
TPC Benchmark™ A Full Disclosure i

TPC Benchmark™ A
Full Disclosure Report for

Silicon Graphics
CHALLENGE XL Server

and ORACLE7

April 26, 1994

Document Number 007-2359-001

SiliconGraphics, Inc.
Computer Systems

ii TPC Benchmark™ A Full Disclosure

IRIX ® is a registered trademark of Silicon Graphics Computer Systems, Inc.

UNIX ® is a registered trademark of Unix Systems Laboratories, Inc.

ORACLE7, SQL*DBA, SQL*Loader, SQL*Plus, SQL*Net, and ORACLE OCI are regis-
tered trademarks of ORACLE Corporation.

TUXEDO ® is a registered trademark of Novell Corporation.

TPC Benchmark™ A is a trademark of the Transaction Processing Performance Council
(TPC).

Copyright © 1994 Silicon Graphics Computer Systems, Inc.

All rights reserved.

TPC Benchmark™ A Full Disclosure Report for Silicon Graphics Computer Systems
CHALLENGE XL Server using ORACLE7.

TPC Benchmark™ A Full Disclosure iii

Abstract

This report documents the methodology and results of the TPC Bench-
mark™ A test conducted by Silicon Graphics Computer Systems, with
the assistance of ORACLE Corporation, on the Silicon Graphics Com-
puter Systems CHALLENGE XL Server using ORACLE7. All tests were
run on an Ethernet Local Area Network configuration with the CHAL-
LENGE XL Server used as the host computer running the IRIX (UNIX)
operating system. The application code was written in C and compiled
with the IRIX-ANSI C compiler.

The standard TPC Benchmark™ A metrics, tpsA (transactions per sec-
ond) and price per tpsA (five year capital cost per measured tpsA) are
reported as required by the benchmark specification. Throughout this
report, TPS refers to the tpsA performance metric. The next two pages
contain the executive summaries of the benchmark results for the above
systems.

The results of the benchmark tests, the methodology used to produce the
results, and the calculations to produce the price per tpsA were indepen-
dently audited by Performance Metrics, Inc. of Los Gatos, California.

Overview

TPC Benchmark™ A
Metrics

Auditor

iv

Silicon Graphics CHALLENGE XL Server c/s
with 20 Indys

Total System Cost

$11,137,661 $5,433.77 per tpsA

Processor Database Manager
Number
of Users

IRIX

System Components: Qty: Host and Development: Qty: Front-End Client:
Processors 32 MIPS R4400SC with 20 MIPS R4000SC with

16KB I-cache, 16KB D-cache, 8KB I-cache, 8KB D-cache
and 4MB combined secondary cache and 1MB secondary cache

Memory 4 256MB (8-way interleaving) 20 256MB
I/O Controllers 3 POWERChannel-2 I/O controllers

(2 each SCSI-2 FAST/WIDE channels)
SCSI-2 Cards 6 3 FAST/WIDE SCSI-2 channels
Disk Racks 5 CHALLENGEvault XL racks
Total Disk Drives 265 Capacity - 508.8GB 20 1GB SCSI drive
Tape Drives 1 150MB QIC streaming tape

1 2GB DAT tape drive
Terminals 1 System console 20,840 Terminals
Miscellaneous Peripherals 1 CD-ROM drive
Terminal Concentrators 652 Terminal concentrators
Ethernet Interfaces 2 EFAST Ethernet interfaces 20 GIO Bus Ethernet cards

2 POWERChannel-2 Ethernet Interfaces

 TPC-A Throughput

Operating System Other Software

Price / Performance

MIPS R4400SC

Computer Systems

5.3
TUXEDO

Release 4.2.1

2049.71 tpsA

20,840

TPC-A Rev. 1.2

April 26, 1994

ORACLE7

v

Order Number Description Quantity Unit Price
Extended

Price
Support
(5 years)

R-45832-S4 32-CPU CHALLENGE XL Server, 4MB cache 1 $876,700 $876,700 $277,750
FTO-64UP512 First 512 MB High Dens Mem, 1 IMB 1 63,520 63,520 8,525
H4-512-4-ADD Addt’l 512MB high Dens. Mem, 2 IMBs 1 82,800 82,800 13,975
P-S-B224 CHALLENGEvault XL 224GB Disk Bundle 2 560,000 1,120,000 184,800
P-S-B64 CHALLENGEvault XL 64GB Disk Bundle 1 196,250 196,250 26,400
P8-S-2 2GB SCSI-2 FAST/WIDE Disk 10 6,900 69,000 8,250
HU-PC2 POWERChannel-2 I/O Controller 2 12,000 24,000 8,500
P-S-HIO SCSI-2 FAST/WIDE Interface Card 6 2,500 15,000 5,400
P8-QIC-CD 150 MB QIC tape & CD-ROM 1 2,000 2,000 1,700
P8-DAT 2GB DAT internal drive 1 2,500 2,500 1,125
P-TER2 110 VAC Programming Terminal 1 1,500 1,500 600
DK-C2-001 Destination Kit for XL Series 1 0.00 0.00 0.00
CC4-EFAST-2.0.1 Addt’l Ethernet Interface for CHALLENGE 2 5,700 11,400 2,250
DK-T2-001 Destination Kit for CHALLENGEvault XL 5 0.00 0.00 0.00
SC4-S4D-5.3 Operating System Software and Manuals 1 0.00 0.00 0.00
SC4-IDO-5.3 IRIX development options for IRIX 5.3 1 1,200 1,200 0.00
CS-SWCARE-DEV Software options support (incl. IDO) 1 0.00 0.00 0.00

TOTAL Server 2,465,870 539,275

CH-S100 Indy, 100MHz, R4000SC, 1GB system disk 20 13,495 269,900 149,000
HU-M128A 128MB memory upgrade for Indy 40 18,000 720,000 0.00
CC2-E++-1.0 GIO Bus Ethernet Card 20 625 12,500 0.00

32MB return to factory for Indy 20 -3,000 -60,000 0.00
TOTAL Client 942,400 149,000

†Specialix MTS 718 678 486,804 17,950
†Specialix MTA 8-port expanders 2152 228 490,656 53,800
Wyse WY-30+ terminals 20,840 189 3,938,760 729,400
‡Anixter 8-port 10BaseT HubBNC 6 375 2,250 0.00
‡Anixter Ethernet/IEEE Transceivers BNCTap 22 49 1,078 0.00

TOTAL Comms. 4,919,548 801,150

ORACLE7 (448 named users) 1 358,400 358,400 215,040
Procedural Option (448 named users) 1 71,680 71,680 43,008
SQL*Net (448 named users) 1 71,680 71,680 43,008
TCP/IP protocol driver (448 named users) 1 53,760 53,760 32,256
SQL*Net (64 named users) 20 8,000 160,000 96,000
TCP/IP protocol driver (64 named users) 20 6,000 120,000 72,000

Tuxedo 4.2.1 (>10,001 users) 20,840 20 416,800 208,400
Development system 1 380 380 190

TOTAL Software 1,252,700 709,902

Oracle Volume Discount -150,393.60 -50,131.20
Silicon Graphics CHALLENGE XL Discount -394,539.20 0.00
Silicon Graphics Indy Discount -47,120.00 0.00

TOTAL Discounts -592,052.80 -50,131.20

11,137,661

tps-A 2049.71

$/tps-A $5,433.77

Notes: Audited by Performance Metrics, Inc. of Los Gatos, CA.

April 26, 1994

TPC-A Rev. 1.2Silicon Graphics
Computer Systems

CHALLENGE XL Server c/s
with 20 Indys

Indy

Communications & Terminals

ORACLE Software

Discounts

Tuxedo Software

Total Hardware and Software Costs

†includes 10% spares
‡ includes 10% spares and 5 year maintenance

CHALLENGE XL Server

vi TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure vii

Preface

Clause 10 of the TPC Benchmark™A specification describes the require-
ments for a full disclosure report. The main body of this document is
organized as follows, based upon the requirements in Clause 10:

• Each portion of the main document begins with a Clause 10
requirement in an italic font. It is followed by normal font
text that explains how each result complied with the require-
ment.

• Appendix A contains the source code of the application used
to implement the benchmark.

• Appendix B describes the process that defines, creates, and
loads the Oracle database. Also included are sample contents
from each database table.

• Appendix C lists the tunable operating system and database
parameters used in the benchmark test configuration.

• Appendix D contains the spreadsheet calculations used to
determine the storage requirements for the ACCOUNT/-
BRANCH/TELLER/HISTORY tables, eight (8) hour recov-
ery log(s) and ninety (90) days of HISTORY.

• Appendix E contains the letter of attestation.

Document Structure

viii TPC Benchmark™ A Full Disclosure

• Appendix F contains the source code for the RTE.

• Appendix G lists the Third Party Price Quotations.

TPC Benchmark™ A was developed by the Transaction Processing Per-
formance Council (TPC). It is the intent of the TPC to develop a suite of
benchmarks to measure performance of computer systems across the
spectrum of simple to complex applications. Silicon Graphics Computer
Systems is a member of the TPC.

TPC Benchmark™ A exercises the system components necessary to per-
form tasks associated with that class of online transaction processing
environments emphasizing update-intensive database services. Such envi-
ronments are characterized by:

• Multiple online terminal sessions

• Significant disk input/output

• Moderate system and application execution time

• Transaction integrity

This benchmark uses a single, simple update-intensive transaction to load
the system under test (SUT). Thus, the workload is intended to reflect an
OLTP application, but does not reflect the entire range of OLTP require-
ments typically characterized by multiple transactions types of varying
complexities. The single transaction type provides a simple, repeatable
unit of work, and was designed to exercise the key components of an
OLTP system.

The metrics reported in TPC Benchmark™ A are throughput as measured
in transactions per second, subject to a residence time constraint, and the
associated price-per-tps. The throughput metrics are “tpsA”.

The extent to which a customer can achieve the results reported by a ven-
dor is highly dependent on how closely the customer's application approx-
imates TPC Benchmark™ A. Relative system performance of systems
derived from TPC Benchmark™ A do not necessarily hold for other
workloads or environments. Extrapolations to dissimilar environments are
not recommended.

Benchmark results are highly dependent upon workload, specific applica-
tion requirements, and systems design and implementation. Relative sys-
tem performance will vary because of these and other factors. Therefore,
TPC Benchmark™ A should not be used as a substitute for a specific cus-
tomer application benchmark when critical capacity planning and/or
product evaluation decisions are contemplated.

TPC Benchmark™ A
Overview

TPC Benchmark™ A Full Disclosure ix

All performance data contained in this report was obtained in a rigorously
controlled environment, and therefore results obtained in other operating
environments may vary significantly. Silicon Graphics Computer Systems
does not warrant or represent that a user can or will achieve similar per-
formance expressed in transactions per second (tpsA) or normalized pri-
ce/performance ($/tpsA). No warranty of system performance or
price/performance is expressed or implied in this report.

x TPC Benchmark™ A Full Disclosure

TPC Benchmark™A Full Disclosure xi

Abstract .. iii
Overview... iii
TPC Benchmark™ A Metrics... iii
Auditor .. iii

Preface .. vii
Document Structure ... vii
TPC Benchmark™ A Overview ... viii

 Clause 2 Transaction System Properties... 2-1
2.1 Transaction System Properties (ACID) ... 2-1
2.2 Atomicity ... 2-1

2.2.1 Completed Transaction .. 2-2
2.2.2 Aborted Transaction .. 2-3

2.3 Consistency.. 2-4
2.4 Isolation ... 2-5

2.4.1 Completed Transaction .. 2-6
2.4.2 Aborted Transaction .. 2-7

2.5 Durability ... 2-7
2.5.1 Permanent Irrecoverable Failure.. 2-8
2.5.2 Instantaneous Interruption ... 2-9
2.5.3 Loss of Memory... 2-9

Clause 3 Logical Database Design .. 3-1
3.1 Database Design .. 3-1

3.1.1 Distribution and Partitioning ... 3-1
3.1.2 Population and Sample Contents ... 3-2
3.1.3 Type of Database ... 3-2

Clause 4 Scaling Rules .. 4-1
4.1 Clause 4 Related Items .. 4-1

4.1.1 Database Scaling, and Row Occurrences .. 4-1

Clause 5 Distribution, Partitioning, and Transaction Generation.. 5-1
5.1 Random Number Generator... 5-1
5.2 Horizontal Partitioning .. 5-2

Clause 6 Response Time.. 6-1
6.1 Benchmark Performance.. 6-1

6.1.1 Response Time... 6-1
6.1.2 Throughput (tpsA) vs. Response Time .. 6-2

Clause 7 Duration of Test .. 7-1
7.1 Steady State.. 7-1
7.2 Work Performed During Steady State ... 7-1
7.3 Reproducibility .. 7-2
7.4 Measurement Period Duration ... 7-3

Clause 8 SUT & Driver ... 8-1
8.1 RTE.. 8-1

Table of Contents

xii TPC Benchmark™A Full Disclosure

8.2 Driver Functionality and Performance .. 8-4
8.3 Network Bandwidth... 8-6
8.4 Think Time .. 8-6

Clause 9 Pricing ... 9-1
9.1 System Pricing ... 9-1

9.1.1 CHALLENGE XL Server.. 9-1
9.1.2 Support Pricing .. 9-2
9.1.3 Priced System Configuration ... 9-2
9.1.4 Discounts ... 9-2

9.2 Availability .. 9-2
9.3 Measured tpsA ... 9-3
9.4 Priced Storage Requirements... 9-3

Clause 10 Full Disclosure Checklist .. 10-1
10.1 General Items... 10-1
10.2 Clause 2 Related Items .. 10-2
10.3 Clause 3 Related Items .. 10-2
10.4 Clause 5 Related Items .. 10-3
10.5 Clause 6 Related Items .. 10-3
10.6 Clause 7 Related Items .. 10-3
10.7 Clause 8 Related Items .. 10-4
10.8 Clause 9 Related Items .. 10-5
10.9 Clause 11 Related Items .. 10-6
10.10 FDR Availability.. 10-6

Clause 11 Related Items .. 11-1
11.1 Independent Auditing .. 11-1

Appendix A: Application Source Code .. A-1
Client Application .. A-1
Tuxedo Server .. A-6

Appendix B: Database Definition and Load..B-1
File Definitions for ABTH Tables ..B-1
ABTH Table Sample Data ..B-15

Appendix C: Tunable Parameters ..C-1
Indy Operating System Tunable Parameters ...C-1
Challenge XL Operating System Tunable Parameters ..C-1
ORACLE7 Configuration ...C-1

Appendix D: Storage Requirements ... D-1
Disk Storage Requirements ... D-1

Appendix E: Attestation Letter ..E-1

Appendix F: RTE...F-1
RTE... F-1

Appendix G: Third-Party Vendor Quotations .. G-1

TPC Benchmark™ A Full Disclosure 2-1

2. Clause 2 Transaction System
Properties

Results of the ACIDity test (specified in Clause 2) must describe how the
requirements were met. If a database different from that which is mea-
sured is used for durability tests, the sponsor must include a statement
that durability works on the fully loaded and fully scaled database.

The TPC Benchmark™ A Standard Specification defines a set of transac-
tion processing system properties that a System Under Test (SUT) must
support during the execution of the benchmark. Those properties are Ato-
micity, Consistency, Isolation and Durability (ACID). This portion of the
document will define each of those properties and describe the series of
tests that were performed to demonstrate that the properties were met.

All of the specified ACID tests were performed on the CHALLENGE XL
Server. Each ACID test was performed on the measured database.

The test to fail a single durable medium with table/file data was run on the
database scaled to two thousand two hundred (2200) tpsA.

The system under test must guarantee that transactions are atomic; the
system will either perform all individual operations on the data, or will
assure that no partially-completed operations have any effects on the
data.

2.1 Transaction System
Properties (ACID)

2.2 Atomicity

2-2 TPC Benchmark™ A Full Disclosure

The following tests for atomicity were successfully completed for both
regular transactions and discrete transactions.

Perform the standard TPC Benchmark™ A transaction (see Clause 1.2)
for a randomly selected account and verify that the appropriate records
have been changed in the Account, Branch, Teller, and History files/ta-
bles.

A verification of a commited transaction was completed as follows:

• a random Account and Teller were selected

• the current balances for the selected Account, Teller, and the
Teller’s associated Branch were recorded

• the number of rows in the History table that contain the above
combination of Account, Branch, and Teller was recorded

• an automated version of the TPC Benchmark™ A application
was executed that prompts a terminal for the transaction input
and allows the user the option of COMMITting or ABORT-
ing the transaction.

• the selected Account and Teller identifiers along with a ran-
dom delta amount was entered for the transaction,

• the TPC Benchmark™ A application updated the appropriate
Account, Branch, and Teller balances with the above delta
amount, inserted an appropriate entry in the History table and
prompted the user to either COMMIT or ABORT the current
transaction,

• a COMMIT request was issued from the terminal

• the TPC Benchmark™ A application COMMITted the above
transaction as requested.

After the transaction was COMMITted:

• the balances from the selected Account, Branch, and Teller
were displayed

• it was verified that the displayed balances differed from the
original balances by the delta value that was entered,

• the number of rows in the History table for the combination
of the selected Account, Branch, and Teller was displayed

2.2.1 Completed
Transaction

TPC Benchmark™ A Full Disclosure 2-3

• it was verified that the number of History table rows was one
greater than before the above transaction was executed,

• it was verified that the additional History row contained the
proper values from the transaction entered.

Perform the standard TPC Benchmark™ A Transaction for a randomly
selected account, substituting an ABORT of the transaction for the COM-
MIT of the transaction. Verify that the appropriate records have not been
changed in the Account, Branch, Teller, and History files/tables.

