BMP_FILE to XD _FI LE"
DSO “libcvt_SA . so”
Functi on: “xwdout ”
}
#

Wndows BWP to Compuserv G F-89, through JPEG (JFIF)

This isn’t necessary, since the default converters

can go directly to A F 89 fromBMP, but it illustrates the
Pi pel i ne syntax for chaining converters together.

Pi peline {
Nane: “BMP_FILE_TO G F_89_FI LFE"
| Ovet hod: FileToFile
I nput : “BMP_FI LE"
I nput Label : “W ndows BMP”
Qut put : “G F_89 FILFE
Qut put Label : “Conpuserve G F”
Vendor : “SaE”
Ver si on: “1.0"
Descri ption: “Wndows BWP to G F, via JPG
Converter {
Nane: “BMP_FI LE_TO JFI F_FI LE”

370

Writing Converters for the GoldenGate Data Conversion Service

}

| Ovet hod: FileToFile

| nput : “BMP_FI LE"

I nput Label : “BMP_FI LE”

Qut put : “JFI F_FI LE"

Qut put Label : “JFI F_FI LE"

Vendor : “sa”

Ver si on: “1.0"

Descri ption: “BMP_FILE to JFIF_FILE"
DSO “l'ibcvt_SA . so”

Functi on: “jfifout”

Converter {

Nane: “JFIF_FILE_ TO G F_89 FILE"
| OVvet hod: FileToFile

I nput : “JFI F_FI LE”

I nput Label : “JFI F_FI LE”

Qut put : “G F_89 _FILE

Cut put Label : “G F_89 _FILFE

Vendor : “Sa

Ver si on: “1.0"

Descri ption: “BVMP_FILE to G F_89_FI LFE
DSO “l'ibcvt_SA . so”

Functi on: “gifout”

Testing Your Converter

To test your converter, first verify that your converter description file is valid and does
not cause the GoldenGate built-in registry parser to fail.

Set the environment variable CVT_REGISTRY_OVERRIDE to the full pathname of the
converter description file you just created:

setenv CVT_REG STRY_OVERRI DE /usr/ peopl e/ fred/ ny_regi stry. cdf

Then run a test program that will exercise the parser. The gg_query demo program that
comes with GoldenGate is good for this. Find it in /usr/share/src/GoldenGate (if you
haven’t already done so, install the demo programs from your IRIX distribution media).
Copy the demo programs to your own directory, go into the Query subdirectory, and type
make. Then execute the gg_gquery program. The output should look like this:

371

Appendix G: Using GoldenGate Data Conversion Services

372

Converter (CvtToLower):
nmet hod: Stream To Stream
input: M XEDCASE (ASCI| bytes, any case)
out put: LOAERCASE (ASCII bytes, |ower case)
vendor: SGE (Sanple)

versi on: 1.0

descr.: Lowercases chars in input stream

DSOnane: /usr/ people/fred/libFredsCvtrs. so
Functi on: Cvt ToLower

If you see an error message, go back and check that your converter description file is
valid, checking especially that all string values are properly quoted. Also check that the
GoldenGate software is properly installed by unsetting the
CVT_REGISTRY_OVERRIDE variable and re-executing the gg_guery program. It should
list the default converters installed on the system (over 100 of these exist).

Once the test runs successfully, you are ready to try executing your converter. You can
use your own program, or the demo programs in the ConvertFile and ConvertStream
directories to do this. Each program prints a help message describing its arguments if
you run it with no arguments.

After you are satisfied that your converter works when executed via GoldenGate, you are
ready to make it available to other applications on the system. Unset the
CVT_REGISTRY_OVERRIDE variable; you are finished unit-testing your converter.

Registering Your Converter

To register your converter, you must add your converter description file to the system
registry.

The System Registry

The system registry is a text file that uses the same syntax as your converter description
file. Just edit the file /var/GoldenGate/ConverterRegistry (you must be a privileged user to
do this) and add your entry wherever you like.

Look at the attributes of the converters already registered. If there are potential clashes

with your converter, you may wish to insert your converter closer to the beginning of the
registry. Some applications may decide to convert using the first converter they find that
appears to satisfy their requirements, rather than evaluating the alternatives. If you want

Writing Converters for the GoldenGate Data Conversion Service

to make sure this kind of application executes your converter rather than another one
that could do that same conversion, insert your entry closer to the beginning of the file.

Some Registry Syntax Details

The most important fields are those that the service uses to locate the executable
converter module: the DSOname and the Funct i on name. The other fields are primarily
for display by administration tools, and for applications to query the registry. The Input
and Output fields are strings that must exactly match the format names that applications
will use to search for converters. For instance, where there are naming conventions such
as ICCCM target names, these should be used exactly.

See “Supported Target Formats” on page 113 for a list of standard input and output
formats supported by the default converters supplied with GoldenGate.

Parameters can be one of two types: Constraint or Programmable.

Constraint parameters are used to specify constant values for a data attribute in the
description file. When you see a constraint parameter, it means that this converter always
sets the corresponding data attribute to the stored value, overriding its current value in
the input.

Programmable parameters are used to specify parameters that are set at runtime based
upon the requested input and output parameters. Programmable parameters are used to
pass a runtime parameter to one of the stages of a pipeline. For example, if you have a
two-stage pipeline designed to scale an SGI image to an arbitrary size, then convert it to
JPEG, you want to pass one of the output parameters (the required output size) to the
first stage of the converter. You do this by specifying a programmable parameter for the
first stage.

Installing Your Converter

Make sure your installation copies the DSO containing your converter to the standard
location for converter DSOs: /ust/lib/convert. If you install your library there, you can use
a relative DSO name in your converter description file. If you install anywhere else, you
must use a full path name in the registry to ensure that the service will find your
converter.

