
Developer MagicTM: Debugger User’s
Guide

Document Number 007–2579–004

Copyright © 1996, 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

IRIS, IRIX, and Silicon Graphics are registered trademarks andDeveloper Magic, ProDev, and the Silicon Graphics logo are
trademarks of Silicon Graphics, Ins. Open Software Foundation, Motif, OSF, OSF/Motif are trademarks of the Open Software
Foundation, Inc. Postscript is a registered trademark of Adobe Systems, Inc. UNIX is a registered trademark in the United States
and other countries, licensed exclusively through X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd.
The X device is a trademark of the Open Group.

New Features

Developer MagicTM: Debugger User’s Guide 007–2579–004

This revision of the Developer Magic: Debugger User’s Guide supports the 2.7 release of ProDev WorkShop
tools.

Record of Revision

Version Description

1.0 1991
Original Printing.

2.7 June 1998
Revised to reflect changes for the ProDev WorkShop 2.7 release.

007–2579–004 i

Contents

Page

About This Guide xix

Related Publications . xix

Obtaining Publications . xx

Conventions . xx

Reader Comments . xxi

Getting Started with the WorkShop Debugger [1] 1

Typical Debugger Usage . 1

Starting and Exiting the Debugger 1

Using Main View . 2

Setting Traps . 3

Inspecting Debugger Data . 4

Changing Source Code . 4

Integration With Other WorkShop Tools 5

Accessing the Performance Analyzer from Main View 5

Accessing the Static Analyzer from Main View 5

Accessing Editors from Main View 5

Accessing Configuration Management Tools 5

Recompiling from Main View 6

Debugging with Fix and Continue 6

Redefining Functions Using Fix and Continue 6

Fix and Continue Functionality 6

Fix and Continue/WorkShop Integration 8

How Redefined Code Is Distinguished from Compiled Code 8

007–2579–004 iii

Developer MagicTM: Debugger User’s Guide

Page

Restrictions on Fix and Continue 9

The Fix and Continue Environment 10

Debugger With Fix and Continue Support 10

Change ID, Build Path, and Other Concepts 10

Debugging with the X/Motif Analyzer 11

Special Libraries . 12

Using the X/Motif Analyzer . 12

Examiners Overview . 12

Examiners and Selections . 12

Inspecting Data . 13

Inspecting the Control Flow 13

Tracing the Execution . 13

Restrictions and Limitations . 13

Customizing the Debugger . 14

Using a Startup File . 14

Implementing User-Defined Buttons 15

Managing Source Files [2] 17

Accessing Files Used by an Executable 17

Opening a New File . 18

Path Remapping . 19

A Short Debugger Tutorial [3] 23

Starting the Debugger . 23

Performing a Search . 25

Setting Traps . 27

Examining Data . 30

Setting Traps [4] 39

iv 007–2579–004

Contents

Page

Trap Terminology . 39

Trap Triggers . 39

Trap Actions . 40

Setting Traps in Main View and Source View 40

Setting Traps with the Traps Menu in Main View 40

Setting Traps with the Mouse . 42

Setting Traps in Trap Manager . 43

Setting Single-process and Multiprocess Traps 43

Setting a Trap Condition . 46

Setting a Trap Cycle Count . 47

Setting a Trap with the Traps Menu 47

Moving around the Trap Display Area 48

Enabling and Disabling Traps . 48

Saving and Reusing Trap Sets . 48

Setting Traps With Signal Panel and System Call Panel 48

Controlling Process Execution [5] 51

Main View Control Panel . 51

Status and Entry Fields in the Main View Control Panel 51

Execution Control Buttons . 52

Controlling Process Execution Using the PCMenu 55

Execution View . 55

Examining Debugger Data [6] 57

Tracing through Call Stack View 57

Evaluating Expressions . 60

Expression View Window . 60

Assigning Values to Variables . 62

Evaluating Expressions in C . 63