A verification of an aborted transaction was completed as follows:

• a random Account and Teller were selected

• the current balances for the selected Account, Teller, and the
Teller’s associated Branch were recorded

• the number of rows in the History table that contain the above
combination of Account, Branch, and Teller was recorded

• an interactive version of the TPC Benchmark™ A application
was executed that prompts a terminal for the transaction input
and allows the user the option of COMMITting or ABORT-
ing the transaction,

• the selected Account and Teller identifiers along with a ran-
dom delta amount was entered for the transaction,

• the TPC Benchmark™ A application updated the appropriate
Account, Branch, and Teller balances with the above delta
amount, inserted an appropriate entry in the History table and
prompted the user to either COMMIT or ABORT the current
transaction,

• an ABORT request was issued from the terminal

• the TPC Benchmark™ A application ABORTed the above
transaction as requested.

After the transaction was ABORTed:

• the balances from the selected Account, Branch, and Teller
were displayed

• it was verified that the displayed balances were the same as
before the transaction was started

2.2.2 Aborted
Transaction

2-4 TPC Benchmark™ A Full Disclosure

• the number of rows in the History table for the combination
of the selected Account, Branch, and Teller was displayed

• it was verified that the number of History table rows was no
different than before the above transaction was executed,

Consistency is the property of the application that requires any execution
of a transaction to take the database from one consistent state to another.

A consistent state for the TPC Benchmark™ A database is defined to exist
when:

a) the sum of the account balances is equal to the sum of the
teller balances, which is equal to the sum of the branch bal-
ances;

b) for all branches, the sum of the teller balances within a
branch is equal to the branch balance;

c) the history file has one logical record added for each commit-
ted transaction, none for any aborted transaction, and the
sum of the deltas in the records added to the history file
equals the sum of the deltas for all committed transactions.

If data is replicated, each copy must not violate these conditions.

Due to the large size of the Account file/table, no test of its consistency is
specified.

The following tests were performed on the system under test (SUT) to
demonstrate the property of consistency.

Prior to executing the TPC Benchmark™ A transactions:

• the balance for each Branch occurrence in the database was
recorded (Initial Branch Balances),

• the sum of the above balances of all the Branches were
recorded (Initial Branch Sum),

• the sum of the Teller balances within each branch were
recorded (Initial Teller/Branch Balance),

• it was verified that the Initial Branch Balance equaled the
sum of the Initial Teller/Branch Balances for each Branch,

2.3 Consistency

TPC Benchmark™ A Full Disclosure 2-5

• the number of History rows and the sum of the History delta
values were recorded (Initial History Count and Initial His-
tory Sum),

• the TPC Benchmark™ A applications was executed and the
number of committed transactions was recorded. It was veri-
fied that the number of committed transactions was not less
than ten (10) times the number of Teller occurrences.

After the TPC Benchmark™ A application was executed:

• the sum of the balances of all Branch occurrences in the data-
base was recorded (Final Branch Sum),

• the balance for each Branch occurrence in the database was
recorded (Final Branch Balances),

• for each Branch, the sum of Teller balances associated with
the Branch was recorded (Final Teller/Branch Balance),

• for each Branch, it was verified that the Final Branch Balance
equaled the appropriate Final Teller/Branch Balance,

• the number of History rows and the sum of History row delta
values amounts were recorded (Final History Count and Final
History Sum),

• it was verified that the difference between the Final History
Count and Initial History Count was the number of transac-
tions recorded as committed,

• it was verified that the difference between the Final History
Sum and Initial History Sum equaled the difference between
the Final Branch Sum and Initial Branch Sum.

The benchmark was run and the appropriate number of transactions was
executed and committed. In each of the above cases, the appropriate val-
ues and relationships were observed. The sum of Teller balances associ-
ated with a particular Branch equaled that Branch's balance before and
after the execution of the benchmark. The difference between the Final
and Initial History Counts was equal to the number of recorded commit-
ted transactions. The difference between the Final and Initial History Sum
equaled the difference between the Final and Initial Branch Sum.

Operations of concurrent transactions must yield results which are indis-
tinguishable from the results which would be obtained by forcing each
transaction to be serially executed to completion in some order.

2.4 Isolation

2-6 TPC Benchmark™ A Full Disclosure

This property is commonly called serializability. Sufficient conditions
must be enabled at either the system or application level to ensure serial-
izability of transactions under any mix of arbitrary transactions, not just
TPC Benchmark™ A transactions. The system or application must have
full serializability enabled, i.e., repeated reads of the same records within
any committed transactions must have returned identical data when run
concurrently with any mix of arbitrary transactions.

Twenty four (24) Isolation tests were performed for both discrete and nor-
mal combinations, both COMMITted and ABORTed transactions for the
Branch, Account, and Teller tables. The following two tables show the
steps used in performing the Isolation test for the Account table with a
COMMITted transaction (Table 2.1) and an ABORTed transaction (Table
2.2). The same steps were used to test both the Branch and Teller tables.

The aborted transaction tests (Table 2.2) follow on the next page.

Table 2.1: Isolation Test — Completed Transaction

Transaction 1 Transaction 2

Execute a TPC Benchmark™ A
transaction to update a randomly
selected Account, using the applica-
tion code described in the Atomicity
tests. Stop the transaction prior to
COMMIT.

Execute a second TPC Benchmark™
A transaction that will update the
same Account as Transaction 1 using
a different Teller and Branch. This
transaction will wait until Transac-
tion 1 completes.

COMMIT this transaction and verify
the Account balance reflects the
effect of the update.

This transaction resumes and is
COMMITted. The Account balance
reflects the effect of both Transaction
1 and Transaction 2.

2.4.1 Completed
Transaction

TPC Benchmark™ A Full Disclosure 2-7

The tested system must guarantee the ability to preserve the effects of
committed transactions and insure database consistency after recovery
from any one of the failures listed below:

• Permanent irrecoverable failure of any single durable
medium containing database, ABTH files/tables, or recovery
log data.

• Instantaneous interruption (system crash/system hang) in pro-
cessing which requires system reboot to recover.

• Failure of all or part of memory (loss of contents).

A durable medium is a data storage medium that is either:

a) an inherently non-volatile medium, e.g., magnetic disk, mag-
netic tape, optical disk, etc., or

a) a volatile medium with its own self-contained power supply
that will retain and permit the transfer of data, before any
data is lost, to an inherently non-volatile medium after the

Table 2.2: Isolation Test — Aborted Transaction

Transaction 1 Transaction 2

Execute a TPC Benchmark™ A
transaction to update a randomly
selected Account, using the applica-
tion code described in the Atomicity
tests. Stop the transaction prior to
COMMIT.

Execute a second TPC Benchmark™
A transaction that will update the
same Account as Transaction 1 using
a different Teller and Branch. This
transaction will wait until Transac-
tion 1 completes.

ABORT this transaction and verify
the Account balance remains
unchanged.

This transaction resumes and is
COMMITted. The Account balance
reflects only the effect of Transaction
2.

2.4.2 Aborted Transaction

2.5 Durability

2-8 TPC Benchmark™ A Full Disclosure

failure of external power.

A transaction is considered committed when the transaction manager
component of the system has written the commit record(s) associated with
the transaction to a durable medium.

It is required that the system crash test and the loss of memory test
described in Clauses 2.5.3.2 and 2.5.3.3, respectively, be performed with
a full terminal load and a fully scaled database. The durable media fail-
ure tests described in Clause 2.5.3.1 may be performed on a subset of the
SUT configuration and database. For that subset, all multiple hardware
components, such as processors and disk/controllers in the full configura-
tion must be represented by either 10% or 2 each of the multiple hardware
components, whichever is greater. The database subset must be scaled to
at least 10% (minimum of 2 tps) of the fully scaled database size. The test
sponsor must state that to the best of their knowledge, a fully loaded and
fully scaled SUT and database configuration would also pass all durabil-
ity tests.

At the time of the induced failures, it is required to have multiple home
and remote transactions (see Clause5) in progress. Distributed configura-
tions must have distributed transactions in progress as well.

All of the Durability tests listed below completed successfully. The sum
of Teller balances associated with a particular Branch equaled that
Branch's balance before and after the execution of the benchmark. The
difference between the Final and Initial History Counts was equal to the
number of recorded committed transactions. The difference between the
Final and Initial History Sum equaled the difference between the Final
and Initial Branch Sum, and every record in the 'success' file had a corre-
sponding row occurrence in the History tables.

The failures listed below were induced on the system under test (SUT) to
demonstrate the property of Durability.

Permanent irrecoverable failure of any single durable medium containing
database, ABTH files/tables, or recovery log data.

Two irrecoverable failures were tested, one for failure of table and catalog
medium, and another for database recovery log medium.

The table and catalog medium failure was tested as follows:

• a failure was induced by copying bad data over the sections
of the disk that stored the database catalog and another disk
containing account data. This caused appropriate error mes-
sages to appear on the console and the application to stop.

2.5.1 Permanent
Irrecoverable
Failure

TPC Benchmark™ A Full Disclosure 2-9

• the database was shut down,

• the backup was restored, overwriting the existing contents of
the disk, and the database was rolled forward using the recov-
ery log file,

• the count of records in the success file was compared to the
rows in the History table to verify that all transactions were
correctly recovered,

• random rows from the success file were searched out in the
History table to verify the contents were successfully recov-
ered

The recovery log medium was mirrored. Failure of the recovery log was
tested as follows:

• while transactions were being processed, one of the mirrored
disks was physically removed from the SUT,

• processing continued unaffected and no recovery was neces-
sary

Instantaneous interruption (system crash/system hang) in processing
which requires system reboot to recover.

See section 2.5.3.

Failure of all or part of memory (loss of contents). Perform the consis-
tency test on the Branch and Teller files as specified in Clause 2.3.3.2.

Instantaneous interruption and loss of memory tests were combined
because the loss of power erases the contents of memory.

• a consistency check was run and the file system was synchro-
nized to ensure the audit files were written to disk and would
not be lost,

• while transactions were being processed, a failure was
induced by turning off the primary power for the SUT,

• power to the SUT was restored and ORACLE7 was restarted,

• the database was rolled forward using the recovery log file,

2.5.2 Instantaneous
Interruption

2.5.3 Loss of Memory

2-10 TPC Benchmark™ A Full Disclosure

• the sum of all branch balances was compared to the sum of
all teller balances and verified to be the same,

• for each branch, the sum of the balances for all local tellers
was compared to the stored balance for the branch and veri-
fied to be the same,

• the count of records in the success file was compared to the
rows in the History table to verify that all committed transac-
tions were correctly recovered.

TPC Benchmark™ A Full Disclosure 3-1

3. Clause 3 Logical Database
Design

The distribution across storage media of ABTH (Accounts, Branch, Teller,
and History) files/tables and all logs must be explicitly depicted.

This benchmark was implemented as a centralized solution accessing a
single logical and physical database. All tables and the History file were
partitioned horizontally across multiple disk drives. That horizontal parti-
tioning was transparent to the TPC Benchmark™ A application. Vertical
partitioning was not used in this benchmark implementation.

The benchmark and priced system configuration diagrams are shown in
Figures 3.1 and 3.2, respectively. The SUT utilized 202 disk drives in its
configuration. The test was executed against a database built for 2200
branches of this database.

The specific distribution and partitioning across storage media of database
tables (Account, Branch, Teller, and History) and recovery logs, are
graphically depicted for both the benchmark and the priced configuration
in Table 3.1 and Table 3.2 respectively. The same allocations were used
for both the benchmark and the priced configuration. The only difference
is the amount of data generated for History and Log files during the
benchmark did not completely fill all allocated blocks.

The ACCOUNT file was equally allocated across 160 disks.

The BRANCH file was allocated on 1 disk.

3.1 Database Design

3.1.1 Distribution and
Partitioning

3-2 TPC Benchmark™ A Full Disclosure

The TELLER file was allocated on 1 disk.

The HISTORY file was equally allocated across 13 disks, 1 extent each.

A description of how the database was populated, along with sample con-
tents of each ABTH file/table to meet the requirements described in
Clause 3.

Appendix B describes the process that defines, creates/installs, and popu-
lates the ORACLE7 on-line database for TPC Benchmark™ A. Sample
contents of each database table are included in this appendix.

A statement of the type of database utilized, e.g., relational, Codasyl, flat
file, etc.

This TPC Benchmark™ A used the ORACLE7 RDBMS relational data-
base software.

3.1.2 Population and
Sample Contents

3.1.3 Type of Database

T
PC

 B
enchm

ark™
 A

 Full D
isclosure

3-3

Figure 3.1: Benchmark System Configuration

3-4
T

PC
 B

enchm
ark™

 A
 Full D

isclosure

Figure 3.2: Priced System Configuration

3-5Table 3.1: SUT Configuration Data Distribution

dks110d[1-8] 8 0 0 0 .625 0 0 0 0

dks111d[1-8] 8 0 0 0 .625 0 0 0 0

dks113d[1-8] 8 0 0 0 .625 0 0 0 0

dks114d[1-8] 8 0 0 0 .625 0 0 0 0

dks115d[1-8] 8 0 0 0 .625 0 0 0 0

dks116d[1-2] 2 0 0 0 .625 20 0 0 0
dks116d[3-8] 6 0 0 0 .625 0 0 0 0
dks116d9 1 0 0 0 0 0 0 7.70 0
dks116d10 1 0 0 0 0 0 0 7.70 0
dks116d1[1-2] 2 0 0 0 0 0 0 0 7.70

dks117d[1-2] 2 0 0 0 .625 20 0 0 0
dks117d[3-8] 6 0 0 0 .625 0 0 0 0
dks117d9 1 0 0 0 0 0 0 7.70 0
dks117d10 1 0 0 0 0 0 0 7.70 0
dks117d1[1-2] 2 0 0 0 0 0 0 0 7.70

dks1d1 1 100 0 0 0 0 0 0 0
dks1d[2-3] 2 0 0 0 .625 0 0 0 0

dks2d1 1 0 0 0 .625 0 0 0 0
dks2d2 1 0 0 0 .625 20 0 0 0
dks2d3 1 0 0 0 0 0 8.60 0 0
dks2d[4-7] 4 0 0 0 .625 0 0 0 0
dks2d8 1 0 0 0 0 0 8.60 0 0

dks3d1 1 0 0 0 .625 0 0 0 0
dks3d[2-7] 6 0 0 0 .625 0 0 0 0
dks3d8 1 0 100 0 0 0 0 0 0
dks3d9 1 0 0 0 0 0 8.60 0 0
dks3d10 1 0 0 0 0 0 4.30 0 0
dks3d11 1 0 0 0 0 0 0 7.70 0
dks3d12 1 0 0 0 0 0 0 0 7.70

dks4d1 1 0 0 0 .625 0 0 0 0
dks4d[2-7] 6 0 0 0 .625 0 0 0 0
dks4d8 1 0 0 0 0 0 4.30 0 0
dks4d9 1 0 0 0 0 0 0 7.70 0
dks4d10 1 0 0 0 0 0 0 0 7.70
dks4d11 1 0 0 0 0 0 0 7.70 0
dks4d12 1 0 0 0 0 0 0 0 7.70

dks5d[1-7] 7 0 0 0 .625 0 0 0 0
dks5d8 1 0 0 0 0 0 8.60 0 0
dks5d9 1 0 0 0 0 0 4.30 0 0
dks5d10 1 0 0 0 0 0 8.60 0 0
dks5d11 1 0 0 0 0 0 9.74 0 0
dks5d12 1 0 0 0 0 0 8.60 0 0

dks6d[1-7] 7 0 0 0 .625 0 0 0 0
dks6d8 1 0 0 0 0 0 8.60 0 0
dks6d9 1 0 0 0 0 0 0 7.70 0

Disk Total UNIX ORACLE Branch Account Account History Log Log
Name # of +swap System& &Teller data Index Data Data Data

Drives Control files data (Mirror)
% of data/disk

3-6

dks6d10 1 0 0 0 0 0 0 0 7.70
dks6d11 1 0 0 0 0 0 0 7.70 0
dks6d12 1 0 0 0 0 0 0 0 7.70

dks70d[1-8] 8 0 0 0 .625 0 0 0 0

dks71d[1-7] 7 0 0 0 .625 0 0 0 0
dks71d8 1 0 0 0 0 0 0 7.70 0
dks71d9 1 0 0 0 0 0 0 0 7.70
dks71d10 1 0 0 0 0 0 0 7.70 0
dks71d11 1 0 0 0 0 0 0 0 7.70
dks71d12 1 0 0 0 0 0 0 7.70 0
dks71d13 1 0 0 0 0 0 0 0 7.70
dks71d1[4-5] 2 0 0 0 0 0 8.60 0 0

dks72d[1-7] 7 0 0 0 .625 0 0 0 0
dks72d8 1 0 0 0 0 0 0 0 7.70

dks73d[1-7] 7 0 0 0 .625 0 0 0 0
dks73d8 1 0 0 100 0 0 0 0 0

dks74d[1-8] 8 0 0 0 .625 0 0 0 0

dks75d[1-8] 8 0 0 0 .625 0 0 0 0

dks76d[1-8] 8 0 0 0 .625 0 0 0 0

dks77d[1-8] 8 0 0 0 .625 0 0 0 0

dks7d[1-7] 7 0 0 0 .625 0 0 0 0
dks7d8 1 0 0 0 0 0 0 7.70 0

Disk Total UNIX ORACLE Branch Account Account History Log Log
Name # of +swap System& &Teller data Index Data Data Data

Drives Control files data (Mirror)
% of data/disk

Table 3.1 SUT Configuration Data Distribution (continued)