See the GoldenGate Release Notes (type r el not es gol dengat e) for information about
installation.

373

Appendix G: Using GoldenGate Data Conversion Services

374

Some Sample Converters

This section presents annotated sample code for two different converters:

e The first example, “A Simple StreamToStream Converter - UpperCase” on page 374,
directly modifies data flowing through it.

¢ The second example, “A FileToFile Converter - UNIX Man Page File to HTML File”
on page 376, illustrates two techniques. First it serves as a basic template for
FileToFile converters, and second it shows how you can wrap an external IRIX
command to make it available as a GoldenGate converter.

A Simple StreamToStream Converter - UpperCase

This type of converter can often offer the best performance in many circumstances,
because all the knowledge of the conversion operation is in the converter itself, and
because it typically does not need to access the filesystem to achieve conversion. It is
appropriate when the data format is naturally streamable, such as ASCII text or other
self-identifying or raw data.

The converter used in this example performs a simple mapping of mixed-case text to
uppercase text. The converter-specific parts are clearly marked. These are the lines that
you will replace with your own task-specific conversion code. The remainder is
boilerplate code that can be re-used in many different converters.

/* converter function */
voi d Upper Case

(

)
{

void *arg

SgCvt ConverterData *data = (SgCvt ConverterData *) arg;
SgCvt St at us s;

The next 2 lines are somewhat task-specific. Your converter should use a buffer size
appropriate to the data type and the task. Careful selection of a buffer size will yield
better performance in many cases. For instance, if your converters needs to operate on
audio or movie “frames,” then you may choose to read and write buffers that represent
whole numbers of frames.

Writing Converters for the GoldenGate Data Conversion Service

char buf[BUFSI Z] ;
size_t nreq = BUFSI z;

unsi gned int | en=0;
int start = 0O;
int i;

The next part is the Evaluation section. Our converter operates on a byte stream: if a byte
represents a lower-case character in the current locale, we are going to uppercase it.
Otherwise it passes through untouched. It is appropriate for this converter to accept any
stream; it does not need to evaluate parameters.

/* Eval uation */

i f (data->operation == SG CVT_REQ EVALUATE) {
dat a- >status_return = SG CVT_E_ACCEPT;
return;

}

The following loop does the conversion, one block at a time. The loop terminates when
the end of stream is detected.

/* Conversion */

for () {

s = SgCvt Get Dat a(dat a- >context, nreq, buf, & en,
NULL, B _TRUE);

if (s == SG_CVT_E_END _OF_STREAM {
SgCvt SendEndCOF St r ean(dat a- >cont ext) ;
br eak;

}

These two lines show the entire task-specific code requirements for the uppercase text
converter. Your converter will substitute its own conversion-specific code for these lines.
The model is the same in each case; the converter generates a buffer to be sent from the
buffer it has received, by applying a specific conversion algorithm.
for (i=0; i<len; i++)
buf[i] = toupper(buf[i]);

When the new buffer has been generated, your converter sends it into the pipeline. In this
example, the data was converted in place. Sometimes that is not possible, because the
converted data will not fit in the original buffer. In these cases, your converter may
allocate, populate, send, then free a dynamic buffer each time through the loop.

375

Appendix G: Using GoldenGate Data Conversion Services

376

s = SgCvt SendDat a(dat a- >context, (void *)buf, Ien,
NULL, B _TRUE);

start += (len);

}

After sending all the converted data, and calling SgCvtSendEndOfStream, your
converter can return. You should always set the st at us_r et ur n field.

dat a- >status_return = SG_CVT_E_SUCCESS;
return;

A FileToFile Converter - UNIX Man Page File to HTML File

Often, to convert data from one application into a form usable by another, you need to
save the data to a file in one format, convert it using an IRIX command-line translator
program, then open the new file using the application you want to use.

Applications using components that are integrated with GoldenGate can eliminate the
intermediate end-user steps. The same external translator command can be packaged as
a GoldenGate converter and invoked automatically on behalf of the user.

It is quite straightforward to integrate an existing IRIX command with GoldenGate. Your
main task is to write a function that the service can invoke, which constructs from its
parameters a command line for the translator program.

The converter described here provides GoldenGate access to a command named
man2html, which converts troff source files for UNIX man pages into HTML files that can
be viewed using a Web browser. It can be used by a CGI script that implements an online
help system for remote users running Web browsers.

The command itself takes one argument: the input file name. It writes its output to
stdout. The job of our converter is to make this interface look like any other GoldenGate
converter.

Writing Converters for the GoldenGate Data Conversion Service

Converter functions always require the SgCut.h header file and always have the have the
same calling convention:

#i ncl ude <l i bgen. h>
#i ncl ude <SgCvt. h>

voi d ManToHt m (void *arQ)
{

First, cast the data argument to the right type.
SgCvt ConverterData *data = (SgCvt ConverterData *) arg;

Then, define some other local variables. Most of these are the same in every converter of
this type that you write.

SgCvt St at us s;

SgCvt Cont ext I nfo ct x_i nf o;
char cnd[BUFSI Z] ;

int sys_status = 0;

char *cndpat h;

Next, handle converter evaluation requests. This converter is very simplistic: there are no
parameters, and it just ACCEPTs the request. In real converters, always provide proper
evaluation of any parameters, especially if it is expensive for the application to try the
conversion and fail.

/* Evaluation */

if (data->operation == SG CVT_REQ EVALUATE) {
dat a- >status_return = SG CVT_E_ACCEPT;
return;

}

The remaining code handles conversion requests. Note that it is never reached unless the
caller requests conversion because the evaluate section has its own return statement.

The first thing to do is check that the program you are wrapping is installed and that you
can execute it.

