
OpenGL® on Silicon Graphics® Systems

Document Number 007-2392-002

OpenGL® on Silicon Graphics® Systems
Document Number 007-2392-002

CONTRIBUTORS

Written by Renate Kempf and Jed Hartman. Revised by Renate Kempf.
Illustrated by Dany Galgani and Martha Levine
Edited by Christina Cary
Production by Allen Clardy
Engineering contributions by Allen Akin, Steve Anderson, David Blythe, Sharon

Rose Clay, Terrence Crane, Kathleen Danielson, Tom Davis, Celeste Fowler, Ziv
Gigus, David Gorgen, Paul Hansen, Paul Ho, Simon Hui, George Kyriazis, Mark
Kilgard, Phil Lacroute, John Leech, Mark Peercy, Dave Shreiner, Chris Tanner, Joel
Tesler, Gianpaolo Tommasi, Bill Torzewski, Bill Wehner, Nancy Cam Winget, Paula
Womack, David Yu, and others.

Some of the material in this book is from “OpenGL from the EXTensions to the
SOLutions,” which is part of the developer’s toolbox.

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1996,1998 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, OpenGL, InfiniteReality, IRIS, IRIS
Indigo, and IRIX are registered trademarks and Developer Magic, IMPACT, IRIS GL,
IRIS InSight, IRIS ViewKit, IRIS Performer, Elan, Express, Indy, Indigo, Indigo2,
Indigo2 IMPACT, Indigo2 High IMPACT, Indigo2 Maximum IMPACT, O2, Onyx,
Open Inventor, R8000, R10000, RapidApp, and RealityEngine are trademarks of
Silicon Graphics, Inc. Extreme is a trademark used under license by Silicon Graphics
Inc. Intel is a trademark of Intel Corporation. OS/2 is a trademark of International
Business Machines Corporation. Windows NT is a trademark and Windows a
registered trademark of Microsoft Corporation. Motif and OSF/Motif are
trademarks of Open Software Foundation. X Window System is a tradmark of X
Consortium, Inc.

iii

Contents

List of Examples xxiii

List of Figures xxv

List of Tables xxvii

About This Guide xxix
What This Guide Contains xxix
What You Should Know Before Reading This Guide xxxi
Background Reading xxxii

OpenGL and Associated Tools and Libraries xxxii
X Window System: Xlib, X Toolkit, and OSF/Motif xxxii
Other Sources xxxiii

Conventions Used in This Guide xxxiii
Typographical Conventions xxxiii
Function Naming Conventions xxxiv

Changes in this Version of the Manual xxxv

1. OpenGL on Silicon Graphics Systems 1
Using OpenGL With the X Window System 1

GLX Extension to the X Window System 2
Libraries, Tools, Toolkits, and Widget Sets 2

RapidApp 3
Open Inventor 4
IRIS ViewKit 5
IRIS IM Widget Set 5
Xlib Library 5

Note to IRIS GL Users 5
Extensions to OpenGL 6

iv

Contents

Debugging and Performance Optimization 7
Debugging Your Program 7
Tuning Your OpenGL Application 7
Maximizing Performance With IRIS Performer 8

Location of Example Source Code 8

2. OpenGL and X: Getting Started 9
Background and Terminology 9

X Window System on Silicon Graphics Systems 9
Silicon Graphics X Server 10
GLX Extension to X 10
Compiling With the GLX Extension 10

X Window System Concepts 11
GLX and Overloaded Visuals 11
GLX Drawables—Windows and Pixmaps 12
Rendering Contexts 13
Resources As Server Data 13
X Window Colormaps 14

Libraries, Toolkits, and Tools 14
Widgets and the Xt Library 14

Xt Library 15
For More Information About Xt 15

Other Toolkits and Tools 15
Integrating Your OpenGL Program With IRIS IM 16

Simple Motif Example Program 16
Looking at the Example Program 19

Opening the X Display 20
Selecting a Visual 21
Creating a Rendering Context 22
Creating the Window 23
Binding the Context to the Window 23
Mapping the Window 24

Contents

v

Integrating OpenGL Programs With X—Summary 25
Compiling With OpenGL and Related Libraries 26

Link Lines for Individual Libraries 26
Link Lines for Groups of Libraries 26

3. OpenGL and X: Examples 27
Using Widgets 27

About OpenGL Drawing-Area Widgets 28
Drawing-Area Widget Setup and Creation 29

Setting Up Fallback Resources 29
Creating the Widgets 30
Choosing the Visual for the Drawing-Area Widget 31
Creating Multiple Widgets With Identical Characteristics 31
Using Drawing-Area Widget Callbacks 32

Input Handling With Widgets and Xt 34
Background Information 34
Using the Input Callback 35
Using Actions and Translations 36

Creating Colormaps 37
Widget Troubleshooting 38

Keyboard Input Disappears 38
Inheritance Issues 38

Using Xlib 39
Simple Xlib Example Program 40
Creating a Colormap and a Window 42

Installing the Colormap 44
Xlib Event Handling 45

Handling Mouse Events 45
Exposing a Window 47

Using Fonts and Strings 48

vi

Contents

4. OpenGL and X: Advanced Topics 51
Using Animations 51

Swapping Buffers 52
Controlling an Animation With Workprocs 53

General Workproc Information 53
Workproc Example 54

Controlling an Animation With Timeouts 56
Using Overlays 58

Introduction to Overlays 58
Note for IRIS GL Users 60

Creating Overlays 60
Overlay Troubleshooting 63
Rubber Banding 64
Using Popup Menus With the GLwMDrawingArea Widget 64

Using Visuals 66
Some Background on Visuals 67
Running OpenGL Applications Using a Single Visual 68

Using Colormaps 69
Background Information About Colormaps 70

Color Variation Across Colormaps 70
Multiple Colormap Issues 71

Choosing Which Colormap to Use 72
Colormap Example 74

Stereo Rendering 74
Stereo Rendering Background Information 75

Quad Buffer Stereo 75
Divided-Screen Stereo 75
For More Information on Stereo Rendering 75

Stereo Rendering 76
Performing Stereo Rendering on High-End Systems 76
Performing Stereo Rendering on Low-End and Mid-Range Systems 76

Contents

vii

Using Pixmaps 77
Creating and Using Pixmaps 78
Direct and Indirect Rendering 79

Performance Considerations for X and OpenGL 80
Portability 80

5. Introduction to OpenGL Extensions 81
Determining Extension Availability 81

How to Check for OpenGL Extension Availability 82
Example Program: Checking for Extension Availability 83
Checking for GLX Extension Availability 84

Finding Information About Extensions 85
Reference Pages 85
Example Programs 85
Extension Specifications 85

6. Resource Control Extensions 87
EXT_import_context—The Import Context Extension 88

Importing a Context 88
Retrieving Display and Context Information 89
New Functions 89

EXT_make_current_read—The Make Current Read Extension 90
Read and Write Drawables 90
Possible Match Errors 91
Retrieving the Current Drawable’s Name 92
New Functions 92

EXT_visual_info—The Visual Info Extension 92
Using the Visual Info Extension 92
Using Transparent Pixels 94

EXT_visual_rating—The Visual Rating Extension 94
Using the Visual Rating Extension 95

viii

Contents

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension 95
Creating a Digital Media Pbuffer 96

Creating a DMBuffer 96
Creating a Digital Media Pbuffer 97
Associating Pbuffer and DMbuffer 97

Compatibility Conditions 98
Image Layouts 98
Pixel Formats 99

OpenGL Rendering to DMbuffers 99
Creating DMParams Structure and DMBuffer Pool 100
Creating a Compatible DMPbuffer 100
Associating the DMBuffer With the DMPbuffer 101

DMbuffers as OpenGL Textures 102
New Function 103

SGIX_fbconfig—The Framebuffer Configuration Extension 104
Why Use the Framebuffer Configuration Extension? 104

Describing a Drawable With a GLXFBConfigSGIX Construct 104
Less-Rigid Similarity Requirements When Matching Context and Drawable
105
Less-Rigid Match of GLX Visual and X Visual 105

GLXFBConfigSGIX Constructs 106
Choosing a GLXFBConfigSGIX Construct 106
Retrieving FBConfig Attribute Values 110

How an FBConfig Is Selected 111
New Functions 112

SGIX_pbuffer—The Pixel Buffer Extension 112
About GLXPbuffers 112

PBuffers and Pixmaps 113
Volatile and Preserved Pbuffers 113

Creating a PBuffer 114
Rendering to a GLXPbuffer 115
Directing the Buffer Clobber Event 116
New Functions 117

Contents

ix

7. Texturing Extensions 119
EXT_texture3D—The 3D Texture Extension 120

Why Use the 3D Texture Extension? 120
Using 3D Textures 121
3D Texture Example Program 123
New Functions 125

SGI_texture_color_table—The Texture Color Table Extension 126
Why Use a Texture Color Table? 126
Using Texture Color Tables 126
Texture Color Table and Internal Formats 127
Using Texture Color Table On Different Platforms 128

Texture Color Table on Indigo2 IMPACT Systems 128
Texture Color Table on InfiniteReality Systems 128

SGIS_detail_texture—The Detail Texture Extension 129
Using the Detail Texture Extension 129

Creating a Detail Texture and a Low-Resolution Texture 130
Detail Texture Computation 132
Customizing the Detail Function 132
Using Detail Texture and Texture Object 134

Detail Texture Example Program 134
New Functions 136

SGIS_filter4_parameters—The Filter4 Parameters Extension 136
Using the Filter4 Parameters Extension 137

SGIS_point_line_texgen—The Point or Line Texture Generation Extension 138
Why Use Point or Line Texture Generation 138

SGIS_sharpen_texture—The Sharpen Texture Extension 139
About the Sharpen Texture Extension 139

How to Use the Sharpen Texture Extension 140
How Sharpen Texture Works 140
Customizing the LOD Extrapolation Function 141
Using Sharpen Texture and Texture Object 142

Sharpen Texture Example Program 142
New Functions 144

x

Contents

SGIS_texture4D—The 4D Texture Extension 144
SGIS_texture_edge/border_clamp—Texture Clamp Extensions 144

Texture Clamping Background Information 144
Why Use the Texture Clamp Extensions? 145
Using the Texture Clamp Extensions 146

SGIS_texture_filter4—The Texture Filter4 Extensions 146
Using the Texture Filter4 Extension 146

Specifying the Filter Function 147
Determining the weights Array 147
Setting Texture Parameters 148

New Functions 148
SGIS_texture_lod—The Texture LOD Extension 148

Specifying a Minimum or Maximum Level of Detail 149
Specifying Image Array Availability 149

SGIS_texture_select—The Texture Select Extension 150
Why Use the Texture Select Extension? 150
Using the Texture Select Extension 151

SGIX_clipmap—The Clipmap Extension 152
Clipmap Overview 153

Clipmap Constraints 154
Why Do the Clipmap Constraints Work? 155
Clipmap Textures and Plain Textures 155

Using Clipmaps From OpenGL 156
Setting Up the Clipmap Stack 156
Updating the Clipmap Stack 158

Clipmap Background Information 159
Moving the Clip Center 159
Invalid Borders 160
Toroidal Loading 161

Virtual Clipmaps 162

Contents

xi

SGIX_texture_add_env—The Texture Environment Add Extension 163
SGIX_texture_lod_bias—The Texture LOD Bias Extension 164

Background: Texture Maps and LODs 164
Why Use the LOD Bias Extension? 167
Using the Texture LOD Bias Extension 168

SGIX_texture_scale_bias—The Texture Scale Bias Extension 169
SGIX_texture_multi_buffer—The Texture Multibuffer Extension 170

How to use the Texture Multibuffer Extension 170

8. Rendering Extensions 171
Blending Extensions 171

Constant Color Blending Extension 172
Using Constant Colors for Blending 172
New Functions 173

Minmax Blending Extension 173
Using a Blend Equation 174
New Functions 174

Blend Subtract Extension 174
SGIS_fog_function—The Fog Function Extension 175

FogFunc Example Program 176
New Function 179

SGIS_fog_offset—The Fog Offset Extension 179

xii

Contents

SGIS_multisample—The Multisample Extension 180
Introduction to Multisampling 180

When to Use Multisampling 181
Using the Multisample Extension 181
Using Advanced Multisampling Options 182

Color Blending and Screen-Door Transparency 183
Using a Multisample Mask to Fade Levels of Detail 184
Accumulating Multisampled Images 185

How Multisampling Affects Different Primitives 185
Multisampled Points 186
Multisampled Lines 186
Multisampled Polygons 186
Multisample Rasterization of Pixels and Bitmaps 187

New Functions 187
SGIS_point_parameters—The Point Parameters Extension 187

Using the Point Parameters Extension 188
Point Parameters Example Code 189
Point Parameters Background Information 190
New Procedures and Functions 190

SGIX_reference_plane—The Reference Plane Extension 191
Why Use the Reference Plane Extension? 191
Using the Reference Plane Extension 192
New Function 192

SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_ambient—The Shadow
Extensions 192

Shadow Extension Overview 193
Creating the Shadow Map 195
Rendering the Application From the Normal Viewpoint 196
Using the Shadow Ambient Extension 196

SGIX_sprite—The Sprite Extension 197
Available Sprite Modes 198
Using the Sprite Extension 199
New Function 202

Contents

xiii

9. Imaging Extensions 203
Introduction to Imaging Extensions 203

Where Extensions Are in the Imaging Pipeline 203
Pixel Transfer Paths 204

Convolution, Histogram, and Color Table in the Pipeline 205
Interlacing and Pixel Texture in the Pipeline 207

Merging the Geometry and Pixel Pipeline 207
Pixel Pipeline Conversion to Fragments 208
Functions Affected by Imaging Extensions 209

EXT_abgr—The ABGR Extension 209
EXT_convolution—The Convolution Extension 210

Performing Convolution 210
Retrieving Convolution State Parameters 211
Separable and General Convolution Filters 212
New Functions 213

EXT_histogram—The Histogram and Minmax Extensions 213
Using the Histogram Extension 215
Using the Minmax Part of the Histogram Extension 216
Using Proxy Histograms 217
New Functions 218

EXT_packed_pixels—The Packed Pixels Extension 218
Why Use the Packed Pixels Extension? 218
Using Packed Pixels 219
Pixel Type Descriptions 219

SGI_color_matrix—The Color Matrix Extension 220
SGI_color_table—The Color Table Extension 221

Why Use the Color Table Extension? 222
Specifying a Color Table 222
Using Framebuffer Image Data for Color Tables 223
Lookup Tables in the Image Pipeline 224
New Functions 224

xiv

Contents

SGIX_interlace—The Interlace Extension 225
Using the Interlace Extension 226

SGIX_pixel_texture—The Pixel Texture Extension 226
Platform Issues 229
New Functions 229

10. Video Extensions 231
SGI_swap_control—The Swap Control Extension 231

New Functions 232
SGI_video_sync—The Video Synchronization Extension 232

Using the Video Sync Extension 232
New Functions 233

SGIX_swap_barrier—The Swap Barrier Extension 233
Why Use the Swap Barrier Extension? 233
Using the Swap Barrier Extension 234

Buffer Swap Conditions 235
New Functions 235

SGIX_swap_group—The Swap Group Extension 236
Why Use the Swap Group Extension? 236
Swap Group Details 237
New Function 238

SGIX_video_resize—The Video Resize Extension 238
Controlling When the Video Resize Update Occurs 238
Using the Video Resize Extension 239
Example 242
New Functions 243

SGIX_video_source—The Video Source Extension 243
New Functions 254

11. Miscellaneous OpenGL Extensions 255
GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension 255

Using the NURBS Tessellator Extension 256
Callbacks Defined by the Extension 257

GLU_EXT_object_space—The Object Space Tess Extension 259

Contents

xv

SGIX_list_priority—The List Priority Extension 260
Using the List Priority Extension 261
New Functions 261

SGIX_instruments—The Instruments Extension 262
About SGIX_instruments 262
Using the Extension 263

Specifying the Buffer 263
Enabling, Starting, and Stopping Instruments 263
Measurement Format 264
Retrieving Information 264

Instruments Example Pseudo Code 266
New Functions 267

12. OpenGL Tools 269
ogldebug—the OpenGL Debugger 269

ogldebug Overview 270
How ogldebug Operates 270

Getting Started With ogldebug 271
Setting Up ogldebug 271
ogldebug Command-Line Options 271
Starting ogldebug 272

Interacting With ogldebug 274
Commands for Basic Interaction 274
Using Checkboxes 275

Creating a Trace File to Discover OpenGL Problems 276
Using a Configuration File 278
Using Menus to Interact With ogldebug 278

Using the File Menu to Interact With ogldebug 279
Using the Commands Menu to Interact With Your Program 279
Using the Information Menu to Access Information 279
Using the References Menu for Background Information 282

xvi

Contents

glc—the OpenGL Character Renderer 283
gls—The OpenGL Stream Utility 283

OpenGL Stream Utility Overview 283
glscat Utility 284

glxInfo—The glx Information Utility 285

13. Tuning Graphics Applications: Fundamentals 287
Debugging and Tuning Your Program 288

General Tips for Debugging Graphics Programs 288
Specific Problems and Troubleshooting 289

Blank Window 289
Rotation and Translation Problems 290
Depth Buffering Problems 290
Animation Problems 291
Lighting Problems 291
X Window System Problems 291
Pixel and Texture Write Problems 292
System-Specific Problems 292

About Pipeline Tuning 292
Three-Stage Model of the Graphics Pipeline 293
Isolating Bottlenecks in Your Application: Overview 294
Factors Influencing Performance 296

Taking Timing Measurements 296
Benchmarking Basics 297
Achieving Accurate Timing Measurements 297
Achieving Accurate Benchmarking Results 299

Tuning Animation 302
How Frame Rate Determines Animation Speed 302
Optimizing Frame Rate Performance 303

Contents

xvii

14. Tuning the Pipeline 305
CPU Tuning: Basics 305

Immediate Mode Drawing Versus Display Lists 306
CPU Tuning: Display Lists 308
CPU Tuning: Immediate Mode Drawing 309

Optimizing the Data Organization 310
Optimizing Database Rendering Code 311

Examples for Optimizing Data Structures for Drawing 312
Examples for Optimizing Program Structure 313
Using Specialized Drawing Subroutines and Macros 315
Preprocessing Drawing Data: Introduction 316
Preprocessing Meshes Into Fixed-Length Strips 317
Preprocessing Vertex Loops 318

Optimizing Cache and Memory Use 319
Memory Organization 319
Minimizing Paging 320

Minimizing Lookup 320
Minimizing Cache Misses 320
Measuring Cache-Miss and Page-Fault Overhead 321

CPU Tuning: Advanced Techniques 322
Mixing Computation With Graphics 322
Examining Assembly Code 323
Using Additional Processors for Complex Scene Management 323
Modeling to the Graphics Pipeline 324

xviii

Contents

Tuning the Geometry Subsystem 325
Using Peak Performance Primitives for Drawing 325
Using Vertex Arrays 326
Using Display Lists as Appropriate 327
Storing Data Efficiently 327
Minimizing State Changes 327
Optimizing Transformations 328
Optimizing Lighting Performance 328

Lighting Operations With Noticeable Performance Costs 329
Choosing Modes Wisely 330
Advanced Transform-Limited Tuning Techniques 331

Tuning the Raster Subsystem 332
Using Backface/Frontface Removal 332
Minimizing Per-Pixel Calculations 332

Avoiding Unnecessary Per-Fragment Operations 333
Organizing Drawing to Minimize Computation 333
Using Expensive Per-Fragment Operations Efficiently 333
Using Depth-Buffering Efficiently 334
Balancing Polygon Size and Pixel Operations 335
Other Considerations 335

Using Clear Operations 335
Optimizing Texture Mapping 336

Tuning the Imaging Pipeline 337

15. Tuning Graphics Applications: Examples 341
Drawing Pixels Fast 341
Tuning Example 343

Testing for CPU Limitation 352
Using the Profiler 353

Testing for Fill Limitation 355
Working on a Geometry-Limited Program 356

Smooth Shading Versus Flat Shading 356
Reducing the Number of Polygons 356

Testing Again for Fill Limitation 358

Contents

xix

16. System-Specific Tuning 359
Introduction to System-Specific Tuning 360
Optimizing Performance on Low-End Graphics Systems 361

Choosing Features for Optimum Performance 361
Using the Pipeline Effectively 361
Using Geometry Operations Effectively 362

Optimizing Line Drawing 362
Optimizing Triangles and Polygons 363

Using Per-Fragment Operations Effectively 363
Getting the Optimum Fill Rates 364
Using Pixel Operations Effectively 365

Low-End Specific Extensions 366
Optimizing Performance on O2™ Systems 367

Optimizing Geometry Operations 368
Optimizing Line Drawing 369
Optimizing Triangle Drawing 369

Using Per-Fragment Operations Effectively 370
Getting Optimum Fill Rates 370
Framebuffer Configurations 370
Texture Mapping 370
Front and Back Buffer Rendering 371
Getting Optimum Pixel DMA Rates 372
Imaging Pipeline Using ICE 373

Extensions Supported by O2 Systems 375
Optimizing Performance on Mid-Range Systems 375

General Performance Tips 375
Optimizing Geometry Operations on Mid-Range Systems 376
Optimizing Per-Fragment Operations on Mid-Range Systems 376

xx

Contents

Optimizing Performance on Indigo2 IMPACT and OCTANE Systems 378
General Tips for Performance Improvement 378
Achieving Peak Geometry Performance 379
Using Textures 380
Using Images 381
Accelerating Color Space Conversion 383
Using Display Lists Effectively 383

Display List Compilation on Indigo2 IMPACT Hardware 384
DMA Display Lists on Indigo2 IMPACT Systems 384

Offscreen Rendering Capabilities 384
Optimizing Performance on RealityEngine Systems 385

Optimizing Geometry Performance 385
Optimizing Rasterization 386
Optimizing Use of the Vertex Arrays 387
Optimizing Multisampling and Transparency 387
Optimizing the Imaging Pipeline 388

Using the Color Matrix and the Color Writemask 389
Optimizing Performance on InfiniteReality Systems 390

Managing Textures on InfiniteReality Systems 390
Offscreen Rendering and Framebuffer Management 392
Optimizing State Changes 393
Miscellaneous Performance Hints 394

A. OpenGL and IRIS GL 395
Some IRIS GL Functionality and OpenGL Equivalents 395

B. Benchmarks 405

Contents

xxi

C. Benchmarking Libraries: libpdb and libisfast 413
Libraries for Benchmarking 414
Using libpdb 414

Example for pdbRead 417
Example for pdbMeasureRate() 418
Example for pdbWriteRate() 419

Using libisfast 419

D. Extensions on Different Silicon Graphics Systems 421

Index 423

xxiii

List of Examples

Example 2-1 Simple IRIS IM Program 16
Example 3-1 Motif Program That Handles Mouse Events 35
Example 3-2 Simple Xlib Example Program 40
Example 3-3 Event Handling With Xlib 46
Example 3-4 Font and Text Handling 49
Example 4-1 Popup Code Fragment 65
Example 4-2 Retrieving the Default Colormap for a Visual 71
Example 5-1 Checking for Extensions 83
Example 6-1 Creating a DMparams Structure and DMbuffer Pool 100
Example 6-2 Creating a Digital Media Pbuffer 101
Example 6-3 Associating a DMbuffer With a DMPbuffer 101
Example 6-4 Copying a DMbuffer to a Texture Object. 103
Example 7-1 Simple 3D Texturing Program 123
Example 7-2 Detail Texture Example 134
Example 7-3 Sharpen Texture Example 142
Example 8-1 Point Parameters Example 189
Example 8-2 Sprite Example Program 200
Example 10-1 Video Resize Extension Example 242
Example 10-2 Use of the Video Source Extension 244
Example 10-3 Loading Video Into Texture Memory 252
Example 11-1 Instruments Example Pseudo Code 266
Example 15-1 Drawing Pixels Fast 341
Example 15-2 Performance Tuning Example Program 343

xxv

List of Figures

Figure 1-1 How X, OpenGL, and Toolkits Are Layered 3
Figure 2-1 Display From simplest.c Example Program 16
Figure 4-1 Overlay Plane Used for Transient Information 59
Figure 4-2 X Pixmaps and GLX Pixmaps 77
Figure 6-1 DMPbuffers and DMbuffers 103
Figure 7-1 3D Texture 120
Figure 7-2 Extracting a Planar Texture From a 3D Texture Volume 121
Figure 7-3 LOD Interpolation Curves 133
Figure 7-4 LOD Extrapolation Curves 141
Figure 7-5 Clipmap Component Diagram 154
Figure 7-6 Moving the Clip Center 159
Figure 7-7 Invalid Border 161
Figure 7-8 Virtual Clipmap 162
Figure 7-9 Original Image 165
Figure 7-10 Image With Positive LOD Bias 166
Figure 7-11 Image with Negative LOD Bias 167
Figure 8-1 Sample Processing During Multisampling 183
Figure 8-2 Rendering From the Light Source Point of View 195
Figure 8-3 Rendering From Normal Viewpoint 196
Figure 8-4 Sprites Viewed with Axial Sprite Mode 198
Figure 8-5 Sprites Viewed With Object Aligned Mode 199
Figure 8-6 Sprites Viewed With Eye Aligned Mode 199
Figure 9-1 OpenGL Pixel Paths 204
Figure 9-2 Extensions that Modify Pixels During Transfer 205
Figure 9-3 Convolution, Histogram, and Color Table in the Pipeline 206
Figure 9-4 Interlacing and Pixel Texture in the Pixel Pipeline 207
Figure 9-5 Conversion to Fragments 208

xxvi

List of Figures

Figure 9-6 Convolution Equations 210
Figure 9-7 How the Histogram Extension Collects Information 214
Figure 9-8 Interlaced Video (NTSC, Component 525) 225
Figure 12-1 ogldebug Main Window 273
Figure 12-2 Setup Panel 276
Figure 12-3 ogldebug File Menu 279
Figure 12-4 ogldebug Command menu 279
Figure 12-5 Information Menu Commands (First Screen) 280
Figure 12-6 Information Menu Commands (Second Screen) 281
Figure 12-7 Enumerants Window 282
Figure 13-1 Three-Stage Model of the Graphics Pipeline 293
Figure 13-2 Flowchart of the Tuning Process 301
Figure 15-1 Lighted Sphere Created by perf.c 343

xxvii

List of Tables

Table 2-1 Headers and Link Lines for OpenGL and Associated Libraries 11
Table 2-2 Integrating OpenGL and X 25
Table 4-1 X Visuals and Supported OpenGL Rendering Modes 67
Table 6-1 Type and Context Information for GLX Context Attributes 89
Table 6-2 Heuristics for Visual Selection 93
Table 6-3 Steps for Creating a Digital Media Pbuffer 96
Table 6-4 Linear and Graphics Layout 98
Table 6-5 Pixel and Texel Formats (Video, Digital Media and Graphics) 99
Table 6-6 Visual Attributes Introduced by the FBConfig Extension 106
Table 6-7 FBConfig Attribute Defaults and Sorting Criteria 107
Table 7-1 Modification of Texture Components 127
Table 7-2 Unsupported Combinations on Indigo2 IMPACT 128
Table 7-3 Supported Combinations on InfiniteReality 128
Table 7-4 Magnification Filters for Detail Texture 131
Table 7-5 How Detail Texture Is Computed 132
Table 7-6 Magnification Filters for Sharpen Texture 140
Table 7-7 Texture Select Host Format Components Mapping 152
Table 8-1 Blending Factors Defined by the Blend Color Extension 173
Table 9-1 Types That Use Packed Pixels 219
Table 11-1 NURBS Tessellator Callbacks and Their Description 258
Table 11-2 Tessellation Methods 259
Table 12-1 Command-Line Options for ogldebug 271
Table 12-2 Command Buttons and Shortcuts 274
Table 12-3 ogldebug Check Boxes 275
Table 13-1 Factors Influencing Performance 296
Table 16-1 Pixel Formats and Types Using DMA on Low-End Systems 365
Table 16-2 Pixel Formats and Types That Work With DMA on O2 Systems 372

xxviii

List of Tables

Table 16-3 Pixel Formats and Types That Are Fast on Mid-Range Systems 377
Table 16-4 Texturing on Indigo2 and OCTANE Systems 380
Table C-1 Errors Returned by libpdb Routines 415
Table D-1 Extension on Different Silicon Graphics Systems 421

xxix

About This Guide

OpenGL on Silicon Graphics Systems explains how to use the OpenGL graphics library on
Silicon Graphics systems. The guide expands on the OpenGL Programming Guide, which
describes implementation-independent aspects of OpenGL. It discusses these major
topics:

• Integrating OpenGL programs with the X Window System

• Using OpenGL extensions

• Debugging OpenGL programs

• Achieving maximum performance

What This Guide Contains

This guide consists of 14 chapters and 3 appendixes:

• Chapter 1, “OpenGL on Silicon Graphics Systems,” introduces the major issues
involved in using OpenGL on Silicon Graphics systems.

• Chapter 2, “OpenGL and X: Getting Started,” first provides background
information for working with OpenGL and the X Window System. You then learn
how to display some OpenGL code in an X window with the help of a simple
example program.

• Chapter 3, “OpenGL and X: Examples,” first presents two example programs that
illustrate how to create a window using IRIS IM or Xlib. It then explains how to
integrate text with your OpenGL program.

• Chapter 4, “OpenGL and X: Advanced Topics,” helps you refine your programs. It
discusses how to use overlays and popups. It also provides information about
pixmaps, visuals and colormaps, and animation.

• Chapter 5, “Introduction to OpenGL Extensions,” explains what OpenGL
extensions are and how to check for OpenGL and GLX extension availability.

xxx

About This Guide

• Chapter 6, “Resource Control Extensions,” discusses extensions that facilitate
management of buffers and similar resources. Most of these extensions are GLX
extensions.

• Chapter 7, “Texturing Extensions,”explains how to use the texturing extensions,
providing example code as appropriate.

• Chapter 8, “Rendering Extensions,” explains how to use extensions that allow you
to customize the system’s behavior during the rendering portion of the graphics
pipeline. This includes blending extensions; the sprite, point parameters, reference
plane, multisample, and shadow extensions; and the fog function and fog offset
extensions.

• Chapter 9, “Imaging Extensions,” explains how to use extensions for color
conversion (abgr, color table, color matrix), the convolution extension, the
histogram/minmax extension, and the packed pixel extension.

• Chapter 10, “Video Extensions,” discusses extensions that can be used to enhance
OpenGL video capabilities.

• Chapter 11, “Miscellaneous OpenGL Extensions,” explains how to use the
instruments and list priority extensions as well as two extensions to GLU.

• Chapter 12, “OpenGL Tools,” explains how to use the OpenGL debugger
(ogldebug) and discusses the glc OpenGL character renderer and (briefly) the gls
OpenGL Streaming codec.

• Chapter 13, “Tuning Graphics Applications: Fundamentals,” starts with a list of
general debugging hints. It then discusses basic principles of tuning graphics
applications: pipeline tuning, tuning animations, optimizing cache and memory
use, and benchmarking. You need this information as a background for the chapters
that follow.

• Chapter 14, “Tuning the Pipeline,” explains how to tune the different parts of the
graphics pipeline for an OpenGL program. Example code fragments illustrate how
to write your program for optimum performance.

• Chapter 15, “Tuning Graphics Applications: Examples,” provides a detailed
discussion of the tuning process for a small example program. It also provides a
code fragment that’s helpful for drawing pixels fast.

• Chapter 16, “System-Specific Tuning,” provides information on tuning some
specific Silicon Graphics systems: low-end systems, Indigo2 IMPACT systems, and
RealityEngine systems. In this revision, it also includes information on O2 and
InfiniteReality systems.

What You Should Know Before Reading This Guide

xxxi

• Appendix A, “OpenGL and IRIS GL,” helps you port your IRIS GL program to
OpenGL by providing a table that contrasts IRIS GL functions and equivalent
OpenGL functionality (including extensions).

• Appendix B, “Benchmarks,” lists a sample benchmarking program.

• Appendix C, “Benchmarking Libraries: libpdb and libisfast,” discusses two libraries
you can use for benchmarking drawing operations and maintaining a database of
the results.

• Appendix D, “Extensions on Different Silicon Graphics Systems,” list all extensions
currently supported on InfiniteReality, Impact, OCTANE, and O2 systems.

Note that although this guide contains information useful to developers porting from
IRIS GL to OpenGL, the primary source of information for porting is the OpenGL Porting
Guide, available from Silicon Graphics (and via the IRIS Insight viewer or the TechPubs
library home page online).

What You Should Know Before Reading This Guide

To work successfully with this guide, you should be comfortable programming in ANSI
C or C++. You should have a fairly good grasp of graphics programming concepts (terms
such as “texture map” and “homogeneous coordinates” aren’t explained in this guide),
and you should be familiar with the OpenGL graphics library. Some familiarity with the
X Window System, and with programming for Silicon Graphics platforms in general, is
also helpful. If you’re a newcomer to any of these topics, see the references listed under
“Background Reading.”

xxxii

About This Guide

Background Reading

The following books provide background and complementary information for this
guide. Bibliographical information or the Silicon Graphics document number is
provided. Books available in hardcopy and by using the IRIS InSight online viewer are
marked with (I):

OpenGL and Associated Tools and Libraries

• Kilgard, Mark J. OpenGL Programming for the X Window System. Menlo Park, CA:
Addison-Wesley Developer’s Press. 1996. ISBN 0-201-48369-9.

• Woo, Mason, Jackie Neider and Tom Davis. OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.1. Reading, MA: Addison Wesley Longman Inc.
1997. ISBN 0-201-46138-2. (I)

• OpenGL Architecture Review Board; Renate Kempf and Chris Frazier, editors.
OpenGL Reference Manual. The Official Reference Document for OpenGL, Version 1.1.
Reading, MA: Addison Wesley Longman Inc. 1996. ISBN 0-201-46140-4.

• OpenGL Porting Guide (007-1797-030). (I)

• IRIS IM Programming Guide (007-1472-020)

X Window System: Xlib, X Toolkit, and OSF/Motif

• O’Reilly X Window System Series, Volumes 1, 2, 4, 5, and 6 (referred to in the text as
“O’Reilly” with a volume number):

– Nye, Adrian. Volume One: Xlib Programming Manual. Sebastopol, CA: O’Reilly &
Associates, 1991. (I)

– Volume Two. Xlib Reference Manual. Sebastopol, CA: O’Reilly & Associates.

– Nye, Adrian, and Tim O’Reilly. Volume Four. X Toolkit Intrinsics Programming
Manual. Sebastopol, CA: O’Reilly & Associates, 1992. (I)

– Flanagan, David (ed). Volume Five. X Toolkit Intrinsics Reference Manual.
Sebastopol, CA: O’Reilly & Associates, 1990.

– Heller, Dan. Volume Six. Motif Programming Manual. Sebastopol, CA: O’Reilly &
Associates.

Conventions Used in This Guide

xxxiii

• Young, Doug. Application Programming with Xt: Motif Version

• Kimball, Paul E. The X Toolkit Cookbook. Englewood Cliffs, NJ: Prentice Hall, 1995.

• Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs, NJ: Prentice Hall, 1993. (I)

• Open Software Foundation. OSF/Motif Programmer’s Reference, Revision 1.2.
Englewood Cliffs, NJ: Prentice Hall, 1993. (I)

• Open Software Foundation. OSF/Motif User’s Guide, Revision 1.2. Englewood Cliffs,
NJ: Prentice Hall, 1993.

• Open Software Foundation. OSF/Motif Style Guide. Englewood Cliffs, NJ: Prentice
Hall. (I)

Other Sources

• Kane, Gerry. MIPS RISC Architecture. Englewood Cliffs, NJ: Prentice Hall. 1989.

• MIPS Compiling and Performance Tuning Guide. 007-2479-001. (I)

Conventions Used in This Guide

This section explains the typographical and function-naming conventions used in this
guide.

Typographical Conventions

This guide uses the following typographical conventions:

Italics Filenames, IRIX command names, function parameters, and book titles.

Fixed-width Code examples and system output.

Bold Function names, with parentheses following the name—for example
glPolygonMode(), arguments to command line options.

Note: Names of reference pages, such as glPolygonMode, are not functions. Reference
page names appear in default font in hardcopy and in red text online. If you click the red
text, the reference page will launch automatically.

xxxiv

About This Guide

Function Naming Conventions

This guide refers to a group of similarly named OpenGL functions by a single name,
using an asterisk to indicate all the functions whose names start the same way. For
instance, glVertex*() refers to all functions whose names begin with “glVertex”:
glVertex2s(), glVertex3dv(), glVertex4fv(), and so on.

Naming conventions for X-related functions can be confusing, because they depend
largely on capitalization to differentiate between groups of functions. For systems on
which both OpenGL and IRIS GL are available, the issue is further complicated by the
similarity in function names. Here’s a quick guide to old and new function names:

GLX*() IRIS GL mixed-model support

Glx*() IRIS GL support for IRIS IM

glX*() OpenGL support for X

GLw*() OpenGL support for IRIS IM

Note that the (OpenGL) glX*() routines are collectively referred to as “GLX”; that term
was previously used to refer to the (IRIS GL) GLX*() routines. Note, too, that
GLXgetconfig() (an IRIS GL mixed-model routine) is not the same function as
glXGetConfig() (a GLX routine). On systems with both IRIS GL and OpenGL, the
command

IRIS% man glxgetconfig

displays both reference pages, one following the other.

Changes in this Version of the Manual

xxxv

Changes in this Version of the Manual

This first revision of the manual contains the following changes:

• Extensions removed. The manual has been updated for OpenGL 1.1. The
functionality of some extensions was integrated into OpenGL 1.1 and the extensions
have therefore been removed:

• Extensions added. The extension chapters have been reorganized as a finer-grained
presentation. A number of extensions have been added:

• Tools: The chapter discussing ogldebug, the OpenGL Debugger, has been updated
to reflect ogldebug 1.1. In addition, a section on glc, the OpenGL character renderer,
and gls, the OpenGL streaming utility, have been added to the chapter.

• Performance: The performance chapters have been updated to include some
additional information, most notably on InfiniteReality and O2 systems.

Texturing extensions Texture objects, subtexture, copy texture.

Imaging extensions Blend logic op

Miscellaneous extensions Polygon offset, vertex array

Resource extensions DMPbuffer extension

Texturing extensions Texture filter4, filter4 parameters, texture LOD Bias,
texture multibuffer, clipmap, texture select, texture add
environment

Rendering extensions Sprite, point parameters, reference plane, fog function, fog
offset, shadow

Imaging extensions Pixel texture

Video extensions Swap barrier, swap group, video resize

1

Chapter 1

1.OpenGL on Silicon Graphics Systems

Silicon Graphics systems allow you to write OpenGL applications that are portable and
run well across the Silicon Graphics workstation product line. This chapter introduces
the basic issues you need to know about if you want to write an OpenGL application for
Silicon Graphics systems. The chapter contains the following topics, which are all
discussed in more detail elsewhere in this guide:

• “Using OpenGL With the X Window System” on page 1

• “Extensions to OpenGL” on page 6

• “Debugging and Performance Optimization” on page 7

• “Location of Example Source Code” on page 8

Using OpenGL With the X Window System

OpenGL is a window-system-independent graphics library. The platform’s window
system determines where and how the OpenGL application is displayed and how events
(user input or other interruptions) are handled. Currently, OpenGL is available for the X
Window System, for OS/2, for Windows NT, and for Windows95. If you intend your
application to run under several window systems, the application’s OpenGL calls can
remain unchanged, but window system calls are different for each window system.

Note: If you plan to run an application under different window systems, isolate the
windowing code to minimize the number of files that must be special for each system.

All Silicon Graphics systems use the X Window System. Applications on a Silicon
Graphics system rely on Xlib calls to manipulate windows and obtain input. An X-based
window manager (usually 4Dwm) handles iconification, window borders, and
overlapping windows. The Indigo Magic desktop environment is based on X, as is the
Silicon Graphics widget set, IRIS IM. IRIS IM is the Silicon Graphics port of OSF/Motif.

A full introduction to X is beyond the scope of this guide; for detailed information about
X, see the sources listed in “Background Reading” on page xxxii.

2

Chapter 1: OpenGL on Silicon Graphics Systems

GLX Extension to the X Window System

The OpenGL extension to the X Window System (GLX) provides a means of creating an
OpenGL context and associating it with a drawable window on a computer that uses the
X Window System. GLX is provided by Silicon Graphics and other vendors as an adjunct
to OpenGL.

For additional information on using GLX, see “GLX Extension to X” on page 10. More
detailed information is in Appendix D, “OpenGL Extensions to the X Window System”
of the OpenGL Programming Guide. The glxintro reference page also provides a good
introduction to the topic.

Libraries, Tools, Toolkits, and Widget Sets

When you prepare a program to run with the X Window System, you can choose the level
of complexity and control that suits you best, depending on how much time you have
and how much control you need.

This section discusses different tools and libraries for working with OpenGL in an X
Window System environment. It starts with easy-to-use toolkits and libraries with less
control and discusses the Xlib library —which is more primitive but offers more control—
last. Most application developers usually write at a higher level than Xlib, but you may
find it helpful to understand the basic facts about the lower levels of the X Window
System that are discussed in this guide.

Note that the different tools are not mutually exclusive: You may design most of the
interface with one of the higher-level tools, then use Xlib to fine-tune a specific aspect or
add something that is otherwise unavailable. Figure 1-1 illustrates the layering:

• IRIS ViewKit and Open Inventor are layered on top of IRIS IM, which is on top of
Xlib.

• GLX links Xlib and OpenGL.

• Open Inventor uses GLX and OpenGL.

Using OpenGL With the X Window System

3

Figure 1-1 How X, OpenGL, and Toolkits Are Layered

Note: If you write an application using IRIS Viewkit, OpenInventor, or RapidApp, the
graphical user interface will be visually consistent with the Indigo Magic desktop.

RapidApp

RapidApp is a graphical tool, available from Silicon Graphics, that allows developers to
interactively design the user-interface portion of their application. It generates C++ code
utilizing IRIS ViewKit (see “IRIS ViewKit” on page 5) for each user-interface component
as well as the overall application framework. As with all applications based on ViewKit,
IRIS IM (Motif) widgets are the basic building blocks for the user interface. RapidApp is
not included in Figure 1-1 because it generates ViewKit and IRIS IM code and is therefore
dependent on them in a way different from the rest of the hierarchy.

To speed the development cycle, RapidApp is integrated with a number of the Developer
Magic tools. This allows developers to quickly design, compile, and test object-oriented
applications.

Xlib

Xt/IRIS IM Widgets

GLX
OpenGL

Open Inventor

Viewkit

4

Chapter 1: OpenGL on Silicon Graphics Systems

RapidApp also provides easy access to widgets and components specific to Silicon
Graphics. For instance, you can add an OpenGL widget to a program without having to
know much about the underlying details of integrating OpenGL and X.

For more information, see the Developer Magic: RapidApp User’s Guide, also available
online through IRIS InSight.

Open Inventor

The Open Inventor library uses an object-oriented approach to make the creation of
interactive 3D graphics applications as easy as possible by letting you use its high-level
rendering primitives in a scene graph. It is a useful tool for bypassing the complexity of
X and widget sets, as well as many of the complex details of OpenGL.

Open Inventor provides prepackaged tools for viewing, manipulating, and animating
3D objects. It also provides widgets for easy interaction with X and Xt, and a full
event-handling system.

In most cases, you use Open Inventor, not the lower-level OpenGL library, for rendering
from Open Inventor. However, the Open Inventor library provides several widgets for
use with X and OpenGL (in subclasses of the SoXtGLWidget class) that you can use if
OpenGL rendering is desired. For instance, the SoXtRenderArea widget and its viewer
subclasses can all perform OpenGL rendering. SoXtGLWidget is, in turn, a subclass of
SoXtComponent, the general Open Inventor class for widgets that perform 3D editing.

Components provide functions to show and hide the associated widgets, set various
parameters (such as title and size of the windows), and use callbacks to send data to the
calling application. The viewer components based on SoXtRenderArea handle many
subsidiary tasks related to viewing 3D objects. Other components handle anything from
editing materials and lights in a 3D scene, to copying and pasting 3D objects.

Note that if you are using libInventorXt, you need only link with libInventorXt (it
automatically “exports” all of the routines in libInventor, so you never need to use
-lInventorXt -lInventor, you need only -lInventorXt).

For detailed information on Open Inventor, see The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor, Release 2, published by Addison-Wesley
and available online through IRIS InSight.

Using OpenGL With the X Window System

5

IRIS ViewKit

The IRIS ViewKit library is a C++ application framework designed to simplify the task
of developing applications based on the IRIS IM widget set. The ViewKit framework
promotes consistency by providing a common architecture for applications and
improves programmer productivity by providing high-level, and in many cases
automatic, support for commonly needed operations.

When you use Viewkit in conjunction with OpenGL, it provides drawing areas that
OpenGL can render to.

For more information, see the IRIS ViewKit Programmer’s Guide, available online through
IRIS InSight.

IRIS IM Widget Set

The IRIS IM widget set is an implementation of OSF/Motif provided by Silicon Graphics.
You are strongly encouraged to use IRIS IM when writing software for Silicon Graphics
systems. IRIS IM integrates your application with the desktop’s interface. If you use it,
your application conforms to a consistent look and feel for Silicon Graphics applications.
See the sources listed in “Background Reading” on page xxxii for further details.

Xlib Library

The X library, Xlib, provides function calls at a lower level than most application
developers want to use. Note that while Xlib offers the greatest amount of control, it also
requires that you attend to many details you could otherwise ignore. If you do decide to
use Xlib, you are responsible for maintaining the Silicon Graphics user interface
standards.

Note to IRIS GL Users

An application that uses both IRIS GL and X is called a mixed-model program. If you
prepared your IRIS GL application to run as a mixed-model program, porting to OpenGL
becomes much easier. For porting information, see the OpenGL Porting Guide.

Many IRIS GL programs use the built-in windowing interface provided by IRIS GL. In
contrast, OpenGL relies on X for all its windowing functionality. If your application uses
IRIS GL functions such as winopen(), your windowing code needs to be rewritten for X.
See the OpenGL Porting Guide for more information.

6

Chapter 1: OpenGL on Silicon Graphics Systems

Note that the term “mixed-model program” is no longer relevant when you work with
OpenGL, because all OpenGL programs use the native window system for display and
event handling. (The OpenGL API, unlike IRIS GL, has no windowing calls).

Extensions to OpenGL

The OpenGL standard is designed to be as portable as possible and also to be expandable
with extensions. Extensions may provide new functionality, such as several video
extensions, or extend existing functionality, such as blending extensions.

An extension’s functions and tokens use a suffix that indicates the availability of that
extension:

• EXT is used for extensions reviewed and approved by more than one OpenGL
vendor.

• SGI is used for extensions found across the Silicon Graphics product line, although
the support for all products may not appear in the same release.

• SGIS is used for extensions found only on a subset of Silicon Graphics platforms.

• SGIX is used for experimental extensions: In future releases, the API for these
extensions may change, or they may not be supported at all.

The glintro reference page provides a useful introduction to extensions; many extensions
are also discussed in detail in the following chapters in this guide:

• Chapter 5, “Introduction to OpenGL Extensions”

• Chapter 7, “Texturing Extensions”

• Chapter 9, “Imaging Extensions”

• Chapter 11, “Miscellaneous OpenGL Extensions”

• Chapter 6, “Resource Control Extensions”

Note that both the X Window System and OpenGL support extensions. GLX is an X
extension to support OpenGL. Keep in mind that OpenGL (and GLX) extensions are
different from X extensions.

Debugging and Performance Optimization

7

Debugging and Performance Optimization

If you want a fast application, think about performance from the start. While making sure
the program runs reliably and bug free is important, it is also essential that you think
about performance early on. Applications designed and written without performance
considerations can almost never be suitably tuned.

If you want high performance, read the performance chapters in this guide (Chapter 13
through Chapter 16) before you start writing the application.

Debugging Your Program

Silicon Graphics provides a variety of debugging tools for use with OpenGL programs:

• The ogldebug tool helps you find OpenGL programming errors and discover
OpenGL programming style that may slow down your application. You can set
breakpoints, step through your program, and collect a variety of information.

• For general-purpose debugging, you can use standard UNIX debugging tools such
as dbx.

• Also available (for general-purpose debugging) are the CASE tools. For more
information on the CASE tools, see ProDev WorkShop and MegaDev Overview and
CASEVision/Workshop User’s Guide.

Tuning Your OpenGL Application

The process of tuning graphics applications differs from that of tuning other kinds of
applications. This guide provides platform-independent information about tuning your
OpenGL application in these chapters:

• Chapter 13, “Tuning Graphics Applications: Fundamentals”

• Chapter 14, “Tuning the Pipeline”

• Chapter 15, “Tuning Graphics Applications: Examples”

In addition, there are tuning issues for particular hardware platforms. They are discussed
in Chapter 16, “System-Specific Tuning.”

8

Chapter 1: OpenGL on Silicon Graphics Systems

Maximizing Performance With IRIS Performer

The IRIS Performer application development environment from Silicon Graphics
automatically optimizes graphical applications on the full range of Silicon Graphics
systems without changes or recompilation. Performance features supported by IRIS
Performer include data structures to use the CPU, cache, and memory system
architecture efficiently; tuned rendering loops to convert the system CPU into an
optimized data management engine; and state management control to minimize
overhead.

Location of Example Source Code

All complete example programs (though not the short code fragments) are available in
/usr/share/src/OpenGL if you have the ogl_dev.sw.samples subsystem installed.

9

Chapter 2

2.OpenGL and X: Getting Started

This chapter first presents background information that you will find useful when
working with OpenGL and the X Window System. It then helps you get started right
away by discussing a simple example program that displays OpenGL code in an X
window. Topics include:

• “Background and Terminology” on page 9

• “Libraries, Toolkits, and Tools” on page 14

• “Integrating Your OpenGL Program With IRIS IM” on page 16

• “Integrating OpenGL Programs With X—Summary” on page 25

• “Compiling With OpenGL and Related Libraries” on page 26

Background and Terminology

To effectively integrate your OpenGL program with the X Window System, you need to
understand some basic concepts, discussed in these sections:

• “X Window System on Silicon Graphics Systems”

• “X Window System Concepts”

Note: If you are unfamiliar with the X Window System, you are urged to learn about it
using some of the material listed under “Background Reading” on page xxxii.

X Window System on Silicon Graphics Systems

The X Window System is the only window system provided for Silicon Graphics systems
running IRIX 4.0 or later.

10

Chapter 2: OpenGL and X: Getting Started

X is a network-transparent window system: An application need not be running on the
same system on which you view its display. In the X client/server model, you can run
programs on the local workstation or remotely on other workstations connected by a
network. The X server handles input and output and informs client applications when
various events occur. A special client, the window manager, places windows on the
screen, handles icons, and manages titles and other window decorations.

When you run an OpenGL program in an X environment, window manipulation and
event handling are performed by X functions. Rendering can be done with both X and
OpenGL. In general, X is for the user interface and OpenGL is used for rendering 3D
scenes or for imaging.

Silicon Graphics X Server

The X server provided by Silicon Graphics includes some enhancements that not all
servers have: Support for visuals with different colormaps, overlay windows, the
Display PostScript extension, the Shape extension, the X input extension, the Shared
Memory extension, the SGI video control extension, and simultaneous displays on
multiple graphics monitors. Specifically for working with OpenGL programs, Silicon
Graphics offers the GLX extension discussed in the next section.

To see what extensions to the X Window System are available on your current system,
execute xdpyinfo and check the extensions named below the “number of extensions” line.

GLX Extension to X

The GLX extension, which integrates OpenGL and X, is used by X servers that support
OpenGL. GLX is both an API and an X extension protocol for supporting OpenGL. GLX
routines provide basic interaction between X and OpenGL. Use them, for example, to
create a rendering context and bind it to a window.

Compiling With the GLX Extension

To compile a program that uses the GLX extension, include the GLX header file
(/usr/include/GL/glx.h), which includes relevant X header files and the standard OpenGL
header files. If desired, include also the GLU utility library header file
(/usr/include/GL/glu.h).

Background and Terminology

11

Table 2-1 provides an overview of the headers and libraries you need to include.

X Window System Concepts

To help you understand how to use your OpenGL program inside the X Window System
environment, this section discusses some concepts you will encounter throughout this
guide. You learn about

• “GLX and Overloaded Visuals”

• “GLX Drawables—Windows and Pixmaps”

• “Rendering Contexts”

• “Resources As Server Data”

• “X Window Colormaps”

GLX and Overloaded Visuals

A standard X visual specifies how the server should map a given pixel value to a color to
be displayed on the screen. Different windows on the screen can have different visuals.

Currently, GLX allows RGB rendering to TrueColor and DirectColor visuals and color
index rendering to StaticColor or PseudoColor visuals. See Table 4-1 on page 67 for
information about the visuals and their supported OpenGL rendering modes. The
framebuffer configuration extension allows additional combinations. See
“SGIX_fbconfig—The Framebuffer Configuration Extension” on page 104.

Table 2-1 Headers and Link Lines for OpenGL and Associated Libraries

Library Header Link Line

OpenGL GL/gl.h -lGL

GLU GL/glu.h -lGLU

GLX GL/glx.h -lGL (includes GLX and OpenGL)

X11 X11/xlib.h -lX11

12

Chapter 2: OpenGL and X: Getting Started

GLX overloads X visuals to include both the standard X definition of a visual and
OpenGL specific information about the configuration of the framebuffer and ancillary
buffers that might be associated with a drawable. Only those overloaded visuals support
both OpenGL and X rendering—GLX therefore requires that an X server support a high
minimum baseline of OpenGL functionality.

When you need visual information,

• use xdpyinfo to find out about all the X visuals your system supports

• use glxinfo or findvis to find visuals that can be used with OpenGL

The findvis command can actually look for available visuals with certain attributes.
See the xdpyinfo, glxinfo, and findvis reference pages for more information.

Not all X visuals support OpenGL rendering, but all X servers capable of OpenGL
rendering have at least two OpenGL capable visuals. The exact number and type vary
among different hardware systems. A Silicon Graphics system typically supports many
more than the two required Open GL capable visuals. An RGBA visual is required for
any hardware system that supports OpenGL; a color index visual is required only if the
hardware requires color index. To determine the OpenGL configuration of a visual, you
must use a GLX function.

Visuals are discussed in some detail in “Using Visuals” on page 66. Table 4-1 on page 67
illustrates which X visuals support which type of OpenGL rendering and whether the
colormaps for those visuals are writable or not.

GLX Drawables—Windows and Pixmaps

As a rule, a drawable is something X can draw into, either a window or a pixmap (an
exception is pbuffers, which are GLX drawables but cannot be used for X rendering). A
GLX drawable is something both OpenGL can draw into, either an OpenGL capable
window or a GLX pixmap. (A GLX pixmap is a handle to an X pixmap that is allocated
in a special way; see Figure 4-2 on page 77.) Different ways of creating a GLX drawable
are discussed in “Drawing-Area Widget Setup and Creation” on page 29, “Creating a
Colormap and a Window” on page 42, and “Using Pixmaps” on page 77.

Another kind of GLX drawable is the pixel buffer (or pbuffer), which permits
hardware-accelerated off-screen rendering. See “SGIX_pbuffer—The Pixel Buffer
Extension” on page 112.

Background and Terminology

13

Rendering Contexts

A rendering context (GLXContext) is an OpenGL data structure that contains the current
OpenGL rendering state; an instance of an OpenGL state machine. (For more
information, see the section “OpenGL as a State Machine” in Chapter 1, “Introduction to
OpenGL,” of the OpenGL Programming Guide.) Think of a context as a complete
description of how to draw what the drawing commands specify.

At most one rendering context can be bound to at most one window or pixmap in a given
thread. If a context is bound, it is considered the current context.

OpenGL routines don’t specify a drawable or rendering context as parameters. Instead,
they implicitly affect the current bound drawable using the current rendering context of
the calling thread.

Resources As Server Data

Resources, in X, are data structures maintained by the server rather than by client
programs. Colormaps (as well as windows, pixmaps, and fonts) are implemented as
resources.

Rather than keeping information about a window in the client program and sending an
entire window data structure from client to server, for instance, window data is stored in
the server and given a unique integer ID called an XID. To manipulate or query the
window data, the client sends the window’s ID number; the server can then perform any
requested operation on that window. This reduces network traffic.

Because pixmaps and windows are resources, they are part of the X server and can be
shared by different processes (or threads). OpenGL contexts are also resources. In
standard OpenGL, they can be shared by threads in the same process but not by separate
processes because the API doesn’t support this. (Sharing by different processes is
possible if the import context extension is supported. See “SGIX_fbconfig—The
Framebuffer Configuration Extension” on page 104.)

Note: The term “resource” can, in other X-related contexts, refer to items handled by the
Resource Manager, items that users can customize for their own use. Don’t confuse the
two meanings of the word.

14

Chapter 2: OpenGL and X: Getting Started

X Window Colormaps

A colormap maps pixel values from the framebuffer to intensities on screen. Each pixel
value indexes into the colormap to produce intensities of red, green, and blue for display.
Depending on hardware limitations, one or more colormaps may be installed at one time,
such that windows associated with those maps display with the correct colors. If there is
only one colormap, two windows that load colormaps with different values look correct
only when they have their particular colormap is installed. The X window manager takes
care of colormap installation and tries to make sure that the X client with input focus has
its colormaps installed. On all systems, the colormap is a limited resource.

Every X window needs a colormap. If you are using the OpenGL drawing area-widget
to render in RGB mode into a TrueColor visual, you may not need to worry about the
colormap. In other cases, you may need to assign one. For additional information, see
“Using Colormaps” on page 69. Colormaps are also discussed in detail in O’Reilly,
Volume One.

Libraries, Toolkits, and Tools

This section first discusses programming with widgets and with the Xt (X Toolkit) library,
then briefly mentions some other toolkits that facilitate integrating OpenGL with the X
Window System.

Widgets and the Xt Library

A widget is a piece of a user interface. Under IRIS IM, buttons, menus, scroll bars, and
drawing windows are all widgets.

It usually makes sense to use one of the standard widget sets. A widget set provides a
collection of user interface elements. A widget set may contain, for example, a simple
window with scrollbars, a simple dialog with buttons, and so on. A standard widget set
allows you to easily provide a common look and feel for your applications. The two most
common widget sets are OSF/Motif and the Athena widget set from MIT.

Silicon Graphics strongly encourages using IRIS IM, the Silicon Graphics port of
OSF/Motif, for conformance with Silicon Graphics user interface style and integration
with the Indigo Magic desktop. If you use IRIS IM, your application follows the same
conventions as other applications on the desktop and becomes easier to learn and to use.

Libraries, Toolkits, and Tools

15

The examples in this guide use IRIS IM. Using IRIS IM makes it easier to deal with
difficult issues such as text management and cut and paste. IRIS IM makes writing
complex applications with many user interface components relatively simple. This
simplicity doesn’t come for free; an application that has minimal user interactions incurs
a performance penalty over the same application written in Xlib. For an introduction to
Xlib, see “Xlib Library” on page 5.

Xt Library

Widgets are built using Xt, the X Toolkit Intrinsics, a library of routines for creating and
using widgets. Xt is a “meta” toolkit used to build toolkits like Motif or IRIS IM; you can,
in effect, use it to extend the existing widgets in your widget sets. Xt uses a
callback-driven programming model. It provides tools for common tasks like input
handling and animation and frees you from having to handle a lot of the details of Xlib
programming.

Note that in most (but not all) cases, using Xlib is necessary only for colormap
manipulation, fonts, and 2D rendering. Otherwise, Xt and IRIS IM are enough, though
you may pay a certain performance penalty for using widgets instead of programming
directly in Xlib.

For More Information About Xt

Standard Xt is discussed in detail in O’Reilly, Volume Four. Standard Motif widgets are
discussed in more detail in O’Reilly, Volume Six. See “Background Reading” on
page xxxii for full bibliographic information and for pointers to additional documents
about Motif and IRIS IM. The recently published book on OpenGL and X (Kilgard 1996)
is particularly helpful for OpenGL developers.

Other Toolkits and Tools

Silicon Graphics makes several other tools and toolkits available that can greatly
facilitate designing your IRIS IM interface. See “RapidApp” on page 3, “Open Inventor”
on page 4, and “IRIS ViewKit” on page 5 for more information.

16

Chapter 2: OpenGL and X: Getting Started

Integrating Your OpenGL Program With IRIS IM

To help you get started, this section presents the simplest possible example program that
illustrates how to integrate an OpenGL program with IRIS IM. The program itself is
followed by a brief explanation of the steps involved and a more detailed exploration of
the steps to follow during integration and setup of your own program.

Window creation and event handling, either using Motif widgets or using the Xlib library
directly, are discussed in Chapter 3, “OpenGL and X: Examples.”

Simple Motif Example Program

The program in Example 2-1 (motif/simplest.c) performs setup, creates a window using a
drawing area widget, connects the window with a rendering context, and performs some
simple OpenGL rendering (see Figure 2-1).

Figure 2-1 Display From simplest.c Example Program

Example 2-1 Simple IRIS IM Program

/*
 * simplest - simple single buffered RGBA motif program.
 */
#include <stdlib.h>
#include <stdio.h>
#include <Xm/Frame.h>

Integrating Your OpenGL Program With IRIS IM

17

#include <X11/GLw/GLwMDrawA.h>
#include <X11/keysym.h>
#include <X11/Xutil.h>
#include <GL/glx.h>

static int attribs[] = { GLX_RGBA, None};

static String fallbackResources[] = {
 "*useSchemes: all", “*sgimode:True”,
 "*glxwidget*width: 300", "*glxwidget*height: 300",
 "*frame*shadowType: SHADOW_IN",
 NULL};
/*Clear the window and draw 3 rectangles*/

void
draw_scene(void) {
 glClearColor(0.5, 0.5, 0.5, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0,0.0,0.0);
 glRectf(-.5,-.5,.5,.5);
 glColor3f(0.0,1.0,0.0);
 glRectf(-.4,-.4,.4,.4);
 glColor3f(0.0,0.0,1.0);
 glRectf(-.3,-.3,.3,.3);
 glFlush();
}

/*Process input events*/

static void
input(Widget w, XtPointer client_data, XtPointer call) {
 char buffer[31];
 KeySym keysym;
 XEvent *event = ((GLwDrawingAreaCallbackStruct *) call)->event;

 switch(event->type) {
 case KeyRelease:
 XLookupString(&event->xkey, buffer, 30, &keysym, NULL);
 switch(keysym) {
 case XK_Escape :
 exit(EXIT_SUCCESS);
 break;
 default: break;
 }
 break;

18

Chapter 2: OpenGL and X: Getting Started

 }
}

/*Process window resize events*/
 * calling glXWaitX makes sure that all x operations like *
 * XConfigureWindow to resize the window happen befor the *
 * OpenGL glViewport call.*/

static void
resize(Widget w, XtPointer client_data, XtPointer call) {
 GLwDrawingAreaCallbackStruct *call_data;
 call_data = (GLwDrawingAreaCallbackStruct *) call;
 glXWaitX();
 glViewport(0, 0, call_data->width, call_data->height);
}

/*Process window expose events*/

static void
expose(Widget w, XtPointer client_data, XtPointer call) {
 draw_scene();
}

main(int argc, char *argv[]) {
 Display *dpy;
 XtAppContext app;
 XVisualInfo *visinfo;
 GLXContext glxcontext;
 Widget toplevel, frame, glxwidget;

 toplevel = XtOpenApplication(&app, "simplest", NULL, 0, &argc,
 argv,fallbackResources, applicationShellWidgetClass,
 NULL, 0);
 dpy = XtDisplay(toplevel);

 frame = XmCreateFrame(toplevel, "frame", NULL, 0);
 XtManageChild(frame);

 /* specify visual directly */
 if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), attribs)))
 XtAppError(app, "no suitable RGB visual");

 glxwidget = XtVaCreateManagedWidget("glxwidget",
 glwMDrawingAreaWidgetClass, frame, GLwNvisualInfo,
 visinfo, NULL);

Integrating Your OpenGL Program With IRIS IM

19

 XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
 XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
 XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

 XtRealizeWidget(toplevel);

 glxcontext = glXCreateContext(dpy, visinfo, 0, GL_TRUE);
 GLwDrawingAreaMakeCurrent(glxwidget, glxcontext);

 XtAppMainLoop(app);
}

Looking at the Example Program

As the example program illustrates, integrating OpenGL drawing routines with a simple
IRIS IM program involves only a few steps. Except for window creation and event
handling, these steps are actually independent of whether the program uses Xt and Motif
or Xlib.

The rest of this chapter looks at each step. Each step is discussed in one section:

• “Opening the X Display”

• “Selecting a Visual”

• “Creating a Rendering Context”

• “Creating the Window” (discussed with program examples in “Drawing-Area
Widget Setup and Creation” on page 29 and “Creating a Colormap and a Window”
on page 42)

• “Binding the Context to the Window”

• “Mapping the Window”

Note that event handling, which is different depending on whether you use Xlib or
Motif, is discussed in “Input Handling With Widgets and Xt” on page 34 and, for Xlib
programming, “Xlib Event Handling” on page 45.

20

Chapter 2: OpenGL and X: Getting Started

Opening the X Display

Before making any GLX (or OpenGL) calls, a program must open a display (required)
and should find out whether the X server supports GLX (optional).

To open a display, use XOpenDisplay() if you are programming with Xlib, or
XtOpenApplication() if you are working with widgets as in Example 2-1 above.
XtOpenApplication() actually opens the display and performs some additional setup:

• initializing Xt

• opening an X server connection

• creating an X context (not a GLX context) for the application

• creating an application shell widget

• processing command-line options

• registering fallback resources

It is recommend (but not required) that you find out whether the X server supports GLX
by calling glXQueryExtension().

Bool glXQueryExtension (Display *dpy, int *errorBase, int *eventBase)

In most cases, NULL is appropriate for both errorBase and eventBase. See the
glXQueryExtension reference page for more information.

Note: This call is not required (and therefore not part of motif/simplest.c), because
glXChooseVisual() simply fails if GLX is not supported. It is included here because it is
recommended for the sake of portability.

If glXQueryExtension() succeeds, use glXQueryVersion() to find out which version of
GLX is being used; an older version of the extension may not be able to do everything
your version can do.The following pseudo-code demonstrates checking for the version
number:

glXQueryVersion(dpy, &major, &minor);
if (((major == 1) && (minor == 0)){
 /*assume GLX 1.0, avoid GLX 1.1 functionality*/
 }
 else{
 /*can use GLX 1.1 functionality*/
 }
 }

Integrating Your OpenGL Program With IRIS IM

21

Currently, GLX 1.0 and GLX 1.1 are supported as follows:

GLX 1.0 IRIX 5.1, 5.2, and 6.0.1

GLX 1.1 IRIX 5.3, 6.1, 6.2, and 6.3

GLX 1.2 IRIX 6.4

GLX 1.1 supports a few additional functions and provides a mechanism for using
extensions. See the glxintro reference page.

Selecting a Visual

A visual determines how pixel values are mapped to the screen. The display mode of
your OpenGL program (RGBA or color index) determines which X visuals are suitable.
To find a visual with the attributes you want, call glXChooseVisual() with the desired
parameters. Here is the function prototype:

XVisualInfo* glXChooseVisual(Display *dpy, int screen, int *attribList)

• The first two parameters specify the display and screen. The display was earlier
opened with XtOpenApplication() or XOpenDisplay(). Typically, you specify the
default screen that is returned by the DefaultScreen() macro.

• The third parameter is a list of the attributes you want your visual to have, specified
as an array of integers with the special value None as the final element in the array.
Attributes specify, for example

– whether to use RGBA or color-index mode (depending on whether GLX_RGBA
is True or False)

– whether to use double-buffering or not (depending on the value of
GLX_DOUBLEBUFFER)

– how deep the depth buffer should be (depending on the value of
GLX_DEPTH_SIZE)

In Example 2-1 above, the only attribute specified is an RGB display:

static int attribs[] = { GLX_RGBA, None};

22

Chapter 2: OpenGL and X: Getting Started

The visual returned by glXChooseVisual() is always a visual that supports OpenGL. It
is guaranteed to have Boolean attributes matching those specified, and integer attributes
with values at least as large as those specified. For detailed information, see the
glXChooseVisual reference page.

Note: Be aware that Xlib provides these three different but related visual data types.
glXChooseVisual() actually returns an XVisualInfo*, which is a different entity form a
visual* or a visual ID. XCreateWindow(), on the other hand, requires a visual*, not an
XVisualInfo*.

The framebuffer capabilities and other attributes of a window are determined statically
by the visual used to create it. For example, to change a window from single-buffer to
double-buffer, you have to switch to a different window created with a different visual.

Note: In general, ask for 1 bit of red, green, and blue to get maximum color resolution.
Zero matches to the smallest available color resolution.

Instead of calling glXChooseVisual(), you can also choose a visual as follows:

• Ask the X server for a list of all visuals using XGetVisualInfo() and then call
glXGetConfig() to query the attributes of the visuals. Be sure to use a visual for
which the attribute GLX_USE_GL is True.

• If you have decided to use IRIS IM, call XtCreateManagedWidget(), provide
GLwDrawingAreaWidget as the parent, and let the widget choose the visual for
you.

There is also an experimental extension that allows you to create and choose a
glXFBConfig construct, which packages GLX drawable information, for use instead of a
visual. See “SGIX_fbconfig—The Framebuffer Configuration Extension” on page 104.

Creating a Rendering Context

Creating a rendering context is the application’s responsibility. Even if you choose to use
IRIS IM, the widget does no context management. Before you can draw anything, you
must therefore create a rendering context for OpenGL using glXCreateContext(), which
has the following function prototype:

GLXContext glXCreateContext(Display *dpy, XVisualInfo *vis,
 GLXContext shareList, Bool direct)

Integrating Your OpenGL Program With IRIS IM

23

Here’s how you use the arguments:

dpy The display you have already opened.

vis The visual you have chosen with glXChooseVisual().

sharedList A context to share display lists with, or NULL to not share display lists.

direct Lets you specify direct or indirect rendering. For best performance,
always request direct rendering. The OpenGL implementation
automatically switches to indirect rendering when direct rendering is
not possible (for example, when rendering remotely). See “Direct and
Indirect Rendering” on page 79.

Creating the Window

After picking a visual and creating a context, you need to create a drawable (window or
pixmap) that uses the chosen visual. How you create the drawable depends on whether
you use Xlib or Motif calls and is discussed, with program examples, in “Drawing-Area
Widget Setup and Creation” on page 29 and “Creating a Colormap and a Window” on
page 42.

Binding the Context to the Window

If you are working with Xlib, bind the context to the window by calling
glXMakeCurrent(). Example 3-2 on page 40 is a complete Xlib program and illustrates
how the function is used.

If you are working with widgets and have an OpenGL context and a window, bind them
together with GLwDrawingAreaMakeCurrent(). This IRIS IM function is a front end to
glXMakeCurrent(); it allows you to bind the context to the window without having to
know the drawable ID and display.

If GLwDrawingAreaMakeCurrent() is successful, subsequent OpenGL calls use the
new context to draw on the given drawable. The call fails if the context and the drawable
are mismatched; that is, if they were created with different visuals.

Note: Don’t make OpenGL calls until the context and window have been bound (made
current).

24

Chapter 2: OpenGL and X: Getting Started

For each thread of execution, at most one context can be bound to at most one window
or pixmap.

Note: “EXT_make_current_read—The Make Current Read Extension” on page 90
allows you to attach separate read and write drawables to a GLX context.

Mapping the Window

A window can become visible only if it is mapped and all its parent windows are
mapped. Note that mapping the window is not directly related to binding it to an
OpenGL rendering context, but both need to happen if you want to display an OpenGL
application.

Mapping the window or realizing the widget is not synchronous with the call that
performs the action. When a window is mapped, the window manager makes it visible
if no other actions are specified to happen before. For example, some window managers
display just an outline of the window instead of the window itself, letting the user
position the window. When the user clicks, the window becomes visible.

If a window is mapped but is not yet visible, you may already set OpenGL state; for
example, you may load textures or set colors, but rendering to the window is discarded
(this includes rendering to a back buffer if you are doing double-buffering). You need to
get an Expose event—if using Xlib—or the expose callback before the window is
guaranteed to be visible on the screen. The init callback doesn’t guarantee that the
window is visible, only that it exists.

How you map the window on the screen depends on whether you have chosen to create
an X window from scratch or use a widget:

• To map a window created with Xlib functions, call XMapWindow().

• To map the window created as a widget, use XtRealizeWidget() and
XtCreateManagedChild(), which perform some additional setup as well. For more
information, see the XtRealizeWidget and XtCreateManagedChild reference pages.

Integrating OpenGL Programs With X—Summary

25

Integrating OpenGL Programs With X—Summary

Table 2-2 summarizes the steps that are needed to integrate an OpenGL program with
the X Window System. Note that the GLX functions are usually shared, while other
functions differ for IRIS IM or Xlib.

Additional example programs are provided in Chapter 3, “OpenGL and X: Examples.”

Table 2-2 Integrating OpenGL and X

Step Using IRIS IM Using Xlib

“Opening the X Display” XtOpenApplication XOpenDisplay

Making sure GLX is supported
(optional)

glXQueryExtension

glXQueryVersion

glXQueryExtension

glXQueryVersion

“Selecting a Visual” glXChooseVisual glXChooseVisual

“Creating a Rendering Context” glXCreateContext glXCreateContext

“Creating the Window” (see Chapter 3,
“OpenGL and X: Examples”)

XtVaCreateManagedWidget, with
glwMDrawingAreaWidgetClass

XCreateColormap

XCreateWindow

“Binding the Context to the Window” GLwDrawingAreaMakeCurrent glXMakeCurrent

“Mapping the Window” XtRealizeWidget XMapWindow

26

Chapter 2: OpenGL and X: Getting Started

Compiling With OpenGL and Related Libraries

This section lists compiler options for individual libraries, then lists groups or libraries
typically used together.

Link Lines for Individual Libraries

This sections lists link lines and the libraries that will be linked in.

-lGL OpenGL and GLX routines.

-lX11 Xlib, X client library for X11 protocol generation.

-lXext X Extension library, provides infrastructure for X client side libraries
(like OpenGL).

-lGLU OpenGL utility library.

-lXmu Miscellaneous utilities library (includes colormap utilities).

-lXt X toolkit library, infrastructure for widgets.

-lXm Motif widget set library.

-GLw OpenGL widgets, Motif and core OpenGL drawing area widgets.

-lXi X input extension library for using extra input devices.

-limage RGB file image reading and writing routines.

-lm Math library. Needed if your OpenGL program uses trigonometric or
other special math routines.

Link Lines for Groups of Libraries

To use minimal OpenGL or additional libraries, use the following link lines:

Minimal OpenGL -lGL -lXext -lX11

With GLU -lGLU

With Xmu -lXmu

With Motif and OpenGL widget -lGLw -lXm -lXt

27

Chapter 3

3.OpenGL and X: Examples

Some aspects of integrating your OpenGL program with the X Window System depend
on whether you choose IRIS IM widgets or Xlib. This chapter’s main focus is to help you
with those aspects by looking at example programs:

• “Using Widgets” on page 27 illustrates how to create a window using IRIS IM
drawing-area widgets and how to handle input and other events using callbacks.

• “Using Xlib” on page 39 illustrates how to create a colormap and a window for
OpenGL drawing. It also provides a brief discussion of event handling with Xlib.

This chapter also briefly discusses fonts: “Using Fonts and Strings” on page 48 looks at a
simple example of using fonts with the glXUseFont() function.

Note: All integration aspects that are not dependent on your choice of Xlib or Motif are
discussed in “Integrating Your OpenGL Program With IRIS IM” on page 16 in Chapter 2,
“OpenGL and X: Getting Started.”

Using Widgets

This section explains how to use IRIS IM widgets for creating windows, handling input,
and performing other activities that the OpenGL part of a program doesn’t deal with.
The section discusses the following topics:

• “About OpenGL Drawing-Area Widgets”

• “Drawing-Area Widget Setup and Creation”

• “Input Handling With Widgets and Xt”

• “Widget Troubleshooting”

28

Chapter 3: OpenGL and X: Examples

About OpenGL Drawing-Area Widgets

Using an OpenGL drawing-area widget facilitates rendering OpenGL into an X window.
The widget

• provides an environment for OpenGL rendering, including a visual and a colormap

• provides a set of callback routines for redrawing, resizing, input, and initialization
(see “Using Drawing-Area Widget Callbacks” on page 32)

OpenGL provides two drawing-area widgets: GLwMDrawingArea—note the M in the
name—for use with IRIS IM (or with OSF/Motif), and GLwDrawingArea for use with
any other widget sets. Both drawing-area widgets provide two convenience functions:

• GLwMDrawingAreaMakeCurrent() and GLwDrawingAreaMakeCurrent()

• GLwMDrawingAreaSwapBuffers() and GLwDrawingAreaSwapBuffers()

The functions allow you to supply a widget instead of the display and window required
by the corresponding GLX functions glXMakeCurrent() and glXSwapBuffers().

Because the two widgets are nearly identical, and because IRIS IM is available on all
Silicon Graphics systems, this chapter uses only the IRIS IM version, even though most
of the information also applies to the general version. Here are some of the
distinguishing characteristics of GLwMDrawingArea:

• GLwMDrawingArea understands IRIS IM keyboard traversal (moving around
widgets with keyboard keys rather than a mouse), although keyboard traversal is
turned off by default.

• GLwMDrawingArea is a subclass of the IRIS IM XmPrimitive widget, not a direct
subclass of the Xt Core widget. It therefore has various defaults such as background
and foreground colors. GLwMDrawingArea is not derived from the standard Motif
drawing-area widget class. (See O’Reilly Volume One or the reference pages for
Core and for XmPrimitive for more information.)

Note that the default background colors provided by the widget are used during X
rendering, not during OpenGL rendering, so it is not advisable to rely on default
background rendering from the widget. Even when the background colors are not
used directly, XtGetValues() can be used to query them to allow the graphics to
blend in better with the program.

• GLwMDrawingArea has an IRIS IM style creation function,
GLwCreateMDrawingArea(); you can also create the widget directly through Xt.

For information specific to GLwDrawingArea, see the reference page.

Using Widgets

29

Drawing-Area Widget Setup and Creation

Most of the steps for writing a program that uses a GLwMDrawingArea widget are
already discussed in “Integrating Your OpenGL Program With IRIS IM” on page 16. This
section explains how to initialize IRIS IM and how to create the drawing-area widget,
using code fragments from the motif/simplest.c example program (Example 2-1 on page
16). You learn about

• “Setting Up Fallback Resources”

• “Creating the Widgets”

• “Choosing the Visual for the Drawing-Area Widget”

• “Creating Multiple Widgets With Identical Characteristics”

• “Using Drawing-Area Widget Callbacks”

Setting Up Fallback Resources

This section briefly explains how to work with resources in the context of an OpenGL
program. In Xt, resources provide widget properties, allowing you to customize how
your widgets will look. Note that the term “resource” used here refers to window
properties stored by a resource manager in a resource database, not to the data structures
for windows, pixmaps, and context discussed earlier.

Fallback resources inside a program are used when a widget is created and the
application cannot open the class resource file when it calls XtOpenApplication() to
open the connection to the X server. (In the code fragment below, the first two resources
are specific to Silicon Graphics and give the application a Silicon Graphics look and feel.)

static String fallbackResources[] = {
 "*useSchemes: all",”*sgimode:True”,
 "*glxwidget*width: 300",
 "*glxwidget*height: 300",
 "*frame*shadowType: SHADOW_IN",
 NULL};

Note: Applications should ship with resource files installed in a resource directory (in
/usr/lib/X11/app-defaults). If you do install such a file automatically with your application,
there is no need to duplicate the resources in your program.

30

Chapter 3: OpenGL and X: Examples

Creating the Widgets

Widgets always exist in a hierarchy, with each widget contributing to what is visible on
screen. There is always a top-level widget and almost always a container widget (for
example, form or frame). In addition, you may decide to add buttons or scroll bars, which
are also part of the IRIS IM widget set. Creating your drawing surface therefore consists
of two steps:

1. Create parent widgets, namely the top-level widget and a container widget.
motif/simplest.c, Example 2-1 on page 16, uses a Form container widget and a Frame
widget to draw the 3D box:

toplevel = XtOpenApplication(&app, "simplest", NULL, 0, &argc, argv,
 fallbackResources, applicationShellWidgetClass, NULL, 0);
...
form = XmCreateForm(toplevel, "form", args, n);
XtManageChild(form);
....
frame = XmCreateFrame (form, "frame", args, n);
...

For more information, see the reference pages for XmForm and XmFrame.

2. Create the GLwMDrawingArea widget itself in either of two ways:

• Call GLwCreateMDrawingArea(). You can specify each attribute as an
individual resource or pass in an XVisualInfo pointer obtained with
glXChooseVisual(). This is discussed in more detail in the next section,
“Choosing the Visual for the Drawing-Area Widget.”

n = 0
XSetArg(args[n] GLwNvisualinfo, (XtArgVal)visinfo);
n++;
glw = GLwCreateMDrawingArea(frame, "glwidget", args, n);

• As an alternative, call XtVaCreateManagedWidget() and pass it a pointer to the
visual you have chosen. In that case, use glwMDrawingAreaWidgetClass as the
parent and GLwNvisualInfo to specify the pointer. Here’s an example from
motif/simplest.c:

glxwidget = XtVaCreateManagedWidget
 ("glxwidget", glwMDrawingAreaWidgetClass, frame,
 GLwNvisualInfo, visinfo, NULL);

Using Widgets

31

Note: Creating the widget doesn’t actually create the window. An application must wait
until after it has realized the widget before performing any OpenGL operations to the
window, or use the ginit callback to indicate when the window has been created.

Note that unlike most other Motif user interface widgets, the OpenGL widget explicitly
sets the visual. Once a visual is set and the widget is realized, the visual can no longer be
changed.

Choosing the Visual for the Drawing-Area Widget

There are three ways of configuring the GLwMDrawingArea widget when calling the
widget creation function, all done through resources:

• Pass in separate resources for each attribute (for example GLwNrgba,
GLwNdoublebuffer).

• Pass in an attribute list of the type used by glXChooseVisual(), using the
GLwNattribList resource.

• Select the visual yourself, using glXChooseVisual(), and pass in the returned
XVisualInfo* as the GLwNvisualInfo resource.

If you wish to provide error handling, call glXChooseVisual(), as all the example
programs do (although for the sake of brevity, none of the examples actually provides
error handling). If you provide the resources and let the widget choose the visual, the
widget just prints an error message and quits. Note that a certain visual may be
supported on one system but not on another, so appropriate error handling is critical to
a robust program.

The advantage of using a list of resources is that you can override them with the
app-defaults file.

Creating Multiple Widgets With Identical Characteristics

Most applications have one context per widget, though sharing is possible. If you want
to use multiple widgets with the same configuration, you must use the same visual for
each widget. Windows with different visuals cannot share contexts. To share contexts:

1. Extract the GLwNvisualInfo resource from the first widget you create.

2. Use that visual in the creation of subsequent widgets.

32

Chapter 3: OpenGL and X: Examples

Using Drawing-Area Widget Callbacks

The GLwMDrawingArea widget provides callbacks for redrawing, resizing, input, and
initialization, as well as the standard XmNdestroyCallback provided by all widgets.