3-7

dks110d[1-8] 8 0 0 0 .625 0 .4 0 0
dks110d9 1 0 0 0 0 0 .485 0 0
dks110d1[0-2] 3 0 0 0 0 0 .485 0 0

dks111d[1-8] 8 0 0 0 .625 0 .4 0 0
dks111d9 1 0 0 0 0 0 .485 0 0
dks111d1[0-2] 3 0 0 0 0 0 .485 0 0

dks112d[1-9] 9 0 0 0 0 0 .485 0 0
dks112d1[0-5] 6 0 0 0 0 0 .485 0 0

dks113d[1-8] 8 0 0 0 .625 0 .4 0 0
dks113d9 1 0 0 0 0 0 .485 0 0
dks113d1[0-2] 3 0 0 0 0 0 .485 0 0

dks114d[1-8] 8 0 0 0 .625 0 .4 0 0
dks114d9 1 0 0 0 0 0 .485 0 0
dks114d1[0-2] 3 0 0 0 0 0 .485 0 0

dks115d[1-8] 8 0 0 0 .625 0 .4 0 0
dks115d9 1 0 0 0 0 0 .485 0 0
dks115d1[0-2] 3 0 0 0 0 0 .485 0 0

dks116d[1-2] 2 0 0 0 .625 20.00 .173 0 0
dks116d[3-8] 6 0 0 0 .625 0 .4 0 0
dks116d9 1 0 0 0 0 0 0 7.70 0
dks116d10 1 0 0 0 0 0 0 7.70 0
dks116d1[1-2] 2 0 0 0 0 0 0 0 7.70

dks117d[1-2] 2 0 0 0 .625 20.00 .173 0 0
dks117d[3-8] 6 0 0 0 .625 0 .4 0 0
dks117d9 1 0 0 0 0 0 0 7.70 0
dks117d10 1 0 0 0 0 0 0 7.70 0
dks117d1[1-2] 2 0 0 0 0 0 0 0 7.70

dks1d1 1 100.00 0 0 0 0 .275 0 0
dks1d[2-3] 2 0 0 0 .625 0 .4 0 0
dks1d[4-9] 6 0 0 0 0 0 .485 0 0
dks1d1[0-1] 2 0 0 0 0 0 .485 0 0

dks2d1 1 0 0 0 .625 0 .4 0 0
dks2d2 1 0 0 0 .625 20.00 .173 0 0
dks2d3 1 0 0 0 0 0 .485 0 0
dks2d[4-7] 4 0 0 0 .625 0 .4 0 0
dks2d[8-9] 2 0 0 0 0 0 .485 0 0
dks2d1[0-2] 3 0 0 0 0 0 .485 0 0

dks3d1 1 0 0 0 .625 0 .4 0 0
dks3d[2-7] 6 0 0 0 .625 0 .4 0 0
dks3d8 1 0 100.00 0 0 0 0 0 0
dks3d9 1 0 0 0 0 0 .485 0 0
dks3d10 1 0 0 0 0 0 .485 0 0
dks3d11 1 0 0 0 0 0 0 7.70 0
dks3d12 1 0 0 0 0 0 0 0 7.70

dks4d[1-7] 7 0 0 0 .625 0 .4 0 0

Disk Total UNIX ORACLE Branch Account Account History Log Log
Name # of +swap System& &Teller data Index Data Data Data

Drives Control files data (Mirror)
% of data/disk

Table 3.2: Priced Configuration Data Distribution

3-8

dks4d8 1 0 0 0 0 0 .485 0 0
dks4d9 1 0 0 0 0 0 0 7.70 0
dks4d10 1 0 0 0 0 0 0 0 7.70
dks4d11 1 0 0 0 0 0 0 7.70 0
dks4d12 1 0 0 0 0 0 0 0 7.70

dks5d[1-7] 7 0 0 0 .625 0 .4 0 0
dks5d[8-9] 2 0 0 0 0 0 .485 0 0
dks5d1[0-2] 3 0 0 0 0 0 .485 0 0

dks6d[1-7] 7 0 0 0 .625 0 .4 0 0
dks6d8 1 0 0 0 0 0 .485 0 0
dks6d9 1 0 0 0 0 0 0 7.70 0
dks6d10 1 0 0 0 0 0 0 0 7.70
dks6d11 1 0 0 0 0 0 0 7.70 0
dks6d12 1 0 0 0 0 0 0 0 7.70

dks70d[1-8] 8 0 0 0 .625 0 .4 0 0
dks70d9 1 0 0 0 0 0 .485 0 0
dks70d1[0-2] 3 0 0 0 0 0 .485 0 0

dks71d[1-7] 7 0 0 0 .625 0 .4 0 0
dks71d8 1 0 0 0 0 0 0 7.70 0
dks71d9 1 0 0 0 0 0 0 0 7.70
dks71d10 1 0 0 0 0 0 0 7.70 0
dks71d11 1 0 0 0 0 0 0 0 7.70
dks71d12 1 0 0 0 0 0 0 7.70 0
dks71d13 1 0 0 0 0 0 0 0 7.70
dks71d1[4-5] 2 0 0 0 0 0 .485 0 0

dks72d[1-7] 7 0 0 0 .625 0 .4 0 0
dks72d8 1 0 0 0 0 0 0 0 7.70
dks72d9 1 0 0 0 0 0 .485 0 0
dks72d1[0-2] 3 0 0 0 0 0 .485 0 0

dks73d[1-7] 7 0 0 0 .625 0 .4 0 0
dks73d8 1 0 0 100.00 0 0 0 0 0
dks73d9 1 0 0 0 0 0 .485 0 0
dks73d1[0-2] 3 0 0 0 0 0 .485 0 0

dks74d[1-8] 8 0 0 0 .625 0 .4 0 0
dks74d9 1 0 0 0 0 0 .485 0 0
dks74d1[0-2] 3 0 0 0 0 0 .485 0 0

dks75d[1-8] 8 0 0 0 .625 0 .4 0 0

dks76d[1-8] 8 0 0 0 .625 0 .4 0 0

dks77d[1-8] 8 0 0 0 .625 0 .4 0 0

dks7d[1-7] 7 0 0 0 .625 0 .4 0 0
dks7d8 1 0 0 0 0 0 0 7.70 0

Disk Total UNIX ORACLE Branch Account Account History Log Log
Name # of +swap System& &Teller data Index Data Data Data

Drives Control files data (Mirror)
% of data/disk

Table 3.2 Priced Configuration Data Distribution (continued)

TPC Benchmark™ A Full Disclosure 4-1

4. Clause 4 Scaling Rules

There are no Clause 4 Related Items required by the Full Disclosure spec-
ification. However, Clause 4 specifies scaling rules and that information
is provided here as the appropriate place to describe the database size
and scaling information.

The database was populated with the required number of row occurrences
for the Account, Branch, and Teller tables to measure for 2200 tpsA.
These numbers are listed in Table 4.1

The specific code used to create and populate these tables may be found in
Appendix B. Details of the space calculated for the History table and log
files may be found in Appendix D.

Table 4.1: CHALLENGE XL Server
and ORACLE7 Required Row

Occurrences

Table Occurrences

Branch 2,200

Teller 22,000

Account 220,000,000

4.1 Clause 4 Related
Items

4.1.1 Database Scaling,
and Row
Occurrences

4-2 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure 5-1

5. Clause 5 Distribution,
Partitioning, and Transaction

Generation

The method of verification of the random number generator should be
described.

The UNIX function lrand48 was used to generate a pseudo-random num-
ber used as account identifiers and delta amounts in each TPC Bench-
mark™ A transaction.

This routine generates pseudo-random numbers using a well-known lin-
ear congruential algorithm. The algorithm will generate unique sequences
of numbers if provided with a unique seed for each sequence. The RTE
constructed a seed for each simulated teller using this formula:

gettimeofday (&tv, (struct timezone *)0);
srand48 (teller * tv.tv_usec);
srand (teller * tv. tv_usec);

At the end of each TPC Benchmark™ A run, the seeds for all tellers were
checked and verified to be unique.

In addition, the History and success files were randomly searched by the
auditors for duplicates and/or patterns that would indicate the random
number generator had effected any kind of discernible pattern. None were
found.

5.1 Random Number
Generator

5-2 TPC Benchmark™ A Full Disclosure

Vendors must clearly disclose if horizontal partitioning is used. Specifi-
cally, vendors must satisfy the following:

1. Describe textually the extent of transparency of the imple-
mentation.

2. Describe which tables / files were accessed using partition-
ing.

3. Describe how partitioned tables / files were accessed.

The account and History files were horizontally partitioned. The partition-
ing was completely transparent to the application. The DBMS completely
controlled the access to all portions of the table files regardless of where
they were stored on disk. The complete description of the physical posi-
tioning of the tables may be found in Clause 3 under Database Design,
and Distribution and Partitioning.

The sponsor must disclose the percentage of remote and home transac-
tions, percentage of remote and foreign transactions, if applicable, and
the actual distribution of accounts across the nodes, if applicable.

The percentage of remote and home transactions during the measured
benchmark runs were 15% and 85% respectively. The benchmark was run
on a single system.

5.2 Horizontal
Partitioning

TPC Benchmark™ A Full Disclosure 6-1

6. Clause 6 Response Time

Report all the data specified in Clause 6.6, including measured and
reported tpsA, maximum and average response time, as well as perfor-
mance curves for number of transactions vs. response time (see clause
6.6.1) and response time distribution (see clause 6.6.2). Also, the sponsor
must include the percentage of home and remote transactions, the number
and percentage of in-process transactions, and the percentage of remote
and foreign transactions, if applicable.

Table 6.1 contains the statistics required by the above clause.

The distribution of response times for the transactions in the benchmark
test are shown below in Figure 6.1.

Table 6.1: CHALLENGE XL Server and ORACLE7
Performance Statistics

Measured tpsA 2049.71 tps-A

Reported tpsA 2049.71 tps-A

90th percentile Response time 1.40 seconds

Maximum Response Time 21.260 seconds

Average Response Time 1.169 seconds

Percent of Home transactions 85.00 %

Percent of Remote transactions 15.00 %

Measured completed transactions 4509372

Number of in flight transactions 2344

Percentage of in flight transactions .052 %

6.1 Benchmark
Performance

6.1.1 Response Time

6-2 TPC Benchmark™ A Full Disclosure

The throughput (tpsA) vs. 90th percentile response time graphs are shown
below in Figure 6.2. The graph shows the average response time at 100%,
80%, and 50% of the reported tpsA throughput. The 80% and 50%
throughput rates were obtained by varying the think time. Everything else
in the 80% and 50% tests was identical to the 100% test.

Figure 6.1: CHALLENGE XL Server and ORACLE7 Response Times

Response Time (seconds)

N
u

m
b

e
r

o
f

T
ra

n
s

a
c

ti
o

n
s

 (
1

0
6
)

Response Time Distribution

90th Percentile RT = 1.40 secs.

Average RT = 1.169 secs.

6.1.2 Throughput
(tpsA) vs.
Response Time

TPC Benchmark™ A Full Disclosure 6-3

Figure 6.2: CHALLENGE XL Server and ORACLE7 Response Time vs. tpsA

Percentage of TPS

9
0

th
 P

e
rc

e
n

ti
le

 R
e

s
p

o
n

s
e

 T
im

e

Response Time vs. tpsA Distribution

50% 80% 100%

6-4 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure 7-1

7. Clause 7 Duration of Test

The method used to determine that the SUT had reached a steady state
prior to commencing the measurement interval should be described.

The transaction throughput rate (tpsA) was measured during trial runs to
determine the average time required to start all processes and begin a sus-
tained rate of throughput. This ramp up interval was also verified by per-
formance monitoring information. The ramp up interval of twenty (20)
minutes was sent as a parameter to the benchmark application to assure
that the measured interval was started after a steady state was established.

A description of how the work normally performed during a sustained test
(for example checkpointing, writing redo/undo log records, etc. as
required by Clause 7.2), actually occurred during the measurement inter-
val.

During the measurement interval, the ORACLE7 RDBMS reads one
account block into the buffer cache for every transaction. On average, one
modified account block was written from the shared buffer cache for
every transaction, but this write was only necessary to free space in the
shared buffer cache, not to commit the transaction. Modified database
buffers migrated to disk on a “least recently used” basis independent of
transaction commits. In addition, every block modification was protected
by redo log records. These redo log records were written to the redo log
buffer (in memory), which were flushed to a redo log file on disk either
when the transaction committed or when the redo log buffer became full.

7.1 Steady State

7.2 Work Performed
During Steady State

7-2 TPC Benchmark™ A Full Disclosure

During a checkpoint, all modified blocks in the shared buffer cache which
had not been written to disk since the last checkpoint were physically
written to disk. A single checkpoint was performed during the measure-
ment interval.

The performance of the TPC Benchmark A transaction was improved by
using the BEGIN_DISCRETE_TRANSACTION procedure (See Appen-
dix A). This procedure streamlines transaction processing so that short,
non-distributed transactions can execute more rapidly.

During a discrete transaction, all changes made to any data were deferred
until the transaction committed. Redo information was generated, but was
stored in a separate location in memory. When the transaction issued a
commit request, the redo information was written to the redo log file
(along with other group commits) and the changes to the database block
were applied directly to the block. Once the commit completed, control
was then returned to the application.

Notice the loop construct in the transaction profile included in Appendix
A. The TPC-A transaction was implemented as a discrete transaction by
calling the BEGIN_DISCRETE_TRANSACTION procedure before the
first statement. Any error encountered during the processing of discrete
transactions caused the pre-defined exception DISCRETE_TRANSAC-
TION_FAILED to be raised. If this exception occurred, the TPC-A trans-
action was rolled back and re-executed as a normal transaction.

The discrete transaction is a fully documented performance feature in the
ORACLE7 DBAGuide.

Software on the RTE machines emulates tellers typing account transac-
tion information on a terminal and receiving replies. The input data is
passed to a Tuxedo client program on one of the Client machines. There is
one copy of the RTE program and one copy of the Tuxedo client program
running for each simulated teller, connected via Unix TCP/IP sockets in a
one-to-one correspondence.

Each client machine runs 10 copies of a Tuxedo server program. The Tux-
edo servers call the Oracle OCI library function to communicate with the
RDBMS via Oracle SQL*NET software. The client programs add trans-
actions to message queues for the server programs to pick up and pass to
the RDBMS. When a server receives a reply from the RDBMS it passes
the reply back to the originating client, which in turn passes it back to the
RTE.

A description of the method used to determine the reproducibility of the
measurement results.

The benchmark was executed multiple times and the reported throughput
(tpsA) and residence time varied less than one point one (1.10) percent
between the measured runs.

7.3 Reproducibility

TPC Benchmark™ A Full Disclosure 7-3

A statement of the duration of the measurement period for the reported
tpsA (it should be at least 15 minutes and no longer than 1 hour).

Each measured run was executed for a total of 78 minutes. This included
20 minutes of ramp up time and 36 minutes of steady state. The measure-
ment interval was 37 minutes and included 1 checkpoint. The check-
points were set to begin every 39 minutes.

The graph demonstrating steady state is shown below.

7.4 Measurement
Period Duration

Figure 7.1: CHALLENGE XL Server with ORACLE7 Throughput tpsA

Throughput Over Entire Run

Minutes

T
P

S
 (

1
0

3
)

Checkpoint #1

Checkpoint #2

Measurement
Interval

7-4 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure 8-1

8.Clause 8 SUT & Driver

1. The name of the RTE and whether it is commercially available or pro-
prietary

The RTE used is proprietary. It was jointly developed by Oracle Corpora-
tion and Silicon Graphics, Inc. Inputs to the RTE include the number of
clients to initiate, how long they are to run, sleep time, TPS scaling, times
for ramp up and ramp down, the type of transaction workload to run, tty
delay, and a number of other parameters. Appendix A contains the
entirety of the transaction portion of the driver software that implements
the TPC-A transaction. Appendix F contains the Open Call Interface code
for the section of the RTE used to control transaction submission and tim-
ing during ramp up, steady state, and ramp down.

2. The hardware on which the RTE runs.

The RTE runs on any MIPS ABI compliant platform. The machines that
were actually used during the test were 20 Silicon Graphics Indy worksta-
tions.

3. The component(s) emulated by the RTE.

The RTE emulates all the terminals and terminal servers.

4. Commands to start the RTE including pertinent parameters.

The parameters to the RTE include the number of clients to initiate, and
how long they are to run. (See item 10 below for a description). Each RTE
machine started 1042 rte processes. Here is a sample command line to
start one rte process.

rte jade 220 tpca conf 3489 2200 1042 8337 1 1 9.55 2200 1200 1200
2084 .58

8.1 RTE

8-2 TPC Benchmark™ A Full Disclosure

5. The type of communication protocol used or simulated between the
RTE and SUT.

The RTE communicates with the front-end clients of the SUT. Via telnet
sessions, the RTE simulates terminal input, serial line delays to the termi-
nal, ethernet delays, etc. Telnet protocol is implemented over TCP/IP
using UNIX sockets.

6. The timing delays associated with the simulation of the components
and the communication protocol used.

(See Section 8.2 Driver Functionality and Performance).

7. Generation of the success file (used for testing durability).

Whenever a transaction completes, the results of the transaction are writ-
ten to a success file by the client process. This occurs during durability
testing. After the run these files are processed to display the required
information, such as account, branch, teller, amount, and amount delta.

8. The number of processes per simulated terminal.

There is one rte process per simulated terminal.

9. Generation of random numbers to show that no two simulated termi-
nals will use the same pseudo-random sequence.

Every emulated terminal is assigned a unique teller. The branch to which
this teller belongs is the branch row that is used 85% of the time and a
random branch is picked 15% of the time using the function ‘lrand48’.

The random number generator is initialized with the teller # modified by
the current time-of-day to ensure that no two users will generate the same
random number sequence. Here is the code fragment that seeds the gener-
ators:

gettimeofday (&tv, (struct timezone *)0);

srand 48 (teller * tv.tv_usec);

srand (teller * tv. tv_usec);

The account number is then computed as a random account at that partic-
ular branch using the ‘lrand48’ function.