/* conversion */
cmdpath = pat hfind(getenv (“PATH), “man2htm”, “rx”);
if (cndpath == NULL) ({
data- >status_return = SG CVT_E_M SSI NG_COVWAND;
return;

377

Appendix G: Using GoldenGate Data Conversion Services

378

Then, extract the input and output filenames from the conversion context.

(voi d) SgCvt Get Cont ext | nf o(dat a- >cont ext,
SG CVT_INFO_I NPUT_FI LE |
SG_CVT_I NFO_QUTPUT_FI LE,
&ct x_i nfo);

At this point you know everything needed to construct the command you are going to
execute. You use the UNIX system(2) call to execute the conversion, so the next step is to
create the command line.

sprintf(cnd, “% % > % 2> /dev/null”, cndpath,
ctx_info.input_file, ctx_info.output_file);

Finally, execute the command, and set the return status to indicate whether it worked
before returning.
sys_status = system(cnd);
data->status_return =
sys_status ? SG CVT_E FAILURE : SG CVT_E_SUCCESS;

return;

}

Note that your converter is normally run as a subprocess of the invoking application. You
should not call exit(2) to terminate your converter; you should simply return, allowing
GoldenGate and the operating system to take care of managing conversion threads.

Appendix H

Standard Menu Resources

This appendix provides examples of standard menu resources including:
¢ “Common Menu Bar Resources”
e “Standard File Menu Resources”

e “Standard Edit Menu Resources”

Common Menu Bar Resources

The following code defines the common menu bar resources.

I Common Menu Bar Resources !
| 0 T O O O |

I Standard Menubar
! File Selected Edit View Tools Options Help

! <your _wi dget _nane_goes_here>

*<file> |abel String: File
*<file> menonic: F

*<sel ect ed>. | abel Stri ng: Sel ect ed
*<sel ect ed>. menoni c: S
*<edit>. | abel String: Edi t
*<edi t >. rmenoni c: E

*<vi ew>. | abel String: Vi ew

*<yvi ew>. mmenoni c: \%

*<t ool s>. | abel String: Tool s

*<t ool s>. menoni c: T

379

Appendix H: Standard Menu Resources

*<options>. | abel String: Opti ons
*<opti ons>. menoni c: (0]

*<hel p>. | abel Stri ng: Hel p
*<hel p>. menoni c: H

Standard File Menu Resources

The following code defines the standard file menu resources.

I Standard File Menu Resources !
| T T T T T T A T T A A O O O I A AR A I |

380

*<new>. | abel String: New
*<new>. rmenoni c: N

*<new>. accel er at or Text : Crl+N
*<new>. accel erator: Ctrl <Key>N
*<open>. | abel String: Qpen. . .
*<open>. nmenoni c: (0]

*<open>. accel er at or Text : Crl+0O
*<open>. accel erator: Ctrl <kKey>0
*<reopen>. | abel String: Reopen

*<r eopen>. rmenoni c: R

*<i nport>. | abel String: | nport

*<j nport >. menoni c: I

*<save>. | abel String: Save
*<save>. nmenoni c: S

*<save>. accel erat or Text : arl+S
*<save>. accel erator: Cirl <Key>S
*<saveas>. | abel String: Save As...
*<saveas>. nmenoni c: A
*<revert>.| abel String: Revert
*<revert>. nmenoni c: v
*<print>.|abel String: Print...

Standard Edit Menu Resources

Standard Edit Menu

*<print>. menoni c:

*<print>. accel eratorText:

*<print>. accel erator:

*<cl ose>. | abel Stri ng:
*<cl ose>. menoni c:

*<cl ose>. accel er at or Text :

*<cl ose>. accel erator:

*<exit>.label String:
*<exi t >. nmenoni c:

*<exi t>. accel erat or Text :
*<exit>. accel erator:

Resources

The following code defines the standard edit menu resources.

P
crl+P
Ctrl <Key>P

Cl ose

C

arl+W
Ctrl <Key>W

Exi t

X

arl+Q
Ctrl <Key>Q

I Standard Edit Menu Resources

*<undo>. | abel Stri ng:
*<undo>. menoni c:
*<undo>. accel er at or Text :
*<undo>. accel erat or:

*<redo>. | abel String:
*<redo>. menoni c:
*<redo>. accel er at or Text :
*<redo>. accel erator:

*<cut>. | abel String:
*<cut >. menoni c:

*<cut >. accel er at or Text :
*<cut >. accel erator:

*<copy>. | abel String:
*<copy>. nmenoni c:
*<copy>. accel er at or Text :
*<copy>. accel erator:

*<past e>. | abel String:

Undo

U

arl+z
Crl <Key>Z

Redo

R

Shift+Crl +Z

Shi ft <Key>Ct r | <Key>Z

Cut

t

Crl +X
Ctrl <Key>X

Copy

C

Crl+C
Ctrl <Key>C

Past e

381

Appendix H: Standard Menu Resources

*<past e>. nmenoni c: P

*<past e>. accel erat or Text : arl+Vv
*<past e>. accel erator: Ctrl <Key>V
*<cl ear>. | abel String: Cl ear

*<cl ear >. menoni c: e

*<del et e>. | abel String: Del et e
*<del et e>. nmenoni c: D

*<sel ect>. | abel String: Sel ect All
*<sel ect >. menoni c: A

*<sel ect >. accel erat or Text : Crl+A
*<sel ect >. accel erator: Ctrl <Key>A
*<desel ect >. | abel Stri ng: Desel ect All

*<desel ect >. menoni c: |
*<desel ect >. accel erator Text: Shift+Ctrl +A

*<desel ect >. accel erator: Shi ft <Key>Ct r | <Key>A
*<pronot e>. | abel String: Pronot e

*<pr onot e>. menoni c: m

*<pronot e>. accel erator Text: Alt+lnsert

*<pr onot e>. accel erat or: Al t <Key>I nsert <Key>
*<col orEdi t>. | abel String: Col or Editor...