Each callback must first be defined and then added to the widget. In some cases, this is
quite simple, as, for example, the resize callback from motif/simplest.c:

static void
resize(Widget w, XtPointer client_data, XtPointer call) {
 GLwDrawingAreaCallbackStruct *call_data;
 call_data = (GLwDrawingAreaCallbackStruct *) call;
 glXWaitX();

 glViewport(0, 0, call_data->width, call_data->height);
}

Note: The X and OpenGL command streams are asynchronous, meaning that the order
in which OpenGL and X commands complete is not strictly defined. In a few cases, it is
important to explicitly synchronize X and OpenGL command completion. For example,
if an X call is used to resize a window within a widget program, call glXWaitX() before
calling glViewport() to ensure that the window resize operation is complete.

Other cases are slightly more complex, such as the input callback from motif/simplest.c,
which exits when the user presses the Esc key:

static void
input(Widget w, XtPointer client_data, XtPointer call) {

char buffer[31];
KeySym keysym;
XEvent *event = ((GLwDrawingAreaCallbackStruct *)call) ->event;

switch(event->type) {
case KeyRelease:

XLookupString(&event->xkey, buffer, 30, &keysym, NULL);
switch(keysym) {
case XK_Escape :

exit(EXIT_SUCCESS);
break;

default: break;
}
break;

}
}

Using Widgets

33

To add callbacks to a widget, use XtAddCallback(); for example:

XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

Each callback must ensure that the thread is made current with the correct context to the
window associated with the widget generating the callback. You can do this by calling
either GLwMDrawingAreaMakeCurrent() or glXMakeCurrent().

If you are using only one GLwMDrawingArea, you can call a routine to make the widget
“current” just once, after initializing the widget. However, if you are using more than one
GLwMDrawingArea or rendering context, you need to make the correct context and the
window current for each callback (see “Binding the Context to the Window” on page 23).

The following callbacks are available:

• GLwNginitCallback. Specifies the callbacks to be called when the widget is first
realized. You can use this callback to perform OpenGL initialization, such as
creating a context, because no OpenGL operations can be done before the widget is
realized. Callback reason is GLwCR_GINIT.

Use of this callback is not necessary. Anything done in this callback can also be done
after the widget hierarchy has been realized. You can use the callback to keep all the
OpenGL code together, keeping the initialization in the same file as the widget
creation rather than with widget realization.

Note: If you create a GLwDrawingArea widget as a child of an already realized
widget, it is not possible to add the ginit callback before the widget is realized
because the widget is immediately realized at creation. In that case, you should
initialize immediately after creating the widget.

• GLwNexposeCallback. Specifies the callbacks to be called when the widget
receives an Expose event. The callback reason is GLwCR_EXPOSE. The callback
structure also includes information about the Expose event. Usually the application
should redraw the scene whenever this callback is called.

Note: An application should not perform any OpenGL drawing until it receives an
expose callback, although it may set the OpenGL state; for example, it may create
display lists and so on.

34

Chapter 3: OpenGL and X: Examples

• GLwNinputCallback. Specifies the callbacks to be called when the widget receives
a keyboard or mouse event. The callback structure includes information about the
input event. Callback reason is GLwCR_INPUT.

The input callback is a programming convenience; it provides a convenient way to
catch all input events. You can often create a more modular program, however, by
providing specific actions and translations in the application rather than using a
single catchall callback. See “Input Handling With Widgets and Xt” on page 34 for
more information.

• GLwNresizeCallback. Specifies the callbacks to be called when the
GLwDrawingArea is resized. The callback reason is GLwCR_RESIZE. Normally,
programs resize the OpenGL viewport and possibly reload the OpenGL projection
matrix (see the OpenGL Programming Guide). An expose callback follows. Avoid
performing rendering inside the resize callback.

Input Handling With Widgets and Xt

This section explains how to perform input handling with widgets and Xt. It covers:

• “Background Information”

• “Using the Input Callback”

• “Using Actions and Translations”

Background Information

Motif programs are callback driven. They differ in that respect from IRIS GL programs,
which implement their own event loops to process events. To handle input with a
widget, you can either use the input callback built into the widget or use actions and
translations (Xt-provided mechanisms that map keyboard input into user-provided
routines). Both approaches have advantages:

• Input callbacks are usually simpler to write, and they are more unified; all input is
handled by a single routine that can maintain a private state (see “Using the Input
Callback”).

• The actions-and-translations method is more modular, because translations have
one function for each action. Also, with translations the system does the keyboard
parsing so your program doesn’t have to do it. Finally, translations allow the user to
customize the application’s key bindings. See “Using Actions and Translations” on
page 36.

Using Widgets

35

Note: To allow smooth porting to other systems, as well as for easier integration of X and
OpenGL, always separate event handling from the rest of your program.

Using the Input Callback

By default, the input callback is called with every key press and release, with every
mouse button press and release, and whenever the mouse is moved while a mouse
button is pressed. You can change this by providing a different translation table,
although the default setting should be suitable for most applications.

For example, to have the input callback called on all pointer motions, not just on mouse
button presses, add the following to the app-defaults file:

*widgetname.translations : \
 <KeyDown>: glwInput() \n\
 <KeyUp>: glwInput() \n\
 <BtnDown>: glwInput() \n\
 <BtnUp>: glwInput() \n\
 <BtnMotion>: glwInput() \n\
 <PtrMoved>: glwInput()

The callback is passed an X event. It interprets the X events and performs the appropriate
action. It is your application’s responsibility to interpret the event—for example, to
convert an X keycode into a key symbol—and to decide what to do with it.

Example 3-1 is from motif/mouse.c, a double-buffered RGBA program that uses mouse
motion events.

Example 3-1 Motif Program That Handles Mouse Events

static void
input(Widget w, XtPointer client_data, XtPointer call) {
 char buffer[31];
 KeySym keysym;
 XEvent *event = ((GLwDrawingAreaCallbackStruct *) call)->event;
 static mstate, omx, omy, mx, my;

 switch(event->type) {
 case KeyRelease:
 XLookupString(&event->xkey, buffer, 30, &keysym, NULL);
 switch(keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 break;

36

Chapter 3: OpenGL and X: Examples

 default: break;
 }
 break;
 case ButtonPress:
 if (event->xbutton.button == Button2) {
 mstate |= 2;
 mx = event->xbutton.x;
 my = event->xbutton.y;
 } else if (event->xbutton.button == Button1) {
 mstate |= 1;
 mx = event->xbutton.x;
 my = event->xbutton.y;
 }
 break;
 case ButtonRelease:
 if (event->xbutton.button == Button2)
 mstate &= ~2;
 else if (event->xbutton.button == Button1)
 mstate &= ~1;
 break;
 case MotionNotify:
 if (mstate) {
 omx = mx;
 omy = my;
 mx = event->xbutton.x;
 my = event->xbutton.y;
 update_view(mstate, omx,mx,omy,my);
 }
 break;
 }

Using Actions and Translations

Actions and translations provide a mechanism for binding a key or mouse event to a
function call. For example, you can set things up so that

• when you press the Esc key, the exit routine quit() is called

• when you press the left mouse button, rotation occurs

• when you press f, the program zooms in

Using Widgets

37

The translations need to be combined with an action task that maps string names like
quit() to real function pointers. Below is an example of a translation table:

program*glwidget*translations: #override \n
 <Btn1Down>: start_rotate() \n\
 <Btn1Up>: stop_rotate() \n\
 <Btn1Motion>: rotate() \n\
 <Key>f: zoom_in() \n\
 <Key>b: zoom_out() \n\
 <KeyUp>osfCancel: quit()

When you press the left mouse button, the start_rotate() action is called; when it is
released, the stop_rotate() action is called.

The last entry is a little cryptic. It actually says that when the user presses the Esc key,
quit() is called. However, OSF has implemented virtual bindings, which allow the same
programs to work on computers with different keyboards that may be missing various
keys. If a key has a virtual binding, the virtual binding name must be specified in the
translation. Thus, the example above specifies osfCancel rather than Esc. To use the
above translation in a program that is not based on IRIS IM or OSF/Motif, replace
KeyUp+osfCancel with KeyUp+Esc.

The translation is only half of what it takes to set up this binding. Although the
translation table above contains what look like function names, they are really action
names. Your program must also create an action table to bind the action names to actual
functions in the program.

For more information on actions and translations, see O’Reilly, X Toolkit Intrinsics
Programming Manual (Volume Four), most notably Chapter 4, “An Example
Application,” and Chapter 8, “Events, Translations, and Accelerators.” You can view this
manual online using IRIS InSight.

Creating Colormaps

By default, a widget creates a colormap automatically. For many programs, this is
sufficient. However, it is occasionally necessary to create a colormap explicitly, especially
when using color index mode. See “Creating a Colormap and a Window” on page 42 and
“Using Colormaps” on page 69 for more information.

38

Chapter 3: OpenGL and X: Examples

Widget Troubleshooting

This section provides troubleshooting information by discussing some common pitfalls
when working with widgets.

Note: Additional debugging information is provided in “General Tips for Debugging
Graphics Programs” on page 288.

Keyboard Input Disappears

A common problem in IRIS IM programs is that keyboard input disappears. This is
caused by how IRIS IM handles keyboard focus. When a widget hierarchy has keyboard
focus, only one component of the hierarchy receives the keyboard events. The keyboard
input might be going to the wrong widget.

There are two solutions to this:

• The easiest solution is to set the resource

keyboardFocusPolicy: POINTER

for the application. This overrides the default traversal method (explicit traversal)
where you can select widgets with keyboard keys rather than the mouse so that
input focus follows the pointer only. The disadvantages of this method are that it
eliminates explicit traversal for users who prefer it and it forces a nondefault model.

• A better solution is to set the resource

*widget.traversalOn: TRUE

where widget is the name of the widget, and to call

XmProcessTraversal(widget, XmTRAVERSE_CURRENT);

whenever mouse button 1 is pressed in the widget. Turning process traversal on
causes the window to respond to traversal (it normally doesn’t), and calling
XmProcessTraversal() actually traverses into the widget when appropriate.

Inheritance Issues

In Xt, shell widgets, which include top-level windows, popup windows, and menus,

• inherit their colormap and depth from their parent widget

• inherit their visual from the parent window

Using Xlib

39

If the visual doesn’t match the colormap and depth, this leads to a BadMatch X protocol
error.

In a typical IRIS IM program, everything runs in the default visual, and the inheritance
from two different places doesn’t cause problems. However, when a program uses both
OpenGL and IRIS IM, it requires multiple visuals, and you have to be careful. Whenever
you create a shell widget as a child of a widget in a non-default visual, specify pixel
depth, colormap, and visual for that widget explicitly. This happens with menus or
popup windows that are children of OpenGL widgets. See “Using Popup Menus With
the GLwMDrawingArea Widget” on page 64.

If you do get a BadMatch error, follow these steps to determine its cause:

1. Run the application under a C debugger, such as dbx or cvd (the Case Vision
debugger) with the -sync flag.

The -sync flag tells Xt to call XSynchronize(), forcing all calls to be made
synchronously. If your program is not based on Xt, or if you are not using standard
argument parsing, call XSynchronize(display, TRUE) directly inside your program.

2. Using the debugger, set a breakpoint in exit() and run the program.

When the program fails, you have a stack trace you can use to determine what Xlib
routine caused the error.

Note: If you don’t use the -sync option, the stack dump on failure is meaningless: X
batches multiple requests and the error is delayed.

Using Xlib

This section explains how to use Xlib for creating windows, handling input, and
performing other activities that the OpenGL part of a program doesn’t deal with.
Because the complete example program in Chapter 2, “OpenGL and X: Getting Started”
used widgets, this section starts with a complete annotated example program for Xlib, so
you have both available as needed. After that, you learn about

• Creating a Colormap and a Window

• Xlib Event Handling

40

Chapter 3: OpenGL and X: Examples

Simple Xlib Example Program

Example 3-2 lists the complete Xlib/simplest.c example program.

Example 3-2 Simple Xlib Example Program

/*
 * simplest - simple single buffered RGBA xlib program.
 */
/* compile: cc -o simplest simplest.c -lGL -lX11 */

#include <GL/glx.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };

static void
draw_scene(void) {
 glClearColor(0.5, 0.5, 0.5, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0,0.0,0.0);
 glRectf(-.5,-.5,.5,.5);
 glColor3f(0.0,1.0,0.0);
 glRectf(-.4,-.4,.4,.4);
 glColor3f(0.0,0.0,1.0);
 glRectf(-.3,-.3,.3,.3);
 glFlush();
}

static void
process_input(Display *dpy) {
 XEvent event;
 Bool redraw = 0;

 do {
 char buf[31];
 KeySym keysym;

 XNextEvent(dpy, &event);
 switch(event.type) {
 case Expose:
 redraw = 1;
 break;

Using Xlib

41

 case ConfigureNotify:
 glViewport(0, 0, event.xconfigure.width,
 event.xconfigure.height);
 redraw = 1;
 break;
 case KeyPress:
 (void) XLookupString(&event.xkey, buf, sizeof(buf),
 &keysym, NULL);
 switch (keysym) {

 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 default:
 break;
 }
 } while (XPending(dpy));
 if (redraw) draw_scene();
}

static void
error(const char *prog, const char *msg) {
 fprintf(stderr, “%s: %s\n”, prog, msg);
 exit(EXIT_FAILURE);
}
int
main(int argc, char **argv) {
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;

 /* get a connection */
 dpy = XOpenDisplay(0);
 if (!dpy) error(argv[0], “can’t open display”);

 /* get an appropriate visual */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy), attributeList);
 if (!vi) error(argv[0], “no suitable visual”);

 /* create a GLX context */
 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

42

Chapter 3: OpenGL and X: Examples

 /* create a colormap */
 swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);
 /* create a window */
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 300,
 300, 0, vi->depth, InputOutput, vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);
 XStoreName(dpy, win, “simplest”);
 XMapWindow(dpy, win);

 /* connect the context to the window */
 glXMakeCurrent(dpy, win, cx);

 for(;;) process_input(dpy);
}

Creating a Colormap and a Window

A colormap determines the mapping of pixel values in the framebuffer to color values on
the screen. Colormaps are created with respect to a specific visual.

When you create a window, you must supply a colormap for it. The visual associated
with a colormap must match the visual of the window using the colormap. Most X
programs use the default colormap because most X programs use the default visual. The
easiest way to obtain the colormap for a particular visual is to call XCreateColormap():

Colormap XCreateColormap (Display *display, Window w, Visual *visual,
 int alloc)

Here’s how Example 3-2 calls XCreateColormap():

swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);

The parameters specify the display, window, and visual, and the number of colormap
entries to allocate. The alloc parameter can have the special value AllocAll or AllocNone.
While it is easy to simply call XCreateColormap(), you are encouraged to share
colormaps. See Example 4-2 on page 71 for details on how to do this.

Using Xlib

43

Note that you cannot use AllocAll if the colormap corresponds to a visual that has
transparent pixels, because the colormap cell that corresponds to the transparent pixel
cannot be allocated with AllocAll. For more information about colormaps, see “Using
Colormaps” on page 69. For information on overlays, which use a visual with a
transparent pixel, see “Using Overlays” on page 58.

You can then create a window using XCreateWindow(). Before calling
XCreateWindow(), set the attributes you want in the attributes variable. When you make
the call, indicate valuemask by OR-ing together symbolic constants that specify the
attributes you have set. Here’s how Example 3-2 does it:

swa.background_pixmap = None;
swa.border_pixel = 0;
swa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMask;
win = XCreateWindow(

dpy, /*display*/
RootWindow(dpy, vi->screen), /*parent*/
0, /*x coordinate*/
0, /*y coordinate*/
300, /*width*/
300, /*height*/
0, /*border width*/
vi->depth, /*depth*/
InputOutput, /*class*/
vi->visual, /*visual*/
CWBackPixmap|CWBorderPixel|CWColormap|CWEventMask,
 /*valuemask*/
&swa /*attributes*/

);

Most of the parameters are self-explanatory. Here are three that are not:

• class indicates whether the window is InputOnly or InputOutput.

Note: InputOnly windows cannot be used with GLX contexts.

• valuemask specifies which window attributes are provided by the call.

• attributes specifies the settings for the window attributes. The
XSetWindowAttributes structure contains a field for each of the allowable
attributes.

44

Chapter 3: OpenGL and X: Examples

Note: If the window’s visual or colormap doesn’t match the visual or colormap of the
window’s parent, you must specify a border pixel to avoid a BadMatch X protocol error.
Most windows specify a border zero pixels wide, so the value of the border pixel is
unimportant; zero works fine.

If the window you are creating is a top-level window (meaning it was created as a child
of the root window), consider calling XSetWMProperties() to set the window’s
properties after you have created it.

void XSetWMProperties(Display *display, Window w,
 XTextProperty *window_name, XTextProperty *icon_name,
 char **argv, int argc, XSizeHints *normal_hints,
 XWMHints *wm_hints, XClassHint *class_hints)

XSetWMProperties() provides a convenient interface for setting a variety of important
window properties at once. It merely calls a series of other property-setting functions,
passing along the values you pass in. For more information, see the reference page.

Note that two useful properties are the window name and the icon name. The example
program calls XStoreName() instead to set the window and icon names.

Installing the Colormap

Applications should generally rely on the window manager to install the colormaps
instead of calling XInstallColormap() directly. The window manager automatically
installs the appropriate colormaps for a window, whenever that window gets keyboard
focus. Popup overlay menus are an exception.

By default, the window manager looks at the top-level window of a window hierarchy
and installs that colormap when the window gets keyboard focus. For a typical X-based
application, this is sufficient, but an application based on OpenGL typically uses
multiple colormaps: the top-level window uses the default X colormap, and the Open GL
window uses a colormap suitable for OpenGL.

To address this multiple colormap issue, call the function XSetWMColormapWindows()
passing the display, the top-level window, a list of windows whose colormaps should be
installed, and the number of windows in the list.

Using Xlib

45

The list of windows should include one window for each colormap, including the
top-level window’s colormap (normally represented by the top-level window). For a
typical OpenGL program that doesn’t use overlays, the list contains two windows: the
OpenGL window and the top-level window. The top-level window should normally be
last in the list. Xt programs may use XtSetWMColormapWindows() instead of
XSetWMColormapWindows(), which uses widgets instead of windows.

Note: The program must call XSetWMColormapWindows() even if it is using a
TrueColor visual. Some hardware simulates TrueColor through the use of a colormap.
Even though the application doesn’t interact with the colormap directly, it is still there. If
you don’t call XSetWMColormapWindows(), your program may run correctly only
some of the time, and only on some systems.

Use the xprop program to determine whether XSetWMColormapWindows() was called.
Click the window and look for the WM_COLORMAP_WINDOWS property. This should
be a list of the windows. The last one should be the top-level window. Use xwininfo,
providing the ID of the window as an argument, to determine what colormap the
specified window is using, and whether that colormap is installed.

Xlib Event Handling

This section discusses different kinds of user input and explains how you can use Xlib to
perform them. OpenGL programs running under the X Window System are responsible
for responding to events sent by the X server. Examples of X events are Expose,
ButtonPress, ConfigureNotify, and so on.

Note: In addition to mouse devices, Silicon Graphics systems support various other
input devices (for example, spaceballs). You can integrate them with your OpenGL
program using the X input extension. For more information, see the X Input Extension
Library Specification available online through IRIS Insight.

Handling Mouse Events

To handle mouse events, your program first has to request them, then use them in the
main (event handling) loop. Here is an example code fragment from Xlib/mouse.c, an Xlib
program that uses mouse motion events. Example 3-3 shows how the mouse processing,
along with the other event processing, is defined.

46

Chapter 3: OpenGL and X: Examples

Example 3-3 Event Handling With Xlib

static int
process_input(Display *dpy) {
 XEvent event;
 Bool redraw = 0;
 static int mstate, omx, omy, mx, my;

 do {
 char buf[31];
 KeySym keysym;
 XNextEvent(dpy, &event);
 switch(event.type) {
 case Expose:
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0, event.xconfigure.width,
 event.xconfigure.height);
 redraw = 1;
 break;
 case KeyPress:
 (void) XLookupString(&event.xkey, buf, sizeof(buf),
 &keysym, NULL);
 switch (keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 case ButtonPress:
 if (event.xbutton.button == Button2) {
 mstate |= 2;
 mx = event.xbutton.x;
 my = event.xbutton.y;
 } else if (event.xbutton.button == Button1) {
 mstate |= 1;
 mx = event.xbutton.x;
 my = event.xbutton.y;
 }
 break;
 case ButtonRelease:
 if (event.xbutton.button == Button2)
 mstate &= ~2;

Using Xlib

47

 else if (event.xbutton.button == Button1)
 mstate &= ~1;
 break;
 case MotionNotify:
 if (mstate) {
 omx = mx;
 omy = my;
 mx = event.xbutton.x;
 my = event.xbutton.y;
 update_view(mstate, omx,mx,omy,my);
 redraw = 1;
 }
 break;
 default:
 break;
 }
 } while (XPending(dpy));
 return redraw;
}

The process_input() function is then used by the main loop:

 while (1) {
 if (process_input(dpy)) {
 draw_scene();
 ...
 }
}

Exposing a Window

When a user selects a window that has been completely or partly covered, the X server
generates one or more Expose events. It is difficult to determine exactly what was drawn
in the now-exposed region and redraw only that portion of the window. Instead,
OpenGL programs usually just redraw the entire window. (Note that backing store is not
supported on Silicon Graphics systems.)

If redrawing is not an acceptable solution, the OpenGL program can do all your
rendering into a GLXPixmap instead of directly to the window; then, any time the
program needs to redraw the window, you can simply copy the GLXPixmap’s contents
into the window using XCopyArea(). For more information, see “Using Pixmaps” on
page 77.

48

Chapter 3: OpenGL and X: Examples

Note: Rendering to a GLXPixmap is much slower than rendering to a window. For
example, on a RealityEngine, rendering to a pixmap is perhaps 5% the speed of rendering
to a window.

When handling X events for OpenGL programs, remember that Expose events come in
batches. When you expose a window that is partly covered by two or more other
windows, two or more Expose events are generated, one for each exposed region. Each
one indicates a simple rectangle in the window to be redrawn. If you are going to redraw
the entire window, read the entire batch of Expose events. It is wasteful and inefficient to
redraw the window for each Expose event.

Using Fonts and Strings

The simplest approach to text and font handling in GLX is using the glXUseXFont()
function together with display lists. This section shows you how to use the function by
providing an example program. Note that this information is relevant regardless of
whether you use widgets or program in Xlib.

The advantage of glXUseXFont() is that bitmaps for X glyphs in the font match exactly
what OpenGL draws. This solves the problem of font matching between X and OpenGL
display areas in your application.

To use display lists to display X bitmap fonts, your code should do the following:

1. Use X calls to load information about the font you want to use.

2. Generate a series of display lists using glXUseXFont(), one for each glyph in the
font.

The glXUseXFont() function automatically generates display lists (one per glyph)
for a contiguous range of glyphs in a font.

3. To display a string, use glListBase() to set the display list base to the base for your
character series. Then pass the string as an argument to glCallLists().

Each glyph display list contains a glBitmap() call to render the glyph and update
the current raster position based on the glyph’s width.

The example code fragment provided in Example 3-4 prints the string “The quick brown
fox jumps over a lazy dog” in Times Medium. It also prints the entire character set, from
ASCII 32 to 127.

Using Fonts and Strings

49

Note: You can also use the glc library, which sits atop of OpenGL, for fonts and strings.
The library is not specific to GLX and lets you do more than glXUseXFont().

Example 3-4 Font and Text Handling

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

GLuint base;

void makeRasterFont(Display *dpy)
{
 XFontStruct *fontInfo;
 Font id;
 unsigned int first, last;
 fontInfo = XLoadQueryFont(dpy,

 "-adobe-times-medium-r-normal--17-120-100-100-p-88-iso8859-1");

if (fontInfo == NULL) {
 printf ("no font found\n");
 exit (0);
 }

 id = fontInfo->fid;
 first = fontInfo->min_char_or_byte2;
 last = fontInfo->max_char_or_byte2;

 base = glGenLists(last+1);
 if (base == 0) {
 printf ("out of display lists\n");
 exit (0);
 }
 glXUseXFont(id, first, last-first+1, base+first);
}

void printString(char *s)
{
 glListBase(base);
 glCallLists(strlen(s), GL_UNSIGNED_BYTE, (unsigned char *)s);
}

50

Chapter 3: OpenGL and X: Examples

void display(void)
{
 GLfloat white[3] = { 1.0, 1.0, 1.0 };
 long i, j;
 char teststring[33];

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3fv(white);
 for (i = 32; i < 127; i += 32) {
 glRasterPos2i(20, 200 - 18*i/32);
 for (j = 0; j < 32; j++)
 teststring[j] = i+j;
 teststring[32] = 0;
 printString(teststring);
 }
 glRasterPos2i(20, 100);
 printString("The quick brown fox jumps");
 glRasterPos2i(20, 82);
 printString("over a lazy dog.");
 glFlush ();
}

51

Chapter 4

4.OpenGL and X: Advanced Topics

This chapter helps you integrate your OpenGL program with the X Window System by
discussing several advanced topics. While understanding the techniques and concepts
discussed here is not relevant for all applications, it is important that you master them
for certain special situations. The chapter covers the following topics:

• “Using Animations” on page 51

• “Using Overlays” on page 58

• “Using Visuals” on page 66

• “Using Colormaps” on page 69

• “Stereo Rendering” on page 74

• “Using Pixmaps” on page 77

• “Performance Considerations for X and OpenGL” on page 80

• “Portability” on page 80

Using Animations

Animation in its simplest form consists of drawing an image, clearing it, and drawing a
new, slightly different one in its place. However, attempting to draw into a window while
that window is being displayed can cause problems such as flickering. The solution is
double buffering.

This section discusses double-buffered animation inside an X Window System
environment, providing example code as appropriate. You learn about

• “Swapping Buffers”

• “Controlling an Animation With Workprocs”

• “Controlling an Animation With Timeouts”

52

Chapter 4: OpenGL and X: Advanced Topics

Xt provides two mechanisms that are suited for continuous animation:

• “Controlling an Animation With Workprocs” on page 53 results in the fastest
animation possible. If you use workprocs, the program swaps buffers as fast as
possible; which is useful if rendering speed is variable enough that constant speed
animation is not possible. Workproc animations also give other parts of the
application priority. The controls don’t become less responsive just because the
animation is being done. The cost of this is that the animation slows down or may
stop when the user brings up a menu or uses other controls.

• “Controlling an Animation With Timeouts” on page 56 results in a constant speed
animation. Animations that use timeouts compete on even footing with other Xt
events; the animation won’t stop because the user interacts with other components
of the animation.

Note: Controlling animations with workprocs and timeouts applies only to Xt-based
programs.

Swapping Buffers

A double-buffered animation displays one buffer while drawing into another
(undisplayed) buffer, then swaps the displayed buffer with the other. In OpenGL, the
displayed buffer is called the front buffer, and the undisplayed buffer is called the back
buffer. This sort of action is common in OpenGL programs; however, swapping buffers
is a window-related function, not a rendering function, so you cannot do it directly with
OpenGL.

To swap buffers, use glXSwapBuffers() or (when using the widget) the convenience
function GLwDrawingAreaSwapBuffers(). The glXSwapBuffers() function takes a
display and a window as input—pixmaps don’t support buffer swapping—and swaps
the front and back buffers in the drawable. All renderers bound to the window in
question continue to have the correct idea of which is the front buffer and which the back
buffer. Note that once you call glXSwapBuffers(), any further drawing to the given
window is suspended until after the buffers have been swapped.

Silicon Graphics systems support hardware double buffering; this means buffer swap is
instantaneous during the vertical retrace of the monitor. As a result, there are no tearing
artifacts; that is, you don’t simultaneously see part of one buffer and part of the next.

Note: If the window’s visual allows only one color buffer, or if the GLX drawable is a
pixmap, glXSwapBuffers() has no effect (and generates no error).

Using Animations

53

There is no need to worry about which buffer the X server draws into if you’re using X
drawing functions as well as OpenGL; the X server draws only to the current front buffer,
and prevents any program from swapping buffers while such drawing is going on. Using
the X double buffering extension (DBE), it is possible to render X into the back buffer.
DBE is not supported in releases preceding IRIX 6.2.

Note that users like uniform frame rates such as 60 Hz, 30 Hz, or 20 Hz. Animation may
otherwise look jerky. A slower consistent rate is therefore preferable to a faster but
inconsistent rate. For additional information about optimizing frame rates, see
“Optimizing Frame Rate Performance” on page 303. See “SGIX_fbconfig—The
Framebuffer Configuration Extension” on page 104 to learn how to set a minimum
period of buffer swaps.

Controlling an Animation With Workprocs

A workproc (work procedure) is a procedure that Xt calls when the application is idle.
The application registers workprocs with Xt and unregisters them when it is time to stop
calling them.

Note that workprocs do not provide constant speed animation but animate as fast as the
application can.

General Workproc Information

Workprocs can be used to carry out a variety of useful tasks: animation, setting up
widgets in the background (to improve application startup time), keeping a file up to
date, and so on.

It is important that a workproc not take very long to execute. While a workproc is
running, nothing else can run, and the application may appear sluggish or may even
appear to hang.

Workprocs return Booleans. To set up a function as a workproc, first prototype the
function, then pass its name to XtAppAddWorkProc(). Xt then calls the function
whenever there is idle time while Xt is waiting for an event. If the function returns True,
it is removed from the list of workprocs; if it returns False, it is kept on the list and called
again when there is idle time.

54

Chapter 4: OpenGL and X: Advanced Topics

To explicitly remove a workproc, call XtRemoveWorkProc(). Here are the prototypes for
the add and remove functions:

XtWorkProcId XtAppAddWorkProc(XtAppContext app_context,
 XtWorkProc proc, XtPointer client_data)

void XtRemoveWorkProc(XtWorkProcId id)

The client_data parameter for XtAppAddWorkProc() lets you pass data from the
application into the workproc, similar to the equivalent parameter used in setting up a
callback.

Workproc Example

This section illustrates using workprocs. The example, motif/animate.c, is a simple
animation driven by a workproc. When the user selects “animate” from the menu, the
workproc is registered, as follows:

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
 int entry = (int) clientData;

 switch (entry) {
 case 0:
 if (state.animate_wpid) {
 XtRemoveWorkProc(state.animate_wpid);
 state.animate_wpid = 0;
 } else {
 /* register workproc */
 state.animate_wpid = XtAppAddWorkProc(state.appctx,
 redraw_proc, &state.glxwidget);
 }
 break;
 case 1:
 exit(EXIT_SUCCESS);
 break;
 default:
 break;
 }
}

Using Animations

55

The workproc starts executing if the window is mapped (that is, it could be visible but it
may be overlapped):

static void
map_change(Widget w, XtPointer clientData, XEvent *event, Boolean
 *cont) {
 switch (event->type) {
 case MapNotify:
 /* resume animation if we become mapped in the animated state */
 if (state.animate_wpid != 0)
 state.animate_wpid = XtAppAddWorkProc(state.appctx,
 redraw_proc, &state.glxwidget);
 break;
 case UnmapNotify:
 /* don’t animate if we aren’t mapped */
 if (state.animate_wpid) XtRemoveWorkProc(state.animate_wpid);
 break;
 }
}

If the window is mapped, the workproc calls redraw_proc():

static Boolean
redraw_proc(XtPointer clientData) {
 Widget *w = (Widget *)clientData;
 draw_scene(*w);
 return False;
 /*call the workproc again as possible*/
}

The redraw_proc() function, in turn, calls draw_scene(), which swaps the buffers. Note
that this program doesn’t use glXSwapBuffers(), but instead the convenience function
GLwDrawingAreaSwapBuffers().

static void
draw_scene(Widget w) {
 static float rot = 0.;

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(.1, .1, .8);
 glPushMatrix();
 if ((rot += 5.) > 360.) rot -= 360.;
 glRotatef(rot,0.,1.,0.);
 cube();
 glScalef(0.3,0.3,0.3);
 glColor3f(.8, .8, .1);
 cube();

56

Chapter 4: OpenGL and X: Advanced Topics

 glPopMatrix();
 GLwDrawingAreaSwapBuffers(w);
}

Note: If an animation is running and the user selects a menu command, the event
handling for the command and the animation may end up in a race condition.

Controlling an Animation With Timeouts

The program that performs an animation using timeouts is actually quite similar to the
one using workprocs. The main difference is that the timeout interval has to be defined
and functions that relied on the workproc now have to be defined to rely on the timeout.
Note especially that redraw_proc() has to register a new timeout each time it is called.

You may find it most helpful to compare the full programs using xdiff or a similar tool.
This section briefly points out the main differences between two example programs.

• The redraw procedure is defined to have an additional argument, an interval ID.

work_animate: static Boolean redraw_proc(XtPointer clientData);

time_animate: static Boolean redraw_proc(XtPointer clientData,
 XtIntervalId *id);

• In time_animate, a timeout has to be defined; the example chooses 10 ms:

#define TIMEOUT 10 /*timeout in milliseconds*/

• In the state structure, which defines the global UI variables, the interval ID instead
of the workproc ID is included.

work_animate:

static struct { /* global UI variables; keep them together */
 XtAppContext appctx;
 Widget glxwidget;
 Boolean direct;
 XtWorkProcId animate_wpid;
} state;

time_animate:

static struct { /* global UI variables; keep them together */
 XtAppContext appctx;
 Widget glxwidget;
 Boolean direct;
 XtIntervalId animate_toid;
} state;

Using Animations

57

• The menu() function and the map_change() function are defined to remove or
register the timeout instead of the workproc. Here are the two menu() functions as
an example:

work_animate:

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
 int entry = (int) clientData;

 switch (entry) {
 case 0:
 if (state.animate_wpid) {
 XtRemoveWorkProc(state.animate_wpid);
 state.animate_wpid = 0;
 } else {
 /* register work proc */
 state.animate_wpid = XtAppAddWorkProc(state.appctx,
 redraw_proc, &state.glxwidget);
 }
 break;
 case 1:
 exit(EXIT_SUCCESS);
 break;
 default:
 break;
 }
}

time_animate

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
 int entry = (int) clientData;

 switch (entry) {
 case 0:
 if (state.animate_toid) {
 XtRemoveTimeOut(state.animate_toid);
 state.animate_toid = 0;
 } else {
 /* register timeout */
 state.animate_toid = XtAppAddTimeOut(state.appctx,
 TIMEOUT, redraw_proc, &state.glxwidget);
 }
 break;

58

Chapter 4: OpenGL and X: Advanced Topics

 case 1:
 exit(EXIT_SUCCESS);
 break;
 default:
 break;
 }
}

• The redraw_proc() function has to register a new timeout each time it is called. Note
that this differs from the workproc approach, where the application automatically
continues animating as long as the system is not doing something else.

static void
redraw_proc(XtPointer clientData, XtIntervalId *id) {
 Widget *w = (Widget *)clientData;
 draw_scene(*w);
 /* register a new timeout */
 state.animate_toid = XtAppAddTimeOut(state.appctx, TIMEOUT,
 redraw_proc, &state.glxwidget);
}

Using Overlays

Overlays are useful in situations where you want to preserve an underlying image while
displaying some temporary information. Examples for this are popup menus,
annotations, or rubber-banding. This section explains overlays and shows you how to
use them, discussing the following topics:

• “Introduction to Overlays”

• “Creating Overlays”

• “Rubber Banding”

Introduction to Overlays

An overlay plane is a set of bitplanes displayed preferentially to the normal planes.
Non-transparent pixels in the overlay plane are displayed in preference to the
underlying pixels in the normal planes. Windows in the overlay planes do not damage
windows in the normal plane.

Using Overlays

59

If you have something in the main window that is fairly expensive to draw into and want
to have something else on top, such as an annotation, you can use a transparent overlay
plane to avoid redrawing the more expensive main window. Overlays are well-suited for
popup menus, dialog boxes, and “rubber-band” image resizing rectangles. You can also
use overlay planes for text annotations floating “over” an image and for certain
transparency effects.

Note: Transparency discussed here is distinct from alpha buffer blending transparency
effects. See the section “Blending” in Chapter 7, “Blending, Anti-Aliasing, and Fog,” in
the OpenGL Programming Guide.

Figure 4-1 Overlay Plane Used for Transient Information

A special value in the overlay planes indicates transparency. On Silicon Graphics
systems, it is always the value zero. Any pixel with the value zero in the overlay plane is
not painted, allowing the color of the corresponding pixel in the normal planes to show.

Normal planes Overlay planes

Normal & overlay planes

60

Chapter 4: OpenGL and X: Advanced Topics

The concepts discussed in this section apply more generally to any number of
framebuffer layers, for example, underlay planes (which are covered up by anything in
equivalent regions of higher-level planes).

You can use overlays in two ways:

• To draw additional graphics in the overlay plane on top of your normal plane
OpenGL widget, create a separate GLwMDrawingArea widget in the overlay plane
and set the GLX_LEVEL resource to 1. Position the overlay widget on top of the
normal plane widget.

Note that since the GLwMDrawingArea widget is not a manager widget, it is
necessary to create both the normal and overlay widgets as children of some
manager widget—for example, a form—and have that widget position the two on
top of each other. Once the windows are realized, you must call XRaiseWindow() to
guarantee that the overlay widget is on top of the normal widget. Code fragments
in “Creating Overlays” on page 60 illustrate this. The whole program is included as
overlay.c in the source tree.

• To create menus, look at examples in /usr/src/X11/motif/overlay_demos. They are
present if you have the motif_dev.sw.demo subsystem installed. Placing the menus in
the overlay plane avoids the need for expensive redrawing of the OpenGL window
underneath them. While the demos do not deal specifically with OpenGL, they do
show how to place menus in the overlay plane.

Note for IRIS GL Users

IRIS GL supports the concept of popup planes, which are one level higher than the
default overlay plane. Drawing in the popup planes in IRIS GL doesn’t necessarily
require a window, but you cannot count on avoiding damage to anything non-transient
drawn in those planes (for example, objects drawn by other applications).

When working with OpenGL and the X Window System, the situation is different: You
have to create a separate window for any overlay rendering. Currently, no OpenGL
implementation on a Silicon Graphics system supports a level greater than one.

Creating Overlays

This section explains how to create overlay planes, using an example program based on
Motif. If you create the window using Xlib, the same process is valid (and a parallel
example program is available in the example program directory).

Using Overlays

61

The example program from which the code fragments are taken, motif/overlay.c, uses the
visual info extension to find a visual with a transparent pixel. See “EXT_visual_info—
The Visual Info Extension” on page 92 for more information.

Note: This example doesn’t work if the visual info extension is not available (see “How
to Check for OpenGL Extension Availability” on page 82). The visual info extension is
available only in IRIX 6.2. In IRIX 5.3 and earlier releases, you must look at the
TRANSPARENT_OVERLAYS property on the root window to get the information.

To create the overlay, follow these steps:

1. Define attribute lists for the two widgets (the window and the overlay). For the
overlay, specify GLX_LEVEL as 1 and GLX_TRANSPARENT_TYPE_EXT as
GLX_TRANSPARENT_RGB_EXT if the visual info extension is available.

static int attribs[] = { GLX_RGBA, GLX_DOUBLEBUFFER, None};
static int ov_attribs[] = {
 GLX_BUFFER_SIZE, 2,
 GLX_LEVEL, 1,
 GLX_TRANSPARENT_TYPE_EXT, GLX_TRANSPARENT_RGB_EXT,
 None };

2. Create a frame and form, then create the window widget, attaching it to the form on
all four sides. Add expose, resize, and input callbacks.

/* specify visual directly */
if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), attribs)))
XtAppError(appctx, "no suitable RGB visual");

/* attach to form on all 4 sides */
n = 0;
XtSetArg(args[n], XtNx, 0); n++;
XtSetArg(args[n], XtNy, 0); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], GLwNvisualInfo, visinfo); n++;
state.w = XtCreateManagedWidget("glxwidget",
 glwMDrawingAreaWidgetClass, form, args, n);
XtAddCallback(state.w, GLwNexposeCallback, expose, NULL);
XtAddCallback(state.w, GLwNresizeCallback, resize, &state);
XtAddCallback(state.w, GLwNinputCallback, input, NULL);
state.cx = glXCreateContext(dpy, visinfo, 0, GL_TRUE);

62

Chapter 4: OpenGL and X: Advanced Topics

3. Create the overlay widget, using the overlay visual attributes specified in Step 1 and
attaching it to the same form as the window. This assures that when the window is
moved or resized, the overlay is as well.

if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy),
 ov_attribs)))
 XtAppError(appctx, "no suitable overlay visual");
XtSetArg(args[n-1], GLwNvisualInfo, visinfo);
ov_state.w = XtCreateManagedWidget("overlay",
 glwMDrawingAreaWidgetClass, form, args, n);

4. Add callbacks to the overlay.

XtAddCallback(ov_state.w, GLwNexposeCallback, ov_expose, NULL);
XtAddCallback(ov_state.w, GLwNresizeCallback, resize, &ov_state);
XtAddCallback(ov_state.w, GLwNinputCallback, input, NULL);
ov_state.cx = glXCreateContext(dpy, visinfo, 0, GL_TRUE);

Note that the overlay uses the same resize and input callback:

• For resize, you may or may not wish to share callbacks, depending on the
desired functionality; for example, if you have a weathermap with annotations,
both should resize in the same fashion.

• For input, the overlay usually sits on top of the normal window and receives the
input events instead of the overlay window. Redirecting both to the same
callback guarantees that you receive the events regardless of which window
actually received them.

• The overlay has its own expose function: each time the overlay is exposed, it
redraws itself.

5. Call XRaiseWindow() to make sure the overlay is on top of the window.

 XRaiseWindow(dpy, XtWindow(ov_state.w));

Using Overlays

63

Overlay Troubleshooting

This section gives some advice on issues that can easily cause problems in a program
using overlays:

• Colormaps. Overlays have their own colormaps. You therefore should call
XSetWMColormapWindows() to create the colormap, populate it with colors, and
to install it.

Note: Overlays on Silicon Graphics systems reserve pixel zero as the transparent
pixel. If you attempt to create the colormap with AllocAll, the XCreateColormap()
function will fail with a BadAlloc X protocol error. Instead of AllocAll, use
AllocNone and allocate all the color cells except zero.

• Window hierarchy. Overlay windows are created like other windows; their parent
window depends on what you pass in at window creation time. Overlay windows
can be part of the same window hierarchy as normal windows and be children of
the normal windows. An overlay and its parent window are handled as a single
hierarchy for events like clipping, event distribution, and so on.

• Color limitations. On low-end Silicon Graphics systems, there are only a few
overlay planes available; thus, items drawn in the overlay planes (such as menus)
usually use only a few colors—no more than three colors and the transparent pixel
in some cases. More recent low-end systems (24-bit Indy graphics), mid-range
systems (Indigo2 IMPACT), and high-end systems (RealityEngine) support 8-bit
overlay planes.

• Input events. The overlay window usually sits on top of the normal window. Thus,
it receives all input events such as mouse and keyboard events. If the application is
only waiting for events on the normal window, it will not get any of those events. It
is necessary to select for events on the overlay window as well.

• Not seeing the overlay. Although overlay planes are conceptually considered to be
“above” the normal plane, an overlay window can be below a normal window and
thus clipped by it. When creating an overlay and a normal window, use
XRaiseWindow() to ensure that the overlay window is on top of the normal
window. If you use Xt, you must call XRaiseWindow() after the widget hierarchy
has been realized.

64

Chapter 4: OpenGL and X: Advanced Topics

Rubber Banding

Rubber banding can be used for cases where applications have to draw a few lines over
a scene in response to a mouse movement. An example is the movable window outline
that you see when resizing or moving a window. Rubber-banding is also used frequently
by drawing programs.

The 4Dwm window manager provides rubber banding for moving and resizing
windows. However, if you need rubber banding features inside your application, you
have to manage it yourself.

Here is the best way to perform rubber banding with overlays (this is the method used
by 4Dwm, the default Silicon Graphics window manager):

1. Map an overlay window, with its background pixmap set to None (background is
passed in as a parameter to XCreateWindow()). This window should be as large as
the area over which rubber banding could take place.

2. Draw rubber bands in the new overlay window. Ignore resulting damage to other
windows in the overlay plane.

3. Unmap the rubber-band window, which sends Expose events to other windows in
the overlay plane.

Using Popup Menus With the GLwMDrawingArea Widget

Pop-ups are used by many applications to allow user input. A sample program,
simple-popup.c, is included in the source tree. It uses the function
XmCreateSimplePopupMenu() to add a popup to a drawing area widget.

Note that if you are not careful when you create a popup menu as a child of
GLwMDrawingArea widget, you may get a BadMatch X protocol error: The menu (like
all other Xt shell widgets) inherits its default colormap and depth from the
GLwMDrawingArea widget, but its default visual from the parent (root) window.
Because the GLwMDrawingArea widget is normally not the default visual, the menu
inherits a nondefault depth and colormap from the GLwMDrawingArea widget, but also
inherits its visual from the root window (that is, inherits the default visual), leading to a
BadMatch X protocol error. See “Inheritance Issues” on page 38 for more detail and for
information on finding the error.

Using Overlays

65

There are two ways to work around this:

• Specify the visual, depth, and colormap of the menu explicitly. If you do that,
consider putting the menu in the overlay plane.

• Make the menu a child of a widget that is in the default visual; for example, if the
GLwMDrawingArea widget is a child of an XmFrame, make the menu a child of
XmFrame as well. Example 4-1 provides a code fragment from motif/simple-popup.c.

Example 4-1 Popup Code Fragment

static void
create_popup(Widget parent) {
 Arg args[10];
 static Widget popup;
 int n;
 XmButtonType button_types[] = {
 XmPUSHBUTTON, XmPUSHBUTTON, XmSEPARATOR, XmPUSHBUTTON, };

 XmString button_labels[XtNumber(button_types)];

 button_labels[0] = XmStringCreateLocalized(“draw filled”);
 button_labels[1] = XmStringCreateLocalized(“draw lines”);
 button_labels[2] = NULL;
 button_labels[3] = XmStringCreateLocalized(“quit”);

 n = 0;
 XtSetArg(args[n], XmNbuttonCount, XtNumber(button_types)); n++;
 XtSetArg(args[n], XmNbuttonType, button_types); n++;
 XtSetArg(args[n], XmNbuttons, button_labels); n++;
 XtSetArg(args[n], XmNsimpleCallback, menu); n++;
 popup = XmCreateSimplePopupMenu(parent, “popup”, args, n);
 XtAddEventHandler(parent, ButtonPressMask, False, activate_menu,
 &popup);
 XmStringFree(button_labels[0]);
 XmStringFree(button_labels[1]);
 XmStringFree(button_labels[3]);
}
main(int argc, char *argv[]) {
 Display *dpy;
 XtAppContext app;
 XVisualInfo *visinfo;
 GLXContext glxcontext;
 Widget toplevel, frame, glxwidget;

66

Chapter 4: OpenGL and X: Advanced Topics

 toplevel = XtOpenApplication(&app, “simple-popup”, NULL, 0, &argc,
 argv, fallbackResources, applicationShellWidgetClass,
 NULL, 0);
 dpy = XtDisplay(toplevel);

 frame = XmCreateFrame(toplevel, “frame”, NULL, 0);
 XtManageChild(frame);

 /* specify visual directly */
 if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), attribs)))
 XtAppError(app, “no suitable RGB visual”);

 glxwidget = XtVaCreateManagedWidget(“glxwidget”,
 glwMDrawingAreaWidgetClass, frame, GLwNvisualInfo,
 visinfo, NULL);
 XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
 XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
 XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

 create_popup(frame);

 XtRealizeWidget(toplevel);

 glxcontext = glXCreateContext(dpy, visinfo, 0, GL_TRUE);
 GLwDrawingAreaMakeCurrent(glxwidget, glxcontext);

 XtAppMainLoop(app);
}

Using Visuals

This section explains how to choose and use visuals on Silicon Graphics workstations. It
discusses the following topics:

• “Some Background on Visuals”

• “Running OpenGL Applications Using a Single Visual”

Using Visuals

67

Some Background on Visuals

An X visual defines how pixels in a window are mapped to colors on the screen. Each
window has an associated visual, which determines how pixels within the window are
displayed on screen. GLX overloads X visuals with additional framebuffer capabilities
needed by OpenGL.

Table 4-1 lists the X visuals support that support different types of OpenGL rendering,
and tells you whether the colormaps for those visuals are writable or not. Visuals that are
not available on Silicon Graphics systems are marked with an asterisk.

An X server can provide multiple visuals, depending on the available hardware and
software support. Each server has a default visual that can be specified when the server
starts. You can determine the default visual with the Xlib macro DefaultVisual().

Because you cannot predict the configuration of every X server, and you may not know
the system configuration your program will be used on, it is best to find out what visual
classes are available on a case-by-case basis.

• From the command line, use xdpyinfo for a list of all visuals the server supports.

• Use glxinfo or findvis to find visuals that are capable of OpenGL rendering. The
findvis command can actually look for available visuals with certain attributes. See
the reference page for more information.

* Not supported on Silicon Graphics systems.

Table 4-1 X Visuals and Supported OpenGL Rendering Modes

OpenGL Rendering Mode X Visual Writable Colormap?

RGBA TrueColor no

RGBA DirectColor* yes

color index PseudoColor yes

color index StaticColor* no

not supported GrayScale yes

not supported StaticGray no

68

Chapter 4: OpenGL and X: Advanced Topics

• From within your application, use the Xlib functions XGetVisualInfo() and
XMatchVisualInfo()—or glXGetConfig()—or the GLX function
glXChooseVisual().

Note: For most applications, using OpenGL RGBA color mode and a TrueColor visual is
recommended.

Running OpenGL Applications Using a Single Visual

Note: This section applies only to IRIS IM.

In previous chapters, this guide has assumed separate visuals for the X and OpenGL
portions of the program. The top-level windows and all parts of the application that are
not written in OpenGL use the default visual (typically 8-bit PseudoColor, but it depends
on the configuration of the server). OpenGL runs in a single window that uses an Open
GL visual.

An alternative approach is to run the whole application using an OpenGL visual. To do
this, determine the suitable OpenGL visual (and colormap and pixel depth) at the start
of the program and create the top-level window using that visual (and colormap and
pixel depth). Other windows, including the OpenGL window, inherit the visual. When
you use this approach, there is no need to use the GLwMDrawingArea widget; the
standard IRIS IM XmDrawingArea works just as well.

The advantages of using a single visual include the following:

• Simplicity. Everything uses the same visual, so you don’t have to worry about
things like colormap installation more than once in the application. (However, if
you use the GLwMDrawingArea widget, it does colormap installation for you—see
“Drawing-Area Widget Setup and Creation” on page 29.)

• Reduced colormap flashing. Colormap flashing happens if several applications are
running, each using its own colormap, and you exceed the system’s capacity for
installed hardware colormaps. Flashing is reduced for a single visual because the
entire application uses a single colormap. The application can still cause other
applications to flash, but all recent Silicon Graphics systems have multiple
hardware colormaps to reduce flashing.

• Easier mixing of OpenGL and X. If you run in a single visual, you can render
OpenGL to any window in the application, not just to a dedicated window. For
example, you could create an XmDrawnButton and render OpenGL into it.

Using Colormaps

69

The advantages of using separate visuals for X and OpenGL include the following:

• Consistent colors in the X visual. If the OpenGL visual has a limited number of
colors, you may want to allow more colors for X. For example, if you are using
double buffering on an 8-bit machine, you have only 4 bitplanes (16 colors) per
buffer. You can have OpenGL dither in such a circumstance to obtain
approximations of other colors, but X won’t dither, so if you are using the same
visual for OpenGL and X, the X portion of your application will be limited to 16
colors as well.

This limiting of colors would be particularly unfortunate if your program uses the
Silicon Graphics color-scheme system. While X chooses a color as close as possible
to the requested color, the choice is usually noticeably different from the requested
color. As a result, your application looks noticeably different from the other
applications on the screen.

• Memory savings. The amount of memory used by a pixmap within the X server
depends on the depth of the associated visual. Most applications use X pixmaps for
shadows, pictures, and so on that are part of the user interface widgets. If you are
using a 12-bit or 24-bit visual for OpenGL rendering and your program also uses X
pixmaps, those pixmaps would use less memory in the default 8-bit visual than in
the OpenGL visual.

• Easier menu handling in IRIS IM. If the top-level shell is not in the default visual,
there will be inheritance problems during menu creation (see “Inheritance Issues”
on page 38). You have to explicitly specify the visual depth and colormap when
creating a menu. For cascading menus, specify depth and colormap separately for
each pane.

Using Colormaps

This section explains using colormaps in some detail. Note that in many cases, you won’t
need to worry about colormaps: Just use the drawing area widget and create a TrueColor
visual for your RGBA OpenGL program. However, under certain circumstances, for
example, if the OpenGL program uses indexed color, the information in this section is
important. The section discusses these topics:

• “Background Information About Colormaps”

• “Choosing Which Colormap to Use”

• “Colormap Example”

70

Chapter 4: OpenGL and X: Advanced Topics

Background Information About Colormaps

OpenGL supports two rendering modes: RGBA mode and color index mode.

• In RGBA mode, color buffers store red, green, blue, and alpha components directly.

• In color-index mode, color buffers store indexes (names) of colors that are
dereferenced by the display hardware. A color index represents a color by name
rather than value. A colormap is a table of index-to-RGB mappings.

OpenGL color modes are discussed in some detail in the section “RGBA versus
Color-Index Mode” in Chapter 5, “Color,” of the OpenGL Programming Guide.

The X Window System supports six different types of visuals, with each type using a
different type of colormap (see Table 4-1 on page 67). Although working with X
colormaps may initially seem somewhat complicated, the X Window System does
allow you a great deal of flexibility in choosing and allocating colormaps. Colormaps are
discussed in detail and with example programs in Chapter 7, “Color,” of O’Reilly
Volume One.

The rest of this section addresses some issues having to do with X colormaps.

Color Variation Across Colormaps

The same index in different X colormaps doesn’t necessarily represent the same color. Be
sure you use the correct color index values for the colormap you are working with.

If you use a nondefault colormap, avoid color macros such as BlackPixel() and
WhitePixel(). As is required by X11, these macros return pixel values that are correct for
the default colormap but inappropriate for your application. The pixel value returned by
the macro is likely to represent a color different from black or white in your colormap, or
worse yet, be out of range for it. If the pixel value doesn’t exist in your colormap (such as
any pixel greater than three for a 2-bit overlay colormap), an X protocol error results.

A “right index–wrong map” type of mistake is most likely if you use the macros
BlackPixel and WhitePixel. For example, the BlackPixel macro returns zero, which is
black in the default colormap. That value is always transparent (not black) in a popup or
overlay colormap (if it supports transparent pixels).

You might also experience problems with colors not appearing correctly on the screen
because the colormap for your window is not installed in the hardware.

Using Colormaps

71

Multiple Colormap Issues

The need to deal with multiple colormaps of various sizes raises new issues. Some of
these issues do not have well-defined solutions.

There is no default colormap for any visual other than the default visual. You must tell
the window manager which colormaps to install using XSetWMColormapWindows(),
unless you use the GLwMDrawingArea widget, which does this for you.

• With multiple colormaps in use, colormap flashing may occur if you exceed the
hardware colormap resources.

• An application has as many of its colormaps installed as possible only when it has
colormap focus.

– At that time, the window manager attempts to install all the application’s
colormaps, regardless of whether or not all are currently needed. These
colormaps remain installed until another application needs to have one of them
replaced.

– If another application gets colormap focus, the window manager installs that
application’s (possibly conflicting) colormaps. Some widgets may be affected
while other widgets remain unchanged.

– The window manager doesn’t reinstall the colormaps for your application until
your application has the colormap focus again.

The getColormap() call defined in Example 4-2 returns a sharable colormap (the ICCCM
RGB_DEFAULT_MAP) for a TrueColor visual given a pointer to XVisualInfo. This is
useful to reduce colormap flashing for non-default visuals.

Example 4-2 Retrieving the Default Colormap for a Visual

Colormap
getColormap(XVisualInfo * vi)
{
 Status status;
 XStandardColormap *standardCmaps;
 Colormap cmap;
 int i, numCmaps;

 /* be lazy; using DirectColor too involved for this example */
 if (vi->class != TrueColor)
 fatalError(“no support for non-TrueColor visual”);
 /* if no standard colormap but TrueColor, make an unshared one */

72

Chapter 4: OpenGL and X: Advanced Topics

 status = XmuLookupStandardColormap(dpy, vi->screen, vi->visualid,
 vi->depth, XA_RGB_DEFAULT_MAP,
 /* replace */ False, /* retain */ True);
 if (status == 1) {
 status = XGetRGBColormaps(dpy, RootWindow(dpy, vi->screen),
 &standardCmaps, &numCmaps,
 XA_RGB_DEFAULT_MAP);
 if (status == 1)
 for (i = 0; i < numCmaps; i++)
 if (standardCmaps[i].visualid == vi->visualid) {
 cmap = standardCmaps[i].colormap;
 XFree(standardCmaps);
 return cmap;
 }
 }
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);
 return cmap;
}

Choosing Which Colormap to Use

When choosing which colormap to use, follow these heuristics:

1. First decide whether your program will use RGBA or color-index mode. Some
operations, such as texturing and blending, are not supported in color index mode;
others, such as lighting, work differently in the two modes. Because of that, RGBA
rendering is usually the right choice. (See “Choosing between RGBA and
Color-Index Mode” in Chapter 5, “Color,” of the OpenGL Programming Guide).

OpenGL 1.0 and 1.1 and GLX 1.0, 1.1, and 1.2 require an RGBA mode program to
use a TrueColor or DirectColor visual, and require a color index mode program to
use a PseudoColor or StaticColor visual.

Note: Remember that RGBA is usually the right choice for OpenGL on a Silicon
Graphics system.

2. Choose a visual. If you intend to use RGBA mode, specify RGBA in the attribute list
when calling glXChooseVisual().

If RGBA is not specified in the attribute list, glXChooseVisual() selects a
PseudoColor visual to support color index mode (or a StaticColor visual if no
PseudoColor visual is available).

Using Colormaps

73

If the framebuffer configuration extension is available, you can use a TrueColor or
DirectColor visual in color index mode. See “SGIX_fbconfig—The Framebuffer
Configuration Extension” on page 104.

3. Create a colormap that can be used with the selected visual.

4. If a PseudoColor or DirectColor visual has been selected, initialize the colors in the
colormap.

Note: DirectColor visuals are not supported on Silicon Graphics systems.
Colormaps for TrueColor and StaticColor visuals are not writable.

5. Make sure the colormap is installed. Depending on what approach you use, you
may or may not have to install it yourself:

• If you use the GLwMDrawingArea widget, the widget automatically calls
XSetWMColormapWindows() when the GLwNinstallColormap resource is
enabled.

• The colormap of the top-level window is used if your whole application uses a
single colormap. In that case, you have to make sure the colormap of the
top-level window supports OpenGL.

• Call XSetWMColormapWindows() to ensure that the window manager knows
about your window’s colormap. Here’s the function prototype for
XSetWMColormapWindows():

Status XSetWMColormapWindows(Display *display, Window w,
 Window *colormap_windows, int count)

Many OpenGL applications use a 24-bit TrueColor visual (by specifying GLX_RGBA in
the visual attribute list when choosing a visual). Colors usually look right in TrueColor,
and some overhead is saved by not having to look up values in a table. On some systems,
using 24-bit color can slow down the frame rate because more bits must be updated per
pixel, but this is not usually a problem.

If you want to adjust or rearrange values in a colormap, you may have to use a
PseudoColor visual, which has to be used with color-index mode unless the framebuffer
configuration extension is available. Lighting and antialiasing are difficult in color-index
mode, and texturing and accumulation don’t work at all. It may be easier to use
double-buffering and redraw to produce a new differently-colored image, or use the
overlay plane. In general, avoid using PseudoColor visuals if possible.

Overlays, which always have PseudoColor colormaps on current systems, are an
exception to this.

74

Chapter 4: OpenGL and X: Advanced Topics

Colormap Example

Here’s a brief example that demonstrates how to store colors into a given colormap cell:

XColor xc;
display = XOpenDisplay(0);
visual = glXChooseVisual(display, DefaultScreen(display),
 attributeList);
context = glXCreateContext (display, visual, 0, GL_FALSE);
colorMap = XCreateColormap (display, RootWindow(display,
 visual->screen), visual->visual, AllocAll);
 ...
if (ind < visual->colormap_size) {
 xc.pixel = ind;
 xc.red = (unsigned short)(red * 65535.0 + 0.5);
 xc.green = (unsigned short)(green * 65535.0 + 0.5);
 xc.blue = (unsigned short)(blue * 65535.0 + 0.5);
 xc.flags = DoRed | DoGreen | DoBlue;
 XStoreColor (display, colorMap, &xc);
}

Note: Do not use AllocAll on overlay visuals with transparency. If you do,
XCreateColormap() fails because the transparent cell is read-only.

Stereo Rendering

Silicon Graphics systems and OpenGL both support stereo rendering. In stereo
rendering, the program displays a scene from two slightly different viewpoints to
simulate stereoscopic vision, resulting in a 3D image to a user wearing a special viewing
device. Various viewing devices exist; most of them cover one eye while the computer
displays the image for the other eye, then cover the second eye while the computer
displays the image for the first eye.

Note: Be sure to look at the stereo reference page for more information on stereo
rendering (including sample code fragments and pointers to sample code).

In this section, you learn about

• “Stereo Rendering Background Information”

• “Stereo Rendering”

Stereo Rendering

75

Stereo Rendering Background Information

There are two basic approaches to stereo rendering, “Quad Buffer Stereo” and
“Divided-Screen Stereo.”

Quad Buffer Stereo

Quad buffer stereo uses a separate buffer for the left and right eye, resulting in four
buffers if the program is already using a front and back buffer for animation. Quad buffer
stereo is supported on RealityEngine and Indigo2 Maximum IMPACT and will be
supported on future high-end systems.

The main drawback of this approach is that it needs a substantial amount of framebuffer
resources and is therefore feasible only on high-end systems. See “Performing Stereo
Rendering on High-End Systems” on page 76 for step-by-step instructions.

Divided-Screen Stereo

Divided-screen stereo divides the screen into left and right pixel lines. This approach is
usually appropriate on low-end systems, which don’t have enough memory for
quad-buffer stereo.

If you put the monitor in stereo mode, you lose half of the screen’s vertical resolution and
pixels get a 1 x 2 aspect ratio. The XSGIvc extension does all X rendering in both parts of
the screen. Note, however, that monoscopic OpenGL programs will look wrong if you
use the extension.

When working with divided-screen stereo, keep in mind the following caveats:

• Because stereo is enabled and disabled without restarting the server, the advertised
screen height is actually twice the height displayed.

• With quad-buffering, stereo pixels are square. If you are using divided-screen
stereo, pixels are twice as high as they are wide. Thus, transformed primitives and
images need an additional correction for pixel aspect ratio.

For More Information on Stereo Rendering

See the reference pages for the following functions: XSGIStereoQueryExtension,
XSGIStereoQueryVersion, XSGIQueryStereoMode, XSGISetStereoMode,
XSGISetStereoBuffer.

76

Chapter 4: OpenGL and X: Advanced Topics

Stereo Rendering

This section first explains how to do stereo rendering on high-end systems, then on
low-end and mid-range systems.

Performing Stereo Rendering on High-End Systems

To perform stereo rendering on high-end systems (RealityEngine, Indigo2 Maximum
IMPACT, and future high-end systems), follow these steps:

1. Perform initialization, that is, make sure the GLX extension is supported and so on.

2. Put the monitor in stereo mode with the setmon command.

3. Choose a visual with front left, front right, back left, and back right buffers.

4. Perform all other setup operations illustrated in the examples in Chapter 2 and
Chapter 3: create a window, create a context, make the context current, and so on.

5. Start the event loop.

6. Draw the stereo image:

glDrawBuffer(GL_BACK_LEFT);
< draw left image >
glDrawBuffer(GL_BACK_RIGHT);
< draw right image >
glXSwapBuffers(...);

For more information, see the glDrawBuffer() reference page.

Performing Stereo Rendering on Low-End and Mid-Range Systems

To perform stereo rendering on low-end and mid-range systems (including Indigo2 High
IMPACT), follow these steps:

1. Perform initialization, that is, make sure the GLX extension is supported and so on.

2. Put the monitor in stereo mode using the setmon command.

3. Call XSGIStereoQueryExtension() to see if the stereo extension is supported.

■ If stereo is not supported, exit.

■ If stereo is supported, call XSGISetStereoMode() to turn it on (options are
STEREO_BOTTOM or STEREO_TOP).

Using Pixmaps

77

4. Choose a visual with front left, front right, back left and back right buffers by calling
glXChooseVisual with both GLX_DOUBLEBUFFER and GLX_STEREO in the
attribute list.

5. Perform all other setup operations discussed in the examples in the previous two
chapters: create a window, create a context, make the context current, and so on.

6. To draw the stereo image, use code similar to this pseudo-code fragment:

XSGISetStereoBuffer(STEREO_BUFFER_LEFT);
< draw left image >
XSGISetStereoBuffer(STEREO_BUFFER_RIGHT);
< draw right image >
glXSwapBuffers(...);

Using Pixmaps

An OpenGL program can render to two kinds of drawables: windows and pixmaps.
(Rendering to PBuffers is also possible if that extension is supported. See
“SGIX_pbuffer—The Pixel Buffer Extension” on page 112.) A pixmap is an offscreen
rendering area. On Silicon Graphics systems, pixmap rendering is not hardware
accelerated.

Figure 4-2 X Pixmaps and GLX Pixmaps

glxpixmap

Image buffer

OpenGL ancillary buffers

pixmap

78

Chapter 4: OpenGL and X: Advanced Topics

In contrast to windows, where drawing has no effect if the window is not visible, a
pixmap can be drawn to at any time because it resides in memory. Before the pixels in the
pixmap become visible, they have to be copied into a visible window. The unaccelerated
rendering for pixmap pixels has performance penalties.

This section explains how to create and use a pixmap and looks at some related issues:

• “Creating and Using Pixmaps” provides basic information about working with
pixmaps.

• “Direct and Indirect Rendering” provides some background information; it is
included here because rendering to pixmaps is always indirect.

Creating and Using Pixmaps

Integrating an OpenGL program with a pixmap is very similar to integrating it with a
window. It involves the steps given below. (Note that Steps 1-3 and Step 6 are discussed
in detail in “Integrating Your OpenGL Program With IRIS IM” on page 16.)

1. Open the connection to the X server.

2. Choose a visual.

3. Create a rendering context with the chosen visual.

This context must be indirect.

4. Create an X pixmap using XCreatePixmap().

5. Create a GLX pixmap using glXCreateGLXPixmap().

GLXPixmap glXCreateGLXPixmap(Display *dpy, XVisualInfo *vis,
 Pixmap pixmap)

The GLX pixmap “wraps” the pixmap with ancillary buffers determined by vis (see
Figure 4-2).

The pixmap parameter must specify a pixmap that has the same depth as the visual
that vis points to (as indicated by the visual’s GLX_BUFFER_SIZE value), or a
BadMatch X protocol error results.

6. Use glXMakeCurrent() to bind the pixmap to the context.

You can now render into the GLX pixmap.

Using Pixmaps

79

Direct and Indirect Rendering

OpenGL rendering is done differently in different rendering contexts (and on different
platforms).

• Direct rendering contexts support rendering directly from OpenGL via the
hardware, bypassing X entirely. Direct rendering is much faster than indirect
rendering, and all Silicon Graphics systems can do direct rendering to a window.

• In indirect rendering contexts, OpenGL calls are passed by GLX protocol to the X
server, which does the actual rendering. Remote rendering has to be done
indirectly; pixmap rendering is implemented to work only indirectly.

Note: As a rule, use direct rendering unless you are using pixmaps. If you ask for direct
and your DISPLAY is remote, the library automatically switches to indirect rendering.

In indirect rendering, OpenGL rendering commands are added to the GLX protocol
stream, which in turn is part of the X protocol stream. Commands are encoded and sent
to the X server. Upon receiving the commands, the X server decodes them and dispatches
them to the GLX extension. Control is then given to the GLX process (via a context
switch) so the rendering commands can be processed. The faster the graphics hardware,
the higher the overhead from indirect rendering.

You can obtain maximum indirect-rendering speed by using display lists; they require a
minimum of interaction with the X server. Unfortunately, not all applications can take
full advantage of display lists; this is particularly a problem in applications using
rapidly-changing scene structures. Display lists are efficient because they reside in the X
server.

You may see multiple XSGI processes on your workstation when you are running
indirect rendering OpenGL programs.

80

Chapter 4: OpenGL and X: Advanced Topics

Performance Considerations for X and OpenGL

Due to synchronization and context switching overhead, there is a possible performance
hit for mixing OpenGL and X in the same window. GLX doesn’t constrain the order in
which OpenGL commands and X requests are executed. To ensure a particular order, use
the GLX commands glXWaitGL() and glXWaitX().

• glXWaitGL() prevents any subsequent X calls from executing until all pending
OpenGL calls complete. When you use indirect rendering, this function doesn’t
contact the X server and is therefore more efficient than glFinish().

• glXWaitX(), when used with indirect rendering, is just the opposite: it makes sure
that all pending X calls complete before any further OpenGL calls are made. This
function, too, doesn’t need to contact the X server, giving it an advantage over
XSync() when rendering indirectly.

• Remember also to batch Expose events. See “Exposing a Window” on page 47.

• Make sure no additional Expose events are already queued after the current one.
You can discard all but the last event.

Portability

If you expect to port your program from X to other windowing systems (such as
Windows NT), certain programming practices make porting easier. Here is a partial list:

• Isolate your windowing functions and calls from your rendering functions. The
more modular your code is in this respect, the easier it is to switch to another
windowing system.

• For Windows NT porting only—Avoid naming variables with any variation of the
words “near” and “far”—they are reserved words in Intel xx86 compilers. For
instance, you should avoid the names _near, _far, __near, __far, near, far, Near, Far,
NEAR, FAR, and so on.

• Windows NT programs by default have a small stack; don’t allocate large arrays on
the stack.

• Windows NT doesn’t have an equivalent to glXCopyContext().

81

Chapter 5

5.Introduction to OpenGL Extensions

OpenGL extensions introduce new features and enhance performance. Some extensions
provide completely new functionality; for example, the convolution extension allows
you to blur or sharpen images using a filter kernel. Other extensions enhance existing
functionality; for example, the fog function extension enhances the existing fog
capability.

Several extensions provide functionality that existed in IRIS GL but is not available in
OpenGL. If you are porting a program from IRIS GL to OpenGL, you may therefore find
some extensions particularly helpful. See Appendix A, “OpenGL and IRIS GL,” for a list
of IRIS GL commands and corresponding OpenGL functionality.

This chapter provides basic information about OpenGL extensions. You learn about

• “Determining Extension Availability” on page 81

• “Finding Information About Extensions” on page 85

Determining Extension Availability

Function names and tokens for OpenGL extensions have EXT or a vendor-specific
acronym as a suffix, for example glConvolutionFilter2DEXT() or glColorTableSGI().
The names of the extensions themselves (the extension strings) use prefixes, for example,
SGI_color_table. Here is a detailed list of all suffixes and prefixes:

• EXT is used for extensions that have been reviewed and approved by more than one
OpenGL vendor.

• SGI is used for extensions that are available across the Silicon Graphics product line,
although the support for all products may not appear in the same release.

• SGIS is used for extensions that are found only on a subset of Silicon Graphics
platforms.

• SGIX is used for extensions that are experimental: In future releases, the API for
these extensions may change, or they may not be supported at all.

82

Chapter 5: Introduction to OpenGL Extensions

How to Check for OpenGL Extension Availability

All supported extensions have a corresponding definition in gl.h and a token in the
extensions string returned by glGetString(). For example, if the ABGR extension
(EXT_abgr) is supported, it is defined in gl.h as follows:

#define GL_EXT_abgr 1

GL_EXT_abgr appears in the extensions string returned by glGetString(). Use the
definitions in gl.h at compile time to determine if procedure calls corresponding to an
extension exist in the library.

Applications should do compile-time checking—for example, making sure
GL_EXT_abgr is defined; and run-time checking—for example, making sure
GL_EXT_abgr is in the extension string returned by glGetString().

• Compile-time checking ensures that entry points such as new functions or new
enums are supported. You cannot compile or link a program that uses a certain
extension if the client-side development environment doesn’t support it.

• Run-time checking ensures that the extension is supported for the OpenGL server
and run-time library you are using.

Note that availability depends not only on the operating system version but also on
the particular hardware you are using: even though the 5.3 OpenGL library
supports GL_CONVOLUTION_2D_EXT, you get an GL_INVALID_OPERATION
error if you call glConvolutionFilter2DEXT() on an Indy system.

Note that libdl interface allows users to dynamically load their own shared objects as
needed. Applications can use this interface, particularly the dlsym() command, to
compile their application on any system, even if some of the extensions used are not
supported.

Determining Extension Availability

83

Example Program: Checking for Extension Availability

In Example 5-1, the function QueryExtension() checks whether an extension is available.

Example 5-1 Checking for Extensions

main(int argc, char* argv[]) {
...
 if (!QueryExtension("GL_EXT_texture_object")) {
 fprintf(stderr, "texture_object extension not supported.\n");

exit(1);
 }
...
}

static GLboolean QueryExtension(char *extName)
{
 /*
 ** Search for extName in the extensions string. Use of strstr()
 ** is not sufficient because extension names can be prefixes of
 ** other extension names. Could use strtok() but the constant
 ** string returned by glGetString might be in read-only memory.
 */
 char *p;
 char *end;
 int extNameLen;

 extNameLen = strlen(extName);

 p = (char *)glGetString(GL_EXTENSIONS);
 if (NULL == p) {
 return GL_FALSE;
 }

 end = p + strlen(p);

 while (p < end) {
 int n = strcspn(p, " ");
 if ((extNameLen == n) && (strncmp(extName, p, n) == 0)) {
 return GL_TRUE;
 }
 p += (n + 1);
 }
 return GL_FALSE;
}

84

Chapter 5: Introduction to OpenGL Extensions

As an alternative to checking for each extension explicitly, you can make the following
calls to determine the system and IRIX release on which your program is running:

glGetString(GL_RENDERER)
...
glGetString(GL_VERSION)

Given a list of extensions supported on that system for that release, you can usually
determine whether the particular extension you need is available. For this to work on all
systems, a table of different systems and the extensions supported has to be available.
Some extensions have been included in patch releases, so be careful when using this
approach.

When an extension is incomplete, it is not advertised in the extensions string. Some of the
RealityEngine extensions that were supported in IRIX 5.3 (for example, the subtexture,
sharpen texture, convolution, and histogram extensions) fall in that category.

Checking for GLX Extension Availability

If you use any of the extensions to GLX, described in Chapter 6, “Resource Control
Extensions,” you also need to check for GLX extension availability.

Querying for GLX extension support is similar to querying for OpenGL extension
support with the following exceptions:

• Compile time defines are found in glx.h.

• To get the list of supported GLX extensions, call glXQueryExtensionsString().

• GLX versions must be 1.1 or greater (no extensions to GLX 1.0 exist).

Adapt the process described in “How to Check for OpenGL Extension Availability” on
page 82, taking these exceptions into account.

Finding Information About Extensions

85

Finding Information About Extensions

You can find information about the extensions through reference pages, example
programs, and extension specifications.

Reference Pages

For the most up-to-date information on extensions, see the following reference pages:

glintro Information about the current state of extensions on your system.

glXintro Information on GLX extensions.

Note that individual OpenGL reference pages have a MACHINE DEPENDENCIES
section that lists the systems on which certain extension functions or options are
implemented. Here is an example from the glSampleMaskSGIS reference page:

MACHINE DEPENDENCIES

Multisampling is supported only on RealityEngine, RealityEngine2, VTX and
InfiniteReality systems. Currently it can be used with windows of
Multisampling-capable Visual types, but not with pixmaps.

Example Programs

All complete example programs included in this guide (though not the short code
fragments) are available in /usr/share/src/OpenGL if you have the ogl_dev.sw.samples
subsystem installed. You can also find example programs through the Silicon Graphics
Developer Toolbox, http://www.sgi.com/Technology/toolbox.html.

Extension Specifications

Extension specifications describe extension functionality from the implementor’s point
of view. They are prepared to fit in with the OpenGL specification. Specification contain
detailed information that goes beyond what developers usually need to know. If you
need more detail on any of the extensions, search for its specification in the developer
toolbox.

87

Chapter 6

6.Resource Control Extensions

This chapter discusses resource control extensions, which are extensions to GLX. GLX is
an extension to the X Window System that makes OpenGL available in an X Window
System environment. All GLX functions and other elements have the prefix glX (just as
all OpenGL elements have the prefix gl).

You can find information on GLX in several places:

• Introductory information—See the glxintro reference page

• In-depth coverage—See Appendix C, “OpenGL and Window Systems,” of the
OpenGL Programming Guide and OpenGL Programming for the X Window System

See “OpenGL and Associated Tools and Libraries” on page xxxii for bibliographical
information).

This chapter explains how to use extensions to GLX. The extensions are presented in
alphabetical order. You learn about

• “EXT_import_context—The Import Context Extension” on page 88

• “EXT_make_current_read—The Make Current Read Extension” on page 90

• “EXT_visual_info—The Visual Info Extension” on page 92

• “EXT_visual_rating—The Visual Rating Extension” on page 94

The following sections describe extensions that are experimental:

• “SGIX_dm_pbuffer—The Digital Media Pbuffer Extension” on page 95

• “SGIX_fbconfig—The Framebuffer Configuration Extension” on page 104

• “SGIX_pbuffer—The Pixel Buffer Extension” on page 112

88

Chapter 6: Resource Control Extensions

Note: Using OpenGL in an X Window System environment is discussed in the following
chapters of this guide:

• Chapter 2, “OpenGL and X: Getting Started”

• Chapter 3, “OpenGL and X: Examples”

• Chapter 4, “OpenGL and X: Advanced Topics”

EXT_import_context—The Import Context Extension

The import context extension, EXT_import_context, allows multiple X clients to share an
indirect rendering context. The extension also adds some query routines to retrieve
information associated with the current context.

To work effectively with this extension, you must first understand direct and indirect
rendering. See “Direct and Indirect Rendering” on page 79 for some background
information.

Importing a Context

You can use the extension to import another process’ OpenGL context, as follows:

• To retrieve the XID for a GLX context, call glXGetContextIDEXT():

GLXContextID glXGetContextIDEXT(const GLXContext ctx)

This function is client-side only. No round trip is forced to the server; unlike most X
calls that return a value, glXGetContextIDEXT() does not flush any pending events.

• To create a GLX context, given the XID of an existing GLX context, call
glXImportContextEXT(). You can use this function in place of glXCreateContext()
to share another process’ indirect rendering context:

GLXContext glXImportContextEXT(Display *dpy, GLXContextID contextID)

Only the server-side context information can be shared between X clients;
client-side state, such as pixel storage modes, cannot be shared. Thus,
glXImportContextEXT() must allocate memory to store client-side information.

A call to glXImportContextEXT() doesn’t create a new XID. It merely makes an
existing XID available to the importing client. The XID goes away when the creating
client drops its connection or the ID is explicitly deleted. The object goes away when
the XID goes away and the context is not current to any thread.

EXT_import_context—The Import Context Extension

89

• To free the client-side part of a GLX context that was created with
glXImportContextEXT(), call glXFreeContextEXT():

void glXFreeContextEXT(Display *dpy, GLXContext ctx)

glXFreeContextEXT() doesn’t free the server-side context information or the XID
associated with the server-side context.

Retrieving Display and Context Information

Use the extension to retrieve the display of the current context, or other information
about the context, as follows:

• To retrieve the current display associated with the current context, call
glXGetCurrentDisplayEXT(), which has the following prototype:

Display * glXGetCurrentDisplayEXT(void);

If there is no current context, NULL is returned. No round trip is forced to the
server; unlike most X calls that return a value, glXGetCurrentDisplayEXT() doesn’t
flush any pending events.

• To obtain the value of a context’s attribute, call glXQueryContextInfoEXT():

int glXQueryContextInfoEXT(Display *dpy, GLXContext ctx,
int attribute,int *value)

The values and types corresponding to each GLX context attribute are listed in
Table 6-1.

New Functions

glXGetCurrentDisplayEXT, glXGetContextIDEXT, glXImportContextEXT,
glXFreeContextEXT, glXQueryContextInfoEXT

Table 6-1 Type and Context Information for GLX Context Attributes

GLX Context Attribute Type Context Information

GLX_SHARE_CONTEXT_EXT XID XID of the share list context

GLX_VISUAL_ID_EXT XID visual ID

GLX_SCREEN_EXT int screen number

90

Chapter 6: Resource Control Extensions

EXT_make_current_read—The Make Current Read Extension

The make current read extension, SGI_make_current_read, allows you to attach separate
read and write drawables to a GLX context by calling glXMakeCurrentReadSGI(),
which has the following prototype:

Bool glXMakeCurrentReadSGI(Display *dpy,GLXDrawable draw,
GLXDrawable read, GLXContext gc)

where

dpy Specifies the connection to the X server.

draw A GLX drawable that receives the results of OpenGL drawing
operations.

read A GLX drawable that provides pixels for glReadPixels() and
glCopyPixels() operations.

gc A GLX rendering context to be attached to draw and read.

Read and Write Drawables

In GLX 1.1, you associate a GLX context with one drawable (window or pixmap) by
calling glXMakeCurrent(). glXMakeCurrentReadSGI() lets you attach a GLX context to
two drawables: The first is the one you draw to, the second serves as a source for pixel
data.

In effect, the following calls are equivalent:

MakeCurent(context, win)
MakeCurrentRead(context, win, win)

Having both a read and a write drawable is useful, for example, to copy the contents of
a window to another window, to stream video to a window, and so on.

The write drawable is used for all OpenGL operations. Accumulation buffer operations
fetch data from the write drawable and are not allowed when the read and write
drawable are not identical.

The read drawable is used for any color, depth, or stencil values that are retrieved by
glReadPixels(), glCopyPixels(), glCopyTexImage(), or glCopyTexSubImage(). It is also
use by any OpenGL extension that sources images from the framebuffer in the manner
of glReadPixels(), glCopyPixels(), glCopyTexImage(), or glCopyTexSubImage().

EXT_make_current_read—The Make Current Read Extension

91

Here is some additional information about the two drawables:

• The two drawables do not need to have the same ancillary buffers (depth buffer,
stencil buffer, and so on).

• The read drawable does not have to contain a buffer corresponding to the current
GL_READ_BUFFER of a GLX context. For example, the current
GL_READ_BUFFER may be GL_BACK, and the read drawable may be
single-buffered.