007–2579–004 v

Developer MagicTM: Debugger User’s Guide

Page

C Function Calls . 63

Evaluating Expressions in C++ 64

Limitations . 64

Evaluating Expressions in Fortran 64

Fortran Variables . 65

Fortran Function Calls . 65

Debugging with Fix+Continue: A Tutorial [7] 67

Setting Up the Sample Session . 67

Redefining a Function . 69

Editing a Function . 69

Changing Code . 71

Deleting Changed Code . 72

Changing Code From the Debugger Command Line 72

Saving Changes . 73

Setting Breakpoints in Redefined Code 73

Viewing Status . 76

Comparing Original and Redefined Code 76

Switching Between Compiled and Redefined Code 76

Comparing Function Definitions 77

Comparing Source Code Files . 78

Ending the Session . 78

Detecting Heap Corruption [8] 79

Typical Heap Corruption Problems 79

Detecting Heap Corruption Errors 79

Compiling with the Malloc Library 80

Setting Environment Variables 81

Trapping Heap Errors Using the Malloc Library 82

vi 007–2579–004

Contents

Page

Heap Corruption Detection Tutorial 83

Multiple Process Debugging [9] 89

Debugging with Multiprocess View 89

Invoking the Parent Process . 90

Viewing Process Status . 91

Using Control Buttons . 91

Multiprocess Traps . 92

Adding and Removing Processes 92

Multiprocess Preferences . 92

Controlling Execution and Setting Traps in a Multiprocess Program 92

Using Multiprocess View to Control Execution 95

Using the Trap Manager to Control Trap Inheritance 96

Debugging a Multiprocess Fortran Program 98

General Fortran Debugging Hints 98

Multiprocess Debugging Session 98

Using the X/Motif Analyzer: A Tutorial [10] 103

Setting Up the Sample Session . 103

Preparing the Fileset . 103

Launching the X/Motif Analyzer 105

Navigating the Widget Structure . 105

Examining Widgets . 107

Setting Callback Breakpoints . 109

Using Additional Features of the Analyzer 112

Ending the Session . 116

Appendix A Debugger Reference 117

Main View . 117

007–2579–004 vii

Developer MagicTM: Debugger User’s Guide

Page

Admin Menu . 123

Views Menu . 126

Query Menu . 127

Source Menu . 128

Display Menu . 130

Perf Menu . 131

Traps Menu . 133

PC Menu . 134

Fix+Continue Menu . 134

Show Difference Submenu 135

View Submenu . 136

Preferences Submenu . 136

Keyboard Accelerators . 139

Help Menu . 139

Basic Windows . 140

Execution View . 140

Multiprocess View . 140

Viewing Status . 141

Multiprocess Control Buttons . 142

Controlling Processes . 143

Controlling Preferences . 144

Source View . 145

Process Meter . 148

Charts Menu . 149

Scale Menu . 149

Ada-specific Windows . 149

Task View . 149

Admin Menu . 150

Config Menu . 151

Layout Menu . 151

viii 007–2579–004

Contents

Page

Display Menu . 151

Exception View . 152

X/Motif Analyzer Windows . 155

Global Objects . 156

Admin Menu . 157

Examine Menu . 157

Examiner Tabs . 158

Return Button . 158

Breakpoints Examiner . 158

Callback Breakpoints Examiner 160

Trace Examiner . 175

Widget Examiner . 177

Tree Examiner . 178

Callback Examiner . 179

Window Examiner . 180

Event Examiner . 181

Graphics Context Examiner . 182

Pixmap Examiner . 183

Widget Class Examiner . 184

Project Management Window . 185

Project View Admin Menu 186

Text Fields . 186

Project Display Area . 186

Project Pop-up Menu . 186

Trap Management Windows . 186

Trap Manager . 186

Config Menu . 188

Traps Menu . 188

Display Menu . 189

007–2579–004 ix

Developer MagicTM: Debugger User’s Guide

Page

Signal Panel . 189

Syscall Panel . 190

Data Examination Windows . 190

Array Browser Window . 191

Spreadsheet Menu . 195

Format Menu . 196

Render Menu . 197

Color Menu . 197

Scale Menu . 199

Examiner Viewer Controls . 200