*<col or Edi t >. menoni c: o]

382

Index

Numbers

3D graphics formats, 115

3D look

icons, 204
4Dwm window manager, 5, 69-91

access

help, 60

adding

icon to Icon Catalog, 190
AIFF data, 114

ALIAS data, 115

alignment
IconSmith, 211

<Alt> key, 238

API

GoldenGate, 118
Apple data, 114
Apple Quicktime data, 115

application integration
checklist, xxxii
overview, Xxxv-xxxiii, 5-6
schemes, 13-28

application models, 75-77

“multiple document, no visible main”, 77
“multiple document, visible main”, 76
”single document, multiple primary”, 76

”single document, one primary”, 76

application programming
schemes, 15
applications
automatically restart, 70
communication, 72
creating icons. See icons
data exchange, 103-118, 341-378
exchanging data, 103-118, 341-378
help, integrating, 311
icon ID number, 183
implementation strategy, xxvii
logging out, 70
re-invoke, 72
restarting, 70
save yourself example, 88
states, 70
toolkits for integration, xxvii
window manager, 72
window placement, 90-91
window size, 90-91
ApplicationShell, 79
application testing
with schemes, 27
Arc widget, 54
ASCII, 255
Ascii predefined file type, 332
atom
3D graphics, 115
audio, 114
image, 114
movie, 115
SGI, 113

383

Index

audio formats, 114
AUTODESK data, 115
AVID data, 115

B

banners

in window title, 89
Binary predefined file type, 333
blocking

processes, data exchange, 364
book viewer

setting on desktop, 172
BOOKVIEWER variable, 173
browser

color schemes, 14
launch in Help, 157

buttons
recycle, 51
recycle. See also recycle button

C

callback
Color Chooser, 43

caret cursor, 197
catalog

icon, xxvi
changing

icon design size, 205
checklist

creating icons, 181-192
Child widget

Grid widget, 58

384

circles
drawing, IconSmith, 215

C language operators, 327
clicking the mouse, 171

ClickSpeed
mouse setting, 171

Clipboard Selection
ownership, 112

Clipboard Transfer
CLIPBOARD selection, 105
"Copy” actions, 112
”Cut” actions, 110
data exchange, 105-113
implementation, 110-113
loss of Clipboard Selection, 113
"Paste” actions, 112

close
window, 86

”Close” option, 86

CMD ALTOPEN rule, 188, 238
example, 238

CMD DROP rule, 239

CMD OPEN rule, 188, 237

CMD PRINT rule, 242

Color Chooser, 39-43
callback resources, 43
components, 39
example program, 266
interface, 41
Makefile example, 268
user interaction, 43
widget, 39-43

color image
resize, 99

Index

colors, 38-43

and hues, 38

and saturation, 38

and values, 38

and widgets, 38

desktop, 13-28

get and set, 42

HSV, 38

icon fill color, 214

icon outline, 214

icons, 214

icon shadow color, 214

programming, 42

RGB, 38, 41

See also widgets
communication

window and session manager, 78
compiling

.ctr files, 189

.otr files, 189

programs with GoldenGate, 359
concave polygons

IconSmith, 210
constants

logical, 328
context-sensitive help. See help
continuous session management, 71
conventions

style, xxiii
conversion rules

printing, 258
converter registry, 118

GoldenGate, 342-344
converters

data exchange, 118

description file, 368

DSO, 368

evaluation, 348

evaluation requests, 361

converters (continued)
examples, 374
FileToFile example, 376
input and output formats, 363
installing, 373
process blocking, 364
registering, 372
stream converter example, 366
stream data, 351-359
StreamToStream example, 374
testing, 371
writing, 360-373
converting data
GoldenGate, 117, 341-378
converting files
for printing, 255
CONVERT rule
printing, 255, 258
co-primary windows, 81
delete protocol, 87
example, 82
“Copy” option, 105, 112
copy text. See data exchange
COST rule
printing, 259
creating
FIR file type, 246-251

creating help
See help

Cross
red and blue caret, 197

.ctr files, 189

cursor
caret symbol, 197

customizing windows, 95-100
“Cut” option, 105, 110

385

Index

D data exchange (continued)
input and output formats, 363
data installing converters, 373
exchange, 341-378 linking, 359
exchange transferring of data, 103-118 movie, 115
data conversion operators, 346
GoldenGate, 117, 341-378 Primary Transfer, 104-105
data exchange, 103-118, 341-378 process blocking, 364
3D graphics, 115 querying converter registry, 344-347
audio, 114 registering converters, 372
Clipboard Transfer, 105-113 SGI, 113

stream converter example, 366

stream data converters, 351-359
StreamToStream converter, example, 374
StreamToStream example, 374

target formats, 113-117

testing converters, 371

writing converters, 360-373

compiling, 359

conversion context, 343
conversion context, setting up, 347
conversion overview, 342
converter, examples, 374
converter, FiletoFile example, 376
converter, registering, 372

converter, testing, 371 data selection
converter attributes, 345 Primary Transfer, 107
converter description file, 368 debugging

converter evaluation, 343 session manager, 73
converter evaluation requests, 361 default printer, 261

converter example, 366
converter registry, 342-344
converter registry query, 344-347
converters, 118

converters, evaluating, 348

Default Viewer panel, 172

delete
window, 86, 87

"Delete” option, 86, 87

converters, installing, 373 deleting

converters, writing, 360-373 path, IconSmith, 203
converter selection, 344 "Deselect” button
converting data, 343 IconSmith, 207
display converter details, 349 design elements