If a subsequent command sets the read buffer to a color buffer that does not exist on
the read drawable—even if set implicitly by glPopAttrib()—or if an attempt is
made to source pixel values from an unsupported ancillary buffer, a
GL_INVALID_OPERATION error is generated.

• If the current GL_READ_BUFFER does not exist in the read drawable, pixel values
extracted from that drawable are undefined, but no error is generated.

• Operations that query the value of GL_READ_BUFFER use the value set last in the
context, regardless of whether the read drawable has the corresponding buffer.

Possible Match Errors

When glXMakeCurrentReadSGI() associates two GLX drawables with a single GLX
context, a BadMatch X protocol error is generated if either drawable was not created with
the same X screen.

The color, depth, stencil, and accumulation buffers of the two drawables don’t need to
match. Certain implementations may impose additional constraints. For example, the
current RealityEngine implementation requires that the color component resolution of
both drawables be the same. If it is not, glXMakeCurrentReadSGI() generates a
BadMatch X protocol error.

92

Chapter 6: Resource Control Extensions

Retrieving the Current Drawable’s Name

glXGetCurrentReadDrawableSGI() returns the name of the GLXDrawable currently
being used as a pixel query source.

• If glXMakeCurrent() specified the current rendering context, then
glXGetCurrentReadDrawableSGI() returns the drawable specified as draw by that
glXMakeCurrent call.

• If glXMakeCurrentReadSGI() specified the current rendering context, then
glXGetCurrentReadDrawableSGI() returns the drawable specified as read by that
glXMakeCurrentReadSGI() call.

If there is no current read drawable, glXGetCurrentReadDrawableSGI() returns None.

New Functions

glXefReadSGI.

EXT_visual_info—The Visual Info Extension

The visual info extension, EXT_visual_info, enhances the standard GLX visual
mechanism as follows:

• You can request that a particular X visual type be associated with a GLX visual.

• You can query the X visual type underlying a GLX visual.

• You can request a visual with a transparent pixel.

• You can query whether a visual supports a transparent pixel value and query the
value of the transparent pixel.

Note that the notions of level and transparent pixels are orthogonal as both level 1
and level 0 visuals may or may not support transparent pixels.

Using the Visual Info Extension

To find a visual that best matches specified attributes, call glXChooseVisual():

XVisualInfo* glXChooseVisual(Display *dpy, int screen, int *attrib_list)

EXT_visual_info—The Visual Info Extension

93

The following heuristics determine which visual is chosen:

If an undefined GLX attribute, or an unacceptable enumerated attribute value is
encountered, NULL is returned.

More attributes may be specified in the attribute list. If a visual attribute is not specified,
a default value is used. See the glXChooseVisual reference page for more detail.

To free the data returned from glXChooseVisual(), use XFree().

Note that GLX_VISUAL_TYPE_EXT can also be used with glXGetConfig().

Table 6-2 Heuristics for Visual Selection

If... And GLX_X_VISUAL_TYPE_EXT is... The result is...

GLX_RGBA is
in attrib_list

GLX_TRUE_COLOR_EXT TrueColor visual

GLX_DIRECT_COLOR_EXT DirectColor visual

GLX_PSEUDO_COLOR_EXT,
GLX_STATIC_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATIC_GRAY_EXT

Visual Selection fails

Not in attrib_list, and if all other
attributes are equivalent...

A TrueColor visual
(GLX_TRUE_COLOR_EXT) is chosen in
preference to a DirectColor visual
(GLX_DIRECT_COLOR_EXT)

GLX_RGBA is
not in attrib_list

GLX_PSEUDO_COLOR_EXT PseudoColor visual

GLX_STATIC_COLOR_EXT StaticColor visual

GLX_TRUE_COLOR_EXT,
GLX_DIRECT_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATIC_GRAY_EXT

Visual selection fails

Not in attrib_list and if all other
attributes are equivalent...

A PseudoColor visual
(GLX_PSEUDO_COLOR_EXT) is chosen
in preference to a StaticColor visual
(GLX_STATIC_COLOR_EXT)

94

Chapter 6: Resource Control Extensions

Using Transparent Pixels

How you specify that you want a visual with transparent pixels depends on the existing
attributes:

Don’t specify one of the following values in attrib_list because typically only one
transparent color or index value is supported:

GLX_TRANSPARENT_INDEX_VALUE_EXT,
GLX_TRANSPARENT_{RED|GREEN|BLUE|ALPHA}_VALUE_EXT

Once you have a transparent visual, you can query the transparent color value by calling
glXGetConfig(). To get the transparent index value for visuals that support index
rendering, use GLX_TRANSPARENT_INDEX_VALUE_EXT. For visuals that support
RGBA rendering, use GLX_TRANSPARENT_{RED|GREEN|BLUE}_VALUE_EXT. The
visual attribute GLX_TRANSPARENT_ALPHA_VALUE_EXT is included in the
extension for future use.

“Creating Overlays” on page 60 presents an example program that uses a transparent
visual for the overlay window.

EXT_visual_rating—The Visual Rating Extension

The visual rating extension, EXT_visual_rating, allows servers to export visuals with
improved features or image quality, but lower performance or greater system burden,
without having to have these visuals selected preferentially. It is intended to ensure that
most—but possibly not all—applications get the “right” visual.

You can use this extension during visual selection, keeping in mind that while you will
get a good match for most systems, you may not get the best match for all systems.

If... Then call glXChooseVisual() and specify as the value
of GLX_TRANSPARENT_TYPE_EXT...

GLX_RGBA is in attrib_list GLX_TRANSPARENT_RGB_EXT

GLX_RGBA is not in attrib_list GLX_TRANSPARENT_INDEX_EXT

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension

95

Using the Visual Rating Extension

To determine the rating for a visual, call glXGetConfig() with attribute set to
GLX_VISUAL_CAVEAT_EXT. glXGetConfig() returns the rating of the visual in the
parameter value: GLX_NONE_EXT or GLX_SLOW_EXT.

If the GLX_VISUAL_CAVEAT_EXT attribute is not specified in the attrib_list parameter
of glXChooseVisual(), preference is given to visuals with no caveats (that is, visuals with
the attribute set to GLX_NONE_EXT). If the GLX_VISUAL_CAVEAT_EXT attribute is
specified, then glXChooseVisual() matches the specified value exactly. For example, if
the value is specified as GLX_NONE_EXT, only visuals with no caveats are considered.

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension

The Digital Media Pbuffer extension, SGIX_dm_pbuffer, introduces a new type of
GLXPbuffer, the DMbuffer. Images generated by digital media libraries in DMbuffer
form can be used directly by OpenGL as renderable buffers or as the pixel source for
texture images.

Note: The SGIX_dm_pbuffer extension is currently supported only on O2 systems. This
discussion therefore focuses on the buffer configurations available on O2 systems.

This section explains how to use the Digital Media Pbuffer extension in the following
sections:

• “Creating a Digital Media Pbuffer” on page 96 provides a conceptual introduction
to the steps involved in using the extension.

• “Compatibility Conditions” on page 98 discusses image layout and pixel formats in
for the different libraries. This background information is used when an application
creates DMbuffers that are compatible with DMPbuffers.

• “OpenGL Rendering to DMbuffers” on page 99 provides an example program that
illustrates the material discussed in the other two sections.

• “DMbuffers as OpenGL Textures” on page 102 explains conditions under which
DMbuffers can be used as OpenGL textures. It also includes an example code
fragment.

96

Chapter 6: Resource Control Extensions

Creating a Digital Media Pbuffer

Creating a digital media Pbuffer involves three separate conceptual steps, explained in
the following sections. “OpenGL Rendering to DMbuffers” on page 99 further illustrates
each step in the context of an example program.

Creating a DMBuffer

DMbuffers are a class of buffer common to video, JPEG decompression and other digital
media libraries. They permit the sharing and exchange of images in various formats. A
graphical DMbuffer is essentially a chunk of memory used to store a single image or, in
the special case of mipmapped DMbuffers, a set of images.

To use the dm_pbuffer extension, you have to create a DMbufferPool with characteristics
that match the Pbuffer you want to associate with the DMbuffer. Follow these conceptual
steps (in an actual program, memory allocation and other issues are also part of the
process):

1. Call dmBufferSetPoolDefaults() to specify the parameters of the DMbuffers you
want to create.

The DMparams identify the DMbuffer when it is passed to OpenGL. (see
Example 6-1 on page 100). The following elements in the structure must be
compatible with the characteristics of the Pbuffer:

• DM_IMAGE_WIDTH and DM_IMAGE_HEIGHT

• DM_IMAGE_PACKING—(see “Pixel Formats” on page 99)

• DM_IMAGE_LAYOUT—(see “Compatibility Conditions” on page 98)

2. Call dmBufferCreatePool() to create a DMbufferPool.

All the buffers in the pool will have the characteristics specified in step 1.

Table 6-3 Steps for Creating a Digital Media Pbuffer

Step... Discussed in...

1 “Creating a DMBuffer” on page 96

2 “Creating a Digital Media Pbuffer” on page 97

3 “Associating Pbuffer and DMbuffer” on page 97

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension

97

3. Once the buffer pool is created, DMbuffers are obtained with a call to either
dmBufferAllocate(), vlEventToDMBuffer(), or dmICReceive(), depending on the
application generating DMbuffers for OpenGL.

Creating a Digital Media Pbuffer

A pixel buffer, or Pbuffer, is a window-independent, non-visible rendering buffer for an
OpenGL renderer. Pbuffers are supported by the Pbuffer extension; see “SGIX_pbuffer—
The Pixel Buffer Extension” on page 112. A digital media Pbuffer is a special kind of
Pbuffer.

To create a digital media Pbuffer, an application calls glXCreateGLXPbufferSGIX(),
specifying the GLX_DIGITAL_MEDIA_PBUFFER_SGIX attribute.

The resulting Pbuffer is identical in all respects to a standard Pbuffer except that its
primary color buffer does not exist until the Pbuffer is associated with a compatible
DMbuffer for the first time. All other buffers (depth, stencil, accumulation) defined by
the FBConfig for the pbuffer are allocated by OpenGL.

Associating Pbuffer and DMbuffer

To associate a Pbuffer with a compatible DMbuffer, applications call
glXAssociateDMPbufferSGIX() which has the following prototype:

Bool glXAssociateDMPbufferSGIX(Display *dpy,GLXPbufferSGIX pbuffer,
DMparams *params,DMbuffer dmbuffer)

where

dpy Connection to an X server.

pbuffer GLX pixel buffer target of the associate operation.

params Parameter list that describes the format of the images in the DMbuffer
that is to be associated with the pixel buffer.

dmbuffer DMbuffer to be used as the front left color buffer.

The call to glXAssociateDMPbufferSGIX() must be issued before the pbuffer can be
made current for the first time, as either a read or write drawable. Once associated with
a pbuffer, all rendering to, or read and copy operations from the pbuffer’s color buffer
will access the DMbuffer directly.

98

Chapter 6: Resource Control Extensions

Compatible DMbuffers can be associated in sequence with the same pbuffer while the
pbuffer is current. A DMbuffer remains associated either until it is replaced by another
associate command, or until the pbuffer is destroyed. Once the DMbuffer is released, it
is freed only if it has no remaining clients on the system. DMbuffers are local resources,
and a DMPbuffer can be current only to a direct GLXContext.

Compatibility Conditions

A pbuffer and DMbuffer can be associated only if their image layout and pixel formats
are compatible. This section provides some background information on these two topics.

Image Layouts

When an application creates a pool of DMbuffers, it has to choose between two types of
DMbuffer image layout, linear and graphics, specified with the DM_IMAGE_LAYOUT
parameter in the DMparams structure. Table 6-4 lists OpenGL commands that are
compatible with DMbuffers of each layout.

Only DMbuffers with a graphics layout can be associated with a DMPbuffer. These
DMbuffers cannot be mapped, and so can be accessed only through digital media or
graphics library commands, not directly by the application.

DMbuffers with linear image layout can be mapped, and can be passed by address as the
pixels parameter to glDrawPixels(), glReadPixels() and glTexImage2D().

Table 6-4 Linear and Graphics Layout

Linear Layout Graphics Layout

VL Layout VL_LAYOUT_ LINEAR VL_LAYOUT_ GRAPHICS,
VL_LAYOUT_ MIPMAP

DM image Layout DM_IMAGE_LAYOUT_ LINEAR DM_IMAGE_LAYOUT_ GRAPHICS,
DM_IMAGE_LAYOUT_ MIPMAP

OpenGL
commands

glDrawPixels, glReadPixels,
glTexImage2D

glXAssociateDMPbufferSGIX,
glCopyTexSubImage2D

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension

99

Pixel Formats

There are three internal pixel formats that are shared by the video, digital media and
graphics libraries. The video library (libvl), the digital media library (libdmedia), and the
graphics library (libGL) each have different designations for the same internal format, as
illustrated in Table 6-5.

The DM_IMAGE_PACKING parameter of the DMparams structure should be set to a
format that matches the component depths described by the DMPbuffer FBConfig. Video
applications also need to initialize the path to a matching video library format.

OpenGL Rendering to DMbuffers

Setup required for rendering to a DMPbuffer involves three basic steps, illustrated by
example code fragments in the following section:

1. “Creating DMParams Structure and DMBuffer Pool”

2. “Creating a Compatible DMPbuffer” on page 100

3. “Associating the DMBuffer With the DMPbuffer” on page 101

Table 6-5 Pixel and Texel Formats (Video, Digital Media and Graphics)

libvl libmedia libGL- texel, pixel

rgba-8888 VL_PACKING_ABGR8 DM_IMAGE_PACKING_
RGBA

GL_RGBA8_EXT,
GL_RGBA with
GL_UNSIGNED_BYTE

rgba-5551 VL_PACKING_ARGB_1555 DM_IMAGE_PACKING_
XRGB5551

GL_RGB5_A1_EXT,
GL_RGBA with
GL_UNSIGNED_BYTE_5_
5_5_1_EXT

rgb-332 VL_PACKING_X444_332 DM_IMAGE_PACKING_
RGB332

(332 texel not supported)
GL_RGB with
GL_UNSIGNED_BYTE_3_
3_2_EXT

100

Chapter 6: Resource Control Extensions

Creating DMParams Structure and DMBuffer Pool

The following sample code fragment creates a DMparams structure, and a pool of
DMbuffers that are suitable for use by video and GL. The buffers are 640 x 480 with a
graphics layout and 32-bit RGBA format.

Example 6-1 Creating a DMparams Structure and DMbuffer Pool

DMparams *imageParams, *poolParams;
DMbufferpool bufferPool;
DMpacking dmPacking = DM_IMAGE_PACKING_RGBA;
DMimagelayout dmLayout = DM_IMAGE_LAYOUT_GRAPHICS;
DMboolean cacheable = DM_FALSE;
DMboolean mapped = DM_FALSE;
int bufferCount = NUMBER_OF_BUFFERS_NEEDED_BY_APPLICATION;
DMbuffer buffer[NUMBER_OF_BUFFERS_NEEDED_BY_APPLICATION];
DMstatus s;

/* Create and initialize image params. */
s = dmParamsCreate(&imageParams);
s = dmSetImageDefaults(imageParams, 640, 480, dmPacking);
s = dmParamsSetEnum(imageParams, DM_IMAGE_LAYOUT, dmLayout);

/* Set up a VL video path before creating the DMbuffer pool. */

/* Create and initialize pool params using VL & GL dm utilities. */
s = dmParamsCreate(&poolParams);
s = dmBufferSetPoolDefaults(count, 0, cacheable, mapped);

s = vlDMPoolGetParams(vlServer, vlPath, vlNode, poolParams);

s = dmBufferGetGLPoolParams(imageParams, poolParams);

/* Set buffer count and create pool. */
bufferCount += dmParamsGetInt(poolParams, DM_BUFFER_COUNT);
dmParamsSetInt(poolParams, DM_BUFFER_COUNT, bufferCount);

s = dmBufferCreatePool(poolParams, &bufferPool);
dmParamsDestroy(poolParams);

Creating a Compatible DMPbuffer

The next step is to create a DMPbuffer with the same size and format as the DMbuffers
that are to be rendered to.

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension

101

Example 6-2 Creating a Digital Media Pbuffer

GLXFBConfigSGIX *config;
GLXPbufferSGIX pbuffer;
GLXContext context;
int configAttribs [] = {
 GLX_DOUBLEBUFFER, True,

GLX_RED_SIZE, 8,
GLX_GREEN_SIZE, 8,
GLX_BLUE_SIZE, 8,
GLX_ALPHA_SIZE, 8,
GLX_DRAWABLE_TYPE_SGIX, GLX_PBUFFER_BIT_SGIX,
(int) None };

int pbufAttribs [] = {
 GLX_DIGITAL_MEDIA_PBUFFER_SGIX, True,
 (int) None };

config = glXChooseFBConfigSGIX(display, screen, configAttribs);

pbuffer = glXCreateGLXPbufferSGIX(display, *config, 640, 480,
pbufAttribs);

context = glXCreateContextWithConfigSGIX(display, *config,
GLX_RGBA_TYPE_SGIX, NULL, True);

Associating the DMBuffer With the DMPbuffer

Finally the DMbuffer is allocated and associated with the DMPbuffer and made current
to a context. Applications typically cycle through a sequence of DMbuffers, rendering to
them, or copying them to OpenGL textures. Freeing the DMbuffer after it has been
associated allows the buffer to return to the pool for reuse once it is released by the
OpenGL pbuffer or texture object.

Example 6-3 Associating a DMbuffer With a DMPbuffer

DMparams *imageParams = ...;
DMbufferpool bufferPool = ...;
DMbuffer dmBuffer;
DMstatus s;

/* associate the first DMbuffer before making current */
s = dmBufferAllocate(bufferPool, &dmBuffer);
glXAssociateDMPbufferSGIX(display, pbuffer, imageParams, dmBuffer);
glXMakeCurrent(display, pbuffer, context);

102

Chapter 6: Resource Control Extensions

for(i = 0; i < bufferCount; i++)i {

/* perform GL rendering operations to the DMbuffer */

dmBufferFree(dmBuffer);
s = dmBufferAllocate(bufferPool, &dmBuffer);
glXAssociateDMPbufferSGIX(display, pbuffer, imageParams, dmBuffer);

}

DMbuffers as OpenGL Textures

Under certain conditions, the SGIX_dm_pbuffer implementation on O2 permits the
direct use of a DMbuffer as a GL texture. The benefits are optimized texture loading for
DMbuffers generated as video and JPEG images, and for textures rendered as images to
a DMPbuffer.

After DMBuffer and pbuffer have been associated, applications can call
glXMakeCurrentReadSGI() with a DMPbuffer as the read drawable, then call
glCopyPixels() or glCopyTexImage2D() to copy the contents of the associated DMbuffer
to another drawable or to a texture. These copy operations behave as they would with
any standard read drawable.

The following conditions allow for a “copy by reference” of the currently associated
DMbuffer to a texture object (also see the reference page for glCopyTexSubImage2D):

• glCopyTexSubImage2D() is used to copy the entire texture image from the
DMPbuffer.

• The DMPbuffer and target 2D texture object match in terms of width, height, and
depth of RGBA components. See “Pixel Formats” on page 99 for comparable
formats.

• The texture object is 64 (or more) texels in its largest dimension.

• If the DMbuffer image layout is DM_IMAGE_LAYOUT_MIPMAP, then the
GL_GENERATE_MIPMAP_SGIS texture parameter must also be set to TRUE for
the texture object at the time of the copy.

• Only the default pixel transfer operations are enabled at the time of the copy.

After a DMbuffer is copied by reference to the texture object it remains associated as the
texture, even once the association to the source DMPbuffer changes, and until the texture
object is destroyed or the texture image is updated through another OpenGL command.

SGIX_dm_pbuffer—The Digital Media Pbuffer Extension

103

Figure 6-1 DMPbuffers and DMbuffers

The following example demonstrates the optimized case for copying a DMbuffer by
reference to a texture object. The source DMPbuffer and DMbuffer differ from previous
examples only in size; they are 512 square to allow for direct use as a OpenGL texture.

Example 6-4 Copying a DMbuffer to a Texture Object.

/* Make DMPbuffer current as a read drawable */
pbuffer = glXCreateGLXPbufferSGIX(display, *config, 512, 512, attribs);
glXAssociateDMPbufferSGIX(display, pbuffer, imageParams, dmBuffer);
glXMakeCurrentReadSGI(display, drawable, pbuffer, context);

/* Create and init a compatible GL texture object with NULL image */

glGenTextures(1, &texObj);
glBindTexture(GL_TEXTURE_2D, texObj);
glTexImage2D(GL_TEXTURE_2D, level = 0, GL_RGBA8, w = 512, h = 512,

GL_RGBA, GL_UNSIGNED_BYTE, NULL);

/* copy the DMbuffer by reference to the texture object */

glCopyTexSubImage(GL_TEXTURE_2D, level = 0, xoff = 0, yoff = 0,
x = 0, y = 0, w = 512, h = 512);

New Function

glXAssociateDMPbufferSGIX

DMbufferpool

DMPbuffer

DMbuffer

GLXDrawable

GLXContext
read draw

texture
object

104

Chapter 6: Resource Control Extensions

SGIX_fbconfig—The Framebuffer Configuration Extension

The framebuffer configuration extension, SGIX_fbconfig, provides three new features:

• It introduces a new way to describe the capabilities of a GLX drawable, that is, to
describe the resolution of color buffer components and the type and size of ancillary
buffers by providing a GLXFBConfigSGIX construct (also called FBConfig).

• It relaxes the “similarity” requirement when associating a current context with a
drawable.

• It supports RGBA rendering to one- and two-component windows (luminance and
luminance alpha rendering) and GLX pixmaps as well as pbuffers (pixel buffers).
Pbuffers are discussed in “SGIX_pbuffer—The Pixel Buffer Extension” on page 112.

Caution: This extension is an SGIX (experimental) extension. The interface may change,
or some other details of the extension may change.

Why Use the Framebuffer Configuration Extension?

Use this extension

• if you want to use pbuffers (see “SGIX_pbuffer—The Pixel Buffer Extension” on
page 112)

• if you want to render luminance data to a TrueColor visual

• instead of glXChooseVisual(), because it provides visual selection for all GLX
drawables, including pbuffers, and incorporates the visual info and visual rating
extensions.

This section briefly explores the three new features the extension provides.

Describing a Drawable With a GLXFBConfigSGIX Construct

Currently GLX overloads X visuals so they have additional buffers and other
characteristics needed for OpenGL rendering. This extension packages GLX drawables
by defining a new construct, a GLXFBConfigSGIX, that encapsulates GLX drawable
capabilities and has the following properties:

• It may or may not have an associated X visual. If it does have an associated X visual,
then it is possible to create windows that have the capabilities described by the
FBConfig.

SGIX_fbconfig—The Framebuffer Configuration Extension

105

• A particular FBConfig is not required to work with all GLX drawables. For example,
it is possible for implementations to export FBConfigs that work only with GLX
pixmaps.

Less-Rigid Similarity Requirements When Matching Context and Drawable

In OpenGL without the extension, if you associate a drawable with a GLX context by
calling glXMakeCurrent(), the two have to be “similar”; that is, they must have been
created with the same visual. This extension relaxes the requirement; it only requires the
context and drawable to be compatible. This is less restrictive and implies the following:

• The render_type attribute for the context must be supported by the FBConfig that the
drawable was created with. For example, if the context was created for RGBA
rendering, it can be used only if the FBConfig supports RGBA rendering.

• All color buffers and ancillary buffers that exist in both FBConfigs must have the
same size. For example, a GLX drawable that has a front left buffer and a back left
buffer with red, green, and blue sizes of 4 is not compatible with an FBConfig that
has only a front left buffer with red, green, and blue sizes of 8. However, it is
compatible with an FBConfig that has only a front left buffer if the red, green, and
blue sizes are 4.

Note that when a context is created, it has an associated rendering type:
GLX_RGBA_TYPE_SGIX or GLX_COLOR_INDEX_TYPE_SGIX.

Less-Rigid Match of GLX Visual and X Visual

The current GLX specification requires that the GLX_RGBA visual attribute be associated
only with TrueColor and DirectColor X visuals. This extension makes it possible to do
RGBA rendering to windows created with visuals of type PseudoColor, StaticColor,
GrayScale, and StaticGray. In each case, the red component is used to generate the
framebuffer values and the green and blue fragments are discarded.

The OpenGL RGBA rendering semantics are more powerful than the OpenGL index
rendering semantics. By extending the X visual types that can be associated with an
RGBA color buffer, this extension allows RGBA rendering semantics to be used with
pseudo-color and gray-scale displays. A particularly useful application of this extension
is that it allows you to work with single-component images with texture mapping, then
use a pseudo-color visual to map the luminance values to color.

106

Chapter 6: Resource Control Extensions

GLXFBConfigSGIX Constructs

A GLXFBConfigSGIX (FBConfig) describes the format, type, and size of the color and
ancillary buffers for a GLX drawable. If the GLX drawable is a window, then the
FBConfig that describes it has an associated X visual; for a GLXPixmap or GLXPbuffer
there may or may not be an X visual associated with the FBConfig.

Choosing a GLXFBConfigSGIX Construct

Use glXChooseFBConfigSGIX() to get GLXFBConfigSGIX constructs that match a list of
attributes or to get the list of GLXFBConfigSGIX constructs (FBConfigs) that are available
on the specified screen.

GLXFBConfigSGIX *glXChooseFBConfigSGIX(Display *dpy, int screen,
const int *attrib_list, int *nitems)

If attrib_list is NULL, glXChooseFBConfigSGIX() returns an array of FBConfigs that are
available on the specified screen; otherwise this call returns an array of FBConfigs that
match the specified attributes. Table 6-6 shows only attributes added by this extension;
additional attributes are listed on the glXChooseVisual reference page.

Table 6-6 Visual Attributes Introduced by the FBConfig Extension

Attribute Type Description

GLX_DRAWABLE_TYPE_SGIX bitmask Mask indicating which GLX drawables are
supported. Valid bits are GLX_WINDOW_BIT_SGIX
and GLX_PIXMAP_BIT_SGIX.

GLX_RENDER_TYPE_SGIX bitmask Mask indicating which OpenGL rendering modes are
supported. Valid bits are GLX_RGBA_BIT_SGIX and
GLX_COLOR_INDEX_BIT_SGIX.

GLX_X_RENDERABLE_SGIX boolean True if X can render to drawable.

GLX_FBCONFIG_ID_SGIX XID XID of FBConfig.

SGIX_fbconfig—The Framebuffer Configuration Extension

107

The attributes are matched in an attribute-specific manner. Some attributes, such as
GLX_LEVEL, must match the specified value exactly; others, such as GLX_RED_SIZE,
must meet or exceed the specified minimum values.

The sorting criteria are defined as follows:

smaller FBConfigs with an attribute value that meets or exceeds the specified
value are matched. Precedence is given to smaller values (when a value
is not explicitly requested, the default is implied).

larger When the value is requested explicitly, only FBConfigs with a
corresponding attribute value that meets or exceeds the specified value
are matched. Precedence is given to larger values. When the value is not
requested explicitly, behaves exactly like the “smaller” criterion.

exact Only FBConfigs whose corresponding attribute value exactly matches
the requested value are considered.

mask For a config to be considered, all the bits that are set in the requested
value must be set in the corresponding attribute. (Additional bits might
be set in the attribute.)

Note that “don’t care” means that the default behavior is to have no preference when
searching for a matching FBConfig.

Table 6-7 illustrates how each attribute is matched.

Table 6-7 FBConfig Attribute Defaults and Sorting Criteria

Attribute Default Sorting Criteria

GLX_BUFFER_SIZE 0 Smaller

GLX_LEVEL 0 Smaller

GLX_DOUBLEBUFFER Don’t care Smaller

GLX_STEREO False Exact

GLX_AUX_BUFFERS 0 Smaller

GLX_RED_SIZE 0 Larger

GLX_GREEN_SIZE 0 Larger

GLX_BLUE_SIZE 0 Larger

108

Chapter 6: Resource Control Extensions

GLX_ALPHA_SIZE 0 Larger

GLX_DEPTH_SIZE 0 Larger

GLX_STENCIL_SIZE 0 Larger

GLX_ACCUM_RED_SIZE 0 Larger

GLX_ACCUM_GREEN_SIZE 0 Larger

GLX_ACCUM_BLUE_SIZE 0 Larger

GLX_ACCUM_ALPHA_SIZE 0 Larger

GLX_SAMPLE_BUFFERS_SGIS 0 if GLX_SAMPLES_ SGIS = 0,
1 otherwise

Smaller

GLX_SAMPLES_SGIS 0 Smaller

GLX_X_VISUAL_TYPE_EXT Don’t care Exact

GLX_TRANSPARENT_TYPE_EXT GLX_NONE_EXT Exact

GLX_TRANSPARENT_INDEX_VALUE_EXT Don’t care Exact

GLX_TRANSPARENT_RED_VALUE_EXT Don’t care Exact

GLX_TRANSPARENT_GREEN_VALUE_EXT Don’t care Exact

GLX_TRANSPARENT_BLUE_VALUE_EXT Don’t care Exact

GLX_TRANSPARENT_ALPHA_VALUE_EXT Don’t care Exact

GLX_VISUAL_CAVEAT_EXT GLX_NONE_EXT Exact, if
specified,
otherwise
minimum

GLX_DRAWABLE_TYPE_SGIX GLX_WINDOW_BIT_ SGIX Mask

GLX_RENDER_TYPE_SGIX GLX_RGBA_BIT_SGIX Mask

GLX_X_RENDERABLE_SGIX Don't care Exact

GLX_FBCONFIG_ID_SGIX Don't care Exact

Table 6-7 (continued) FBConfig Attribute Defaults and Sorting Criteria

Attribute Default Sorting Criteria

SGIX_fbconfig—The Framebuffer Configuration Extension

109

There are several uses for the glXChooseFBConfigSGIX() function:

• Retrieve all FBConfigs on the screen (attrib_list is NULL).

• Retrieve an FBConfig with a given ID specified with GLX_FBCONFIG_ID_SGIX.

• Retrieve the FBConfig that is the best match for a given list of visual attributes.

• Retrieve first a list of FBConfigs that match some criteria, for example, each
FBConfig available on the screen or all double-buffered visuals available on the
screen. Then call glXGetFBConfigAttribSGIX() to find their attributes and choose
the one that best fits your needs.

Once the FBConfig is obtained, you can use it to create a GLX pixmap, window, or
pbuffer (see “SGIX_pbuffer—The Pixel Buffer Extension” on page 112). In the case of a
window, you must first get the associated X visual by calling
glXGetVisualFromFBConfigSGIX().

Below is a description of what happens when you call glXChooseFBConfigSGIX():

• If no matching FBConfig exists, or if an error occurs (that is, an undefined GLX
attribute is encountered in attrib_list, screen is invalid, or dpy doesn’t support the
GLX extension) then NULL is returned.

• If attrib_list is not NULL and more than one FBConfig is found, then an ordered list
is returned with the FBConfigs that form the “best” match at the beginning of the
list. (“How an FBConfig Is Selected” on page 111 describes the selection process.)
Use XFree() to free the memory returned by glXChooseFBConfigSGIX().

• If GLX_RENDER_TYPE_SGIX is in attrib_list, the value that follows is a mask
indicating which types of drawables will be created with it. For example, if
GLX_RGBA_BIT_SGIX | GLX_COLOR_INDEX_BIT_SGIX is specified as the mask,
then glXChooseFBConfigSGIX() searches for FBConfigs that can be used to create
drawables that work with both RGBA and color index rendering contexts. The
default value for GLX_RENDER_TYPE_SGIX is GLX_RGBA_BIT_SGIX.

The attribute GLX_DRAWABLE_TYPE_SGIX has as its value a mask indicating
which drawables to consider. Use it to choose FBConfigs that can be used to create
and render to a particular GLXDrawable. For example, if
GLX_WINDOW_BIT_SGIX | GLX_PIXMAP_BIT_SGIX is specified as the mask for
GLX_DRAWABLE_TYPE_SGIX then glXChooseFBConfigSGIX() searches for
FBConfigs that support both windows and GLX pixmaps. The default value for
GLX_DRAWABLE_TYPE_SGIX is GLX_WINDOW_BIT_SGIX.

110

Chapter 6: Resource Control Extensions

If an FBConfig supports windows it has an associated X visual. Use the
GLX_X_VISUAL_TYPE_EXT attribute to request a particular type of X visual.

Note that RGBA rendering may be supported for any of the six visual types, but color
index rendering can be supported only for PseudoColor, StaticColor, GrayScale, and
StaticGray visuals (that is, single-channel visuals). The GLX_X_VISUAL_TYPE_EXT
attribute is ignored if GLX_DRAWABLE_TYPE_SGIX is specified in attrib_list and the
mask that follows doesn’t have GLX_WINDOW_BIT_SGIX set.

GLX_X_RENDERABLE_SGIX is a Boolean indicating whether X can be used to render
into a drawable created with the FBConfig. This attribute is always true if the FBConfig
supports windows and/or GLX pixmaps.

Retrieving FBConfig Attribute Values

To get the value of a GLX attribute for an FBConfig, call

int glXGetFBConfigAttribSGIX(Display *dpy, GLXFBConfigSGIX config,
 int attribute, int *value)

If glXGetFBConfigAttribSGIX() succeeds, it returns Success, and the value for the
specified attribute is returned in value; otherwise it returns an error.

Note: An FBConfig has an associated X visual if and only if the
GLX_DRAWABLE_TYPE_SGIX value has the GLX_WINDOW_BIT_SGIX bit set.

To retrieve the associated visual, call

XVisualInfo *glXGetVisualFromFBConfigSGIX(Display *dpy,
GLXFBConfigSGIX config)

If config is a valid FBConfig and it has an associated X visual, then information describing
that visual is returned; otherwise NULL is returned. Use XFree() to free the returned
data.

It is also possible to get an FBConfig, given visual information:

GLXFBConfigSGIX glXGetFBConfigFromVisualSGIX(Display *dpy, XVisualInfo *vis)

If the visual is valid and supports OpenGL rendering (that is, if the GLX visual attribute
GLX_USE_GL is GL_TRUE) then the associated FBConfig is returned; otherwise NULL
is returned.

SGIX_fbconfig—The Framebuffer Configuration Extension

111

To create a GLX rendering context or a GLX pixmap using an FBConfig, call
glXCreateContextWithConfigSGIX() or glXCreateGLXPixmapWithConfigSGIX(),
which have the following prototypes:

GLXContext glXCreateContextWithConfigSGIX(Display *dpy,
GLXFBConfigSGIX config,
int render_type,
GLXContext share_list,
Bool direct)

GLXPixmap glXCreateGLXPixmapWithConfigSGIX(Display *dpy,
GLXFBConfigSGIX config,
Pixmap pixmap)

The functions are similar to glXCreateContext() and glXCreateGLXPixmap(). See the
glXCreateContextWithConfigSGIX and glXCreateGLXPixmapWithConfigSGIX
reference pages for detailed information.

How an FBConfig Is Selected

If more than one FBConfig matches the specification, they are prioritized as follows
(Table 6-7 summarizes this information):

• Preference is given to FBConfigs with the largest GLX_RED_SIZE,
GLX_GREEN_SIZE, and GLX_BLUE_SIZE.

• If the requested GLX_ALPHA_SIZE is zero, preference is given to FBConfigs that
have GLX_ALPHA_SIZE set to zero; otherwise preference is given to FBConfigs
that have the largest GLX_ALPHA_SIZE value.

• If the requested number of GLX_AUX_BUFFERS is zero, preference is given to
FBConfigs that have GLX_AUX_BUFFERS set to zero; otherwise preference is given
to FBConfigs that have the smallest GLX_AUX_BUFFERS value.

• If the requested size of a particular ancillary buffer is zero (for example,
GLX_DEPTH_BUFFER is zero), preference is given to FBConfigs that also have that
size set to zero; otherwise preference is given to FBConfigs that have the largest size.

• If the requested value of either GLX_SAMPLE_BUFFERS_SGIS or
GLX_SAMPLES_SGIS is zero, preference is given to FBConfigs that also have these
attributes set to zero; otherwise preference is given to FBConfigs that have the
smallest size.

• If GLX_X_VISUAL_TYPE_EXT is not specified but there is an X visual associated
with the FBConfig, the visual type is used to prioritize the FBConfig.

112

Chapter 6: Resource Control Extensions

• If GLX_RENDER_TYPE_SGIX has GLX_RGBA_BIT_SGIX set, the visual types are
prioritized as follows: TrueColor, DirectColor, PseudoColor, StaticColor, GrayScale,
and StaticGray.

• If only the GLX_COLOR_INDEX_SGIX is set in GLX_RENDER_TYPE_SGIX, visual
types are prioritized as PseudoColor, StaticColor, GrayScale, and StaticGray.

• If GLX_VISUAL_CAVEAT_EXT is set, the implementation for the particular system
on which you run determines which visuals are returned. See “EXT_visual_rating—
The Visual Rating Extension” on page 94 for more information.

New Functions

glXGetFBConfigAttribSGIX, glXChooseFBConfigSGIX,
glXCreateGLXPixmapWithConfigSGIX, glXCreateContextWithConfigSGIX,
glXGetVisualFromFBConfigSGIX, glXGetFBConfigFromVisualSGIX.

SGIX_pbuffer—The Pixel Buffer Extension

You can use the pixel buffer extension, SGIX_pbuffer, to define a pixel buffer
(GLXPbuffer or pbuffer for short).

Note: This extension is an SGIX (experimental) extension. The interface or other aspects
of the extension may change.

About GLXPbuffers

A GLXPbuffer is an additional non-visible rendering buffer for an OpenGL renderer. It
has the following distinguishing characteristics:

• Support hardware-accelerated rendering. Pbuffers support hardware-accelerated
rendering in an off-screen buffer, unlike pixmaps, which typically do not allow
accelerated rendering.

• Window independent. Pbuffers differ from auxiliary buffers (aux buffers) because
they are not related to any displayable window, so a pbuffer may not be the same
size as the application’s window, while an aux buffer must be the same size as its
associated window.

SGIX_pbuffer—The Pixel Buffer Extension

113

PBuffers and Pixmaps

A pbuffer is equivalent to a GLXPixmap, with the following exceptions:

• There is no associated X pixmap. Also, since pbuffers are a GLX resource, it may not
be possible to render to them using X or an X extension other than GLX.

• The format of the color buffers and the type and size of associated ancillary buffers
for a pbuffer can be described only with an FBConfig; an X visual cannot be used.

• It is possible to create a pbuffer whose contents may be arbitrarily and
asynchronously lost at any time.

• A pbuffer works with both direct and indirect rendering contexts.

A pbuffer is allocated in non-visible framebuffer memory, that is, areas for which
hardware-accelerated rendering is possible. Applications include additional color
buffers for rendering or image processing algorithms.

Volatile and Preserved Pbuffers

Pbuffers can be either “volatile,” that is, their contents can be destroyed by another
window or pbuffer, or “preserved,” that is, their contents are guaranteed to be correct
and are swapped out to virtual memory when other windows need to share the same
framebuffer space. The contents of a preserved pbuffer are swapped back in when the
pbuffer is needed. The swapping operation incurs a performance penalty, so preserved
pbuffers should be used only if re-rendering the contents is not feasible.

A pbuffer is intended to be a “static” resource: a program typically allocates it only once,
rather than as a part of its rendering loop. The framebuffer resources that are associated
with a GLXPbuffer are also static. They are deallocated only when the GLXPbuffer is
destroyed, or, in the case of volatile pbuffers, as the result of X server activity that changes
framebuffer requirements of the server.

114

Chapter 6: Resource Control Extensions

Creating a PBuffer

To create a GLXPbuffer, call glXCreateGLXPbufferSGIX():

GLXPbufferSGIX glXCreateGLXPbufferSGIX(Display *dpy, GLXFBConfigSGIX config,
 unsigned int *width, unsigned int *height, int attrib_list)

This call creates a single GLXPbuffer and returns its XID.

• width and height specify the pixel width and height of the rectangular GLXPbuffer.

• attrib_list specifies a list of attributes for the GLXPbuffer. (Note that the attribute list
is defined in the same way as the list for glXChooseFBConfigSGIX(): attributes are
immediately followed by the corresponding desired value and the list is terminated
with None.)

Currently only two attributes can be specified in attrib_list:
GLX_CONTENTS_PRESERVED_SGIX and GLX_GET_LARGEST_PBUFFER_SGIX.

– Use GLX_GET_LARGEST_PBUFFER_SGIX to get the largest available
GLXPbuffer when the allocation of the pbuffer would otherwise fail. The width
and height of the pbuffer (if one was allocated) are returned in width and height.
Note that these values can never exceed the width and height that were initially
specified. By default, GLX_GET_LARGEST_PBUFFER_SGIX is False.

– If the GLX_CONTENTS_PRESERVED_SGIX attribute is set to False in
attrib_list, a “volatile” GLXPbuffer is created and the contents of the pbuffer
may be lost at any time. If this attribute is not specified, or if it is specified as
True in attrib_list, the contents of the pbuffer are preserved, most likely by
swapping out portions of the buffer to main memory when a resource conflict
occurs. In either case, the client can register to receive a “buffer clobber” event
and be notified when the pbuffer contents have been swapped out or have been
damaged.

The resulting GLXPbuffer contains color buffers and ancillary buffers as specified by
config. It is possible to create a pbuffer with back buffers and to swap the front and back
buffers by calling glXSwapBuffers(). Note that a pbuffer uses framebuffer resources, so
applications should deallocate it when not in use, for example, when the application
windows are iconified.

If glXCreateGLXPbufferSGIX() fails to create a GLXPbuffer due to insufficient
resources, a BadAlloc X protocol error is generated and NULL is returned. If config is not
a valid FBConfig then a GLXBadFBConfigSGIX error is generated; if config doesn’t
support pbuffers, a BadMatch X protocol error is generated.

SGIX_pbuffer—The Pixel Buffer Extension

115

Rendering to a GLXPbuffer

Any GLX rendering context created with an FBConfig or X visual that is compatible with
an FBConfig may be used to render into the pbuffer. For the definition of “compatible,”
see the reference pages for glXCreateContextWithConfigSGIX, glXMakeCurrent, and
glXMakeCurrentReadSGI.

If a GLXPbuffer is created with GLX_CONTENTS_PRESERVED_SGIX set to false, the
storage for the buffer contents—or a portion of the buffer contents—may be lost at any
time. It is not an error to render to a GLXPbuffer that is in this state, but the effect of
rendering to it is undefined. It is also not an error to query the pixel contents of such a
GLXPbuffer, but the values of the returned pixels are undefined.

Because the contents of a volatile GLXPbuffer can be lost at any time with only
asynchronous notification (via the “buffer clobber” event), the only way a client can
guarantee that valid pixels are read back with glReadPixels() is by grabbing the X server.
(Note that this operation is potentially expensive and you should not do it frequently.
Also, because grabbing the X server locks out other X clients, you should do it only for
short periods of time.) Clients that don’t wish to grab the X server can check whether the
data returned by glReadPixels() is valid by calling XSync() and then checking the event
queue for “buffer clobber” events (assuming that any previous clobber events were
pulled off of the queue before the glReadPixels() call).

To destroy a GLXPbuffer call glXDestroyGLXPbufferSGIX():

void glXDestroyGLXPbufferSGIX(Display *dpy, GLXPbufferSGIX pbuf)

To query an attribute associated with a GLXPbuffer, call glXQueryGLXPbufferSGIX():

void glXQueryGLXPbufferSGIX(Display *dpy, GLXPbufferSGIX pbuf, int attribute
 unsigned int *value)

To get the FBConfig for a GLXPbuffer, first retrieve the ID for the FBConfig and then call
glXChooseFBConfigSGIX(). See “SGIX_fbconfig—The Framebuffer Configuration
Extension” on page 104.

116

Chapter 6: Resource Control Extensions

Directing the Buffer Clobber Event

An X client can ask to receive GLX events on a window or GLXPbuffer by calling
glXSelectEventSGIX():

void glXSelectEventSGIX(Display *dpy, GLXDrawable drawable,
 unsigned long mask)

Currently you can only select the GLX_BUFFER_CLOBBER_BIT_SGIX GLX event as the
mask. The event structure is

typdef struct {
 int event_type; /* GLX_DAMAGED_SGIX or GLX_SAVED_SGIX */
 int draw_type; /* GLX_WINDOW_SGIX or GLX_PBUFFER_SGIX */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if it came for SendEvent request */
 Display *display; /* display the event was read from */
 GLXDrawable drawable; /* i.d. of Drawable */
 unsigned int mask; /* mask indicating which buffers are affected*/
 int x, y;
 int width, height;
 int count; /* if nonzero, at least this many more */
} GLXBufferRestoreEvent;

A single X server operation can cause several buffer clobber events to be sent, for
example, a single GLXPbuffer may be damaged and cause multiple buffer clobber events
to be generated. Each event specifies one region of the GLXDrawable that was affected
by the X server operation.

Events are sent to the application and queried using the normal X even commands
(XNextEvent(), XPending(), and so on). The mask value returned in the event structure
indicates which color and ancillary buffers were affected. The following values can be set
in the event structure:

GLX_FRONT_LEFT_BUFFER_BIT_SGIX
GLX_FRONT_RIGHT_BUFFER_BIT_SGIX
GLX_BACK_LEFT_BUFFER_BIT_SGIX
GLX_BACK_RIGHT_BUFFER_BIT_SGIX
GLX_AUX_BUFFERS_BIT_SGIX
GLX_DEPTH_BUFFER_BIT_SGIX
GLX_STENCIL_BUFFER_BIT_SGIX
GLX_ACCUM_BUFFER_BIT_SGIX
GLX_SAMPLE_BUFFERS_BIT_SGIX

SGIX_pbuffer—The Pixel Buffer Extension

117

All the buffer clobber events generated by a single X server action are guaranteed to be
contiguous in the event queue. The conditions under which this event is generated and
the event type vary, depending on the type of the GLXDrawable:

• For a preserved GLXPbuffer, a buffer clobber event, with type GLX_SAVED_SGIX,
is generated whenever the contents of the GLXPbuffer are swapped out to host
memory. The event(s) describes which portions of the GLXPbuffer were affected.
Clients who receive many buffer clobber events, referring to different save actions,
should consider freeing the GLXPbuffer resource to prevent the system from
thrashing due to insufficient resources.

• For a volatile GLXPbuffer, a buffer clobber event with type GLX_DAMAGED_SGIX
is generated whenever a portion of the GLXPbuffer becomes invalid. The client may
wish to regenerate the invalid portions of the GLXPbuffer.

Calling glXSelectEventSGIX() overrides any previous event mask that was set by the
client for the drawable. Note that it doesn’t affect the event masks that other clients may
have specified for a drawable, because each client rendering to a drawable has a separate
event mask for it.

To find out which GLX events are selected for a window or GLXPbuffer, call
glXGetSelectedEventSGIX():

void glXSelectEventSGIX(Display *dpy, GLXDrawable drawable,
unsigned long mask)

New Functions

glXCreateGLXPbufferSGIX, glXDestroyGLXPbufferSGIX,
glXGetGLXPbufferStatusSGIX, glXGetGLXPbufferConfigSGIX,
glXGetLargestGLXPbufferSGIX.

119

Chapter 7

7.Texturing Extensions

This chapter explains how to use the different OpenGL texturing extensions. The
extensions are discussed in alphabetical order, by extension name:

• “EXT_texture3D—The 3D Texture Extension” on page 120

• “SGI_texture_color_table—The Texture Color Table Extension” on page 126

• “SGIS_detail_texture—The Detail Texture Extension” on page 129

• “SGIS_filter4_parameters—The Filter4 Parameters Extension” on page 136

• “SGIS_sharpen_texture—The Sharpen Texture Extension” on page 139

• “SGIS_texture4D—The 4D Texture Extension” on page 144

• “SGIS_texture_edge/border_clamp—Texture Clamp Extensions” on page 144

• “SGIS_texture_filter4—The Texture Filter4 Extensions” on page 146

• “SGIS_texture_lod—The Texture LOD Extension” on page 148

• “SGIS_texture_select—The Texture Select Extension” on page 150

The following sections describe extensions that are experimental:

• “SGIX_clipmap—The Clipmap Extension” on page 152

• “SGIX_texture_add_env—The Texture Environment Add Extension” on page 163

• “SGIX_texture_lod_bias—The Texture LOD Bias Extension” on page 164

• “SGIX_texture_scale_bias—The Texture Scale Bias Extension” on page 169

• “SGIX_texture_multi_buffer—The Texture Multibuffer Extension” on page 170

120

Chapter 7: Texturing Extensions

EXT_texture3D—The 3D Texture Extension

The 3D texture extension, EXT_texture3D, defines 3-dimensional texture mapping and
in-memory formats for 3D images, and adds pixel storage modes to support them.

3D textures can be thought of as an array of 2D textures, as illustrated in Figure 7-1.

Figure 7-1 3D Texture

A 3D texture is mapped into (s,t,r) coordinates such that its lower left back corner is
(0,0,0) and its upper right front corner is (1,1,1).

Why Use the 3D Texture Extension?

3D textures are useful for

• volume rendering and examining a 3D volume one slice at a time

• animating textured geometry, for example, people that move

• solid texturing, for example, wood, marble and so on

• eliminating distortion effects that occur when you try to map a 2D image onto 3D
geometry

Texel values defined in a 3D coordinate system form a texture volume. You can extract
textures from this volume by intersecting it with a plane oriented in 3D space, as shown
in Figure 7-2.

0,0,1

0,1,1

1,0,1

1,1,1

0,0,0

0,1,0

1,0,0

1,1,0

S

T

R

EXT_texture3D—The 3D Texture Extension

121

Figure 7-2 Extracting a Planar Texture From a 3D Texture Volume

The resulting texture, applied to a polygon, is the intersection of the volume and the
plane. The orientation of the plane is determined from the texture coordinates of the
vertices of the polygon.

Using 3D Textures

To create a 3D texture, use glTexImage3DEXT(), which has the following prototype:

void glTexImage3DEXT(GLenum target,
 GLint level,
 GLenum internalformat,
 GLsizei width,
 GLsizei height,
 GLsizei depth,
 GLint border,
 GLenum format,
 GLenum type,
 const GLvoid *pixels)

The function is defined like glTexImage2D() but has a depth argument that specifies how
many “slices” the texture consists of.

122

Chapter 7: Texturing Extensions

The extension provides the following additional features:

• Pixel storage modes. The extension extends the pixel storage modes by adding
eight new state variables:

– GL_(UN)PACK_IMAGE_HEIGHT_EXT defines the height of the image the
texture is read from, analogous to the GL_(UN)PACK_LENGTH variable for
image width.

– GL_(UN)PACK_SKIP_IMAGES_EXT determines an initial skip analogous to
GL_(UN)PACK_SKIP_PIXELS and GL_(UN)PACK_SKIP_ROWS.

All four modes default to zero.

• Texture wrap modes. The functions glTexParameter*(), accept the additional token
value GL_TEXTURE_WRAP_R_EXT.

GL_TEXTURE_WRAP_R_EXT affects the R coordinate in the same way that
GL_TEXTURE_WRAP_S affects the S coordinate and GL_TEXTURE_WRAP_T
affects the T coordinate. The default value is GL_REPEAT.

• Mipmapping. Mipmapping for two-dimensional textures is discussed in the section
“Multiple Levels of Detail,” on page 338 of the OpenGL Programming Guide.
Mipmapping for 3D textures works the same way: A 3D mipmap is an ordered set
of volumes representing the same image; each volume has a resolution lower than
the previous one.

The filtering options GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, and GL_LINEAR_MIPMAP_NEAREST, apply
to subvolumes instead of subareas. GL_LINEAR_MIPMAP_LINEAR results in two
trilinear blends in two different volumes, followed by an LOD blend.

• Proxy textures. Use the proxy texture GL_PROXY_TEXTURE_3D_EXT to query an
implementation’s maximum configuration. For more information on proxy
textures, see “Texture Proxy” on page 330 of the OpenGL Programming Guide, Second
Edition.

You can also call glGetIntegerv() with argument
GL_MAX_TEXTURE_SIZE_3D_EXT.

• Querying. Use the following call to query the 3D texture:

glGetTexImage(GL_TEXTURE_3D_EXT, level, format, type, pixels)

• Subvolumes of the 3D texture can be replaced using glTexSubImage3DEXT() and
glCopyTexSubImage3DEXT() (see “Replacing All or Part of a Texture Image,” on
pages 332 - 335 of the OpenGL Programming Guide, Second Edition).

EXT_texture3D—The 3D Texture Extension

123

3D Texture Example Program

The code fragment presented in this section illustrates the use of the extension. The
complete program is included in the example source tree.

Example 7-1 Simple 3D Texturing Program

/*
* Shows a 3D texture by drawing slices through it.
 */
/* compile: cc -o tex3d tex3d.c -lGL -lX11 */

#include <GL/glx.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };

unsigned int tex[64][64][64];

/* generate a simple 3D texture */
static void
make_texture(void) {
 int i, j, k;
 unsigned int *p = &tex[0][0][0];

 for (i=0; i<64; i++) {
 for (j=0; j<64; j++) {
 for (k=0; k<64; k++) {
 if (i < 10 || i > 48 ||
 j < 10 || j > 48 ||
 k < 10 || k > 48) {
 if (i < 2 || i > 62 ||
 j < 2 || j > 62 ||
 k < 2 || k > 62) {
 *p++ = 0x00000000;
 } else {
 *p++ = 0xff80ffff;
 }
 } else {
 *p++ = 0x000000ff;

124

Chapter 7: Texturing Extensions

 }
 }
 }
 }
}

static void
init(void) {
 make_texture();
 glEnable(GL_TEXTURE_3D_EXT);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
 glClearColor(0.2,0.2,0.5,1.0);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glMatrixMode(GL_PROJECTION);
 gluPerspective(60.0, 1.0, 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.,0.,-3.0);
 glMatrixMode(GL_TEXTURE);

 /* Similar to defining a 2D texture, but note the setting of the */
 /* wrap parameter for the R coordinate. Also, for 3D textures */
 /* you probably won't need mipmaps, hence the linear min filter. */
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_R_EXT,
 GL_CLAMP);
 glTexImage3DEXT(GL_TEXTURE_3D_EXT, 0, 4, 64, 64, 64, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, tex);
}

#define NUMSLICES 256

static void
draw_scene(void) {
 int i;
 float r, dr, z, dz;

 glColor4f(1, 1, 1, 1.4/NUMSLICES);
 glClear(GL_COLOR_BUFFER_BIT);

EXT_texture3D—The 3D Texture Extension

125

/* Display the entire 3D texture by drawing a series of quads */
 /* that slice through the texture coordinate space. Note that */
 /* the transformations below are applied to the texture matrix, */
 /* not the modelview matrix. */

 glLoadIdentity();
 /* center the texture coords around the [0,1] cube */
 glTranslatef(.5,.5,.5);
 /* a rotation just to make the picture more interesting */
 glRotatef(45.,1.,1.,.5);

 /* to make sure that the texture coords, after arbitrary */
 /* rotations, still fully contain the [0,1] cube, make them span */
 /* a range sqrt(3)=1.74 wide */
 r = -0.87; dr = 1.74/NUMSLICES;
 z = -1.00; dz = 2.00/NUMSLICES;
 for (i=0; i < NUMSLICES; i++) {
 glBegin(GL_TRIANGLE_STRIP);
 glTexCoord3f(-.87,-.87,r); glVertex3f(-1,-1,z);
 glTexCoord3f(-.87, .87,r); glVertex3f(-1, 1,z);
 glTexCoord3f(.87,-.87,r); glVertex3f(1,-1,z);
 glTexCoord3f(.87, .87,r); glVertex3f(1, 1,z);
 glEnd();
 r += dr;
 z += dz;
 }
}

/* process input and error functions and main(), which handles window
 * setup, go here.
 */

New Functions

glTexImage3DEXT, glTexSubImage3DEXT, glCopyTexImage3DEXT

126

Chapter 7: Texturing Extensions

SGI_texture_color_table—The Texture Color Table Extension

The texture color table extension, SGI_texture_color_table, adds a color lookup table to
the texture mechanism. The table is applied to the filtered result of a texture lookup
before that result is used in the texture environment equations.

Why Use a Texture Color Table?

Here are two example situations in which the texture color table extension is useful:

• Volume rendering. You can store something other than color in the texture (for
example, a physical attribute like bone density) and use the table to map that
density to an RGB color. This is useful if you want to display just that physical
attribute and also if you want to distinguish between that attribute and another (for
example, muscle density). You can selectively replace the table to display different
features. Note that updating the table can be faster than updating the texture. (This
technique is also called “false color imaging” or “segmentation”).

• Representing shades (gamut compression). If you need to display a high
color-resolution image using a texture with low color-component resolution, the
result is often unsatisfactory. A 16-bit texel with 4 bits per component doesn’t offer a
lot of shades for each color, because each color component has to be evenly spaced
between black and the strongest shade of the color. If an image contains several
shades of light blue but no dark blue, for example, the on-screen image cannot
represent that easily because only a limited number of shades of blue, many of them
dark, are available. When using a color table, you can “stretch” the colors.

Using Texture Color Tables

To use a texture color table, define a color table, as described in “SGI_color_table—The
Color Table Extension” on page 221. Use GL_TEXTURE_COLOR_TABLE_SGI as the
value for the target parameter of the various commands, keeping in mind the following
points:

• The table size, specified by the width parameter of glColorTableSGI(), is limited to
powers of two.

• Each implementation supports a at least a maximum size of 256 entries. The actual
maximum size is implementation-dependent; it is much larger on most Silicon
Graphics systems.

SGI_texture_color_table—The Texture Color Table Extension

127

• Use GL_PROXY_TEXTURE_COLOR_TABLE_SGI to find out whether there is
enough room for the texture color table in exactly the manner described in “Texture
Proxy,” on page 330 of the OpenGL Programming Guide.

The following code fragment loads a table that inverts a texture. It uses a
GL_LUMINANCE external format table to make identical R, G, and B mappings.

loadinversetable()
{
 static unsigned char table[256];
 int i;

 for (i = 0; i < 256; i++) {
 table[i] = 255-i;
 }

 glColorTableSGI(GL_TEXTURE_COLOR_TABLE_SGI, GL_RGBA8_EXT,
 256, GL_LUMINANCE, GL_UNSIGNED_BYTE, table);
 glEnable(GL_TEXTURE_COLOR_TABLE_SGI);
}

Texture Color Table and Internal Formats

The contents of a texture color table are used to replace a subset of the components of
each texel group, based on the base internal format of the table. If the table size is zero,
the texture color table is effectively disabled. The texture color table is applied to the
texture components Red (Rt), Green (Gt), Blue (Bt), and Alpha(At) texturing components
according to the following table:

Table 7-1 Modification of Texture Components

Base Table Internal Format Rt Gt Bt At

GL_ALPHA Rt Gt Bt A(At)

GL_LUMINANCE L(Rt) L(Gt) L(Bt) At

GL_LUMINANCE_ALPHA L(Rt) L(Gt) L(Bt) A(At)

GL_INTENSITY I(Rt) I(Gt) I(Bt) I(At)

GL_RGB R(Rt) G(Gt) B(Bt) At

GL_RGBA R(Rt) G(Gt) B(Bt) A(At)

128

Chapter 7: Texturing Extensions

Using Texture Color Table On Different Platforms

The texture color table extension is currently implemented on RealityEngine,
RealityEngine2, VTX, InfiniteReality, High IMPACT, and Maximum IMPACT systems.
For a detailed discussion of machine-dependent issues, see the
glColorTableParameterSGI reference page. This section summarizes the most noticeable
restrictions.

Texture Color Table on Indigo2 IMPACT Systems

On Indigo2 IMPACT systems, certain combinations of texture internal format and
texture color table internal format do not work, as shown in the following table:

Texture Color Table on InfiniteReality Systems

InfiniteReality systems reserve an area of 4K 12-bit entries for texture color tables.
Applications can use four 1KB tables, two 2KB tables, or one 4KB table. Not all
combinations of texture and texture color tables are legal. InfiniteReality systems support
the following combinations:

Table 7-2 Unsupported Combinations on Indigo2 IMPACT

TCT Texture

GL_RGB GL_LUMINANCE or GL_LUMINANCE_ALPHA

GL_RGBA All formats

GL_INTENSITY All formats

Table 7-3 Supported Combinations on InfiniteReality

TCT size TCT Format Texture

>=1024 Any Any

2048 L, I, LA L, I, LA

4096 I, L I, L

SGIS_detail_texture—The Detail Texture Extension

129

SGIS_detail_texture—The Detail Texture Extension

This section discusses the detail texture extension, SGIS_detail_texture, which like the
sharpen texture extension (see “SGIS_sharpen_texture—The Sharpen Texture
Extension” on page 139) is useful in situations where you want to maintain good image
quality when a texture is magnified for close-up views.

Ideally, programs should always use textures that have high enough resolution to allow
magnification without blurring. High-resolution textures maintain realistic image
quality for both close-up and distant views. For example, in a high-resolution road
texture, the large features—such as potholes, oil stains, and lane markers that are visible
from a distance—as well as the asphalt of the road surface look realistic no matter where
the viewpoint is.

Unfortunately, a high-resolution road texture with that much detail may be as large as
2K x 2K, which may exceed the texture storage capacity of the system. Making the image
close to or equal to the maximum allowable size still leaves little or no memory for the
other textures in the scene.

The detail texture extension provides a solution for representing a 2K x 2K road texture
with smaller textures. Detail texture works best for a texture with high-frequency
information that is not strongly correlated to its low-frequency information. This occurs
in images that have a uniform color and texture variation throughout, such as a field of
grass or a wood panel with a uniform grain. If high-frequency information in your
texture is used to represent edge information (for example, a stop sign or the outline of a
tree) consider the sharpen texture extension (see “SGIS_sharpen_texture—The Sharpen
Texture Extension” on page 139).

Using the Detail Texture Extension

Because the high-frequency detail in a texture (for example, a road) is often
approximately the same across the entire texture, the detail from an arbitrary portion of
the texture image can be used as the detail across the entire image.

When you use the detail texture extension, the high-resolution texture image is
represented by the combination of a low-resolution texture image and a small
high-frequency detail texture image (the detail texture). OpenGL combines these two
images during rasterization to create an approximation of the high-resolution image.

130

Chapter 7: Texturing Extensions

This section first explains how to create the detail texture and the low-resolution texture
that are used by the extension, then briefly looks at how detail texture works and how to
customize the LOD interpolation function, which controls how OpenGL combines the
two textures.

Creating a Detail Texture and a Low-Resolution Texture

This section explains how to convert a high-resolution texture image into a detail texture
and a low-resolution texture image. For example, for a 2K x 2K road texture, you may
want to use a 512 x 512 low-resolution base texture and a 256 x 256 detail texture. Follow
these steps to create the textures:

1. Make the low-resolution image using izoom or another resampling program by
shrinking the high-resolution image by 2n.

In this example, n is 2, so the resolution of the low-resolution image is 512 x 512.
This band-limited image has the two highest-frequency bands of the original image
removed from it.

2. Create the subimage for the detail texture using subimage or another tool to select a
256 x 256 region of the original high-resolution image, whose n highest-frequency
bands are characteristic of the image as a whole. (For example, rather than choosing
a subimage from the lane markings or a road, choose an area in the middle of a
lane.)

3. Optionally, make this image self-repeating along its edges to eliminate seams.

4. Create a blurry version of the 256 × 256 subimage as follows:

■ First shrink the 256 × 256 subimage by 2n, to 64 × 64.

■ Then scale the resulting image back up to 256 × 256.

The image is blurry because it is missing the two highest-frequency bands present
in the two highest levels of detail.

5. Subtract the blurry subimage from the original subimage. This difference image—
the detail texture—has only the two highest frequency bands.

SGIS_detail_texture—The Detail Texture Extension

131

6. Define the low-resolution texture (the base texture created in Step 1) with the
GL_TEXTURE_2D target and the detail texture (created in Step 5) with the
GL_DETAIL_TEXTURE_2D_SGIS target.

In the road example, you would use

GLvoid *detailtex, *basetex;
glTexImage2D(GL_DETAIL_TEXTURE_2D_SGIS, 0, 4, 256, 256, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, detailtex);
glTexImage2D(GL_TEXTURE_2D, 0, 4, 512, 512, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, basetex);

The internal format of the detail texture and the base texture must match exactly.

7. Set the GL_DETAIL_TEXTURE_LEVEL_SGIS parameter to specify the level at
which the detail texture resides. In the road example, the detail texture is level -2
(because the original 2048 x 2048 texture is two levels below the 512 x 512 base
texture):

glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SGIS, -2);

Because the actual detail texture supplied to OpenGL is 256 x 256, OpenGL
replicates the detail texture as necessary to fill a 2048 x 2048 texture. In this case, the
detail texture repeats eight times in S and in T.

Note that the detail texture level is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGIS.

8. Set the magnification filter to specify whether the detail texture is applied to the
alpha or color component, or both. Use one of the filters in Table 7-4. For example,
to apply the detail texture to both alpha and color components, use

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_DETAIL_SGIS);

Note that the magnification filter is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGIS.

Table 7-4 Magnification Filters for Detail Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue

GL_LINEAR_DETAIL_SGIS Detail Detail

GL_LINEAR_DETAIL_COLOR_SGIS Bilinear Detail

GL_LINEAR_DETAIL_ALPHA_SGIS Detail Bilinear

132

Chapter 7: Texturing Extensions

Detail Texture Computation

For each pixel that OpenGL textures, it computes an LOD-based factor that represents
the amount by which the base texture (that is, level 0) is scaled. LOD n represents a
scaling of 2-n. Negative values of LOD correspond to magnification of the base texture.

To produce a detailed textured pixel at level of detail n, OpenGL uses one of the two
formulas shown in Table 7-5, depending on the detail texture mode.

The variables in the formulas are defined as follows:

n level of detail

weight(n) detail function

LOD0 base texture value

DET detail texture value

For example, to specify GL_ADD as the detail mode, use

glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_MODE_SGIS, GL_ADD);

Note that the detail texture level is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGIS.

Customizing the Detail Function

In the road example, the 512 x 512 base texture is LOD 0. The detail texture combined
with the base texture represents LOD -2, which is called the maximum-detail texture.

By default, OpenGL performs linear interpolation between LOD 0 and LOD -2 when a
pixel’s LOD is between 0 and -2. Linear interpolation between more than one LOD can
result in aliasing. To minimize aliasing between the known LODs, OpenGL lets you
specify a nonlinear LOD interpolation function.

Table 7-5 How Detail Texture Is Computed

GL_DETAIL_TEXTURE_MODE_SGIS Formula

GL_ADD LODn = LOD0 + weight(n) ∗ DET

GL_MODULATE LODn = LOD0 + weight(n) * DET * LOD0

SGIS_detail_texture—The Detail Texture Extension

133

Figure 7-3 shows the default linear interpolation curve and a nonlinear interpolation
curve that minimizes aliasing when interpolating between two LODs.

Figure 7-3 LOD Interpolation Curves

The basic strategy is to use very little of the detail texture until the LOD is within one
LOD of the maximum-detail texture. More of the information from the detail texture can
be used as the LOD approaches LOD -2. At LOD -2, the full amount of detail is used, and
the resultant texture exactly matches the high-resolution texture.

Use glDetailTexFuncSGIS() to specify control points for shaping the LOD interpolation
function. Each control point contains a pair of values; the first value specifies the LOD,
and the second value specifies the weight for that magnification level. Note that the LOD
values are negative.

The following control points can be used to create a nonlinear interpolation function (as
shown above in Figure 7-3):

GLfloat points[] = {
 0.0, 0.0,
 -1.0, 0.3,
 -2.0, 1.0,
 -3.0, 1.1
};
glDetailTexFuncSGIS(GL_TEXTURE_2D, 4, points);

n
0

0 -1 -2 -3 -4

1

LOD

Weight Values of
TX_CONTROL_POINTs

(-1, .3) (-3, 1.1)

Default LOD interpolation Custom LOD interpolation

(-2, 1)

n
0

0 -1 -2 -3 -4

1

LOD

Weight

134

Chapter 7: Texturing Extensions

Note that how these control points determine a function is system dependent. For
example, your system may choose to create a piecewise linear function, a piecewise
quadratic function, or a cubic function. However, regardless of which kind of function is
chosen, the function passes through the control points.

Using Detail Texture and Texture Object

If you are using texture objects, the base texture and the detail texture are separate texture
objects. You can bind any base texture object to GL_TEXTURE_2D and any detail texture
object to GL_DETAIL_TEXTURE_2D_SGIS. (You cannot bind a detail texture object to
GL_TEXTURE_2D.)

Each base texture object contains its own detail mode, magnification filter, and LOD
interpolation function. Setting these parameters therefore affects only the texture object
that is currently bound to GL_TEXTURE_2D. (If you set these parameters on the detail
texture object, they are ignored.)

Detail Texture Example Program

Example 7-2 is a code fragment taken from a simple detail texture example program. The
complete example is included in the source tree as detail.c. It is also available through the
developer toolbox under the same name. For information on toolbox access, see
http://www.sgi.com/Technology/toolbox.html.

Example 7-2 Detail Texture Example

unsigned int tex[128][128];
unsigned int detailtex[256][256];

static void
make_textures(void) {
 int i, j;
 unsigned int *p;

 /* base texture is solid gray */
 p = &tex[0][0];
 for (i=0; i<128*128; i++) *p++ = 0x808080ff;

 /* detail texture is a yellow grid over a gray background */
 /* this artificial detail texture is just a simple example */
 /* you should derive a real detail texture from the original */
 /* image as explained in the text. */

SGIS_detail_texture—The Detail Texture Extension

135

 p = &detailtex[0][0];
 for (i=0; i<256; i++) {
 for (j=0; j<256; j++) {
 if (i%8 == 0 || j%8 == 0) {
 *p++ = 0xffff00ff;
 } else {
 *p++ = 0x808080ff;
 }
 }
 }
}

static void
init(void) {
 make_textures();

 glEnable(GL_TEXTURE_2D);
 glMatrixMode(GL_PROJECTION);
 gluPerspective(90.0, 1.0, 0.3, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.,0.,-1.5);

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

 /* NOTE: parameters are applied to base texture, not the detail */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_DETAIL_SGIS);
 glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SGIS, -1);
 glTexImage2D(GL_TEXTURE_2D,
 0, 4, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, tex);
 glTexImage2D(GL_DETAIL_TEXTURE_2D_SGIS,
 0, 4, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 detailtex);
}

static void
draw_scene(void) {
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_STRIP);
 glTexCoord2f(0, 0); glVertex3f(-1,-0.4, 1);
 glTexCoord2f(0, 1); glVertex3f(-1,-0.4,-1);
 glTexCoord2f(1, 0); glVertex3f(1,-0.4, 1);

136

Chapter 7: Texturing Extensions

 glTexCoord2f(1, 1); glVertex3f(1,-0.4,-1);
 glEnd();
 glFlush();
}

New Functions

glDetailTexFuncSGIS, glGetDetailTexFuncSGIS

SGIS_filter4_parameters—The Filter4 Parameters Extension

The filter4 parameters extension, SGIS_filter4_parameters, provides a convenience
function that facilitates generation of values needed by the Texture Filter4 extension (see
“SGIS_texture_filter4—The Texture Filter4 Extensions” on page 146).

Note: This extension is part of GLU.

Applications can derive 4 x 4 and 4 x 4 x 4 interpolation coefficients by calculating the
cross product of coefficients in 2D or 3D, using the two-pixel-wide span of filter function.

The coefficients are computed in one of two ways:

• Using the Mitchell-Netravali scheme. In that case, many of the desired
characteristics of other 4x1 interpolation schemes can be accomplished by setting B
and C in their piecewise cubic formula. Notably, the blurriness or sharpness of
the resulting image can be adjusted with B and C. See Mitchell, Don. and
Netravali, Arun, “Reconstruction Filters for Computer Graphics,” SIGGRAPH '88,
pp. 221-228.

• Using Lagrange interpolation. In that case, four piecewise cubic polynomials (two
redundant ones) are used to produce coefficients resulting in images at a high
sharpness level. See Dahlquist and Bjorck, “Numerical Methods”, Prentice-Hall,
1974, pp 284-285.

To choose one of the two schemas, set the filtertype parameter of gluTexFilterFuncSGI()
to GLU_LAGRANGIAN_SGI or GLU_MITCHELL_NETRAVALI_SGI.

SGIS_filter4_parameters—The Filter4 Parameters Extension

137

Using the Filter4 Parameters Extension

Applications use the Filter4 Parameter extension in conjunction with the Texture Filter4
extension to generate coefficients that are then used as the weights parameter of
glTexFilterFuncSGIS().

To generate the coefficients, call gluTexFilterFuncSGI() with the following argument
values:

• target set to GL_TEXTURE_1D or GL_TEXTURE_2D

• filterype set to GLU_LAGRANGIAN_SGI or GLU_MITCHELL_NETRAVALI_SGI

• params set to the value appropriate for the chosen filtertype:

– If filtertype is GLU_LAGRANGIAN_SGI, parms must be NULL.

– If filtertype is GLU_MITCHELL_NETRAVALI_SGI, parms may point to a vector
of two floats containing B and C control values or parms may be NULL in which
case both B and C default to 0.5.

• n set to a power of two plus one and must be less than or equal to 1025.

• weights pointing an array of n floating-point values generated by the function. It
must point to n values of type GL_FLOAT worth of memory.

Note that gluTexFilterFuncSGI() and glTexFilterFuncSGI() only customize filter4
filtering behavior; texture filter4 functionality needs to be enabled by calling
glTexParameter*() with pname set to TEXTURE_MIN_FILTER or
TEXTURE_MAG_FILTER, and params set to GL_FILTER4_SGIS. See “Using the Texture
Filter4 Extension” on page 146 for more information.

138

Chapter 7: Texturing Extensions

SGIS_point_line_texgen—The Point or Line Texture Generation Extension

The point or line texgen extension, SGIS_point_line_texgen, adds two texture coordinate
generation modes, which both generate a texture coordinate based on the minimum
distance from a vertex to a specified line.

The section “Automatic Texture-Coordinate Generation” in Chapter 9, “Texture
Mapping” of the OpenGL Programming Guide, Second Edition, discusses how applications
can use glTexGen() to have OpenGL automatically generate texture coordinates.

This extension adds two modes to the existing three. The two new modes are different
from the other three. To use them, the application uses one of the newly defined constants
for the pname parameter and another, matching one for the param (or params) parameter.
For example:

glTexGeni(GL_S, GL_EYE_POINT_SGIS, EYE_DISTANCE_TO_POINT_SGIS)

Why Use Point or Line Texture Generation

The extension is useful for certain volumetric rendering effects. For example,
applications could compute fogging based on distance from an eyepoint.

SGIS_sharpen_texture—The Sharpen Texture Extension

139

SGIS_sharpen_texture—The Sharpen Texture Extension

This section discusses the sharpen texture extension, SGIS_sharpen_texture. This
extension and the detail texture extension (see “SGIS_detail_texture—The Detail Texture
Extension” on page 129) are useful in situations where you want to maintain good image
quality when a texture must be magnified for close-up views.

When a textured surface is viewed close up, the magnification of the texture can cause
blurring. One way to reduce blurring is to use a higher-resolution texture for the close-up
view, at the cost of extra storage. The sharpen texture extension offers a way to keep the
image crisp without increasing texture storage requirements.

Sharpen texture works best when the high-frequency information in the texture image
comes from sharp edges, for example:

• In a stop sign, the edges of the letters have distinct outlines, and bilinear
magnification normally causes the letters to blur. Sharpen texture keeps the edges
crisp.

• In a tree texture, the alpha values are high inside the outline of the tree and low
outside the outline (where the background shows through). Bilinear magnification
normally causes the outline of the tree to blur. Sharpen texture, applied to the alpha
component, keeps the outline crisp.

Sharpen texture works by extrapolating from mipmap levels 1 and 0 to create a
magnified image that has sharper features than either level.

About the Sharpen Texture Extension

This section first explains how to use the sharpen texture extension to sharpen the
component of your choice. It then gives some background information about how the
extension works and explains how you can customize the LOD extrapolation function.

140

Chapter 7: Texturing Extensions

How to Use the Sharpen Texture Extension

You can use the extension to sharpen the alpha component, the color components, or
both, depending on the magnification filter. To specify sharpening, use one of the
magnification filters in Table 7-6.

For example, suppose that a texture contains a picture of a tree in the color components,
and the opacity in the alpha component. To sharpen the outline of the tree, use

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_SHARPEN_ALPHA_SGIS);

How Sharpen Texture Works

When OpenGL applies a texture to a pixel, it computes a level of detail (LOD) factor that
represents the amount by which the base texture (that is, level 0) must be scaled. LOD n
represents a scaling of 2-n. For example, if OpenGL needs to magnify the base texture by
a factor of 4 in both S and T, the LOD is -2. Note that magnification corresponds to
negative values of LOD.

To produce a sharpened texel at level-of-detail n, OpenGL adds the weighted difference
between the texel at LOD 0 and LOD 1 to LOD 0; that is:

LODn = LOD0 + weight(n) * (LOD0 - LOD1)

The variables are defined as follows:

n Level-of-detail

weight(n) LOD extrapolation function

LOD0 Base texture value

LOD1 Texture value at mipmap level 1

Table 7-6 Magnification Filters for Sharpen Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue

GL_LINEAR_SHARPEN_SGIS sharpen sharpen

GL_LINEAR_SHARPEN_COLOR_SGIS bilinear sharpen

GL_LINEAR_SHARPEN_ALPHA_SGIS sharpen bilinear

SGIS_sharpen_texture—The Sharpen Texture Extension

141

By default, OpenGL uses a linear extrapolation function, where weight(n) = -n/4. You
can customize the LOD extrapolation function by specifying its control points, as
discussed in the next section.

Customizing the LOD Extrapolation Function

With the default linear LOD extrapolation function, the weight may be too large at high
levels of magnification, that is, as n becomes more negative. This can result in so much
extrapolation that noticeable bands appear around edge features, an artifact known as
“ringing.” In this case, it is useful to create a nonlinear LOD extrapolation function.

Figure 7-4 shows LOD extrapolation curves as a function of magnification factors. The
curve on the left is the default linear extrapolation, where weight(n) = -n/4. The curve on
the right is a nonlinear extrapolation, where the LOD extrapolation function is modified
to control the amount of sharpening so that less sharpening is applied as the
magnification factor increases. The function is defined for n less than or equal to 0.

Figure 7-4 LOD Extrapolation Curves

Use glSharpenTexFuncSGIS() to specify control points for shaping the LOD
extrapolation function. Each control point contains a pair of values; the first value
specifies the LOD, and the second value specifies a weight multiplier for that
magnification level. (Remember that the LOD values are negative.)

n
0

0 -1 -2 -3 -4

1

2

LOD

Weight

n
0

0 -1 -2 -3 -4

1

2

Default LOD extrapolation

LOD

Custom LOD extrapolationWeight

142

Chapter 7: Texturing Extensions

For example, to gradually ease the sharpening effect, use a nonlinear LOD extrapolation
curve—as shown on the right in Figure 7-4—with these control points:

GLfloat points[] = {
0., 0.,
-1., 1.,
-2., 1.7,
-4., 2.

};
glSharpenTexFuncSGIS(GL_TEXTURE_2D, 4, points);

Note that how these control points determine the function is system dependent. For
example, your system may choose to create a piecewise linear function, a piecewise
quadratic function, or a cubic function. However, regardless of the kind of function you
choose, the function will pass through the control points.

Using Sharpen Texture and Texture Object

If you are using texture objects, each texture object contains its own LOD extrapolation
function and magnification filter. Setting the function or the filter therefore affects only
the texture object that is currently bound to the texture target.

Sharpen Texture Example Program

Example 7-3 illustrates the use of sharpen texture. Because of space limitations, the
sections dealing with X Window System setup and some of the keyboard input are
omitted. The complete example is included in the source tree as sharpen.c. It is also
available through the developer toolbox under the same name. See
http://www.sgi.com/Technology/toolbox.html for information on toolbox access.

Example 7-3 Sharpen Texture Example

/* tree texture: high alpha in foreground, zero alpha in background */
#define B 0x00000000
#define F 0xA0A0A0ff
unsigned int tex[] = {
 B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,
 B,B,B,B,B,B,B,F,F,B,B,B,B,B,B,B,
 B,B,B,B,B,B,B,F,F,B,B,B,B,B,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,F,F,F,F,F,F,B,B,B,B,B,

SGIS_sharpen_texture—The Sharpen Texture Extension

143

 B,B,B,B,B,F,F,F,F,F,F,B,B,B,B,B,
 B,B,B,B,F,F,F,F,F,F,F,F,B,B,B,B,
 B,B,B,B,F,F,F,F,F,F,F,F,B,B,B,B,
 B,B,B,F,F,F,F,F,F,F,F,F,F,B,B,B,
 B,B,B,F,F,F,F,F,F,F,F,F,F,B,B,B,
 B,B,F,F,F,F,F,F,F,F,F,F,F,F,B,B,
 B,B,F,F,F,F,F,F,F,F,F,F,F,F,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,
};

static void
init(void) {
 glEnable(GL_TEXTURE_2D);
 glMatrixMode(GL_PROJECTION);
 gluPerspective(60.0, 1.0, 1.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.,0.,-2.5);

 glColor4f(0,0,0,1);
 glClearColor(0.0, 0.0, 0.0, 1.0);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 /* sharpening just alpha keeps the tree outline crisp */
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_SHARPEN_ALPHA_SGIS);
 /* generate mipmaps; levels 0 and 1 are needed for sharpening */
 gluBuild2DMipmaps(GL_TEXTURE_2D, 4, 16, 16, GL_RGBA,
 GL_UNSIGNED_BYTE, tex);
}

static void
draw_scene(void) {
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_STRIP);
 glTexCoord2f(0, 1); glVertex2f(-1,-1);
 glTexCoord2f(0, 0); glVertex2f(-1, 1);
 glTexCoord2f(1, 1); glVertex2f(1,-1);
 glTexCoord2f(1, 0); glVertex2f(1, 1);
 glEnd();
 glFlush();
}

144

Chapter 7: Texturing Extensions

New Functions

glSharpenTexFuncSGIS, glGetSharpenTexFuncSGIS.

SGIS_texture4D—The 4D Texture Extension

The 4D texture extension, SGIS_texture4D, defines four-dimensional texture mapping.
Four-dimensional textures are used primarily as color lookup tables for color conversion.

Note: This extension is currently implemented only on Indigo2 IMPACT and OCTANE
systems. Because of that, developers are encouraged to consult information available
through the OpenGL home page, most notably the extension specifications.

SGIS_texture_edge/border_clamp—Texture Clamp Extensions

This section first provides some background information on texture clamping. It then
looks at reasons for using the texture clamping extensions and explains how to use them.
The two extensions are

• The texture edge clamp extension, SGIS_texture_edge_clamp

• The texture border clamp extension, SGIS_texture_border_clamp

Texture clamping is especially useful for nonrepeating textures.

Texture Clamping Background Information

OpenGL provides clamping of texture coordinates: Any values greater than 1.0 are set to
1.0, any values less than 0.0 are set to 0.0. Clamping is useful for applications that want
to map a single copy of the texture onto a large surface. Clamping is discussed in detail
in the section “Repeating and Clamping Textures” on page 360 of the OpenGL
Programming Guide, Second Edition.