10. Listing of input scripts and parameter files to the RTE.

TPC Benchmark™ A Full Disclosure 8-3

Input to the RTE is through command-line arguments. Here is a complete
list of the arguments. The arguments from the sample line in Item 4 are
shown in parentheses:

host Client Hostname (jade)
port Port Number (220)
name Login Name (tpca)
config Configuration ID (conf)
runname Run Identifier (3489)
timelimit Run Time (2200)
nproc Number of Users (1042)
proc_no Current Process Number (8337)
ncpu Number of CPUs on Client (1)
nsvr Number of Servers (1)
thinktime Think Time (9.55secs)
mult Database Scale (2200)
ramp_up Ramp Up Interval (1200secs)
ramp_down Ramp Down Interval (1200secs)
starttime Start Time of Run (2084)
termdelay Emulated Terminal Delay (0.58secs)

The rte processes were started by a script on each RTE machine that var-
ied two parameters. Port numbers cycled from 220 to 249. proc_no
increased by 1 for each process created. One parameter to that script was
the first proc_no to use, to ensure proc_no remained unique across all rte
processes on all RTE machines.

11. Algorithm used to generate transaction input and a sample of that
input.

The RTE program sends strings like this one to the client program on a
client machine (all one line):

0013,00123,001294403,0000679623,xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxXXXXXXXXXX

The client program receives the string, packages it as a transaction, and
sends the transaction to a transaction monitor, which forwards it to the
RDMBS.

The code used to generate the transactions is shown in Appendix F.

12. Algorithm used to determine delay times between transactions.

The code used to determine delay times is shown in Appendix F.

8-4 TPC Benchmark™ A Full Disclosure

13. Benchmark sequencing including ramp-up period, steady state mea-
surement window(s), and transaction success/failure determination and
recording.

The code used to determine benchmark sequencing is shown in Appendix
F.

14. A list and brief description of the data that are collected and the
reduction process of that data to determine the results.

Each client process collects:

• The count of transactions performed (tr_count),

• The count of the transactions that complete in less than 2 sec-
onds (tr_fast),

• The count of the transactions that start during the measure-
ment period but do not complete (in_flight),

• The sum of the response times (tr_sum),

• Think times (tk_sum),

• Elapsed times,

• Minimum and Maximum values of the think times,

• Minimum and Maximum response times.

This data is collected during steady state operation.

The RTE uses this data to compute the cumulative data for the run:

tps = tr_count / timelimit;
fast_percent = 100* tr_fast / tr_count;/* % completed in 2 secs */
avg_resp = tr_sum / tr_count;/* average response time */
avg_think = tk_sum / tr_count;/* average think time */

The histogram of response times and think times are obtained from the
corresponding arrays timing_buckets and think_buckets shown in Appen-
dix F.

The number of transactions performed in each 15 second interval is
obtained by grouping the history records according to the time stamp and
counting the records that fall into each interval.

A proof that the functionality and performance of the components being
emulated in the Driver System are equivalent to that of the priced system.
The sponsor must list all hardware and software functionality of the
driver and its interface to the SUT.

8.2 Driver Functionality
and Performance

TPC Benchmark™ A Full Disclosure 8-5

In the priced configuration the appropriate number of terminals are con-
nected equally across the 20 Indy workstations that are used as client sys-
tems. This connection is performed with 652 Specialix MTS and 1956
MTA terminal servers. Transactions are submitted from the terminals (via
terminal servers), to the client machines which are front end clients of the
Database server. The terminal servers are evenly distributed across 4 Eth-
ernets, each of which is connected to 1/4 (i.e., 5) of the client machines.
Each client has two ethernet ports; the second port connects to one of 4
Ethernets connected to the DBMS server machine. The DBMS front end
software running on the clients connect to the DBMS servers via network
sockets.

Clause 8.6.4.1 of the TPC Benchmark™ A specification allows a test
sponsor to emulate the terminal network if the proposed solution makes it
uneconomical to perform the work in question directly on such a terminal
network.

Due to the exceptionally large number of terminals, terminal servers, ter-
minal server expansion cards, and cables involved in such a large system,
Silicon Graphics Computer Systems emulated the terminal network from
terminals up to (but not including) client machines with the RTE
machines.

The RTE drivers emulate the system of Wyse WY-30+ terminals con-
nected via RS-232 cables to Specialix MTS terminal servers (including
MTA expansion cards), which open TCP/IP telnet sessions to client Indy
workstations over Ethernet.

An experiment was performed to determine how much additional delay in
response time is introduced by using an actual terminal server. Two Spe-
cialix MTS terminal servers, each with three MTA expansion boards,
were connected together. The 32 serial lines of one server were connected
back-to-back with the 32 lines of the other. Both were configured for 38.4
Kbaud and connected to one of the driver-client LANs. The RTE on one
driver machine was configured to go through this setup for its first 32
emulated terminals.

The average response time for terminals going through the terminal serv-
ers was calculated separately from the response time for terminals going
through the normal benchmark setup under the load of a full TPC-A
benchmark run. The maximum observed difference was 0.576 seconds.

8-6 TPC Benchmark™ A Full Disclosure

By including a minimum 0.58 second delay in the rte program, the differ-
ence in performance between the emulated and priced systems is
accounted for.

If the SUT contains a WAN or a LAN network, its bandwidth should be
specified.

The Twisted Pair and Thinnet Ethernets used in the LAN comply with the
IEEE 802.3 standard and have a bandwidth of 10 Mbps.

The sponsor must disclose the mean and maximum think times and a
graph of the distribution of think times.

Figure 8.1: Measured timings for Specialix concentrators and RTE program

Specialix Emulated Combined
Users 1 1 2
TPS 0.15 0.15 0.3
Response Time 0.475 0.027 0.251

difference in response time: 0.452 sec
average cycle time: 6.667 sec

Users 16 1184 1200
TPS 2.94 120.67 123.61
Response Time 0.856 0.672 0.676

difference in response time: 0.184 sec
average cycle time: 9.684 sec

Users 32 1168 1200
TPS 2.79 121.74 124.53
Response Time 1.144 0.568 0.581

difference in response time: 0.576 sec
average cycle time: 9.612 sec

Users 32 20,808 20,840
TPS 3.00 2057.15 2060.15
Response Time 1.608 1.215 1.215

difference in response time: 0.383 sec
average cycle time: 10.116 sec

8.3 Network Bandwidth

8.4 Think Time

TPC Benchmark™ A Full Disclosure 8-7

The mean and maximum think times are 9.569 seconds and 99.294 sec-
onds respectively. The think time distribution is graphed in Figure 8
below.

Figure 8.2: CHALLENGE XL Server with ORACLE7 Think Time Distribution

Think Time (seconds)

N
u

m
b

e
r

o
f

T
ra

n
s

a
c

ti
o

n
s

 (
1

0
3
)

Think Time Distribution

Average Think
Time: 9.569 secs.

8-8 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure 9-1

9. Clause 9 Pricing

A detailed list of hardware and software used in the priced system. Each
item must have vendor part number, description, and release/revision
level, and either general availability status or committed delivery data. If
package-pricing is used, contents of the package must be disclosed.

The total price of the entire configuration is required including: hard-
ware, software, and maintenance charges. Separate component pricing is
recommended. The basis of all discounts used shall be disclosed.

See Priced Configuration Table 9.1

The CHALLENGE XL Server system consists of:

• 32 R4400SC CPUs at 150 MHz each with 4MB of combined
secondary cache

• 16K data and 16K instruction primary cache

• 1 GB of main memory with 8-way interleaving

• 3 POWERchannel-2 I/O boards each with an Ethernet inter-
face with 6 additional SCSI-2 cards for a total of 24 FAST/-
WIDE SCSI-2 channels

9.1 System Pricing

9.1.1 CHALLENGE XL
Server

9-2 TPC Benchmark™ A Full Disclosure

• 265 disk drives of 1.92 GB formatted capacity each

• 2GB DAT tape drive, QIC-150 cartridge tape, and CD-ROM

• 2 EFAST Ethernet boards

The five year support pricing for CHALLENGE XL Server

$539,275.00

The five year support pricing for ORACLE7

$501,312.00

The hardware, software, and support/maintenance products priced in this
benchmark, are detailed below in Table 9.1. Also included in the table are
the measured tpsA and calculated price/tpsA.

The following generally available discounts to any buyers with like con-
ditions were applied to the priced configuration:

• a 16% Silicon Graphics Computer Systems Volume End User
Discount was applied to the CHALLENGE XL Server con-
figuration.

• a 5% Silicon Graphics Computer Systems Volume End User
Discount was applied to the Indy Client configuration.

• an 18% ORACLE Corporation Volume End User Discount
was applied to the Oracle license fees.

• a 10% ORACLE Corporation Volume End User Discount
was applied to the Oracle maintenance fees.

The delivery date for general availability (availability date) of products
used in the price calculations must be reported. When the priced system
includes products with different availability dates, the reported availabil-
ity date for the priced system must be the date at which all components
are committed to be available

Products used in the benchmark are currently available except for

The CHALLENGE XL Server used in the benchmark and identified by
Order Number R-45832-S4 is orderable now and will be deliverable on
December 30, 1994.

9.1.2 Support Pricing

9.1.3 Priced System
Configuration

9.1.4 Discounts

9.2 Availability

TPC Benchmark™ A Full Disclosure 9-3

The IRIX (UNIX SVR4) operating system which was used on the SUT, is
a pre-released version of IRIX which will be released on December 30,
1994.

ORACLE7 version 7.0.15.4.2 will be available May 30, 1994.

A statement of the measured tpsA and the calculated price/tpsA.

See Priced Configuration Table 9.1

The basis for the calculation to determine the additional storage space
required in Clause 9.2.3.1 must be included

The hardware necessary to meet the storage requirements of Clause 9.2.4
was calculated based upon the number of history records stored per page
and the measured transaction rate. The log file storage required was calcu-
lated, based on statistics which are generated by ORACLE7 for each run.
Details of the files that these calculations are based on are included in
Appendix D.

9.3 Measured tpsA

9.4 Priced Storage
Requirements

9-4
Table 9.1 Priced Configuration

Order Number Description Quantity Unit Price
Extended

Price
Support
(5 years)

R-45832-S4 32-CPU CHALLENGE XL Server, 4MB cache 1 $876,700 $876,700 $277,750
FTO-64UP512 First 512 MB High Dens Mem, 1 IMB 1 63,520 63,520 8,525
H4-512-4-ADD Addt’l 512MB high Dens. Mem, 2 IMBs 1 82,800 82,800 13,975
P-S-B224 CHALLENGEvault XL 224GB Disk Bundle 2 560,000 1,120,000 184,800
P-S-B64 CHALLENGEvault XL 64GB Disk Bundle 1 196,250 196,250 26,400
P8-S-2 2GB SCSI-2 FAST/WIDE Disk 10 6,900 69,000 8,250
HU-PC2 POWERChannel-2 I/O Controller 2 12,000 24,000 8,500
P-S-HIO SCSI-2 FAST/WIDE Interface Card 6 2,500 15,000 5,400
P8-QIC-CD 150 MB QIC tape & CD-ROM 1 2,000 2,000 1,700
P8-DAT 2GB DAT internal drive 1 2,500 2,500 1,125
P-TER2 110 VAC Programming Terminal 1 1,500 1,500 600
DK-C2-001 Destination Kit for XL Series 1 0.00 0.00 0.00
CC4-EFAST-2.0.1 Addt’l Ethernet Interface for CHALLENGE 2 5,700 11,400 2,250
DK-T2-001 Destination Kit for CHALLENGEvault XL 5 0.00 0.00 0.00
SC4-S4D-5.3 Operating System Software and Manuals 1 0.00 0.00 0.00
SC4-IDO-5.3 IRIX development options for IRIX 5.3 1 1,200 1,200 0.00
CS-SWCARE-DEV Software options support (incl. IDO) 1 0.00 0.00 0.00

TOTAL Server 2,465,870 539,275

CH-S100 Indy, 100MHz, R4000SC, 1GB system disk 20 13,495 269,900 149,000
HU-M128A 128MB memory upgrade for Indy 40 18,000 720,000 0.00
CC2-E++-1.0 GIO Bus Ethernet Card 20 625 12,500 0.00

32MB return to factory for Indy 20 -3,000 -60,000 0.00
TOTAL Client 942,400 149,000

†Specialix MTS 718 678 486,804 17,950
†Specialix MTA 8-port expanders 2152 228 490,656 53,800
Wyse WY-30+ terminals 20,840 189 3,938,760 729,400
‡Anixter 8-port 10BaseT Hub/BNC 6 375 2,250 0.00
‡Anixter Ethernet/IEEE Transceivers BNCTap 22 49 1,078 0.00

TOTAL Comms. 4,919,548 801,150

ORACLE7 (448 named users) 1 358,400 358,400 215,040
Procedural Option (448 named users) 1 71,680 71,680 43,008
SQL*Net (448 named users) 1 71,680 71,680 43,008
TCP/IP protocol driver (448 named users) 1 53,760 53,760 32,256
SQL*Net (64 named users) 20 8,000 160,000 96,000
TCP/IP protocol driver (64 named users) 20 6,000 120,000 72,000

Tuxedo 4.2.1 (>10,001 users) 20,840 20 416,800 208,400
Development system 1 380 380 190

TOTAL Software 1,252,700 709,902

Oracle Volume Discount -150,393.60 -50,131.20
Silicon Graphics CHALLENGE XL Discount -394,539.20 0.00
Silicon Graphics Indy Discount -47,120.00 0.00

TOTAL Discounts -592,052.80 -50,131.20

11,137,661

tps-A 2049.71

$/tps-A $5,433.77

Indy

Communications & Terminals

ORACLE Software

Discounts

Tuxedo Software

Total Hardware and Software Costs

†includes 10% spares
‡includes 10% spares and 5 year maintenance

CHALLENGE XL Server

TPC Benchmark™ A Full Disclosure 9-5

Table 9.2: Bundled Item Descriptions

Order
Number Quantity Description

R-45832-S4 1 32-CPU CHALLENGE XL Server

1 CHALLENGEXL rack chassis

32 150MHz MIPS R4400SC CPUs

1 4 MB SRAM Secondary Cache per CPU

1 2 GB SCSI-2 FAST/WIDE Differential System Disk

1 64MB memory board

1 POWERchannel-2 I/O board

2 SCSI-2 channels

2 SCSIBOX-2 disk tray

1 ethernet channel

1 parallel port

3 RS-232C ports

1 RS-422 port

P-S-B224 2 CHALLENGEvault XL 224GB disk bundle

includes 2 CHALLENGEvault rack

14 SCSIBOX-2, 8 disk enclosure

112 1.92GB disk drives

P-S-B64 1 CHALLENGEvault XL 64GB disk bundle

includes 1 CHALLENGEvault rack

4 SCSIBOX-2, 8 disk enclosure

32 1.92GB disk drives

9-6 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure 10-1

10. Clause 10 Full Disclosure
Checklist

A statement verifying the sponsor of the benchmark and any other compa-
nies who have participated.

The benchmark is being sponsored by Silicon Graphics Computer Sys-
tems, the hardware vendor, and ORACLE Corporation, the supplier of the
database management system used.

Program listing of application code and definition language statements
for file/tables.

Appendix A contains a listing of the application programs which were
written in the “C” language. Appendix B contains the Bourne shell
scripts, “C” source code and SQL scripts which were used to create and
load the benchmark database.

Settings for all customer-tunable parameters and options which have
been changed from defaults found in actual products; including but not
limited to: Database options; Recovery/Commit options; Consistency/-
Locking options; System parameters; application parameters, and config-
uration parameters. Test sponsors may optionally provide a full list of all
parameters and options.

10.1 General Items

10-2 TPC Benchmark™ A Full Disclosure

A listing of all modified operating system parameters and all database
parameters configured during the benchmark is given in Appendix C.

Configuration diagrams of both the benchmark configuration and the
priced system, and a description of the differences.

A diagram of the SUT and the priced configuration are in Clause 3.

Results of the ACIDity tests must describe how the requirements were met.
If a database different from that which is measured is used for durability
tests, the sponsor must include a statement that durability works on the
fully loaded and fully scaled database.

The ACIDity tests performed are described in Clause 2.

The distribution across storage media of ABTH files/tables and all logs
must be explicitly depicted.

Provide two functional diagrams which show CPUs, storage devices,
communications lines, terminals, and the interconnections between these
components. The first diagram must correspond to the benchmark config-
uration and the second diagram must correspond to the 90-day priced
configuration. A separate pair of diagrams must be provided for each
reported result.

As part of each diagram, show the percentage of the total physical data-
base which resides on each storage device for each of the ABTH files and
logs. For the benchmark configuration, show database allocation during
8-hour steady state. For the 90-day priced configuration, show database
allocation including storage of 90 days of history records. Data which are
duplicated (e.g., mirrored) on more than one device must be clearly
labeled to show what is duplicated and on which devices.

The distribution of the ABTH files/tables, log, and system files is depicted
in Tables 3.1 and 3.2 in Clause 3. A diagram of the SUT and the priced
configuration are also included in Clause 3.

A description of how the database was populated, along with sample con-
tents of each ABTH file/table to meet the requirements described in
Clause 3.

Clause 3 contains the details of the Logical Database Design. Samples of
the ABTH file contents are shown in Appendix B.

10.2 Clause 2
Related Items

10.3 Clause 3
Related Items

TPC Benchmark™ A Full Disclosure 10-3

A statement of the type of database utilized.

The benchmark was conducted using ORACLE7, a standard relational
database management system which is a product of ORACLE Corpora-
tion.

The method of verification of the random number generator should be
described.

The random number generator used is described in Clause 5.

Vendors must clearly disclose if horizontal partitioning is used. Specifi-
cally, vendors must: describe textually the extent of transparency of the
implementation; describe which tables/files were accessed using parti-
tioning; and describe how partitioned tables/files were accessed.