DSO, 368 icons, sharing, 205

example converters, 374
file converters, 350-351
FileToFile example, 376
image, 114

desk management, 74
screens, 74
virtual screens, 74

Desks Overview window, xxvi

386

Index

desktop
and fonts, 13-28
book viewer setting, 173
BOOKVIEWER variable, 173
CMD PRINT rule, 242
colors, 13-28
Default Viewer panel, 172
Desks Overview window, xxvi
Desktop Settings window, xxvi
display image files, 173
editor, 173
environment variables, 283-284
example, xxvi
example of setting preferred editor, 173
Icon Catalog, xxvi
icons, 179-192, 195-222
image viewer, 173
IMGVIEWER variable, 173
implementation strategies, xxvii
integration checklist, xxxii
integration of windows, 79
look and feel, 5-6
look and feel, basic steps, 6
MAILBOXPROG, 173
mail reader, 173
menu, MENUCMD rule, 243
PostScript viewer, 173
printing, 242, 255-261
PSVIEWER variable, 173
schemes, 13-28
setting a book viewer, 172
setting a mailer, 172
setting an image viewer, 172
setting a PostScript viewer, 172
setting a text editor, 172
setting a Web browser, 172
toolkits, xxvii
tools, xxvi
turn on look and feel, 9
utilities and user preferences, 173
Utilities panel, 172

desktop (continued)
web browser, 173
WEBBROWSER variable, 173
widgets, 31-60
window editor, 173
Window Settings. See also windows
Window Settings window, xxvi
WINEDITOR variable, 173
desktop environment
introduction, xxv-xxxiii, 5-6
Desktop Settings window, xxvi
Developer Magic Rapid App, xxix-xxxi
device files
FTRs, 235
dialogs
creating, 83, 84
delete example, 87
"Delete” option, 87
example, 85
notification, 84
windows, 84
Dial widget, 44-46
appearance, 44
callback function, 45
characteristics, 44
detecting changes in value, 46
example program, 268
getting and setting values, 45
interface, 44
values, 45

DIB data, 114

dimensional look
3D and IconSmith, 204

dircontains function, 234

directories
detecting changes, FAM, 126
monitoring changes, 121-137

Directory predefined file type, 332
drag and drop icons, 239

387

Index

DROPIF rule, 240
Drop Pocket, 52

widget, 49-51
drop pocket

example program, 271

Makefile example, 272
DSO

GoldenGate converters, 368
dtUtilities

variables and values, 173
dtUtilities panel, 172
Dynamenu

example program, 275

E

Edit menu

"Copy” option, 105

”Cut” option, 105

"Paste” option, 105
edit menu

resources, 381-382
Editor Utilities panel, 172
enlarging

icons, 204
environment variable

IMGVIEWER, 238
environment variables

desktop, 283-284
example programs

help, 287-326

widgets, 265-282
exchanging data, 341-378

See also data exchange

target formats, 113-117

Executable predefined file type, 334

"Exit” option, 85, 86

explicit session management, 71

388

F

FAM, 121-137
See also File Alteration Monitor
File Alteration Monitor, 121-137
cancel monitoring, 125
closing a connection, 123
detecting changes, 126
examples, 131-132
fam daemon, 121
include files, 122
interface, 123-132
libraries, 122
monitoring a file, 124
opening a connection, 123
polling for changes, 136
resume monitoring, 125
suspend monitoring, 125
symbolic links, 129
theory of operation, 122
using FAM, 132-137
waiting for changes, 133
file menu
resources, 380-381
files
converting to print, 255
creating file type, FTR, 246-251
detecting changes, FAM, 126
device files, 235
ftr, 227
icons, 179
monitoring changes, 121-137
predefined file types naming conventions, 331
printing, 255
printing from Desktop, 255
selecting, 33
types, predefined, 331-337
types, predefined. See also predefined file types
File Selection Box

example program, 278
Makefile example, 280

Index

File Selection Box widget, 33
file type

definition, 185

example, 188

icons, 184

file types
predefined, FTRs, 235

File Typing Rules, 225-251
Also see FTRs
description of, 226

fill color
icons, 214

FILTER rule
printing, 259

Finder widget, 51-54
callback, 53
components, 51
Drop Pocket, 52
example program, 273
interface, 52
path navigation, 51
recycle button, 51
user interaction, 53
values, 52, 53

FITS data, 114

fonts
and desktop, 13-28

format

files for printing, 255
formats

3D graphics, 115

audio, 114

converting data, 117, 341-378

image, 114

movie, 115

SGI, 113

ftr files, 227

FIRs, 225-251

adding, 185

CMD ALTOPEN rule, 226, 238
CMD DROP rule, 226, 239
CMD OPEN rule, 226, 237
CMD OPEN rule, Makefile, 237
CMD PRINT rule, 227, 242
compiling source files, 189
CONVERT rule, printing, 255
creating a file type, 246-251
device files, 235

dircontains function, 234
directory location, 184
DROPIF rule, 227, 240
example, creating file type, 246-251
file directories, 339

file type, creating, 246-251

file type definition, 185

file type example, 188

file types, predefined, 235
icon, file type, 184

ICON rule, 227, 244

icons, 180, 237

LEGEND rule, 226, 235

MAP rule, 227, 242

MATCH expressions, 232-234
matching files, 231

matching non-plain files, 235
matching tagged files, 230
MATCH rule, 226, 229
MENUCMD rule, 227, 243
naming files, 185

naming file type, 185
predefined file types, 235

set variables, 236

SETVAR rule, 226, 236
SPECIALFILE rule, 226, 235
SUPERTYPE rule, 226, 228
TYPE rule, 226, 227

writing MATCH expressions, 231

389

Index

functions
icon descriptive functions, 329

G

generic icons, 213
GenericWindowExecutable predefined file type, 335
-geometry option, 90
GIF data, 114
gizmos. See widgets
GoldenGate, 341-378
APL 118
compiling programs, 359
conversion overview, 342
converter description file, 368
converter header filedata exchange
APIL 118
converter registry, 118, 342-344
data conversion, 117, 341-378
DSO, 368
example converters, 374
FileToFile example, 376
linking programs, 359
registering converter, 372
See also data exchange
stream converter example, 366
StreamToStream example, 374
testing converter, 371
Graph widget, 54-55
gravity
controlling in IconSmith, 212
gravity snap
IconSmith, 211
grids
controlling in IconSmith, 212
grid snap
IconSmith, 211