SGIS_texture_edge/border_clamp—Texture Clamp Extensions

145

Why Use the Texture Clamp Extensions?

When a texture coordinate is clamped using the default OpenGL algorithm, and a
GL_LINEAR filter or one of the LINEAR mipmap filters is used, the texture sampling
filter straddles the edge of the texture image, taking half its sample values from within
the texture image and the other half from the texture border.

It is sometimes desirable to alter the default behavior of OpenGL texture clamping
operations as follows:

• Clamp a texture without requiring a border or a constant border color. This is
possible with the texture clamping algorithm provided by the texture edge-clamp
extension. GL_CLAMP_TO_EDGE_SGIS clamps texture coordinates at all mipmap
levels such that the texture filter never samples a border texel.

When used with a GL_NEAREST or a GL_LINEAR filter, the color returned when
clamping is derived only from texels at the edge of the texture image.

• Clamp a texture to the border color, rather than to an average of the border and
edge colors. This is possible with the texture border-clamp extension.
GL_CLAMP_TO_BORDER_SGIS clamps texture coordinates at all mipmap levels.

GL_NEAREST and GL_LINEAR filters return the color of the border texels when
the texture coordinates are clamped.

This mode is well-suited for using projective textures such as spotlights.

Both clamping extensions are supported for one-, two-, and three-dimensional textures.
Clamping always occurs for texture coordinates less than zero and greater than 1.0.

146

Chapter 7: Texturing Extensions

Using the Texture Clamp Extensions

To specify texture clamping, call glTexParameteri():

• Set target to GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT.

• Set pname to GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R_EXT.

• Set param to

– GL_CLAMP_TO_EDGE_SGIS for edge clamping

– GL_CLAMP_TO_BORDER_SGIS for border clamping

SGIS_texture_filter4—The Texture Filter4 Extensions

The texture filter4 extension, SGIS_texture_filter4, allows applications to filter 1D and 2D
textures using an application-defined filter. The filter has to be symmetric and separable
and have four samples per dimension. In the most common 2D case, the filter is bicubic.
This filtering can yield better-quality images than mipmapping, and is often used in
image processing applications.

The OpenGL Programming Guide, Second Edition, discusses texture filtering in the section
“Filtering” on page 345, as follows: “Texture maps are square or rectangular, but after
being mapped to a polygon or surface and transformed into screen coordinates, the
individual texels of a texture rarely correspond to individual pixels of the final screen
image. Depending on the transformation used and the texture mapping applied, a single
pixel on the screen can correspond to anything from a small portion of a texel
(magnification) to a large collection of texels (minification).”

Several filters are already part of OpenGL; the extension allows you to define your own
custom filter. The custom filter cannot be a mipmapped filter and must be symmetric and
separable (in the 2D case).

Using the Texture Filter4 Extension

To use Filter4 filtering, you have to first define the filter function. Filter4 uses an
application-defined array of weights (see “Determining the weights Array” on
page 147). There is an implementation-dependent default set of weights.

SGIS_texture_filter4—The Texture Filter4 Extensions

147

Specifying the Filter Function

Applications specify the filter function by calling glTexFilterFuncSGIS() (see also the
glTexFilterFuncSGIS reference page) with

• target set to GL_TEXTURE_1D or GL_TEXTURE_2D

• filter set to GL_FILTER4_SGIS

• weights pointing to an array of n floating-point values. The value n must equal 2**m
+ 1 for some nonnegative integer value of m.

Determining the weights Array

The weights array contains samples of the filter function

f(x), 0<=x<=2

Each element weights[i] is the value of

f((2*i)/(n-1)), 0<=i<=n-1

OpenGL stores and uses the filter function as a set of samples

f((2*i)/(Size-1)), 0<=i<=Size-1

where Size is the implementation-dependent constant GL_TEXTURE_FILTER4_SIZE. If
n equals Size, the array weights is stored directly in OpenGL state. Otherwise, an
implementation-dependent resampling method is used to compute the stored samples.

Note: “SGIS_filter4_parameters—The Filter4 Parameters Extension” on page 136
provides interpolation coefficients just as they are required for GL_FILTER4_SGIS
filtering.

Size must equal 2**m + 1 for some integer value of m greater than or equal to 4. The value
Size for texture target is returned by params when glGetTexParameteriv() or
glGetTexParameterfv() is called with pname set to TEXTURE_FILTER4_SIZE_SGIS.

148

Chapter 7: Texturing Extensions

Setting Texture Parameters

After the filter function has been defined, call glTexParameter*() with

• pname set to one of GL_TEXTURE_MIN_FILTER or GL_TEXTURE_MAG_FILTER

• param or params set to FILTER4_SGIS

• the value of param(s) set to the function you just defined

Because filter4 filtering is defined only for non-mipmapped textures, there is no
difference between its definition for minification and magnification.

New Functions

glTexFilterFuncSGIS, glGetTexFilterFuncSGIS

SGIS_texture_lod—The Texture LOD Extension

The texture LOD extension, SGIS_texture_lod, imposes constraints on the texture LOD
parameter. Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is desired
or available. By providing separate, continuous clamping of the LOD parameter, the
extension makes it possible to avoid “popping” artifacts when higher-resolution images
are provided.

To achieve this, the extension imposes the following constraints:

• It clamps LOD to a specific floating point range.

• It limits the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

To understand the issues discussed in this section, you should be familiar with the issues
discussed in the sections “Multiple Levels of Detail” on page 338 and “Filtering” on page
344 of the OpenGL Programming Guide.

SGIS_texture_lod—The Texture LOD Extension

149

Specifying a Minimum or Maximum Level of Detail

To specify a minimum or maximum level of detail for a specific texture, call
glTexParameter*() and set

• target to GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT

• pname to GL_TEXTURE_MIN_LOD_SGIS or GL_TEXTURE_MAX_LOD_SGIS

• param to (or params pointing to) the new value

LOD is clamped to the specified range before it is used in the texturing process. Whether
the minification or magnification filter is used depends on the clamped LOD.

Specifying Image Array Availability

The OpenGL Specification describes a “complete” set of mipmap image arrays at levels 0
(zero) through p, where p is a well-defined function of the dimensions of the level 0
image.

This extension lets you redefine any image level as the base level (or maximum level).
This is useful, for example, if your application runs under certain time constraints, and
you want to make it possible for the application to load as many levels of detail as
possible but stop loading and continue processing, choosing from the available levels
after a certain period of time has elapsed. Availability in that case does not depend on
what is explicitly specified in the program but on what could be loaded in a specified
time.

To set a new base (or maximum) level, call glTexParameteri(), glTexParemeterf(),
glTexParameteriv(), or glTexParameterfv() and set

• target to GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT

• pname to

– GL_TEXTURE_BASE_LEVEL_SGIS to specify a base level

– GL_TEXTURE_MAX_LEVEL_SGIS to specify a maximum level

• param to (or params pointing to) the desired value

Note that the number used for the maximum level is absolute, not relative to the base
level.

150

Chapter 7: Texturing Extensions

SGIS_texture_select—The Texture Select Extension

The texture select extension, SGIS_texture_select, allows for more efficient use of texture
memory by subdividing the internal representation of a texel into one, two, or four
smaller texels. The extension may also improve performance of texture loading.

Why Use the Texture Select Extension?

On InfiniteReality graphics systems, the smallest texel supported by the hardware is 16
bits. The extension allows you to pack multiple independent textures together to
efficiently fill up space in texture memory (the extension itself refers to each of the
independent textures as component groups).

• Two eight-bit textures can be packed together. Examples include 8-bit luminance,
8-bit intensity, 8-bit alpha, and 4-bit luminance-alpha.

• Four four-bit textures can be packed together. Examples include 4-bit luminance,
4-bit intensity, and 4-bit alpha.

The extension allows developers to work with these components by providing several
new texture internal formats. For example, assume that a texture internal format of
GL_DUAL_LUMINANCE4_SGIS is specified. Now there are two component groups,
where each group has a format of GL_LUMINANCE4. One of the two
GL_LUMINANCE groups is always selected. Each component can be selected and
interpreted as a GL_LUMINANCE texture.

Note: The point of this extension is to save texture memory. Applications that need only
8-bit or 4-bit texels would otherwise use half or one quarter of texture memory. However,
applications that use 16-bit or larger texels (such as RGBA4, LA8) won’t benefit from this
extension.

SGIS_texture_select—The Texture Select Extension

151

Using the Texture Select Extension

To use the texture select extension, first call glTexImage*D() to define the texture using
one of the new internal formats:

glTexImage[n]D[EXT] (/* Definition */
 internalFormat =
 GL_DUAL_{ ALPHA, LUMINANCE, INTENSITY * }{4, 8, 12, 16 }_SGIS
 GL_DUAL_LUMINANCE_ALPHA{ 4, 8 } _SGIS
 GL_QUAD_{ ALPHA, LUMINANCE, INTENSITY*}{ 4, 8 }_SGIS
);

The system then assigns parts of the texture data supplied by the application to parts of
the 16-bit texel, as illustrated in Table 7-7.

To select one of the component groups for use during rendering, the application then
calls glTexParameter*() as follows:

glTexParameteri (/* Selection & Usage */
target = GL_TEXTURE_[n]D[_EXT],
param = GL_DUAL_TEXTURE_SELECT_SGIS GL_QUAD_TEXTURE_SELECT_SGIS
value = { 0, 1 },

{ 0, 1, 2, 3 }
);

There is always a selection defined for both DUAL_TEXTURE_SELECT_SGIS and
QUAD_TEXTURE_SELECT_SGIS formats. The selection becomes active when the
current texture format becomes one of the DUAL* or QUAD* formats, respectively. If the
current texture format is not one of DUAL* or QUAD* formats, this extension has no
effect.

152

Chapter 7: Texturing Extensions

Component mapping from the canonical RGBA to the new internal formats is as follows:

The interpretation of the bit resolutions of the new internal formats is implementation
dependent. To query the actual resolution that is granted, call glGetTexLevelParameter()
with pname set appropriately, for example GL_TEXTURE_LUMINANCE_SIZE. The bit
resolution of similar type components in a group, such as multiple LUMINANCE
components, is always the same.

SGIX_clipmap—The Clipmap Extension

The clipmap extension, SGIX_clipmap, allows applications to use dynamic texture
representations that efficiently cache textures of arbitrarily large size in a finite amount
of physical texture memory. Only those parts of the mipmapped texture that are visible
from a given application-specified location are stored in system and texture memory. As
a result, applications can display textures too large to fit in texture memory by loading
parts on the texture into texture memory only when they are required.

Table 7-7 Texture Select Host Format Components Mapping

Format Grouping

DUAL* formats that are groups of
ALPHA, LUMINANCE, and
INTENSITY

RED component goes to the first group

ALPHA component goes to the second group

DUAL* formats that are groups of
LUMINANCE_ALPHA

RED and GREEN components go to the first group

BLUE and ALPHA go to the second group

QUAD* formats RED component goes to the first group

GREEN component to the second group

BLUE component to the third group

ALPHA component to the fourth group

SGIX_clipmap—The Clipmap Extension

153

Full clipmap support is implemented in IRIS Performer 2.2 (or later). Applications can
also use this extension on the appropriate hardware (currently InfiniteReality only) for
the same results. In that case, the application has to perform memory management and
texture loading explicitly.

This section explains how clipmaps work and how to use them in the following sections:

• “Clipmap Overview” on page 153 explains the basic assumptions behind clipmaps.

• “Using Clipmaps From OpenGL” on page 156 provides step by step instructions for
setting up a clipmap stack and for using clipmaps. Emphasis is on the steps, with
references to the background information as needed.

• “Clipmap Background Information” on page 159 explains some of the concepts
behind the steps in clipmap creation in more detail.

• “Virtual Clipmaps” on page 162 discusses how to work with a virtualized clipmap,
which is the appropriate solution if not all levels of the clipmap fit.

Note: For additional conceptual information, see the specification for the clipmap
extension, which is available through the developer’s toolbox.

Clipmap Overview

Clipmaps avoid the size limitations of normal mipmaps by clipping the size of each level
of a mipmap texture to a fixed area, called the clip region (see Figure 7-5). A mipmap
contains a range of levels, each four times the size of the previous one. Each level (size)
determines whether clipping occurs:

• For levels smaller than the clip region—that is, for low-resolution levels that have
relatively few texels—the entire level is kept in texture memory.

• Levels larger than the clip region are clipped to the clip region’s size. The clip region
is set by the application, trading off texture memory consumption against image
quality. (The image may become blurry because texture accesses outside the clip
region are forced to use a coarse LOD.)

154

Chapter 7: Texturing Extensions

Figure 7-5 Clipmap Component Diagram

Clipmap Constraints

The clipmap algorithm is based on the following constraints:

• The viewer can see only a small part of a large texture from any given viewpoint.

• The viewer looks at a texture from only one location.

• The viewer moves smoothly relative to the clipmap geometry (no teleporting).

• The textured geometry must have a reasonable, relatively flat topology.

Given these constraints, applications can maintain a high-resolution texture by keeping
only those parts of the texture closest to the viewer in texture memory. The remainder of
the texture is on disk and cached in system memory.

Clip size

Clip region

Entire level in
texture memory

SGIX_clipmap—The Clipmap Extension

155

Why Do the Clipmap Constraints Work?

The clipmap constraints work because only the textured geometry closest to the viewer
needs a high-resolution texture. Distant objects are smaller on the screen, so the texels
used on that object also appear smaller (cover a small screen area). In normal
mipmapping, coarser mipmap levels are chosen as the texel size gets smaller relative to
the pixel size. These coarser levels contain fewer texels because each texel covers a larger
area on the textured geometry.

Clipmaps store only part of each large (high-resolution) mipmap level in texture
memory. When the user looks over the geometry, the mipmap algorithm starts choosing
texels from a lower level before running out of texels on the clipped level. Because
coarser levels have texels that cover a larger area, at a great enough distance, texels from
the unclipped, smaller levels are chosen as appropriate.

When a clip size is chosen, the mipmap levels are separated into two categories:

• Clipped levels, which are texture levels that are larger than the clip size.

• Nonclipped levels, which are small enough to fit entirely within the clip region.

The nonclipped levels are viewpoint independent; each nonclipped texture level is
complete. Clipped levels, however, must be updated as the viewer moves relative to the
textured geometry.

Clipmap Textures and Plain Textures

Clipmaps are not completely interchangeable with regular OpenGL textures. Here are
some differences:

• Centering. In a regular texture, every level is complete in a regular texture.
Clipmaps have clipped levels, where only the portion of the level near the clipmap
center is complete. In order to look correct, a clipmap center must be updated as the
viewport of the textured geometry moves relative to the clipmap geometry.

As a result, clipmaps require functionality that recalculates the center position
whenever the viewer moves (essentially each frame). This means that the
application has to update the location of the clip center as necessary.

• Texel Data. A regular texture is usually only loaded once, when the texture is
created. The texel data of a clipmap must be updated by the application each time
the clipmap center is moved. This is usually done by calling glTexSubImage2D()
and using the toroidal loading technique (see “Toroidal Loading” on page 161).

156

Chapter 7: Texturing Extensions

Using Clipmaps From OpenGL

To use clipmaps, an application has to take care of two distinct tasks, discussed in this
section:

• “Setting Up the Clipmap Stack”

• “Updating the Clipmap Stack”

Setting Up the Clipmap Stack

To set up the clipmap stack, an application has to follow these steps:

1. Call glTexParameter*() with the GL_TEXTURE_MIN_FILTER_SGIX parameter set
to GL_LINEAR_CLIPMAP_LINEAR_SGIX to let OpenGL know that clipmaps, not
mipmaps will be used.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_CLIPMAP_LINEAR);

GL_TEXTURE_MAG_FILTER can be anything but GL_FILTER4_SGIS

2. Set the GL_TEXTURE_CLIPMAP_FRAME_SGIX parameter to set an invalid border
region of at least eight pixels.

The frame is the part of the clip that the hardware should ignore. Using the frame
avoids certain sampling problems; in addition, the application can load into the
Frame region while updating the texture. See “Invalid Borders” on page 160 for
more information.

In the following code fragment, size is the fraction of the clip size that should be part
of the border; that is, .2 would mean 20 percent of the entire clip size area would be
dedicated to the invalid border, along the edge of the square clip size region.

GLfloat size = .2f; /* 20% */
/* can range from 0 (no border) to 1 (all border) */
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_CLIPMAP_FRAME_SGIX,size);

3. Set GL_TEXTURE_CLIPMAP_CENTER_SGIX to set the center texel of the
highest-resolution texture, specified as an integer. The clip center is specified in
terms of the top (highest-resolution) level of the clipmap, level 0. OpenGL
automatically adjusts and applies the parameters to all of the other levels.

The position of the center is specified in texel coordinates. Texel coordinate are
calculated by taking the texture coordinates (which range from 0 to 1 over the
texture) and multiplying them by the size of the clipmap’s top level. See “Moving
the Clip Center” on page 159 for more information.

SGIX_clipmap—The Clipmap Extension

157

The following code fragment specifies the location of the region of interest on every
clipped level of clipmap. The location is specified in texel coordinates, so texture
coordinates must be multiplied by the size of the top level in each dimension. In this
example, center is at the center of texture (.5, .5). Assume this clipmap is 4096 (s
direction) by 8192 (t direction) at level 0.

int center[3];
center[0] = .5 * 4096;
center[1] = .5 * 8192;
center[2] = 0; /* always zero until 3d clipmaps supported */

glTexParameteriv(GL_TEXTURE_2D,
GL_TEXTURE_CLIPMAP_CENTER_SGIX,center);

4. Set GL_TEXTURE_CLIPMAP_OFFSET_SGIX to specify the offset. The offset
parameter allows applications to offset the origin of the texture coordinates so that
the incrementally updated texture appears whole and contiguous.

Like the center, the offset is supplied in texel coordinates. In the code fragment
below, clip size is the size of the region of interest.

int offset[2];

offset[0] = (center[0] + clipsize/2) % clipsize;
offset[1] = (center[1] + clipsize/2) % clipsize;

glTexParameteriv(GL_TEXTURE_2D,
 GL_TEXTURE_CLIPMAP_OFFSET_SGIX,
 offset);

5. Call glTexImage2D() to define the highest-resolution level that contains the entire
map. This indirectly tells OpenGL what the clip size is and which level of the
clipmap contains the largest clipped level. OpenGL indirectly calculates the clip size
of a clipmap by the size of the texture levels. Although the clipmap levels can be
loaded in any order, it is most efficient for the current clipmap system if the top of
the pyramid is loaded first. Note that a clipmap’s clip size level is at some level
other than zero (otherwise there would be no levels larger than the clip size; that is,
no clipped levels.)

158

Chapter 7: Texturing Extensions

In the following code fragment, the clipmap is RGB, with a top level of dimensions
8192 by 8192, and a clip size of 512 by 512. There will be 12 levels total, and the last
level at which the whole mipmap is in memory (512 level) is level 4.

GLint pyramid_level, border = 0;
GLsizei clipsize_wid, clipsize_ht;
clipsize_wid = clipsize_ht = 512;
pyramid_level = 4; /* 8192 = 0, 4096 = 1, 2048 = 2, 1024 = 3, ... */

glTexImage2D(GL_TEXTURE_2D,
 pyramid_level,
 GL_RGB, /* internal format */
 clipsize_wid,
 clipsize_ht,
 border, /* not invalid border! */,
 GL_RGB, /* format of data being loaded */
 GL_BYTE, /* type of data being loaded */
 data); /* data can be null and subloaded later if desired */

6. Create the clipmap stack by calling glTexImage2D() repeatedly for each level.

If you want to use a virtual clipmap, you can use the texture_LOD extension (see
“SGIS_texture_lod—The Texture LOD Extension” on page 148) to specify the
minimum and maximum LOD. See “Virtual Clipmaps” on page 162.

7. After the application has precomputed all mipmaps, it stores them on disk for easy
access. Note that it is not usually possible to create the stack in real time.

Updating the Clipmap Stack

As the user moves through the “world,” the center of the clipmap usually changes with
each frame. Applications therefore have to update the clipmap stack with each frame,
following these steps:

1. Compute the difference between the old and new center.

See “Moving the Clip Center” on page 159 for background information.

2. Determine the incremental texture load operations needed for each level.

3. Perform toroidal loads by calling glTexSubImage2D() to load the appropriate texel
regions.

“Toroidal Loading” on page 161 discusses this in more detail.

4. Set the parameters for center and offset for the next move.

SGIX_clipmap—The Clipmap Extension

159

Clipmap Background Information

The following sections provide background information for the steps in “Using
Clipmaps From OpenGL” on page 156.

Moving the Clip Center

Only a small part of each clipped level of a clipmap actually resides in texture memory.
As a result, moving the clip center requires updating the contents of texture memory so
it contains the pixel data corresponding to the new location of the region of interest.

Updates must usually happen every frame, as shown in Figure 7-6. Applications can
update the clipmaps to the new center using toroidal loading (see “Toroidal Loading” on
page 161).

Figure 7-6 Moving the Clip Center

The clip center is set by the application for level 0, the level with the highest resolution.
The clipmap code has to derive the clip center location on all levels. As the viewer roams
over a clipmap, the centers of each mipmap level move at a different rate. For example,
moving the clip center one unit corresponds to the center moving one half that distance
in each dimension in the next-coarser mipmap level.

Centered Center moves Texture coordinates wrap

Toroidal loads Same as centered

160

Chapter 7: Texturing Extensions

When applications use clipmaps, most of the work consists of updating the center
properly and updating the texture data in the clipped levels reliably and efficiently for
each frame.To facilitate loading only portions of the texture at a time, the texture data
should first be subdivided into a contiguous set of rectangular areas, called tiles. These
tiles can then be loaded individually from disk into texture memory.

Invalid Borders

Applications can improve performance by imposing alignment requirements to the
regions being downloaded to texture memory. Clipmaps support the concept of an
invalid border to provide this feature. The border is an area around the perimeter of a clip
region that is guaranteed not to be displayed. The invalid border shrinks the usable area
of the clip region, and can be used to dynamically change the effective size of the clip
region.

When texturing requires texels from a portion of an invalid border at a given mipmap
level, the texturing system moves down a level, and tries again. It keeps going down to
coarser levels until it finds texels at the proper coordinates that are not in the invalid
region. This is always guaranteed to happen, because each level covers the same area
with fewer texels. Even if the required texel is clipped out of every clipped level, the
unclipped pyramid levels will contain it.

The invalid border forces the use of lower levels of the mipmap. As a result, it

• Reduces the abrupt discontinuity between mipmap levels if the clip region is small.

Using coarser LODs blends mipmap levels over a larger textured region.

• Improves performance when a texture must be roamed very quickly.

Because the invalid border can be adjusted dynamically, it can reduce the texture and
system memory loading requirements at the expense of a blurrier textured image.

SGIX_clipmap—The Clipmap Extension

161

Figure 7-7 Invalid Border

Toroidal Loading

To minimize the bandwidth required to download texels from system to texture memory,
the image cache’s texture memory should be updated using toroidal loading, which means
the texture wraps upon itself. (see Figure 7-6).

A toroidal load assumes that changes in the contents of the clip region are incremental,
such that the update consists of

• new texels that need to be loaded

• texels that are no longer valid

• texels that are still in the clip region, but have shifted position

Toroidal loading minimizes texture downloading by updating only the part of the
texture region that needs new texels. Shifting texels that remain visible is not necessary,
because the coordinates of the clip region wrap around to the opposite side.

As the center moves, only texels along the edges of the clipmap levels change. To allow
for incremental loading only of these texels via glTexSubImage2D(), toroidal offset
values have to be added to the texture addresses of each level. The offset is specified by
the application (see “Setting Up the Clipmap Stack” on page 156). The offsets for the top
level define the offsets for subsequent levels by a simple shift, just as with the center.

Required texel

Invalid border

Clip region

Clip center

Clip center

Required texel

Fine

Coarser

162

Chapter 7: Texturing Extensions

Virtual Clipmaps

You can use the texture LOD extension in conjunction with mipmapping to change the
base level from zero to something else. Using different base levels results in clipmaps
with more levels than the hardware can store at once when texturing.

These larger mipmapped textures can be used by only accessing a subset of all available
mipmap levels in texture memory at any one time. A virtual offset is used to set a virtual
“level 0” in the mipmap, while the number of effective levels indicates how many levels
starting from the new level 0 can be accessed. The minLOD and maxLOD are also used
to ensure that only valid levels are accessed. The application typically divides the
clipmapped terrain into pieces, and sets the values as each piece is traversed, using the
relative position of the viewer and the terrain to calculate the values.

Figure 7-8 Virtual Clipmap

Clip size

Clip region

Clipmap depth

Clipmap LOD
offset

Virtual clipmap
depth

SGIX_texture_add_env—The Texture Environment Add Extension

163

To index into a clipmap of greater than GL_MAX_CLIPMAP_DEPTH_SGIX levels of
detail, additional parameters are provided to restrictively index a smaller clipmap of
(N+1) levels located wholly within a complete, larger clipmap. Figure 7-8 illustrates how
a virtual clipmap fits into a larger clipmap stack. The clipmap extension specification
explains the requirements for the larger and smaller clipmap in more detail.

When creating a virtual clipmap, an application calls glTexParameteriv(), or
glTexParameterfv() with

• target set to GL_TEXTURE_2D

• pname set to GL_TEXTURE_CLIPMAP_VIRTUAL_DEPTH_SGIX

• params set to (D,N+1,V+1)

where D is the finest level of the clipmap, N+1 is the depth of the clipmap, and V+1 is the
depth of the virtual clipmap.

If the depth of the virtual clipmap is zero, clipmap virtualization is ignored, and
texturing proceeds as with a non-virtual clipmap.

If you have virtualized the clipmap, you will be adjusting the LOD offset and possibly
the number of displayable levels as you render each chunk of polygons that need a
different set of clipmap levels to be rendered properly. The application has to compute
the levels needed.

SGIX_texture_add_env—The Texture Environment Add Extension

The texture environment add extension, SGIX_texture_add_env, defines a new texture
environment function, which scales the texture values by the constant texture
environment color, adds a constant environment bias color, and finally adds the resulting
texture value on the in-coming fragment color. The extension can be used to simulate
highlights on textures (although that functionality is usually achieved with multi-pass
rendering) and for situations in which it has to be possible to make the existing color
darker or lighter, for example, for simulating an infrared display in a flight simulator.

OpenGL 1.1 supports four texture environment functions: GL_DECAL, GL_REPLACE,
GL_MODULATE, and GL_BLEND.

164

Chapter 7: Texturing Extensions

The extension provides an additional environment, GL_ADD, which is supported with
the following equation:

Cv = Cf + CcCt + Cb

where

Cr Fragment color

Cc Constant color (set by calling glTexEnv()) with pname set to
GL_TEXTURE_ENV_COLOR)

Ct Texture color

Cb Bias color (set by calling glTexEnv() with pname set to
GL_TEXTURE_ENV_BIAS_SGIX.) and param set to a value greater than
-1 and less than 1.

The new function works just like the other functions discussed in the section “Texture
Functions” on page 354 of the OpenGL Programming Guide, Second Edition.

SGIX_texture_lod_bias—The Texture LOD Bias Extension

The texture LOD bias extension, SGIX_texture_lod_bias, allows applications to bias the
default LOD to make the resulting image sharper or more blurry. This can improve image
quality if the default LOD is not appropriate for the situation in question.

Background: Texture Maps and LODs

If an application uses an image as a texture map, the image may have to be scaled down
to a smaller size on the screen. During this process the image must be filtered to produce
a high-quality result. Nearest-neighbor or linear filtering do not work well when an
image is scaled down; for better results, an OpenGL program can use mipmapping. A
mipmap is a series of prefiltered texture maps of decreasing resolution. Each texture map
is referred to as one level of detail or LOD. Applications create a mipmap using the
routines gluBuild1DMipmaps() or gluBuild2DMipmaps(). Mipmaps are discussed
starting on page 338 of the OpenGL Programming Guide, Second Edition.

SGIX_texture_lod_bias—The Texture LOD Bias Extension

165

Graphics systems from Silicon Graphics automatically select an LOD for each textured
pixel on the screen. However, in some situations the selected LOD results in an image
that is too crisp or too blurry for the needs of the application. For example, 2D
mipmapping works best when the shape of the texture on the screen is a square. If that
is not the case, then one dimension of the texture must be scaled down more than the
other to fit on the screen. By default the LOD corresponding to the larger scale factor is
used, so the dimension with the smaller scale factor will appear too blurry.

Figure 7-9 shows an image that is too blurry with the default LOD bias. You can see that
the marker in the middle of the road is blurred out. In Figure 7-10, this effect is
exaggerated by a positive LOD bias. Figure 7-11 shows how the markers become visible
with a negative LOD bias.

Figure 7-9 Original Image

166

Chapter 7: Texturing Extensions

Figure 7-10 Image With Positive LOD Bias

SGIX_texture_lod_bias—The Texture LOD Bias Extension

167

Figure 7-11 Image with Negative LOD Bias

As another example, the texture data supplied by the application may be slightly
oversampled or undersampled, so the textured pixels drawn on the screen may be
correspondingly blurry or crisp.

Why Use the LOD Bias Extension?

The texture LOD bias extension allows applications to bias the default LOD to make the
resulting image sharper or more blurry. An LOD of 0 corresponds to the most-detailed
texture map, an LOD of 1 corresponds to the next smaller texture map, and so on. The
default bias is zero, but if the application specifies a new bias, that bias will be added to
the selected LOD. A positive bias produces a blurrier image, and a negative bias
produces a crisper image. A different bias can be used for each dimension of the texture
to compensate for unequal sampling rates.

168

Chapter 7: Texturing Extensions

Examples of textures that can benefit from this LOD control include:

• Images captured from a video source. Because video systems use non-square pixels,
the horizontal and vertical dimensions may require different filtering.

• A texture that appears blurry because it is mapped with a nonuniform scale, such as
a texture for a road or runway disappearing toward the horizon (the vertical
dimension must be scaled down a lot near the horizon, the horizontal dimension is
not scaled down much).

• Textures that don’t have power of two dimensions and therefore had to be
magnified before mipmapping (the magnification may have resulted in a
nonuniform scale).

Using the Texture LOD Bias Extension

To make a mipmapped texture sharper or blurrier, applications can supply a negative or
positive bias by calling glTexParameter*() with

• target set to TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT.

• pname set to GL_TEXTURE_LOD_BIAS_S_SGIX,
GL_TEXTURE_LOD_BIAS_T_SGIX, or GL_TEXTURE_LOD_BIAS_R_SGIX.

• param set to (or params pointing to) the desired bias value, which may be any
integer or floating-point number. The default value is 0.

You can specify a bias independently for one or more texture dimensions. The final LOD
is at least as large as the maximum LOD for any dimension; that is, the texture is scaled
down by the largest scale factor, even though the best scale factors for each dimension
may not be equal.

Applications can also call glGetTexParameter*() to check whether one of these values
has been set.

SGIX_texture_scale_bias—The Texture Scale Bias Extension

169

SGIX_texture_scale_bias—The Texture Scale Bias Extension

The texture_scale_bias extension, SGIX_texture_scale_bias, allows applications to
perform scale, bias, and clamp operations as part of the texture pipeline. By allowing
scale or bias operations on texels, applications can make better utilization of the color
resolution of a particular texture internal format, by, for example, performing histogram
normalization, or gamut expansion. In addition some color remapping may be
performed with this extension if a texture color lookup table is not available or too
expensive.

The scale, bias, and clamp operations are applied, in that order, directly before the texture
environment equations, or, if the SGI_texture_color_table extension exists, directly
before the texture color lookup table. The four values for scale (or bias) correspond to the
R, G, B, and A scale (or bias) factors. These values are applied to the corresponding
texture components, Rt, Gt, Bt, and At. Following the scale and bias is a clamp to the
range [0, 1].

To use the extension, an application calls glTexParameter*() with a pname parameter
GL_POST_TEXTURE_FILTER_BIAS_SGIX or
GL_POST_TEXTURE_FILTER_SCALE_SGIX and with params set to an array of four
values.The scale or bias values can be queried using glGetTexParameterfv() or
glGetTexParameteriv(). The scale, bias, and clamp operations are effectively disabled by
setting the four scale values to 1 and the four bias values to 0. There is no specific enable
or disable token for this extension.

Because an implementation may have a limited range for the values of scale and bias (for
example, due to hardware constraints), this range can be queried. To obtain the scale or
bias range, call glGet*() with GL_POST_TEXTURE_FILTER_SCALE_RANGE_SGIX or
GL_POST_TEXTURE_FILTER_BIAS_RANGE_SGIX, respectively as the value parameter.
An array of two values is returned: the first is the minimum value and the second is the
maximum value.

170

Chapter 7: Texturing Extensions

SGIX_texture_multi_buffer—The Texture Multibuffer Extension

The texture multibuffer extension, SGIX_texture_multi_buffer, allows applications to
change the way OpenGL handles multiple textures.

Texture objects, which were introduced in OpenGL 1.1, allow the simultaneous
definition of multiple textures. As a result, you can in principle render one texture and at
the same time load another texture into hardware or perform other actions on its
definition. This is true as long as all redefinitions strictly follow any use of the previous
definition.

Conceptually using textures in this fashion is similar to frame buffer double-buffering,
except that the intent here is to provide a hint to OpenGL to promote such
double-buffering if and wherever possible. The effect of such a hint is to speed up
operations without affecting the result. Developers on any particular system must be
knowledgable and prepared to accept any trade-offs that may result from such a hint.

The extension is currently used for video texture-mapping; that is, instead of mapping a
static image onto an object in a 3D view, live video is mapped. So there is a variety of
special effects that can be done. On Indigo2 IMPACT and OCTANE, the method is to use
a GLX extension to set the “readsource” to be “video” and then call
glCopyTexImage2D() to get the latest video image into texture memory. Using the
multibuffer extension, it is possible to be drawing with the previous video frame (the
front buffer) while the new frame is being loaded in (the back buffer). This really speeds
things up.

How to use the Texture Multibuffer Extension

To use the extension, call glHint() with the target parameter set to
GL_TEXTURE_MULTI_BUFFER_HINT_SGIX.

If you specify a hint of GL_FASTEST, texture multi-buffering is used whenever possible
to improve performance. Generally, textures that are adjacent in a sequence of multiple
texture definitions have the greatest chance of being in different buffers. The number of
buffers available at any time depends on various factors, such as the machine being used
and the textures’ internal formats.

171

Chapter 8

8.Rendering Extensions

This chapter explains how to use the different OpenGL rendering extensions. Rendering
refers to several parts of the OpenGL pipeline: the evaluator stage, rasterization, and
per-fragment operations. You learn about

• “Blending Extensions” on page 171

• “SGIS_fog_function—The Fog Function Extension” on page 175

• “SGIS_fog_offset—The Fog Offset Extension” on page 179

• “SGIS_multisample—The Multisample Extension” on page 180

• “SGIS_point_parameters—The Point Parameters Extension” on page 187

• “SGIX_reference_plane—The Reference Plane Extension” on page 191

• “SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_ambient—The Shadow
Extensions” on page 192

• “SGIX_sprite—The Sprite Extension” on page 197

Blending Extensions

Blending refers to the process of combining color values from an incoming pixel
fragment (a source) with current values of the stored pixel in the framebuffer (the
destination). The final effect is that parts of a scene appear translucent. You specify the
blending operation by calling glBlendFunc(), then enable or disable blending using
glEnable() or glDisable() with GL_BLEND.

Blending is discussed in the first section of Chapter 7, “Blending, Antialiasing, Fog, and
Polygon Offset” of the OpenGL Programming Guide. The section, which starts on page 214,
also lists a number of sample uses of blending.

172

Chapter 8: Rendering Extensions

This section explains how to use extensions that support color blending for images and
rendered geometry in a variety of ways:

• “Constant Color Blending Extension”

• “Minmax Blending Extension”

• “Blend Subtract Extension”

Constant Color Blending Extension

The standard blending feature allows you to blend source and destination pixels. The
constant color blending extension, EXT_blend_color, enhances this capability by
defining a constant color that you can include in blending equations.

Constant color blending allows you to specify input source with constant alpha that is
not 1 without actually specifying the alpha for each pixel. Alternatively, when working
with visuals that have no alpha, you can use the blend color for constant alpha. This also
allows you to modify a whole incoming source by blending with a constant color (which
is faster than clearing to that color). In effect, the image looks as if it were viewed through
colored glasses.

Using Constant Colors for Blending

To use a constant color for blending, follow these steps:

1. Call glBlendColorEXT() to specify the blending color:

void glBlendColorEXT(GLclampf red, GLclampf green, GLclampf blue,
 GLclampf alpha)

The four parameters are clamped to the range [0,1] before being stored. The default
value for the constant blending color is (0,0,0,0).

2. Call glBlendFunc() to specify the blending function, using one of the tokens listed
in Table 8-1 as source or destination factor, or both.

Blending Extensions

173

Rc, Gc, Bc, and Ac are the four components of the constant blending color. These
blend factors are already in the range [0,1].

You can, for example, fade between two images by drawing both images with
Alpha and 1-Alpha as Alpha goes from 1 to 0, as in the following code fragment:

glBlendFunc(GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_COLOR_EXT);
for (alpha = 0.0; alpha <= 1.0; alpha += 1.0/16.0) {
 glClear(GL_COLOR_BUFFER_BIT);
 glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, image0);
 glEnable(GL_BLEND);
 glBlendColorEXT(alpha, alpha, alpha, alpha);
 glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, image1);
 glDisable(GL_BLEND);
 glXSwapBuffers(display, window);
 }

New Functions

glBlendColorEXT

Minmax Blending Extension

The minmax blending extension, EXT_blend_minmax, extends blending capability by
introducing two new equations that produce the minimum or maximum color
components of the source and destination colors. Taking the maximum is useful for
applications such as maximum intensity projection (MIP) in medical imaging.

Table 8-1 Blending Factors Defined by the Blend Color Extension

Constant Computed Blend Factor

GL_CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac)

GL_ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)

GL_CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac)

GL_ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)

174

Chapter 8: Rendering Extensions

This extension also introduces a mechanism for defining alternate blend equations. Note
that even if the minmax blending extension is not supported on a given system, that
system may still support the logical operation blending extension or the subtract
blending extension. When these extensions are supported, the glBlendEquationEXT()
function is also supported.

Using a Blend Equation

To specify a blend equation, call glBlendEquationEXT():

void glBlendEquationEXT(GLenum mode)

The mode parameter specifies how source and destination colors are combined. The blend
equations GL_MIN_EXT, GL_MAX_EXT, and GL_LOGIC_OP_EXT do not use source or
destination factors, that is, the values specified with glBlendFunc() do not apply.

If mode is set to GL_FUNC_ADD_EXT, then the blend equation is set to GL_ADD, the
equation used currently in OpenGL 1.0. The glBlendEquationEXT() reference page lists
other modes. These modes are also discussed in “Blend Subtract Extension” on page 174.
While OpenGL 1.0 defines logic operation only on color indices, this extension extends
the logic operation to RGBA pixel groups. The operation is applied to each component
separately.

New Functions

glBlendEquationEXT

Blend Subtract Extension

The blend subtract extension, EXT_blend_subtract, provides two additional blending
equations that can be used by glBlendEquationEXT(). These equations are similar to the
default blending equation, but produce the difference of its left- and right-hand sides,
rather than the sum. See the reference page for glBlendEquationEXT() for a detailed
description.

Image differences are useful in many image-processing applications; for example,
comparing two pictures that may have changed over time.

SGIS_fog_function—The Fog Function Extension

175

SGIS_fog_function—The Fog Function Extension

Standard OpenGL defines three fog modes; GL_LINEAR, GL_EXP (exponential), and
GL_EXP2 (exponential squared). Visual simulation systems can benefit from more
sophisticated atmospheric effects, such as those provided by the fog function extension.

Note: The fog function extension is supported only on InfiniteReality systems.

The fog function extension, SGIS_fog_function, allows you to define an
application-specific fog blend factor function. The function is defined by a set of control
points and should be monotonic. Each control point is represented as a pair of the
eye-space distance value and the corresponding value of the fog blending factor. The
minimum number of control points is 1. The maximum number is implementation
dependent.

To specify the function for computing the blending factor, call glFogFuncSGIS() with
points pointing at an array of pairs of floating point values, and n set to the number of
value pairs in points. The first value of each value pair in points specifies a value of
eye-space distance (should be nonnegative), and the second value of each value pair
specifies the corresponding value of the fog blend factor (should be in the [0.0, 1.0]
range). If there is more than one point, the order in which the points are specified is based
on the following requirements:

• The distance value of each point is not smaller than the distance value of its
predecessor.

• The fog factor value of each point is not bigger than the fog factor value of its
predecessor.

The n value pairs in points completely specify the function, replacing any previous
specification that may have existed. At least one control point should be specified. The
maximum number of control points is implementation dependent and may be retrieved
by glGet*() commands.

Initially the fog function is defined by a single point (0.0, 1.0). The fog factor function is
evaluated by fitting a curve through the points specified by glFogFuncSGIS(). This curve
may be linear between adjacent points, or it may be smoothed, but it will pass exactly
through the points, limited only by the resolution of the implementation. The value pair
with the lowest distance value specifies the fog function value for all values of distance
less than or equal to that pair’s distance. Likewise, the value pair with the greatest
distance value specifies the function value for all values of distance greater than or equal
to that pair’s distance.

176

Chapter 8: Rendering Extensions

If pname is GL_FOG_MODE and param is, or params points to an integer
GL_FOG_FUNC_SGIS, then the application-specified fog factor function is selected for
the fog calculation.

FogFunc Example Program

The following simple example program for fog-function extension can be executed well
only on those platforms where the extension is supported (currently InfiniteReality
only).

#include <stdio.h>
#include <stdlib.h>
#include <GL/gl.h>
#include <GL/glut.h>

/* Simple demo program for fog-function. Will work only on machines
 * where SGIS_fog_func is supported (InfiniteReality).
 *
 * Press ‘f’ key to toggle between fog and no fog
 * Pres ESC to quit
 *
 * cc fogfunc.c -o fogfunc -lglut -lGLU -lGL -lXmu -lX11
 */

#define ESC 27

GLint width = 512, height = 512;
GLint dofog = 1; /* fog enabled by default */
GLfloat fogfunc[] = { /* fog-function profile */
 6.0, 1.0,/* (distance, blend-factor) pairs */
 8.0, 0.5,
 10.0, 0.1,
 12.0, 0.0,
};

void init(void)
{
 GLUquadric *q = gluNewQuadric();
 GLfloat ambient[] = {0.3, 0.3, 0.2, 1.0};
 GLfloat diffuse[] = {0.8, 0.7, 0.8, 1.0};
 GLfloat specular[] = {0.5, 0.7, 0.8, 1.0};
 GLfloat lpos[] = {0.0, 10.0, -20.0, 0.0}; /* infinite light */

SGIS_fog_function—The Fog Function Extension

177

 GLfloat diff_mat[] = {0.1, 0.2, 0.5, 1.0};
 GLfloat amb_mat[] = {0.1, 0.2, 0.5, 1.0};
 GLfloat spec_mat[] = {0.9, 0.9, 0.9, 1.0};
 GLfloat shininess_mat[] = {0.8, 0.0};
 GLfloat amb_scene[] = {0.2, 0.2, 0.2, 1.0};
 GLfloat fog_color[] = {0.0, 0.0, 0.0, 1.0};

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glFrustum(-4.0, 4.0, -4.0, 4.0, 4.0, 30.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 /* Setup lighting */

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
 glLightfv(GL_LIGHT0, GL_POSITION, lpos);
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, amb_scene);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, diff_mat);
 glMaterialfv(GL_FRONT, GL_AMBIENT, amb_mat);
 glMaterialfv(GL_FRONT, GL_SPECULAR, spec_mat);
 glMaterialfv(GL_FRONT, GL_SHININESS, shininess_mat);

 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);

 /* Setup fog function */

 glFogfv(GL_FOG_COLOR, fog_color);
 glFogf(GL_FOG_MODE, GL_FOG_FUNC_SGIS);
 glFogFuncSGIS(4, fogfunc);
 glEnable(GL_FOG);

 /* Setup scene */

 glTranslatef(0.0, 0.0, -6.0);
 glRotatef(60.0, 1.0, 0.0, 0.0);

178

Chapter 8: Rendering Extensions

 glNewList(1, GL_COMPILE);
 glPushMatrix();
 glTranslatef(2.0, 0.0, 0.0);
 glColor3f(1.0, 1.0, 1.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(-4.0, 0.0, 0.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(0.0, 0.0, -4.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(4.0, 0.0, 0.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(0.0, 0.0, -4.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(-4.0, 0.0, 0.0);
 gluSphere(q, 1.0, 40, 40);
 glPopMatrix();
 glEndList();
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 (dofog) ? glEnable(GL_FOG) : glDisable(GL_FOG);
 glCallList(1);
 glutSwapBuffers();
}

void kbd(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘f’: /* toggle fog enable */
 dofog = 1 - dofog;
 glutPostRedisplay();
 break;

 case ESC:/* quit!! */
 exit(0);
 }
}

main(int argc, char *argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
 glutInitWindowSize(width, height);

SGIS_fog_offset—The Fog Offset Extension

179

 glutCreateWindow(“Fog Function”);
 glutKeyboardFunc(kbd);
 glutDisplayFunc(display);

 init();
 glutMainLoop();
}

New Function

glFogFuncSGIS

SGIS_fog_offset—The Fog Offset Extension

The fog offset extension, SGIX_fog_offset, allows applications to make objects look
brighter in a foggy environment.

When fog is enabled, it is equally applied to all objects in a scene. This can create
unrealistic effects for objects that are especially bright (light sources like automobile
headlights, runway landing lights, or florescent objects, for instance). To make such
objects look brighter, fog offset may be subtracted from the eye distance before it is used
for the fog calculation. This works appropriately because the closer an object is to the eye,
the less obscured by fog it is.

To use fog with a fog offset, follow these steps:

1. Call glEnable() with the GL_FOG argument to enable fog.

2. Call glFog*() to choose the color and the equation that controls the density.

The above two steps are explained in more detail in “Using Fog” on page 240 of the
OpenGL Programming Guide, Second Edition.

3. Call glEnable() with argument GL_FOG_OFFSET_SGIX.

180

Chapter 8: Rendering Extensions

4. Call glFog*() with a pname of GL_FOG_OFFSET_VALUE_SGIX and four params.
The first three parameters are point coordinates in the eye-space and the fourth
parameter is an offset distance in the eye-space.

The GL_FOG_OFFSET_VALUE_SGIX parameter specifies point coordinates in
eye-space and offset amount toward the viewpoint. It is subtracted from the depth
value (to make objects closer to the viewer) right before fog calculation. As a result,
objects look less foggy. Note that these point coordinates are needed for OpenGL
implementations that use z-based fog instead of eyespace distance. The
computation of the offset in the z dimension is accurate only in the neighborhood of
the specified point.

If the final distance is negative as a result of offset subtraction, it is clamped to 0. In
the case of perspective projection, fog offset is properly calculated for the objects
surrounding the given point. If objects are too far away from the given point, the fog
offset value should be defined again. In the case of ortho projection, the fog offset
value is correct for any object location.

5. Call glDisable() with argument GL_FOG_OFFSET_SGIX to disable fog offset.

SGIS_multisample—The Multisample Extension

The multisample extension, SGIS_multisample, provides a mechanism to antialias all
OpenGL primitives: points, lines, polygons, bitmaps, and images.

This section explains how to use multisampling and explores what happens when you
use it. It discusses the following topics:

• “Introduction to Multisampling” on page 180

• “Using the Multisample Extension” on page 181 and “Using Advanced
Multisampling Options” on page 182

• “How Multisampling Affects Different Primitives” on page 185

Introduction to Multisampling

Multisampling works by sampling all primitives multiple times at different locations
within each pixel, in effect collecting subpixel information. The result is an image that has
fewer aliasing artifacts.

SGIS_multisample—The Multisample Extension

181

Because each sample includes depth and stencil information, the depth and stencil
functions perform equivalently to the single-sample mode. A single pixel can have 4, 8,
16, or even more subsamples, depending on the platform.

When you use multisampling and read back color, you get the resolved color value (that
is, the average of the samples). When you read back stencil or depth, you typically get
back a single sample value rather than the average. This sample value is typically the one
closest to the center of the pixel.

When to Use Multisampling

Multisample antialiasing is most valuable for rendering polygons because it correctly
handles adjacent polygons, object silhouettes, and even intersecting polygons. Each time
a pixel is updated, the color sample values for each pixel are resolved to a single,
displayable color.

For points and lines, the “smooth” antialiasing mechanism provided by standard
OpenGL results in a higher-quality image and should be used instead of multisampling
(see “Antialiasing” in Chapter 7, “Blending, Antialiasing, Fog, and Polygon Offset” of
the OpenGL Programming Guide).

The multisampling extension lets you alternate multisample and smooth antialiasing
during the rendering of a single scene, so it is possible to mix multisampled polygons
with smooth lines and points. See “Multisampled Points” on page 186 and
“Multisampled Lines” on page 186 for more information.

Using the Multisample Extension

To use multisampling in your application, select a multisampling-capable visual by
calling glXChooseVisual() with the following items in attr_list:

GLX_SAMPLES_SGIS
Must be followed by the minimum number of samples required in
multisample buffers. glXChooseVisual() gives preference to visuals
with the smallest number of samples that meet or exceed the specified
number. Color samples in the multisample buffer may have fewer bits
than colors in the main color buffers. However, multisampled colors
maintain at least as much color resolution in aggregate as the main color
buffers.

182

Chapter 8: Rendering Extensions

GLX_SAMPLE_BUFFERS_SGIS
This attribute is optional. Currently there are no visuals with more than
one multisample buffer, so the returned value is either zero or one.
When GLX_SAMPLES_SGIS is non-zero, this attribute defaults to 1.
When specified, the attribute must be followed by the minimum
acceptable number of multisample buffers. Visuals with the smallest
number of multisample buffers that meet or exceed this minimum
number are preferred.

Multisampling is enabled by default.

• To query whether multisampling is enabled, call

glIsEnabled(MULTISAMPLE_SGIS)

• To turn off multisampling, call

glDisable(MULTISAMPLE_SGIS)

Using Advanced Multisampling Options

Advanced multisampling options provide additional rendering capabilities. This section
discusses

• using a multisample mask to choose how many samples are writable

• using alpha values to feather-blend texture edges

• using the accumulation buffer with multisampling

Figure 8-1 shows how the subsamples in one pixel are turned on and off.

1. First, the primitive is sampled at the locations defined by a sample pattern. If a
sample is inside the polygon, it is turned on, otherwise, it is turned off. This
produces a coverage mask.

2. The coverage mask is then ANDed with a user-defined sample mask, defined by a
call to glSampleMaskSGIS() (see “Using a Multisample Mask to Fade Levels of
Detail” on page 184).

3. You may also choose to convert the alpha value of a fragment to a mask and AND it
with the coverage mask from step 2.

Enable GL_SAMPLE_ALPHA_TO_MASK_SGIS to convert alpha to the mask. The
fragment alpha value is used to generate a temporary mask, which is then ANDed
with the fragment mask.

SGIS_multisample—The Multisample Extension

183

Figure 8-1 Sample Processing During Multisampling

The two processes—using a multisample mask created by glSampleMaskSGIS() and
using the alpha value of the fragment as a mask—can both be used for different effects.

When GL_SAMPLE_ALPHA_TO_MASK_SGIS is enabled, it is usually appropriate to
enable GL_SAMPLE_ALPHA_TO_ONE_SGIS to convert the alpha values to 1 before
blending. Without this option, the effect would be colors that are twice as transparent.

Note: When you use multisampling, blending reduces performance. Therefore, when
possible, disable blending and instead use GL_SAMPLE_MASK_SGIS or
GL_ALPHA_TO_MASK.

Color Blending and Screen-Door Transparency

Multisampling can be used to solve the problem of blurred edges on textures with
irregular edges, such as tree textures, that require extreme magnification. When the
texture is magnified, the edges of the tree look artificial, as if the tree were a paper cutout.
To make them look more natural by converting the alpha to a multisample mask, you can
obtain several renderings of the same primitive, each with the samples offset by a specific
amount. See “Accumulating Multisampled Images” on page 185 for more information.

The same process can be used to achieve screen-door transparency: If you draw only
every other sample, the background shines through for all other samples, resulting in a
transparent image. This is useful because it doesn’t require the polygons to be sorted
from back to front. It is also faster because it doesn’t require blending.

Find samples
inside polygon

AND with user-defined
sample mask...

AND with optional
alpha-to-mask mask

184

Chapter 8: Rendering Extensions

Using a Multisample Mask to Fade Levels of Detail

You can use a mask to specify a subset of multisample locations to be written at a pixel.
This feature is useful for implementing fade-level-of-detail in visual simulation
applications. You can use multisample masks to perform the blending from one level of
detail of a model to the next by rendering the additional data in the detailed model using
a steadily increasing percentage of subsamples as the viewpoint nears the object.

To achieve this blending between a simpler and a more detailed representation of an
object, or to achieve screen-door transparency (discussed in the previous section), either
call glSampleMaskSGIS() or use the Alpha values of the object and call
glSampleAlphaToMaskSGIS().

Below is the prototype for glSampleMaskSGIS():

void glSampleMaskSGIS (GLclampf value, boolean invert)

• value specifies coverage of the modification mask clamped to the range [0, 1].
0 implies no coverage, and 1 implies full coverage.

• invert should be GL_FALSE to use the modification mask implied by value or
GL_TRUE to use the bitwise inverse of that mask.

To define a multisample mask using glSampleMaskSGIS(), follow these steps:

1. Enable GL_SAMPLE_MASK_SGIS.

2. Call glSampleMaskSGIS() with, for example, value set to .25 and invert set to
GL_FALSE.

3. Render the object once for the more complex level of detail.

4. Call glSampleMaskSGIS() again with, for example, value set to .25 and invert set to
GL_TRUE.

5. Render the object for the simpler level of detail.

This time, the complementary set of samples is used because of the use of the
inverted mask.

6. Display the image.

7. Repeat the process for larger sample mask values of the mask as needed (as the
viewpoint nears the object).

SGIS_multisample—The Multisample Extension

185

Accumulating Multisampled Images

You can enhance the quality of the image even more by making several passes, adding
the result in the accumulation buffer. The accumulation buffer averages several
renderings of the same primitive. For multipass rendering, different sample locations
need to be used in each pass to achieve high quality.

When an application uses multisampling in conjunction with accumulation, it should
call glSamplePatternSGIS() with one of the following patterns as an argument:

• GL_1PASS_SGIS is designed to produce a well-antialiased result in a single
rendering pass (this is the default).

• GL_2PASS_0_SGIS and GL_2PASS_1_SGIS together specify twice the number of
sample points per pixel. You should first completely render a scene using pattern
GL_2PASS_0_SGIS, then completely render it again using GL_2PASS_1_SGIS.
When the two images are averaged using the accumulation buffer, the result is as if
a single pass had been rendered with 2×GL_SAMPLES_SGIS sample points.

• GL_4PASS_0_SGIS, GL_4PASS_1_SGIS, GL_4PASS_2_SGIS, and GL_4PASS_3_SGIS
together define a pattern of 4×GL_SAMPLES_SGIS sample points. They can be used
to accumulate an image from four complete rendering passes.

Accumulating multisample results can also extend the capabilities of your system. For
example, if you have only enough resources to allow four subsamples, but you are
willing to render the image twice, you can achieve the same effect as multisampling with
eight subsamples. Note that you do need an accumulation buffer, which also takes space.

To query the sample pattern, call glGetIntegerv() with pname set to
GL_SAMPLE_PATTERN_SGIS. The pattern should be changed only between complete
rendering passes.

For more information, see “The Accumulation Buffer,” on page 394 of the OpenGL
Programming Guide.

How Multisampling Affects Different Primitives

This section briefly discusses multisampled points, lines, polygons, pixels, and bitmaps.

186

Chapter 8: Rendering Extensions

Multisampled Points

If you are using multisampling, the value of the smoothing hint
(GL_POINT_SMOOTH_HINT or GL_LINE_SMOOTH_HINT) is ignored. Because the
quality of multisampled points may not be as good as that of anti-aliased points,
remember that you can turn multisampling on and off as needed to achieve
multisampled polygons and anti-aliased points.

Note: On RealityEngine and InfiniteReality systems, you achieve higher-quality
multisampled points by setting point smooth hint set to GL_NICEST (though this mode
is slower and should be used with care).

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)

The result is round points. Points may disappear or flicker if you use them without this
hint. See the Note: in the next section for caveats on using multisampling with smooth
points and lines.

Multisampled Lines

Lines are sampled into the multisample buffer as rectangles centered on the exact
zero-area segment. Rectangle width is equal to the current linewidth. Rectangle length is
exactly equal to the length of the segment. Rectangles of colinear, abutting line segments
abut exactly, so no subsamples are missed or drawn twice near the shared vertex.

Just like points, lines on RealityEngine and InfiniteReality systems look better when
drawn “smooth” than they do with multisampling.

Note: If you want to draw smooth lines and points by enabling
GL_LINE_SMOOTH_HINT or GL_POINT_SMOOTH_HINT, you need to disable
multisampling and then draw the lines and points. The trick is that you need to do this
after you have finished doing all of the multisampled drawing. If you try to re-enable
multisampling and draw more polygons, those polygons will not necessarily be
anti-aliased correctly if they intersect any of the lines or points.

Multisampled Polygons

Polygons are sampled into the multisample buffer much as they are into the standard
single-sample buffer. A single color value is computed for the entire pixel, regardless of
the number of subsamples at that pixel. Each sample is then written with this color if and
only if it is geometrically within the exact polygon boundary.

SGIS_point_parameters—The Point Parameters Extension

187

If the depth-buffer is enabled, the correct depth value at each multisample location is
computed and used to determine whether that sample should be written or not. If stencil
is enabled, the test is performed for each sample.

Polygon stipple patterns apply equally to all sample locations at a pixel. All sample
locations are considered for modification if the pattern bit is 1. None is considered if the
pattern bit is 0.

Multisample Rasterization of Pixels and Bitmaps

If multisampling is on, pixels are considered small rectangles and are subject to
multisampling. When pixels are sampled into the multisample buffer, each pixel is
treated as an xzoom-by-yzoom square, which is then sampled just like a polygon.

For information about fast clears on RealityEngine, see the reference page for
glTagSampleBufferSGIX().

New Functions

glSampleMaskSGIS, glSamplePatternSGIS

SGIS_point_parameters—The Point Parameters Extension

The point parameter extension, SGIS_point_parameters can be used to render tiny light
sources, commonly referred to as “light points.” The extension is useful, for example, in
an airport runway simulation. As the plane moves along the runway, the light markers
grow larger as they approach.

Note: This extension is currently implemented on InfiniteReality systems only.

188

Chapter 8: Rendering Extensions

By default, a fixed point size is used to render all points, regardless of their distance from
the eye point. Implementing the runway example or a similar scene would be difficult
with this behavior. This extension is useful in two ways:

• It allows the size of a point to be affected by distance attenuation, that is, the point
size decreases as the distance of the point from the eye increases.

• It increases the dynamic range of the raster brightness of points. In other words, the
alpha component of a point may be decreased (and its transparency increased) as its
area shrinks below a defined threshold. This is done by controlling the mapping
from the point size to the raster point area and point transparency.

The new point size derivation method applies to all points, while the threshold applies
to multisample points only. The extension makes this behavior available via the
following constants:

• GL_POINT_SIZE_MIN_SGIS and GL_POINT_SIZE_MAX_SGIS define upper and
lower bounds, respectively, for the derived point size.

• GL_POINT_FADE_THRESHOLD_SIZE_SGIS affects only multisample points. If
the derived point size is larger than the threshold size defined by the
GL_POINT_FADE_THRESHOLD_SIZE_SGIS parameter, the derived point size is
used as the diameter of the rasterized point, and the alpha component is intact.
Otherwise, the threshold size is set to be the diameter of the rasterized point, while
the alpha component is modulated accordingly, to compensate for the larger area.

All parameters of the glPointParameterfSGIS() and glPointParameterfvSGIS()
functions set various values applied to point rendering. The derived point size is defined
to be the size provided as an argument to glPointSize() modulated with a distance
attenuation factor.

Using the Point Parameters Extension

To use the point parameter extension, call glPointParameter*SGIS() with the following
arguments:

• pname set to one of the legal arguments:

– GL_POINT_SIZE_MIN_SGIS

– GL_POINT_SIZE_MAX_SGIS

– GL_POINT_FADE_THRESHOLD_SIZE_SGIS (multisample points only)

SGIS_point_parameters—The Point Parameters Extension

189

• param set to the value you want to set for the minimum size, maximum size, or
threshold size of the point.

Note: If you are using the extension in multisample mode, you have to use smooth
points to achieve the desired improvements:

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)

Point Parameters Example Code

A point parameters example program is available as part of the developer toolbox. It
allows you to change the following attributes directly:

• values of the distance attenuation coefficients (see “Point Parameters Background
Information” on page 190 and the point parameters specification)

• fade threshold size

• minimum and maximum point size

The following code fragment illustrates how to change the fade threshold.

Example 8-1 Point Parameters Example

GLvoid
decFadeSize(GLvoid)
{
#ifdef GL_SGIS_point_parameters
 if (pointParameterSupported) {
 if (fadeSize > 0) fadeSize -= 0.1;
 printf("fadeSize = %4.2f\n", fadeSize);
 glPointParameterfSGIS(GL_POINT_FADE_THRESHOLD_SIZE_SGIS, fadeSize);
 glutPostRedisplay();
 } else {
 fprintf(stderr,
 "GL_SGIS_point_parameters not supported
 on this machine\n");
 }
#else
 fprintf(stderr,
 "GL_SGIS_point_parameters not supported
 on this machine\n");
#endif

190

Chapter 8: Rendering Extensions

Minimum and maximum point size and other elements can also be changed; see the
complete example program in the Developer Toolbox.

Point Parameters Background Information

The raster brightness of a point is a function of the point area, point color, and point
transparency, and the response of the display’s electron gun and phosphor. The point
area and the point transparency are derived from the point size, currently provided with
the size parameter of glPointSize().

This extension defines a derived point size to be closely related to point brightness. The
brightness of a point is given by the following equation:

 1
dist_atten(d) = -------------------
 a + b * d + c * d^2

brightness(Pe) = Brightness * dist_atten(|Pe|)

Pe is the point in eye coordinates, and Brightness is some initial value proportional to the
square of the size provided with glPointSize(). The raster brightness is simplified to be
a function of the rasterized point area and point transparency:

area(Pe) = brightness (Pe) if brightness(Pe) >= Threshold_Area
area(Pe) = Theshold_Area otherwise

factor(Pe) = brightness(Pe)/Threshold_Area

alpha(Pe) = Alpha * factor(Pe)

Alpha comes with the point color (possibly modified by lighting). Threshold_Area is in
area units. Thus, it is proportional to the square of the threshold provided by the
programmer through this extension.

Note: For more background information, see the specification of the point parameters
extension.

New Procedures and Functions

glPointParameterfSGIS, glPointParameterfvSGI

SGIX_reference_plane—The Reference Plane Extension

191

SGIX_reference_plane—The Reference Plane Extension

The reference plane extension, SGIX_reference_plane, allows applications to render a
group of coplanar primitives without depth-buffering artifacts. This is accomplished by
generating the depth values for all the primitives from a single reference plane rather
than from the primitives themselves. Using the reference plane extension ensures that all
primitives in the group have exactly the same depth value at any given sample point, no
matter what imprecision may exist in the original specifications of the primitives or in the
OpenGL coordinate transformation process.

Note: This extension is supported only on InfiniteReality systems.

The reference plane is defined by a four-component plane equation. When
glReferencePlaneSGIX() is called, the equation is transformed by the adjoint of the
composite matrix, the concatenation of model-view and projection matrices. The
resulting clip-coordinate coefficients are transformed by the current viewport when the
reference plane is enabled.

If the reference plane is enabled, a new z coordinate is generated for a fragment (xf, yf,
zf). This z coordinate is generated from (xf, yf); it is given the same z value that the
reference plane would have at (xf, yf).

Why Use the Reference Plane Extension?

Having such an auto-generated z coordinate is useful in situations where the application
is dealing with a stack of primitives. For example, assume a runway for an airplane is
represented by

• a permanent texture on the bottom

• a runway markings texture on top of the pavement

• light points representing runway lights on top of everything

All three layers are coplanar, yet it is important to stack them in the right order. Without
a reference plane, the bottom layers may show through due to precision errors in the
normal depth rasterization algorithm.

192

Chapter 8: Rendering Extensions

Using the Reference Plane Extension

If you know in advance that a set of graphic objects will be in the same plane, follow these
steps:

1. Call glEnable() with argument GL_REFERENCE_PLANE_SGIX.

2. Call glReferencePlane() with the appropriate reference plane equation to establish
the reference plane. The form of the reference plane equation is equivalent to that of
an equation used by glClipplane() (see page 137 of the OpenGL Programming Guide,
Second Edition).

3. Draw coplanar geometry that shares this reference plane.

4. Call glDisable() with argument GL_REFERENCE_PLANE_SGIX.

New Function

 glReferencePlaneSGIX

SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_ambient—The Shadow
Extensions

This section discusses three extensions that are currently used together to create
shadows:

• The depth texture extension, SGIX_depth_texture, defines a new depth texture
internal format. While this extension has other potential uses, it is currently used for
shadows only.

• The shadow extension, SGIX_shadow, defines two operations that can be
performed on texture values before they are passed to the filtering subsystem.

• The shadow ambient extension, SGIX_shadow_ambient, allows for a shadow that is
not black but instead has a different brightness.

SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_ambient—The Shadow Extensions

193

This section first explores the concepts behind using shadows in an OpenGL program. It
then discusses how to use the extension in the following sections:

• “Shadow Extension Overview”

• “Creating the Shadow Map”

• “Rendering the Application From the Normal Viewpoint”

Code fragments from an example program are used throughout this section.

Note: A complete example program, shadowmap.c, is available as part of the
Developer’s Toolbox.

Shadow Extension Overview

The basic assumption used by the shadow extension is that an object is in shadow when
something else is closer to the light source than that object is.

Using the shadow extensions to create shadows in an OpenGL scene consists of several
conceptual steps:

1. The application has to check that both the depth texture extension and the shadow
extension are supported.

2. The application creates a shadow map; an image of the depth buffer from the point
of view of the light.

The application renders the scene from the point of view of the light source and
copies the resulting depth buffer to a texture with internal format
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16_SGIX,
GL_DEPTH_COMPONENT24_SGIX, or GL_DEPTH_COMPONENT32_SGIX (the
SGIX formats are part of the depth texture extension).

194

Chapter 8: Rendering Extensions

3. The application renders the scene from the normal viewpoint. In that process, it sets
up texture coordinate generation and the texture coordinate matrix such that for
each vertex, the r coordinate is equal to the distance from the vertex to the plane
used to construct the shadow map.

Projection depends on the type of light. Normally, a finite light (spot) is most
appropriate (in that case, perspective projection is used). An infinite directional
light may also give good results because it doesn’t require soft shadows.

Note that diffuse lights give only soft shadows and are therefore not well suited,
although texture filtering will result in some blurriness. Note that it is theoretically
possible to do an ortho projection for directional infinite lights. The lack of soft
shadowing is not visually correct but may be acceptable.

4. For this second rendering pass, the application then enables the texture parameter
GL_TEXTURE_COMPARE_SGIX, which is part of the shadow extension and
renders the scene once more. For each pixel, the distance from the light (which was
generated by interpolating the r texture coordinate) is compared with the shadow
map stored in texture memory. The results of the comparison show whether the
pixel being textured is in shadow.

5. The application can then draw each pixel that passes the comparison with
luminance 1.0 and each shadowed pixel with a luminance of zero, or use the
shadow ambient extension to apply ambient light with a value between 0 and 1 (for
example, 0.5).

SGIX_shadow, SGIX_depth_texture, and SGIX_shadow_ambient—The Shadow Extensions

195

Creating the Shadow Map

To create the shadow map, the application renders the scene with the light position as the
viewpoint and saves the depth map into a texture image, as illustrated in the following
code fragment:

static void
generate_shadow_map(void)
{
 int x, y;
 GLfloat log2 = log(2.0);

 x = 1 << ((int) (log((float) width) / log2));
 y = 1 << ((int) (log((float) height) / log2));
 glViewport(0, 0, x, y);
 render_light_view();

 /* Read in frame-buffer into a depth texture map */
glCopyTexImage2DEXT(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16_SGIX,
 0, 0, x, y, 0);

glViewport(0, 0, width, height);
}

Figure 8-2 Rendering From the Light Source Point of View

Projection stack

196

Chapter 8: Rendering Extensions

Rendering the Application From the Normal Viewpoint

After generating the texture map, the application renders the scene from the normal
viewpoint but with the purpose of generating comparison data. That is, use glTexgen()
to generate texture coordinates that are identical to vertex coordinates. The texture
matrix then transforms all pixel coordinates back to light coordinates. The depth-value is
now available in the r texture coordinate.

Figure 8-3 Rendering From Normal Viewpoint

During the second rendering pass, the r coordinate is interpolated over the primitive to
give the distance from the light for every fragment. Then the texture hardware compares
r for the fragment with the value from the texture. Based on this test, a value of 0 or 1 is
sent to the texture filter. The application can render shadows as black, or use the shadow
ambient extension discussed in the next section, to use a different luminance value.

Using the Shadow Ambient Extension

The shadow ambient extension allows applications to use reduced luminance instead of
the color black for shadows. To achieve this, the extension makes it possible to return a
value other than 0.0 by the SGIX_shadow operation in the case when the shadow test
passes. With this extension any floating-point value in the range [0.0, 1.0] can be
returned. This allows the (untextured) ambient lighting and direct shadowed lighting
from a single light source to be computed in a single pass.

Texture stack

Projection stack

SGIX_sprite—The Sprite Extension

197

To use the extension, call glTexParameter*() with pname set to
GL_SHADOW_AMBIENT_SGIX and param set to a floating-point value between 0.0 and
1.0. After the parameter is set, each pixel that extension is determined to be in shadow by
the shadow extension has a luminance specified by this extension instead of a luminance
of 0.0.

SGIX_sprite—The Sprite Extension

The sprite extension, SGIX_sprite, provides support for viewpoint-dependent alignment
of geometry. In particular, geometry that rotates about a point or a specified axis is made
to face the eye point at all times. Imagine, for example, an area covered with trees. As the
user moves around in that area, it is important that the user always view the front of the
tree. Because trees look similar from all sides, it makes sense to have each tree face the
viewer (in fact, “look at” the viewer) at all times to create the illusion of a cylindrical
object.

Note: This extension is currently available only on InfiniteReality systems.

Rendering sprite geometry requires applying a transformation to primitives before the
current model view transformation is applied. This transformation matrix includes a
rotation, which is computed based on

• the current model view matrix

• a translation that is specified explicitly (GL_ SPRITE_TRANSLATION_SGIX)

In effect, the model view matrix is perturbed only for the drawing of the next set of
objects; it is not permanently perturbed.

This extension improves performance because the flat object you draw is much less
complex than a true three-dimensional object would be. Platform-dependent
implementations may need to ensure that the validation of the perturbed model view
matrix has as small an overhead as possible. This is especially significant on systems with
multiple geometry processors. Applications that intend to run on different systems
benefit from verifying the actual performance improvement for each case.

198

Chapter 8: Rendering Extensions

Available Sprite Modes

Primitives are transformed by a rotation, depending on the sprite mode:

• GL_SPRITE_AXIAL_SGIX: The front of the object is rotated about an axis so that it
faces the eye as much as the axis constraint allows. This mode is used for rendering
roughly cylindrical objects (such as trees) in a visual simulation. See Figure 8-4 for
an example.

• GL_SPRITE_OBJECT_ALIGNED_SGIX: The front of the object is rotated about a
point to face the eye. The remaining rotational degree of freedom is specified by
aligning the top of the object with a specified axis in object coordinates. This mode
is used for spherical symmetric objects (such as clouds) and for special effects such
as explosions or smoke which must maintain an alignment in object coordinates for
realism. See Figure 8-5 for an example.

• GL_SPRITE_EYE_ALIGNED_SGIX: The front of the object is rotated about a point
to face the eye. The remaining rotational degree of freedom is specified by aligning
the top of the object with a specified axis in eye coordinates. This is used for
rendering sprites that must maintain an alignment on the screen, such as 3D
annotations. See Figure 8-6 for an example.

The axis of rotation or alignment, GL_SPRITE_AXIS_SGIX, can be in an arbitrary
direction to support geocentric coordinate frames in which “up” is not along x, y, or z.

Figure 8-4 Sprites Viewed with Axial Sprite Mode

SGIX_sprite—The Sprite Extension

199

Figure 8-5 Sprites Viewed With Object Aligned Mode

Figure 8-6 Sprites Viewed With Eye Aligned Mode

Note: The sprite extension specification discusses in more detail how the sprite
transformation is computed. See “Extension Specifications” on page 85 for more
information.

Using the Sprite Extension

To render sprite geometry, an application applies a transformation to primitives before
applying the current modelview matrix. The transformation is based on the current
modelview matrix, the sprite rendering mode, and the constraints on sprite motion.

200

Chapter 8: Rendering Extensions

To use the sprite extension, follow these steps:

1. Enable sprite rendering by calling glEnable() with the argument GL_SPRITE_SGIX.

2. Call glSpriteParameteriSGIX() with one of the three possible modes:
GL_SPRITE_AXIAL_SGIX, GL_SPRITE_OBJECT_ALIGNED_SGIX, or
GL_SPRITE_EYE_ALIGNED_SGIX.

3. Specify the axis of rotation and the translation.

4. Draw the sprite geometry

5. Finally call glDisable() with the argument GL_SPRITE_SGIX and render the rest of
the scene.

The following code fragment is from the sprite.c program in the OpenGL course “From
the EXTensions to the SOLutions,” which is available through the developer toolbox.

Example 8-2 Sprite Example Program

GLvoid
drawScene(GLvoid)
{

int i, slices = 8;

glClear(GL_COLOR_BUFFER_BIT);

drawObject();

glEnable(GL_SPRITE_SGIX);
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_AXIAL_SGIX);

/* axial mode (clipped geometry) */
glPushMatrix();
glTranslatef(.15, .0, .0);

spriteAxis[0] = .2; spriteAxis[1] = .2; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .0; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);
drawObject();
glPopMatrix();

/* axial mode (non-clipped geometry) */
glPushMatrix();

SGIX_sprite—The Sprite Extension

201

glTranslatef(.3, .1, .0);

spriteAxis[0] = .2; spriteAxis[1] = .2; spriteAxis[2] = 0.5;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);

drawObject();
glPopMatrix();

/* object mode */
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_OBJECT_ALIGNED_SGIX);

glPushMatrix();
glTranslatef(.0, .12, .0);

spriteAxis[0] = .8; spriteAxis[1] = .5; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .0; spriteTrans[1] = .3; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);

drawObject();
glPopMatrix();

/* eye mode */
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_EYE_ALIGNED_SGIX);
glPushMatrix();
glTranslatef(.15, .25, .0);
spriteAxis[0] = .0; spriteAxis[1] = 1.0; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);

drawObject();
glPopMatrix();

glDisable(GL_SPRITE_SGIX);

glutSwapBuffers();
checkError("drawScene");

}

202

Chapter 8: Rendering Extensions

The program uses the different sprite modes depending on user input.

Sprite geometry is modeled in a canonical frame: +Z is the up vector. -Y is the front vector
which is rotated to point towards the eye.

New Function

glSpriteParameterSGIX

203

Chapter 9

9.Imaging Extensions

This chapter discusses imaging extensions. After some introductory information, it looks
at each extension in some detail. You learn about

• “Introduction to Imaging Extensions” on page 203

• “EXT_abgr—The ABGR Extension” on page 209

• “EXT_convolution—The Convolution Extension” on page 210

• “EXT_histogram—The Histogram and Minmax Extensions” on page 213

• “EXT_packed_pixels—The Packed Pixels Extension” on page 218

• “SGI_color_matrix—The Color Matrix Extension” on page 220

• “SGI_color_table—The Color Table Extension” on page 221

• “SGIX_interlace—The Interlace Extension” on page 225

• “SGIX_pixel_texture—The Pixel Texture Extension” on page 226

Introduction to Imaging Extensions

This section discusses where extensions are in the OpenGL imaging pipeline; it also lists
the commands that may be affected by one of the imaging extensions.

Where Extensions Are in the Imaging Pipeline

The OpenGL imaging pipeline is shown in the OpenGL Programming Guide, Second Edition
in the illustration “Drawing Pixels with glDrawPixels*()” in Chapter 8, “Drawing Pixels,
Bitmaps, Fonts, and Images.” The OpenGL Reference Manual, Second Edition also includes
two overview illustrations and a detailed fold-out illustration in the back of the book.

204

Chapter 9: Imaging Extensions

Figure 9-1 is a high-level illustration of pixel paths.

Figure 9-1 OpenGL Pixel Paths

The OpenGL pixel paths move rectangles of pixels between host memory, textures, and
the framebuffer. Pixel store operations are applied to pixels as they move in and out of
host memory. Operations defined by the glPixelTransfer() command, and other
operations in the pixel transfer pipeline, apply to all paths between host memory,
textures, and the framebuffer.

Pixel Transfer Paths

Certain pipeline elements, such as convolution filters and color tables are used during
pixel transfer to modify pixels on their way to and from user memory, the framebuffer,
and textures. The set of pixel paths used to initialize these pipeline elements is
diagrammed in Figure 9-2. The pixel transfer pipeline is not applied to any of these
paths.

Host Memory

glPixelStore

glReadPixels

glDrawPixels

glCopyPixels

glTexImage

glCopyTexImage

glGetTexImage

Texture Framebuffer

Introduction to Imaging Extensions

205

Figure 9-2 Extensions that Modify Pixels During Transfer

Convolution, Histogram, and Color Table in the Pipeline

Figure 9-3 shows the same path with an emphasis on the position of each extension in the
imaging pipeline itself. After the scale and bias operations and after the shift and offset
operations, color conversion (LUT in Figure 9-3 below) takes place with a lookup table.
After that, the extension modules may be applied. Note how the color table extension can
be applied at different locations in the pipeline. Unless the histogram or minmax
extensions were called to collect information only, pixel processing continues, as shown
in the OpenGL Programming Guide.

Host Memory

glPixelStore

glGetMinMax
glConvolution

Filter

glColorTable

glCopy
ColorTable

glCopy
Convolution

Filter

glGet
Convolution

Filter
glGet
Color
Table glGetHistogram

scale
bias Color table

scale
bias

Convolution
filter Histogram MinMax

Framebuffer

206

Chapter 9: Imaging Extensions

Figure 9-3 Convolution, Histogram, and Color Table in the Pipeline

Index

I->RGBA

RGBA

RGBA->RGBA

OpenGL

Shift & add

LUT

GL_COLOR_TABLE_SGI

GL_POST_CONVOLUTION_COLOR_TABLE_SGI

GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI

Convolve

Post-convolve scale & bias

Color matrix

Histogram

Minmax

Post-color matrix scale & bias

LUT

-> ->

Shift & add

Introduction to Imaging Extensions

207

Interlacing and Pixel Texture in the Pipeline

Figure 9-4 shows where interlacing (see “SGIX_interlace—The Interlace Extension” on
page 225) and pixel texture (see “SGIX_pixel_texture—The Pixel Texture Extension” on
page 226) are applied in the pixel pipeline. The steps after interlacing are shown in more
detail than the ones before to allow the diagram to include pixel texture.

Figure 9-4 Interlacing and Pixel Texture in the Pixel Pipeline

Merging the Geometry and Pixel Pipeline

The convert-to-fragment stage of geometry rasterization and of the pixel pipeline each
produce fragments. The fragments are processed by a shared per-fragment pipeline that
begins with applying the texture to the fragment color.

glPixelStore/Unpack

glPixelTransfer

glInterlace

User memory

Conversion to
internal format

clamp [0,1]

Texture

Conversion to fragment:
pixel zoom

pixel texture

Final conversion:
clamp [0,1] or mask

conv to fixed pt

Framebuffer

208

Chapter 9: Imaging Extensions

Because the pixel pipeline shares the per-fragment processing with the geometry
pipeline, the fragments it produces must be identical to the ones produced by the
geometry pipeline. The parts of the fragment that are not derived from pixel groups are
filled with the associated values in the current raster position.

Pixel Pipeline Conversion to Fragments

A fragment consists of x and y window coordinates and its associated color value, depth
value, and texture coordinates. The pixel groups processed by the pixel pipeline do not
produce all the fragment’s associated data, so the parts that are not produced from the
pixel group are taken from the raster position. This combination of information allows
the pixel pipeline to pass a complete fragment into the per fragment operations shared
with the geometry pipeline, as shown in Figure 9-5.

Figure 9-5 Conversion to Fragments

For example, if the pixel group is producing the color part of the fragment, the texture
coordinates and depth value come from the current raster position. If the pixel group is
producing the depth part of the fragment, the texture coordinates and color come from
the current raster position.

x,y

pixel
group fragment

tcoord

color

depth

tcoord

color

depth

current raster position

EXT_abgr—The ABGR Extension

209

The pixel texture extension (see “SGIX_pixel_texture—The Pixel Texture Extension” on
page 226) introduces the switch highlighted in blue, which provides a way to retrieve the
fragment’s texture coordinates from the pixel group. The pixel texture extension also
allows developers to specify whether the color should come from the pixel group or the
current raster position.

Functions Affected by Imaging Extensions

Imaging extensions affect all functions that are affected by the pixel transfer modes (see
Chapter 8, “Drawing Pixels, Bitmaps, Fonts, and Images,” of the OpenGL Programming
Guide). In general, commands affected are

• all commands that draw and copy pixels or define texture images

• all commands that read pixels or textures back to host memory

EXT_abgr—The ABGR Extension

The ABGR extension, EXT_abgr, extends the list of host-memory color formats by an
alternative to the RGBA format that uses reverse component order. The ABGR
component order matches the cpack IRIS GL format on big-endian machines. This is the
most convenient way to use an ABGR source image with OpenGL. Note that the ABGR
extension provides the best performance on some of the older graphics systems: Starter,
XZ, Elan, XS24, Extreme.

To use this extension, call glDrawPixels(), glGetTexImage(), glReadPixels(), and
glTexImage*() with GL_ABGR_EXT as the value of the format parameter.

The following code fragment illustrates the use of the extension:

/*
 * draw a 32x32 pixel image at location 10, 10 using an ABGR source
 * image. "image" *should* point to a 32x32 ABGR UNSIGNED BYTE image
 */

{
 unsigned char *image;

 glRasterPos2f(10, 10);
 glDrawPixels(32, 32, GL_ABGR_EXT, GL_UNSIGNED_BYTE, image);
}

210

Chapter 9: Imaging Extensions

EXT_convolution—The Convolution Extension

The convolution extension, EXT_convolution, allows you to filter images, for example to
sharpen or blur them, by convolving the pixel values in a one- or two- dimensional image
with a convolution kernel.