The intent of this clause is that details of non-transparent partitioning be
disclosed in a manner understandable to non-programmer individuals
(through use of flow charts, pseudo code, etc.).

Disk partitioning is described in Clause 3.1.1. as well as tables 3.1 and
3.2.

The sponsor must disclose percentage of remote and home transactions,
percentage of remote and foreign transactions, if applicable, and the
actual distribution of accounts across the nodes, if applicable.

The account information is given in Clause 6, Table 6.1

Report all the data specified in Clause 6.6, including reported tpsA, maxi-
mum and average response time, as well as performance curves for tpsA
versus response time and response time distribution.

Response data, including the required graphs, are described in Clause 6.
The graph of total system throughput is given in Clause 7.

The method used to determine that the SUT had reached a steady state
prior to commencing the measurement interval should be described.

That the SUT had achieved steady state was determined by observing the
transaction processing rate at 30 second intervals.

A description of how the work normally performed during a sustained test
actually occurred during the measurement interval.

10.4 Clause 5
Related Items

10.5 Clause 6
Related Items

10.6 Clause 7
Related Items

10-4 TPC Benchmark™ A Full Disclosure

The description of all work performed, including checkpoints, is detailed
in Clause 7.

A description of the method used to determine the reproducibility of the
measurement results.

The benchmark result was reproduced with a variance of less than 1.10%.

A statement of the duration of the measurement period for the reported
tpsA.

The measurement period was 36 minutes.

Disclose the following information related to the RTE: name of RTE and
whether it is commercially available or proprietary, hardware on which
the RTE runs, components emulated by the RTE, commands to start the
RTE including pertinent parameters, type of communication protocol
used or simulated between the RTE and SUT, timing delays associated
with the simulation of the components and the communication protocol
used, generation of the success file, number of processes per simulated
terminal (one process for each terminal or one process per multiple ter-
minals), generation of random numbers to show that no two simulated
terminals will use the same pseudo-random sequence, listing of inputs
scripts and parameter file to the RTE, algorithm used to generate transac-
tion input and a sample of that input, algorithm used to determine delay
times between transactions, benchmark sequencing including ramp-up
period, steady state measurement window(s), and transaction success/-
failure determination and recording, a list and brief description of the
data that are collected and the reduction process of that data to determine
the results.

The driver used in the benchmark is proprietary to ORACLE Corporation.
It resided on the driver/RTE machines and is described in Clause 8 and in
Appendix F. Additional information regarding the above list is also
described in Clause 8.1

A proof that the functionality and performance of the components being
emulated in the Driver System are equivalent to that of the priced system.
The sponsor must list all hardware and software functionality of the
driver and its interface to the SUT.

The driver information is described in Clause 8.2.

If the SUT contains a WAN or a LAN network, its bandwidth should be
specified. The sponsor must describe the network configuration per
clause 8.6.5.

10.7 Clause 8 Related
Items

TPC Benchmark™ A Full Disclosure 10-5

Clause 8.2 gives the network bandwidth. Clause 8.3 describes the net-
work configuration for the SUT.

The sponsor must disclose the mean and maximum think times and a
graph of distribution of the think times.

Think time information is disclosed in Clause 8.4 and depicted in Figure
8.2.

A detailed list of hardware and software used in the priced system must be
disclosed. Pricing source(s) and effective date(s) of price(s) must also be
reported. Each item must have vendor part number, description, and
release/revision level, and either general availability status or committed
delivery date. If package-pricing is used, contents of the package must be
disclosed.

Priced system information is described in Clause 9 and in Appendix G.

The total price of the entire configuration is required including: hard-
ware, software, and maintenance changes. Separate component pricing is
recommended. The basis of all discounts shall be disclosed.

All pricing information is contained in Clause 9

The delivery date for general availability (availability date) of products
used in the price calculations must be reported. When the priced system
includes products with different availability dates, the reported availabil-
ity date for the priced system must be the date at which all components
are committed to be available.

Availability information is provided in Clause 9.3.

A statement of the measured tpsA, and the calculated price/tpsA.

The CHALLENGE XL Server was measured at 2049.71 tpsA at a price of
$5,433.77/tpsA.

The basis for the calculation to determine the additional storage space
required in Clause 9.2.3.1 must be included.

Appendix D contains storage space calculations.

10.8 Clause 9
Related Items

10-6 TPC Benchmark™ A Full Disclosure

If the benchmark has been independently audited, then the auditor’s
name, address, phone number, and a brief audit summary report indicat-
ing compliance must be included in the full disclosure report. A statement
should be included, specifying when the complete audit report will
become available and whom to contact in order to obtain a copy.

Clause 11 contains auditor information.

The full disclosure report is to be readily available to the public at a rea-
sonable charge, similar to charges for similar documents by that test
sponsor. The report is to be made available when results are made public.

For copies of this report contact:

SGI Express
315 North State Street
Orem, UT 84057
ph: 1-800-336-0264
title: TPC Benchmark™ A Full Disclosure Report

10.9 Clause 11
Related Items

10.10 FDR
Availability

TPC Benchmark™ A Full Disclosure 11-1

11. Clause 11 Related Items

If the benchmark has been independently audited, then the auditor’s
name, address, phone number and a brief audit summary report indicat-
ing compliance must be included in the full disclosure report.

The Silicon Graphics Computer Systems’ CHALLENGE XL Server and
ORACLE7 benchmark was independently audited by Performance Met-
rics, Inc. The attestation letter is included in Appendix E.

11.1 Independent Auditing

11-2 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure A-1

Appendix A: Application Source Code

Silicon Graphics Computer Systems’ implementation of the TPC Benchmark™ A consists
of C programs that provide both driver and transaction functions. The following listings
are those C programs used for these functions.

/*==+

 | Copyright (c) 1992 Oracle Corp, Belmont, CA |

 | All Rights Reserved |

 +==+

 | FILENAME

 | t_cli.c

 | DESCRIPTION

 | TPC-A Tuxedo client process

 +==*/

#include <stdio.h>

#include <termio.h>

#include <signal.h>

#include <sys/types.h>

#include "atmi.h"

struct xactinfo

{

 long teller_no;

 long branch_no;

 long account_no;

 long amount;

 double balance;

};

struct xactinfo *xact;

struct termio prevtty, newtty;

int cpu_no;

int timeoutcount = 0;

Client Application

A-2 TPC Benchmark™ A Full Disclosure

int srvnum;

char servicename[10];

quit()

{

 ioctl(0, TCSETA, &prevtty); /* Restore terminal parameters */

 exit(1);

}

void terminated(signo)

 int signo;

{

 if (signo != SIGHUP)

 userlog("Client terminated by signal %d\n", signo);

 if (xact != NULL)

 tpfree((char *)xact); /* Free the Tuxedo message buffer. */

 tpterm(); /* Perform Tuxedo client exit. */

 ioctl(0, TCSETA, &prevtty); /* Restore terminal parameters */

 exit(0);

}

main(argc, argv)

 int argc;

 char * argv[];

{

 char inbuf[512], outbuf[512];

 char filler[165];

 int olen;

 int i;

 signal(SIGHUP, terminated);

 signal(SIGINT, terminated);

 signal(SIGQUIT, terminated);

 signal(SIGKILL, terminated);

 signal(SIGPIPE, terminated);

 signal(SIGTERM, terminated);

 timeoutcount = 0;

 for (i = 0; i < 160; i++)

 filler[i] = 'X';

 filler[160] = '\0';

 /* Get terminal parameters */

 ioctl(0, TCGETA, &prevtty);

TPC Benchmark™ A Full Disclosure A-3

 /* Turn off echo */

 newtty = prevtty;

 newtty.c_lflag &= ~ECHO;

 ioctl(0, TCSETA, &newtty);

 /* Initialize Tuxedo */

 if (tpinit(NULL) == -1)

 {

 userlog("Client: tpcinit failed. Quitting.\n");

 quit();

 }

 /* Allocate Tuxedo message buffer. */

 if ((xact = (struct xactinfo *)

 tpalloc("CARRAY", NULL, sizeof(struct xactinfo))) == NULL)

 {

 userlog("Client: tpalloc failed.\n");

 tpterm(); /* Perform Tuxedo client exit. */

 quit();

 }

 /* synchronize with RTE */

 write(1, "Go TPC-A", 8);

 /* Read message from rte. */

 while (gets(inbuf) == NULL);

 /* Extract cpu number and Tuxedo service number from the rte's message. */

 sscanf(inbuf, "%d%d", &cpu_no, &srvnum);

 /*

 ** Use the service number to create Tuxedo service name for this client.

 ** A given client will send all of its messages to a single server.

 ** There is one server performing each service.

 */

 sprintf(servicename, "TPCA%d", srvnum);

 /*

 ** Tell rte to start sending transactions.

 */

 write(1, "Go TPC-A really", 15);

 /*

 ** Loop, reading messages from rte and sending requests to the

 ** Tuxedo server. Quit when the rte sends a negative branch id.

 */

 while (1)

 {

A-4 TPC Benchmark™ A Full Disclosure

 /*

 ** Read message from rte. The client must read at least 100 bytes

 ** from the rte (Clause 8.4.2). Here the client uses gets to read

 ** up to a new-line character. The rte is responsible for sending

 ** messages of the correct size.

 */

 while (gets(inbuf) == NULL);

 /*

 ** Extract the branch id, teller id, account id, and update amount

 ** from the rte's message. Store these values in the Tuxedo

 ** message buffer.

 */

 sscanf(inbuf, "%d,%d,%d,%d", &(xact->branch_no), &(xact->teller_no),

 &(xact->account_no), &(xact->amount));

 /*

 ** If the branch id is negative, exit. This is how the rte tells

 ** the client to stop.

 */

 if (xact->branch_no < 0)

 {

 tpfree((char *)xact); /* Free the Tuxedo message buffer. */

 tpterm(); /* Perform Tuxedo client exit. */

 exit(0);

 }

 /*

 ** Send a request to the Tuxedo server telling the server to perform

 ** the TPC-A transaction.

 */

 if (tpcall(servicename, (char *)xact, sizeof(struct xactinfo),

 (char **)&xact, (long *)&olen, TPSIGRSTRT) == -1)

 {

 /*

 ** Got error from Tuxedo.

 */

 userlog("Client: tpcall() failed. Tuxedo error: %d\n", tperrno);

 /*

 ** If the error is 'timed out' increment the timed out counter.

 */

 if (tperrno == TPETIME)

 timeoutcount++;

 /*

 ** If the error is TPESVCFAIL or

 ** the error is 'timed out' and

 ** the timed out count is less than 3

 ** then return a non-fatal error to the rte.

TPC Benchmark™ A Full Disclosure A-5

 ** The non-fatal error is indicated by the -10 in the branch id

 ** position of the return message.

 */

 if (tperrno == TPESVCFAIL)

 {

 sprintf(outbuf, "-10,%05d,%09d,%010d,%011.0f,%s",

 xact->teller_no, xact->account_no, xact->amount,

 xact->balance, filler);

 }

 if (((tperrno == TPETIME) && (timeoutcount < 3)))

 {

 sprintf(outbuf, "-10,%05d,%09d,%010d,%011.0f,%s",

 xact->teller_no, xact->account_no, xact->amount,

 xact->balance, filler);

 }

 /*

 ** If we've timed out 3 or more times or

 ** the error wasn't ** 'timed out' or TPESVCFAIL

 ** then return a fatal error.

 ** The fatal error is indicated by the -20 in the branch position

 ** of the return message.

 */

 else

 {

 sprintf(outbuf, "-20,%05d,%09d,%010d,%011.0f,%s",

 xact->teller_no, xact->account_no, xact->amount,

 xact->balance, filler);

 }

 }

 else

 {

 /*

 ** Transaction completed successfully. Put the branch id,

 ** teller id, account id, update amount, and new account balance

 ** into the return message.

 */

 sprintf(outbuf, "%04d,%05d,%09d,%010d,%011.0f,%s", xact->branch_no,

 xact->teller_no, xact->account_no, xact->amount,

 xact->balance, filler);

 }

 /*

 ** Send message to the rte. The client must send at least

 ** 200 bytes to the rte.

 ** Clause 8.4.2: "The RTE ... Recieves 200 byte responses"

 */

outbuf[200] = '\0';

 if (write(1, outbuf, 201) < 0)

 {

 userlog("Client failed to write result to rte\n");

A-6 TPC Benchmark™ A Full Disclosure

 tpfree((char *)xact); /* Free the Tuxedo message buffer. */

 tpterm(); /* Perform Tuxedo client exit. */

 quit();

 }

 }

}

t_srv.c

.#ifdef RCSID

static char *RCSid =

 "$Header: t_srv.c 7000000.5 93/08/06 14:14:45 bmoriart Generic<base> $ Copyr (c) 1993 Oracle";

#endif /* RCSID */

/*==+

 | Copyright (c) 1992 Oracle Corp, Belmont, CA |

 | All Rights Reserved |

 +==+

 | FILENAME

 | t_srv.c

 | DESCRIPTION

 | TPC-A Tuxedo server process.

 +==*/

#ifndef FALSE

define FALSE 0

#endif

#ifndef TRUE

define TRUE 1

#endif

#include <stdio.h>

#include <errno.h>

#include "atmi.h"

#include <sys/lock.h>

/*

** The Tuxedo client and server processes communicate with the

** xactinfo structure. The client stores teller id, branch id, account id,

** and update amount in the structure and sends it to the server.

** The server stores the new account balance in the structure and sends

** it back to the client.

*/

struct xactinfo

{

 long teller_no;

 long branch_no;

Tuxedo Server

TPC Benchmark™ A Full Disclosure A-7

 long account_no;

 long amount;

 double balance;

};

struct xactinfo *xact;

long branch_no; /* Branch id. Range: 1 to (1 * database scaling) */

long teller_no; /* Teller id. Range: 1 to (10 * database scaling) */

long account_no; /* Account id. Range: 1 to (100,000 * database scaling) */

long amount; /* Amount added to the balance */

 /* Clause 5.3.6: "The Delta amount field is a random */

 /* value within [-999999, +999999]" */

double balance; /* New balance of the account record */

 /* Clause 3.2.2: "Must be capable of representing */

 /* at least 10 significant decimal digits plus sign" */

char * uid = "tpcb/tpcb"; /* Database user name and password */

int retries = 0; /* Discrete mode only: Number of retries. */

int proc_no = 0;

int success_file = FALSE; /* Write success file after every transaction */

/*

** Function declarations.

*/

 /* TPC-A/B transaction functions */

extern int TPCinit();

extern int TPCexec();

extern int TPCexit();

 /* Durability test success file functions */

extern int tsuccinit();

extern int tsucclog();

extern int tsuccend();

tpsvrinit (argc, argv)

 int argc;

 char *argv[];

{

 /*

 ** Check for Optional Arguments.

 */

 if ((argc > 2) && (argv[argc-1][0] == 'd') && (argv[argc-1][1] == '\0')) {

 /*

 ** Durability test. Write to success file after every

A-8 TPC Benchmark™ A Full Disclosure

 ** transaction.

 */

 success_file = TRUE;

 argc--;

 }

 /*

 ** argv[last or next to last] -- process number of this process.

 */

 if (argc > 1) {

 proc_no = atoi (argv[argc-1]);

 }

 if (success_file) {

 if (tsuccinit(proc_no)<0) exit (1);

 }

 if (TPCinit(proc_no) == -1)

 {

 /* Error in TPCinit(). Write message to log file and exit. */

 userlog("Error from TPCinit()\n");

 exit(1);

 }

 userlog("Init completed\n");

}

void tpsvrdone ()

{

 /* Ignore return from TPCexit() */

 TPCexit();

 if (success_file)

 {

 if (tsuccend(proc_no))

 exit (1);

 }

}

TPCA1 (msg)

 TPSVCINFO *msg;

{

 /*

 ** Extract transaction information from the client's message structure.

 ** Store values in global variables used by TPCexec().

 */

 xact = (struct xactinfo *) msg->data;

 teller_no = xact->teller_no; /* Teller record to update */

 branch_no = xact->branch_no; /* Branch record to update */

 account_no = xact->account_no; /* Account record to update */

 amount = xact->amount; /* Amount of update */

 if (TPCexec() == -1)

 {

TPC Benchmark™ A Full Disclosure A-9

 /* Error in TPCexec(). Write message to log file and exit. */

 userlog("Error from TPCexec(). Exiting.\n");

 exit(1);

 }

 if (success_file)

 {

 if (tsucclog(proc_no,account_no,teller_no,branch_no,amount,balance))

 exit (1);

 }

 xact->balance = balance; /* Return new account balance to client. */

 /* Return success to client. */

 tpreturn (TPSUCCESS, 0, (char *)xact, sizeof (struct xactinfo), 0);

}

TPCA2 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA3 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA4 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA5 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA6 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA7 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA8 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA9 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA10 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA11 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA12 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA13 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA14 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA15 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA16 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA17 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA18 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA19 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA20 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA21 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA22 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA23 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA24 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA25 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA26 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA27 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA28 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA29 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA30 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA31 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA32 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA33 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

A-10 TPC Benchmark™ A Full Disclosure

TPCA34 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA35 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA36 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA37 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA38 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA39 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA40 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA41 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA42 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA43 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA44 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA45 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA46 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA47 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA48 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA49 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

TPCA50 (msg) TPSVCINFO *msg; { return (TPCA1 (msg)); }

ab_trans.c:

/*==+

 | Copyright (c) 1992 Oracle Corp, Belmont, CA |

 | UNIX PERFORMANCE GROUP |

 | All Rights Reserved |

 +==*/

#include <stdio.h>

/*

** Global variables.

*/

extern long account_no; /* Account id to update */

extern long branch_no; /* Branch id to update */

extern long teller_no; /* Teller id to update */

extern long amount; /* Amount added to the balance */

extern double balance; /* New balance of the account record */

extern char * uid; /* Database user name and password */

extern int retries; /* Number of retries in the discrete transaction */

/*

** Oracle variable type definitions.

*/

#define SQLT_CHR 1 /* (ORANET TYPE) character string */

#define SQLT_NUM 2 /* (ORANET TYPE) oracle numeric */

#define SQLT_INT 3 /* (ORANET TYPE) integer */

#define SQLT_FLT 4 /* (ORANET TYPE) Floating point number */

#define SQLT_RID 11 /* rowid */

TPC Benchmark™ A Full Disclosure A-11

#define SQLT_DAT 12 /* date in oracle format */

/*

** Oracle cursor structure.

*/

struct csrdef

{

 short csrrc; /* return code */

 unsigned short csrft; /* function type */

 unsigned long csrrpc; /* rows processed count */

 unsigned short csrpeo; /* parse error offset */

 unsigned char csrfc; /* function code */

 unsigned char csrfil; /* filler */

 unsigned short csrarc; /* reserved, private */

 unsigned char csrwrn; /* warning flags */

 unsigned char csrflg; /* error flags */

 /* *** Operating system dependent *** */

 unsigned int csrcn; /* cursor number */

 struct { /* rowid structure */

 struct {

 unsigned long tidtrba; /* rba of first blockof table */

 unsigned short tidpid; /* partition id of table */

 unsigned char tidtbl; /* table id of table */

 } ridtid;

 unsigned long ridbrba; /* rba of datablock */

 unsigned short ridsqn; /* sequence number of row in block */

 } csrrid;

 unsigned int csrose; /* os dependent error code */

 unsigned char csrchk; /* check byte */

 unsigned char crsfill[26]; /* private, reserved fill */

};

typedef struct csrdef csrdef;

typedef struct csrdef ldadef;

void errrpt();

ldadef tpclda;

char tpchda[256];

#define SQLTXT \

"\

begin\

 dbms_transaction.begin_discrete_transaction;\

 loop begin\

 update account\

 set account_balance = account_balance + :dlta\

 where account_id = :acct;\

 insert into history values\

 (:tell, :bran, :acct, :dlta, sysdate,\

A-12 TPC Benchmark™ A Full Disclosure

 ’%05d-678901234567890123456789012345678’);\

 update teller\

 set teller_balance = teller_balance + :dlta\

 where teller_id = :tell;\

 update branch\

 set branch_balance = branch_balance + :dlta\

 where branch_id = :bran;\

 commit;\

 :bala := tpcab_pack.account_bal;\

 exit;\

 exception\

 when dbms_transaction.discrete_transaction_failed or \

 dbms_transaction.consistent_read_failure then\

 rollback;\

 :retr := :retr + 1;\

 end;\

 end loop;\

end;\

"

csrdef * csr; /* Cursor */

/*

** TPCinit: perform database initialization. Log on to the database.

** Parse the transaction. Bind the transaction variables.

** Return 0 on success, -1 on failure.

*/

TPCinit(proc_no)

int proc_no;

{

 char sqlbuf[1024];

 /*

 ** Log on to the database

 */

 if (orlon(&tpclda, tpchda, uid, -1, (char *) -1, -1, 0))

 {

 errrpt(&tpclda);

 return -1;

 }

 if (ocicof(&tpclda))

 {

 errrpt(&tpclda);

 return -1;

 }

TPC Benchmark™ A Full Disclosure A-13

 /* Allocate cursor */

 csr = (csrdef *)malloc(sizeof(csrdef));

 if (csr == (csrdef *)0)

 {

 fprintf(stderr, "Error: TPCinit(): 0 returned by malloc\n");

 return -1;

 }

 /* Open cursor */

 if (ociope(csr, &tpclda, (char *)0, 0, -1, uid, -1))

 {

 errrpt(csr);

 return -1;

 }

 sprintf(sqlbuf, SQLTXT, proc_no);

 /* Parse sql statement */

 if (osql3(csr, sqlbuf, -1))

 {

 errrpt(csr);

 return -1;

 }

 /* Bind variables */

 if (obndrv(csr, ":ACCT", -1, &account_no, sizeof(account_no), SQLT_INT,

 -1, (short *) -1, (char *) -1, -1, -1))

 {

 errrpt(csr);

 return -1;

 }

 if (obndrv(csr, ":BALA", -1, &balance, sizeof(balance), SQLT_FLT,

 -1, (short *) -1, (char *) -1, -1, -1))

 {

 errrpt(csr);

 return -1;

 }

 if (obndrv(csr, ":BRAN", -1, &branch_no, sizeof(branch_no), SQLT_INT,

 -1, (short *) -1, (char *) -1, -1, -1))

 {

 errrpt(csr);

 return -1;

 }

 if (obndrv(csr, ":DLTA", -1, &amount, sizeof(amount), SQLT_INT,

 -1, (short *) -1, (char *) -1, -1, -1))

 {

A-14 TPC Benchmark™ A Full Disclosure

 errrpt(csr);

 return -1;

 }

 if (obndrv(csr, ":TELL", -1, &teller_no, sizeof(teller_no), SQLT_INT,

 -1, (short *) -1, (char *) -1, -1, -1))

 {

 errrpt(csr);

 return -1;

 }

 if (obndrv(csr, ":RETR", -1, &retries, sizeof(retries), SQLT_INT,

 -1, (short *) -1, (char *) -1, -1, -1))

 {

 errrpt(csr);

 return -1;

 }

 return 0;

}

/*

** TPCexec: Execute the transaction.

** Return 0 on success, -1 on failure.

*/

TPCexec()

{

 char msg[2048];

 if (ociexe(csr))

 {

 if (csr->csrrc)

 {

 (void) ocierr(csr, csr->csrrc, msg, 2048);

 (void) fprintf(stderr, "%s\n", msg);

 }

 orol(&tpclda);

 return -1;

 }

 return 0;

}

/*

** TPCexit: Close cursor and log off database.

** Return 0 on success, -1 on failure.

*/

TPCexit()

{

 /* Close cursor */

 if (ociclo(csr))

 errrpt(csr);

TPC Benchmark™ A Full Disclosure A-15

 /* Free cursor */

 free(csr);

 /* Log off database */

 ocilof(&tpclda);

 return 0;

}

A-16 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure B-1

Appendix B: Database Definition and
Load

The following Bourne shell scripts, “C” code and SQL scripts were used to define, create
and load the Account, Teller, Branch and History tables.

The shell script that creates the database uses logical volumes for the Oracle data files.
The mapping between logical volumes and the disk partitions are listed before the ABTH
Table Sample Data later in Appendix B.

The following shell script calls Oracle’s SQL interpreter to handle various SQL state-
ments. It creates the database.

cht_bld2200TPS.cluster

#==+
Copyright (c) 1993 Oracle Corp, Belmont, CA |
UNIX PERFORMANCE GROUP |
All Rights Reserved |
#==+
BENCH_HOME=$ORACLE_HOME/bench
TPCAB_SQL=$BENCH_HOME/tpc/tpcab/sql
TPCAB_ADMIN=$BENCH_HOME/tpc/tpcab/admin
GEN_SQL=$BENCH_HOME/gen/sql

MULT=500

echo “creating datbase”
date

sqldba <<!
set echo on
connect internal
startup pfile=$TPCAB_ADMIN/p_create_cht.ora nomount
create database tpcb controlfile reuse

 maxdatafiles 200
 datafile ‘/tpc_db/orasys’ size 850M reuse
 logfile ‘/tpc_db/log0’ size 900M reuse,

 ‘/tpc_db/log1’ size 900M reuse;

exit
!

echo “done creating datbase”
date

sqldba <<!

File Definitions for
ABTH Tables

B-2 TPC Benchmark™ A Full Disclosure

 connect internal
 create rollback segment s1 storage (initial 100k minextents 2 next 10k);
 create rollback segment s2 storage (initial 100k minextents 2 next 10k);
 create rollback segment s3 storage (initial 100k minextents 2 next create
rollback segment s4 storage (initial 100k minextents 2 next 10k);
 create rollback segment s5 storage (initial 100k minextents 2 next 10k);
 create rollback segment s6 storage (initial 100k minextents 2 next 10k);
 create rollback segment s7 storage (initial 100k minextents 2 next 10k);
 create rollback segment s8 storage (initial 100k minextents 2 next 10k);
 create rollback segment s9 storage (initial 100k minextents 2 next 10k);
 create rollback segment s10 storage (initial 100k minextents 2 next 10k);
 create rollback segment s11 storage (initial 100k minextents 2 next 10k);
 create rollback segment s12 storage (initial 100k minextents 2 next 10k);
 create rollback segment s13 storage (initial 100k minextents 2 next 10k);
 create rollback segment s14 storage (initial 100k minextents 2 next 10k);
 create rollback segment s15 storage (initial 100k minextents 2 next 10k);
 create rollback segment s16 storage (initial 100k minextents 2 next 10k);
 create rollback segment s17 storage (initial 100k minextents 2 next 10k);
 create rollback segment s18 storage (initial 100k minextents 2 next 10k);
 create rollback segment s19 storage (initial 100k minextents 2 next 10k);
 create rollback segment s20 storage (initial 100k minextents 2 next 10k);
 create rollback segment s21 storage (initial 100k minextents 2 next 10k);
 create rollback segment s22 storage (initial 100k minextents 2 next 10k);
 create rollback segment s23 storage (initial 100k minextents 2 next 10k);
 create rollback segment s24 storage (initial 100k minextents 2 next 10k);
 create rollback segment s25 storage (initial 100k minextents 2 next 10k);
 create rollback segment s26 storage (initial 100k minextents 2 next 10k);
 create rollback segment s27 storage (initial 100k minextents 2 next 10k);
 shutdown
 connect internal
 startup pfile=$TPCAB_ADMIN/p_build_cht.ora
 exit
!

#
Create acct tablespace which will hold account table
#
Create hist tablespace to hold history table
#
#

echo “creating tablespaces”
date

sqldba lmode=y <<!
connect internal

create tablespace acct datafile ‘/tpc_db/acct0’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct1’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct2’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct3’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct4’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct5’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct6’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct7’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct8’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct9’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct10’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct11’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct12’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct13’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct14’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct15’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct16’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct17’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct18’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct19’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct20’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct21’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct22’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct23’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct24’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct25’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct26’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct27’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct28’ size 500M reuse;

B-3 TPC Benchmark™ A Full Disclosure

alter tablespace acct add datafile ‘/tpc_db/acct29’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct30’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct31’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct32’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct33’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct34’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct35’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct36’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct37’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct38’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct39’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct40’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct41’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct42’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct43’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct44’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct45’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct46’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct47’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct48’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct49’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct50’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct51’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct52’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct53’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct54’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct55’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct56’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct57’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct58’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct59’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct60’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct61’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct62’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct63’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct64’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct65’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct66’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct67’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct68’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct69’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct70’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct71’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct72’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct73’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct74’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct75’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct76’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct77’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct78’ size 500M reuse;
alter tablespace acct add datafile ‘/tpc_db/acct79’ size 500M reuse;

shutdown
connect internal
startup pfile=$TPCAB_ADMIN/p_build_cht.ora

 exit;
!

sqldba lmode=y <<! > bld2200.cat.out
set echo off;
connect sys/change_on_install
@?/rdbms/admin/catalog;
@?/rdbms/admin/catexp;
@?/rdbms/admin/catproc;
exit;

!

echo “creating account table and cluster”
date

sqldba <<!

B-4 TPC Benchmark™ A Full Disclosure

 CONNECT system/manager;
 GRANT CONNECT,RESOURCE,UNLIMITED TABLESPACE TO tpcb IDENTIFIED BY
tpcb;
 CONNECT tpcb/tpcb;
 DROP CLUSTER acluster INCLUDING TABLES;
 CREATE CLUSTER acluster
 (
 account_id number(10,0)
)
 HASHKEYS 220000000
 HASH IS account_id
 SIZE 138
 INITRANS 2
 PCTFREE 0
 TABLESPACE acct
 STORAGE
 (
 INITIAL 400M
 NEXT 400M
 PCTINCREASE 0
 MINEXTENTS 80
);
 CREATE TABLE account
 (
 account_id NUMBER(10,0),
 branch_id NUMBER,
 account_balance NUMBER,
 filler VARCHAR2(97)
)
 CLUSTER acluster(account_id);
 EXIT;
!
date

The following is a shell script that calls Oracle’s SQL interpreter to handle various SQL
statements. It fills the database with initial data, creates tables used by the benchmark, and
creates a trigger used interally by Oracle.

cht_bld2200TPS.continue

BENCH_HOME=$ORACLE_HOME/bench
TPCAB_SQL=$BENCH_HOME/tpc/tpcab/sql
TPCAB_ADMIN=$BENCH_HOME/tpc/tpcab/admin
GEN_SQL=$BENCH_HOME/gen/sql

MULT=500

echo “loading account”
date

runon 0 ab_load a 5000000 1 > load0.out &
runon 1 ab_load a 5000000 5000001 > load1.out &
runon 2 ab_load a 5000000 10000001 > load2.out &
runon 3 ab_load a 5000000 15000001 > load3.out &
runon 4 ab_load a 5000000 20000001 > load4.out &
runon 5 ab_load a 5000000 25000001 > load5.out &
runon 6 ab_load a 5000000 30000001 > load6.out &
runon 7 ab_load a 5000000 35000001 > load7.out &
runon 8 ab_load a 5000000 40000001 > load8.out &
runon 9 ab_load a 5000000 45000001 > load9.out &

runon 10 ab_load a 5000000 50000001 > loada.out &
runon 11 ab_load a 5000000 55000001 > loadb.out &
runon 12 ab_load a 5000000 60000001 > loadc.out &
runon 13 ab_load a 5000000 65000001 > loadd.out &
runon 14 ab_load a 5000000 70000001 > loade.out &
runon 15 ab_load a 5000000 75000001 > loadf.out &
runon 16 ab_load a 5000000 80000001 > loadg.out &
runon 1 ab_load a 5000000 85000001 > loadh.out &

B-5 TPC Benchmark™ A Full Disclosure

runon 2 ab_load a 5000000 90000001 > loadi.out &
runon 3 ab_load a 5000000 95000001 > loadj.out &

runon 4 ab_load a 5000000 100000001 > loadk.out &
runon 5 ab_load a 5000000 105000001 > loadl.out &
runon 6 ab_load a 5000000 110000001 > loadm.out &
runon 7 ab_load a 5000000 115000001 > loadn.out &
runon 8 ab_load a 5000000 120000001 > loado.out &
runon 9 ab_load a 5000000 125000001 > loadp.out &
runon 10 ab_load a 5000000 130000001 > loadq.out &
wait
runon 12 ab_load a 5000000 135000001 > loadr.out &
runon 13 ab_load a 5000000 140000001 > loads.out &
runon 14 ab_load a 5000000 145000001 > loadt.out &

runon 15 ab_load a 5000000 150000001 > loadu.out &
runon 16 ab_load a 5000000 155000001 > loadv.out &
runon 0 ab_load a 5000000 160000001 > loadw.out &
runon 1 ab_load a 5000000 165000001 > loadx.out &
runon 2 ab_load a 5000000 170000001 > loady.out &
runon 3 ab_load a 5000000 175000001 > loadz.out &
runon 4 ab_load a 5000000 180000001 > loadA.out &
runon 5 ab_load a 5000000 185000001 > loadB.out &
runon 6 ab_load a 5000000 190000001 > loadC.out &
runon 7 ab_load a 5000000 195000001 > loadD.out &

runon 8 ab_load a 5000000 200000001 > loadE.out &
runon 9 ab_load a 5000000 205000001 > loadF.out &
runon 10 ab_load a 5000000 210000001 > loadG.out &
runon 11 ab_load a 5000000 215000001 > loadH.out &
wait

echo “done loading account”
date

echo “building teller and branch tables”
date
sqldba <<!