390

Grid widget, 56-60
characteristics, 56
child, 58
examples, 58
layout, 56

H

help, 141-168
application integration, 311
building, 161, 163
compiling, 161, 163
constructing the menu, 149
context-sensitive, 151
creating files, 161
creating installable subsystem, 165
custom installation, 166
debugging, 163
displaying a help topic, 146
displaying help index, 147
document files, 144
DTD, 159
DTD elements, 296
errors, 163
examples, 160
files, 153-158
help button, 150
help document example, 287
helpmap file conventions, 154
helpmap file format, 154
helpmap files, 144, 153-158
helpmap URL, 157
implementation, 148-153
include file, 143
initializing help, 144
installation

custom, 166

installing, 165-166
integrating in application, 311
interface, 144-148

Index

help (continued)
launch browser, 157
library, 143
Makefile, 161
messages, 163
online examples, 287-326
overview, 141
packaging, 165-166
references, 166
SGML references, 166
spec file, 161
subsystem, 165-166
URL access, 157
valid elements in Help DTD, 296
viewer, 142-143
Web access, 60, 157
widget hierarchies, 157
widgets and helpmap, 157
windows, 142
writing, 159-164
writing overview, 159
writing samples, 159
History Button
example program, 275

HSV colors, 38

HTML
attributes, 63
libraries, 60, 65
tags, 63
viewer component, 60, 65
viewer components, 62
widget, 60, 65

HTML data, 117

hypertext data, 117

ICCCM targets, 242
iconbookedit command, 190

Icon Catalog
adding icons, 190
Icon Catalog window, xxvi
ICON rule, 188, 244
icons, 179-192, 195-222
3D look, 204
adding FTRs, 185
and FTRs, 180
badge, 183, 196
binary executables, 179
caret symbol, 197
checklist, 181-192
circles, 215
C language operators, 327
CMD OPEN rule, 237
compiling source files, 189
composition conventions, 213
conditional operators, 328
creating, 179-192, 195-222
creating file type, 184
custom, 180
design conventions, 213
directory, 196
double-clicking, 238
drag and drop, 239
drawing, 183
files, 179, 196
files type, 180
fill color, 214
fti file, 196
FIR file type example, 188
functions, 329
generic, 180, 196
generic components, 213
icon description language, 327-330
ICON rule, 244
icon status variables, 328
identification number, 183
installing in Icon Catalog, 190
isometric circles, 218

391

Index

icons (continued)

logical constants, 328
Magic Carpet, 213
naming file type, 185
naming FIR files, 185

of windows, 95-100
outline color, 214

ovals, 217

programming, 184

See also desktop

See also IconSmith
segments or lines, 198
shadow color, 214

size, 214

steps to creating, 181-192
IconSmith, 195-222

3D look, 204

advanced techniques, 215
align objects, 211

caret, 197

changing design size, 205
circles, 215

colors, 214

composition conventions, 213
concave polygons, 210
deleting path or vertex, 203
"Deselect” button, 207
design conventions, 213
drawing filled shapes, 202
drawing paths, 202
drawing tools, 200-206
enlarge icon, 208

generic components, 213
gravity, 212

gravity snap, 211

grids, 212

grid snap, 211

icon description language, 327-330
icon size, 214

"Import” button, 205
invoking, 198

392

IconSmith (continued)
isometric circles, 218
menus, 199
ovals, 217
”Partial” button, 207
paths, 198
polygons, 201, 210
previewing icons, 205
rotate icon, 208
scaling, 204
“Select All” option, 208
selecting an object, 206
“Select Next” option, 208
shapes, 202
sharing design elements, 205
”Shear Y” transformation, 210
shrink icon, 208
slider, 205
starting, 198
stretch icon, 208
techniques, 215
templates, 206
tools for drawing, 200-206
Transformation buttons, 208
Transformation example, 209
transformation pin, 197
”Undo” option, 201
vertex, 198
windows, 200-201

identification number
application icons, 183

IGES data, 116
image
resize, 99
scale, 99

ImageFile predefined file type, 334
image formats, 114
image viewer

setting on desktop, 172

IMGVIEWER environment variable, 238

Index

IMGVIEWER variable, 173
imgworks tool, 99
implementation

checklist, xxviii

schemes, 15

tasks, xxviii
importing

icon design elements, 205
information

references, xxii
installing

converters, 373

icon in Icon Catalog, 190
integration

application, xxv-xxxiii, 5-6

checklist, xxxii

desktop, 79

Motif, xxix

schemes, 13-28

strategies and toolkits, xxvii
interapplication data exchange, 103-118, 341-378

GoldenGate conversion, 117, 341-378

See also data exchange

target formats, 113-117
introduction

desktop, xxv-xxxiii
INVENTOR data, 115
IRIS GL, xxxii
IRIS ViewKit, xxix-xxxi
isometric circles