The convolution kernels are themselves treated as one- and two- dimensional images.
They can be loaded from application memory or from the framebuffer.

Convolution is performed only for RGBA pixel groups, although these groups may have
been specified as color indexes and converted to RGBA by index table lookup.

Figure 9-6 shows the equations for general convolution at the top and for separable
convolution at the bottom.

Figure 9-6 Convolution Equations

Performing Convolution

Performing convolution consists of these steps:

1. If desired, specify filter scale, filter bias, and convolution parameters for the
convolution kernel. For example:

glConvolutionParameteriEXT(GL_CONVOLUTION_2D_EXT,
 GL_CONVOLUTION_BORDER_MODE_EXT,
 GL_REDUCE_EXT /*nothing else supported at present */);

glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,
 GL_CONVOLUTION_FILTER_SCALE_EXT,filterscale);
glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,
 GL_CONVOLUTION_FILTER_BIAS_EXT, filterbias);

EXT_convolution—The Convolution Extension

211

2. Define the image to be used for the convolution kernel.

Use a 2D array for 2D convolution and a 1D array for 1D convolution. Separable 2D
filters consist of two 1D images for the row and the column.

To specify a convolution kernel, call glConvolutionFilter2DEXT(),
glConvolutionFilter1DEXT(), or glSeparableFilter2DEXT().

The following example defines a 7 x 7 convolution kernel that is in RGB format and
is based on a 7 x 7 RGB pixel array previously defined as rgbBlurImage7x7:

glConvolutionFilter2DEXT(
GL_CONVOLUTION_2D_EXT, /*has to be this value*/
GL_RGB, /*filter kernel internal format*/
7, 7, /*width & height of image pixel array*/
GL_RGB, /*image internal format*/
GL_FLOAT, /*type of image pixel data*/
(const void*)rgbBlurImage7x7 /* image itself*/
)

For more information about the different parameters, see the reference page for the
relevant function.

3. Enable convolution, for example:

glEnable(GL_CONVOLUTION_2D_EXT)

4. Perform pixel operations (for example pixel drawing or texture image definition).

Convolution happens as the pixel operations are executed.

Retrieving Convolution State Parameters

If necessary, you can use glGetConvolutionParameter*EXT() to retrieve the following
convolution state parameters:

GL_CONVOLUTION_BORDER_MODE_EXT
Convolution border mode. For a list of border modes, see
glConvolutionParameterEXT().

GL_CONVOLUTION_FORMAT_EXT
Current internal format. For lists of allowable formats, see
glConvolutionFilter*EXT(), and glSeparableFilter2DEXT().

212

Chapter 9: Imaging Extensions

GL_CONVOLUTION_FILTER_{BIAS, SCALE}_EXT
Current filter bias and filter scale factors. params must be a pointer to an
array of four elements, which receive the red, green, blue, and alpha
filter bias terms in that order.

GL_CONVOLUTION_{WIDTH, HEIGHT}_EXT
Current filter image width.

GL_MAX_CONVOLUTION_{WIDTH, HEIGHT}_EXT
Maximum acceptable filter image width and filter image height.

Separable and General Convolution Filters

A convolution that uses separable filters typically operates faster than one that uses
general filters.

Special facilities are provided for the definition of two-dimensional separable filters. For
separable filters, the image is represented as the product of two one-dimensional images,
not as a full two-dimensional image.

To specify a two-dimensional separable filter, call glSeparableFilter2DEXT(), which has
the following prototype:

void glSeparableFilter2DEXT(GLenum target,GLenum internalformat,GLsizei width,
GLsizei height,GLenum format,GLenum type,
const GLvoid *row,const GLvoid *column)

• target must be GL_SEPARABLE_2D_EXT.

• internalformat specifies the formats of two one-dimensional images that are retained;
it must be one of GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_INTENSITY, GL_RGB, or GL_RGBA.

• row and column point to two one-dimensional images in memory.

– The row image, defined by format and type, is width pixels wide.

– The column image, defined by format and type, is height pixels wide.

EXT_histogram—The Histogram and Minmax Extensions

213

The two images are extracted from memory and processed just as if
glConvolutionFilter1DEXT() were called separately for each, with the resulting retained
images replacing the current 2D separable filter images, except that each scale and bias
are applied to each image using the 2D separable scale and bias vectors.

If you are using convolution on a texture image, keep in mind that the result of the
convolution must obey the constraint that the dimensions have to be a power of 2. If you
use the reduce border convolution mode, the image shrinks by the filter width minus 1,
so you may have to take that into account ahead of time.

New Functions

glConvolutionFilter1DEXT, glConvolutionFilter2DEXT,
glCopyConvolutionFilter1DEXT, glCopyConvolutionFilter2DEXT,
glGetConvolutionFilterEXT, glSeparableFilter2DEXT, glGetSeparableFilterEXT,
glConvolutionParameterEXT

EXT_histogram—The Histogram and Minmax Extensions

The histogram extension, EXT_histogram, defines operations that count occurrences of
specific color component values and that track the minimum and maximum color
component values in images that pass through the image pipeline. You can use the
results of these operations to create a more balanced, better-quality image.

Figure 9-7 illustrates how the histogram extension collects information for one of the
color components: The histogram has the number of bins specified at creation, and
information is then collected about the number of times the color component falls within
each bin. Assuming that the example below is for the red component of an image, you
can see that R values between 95 and 127 occurred least often and those between 127 and
159 most often.

214

Chapter 9: Imaging Extensions

Figure 9-7 How the Histogram Extension Collects Information

Histogram and minmax operations are performed only for RGBA pixel groups, though
these groups may have been specified as color indexes and converted to RGBA by color
index table lookup.

0

31

63

95

127

159

191

223

255

EXT_histogram—The Histogram and Minmax Extensions

215

Using the Histogram Extension

To collect histogram information, follow these steps:

1. Call glHistogramEXT() to define the histogram, for example:

glHistogramEXT(GL_HISTOGRAM_EXT,
 256 /* width (number of bins) */,
 GL_LUMINANCE /* internalformat */,
 GL_TRUE /* sink */);

• width, which must be a power of 2, specifies the number of histogram entries.

• internalformat specifies the format of each table entry.

• sink specifies whether pixel groups are consumed by the histogram operation
(GL_TRUE) or passed further down the image pipeline (GL_FALSE).

2. Enable histogramming by calling

glEnable(GL_HISTOGRAM_EXT)

3. Perform the pixel operations for which you want to collect information (drawing,
reading, copying pixels, or loading a texture). Only one operation is sufficient.

For each component represented in the histogram internal format, let the
corresponding component of the incoming pixel (luminance corresponds to red) be
of value c (after clamping to [0, 1). The corresponding component of bin number
round((width-1)*c) is incremented by 1.

4. Call glGetHistogramEXT() to query the current contents of the histogram:

void glGetHistogramEXT(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values)

• target must be GL_HISTOGRAM_EXT.

• reset is either GL_TRUE or GL_FALSE. If GL_TRUE, each component counter
that is actually returned is reset to zero. Counters that are not returned are not
modified, for example, GL_GREEN or GL_BLUE counters may not be returned
if format is GL_RED and internal format is GL_RGB.

• format must be one of GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA.

216

Chapter 9: Imaging Extensions

• type must be GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

• values is used to return a 1D image with the same width as the histogram. No
pixel transfer operations are performed on this image, but pixel storage modes
that apply for glReadPixels() are performed. Color components that are
requested in the specified format—but are not included in the internal format of
the histogram—are returned as zero. The assignments of internal color
components to the components requested by format are as follows:

Using the Minmax Part of the Histogram Extension

The minmax part of the histogram extension lets you find out about minimum and
maximum color component values present in an image. Using the minmax part of the
histogram extension is similar to using the histogram part.

To determine minimum and maximum color values used in an image, follow these steps:

1. Specify a minmax table by calling glMinmaxEXT().

void glMinmaxEXT(GLenum target, GLenum internalformat, GLboolean sink)

• target is the table in which the information about the image is to be stored. target
must be GL_MINMAX_EXT.

• internalformat specifies the format of the table entries. It must be an allowed
internal format (see the reference page for glMinmaxEXT).

• sink is set to GL_TRUE or GL_FALSE. If GL_TRUE, no further processing
happens and pixels or texels are discarded.

The resulting minmax table always has two entries. Entry 0 is the minimum and
entry 1 is the maximum.

internal component resulting component

red red

green green

blue blue

alpha alpha

luminance red/luminance

EXT_histogram—The Histogram and Minmax Extensions

217

2. Enable minmax by calling

glEnable(GL_MINMAX_EXT)

3. Perform the pixel operation, for example, glCopyPixels().

Each component of the internal format of the minmax table is compared to the
corresponding component of the incoming RGBA pixel (luminance components are
compared to red).

• If a component is greater than the corresponding component in the maximum
element, then the maximum element is updated with the pixel component
value.

• If a component is smaller than the corresponding component in the minimum
element, then the minimum element is updated with the pixel component
value.

4. Query the current context of the minmax table by calling glGetMinMaxExt():

void glGetMinMaxEXT (GLenum target, GLboolean reset, GLenum format,
 GLenum type, glvoid *values)

You can also call glGetMinmaxParameterEXT() to retrieve minmax state information;
setting target to GL_MINMAX_EXT and pname to one of the following values:

Using Proxy Histograms

Histograms can get quite large and require more memory than is available to the
graphics subsystem. You can call glHistogramEXT() with target set to
GL_PROXY_HISTOGRAM_EXT to find out whether a histogram fits into memory. The
process is similar to the one explained in the section “Texture Proxy” on page 330 of the
OpenGL Programming Guide, Second Edition.

To query histogram state values, call glGetHistogramParameter*EXT(). Histogram calls
with the proxy target (like texture and color table calls with the proxy target) have no
effect on the histogram itself.

GL_MINMAX_FORMAT_EXT Internal format of minmax table

GL_MINMAX_SINK_EXT Value of sink parameter

218

Chapter 9: Imaging Extensions

New Functions

glGetHistogramEXT, glGetHistogramParameterEXT, glGetMinmaxEXT,
glGetMinmaxParameterEXT, glHistogramEXT, glMinmaxEXT, glResetHistogramEXT,
glResetMinmaxEXT

EXT_packed_pixels—The Packed Pixels Extension

The packed pixels extension, EXT_packed_pixels, provides support for packed pixels in
host memory. A packed pixel is represented entirely by one unsigned byte, unsigned
short, or unsigned integer. The fields within the packed pixel are not proper machine
types, but the pixel as a whole is. Thus the pixel storage modes, such as
GL_PACK_SKIP_PIXELS, GL_PACK_ROW_LENGTH, and so on, and their unpacking
counterparts, all work correctly with packed pixels.

Why Use the Packed Pixels Extension?

The packed pixels extension lets you store images more efficiently by providing
additional pixel types you can use when reading and drawing pixels or loading textures.
Packed pixels have two potential benefits:

• Save bandwidth. Packed pixels may use less bandwidth than unpacked pixels to
transfer them to and from the graphics hardware because the packed pixel types
use fewer bytes per pixel.

• Save processing time. If the packed pixel type matches the destination (texture or
framebuffer) type, packed pixels save processing time.

In addition, some of the types defined by this extension match the internal texture
formats, so less processing is required to transfer texture images to texture memory.
Internal formats are part of OpenGL 1.1, they were available as part of the texture
extension in OpenGL 1.0.

EXT_packed_pixels—The Packed Pixels Extension

219

Using Packed Pixels

To use packed pixels, provide one of the types listed in Table 9-1 as the type parameter to
glDrawPixels(), glReadPixels(), and so on.

The already available types for glReadPixels(), glDrawPixels(), and so on are listed in
Table 8-2 “Data Types for glReadPixels or glDrawPixels,” on page 293 of the OpenGL
Programming Guide.

Pixel Type Descriptions

Each packed pixel type includes a base type, for example GL_UNSIGNED_BYTE, and a
field width (for example, 3_3_2):

• The base type, GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or
GL_UNSIGNED_INT, determines the type of “container” into which each pixel’s
color components are packed.

• The field widths, 3_3_2, 4_4_4_4, 5_5_5_1, 8_8_8_8, or 10_10_10_2, determine the
sizes (in bits) of the fields that contain a pixel’s color components. The field widths
are matched to the components in the pixel format, in left-to-right order.

For example, if a pixel has the type GL_UNSIGNED_BYTE_3_3_2_EXT and the
format GL_RGB, the pixel is contained in an unsigned byte, the red component
occupies three bits, the green component occupies three bits, and the blue
component occupies two bits.

The fields are packed tightly into their container, with the leftmost field occupying
the most-significant bits and the rightmost field occupying the least-significant bits.

Table 9-1 Types That Use Packed Pixels

Parameter Token Value GL Data Type

GL_UNSIGNED_BYTE_3_3_2_EXT GLubyte

GL_UNSIGNED_SHORT_4_4_4_4_EXT GLushort

GL_UNSIGNED_SHORT_5_5_5_1_EXT GLushort

GL_UNSIGNED_INT_8_8_8_8_EXT GLuint

GL_UNSIGNED_INT_10_10_10_2_EXT GLuint

220

Chapter 9: Imaging Extensions

Because of this ordering scheme, integer constants (particularly hexadecimal constants)
can be used to specify pixel values in a readable and system-independent way. For
example, a packed pixel with type GL_UNSIGNED_SHORT_4_4_4_4_EXT, format
GL_RGBA, and color components red == 1, green == 2, blue == 3, alpha == 4 has the
value 0x1234.

The ordering scheme also allows packed pixel values to be computed with
system-independent code. For example, if there are four variables (red, green, blue,
alpha) containing the pixel’s color component values, a packed pixel of type
GL_UNSIGNED_INT_10_10_10_2_EXT and format GL_RGBA can be computed with
the following C code:

GLuint pixel, red, green, blue, alpha;
pixel = (red << 22) | (green << 12) | (blue << 2) | alpha;

While the source code that manipulates packed pixels is identical on both big-endian and
little-endian systems, you still need to enable byte swapping when drawing packed
pixels that have been written in binary form by a system with different endianness.

SGI_color_matrix—The Color Matrix Extension

The color matrix extension, SGI_color_matrix, lets you transform the colors in the
imaging pipeline with a 4 x 4 matrix. You can use the color matrix to reassign and
duplicate color components and to implement simple color-space conversions.

This extension adds a 4 x 4 matrix stack to the pixel transfer path. The matrix operates
only on RGBA pixel groups, multiplying the 4 x 4 color matrix on top of the stack with
the components of each pixel. The stack is manipulated using the OpenGL 1.0 matrix
manipulation functions: glPushMatrix(), glPopMatrix(), glLoadIdentity(),
glLoadMatrix(), and so on. All standard transformations, for example glRotate() or
glTranslate(), also apply to the color matrix.

The color matrix is always applied to all pixel transfers. To disable it, load the identity
matrix.

SGI_color_table—The Color Table Extension

221

Below is an example of a color matrix that swaps BGR pixels to form RGB pixels:

GLfloat colorMat[16] = {0.0, 0.0, 1.0, 0.0,
0.0, 1.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0 };

glMatrixMode(GL_COLOR);
glPushMatrix();
glLoadMatrixf(colorMat);

After the matrix multiplication, each resulting color component is scaled and biased by
the appropriate user-defined scale and bias values. Color matrix multiplication follows
convolution (and convolution follows scale and bias).

To set scale and bias values to be applied after the color matrix, call glPixelTransfer*()
with the following values for pname:

• GL_POST_COLOR_MATRIX_{RED/BLUE/GREEN/ALPHA}_SCALE_SGI

• GL_POST_COLOR_MATRIX_{RED/BLUE/GREEN/ALPHA}_BIAS_SGI

SGI_color_table—The Color Table Extension

The color table extension, SGI_color_table, defines a new RGBA-format color lookup
mechanism. It doesn’t replace the color lookup tables provided by the color maps
discussed in the OpenGL Programming Guide but provides additional lookup capabilities.

• Unlike pixel maps, the color table extension’s download operations go though the
glPixelStore() unpack operations, the way glDrawPixels() does.

• When a color table is applied to pixels, OpenGL maps the pixel format to the color
table format.

If the copy texture extension is implemented, this extension also defines methods to
initialize the color lookup tables from the framebuffer.

222

Chapter 9: Imaging Extensions

Why Use the Color Table Extension?

The color tables provided by the color table extension allow you to adjust image contrast
and brightness after each stage of the pixel processing pipeline.

Because you can use several color lookup tables at different stages of the pipeline (see
Figure 9-3), you have greater control over the changes you want to make. In addition the
extension color lookup tables are more efficient than those of OpenGL because you may
apply them to a subset of components (for example, Alpha only).

Specifying a Color Table

To specify a color lookup table, call glColorTableSGI():

void glColorTableSGI(GLenum target, GLenum internalformat, GLsizei width,
GLenum format, GLenum type,const GLvoid *table)

• target must be GL_COLOR_TABLE_SGI,
GL_POST_CONVOLUTION_COLOR_TABLE_SGI, or
GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI.

• internalformat is the internal format of the color table.

• width specifies the number of entries in the color lookup table. It must be zero or a
non-negative power of two.

• format specifies the format of the pixel data in the table.

• type specifies the type of the pixel data in the table.

• table is a pointer to a 1D array of pixel data that is processed to build the table.

If no error results from the execution of glColorTableSGI(), the following events occur:

1. The specified color lookup table is defined to have width entries, each with the
specified internal format. The entries are indexed as zero through N-1, where N is
the width of the table. The values in the previous color lookup table, if any, are lost.
The new values are specified by the contents of the one-dimensional image that table
points to, with format as the memory format and type as the data type.

2. The specified image is extracted from memory and processed as if glDrawPixels()
were called, stopping just before the application of pixel transfer modes (see the
illustration “Drawing Pixels with glDrawPixels*()” on page 310 of the OpenGL
Programming Guide).

SGI_color_table—The Color Table Extension

223

3. The R, G, B, and A components of each pixel are scaled by the four
GL_COLOR_TABLE_SCALE_SGI parameters, then biased by the four
GL_COLOR_TABLE_BIAS_SGI parameters and clamped to [0,1].

The scale and bias parameters are themselves specified by calling
glColorTableParameterivSGI() or glColorTableParameterfvSGI():

• target specifies one of the three color tables: GL_COLOR_TABLE_SGI,
GL_POST_CONVOLUTION_COLOR_TABLE_SGI, or
GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI.

• pname has to be GL_COLOR_TABLE_SCALE_SGI or
GL_COLOR_TABLE_BIAS_SGI.

• params points to a vector of four values: red, green, blue, and alpha, in that
order.

4. Each pixel is then converted to have the specified internal format. This conversion
maps the component values of the pixel (R, G, B, and A) to the values included in
the internal format (red, green, blue, alpha, luminance, and intensity).

The new lookup tables are treated as one-dimensional images with internal formats, like
texture images and convolution filter images. As a result, the new tables can operate on
a subset of the components of passing pixel groups. For example, a table with internal
format GL_ALPHA modifies only the A component of each pixel group, leaving the R,
G, and B components unmodified.

Using Framebuffer Image Data for Color Tables

If the copy texture extension is supported, you can define a color table using image data
in the framebuffer. Call glCopyColorTableSGI(), which accepts image data from a color
buffer region (width pixel wide by one pixel high) whose left pixel has window
coordinates x,y. If any pixels within this region are outside the window that is associated
with the OpenGL context, the values obtained for those pixels are undefined.

The pixel values are processed exactly as if glCopyPixels() had been called, until just
before the application of pixel transfer modes (see the illustration “Drawing Pixels with
glDrawPixels*()” on page 310 of the OpenGL Programming Guide).

224

Chapter 9: Imaging Extensions

At this point all pixel component values are treated exactly as if glColorTableSGI() had
been called, beginning with the scaling of the color components by
GL_COLOR_TABLE_SCALE_SGI. The semantics and accepted values of the target and
internalformat parameters are exactly equivalent to their glColorTableSGI()
counterparts.

Lookup Tables in the Image Pipeline

The three lookup tables exist at different points in the image pipeline (see Figure 9-3):

• GL_COLOR_TABLE_SGI is located immediately after index lookup or RGBA to
RGBA mapping, and immediately before the convolution operation.

• GL_POST_CONVOLUTION_COLOR_TABLE_SGI is located immediately after the
convolution operation (including its scale and bias operations) and immediately
before the color matrix operation.

• GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI is located immediately after the
color matrix operation (including its scale and bias operations) and immediately
before the histogram operation.

To enable and disable color tables, call glEnable() and glDisable() with the color table
name passed as the cap parameter. Color table lookup is performed only for RGBA
groups, though these groups may have been specified as color indexes and converted to
RGBA by an index-to-RGBA pixel map table.

When enabled, a color lookup table is applied to all RGBA pixel groups, regardless of the
command that they are associated with.

New Functions

glColorTableSGI, glColorTableParameterivSGI, glGetColorTableSGI,
glGetColorTableParameterivSGI, glGetColorTableParameterfvSGI

SGIX_interlace—The Interlace Extension

225

SGIX_interlace—The Interlace Extension

The interlace extension, SGIX_interlace, provides a way to interlace rows of pixels when
rasterizing pixel rectangles or loading texture images.Figure 9-4 illustrates how the
extension fits into the imaging pipeline

In this context, interlacing means skipping over rows of pixels or texels in the
destination. This is useful for dealing with interlace video data since single frames of
video are typically composed of two fields: one field specifies the data for even rows of
the frame, the other specifies the data for odd rows of the frame, as shown in the
following illustration:

Figure 9-8 Interlaced Video (NTSC, Component 525)

When interlacing is enabled, all the groups that belong to a row m are treated as if they
belonged to the row 2×m. If the source image has a height of h rows, this effectively
expands the height of the image to 2×h rows.

Applications that use the extension usually first copy the first set of rows, then the second
set of rows, as explained in the following sections.

In cases where errors can result from the specification of invalid image dimensions, the
resulting dimensions—not the dimensions of the source image—are tested. For example,
when you use glTexImage2D() with GL_INTERLACE_SGIX enabled, the source image
you provide must be of height (texture_height + texture_border)/2.

.

.

.

1
2
3
4
5
.

.

.

482
483
484
485

Field 1

Field 2

Odd field
(242.5 lines;

Even field
(242.5 lines;

no blanking)

no blanking)

2
4
.

482
484

.

.

.

1
3
5
.

483
485

.

.

.

Frame (raster)
Line number

6
.

Line 0

Line 0

226

Chapter 9: Imaging Extensions

Using the Interlace Extension

One application of the interlace extension is to use it together with the copy texture
extension: You can use glCopyTexSubImage2D() to copy the contents of the video field
to texture memory and end up with de-interlaced video. You can interlace pixels from
two images as follows:

1. Call glEnable() or glDisable() with the cap parameter GL_INTERLACE_SGIX.

2. Set the current raster position to xr, yr:

glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, I0);

3. Copy pixels into texture memory (usually F0 is first).

glCopyTexSubImage2D (GL_TEXTURE_2D, level, xoffset, yoffset, x, y,
width, height)

4. Set raster position to (xr,yr+zoomy):

glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, I1);

5. Copy the pixels from the second field (usually F1 is next). For this call:

y offset += yzoom
y += geith to get to next field.

This process is equivalent to taking pixel rows (0,2,4,...) of I2 from image I0, and rows
(1,3,5,...) from image I1, as follows:

glDisable(GL_INTERLACE_SGIX);
/* set current raster position to (xr,yr) */
glDrawPixels(width, 2*height, GL_RGBA, GL_UNSIGNED_BYTE, I2);

SGIX_pixel_texture—The Pixel Texture Extension

The pixel texture extension, SGIX_pixel_texture, allows applications to use the color
components of a pixel group as texture coordinates, effectively converting a color image
into a texture coordinate image. Applications can use the system’s texture-mapping
capability as a multidimensional lookup table for images. Using larger textures will give
you higher resolution, and the system will interpolate whenever the precision of the
color values (texture coordinates) exceeds the size of the texture.

SGIX_pixel_texture—The Pixel Texture Extension

227

In effect, the extension supports multidimensional color lookups that can be used to
implement accurate and fast color space conversions for images. Figure 9-4 illustrates
how the extension fits into the imaging pipeline.

Note: This extension is experimental and will change.

Texture mapping is usually used to map images onto geometry, and each pixel fragment
that is generated by the rasterization of a triangle or line primitive derives its texture
coordinates by interpolating the coordinates at the primitive’s vertexes. Thus you don't
have much direct control of the texture coordinates that go into a pixel fragment.

By contrast, the pixel texture extension gives applications direct control of texture
coordinates on a per-pixel basis, instead of per-vertex as in regular texturing. If the
extension is enabled, glDrawPixels() and glCopyPixels() work differently: For each
pixel in the transfer, the color components are copied into the texture coordinates, as
follows:

• red becomes the s coordinate

• green becomes the t coordinate

• blue becomes the r coordinate

• alpha becomes the q coordinate (fourth dimension)

To use the pixel texture extension, an application has to go through these steps:

1. Define and enable the texture you want to use as the lookup table (this texture
doesn’t have to be a 3D texture).

glTexImage3DEXT(GL_TEXTURE_3D_EXT, args);
glEnable(GL_TEXTURE_3D_EXT);

2. Enable pixel texture and begin processing images:

glEnable(GL_PIXEL_TEX_GEN_SGIX);
glDrawPixels(args);
glDrawPixels(args)
...
...

228

Chapter 9: Imaging Extensions

Each subsequent call to glDrawPixels() uses the predefined texture as a lookup table and
uses those colors when rendering to the screen. Figure 9-5 illustrates how colors are
introduced by the extension.

As in regular texture mapping, the texel found by mapping the texture coordinates and
filtering the texture is blended with a pixel fragment, and the type of blend is controlled
with the glTexEnv() command. In the case of pixel texture, the fragment color is derived
from the pixel group; thus, using the GL_MODULATE blend mode, you could blend the
texture lookup values (colors) with the original image colors. Alternatively, you could
blend the texture values with a constant color set with the glColor*() commands. To do
this, use this command:

void glPixelTexGenSGIX(GLenum mode);

The valid values of mode depend on the pixel group and the current raster color, which is
the color associated with the current raster position:

• GL_RGB—If mode is GL_RGB, the fragment red, green, and blue will be derived
from the current raster color, set by the glColor() command. Fragment alpha is
derived from the pixel group.

• GL_RGBA—If mode is GL_RGBA, the fragment red, green, blue, and alpha will be
derived from the current raster color.

• GL_ALPHA—If mode is GL_ALPHA, the fragment alpha is derived from the
current raster color, and red, green, and blue from the pixel group.

• GL_NONE—If mode is GL_NONE, the fragment red, green, blue and alpha are
derived from the pixel group.

Note: See “Platform Issues” for currently supported modes.

When using pixel texture, the format and type of the image do not have to match the
internal format of the texture. This is a powerful feature; it means, for example, that an
RGB image can look up a luminance result. Another interesting use is to have an RGB
image look up an RGBA result, in effect adding alpha to the image in a complex way.

SGIX_pixel_texture—The Pixel Texture Extension

229

Platform Issues

At this date—IRIX 6.5—pixel texture has been implemented only on Indigo2 IMPACT
and OCTANE graphics. The hardware capabilities for pixel texture were created before
the OpenGL specifications for the extension were finalized, so only a subset of the full
functionality has been implemented. Pixel texture can be enabled only with 3D and 4D
textures.The only mode supported corresponds to calling
glPixelTexGenSGIX(GL_RGBA). The fragment color is limited to white only. Pixel
texture can be enabled for glDrawPixels() only, support for glCopyPixels() will be
provided in future releases.

When you use 4D textures with an RGBA image, the alpha value is used to derive Q, the
fourth dimensional texture coordinate. Currently, the Q interpolation is limited to a
default GL_NEAREST mode, regardless of the minfilter and magfilter settings.

When you work on Indigo IMPACT and OCTANE systems, you can use the Impact Pixel
Texture extension, which allows applications to perform pixel texture operations with 4D
textures, and accomplish the fourth interpolation with a two-pass operation, using the
frame-buffer blend. For more information, see the impact_pixel_texture specification and
the glPixelTexGenSGIX and glTexParameter reference pages.

Note: When working with mipmapped textures, the effective LOD value computed for
each fragment is 0. The texture LOD and texture LOD bias extensions apply to pixel
textures as well.

New Functions

glPixelTexGenSGIX

231

Chapter 10

10.Video Extensions

Chapter 6, “Resource Control Extensions,” discusses a set of GLX extensions that can be
used to control resources. This chapter provides information on a second set of GLX
extension, extensions that support video functionality. You learn about

• “SGI_swap_control—The Swap Control Extension” on page 231

• “SGI_video_sync—The Video Synchronization Extension” on page 232

• “SGIX_swap_barrier—The Swap Barrier Extension” on page 233

• “SGIX_swap_group—The Swap Group Extension” on page 236

• “SGIX_video_resize—The Video Resize Extension” on page 238

• “SGIX_video_source—The Video Source Extension” on page 243

SGI_swap_control—The Swap Control Extension

The swap control extension, SGI_swap_control, allows applications to display frames at
a regular rate, provided the time required to draw each frame can be bounded. The
extension allows an application to set a minimum period for buffer swaps, counted in
display retrace periods. (This is similar to the IRIS GL swapinterval().)

To set the buffer swap interval, call glXSwapIntervalSGI(), which has the following
prototype:

int glXSwapIntervalSGI(int interval)

Specify the minimum number of retraces between buffer swaps in the interval parameter.
For example, a value of 2 means that the color buffer is swapped at most every other
display retrace. The new swap interval takes effect on the first execution of
glXSwapBuffers() after the execution of glXSwapIntervalSGI().

232

Chapter 10: Video Extensions

glXSwapIntervalSGI() affects only buffer swaps for the GLX write drawable for the
current context. Note that glXSwapBuffers() may be called with a drawable parameter
that is not the current GLX drawable; in this case glXSwapIntervalSGI(), has no effect
on that buffer swap.

New Functions

glXSwapIntervalSGI

SGI_video_sync—The Video Synchronization Extension

The video synchronization extension, SGI_video_sync, allows an application to
synchronize drawing with the vertical retrace of a monitor or, more generically, to the
boundary between to video frames. (In the case of an interlaced monitor, the
synchronization is actually with the field rate instead). Using the video synchronization
extension, an application can put itself to sleep until a counter corresponding to the
number of screen refreshes reaches a desired value. This enables and application to
synchronize itself with the start of a new video frame. The application can also query the
current value of the counter.

The system maintains a video sync counter (an unsigned 32-bit integer) for each screen
in a system. The counter is incremented upon each vertical retrace.

The counter runs as long as the graphics subsystem is running; it is initialized by the
/usr/gfx/gfxinit command.

Note: A process can query or sleep on the counter only when a direct context is current;
otherwise, an error code is returned. See the reference page for more information.

Using the Video Sync Extension

To use the video sync extension, follow these steps:

1. Create a rendering context and make it current.

2. Call glXGetVideoSyncSGI() to obtain the value of the vertical retrace counter.

SGIX_swap_barrier—The Swap Barrier Extension

233

3. Call glXWaitVideoSyncSGI() to put the current process to sleep until the specified
retrace counter:

int glXWaitVideoSyncSGI(int divisor, int remainder, unsigned int *count)

where

• glXWaitVideoSyncSGI() puts the calling process to sleep until the value of the
vertical retrace counter (count) modulo divisor equals remainder.

• count is a pointer to the variable that receives the value of the vertical retrace
counter when the calling process wakes up.

New Functions

glXGetVideoSyncSGI, glXWaitVideoSyncSGI

SGIX_swap_barrier—The Swap Barrier Extension

The swap barrier extension, SGIX_swap_barrier, allows applications to synchronize the
buffer swaps of different swap groups. For information on swap groups, see
“SGIX_swap_group—The Swap Group Extension” on page 236.

Why Use the Swap Barrier Extension?

The swap barrier extension is useful for synchronizing buffer swaps of different swap
groups, that is, on different machines.

For example, two Onyx InfiniteReality systems may be working together to generate a
single visual experience. The first Onyx system may be generating an “out the window
view” while the second Onyx system may be generating a sensor display. The swap
group extension would work well if the two InfiniteReality graphics pipelines were in
the same system, but a swap group can not span two Onyx systems. Even though the two
displays are driven by independent systems, you still want the swaps to be
synchronized.

The swap barrier solution requires the user to connect a physical coaxial cable to the
“Swap Ready” port of each InfiniteReality pipeline. The multiple pipelines should also
be genlocked together (synchronizing their video refresh rates). Genlocking a system
means synchronizing it with another video signal serving as a master timing source.

234

Chapter 10: Video Extensions

The OpenGL swap barrier functionality requires special hardware support and is
currently supported only on InfiniteReality graphics.

Note that most users of the swap barrier extension will likely use the extension through
the IRIS Performer API and not call the OpenGL GLX extension directly.

Using the Swap Barrier Extension

A swap group is bound to a swap_barrier. The buffer swaps of each swap group using that
barrier will wait until every swap group using that barrier is ready to swap (where
readiness is defined in “Buffer Swap Conditions” on page 235). All buffer swaps of all
groups using that barrier will take place concurrently when every group is ready.

The set of swap groups using the swap barrier include not only all swap groups on the
calling application’s system, but also any swap groups set up by other systems that have
been cabled together by their graphics pipeline “Swap Ready” ports. This extension
extends the set of conditions that must be met before a buffer swap can take place.

Applications call glXBindSwapBarriersSGIX(), which has the following prototype:

void glXBindSwapBarrierSGIX(Display *dpy, GLXDrawable drawable, int barrier)

glXBindSwapBarriersSGIX() binds the swap group that contains drawable to barrier.
Subsequent buffer swaps for that group will be subject to this binding until the group is
unbound from barrier. If barrier is zero, the group is unbound from its current barrier, if
any.

To find out how many swap barriers a graphics pipeline (an X screen) supports,
applications call glXQueryMaxSwapbarriersSGIX(), which has the following syntax:

Bool glXQueryMaxSwapBarriersSGIX (Display *dpy, int screen, int max)

glXQueryMaxSwapBarriersSGIX() returns in max the maximum number of barriers
supported by an implementation on screen.

glXQueryMaxSwapBarriersSGIX() returns GL_TRUE if it success and GL_FALSE if it
fails. If it fails, max is unchanged.

While the swap barrier extension has the capability to support multiple swap barriers
per graphics pipeline, InfiniteReality (the only graphics hardware currently supporting
the swap barrier extension) provides only one swap barrier.

SGIX_swap_barrier—The Swap Barrier Extension

235

Buffer Swap Conditions

Before a buffer swap can take place when a swap barrier is used, some new conditions
must be satisfied. The conditions are defined in terms of when a drawable is ready to
swap and when a group is ready to swap.

• Any GLX drawable that is not a window is always ready.

• When a window is unmapped, it is always ready.

• When a window is mapped, it is ready when both of the following are true:

– A buffer swap command has been issued for it.

– Its swap interval has elapsed.

• A group is ready when all windows in the group are ready.

• Before a buffer swap for a window can take place, all of the following must be
satisfied:

– The window is ready.

– If the window belongs to a group, the group is ready.

– If the window belongs to a group and that group is bound to a barrier, all
groups using that barrier are ready.

Buffer swaps for all windows in a swap group will take place concurrently after the
conditions are satisfied for every window in the group.

Buffer swaps for all groups using a barrier will take place concurrently after the
conditions are satisfied for every window of every group using the barrier, if and only if
the vertical retraces of the screens of all the groups are synchronized (genlocked). If they
are not synchronized, there is no guarantee of concurrency between groups.

Both glXBindSwapBarrierSGIX() and glXQueryMaxSwapBarrierSGIX() are part of the
X stream.

New Functions

glBindSwapBarrierSGIX, glQueryMaxSwapBarriersSGIX

236

Chapter 10: Video Extensions

SGIX_swap_group—The Swap Group Extension

The swap group extension, SGIX_swap_group, allows applications to synchronize the
buffer swaps of a group of GLX drawables.The application creates a swap group and
adds drawables to the swap group. After the group has been established, buffer swaps
to members of the swap group will take place concurrently.

In effect, this extension extends the set of conditions that must be met before a buffer
swap can take place.

Why Use the Swap Group Extension?

Synchronizing the swapping of multiple drawables ensures that buffer swaps among
multiple windows (potentially on different screens) swap at exactly the same time.

Consider the following example:

render(left_window);
render(right_window);
glXSwapBuffers(left_window);
glXSwapBuffers(right_window);

The left_window and right_window are on two different screens (different monitors) but
are meant to generate a single logical scene (split across the two screens). While the
programmer intends for the two swaps to happen simultaneously, the two
glXSwapBuffers() calls are distinct requests, and buffer swaps are tied to the monitor’s
rate of vertical refresh. Most of the time, the two glXSwapBuffers() calls will swap both
windows at the next monitor vertical refresh. But because the two glXSwapBuffers()
calls are not atomic, it is possible that:

• the first glXSwapBuffers() call may execute just before a vertical refresh, allowing
left_window to swap immediately,

• the second glXSwapBuffers() call is made after the vertical refresh, forcing
right_window to wait a full vertical refresh (typically a 1/60th or1/72th of a second).

Someone watching the results in the two windows would very briefly see the new
left_window contents, but alongside the old right_window contents. This “stutter” between
the two window swaps is always annoying and at times simply unacceptable.

SGIX_swap_group—The Swap Group Extension

237

The swap group extension allows applications to “tie together” the swapping of multiple
windows.

By joining left_window and right_window into a swap group, IRIX ensures that the
windows swap together atomically. This could be done during initialization by calling

glXJoinSwapGroupSGIX(dpy, left_window, right_window);

Subsequent windows can also be added to the swap group. For example, if there was also
a middle window, it could be added to the swap group by calling

glXJoinSwapGroupSGIX(dpy, middle_window, right_window);

Swap Group Details

The only routine added by the swap group extension is glXJoinSwapGroupSGIX(),
which has following prototype:

void glXJoinSwapGroupSGIX(Display *dpy, GLXDrawable drawable,
GLXDrawable member)

Applications can call glXJoinSwapGroupSGIX() to add drawable to the swap group
containing member as a member. If drawable is already a member of a different group, it is
implicitly removed from that group first. If member is None, drawable is removed from the
swap group that it belongs to, if any.

Applications can reference a swap group by naming any drawable in the group; there is
no other way to refer to a group.

Before a buffer swap can take place, a set of conditions must be satisfied. Both the
drawable and the group must be ready, satisfying the following conditions:

• GLX drawables, except windows, are always ready to swap.

• When a window is unmapped, it is always ready.

• When a window is mapped, it is ready when bothof the following are true:

– A buffer swap command has been issued for it.

– Its swap interval has elapsed.

 A group is ready if all windows in the group are ready.

238

Chapter 10: Video Extensions

glXJoinSwapGroupSGIX() is part of the X stream. Note that a swap group is limited to
GLX drawables managed by a single X server. If you have to synchronize buffer swaps
between monitors on different machines, you need the swap barrier extension (see
“SGIX_swap_barrier—The Swap Barrier Extension” on page 233).

New Function

glJoinSwapGroupSGIX

SGIX_video_resize—The Video Resize Extension

The video resize extension, SGIX_video_resize, is an extension to GLX that allows the
frame buffer to be dynamically resized to the output resolution of the video channel
when glXSwapBuffers is called for the window that is bound to the video channel. The
video resize extension can also be used to minify (reduce in size) a frame buffer image for
display on a video output channel (such as NTSC or PAL broadcast video). For example,
a 1280 x 1024 computer-generated scene could be minified for output to the
InfiniteReality NTSC/PAL encoder channel. InfiniteReality performs bilinear filtering of
the minified channel for reasonable quality.

As a result, an application can draw into a smaller viewport and spend less time
performing pixel fill operations. The reduced size viewport is then magnified up to the
video output resolution using the SGIX_video_resize extension.

In addition to the magnify and minify resizing capabilities, the video resize extension
allows 2D panning. By overrendering at swap rates and panning at video refresh rates,
it is possible to perform video refresh (frame) synchronous updates.

Controlling When the Video Resize Update Occurs

Whether frame synchronous or swap synchronous update is used is set by calling
glXChannelRectSyncSGIX(), which has the following prototype:

int glXChannelRectSyncSGIX (Display *dpy, int screen,int channel,
GLenum synctype);

The synctype parameter can be either GLX_SYNC_FRAME_SGIX or
GLX_SYNC_SWAP_SGIX.

SGIX_video_resize—The Video Resize Extension

239

The extension can control fill-rate requirements for real-time visualization applications
or to support a larger number of video output channels on a system with limited
framebuffer memory.

Note: This extension is an SGIX (experimental) extension. The interface or other aspects
of the extension may change. The extension is currently implemented only on
InfiniteReality systems.

Using the Video Resize Extension

To use the video resize extensions, follow these steps:

1. Open the display and create a window.

2. Call glXBindChannelToWindowSGIX() to associate a channel with an X window
so that when the X window is destroyed, the channel input area can revert to the
default channel resolution.

The other reason for this binding is that the bound channel updates only when a
swap takes place on the associated X window (assuming swap sync updates—see
“Controlling When the Video Resize Update Occurs” on page 238).

The function has the following prototype:

int glXBindChannelToWindowSGIX(Display *display, int screen,
int channel, Window window)

where

• display specifies the connection to the X server.

• screen specifies the screen of the X server.

• channel specifies the video channel number.

• window specifies the window that is to be bound to channel. Note that
InfiniteReality supports multiple output channels (two or eight depending on
the Display Generator board type). Each channel can be independently
dynamically resized.

240

Chapter 10: Video Extensions

3. Call glXQueryChannelDeltasSGIX() to retrieve the precision constraints for any
frame buffer area that is to be resized to match the video resolution. In effect,
glXQueryChannelDeltasSGIX() returns the resolution at which one can place and
size a video input area.

The function has the following prototype:

int glXQueryChannelDeltasSGIX(Display *display, int screen, int channel,
int *dx, int *dy, int *dw, int *dh)

where

• display specifies the connection to the X server.

• screen specifies the screen of the X server.

• channel specifies the video channel number.

• dx, dy, dw, dh are precision deltas for the origin and size of the area specified by
glXChannelRectSGIX()

4. Call XSGIvcQueryChannelInfo() (an interface to the Silicon Graphics X video
control X extension) to determine the default size of the channel.

5. Open an X window, preferably with no borders.

SGIX_video_resize—The Video Resize Extension

241

6. Start a loop in which you perform the following activities:

■ Determine the area that will be drawn, based on performance requirements. If
the application is fill limited, make the area smaller. You can make a rough
estimate of the fill rate required for a frame by timing the actual rendering time
in milliseconds. On InfiniteReality, the SGIX_ir_instrument1 OpenGL extension
can be used to query the pipeline performance to better estimate the fill rate.

■ Call glViewPort(), providing the width and height, to set the OpenGL viewport
(the rectangular region of the screen where the window is drawn). Base this
viewport on the information returned by glXQueryChannelDeltasSGIX().

■ Call glXChannelRectSGIX() to set the input video rectangle that will take effect
the next swap or next frame (based on glXChannelRectSyncSGIX() setting.)
The coordinates of the input video rectangle are those of the viewport just set
up for drawing. This function has the following prototype:

int glXChannelRectSGIX(Display *display, int screen,
int channel, Window window)

where

display specifies the connection to the X server

screen specifies the screen of the X server.

channel specifies the video channel number.

x, y, w, h are the origin and size of the area of the window that will be converted
to the output resolution of the video channel. (x,y) is relative to the bottom left
corner of the channel specified by the current video combination.

■ Draw the scene.

■ Call glXSwapBuffers() for the window in question.

242

Chapter 10: Video Extensions

Example

The following example, from the glxChannelRectSGIX reference page, illustrates how to
use the extension.

Example 10-1 Video Resize Extension Example

XSGIvcChannelInfo *pChanInfo = NULL;

... open display and screen ...
glXBindChannelToWindowSGIX(display,screen,channel,window);
glXQueryChannelDeltasSGIX(display,screen,channel, &dx,&dy,&dw,&dh);

XSGIvcQueryChannelInfo(display, screen, channel, &pChanInfo);

X = pChanInfo->source.x;
Y = pChanInfo->source.y;
W = pChanInfo->source.width;
H = pChanInfo->source.height;

... open an X window (preferably with no borders so will not get ...

... moved by window manager) at location X,Y,W,H (X coord system) ...

while(...)
{

...determine area(width,height) that will be drawn based on...

...requirements. Make area smaller if application is fill limited..

w = width - (width % dw);
h = height - (height % dh);

glViewport(0,0,w,h);

glXChannelRectSGIX(display,screen,channel, 0,0,w,h);

... draw scene ...

glXSwapBuffers(display,window);
}

SGIX_video_source—The Video Source Extension

243

New Functions

glXBindChannelToWindowSGIX, glXChannelRectSGIX, glXChannelRectSyncSGIX,
glXQueryChannelRectSGIX

SGIX_video_source—The Video Source Extension

The video source extension, SGIX_video_source, lets you source pixel data from a video
stream to the OpenGL renderer. The video source extension is available only for system
configurations that have direct hardware paths from the video hardware to the graphics
accelerator. On other systems, you need to transfer video data to host memory and then
call glDrawPixels() or glTex{Sub}Image() to transfer data to the framebuffer, to texture
memory, or to a DMPbuffer (see “SGIX_pbuffer—The Pixel Buffer Extension” on
page 112).

The video source extension introduces a new type of GLXDrawable—
GLXVideoSourceSGIX—that is associated with the drain node of a Video Library (VL)
path. A GLXVideoSourceSGIX drawable can be used only as the read parameter to
glXMakeCurrentReadSGI() to indicate that pixel data should be read from the specified
video source instead of the framebuffer.

Note: This extension is an SGIX (experimental) extension. The interface may change, or
it may not be supported in future releases.

The remainder of this section presents two examples: Example 10-2 demonstrates the
video to graphics capability of the Sirius video board using OpenGL. Example 10-3 is a
code fragment for how to use the video source extension to load video into texture
memory.

244

Chapter 10: Video Extensions

Example 10-2 Use of the Video Source Extension

/*
 * vidtogfx.c
 * This VL program demonstrates the Sirius Video board video->graphics
 * ability using OpenGL.
 * The video arrives as fields of an interlaced format. It is
 * displayed either by interlacing the previous and the current
 * field or by pixel-zooming the field in Y by 2.
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <vl/vl.h>
#include <vl/dev_sirius.h>
#include <GL/glx.h>
#include "xwindow.h"
#include <X11/keysym.h>

/* Video path variables */
VLServer svr;
VLPath path;
VLNode src;
VLNode drn;
/* Video frame size info */
VLControlValue size;

int F1_is_first; /* Which field is first */

/* OpenGL/X variables */
Display *dpy;
Window window;
GLXVideoSourceSGIX glxVideoSource;
GLXContext ctx;
GLboolean interlace = GL_FALSE;
/*
 * function prototypes
 */
void usage(char *, int);
void InitGfx(int, char **);
void GrabField(int);
void UpdateTiming(void);
void cleanup(void);
void ProcessVideoEvents(void);
static void loop(void);

SGIX_video_source—The Video Source Extension

245

int
main(int argc, char **argv)
{
 int c, insrc = VL_ANY;
 int device = VL_ANY;
 short dev, val;
 /* open connection to VL server */

 if (!(svr = vlOpenVideo(""))) {
 printf("couldn't open connection to VL server\n");
 exit(EXIT_FAILURE);
 }

 /* Get the Video input */
 src = vlGetNode(svr, VL_SRC, VL_VIDEO, insrc);
 /* Get the first Graphics output */
 drn = vlGetNode(svr, VL_DRN, VL_GFX, 0);

 /* Create path */
 path = vlCreatePath(svr, device, src, drn);
 if (path < 0) {
 vlPerror("vlCreatePath");
 exit(EXIT_FAILURE);
 }
 /* Setup path */
 if (vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE,
 VL_SHARE) < 0) {
 vlPerror("vlSetupPaths");
 exit(EXIT_FAILURE);
 }
 UpdateTiming();
 if (vlSelectEvents(svr, path,VLStreamPreemptedMask |
 VLControlChangedMask) < 0) {
 vlPerror("Select Events");
 exit(EXIT_FAILURE);
 }
 /* Open the GL window for gfx transfers */
 InitGfx(argc, argv);
 /* Begin Transfers */
 vlBeginTransfer(svr, path, 0, NULL);
 /* The following sequence grabs each field and displays it in
 * the GL window.
 */
 loop();
}

246

Chapter 10: Video Extensions

void
loop()
{
 XEvent event;
 KeySym key;
 XComposeStatus compose;
 GLboolean clearNeeded = GL_FALSE;

 while (GL_TRUE) {
 /* Process X events */
 while(XPending(dpy)) {
 XNextEvent(dpy, &event);
 /* Don't really need to handle expose as video is coming at
 * refresh speed.
 */
 if (event.type == case KeyPress) {
 XLookupString(&event.xkey, NULL, 0, &key, NULL);
 switch (key) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 case XK_i:
 if (hasInterlace) {
 interlace = !interlace;
 if (!interlace) {
 if (!glXMakeCurrentReadSGI(dpy, window,
 glxVideoSource, ctx)) {
 fprintf(stderr,
 "Can't make current to video\n");
 exit(EXIT_FAILURE);
 }
 } else if (!glXMakeCurrent(dpy, window, ctx)) {
 fprintf(stderr,
 "Can't make window current to context\n");
 exit(EXIT_FAILURE);
 }
 printf("Interlace is %s\n", interlace ? "On" : "Off");
 /* Clear both buffers */
 glClear(GL_COLOR_BUFFER_BIT);
 glXSwapBuffers(dpy, window);
 glClear(GL_COLOR_BUFFER_BIT);
 glXSwapBuffers(dpy, window);
 glRasterPos2f(0, size.xyVal.y - 1);
 } else {
 printf("Graphics interlacing is not supported\n");
 }

SGIX_video_source—The Video Source Extension

247

 break;
 }
 }
 }
 ProcessVideoEvents();
 GrabField(0);
 glXSwapBuffers(dpy, window);
 GrabField(1);
 glXSwapBuffers(dpy, window);
 }
}

/*
 * Open an X window of appropriate size and create context.
 */
void
InitGfx(int argc, char **argv)
{
 int i;
 XSizeHints hints;
 int visualAttr[] = {GLX_RGBA, GLX_DOUBLEBUFFER, GLX_RED_SIZE, 12,
 GLX_GREEN_SIZE, 12, GLX_BLUE_SIZE, 12,
 None};
 const char *extensions;

 /* Set hints so window size is exactly as the video frame size */
 hints.x = 50; hints.y = 0;
 hints.min_aspect.x = hints.max_aspect.x = size.xyVal.x;
 hints.min_aspect.y = hints.max_aspect.y = size.xyVal.y;
 hints.min_width = size.xyVal.x;
 hints.max_width = size.xyVal.x;
 hints.base_width = hints.width = size.xyVal.x;
 hints.min_height = size.xyVal.y;
 hints.max_height = size.xyVal.y;
 hints.base_height = hints.height = size.xyVal.y;
 hints.flags = USSize | PAspect | USPosition | PMinSize | PMaxSize;
 createWindowAndContext(&dpy, &window, &ctx, 50, 0, size.xyVal.x,
 size.xyVal.y, GL_FALSE, &hints, visualAttr, argv[0]);

 /* Verify that MakeCurrentRead and VideoSource are supported */

 glxVideoSource = glXCreateGLXVideoSourceSGIX(dpy, 0, svr, path,
 VL_GFX, drn);
 if (glxVideoSource == NULL) {
 fprintf(stderr, "Can't create glxVideoSource\n");

248

Chapter 10: Video Extensions

 exit(EXIT_FAILURE);
 }
 if (!glXMakeCurrentReadSGI(dpy, window, glxVideoSource, ctx)) {
 fprintf(stderr, "Can't make current to video\n");
 exit(EXIT_FAILURE);
 }
 /* Set up the viewport according to the video frame size */
 glLoadIdentity();
 glViewport(0, 0, size.xyVal.x, size.xyVal.y);
 glOrtho(0, size.xyVal.x, 0, size.xyVal.y, -1, 1);
 /* Video is top to bottom */
 glPixelZoom(1, -2);
 glRasterPos2f(0, size.xyVal.y - 1);
 glReadBuffer(GL_FRONT);
 /* Check for interlace extension. */
 hasInterlace = ... /* Interlace is supported or not */
}
/*
 * Grab a field. A parameter of 1 = odd Field, 0 = Even Field.
 * Use the global F1_is_first variable to determine how to
 * interleave the fields.
 */
void
GrabField(int odd_field)
{
 /* copy pixels from front to back buffer */
 if (interlace) {
 /* Restore zoom and transfer mode */
 glRasterPos2i(0, 0);
 glPixelZoom(1, 1);
 glCopyPixels(0, 0, size.xyVal.x, size.xyVal.y, GL_COLOR);

 /* Copy the field from Sirius Video to GFX subsystem */
 if (!glXMakeCurrentReadSGI(dpy, window, glxVideoSource, ctx)) {
 fprintf(stderr, "Can't make current to video\n");
 exit(EXIT_FAILURE);
 }
 if (odd_field) {
 if (F1_is_first) {
 /* F1 dominant, so odd field is first. */
 glRasterPos2f(0, size.xyVal.y - 1);
 } else {
 /* F2 dominant, so even field is first. */
 glRasterPos2f(0, size.xyVal.y - 2);
 }

SGIX_video_source—The Video Source Extension

249

 } else {
 if (F1_is_first) {
 /* F1 dominant, so odd field is first. */
 glRasterPos2f(0, size.xyVal.y - 2);
 } else {
 /* F2 dominant, so even field is first. */
 glRasterPos2f(0, size.xyVal.y - 1);
 }
 }
#ifdef GL_SGIX_interlace
 if (hasInterlace)
 glEnable(GL_INTERLACE_SGIX);
#endif
 /* video is upside down relative to graphics */
 glPixelZoom(1, -1);
 glCopyPixels(0, 0, size.xyVal.x, size.xyVal.y/2, GL_COLOR);
 if (!glXMakeCurrent(dpy, window, ctx)) {
 fprintf(stderr, "Can't make current to original window\n");
 exit(EXIT_FAILURE);
 }
#ifdef GL_SGIX_interlace
 if (hasInterlace)
 glDisable(GL_INTERLACE_SGIX);
#endif
 } else {
 /* Not deinterlacing */
 glPixelZoom(1, -2);
 if (!odd_field) {
 if (!F1_is_first) {
 /* F1 dominant, so odd field is first. */
 glRasterPos2f(0, size.xyVal.y - 1);
 } else {
 /* F2 dominant, so even field is first. */
 glRasterPos2f(0, size.xyVal.y - 2);
 }
 } else {
 if (!F1_is_first) {
 /* F1 dominant, so odd field is first. */
 glRasterPos2f(0, size.xyVal.y - 2);
 } else {
 /* F2 dominant, so even field is first. */
 glRasterPos2f(0, size.xyVal.y - 1);
 }
 }

250

Chapter 10: Video Extensions

glCopyPixels(0, 0, size.xyVal.x, size.xyVal.y/2, GL_COLOR);
 }
}

/*
 * Get video timing info.
 */
void
UpdateTiming(void)
{
 int is_525;
 VLControlValue timing, dominance;

 /* Get the timing on selected input node */
 if (vlGetControl(svr, path, src, VL_TIMING, &timing) <0) {
 vlPerror("VlGetControl:TIMING");
 exit(EXIT_FAILURE);
 }
 /* Set the GFX Drain to the same timing as input src */
 if (vlSetControl(svr, path, drn, VL_TIMING, &timing) <0) {
 vlPerror("VlSetControl:TIMING");
 exit(EXIT_FAILURE);
 }
 if (vlGetControl(svr, path, drn, VL_SIZE, &size) <0) {
 vlPerror("VlGetControl");
 exit(EXIT_FAILURE);
 }
 /*
 * Read the video source's field dominance control setting and
 * timing, then set a variable to indicate which field has the first
 * line, so that we know how to interleave fields to frames.
 */
 if (vlGetControl(svr, path, src,
 VL_SIR_FIELD_DOMINANCE, &dominance) < 0) {
 vlPerror("GetControl(VL_SIR_FIELD_DOMINANCE) on video source
 failed");
 exit(EXIT_FAILURE);
 }

 is_525 = ((timing.intVal == VL_TIMING_525_SQ_PIX) ||
 (timing.intVal == VL_TIMING_525_CCIR601));

 switch (dominance.intVal) {
 case SIR_F1_IS_DOMINANT:

SGIX_video_source—The Video Source Extension

251

 if (is_525) {
 F1_is_first = 0;
 } else {
 F1_is_first = 1;
 }
 break;
 case SIR_F2_IS_DOMINANT:
 if (is_525) {
 F1_is_first = 1;
 } else {
 F1_is_first = 0;
 }
 break;
 }
}

void
cleanup(void)
{
 vlEndTransfer(svr, path);
 vlDestroyPath(svr, path);
 vlCloseVideo(svr);
 exit(EXIT_SUCCESS);
}

void
ProcessVideoEvents(void)
{
 VLEvent ev;

 if (vlCheckEvent(svr, VLControlChangedMask|
 VLStreamPreemptedMask, &ev) == -1) {
 return;
 }
 switch(ev.reason) {
 case VLStreamPreempted:
 cleanup();
 exit(EXIT_SUCCESS);
 case VLControlChanged:
 switch(ev.vlcontrolchanged.type) {
 case VL_TIMING:
 case VL_SIZE:
 case VL_SIR_FIELD_DOMINANCE:
 UpdateTiming();
 /* change the gl window size */

252

Chapter 10: Video Extensions

 XResizeWindow(dpy, window, size.xyVal.x, size.xyVal.y);
 glXWaitX();
 glLoadIdentity();
 glViewport(0, 0, size.xyVal.x, size.xyVal.y);
 glOrtho(0, size.xyVal.x, 0, size.xyVal.y, -1, 1);
 break;
 default:
 break;
 }
 break;
 default:
 break;
 }
}

Example 10-3 Loading Video Into Texture Memory

Display *dpy;
Window win;
GLXContext cx;
VLControlValue size, texctl;
int tex_width, tex_height;
VLServer svr;
VLPath path;
VLNode src, drn;

static void init_video_texturing(void)
{
 GLXVideoSourceSGIX videosource;
 GLenum intfmt;
 int scrn;
 float s_scale, t_scale;

 /* set video drain to texture memory */
 drn = vlGetNode(svr, VL_DRN, VL_TEXTURE, 0);

 /* assume svr, src, and path have been initialized as usual */

 /* get the active video area */
 if (vlGetControl(svr, path, src, VL_SIZE, &size) < 0) {
 vlPerror("vlGetControl");
 }
 /* use a texture size that will hold all of the video area */
 /* for simplicity, this handles only 1024x512 or 1024x1024 */

SGIX_video_source—The Video Source Extension

253

 tex_width = 1024;
 if (size.xyVal.y > 512) {
 tex_height = 1024;
 } else {
 tex_height = 512;
 }
 /* Set up a texture matrix so that texture coords in 0 to 1 */
 /* range will map to the active video area. We want */
 /* s' = s * s_scale */
 /* t' = (1-t) * t_scale (because video is upside down). */
 s_scale = size.xyVal.x / (float)tex_width;
 t_scale = size.xyVal.y / (float)tex_height;
 glMatrixMode(GL_TEXTURE);
 glLoadIdentity();
 glScalef(s_scale, -t_scale, 1);
 glTranslatef(0, t_scale, 0);

 /* choose video packing mode */
 texctl.intVal = SIR_TEX_PACK_RGBA_8;
 if (vlSetControl(svr, path, drn, VL_PACKING, &texctl) <0) {
 vlPerror("VlSetControl");
 }
 /* choose internal texture format; must match video packing mode */
 intfmt = GL_RGBA8_EXT;

 glEnable(GL_TEXTURE_2D);
 /* use a non-mipmap minification filter */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 /* use NULL texture image, so no image has to be sent from host */
 glTexImage2D(GL_TEXTURE_2D, 0, intfmt, tex_width, tex_height, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, NULL);

 if ((videosource = glXCreateGLXVideoSourceSGIX(dpy, scrn, svr,
 path, VL_TEXTURE, drn)) == None) {
 fprintf(stderr, "can't create video source\n");
 exit(1);
 }
 glXMakeCurrentReadSGI(dpy, win, videosource, cx);
}

static void draw(void)
{
 /* load video into texture memory */
 glCopyTexSubImage2DEXT(GL_TEXTURE_2D, 0, 0, 0, 0, 0,
 size.xyVal.x, size.xyVal.y);

254

Chapter 10: Video Extensions

 /* draw the video frame */
 glBegin(GL_POLYGON);
 glTexCoord2f(0,0); glVertex2f(0, 0);
 glTexCoord2f(1,0); glVertex2f(size.xyVal.x, 0);
 glTexCoord2f(1,1); glVertex2f(size.xyVal.x, size.xyVal.y);
 glTexCoord2f(0,1); glVertex2f(0, size.xyVal.y);
 glEnd();

}

New Functions

glXCreateGLXVideoSourceSGIX, glXDestroyGLXVideoSourceSGIX

255

Chapter 11

11.Miscellaneous OpenGL Extensions

This chapter explains how to use several extensions that are not easily grouped with
texturing, imaging, or GLX extensions, providing example code as needed. You learn
about:

• “GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension” on page 255

• “GLU_EXT_object_space—The Object Space Tess Extension” on page 259

• “SGIX_instruments—The Instruments Extension” on page 262

• “SGIX_list_priority—The List Priority Extension” on page 260

GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension

The NURBS tessellator extension, GLU_EXT_nurbs_tessellator, is a GLU extension that
allows applications to retrieve the results of a tessellation. The NURBS tessellator is
similar to the GLU polygon tessellator; see “Polygon Tessellation,” starting on page 410
of the OpenGL Programming Guide, Second Edition.

NURBS tessellation consists of OpenGL Begin, End, Color, Normal, Texture, and Vertex
data. This feature is useful for applications that need to cache the primitives to use their
own advanced shading model, or to accelerate frame rate or perform other computations
on the tessellated surface or curve data.

256

Chapter 11: Miscellaneous OpenGL Extensions

Using the NURBS Tessellator Extension

To use the extension, follow these steps:

1. Define a set of callbacks for a NURBS object using this command:

void gluNurbsCallback(GLUnurbsObj *nurbsObj, GLenum which,
void (*fn)());

The parameter which can be either GLU_ERROR or a data parameter or nondata
parameter, one of the following:

2. Call gluNurbsProperty() with a property parameter of GLU_NURBS_MODE_EXT
and value parameter of GLU_NURBS_TESSELLATOR_EXT or
GLU_NURBS_RENDERER_EXT.

In rendering mode, the objects are converted or tessellated to a sequence of OpenGL
primitives, such as evaluators and triangles, and sent to the OpenGL pipeline for
rendering. In tessellation mode, objects are converted to a sequence of triangles and
triangle strips and returned to the application through a callback interface for
further processing. The decomposition algorithms used for rendering and for
returning tessellations are not guaranteed to produce identical results.

3. Execute your OpenGL code to generate the NURBS curve or surface (see “A Simple
NURBS Example” on page 455 of the OpenGL Programming Guide, Second Edition.)

4. During tessellation, your callback functions are called by OpenGL, with the
tessellation information defining the NURBS curve or surface.

GLU_NURBS_BEGIN_EXT GLU_NURBS_BEGIN_DATA_EXT

GLU_NURBS_VERTEX_EXT GLU_NURBS_VERTEX_DATA_EXT

GLU_NORMAL_EXT GLU_NORMAL_DATA_EXT

GLU_NURBS_COLOR_EXT GLU_NURBS_COLOR_DATA_EXT

GLU_NURBS_TEXTURE_COORD_EXT GLU_NURBS_TEXTURE_COORD_DATA _EXT

GLU_END_EXT GLU_END_DATA_EXT

GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension

257

Callbacks Defined by the Extension

There are two forms of each callback defined by the extension: one with a pointer to
application supplied data and one without. If both versions of a particular callback are
specified, the callback with userData will be used. userData is a copy of the pointer that
was specified at the last call to gluNurbsCallbackDataEXT().

The callbacks have the following prototypes:

void begin(GLenum type);
void vertex(GLfloat *vertex);
void normal(GLfloat *normal);
void color(GLfloat *color);
void texCoord(GLfloat *texCoord);
void end(void);

void beginData(GLenum type, void* userData);
void vertexData(GLfloat *vertex, void* userData);
void normalData(GLfloat *normal, void* userData);
void colorData(GLfloat *color, void* userData);
void texCoordData(GLfloat *texCoord, void* userData);
void endData(void* userData);

void error(GLenum errno);

The first 12 callbacks allows applications to get primitives back from the NURBS
tessellator when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_TESSELLATOR_EXT.

These callbacks are not made when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_RENDERER_EXT.

All callback functions can be set to NULL even when GLU_NURBS_MODE_EXT is set
to GLU_NURBS_TESSELLATOR_EXT. When a callback function is set to NULL, this
function will not be invoked and the related data, if any, will be lost.

258

Chapter 11: Miscellaneous OpenGL Extensions

Table 11-1 provides additional information on each callback.

Table 11-1 NURBS Tessellator Callbacks and Their Description

Callback Description

GL_NURBS_BEGIN_EXT

GL_NURBS_BEGIN_DATA_
EXT

Indicates the start of a primitive. type is one of GL_LINES, GL_LINE_STRIPS,
GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, or GL_QUAD_STRIP.

The default begin() and beginData() callback functions are NULL.

GL_NURBS_VERTEX_EXT
GL_NURBS_VERTEX_DATA_
EXT

Indicates a vertex of the primitive. The coordinates of the vertex are stored in the parameter
vertex. All the generated vertices have dimension 3, that is, homogeneous coordinates have
been transformed into affine coordinates.

The default vertex() and vertexData() callback functions are NULL.

GL_NURBS_NORMAL_EXT
GL_NURBS_NORMAL_DATA_
EXT

Is invoked as the vertex normal is generated. The components of the normal are stored in the
parameter normal. In the case of a NURBS curve, the callback function is effective only when
the user provides a normal map (GLU_MAP1_NORMAL). In the case of a NURBS surface,
if a normal map (GLU_MAP2_NORMAL) is provided, then the generated normal is
computed from the normal map. If a normal map is not provided, then a surface normal is
computed in a manner similar to that described for evaluators when GL_AUTO_NORMAL
is enabled. The default normal() and normalData() callback functions are NULL.

GL_NURBS_COLOR_EXT
GL_NURBS_COLOR_DATA_
EXT

Is invoked as the color of a vertex is generated. The components of the color are stored in the
parameter color. This callback is effective only when the user provides a color map
(GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4). color contains four components: R, G, B, or
A.The default color() and colorData() callback functions are NULL.

GL_NURBS_TEXCOORD_EXT
GL_NURBS_TEXCOORD_
DATA_EXT

Is invoked as the texture coordinates of a vertex are generated. These coordinates are stored
in the parameter tex_coord. The number of texture coordinates can be 1, 2, 3, or 4 depending
on which type of texture map is specified (GL_MAP*_TEXTURE_COORD_1,
GL_MAP*_TEXTURE_COORD_2, GL_MAP*_TEXTURE_COORD_3,
GL_MAP*_TEXTURE_COORD_4 where * can be either 1 or 2). If no texture map is specified,
this callback function will not be called.

The default texCoord() and texCoordData() callback functions are NULL.

GL_NURBS_END_EXT
GL_NURBS_END_DATA_EXT

Is invoked at the end of a primitive. The default end() and endData() callback functions are
NULL.

GL_NURBS_ERROR_EXT Is invoked when a NURBS function detects an error condition. There are 37 errors specific to
NURBS functions. They are named GLU_NURBS_ERROR1 through
GLU_NURBS_ERROR37. Strings describing the meaning of these error codes can be
retrieved with gluErrorString().

GLU_EXT_object_space—The Object Space Tess Extension

259

GLU_EXT_object_space—The Object Space Tess Extension

The object space tess extension, GLU_EXT_object_space_tess, adds two object space
tessellation methods for GLU nurbs surfaces. NURBS are discussed in the section “The
GLU NURBS Interface” on page 455 of the OpenGL Programming Guide, Second Edition.

The existing tessellation methods GLU_PATH_LENGTH and
GLU_PARAMETRIC_ERROR are view dependent because the error tolerance is
measured in the screen space (in pixels). The extension provides corresponding object
space tessellation methods that are view-independent in that the error tolerance
measurement is in the object space.

GLU_SAMPLING_METHOD specifies how a NURBS surface should be tessellated. The
value parameter may be set to one of GLU_PATH_LENGTH,
GLU_PARAMETRIC_ERROR, GLU_DOMAIN_DISTANCE,
GLU_OBJECT_PATH_LENGTH_EXT, or GLU_OBJECT_PARAMETRIC_ERROR_EXT.

To use the extension, call gluNurbsProperty() with an argument of
GLU_OBJECT_PATH_LENGTH_EXT or GLU_OBJECT_PARAMETRIC_ERROR_EXT.
Table 11-2 contrasts the methods provided by the extension with the existing methods.

Table 11-2 Tessellation Methods

Method Description

GLU_PATH_LENGTH The surface is rendered so that the maximum length, in pixels,
of edges of the tessellation polygons is no greater than what is
specified by GLU_SAMPLING_TOLERANCE.

GLU_PARAMETRIC_ERROR The surface is rendered in such a way that the value specified
by GLU_PARAMETRIC_TOLERANCE describes the
maximum distance, in pixels, between the tessellation
polygons and the surfaces they approximate.

GLU_DOMAIN_DISTANCE Allows you to specify, in parametric coordinates, how many
sample points per unit length are taken in u, v dimension.

260

Chapter 11: Miscellaneous OpenGL Extensions

The default value of GLU_SAMPLING_METHOD is GLU_PATH_LENGTH.

GLU_SAMPLING_TOLERANCE specifies the maximum distance, in pixels or in object
space when the sampling method is set to GLU_PATH_LENGTH or
GLU_OBJECT_PATH_LENGTH_EXT. The default value for
GLU_SAMPLING_TOLERANCE is 50.0.

GLU_PARAMETRIC_TOLERANCE specifies the maximum distance, in pixels or in
object space when the sampling method is set to GLU_PARAMETRIC_ERROR or
GLU_OBJECT_PARAMETRIC_ERROR_EXT. The default value for
GLU_PARAMETRIC_TOLERANCE is 0.5.

SGIX_list_priority—The List Priority Extension

The list priority extension, SGIX_list_priority, provides a mechanism for specifying the
relative importance of display lists. This information can be used by an OpenGL
implementation to guide the placement of display list data in a storage hierarchy, that is,
lists that have higher priority reside in “faster” memory and are less likely to be swapped
out to make space for other lists.

GLU_OBJECT_PATH_LENGTH_
 EXT

Similar to GLU_PATH_LENGTH except that it is view
independent; that is, it specifies that the surface is rendered so
that the maximum length, in object space, of edges of the
tessellation polygons is no greater than what is specified by
GLU_SAMPLING_TOLERANCE.

GLU_OBJECT_PARAMETRIC_
ERROR_EXT

Similar to GLU_PARAMETRIC_ERROR except that it is view
independent; that is, it specifies that the surface is rendered in
such a way that the value specified by
GLU_PARAMETRIC_TOLERANCE describes the maximum
distance, in object space, between the tessellation polygons
and the surfaces they approximate.

Table 11-2 (continued) Tessellation Methods

Method Description

SGIX_list_priority—The List Priority Extension

261

Using the List Priority Extension

To guide the OpenGL implementation in determining which display lists should be
favored for fast executions, applications call glListParameter*SGIX(), which has the
following prototype:

glListParameterfSGIX(uint list, enum pname, float params)

where

• list is set to the display list.

• pname is set to GL_LIST_PRIORITY_SGIX.

• params is set to the priority value.

The priority value is clamped to the range [0.0, 1.0] before it is assigned. Zero indicates
the lowest priority, and hence the least likelihood of optimal execution. One indicates the
highest priority, and hence the greatest likelihood of optimal execution.

Attempts to prioritize nonlists are silently ignored. Attempts to prioritize list 0 generates
a GL_INVALID_VALUE error.

To query the priority of a list, call glGetListParameterfvSGIX(), which has the following
prototype:

glGetListParameterivSGIX(uint list, enum pname, int *params)

where:

• list is set to the list.

• pname is set to GL_LIST_PRIORITY_SGIX.

If list is not defined, then the value returned is undefined.

Note: On InfiniteReality systems, it makes sense to give higher priority to those display
lists that are changed frequently.

New Functions

glListParameterSGIX, glGetListParameterSGIX

262

Chapter 11: Miscellaneous OpenGL Extensions

SGIX_instruments—The Instruments Extension

The instruments extension, SGIX_instruments, allows applications to gather and return
performance measurements from within the graphics pipeline by adding
instrumentation.

About SGIX_instruments

There are two reasons for using the instruments extension:

• Load monitoring. If you know that the pipeline is stalled or struggling to process
the amount of data passed to it so far, you can take appropriate steps, such as these:

– Reduce the level of detail of the remaining objects in the current frame or the
next frame.

– Adjust the framebuffer resolution for the next frame if video resize capability is
available.

• Tuning. The instrumentation may give you tuning information; for example, it may
provide information on how many triangles were culled or clipped before being
rasterized.

Load monitoring requires that the instrumentation and the access of the measurements
be efficient, otherwise the instrumentation itself will reduce performance more than any
load-management scheme could hope to offset. Tuning does not have the same
requirements.

The instruments extension provides a call to set up a measurements return buffer, similar
to the feedback buffer. However, unlike feedback and selection (see glSelectBuffer() and
glFeedbackBuffer()), the instruments extension provides commands that allow
measurements to be delivered asynchronously, so that the graphics pipeline need not be
stalled while measurements are returned to the client.

Note that the extension provides an instrumentation framework, but no instruments.
The set of available instruments varies between OpenGL implementations, and can be
determined by querying the GL_EXTENSIONS string returned by glGetString() for the
names of the extensions that implement the instruments.

SGIX_instruments—The Instruments Extension

263

Using the Extension

This section discusses using the extension in the following subsections:

• “Specifying the Buffer”

• “Enabling, Starting, and Stopping Instruments”

• “Measurement Format”

• “Retrieving Information”

Specifying the Buffer

To specify a buffer in which to collect instrument measurements, call
glInstrumentsBufferSGIX() with size set to the size of the buffer as a count of GLints.
The function has the following prototype:

void glInstrumentsBufferSGIX(GLsizei size, GLint *buffer)

The buffer will be prepared in a way that allows it to be written asynchronously by the
graphics pipeline.

If the same buffer was specified on a previous call, the buffer is reset; that is,
measurements taken after the call to glInstrumentsBufferSGIX() are written to the start
of the buffer.

If buffer is zero, then any resources allocated by a previous call to prepare the buffer for
writing will be freed. If buffer is non-zero, but is different from a previous call, the old
buffer is replaced by the new buffer and any allocated resources involved in preparing
the old buffer for writing are freed.

The buffer address can be queried with glGetPointerv() using the argument
GL_INSTRUMENT_BUFFER_POINTER_SGIX (note that glGetPointerv() is an OpenGL
1.1 function).

Enabling, Starting, and Stopping Instruments

To enable an instrument, call glEnable() with an argument that specifies the instrument.
The argument to use for a particular instrument is determined by the OpenGL extension
that supports that instrument. (See “Instruments Example Pseudo Code” on page 266.)

264

Chapter 11: Miscellaneous OpenGL Extensions

To start the currently enabled instrument(s), call glStartInstrumentsSGIX(). To take a
measurement, call glReadInstrumentsSGIX(). To stop the currently-enabled
instruments and take a final measurement call glStopInstrumentsSGIX(). The three
functions have the following prototypes:

void glStartInstrumentsSGIX(void)
void glReadInstrumentsSGIX(GLint marker)
void glStopInstrumentsSGIX(GLint marker)

The marker parameter is passed through the pipe and written to the buffer to ease the task
of interpreting it.

If no instruments are enabled executing glStartInstrumentsSGIX(),
glStopInstrumentsSGIX(), or glReadInstruments() will not write measurements to the
buffer.

Measurement Format

The format of any instrument measurement in the buffer obeys certain conventions:

• The first word of the measurement is the glEnable() enum for the instrument itself.

• The second word of the measurement is the size in GLints of the entire
measurement. This allows any parser to step over measurements with which it is
unfamiliar. Currently there are no implementation-independent instruments to
describe.

Implementation-dependent instruments are described in the Machine
Dependencies section of the reference page for glInstrumentsSGIX. Currently, only
InfiniteReality systems support any extensions.

In a single measurement, if multiple instruments are enabled, the data for those
instruments can appear in the buffer in any order.

Retrieving Information

To query the number of measurements taken since the buffer was reset, call glGet() using
GL_INSTRUMENT_MEASUREMENTS_SGIX.

To determine whether a measurement has been written to the buffer, call
glPollInstrumentsSGIX(), which has the following prototype:

GLint glPollInstrumentsSGIX(GLint *markerp)

SGIX_instruments—The Instruments Extension

265

If a new measurement has appeared in the buffer since the last call to
glPollInstrumentsSGIX(), 1 is returned, and the value of marker associated with the
measurement by glStopInstrumentsSGIX() or glReadInstrumentsSGIX() is written
into the variable referenced by marker_p. The measurements appear in the buffer in the
order in which they were requested. If the buffer overflows, glPollInstrumentsSGIX()
may return -1 as soon as the overflow is detected, even if the measurement being polled
did not cause the overflow. (An implementation may also choose to delay reporting the
overflow until the measurement that caused the overflow is the one being polled.) If no
new measurement has been written to the buffer, and overflow has not occurred,
glPollInstrumentsSGIX() returns 0.

Note that while in practice an implementation of the extension is likely to return markers
in order, this functionality is not explicitly required by the specification for the extension.

To get a count of the number of new valid GLints written to the buffer, call
glGetInstrumentsSGIX(), which has the following prototype:

GLint glGetInstrumentsSGIX(void)

The value returned is the number of GLints that have been written to the buffer since the
last call to glGetInstrumentsSGIX() or glInstrumentsBufferSGIX(). If the buffer has
overflowed since the last call to glGetInstrumentsSGIX(), -1 is returned for the count.
Note that glGetInstrumentsSGIX() can be used independently of
glPollInstrumentsSGIX().

266

Chapter 11: Miscellaneous OpenGL Extensions

Instruments Example Pseudo Code

Example 11-1 Instruments Example Pseudo Code

#ifdef GL_SGIX_instruments
 #define MARKER1 1001
 #define MARKER2 1002
 {
 static GLint buffer[64];
 GLvoid *bufp;
 int id, count0, count1, r;

 /* define the buffer to hold the measurements */
 glInstrumentsBufferSGIX(sizeof(buffer)/sizeof(GLint), buffer);

 /* enable the instruments from which to take measurements */
 glEnable(<an enum for a supported instrument, such as

GL_IR_INSTRUMENT1_SGIX>);

 glStartInstrumentsSGIX();
 /* insert GL commands here */
 glReadInstrumentsSGIX(MARKER1);
 /* insert GL commands here */
 glStopInstrumentsSGIX(MARKER2);

 /* query the number of measurements since the buffer was specified*/
 glGetIntegerv(GL_INSTRUMENT_MEASUREMENTS_SGIX,&r);
 /* now r should equal 2 */

 /* query the pointer to the instrument buffer */
 glGetPointervEXT(GL_INSTRUMENT_BUFFER_SGIX,&bufp);
 /* now bufp should be equal to buffer */

 /*
 * we can call glGetInstrumentsSGIX before or after the calls to
 * glPollInstrumentsSGIX but to be sure of exactly what
 * measurements are in the buffer, we can use PollInstrumentsSGIX.
 */
 count0 = glGetInstrumentsSGIX();
 /* Since 0, 1, or 2 measurements might have been returned to
 * the buffer at this point, count0 will be 0, 1, or 2 times
 * the size in GLints of the records returned from the
 * currently-enabled instruments.
 * If the buffer overflowed, count0 will be -1.
 */

SGIX_instruments—The Instruments Extension

267

 while (!(r = glPollInstrumentsSGIX(&id))) ;
 /* if r is -1, we have overflowed. If it is 1, id will
 * have the value of the marker passed in with the first
 * measurement request (should be MARKER1). While it is 0,
 * no measurement has been returned (yet).
 */

 while (!(r = glPollInstrumentsSGIX(&id))) ;
 /* see the note on the first poll; id now should equal MARKER2 */

 count1 = glGetInstrumentsSGIX();
 /* the sum of count0 and count1 should be 2 times the size in GLints
 * of the records returned for all instruments that we have enabled.
 */
 }
 #endif

New Functions

glInstrumentsBufferSGIX, glStartInstrumentsSGIX, glStopInstrumentsSGIX,
glReadInstrumentsSGIX, glPollInstrumentsSGIX, glGetInstrumentsSGIX

269

Chapter 12

12.OpenGL Tools

This chapter explains how to work with these OpenGL tools:

• “ogldebug—the OpenGL Debugger” lets you use a graphical user interface to trace
and examine OpenGL calls. See page 269

• “glc—the OpenGL Character Renderer” on page 283 lets you render characters in
OpenGL programs. See page 283.

• “gls—The OpenGL Stream Utility” is a facility for encoding and decoding streams
of 8-bit bytes that represent sequences of OpenGL commands. See page 283.

• “glxInfo—The glx Information Utility” on page 285 provides information on GLX
extensions and OpenGL capable visuals, and the OpenGL renderer of an X server.
See page 285.

ogldebug—the OpenGL Debugger

This section explains how to debug graphics applications with the OpenGL debugging
tool ogldebug. The following topics are discussed:

• “ogldebug Overview” on page 270

• “Getting Started With ogldebug” on page 271

• “Creating a Trace File to Discover OpenGL Problems” on page 276

• “Interacting With ogldebug” on page 274

• “Using a Configuration File” on page 278

• “Using Menus to Interact With ogldebug” on page 278

270

Chapter 12: OpenGL Tools

ogldebug Overview

The ogldebug tool helps you find OpenGL programming errors and discover OpenGL
programming style that may slow down your application. After finding an error, you can
correct it and recompile your program.Using ogldebug, you can perform the following
actions at any point during program execution:

• Set a breakpoint for all occurrences of a given OpenGL call.

• Step through (or skip) OpenGL calls.

• Locate OpenGL errors.

• For a selected OpenGL context, display information about OpenGL state, current
display lists, and the window that belongs to the application you are debugging.

• Create a history (“trace”) file of all OpenGL calls made. The history file is a gls file
that contains comments and performance hints. You can convert it to legal C code
using ogldebug command line options.

Note: If you are debugging a multiwindow or multicontext application, ogldebug starts
a new session (a new window appears) each time the application starts a new process. In
each new window, the process ID is displayed in the title bar.

The OpenGL debugger is not a general-purpose debugger. Use dbx and related tools such
as cvd (CASEVision/Workshop Debugger) to find problems in the nonOpenGL portions
of a program.

How ogldebug Operates

The OpenGL debugger works like this:

• You invoke ogldebug for an application using the appropriate command line
options (see “ogldebug Command-Line Options” on page 271).