 CONNECT tpcb/tpcb

 CREATE TABLE teller (
 teller_id NUMBER(10,0),
 branch_id NUMBER(10,0),
 teller_balance NUMBER(10,0),
 filler CHAR(97)
)
 PCTFREE 40
 PCTUSED 4
 STORAGE (initial 210K next 210K pctincrease 0 minextents 48);

 CREATE TABLE branch
 (
 branch_id NUMBER,
 branch_balance NUMBER,
 filler CHAR(98)
)
 PCTFREE 90
 PCTUSED 4
 STORAGE (initial 40K next 40K pctincrease 0 minextents 121);

 EXIT;
!

runon 1 ab_load t 22000
runon 1 ab_load b 2200
echo “done loading branch and teller”
echo “begin rollback segment creation”

Create tables for processing benchmark results

B-6 TPC Benchmark™ A Full Disclosure

#
sqlplus sys/change_on_install @$GEN_SQL/orst_cre
sqlplus sys/change_on_install @$TPCAB_SQL/ab_stat
sqlplus sys/change_on_install @$GEN_SQL/pst_c

##
Create trigger
##
sqldba <<!
 connect tpcb/tpcb
 @$TPCAB_SQL/ab_trig
 exit
!

The following shell script calls Oracle’s SQL interpreter to handle various SQL state-
ments. It allocates space for the history file.

cht.history.alloc
#!/bin/sh
date
sqldba lmode=y << !

connect internal;
 drop tablespace hist0 including contents;
 drop tablespace hist1 including contents;
 drop tablespace hist2 including contents;
 drop tablespace hist3 including contents;
 drop tablespace hist4 including contents;
 drop tablespace hist5 including contents;
 drop tablespace hist6 including contents;

drop tablespace histalloc including contents;
create tablespace histalloc datafile ‘/tpc_db/multhist0’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist1’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist2’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist3’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist4’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist5’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist6’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist7’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist8’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist9’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist10’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist11’ size 90M reuse;
 alter tablespace histalloc add datafile ‘/tpc_db/multhist12’ size 90M reuse;

exit;

The following C source sode is executed by cht_bld2200TPS.continue to fill in the data-
base.

ab_load.c:

/*==+
 | Copyright (c) 1992 Oracle Corp, Belmont, CA |
 | All Rights Reserved |
 +==+
 | FILENAME
 | ab_load.c
 | DESCRIPTION
 | load database tables for TPC-A or -B benchmark.
 |
 +==*/

typedef char b1;
typedef short b2;
typedef int b4;

typedef unsigned char ub1;
typedef unsigned short ub2;
typedef unsigned int ub4;

typedef ub1 text;

B-7 TPC Benchmark™ A Full Disclosure

#include <stdio.h>

/* input data types */
#define SQLT_CHR 1 /* (ORANET TYPE) character string */
#define SQLT_INT 3 /* (ORANET TYPE) integer */

/*
** Oracle cursor structure.
*/
struct csrdef
{
 short csrrc; /* return code */
 unsigned short csrft; /* function type */
 unsigned long csrrpc;/* rows processed count */
 unsigned short csrpeo; /* parse error offset */
 unsigned char csrfc; /* function code */
 unsigned char csrfil; /* filler */
 unsigned short csrarc; /* reserved, private */
 unsigned char csrwrn; /* warning flags */
 unsigned char csrflg; /* error flags */
 /* *** Operating system dependent *** */
 unsigned int csrcn; /* cursor number */
 struct { /* rowid structure */
 struct {
 unsigned long tidtrba;/* rba of first blockof table */
 unsigned short tidpid; /* partition id of table */
 unsigned char tidtbl; /* table id of table */
 } ridtid;
 unsigned long ridbrba;/* rba of datablock */
 unsigned short ridsqn; /* sequence number of row in block
*/
 } csrrid;
 unsigned int csrose; /* os dependent error code */
 unsigned char csrchk; /* check byte */
 unsigned char crsfill[26]; /* private, reserved fill */
};

typedef struct csrdef csrdef;
typedef struct csrdef ldadef;

ldadef tpclda;
char tpchda[256];

/* SQL statements */

#define SQLTXT_ACCT \
“INSERT INTO account(account_id, account_balance, branch_id, filler)\
 VALUES (:1, :2, :3, :4)”

#define SQLTXT_TELLER \
“INSERT INTO teller(teller_id, teller_balance, branch_id, filler)\
 VALUES (:1, :2, :3, :4)”

#define SQLTXT_BRANCH \
“INSERT INTO branch(branch_id, branch_balance, filler)\
 VALUES (:1, :2, :3)”

/* SQL cursor */

csrdef * csr;

#define BRANCH 1 /* Table IDs; command line arg mapped here */
#define TELLER 2
#define ACCOUNT 3

#define LOOP 100 /* Number of rows to insert before committing. */

#define INITBAL -1111111111 /* Init balance. Use all 10 digits */

#define PAD97 \
“12345678901234567890123456789012345678901234567890\

B-8 TPC Benchmark™ A Full Disclosure

12345678901234567890123456789012345678901234567”

#define PAD98 \
“12345678901234567890123456789012345678901234567890\
123456789012345678901234567890123456789012345678”

#define MIN(a,b) ((a) < (b) ? (a) : (b))

/*==+
 | ROUTINE NAME
 | main
 | DESCRIPTION
 | main routine
 | ARGUMENTS
 | tpcbload <tablename> <#_rows_to_insert> [#_row_to_start]
 +==*/

main(argc, argv)
 int argc;
 char *argv[];
{
 char * uid = “tpcb/tpcb”;
 char * upasswd = “tpcb”;
 int tellbran; /* branch to which teller belongs */
 int acctbran; /* branch to which account belongs */
 int init_bal;
 char rowpad[128];
 int loop;/* for array inserts */
 char sqlbuf[256];
 int i, j;
 int which_table = 0; /* 1=acct, 2=teller, 3=branch */
 long nrows; /* # of rows to insert */
 long row; /* row/key-value counter */
 long start; /* starting key value */
 long end; /* ending key value */
 int loopcount; /* insert loop counter */
 int err = 0;

 void errrpt();
 double begin_time, end_time;
 double begin_cpu, end_cpu;
 static double gettime(), getcpu();

 /*
 ** Parse command line -- look for specific table to load.
 */

 if (argc < 3) usage();

 /*
 ** argv[1]: table name.
 */

 switch (argv[1][0])
 {
 case ‘a’:/* account table */

 which_table = ACCOUNT;
 break;

 case ‘t’:/* teller table */
 which_table = TELLER;
 break;

 case ‘b’:/* branch table */
 which_table = BRANCH;
 break;

 default:
 usage();
 break;

 }

 /*
 ** argv[2]: # of rows to insert.
 */

B-9 TPC Benchmark™ A Full Disclosure

 if ((nrows = atoi(argv[2])) < 1)
 {
 fprintf(stderr, “Invalid number of rows to insert: ‘%d’\n”,
nrows);
 usage();
 }

 /*
 ** argv[3]: starting row # (optional).
 */

 if (argc > 3)
 {
 if ((start = atoi(argv[3])) < 1)
 {

 fprintf(stderr, “Invalid start offset: ‘%d’\n”, start);
 exit();

 }
 }
 else start = 1;
 end = start + nrows - 1;

 /*
 ** Log on to the database
 */
 if (orlon(&tpclda, tpchda, uid, -1, (char *) -1, -1, 0))

 {
 errrpt(&tpclda);
 return -1;
 }

 if (ocicof(&tpclda))
 {
 errrpt(&tpclda);
 return -1;
 }

 csr = (csrdef *)malloc(sizeof(csrdef));

 if (csr == (csrdef *)0)
 {
 fprintf(stderr, “Error: 0 returned by malloc\n”);
 exit(-1);
 }

 if (ociope(csr, &tpclda, (char *)0, 0, -1, uid, -1))
 errrpt(csr);

 /* prepare the account insert cursor */
 if (which_table == ACCOUNT)
 {
 sprintf(sqlbuf, SQLTXT_ACCT);

 init_bal = INITBAL;

 strcpy(rowpad, PAD97);

 if (osql3(csr, sqlbuf, -1))
 errrpt(csr);

 if (obndrn(csr, 1, &row, sizeof(row), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 2, &init_bal, sizeof(init_bal), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 3, &acctbran, sizeof(acctbran), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

B-10 TPC Benchmark™ A Full Disclosure

 if (obndrn(csr, 4, rowpad, strlen(rowpad), SQLT_CHR, -1,
 (short *)NULL, -1))
 errrpt(csr);

 printf(“Loading ACCOUNT table with %d rows starting with %d
...\n “,

 nrows, start);
 }

 if (which_table == TELLER)
 {
 sprintf(sqlbuf, SQLTXT_TELLER);
 init_bal = INITBAL;
 strcpy(rowpad, PAD97);

 if (osql3(csr, sqlbuf, -1))
 errrpt(csr);

 if (obndrn(csr, 1, &row, sizeof(row), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 2, &init_bal, sizeof(init_bal), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 3, &tellbran, sizeof(tellbran), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 4, rowpad, strlen(rowpad), SQLT_CHR, -1,
 (short *)NULL, -1))
 errrpt(csr);

 printf(“Loading TELLER table with %d rows starting with %d
...\n “,

 nrows, start);
 }

 if (which_table == BRANCH)
 {
 sprintf(sqlbuf, SQLTXT_BRANCH);
 init_bal = INITBAL;
 strcpy(rowpad, PAD98);

 if (osql3(csr, sqlbuf, -1))
 errrpt(csr);

 if (obndrn(csr, 1, &row, sizeof(row), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 2, &init_bal, sizeof(init_bal), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 3, rowpad, strlen(rowpad), SQLT_CHR, -1,
 (short *)NULL, -1))
 errrpt(csr);

 printf(“Loading TELLER table with %d rows starting with %d
...\n “,

 nrows, start);
 }

 begin_time = gettime();
 begin_cpu = getcpu();

 loopcount = 0;
 row = start;

B-11 TPC Benchmark™ A Full Disclosure

 while (row <= end)
 {
 loop = MIN(LOOP, end - row + 1);

 for (i = 0; i < loop; i++, row++)
 {

 acctbran = ((row - 1) / 100000) + 1;
 tellbran = ((row - 1) / 10) + 1;

 if (err = oexec(csr))
 {
 orol(&tpclda);
 errrpt(csr);
 }

 }

 if (err = ocom(&tpclda))
 {

 orol(&tpclda);
 errrpt(&tpclda);

 }

 if ((++loopcount) % 50)
 printf(“.”);

 else
 printf(“ row %d committed.\n “, row - 1);

 }

 end_time = gettime();
 end_cpu = getcpu();

 printf(“Load completed. %d records processed.\n”, nrows);
 printf(“ in %10.2f real, %10.2f cpu.\n”,
 end_time-begin_time, end_cpu-begin_cpu);

 if (ociclo(csr))
 errrpt(csr);

 free(csr);

 ocilof(&tpclda);

 exit(0);

}

usage()
{
 printf(“\n”);
 printf(
 “Usage: tpcbload <table_name> <#_rows_to_insert>
[starting_row_#]\n”);
 printf(“\n”);
 exit(1);
}

void errrpt(cur)
 csrdef *cur;
{
 char msg[2048];

 if (cur->csrrc)
 {
 (void) ocierr(cur, cur->csrrc, msg, 2048);
 (void) fprintf(stderr, “%s\n”, msg);
 }
 exit(0);
}

B-12 TPC Benchmark™ A Full Disclosure

This is an input file to Oracle’s SQL*PLUS program. It recreates the history file before
each benchmark run.

ab_hist.sql
!
date
tpcb/tpcb

rem
rem ==+
rem Copyright (c) 1991 Oracle Corp, Belmont, CA |
rem All Rights Reserved |
rem ==+
rem FILENAME
rem ab_hist.sql
rem DESCRIPTION
rem ==*/
rem

 DROP TABLE history;
 DROP VIEW history;

rem the following will fail
 create table history_coalesce (x number)
 tablespace hist
 storage (initial 2000M);

 CREATE TABLE history
 (
 teller_id NUMBER,
 branch_id NUMBER,
 account_id NUMBER,
 amount NUMBER,
 timestamp DATE,
 filler VARCHAR2(39)
)
 tablespace histalloc
 storage (initial 4k
 minextents 1
 pctincrease 0
 freelist groups 13
 freelists 17
) pctfree 0;
 alter table history allocate extent (size 88M freelist group 1);
 alter table history allocate extent (size 88M freelist group 2);
 alter table history allocate extent (size 88M freelist group 3);
 alter table history allocate extent (size 88M freelist group 4);
 alter table history allocate extent (size 88M freelist group 5);
 alter table history allocate extent (size 88M freelist group 6);
 alter table history allocate extent (size 88M freelist group 7);
 alter table history allocate extent (size 88M freelist group 8);
 alter table history allocate extent (size 88M freelist group 9);
 alter table history allocate extent (size 88M freelist group 10);
 alter table history allocate extent (size 88M freelist group 11);
 alter table history allocate extent (size 88M freelist group 12);
 alter table history allocate extent (size 88M freelist group 13);

 EXIT;

ab_trig.sql

rem
rem ==+
rem Copyright (c) 1992 Oracle Corp, Belmont, CA |
rem UNIX PERFORMANCE GROUP |
rem All Rights Reserved |
rem ==+
rem FILENAME
rem ab_trig.sql

B-13 TPC Benchmark™ A Full Disclosure

rem DESCRIPTION
rem Create Trigger & Package for TPC A&B
rem ==*/
rem
drop package tpcab_pack;

create package tpcab_pack is
 account_bal number;
 end;
/

drop trigger tpcab_trig;

create trigger tpcab_trig after update on account for each row
begin tpcab_pack.account_bal := :new.account_balance; end;
/

An Oracle data or log file can be an Irix Logical Volume which is striped over two disk
partitions.

The following table shows the mapping between Oracle data or log file (and its table
space), Irix Logical Volume, and Irix disk partitions.

Partition Type Start Blk End Blk Size Use
(MB) Table

Space Data File
dks110d1s12 lv3.1 4128 692127 336 acct acct1
dks110d2s12 lv14.0 4128 692127 336 acct acct14
dks110d3s12 lv25.0 4128 692127 336 acct acct25
dks110d4s12 lv35.1 4128 692127 336 acct acct35
dks110d5s12 lv46.0 4128 692127 336 acct acct46
dks110d6s12 lv56.1 4128 692127 336 acct acct56
dks110d7s12 lv67.0 4128 692127 336 acct acct67
dks110d8s12 lv77.1 4128 692127 336 acct acct77
dks111d1s12 lv3.0 4128 692127 336 acct acct3
dks111d2s12 lv13.1 4128 692127 336 acct acct13
dks111d3s12 lv24.1 4128 692127 336 acct acct24
dks111d4s12 lv35.0 4128 692127 336 acct acct35
dks111d5s12 lv45.1 4128 692127 336 acct acct45
dks111d6s12 lv56.0 4128 692127 336 acct acct56
dks111d7s12 lv66.1 4128 692127 336 acct acct66
dks111d8s12 lv77.0 4128 692127 336 acct acct77
dks113d1s12 lv2.0 4128 692127 336 acct acct2
dks113d2s12 lv12.1 4128 692127 336 acct acct12
dks113d3s12 lv23.1 4128 692127 336 acct acct23
dks113d4s12 lv34.0 4128 692127 336 acct acct34
dks113d5s12 lv44.1 4128 692127 336 acct acct44
dks113d6s12 lv55.0 4128 692127 336 acct acct55
dks113d7s12 lv65.1 4128 692127 336 acct acct65
dks113d8s12 lv76.0 4128 692127 336 acct acct76
dks114d1s12 lv1.1 4128 692127 336 acct acct1
dks114d2s12 lv12.0 4128 692127 336 acct acct12
dks114d3s12 lv23.0 4128 692127 336 acct acct23
dks114d4s12 lv33.1 4128 692127 336 acct acct33
dks114d5s12 lv44.0 4128 692127 336 acct acct44
dks114d6s12 lv54.1 4128 692127 336 acct acct54
dks114d7s12 lv65.0 4128 692127 336 acct acct65
dks114d8s12 lv75.1 4128 692127 336 acct acct75
dks115d1s12 lv1.0 4128 692127 336 acct acct1
dks115d2s12 lv11.1 4128 692127 336 acct acct11
dks115d3s12 lv22.1 4128 692127 336 acct acct22
dks115d4s12 lv33.0 4128 692127 336 acct acct33
dks115d5s12 lv43.1 4128 692127 336 acct acct43
dks115d6s12 lv54.0 4128 692127 336 acct acct54
dks115d7s12 lv64.1 4128 692127 336 acct acct64
dks115d8s12 lv75.0 4128 692127 336 acct acct75
dks116d1s12 lv0.1 4128 692127 336 acct acct0
dks116d2s12 lv11.0 4128 692127 336 acct acct11

B-14 TPC Benchmark™ A Full Disclosure

dks116d3s12 lv22.0 4128 692127 336 acct acct22
dks116d4s12 lv32.1 4128 692127 336 acct acct32
dks116d5s12 lv43.0 4128 692127 336 acct acct43
dks116d6s12 lv53.1 4128 692127 336 acct acct53
dks116d7s12 lv64.0 4128 692127 336 acct acct64
dks116d8s12 lv74.1 4128 692127 336 acct acct74
dks116d9s7 lv80.0 4128 3932607 1918.2 log0.lv
dks116d10s7 lv81.0 4128 3932607 1918.2 log1.lv
dks116d11s7 lv82.0 4128 3932607 1918.2 mirror_log0.lv
dks116d12s7 lv83.0 4128 3932607 1918.2 mirror_log1.lv
dks117d1s12 lv0.0 4128 692127 336 acct acct0
dks117d2s12 lv10.1 4128 692127 336 acct acct10
dks117d3s12 lv21.1 4128 692127 336 acct acct21
dks117d4s12 lv32.0 4128 692127 336 acct acct32
dks117d5s12 lv42.1 4128 692127 336 acct acct42
dks117d6s12 lv53.0 4128 692127 336 acct acct53
dks117d7s12 lv63.1 4128 692127 336 acct acct63
dks117d8s12 lv74.0 4128 692127 336 acct acct74
dks117d9s7 lv80.1 4128 3932607 1918.2 log0.lv
dks117d10s7 lv81.1 4128 3932607 1918.2 log1.lv
dks117d11s7 lv82.1 4128 3932607 1918.2 mirror_log0.lv
dks117d12s7 lv83.1 4128 3932607 1918.2 mirror_log1.lv
dks1d2s12 lv21.0 4128 692127 336 acct acct21
dks1d3s12 lv31.1 4128 692127 336 acct acct31
dks2d1s12 lv10.0 4128 692127 336 acct acct10
dks2d2s12 lv20.1 4128 692127 336 acct acct20
dks2d4s12 lv42.0 4128 692127 336 acct acct42
dks2d5s12 lv52.1 4128 692127 336 acct acct52
dks2d6s12 lv63.0 4128 692127 336 acct acct63
dks2d7s12 lv73.1 4128 692127 336 acct acct73
dks3d1s12 lv9.1 4128 692127 336 acct acct9
dks3d2s12 lv20.0 4128 692127 336 acct acct20
dks3d3s12 lv31.0 4128 692127 336 acct acct31
dks3d4s12 lv41.1 4128 692127 336 acct acct41
dks3d5s12 lv52.0 4128 692127 336 acct acct52
dks3d6s12 lv62.1 4128 692127 336 acct acct62
dks3d7s12 lv73.0 4128 692127 336 acct acct73
dks4d1s12 lv9.0 4128 692127 336 acct acct9
dks4d2s12 lv19.1 4128 692127 336 acct acct19
dks4d3s12 lv30.1 4128 692127 336 acct acct30
dks4d4s12 lv41.0 4128 692127 336 acct acct41
dks4d5s12 lv51.1 4128 692127 336 acct acct51
dks4d6s12 lv62.0 4128 692127 336 acct acct62
dks4d7s12 lv72.1 4128 692127 336 acct acct72
dks5d1s12 lv8.1 4128 692127 336 acct acct8
dks5d2s12 lv19.0 4128 692127 336 acct acct19
dks5d3s12 lv30.0 4128 692127 336 acct acct30
dks5d4s12 lv40.1 4128 692127 336 acct acct40
dks5d5s12 lv51.0 4128 692127 336 acct acct51
dks5d6s12 lv61.1 4128 692127 336 acct acct61
dks5d7s12 lv72.0 4128 692127 336 acct acct72
dks6d1s12 lv8.0 4128 692127 336 acct acct8
dks6d2s12 lv18.1 4128 692127 336 acct acct18
dks6d3s12 lv29.1 4128 692127 336 acct acct29
dks6d4s12 lv40.0 4128 692127 336 acct acct40
dks6d5s12 lv50.1 4128 692127 336 acct acct50
dks6d6s12 lv61.0 4128 692127 336 acct acct61
dks6d7s12 lv71.1 4128 692127 336 acct acct71
dks70d1s12 lv2.1 4128 692127 336 acct acct2
dks70d2s12 lv13.0 4128 692127 336 acct acct13
dks70d3s12 lv24.0 4128 692127 336 acct acct24
dks70d4s12 lv34.1 4128 692127 336 acct acct34
dks70d5s12 lv45.0 4128 692127 336 acct acct45
dks70d6s12 lv55.1 4128 692127 336 acct acct55
dks70d7s12 lv66.0 4128 692127 336 acct acct66
dks70d8s12 lv76.1 4128 692127 336 acct acct76
dks71d1s12 lv7.0 4128 692127 336 acct acct7
dks71d2s12 lv17.1 4128 692127 336 acct acct17
dks71d3s12 lv28.1 4128 692127 336 acct acct28
dks71d4s12 lv39.0 4128 692127 336 acct acct39
dks71d5s12 lv49.1 4128 692127 336 acct acct49
dks71d6s12 lv60.0 4128 692127 336 acct acct60