Examiner Viewer Menu . 202

Call Stack View Window . 204

Config Menu . 205

Display Menu . 206

Expression View Window . 206

Config Menu . 207

Display Menu . 207

Language Pop-up Menu . 207

Format Pop-up Menu . 207

File Browser Window . 208

Structure Browser Window 209

Using the Structure Browser Overview Window to Navigate 211

Entering Expressions . 211

Working in the Structure Browser Display Area 211

Structure Browser Display Menu 212

Node Menu . 214

Formatting Fields . 215

Variable Browser Window 219

Entering Variable Values . 219

Changing Variable Column Widths 220

x 007–2579–004

Contents

Page

Viewing Variable Changes . 220

Machine-level Debugging Windows 221

Disassembly View . 221

Similarities with Main View 222

Disassemble Menu . 223

Disassembly View Preferences 225

Register View Window . 227

Register View Window . 228

Changing the Register View Display 229

Memory View . 230

Viewing a Portion of Memory 231

Changing the Contents of a Memory Location 232

Changing the Memory Display Format 232

Moving around the Memory View Display Area 232

Fix+Continue Windows . 232

Fix+Continue Status Window 234

Admin Menu . 235

View Menu . 235

Fix+Continue Menu . 236

Fix+Continue Error Messages Window 238

Admin Menu . 239

View Menu . 239

Fix+Continue Build Environment Window 239

Changes to Debugger Views . 241

Main View . 241

Command Line Interface . 242

Call Stack View . 243

Trap Manager . 243

Debugger Command Line . 244

007–2579–004 xi

Developer MagicTM: Debugger User’s Guide

Page

Appendix B Using the Build Manager 259

Build View Window . 259

Build Process Control Area . 260

Transcript Area . 261

Error List Area . 261

Build View Admin Menu . 262

Build View Preferences . 262

Build Options . 263

Using Build View . 264

Build Analyzer Window . 265

Build Specification Area . 266

Build Graph Area . 266

Build Graph Control Area . 268

Build Analyzer Overview Window 269

Build Analyzer Menus . 270

Admin Menu . 270

Build Menu . 270

Filter Menu . 270

Query Menu . 271

Index 273

Figures
Figure 1. Major Areas of Main View 3

Figure 2. Fix and Continue Cycle 7

Figure 3. Launching the X/Motif Analyzer 11

Figure 4. User-Defined Button Example 15

Figure 5. File Browser Window 17

Figure 6. Open Dialog Box . 18

xii 007–2579–004

Contents

Page

Figure 7. Path Remapping Dialog 20

Figure 8. Main View Window with jello Source Code 24

Figure 9. The jello Window . 25

Figure 10. The Search Dialog . 26

Figure 11. Search Target Indicators 27

Figure 12. Stop Trap Indicator . 28

Figure 13. Trap Manager Window 29

Figure 14. Call Stack View at spin Stop Trap 31

Figure 15. Variable Browser at spin 32

Figure 16. Variable Browser after Changes 33

Figure 17. Expression View with Language and Format Menus Displayed 34

Figure 18. Structure Browser Window with jello_conec Structure 35

Figure 19. Structure Browser Window With Next Pointer Dereferenced 35

Figure 20. Array Visualizer Window for shadow Matrix 36

Figure 21. Subscript Control Area in Array Visualizer Window 37

Figure 22. Traps Menu in Main View 41

Figure 23. Typical Trap Icons . 42

Figure 24. Trap Manager Config , Traps , and Display Menus 43

Figure 25. Trap Examples . 46

Figure 26. Signal Panel and System Call Panel 49

Figure 27. Main View Control Panel 51

Figure 28. Pop-up Menu and Step Into Dialog 53

Figure 29. Pop-up Menu and Step Over Dialog 54

Figure 30. Call Stack View Window 58

Figure 31. Tracing through Call Stack View 59

Figure 32. Expression View with Major Menus Displayed 61

Figure 33. Change Indicators in Expression View 62

007–2579–004 xiii

Developer MagicTM: Debugger User’s Guide

Page