• A special library (libogldebug.so) intercepts all OpenGL calls using the OpenGL
streams mechanism. It interprets calls to OpenGL only and filters GLU, GLC, and
GLX calls. GLU calls are parsed down to their OpenGL calls; the actual GLU calls
are lost.

• You can run, halt, step, and trace each process in the application separately using
the ogldebug graphical interface.

• After ogldebug-related processing, the actual OpenGL calls are made as they would
have been if ogldebug had not been present.

ogldebug—the OpenGL Debugger

271

Getting Started With ogldebug

This section discusses how to set up and start ogldebug and lists available command line
options.

Setting Up ogldebug

Before you can use ogldebug, you must install the gl_dev.sw.ogldebug (or
gl_dev.sw64.debug) subsystem. You can use the Software Manager from the Toolchest or
execute swmgr from the command line. Consider also installing gl_dev.man.ogldebug to
have access to the reference page.

ogldebug Command-Line Options

The ogldebug version that is shipped with IRIX 6.5 has a number of command-line
options. (The options are also listen in the ogldebug reference page).

Table 12-1 Command-Line Options for ogldebug

Option Description

–display display Set the display for the ogldebug user interface. If –display is not specified,
ogldebug will use $DISPLAY.

–appdisplay display Set the display for the application.

–glsplay gls_trace_file Play back a gls trace file recorded by ogldebug. Note that a gls trace file is
not standard C.

–gls2c gls_trace_file Convert a gls trace file to a C code snippet. Output is to stdout.

–gls2x gls_trace_file Convert a gls trace file to an X Window System program that can be
compiled. Output is to stdout.

–gls2glut gls_trace_file Convert a gls trace file to a GLUT program that can be compiled. Output
is to stdout.

272

Chapter 12: OpenGL Tools

Starting ogldebug

To debug your OpenGL program, type the appropriate command line for your
executable format:

o32 % ogldebug options o32program_name program_options

n32 % ogldebug32 options n32program_name program_options

64 % ogldebug64 options 64program_name program_options

where

• options are any of the options listed under “ogldebug Command-Line Options.”

• program_name is the name of your (executable) application.

• program_options are application-specific options, if any.

Note: It is not necessary to compile the application with any special options. The
debugger works with any program compiled with –lGL.

ogldebug becomes active when the application makes its first OpenGL call. Each
ogldebug main window represents a different application process. If the application uses
fork, sproc, or pthread, multiple ogldebug windows may appear.

The debugger launches your application and halts execution just before the application’s
first OpenGL call. The main window (see Figure 12-1) lets you interact with your
application’s current process and displays information about the process.

ogldebug—the OpenGL Debugger

273

Figure 12-1 ogldebug Main Window

The three display areas below the menu bar are:

• Context information. Displays the current process for that window (multiple
processes have multiple windows) and the current OpenGL context.

• OpenGL call display. Below the status display area is the OpenGL call display area.
This area shows the next OpenGL command to be executed.

• Status display. Immediately above the row of buttons is a one-line status display
field, where ogldebug posts confirmation of commands and other status indicators.

Below the row of buttons are checkboxes, discussed in “Using Checkboxes” on page 275.

Status display

Interaction buttons

Context information

Options

OpenGL call display

274

Chapter 12: OpenGL Tools

Interacting With ogldebug

This section provides more detailed information on working with ogldebug. It explains.

• “Commands for Basic Interaction”

• “Using Checkboxes”

Additional information is available in the sections “Creating a Trace File to Discover
OpenGL Problems” on page 276 and “Using Menus to Interact With ogldebug” on
page 278.

Commands for Basic Interaction

You can perform all basic interaction using the row of buttons just above the check boxes.
You can access the same commands using the Commands menu. This section describes
each command, including the keyboard shortcut (also listed in the Commands menu).

Table 12-2 Command Buttons and Shortcuts

Command Result

Halt
Ctrl+H

Temporarily stops the application at the next OpenGL call. All state and program
information is retained so you can continue execution if you wish.

Continue
Ctrl+C

Resumes program execution after execution has been stopped (such as after
encountering a breakpoint or after you used the Halt or Step command). The
program continues running until it reaches another breakpoint or until you explicitly
halt it. The display will only be updated when the application stops again.

Step
Ctrl+T

Continues executing up to the next OpenGL call, then stops before executing that call.

Skip
Ctrl+K

Skips over the current OpenGL call. Useful if you think the current call contains an
error or is likely to cause one. The program executes until it reaches the next OpenGL
call, then stops.

ogldebug—the OpenGL Debugger

275

Using Checkboxes

The checkboxes at the bottom of the ogldebug window allow finer control over how
information is collected. Checkboxes let you determine when a break occurs and which
API calls you want to skip.

Table 12-3 explains what happens for each of these boxes if it is checked.

Table 12-3 ogldebug Check Boxes

Check box Description

Check for GL error Calls glGetError() after every OpenGL call to check for errors. Note
that glGetError() cannot be called between glBegin() and glEnd()
pairs. glGetError() is called until all errors are clear.

Control drawing Allows the user to inspect drawing in progress (forces front buffer
rendering). Also allows the user to control drawing speed.

No history Does not record history of the OpenGL call. As a result, the program
runs faster but you cannot look at history information.

Break on GL calls Halts on selected Open GL calls. Use the adjacent Setup button to
select which calls to skip (see Figure 12-2). In the “Break on GL calls”
Setup box, glFlush() is selected by default but is not active unless the
“Break on GL calls” checkbox is selected.

Break on SwapBuffers Halts on calls that swap buffers. There is no window system
independent call that swaps buffers; the debugger halts on the
appropriate call for each platform (e.g. glxSwapBuffers() for X
Window System applications).

Skip GL calls Skips selected OpenGL calls. Use the adjacent Setup button to select
which calls to skip.

Skip GL trace calls Does not write selected OpenGL calls to the trace file. Use the adjacent
Setup button to select which calls you don’t want traced.

276

Chapter 12: OpenGL Tools

Figure 12-2 Setup Panel

Figure 12-2 shows a setup panel. Inside any setup panels, you can use the standard Shift,
Control, and Shift+Control keystrokes for multiple item selection and deselection.

To save and recall up to three custom selection/deselection areas, use the Sets menu in
the setup panel for Break on OpenGL calls, Skip GL calls, and Skip GL trace calls.

Creating a Trace File to Discover OpenGL Problems

A trace file helps you find bugs in the OpenGL portion of your code without having to
worry about the mechanics of window operations. Here is an example of how to collect
one frame of OpenGL calls:

1. Launch ogldebug:

% ogldebug your_program_name

Be sure to use the appropriate options, see “ogldebug Command-Line Options” on
page 271.

ogldebug—the OpenGL Debugger

277

2. Run until the application has passed the point of interest. You can do either of these
substeps:

■ Click the Break on SwapBuffers checkbox

■ Click the Break (API calls) checkbox to select it, then click the Setup button next
to it and choose glFlush() in the Break Selection panel.

3. From the Information menu, select Call History.

ogldebug presents a panel that lets you select which OpenGL context you want to
trace. Depending on the application, more than one context may be available.

4. Select the OpenGL context you want to trace.

A Call History panel appears, showing a list of all OpenGL contexts in the
application. Double-clicking the context will show an additional window with all
calls from that context. You can examine the call history in the panel or save it as a
gls trace file using the Save button at the bottom of the panel.

A gls trace is meant to be pure OpenGL and to be window-system independent.
Comments have, however, been added that indicate where GLX, GLU, and GLC
calls were made. Any OpenGL calls made from within these higher-level calls are
indented. Performance hints are also included in the trace file, as in the following
example:

...

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);
glMaterialfv(GL_FRONT, GL_AMBIENT, {0.1745, 0.01175, 0.01175,
2.589596E-29});
glsString(“Info”, “For best performance, set up material parameters
first, then enable lighting.”);

...

5. At this point, you have several options:

■ Play back (re-execute) the gls trace file with the -glsplay option.

■ Convert the gls trace file to a C file by invoking ogldebug with the -gls2c, -gls2x,
or -gls2glut option. Any comments or performance hints are removed during
the conversion.

278

Chapter 12: OpenGL Tools

For larger applications, such as Performer, consider using the No History feature. If you
need to run the application to a particular point and do not care about the call history
until that point, turn on “No history” to speed things up.

Using a Configuration File

As you work with ogldebug, you will find that certain settings are best suited for certain
situations. You can save and reload groups of ogldebug settings as follows:

• To save settings, choose Save Configuration from the File menu, then enter a
filename using the dialog.

• To load settings, choose Load Configuration from the File menu, then select a file
using the dialog.

Using Menus to Interact With ogldebug

This section describes how you can interact with ogldebug using menus. You learn about

• Using the File Menu to Interact With ogldebug

• Using the Commands Menu to Interact With Your Program

• Using the Information Menu to Access Information

• Using the References Menu for Background Information

ogldebug—the OpenGL Debugger

279

Using the File Menu to Interact With ogldebug

The File menu (shown in Figure 12-3) gives version information, lets you save and reload
a configuration file, and quits ogldebug.

Figure 12-3 ogldebug File Menu

Using the Commands Menu to Interact With Your Program

The Commands menu gives access to some of the information collected by ogldebug.The
commands are discussed in “Interacting With ogldebug” on page 274.

Figure 12-4 ogldebug Command menu

Using the Information Menu to Access Information

The following two illustrations show the windows in which ogldebug displays
information. A table that explains the functionality follows each illustration.

Saves checkbox settings in a file.
Loads checkbox settings from a file.
Quits ogldebug.

280

Chapter 12: OpenGL Tools

Figure 12-5 Information Menu Commands (First Screen)

Here’s a brief description of the Call Count and Call History menu commands:

Call Count Brings up a window with counts for OpenGL, GLU, GLX, and GLC
calls. You can show a count for all OpenGL functions or only for
functions that were called at least once (nonzero calls).

Call History Brings up a window with a history of OpenGL calls (as a gls trace).

ogldebug—the OpenGL Debugger

281

Figure 12-6 Information Menu Commands (Second Screen)

Here is a brief description of the menu commands:

Display List First prompts for a context, then brings up a window with information
about the application’s display lists, if any, for that context. You can
show all or only non-empty display lists.

Primitive
Count

Provides the number of all primitives sent by the application so far (for
example, quads, polygons, and so on). Whether they are clipped or not
is not reported.

282

Chapter 12: OpenGL Tools

Using the References Menu for Background Information

The References menu provides access to the Enumerants menu command only. If you
choose Enumerants, a window displays a list of the symbolic names of OpenGL
enumerated constants, together with the actual number (in hexadecimal and decimal)
that each name represents (See Figure 12-7).

Figure 12-7 Enumerants Window

State Brings up a window that displays information on OpenGL state
variables. You can show all or only nondefault state. Note that you
cannot query state between glBegin() and glEnd() pairs.

Window (not
shown)

Brings up window information for the application you are running
from ogldebug.

glc—the OpenGL Character Renderer

283

glc—the OpenGL Character Renderer

The OpenGL Character Renderer (GLC) is a platform-independent character renderer
that offers the following benefits:

• Convenient to use for simple applications

• Can scale and rotate text and draw text using lines, filled triangles, or bitmaps)

• Supports for international characters

For a basic discussion of glc and a list of notes and known bugs for the current
implementation, see the glcintro reference page.

The most authoritative documentation on GLC is the GLC specification document,
which is usually included in each OpenGL release in PostScript form. If you install the
software product gl_dev.sw.samples, the GLC specification is installed as

/usr/share/src/OpenGL/teach/glc/glcspec.ps

gls—The OpenGL Stream Utility

The OpenGL Stream Codec (GLS) is a facility for encoding and decoding streams of 8-bit
bytes that represent sequences of OpenGL commands. This section starts with an
overview of gls, then discusses “glscat Utility” on page 284, which allows you to
concatenate gls streams.

OpenGL Stream Utility Overview

GLS can be used for a variety of purposes, for example:

• Scalable OpenGL pictures—GLS facilitates resolution-independent storage,
interchange, viewing, and printing.

• Persistent storage of OpenGL commands, display lists, images, and textures.

• Communication—Command transfer between application processes via
byte-stream connections.

• Client-side display lists—Can contain client data or callbacks.

• Tracing—Useful for debugging, profiling, and benchmarking.

284

Chapter 12: OpenGL Tools

Some of these applications require the definition and implementation of higher-level
APIs that are more convenient to use than the GLS API. The GLS API provides only the
basic encoding and decoding services that allow higher-level services to be built on top
of it efficiently.

 The GLS specification has two components:

• A set of three byte-stream encodings for OpenGL and GLS commands:
human-readable text, big-endian binary, and little-endian binary. The three
encodings are semantically identical; they differ only in syntax. It is therefore
possible to convert GLS byte streams freely among the three encodings without loss
of information.

• An API that provides commands for encoding and decoding GLS byte streams. This
API is not formally an extension of the OpenGL API. Like the GLU API, the GLS
API is designed to be implemented in an optional, standalone client-side subroutine
library that is separate from the subroutine library that implements the OpenGL
API.

The GLS encodings and API are platform independent and window system
independent. In particular, the GLS encodings are not tied to the X Window System
protocol encoding used by the GLX extension. GLS is designed to work equally well in
UNIX, Windows, and other environments.

For information, see the glsintro reference page.

glscat Utility

The glscat utility (/usr/sbin/glscat) allows you to concatenate GLS streams. Enter glscat
-h at the command line for a list of command-line parameters and options for glscat.

In its simplest usage, glscat copies a GLS stream from standard input to standard output:

glscat < stream1.gls > stream2.gls

As an alternative to standard input, one or more named input files can be provided on
the command line. If multiple input streams are provided, GLS will concatenate them:

glscat stream1.gls stream2.gls > stream3.gls

glxInfo—The glx Information Utility

285

Use the -o outfile option to specify a named output file as an alternative to standard
output:

glscat –o stream2.gls < stream1.gls

In all cases, the input stream is decoded and re-encoded, and errors are flagged. By
default, the type of the output stream (GLS_TEXT, GLS_BINARY_MSB_FIRST, or
GLS_BINARY_LSB_FIRST) is the same as the type of the input stream.

The most useful option to glscat is the -t type, which lets you control the type of the
output stream. The type parameter is a single-letter code, one of the following:

t Text

b Native binary

s Swapped binary

l lsb-first binary

m msb-first binary

For example, the following command converts a GLS stream of any type to text format:

glscat -t t < stream1.gls > stream2.gls

glxInfo—The glx Information Utility

glxinfo lists information about the GLX extension, OpenGL capable visuals, and the
OpenGL renderer of an X server. The GLX and render information includes the version
and extension attributes. The visual information lists the GLX visual attributes for each
OpenGL capable visual (for example whether the visual is double buffered, the
component sizes, and so on). For more information, try out the command or see the
glxinfo reference page.

287

Chapter 13

13.Tuning Graphics Applications: Fundamentals

Tuning your software makes it use hardware capabilities more effectively. This chapter
looks at tuning graphics applications. It discusses pipeline tuning as a conceptual
framework for tuning graphics applications, and introduces some other fundamentals of
tuning:

• “Debugging and Tuning Your Program” on page 288

• “General Tips for Debugging Graphics Programs” on page 288

• “About Pipeline Tuning” on page 292

• “Tuning Animation” on page 302

• “Taking Timing Measurements” on page 296

Writing high-performance code is usually more complex than just following a set of
rules. Most often, it involves making trade-offs between special functions, quality, and
performance for a particular application. For more information about the issues you
need to consider, and for a tuning example, look at the following chapters in this book:

• Chapter 14, “Tuning the Pipeline”

• Chapter 15, “Tuning Graphics Applications: Examples”

• Chapter 16, “System-Specific Tuning”

After reading these chapters, experiment with the different techniques described to help
you decide where to make these trade-offs.

Note: If optimum performance is crucial, consider using the IRIS Performer rendering
toolkit. See “Maximizing Performance With IRIS Performer” on page 8.

288

Chapter 13: Tuning Graphics Applications: Fundamentals

Debugging and Tuning Your Program

Even the fastest machine can render only as fast as the application can drive it. Simple
changes in application code can therefore make a dramatic difference in rendering time.
In addition, Silicon Graphics systems let you make tradeoffs between image quality and
performance for your application.

This section sets the foundation for good performance by discussing:

• “General Tips for Debugging Graphics Programs”

• “Specific Problems and Troubleshooting”

General Tips for Debugging Graphics Programs

This section gives advice on important aspects of OpenGL debugging. Most points apply
primarily to graphics programs and may not be obvious to developers who are
accustomed to debugging text-based programs.

Here are some general debugging tips for an OpenGL program:

• OpenGL never signals errors but simply records them; determining whether an
error occurred is up to the user. During the debugging phase, your program should
call glGetError() to look for errors frequently (for example, once per redraw) until
glGetError() returns GL_NO_ERROR. While this slows down performance
somewhat, it helps you debug the program efficiently. You can use ogldebug to
automatically call glGetError() after every OpenGL call. See “ogldebug—the
OpenGL Debugger” on page 269 for more information on ogldebug.

• Use an iterative coding process: add some graphics-related code, build and test to
ensure expected results, and repeat as necessary.

• Debug the parts of your program in order of complexity: First make sure your
geometry is drawing correctly, then add lighting, texturing, and backface culling.

• Start debugging in single-buffer mode, then move on to a double-buffered program.

Here are some areas that frequently result in errors:

• Be careful with OpenGL enumerated constants that have similar names. For
example, glBegin(GL_LINES) works; glBegin(GL_LINE) does not. Using
glGetError() can help to detect problems like this (it reports GL_INVALID_ENUM
for this specific case).

Debugging and Tuning Your Program

289

• Use only per-vertex operations in a glBegin()/glEnd() sequence. Within a
glBegin()/glEnd() sequence, the only graphics commands that may be used are
commands for setting materials, colors, normals, edge flags, texture coordinates,
surface parametric coordinates, and vertex coordinates. The use of any other
graphics command is illegal. The exact list of allowable commands is given in the
reference page for glBegin. Even if other calls appear to work, they are not
guaranteed to work in the future and may have severe performance penalties.

• Check for matching glPushMatrix() and glPopMatrix() calls.

• Check matrix mode state information. Generally, an application should stay in
GL_MODELVIEW mode. Odd visual effects can occur if the matrix mode is not
right.

Specific Problems and Troubleshooting

This section discusses some specific problems frequently encountered by OpenGL users.
Note that one generally useful approach is to experiment with an ogldebug trace of the
first few frames. See “Creating a Trace File to Discover OpenGL Problems” on page 276.

Blank Window

A common problem encountered in graphics programming is a blank window. If you
find your display doesn’t show what you expected, do the following:

• To make sure you are bound to the right window, try clearing the image buffers
with glClear(). If you cannot clear, you may be bound to the wrong window (or no
window at all).

• To make sure you are not rendering in the background color, use an unusual color
(instead of black) to clear the window with glClear().

• To make sure you are not clipping everything inadvertently, temporarily move the
near and far clipping planes to extreme distances (such as 0.001 and 1000000.0).
(Note that a range like this is totally inappropriate for actual use in a program.)

• Try backing up the viewpoint up to see more of the space.

• Check the section “Troubleshooting Transformations” in Chapter 3 of the OpenGL
Programming Guide, Second Edition.

• Make sure you are using the correct projection matrix.

290

Chapter 13: Tuning Graphics Applications: Fundamentals

• Remember that glOrtho() and glPerspective() calls multiply onto the current
projection matrix; they don’t replace it.

• If you have a blank window in a double-buffered program, check first that
something is displayed when you run the program in single-buffered mode. If yes,
make sure you are calling glXSwapBuffers(). If the program is using depth
buffering and that the depth buffer is cleared as appropriate. See also “Depth
Buffering Problems” on page 290.

• Check the aspect ratio of the viewing frustrum. Don’t set up your program using
code like the following:

GLfloat aspect = event.xconfigure.width/event.xconfigure.height
 /* 0 by integer division */

Rotation and Translation Problems

• Z axis direction. Remember that by default you start out looking down the negative
z axis. Unless you move the viewpoint, objects should have negative z coordinates
to be visible.

• Rotation. Make sure you have translated back to the origin before rotating (unless
you intend to rotate about some other point). Rotations are always about the origin
of the current coordinate system.

• Transformation order. First translating, then rotating an object yields a different
result than first rotating, then translating. The order of rotation is also important; for
example, R(x), R(y), R(z) is not the same as R(z), R(y), R(x).

Depth Buffering Problems

When your program uses depth testing, be sure to:

• Enable depth testing, using glEnable() with a GL_DEPTH_TEST argument—depth
testing is off by default. Set the depth function to the desired function, using
glDepthFunc() —the default function is GL_LESS.

• Request a visual that supports a depth buffer. Note that on some platforms a depth
buffer is automatically returned for certain color configuration (for example, RGBA
on Indy systems), while on other platforms a depth buffer is only returned when
one is specifically requested (RealityEngine systems for example). To guarantee that
your program is portable, always ask for a depth buffer explicitly.

Debugging and Tuning Your Program

291

Animation Problems

• Double-buffering. After drawing to the back buffer, make sure you swap buffers
with glXSwapBuffers().

• Observing the image during drawing. If you have a performance problem and
want to see which part of the image takes the longest to draw, use a single-buffered
visual. If you don’t use resources to control visual selection, call glDrawBuffer()
with a GL_FRONT argument before rendering. You can then observe the image as it
is drawn. Note that this observation is possible only if the problem is severe. On a
fast system you may not be able to observe the problem.

Lighting Problems

• Turn off specular shading in the early debugging stages. It is harder to visualize
where specular highlights should be than where diffuse highlights should be.

• For local light sources, draw lines from the light source to the object you are trying
to light to make sure the spatial and directional nature of the light is right.

• Make sure you have both GL_LIGHTING enabled and the appropriate
GL_LIGHT#’s enabled.

• To see whether normals are being scaled and causing lighting problems, enable
GL_NORMALIZE. This is particularly important if you call glScale().

• Make sure normals are pointing in the right direction.

• Make sure the light is actually at the intended position. Positions are affected by the
current model-view matrix. Enabling light without calling glLight(GL_POSITION)

provides a headlight if called before gluLookAt() and so on.

X Window System Problems

• OpenGL and the X Window System have different notions of the y direction.
OpenGL has it in the lower left corner of the window; X has the origin (0, 0) in the
upper left corner. If you try to track the mouse but find that the object is moving in
the “wrong” direction vertically, this is probably the cause.

• Textures and display lists defined in one context are not visible to other contexts
unless they explicitly share textures and display lists.

• glXUseXFont() creates display lists for characters. The display lists are visible only
in contexts that share objects with the context in which they were created.

292

Chapter 13: Tuning Graphics Applications: Fundamentals

Pixel and Texture Write Problems

• Make sure the pixel storage mode GL_UNPACK_ALIGNMENT is set to the correct
value depending on the type of data. For example:

GLubyte buf[] = {0x9D, ... 0xA7};
 /* a lot of bitmap images are passed as bytes! */
glBitmap(w, h, x, y, 0, 0, buf);

The default GL_UNPACK_ALIGNMENT is 4. It should be 1 in the case above. If
this value is not set correctly, the image looks sheared.

The same thing applies to textures.

System-Specific Problems

• Make sure you don’t exceed implementation-specific resource limits such as
maximum projection stack depth.

• When moving an application from a RealityEngine system to a low-end system,
make the system you are targeting supports destination alpha planes. Some
low-end machines don’t support them.

About Pipeline Tuning

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the code
in which a program spends 90% of its time. Pipeline tuning uses a different approach: it
looks for bottlenecks, overloaded stages that are holding up other processes.

At any time, one stage of the pipeline is the bottleneck. Reducing the time spent in the
bottleneck is the only way to improve performance. Speeding up operations in other
parts of the pipeline has no effect. Conversely, doing work that further narrows the
bottleneck, or that creates a new bottleneck somewhere else, is the only thing that further
degrades performance. If different parts of the hardware are responsible for different
parts of the pipeline, the workload can be increased at other parts of the pipeline without
degrading performance, as long as that part does not become a new bottleneck. In this
way, an application can sometimes be altered to draw a higher-quality image with no
performance degradation.

The goal of any program is a balanced pipeline; highest-quality rendering at optimum
speed. Different programs stress different parts of the pipeline, so it is important to
understand which elements in the graphics pipeline are a program’s bottlenecks.

About Pipeline Tuning

293

Three-Stage Model of the Graphics Pipeline

The graphics pipeline in all Silicon Graphics workstations consists of three conceptual
stages (see Figure 13-1): Depending on the implementation, all parts may be done by the
CPU or parts of the pipeline may be done by an accelerator card. The conceptual model
is useful in either case: it helps you to understand where your application spends its time.
These are the stages:

1. The CPU subsystem. The application program running on the CPU, feeding
commands to the graphics subsystem.

2. The geometry subsystem. The per-polygon operations, such as coordinate
transformations, lighting, texture coordinate generation, and clipping (may be
hardware accelerated).

3. The raster subsystem. The per-pixel and per-fragment operations, such as the
simple operation of writing color values into the framebuffer, or more complex
operations like depth buffering, alpha blending, and texture mapping.

Figure 13-1 Three-Stage Model of the Graphics Pipeline

Note that this three-stage model is simpler than the actual hardware implementation in
the various models in the Silicon Graphics product line, but it is detailed enough for all
but the most subtle tuning tasks.

The amount of work required from the different pipeline stages varies among
applications. For example, consider a program that draws a small number of large
polygons. Because there are only a few polygons, the pipeline stage that does geometry
operations is lightly loaded. Because those few polygons cover many pixels on the
screen, the pipeline stage that does rasterization is heavily loaded.

CPU

Geometry subsystem

Raster subsystem

294

Chapter 13: Tuning Graphics Applications: Fundamentals

To speed up this program, you must speed up the rasterization stage, either by drawing
fewer pixels, or by drawing pixels in a way that takes less time by turning off modes like
texturing, blending, or depth-buffering. In addition, because spare capacity is available
in the per-polygon stage, you can increase the work load at that stage without degrading
performance. For example, you can use a more complex lighting model, or define
geometry elements such that they remain the same size but look more detailed because
they are composed of a larger number of polygons.

Note that in a software implementation, all the work is done on the host CPU. As a result,
it doesn’t make sense to increase the work in the geometry pipeline if rasterization is the
bottleneck: you would increase the work for the CPU and decrease performance.

Isolating Bottlenecks in Your Application: Overview

The basic strategy for isolating bottlenecks is to measure the time it takes to execute a
program (or part of a program) and then change the code in ways that do not alter its
performance (except by adding or subtracting work at a single point in the graphics
pipeline). If changing the amount of work at a given stage of the pipeline does not alter
performance noticeably, that stage is not the bottleneck. If there is a noticeable difference
in performance, you have found a bottleneck.

• CPU bottlenecks. The most common bottleneck occurs when the application
program does not feed the graphics subsystem fast enough. Such programs are
called CPU limited.

To see if your application is the bottleneck, remove as much graphics work as
possible, while preserving the behavior of the application in terms of the number of
instructions executed and the way memory is accessed. Often, changing just a few
OpenGL calls is a sufficient test. For example, replacing vertex and normal calls like
glVertex3fv() and glNormal3fv() with color subroutine calls like glColor3fv()
preserves the CPU behavior while eliminating all drawing and lighting work in the
graphics pipeline. If making these changes does not significantly improve
performance, then your application has a CPU bottleneck. For more information,
see “CPU Tuning: Basics” on page 305.

About Pipeline Tuning

295

• Geometry bottlenecks. Programs that create bottlenecks in the geometry
(per-polygon) stage are called transform limited. To test for bottlenecks in geometry
operations, change the program so that the application code runs at the same speed
and the same number of pixels are filled, but the geometry work is reduced. For
example, if you are using lighting, call glDisable() with a GL_LIGHTING argument
to turn off lighting temporarily. If performance improves, your application has a
per-polygon bottleneck. For more information, see “Tuning the Geometry
Subsystem” on page 325.

• Rasterization bottlenecks. Programs that cause bottlenecks at the rasterization
(per-pixel) stage in the pipeline are fill-rate limited. To test for bottlenecks in
rasterization operations, shrink objects or make the window smaller to reduce the
number of active pixels. This technique doesn’t work if your program alters its
behavior based on the sizes of objects or the size of the window. You can also reduce
the work done per pixel by turning off per-pixel operations such as depth-buffering,
texturing, or alpha blending or by removing clear operations. If any of these
experiments speeds up the program, it has a per-pixel bottleneck. For more
information, see “Tuning the Raster Subsystem” on page 332.

Usually, the following order of operations is most expedient:

1. First determine if your application is host (CPU) limited using gr_osview and
checking whether the CPU usage is near 100%. The gr_osview program also includes
statistics that indicate whether the performance bottleneck is in the graphics
subsystem or in the host.

2. Then check whether the application is fill (per-pixel) limited by shrinking the
window.

3. If the application is neither CPU limited nor fill limited, you have to prove that it is
geometry limited.

Note that on some systems you can have a bottleneck just in the transport layer between
the CPU and the geometry. To test whether that is the case, try sending less data, for
example call glColor3ub() instead of glColor3f().

Many programs draw a variety of things, each of which stresses different parts of the
system. Decompose such a program into pieces and time each piece. You can then focus
on tuning the slowest pieces. For an example of such a process, see Chapter 15, “Tuning
Graphics Applications: Examples.”

296

Chapter 13: Tuning Graphics Applications: Fundamentals

Factors Influencing Performance

Pipeline tuning is discussed in detail in Chapter 14, “Tuning the Pipeline.” Table 13-1
provides an overview of factors that may limit rendering performance and the part of the
pipeline they belong to.

Taking Timing Measurements

Timing, or benchmarking, parts of your program is an important part of tuning. It helps
you determine which changes to your code have a noticeable effect on the speed of your
application.

To achieve performance that is close to the best the hardware can achieve, start following
the more general tuning tips provided in this manual. The next step is, however, a
rigorous and systematic analysis. This section looks at some important issues regarding
benchmarking:

• “Benchmarking Basics”

• “Achieving Accurate Timing Measurements”

• “Achieving Accurate Benchmarking Results”

Table 13-1 Factors Influencing Performance

Performance Parameter Pipeline Stage

Amount of data per polygon All stages

Time of application overhead CPU subsystem (application)

Transform rate & mode setting for polygon Geometry subsystem

Total number of polygons in a frame Geometry and raster subsystem

Number of pixels filled Raster subsystem

Fill rate for the given mode settings Raster subsystem

Time of color and/or depth buffer clear Raster subsystem

Taking Timing Measurements

297

Benchmarking Basics

A detailed analysis involves examining what your program is asking the system to do
and then calculating how long it should take, based on the known performance
characteristics of the hardware. Compare this calculation of expected performance with
the performance actually observed and continue to apply the tuning techniques until the
two match more closely. At this point, you have a detailed accounting of how your
program spends its time, and you are in a strong position both to tune further and to
make appropriate decisions considering the speed-versus-quality trade-off.

The following parameters determine the performance of most applications:

• total number of polygons in a frame

• transform rate for the given polygon type and mode settings

• number of pixels filled

• fill rate for the given mode settings

• time of color and depth buffer clear

• time of buffer swap

• time of application overhead

• number of attribute changes and time per change

Achieving Accurate Timing Measurements

Consider these guidelines to get accurate timing measurements:

• Take measurements on a quiet system.

Verify that minimum activity is taking place on your system while you take timing
measurements. Other graphics programs, background processes, and network
activity can distort timing results because they use system resources. For example,
do not have osview, gr_osview, or Xclock running while you are benchmarking. If
possible, turn off network access as well.

• Work with local files.

Unless your goal is to time a program that runs on a remote system, make sure that
all input and output files, including the file used to log results, are local.

298

Chapter 13: Tuning Graphics Applications: Fundamentals

• Choose timing trials that are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time that is at
least one hundred times the clock resolution. A good rule of thumb is to benchmark
something that takes at least two seconds so that the uncertainty contributed by the
clock reading is less than one percent of the total error. To measure something that is
faster, write a loop in the example program to execute the test code repeatedly.

Note: Loops like this for timing measurements are highly recommended. Be sure to
structure your program in a way that facilitates this approach.

gettimeofday() provides a convenient interface to IRIX clocks with enough
resolution to measure graphics performance over several frames. Call syssgi() with
SGI_QUERY_CYCLECNTR for high-resolution timers. If you can repeat the
drawing to make a loop that takes ten seconds or so, a stopwatch works fine and
you don’t need to alter your program to run the test.

• Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a given
timing trial. If the scene changes, the current bottleneck in the graphics pipeline
may change, making your timing measurements meaningless. For example, if you
are benchmarking the drawing of a rotating airplane, choose a single frame and
draw it repeatedly, instead of letting the airplane rotate and taking the benchmark
while the animation is running. Once a single frame has been analyzed and tuned,
look at frames that stress the graphics pipeline in different ways, analyzing and
tuning each frame.

• Compare multiple trials.

Run your program multiple times and try to understand variance in the trials.
Variance may be due to other programs running, system activity, prior memory
placement, or other factors.

Taking Timing Measurements

299

• Call glFinish() before reading the clock at the start and at the end of the time trial.

Graphics calls can be tricky to benchmark because they do all their work in the
graphics pipeline. When a program running on the main CPU issues a graphics
command, the command is put into a hardware queue in the graphics subsystem, to
be processed as soon as the graphics pipeline is ready. The CPU can immediately do
other work, including issuing more graphics commands until the queue fills up.

When benchmarking a piece of graphics code, you must include in your
measurements the time it takes to process all the work left in the queue after the last
graphics call. Call glFinish() at the end of your timing trial, just before sampling the
clock. Also call glFinish() before sampling the clock and starting the trial, to ensure
no graphics calls remain in the graphics queue ahead of the process you are timing.

• To get accurate numbers, you must perform timing trials in single-buffer mode,
with no calls to glXSwapBuffers().

Because buffers can be swapped only during a vertical retrace, there is a period,
between the time a glXSwapBuffers() call is issued and the next vertical retrace,
when a program may not execute any graphics calls. A program that attempts to
issue graphics calls during this period is put to sleep until the next vertical retrace.
This distorts the accuracy of the timing measurement.

When making timing measurements, use glFinish() to ensure that all pixels have
been drawn before measuring the elapsed time.

• Benchmark programs should exercise graphics in a way similar to the actual
application. In contrast to the actual application, the benchmark program should
perform only graphics operations. Consider using ogldebug to extract
representative OpenGL command sequences from the program. See “ogldebug—
the OpenGL Debugger” on page 269 for more information.

Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

1. Determine how many polygons are being drawn and estimate how many pixels
they cover on the screen. Have your program count the polygons when you read in
the database.

To determine the number of pixels filled, start by making a visual estimate. Be sure
to include surfaces that are hidden behind other surfaces, and notice whether or not
backface elimination is enabled. For greater accuracy, use feedback mode and
calculate the actual number of pixels filled.

300

Chapter 13: Tuning Graphics Applications: Fundamentals

2. Determine the transform and fill rates on the target system for the mode settings
you are using.

Refer to the product literature for the target system to determine some transform
and fill rates. Determine others by writing and running small benchmarks.

3. Divide the number of polygons drawn by the transform rate to get the time spent on
per-polygon operations.

4. Divide the number of pixels filled by the fill rate to get the time spent on per-pixel
operations.

5. Measure the time spent executing instructions on the CPU.

To determine time spent executing instructions in the CPU, perform the
graphics-stubbing experiment described in “Isolating Bottlenecks in Your
Application: Overview” on page 294.

6. On high-end systems where the processes are pipelined and happen
simultaneously, the largest of the three times calculated in steps 3, 4, and 5
determines the overall performance. On low-end systems, you may have to add the
time needed for the different processes to arrive at a good estimate.

Timing analysis takes effort. In practice, it is best to make a quick start by making some
assumptions, then refine your understanding as you tune and experiment. Ultimately,
you need to experiment with different rendering techniques and perform repeated
benchmarks, especially when the unexpected happens.

Verify some of the suggestions presented in the following chapter. Try some techniques
on a small program that you understand and use benchmarks to observe the effects.
Figure 13-2 shows how you may actually go through the process of benchmarking and
reducing bottlenecks several times. This is also demonstrated by the example presented
in Chapter 15, “Tuning Graphics Applications: Examples.”

Taking Timing Measurements

301

Figure 13-2 Flowchart of the Tuning Process

Reduce worst bottleneck

Identify bottlenecks by benchmarking

Apply general graphics techniques

302

Chapter 13: Tuning Graphics Applications: Fundamentals

Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of
applications. This section first explores how frame rates determine animation speed, then
provides some advice for optimizing an animation’s performance.

Smooth animation requires double buffering. In double buffering, one framebuffer holds
the current frame, which is scanned out to the monitor by the video hardware, while the
rendering hardware is drawing into a second buffer that is not visible. When the new
framebuffer is ready to be displayed, the system swaps the buffers. The system must wait
until the next vertical retrace period between raster scans to swap the buffers, so that
each raster scan displays an entire stable frame, rather than parts of two or more frames.

How Frame Rate Determines Animation Speed

The smoothness of an animation depends on its frame rate. The more frames rendered
per second, the smoother the motion appears. The basic elements that contribute to the
time to render each individual frame are shown in Table 13-1 above.

When trying to improve animation speed, consider these points:

• A change in the time spent rendering a frame has no visible effect unless it changes
the total time to a different integer multiple of the screen refresh time.

Frame rates must be integral multiples of the screen refresh time, which is 16.7 msec
(milliseconds) for a 60 Hz monitor. If the draw time for a frame is slightly longer
than the time for n raster scans, the system waits until the n+1st vertical retrace
before swapping buffers and allowing drawing to continue, so the total frame time
is (n+1)*16.7 msec.

• If you want an observable performance increase, you must reduce the rendering
time enough to take a smaller number of 16.7 msec raster scans.

Alternatively, if performance is acceptable, you can add work without reducing
performance, as long as the rendering time does not exceed the current multiple of
the raster scan time.

• To help monitor timing improvements, turn off double buffering, then benchmark
how many frames you can draw. If you don’t, it is difficult to know if you are near a
16.7 msec boundary.

Tuning Animation

303

Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing
measurements in single-buffer mode only. For more detailed information, see “Taking
Timing Measurements” on page 296.

In addition, follow these guidelines to optimize frame rate performance:

• Reduce drawing time to a lower multiple of the screen refresh time (16.7 msec on a
60 Hz monitor).

This is the only way to produce an observable performance increase.

• Perform non-graphics computation after glXSwapBuffers().

A program is free to do non-graphics computation during the wait cycle between
vertical retraces. Therefore, issue a glXSwapBuffers() call immediately after
sending the last graphics call for the current frame, perform computation needed
for the next frame, then execute OpenGL calls for the next frame, call
glXSwapBuffers(), and so on.

• Do non-drawing work after a screen clear.

Clearing a full screen takes time. If you make additional drawing calls immediately
after a screen clear, you may fill up the graphics pipeline and force the program to
stall. Instead, do some non-drawing work after the clear.

305

Chapter 14

14.Tuning the Pipeline

This chapter discusses tuning the graphics pipeline. It presents a variety of techniques
for optimizing the different parts of the pipeline, providing code fragments and
examples as appropriate. You learn about

• “CPU Tuning: Basics” on page 305

• “CPU Tuning: Immediate Mode Drawing” on page 309

• “CPU Tuning: Display Lists” on page 308

• “CPU Tuning: Advanced Techniques” on page 322

• “Tuning the Geometry Subsystem” on page 325

• “Tuning the Raster Subsystem” on page 332

• “Tuning the Imaging Pipeline” on page 337

CPU Tuning: Basics

The first stage of the rendering pipeline is traversal of the data and sending of the current
rendering data to the rest of the pipeline. In theory, the entire rendering database (scene
graph) must be traversed in some fashion for each frame because both scene content and
viewer position can be dynamic.

To get the best possible CPU performance, follow these two overall guidelines:

• Compile your application for optimum speed.

Compile all object files with at least -O2. Note that the compiler option for
debugging, -g, turns off all optimization. If you must run the debugger on
optimized code, you can use -g3 with -O2 with limited success. If you are not
compiling with -xansi (the default) or -ansi, you may need to include -float for
faster floating-point operations.

On certain platforms, other compile-time options (such as -mips3 or -mips4) are
available.

306

Chapter 14: Tuning the Pipeline

• If you aren’t concerned about backward compatibility, compile for the n32 abi
instead of compiling for o32. The default on IRIX 6.5 is n32.

• Use a simple data structure and a fast traversal method.

The CPU tuning strategy focuses on developing fast database traversal for drawing
with a simple, easily accessed data structure. The fastest rendering is achieved with
an inner loop that traverses a completely flattened (non-hierarchical) database.
Most applications cannot achieve this level of simplicity for a variety of reasons. For
example, some databases occupy too much memory when completely flattened.
Note also that you run a greater risk of cache misses if you flatten the data.

When an application is CPU limited, the entire graphics pipeline may be sitting idle for
periods of time. The following sections describe techniques for structuring application
code so that the CPU doesn’t become the bottleneck.

Immediate Mode Drawing Versus Display Lists

When deciding whether you want to use display list or immediate mode drawing,
consider the amount of work you do in constructing your databases and using them for
purposes other than graphics. Here are three cases to consider:

• If you create models that never change, and are used only for drawing, then
OpenGL display lists are the right representation.

Display lists can be optimized in hardware-specific ways, loaded into dedicate
display list storage in the graphics subsystem, downloaded to on-board dlist RAM,
and so on. See “CPU Tuning: Display Lists” on page 308 for more information on
display lists.

• If you create models that are subject to infrequent change, but are rarely used for
any purpose other than drawing, then vertex arrays are the right representation.

Vertex Arrays are relatively compact and have modest impact on cache. Software
renderers can process the vertices in batches; hardware renderers can trickle
triangles out a few at a time to maximize parallelism. As long as the vertex arrays
can be retained from frame to frame, so you do not incur a lot of latency by building
them afresh each frame, they are the best solution for this case. See “Using Vertex
Arrays” on page 326 for more information.

CPU Tuning: Basics

307

• If you create very dynamic models, or if you use the data for heavy computations
unrelated to graphics, then the glVertex()-style interface (immediate mode
drawing) is the best choice.

Immediate mode drawing allows you to maximize parallelism for hardware
renderers and to optimize your database for the other computations you need to
perform, and it reduces cache thrashing. Overall, this will result in higher
performance than forcing the application to use a graphics-oriented data structure
like a vertex array. Use immediate-mode drawing for large databases (which might
have to be paged into main memory) and dynamic databases, for example for
morphing operations where the number of vertices is subject to change, or for
progressive refinement. See “CPU Tuning: Immediate Mode Drawing” on page 309
for tuning information.

If you are still not sure whether to choose display lists or immediate mode drawing,
consider the following advantages and disadvantages of display lists.

Display lists have the following advantages:

• You don’t have to optimize traversal of the data yourself; display list traversal is
well-tuned and more efficient than user programs.

• Display lists manage their own data storage. This is particularly useful for
algorithmically generated objects.

• Display lists are significantly better for remote graphics over a network. The display
list can be cached on the remote CPU so that the data for the display list does not
have to be re-sent every frame. Furthermore, the remote CPU handles much of the
responsibility for traversal.

• Display lists are preferable for direct rendering if they contain enough primitives (a
total of about ten) because display lists are stored efficiently. If the lists are short, the
setup performance cost is not offset by the more efficient storage or saving in CPU
time.

• For information on display lists on Indigo2 IMPACT systems, see “Using Display
Lists Effectively” on page 383.

308

Chapter 14: Tuning the Pipeline

Display lists do have drawbacks that may affect some applications:

• The most troublesome drawback of display lists is data expansion. To achieve fast,
simple traversal on all systems, all data is copied directly into the display list.
Therefore, the display list contains an entire copy of all application data plus
additional overhead for each command. If the application has no other need for the
data then drawing, it can release the storage for its copy of the data and the penalty
is negligible.

• If vertices are shared in structures more complex than the OpenGL primitives (line
strip, triangle strip, triangle fan, quad strip), they are stored more than once.

• If the database becomes sufficiently large, paging eventually hinders performance.
Therefore, when contemplating the use of OpenGL display lists for really large
databases, consider the amount of main memory.

• Compiling display lists may take some time.

CPU Tuning: Display Lists

In display-list mode, pieces of the database are compiled into static chunks that can then
be sent to the graphics pipeline. In this case, the display list is a separate copy of the
database that can be stored in main memory in a form optimized for feeding the rest of
the pipeline.

For example, suppose you want to apply a transformation to some geometric objects and
then draw the result. If the geometric objects are to be transformed in the same way each
time, it is better to store the matrix in the display list. The database traversal task is to
hand the correct chunks to the graphics pipeline. Display lists can be recreated easily
with some additional performance cost.

Tuning for display lists focuses mainly on reducing storage requirements. Performance
improves if the data fit in the cache because this avoids cache misses when the data is t
traversed again.This section explains how to optimize display lists.

Follow these rules to optimize display lists:

• If possible, compile and execute a display list in two steps instead of using
GL_COMPILE_AND_EXECUTE.

• Call glDeleteLists() to delete display lists that are no longer needed.

This frees storage space used by the deleted display lists and expedites the creation
of new display lists.

CPU Tuning: Immediate Mode Drawing

309

• Avoid duplication of display lists.

For example, if you have a scene with 100 spheres of different sizes and materials,
generate one display list that is a unit sphere centered about the origin. Then for
each sphere in the scene, follow these steps:

1. Set the material for the current sphere.

2. Issue the necessary scaling and translation commands for sizing and
positioning the sphere—watch out for scaling of normals.

3. Invoke glCallList() to draw the unit sphere display list.

In this way, a reference to the unit sphere display list is stored instead of all of the
sphere vertices for each instance of the sphere.

• Make the display list as flat as possible, but be sure not to exceed the cache size.

Avoid using an excessive hierarchy with many invocations of glCallList(). Each
glCallList() invocation results in a lookup operation to find the designated display
list. A flat display list requires less memory and yields simpler and faster traversal.
It also improves cache coherency.

Display lists are best used for static objects. Do not put dynamic data or operations in
display lists. Instead, use a mixture of display lists for static objects and immediate mode
for dynamic operations.

Note: See Chapter 16, “System-Specific Tuning,” for potential display list optimizations
on the system you are using.

CPU Tuning: Immediate Mode Drawing

Immediate mode drawing means that OpenGL commands are executed when they are
called, rather than from a display list. This style of drawing provides flexibility and
control over both storage management and drawing traversal. The trade-off for the extra
control is that you have to write your own optimized subroutines for data traversal.
Tuning therefore has two parts:

• “Optimizing the Data Organization”

• “Optimizing Database Rendering Code”

310

Chapter 14: Tuning the Pipeline

While you may not use each technique in this section, minimize the CPU work done at
the per-vertex level and use a simple data structure for rendering traversal.

There is no recipe for writing a peak-performance immediate mode renderer for a
specific application. To predict the CPU limitation of your traversal, design potential data
structures and traversal loops and write small benchmarks that mimic the memory
demands you expect. Experiment with optimizations and benchmark the effects.
Experimenting on small examples can save time in the actual implementation.

Optimizing the Data Organization

It is common for scenes to have hierarchical definitions. Scene management techniques
may rely on specific hierarchical information. However, a hierarchical organization of the
data raises several performance concerns:

• The time spent traversing pointers to different sections of a hierarchy can create a
CPU bottleneck.

This is partly because of the number of extra instructions executed, but it is also a
result of the inefficient use of cache and memory. Overhead data not needed for
rendering is brought through the cache and can push out needed data, causing
subsequent cache misses.

• Traversing hierarchical structures can cause excessive memory paging.

Hierarchical structures can be distributed throughout memory. It is difficult to be
sure of the exact amount of data you are accessing and of its exact location;
traversing hierarchical structures can therefore access a costly number of pages.

• Complex operations may need access to both the geometric data and other scene
information, complicating the data structure.

• Caching behavior is often difficult to predict for dynamic hierarchical data
structures.

For these reasons, hierarchy should be used with care. In general, store the geometry data
used for rendering in static, contiguous buffers, rather than in the hierarchical data
structures.

• Do not interlace data used to render frames and infrequently used data in memory.
Instead, include a pointer to the infrequently used data and store the data itself
elsewhere.

CPU Tuning: Immediate Mode Drawing

311

• Flatten your rendering data (minimize the number of levels in the hierarchy) as
much as cache and memory considerations and your application constraints permit.

The appropriate amount of flattening depends on the system on which your
application will run.

• Balance the data hierarchy. This makes application culling (the process of
eliminating objects that don’t fall within the viewing frustum) more efficient and
effective.

Optimizing Database Rendering Code

This section includes some suggestions for writing peak-performance code for inner
rendering loops.

During rendering, an application ideally spends most of its time traversing the database
and sending data to the graphics pipeline. Instructions in the display loop are executed
many times every frame, creating hot spots. Any extra overhead in a hot spot is greatly
magnified by the number of times it is executed.

When using simple, high-performance graphics primitives, the application is even more
likely to be CPU limited. The data traversal must be optimized so that it does not become
a bottleneck.

During rendering, the sections of code that actually issue graphics commands should be
the hot spots in application code. These subroutines should use peak-performance
coding methods. Small improvements to a line that is executed for every vertex in a
database accumulate to have a noticeable effect when the entire frame is rendered.

The rest of this section looks at examples and techniques for optimizing immediate-mode
rendering:

• “Examples for Optimizing Data Structures for Drawing”

• “Examples for Optimizing Program Structure”

• “Using Specialized Drawing Subroutines and Macros”

• “Preprocessing Drawing Data: Introduction”

• “Preprocessing Meshes Into Fixed-Length Strips”

• “Preprocessing Vertex Loops”

312

Chapter 14: Tuning the Pipeline

Examples for Optimizing Data Structures for Drawing

Follow these suggestions for optimizing how your application accesses data:

• One-Dimensional Arrays. Use one-dimensional arrays traversed with a pointer
that always holds the address for the current drawing command. Avoid
array-element addressing or multidimensional array accesses.

bad: glVertex3fv(&data[i][j][k]);
good: glVertex3fv(dataptr);

• Adjacent structures. Keep all static drawing data for a given object together in a
single contiguous array traversed with a single pointer. Keep this data separate
from other program data, such as pointers to drawing data, or interpreter flags.

• Flat structures. Use flat data structures and do not use multiple pointer indirection
when rendering:

Good glVertex3fv(object->data->vert);

OK glVertex3fv(dataptr->vert);

Bad glVertex3fv(dataptr);

The following code fragment is an example of efficient code to draw a single
smooth-shaded, lit polygon. Notice that a single data pointer is used. It is updated
once at the end of the polygon, after the glEnd() call.

glBegin(GL_QUADS);
glNormal3fv(ptr);
glVertex3fv(ptr+3);
glNormal3fv(ptr+6);
glVertex3fv(ptr+9);
glNormal3fv(ptr+12);
glVertex3fv(ptr+15);
glNormal3fv(ptr+18);
glVertex3fv(ptr+21);
glEnd();
ptr += 24;

CPU Tuning: Immediate Mode Drawing

313

Examples for Optimizing Program Structure

• Loop unrolling (1). Avoid short, fixed-length loops, especially around vertices.
Instead, unroll these loops:

Bad for(i=0; i < 4; i++){

glColor4ubv(poly_colors[i]);

glVertex3fv(poly_vert_ptr[i]);

}

Good glColor4ubv(poly_colors[0]);

glVertex3fv(poly_vert_ptr[0]);

glColor4ubv(poly_colors[1]);

glVertex3fv(poly_vert_ptr[1]);

glColor4ubv(poly_colors[2]);

glVertex3fv(poly_vert_ptr[2]);

glColor4ubv(poly_colors[3]);

glVertex3fv(poly_vert_ptr[3]);

• Loop unrolling (2). Minimize the work done in a loop to maintain and update
variables and pointers. Unrolling can often assist in this:

Bad glNormal3fv(*(ptr++));

glVertex3fv(*(ptr++));

or

glNormal3fv(ptr); ptr += 4;

glVertex3fv(ptr); ptr += 4;

Good glNormal3fv(*(ptr));

glVertex3fv(*(ptr+1));

glNormal3fv(*(ptr+2));

glVertex3fv(*(ptr+3));

or

glNormal3fv(ptr);

glVertex3fv(ptr+4);

glNormal3fv(ptr+8);

glVertex3fv(ptr+12);

Note: On some processors, such as the R8000 and R10000, loop unrolling may hurt
performance more than it helps, so use it with caution. In fact, unrolling too far hurts
on any processor because the loop may use an excessive portion of the cache. If it
uses a large enough portion of the cache, it may interfere with itself; that is, the whole
loop won’t fit (not likely) or it may conflict with the instructions of one of the
subroutines it calls.

314

Chapter 14: Tuning the Pipeline

• Loops accessing buffers. Minimize the number of different buffers accessed in a
loop:

Bad glNormal3fv(normaldata);

glTexCoord2fv(texdata);

glVertex3fv(vertdata);

Good glNormal3fv(dataptr);

glTexCoord2fv(dataptr+3);

glVertex3fv(dataptr+5);

• Loop end conditions. Make end conditions on loops as trivial as possible; for
example, compare the loop variable to a constant, preferably zero. Decrementing
loops are often more efficient than their incrementing counterparts:

Bad

for (i = 0; i < (end-beginning)/size; i++)
{...}

Better

for (i = beginning; i < end; i += size)
{...}

Good

for (i = total; i > 0; i--)
{...}

• Conditional statements.

– Use switch statements instead of multiple if-else-if control structures.

– Avoid if tests around vertices; use duplicate code instead.

• Subroutine prototyping. Prototype subroutines in ANSI C style to avoid runtime
typecasting of parameters:

void drawit(float f, int count)
{

.......
}

CPU Tuning: Immediate Mode Drawing

315

• Multiple primitives. Send multiple primitives between glBegin()/glEnd()
whenever possible:

glBegin(GL_TRIANGLES)
....
..../* many triangles */
....
glEnd

glBegin(GL_QUADS)
....
..../* many quads */
....
glEnd

Using Specialized Drawing Subroutines and Macros

This section looks at several ways to improve performance by making appropriate
choices about display modes, geometry, and so on.

• Geometry display choices. Make decisions about which geometry to display and
which modes to use at the highest possible level in the program organization.

The drawing subroutines should be highly specialized leaves in the program’s call
tree. Decisions made too far down the tree can be redundant. For example, consider
a program that switches back and forth between flat-shaded and smooth-shaded
drawing. Once this choice has been made for a frame, the decision is fixed and the
flag is set. For example, the following code is inefficient:

/* Inefficient way to toggle modes */
draw_object(float *data, int npolys, int smooth) {
int i;
glBegin(GL_QUADS);
for (i = npolys; i > 0; i--) {

if (smooth) glColor3fv(data);
glVertex3fv(data + 4);
if (smooth) glColor3fv(data + 8);
glVertex3fv(data + 12);
if (smooth) glColor3fv(data + 16);
glVertex3fv(data + 20);
if (smooth) glColor3fv(data + 24);
glVertex3fv(data + 28);

}
glEnd();

316

Chapter 14: Tuning the Pipeline

Even though the program chooses the drawing mode before entering the
draw_object() routine, the flag is checked for every vertex in the scene. A simple if
test may seem innocuous; however, when done on a per-vertex basis, it can
accumulate a noticeable amount of overhead.

Compare the number of instructions in the disassembled code for a call to
glColor3fv(), first without, and then with, the if test.

Assembly code for a call without if test (six instructions):

lw a0,32(sp)
lw t9,glColor3fv
addiu a0,a0,32
jalr ra,t9
nop
lw gp,24(sp)

Assembly code for a call with an if test (eight instructions):

lw t7,40(sp)
beql t7,zero,0x78
nop
lw t9,glColor3fv
lw a0,32(sp)
jalr ra,t9
addiu a0,a0,32
lw gp,24(sp)

Notice the two extra instructions required to implement the if test. The extra if test
per vertex increases the number of instructions executed for this otherwise optimal
code by 33%. These effects may not be visible if the code is used only to render
objects that are always graphics limited. However, if the process is CPU-limited,
then moving decision operations such as this if test higher up in the program
structure improves performance.

Preprocessing Drawing Data: Introduction

Putting some extra effort into generating a simpler database makes a significant
difference when traversing that data for display. A common tendency is to leave the data
in a format that is good for loading or generating the object, but not optimal for actually
displaying it. For peak performance, do as much of the work as possible before
rendering.

CPU Tuning: Immediate Mode Drawing

317

Preprocessing turns a difficult database into a database that is easy to render quickly.
This is typically done at initialization or when changing from a modeling to a
fast-rendering mode. This section discusses “Preprocessing Meshes Into Fixed-Length
Strips” and “Preprocessing Vertex Loops” to illustrate this point.

Preprocessing Meshes Into Fixed-Length Strips

Preprocessing can be used to turn general meshes into fixed-length strips.

The following sample code shows a commonly used, but inefficient, way to write a
triangle strip render loop:

float* dataptr;
...
while (!done) switch(*dataptr) {

case BEGINSTRIP:
glBegin(GL_TRIANGLE_STRIP);
dataptr++;
break;

case ENDSTRIP:
glEnd();
dataptr++;
break;

case EXIT:
done = 1;
break;

default: /* have a vertex !!! */
glNormal3fv(dataptr);
glVertex3fv(dataptr + 4);
dataptr += 8;

}

This traversal method incurs a significant amount of per-vertex overhead. The loop is
evaluated for every vertex and every vertex must also be checked to make sure that it is
not a flag. These checks waste time and also bring all of the object data through the cache,
reducing the performance advantage of triangle strips. Any variation of this code that
has per-vertex overhead is likely to be CPU limited for most types of simple graphics
operations.

318

Chapter 14: Tuning the Pipeline

Preprocessing Vertex Loops

Preprocessing is also possible for vertex loops:

glBegin(GL_TRIANGLE_STRIP);
for (i=num_verts; i > 0; i--) {

glNormal3fv(dataptr);
glVertex3fv(dataptr+4);
dataptr += 8;
}

glEnd();

For peak immediate mode performance, precompile strips into specialized primitives of
fixed length. Only a few fixed lengths are needed. For example, use strips that consist of
12, 8, and 2 primitives.

Note: The optimal strip length may vary depending on the hardware the program runs
on. For more information, see Chapter 16, “System-Specific Tuning.”

The specialized strips are sorted by size, resulting in the efficient loop shown in this
sample code:

/* dump out N 8-triangle strips */
for (i=N; i > 0; i--) {

glBegin(GL_TRIANGLE_STRIP);
glNormal3fv(dataptr);
glVertex3fv(dataptr+4);
glNormal3fv(dataptr+8);
glVertex3fv(dataptr+12);
glNormal3fv(dataptr+16);
glVertex3fv(dataptr+20);
glNormal3fv(dataptr+24);
glVertex3fv(datatpr+28);
...
glEnd();
dataptr += 64;

}

A mesh of length 12 is about the maximum for unrolling. Unrolling helps to reduce the
overall cost-per-loop overhead, but after a point, it produces no further gain.

Over-unrolling eventually hurts performance by increasing code size and reducing
effectiveness of the instruction cache. The degree of unrolling depends on the processor;
run some benchmarks to understand the optimal program structure on your system.

Optimizing Cache and Memory Use

319

Optimizing Cache and Memory Use

This section first provides some background information about the structure of the cache
and about memory lookup. It then gives some tips for optimizing cache and memory use.

Memory Organization

On most systems, memory is structured as a hierarchy that contains a small amount of
faster, more expensive memory at the top and a large amount of slower memory at the
base. The hierarchy is organized from registers in the CPU at the top down to the disks
at the bottom. As memory locations are referenced, they are automatically copied into
higher levels of the hierarchy, so data that is referenced most often migrates to the fastest
memory locations.

Here are the areas you should be most concerned about:

• The cache feeds data to the CPU, and cache misses can slow down your program.

Each processor has instruction caches and data caches. The purpose of the caches is
to feed data and instructions to the CPU at maximum speed. When data is not
found in the cache, a cache miss occurs and a performance penalty is incurred as
data is brought into the cache.

• The translation-lookaside buffer (TLB) keeps track of the location of frequently used
pages of memory. If a page translation is not found in the TLB, a delay is incurred
while the system looks up the page and enters its translation.

The goal of machine designers and programmers is to maximize the chance of finding
data as high up in the memory hierarchy as possible. To achieve this goal, algorithms for
maintaining the hierarchy, embodied in the hardware and the operating system, assume
that programs have locality of reference in both time and space; that is, programs keep
frequently accessed locations close together. Performance increases if you respect the
degree of locality required by each level in the memory hierarchy.

Even applications that appear not to be memory intensive, in terms of total number of
memory locations accessed, may suffer unnecessary performance penalties for inefficient
allocation of these resources. An excess of cache misses, especially misses on read
operations, can force the most optimized code to be CPU limited. Memory paging causes
almost any application to be severely CPU limited.

320

Chapter 14: Tuning the Pipeline

Minimizing Paging

This section provides some guidelines for minimizing memory paging. You learn about:

• “Minimizing Lookup”

• “Minimizing Cache Misses”

• “Measuring Cache-Miss and Page-Fault Overhead”

Minimizing Lookup

To minimize page lookup, follow these guidelines:

• Keep frequently used data within a minimal number of pages. Starting with IRIX
6.5, each page consists of 16 KB. In earlier versions of IRIX, each page consists of 4
KB (16 KB in high-end systems). Minimize the number of pages referenced in your
program by keeping data structures within as few pages as possible. Use osview to
verify that no TLB misses are occurring.

• Store and access data in flat, sequential data structures, particularly for frequently
referenced data. Every pointer indirection could result in the reading of a new page.
This is guaranteed to cause performance problems with CPUs like R10000 that try
to do instructions in parallel.

• In large applications (which cause memory swapping), use mpin() to lock
important memory into RAM.

Minimizing Cache Misses

Each processor may have first-level instruction and data caches on chip and have
second-level cache(s) that are bigger but somewhat slower. The sizes of these caches
vary; you can use the hinv command to determine the sizes on your system. The
first-level data cache is always a subset of the data in the second-level cache.

Memory access is much faster if the data is already loaded into the first-level cache. When
your program accesses data that is not in one of the caches, a cache miss results. This
causes a cache line of several bytes, including the data you just accessed, to be read from
memory and stored in the cache. The size of this transaction varies from machine to
machine. Caches are broken down into lines, typically 32-128 bytes. When a cache miss
occurs, the corresponding line is loaded from the next level down in the hierarchy.

Optimizing Cache and Memory Use

321

Because cache misses are costly, try to minimize them by following these steps:

• Keep frequently accessed data together. Store and access frequently used data in
flat, sequential files and structures and avoid pointer indirection. This way, the most
frequently accessed data remains in the first-level cache wherever possible.

• Access data sequentially. If you are accessing words sequentially, each cache miss
brings in 32 or more words of needed data; if you are accessing every 32nd word,
each cache miss brings in one needed word and 31 unneeded words, degrading
performance by up to a factor of 32.

• Avoid simultaneously traversing several large independent buffers of data, such as
an array of vertex coordinates and an array of colors within a loop. There can be
cache conflicts between the buffers. Instead, pack the contents into one interleaved
buffer when possible. If this packing forces a big increase in the size of the data, it
may not be the right optimization for that program. If you are using vertex arrays,
try using interleaved arrays.

Second-level data cache misses also increase bus traffic, which can be a problem in a
multi-processing application. This can happen with multiple processes traversing very
large data sets. See “Immediate Mode Drawing Versus Display Lists” on page 306 for
additional information.

Measuring Cache-Miss and Page-Fault Overhead

To find out if cache and memory usage are a significant part of your CPU limitation,
follow these guidelines:

• Use osview to monitor your application.

• A more rigorous way to estimate the time spent on memory access is to compare the
execution profiling results collected with PC sampling with those of basic block
counting, performing each test with and without calls to glVertex3fv().

– PC sampling in Speedshop gives a real-time estimate of the time spent in
different sections of the code.

– Basic block counting, from Speedshop, gives an ideal estimate of how much
time should be spent, not including memory references.

See the speedshop reference page or the Speedshop User’s Guide for more
information.

322

Chapter 14: Tuning the Pipeline

PC sampling includes time for system overhead, so it always predicts longer
execution than basic block counting. However, your PC sample time should not be
more than 1.5 times the time predicted by Speedshop.

The CASEVision/WorkShop tools, in particular the performance analyzer, can also
help with those measurements. The WorkShop Overview introduces the tools.

CPU Tuning: Advanced Techniques

After you have applied the techniques discussed in the previous sections, consider using
these advanced techniques to tune CPU-limited applications:

• “Mixing Computation With Graphics”

• “Examining Assembly Code”

• “Using Additional Processors for Complex Scene Management”

• “Modeling to the Graphics Pipeline”

Mixing Computation With Graphics

When you are fine-tuning an application, interleaving computation and graphics can
make it better balanced and therefore more efficient. Key places for interleaving are after
glXSwapBuffers(), glClear(), and drawing operations that are known to be fill limited
(such as drawing a backdrop or a ground plane or any other large polygon).

A glXSwapBuffers() call creates a special situation. After calling glXSwapBuffers(), an
application may be forced to wait for the next vertical retrace (in the worst case, up to
16.7 msecs) before it can issue more graphics calls. For a program drawing 10 frames per
second, 15% of the time (worst case) can be spent waiting for the buffer swap to occur.

In contrast, non-graphic computation is not forced to wait for a vertical retrace.
Therefore, if there is a section of computation that must be done every frame that
includes no graphics calls, it can be done after the glXSwapBuffers() instead of causing
a CPU limitation during drawing.

Clearing the screen is a time-consuming operation. Doing non-graphics computation
immediately after the clear is more efficient than sending additional graphics requests
down the pipeline and being forced to wait when the pipeline’s input queue overflows.

CPU Tuning: Advanced Techniques

323

Experimentation is required to

• determine where the application is reliably graphics limited

• ensure that inserting the computation does not create a new bottleneck

For example, if a new computation references a large section of data that is not in the data
cache, the data for drawing may be swapped out for the computation, then swapped
back in for drawing, resulting in worse performance than the original organization.

Examining Assembly Code

When tuning inner rendering loops, examining assembly code can be helpful. Use dis to
disassemble optimized code for a given procedure, and correlate assembly code lines
with line numbers from the source code file. This correlation is especially helpful for
examining optimized code. The -S option to cc produces a .s file of assembly output,
complete with your original comments.

You need not be an expert in MIPS assembly code to interpret the results. Just looking at
the number of extra instructions required for an apparently innocuous operation is
informative. Knowing some basics about MIPS assembly code can be helpful for finding
performance bugs in inner loops. See MIPS RISC Architecture, by Gerry Kane, listed in
“Background Reading” on page xxxii for additional information.

Using Additional Processors for Complex Scene Management

If your application is running on systems with multiple processors, consider supplying
an option for doing scene management on additional processors to relieve the rendering
processor from the burden of expensive computation.

Using additional processors may also reduce the amount of data rendered for a given
frame. Simplifying or reducing rendering for a given scene can help reduce bottlenecks
in all parts of the pipeline, as well as the CPU. One example is removing unseen or
backfacing objects. Another common technique is to use an additional processor to
determine when objects are going to appear very far away and use a simpler model with
fewer polygons and less expensive modes for distant objects.

324

Chapter 14: Tuning the Pipeline

Modeling to the Graphics Pipeline

The modeling of the database directly affects the rendering performance of the resulting
application and therefore has to match the performance characteristics of the graphics
pipeline and make trade-offs with the database traversals. Graphics pipelines that
support connected primitives, such as triangle meshes, benefit from having long meshes
in the database. However, the length of the meshes affects the resulting database
hierarchy, and long strips through the database do not cull well with simple bounding
geometry.

Model objects with an understanding of inherent bottlenecks in the graphics pipeline:

• Pipelines that are severely fill limited benefit from having objects modeled with cut
polygons and more vertices and fewer overlapping parts, which decreases depth
complexity.

• Pipelines that are easily geometry- or host-limited benefit from modeling with
fewer polygons.

There are several other modeling tricks that can reduce database complexity:

• Use textured polygons to simulate complex geometry. This is especially useful if the
graphics subsystem supports the use of textures where the alpha component of the
texture marks the transparency of the object. Textures can be used as cut-outs for
objects like fences and trees.

• Use textures for simulating particles, such as smoke.

• Use textured polygons as single-polygon billboards. Billboards are polygons that
are fixed at a point and rotated about an axis, or about a point, so that the polygon
always faces the viewer. Billboards are useful for symmetric objects such as light
posts and trees, and also for volume objects such as smoke. Billboards can also be
used for distant objects to save geometry. However, the managing of billboard
transformations can be expensive and affect both the cull and the draw processes.

In OpenGL 1.1, the sprite extension can be used for billboards on certain platforms;
see “SGIX_sprite—The Sprite Extension” on page 197.

Tuning the Geometry Subsystem

325

Tuning the Geometry Subsystem

The geometry subsystem is the part of the pipeline in which per-polygon operations,
such as coordinate transformations, lighting, texture coordinate generation, and clipping
are performed. The geometry hardware may also be used for operations that are not
strictly transform operations, such as convolution.

This section presents techniques that you can use to tune the geometry subsystem,
discussing the following topics:

• “Using Peak Performance Primitives for Drawing”

• “Using Vertex Arrays”

• “Using Display Lists as Appropriate”

• “Optimizing Transformations”

• “Optimizing Lighting Performance”

• “Choosing Modes Wisely”

• “Advanced Transform-Limited Tuning Techniques”

Using Peak Performance Primitives for Drawing

This section describes how to draw geometry with optimal primitives. Consider these
guidelines to optimize drawing:

• Use connected primitives (line strips, triangle strips, triangle fans, and quad strips).
Put at least 8 primitives in a sequence, 12 to 16 if possible.

Connected primitives are desirable because they reduce the amount of data sent to
the graphics subsystem and the amount of per-polygon work done in the pipeline.
Typically, about 12 vertices per glBegin()/glEnd() are required to achieve peak rates
(but this can vary depending on the hardware you are running on). For lines and
points, it is especially beneficial to put as many vertices as possible in a
glBegin()/glEnd() sequence. For information on the most efficient vertex numbers
for the system you are using, see Chapter 16, “System-Specific Tuning.”

326

Chapter 14: Tuning the Pipeline

• Use “well-behaved” polygons—convex and planar, with only three or four vertices.

If you use concave and self-intersecting polygons, they are broken down into
triangles by OpenGL. For high-quality rendering, you must pass the polygons to
GLU to be tessellated. This can make them prohibitively expensive. Nonplanar
polygons and polygons with large numbers of vertices are more likely to exhibit
shading artifacts.

If your database has polygons that are not well-behaved, perform an initial
one-time pass over the database to transform the troublemakers into well-behaved
polygons and use the new database for rendering. Using connected primitives
results in additional gains.

• Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors sent per
polygon. Setting a color or normal per vertex, regardless of the glShadeModel()
used, may be slower than setting only a color per polygon, because of the time spent
sending the extra data and resetting the current color. The number of normals and
colors per polygon also directly affects the size of a display list containing the object.

• Group like primitives and minimize state changes to reduce pipeline revalidation.

Using Vertex Arrays

Vertex arrays are available in OpenGL 1.1. They offer the following benefits:

• The OpenGL implementation can take advantage of uniform data formats.

• The glInterleavedArrays() call lets you specify packed vertex data easily. Packed
vertex formats are typically faster for OpenGL to process.

• The glDrawArrays() call reduces subroutine call overhead.

• The glDrawElements() call reduces subroutine call overhead and also reduces
per-vertex calculations because vertices are reused.

Tuning the Geometry Subsystem

327

Using Display Lists as Appropriate

You can often improve geometry performance by storing frequently-used commands in
a display list. If you plan to redraw the same geometry multiple times, or if you have a
set of state changes that are applied multiple times, consider using display lists. Display
lists allow you to define the geometry or state changes once and execute them multiple
times. Some graphics hardware stores display lists in dedicated memory or stores data
in an optimized form for rendering (see also “CPU Tuning: Display Lists” on page 308).

Storing Data Efficiently

Putting some extra effort into generating a more efficient database makes a significant
difference when traversing the data for display. A common tendency is to leave the data
in a format that is good for loading or generating the object, but not optimal for actually
displaying the data. For peak performance, do as much work as possible before
rendering. Preprocessing of data is typically performed at initialization time or when
changing from a modeling mode to a fast rendering mode.

Minimizing State Changes

Your program will almost always benefit if you reduce the number of state changes. A
good way to do this is to sort your scene data according to what state is set and render
primitives with the same state settings together. Primitives should be sorted by the most
expensive state settings first. Typically it is expensive to change texture binding, material
parameters, fog parameters, texture filter modes, and the lighting model. However, some
experimentation will be required to determine which state settings are most expensive
on the system you are running on. For example, on systems that accelerate rasterization,
it may not be very expensive to disable or enable depth testing or to change rasterization
controls such as the depth test function. But if you are running on a system with software
rasterization, this may cause the graphics pipeline to be revalidated.

It is also important to avoid redundant state changes. If your data is stored in a
hierarchical database, make decisions about which geometry to display and which
modes to use at the highest possible level. Decisions that are made too far down the tree
can be redundant.

328

Chapter 14: Tuning the Pipeline

Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the matrix
type is known. Follow these guidelines to achieve optimal transform rates:

• Call glLoadIdentity() to initialize a matrix rather than loading your own copy of the
identity matrix.

• Use specific matrix calls such as glRotate*(), glTranslate*(), and glScale*() rather
than composing your own rotation, translation, or scale matrices and calling
glLoadMatrix() or glMultMatrix().

• If possible, use single precision such as glRotatef(), glTranslatef(), and glScalef().
(On most systems, this may not be critical because the CPU converts doubles to
floats).

Optimizing Lighting Performance

OpenGL offers a large selection of lighting features: Some are virtually “free” in terms of
computational time, others offer sophisticated effects with some performance penalty.
For some features, the penalties may vary depending on the hardware the application is
running on. Be prepared to experiment with the lighting configuration.

As a general rule, use the simplest possible lighting model, a single infinite light with an
infinite viewer. For some local effects, try replacing local lights with infinite lights and a
local viewer.

You normally won’t notice a performance degradation when using one infinite light,
unless you use lit textures or color index lighting.

Use the following settings for peak performance lighting:

• Single infinite light.

– GL_LIGHT_MODEL_LOCAL_VIEWER set to GL_FALSE in glLightModel()
(the default).

– GL_LIGHT_MODEL_TWO_SIDE set to GL_FALSE in glLightModel() (the
default).

Tuning the Geometry Subsystem

329

– Local lights are noticeably more expensive than infinite lights. Avoid lighting
where the fourth component of GL_LIGHT_POSITION is nonzero.

– There may be a sharp drop in lighting performance when switching from one
light to two lights, but the drop for additional lights is likely to be more gradual.

• RGB mode.

• GL_COLOR_MATERIAL disabled.

• GL_NORMALIZE disabled—Because this is usually necessary when the
model-view matrix includes a scaling transformation, consider preprocessing the
scene to eliminate scaling.

Lighting Operations With Noticeable Performance Costs

Follow these additional guidelines to achieve peak lighting performance:

• Don’t change material parameters frequently.

Changing material parameters can be expensive. If you need to change the material
parameters many times per frame, consider rearranging the scene traversal to
minimize material changes. Also consider using glColorMaterial() to change
specific parameters automatically, rather than using glMaterial() to change
parameters explicitly.

The following code fragment illustrates how to change ambient and diffuse
material parameters at every polygon or at every vertex:

glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
/* Draw triangles: */
glBegin(GL_TRIANGLES);
/* Set ambient and diffuse material parameters: */
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
...
glEnd();

• Disable two-sided lighting unless your application requires it.

Two-sided lighting illuminates both sides of a polygon. This is much faster than the
alternative of drawing polygons twice. However, using two-sided lighting is
significantly slower than one-sided lighting for a single rendering object.

330

Chapter 14: Tuning the Pipeline

• Disable GL_NORMALIZE.

If possible, provide unit-length normals and don’t call glScale*() to avoid the
overhead of GL_NORMALIZE. On some OpenGL implementations it may be faster
to simply rescale the normal, instead of renormalizing it, when the modelview
matrix contains a uniform scale matrix.

• Avoid scaling operations if possible.

• Avoid changing the GL_SHININESS material parameter if possible. Setting a new
GL_SHININESS value requires significant computation each time.

Choosing Modes Wisely

OpenGL offers many features that create sophisticated effects with excellent
performance. For each feature, consider the trade-off between effects, performance, and
quality.

• Turn off features when they are not required.

Once a feature has been turned on, it can slow the transform rate even when it has
no visible effect.

For example, the use of fog can slow the transform rate of polygons even when the
polygons are too close to show fog, and even when the fog density is set to zero. For
these conditions, turn off fog explicitly with

glDisable(GL_FOG)

• Minimize expensive mode changes and sort operations by the most expensive
mode. Specifically, consider these tips:

– Use small numbers of texture maps to avoid the cost of switching between
textures. If you have many small textures, consider combining them into a
single larger, tiled texture. Rather than switching to a new texture before
drawing a textured polygon, choose texture coordinates that select the
appropriate small texture tile within the large texture.

– Avoid changing the projection matrix or changing glDepthRange() parameters.

– When fog is enabled, avoid changing fog parameters.

– Turn fog off for rendering with a different projection (for example,
orthographic) and turn it back on when returning to the normal projection.

Tuning the Geometry Subsystem

331

• Use flat shading whenever possible. This reduces the number of lighting
computations from one per vertex to one per primitive, and also reduces the
amount of data that must be passed from the CPU through the graphics pipeline for
each primitive. This is particularly important for high-performance line drawing.

• Beware of excessive mode changes, even mode changes considered cheap, such as
changes to shade model, depth buffering, and blending function.

Advanced Transform-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing.
Follow these guidelines to draw objects with complex surface characteristics:

• Use textures to replace complex geometry.

Textured polygons can be significantly slower than their non-textured counterparts.
However, texture can be used instead of extra polygons to add detail to a geometric
object. This can greatly simplify geometry, resulting in a net speed increase and an
improved picture, as long as it does not cause the program to become fill limited.
Texturing performance varies across the product line, so this technique might not be
equally effective on all systems. Experimentation is usually necessary.

• Use glAlphaFunc() in conjunction with one or more textures to give the effect of
rather complex geometry on a single polygon.

Consider drawing an image of a complex object by texturing it onto a single
polygon. Set alpha values to zero in the texture outside the image of the object. (The
edges of the object can be antialiased by using alpha values between zero and one.)
Orient the polygon to face the viewer. To prevent pixels with zero alpha values in
the textured polygon from being drawn, call

glAlphaFunc(GL_NOTEQUAL, 0.0)

This effect is often used to create objects like trees that have complex edges or many
holes through which the background should be visible (or both).

• Eliminate objects or polygons that will be out of sight or too small.

• Use fog to increase visual detail without drawing small background objects.

• Use culling on a separate processor to eliminate objects or polygons that will be out
of sight or too small to see.

• Use occlusion culling: draw large objects that are in front first, then read back the
depth buffer and use it to avoid drawing objects that are hidden.

332

Chapter 14: Tuning the Pipeline

Tuning the Raster Subsystem

In the raster system, per-pixel and per-fragment operations take place. The operations
include writing color values into the framebuffer or more complex operations like depth
buffering, alpha blending, and texture mapping.

An explosion of both data and operations is required to rasterize a polygon as individual
pixels. Typically, the operations include depth comparison, Gouraud shading, color
blending, logical operations, texture mapping, and possibly antialiasing. This section
discusses the following techniques for tuning fill-limited drawing:

• “Using Backface/Frontface Removal”

• “Minimizing Per-Pixel Calculations”

• “Using Clear Operations”

• “Optimizing Texture Mapping”

Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface and frontface removal. For example, if you
are drawing a sphere, half of its polygons are backfacing at any given time. Backface and
frontface removal is done after transformation calculations but before per-fragment
operations. This means that backface removal may make transform-limited polygons
somewhat slower, but make fill-limited polygons significantly faster. You can turn on
backface removal when you are drawing an object with many backfacing polygons, then
turn it off again when drawing is completed.

Minimizing Per-Pixel Calculations

One way to improve fill-limited drawing is to reduce the work required to render
fragments. This section discusses several ways you can do this:

• “Avoiding Unnecessary Per-Fragment Operations”

• “Using Expensive Per-Fragment Operations Efficiently”

• “Using Depth-Buffering Efficiently”

• “Balancing Polygon Size and Pixel Operations”

• “Other Considerations”

Tuning the Raster Subsystem

333

Avoiding Unnecessary Per-Fragment Operations

Turn off per-fragment operations for objects that do not require them, and structure the
drawing process to minimize their use without causing excessive toggling of modes.

For example, if you are using alpha blending to draw some partially transparent objects,
make sure that you disable blending when drawing the opaque objects. Also, if you
enable alpha testing to render textures with holes through which the background can be
seen, be sure to disable alpha testing when rendering textures or objects with no holes. It
also helps to sort primitives so that primitives that require alpha blending or alpha
testing to be enabled are drawn at the same time. Finally, you may find it faster to render
polygons such as terrain data in back-to-front order.

Organizing Drawing to Minimize Computation

Organizing drawing to minimize per-pixel computation can significantly enhance
performance. For example, to minimize depth buffer requirements, disable depth
buffering when drawing large background polygons, then draw more complex
depth-buffered objects.

Using Expensive Per-Fragment Operations Efficiently

Use expensive per-fragment operations with care. Per-fragment operations, in rough
order of increasing cost (with flat-shading being the least expensive and multisampling
the most expensive) are as follows:

1. flat-shading

2. Gouraud shading

3. depth buffering

4. alpha blending

5. texturing

6. multisampling

Note: The actual order depends on the system you are running on.

Each operation can independently slow down the pixel fill rate of a polygon, although
depth buffering can help reduce the cost of alpha blending or multisampling for hidden
polygons.

334

Chapter 14: Tuning the Pipeline

Some of this information depends on the particular system the program is running on:

• Texturing is less expensive than alpha blending on new-generation hardware only.

• Alpha blending is less expensive than depth buffering on Indy systems.

• Beware of fill operations that are executed on the host for your graphics platform
(for example, texturing on Extreme or Elan graphics).

Using Depth-Buffering Efficiently

Any rendering operation can become fill limited for large polygons. Clever structuring
of drawing can eliminate the need for certain fill operations. For example, if large
backgrounds are drawn first, they do not need to be depth buffered. It is better to disable
depth buffering for the backgrounds and then enable it for other objects where it is
needed.

For example, flight simulators use this technique. Depth buffering is disabled and the sky
and ground, then the polygons lying flat on the ground (runway and grid) are drawn
without suffering a performance penalty. Then depth buffering is enabled for drawing
the mountains and airplanes.