TPC Benchmark™ A Full Disclosure B-15

dks71d7s12 lv70.1 4128 692127 336 acct acct70
dks72d1s12 lv6.1 4128 692127 336 acct acct6
dks72d2s12 lv17.0 4128 692127 336 acct acct17
dks72d3s12 lv28.0 4128 692127 336 acct acct28
dks72d4s12 lv38.1 4128 692127 336 acct acct38
dks72d5s12 lv49.0 4128 692127 336 acct acct49
dks72d6s12 lv59.1 4128 692127 336 acct acct59
dks72d7s12 lv70.0 4128 692127 336 acct acct70
dks73d1s12 lv6.0 4128 692127 336 acct acct6
dks73d2s12 lv16.1 4128 692127 336 acct acct16
dks73d3s12 lv27.1 4128 692127 336 acct acct27
dks73d4s12 lv38.0 4128 692127 336 acct acct38
dks73d5s12 lv48.1 4128 692127 336 acct acct48
dks73d6s12 lv59.0 4128 692127 336 acct acct59
dks73d7s12 lv69.1 4128 692127 336 acct acct69
dks74d1s12 lv5.1 4128 692127 336 acct acct5
dks74d2s12 lv16.0 4128 692127 336 acct acct16
dks74d3s12 lv27.0 4128 692127 336 acct acct27
dks74d4s12 lv37.1 4128 692127 336 acct acct37
dks74d5s12 lv48.0 4128 692127 336 acct acct48
dks74d6s12 lv58.1 4128 692127 336 acct acct58
dks74d7s12 lv69.0 4128 692127 336 acct acct69
dks74d8s12 lv79.1 4128 692127 336 acct acct79
dks75d1s12 lv5.0 4128 692127 336 acct acct5
dks75d2s12 lv15.1 4128 692127 336 acct acct15
dks75d3s12 lv26.1 4128 692127 336 acct acct26
dks75d4s12 lv37.0 4128 692127 336 acct acct37
dks75d5s12 lv47.1 4128 692127 336 acct acct47
dks75d6s12 lv58.0 4128 692127 336 acct acct58
dks75d7s12 lv68.1 4128 692127 336 acct acct68
dks75d8s12 lv79.0 4128 692127 336 acct acct79
dks76d1s12 lv4.1 4128 692127 336 acct acct4
dks76d2s12 lv15.0 4128 692127 336 acct acct15
dks76d3s12 lv26.0 4128 692127 336 acct acct26
dks76d4s12 lv36.1 4128 692127 336 acct acct36
dks76d5s12 lv47.0 4128 692127 336 acct acct47
dks76d6s12 lv57.1 4128 692127 336 acct acct57
dks76d7s12 lv68.0 4128 692127 336 acct acct68
dks76d8s12 lv78.1 4128 692127 336 acct acct78
dks77d1s12 lv4.0 4128 692127 336 acct acct4
dks77d2s12 lv14.1 4128 692127 336 acct acct14
dks77d3s12 lv25.1 4128 692127 336 acct acct25
dks77d4s12 lv36.0 4128 692127 336 acct acct36
dks77d5s12 lv46.1 4128 692127 336 acct acct46
dks77d6s12 lv57.0 4128 692127 336 acct acct57
dks77d7s12 lv67.1 4128 692127 336 acct acct67
dks77d8s12 lv78.0 4128 692127 336 acct acct78
dks7d1s12 lv7.1 4128 692127 336 acct acct7
dks7d2s12 lv18.0 4128 692127 336 acct acct18
dks7d3s12 lv29.0 4128 692127 336 acct acct29
dks7d4s12 lv39.1 4128 692127 336 acct acct39
dks7d5s12 lv50.0 4128 692127 336 acct acct50
dks7d6s12 lv60.1 4128 692127 336 acct acct60
dks7d7s12 lv71.0 4128 692127 336 acct acct71

SQL> describe account
 Name Null? Type
 ------------------------------- -------- ----
 ACCOUNT_ID NUMBER(10)
 BRANCH_ID NUMBER
 ACCOUNT_BALANCE NUMBER
 FILLER VARCHAR2(97)

SQL> describe branch
 Name Null? Type
 ------------------------------- -------- ----
 BRANCH_ID NUMBER
 BRANCH_BALANCE NUMBER
 FILLER CHAR(98)

ABTH Table
Sample Data

B-16 TPC Benchmark™ A Full Disclosure

SQL> describe teller
 Name Null? Type
 ------------------------------- -------- ----
 TELLER_ID NUMBER(10)
 BRANCH_ID NUMBER(10)
 TELLER_BALANCE NUMBER(10)
 FILLER CHAR(97)

SQL> describe history
 Name Null? Type
 ------------------------------- -------- ----
 TELLER_ID NUMBER
 BRANCH_ID NUMBER
 ACCOUNT_ID NUMBER
 AMOUNT NUMBER
 TIMESTAMP DATE
 FILLER VARCHAR2(39)

SQL> set pagesize 500
SQL> select * from account where account_id < 15;

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

 1 1 -1.110E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 2 1 -1.112E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 3 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 4 1 -1.110E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 5 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 6 1 -1.109E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 7 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 8 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 9 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 10 1 -1.113E+09

TPC Benchmark™ A Full Disclosure B-17

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 11 1 -1.112E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 12 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 13 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 14 1 -1.112E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

14 rows selected.

SQL> select * from teller where teller_id < 15;

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

 1 1 -723213
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 2 1 -1952190
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 3 1 2538121
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 4 1 -817169
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 5 1 -193256
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 6 1 -1832126
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 7 1 2133615
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 8 1 1621276
1234567890123456789012345678901234567890123456789012345678901234567890123

B-18 TPC Benchmark™ A Full Disclosure

4567890
12345678901234567

 9 1 1170073
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 10 1 2115744
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 11 2 -100531
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 12 2 -1333344
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 13 2 3929180
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 14 2 1221545
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

14 rows selected.

SQL> select * from branch where branch_id < 15;

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

 1 4060875
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 2 2809800
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 3 4339114
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 4 -2295079
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 5 -11583540
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 6 80098
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

TPC Benchmark™ A Full Disclosure B-19

 7 -1713340
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 8 4348028
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 9 3095917
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 10 -5262051
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 11 4630804
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 12 -1648514
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 13 -823584
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 14 5270204
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

14 rows selected.

SQL> select * from history where rownum < 15;

 TELLER_ID BRANCH_ID ACCOUNT_ID AMOUNT TIMESTAMP
---------- ---------- ---------- ---------- ---------
FILLER

 700 70 6981710 40612 13-APR-94
00001-678901234567890123456789012345678

 12 2 173008 734149 13-APR-94
00001-678901234567890123456789012345678

 14 2 145200374 -367215 13-APR-94
00001-678901234567890123456789012345678

 734 74 206199128 -463190 13-APR-94
00001-678901234567890123456789012345678

 722 73 7202599 -148774 13-APR-94
00001-678901234567890123456789012345678

 36 4 342972 -618940 13-APR-94
00001-678901234567890123456789012345678

 715 72 7149143 -249049 13-APR-94
00001-678901234567890123456789012345678

B-20 TPC Benchmark™ A Full Disclosure

 732 74 28021625 483497 13-APR-94
00001-678901234567890123456789012345678

 10 1 54990 437546 13-APR-94
00001-678901234567890123456789012345678

 15401 1541 93221027 478443 13-APR-94
00001-678901234567890123456789012345678

 701 71 7034285 386957 13-APR-94
00001-678901234567890123456789012345678

 36 4 318489 96450 13-APR-94
00001-678901234567890123456789012345678

 751 76 7531070 320344 13-APR-94
00001-678901234567890123456789012345678

 15405 1541 154051500 -62465 13-APR-94
00001-678901234567890123456789012345678

14 rows selected.

SQL> exit

TPC Benchmark™ A Full Disclosure C-1

Appendix C: Tunable Parameters

rlimit_rss_cur = 0x20000000
maxlkmem = 0x100000 (or is it 23593 = 0x5c29?)
posix_tty_default = 1
resettable_clocal = 1
nproc = 500
nprofile = 200
maxup = 400
semmni = 100
semmns = 200
semmnu = 100
semmsl = 200
semopm = 200
ndpri_hilim = 30

rlimit_rss_cur = 40894464
rlimit_nofile_cur = 500
nproc = 1900
nprofile = 200
maxup = 1900
semmni = 1300
semmns = 1300
semmnu = 1300
semmsl = 200
semopm = 200

sshmseg = 150

msgmni = 1400
msgtql = 2800
msgseg = 16384
msgmnb = 380000
msgssz = 100

Init.ora Parameters

#
$Header: /oradev/bench/tpc/tpcab/admin/RCS/p_run.ora,v 1.8 1993/08/21
21:36:46 oradev Exp oradev $ Copyr (c) 1993 Oracle
#
db_name = tpcb
db_files= 150
max_rollback_segments =160
db_file_multiblock_read_count = 8
db_block_checkpoint_batch =128

Indy Operating
System Tunable

Parameters

Challenge XL
Operating System

Tunable
Parameters

ORACLE7
Configuration

C-2 TPC Benchmark™ A Full Disclosure

dml_locks=800
log_archive_start=FALSE
log_checkpoint_interval =999999999999
log_checkpoints_to_alert = TRUE
log_buffer=327680
processes=300
transactions_per_rollback_segment = 1
rollback_segments = (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
 s11, s12, s13, s14, s15, s16, s17, s18, s19,
s20,
 s21, s22, s23, s24, s25, s26, s27

)
sessions= 400
single_process =FALSE
log_archive_start =FALSE
discrete_transactions_enabled = TRUE
cursor_space_for_time=TRUE
shared_pool_size =7000000

use_post_wait_driver
use_post_wait_driver=TRUE
post_wait_device=/dev/postwait
use_async_io=TRUE

db_block_buffers = 37000
_db_block_write_batch = 526

spin_count = 6000

#
sort_area_size= 52428800

TPC Benchmark™ A Full Disclosure D-1

Appendix D: Storage Requirements

According to Clause 9.2.4.1 the priced configuration must contain sufficient disk space to
store 8 hours of log data and 90 days of history data. This section documents the disk stor-
age requirements of the priced configuration.

The total disk space requirements can be calculated as follows:

IRIX (UNIX system files + system swap space) +

ORACLE system and control files +

ORACLE database (ABT) files +

ORACLE log data (8-hours, mirrored) +

History data (90 days)

The 8-hour log data requirement was determined as follows:

At 2049.71 TPS-A, the checkpoint interval was 2329 seconds and

the log size was 2000 Mbytes.

For 8-hour, the un-mirrored log requirements are

8 hours * 3600 seconds/hours * 2000 Mbytes / 2329 seconds =

24731.65 Mb

The mirrored log requirements are

2 * 24731.65 = 49463.30 Mb

Disk drive capacity = 1918.2 Mb (formatted)

A total of 26 disk drives were dedicated to the 8-hour mirrored log

rquirement with space allocated as follows:

Total space available = 26 drives * 1918.2 Mb/drive = 49873.2 Mb

Log space required = 49463.30 Mb

Unused capacity = 49873.2 - 49463.3 = 409.9 Mb

The size of a history file entry was determined as follows:

Disk Storage
Requirements

D-2 TPC Benchmark™ A Full Disclosure

The 90-day history file space requirements was computed as follows:

Average number of history file entries per 2K page = 26.24

Number of daily transactions = 8 hours * 3600 * 2049.71 = 59,031,648

Number of transactions for 90 days = 90 * 59,031,648

 = 5,312,848,320

Number of 2K blocks required = 5,312,848,320 / 26.24 = 202471353.66

 = 395451.86 Mb

Total disk space available for the 90-day history file requirement

was computed as follows:

Disk space utilization:

UNIX system files 534.6 Mb

Swap space 256.0 Mb

ORACLE system and control files 1738.2 Mb

Branch and Teller files 900.0 Mb

Account files 53760.0 Mb

Account index 5050.0 Mb

Total (less log and history) 62238.8 Mb

Total number of drives (less log files) 239

Total space available (less log space) 239 drives * 1918.2 Mb =

 458449.8 Mb

Total space available for 90-day history file requirement =

458449.8 - 62238.8 = 396211.0 Mb

Total number of drives including log files 239 + 26 = 265 drives

TPC Benchmark™ A Full Disclosure E-1

Appendix E: Attestation Letter

E-2 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure E-3

E-4 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure F-1

Appendix F: RTE

rte.c

/*==+

 | Copyright (c) 1992 Oracle Corp, Belmont, CA |

 | UNIX PERFORMANCE GROUP |

 | All Rights Reserved |

 +==+

 | FILENAME

 | drive_a.c

 | DESCRIPTION

 | confidential TPC-A Remote Terminal Emulator process

 +==*/

 .

 .

 .

 trunintegral = (int) (11 * thinktime); /* truncate think time */

 /* initialize timing */

 begin_time = starttime + (double) ramp_up;

 end_stat_time = begin_time + (double) timelimit;

 end_time = end_stat_time + (double) ramp_down;

 /* execute transaction until time is up */

 while (1)

 {

 /* think */

 integral = (int) ceil(-thinktime *

 log(1.0 - ((lrand48() % 32768) / (float) 32768)));

 if (integral > trunintegral)

 integral = trunintegral;

RTE

F-2 TPC Benchmark™ A Full Disclosure

 if (integral < (termdelay * 1000))

 integral = (int) (termdelay * 1000);

 poll (0, 0, integral);

 /* generate input data */

 delta = (lrand48 () % 1999999) - 999999;

 if (lrand48 () % 100 < 85)

 account_branch = branch;

 else

 {

 account_branch = (lrand48 () % mult) + 1;

 if (account_branch >= branch)

 account_branch++;

 }

 account = (account_branch - 1) * 100000 + (lrand48 () % 100000) + 1;

 /* get start time */

 tr_begin = gettime ();

 if (in_ramp_up && (tr_begin > begin_time))

 {

 in_ramp_up = 0;

 in_timing_int = 1;

 }

 /* execute transaction */

 .

 .

 .

 tr_end = gettime () + termdelay;

 tr_time = tr_end - tr_begin - tr_overhead ;

 if (in_timing_int)

 {

 if (tr_end < end_stat_time)

 {

 tr_count++;

 if (account_branch != branch)

 remote++;

 if (tr_time <= FAST_LIMIT)

 tr_fast++;

 if (tr_time < tr_min)

 tr_min = tr_time;

 if (tr_time > tr_max)

TPC Benchmark™ A Full Disclosure F-3

 tr_max = tr_time;

 tr_sum += tr_time;

 tk_time = integral / 1000.0;

 if (tk_time < tk_min)

 tk_min = tk_time;

 if (tk_time > tk_max)

 tk_max = tk_time;

 tk_sum += tk_time;

 if ((i = tr_time / BUCKINT) >= NBUCK)

 i = NBUCK - 1;

 timing_buckets[i]++;

 if ((i = tk_time / TBUCKINT) >= NTBUCK)

 i = NTBUCK - 1;

 think_buckets[i]++;

 }

 .

 .

 .

F-4 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure G-1

Appendix G: Third-Party Vendor
Quotations

The following pages are price quotes from third-party vendors for this benchmark.

G-2 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure G-3

G-4 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure G-5

G-6 TPC Benchmark™ A Full Disclosure

TPC Benchmark™ A Full Disclosure G-7

G-8 TPC Benchmark™ A Full Disclosure