drawing, IconSmith, 218

J

JIFF data, 114
JPEG data, 114

K

keys

<Alt>, 238
knob widget. See Dial widget
Kodak data, 114

L

labels
minimized window, 99

LaunchExecutable predefined file type, 335

LED widget
example program, 282

LEGEND rule, 188, 235

libraries
GoldenGate DSO, 368

licensing on the Web, 60
line segments, 198
linking
programs with GoldenGate, 359

logical constants

icon description language, 328
look and feel

basic steps, 6

introduction, xxv-xxxiii

overview, 5-6

schemes, 13-28

turn on, 9

M

Magic Carpet
icons, 213
MAILBOXPROG variable, 173

mailer
setting on desktop, 172

393

Index

mail reader setting, 173

main windows, 79
example, 80

Makefile
CMD OPEN rule, 237

MAP rule, 242
matching tagged files, 230
MATCH rule, 188, 229

menu bar
resources, 379-380

MENUCMD rule, 243
menus
”Close” option, 86
“Delete” option, 86, 87
edit menu resources, 381-382
”Exit” option, 85, 86
file menu resources, 380-381
IconSmith, 199
menu bar resources, 379-380
standard resources, 379-382
Microsoft data, 114
middle mouse button
inserting text, 109
MIME types, 242
minimized windows, 95
creating, 96
examples, 95
using imgworks, 99
mixed-model programming widgets, 37
monitor file changes. See File Alteration Monitor
Motif
desktop integration, xxix
Motif window manager, 69
mouse
setting the click speed, 171
movie formats, 115
MPEG data, 114, 115

multiClickTime resource, 171

394

“multiple document, no visible main”
application model, 77

"multiple document, visible main”
application model, 76

N

naming conventions
predefined file types, 331
navigation
path, 51
NEXT data, 114
notification dialogs, 84

O

online help
examples, 287-326
See also help
See help
Web access, 60
OpenGL, xxxii
reference, xxii
operators
conditional, 328
icon description routines, 327
OSF/Motif, 5
desktop integration, xxix
reference, xxii

.otr files, 189
outline color

icons, 214
ovals

drawing, IconSmith, 217
overview

of desktop, xxv-xxxiii, 5-6
ownership

Clipboard Selection, 112

Index

P

pages

icon catalog, xxvi

“Partial” button
IconSmith, 207

“Paste” option, 105, 112
path navigation, 51

paths
drawing, IconSmith, 202
segments, 198

Percent Done Indicator
example program, 281

percent done indicator, 35

persistent selection
See Primary Transfer

PHOTO data, 114
PIXAR data, 116
pixmap data, 114
placement
of windows, 90
point
vertex, 198
pointer widget. See Dial widget
polling
for file changes, 136

polygons
IconSmith, 201, 210

pop-up windows, 81
PostScript files
printing, 255
PostScript viewer
setting on desktop, 172
PPM data, 114

predefined file types, 331-337
Ascii, 332
Binary, 333
Directory, 332
Executable, 334
GenericWindowExecutable, 335
ImageFile, 334
LaunchExecutable, 335
naming conventions, 331
Script, 335
SourceFile, 333
SpecialFile, 332
ttyExecutable, 336
ttyLaunchExecutable, 336
ttyLaunchOutExecutable, 337
ttyOutExecutable, 336

predefined file types, FTRs, 235

predesigned
icon templates, 206
preview icons, 205
Primary Selection
inserting, 109
See also Primary Transfer
Primary Transfer
callback function, 108
data exchange, 104-105
data selection, 107
implementation, 107-109
loss of, 109
requests for, 108
primary windows, 79
example, 80
printing, 255-261
ASCII files, 255
converting files, 255, 255-258
CONVERT rule, 258
COST rule, 259

395

Index

printing (continued)
current printer, 261
default printer, 261
FILTER rule, 259
PostScript files, 255
print conversion rules, 258
RGB files, 255
routeprint command, 255
routing a job, 255

Print Manager
default printer, 261

process blocking

data exchange, 364
programming

mixed model widgets, 37
programs

widget examples, 265-282
progress indicator, 35
protocols

close, 86

delete, 86

delete, example, 87

quit, 85

quit, example, 86

saving state information, 88

window manager, 85-89
PSVIEWER variable, 173

Q
quit
window, 85, 86
R
Rapid App, xxix-xxxi

recycle button, 51
customize, 52

396

references
list, xxii
removing
path, IconSmith, 203

resize
image, 99
windows, 90
resources
menus, 379-382
schemes, 21
restarting applications, 88
session management, 70
states, 70
RGB colors, 38, 41
RGB files
printing, 255
RGB image
resize, 99
rotation
transformation pin, 197
routeprint command, 255

S

saving state information, 88
scale

image, 99
Scale widget, 35

example program, 281
scaling

icons, 204

transformation pin, 197

schemes, 13-28
application testing, 27
basic concepts, 14
browser, 27
Color Schemes option, 27
considerations, 16

Index

schemes (continued)
creating new, 27
customization, 14
defaults, 13
designing new, 27
direct access, 18
ease of use, 14
implementation, 15
new, 27
non-default colors, 17
override the default, 17
overview, 13
pre-defined resources, 21
programming, 15
schemebr browser, 14, 27
symbolic values, 21
turn on, 15
user customization, 14
why use, 14