There are other special cases in which depth buffering might not be required. For
example, terrain, ocean waves, and 3D function plots are often represented as height
fields (X-Y grids with one height value at each lattice point). It is straightforward to draw
height fields in back-to-front order by determining which edge of the field is furthest
away from the viewer, then drawing strips of triangles or quadrilaterals parallel to that
starting edge and working forward. The entire height field can be drawn without depth
testing provided it doesn’t intersect any piece of previously-drawn geometry. Depth
values need not be written at all, unless subsequently-drawn depth buffered geometry
might intersect the height field; in that case, depth values for the height field should be
written, but the depth test can be avoided by calling

glDepthFunc(GL_ALWAYS)

Tuning the Raster Subsystem

335

Balancing Polygon Size and Pixel Operations

The pipeline is generally optimized for polygons that are 10 pixels on a side. However,
you may need to work with polygons larger or smaller than that depending on the other
operations going on in the pipeline:

• If the polygons are too large for the fill rate to keep up with the rest of the pipeline,
the application is fill-rate limited. Smaller polygons balance the pipeline and
increase the polygon rate.

• If the polygons are too small for the rest of the pipeline to keep up with filling, then
the application is transform limited. Larger and fewer polygons, or fewer vertices,
balance the pipeline and increase the fill rate.

If you are drawing very large polygons such as backgrounds, performance will improve
if you use simple fill algorithms. For example, don’t set glShadeModel() to
GL_SMOOTH if smooth shading is not required. Also, disable per-fragment operations
such as depth buffering, if possible. If you need to texture the background polygons,
consider using GL_REPLACE as the texture environment.

Other Considerations

• Use alpha blending with discretion.

Alpha blending is an expensive operation. A common use of alpha blending is for
transparency, where the alpha value denotes the opacity of the object. For fully
opaque objects, disable alpha blending with glDisable(GL_BLEND).

• Avoid unnecessary per-fragment operations.

Turn off per-fragment operations for objects that do not require them, and structure
the drawing process to minimize their use without causing excessive toggling of
modes.

Using Clear Operations

When considering clear operations, consider these points:

• If possible, avoid clear operations. For example, you can avoid clearing the depth
buffer by setting the depth test to GL_ALWAYS.

336

Chapter 14: Tuning the Pipeline

• Avoid clearing the color and depth buffers independently.

The most basic per-frame operations are clearing the color and depth buffers. On
some systems, there are optimizations for common special cases of these operations.

Whenever you need to clear both the color and depth buffers, don’t clear each
buffer independently. Instead call:

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

• Be sure to disable dithering before clearing.

Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

• Avoid frequent switching between texture maps. If you have many small textures,
consider combining them into a single larger, mosaic texture. Rather than switching
to a new texture before drawing a textured polygon, choose texture coordinates that
select the appropriate small texture tile within the large texture.

• Use texture objects to encapsulate texture data. Place all the glTexImage*() calls
(including mipmaps) required to completely specify a texture and the associated
glTexParameter*() calls (which set texture properties) into a texture object and bind
this texture object to the rendering context. This allows the implementation to
compile the texture into a format that is optimal for rendering and, if the system
accelerates texturing, to efficiently manage textures on the graphics adapter.

• When using texture objects, call glAreTexturesResident() to make sure that all
texture objects are resident during rendering. (On systems where texturing is done
on the host, glAreTexturesResident() always returns GL_TRUE.) If necessary,
reduce the size or internal format resolution of your textures until they all fit into
memory. If such a reduction creates intolerably fuzzy textured objects, you may
give some textures lower priority.

• If possible, use glTexSubImage*D() to replace all or part of an existing texture
image rather than the more costly operations of deleting and creating an entire new
image.

• Avoid expensive texture filter modes. On some systems, trilinear filtering is much
more expensive than nearest or linear filtering.

Tuning the Imaging Pipeline

337

Tuning the Imaging Pipeline

This section briefly lists some ways in which you can improve pixel processing.
Example 15-1 on page 341 provides a code fragment that shows how to set the OpenGL
state so that subsequent calls to glDrawPixels() or glCopyPixels() will be fast.

To improve performance in the imaging pipeline, follow these guidelines:

• Disable all per-fragment operations.

• Define images in the native hardware format so type conversion is not necessary.

• For texture download operations, match the internal format of the texture with that
on the host.

• Byte-sized components, particularly unsigned byte components, are fast. Use pixel
formats where each of the components (red, green, blue, alpha, luminance, or
intensity) is 8 bits long.

• Use fewer components, for example, use GL_LUMINANCE_ALPHA or
GL_LUMINANCE.

• Use color matrix and color mask to store four luminance values in the RGBA
framebuffer. Use color matrix and color mask to work with one component at a time
If one component is being processed, convolution is much more efficient. Then
process all four images in parallel. Processing four images together is usually faster
than processing them individually as single-component images.

The following code fragment uses the green component as the data source and
writes the result of the operation into some (possibly all) of the other components:

/* Matrix is in column major order */
GLfloat smearGreenMat[16] = {
 0, 0, 0, 0,
 1, 1, 1, 1,
 0, 0, 0, 0,
 0, 0, 0, 0,
};
/* The variables update R/G/B/A indicate whether the
* corresponding component would be updated.
*/
GLboolean updateR, updateG, updateB, updateA;

...

/* Check for availability of the color matrix extension */

338

Chapter 14: Tuning the Pipeline

/* Set proper color matrix and mask */
glMatrixMode(GL_COLOR);
glLoadMatrixf(smearGreenMat);
glColorMask(updateR, updateG, updateB, updateA);

/* Perform the imaging operation */
glEnable(GL_SEPARABLE_2D_EXT);
glCopyTexSubImage2DEXT(...);
/* Restore an identity color matrix. Not needed when the same
* smear operation is to used over and over
*/
glLoadIdentity();

/* Restore previous matrix mode (assuming it is modelview) */
glMatrixMode(GL_MODELVIEW);
...

• Load the identity matrix into the color matrix to turn the color matrix off.

When using the color matrix to broadcast one component into all others, avoid
manipulating the color matrix with transformation calls such as glRotate(). Instead,
load the matrix explicitly using glLoadMatrix().

• Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to
overload in host bandwidth, processing, or rasterizing. When all modes are off, the
path is most likely limited by host bandwidth, and a wise choice of host pixel
format and type pays off tremendously. This is also why byte components are
sometimes faster. For example, use packed pixel format GL_RGB5_A1 to load
texture with an GL_RGB5_A1 internal format.

When either many processing modes or a several expensive modes such as
convolution are on, the processing stage is the bottleneck. Such cases benefit from
one-component processing, which is much faster than multicomponent processing.

Zooming up pixels may create a raster bottleneck.

• A big pixel rectangle has a higher throughput (that is, pixels per second) than a
small rectangle. Because the imaging pipeline is tuned to trade off a relatively large
setup time with a high pixel transfer efficiency, a large rectangle amortizes the setup
cost over many pixels, resulting in higher throughput.

Tuning the Imaging Pipeline

339

• Having no mode changes between pixel operations results in higher throughput.
New high-end hardware detects pixel mode changes between pixel operations:
When there is no mode change between pixel operations, the setup operation is
drastically reduced. This is done to optimize for image tiling where an image is
painted on the screen by drawing many small tiles.

• On most systems, glCopyPixels() is faster than glDrawPixels().

• Tightly packing data in memory (for example row length=0, alignment=1) is
slightly more efficient for host transfer.

341

Chapter 15

15.Tuning Graphics Applications: Examples

This chapter first presents a code fragment that helps you draw pixels fast. The second
section steps through an example of tuning a small graphics program, showing changes
to the program and discussing the speed improvements that result. The chapter
discusses these topics:

• “Drawing Pixels Fast”

• “Tuning Example” on page 343

Drawing Pixels Fast

The code fragment in Example 15-1 illustrates how to set an OpenGL state so that
subsequent calls to glDrawPixels() or glCopyPixels() will be fast.

Example 15-1 Drawing Pixels Fast

 /*
 * Disable stuff that's likely to slow down
 * glDrawPixels.(Omit as much of this as possible,
 * when you know in advance that the OpenGL state is
 * already set correctly.)
 */
 glDisable(GL_ALPHA_TEST);
 glDisable(GL_BLEND);
 glDisable(GL_DEPTH_TEST);
 glDisable(GL_DITHER);
 glDisable(GL_FOG);
 glDisable(GL_LIGHTING);
 glDisable(GL_LOGIC_OP);
 glDisable(GL_STENCIL_TEST);
 glDisable(GL_TEXTURE_1D);
 glDisable(GL_TEXTURE_2D);
 glPixelTransferi(GL_MAP_COLOR, GL_FALSE);
 glPixelTransferi(GL_RED_SCALE, 1);
 glPixelTransferi(GL_RED_BIAS, 0);

342

Chapter 15: Tuning Graphics Applications: Examples

 glPixelTransferi(GL_GREEN_SCALE, 1);
 glPixelTransferi(GL_GREEN_BIAS, 0);
 glPixelTransferi(GL_BLUE_SCALE, 1);
 glPixelTransferi(GL_BLUE_BIAS, 0);
 glPixelTransferi(GL_ALPHA_SCALE, 1);
 glPixelTransferi(GL_ALPHA_BIAS, 0);

 /*
 * Disable extensions that could slow down
 * glDrawPixels.(Actually, you should check for the
 * presence of the proper extension before making
 * these calls.I omitted that code for simplicity.)
 */

#ifdef GL_EXT_convolution
 glDisable(GL_CONVOLUTION_1D_EXT);
 glDisable(GL_CONVOLUTION_2D_EXT);
 glDisable(GL_SEPARABLE_2D_EXT);
#endif

#ifdef GL_EXT_histogram
 glDisable(GL_HISTOGRAM_EXT);
 glDisable(GL_MINMAX_EXT);
#endif

#ifdef GL_EXT_texture3D
 glDisable(GL_TEXTURE_3D_EXT);
#endif

 /*
 * The following is needed only when using a
 * multisample-capable visual.
 */

#ifdef GL_SGIS_multisample
 glDisable(GL_MULTISAMPLE_SGIS);
#endif

Tuning Example

343

Tuning Example

This section steps you through a complete example of tuning a small program using the
techniques discussed in Chapter 14, “Tuning the Pipeline.” Consider a program that
draws a lighted sphere, shown in Figure 15-1.

Figure 15-1 Lighted Sphere Created by perf.c

You can use the benchmarking framework in Appendix B, “Benchmarks,” for window
and timing services. All you have to do is set up the OpenGL rendering context in
RunTest(), and perform the drawing operations in Test(). The first version renders the
sphere by drawing strips of quadrilaterals parallel to the sphere’s lines of latitude. On a
100 MHz Indigo2 Extreme system, this program renders about 0.77 frames per second.

Example 15-2 Performance Tuning Example Program

/***
 cc -o perf -O perf.c -lGLU -lGL -lX11
**/

#include <GL/glx.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/time.h>
#include <math.h>

344

Chapter 15: Tuning Graphics Applications: Examples

char* ApplicationName;
double Overhead = 0.0;
int VisualAttributes[] = { GLX_RGBA, GLX_RED_SIZE, 1, GLX_GREEN_SIZE,
 1, GLX_BLUE_SIZE, 1, GLX_DEPTH_SIZE, 1, None };
int WindowWidth;
int WindowHeight;

/**
 * GetClock - get current time (expressed in seconds)
**/
double
GetClock(void) {
 struct timeval t;

 gettimeofday(&t);
 return (double) t.tv_sec + (double) t.tv_usec * 1E-6;
 }

/**
 * ChooseRunTime - select an appropriate runtime for benchmarking
**/
double
ChooseRunTime(void) {
 double start;
 double finish;
 double runTime;

 start = GetClock();

 /* Wait for next tick: */
 while ((finish = GetClock()) == start)
 ;

 /* Run for 100 ticks, clamped to [0.5 sec, 5.0 sec]: */
 runTime = 100.0 * (finish - start);
 if (runTime < 0.5)
 runTime = 0.5;
 else if (runTime > 5.0)
 runTime = 5.0;

 return runTime;
 }

Tuning Example

345

/**
 * FinishDrawing - wait for the graphics pipe to go idle
 *
 * This is needed to make sure we're not including time from some
 * previous uncompleted operation in our measurements. (It's not
 * foolproof, since we can't eliminate context switches, but we can
 * assume our caller has taken care of that problem.)
**/
void
FinishDrawing(void) {
 glFinish();
 }

/**
 * WaitForTick - wait for beginning of next system clock tick; return
 * the time
**/
double
WaitForTick(void) {
 double start;
 double current;

 start = GetClock();

 /* Wait for next tick: */
 while ((current = GetClock()) == start)
 ;

 /* Start timing: */
 return current;
 }

/**
 * InitBenchmark - measure benchmarking overhead
 *
 * This should be done once before each risky change in the
 * benchmarking environment. A “risky” change is one that might
 * reasonably be expected to affect benchmarking overhead. (For
 * example, changing from a direct rendering context to an indirect
 * rendering context.) If all measurements are being made on a single
 * rendering context, one call should suffice.
**/

346

Chapter 15: Tuning Graphics Applications: Examples

void
InitBenchmark(void) {
 double runTime;
 long reps;
 double start;
 double finish;
 double current;

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /* Wait for the pipe to clear: */
 FinishDrawing();

 /* Measure approximate overhead for finalization and timing
 * routines: */
 reps = 0;
 start = WaitForTick();
 finish = start + runTime;
 do {
 FinishDrawing();
 ++reps;
 } while ((current = GetClock()) < finish);

 /* Save the overhead for use by Benchmark(): */
 Overhead = (current - start) / (double) reps;
 }

/**
 * Benchmark--measure number of caller operations performed per second
 *
 * Assumes InitBenchmark() has been called previously, to initialize
 * the estimate for timing overhead.
**/
double
Benchmark(void (*operation)(void)) {
 double runTime;
 long reps;
 long newReps;
 long i;
 double start;
 double current;

 if (!operation)
 return 0.0;

Tuning Example

347

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /*
 * Measure successively larger batches of operations until we
 * find one that's long enough to meet our runtime target:
 */
 reps = 1;
 for (;;) {
 /* Run a batch: */
 FinishDrawing();
 start = WaitForTick();
 for (i = reps; i > 0; --i)
 (*operation)();
 FinishDrawing();

 /* If we reached our target, bail out of the loop: */
 current = GetClock();
 if (current >= start + runTime + Overhead)
 break;

 /*
 * Otherwise, increase the rep count and try to reach
 * the target on the next attempt:
 */
 if (current > start)
 newReps = reps *(0.5 + runTime /
 (current - start - Overhead));
 else
 newReps = reps * 2;
 if (newReps == reps)
 reps += 1;
 else
 reps = newReps;
 }

 /* Subtract overhead and return the final operation rate: */
 return (double) reps / (current - start - Overhead);
 }
/**
 * Test - the operation to be measured
 *
 * Will be run several times in order to generate a reasonably accurate
 * result.
**/

348

Chapter 15: Tuning Graphics Applications: Examples

void
Test(void) {
 float latitude, longitude;
 float dToR = M_PI / 180.0;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 for (latitude = -90; latitude < 90; ++latitude) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; ++longitude) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+1) *
 dToR);
 y = sin((latitude+1) * dToR);
 z = cos(longitude * dToR) * cos((latitude+1) *
 dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 }
 glEnd();
 }
 }

/**
 * RunTest - initialize the rendering context and run the test
**/
void
RunTest(void) {
 static GLfloat diffuse[] = {0.5, 0.5, 0.5, 1.0};
 static GLfloat specular[] = {0.5, 0.5, 0.5, 1.0};
 static GLfloat direction[] = {1.0, 1.0, 1.0, 0.0};
 static GLfloat ambientMat[] = {0.1, 0.1, 0.1, 1.0};
 static GLfloat specularMat[] = {0.5, 0.5, 0.5, 1.0};

 if (Overhead == 0.0)
 InitBenchmark();

 glClearColor(0.5, 0.5, 0.5, 1.0);

 glClearDepth(1.0);

Tuning Example

349

 glEnable(GL_DEPTH_TEST);

 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
 glLightfv(GL_LIGHT0, GL_POSITION, direction);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);

 glMaterialfv(GL_FRONT, GL_AMBIENT, ambientMat);
 glMaterialfv(GL_FRONT, GL_SPECULAR, specularMat);
 glMateriali(GL_FRONT, GL_SHININESS, 128);

 glEnable(GL_COLOR_MATERIAL);
 glShadeModel(GL_SMOOTH);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, 1.0, 2.4, 4.6);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0,0,3.5, 0,0,0, 0,1,0);

 printf("%.2f frames per second\n", Benchmark(Test));
 }

/**
 * ProcessEvents - handle X11 events directed to our window
 *
 * Run the measurement each time we receive an expose event.
 * Exit when we receive a keypress of the Escape key.
 * Adjust the viewport and projection transformations when the window
 * changes size.
**/
void
ProcessEvents(Display* dpy) {
 XEvent event;
 Bool redraw = 0;

 do {
 char buf[31];
 KeySym keysym;

 XNextEvent(dpy, &event);
 switch(event.type) {

350

Chapter 15: Tuning Graphics Applications: Examples

 case Expose:
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0,
 WindowWidth =
 event.xconfigure.width,
 WindowHeight =
 event.xconfigure.height);
 redraw = 1;
 break;
 case KeyPress:
 (void) XLookupString(&event.xkey, buf,
 sizeof(buf), &keysym, NULL);
 switch (keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 break;
 default:
 break;
 }
 } while (XPending(dpy));

 if (redraw) RunTest();
 }

/**
 * Error - print an error message, then exit
**/
void
Error(const char* format, ...) {
 va_list args;

 fprintf(stderr, "%s: ", ApplicationName);

 va_start(args, format);
 vfprintf(stderr, format, args);
 va_end(args);

 exit(EXIT_FAILURE);
 }

Tuning Example

351

/**
 * main - create window and context, then pass control to ProcessEvents
**/
int
main(int argc, char* argv[]) {
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;

 ApplicationName = argv[0];

 /* Get a connection: */
 dpy = XOpenDisplay(NULL);
 if (!dpy) Error("can't open display");

 /* Get an appropriate visual: */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),
 VisualAttributes);
 if (!vi) Error("no suitable visual");

 /* Create a GLX context: */
 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

 /* Create a color map: */
 swa.colormap = XCreateColormap(dpy, RootWindow(dpy,
 vi->screen), vi->visual, AllocNone);

 /* Create a window: */
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | StructureNotifyMask |
 KeyPressMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0,
 300, 300, 0, vi->depth, InputOutput, vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);
 XStoreName(dpy, win, "perf");
 XMapWindow(dpy, win);

 /* Connect the context to the window: */
 glXMakeCurrent(dpy, win, cx);

 /* Handle events: */
 while (1) ProcessEvents(dpy);
 }

352

Chapter 15: Tuning Graphics Applications: Examples

Testing for CPU Limitation

An application may be CPU limited, geometry limited, or fill limited. Start tuning by
checking for a CPU bottleneck. Replace the glVertex3f(), glNormal3f(), and glClear()
calls in Test() with glColor3f() calls. This minimizes the number of graphics operations
while preserving the normal flow of instructions and the normal pattern of accesses to
main memory.

void
Test(void) {
 float latitude, longitude;
 float dToR = M_PI / 180.0;

 glColor3f(0, 0, 0);

 for (latitude = -90; latitude < 90; ++latitude) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; ++longitude) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glColor3f(x, y, z);
 glColor3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+1) * dToR);
 y = sin((latitude+1) * dToR);
 z = cos(longitude * dToR) * cos((latitude+1) * dToR);
 glColor3f(x, y, z);
 glColor3f(x, y, z);
 }
 glEnd();
 }
 }

Tuning Example

353

Using the Profiler

The program still renders less than 0.8 frames per second. Because eliminating all
graphics output had almost no effect on performance, the program is clearly CPU
limited. Use the profiler to determine which function accounts for most of the execution
time.

% cc -o perf -O -p perf.c -lGLU -lGL -lX11
% perf
% prof perf

Profile listing generated Wed Jul 19 17:17:03 1995
 with: prof perf

samples time CPU FPU Clock N-cpu S-interval Countsize
 219 2.2s R4000 R4010 100.0MHz 0 10.0ms 0(bytes)

Each sample covers 4 bytes for every 10.0ms (0.46% of 2.1900sec)
--
-p[rocedures] using pc-sampling.
Sorted in descending order by the number of samples in each procedure.
Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (file)

 112 1.1s(51.1) 1.1s(51.1) __sin
 (/usr/lib/libm.so:trig.s)
 29 0.29s(13.2) 1.4s(64.4) Test (perf:perf.c)
 18 0.18s(8.2) 1.6s(72.6) __cos (/usr/lib/libm.so:trig.s)
 16 0.16s(7.3) 1.8s(79.9) Finish
 (/usr/lib/libGLcore.so:../EXPRESS/gr2_context.c)
 15 0.15s(6.8) 1.9s(86.8) __glexpim_Color3f
 (/usr/lib/libGLcore.so:../EXPRESS/gr2_vapi.c)
 14 0.14s(6.4) 2s(93.2) _BSD_getime
 (/usr/lib/libc.so.1:BSD_getime.s)
 3 0.03s(1.4) 2.1s(94.5) __glim_Finish
 (/usr/lib/libGLcore.so:../soft/so_finish.c)
 3 0.03s(1.4) 2.1s(95.9) _gettimeofday
 (/usr/lib/libc.so.1:gettimeday.c)
 2 0.02s(0.9) 2.1s(96.8) InitBenchmark (perf:perf.c)
 1 0.01s(0.5) 2.1s(97.3) __glMakeIdentity
 (/usr/lib/libGLcore.so:../soft/so_math.c)

354

Chapter 15: Tuning Graphics Applications: Examples

 1 0.01s(0.5) 2.1s(97.7) _ioctl
 (/usr/lib/libc.so.1:ioctl.s)
 1 0.01s(0.5) 2.1s(98.2) __glInitAccum64
 (/usr/lib/libGLcore.so:../soft/so_accumop.c)
 1 0.01s(0.5) 2.2s(98.6) _bzero
 (/usr/lib/libc.so.1:bzero.s)
 1 0.01s(0.5) 2.2s(99.1) GetClock (perf:perf.c)
 1 0.01s(0.5) 2.2s(99.5) strncpy
 (/usr/lib/libc.so.1:strncpy.c)
 1 0.01s(0.5) 2.2s(100.0) _select
 (/usr/lib/libc.so.1:select.s)

 219 2.2s(100.0) 2.2s(100.0) TOTAL

Almost 60% of the program’s time for a single frame is spent computing trigonometric
functions (__sin and __cos).

There are several ways to improve this situation. First consider reducing the resolution
of the quad strips that model the sphere. The current representation has over 60,000
quads, which is probably more than is needed for a high-quality image. After that,
consider other changes. For example:

• Consider using efficient recurrence relations or table lookup to compute the regular
grid of sine and cosine values needed to construct the sphere.

• The current code computes nearly every vertex on the sphere twice (once for each of
the two quad strips in which a vertex appears), so you could achieve a 50%
reduction in trigonometric operations just by saving and re-using the vertex values
for a given line of latitude.

Because exactly the same sphere is rendered in every frame, the time required to compute
the sphere vertices and normals is redundant for all but the very first frame. To eliminate
the redundancy, generate the sphere just once, and place the resulting vertices and
surface normals in a display list. You still pay the cost of generating the sphere once, and
eventually may need to use the other techniques mentioned above to reduce that cost,
but at least the sphere is rendered more efficiently:

void
Test(void) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glCallList(1);
 }
....

Tuning Example

355

void
RunTest(void){...
 glNewList(1, GL_COMPILE);
 for (latitude = -90; latitude < 90; ++latitude) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; ++longitude) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+1) * dToR);
 y = sin((latitude+1) * dToR);
 z = cos(longitude * dToR) * cos((latitude+1) * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 }
 glEnd();
 }
 glEndList();

 printf("%.2f frames per second\n", Benchmark(Test));
 }

This version of the program achieves a little less than 2.5 frames per second, a noticeable
improvement.

When the glClear(), glNormal3f(), and glVertex3f() calls are again replaced with
glColor3f(), the program runs at roughly 4 frames per second. This implies that the
program is no longer CPU limited, so you need to look further to find the bottleneck.

Testing for Fill Limitation

To check for a fill limitation, reduce the number of pixels that are filled. The easiest way
to do that is to shrink the window. If you try that, you see that the frame rate doesn’t
change for a smaller window, so the program must now be geometry-limited. As a result,
it is necessary to find ways to make the processing for each polygon less expensive, or to
render fewer polygons.

356

Chapter 15: Tuning Graphics Applications: Examples

Working on a Geometry-Limited Program

Previous tests determined that the program is geometry-limited. The next step is
therefore to pinpoint the most severe problems and to change the program to alleviate
the bottleneck.

Since the purpose of the program is to draw a lighted sphere, you cannot eliminate
lighting altogether. The program is already using a fairly simple lighting model (a single
infinite light and a nonlocal viewer), so there is not much performance to be gained by
changing the lighting model.

Smooth Shading Versus Flat Shading

Smooth shading requires more computation than flat shading, so consider changing

glShadeModel(GL_SMOOTH);

to

glShadeModel(GL_FLAT);

This increases performance to about 2.75 frames per second. Since this is not much better
than 2.5 frames per second, this discussion continues to use smooth shading.

Reducing the Number of Polygons

Since a change in lighting and shading does not improve performance significantly, the
best option is to reduce the number of polygons the program is drawing.

One approach is to tesselate the sphere more efficiently. The simple sphere model used
in the program has very large numbers of very small quadrilaterals near the poles, and
comparatively large quadrilaterals near the equator. Several superior models exist, but
to keep things simple, this discussion continues to use the latitude/longitude tesselation.

Tuning Example

357

A little experimentation shows that reducing the number of quadrilaterals in the sphere
causes a dramatic performance increase. When the program places vertices every 10
degrees, instead of every degree, performance skyrockets to nearly 200 frames per
second:

 for (latitude = -90; latitude < 90; latitude += 10) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; longitude += 10) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+10) * dToR);
 y = sin((latitude+10) * dToR);
 z = cos(longitude * dToR) * cos((latitude+10) * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 }
 glEnd()
 }

Of course, this yields a less smooth-looking sphere. When tuning, you often need to
make such trade-offs between image quality and drawing performance, or provide
controls in your application that allow end users to make the trade-offs.

In this particular case, the improvement up to 200 frames per second becomes apparent
only because the program is single-buffered. If the program used double-buffering,
performance wouldn’t increase beyond the frame rate of the monitor (typically 60 or 72
frames per second), so there would be no performance penalty for using a higher-quality
sphere.

If performance is truly critical and sphere intersections are not likely, consider rendering
more vertices at the edge of the silhouette and fewer at the center.

358

Chapter 15: Tuning Graphics Applications: Examples

Testing Again for Fill Limitation

If you now shrink the window, performance increases again. This indicates that the
program is again fill-limited. To increase performance further, you need to fill fewer
pixels, or make pixel-fill less expensive by changing the pixel-drawing mode.

This particular application uses just one special per-fragment drawing mode: depth
buffering. Depth buffering can be eliminated in a variety of special cases, including
convex objects, backdrops, ground planes, and height fields.

Fortunately, because the program is drawing a sphere, you can eliminate depth buffering
and still render a correct image by discarding quads that face away from the viewer (the
“front” faces, given the orientation of quads in this model):

 glDisable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
 glCullFace(GL_FRONT);

This pushes performance up to nearly 260 frames per second. Further improvements are
possible. The program’s performance is still far from the upper limit determined by the
peak fill rate. Note that you can sometimes improve face culling by performing it in the
application; for example, for a sphere you would see just the hemisphere closest to you,
and therefore you only have to compute the bounds on latitude and longitude.

359

Chapter 16

16.System-Specific Tuning

This chapter first discusses some general issues regarding system-specific tuning, then
provides tuning information that is relevant for particular Silicon Graphics systems. Use
these techniques as needed if you expect your program to be used primarily on one kind
of system, or a group of systems. The chapter discusses:

• “Introduction to System-Specific Tuning”

• “Optimizing Performance on Low-End Graphics Systems” on page 361

• “Optimizing Performance on O2™ Systems” on page 367

• “Optimizing Performance on Mid-Range Systems” on page 375

• “Optimizing Performance on Indigo2 IMPACT and OCTANE Systems” on page 378

• “Optimizing Performance on RealityEngine Systems” on page 385

• “Optimizing Performance on InfiniteReality Systems” on page 390

Some points are also discussed in earlier chapters but repeated here because they result
in particularly noticeable performance improvement on certain platforms.

Note: To determine your particular hardware configuration, use /usr/gfx/gfxinfo. See the
reference page for gfxinfo for more information. You can also call glGetString() with a
GL_RENDERER argument. See the reference page for information about the renderer
strings for different systems.

360

Chapter 16: System-Specific Tuning

Introduction to System-Specific Tuning

Many of the performance tuning techniques discussed in the previous chapters (such as
minimizing the number of state changes and disabling features that are not required) are
a good idea no matter what system you are running on. Other tuning techniques need to
be customized for a particular system. For example, before you sort your database based
on state changes, you need to determine which state changes are the most expensive for
each system you are interested in running on.

In addition, you may want to modify the behavior of your program depending on which
modes are fast. This is especially important for programs that must run at a particular
frame rate. To maintain the frame rate on certain systems, you may need to disable some
features. For example, if a particular texture mapping environment is slow on one of your
target systems, you have to disable texture mapping or change the texture environment
whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you have to do some
performance measurements. This is not always straightforward. Often a particular
device can accelerate certain features, but not all at the same time. It is therefore
important to test the performance for combinations of features that you will be using. For
example, a graphics adapter may accelerate texture mapping but only for certain texture
parameters and texture environment settings. Even if all texture modes are accelerated,
you have to experiment to see how many textures you can use at the same time without
causing the adapter to page textures in and out of the local memory.

A more complicated situation arises if the graphics adapter has a shared pool of memory
that is allocated to several tasks. For example, the adapter may not have a framebuffer
deep enough to contain a depth buffer and a stencil buffer. In this case, the adapter would
be able to accelerate both depth buffering and stenciling but not at the same time. Or
perhaps, depth buffering and stenciling can both be accelerated but only for certain
stencil buffer depths.

Typically, per-platform testing is done at initialization time. You should do some trial
runs through your data with different combinations of state settings and calculate the
time it takes to render in each case. You may want to save the results in a file so your
program does not have to do this test each time it starts up. You can find an example of
how to measure the performance of particular OpenGL operations and save the results
using the isfast program from the OpenGL web site.

Optimizing Performance on Low-End Graphics Systems

361

Optimizing Performance on Low-End Graphics Systems

This section discusses how you can get the best results from your application on low-end
graphics systems, such as the Indy, Indigo, and Indigo2 XL systems (but not other Indigo2

systems); discussing the following topics:

• “Choosing Features for Optimum Performance”

• “Using the Pipeline Effectively”

• “Using Geometry Operations Effectively”

• “Using Per-Fragment Operations Effectively”

Choosing Features for Optimum Performance

By emphasizing features implemented in hardware, you can significantly influence the
performance of your application. As a rule of thumb, consider the following:

• Hardware-supported features: Lines, filled rectangles, color shading, alpha
blending, alpha function, antialiased lines (color-indexed and RGB), line and
stippling patterns, color plane masks, color dithering, logical operations selected
with glLogicOp(), pixel reads and writes, screen to screen copy, and scissoring.

• Software-supported features: All features not in hardware, such as stencil and
accumulation buffer, fogging and depth queuing, transforms, lighting, clipping,
depth buffering, and texturing. Triangles and polygons are partially software
supported.

Using the Pipeline Effectively

The low-end graphics systems’ FIFO allows the CPU and the graphics subsystem to
work in parallel. For optimum performance, follow these guidelines:

• Make sure the graphics subsystem always has enough in the queue.

• Let the CPU perform preprocessing or non-graphic aspects of the application while
the graphics hardware works on the commands in the FIFO.

For example, a full screen clear takes about 3 ms. Let the application do something
else immediately after a clear operation; the FIFO otherwise fills up and forces a
stall.

362

Chapter 16: System-Specific Tuning

Note that FIFOs in low-end systems are much smaller than those in high-end systems.
Not all graphics processing happens in hardware, and the time spent therefore differs
greatly. To detect imbalances between the CPU and the graphics FIFO, execute the
gr_osview command and observe gfxf in the CPU bar and fiwt and finowt in the gfx bar.

• gfxf: Time spent waiting for the graphics FIFO to drain.

• fiwt: FIFO filled up and host went to sleep waiting for it to drain.

• finowt: FIFO filled up but drained fast enough that host continued.

Using Geometry Operations Effectively

If your application seems transform limited on a low end system, you can improve it by
considering the tips in this section. The section starts with some general points, then
discusses optimizing line drawing and using triangles and polygons effectively.

To improve performance in the geometry subsystem, follow these guidelines:

• Use single-precision floating-point parameters—except where memory size is
critical.

– Use single-precision floats for vertices, normals, and colors.

– Transform paths use single-precision floats—it is fastest to use glVertex3fv()
and glVertex2fv().

• Use glOrtho() and a modelview matrix without rotation for best performance.
Perspective transforms that require multiplication by 1/w or division by w are
much slower.

• Don’t enable normalizing of normals if the modelview matrix doesn’t include
scaling and if you have unit-length normals.

Optimizing Line Drawing

Even on low-end systems, lines can provide real-time interactivity. Consider these
guidelines:

• Use line drawing while the scene is changing and solid rendering when the scene
becomes static.

• Shaded lines and antialiased lines that are one pixel wide are supported by the
hardware. Patterned lines generated with glLineStipple() are as fast as solid lines.

Optimizing Performance on Low-End Graphics Systems

363

• Wide lines are drawn as multiple parallel offset lines.

• Depth-queued lines are about as fast as shaded lines.

• The hardware can usually draw lines faster than the software can produce
commands, though long or antialiased lines can cause a backup in the graphics
pipeline.

• Avoid depth buffering for lines; incorrect depth-sorting artifacts are usually not
noticeable.

Optimizing Triangles and Polygons

When rendering triangles and polygons, keep in mind the following:

• Maximize the number of vertices between glBegin() and glEnd().

• Decompose quads and polygons into triangle strips. The GL_TRIANGLE_STRIP
primitive has the fastest path.

• Use connected primitives (triangle, quad, and line strips). Use triangle strips
wherever possible and draw as many triangles as possible per glBegin()/glEnd()
pair.

• When rendering solid triangles, consider the following:

– Color shading and alpha blending are performed in hardware on Indy and
Indigo2 XL systems. Consult system-specific documentation for information on
other low-end systems.

– Larger triangles have a better overall fill rate than smaller ones because CPU
setup per triangle is independent of triangle size.

Using Per-Fragment Operations Effectively

This section looks at some things you can do if your application is fill limited on a
low-end system. It provides information about getting the optimum fill rates and about
using pixel operations effectively.

364

Chapter 16: System-Specific Tuning

Getting the Optimum Fill Rates

To achieve the fastest fill rates possible, consider the following:

• Clear operations and screen-aligned glRect() calls that don’t use the depth or stencil
buffer have a maximum fill rate of 400 MBps.

The hardware accelerates drawing rectangles that have their vertical and horizontal
edges parallel to those of the window. The OpenGL glRect() call—as opposed to
IRIS GL rect()—specifies rectangles, but depending on the matrix transformations
they may not be screen-aligned. If the matrices are such that the rectangle drawn by
glRect() is screen-aligned, OpenGL detects that and uses the accelerated mode for
screen-aligned rectangles.

• Use glShadeModel() with GL_FLAT whenever possible, especially for lines.

• Using dithering, shading, patterns, logical operations, writemasks, stencil buffering,
and depth buffering (and alpha blending on some systems) slows down an
application.

• Use glEnable() with GL_CULL_FACE to eliminate backfacing polygons, especially
in modes that have slow fill rates, such as depth buffering and texturing (alpha
blending on some systems).

• In any OpenGL matrix mode, low-end systems check for transforms that only scale,
and have no rotations or perspective. The system looks at the specified matrices,
and if they only scale and have no rotation or perspective, performs optimizations
that speed up transformation of vertices to device coordinates. One way to specify
this is as follows:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0,xsize,0,ysize);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glShadeModel(GL_FLAT);

You also have to use a glVertex2fv() call to specify 2D vertices.

Optimizing Performance on Low-End Graphics Systems

365

• Starting with IRIX 6.2, texture mapping speed is increased by about 10 times
(compared to previous releases) when texture parameters are specified as follows:

glEnable(GL_TEXTURE_2D);
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);

In addition, follow these guidelines:

– For RGB textures, make sure the texture environment mode, set with
glTexEnv(), is either GL_REPLACE or GL_DECAL.

– For RGBA textures, make sure the texture environment mode is GL_REPLACE.

Note that the above fast path does not work when stencil is enabled and when
depth buffering and alpha testing are both on.

Note: Avoid using depth buffering whenever possible, because the fill rates for depth
buffering are slow. In particular, avoid using depth-buffered lines. The depth buffer is as
large as the window, so use the smallest possible window to minimize the amount of
memory allocated to the depth buffer. The same applies for stencil buffers.

Using Pixel Operations Effectively

Write your OpenGL program to use the combinations of pixel formats and types listed
in Table 16-1, for which the hardware can use DMA. The CPU has to reformat pixels in
other format and type combinations.

Table 16-1 Pixel Formats and Types Using DMA on Low-End Systems

Format Type

GL_RGBA GL_UNSIGNED_BYTE

GL_ABGR_EXT GL_UNSIGNED_BYTE

GL_COLOR_INDEX GL_UNSIGNED_BYTE

GL_COLOR_INDEX GL_UNSIGNED_SHORT

366

Chapter 16: System-Specific Tuning

Note that GL_ABGR_EXT provides better performance than GL_RGBA on Indigo
systems but not on Indy or Indigo2 XL systems, where the two formats perform about the
same.

Here are some additional guidelines for optimizing pixel operations:

• Scrolling. When scrolling scenes, use glCopyPixels() to copy from one scene to the
next.

When you scroll something, such as a teleprompter text scroll or an EKG display,
use glCopyPixels() to shift the part of the window in the scrolling direction, and
draw only the area that is newly exposed. Using glCopyPixels() is much faster than
completely redrawing each frame.

• Minimizing calls. Make each pixel operation draw as much data as possible. For
each call, a certain amount of setup is required; you cut down on that time if you
minimize the number of calls.

• Zooming. Zoomed pixels cannot use DMA. A 2 x 2 zoom is faster than other zoom
operations.

• Depth and scissoring. Low-end systems use an accelerated algorithm that makes
clearing the depth buffer virtually free. However, this has slowed enabling and
disabling scissoring and changing the scissor rectangle. The larger the scissor
rectangle, the longer the delay. As a result:

– Rendering while scissoring is turned on is fast.

– Calling glEnable() and glDisable() with GL_SCISSOR, calling glScissor() and
pushing and popping attributes that cause a scissor change are slow.

Low-End Specific Extensions

For Indy and Indigo2 XL systems, an extension has been developed that increases fill rate
by drawing pixels as N x N rectangles (effectively lowering the window resolution). This
“framezoom” extension, SGIX_framezoom, is available as a separate patch under both
IRIX 5.3 and IRIX 6.2 (and later).

Note: This extension is experimental. The interface and supported systems may change
in the future.

Optimizing Performance on O2™ Systems

367

When using the extension, consider the following performance tips:

• The extension works best when texturing is enabled. When pixels are zoomed up by
N, you can expect the fill rate to go up by about N2/2. This number is an estimate; a
speed-up of this magnitude occurs only if texturing performance has been
optimized as explained in the last bullet of “Getting the Optimum Fill Rates” on
page 364.

• When texturing is not enabled, performance, although faster than the texture map
case, is relatively slow compared to the non-framezoomed case. Actually, a
framezoom value of 2 is slower than if framezoom was not enabled. The reason is
that the graphics hardware in low-end systems is optimized for flat or interpolated
spans, and not for cases where the color changes from pixel to pixel (as with
texturing). When pixels are bigger (as with the framezoom extension), this benefit
cannot be used.

• The framezoom factor can be changed on a frame-to-frame basis, so you can render
with framezoom set to a larger value when you are moving around a scene, and
lower the value, or turn framezoom off, when there are no changes in the scene.

For more detailed information, see the reference page for glFrameZoomSGIX() for those
systems that have the patch installed.

Optimizing Performance on O2™ Systems

An O2 system is similar to previous low-end systems in that it divides operations in the
OpenGL pipeline between the host CPU and dedicated graphics hardware. However,
unlike previous systems, graphics hardware on the O2 handles more of the graphics
pipeline in hardware. In particular, it is capable of rasterizing triangle-based primitives
directly without the host having to split them into spans, and it performs all of the
OpenGL per-fragment operations. The CPU is still responsible for vertex and normal
transformation, clipping, lighting, and primitive-level set-up.

In addition to using the CPU for geometry operations and the Graphics Rendering
Engine (GRE) for per-fragment operations, a number of imaging extensions and pixel
transfer operations are accelerated by the Imaging and Compression Engine (ICE).

368

Chapter 16: System-Specific Tuning

Optimizing Geometry Operations

The section “Optimizing Performance on Low-End Graphics Systems” on page 361 lists
recommendations in “Using Geometry Operations Effectively” on page 362. Many of
these recommendations apply to the O2 system as well. There are, however, some
differences worth mentioning:

• Generic 3D transformations with perspective are comparable in speed to 2D
transformations because the floating-point pipeline in the R5000 and R10000 CPUs
is much faster than previous-generation CPUs. However, always put perspective in
the projection matrix and not in the modelview matrix to allow for faster normal
transformation.

• Minimize attribute setup; attribute setup for each primitive is performed on the
CPU. For example:

– Use flat shading if the color of the model changes rarely or not within the same
primitives that make up the model.

– Don’t enable depth-buffering when rendering lines.

– Turn off polygon offset when not in use.

– Choose a visual with no destination alpha planes if destination alpha blending
is not used.

• When using fog, set the param argument to GL_LINEAR instead of GL_EXP or
GL_EXP2. GL_LINEAR uses vertex fogging, which is hardware accelerated on O2
systems, instead of per-pixel fogging, which is not.

• When continuously rendering a large amount of static geometry elements, consider
storing the geometry elements in display lists. When vertices and vertex attributes
are stored in display lists, the R10000 CPU can prefetch the data in anticipation of its
use and thus reduce read latency for data that cannot fit in the caches.

• The n32 version of the OpenGL is somewhat faster than the o32 version due to the
more efficient parameter passing convention and the larger number of floating-
point registers that the n32 compilation mode offers. Furthermore, using n32 can
improve application speed because the compiler can generate MIPS IV code and
schedule instructions optimally for the R5000 or the R10000 CPU.

• Lighting on O2 systems is faster than on previous low-end systems because of the
better floating-point performance of its CPUs. However, the larger the number or
the more complex the lights (local lights, for instance), the larger the amount of
work the CPU has to perform. Two-sided lighting is not a “free” operation, so
consider using single-sided lighting, if possible.

Optimizing Performance on O2™ Systems

369

Optimizing Line Drawing

Line drawing for low-end systems is discussed in some detail in “Optimizing Line
Drawing” on page 362. On O2 systems, almost all line rendering (rasterization) modes
are hardware supported.

The following kinds of lines need to be rasterized by the CPU and will perform
significantly slower:

• anti-aliased RGB lines that are either wide (line width greater than 1) or stippled

• all types of anti-aliased color-index lines

Optimizing Triangle Drawing

Triangle drawing for low-end systems is discussed in some detail in “Optimizing
Triangles and Polygons” on page 363. Note the following points:

• Triangle strips are the most optimal triangle path through the OpenGL pipeline.
Maximize the number of vertices between glBegin() and glEnd().

• Polygon stippling is not hardware supported. Because a stippled polygon has to be
rasterized on the CPU, enabling polygon stippling will cause a significant
performance degradation.

If the application is using polygon stippling for screen-door transparency effects,
consider instead using alpha blending to emulate transparency. If using alpha
blending is not possible, consider setting the GLCRMSTIPPLEOPT environment
variable. Setting this variable enables an optimization that uses the stencil planes to
emulate polygon stippling if the application does not use the stencil planes.
However, note that if the stipple pattern changes often during the rendering of a
frame, the performance benefits may be lost to the time spent repainting the stencil
planes with the different patterns.

370

Chapter 16: System-Specific Tuning

Using Per-Fragment Operations Effectively

This section discusses how to use per-fragment operations effectively on O2 systems.

Getting Optimum Fill Rates

The rasterization hardware has the same fill rates whether the shading model is smooth
or flat. If the application is rendering very large areas, there should be little difference in
the performance between smooth and flat shading. However, remember that setting up
smooth-shaded primitives is more expensive on the CPU side.

Framebuffer Configurations

The framebuffer on O2 systems can be configured four different ways (16, 16+16, 32,
32+32) to allow applications to trade off memory usage and rendering speed for image
quality. Apart from pixel depth, the other main difference between these framebuffer
types is where the back-buffer pixels of a double-buffered visual reside. For the 16- and
32-bit framebuffer, the front and back buffers share the same pixel with each buffer
taking half of the pixel. For the 16+16 and 32+32 framebuffers, the back buffer is allocated
as needed in a different region from the main framebuffer. As a result, 16+16 and 32+32
buffers can have visuals with the same color depth for single-buffered and
double-buffered visuals but will need more memory in that case.

The framebuffer’s configuration (size and depth) affects fill rate performance. In general,
the deeper the framebuffer, the more data the GRE (graphics rendering engine) needs to
write to memory to update the framebuffer and the more data the graphics back-end
needs to read from the framebuffer to refresh the screen. Note that for double-buffered
applications, better fill rates can be achieved with the split 16+16 framebuffer than with
the 32-bit framebuffer. This is because the new color information can be written to the
pixels directly instead of having to be combined with what is in the framebuffer. This is
especially important for fill-rate limited texture mapping operations, buffer clears and
pixel DMAs.

Texture Mapping

An O2 system stores texture maps in system memory. The amount of texture storage is
therefore limited only by the amount of physical memory on the system. Texture
memory is partitioned into 64 KB tiles. Texture memory is made available on a tile basis;
the actual memory usage for a texture is rounded up to 64 KB and the memory usage will
be higher than if the same texture were to be packed optimally in memory.

Optimizing Performance on O2™ Systems

371

Tile-based texture memory also means that the minimum memory usage for any texture
is one tile and the amount of “wasted” texture memory can quickly add up if the
application uses a large number of small textures. In that case, consider combining small
textures into larger ones and using different texture coordinates to access different
sections of the larger texture map.

The following texture formats are supported directly by the graphics hardware and
require no conversion when specified by the application:

• 8 bit luminance or intensity

• 16 bit luminance-alpha (8:8 format)

• 16-bit RGBA (5:5:5:1 format)

• 16 bit RGBA (4:4:4:4 format)

• 32 bit RGBA (8:8:8:8 format)

Applications that use more than one texture should use texture objects, now part of
OpenGL 1.1, for faster switching between multiple textures. Although fast, binding a
texture is not a free operation and judicious minimization of its use during frame
rendering will increase performance. This can be achieved by rendering all the primitives
that use the same texture object at the same time.

The texture filters GL_NEAREST and GL_LINEAR result in the best texture fill rates,
whereas GL_LINEAR_MIPMAP_LINEAR results in the worst fill rate. In cases where
texture maps are being minified and only bilinear filtering is required, consider using
mipmaps with the minification filter set to GL_LINEAR_MIPMAP_NEAREST. This filter
gives the graphics engine better cache locality and better fill rates.

The 3D texture mapping, texture color table, and texture scale bias extensions are
supported by the O2 OpenGL implementation, but are not hardware accelerated.
Enabling one of these extensions will therefore result in significantly slower rendering.

Front and Back Buffer Rendering

The graphics rendering engine does not allow updating both the front and back buffers
at the same time (glDrawBuffer(GL_FRONT_AND_BACK)). In order to support this
functionality, the OpenGL needs to specify the primitive being rendered to the graphics
hardware twice, once for both the front and back buffer. This is an expensive operation
and applications should try to avoid using concurrent updates to both front and back
buffers.

372

Chapter 16: System-Specific Tuning

Getting Optimum Pixel DMA Rates

The following is a table of pixel types and formats for which hardware DMA can be used.

The pixel DMA paths support stencil, depth, and alpha tests, fogging, blending, and
texturing.

• Stencil indices can be sent via DMA as 32-bit unsigned int values, where the most
significant 8 bits are transferred, using a stencil shift value of –24 for draw
operations and 24 for read operations.

• Depth components can be sent via DMA as 24-bit unsigned int values, using a
depth scale of 256 for draw operations and 1/256.0 for read operations. For draw
operations, the depth test must be enabled with a function of GL_ALWAYS, and the
color buffer must be set to GL_NONE.

• Pixel zooms are accelerated for whole integer factors from -16 to 16, and integer
fractions from -1/16 to 1/16 on all DMA paths.

Most read pixel operations on O2 will be significantly faster when the destination buffer
and row lengths are 32-byte aligned.

Table 16-2 Pixel Formats and Types That Work With DMA on O2 Systems

Format Type

GL_COLOR_INDEX GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT

GL_STENCIL_INDEX GL_UNSIGNED_INT

GL_DEPTH_COMPONENT GL_UNSIGNED_INT

GL_RGB GL_UNSIGNED_BYTE, GL_UNSIGNED_BYTE_3_3_2_EXT

GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_INT_8_8_8_8_EXT

GL_ABGR_EXT GL_UNSIGNED_BYTE, GL_UNSIGNED_INT_8_8_8_8_EXT

GL_LUMINANCE GL_UNSIGNED_BYTE

GL_YCRCB_422_SGIX GL_UNSIGNED_BYTE

Optimizing Performance on O2™ Systems

373

Imaging Pipeline Using ICE

O2 systems contain a multi-purpose compute ASIC called the Imaging and Compression
Engine (ICE) which serves both the needs of DCT-based compression algorithms and of
OpenGL image processing. All the elements in the OpenGL imaging pipeline (that is the
pixel transfer modes) are implemented on ICE, but some functions (such as convolution
and color matrix multiplication) benefit a lot while others (like histogram and color table)
don’t benefit as much. This section discusses the support provided by ICE and gives
some programming tips.

• Pixel Formats. ICE supports the 8-bit GL_RGBA, GL_RGB, and GL_LUMINANCE
pixel formats. Because the O2 graphics hardware does not support an RGB
framebuffer type, RGB pixels have to be converted to RGBA before they can be
displayed. Instead of using the CPU to perform this conversion, glDrawPixels()
uses the wide loads and stores and DMA engine on ICE. It is possible to use other
pixel formats such as luminance-alpha or color index, but for those formats, the
CPU performs all image processing calculations.

• 64 KB Tiles. The memory system natively allocates memory for the framebuffer and
pbuffers in 64 KB tiles. ICE takes advantage of this by having a translation
look-aside buffer (TLB) in the DMA engine that maps 64 KB tiles.

• Buffer to buffer fast path. Because ICE can directly map tiles without further
manipulation, it is fastest to go buffer to buffer (i.e. glCopyPixels()) for the imaging
pipeline on O2. While not explicitly an imaging operation, ICE supports span
conversion between GL_RGBA and GL_LUMINANCE on the pixel transfer path
including glCopyPixels(). glDrawPixel() is the next fastest path.

• Image Width. Any image width up to 2048 pixels is permitted, but image widths
that are modulo 16 pixels are optimal. If the image is not modulo 16, the CPU uses
bcopy(); to pad the image to closest modulo 16 width. Note that setting row pack,
row unpack, and certain clipping and zoom combinations can cause the internal
image width to change from what was modulo 16 pixels.

• Number Formats. The vector processor on ICE dictates to a large extent the
numerical representation of coefficients that can be used. There are two number
formats on ICE: integer and fixed point (s.15). Therefore values should be either
[-1.0, 1.0) or strictly integer. Numbers outside this range force the library to perform
the calculations on the CPU. Developers have not found this to be too restricting as
a multiplication; by 1.9, for example, can also be expressed as a multiplication of
0.95 followed by a multiplication of 2.0. OpenGL allows this trick through use of the
post color scale functions.

374

Chapter 16: System-Specific Tuning

• Memory. Some programming restrictions arise from the need to balance the amount
of state kept on the chip and the amount of memory available for image data. The
6 KB of data RAM is organized into 3 banks. Bank C is 2 KB and is used for storing
color tables, histogram, convolution coefficients, and 256 bytes of internal state. In
order to remain on the fast path, the total bytes used for items in Bank C must be
less than 2 KB. Because of that limitation, two color tables specified as GLbyte and
GL_RGBA will not be hardware accelerated. This is not a problem if the application
can specify the color tables as GL_LUMINANCE or GL_LUMINANCE_ALPHA.

• Color Tables. The number, type, and format of color tables is important to keep the
application on the fast path. Up to two color tables or one color table and one
histogram can be accelerated on the O2 imaging fast path. The internal format of the
color table can be luminance, luminance-alpha, or rgba. The color table type must
be GL_BYTE. While the texture color table is not supported, using the color table
extension on texture load is an alternative.

• Convolution. Both general and separable convolutions are hardware accelerated on
O2. Convolution kernel sizes that are accelerated are 3x3, 5x5, and 7x7. Applications
can gain further performance improvement by specifying the kernel as
GL_INTENSITY (note that this is different than GL_LUMINANCE). O2 systems
cannot accelerate convolutions and histograms at the same time. See
“EXT_convolution—The Convolution Extension” on page 210 for more
information.

• Separating Components. On other graphics architectures, there is a significant
advantage to processing image components one at a time. Some OpenGL
implementations use the color matrix multiply function to separate out
components. There is no advantage to separating out a component on O2 by using
the color matrix multiply function. The intent was to use the matrix multiply for
color correction. Unlike the color scale and bias and convolution, matrix multiply
values should be in the [-1.0, 1.0) range for hardware acceleration.

• Histograms. Histograms are internal calculated with 16-bit bins, and the internal
format is only GL_RGBA. While an application can ask for different formats, the
histogram is always calculated as RGBA.

Optimizing Performance on Mid-Range Systems

375

Extensions Supported by O2 Systems

O2 systems currently support the following extensions:

• Pixel Extensions: EXT_abgr, EXT_packed_pixels, SGIX_interlace

• Blending Extensions: EXT_blend_color, EXT_blend_logic_op, EXT_blend_minmax,
EXT_blend_subtract

• Imaging extensions:. EXT_convolution, EXT_histogram, SGI_color_matrix,
SGI_color_table

• Buffer and Pbuffer extensions: EXT_import_context, EXT_visual_info,
EXT_visual_rating, SGIX_dm_pbuffer, SGIX_fbconfig, SGIX_pbuffer

• Texture extensions: EXT_texture3D, SGIS_texture_border_clamp,
SGIS_texture_color_table, SGIS_texture_edge_clamp,

Supported only on O2 systems: SGIS_generate_mipmap, SGIS_texture_scale_bias.
These two extensions are not discussed in this manual.

• Video and swap control extensions: SGI_swap_control, SGI_video_sync,
SGIX_video_source.

Optimizing Performance on Mid-Range Systems

This section discusses optimizing performance for two of the Silicon Graphics mid-range
systems: Elan graphics and Extreme graphics. For information on Indigo2 IMPACT
systems, see “Optimizing Performance on Indigo2 IMPACT and OCTANE Systems” on
page 378.

General Performance Tips

The following general performance tips apply to mid-range graphics systems:

• Data size. Mid-range graphics systems are optimized for word-sized and
word-aligned data (one word is four bytes). Pixel read and draw operations are fast
if the data is word aligned and each row is an integral number of words.

376

Chapter 16: System-Specific Tuning

• Extensions. The ABGR extension is hardware accelerated (see “EXT_abgr—The
ABGR Extension” on page 209).

Other available extensions are implemented in software.

• Flushing. Too many flushes, implicit or explicit, can adversely affect performance:

– In single buffer mode, you may need to call glFlush() after the last of a series of
primitives to force the primitives through the pipeline and expedite graphics
processing (explicit flushing).

– In double buffer mode, it is not necessary to call glFlush(); the
glXSwapBuffers() call automatically flushes the pipeline (implicit flushing).

Optimizing Geometry Operations on Mid-Range Systems

Consider the following points when optimizing geometry operations for a mid-range
system:

• Antialiasing. Mid-range graphics systems support hardware-accelerated lines of
width 1.

• Clipping. Minimize clipping for better performance.

Optimizing Per-Fragment Operations on Mid-Range Systems

Consider the following issues when optimizing per-fragment operations for a mid-range
system:

• Alpha Blending. Mid-range graphics systems support alpha blending in hardware.
All primitives can be blended, with the exception of antialiased lines and points,
which use the blending hardware to determine pixel coverage. The alpha value is
ignored for these primitives. Pixel blends work best in 24-bit, single-buffered RGB
mode. In double-buffered RGB mode, the blend quality degrades.

• Dithering. Dithering is used to expand the range of colors that can be created from
a group of color components and to provide smooth color transitions. Disabling
dither can improve the performance of glClear(). Dithering is enabled by default. To
change that, call

glDisable(GL_DITHER)

Optimizing Performance on Mid-Range Systems

377

• Fog. Mid-range graphics systems do not accelerate per-fragment fog modes. To
select a hardware-accelerated fog mode, call

glHint (GL_FOG_HINT, GL_FASTEST)

• Lighting. Mid-range graphics systems accelerate all lighting features.

• Pixel formats. The GL_ABGR_EXT pixel format is much faster than the GL_RGBA
pixel format. For details, see “EXT_abgr—The ABGR Extension” on page 209.

The combinations of types and formats shown in Table 16-3 are the fastest.

• Texture Mapping. All texture mapping is performed in software. As a result,
textured primitives run with reduced performance.

• Elan Graphics accelerates depth buffer operations on systems that have depth
buffer hardware installed (default on Elan, optional on XS and XS24, not available
on Indigo2 systems).

• Fast Clear Operations. The hardware performs combined color and depth clear
under the following conditions:

– depth buffer is cleared to 1 and the depth test is GL_LEQUAL

– depth buffer is cleared to 0 and the depth test is GL_GEQUAL

Table 16-3 Pixel Formats and Types That Are Fast on Mid-Range Systems

Format Type

GL_RGBA GL_UNSIGNED_BYTE

GL_ABGR_EXT GL_UNSIGNED_BYTE

GL_COLOR_INDEX GL_UNSIGNED_SHORT

GL_COLOR_INDEX GL_UNSIGNED_BYTE

378

Chapter 16: System-Specific Tuning

Optimizing Performance on Indigo2 IMPACT and OCTANE Systems

This section provides performance tips for Indigo2 IMPACT and OCTANE graphics
systems. All information applies to all Indigo2 IMPACT and OCTANE systems, except
sections on texture mapping, which do not apply to the Indigo2 Solid IMPACT and the
OCTANE SI (without hardware texture mapping). You learn about these topics

• “General Tips for Performance Improvement”

• “Achieving Peak Geometry Performance”

• “Using Textures”

• “Using Images”

• “Accelerating Color Space Conversion”

• “Using Display Lists Effectively”

• “Offscreen Rendering Capabilities”

General Tips for Performance Improvement

This section provides some general tips for improving overall rendering performance. It
also lists some features that are much faster than on previous systems and may now be
used by applications that could not consider them before.

• Fill-rate limited applications. Because per-primitive operations (transformations,
lighting, and so on) are very efficient, applications may find that they are fill-rate
limited when drawing large polygons (more than 50 pixels per triangle). In that
case, you can actually increase the complexity of per-primitive operations at no cost
to overall performance. For example, additional lights or two-sided lighting may
come for free.

For general advice on improving performance for fill-rate limited applications, see
“Tuning the Raster Subsystem” on page 332. Note in this context that
texture-mapping is greatly accelerated on Indigo2 IMPACT and OCTANE systems
with hardware texture-mapping.

• Geometry-limited applications. For applications that draw many small polygons,
consider a different approach: Use textures to avoid drawing so many triangles. See
“Using Textures” on page 380.

Optimizing Performance on Indigo2 IMPACT and OCTANE Systems

379

• Clipping. For optimum performance, avoid clipping. Special hardware supports
clipping within a small range outside of the viewport. By keeping geometry within
this range, you may be able to significantly reduce clipping overhead.

• GLU NURBS. If you use GLU NURBS, store the tessellation result in display lists to
take full advantage of evaluator performance. Don’t for example, recompute
tessellations.

• Antialiasing. Antialiased lines on Indigo2 IMPACT systems are high quality and
fast. Applications that did not use antialiased lines before because of the
performance penalty may now be able to take advantage of them. All antialiased
lines are rendered with the same high quality, regardless of the settings of
GL_LINE_SMOOTH_HINT. Although available, wide antialiased lines (width
greater than 1.0) are not supported in hardware and should be avoided. Wide
antialiased points are supported in hardware with good performance.

Multisampling is not supported. Antialiasing of polygons is not supported in
hardware. You can, however, draw antialiased line loops around polygons to get
antialiasing.

Achieving Peak Geometry Performance

Rendering of primitives is especially fast if you follow these recommendations:

• Triangles. Work with triangle strips consisting of six triangles (or multiples of six).
Render independent triangles in groups of four (or multiples or four).

Note that the hardware allows mixing of different lengths of triangle strips.
Grouping like primitives is highly recommended.

• Quads. Work with quad strips consisting of three quads (or multiples of three).
Render individual quads in sets of three (or multiples of three).

• Use glLoadIdentity() to put identity matrixes on the stack. The system can optimize
the pipeline if the identity matrix is used, but does not check whether a matrix
loaded by glLoadMatrix() is the identity matrix.

380

Chapter 16: System-Specific Tuning

Using Textures

Texturing capabilities of the Indigo2 IMPACT and OCTANE systems differ, as shown in
the following table:

Texture-mapping is greatly accelerated on systems with hardware texture, and is only
slightly slower than non-textured fill rates. It also significantly improves image quality
for your application. To get the most benefit from textures, use the extensions to OpenGL
for texture management as follows:

• Use texture objects to keep as many textures resident in texture memory as possible.
You can bind a texture to a name, then use it as needed (similar to the way you
define and call a display list). The extension also allows you to specify a set of
textures and prioritize which textures should be resident in texture memory.

Texture objects are part of OpenGL 1.1. For OpenGL 1.0, they were implemented as
the texture object extension (EXT_texture_object).

• Use the texture-LOD extension to clamp LOD values, which has the side effect of
communicating to the system which mipmap levels it needs to keep resident in
texture memory. For more information, see “SGIS_texture_lod—The Texture LOD
Extension” on page 148.

• Use subtextures to make texture definitions more efficient. For example, assume an
application uses several large textures, all of the same size and component type.
Instead of declaring multiple textures, declare one, then use glTexSubImage2D() to
redefine the image as needed.

Subtextures are part of OpenGL 1.1. They were implemented as the subtexture
extension (EXT_subtexture) in OpenGL 1.0.

Table 16-4 Texturing on Indigo2 and OCTANE Systems

Platform Supported Texturing

Indigo2 Solid IMPACT Software texturing

OCTANE SI Software texturing

Indigo2 High IMPACT Hardware texturing

OCTANE SI with hardware textures Hardware texturing

Indigo2 Maximum IMPACT Hardware texturing

OCTANE MXI Hardware texturing

Optimizing Performance on Indigo2 IMPACT and OCTANE Systems

381

• Use the GL_RGBA4 internal format to improve performance and conserve memory.
This format is especially important if you have a large number of textures. The
quality is reduced, but you can fit more textures into memory because they use less
space.

Internal formats are part of OpenGL 1.1. They were implemented as part of the
texture extension in OpenGL 1.0.

• Use the GL_RGBA4 internal format and the packed pixels extension to minimize
disk space and improve download rate (see “EXT_packed_pixels—The Packed
Pixels Extension” on page 218).

• Use the 3D texture extension for volume rendering. Note, however, that due to the
large amount of data, you typically have to tile the texture. You can set up the
texture as a volume and slice through it as needed. For more information, see
“EXT_texture3D—The 3D Texture Extension” on page 120.

• If you use GL_LUMINANCE and GL_LUMINANCE_ALPHA textures, you can
speed up loading by using the texture-select extension (see “SGIS_texture_select—
The Texture Select Extension” on page 150).

• For Indigo2 IMPACT graphics, data coherence enhances performance. For example:

– When you draw your geometry, cluster points, short lines, or very small
triangles so that you are not jumping around the texture (you want to maintain
texture data coherency).

– If any minification is done to the texture, mipmaps result in improved
performance.

– When you use the pixel texture extension, performance varies based on the
coherency of the lookup of pixel color data as texture coordinates. Applications
have no control over this.

Using Images

This section provides some tips for using images on Indigo2 IMPACT systems.

On many systems, a program encounters a noticeable performance cliff when a certain
specific feature (for example depth-buffering) is turned on, or when the number of
modes or components exceeds a certain limit.

382

Chapter 16: System-Specific Tuning

On Indigo2 IMPACT systems, performance scales with the number of components. For
example, on some systems, a switch from RGBA to RGB may not result in a change in
performance, while on Indigo2 IMPACT systems, you should expect a performance
improvement of 25%. (Note that while this applies to loading textures, it does not apply
to using loaded textures.)

Here are some additional hints for optimizing image processing:

• Instead of glPixelMap(), use the Silicon Graphics color table extension, discussed in
“SGI_color_table—The Color Table Extension” on page 221, especially when
working with GL_LUMINANCE or GL_LUMINANCE_ALPHA images.

OpenGL requires expansion of pixels using formats other than GL_RGBA to
GL_RGBA. Conceptually, this expansion takes place before any pixel operation is
applied. Indigo2 IMPACT systems attempt to postpone expansion as long as
possible: this improves performance (operations must be performed on all
components present in an image—a non-expanded image has fewer components
and therefore requires less computation). Because pixel maps are inherently four
components, GL_LUMINANCE and GL_LUMINANCE_ALPHA images must be
expanded (a different lookup table is applied to the red, green, and blue
components derived from the luminance value). However, if the internal format of
an image matches the internal format of the color table, Indigo2 IMPACT hardware
postpones the expansion, which speeds up processing.

• The convolution extension, discussed in “EXT_convolution—The Convolution
Extension” on page 210 has been optimized. If possible, use the extension with
separable convolution filters.

Indigo2 IMPACT systems are tuned for 3 x 3, 5 x 5, and 7 x 7 convolution kernels. If
you choose a kernel size not in that set, performance is comparable to that of the
closest member of the set. For example, if you specify 2 x 7, performance is similar
to using 7 x 7.

• Use texture-based zooming instead of glPixelZoom().

Texture loading and interpolation is fast on Indigo2 IMPACT, and texture-based
zooming therefore results in a speed increase and higher-quality, more controllable
results.

• Where possible, minimize color table and histogram sizes and the number of color
tables activated. If you don’t, you may experience performance loss because the
color table and the histogram compete for limited resources with other OpenGL
applications.

Optimizing Performance on Indigo2 IMPACT and OCTANE Systems

383

Accelerating Color Space Conversion

Indigo2 IMPACT systems provide accelerated color space conversions and
device-specific color matching.

• Linear color space conversion. Use the color matrix extension to handle linear color
space conversion, such as CMY to RGB, in hardware. This extension is also useful
for reassigning or duplicating components. See “SGI_color_matrix—The Color
Matrix Extension” on page 220 for more information.

• Non-linear color space conversions. Use the 3D and 4D texture extension for color
conversion (for example, RGBA to CMYK). Using the glPixelTexGenSGIX()
command, you can direct pixels into the lookup table and get other pixels out.
Performance has been optimized.

Using Display Lists Effectively

If you work on a CAD application or other application that uses relatively static data, and
therefore find it useful to use display lists instead of immediate mode, you can benefit
from the display list implementation on Indigo2 IMPACT systems:

• When the display list is compiled, most OpenGL functions are stored in a format
that the hardware can use directly. At execution time, these display list segments are
simply copied to the graphics hardware with little CPU overhead.

• A further optimization is that a DMA mechanism can be used for a subset of display
lists. By default, the CPU feeds the called list to the graphics hardware. Using DMA
display lists, the host gives up control of the bus and Indigo2 IMPACT uses DMA to
feed the contents to the graphics pipeline. The speed improvement at the bus is
fourfold; however, a setup cost makes this improvement irrelevant for very short
lists. The break-even point varies depending on the list you are working with,
whether it is embedded in other lists, and other factors.

384

Chapter 16: System-Specific Tuning

Display List Compilation on Indigo2 IMPACT Hardware

The functions that are direct (use hardware formats) will change over time. The
following items are currently NOT compiled to direct form:

• glCallLists() and glListBase()

• all imaging functions

• all texture functions

• glHint(), glClear(), and glScissor()

• glEnable() and glDisable()

• glPushAttrib() and glPopAttrib()

• all evaluator functions

• most OpenGL extensions

DMA Display Lists on Indigo2 IMPACT Systems

If a display list meets certain criteria, Indigo2 IMPACT systems use DMA to transfer data
from the CPU to the graphics pipeline. This is useful if an application is bus limited. It
can also be an advantage in a multi-threaded application, because the CPU can do some
other work while the graphics subsystem pulls the display list over.

The DMA method is used under the following conditions:

• Only functions that are compiled down to direct form are used.

• There is no hierarchy in the display list that is more than eight levels deep.

• If the display list hierarchy uses texture objects, all textures that are referenced have
to fit into hardware texture memory (TRAM) at the same time.

Note that the system tests recursively whether the DMA model is appropriate: If an
embedded display list meets the criteria, it can be used in DMA mode even if the
higher-level list is processed by the CPU.

Offscreen Rendering Capabilities

Offscreen rendering can be accelerated using the pixel buffer extension discussed in
“SGIX_pbuffer—The Pixel Buffer Extension” on page 112.

Optimizing Performance on RealityEngine Systems

385

Optimizing Performance on RealityEngine Systems

This section provides information on optimizing applications for RealityEngine and
RealityEngine2. It discusses these topics:

• “Optimizing Geometry Performance”

• “Optimizing Rasterization”

• “Optimizing Use of the Vertex Arrays”

• “Optimizing Multisampling and Transparency”

• “Optimizing the Imaging Pipeline”

Optimizing Geometry Performance

Here are some tips for improving RealityEngine geometry performance:

• Primitive length. Most systems have a characteristic primitive length that the
system is optimized for. On RealityEngine systems, multiples of 3 vertices are
preferred, and 12 vertices (for example a triangle strip that consists of 10 triangles)
result in the best performance.

• Fast mode changes. Changes involving logic op, depth func, alpha func, shade
model, cullface, or matrix mode are fast.

• Slow mode changes. Changes involving texture binding, lighting and material
changes, line width and point size changes, scissor, or viewport are slow.

• Texture coordinates. Automatic texture coordinate generation with glTexGen()
results in a relatively small performance degradation.

• Quads and polygons. When rendering quads, use GL_POLYGON instead of
GL_QUADS. The GL_QUADS primitive checks for self-intersecting quads and is
therefore slower.

386

Chapter 16: System-Specific Tuning

Optimizing Rasterization

This section discusses optimizing rasterization. While it points out a few things to watch
out for, it also provides information on features that were expensive on other systems but
are acceptable on RealityEngine systems:

• After a clear command (or a command to fill a large polygon), send primitives to the
geometry engine for processing. Geometry can be prepared as the clear or fill
operations take place.

• Texturing is free on a RealityEngine if you use a 16-bit texel internal texture format.
There are 16-bit texel formats for each number of components. Using a 32-bit texel
format yields half the fill rate of the 16-bit texel formats. Internal formats are part of
OpenGL 1.1; they were part of the texture extension in OpenGL 1.0.

• The use of detail texture and sharpen texture usually incurs no additional cost and
can greatly improve image quality. Note, however, that texture management can
become expensive if a detail texture is applied to many base textures. Use detail
texture but keep detail and base paired and detail only a few base textures. See
“SGIS_sharpen_texture—The Sharpen Texture Extension” on page 139 and
“SGIS_detail_texture—The Detail Texture Extension” on page 129.

• If textures are changing frequently, use subtextures to incrementally load texture
data. RealityEngine systems are optimized for 32 x 32 subimages.

• There is no penalty for using the highest-quality mipmap filter
(GL_LINEAR_MIPMAP_LINEAR) if 16-bit texels are used (for example, the
GL_RGBA4 internal format, which is part of OpenGL 1.1 and part of the texture
extension for OpenGL 1.0).

• Local lighting or multiple lights are possible without an unacceptable degradation
in performance. As you turn on more lights, performance degrades slowly.

• Simultaneous clearing of depth and color buffers is optimized in hardware.

• Antialiased lines and points are hardware accelerated.

Optimizing Performance on RealityEngine Systems

387

Optimizing Use of the Vertex Arrays

Vertex arrays were implemented as an extension to OpenGL 1.0 and are part of OpenGL
1.1. If you use vertex arrays, the following cases are currently accelerated for
RealityEngine (each line corresponds to a different special case). To get the accelerated
routine, you need to make sure your vertices correspond to the given format by using the
correct size and type in your enable routines, and also by enabling the proper arrays:

• glVertex2f

• glVertex3f

• glNormal3f glVertex3f

• glColor3f glVertex3f

• glColor4f glVertex3f

• glNormal3f glVertex3f

• glTexCoord2f glVertex3f

• glColor4f glTexCoord2f glVertex3f

• glColor3f glNormal3f glVertex3f

• glColor4f glNormal3f glVertex3f

• glNormal3f glTexCoord2f glVertex3f

• glColor4f glTexCoord2f glNormal3f glVertex3f

Optimizing Multisampling and Transparency

Multisampling provides full-scene antialiasing with performance sufficient for a
real-time visual simulation application. However, it is not free and it adds to the cost of
some fill operations. With RealityEngine graphics, some fragment processing operations
(blending, depth buffering, stenciling) are essentially free if you are not multisampling,
but do reduce performance if you use a multisample-capable visual. Texturing is an
example of a fill operation that can be free on a RealityEngine and is not affected by the
use of multisampling. Note that when using a multisample-capable visual, you pay the
cost even if you disable multisampling.

388

Chapter 16: System-Specific Tuning

Below are guidelines for optimizing performance for multisampling:

• Multisampling offers an additional performance optimization that helps balance its
cost: a virtually free screen clear operation. Technically, this operation doesn’t really
clear the screen, but rather allows you to set the depth values in the framebuffer to
be undefined. Therefore, use of this clear operation requires that every pixel in the
window be rendered every frame; pixels that are not touched remain unchanged.
This clear operation is invoked with glTagSampleBufferSGIX() (see the reference
page for more information).

• When multisampling, using a smaller number of samples and color resolution
results in better performance. Eight samples with 8-bit RGB components and a
24-bit depth buffer usually result in good performance and quality; 32-bit depth
buffers are rarely needed.

• Multisampling with stencilling is expensive. If it becomes too expensive, use the
polygon offset extension to deal with decal tasks (for example, runway strips).

Polygon offsets are supported in OpenGL 1.1 and were part of the Polygon Offset
extension in OpenGL 1.0.

• There are two ways of achieving transparency on a RealityEngine system: alpha
blending and subpixel screen-door transparency using glSampleMaskSGIS().
Alpha blending may be slower, because more buffer memory may need to be
accessed. For more information about screen-door transparency, see
“SGIS_multisample—The Multisample Extension” on page 180.

Optimizing the Imaging Pipeline

Here are some points that help you optimize the imaging pipeline:

• Unsigned color types are faster than signed or float types.

• Smaller component types (for example, GL_UNSIGNED_BYTE) require less
bandwidth from the host to the graphics pipeline and are faster than larger types.

• The slow pixel drawing path is used when fragment operations (depth or alpha
testing, and so on) are used, or when the format is GL_DEPTH_COMPONENT, or
when multisampling is enabled and the visual has a multisample buffer.

Optimizing Performance on RealityEngine Systems

389

Using the Color Matrix and the Color Writemask

Your application might perform RGBA imaging operations (for example, convolution,
histogram, and such) on a single-component basis. This is the case either when
processing gray scale (monochrome) images, or when different color components are
processed differently.

RealityEngine systems currently do not support RGBA-capable monochrome visuals (a
feature that is introduced by the framebuffer configuration extension; see
“SGIX_fbconfig—The Framebuffer Configuration Extension” on page 104). You must
therefore use a four-component RGBA visual even when performing monochrome
processing. Even when monochrome RGBA-capable visuals are supported, you may find
it beneficial to use four-component visuals in some cases, depending on your
application, to avoid the overhead of the glXMakeCurrent() or
glXMakeCurrentReadSGI() call.

On RealityEngine systems, monochrome imaging pipeline operations are about four
times as fast as the four-component processing. This is because only a quarter of the data
has to be processed or transported either from the host to graphics subsystem—for
example, for glDrawPixels()—or from the framebuffer to the graphics engines—for
example, for glCopyPixels().

The RealityEngine implementation detects monochrome processing by examining the
color matrix (see “Tuning the Imaging Pipeline” on page 337) and the color writemask.

The following operations are optimized under the set of circumstances listed below:

• glDrawPixels() with convolution enabled and

– the pixel format is GL_LUMINANCE or GL_LUMINANCE_ALPHA

– the color matrix is such that the active source component is red

• glCopyPixels() and the absolute value of GL_ZOOM_X and GL_ZOOM_Y is 1.

The following set of circumstances has to be met:

• All pixel maps and fragment operations are disabled.

• The color matrix does not scale any of the components.

• The post color matrix scales and biases for all components are 1 and 0, respectively.

• Either write is enabled only for a single component (R, G, B, or A), or
alpha-component write is disabled.

390

Chapter 16: System-Specific Tuning

Optimizing Performance on InfiniteReality Systems

This section discusses optimizing performance on InfiniteReality systems in the
following sections:

• “Managing Textures on InfiniteReality Systems”

• “Offscreen Rendering and Framebuffer Management”

• “Optimizing State Changes”

• “Miscellaneous Performance Hints”

Managing Textures on InfiniteReality Systems

The following texture management strategies are recommended for InfiniteReality
systems:

• Using the texture_object extension (OpenGL 1.0) or texture objects (OpenGL 1.1)
usually yields better performance than using display lists.

Note that on RealityEngine systems, using display lists was recommended. On
InfiniteReality systems, using texture objects is preferred.

• OpenGL will make a copy of your texture if needed for context switching, so
deallocate your own copy as soon as possible after loading it. Note that this
behavior differs from RealityEngine behavior.

Note that RealityEngine and InfiniteReality systems differ here:

– On RealityEngine systems, there is one copy of the texture on the host, one on
the graphics pipeline. If you run out of texture memory, OpenGL sends the
copy from the host to the graphics pipeline after appropriate cleanup.

– On Infinite Reality systems, only the copy on the graphics pipe exists. If you run
out of texture memory, OpenGL has to save the texture that didn’t fit from the
graphics pipe to the host, then clean up texture memory, then reload the texture.
To avoid these multiple moves of the texture, be sure to always clean up
textures you no longer need so you don’t run out of texture memory.

This approach has the advantage of very fast texture loading because no host
copy is made.

Optimizing Performance on InfiniteReality Systems

391

• To load a texture immediately, follow this sequence of steps:

1. Enable texturing.

2. Bind your texture.

3. Call glTexImage*().

• To define a texture without loading it into the hardware until the first time it is
referenced, follow this sequence of steps:

1. Disable texturing.

2. Bind your texture.

3. Call glTexImage*().

Note that in this case, a copy of your texture is placed in main memory.

• Don’t overflow texture memory, or texture swapping will occur.

• If you want to implement your own texture memory management policy, use
subtexture loading. You have two options. For both options, it is important that
after initial setup, you never create and destroy textures but reuse existing ones:

– Allocate one large empty texture, then call glTexSubImage*() to load it
piecewise, and use the texture matrix to select the relevant portion.

– Allocate several textures, then fill them in by calling glTexSubImage*() as
appropriate.

• Use 16-bit texels whenever possible; RGBA4 can be twice as fast as RGBA8. As a
rule, remember that bigger formats are slower.

• If you need a fine color ramp, start with 16-bit texels, then use a texture lookup table
and texture scale/bias.

• Texture subimages should be multiples of 8 texels wide for maximum performance.

• For loading textures, use pixel formats on the host that match texel formats on the
graphics system.

• Avoid OpenGL texture borders; they consume large amounts of texture memory.
For clamping, use the GL_CLAMP_TO_EDGE_SGIS style defined by the
SGIS_texture_edge_clamp extension (see “SGIS_texture_edge/border_clamp—
Texture Clamp Extensions” on page 144). This extension is identical to the old IRIS
GL clamping semantics on RealityEngine.

392

Chapter 16: System-Specific Tuning

Offscreen Rendering and Framebuffer Management

InfiniteReality systems support offscreen rendering through a combination of extensions
to GLX:

• pbuffers are offscreen pixel arrays that behave much like windows, except that
they're invisible. See “SGIX_pbuffer—The Pixel Buffer Extension” on page 112.

• fbconfigs (framebuffer configurations) define color buffer depths, determine
presence of Z buffers, and so on. See “SGIX_fbconfig—The Framebuffer
Configuration Extension” on page 104.

• glXMakeCurrentReadSGI() allows you to read from one window or pbuffer while
writing to another. See “EXT_make_current_read—The Make Current Read
Extension” on page 90.

In addition, glCopyTexImage*() allows you to copy from pbuffer or window to texture
memory. This function is supported through an extension in OpenGL 1.0 but is part of
OpenGL 1.1.

For framebuffer memory management, consider the following tips:

• Use pbuffers. pbuffers are allocated by “layer” in unused portions of the
framebuffer.

• If you have deep windows, such as multisampled or quad- buffered windows, then
you'll have less space in the framebuffer for pbuffers.

• pbuffers are swappable (to avoid collisions with windows), but not completely
virtualized, that is, there is a limit to the number of pbuffers you can allocate. The
sum of all allocated pbuffer space cannot exceed the size of the framebuffer.

• pbuffers can be volatile (subject to destruction by window operations) or
nonvolatile (swapped to main memory in order to avoid destruction). Volatile
pbuffers are recommended because swapping is slow. Treat volatile pbuffers like
they were windows, subject to exposure events.

Optimizing Performance on InfiniteReality Systems

393

Optimizing State Changes

As a rule, it is more efficient to change state when the relevant function is disabled than
when it is enabled. For example, when changing line width for antialiased lines, call

glLineWidth(width);
glEnable(GL_LINE_SMOOTH);

As a result of this call, the line filter table is computed just once, when line antialiasing is
enabled. If you call

glEnable(GL_LINE_SMOOTH);
glLineWidth(width);

the table may be computed twice: Once when antialiasing is enabled, and again when the
line width is changed. As a result, it may be best to disable a feature if you plan to change
state, then enable it after the change.

• The following mode changes are fast: sample mask, logic op, depth function, alpha
function, stencil modes, shade model, cullface, texture environment, matrix
transforms.

• The following mode changes are slow: texture binding, matrix mode, lighting, point
size, line width.

• For best results, map the near clipping plane to 0.0 and the far clipping plane to 1.0
(this is the default). Note that a different mapping, for example 0.0 and 0.9, will still
yield good result. A reverse mapping, such as near = 1.0 and far = 0.0, noticeably
decreases depth-buffer precision.

• When using a visual with a 1-bit stencil, it is faster to clear both the depth buffer and
stencil buffer than it is to clear the depth buffer alone.

• Use the color matrix extension for swapping and smearing color channels. The
implementation is optimized for cases in which the matrix is composed of zeros and
ones.

• Be sure to check for the usual things: indirect contexts, drawing images with depth
buffering enabled, and so on.

• Triangle strips that are multiples of 10 (12 vertices) are best.

394

Chapter 16: System-Specific Tuning

• InfiniteReality systems optimize 1-component pixel draw operations. They are also
faster when the pixel host format matches the destination format.

• Bitmaps have high setup overhead. Consider these approaches:

– If possible, draw text using textured polygons. Put the entire font in a texture
and use texture coordinates to select letters.

– To use bitmaps efficiently, compile them into display lists. Consider combining
more than one into a single bitmap to save overhead.

– Avoid drawing bitmaps with invalid raster positions. Pixels are eliminated late
in the pipeline and drawing to an invalid position is almost as expensive as
drawing to a valid position.

Miscellaneous Performance Hints

• Minimize the amount of data sent to the pipeline.

– Use display lists as a cache for geometry. Using display lists is critical on Onyx 1
system. It is less critical, but still recommended, on Onyx2 systems. The two
systems performance differs because the bus between the host and the graphics
is faster on Onyx2 systems.

The display list priority extension (see “SGIX_list_priority—The List Priority
Extension” on page 260) can be used to manage display list memory efficiently.

– Use texture memory or offscreen framebuffer memory (pbuffers) as a cache for
pixels.

– Use small data types, aligned, for immediate-mode drawing such as RGBA
color packed into a 32-bit word, surface normals packed as three shorts, texture
coordinates packed as two shorts). Smaller data types mean, in effect, less data
to transfer.

– Use the packed vertex array extension.

• Render with exactly one thread per pipe.

• Use multiple OpenGL rendering contexts sparingly. The rendering
context-switching rate is about 60,000 calls per second, assuming no texture
swapping, so each call to glXMakeCurrent() costs the equivalent of 100 textured
triangles or 800 32-bit pixels.

395

Appendix A

A.OpenGL and IRIS GL

The first step in porting an IRIS GL application to OpenGL is to consult the OpenGL
Porting Guide. It covers all the core IRIS GL and OpenGL functionality, window and event
handling, and OpenGL extensions up to and including those in IRIX 5.3.

This appendix provides some additional information about porting IRIS GL to OpenGL,
pointing to the extensions discussed in earlier chapters of this book where appropriate.
For additional information, see the OpenGL Porting Guide.

Some IRIS GL Functionality and OpenGL Equivalents

This section provides an alphabetical list of IRIS GL functions and some other
functionality and either a pointer to related OpenGL functions or an explanation of how
to implement similar functionality in OpenGL.

backbuffer, frontbuffer

The framebuffer update semantics for rendering into multiple color buffers are different
in IRIS GL and OpenGL. OpenGL on RealityEngine systems actually implements the
IRIS GL semantics (computing one color value and writing it to all buffers) rather than
the correct OpenGL semantics (computing a separate color value for each buffer). This
can cause unexpected results if blending is used.

blendcolor

See “Blending Extensions” on page 171.

blendfunction

See “Blending Extensions” on page 171.

396

Appendix A: OpenGL and IRIS GL

convolve

See “EXT_convolution—The Convolution Extension” on page 210.

displacepolygon

The OpenGL equivalent, glPolygonOffset(), is more general than displacepolygon().
You may need to tweak the parameter values to get the proper results. See “Polygon
Offset” starting on page 247 of the OpenGL Programming Guide, Version 1.1.

dither

OpenGL provides no control over video dithering. (This is also the case for IRIS GL in
IRIX 5.3, unless overridden by an environment variable.)

fbsubtexload

Used to be supported through an extension in OpenGL 1.0. For OpenGL 1.1, see the
glTexSubImage1D and glTexSubImage2D reference pages and “Replacing All or Part of
a Texture Image” starting on page 332 of the OpenGL Programming Guide, Version 1.1.

gamma

Use the XSGIvc extension. See “Stereo Rendering” on page 74.

glcompat GLC_SET_VSYNC, GLC_GET_VSYNC, GLC_VSYNC_SLEEP

For GLC_GET_VSYNC, use glXGetVideoSyncSGI(). For GLC_VSYNC_SLEEP, use
glXWaitVideoSyncSGI(). See “SGI_swap_control—The Swap Control Extension” on
page 231.

GLC_SET_VSYNC has no equivalent in OpenGL. To replace it, maintain a sync counter
offset in a static variable.

glcompat SIR_VEN_INTERFACE, SIR_VEN_VIDEOCOPY

This function copies Sirius video to the framebuffer. Supported, with some constraints.
Use glXCreateGLXVideoSourceSGIX() to create a video source context,
glXMakeCurrentReadSGI() to set up the video source for a data transfer, and
glCopyPixels() to copy the video data to the framebuffer.

Some IRIS GL Functionality and OpenGL Equivalents

397

hgram, gethgram (histogram)

Supported for:

glDrawPixels(lrectwrite), glCopyPixels(rectcopy),
glReadPixels(lrectread, glTexImage(texture)

Use glGetHistogramEXT() and glHistogramEXT(); see “EXT_histogram—The
Histogram and Minmax Extensions” on page 213.

ilbuffer, ildraw, readsource(SRC_ILBUFFER)

This function provides accelerated drawing to offscreen framebuffer memory.

See “SGIX_pbuffer—The Pixel Buffer Extension” on page 112.

istexloaded

Use glAreTexturesResident(); see the glAreTexturesResident reference page or “A
Working Set of Resident Textures” starting on page 351 of the OpenGL Programming
Guide, Version 1.1.

leftbuffer, rightbuffer

Use glXChooseVisual() and glDrawBuffer() for stereo in a window. For old-style stereo,
see XSGISetStereoMode().

libsphere—sphdraw, sphgnpolys, sphfree, sphmode, sphobj, sphrotmatrix, sphbgnbitmap,
sphendbitmap, sphcolor

gluSphere() provides polygonal spheres. Only bilinear tessellation is supported;
octahedral, icosahedral, barycentric, and cubic tessellations are not supported.

There is no support for the canonical orientation capability (sphrotmatrix), hemispheres
(SPH_HEMI), or bitmap spheres. Some of the functionality is available in the sprite
extension; see “SGIX_sprite—The Sprite Extension” on page 197.

linesmooth

Antialiased lines are supported, with one caveat: it is not possible to draw blended
antialiased lines in a multisampled window, even when multisampling is disabled. See
glHint() and glEnable() with the GL_LINE_SMOOTH parameter.

398

Appendix A: OpenGL and IRIS GL

minmax, getminmax

For minimum and maximum pixel values, use glGetMinmaxEXT() and
glMinmaxEXT(); see “EXT_histogram—The Histogram and Minmax Extensions” on
page 213.

mswapbuffers

Not supported.

Swapping multiple windows (for example, main and overlay buffers, or windows on
genlocked pipes) from multiple threads can be accomplished fairly reliably with
semaphored calls to glXSwapBuffers(). The following code fragment outlines the
approach:

/* Create some semaphores: */
usptr_t* arena = usinit("/usr/tmp/our_arena");
usema_t* pipe0ready = usnewsema(arena, 0);
usema_t* pipe1ready = usnewsema(arena, 0);

/* After the process for pipe0 finishes its frame, it signals its
completion and waits for pipe1. When pipe1 is also ready, pipe0 swaps:
*/

usvsema(pipe0ready);
uspsema(pipe1ready);
glXSwapBuffers(dpy, drawable);

/* The process for pipe 1 does the converse: */
usvsema(pipe1ready);
uspsema(pipe0ready);
glXSwapBuffers(dpy, drawable);

multisample, getmultisample, msalpha, msmask, mspattern, mssize (multisample
antialiasing)

Supported. See “SGIS_multisample—The Multisample Extension” on page 180.

For msalpha, see glEnable() with arguments GL_SAMPLE_ALPHA_TO_MASK_SGIS
and GL_SAMPLE_ALPHA_TO_ONE_SGIS.

For msmask, see glSampleMaskSGIS().

For mspattern, see glSamplePatternSGIS().

Some IRIS GL Functionality and OpenGL Equivalents

399

For mssize, see glXChooseVisual().

For “light points,” use multisampling with

glHint(GL_POINT_SMOOTH_HINT,GL_NICEST)

The maximum point diameter is 3 (the same as IRIS GL).

For fast tag clear, see glTagSampleBufferSGIX().

pixelmap

Differs from IRIS GL. The OpenGL function glPixelMap() specifies a lookup table for
pixel transfer operations, just as pixelmap does in IRIS GL. However, the location of the
lookup table in the pixel processing pipeline is different. The IRIS GL lookup table
appears immediately after convolution, while the OpenGL lookup table appears almost
at the beginning of the pipeline (immediately after the first scale and bias). The two
pipelines are equivalent only when convolution is disabled.

Pixel mapping is supported for the following calls:

glDrawPixels(lrectwrite), glCopyPixels(rectcopy),
glReadPixels(lrectread), glTexImage(texdef),

On RealityEngine systems, pixel mapping is not supported for

glTexSubImage(subtexload)

pixmode

Most of the functions of pixmode are supported, albeit in different ways:

• PM_SHIFT, PM_ADD24: Use the OpenGL color matrix extension to swizzle color
components or to scale and bias pixel values. See glPixelTransfer().

• PM_EXPAND, PM_C0, PM_C1: Use the standard OpenGL color lookup table to
convert bitmap data to RGBA. See glPixelTransfer() and glPixelMap().

• PM_TTOB, PM_RTOL: Use glPixelZoom() with negative zoom factors to reflect
images when drawing or copying. Reflection during reading is not supported.

• PM_INPUT_FORMAT, PM_OUTPUT_FORMAT, PM_INPUT_TYPE,
PM_OUTPUT_TYPE, PM_ZDATA: Use the glReadPixels(), glDrawPixels(), and
glCopyPixels() type and format parameters.

• PM_OFFSET, PM_STRIDE, PM_SIZE: Use glPixelStore().

400

Appendix A: OpenGL and IRIS GL

pntsize

Supported. See comments under “multisample, getmultisample, msalpha, msmask,
mspattern, mssize (multisample antialiasing)” on page 398.

polymode

OpenGL doesn’t support PYM_HOLLOW. glPolygonMode(GL_LINE) is the closest
approximation. See also the glPolygonOffset reference page and “Polygon Offset”
starting on page 247 of the OpenGL Programming Guide, Version 1.1.

polysmooth

OpenGL doesn’t support PYM_SHRINK.

popup planes

OpenGL doesn’t support drawing in the popup planes.

readcomponent

Use the color matrix extension (see glPixelTransfer()) to extract one or more color
channels for image processing. The implementation is optimized for the case in which all
channels but one are multiplied by zero, and all framebuffer channels but one are
write-masked (see glColorMask()). See “Using the Color Matrix and the Color
Writemask” on page 389.

See “SGI_color_matrix—The Color Matrix Extension” on page 220 for more information.

RGBwritemask

OpenGL supports masking an entire RGBA color channel, but not arbitrary sets of bits
within an RGBA color channel.

Some IRIS GL Functionality and OpenGL Equivalents

401

setvideo, setmonitor

OpenGL has no support for these routines.

Video output format should be changed with the setmon command (this is now
recommended for IRIS GL as well as OpenGL).

OpenGL supports stereo-in-a-window; see glXChooseVisual() and glDrawBuffer(). For
old-style stereo, see XSGISetStereoMode().

Use the Video Library (VL) or the XSGIvc extension for other video device control tasks.

subtexload

See the glTexSubImage1D and glTexSubImage2D reference pages and “Replacing All or
Part of a Texture Image” on page 332ff of the OpenGL Programming Guide, Version 1.1.

tevdef, tevbind

TV_COMPONENT_SELECT (the ability to pack multiple shallow textures together, then
unpack and select one of them during drawing) is supported on IMPACT and
InfiniteReality systems via the texture select extension (see “SGIS_texture_select—The
Texture Select Extension” on page 150.

texbind

Texture definition and binding are combined into a single operation in standard
OpenGL. However, the texture object extension makes them separate again (albeit in a
manner that differs from IRIS GL). Use glBindTexture(); see the glBindTexture reference
page and “Creating and Using Texture Objects” on page 348ff of the OpenGL
Programming Guide, Version 1.1.

Detail texturing (TX_TEXTURE_DETAIL) is supported. Use glDetailTexFuncSGIS(); see
“SGIS_detail_texture—The Detail Texture Extension” on page 129.

Simple texture memory management (TX_TEXTURE_IDLE) is supported. Use
glPrioritizeTextures(); see the glPrioritizeTextures reference page “A Working Set of
Resident Textures” starting on page 351 of the OpenGL Programming Guide, Version 1.1.

402

Appendix A: OpenGL and IRIS GL

texdef

1D, 2D, and 3D textures are supported. See glTexImage1D(), glTexImage2D(), and
glTexImage3DEXT(); see “EXT_texture3D—The 3D Texture Extension” on page 120.

TX_FAST_DEFINE is not supported. Loading subtextures is still possible, however; use
glTexSubImage2D(). See the glTexSubImage1D and glTexSubImage2D reference pages
and “Replacing All or Part of a Texture Image” starting on page 332 of the OpenGL
Programming Guide, Version 1.1.

The TX_BILINEAR_LEQUAL and TX_BILINEAR_GEQUAL filtering options, which are
used to implement shadows, are not supported. On InfiniteReality systems, the shadow
extension is supported; see “SGIX_shadow, SGIX_depth_texture, and
SGIX_shadow_ambient—The Shadow Extensions” on page 192.

The TX_BICUBIC filter option, which is used for bicubic filtering and as a workaround
for the lack of point sampling, is also not supported.

The TX_MINFILTER options for mipmapping are supported for 1D and 2D textures, but
not for 3D textures. 3D textures must use GL_NEAREST (TX_POINT) or GL_LINEAR
(TX_BILINEAR) filtering modes. On InfiniteReality systems, mipmapping is supported.

OpenGL differs from IRIS GL in that filtered versions of the texture image (when
required by the current minification filter) are not generated automatically; the
application must load them explicitly. Thus the TX_MIPMAP_FILTER_KERNEL token is
not supported.

Separate magnification filters for color and alpha (TX_MAGFILTER_COLOR and
TX_MAGFILTER_ALPHA) are not supported in the general case. However, it is possible
to specify separate alpha and color magnification filters for detail and sharp texturing.
See glTexParameter().

Sharp texture filtering (TX_SHARPEN) is supported. Use glTexParameter() for setting
the filtering mode, and glSharpenTexFuncSGIS() for setting the scaling function
(TX_CONTROL_POINT, TX_CONTROL_CLAMP). See “SGIS_sharpen_texture—The
Sharpen Texture Extension” on page 139.

Some IRIS GL Functionality and OpenGL Equivalents

403

Detail texture (TX_ADD_DETAIL and TX_MODULATE_DETAIL) is supported for 2D.
The parameters are specified differently from those in IRIS GL. See glTexParameter() for
setting the filtering mode, and glDetailTexFuncSGIS() for setting the scaling function
(TX_CONTROL_POINT, TX_CONTROL_CLAMP). See “SGIS_detail_texture—The
Detail Texture Extension” on page 129.

The TX_WRAP mode TX_SELECT is supported by the texture select extension to
OpenGL 1.1. See “SGIS_texture_select—The Texture Select Extension” on page 150.
OpenGL provides GL_CLAMP (TX_CLAMP) and GL_REPEAT (TX_REPEAT).

TX_INTERNAL_FORMAT and all IRIS GL texel internal formats are supported. See the
components parameter of glTexImage2D for a list of the OpenGL internal formats.

TX_TILE (multipass rendering for high-resolution textures) is not supported directly.
OpenGL border clamping can emulate tiling if you use the edges of neighboring tiles as
the borders for the current tile.

tlutbind

In OpenGL, tlut definition and binding are combined into a single operation, and tluts
apply to all texturing (rather than being bound to a particular texture target). See the
comments under tlutdef.

tlutdef

Use glTexColorTableParameterSGI() for a description of the OpenGL texture color
lookup process; see “SGI_texture_color_table—The Texture Color Table Extension” on
page 126. Use glColorTableSGI() for information about loading the lookup table; see
“SGI_color_table—The Color Table Extension” on page 221.

404

Appendix A: OpenGL and IRIS GL

The OpenGL lookup table semantics differ from those that IRIS GL used.

• The case described in the tlutdef() reference page and shown in the following table
cannot be emulated in OpenGL. (nc stands for number of components, I for
intensity, A for Alpha, R, G, and B for Red, Green, and Blue.)

• The cases shown in the following table are supported directly, or can be supported
with a judicious choice of table values and calls to glEnable().

OpenGL supports cases that are not available under IRIS GL. See
glTexColorTableParameterSGI() for more information.

underlays

There are no X11 Visuals for the underlay planes, so OpenGL rendering to underlays is
not supported.

tlut nc texture nc action

4 3 R, G, B, B looks up R, G, B, A

tlut nc texture nc action

2 1 I looks up I,A

 2 I,A looks up I,A

 3 R,G,B pass unchanged

 4 R,G,B,A pass unchanged

3 1 I looks up R,G,B

 2 I,A pass unchanged

 3 R,G,B looks up R,G,B

 4 R,G,B,A pass unchanged

4 1 I looks up R,G,B,A

 2 I looks up RGB; A looks up A

 4 R,G,B,A looks up R,G,B,A

405

Appendix B

B.Benchmarks

This appendix contains a sample program you can use to measure the performance of an
OpenGL operation. For an example of how the program can be used with a small
graphics applications, see Chapter 15, “Tuning Graphics Applications: Examples.”

/**
 * perf - framework for measuring performance of an OpenGL operation
 *
 * Compile with: cc -o perf -O perf.c -lGL -lX11
 *
**/

#include <GL/glx.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/time.h>

char* ApplicationName;
double Overhead = 0.0;
int VisualAttributes[] = { GLX_RGBA, None };
int WindowWidth;
int WindowHeight;

/**
 * GetClock - get current time (expressed in seconds)
**/
double
GetClock(void) {
 struct timeval t;

 gettimeofday(&t);
 return (double) t.tv_sec + (double) t.tv_usec * 1E-6;
 }

406

Appendix B: Benchmarks

/**
 * ChooseRunTime - select an appropriate runtime for benchmarking
**/
double
ChooseRunTime(void) {
 double start;
 double finish;
 double runTime;

 start = GetClock();

 /* Wait for next tick: */
 while ((finish = GetClock()) == start)
 ;

 /* Run for 100 ticks, clamped to [0.5 sec, 5.0 sec]: */
 runTime = 100.0 * (finish - start);
 if (runTime < 0.5)
 runTime = 0.5;
 else if (runTime > 5.0)
 runTime = 5.0;

 return runTime;
 }

/**
 * FinishDrawing - wait for the graphics pipe to go idle
 *
 * This is needed to make sure we're not including time from some
 * previous uncompleted operation in our measurements. (It's not
 * foolproof, since we can't eliminate context switches, but we can
 * assume our caller has taken care of that problem.)
**/
void
FinishDrawing(void) {
 glFinish();
 }

/**
 * WaitForTick - wait for beginning of next system clock tick; return
 * the time
**/

407

double
WaitForTick(void) {
 double start;
 double current;

 start = GetClock();

 /* Wait for next tick: */
 while ((current = GetClock()) == start)
 ;

 /* Start timing: */
 return current;
 }

/**
 * InitBenchmark - measure benchmarking overhead
 *
 * This should be done once before each risky change in the
 * benchmarking environment. A ``risky'' change is one that might
 * reasonably be expected to affect benchmarking overhead. (For
 * example, changing from a direct rendering context to an indirect
 * rendering context.) If all measurements are being made on a single
 * rendering context, one call should suffice.
**/
void
InitBenchmark(void) {
 double runTime;
 long reps;
 double start;
 double finish;
 double current;

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /* Wait for the pipe to clear: */
 FinishDrawing();

 /* Measure approximate overhead for finalization and timing
 * routines
 */
 reps = 0;
 start = WaitForTick();
 finish = start + runTime;

408

Appendix B: Benchmarks

 do {
 FinishDrawing();
 ++reps;
 } while ((current = GetClock()) < finish);

 /* Save the overhead for use by Benchmark(): */
 Overhead = (current - start) / (double) reps;
 }

/**
 * Benchmark - measure number of caller's operations performed per
 * second.
 * Assumes InitBenchmark() has been called previously, to initialize
 * the estimate for timing overhead.
**/
double
Benchmark(void (*operation)(void)) {
 double runTime;
 long reps;
 long newReps;
 long i;
 double start;
 double current;

 if (!operation)
 return 0.0;

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /*
 * Measure successively larger batches of operations until we
 * find one that's long enough to meet our runtime target:
 */
 reps = 1;
 for (;;) {
 /* Run a batch: */
 FinishDrawing();
 start = WaitForTick();
 for (i = reps; i > 0; --i)
 (*operation)();
 FinishDrawing();

409

 /* If we reached our target, bail out of the loop: */
 current = GetClock();
 if (current >= start + runTime + Overhead)
 break;

 /*
 * Otherwise, increase the rep count and try to reach
 * the target on the next attempt:
 */
 if (current > start)
 newReps = reps *
 (0.5 + runTime / (current - start -
 Overhead));
 else
 newReps = reps * 2;
 if (newReps == reps)
 reps += 1;
 else
 reps = newReps;
 }

 /* Subtract overhead and return the final operation rate: */
 return (double) reps / (current - start - Overhead);
 }

/**
 * Test - the operation to be measured
 *
 * Will be run several times in order to generate a reasonably accurate
 * result.
**/
void
Test(void) {
 /* Replace this code with the operation you want to measure: */
 glColor3f(1.0, 1.0, 0.0);
 glRecti(0, 0, 32, 32);
 }

/**
 * RunTest - initialize the rendering context and run the test
**/
void
RunTest(void) {
 if (Overhead == 0.0)
 InitBenchmark();

410

Appendix B: Benchmarks

 /* Replace this sample with initialization for your test: */

 glClearColor(0.5, 0.5, 0.5, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, WindowWidth, 0.0, WindowHeight, -1.0, 1.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 printf("%.2f operations per second\n", Benchmark(Test));
 }

/**
 * ProcessEvents - handle X11 events directed to our window
 *
 * Run the measurement each time we receive an expose event.
 * Exit when we receive a keypress of the Escape key.
 * Adjust the viewport and projection transformations when the window
 * changes size.
**/
void
ProcessEvents(Display* dpy) {
 XEvent event;
 Bool redraw = 0;

 do {
 char buf[31];
 KeySym keysym;

 XNextEvent(dpy, &event);
 switch(event.type) {
 case Expose:
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0,
 WindowWidth =
 event.xconfigure.width,
 WindowHeight =
 event.xconfigure.height);
 redraw = 1;
 break;

411

 case KeyPress:
 (void) XLookupString(&event.xkey, buf,
 sizeof(buf), &keysym, NULL);
 switch (keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 break;
 default:
 break;
 }
 } while (XPending(dpy));

 if (redraw) RunTest();
 }

/**
 * Error - print an error message, then exit
**/
void
Error(const char* format, ...) {
 va_list args;

 fprintf(stderr, "%s: ", ApplicationName);

 va_start(args, format);
 vfprintf(stderr, format, args);
 va_end(args);

 exit(EXIT_FAILURE);
 }

/**
 * main - create window and context, then pass control to ProcessEvents
**/
int
main(int argc, char* argv[]) {
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;

412

Appendix B: Benchmarks

 ApplicationName = argv[0];

 /* Get a connection: */
 dpy = XOpenDisplay(NULL);
 if (!dpy) Error("can't open display");

 /* Get an appropriate visual: */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),VisualAttributes);
 if (!vi) Error("no suitable visual");

 /* Create a GLX context: */
 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

 /* Create a color map: */
 swa.colormap = XCreateColormap(dpy, RootWindow(dpy,
 vi->screen), vi->visual, AllocNone);

 /* Create a window: */
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | StructureNotifyMask |
 KeyPressMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0,
 300, 300, 0,vi->depth, InputOutput, vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);
 XStoreName(dpy, win, "perf");
 XMapWindow(dpy, win);

 /* Connect the context to the window: */
 glXMakeCurrent(dpy, win, cx);

 /* Handle events: */
 while (1) ProcessEvents(dpy);
 }

413

Appendix C

C.Benchmarking Libraries: libpdb and libisfast

When optimizing an OpenGL application, there are two problems you need to address:

• When you’re writing an OpenGL application, it’s difficult to know whether a
particular feature (like depth buffering or texture mapping) is fast enough to be
useful.

• If you want your application to run fast on a variety of machines, while taking
advantage of as many hardware features as possible, you need to write code that
makes configuration decisions at runtime.

For the OpenGL predecessor IRIS GL, you could call getgdesc() to determine whether a
feature had hardware support. For example, you could determine whether a Z buffer
existed. If it did, you might assume that Z buffering was fast, and therefore your
application would use it.

In OpenGL, things are more complicated. All the core features are provided, even when
there is no hardware support for them and they must be implemented completely in
software. There is no OpenGL routine that reports whether a feature is implemented
partly or completely in hardware.

Furthermore, features interact in unpredictable ways. For example, a machine might
have hardware support for depth buffering, but only for some comparison functions. Or
depth buffering might be fast only as long as stencilling is not enabled. Or depth
buffering might be fast when drawing to a window, but slow when drawing to a pixmap.
And so on. A routine that identifies hardware support for particular features is actually
a lot more complicated and less useful than you might think.

To decide whether a given OpenGL feature is fast, you have to measure it. Since the
performance of a section of graphics code is dependent on many pieces of information
from the runtime environment, no other method is as well-defined and reliable.

Keep in mind that while the results of the libisfast routines are interesting, they apply to
limited special cases. Always consider using a more general tool like Open Inventor or
IRIS Performer.

414

Appendix C: Benchmarking Libraries: libpdb and libisfast

Performance measurement can be tricky:

• You need to handle the cases when you’re displaying over a network, as well as
locally.

• Think about flushing the graphics pipeline properly, and accounting for the
resulting overhead.

• Measuring all the features needed by your application may take a while. Save
performance measurements and reuse them whenever possible; users won’t want
to wait for measurements each time the application starts.

• Consider measuring things other than graphics: Disk and network throughput,
processing time for a particular set of data, performance on uniprocessor and
multiprocessor systems.

Libraries for Benchmarking

This appendix describes two libraries that can help with all of the tasks just mentioned:

• libpdb (Performance DataBase). Routines for measuring execution rates and
maintaining a simple database.

• libisfast. A set of routines demonstrating libpdb that answer common questions
about the performance of OpenGL features (using reasonable but subjective
criteria).

These libraries can’t substitute for comprehensive benchmarking and performance
analysis, and don’t replace more sophisticated tools (like IRIS Performer and IRIS
Inventor) that optimize application performance in a variety of ways. However, they can
handle simple tasks easily.

Using libpdb

libpdb provides five routines:

• pdbOpen() opens the performance database.

• pdbReadRate() reads the execution rate for a given benchmark (identified by a
machine name, application name, benchmark name, and version string) from the
database.

Using libpdb

415

• pdbMeasureRate() measures the execution rate for a given operation.

• pdbWriteRate() writes the execution rate for a given benchmark into the database.

• pdbClose() closes the performance database and writes it back to disk if necessary.

All libpdb routines return a value of type pdbStatusT, which is a bitmask of error
conditions. If the value is zero (PDB_NO_ERROR), the call completed successfully. If the
value is nonzero, it is a combination of one or more of the conditions listed in Table C-1.

Every program must call pdbOpen() before using the database, and pdbClose() when
the database is no longer needed. pdbOpen() opens the database file (stored in
$HOME/.pdb2 on UNIX systems) and reads all the performance measurements into
main memory. pdbClose() releases all memory used by the library, and writes the
database back to its file if any changes have been made by invoking pdbWriteRate().

pdbStatusT pdbOpen(void);
pdbStatusT pdbClose(void);

pdbOpen() returns

• PDB_NO_ERROR on success

• PDB_OUT_OF_MEMORY if there was insufficient main memory to store the entire
database

• PDB_SYNTAX_ERROR if the contents of the database could not be parsed or
seemed implausible (for example a nonpositive performance measurement)

Table C-1 Errors Returned by libpdb Routines

Error Meaning

PDB_OUT_OF_MEMORY Attempt to allocate memory failed.

PDB_SYNTAX_ERROR Database contains one or more records that could not be parsed.

 PDB_NOT_FOUND Database does not contain the record requested by the application.

 PDB_CANT_WRITE Database file could not be updated.

 PDB_NOT_OPEN pdbOpen() was not invoked before calling one of the other libpdb
routines.

 PDB_ALREADY_OPEN pdbOpen() was called while the database is still open (e.g., before
pdbClose() is invoked).

416

Appendix C: Benchmarking Libraries: libpdb and libisfast

• PDB_ALREADY_OPEN if the database has been opened by a previous call to
pdbOpen() and not closed by a call to pdbClose()

pdbClose() returns

• PDB_NO_ERROR on success

• PDB_CANT_WRITE if the database file is unwritable for any reason

• PDB_NOT_OPEN if the database is not open

Normally applications should look for the performance data they need before going to
the trouble of taking measurements. pdbReadRate(), which is used for this, has the
following prototype:

pdbStatusT pdbReadRate (const char* machineName,const char* appName,
 const char* benchmarkName,const char* versionString, double* rate)

machineName A zero-terminated string giving the name of the machine for which the
measurement is sought. If NULL, the default machine name is used. (In
X11 environments, the display name is an appropriate choice, and the
default machine name is the content of the DISPLAY environment
variable.)

appName Name of the application. This is used as an additional database key to
reduce accidental collisions between benchmark names.

benchmarkName Name of the benchmark.

versionString The fourth argument is a string identifying the desired version of the
benchmark. For OpenGL performance measurements, the string
returned by glGetString(GL_VERSION) is a good value for this
argument. Other applications might use the version number of the
benchmark, rather than the version number of the system under test.

rate A pointer to a double-precision floating-point variable that receives the
performance measurement (the “rate”) from the database. The rate
indicates the number of benchmark operations per second that were
measured on a previous run. If pdbReadRate() returns zero, then it
completed successfully and the rate is returned in the last argument. If
the requested benchmark is not present in the database, it returns
PDB_NOT_FOUND. Finally, if pdbReadRate() is called when the
database has not been opened by pdbOpen(), it returns
PDB_NOT_OPEN.

Using libpdb

417

Example for pdbRead

main() {
 double rate;
 pdbOpen();
 if (pdbReadRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), &rate)
 == PDB_NO_ERROR)
 printf("%g triangle calls per second\n", rate);
 pdbClose();
 }

When the application is run for the first time, or when the performance database file has
been removed (perhaps to allow a fresh start after a hardware upgrade), pdbReadRate()
is not able to find the desired benchmark. If this happens, the application should use
pdbMeasureRate(), which has the following prototype, to make a measurement:

pdbStatusT pdbMeasureRate (pdbCallbackT initialize, pdbCallbackT operation,
 pdbCallbackT finalize, int calibrate, double* rate)

initialize A pointer to the initialization function. The initialization function is run
before each set of operations. For OpenGL performance measurement,
it’s appropriate to use glFinish() for initialization, to make sure that the
graphics pipe is quiet. However, for other performance measurements,
the initialization function can create test data, preload caches, and so on.
May be NULL, in which case no initialization is performed.

operation A pointer to the operation function. This function performs the
operations that are to be measured. Usually you’ll want to make sure
that any global state needed by the operation is set up before calling the
operation function, so that you don’t include the cost of the setup
operations in the measurement.

finalize A pointer to a finalization function. This is run once, after all the calls to
the operation function are complete. In the example above, glFinish()
ensures that the graphics pipeline is idle. It may be NULL, in which case
no finalization is performed. The finalization function must be
calibrated so that the overhead of calling it may be subtracted from the
time used by the operation function. If the fourth argument is nonzero,
then pdbMeasureRate() calibrates the finalization function. If the fourth
argument is zero, then pdbMeasureRate() uses the results of the
previous calibration. Recalibrating each measurement is the safest
approach, but it roughly doubles the amount of time needed for a
measurement. For OpenGL, it should be acceptable to calibrate once and
recalibrate only when using a different X11 display.

418

Appendix C: Benchmarking Libraries: libpdb and libisfast

rate A pointer to a double-precision floating-point variable that receives the
execution rate. This rate is the number of times the operation function
was called per second. pdbMeasureRate() attempts to compute a
number of repetitions that results in a run time of about one second.
(Calibration requires an additional second.) It’s reasonably careful about
timekeeping on systems with low-resolution clocks.

pdbMeasureRate() always returns PDB_NO_ERROR.

Example for pdbMeasureRate()

void SetupOpenGLState(void) {
 /* set all OpenGL state to desired values */
 }

void DrawTriangles(void) {
 glBegin(GL_TRIANGLE_STRIP);
 /* specify some vertices... */
 glEnd();
 }
main() {
 double rate;
 pdbOpen();
 if (pdbReadRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), &rate)
 != PDB_NO_ERROR) {
 SetupOpenGLState();
 pdbMeasureRate(glFinish, DrawTriangles,
 glFinish, 1, &rate);
 }
 printf("%g triangle calls per second\n", rate);
 pdbClose();
 }

Once a rate has been measured, it should be stored in the database by calling
pdbWriteRate(), which has the following prototype:

pdbStatusT pdbWriteRate (const char* machineName, const char*
applicationName, const char* benchmarkName,const char* versionString, double rate)

The first four arguments of pdbWriteRate() match the first four arguments of
pdbReadRate(). The last argument is the performance measurement to be saved in the
database.

Using libisfast

419

pdbWriteRate() returns

• PDB_NO_ERROR if the performance measurement was added to the in-memory
copy of the database

• PDB_OUT_OF_MEMORY if there was insufficient main memory to do so

• PDB_NOT_OPEN if the database is not open

When pdbWriteRate() is called, the in-memory copy of the performance database is
marked “dirty.” pdbClose() takes note of this and writes the database back to disk.

Example for pdbWriteRate()

main() {
 double rate;
 pdbOpen();
 if (pdbReadRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), &rate)
 != PDB_NO_ERROR) {
 SetupOpenGL();
 pdbMeasureRate(glFinish, DrawTriangles,
 glFinish, 1, &rate);
 pdbWriteRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), rate);
 }
 printf("%g triangle calls per second\n", rate);
 pdbClose();
 }

Using libisfast

The libisfast library is a set of demonstration routines that show how libpdb can be used
to measure and maintain OpenGL performance data. libisfast is based on purely
subjective performance criteria. If they’re appropriate for your application, feel free to
use them. If not, copy the source code and modify it accordingly.

In all cases that follow, the term “triangles” refers to a triangle strip with 37 vertices. The
triangles are drawn with perspective projection, lighting, and smooth (Gouraud)
shading. Unless otherwise stated, display-list-mode drawing is used. (This makes isfast
yield more useful results when the target machine is being accessed over a network.)

420

Appendix C: Benchmarking Libraries: libpdb and libisfast

The application must initialize isfast before performing any performance measurements,
and clean up after the measurements are finished. On X11 systems initialize libisfast by
calling

int IsFastXOpenDisplay(const char* displayName);

Perform cleanup by calling

void IsFastXCloseDisplay(void);

IsFastOpenXDisplay() returns zero if the named display could not be opened, and
nonzero if the display was opened successfully.

DepthBufferingIsFast() returns nonzero if depth buffered triangles can be drawn at least
one-half as fast as triangles without depth buffering:

int DepthBufferingIsFast(void);

ImmediateModeIsFast() returns nonzero if immediate-mode triangles can be drawn at
least one-half as fast as display-listed triangles:

int ImmediateModeIsFast(void);

Note that one significant use of ImmediateModeIsFast() may be to decide whether a
“local” or a “remote” rendering strategy is appropriate. If immediate mode is fast, as on
a local workstation, it may be best to use that mode and avoid the memory cost of
duplicating the application’s data structures in display lists. If immediate mode is slow,
as is likely for a remote workstation, it may be best to use display lists for bulky geometry
and textures.

StencillingIsFast() returns nonzero if stencilled triangles can be drawn at least one-half
as fast as non-stencilled triangles:

int StencillingIsFast(void);

TextureMappingIsFast() returns nonzero if texture-mapped triangles can be drawn at
least one-half as fast as non-texture-mapped triangles:

int TextureMappingIsFast(void);

Although the routines in libisfast are useful for a number of applications, you should
study them and modify them for your own use. That way you’ll explore the particular
performance characteristics of your systems: their sensitivity to triangle size, triangle
strip length, culling, stencil function, texture-map type, texture-coordinate generation
method, and so on.

421

Appendix D

D. Extensions on Different Silicon Graphics Systems

This appendix lists all extensions supported for InfiniteReality systems, OCTANE and
Indigo2 IMPACT systems, and O2 systems. Note that while the list is comprehensive, this
guide only discusses those extensions that are either available or scheduled to be
available on more than one platform.

Table D-1 Extension on Different Silicon Graphics Systems

Extension InfiniteReality OCTANE and IMPACT O2

EXT_abgr X X X

EXT_blend_color X X X

EXT_blend_logic_op X X X

EXT_blend_minmax X X X

EXT_blend_subtract X X X

EXT_convolution X X X

EXT_histogram X X X

EXT_packed_pixels X X X

EXT_texture_3D X X X

SGI_color_matrix X X X

SGI_color_table X X X

SGI_texture_color_table X X X

SGIS_detail_texture X X

SGIS_fog_function X

SGIS_multisample X

SGIS_point_line_texgen X

422

Appendix D: Extensions on Different Silicon Graphics Systems

SGIS_point_parameters X

SGIS_sharpen_texture X

SGIS_texture_border_clamp X

SGIS_texture_edge_clamp X X

SGIS_texture_filter4 X X

SGIS_texture_LOD X X

SGIS_texture_select X X

SGIX_calligraphic_fragment X

SGIX_clipmap X

SGIX_fog_offset X

SGIX_instruments X

SGIX_interlace X X

SGIX_ir_instrument1 X

SGIX_flush_raster X

SGIX_list_priority X

SGIX_reference_plane X

SGIX_shadow X

SGIX_shadow_ambient X

SGIX_sprite X

SGIX_texture_add_env X

SGIX_texture_lod_bias X

SGIX_texture_scale_bias X X

SGIX_depth_texture X

Table D-1 (continued) Extension on Different Silicon Graphics Systems

Extension InfiniteReality OCTANE and IMPACT O2

423

Index

Numbers

3D texture extension, 120
mipmapping, 122
pixel storage modes, 122

4D texture extension, 144
4Dwm, 1
60-Hz monitor, 302

A

ABGR extension, 209
accumulated multisampling, 185
accumulation buffer, 361
actions and translations, 34, 36
adding callbacks, 33
advanced multisampling options, 182
AllocAll, 42
AllocNone, 42
alpha blending, 333, 361, 376
alpha-blending transparency, 388
alpha component

representing complex geometry, 331
alpha function, 361
alpha value used as multisample mask, 183
ancillary buffers, 12, 105, 113, 114
animations, 51

avoiding flickering, 51
benchmarking, 298

clear operations, 302
controlling with workprocs, 53
debugging, 291
double buffering, 302
frame rate, 302
glXSwapBuffers, 303
optimizing frame rates, 303
speed, 302
swapping buffers, 52
tuning, 302

ANSI C
prototyping subroutines, 314
See also compiling.

antialiased lines. See antialiasing.
antialiasing

lines, 186, 361, 362, 376, 379, 386, 397
multisampling, 180

app-defaults file, 29, 31, 35
arrays, traversal, 312
assembly code, 316, 323
Athena widget set, 14
attributes

of drawing-area widget, 31
of widgets, 29

available extensions, 10

B

backbuffer (IRIS GL), 395
backdrop, 322

424

Index

backface removal, 332
backing store, 47
BadAlloc error, 63, 114
BadMatch error, 39, 44, 78, 114

finding problem, 39
make current read extension, 91

benchmarking, 296
and glFinish(), 299
background processes, 297
basics, 297
clock resolution, 298
example program, 405
instruments extension, 262
libraries, 414
loops, 298
static frames, 298

billboards, 324
sprite extension, 197

binding context to window, 23
bitmap fonts, 48
BlackPixel() color macro, 70
blank window, 289
blendcolor (IRIS GL), 395
blendfunction (IRIS GL), 395
blending

and multisampling, 183
constant color, 172
extensions, 171-174
 See also minmax blending extension, logical

operator blending, constant color blending,
alpha blending.

blending factors, 172, 173
blend subtract extension, 174
block counting, 321
border clamping, 144
border pixel, 44
bottlenecks

CPU, 310

definition, 292
finding, 294
geometry subsystem, 295
raster subsystem, 295
See also optimizing.
tuning

buffer clobber events, 114, 115, 116
buffers

accessed by loops, 314
accumulation, 361
accumulation buffer for multisampling, 185
avoiding simultaneous traversal, 321
depth, 361
instrument extension, 263
pbuffer, 112
See also ancillary buffers
stencil, 361
swapping, 52
synchronizing swaps, 236

buffer swaps, synchronizing, 236

C

cache
definition, 319
determining size, 320
immediate mode drawing, 310
minimizing misses, 320
miss, 310, 319

calculating expected performance, 297
callbacks

adding, 33
and current context, 33
drawing-area widget, 32, 34
expose, 24, 33, 62
for NURBS object, 256
init, 24, 33
in overlay, 62
input, 32, 34, 62
resize, 32, 34, 62

425

Index

Call Count menu command, 280
changing framezoom factor, 367
character strings, 48
checking for extensions, 82
choosing colormaps, 72
choosing visuals, 21
clamping

border clamping, 144
edge clamping, 144

clear
and multisampling, 388
for debugging, 289
optimizing on low-end systems, 361
optimizing on mid-range systems, 377
performance tuning, 322

clearing bitplanes, 336
clipmap extension, 152-158
clipmaps

center, 155
clipped level, 155
component diagram, 154
how to set up stack, 156
invalid borders, 160
nonclipped level, 155
tiles, 160
toroidal loading, 161
updating stacks, 158
virtual, 162

clipped level, 155
clipping

debugging, 289
mid-range systems, 376
optimizing on IMPACT, 379

clock resolution, 298
color blending extension, 172
color buffer clear

influence on performance, 297
with depth buffer clear, 336

color-index mode, 70

color lookup tables
4D textures, 144
pixel texture, 227

color macros, 70
colormaps, 70

and drawing-area widget, 14
and overlays, 63
choosing, 72
creating, 42
default, 70
definition, 14, 70
flashing, 68, 71
installing, 44
multiple, 71
retrieving default, 71
transparent cell, 59
Xlib, 74

color matrix
and color mask, 337
and identity matrix, 338
extension, 220

color space conversions
IMPACT, 383

color table extension, 221
and copy texture, 223

compiling
display lists, 308
-float option, 305
-g option, 305
-mips3, -mips4, 305
-O2 option, 305
optimizing, 305
with -S, 323

complex structures, 308
concave polygons, optimizing, 326
conditional statements, 314
configuration file for ogldebug, 278
constant color blending extension, 172

blending factors, 173
container widgets, 30

426

Index

contexts
and visuals, 105
binding to window, 23
created with GLXFBConfig, 115
current, 13
retrieving current display, 89
See also rendering contexts

convolution extension, 210
and texture images, 213
border mode, 211
example, 210
filter bias factors, 212
filter image height, 212
filter image width, 212
filter scale factors, 212
maximum filter image height, 212
maximum filter image width, 212
on O2 systems, 374
separable filter, 212

convolution kernels, 210
on IMPACT systems, 382

convolve (IRIS GL), 396
coordinate system, 291
cpack IRIS GL format, 209
CPU bottlenecks

checking in example program, 352
eliminating from example program, 354
from hierarchical data structures, 310
memory paging, 319
testing for, 294

CPU stage of the pipeline, 293
CPU usage bar, 295
creating drawing-area widgets, 28
creating pixmaps, 77
creating rendering contexts, 22
culling, 311, 331
current context, 13
customizing detail texture, 132
customizing sharpen texture, 141

D

data
expansion in display lists, 308
preprocessing, 316
storage self-managed by display lists, 307
word-aligned, 375

database
optimizing by preprocessing, 316
optimizing traversal, 311

data organization, 310
balancing hierarchy, 311
disadvantages of hierarchies, 310

data traversal, 305
remote rendering, 307

data types used by packed pixels extension, 219
DBE, 53
debugger See ogldebug.
debugging, 269-292

animations, 291
blank window, 289
depth testing, 290
glOrtho(), 290
glPerspective(), 290
lighting, 291
projection matrix, 289

default colormaps, 71
DefaultVisual() Xlib macro, 67
deleting unneeded display lists, 308
depth buffer clear, 297
depth buffering, 333, 361, 365, 413

clearing depth and color buffer, 336
debugging, 290
in example program, 358
lines, 363
optimizing, 334

DepthBufferingIsFast(), 420
depth-queueing, 361

lines, 363

427

Index

depth testing, 290
detail texture, 129-136, 386

and texture objects, 134
customizing, 132
example program, 134
how computed, 132
LOD interpolation function, 133
magnification filters, 131

determining cache size, 320
Developer Toolbox, 85
DirectColor visuals, 67, 105
direct rendering and pbuffers, 113
direct rendering contexts, 79
dis command, 323
displacepolygon (IRIS GL), 396
display lists

appropriate use, 309
compiling, 308
complex structures, 308
contrasted with immediate mode, 307
deleting unneeded, 308
dependent on context, 291
DMA, 384
duplication, 309
fonts and strings, 48
for X bitmap fonts, 48
IMPACT systems, 383
list priority extension, 260
on O2 systems, 368
optimizing, 308
sharing, 291
tuning, 308-309

display lists on InfiniteReality systems, 394
display lists vs. texture objects, 390
displays, retrieving information, 89
dither (IRIS GL), 396
dithering, 361

disabling, 376
mid-range systems, 376

divided-screen stereo, 75
DM_IMAGE_PACKING_RGB332, 99
DM_IMAGE_PACKING_RGBA, 98, 99
DM_IMAGE_PACKING_XRGB5551, 98, 99
DMA, 365

display lists, 384
pixel formats on low-end systems, 365

DMbuffers
OpenGL rendering, 99

DMparams structure
example for creating, 100

double buffering, 51, 302
double buffering X extension, 53
drawables

and GLXFBConfig, 104
creating, 77
definition, 12
GLXVideoSourceSGIX(), 243
read drawable, 90
write drawable, 90

drawing
avoiding after screen clear, 303
fast pixel drawing, 341
lines, 362
location in call tree, 315
optimizing, 325-326

drawing-area widgets, 28
and colormaps, 14
attributes, 31
callbacks, 32, 34
creating, 28, 30

DUAL* formats, 152

E

edge clamping, 144
effective levels, 162

428

Index

Elan
fill operations, 334
performance tuning, 375

end conditions of loops, 314
error handling, 31
errors, calling glGetError(), 288
estimating performance, 300
events, 45

buffer clobber, 116
processing with callbacks, 34
Xlib, 45

example programs
benchmarking, 405
checking for extensions, 83
colormaps, 74
default colormap, 71
detail texture, 134
drawing pixels fast, 341-342
event handling with Xlib, 45
fonts and strings, 48
location, 8, 85
motif, 16
mouse motion events, 35
pdbMeasureRate(), 417
pdbWriteRate(), 418
popup menu, 65
sharpen texture extension, 142
tuning example, 343-358
video source extension, 243
workproc, 54
Xlib, 40
Xlib event handling, 45

expensive modes, 330-332
expose callback, 24, 33, 62
Expose events, 24, 47

batching, 80
exposing windows, 47
EXT_abgr, 209
EXT_blend_color, 172

EXT_blend_minmax, 173
EXT_blend_subtract, 174
EXT_convolution, 210
EXT_histogram, 213
EXT_import_context, 88
EXT_packed_pixels, 218
EXT_texture3D, 120
EXT_visual_info, 92
EXT_visual_rating, 94
extensions

3D texture, 120
4D texture, 144
ABGR, 209
blend subtract, 174
checking for availability, 82
clipmaps, 152
color blending, 172
color matrix, 220
color table, 221
convolution, 210
detail texture, 129
dmbuffer, 95
filter4 parameters, 136
frame buffer configuration, 104
GLX extension to X, 10
hardware-accelerated on mid-range systems, 376
histogram, 213
impact pixel texture, 229
import context, 88
instruments, 262
interlace, 225
list priority, 260
make current read, 90
minmax blending, 173
multisampling, 180
NURBS tesselator, 255
object space tess, 259
packed pixels, 218
pixel buffer, 112

429

Index

pixel texture, 226
point parameter, 187
resource, 87-117
sharpen texture, 139
specification, 85
sprite, 197
supported on O2 systems, 375
swap barrier, 233
swap control, 231
swap group, 236
texture_scale_bias, 169
texture border clamp, 144
texture color table, 126
texture edge clamp, 144
texture environment add, 163
texture filter4, 146
texture LOD, 148
texture LOD bias, 164
texture multibuffer, 170
texture select, 150
video, 231-254
video resize, 238
video source, 243
video sync, 232
visual info, 92
visual rating, 94

extensions available, 10
Extreme graphics

fill operations, 334
performance tuning, 375

EXT suffix, 6
eye point orientation, 197

F

fading with constant color blending, 173
fallback resources, 29
fbsubtexload (IRIS GL), 396
File menu (ogldebug), 279

fill-limited code
definition, 295
IMPACT systems, 378
in example program, 355
tuning, 332-336

fill rates, 297
optimizing, 364

filter4 parameters extension, 136
Lagrange interpolation, 136
Mitchell-Netravali scheme, 136

filters
texture filter4, 146

finding bottlenecks, 294
findvis, 12, 67
finowt bar (gr_osview), 362
fiwt bar (gr_osview, 362
flat shading, 331, 333, 356
flickering in animations, 51
flight simulators, 334
floating-point parameters, 362
flushing

and performance, 376
explicit, 376
implicit, 376

fog, 330, 361
on O2 systems, 368
optimizing, 377

fonts, 48
form widget, 30, 61
framebuffer, efficient use, 337
framebuffer configuration extension, 104
framebuffer configurations on O2 systems, 370
frame rates

preferred by viewers, 53
tuning, 302

frame widget, 30, 61
framezoom extension, 366

430

Index

framezoom factor, 367
frontbuffer (IRIS GL), 395
frontface removal, 332
functions affected by imaging extension, 209

G

gamma (IRIS GL), 396
-g compiler option, 305
genlocked pipelines, 233
geometry-limited code

finding bottlenecks, 295
in example program, 356
tuning, 325-331

getColormap(), 71
getgdesc (IRIS GL), 413
gethgram (IRIS GL), 397
getminmax (IRIS GL), 398
gettimeofday(), 298
gfxf bar (gr_osview), 362
gfxinfo, 359
gfxinit, 232
GL_(UN)PACK_IMAGE_HEIGHT_EXT, 122
GL_1PASS_SGIS, 185
GL_2PASS_0_SGIS, 185
GL_4PASS_0_SGIS, 185
GL_ABGR_EXT, 209

on low-end systems, 366
GL_BLEND, 171
GL_CLAMP_TO_BORDER_SGIS, 145
GL_CLAMP_TO_EDGE_SGIS, 145
GL_COMPILE_AND_EXECUTE, 308
GL_CONVOLUTION_BORDER_MODE_EXT, 211
GL_CONVOLUTION_FILTER_BIAS_EXT, 212
GL_CONVOLUTION_FILTER_SCALE_EXT, 212

GL_CONVOLUTION_FORMAT_EXT, 211
GL_CONVOLUTION_HEIGHT_EXT, 212
GL_CONVOLUTION_WIDTH_EXT, 212
GL_CULL_FACE, 364
GL_DEPTH_TEST, 290
GL_INTERLACE_SGIX, 226
GL_LINE_SMOOTH, 186, 397
GL_LINE_SMOOTH_HINT, 379
GL_LINEAR_DETAIL_ALPHA_SGIS, 131
GL_LINEAR_DETAIL_COLOR_SGIS, 131
GL_LINEAR_DETAIL_SGIS, 131
GL_LINEAR_SHARPEN_ALPHA_SGIS, 140
GL_LINEAR_SHARPEN_COLOR_SGIS, 140
GL_LINEAR_SHARPEN_SGIS, 140
GL_MAX_CONVOLUTION_HEIGHT_EXT, 212
GL_MAX_CONVOLUTION_WIDTH_EXT, 212
GL_POINT_FADE_THRESHOLD_SIZE_SGIS, 188
GL_POINT_SIZE_MAX_SGIS, 188
GL_POINT_SIZE_MIN_SGIS, 188
GL_POST_COLOR_MATRIX_*_BIAS_SGI, 221
GL_POST_COLOR_MATRIX_*_SCALE_SGI, 221
GL_RENDERER, 84, 359
GL_RGB5_A1_EXT, 98, 99, 338
GL_RGBA, 98, 99
GL_SAMPLE_ALPHA_TO_MASK_SGIS, 182
GL_SAMPLE_MASK_SGIS, 184
GL_SHININESS, 330
GL_SPRITE_AXIAL_SGIX, 198
GL_SPRITE_EYE_ALIGNED_SGIX, 198
GL_SPRITE_OBJECT_ALIGNED_SGIX, 198
GL_TEXTURE_CLIPMAP_CENTER_SGIX, 156
GL_TEXTURE_CLIPMAP_OFFSET_SGIX, 157
GL_TEXTURE_COLOR_TABLE_SGI, 126
GL_TEXTURE_LOD_BIAS_*_SGIX, 168
GL_TEXTURE_MAG_FILTER, 131

431

Index

GL_TEXTURE_MAX_LOD_SGIS, 149
GL_TEXTURE_MIN_LOD_SGIS, 149
GL_TEXTURE_WRAP_R_EXT, 122
GL_UNPACK_ALIGNMENT, 292
GL_UNSIGNED_BYTE_3_3_2_EXT, 219
GL_UNSIGNED_BYTE_3_3_3_EXT, 99
GL_UNSIGNED_INT_10_10_10_2_EXT, 219
GL_UNSIGNED_INT_8_8_8_8_EXT, 219
GL_UNSIGNED_SHORT_4_4_4_4_EXT, 219
GL_UNSIGNED_SHORT_5_5_5_1_EXT, 219
GL_VERSION, 84
glAlphaFunc(), 331
glAreTexturesResidentEXT(), 397
glBegin(), 315
glBlendColorEXT(), 172
glBlendEquationEXT(), 174
glBlendFunc(), 172
glCallList(), 309
glCallLists(), 48
glClear(), 289, 322
glColorMaterial(), 329
glColorTableSGI(), 126, 222
glcompat (IRIS GL), 396
glConvolutionFilter*DEXT(), 211
glCopyColorTableSGI(), 223
glCopyConvolutionFilter*DEXT(), 213
glCopyPixels() and minmax extension, 217
glCopyPixels() for scrolling, 366
glDeleteLists(), 308
glDepthRange(), 330
glDetailTexFuncSGIS(), 133
glDrawPixels(), optimizing, 341
glEnd(), 315
glFinish(), 299
glFrameZoomSGIX(), 367

glGetConvolutionFilterEXT(), 213
glGetError(), 288
glGetHistogramEXT(), 215, 397
glGetMinMaxExt(), 217
glGetMinmaxParameterEXT(), 217
glGetString(), 82, 84, 359
glHint()

GL_TEXTURE_MULTI_BUFFER_HINT_SGIX, 170
glHistogramEXT(), 215, 397
glInstrumentsBufferSGIX(), 263
glintro, 6
glListBase(), 48
glListParameter*SGIX(), 261
glLoadIdentity(), 379
glLoadMatrix(), 379
glLogicOp(), 361
glMaterial(), 329
glMinmaxEXT(), 216
glOrtho(), 290
glOrtho() performance, 362
glPerspective(), 290
glPixelMaps(), 382
glPixelTexGenSGIX(), 228, 229
glPollInstrumentsSGIX(), 264
glRect(), 364
glSampleAlphaToMaskSGIS(), 184
glSampleMaskSGIS(), 182, 184
glSamplePatternSGIS(), 185
glSeparableFilter2DEXT(), 211, 212
glShadeModel(), 364

for performance tuning, 331
glSharpenTexFuncSGIS(), 141
glTagSampleBufferSGIX(), 187, 388
glTexFilterFuncSGIS(), 147
glTexGen(), 385
glTexImage2D() and interlacing, 225

432

Index

glTexImage3DEXT, 121
glTexSubImage() for clipmap loading, 158
GLU_EXT_nurbs_tessellator, 255
GLU_EXT_object_space_tess, 259
GLU_LAGRANGIAN_SGI, 136, 137
GLU_MITCHELL_NETRAVALI_SGI, 136
GLU_OBJECT_PARAMETRIC_ERROR_EXT, 259
GLU_OBJECT_PATH_LENGTH_EXT, 259
GLU header, 11
GLU include files, 10
GLU NURBS, 379
gluNurbsCallbackDataEXT(), 257
gluNurbsProperty(), 259
glUseXFont(), 291
glVertex3fv () performance, 362
GLwCreateMDrawingArea(), 28
GLwDrawingAreaMakeCurrent(), 23
GLwDrawingAreaSwapBuffers(), 52
GLwMDrawingAreaMakeCurrent(), 28, 33
GLwMDrawingAreaSwapBuffers(), 28
GLwMDrawingArea widget, 28

and popup, 64
menus, 65
overlays, 60

GLwMDrawingArea widget See also drawing-area
widgets

GLwNexposeCallback, 33
GLwNginitCallback, 33
GLwNinputCallback, 34
GLwNresizeCallback, 34
GLX, 2, 10

checking support, 20
header, 11
importing indirect context, 88
systems supporting GLX 1.0, 21
systems supporting GLX 1.1, 21
using glXQueryExtension(), 20

GLX_BUFFER_SIZE, 78
GLX_CONTENTS_PRESERVED_SGIX, 114
GLX_DRAWABLE_TYPE_SGIX, 106
GLX_FBCONFIG_ID_SGIX, 106
GLX_GET_LARGEST_PBUFFER_SGIX, 114
GLX_GRAY_SCALE_EXT, 93
GLX_PSEUDO_COLOR, 93
GLX_RENDER_TYPE_SGIX, 106
GLX_SAMPLE_BUFFERS_SGIS, 182
GLX_SAMPLES_SGIS, 181
GLX_SCREEN_EXT, 89
GLX_SHARE_CONTEXT_EXT, 89
GLX_SLOW_EXT, 95
GLX_STATIC_COLOR_EXT, 93
GLX_STATIC_GRAY_EXT, 93
GLX_TRUE_COLOR_EXT, 93
GLX_VISUAL_CAVEAT_EXT, 95, 112
GLX_VISUAL_ID_EXT, 89
GLX_X_RENDERABLE_SGIX, 106
GLX_X_VISUAL_TYPE_EXT, 93
GLX 1.2, 21
glXBindSwapBarriersSGIX(), 234
glXChannelRectSyncSGIX(), 238
glXChooseFBConfigSGIX(), 106, 109, 112
glXChooseVisual(), 21, 31, 68, 92, 95

and multisampling, 181
using FBConfig instead, 104

GLXContext, 13
glXCreateContext(), 22
glXCreateContextWithConfigSGIX(), 111, 112
glXCreateGLXPbufferSGIX(), 114, 117
glXCreateGLXPixmap(), 78
glXCreateGLXPixmapWithConfigSGIX(), 111, 112
glXCreateGLXVideoSourceSGIX(), 243, 396
glXDestroyGLXPbufferSGIX(), 115, 117

433

Index

glXDestroyGLXVideoSourceSGIX(), 243
GLX drawable, 12
GLX extension See GLX.
GLXFBConfig, 104, 106

attributes, 106
how selected, 111

glXFreeGLXContext(), 89
glXGetCurrentDisplayEXT(), 89
glXGetFBConfigAttribSGIX(), 109, 110, 112
glXGetGLXContextIDEXT(), 88
glXGetGLXPbufferConfigSGIX(), 117
glXGetGLXPbufferStatusSGIX(), 117
glXGetLargestGLXPbufferSGIX(), 117
glXGetVideoSyncSGI(), 232
glXGetVisualFromFBConfigSGIX(), 109
glXImportGLXContextEXT(), 88
glxinfo, 12
glXJoinSwapGroupSGIX(), 237
glXMakeCurrent(), 23, 33, 105

 See also MakeCurrentRead extension
glXMakeCurrentReadSGI(), 90, 396
GLXPbuffer, 112
GLX pixmaps, 12, 78

and exposing windows, 47
glXQueryContextInfoEXT(), 89
glXQueryExtension(), 20
glXQueryExtensionsString(), 84
glXSelectEventSGIX(), 116
glXSwapBuffers(), 52, 299, 322

and tuning animations, 303
glXSwapIntervalSGI(), 231
glXUseXFont(), 48
GLXVideoSourceSGIX(), 243
GLX visual, 11
glXWaitGL(), 80
glXWaitVideoSyncSGI(), 233

glXWaitX(), 80
glyphs, 48
Gouraud shading, 333
gr_osview, 362
GrayScale visuals, 67, 93, 105
ground plane, 322
grouping primitives, 326

H

hardware configuration, 359
hardware-supported features (low-end), 361
header

for OpenGL, GLU, GLX, 11
hgram (IRIS GL), 397
hierarchy

data organization, 310
memory, 319

High IMPACT, 378
high-performance drawing, 325-326
hints

GL_NICEST smooth hint, 186
GL_TEXTURE_MULTI_BUFFER_HINT_SGIX, 170

hinv command, 320
histogram extension, 213

example, 215
O2 systems, 374
using proxy histograms, 217

hot spots, 292, 311

I

ICE, 367, 373
identity matrix, 338, 379
if-else-if statements, 314
ilbuffer (IRIS GL), 397

434

Index

ildraw (IRIS GL), 397
images on IMPACT, 381
image width on O2 systems, 373
Imaging and Compression Engine, 367, 373
imaging extensions, 203-229

affected functions, 209
imaging pipeline, 203

location of color table, 224
optimizing, 388
overview, 206
tuning, 337-339

immediate mode
contrasted with display lists, 307
machine dependencies, 420
tuning, 309-319

ImmediateModeIsFast(), 420
IMPACT

color space conversion, 383
convolution kernels, 382
display lists, 383
images, 381
performance tuning, 378-384
pixel texture, 229
quad strips, 379
textures, 380
triangle strips, 379

Impact Pixel Texture extension, 229
import context extension, 88

shareable information, 88
include files for OpenGL and X, 11
Indigo2 XL performance tuning, 361
indirect rendering, 79

pbuffers, 113
indirect rendering contexts

sharing with import context, 88
Indy

comparative performance costs, 334
performance tuning, 361-367

InfiniteReality systems
clipmaps, 153
display lists, 394
pbuffers, 392, 394
performance tuning, 390-394
sprite extension, 197
textures, 390
texture select extension, 150
texture subimages, 391
video resize extension, 239

inheritance issues, 38
init callback, 24, 33
input callbacks, 32, 34, 35, 62

example, 35
private state, 34
when called, 35

input disappears, 38
input events

and overlays, 63
input extension (X), 45
input handling, 34

actions and translations, 34
instruments extension, 262
interlace extension, 225
interleaving computation with graphics, 322
internal formats

texture select, 150
Intrinsics, 15
invalid borders, 160
IRIS GL, 5, 60

backbuffer, 395
blendcolor, 395
blendfunction, 395
convolve, 396
cpack format, 209
displacepolygon, 396
dither, 396
fbsubtexload, 396
frontbuffer, 395

435

Index

gamma, 396
getdesc, 413
gethgram, 397
getminmax, 398
glcompat, 396
hgram, 397
ilbuffer, 397
ildraw, 397
istexloaded, 397
leftbuffer, 397
libsphere, 397
linesmooth, 397
minmax, 398
msalpha, 398
msmask, 398
mspattern, 398
mssize, 399
mswapbuffers, 398
pixelmap, 399
pixmode, 399
pntsize, 400
polymode, 400
polysmooth, 400
popup planes, 400
porting, xxxi
readcomponent, 400
RGBwritemask, 400
rightbuffer, 397
setmonitor, 401
setvideo, 401
swapinterval(), 231
tevbind, 401
tevdef, 401
texbind, 401
texdef, 402
texture management, 397
tlutbind, 403
tlutdef, 403

IRIS IM, 1
and Xt, 15
example program, 16
integrating with OpenGL, 16

keyboard traversal, 28
troubleshooting, 38
widgets, 14, 15

IRIS Performer, 8, 153
IRIS Performer API

swap barrier, 234
IsFastOpenXDisplay(), 420
istexloaded (IRIS GL), 397

K

key bindings, 37
keyboard focus, 38
keyboards

virtual key bindings, 37
keyboard traversal, 28, 38

L

Lagrange interpolation (filter4 parameters
extension), 136

leftbuffer (IRIS GL), 397
libisfast, 414, 419
libpdb, 414
libraries

how to link, 26
OpenGL and X, 11

libsphere (IRIS GL), 397
lighting, 361

and material parameters, 329
debugging, 291
mid-range systems, 377
nonlocal viewing, 329
optimizing, 328-331
performance penalty of advanced features, 328
shininess, 330
single-sided, 329

436

Index

light points, 187
lines, 362

antialiased, 362, 376, 379, 386, 397
depth-buffering, 363
depth-queued, 363
optimizing for low-end systems, 362
patterned, 362
shaded, 362

linesmooth (IRIS GL), 397
line strips, 325
link lines, 26

OpenGL and X, 26
list priority extension, 260
loading

optimizing, 338
load monitoring with instruments, 262
location of example programs, 85
location of example source code, 8
location of specifications, 85
LOD

clipmaps, 152
multisampling, 184
specifying minimum/maximum level, 149
texture LOD bias extension, 164
texture LOD extension, 148

LOD extrapolation function, 141
LOD interpolation curve, 133
lookup tables

pixel texture, 226
loops

accessing buffers, 314
for benchmarking, 298
optimizing, 314
unrolling, 313

low-end systems
hardware-supported features, 361
optimizing lines, 362
scissoring, 366
software-supported features, 361

M

machine configuration, 359
macros, 315
magnification filters

detail texture, 131
sharpen texture, 140

magnification of textures, 139
make current read extension, 90

BadMatch error, 91
RealityEngine, 91

mapping windows, 24
masks

multisample mask, 184
material parameters, 329
Maximum IMPACT, 378
maxlod, 162
memory

limitations with display lists, 308
optimizing display lists, 308
paging, 319
paging caused by hierarchical data structures, 310
savings using several visuals, 69
structure of, 319

menus
GLwMDrawingArea widget, 65
multi-visual applications, 69

meshes, 317
mid-range systems

alpha blending, 376
dithering, 376
hardware-acccelerated extensions, 376
lighting, 377
optimizing clear operations, 377
performance tuning, 375, 376
texture mapping, 377

minimizing cache misses, 320
minmax (IRIS GL), 398

437

Index

minmax blending extension, 173
minmax extension, 216
mipmapping

and 3D textures, 122
and texture LOD bias extension, 164
texture LOD extension, 148

mipmapping See Also texture filter4 extension, 146
mipmaps and clipmaps, 153
-mips3, 305
Mitchell-Netravali scheme (filter4 parameters

extension), 136
mode changes

fast on RealityEngine, 385
slow on RealityEngine, 385

model view matrix and sprite extension, 197
mode settings, 297
Motif, 1

and Xt, 15
See also IRIS IM, widgets

motif/simplest.c example program, 16
mouse events, 35, 45
msalpha (IRIS GL), 398
msmask (IRIS GL), 398
mspattern (IRIS GL), 398
mssize (IRIS GL), 399
mswapbuffers (IRIS GL), 398
multipass multisampling, 185
multiple colormaps, 71
multiple processes, 321
multiple processors, 323
multiple processors and sprite extension, 197
multiple visuals, 68
multisample extension, 180
multisample mask, 184
multisample points and

GL_POINT_FADE_THRESHOLD_SIZE_SGIS,
188

multisampling, 180-187
advanced options, 182
and blending, 183
choosing visual, 181
clear, 388
comparative performance cost, 333
defining mask, 184
GL_LINE_SMOOTH, 186
introduction, 180
multipass multisampling, 185
on RealityEngine systems, 387
performance costs, 387
points, 186
polygons, 186
screen-door transparency, 183
when to use, 181

N

n32 OpenGL version, 368
nonclipped level, 155
nonlocal viewing, 329
normals, 362
NURBS, 379
NURBS object

callback, 256
NURBS tessellator extension, 255

O

O2 compiler option, 305
O2 systems

convolution, 374
framebuffer configurations, 370
histogram extension, 374
image width, 373
performance, 367-375
supported extensions, 375

438

Index

texture memory, 370
texture objects, 380

o32 OpenGL version, 368
object space tess extension, 259
ogldebug

configuration file, 278
File menu, 279
Options menu, 279
References menu, 282
setup, 271
starting, 272
trace file, 276

ogldebug tool, 269-282
one-dimensional arrays, 312
OpenGL

coordinate system, 291
header, 11
include files, 11
integrating with IRIS IM, 16
rendering mode, 67
speed considerations with X, 24
visual, 12

OpenGL Porting Guide, xxxi
opening X displays, 20
Open Inventor, 4
optimizing

compilation, 305
concave polygons, 326
conditional statements, 314
database by preprocessing, 316
database traversal, 311
depth buffering, 334
display lists, 308
drawing, 325-326
fill rates, 364
fog, 377
frame rates, 303
glDrawPixels(), 341
imaging pipeline, 388

lighting, 328-331
loading, 338
loops, 314
pixel drawing, 341
polygons, 363
rasterization on RealityEngine, 386
RealityEngine performance, 385
rendering data, 311
rendering loops, 311
texture mapping, 365
zooming, 366

Options menu (ogldebug), 279
OS/2, 1
OSF/Motif, 1

and Xt, 15
See also widgets, IRIS IM.

osview, 295, 297, 320, 321
overlays, 58

clipped, 63
colormaps, 63
GLwMDrawingArea widget, 60
input events, 63
transparency, 59
troubleshooting, 63
using XRaiseWindow(), 62
window hierarchy, 63

overloaded visuals, 12

P

packed pixels extension, 218
pixel types, 219

paging, 319
parameters determining performance, 297
patterned lines, 362
pbuffers, 112

and GLXFBConfig, 109
direct rendering, 113

439

Index

indirect rendering, 113
on InfiniteReality systems, 392, 394
preserved, 113, 114
volatile, 113
volatile, preserved pbuffer, 114

PC sampling, 322
pdbClose(), 416
pdbMeasureRate(), 417
pdbOpen(), 414, 415
pdb routines, 414
pdbWriteRate(), 418
perf.c discussion, 343-358
perf.c example program, 405
performance

clearing bitplanes, 336
determining parameters, 297
estimates, 297, 300
InfiniteReality systems, 390-394
influencing factors, 296
instruments, 262
measurements, 262
multisampling, 387
O2 systems, 367-375
penalties with lighting, 328

Performance DataBase(pdb) routines, 414
performance See low-end systems, mid-range

systems, IMPACT systems, RealityEngine, O2
systems, InfiniteReality systems.

per-fragment operations
efficient use, 333

per-pixel operations, 295
per-polygon operations

finding bottlenecks, 295
pipeline

3-stage model, 293
CPU stage, 293
performance factors, 296
raster subsystem, 295
tuning, 292

pixel buffer extension, 95, 112
pixel drawing

optimizing with framezoom, 366
pixel formats

using DMA on low-end systems, 365
pixelmap (IRIS GL), 399
pixel path. See also imaging pipeline.
pixel path tuning, 337-339
pixels

optimizing drawing, 341
transparent, 92

pixel storage modes, 122, 218
and import context, 88

pixel texture extension, 226
pixel types using packed pixels, 219
pixmaps, 77, 78

and exposing windows, 47, 48
and GLXFBConfig, 105, 111
and pbuffer, 113
as resources, 13
creating, 77
See also X pixmaps, GLX pixmaps.

pixmode (IRIS GL), 399
planes

overlay, 58
popup, 60

pntsize (IRIS GL), 400
point parameter extension, 187
points

and multisampling, 186
GL_NICEST smooth hint, 186

polling instruments, 264
polygons

antialiasing, 379
grouping primitives, 326
influencing performance, 297
large, 322
multisampling, 186

440

Index

optimizing, 315, 324, 363
optimizing large polygons, 334
optimum size, 335
RealityEngine, 385
reducing number in example program, 356

polymode (IRIS GL), 400
polysmooth (IRIS GL), 400
popup menus, 64

code fragment, 65
GLwMDrawingArea widget, 64

popup planes, 60
IRIS GL, 400

porting, xxxi, 80
porting to Windows NT, 80
preprocessing

introduction, 316
meshes, 317
vertex loops, 318

preserved pbuffer, 113
buffer clobber event, 117

primitive length
RealityEngine, 385

profiler, 353
prof sample output, 353
projection matrix debugging, 289
prototyping subroutines

in ANSI C, 314
proxy mechanism

proxy histograms, 217
proxy textures, 122
PseudoColor visuals, 67, 73, 105

Q

QUAD* formats, 152
quad buffer stereo, 75

quads on RealityEngine, 385
quad strips, 325

IMPACT, 379

R

rasterization
optimizing on RealityEngine, 386

raster subsystem. See fill-limited code.
readcomponent (IRIS GL), 400
read drawable, 90
RealityEngine

fast and slow mode changes, 385
make current read extension, 91
multisampling, 387
optimizing performance, 385
optimizing rasterization, 386
optimizing vertex arrays, 387
polygons, 385
primitive length, 385
quads, 385
transparency, 388

References menu (ogldebug), 282
refresh rate of screen, 302
remote rendering

advantage of display lists, 307
data traversal, 307

removing backfacing polygons, 332
rendering

direct and indirect, 79
optimizing data, 311
optimizing loops, 311

rendering contexts
creating, 22
definition, 13

rendering extensions, 171-197
resize callback, 32, 34, 62
resource extensions, 87-117

441

Index

Resource Manager, 13
resources, 13, 29

definition, 13
fallback, 29
two meanings of term, 13
widget properties, 29

RGBA mode, 70
and GLXFBConfig, 105

RGBwritemask (IRIS GL), 400
rightbuffer (IRIS GL), 397
rotation, 290
rubber banding, 64
RunTest(), 343

S

scene graph, 305, 310
scissoring, 361

on low-end systems, 366
-S compiler option, 323
screen clear and animations, 302
screen-door transparency, 183, 388
screen refresh time, 302
scrolling and glCopyPixels(), 366
separable convolution filter, 212
setmon command, 76, 401
setmonitor (IRIS GL), 401
setting up ogldebug, 271
setting window properties, 44
setvideo (IRIS GL), 401
SGI_color_matrix, 220
SGI_color_table, 221
SGI_make_current_read, 90
SGI_swap_control, 231
SGI_texture_color_table, 126
SGI_video_sync, 232

SGIS_detail_texture, 129
SGIS_filter4_parameters, 136
SGIS_multisample, 180
SGIS_point_parameters, 187
SGIS_sharpen_texture, 139
SGIS_texture_border_clamp, 144
SGIS_texture_edge_clamp, 144
SGIS_texture_filter4, 146
SGIS_texture_lod, 148
SGIS suffix, 6
SGI suffix, 6
SGIX_clipmap, 152
SGIX_dmbuffer, 95
SGIX_fbconfig, 104
SGIX_framezoom, 366
SGIX_instruments, 262
SGIX_interlace, 225
SGIX_list_priority, 260
SGIX_pbuffer, 112
SGIX_pixel_texture, 226
SGIX_sprite, 197
SGIX_swap_barrier, 233
SGIX_swap_group, 236
SGIX_texture_add_env, 163
SGIX_texture_lod_bias, 164
SGIX_texture_multi_buffer, 170
SGIX_texture_scale_bias, 169
SGIX_texture_select, 150
SGIX_texture4D, 144
SGIX_video_resize, 238
SGIX_video_source, 243
SGIX suffix, 6
shaded lines, 362
shading, 333, 356
sharing resources, 13

442

Index

sharpen texture extension, 139
customizing, 141
example program, 142
magnification filters, 140
Reality Engine systems, 386

sheared image, 292
Silicon Graphics X server, 10
simple lighting model, 328
single-buffer mode, 303
single-channel visuals, 110
single-sided lighting, 329
Sirius video, 396
smoke, 324
smooth shading, 356
software-supported features (low-end), 361
Solid Impact, 380
source code for examples, 8
specification location, 85
specifying minimum/maximum LOD, 149
speed considerations, 24
sphere example, 343-358
sprite extension, 197

and multiple processors, 197
stack trace, 39
starting ogldebug, 272
StaticColor visuals, 67, 93, 105
StaticGray visuals, 67, 93, 105
stencil buffer, 361
StencillingIsFast(), 420
stereo rendering, 74
strings, 48
strips, 317
subimage, 130
swap barrier extension, 233
swap control extension, 231
swap group extension, 236

swap groups, synchronizing, 233
swapinterval (IRIS GL), 231
swapping buffers, 52
switch statements, 314
-sync flag, 39
synchronizing buffer swaps, 236
synchronizing swap groups, 233
synchronizing video, 232

T

tessellation, 379, 397
tessellation, object space, 259
tessellations, retrieving, 255
Test(), 343
tevbind (IRIS GL), 401
tevdef (IRIS GL), 401
texbind (IRIS GL), 401
texdef (IRIS GL), 402
text handling, 48
texture_scale_bias extension, 169
texture border clamp extension, 144
texture borders, 391
texture color table extension, 126
textured polygons, 324
texture edge clamp extensions, 144
texture environment add extension, 163
texture extensions, 119-164
texture filter4 extension, 146
texture generation, 385
texture images

and convolution extension, 213
texture internal formats

texture select, 150
texture LOD bias extension, 164
texture LOD extension, 148

443

Index

texture magnification, 139
texture mapping, 420

mid-range systems, 377
optimizing, 365

TextureMappingIsFast(), 420
texture memory, 384
texture memory, efficient use, 150
texture memory on O2 systems, 370
texture multibuffer extension, 170
texture objects

and detail texture, 134
on O2 systems, 380

texture objects vs. display lists, 390
textures

4D texture extension, 144
filter4 parameters extension, 136
IMPACT systems, 380
interlacing, 225
on Indigo2 and OCTANE systems, 380
on InifiniteReality systems, 390
optimizing, 330
switching, 330
texture filter4 extension, 146
texture LOD extension, 148
texture multi buffer extension, 170

texture select extension, 150
texture subimages on InfiniteReality, 391
texture wrap modes, 122
texturing, 333, 361

performance cost, 387
 See also textures

three-stage model of the graphics pipeline, 293
tiles, 160
timing

background processes, 297
glFinish(), 299
loops, 298
measurements, 296, 297

TLB, 319
tlutbind (IRIS GL), 403
tlutdef (IRIS GL), 403
top-level widget, 30
toroidal loading, 161
trace files, 276
TRAM, 384
transform-limited code

finding bottlenecks, 295
optimizing, 364
tuning, 325-331

transform rate, 297
translation-lookaside buffer. See TLB.
translations. See actions and translations.
transparency, 335

in overlays, 59
on RealityEngine, 388

transparent pixels, 43, 92
traversal, 28, 38

remote rendering, 307
traversal of data, 305
triangle fans, 325
triangle strips, 318, 325, 363

on IMPACT, 379
troubleshooting

IRIS IM input disappears, 38
overlays, 63
widgets, 38

TrueColor visuals, 45, 67, 73, 105
tuning

advanced, 322-323
animations, 302
clear, 322
display lists, 308-309
Elan graphics, 375
examining assembly code, 323
example program, 343-358
Extreme graphics, 375

444

Index

fill-limited code, 332-336
fundamentals, 287-300
immediate mode, 309-319
IMPACT systems, 378-384
Indigo2 XL, 361
Indy, 361-367
pipeline, 292
pixel path, 337-339
reducing frame rate, 302
single-buffer mode, 303
transform-limited code, 325-331
using textured polygons, 324

tuning with instruments, 262
TV_COMPONENT_SELECT (IRIS GL), 401

U

underlay planes, 60
unrolling, 313, 318
updating clipmap stack, 158
using Xlib, 39

V

vertex array extension
optimizing for RealityEngine, 387

vertex arrays, 326
vertex fogging, 368
vertex loops

preprocessing, 318
vertical retrace, 302, 322
video

dithering, 396
interlace extension, 225
stereo rendering, 74

video device control, 401
video extensions, 231-254

video resize extension, 238
video source extension, 243

example program, 243
video sync extension, 232
virtual clipmaps, 162
virtual key bindings, 37
virtual offset, 162
visual info extension, 92

used in overlay example, 61
visual rating extension, 94
visuals, 67

and colormaps, 42
and contexts, 105
choosing, 66
colormaps, 67
definition, 11
for multisampling, 181
gray scale, 93
memory savings, 69
mutiple-visual applications, 68
OpenGL visual, 12
overloaded, 12
selecting, 21
single-channel, 110
single-visual applications, 68
static color, 93
static gray, 93
visual info extension, 92

VL_PACKING_ABGR8, 99
VL_PACKING_ARGB_1555, 99
VL_PACKING_X444_332, 99
volatile pbuffers, 113, 114

buffer clobber event, 117
volume rendering, 120

and texture color table, 126

445

Index

W

WhitePixel color macro, 70
widgets, 14

callbacks, 34
container, 30
definition, 14
drawing-area, 28
error handling, 31
form, 61
frame, 61
input handling, 34
IRIS IM, 14, 15
mapping window, 24
properties, 29
troubleshooting, 38
with identical characteristics, 31
XmPrimitive, 28

widget sets, 14
window manager

4Dwm, 1
window properties

setting, 44
windows

as resources, 13
mapping, 24

Windows NT, 1, 80
window systems

NT, 1
OS/2, 1

word-aligned data, 375
work procedures. See workprocs.
workprocs, 53

adding, 53
example program, 54
removing, 54

wrap modes for textures, 122
write drawable, 90

X

X
bitmap fonts, 48
color macros, 70
coordinate system, 291
fallback resources, 29
opening display, 20
pixmaps, 78
resources, 13
speed considerations, 24

XCreateColormap(), 42, 63
XCreatePixmap()., 78
XCreateWindow(), 43
X double buffering extension, 53
xdpyinfo, 10, 12, 67
X extensions

double buffering, 53
GLX, 10

XFree(), 93
XGetVisualInfo(), 22, 68
XID, 13, 88

for pbuffer, 114
X input extension, 45
XInstallColormap(), 44
Xlib

colormaps, 74
event handling, 45
example program, 40

XMapWindow(), 24
XMatchVisualInfo(), 68
XmCreateSimplePopupMenu(), 64
XmPrimitive widget, 28
XOpenDisplay(), 20
XRaiseWindow(), 60, 62
X server on Silicon Graphics systems, 10
XSetWMColormapWindows(), 44, 63, 71, 73

446

Index

XSetWMProperties(), 44
XSGIvc extension, 75, 396, 401
XStoreName(), 44
XSynchronize(), 39
Xt, 15
XtAddCallback(), 33
XtAppAddWorkProc(), 53
XtCreateManagedChild(), 24
XtCreateManagedWidget(), 22
XtOpenApplication(), 20, 29
XtRealizeWidget(), 24
XtRemoveWorkProc(), 54
X visual See visuals
X window and channel, 239
X Window System

introduction, 9
terminology, 9

X window system
swap group, 238

Z

z axis, 290
zooming, 366

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2392-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