Script predefined file type, 335

SD2 data, 114

segments
IconSmith, 198

“Select All” option
IconSmith, 208

selecting
IconSmith, 206
“Select Next” option
IconSmith, 208
session management, 70-74
communication with window manager, 78
continuous, 71, 88
debugging, 73
example, 73
explicit, 71
overview, 70
saving state information, 72, 88
WM_COMMAND, 72

session manager
and window manager, 78

SETVAR rule, 236
SGI audio data, 114
SGI data, 115

SGI help
See help

sgiMode resource, 9

shadow color
icons, 214

shapes
filled, IconSmith, 202

”Shear Y” transformation, 210

”single document, multiple primary”
application model, 76

”single document, one primary”
application model, 76
size, 90-91
image, 99
of windows, 90
sizing
icons, 204

slider
IconSmith, 205

sliders
color, 41

slider widget, 35
SOFTIMAGE data, 116
SourceFile predefined file type, 333
SpecialFile predefined file type, 332
SPECIALFILE rule, 235
speed of mouse clicking, 171
Springbox widget, 55-56
states

saving, 72
stream converter example, 366
stream data converters, 351-359
style

conventions, xxiii

397

Index

SUPERTYPE rule, 188, 228 ThumbWheel widget, 46-49
support windows, 83 callback structure, 48

“Delete” option, 87 detecting changes, 48

example, 84 example program, 276
symbolic links interface, 47

File Alteration Monitor, 129 interface values, 47

. values, 48

symbolic values

schemes, 21 TIFF data, 115
syntax tlﬂe. o)

conventions, xxiii minimized window, 99
system titles .

default printer, 261 of windows, 89

tools
application integration, xxvii
T IRIS GL, xxxii
OpenGL, xxxii

tag command, 230 Rapid App, xxix-xxxi
target formats ViewKit, xxix-xxxi, xxxii

3D graphics formats, 115 topics

audio formats, 114 additional references, xxii

image formats, 114 tracing

movie formats, 115 design templates, 206

SGI formats, 113 transferring data, 103-118, 341-378
targets See Primary Transfer

data exchange, 113-117 Transformation button

ICCCM, 242 IconSmith, 208
telldesktop command, 191 transformation pin, 197
templates ttyExecutable predefined file type, 336

icons, 206

ttyLaunchExecutable predefined file type, 336
testing

. . ttyLaunchOutExecutable predefined file type, 337
application with schemes, 27

ttyOutExecutable predefined file type, 336

text
copy. See data exchange TYPE rule, 188, 227
text editor types

MIME, 242
predefined file types, 331-337
predefined file types. See also predefined file types

example setting, 173
setting on desktop, 172

text field widget, 36
text widget, 36

398

Index

U

“Undo” option
IconSmith, 201

URL
access in helpmap file, 157

user interaction
Finder widget, 53

\Y,

variables
desktop, 283-284
icon status, 328
set, FTRs, 236
vertex, 198
ViewKit, xxix-xxxi
desktop integration, xxxii
HTML widget, 62
reference, xxii
retrieve resource, 20

views
desktop, xxvi

virtual reality data, 116
virtual screens, 74
VRML data, 116

w

WAVE data, 114
WAVEFRONT data, 116
Web access
HTML widget, 60-65
information retrieval, 60
licensing, 60
online help, 60
web browser
setting on desktop, 172

web browser setting, 173
WEBBROWSER variable, 173
wheel widget. See ThumbWheel widget
widgets, 31-60
ApplicationShell, 79
Arc, 54
building demos, 32
ColorChooser, 39-43
Color Chooser example program, 266
Color Chooser Makefile example, 268
ColorChooser. See also colors
demos, 31-32
Dial, 44-46
Dial example program, 268
Dial. See also Dial widget
Drop Pocket, 49-51
Drop Pocket example program, 271
Drop Pocket Makefile example, 272
enhanced, 33-37
example programs, 265-282
File Selection Box, 33
File Selection Box example program, 278
File Selection Box Makefile example, 280
Finder, 51-54
Finder example program, 273
Finder. See also Finder widget
Graph, 54-55
Grid, 56-60
Grid. See also Grid widget
History Button example program, 275
HTML viewer component, 60, 65
knob, 44-46
LED example program, 282
OpenGL, 37
percentage done, 35
Percent Done Indicator example, 281
programming mixed-model, 37
progress indicator, 35
Scale, 35
Scale example program, 281
SgColorChooser, 38

399

Index

widgets (continued)
slider, 35
Springbox, 55-56
text, 36
text field, 36
ThumbWheel, 46-49
ThumbWheel example program, 276
ThumbWheel. See also ThumbWheel widget

window categories, 75-77
implementation, 79

window management, 69-91
communication with session manager, 78
debugging, 73

window manager, 5
and session manager, 78
protocols, 85-89
sending messages, 85

windows, 90-91
Also see IconSmith, windows
banner, 89
co-primary, 81
customizing, 95-100
Desks Overview, xxvi
desktop, xxvi
Desktop Settings, xxvi
dialogs, 83, 84
example, creating a co-primary, 82
example, creating a dialog, 85
example, creating a main primary, 80
example, creating a support, 84
example, delete protocol, 87
example, quit protocol, 86
example, save yourself protocol, 88
help, 142
Icon Catalog, xxvi
iconified, 95-100
iconified, changing state, 100
iconified, creating, 96
iconified, examples, 95
iconified, labeling, 99

400

windows (continued)
iconified, using imgworks, 99
integration with desktop, 79
main, 79
minimized, 95-100
creating, 96
examples, 95
using imgworks, 99
minimized, changing state, 100
minimized, labeling, 99
placement, 90-91
pop-up, 81
primary, 79
protocol, 85
save yourself example, 88
save yourself protocol, 88
sending messages, 85
session management, 88
support, 83
title, 89, 99
Window Settings, xxvi
Window Settings window, xxvi
WINEDITOR variable, 173

WM_COMMAND
session management, 72

writing help
See help

X

Xt help
See help

X Window System
reference, xxii

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

* General impression of the document

® Omission of material that you expected to find

® Technical errors

® Relevance of the material to the job you had to do

¢ Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2006-100.

Thank you!

Three Ways to Reach Us
* To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

¢ To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

* To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