Figure 34. Debugger Main View With Fix+Continue Menu 68

Figure 35. Program Results in Execution View 69

Figure 36. Selecting a Function for Redefinition 70

Figure 37. Redefined Function . 71

Figure 38. Bounce Window . 72

Figure 39. Stopping After Breakpoints in Redefined Code 75

Figure 40. Comparing Compiled and Redefined Function Code 77

Figure 41. Setting Traps to Detect Heap Corruption 85

Figure 42. Heap Corruption Warning Shown in Execution View 86

Figure 43. Call Stack at Boundary Overrun Warning 86

Figure 44. Main View at Bus Error 87

Figure 45. Multiprocess View 91

Figure 46. Examining Process State Using Multiprocess View 96

Figure 47. Modifying a Trap to Affect a Process Group 97

Figure 48. Comparing Variable Values from Two Processes 102

Figure 49. Debugger Main View 104

Figure 50. Program Results in Execution View 105

Figure 51. First View of the X/Motif Analyzer (Widget Examiner) 106

Figure 52. Widget Hierarchy Displayed by the Tree Examiner 107

Figure 53. Adding a Breakpoint for a Widget 108

Figure 54. Setting Breakpoints for a Widget Class 110

Figure 55. Callback Context Displayed by the Callback Examiner 111

Figure 56. Window Attributes Displayed by the Window Examiner 112

Figure 57. Selecting the Breakpoints Tab From the Overflow Area 114

Figure 58. Breakpoint Results Displayed by the Call Stack View 115

Figure 59. Major Areas of the Main View Window 118

Figure 60. Show/Hide Annotations Button in Main View 123

xiv 007–2579–004

Contents

Page

Figure 61. The Search Dialog 129

Figure 62. Go to Line Dialog 129

Figure 63. Preferences Dialog . 131

Figure 64. Perf Menu and Subwindows 132

Figure 65. Fix+Continue Preferences Dialog 137

Figure 66. Execution View . 140

Figure 67. Multiprocess View 141

Figure 68. Source View . 146

Figure 69. Process Meter . 148

Figure 70. Task View . 150

Figure 71. Exception View . 153

Figure 72. Launching the X/Motif Analyzer Window 156

Figure 73. Examiner Tabs . 158

Figure 74. Breakpoints Examiner Display in the X/Motif Analyzer Window 159

Figure 75. Event-Handler Breakpoints Examiner 162

Figure 76. Timeout-Procedure Breakpoints Examiner 166

Figure 77. Input-Handler Breakpoints Examiner 167

Figure 78. State-Change Breakpoints Examiner 169

Figure 79. X-Event Breakpoints Examiner 171

Figure 80. X-Request Breakpoints Examiner 173

Figure 81. Request Type Selection Dialog 174

Figure 82. Trace Examiner . 176

Figure 83. Widget Examiner . 177

Figure 84. Tree Examiner . 178

Figure 85. Callback Examiner . 180

Figure 86. Window Examiner . 181

Figure 87. Event Examiner . 182

007–2579–004 xv

Developer MagicTM: Debugger User’s Guide

Page

Figure 88. Graphics Context Examiner 183

Figure 89. Pixmap Examiner . 184

Figure 90. Widget Class Examiner 185

Figure 91. Trap Manager Window 187

Figure 92. Signal Panel . 189

Figure 93. Syscall Panel . 190

Figure 94. Array Browser with Display Menu Options 192

Figure 95. Subscript Controls: Area in the Array Browser 193

Figure 96. Array Browser Spreadsheet Area 195

Figure 97. Example of Wrapped Array 196

Figure 98. Color Exception Portion of Array Browser Window 198

Figure 99. Array Browser Graphic Modes 199

Figure 100. Examiner Viewer with Controls and Menus 201

Figure 101. Examiner Viewer Preferences Dialog 203

Figure 102. Call Stack View 205

Figure 103. Expression View 206

Figure 104. Expression View Format Popup with Submenus 208

Figure 105. File Browser Window 209

Figure 106. Structure Browser with Menus Displayed 210

Figure 107. Tree and Linked List Arrangements of Structures 213

Figure 108. Structure Browser Preferences Dialog 216

Figure 109. Structure Browser Type Formatting Dialog 217

Figure 110. Variable Browser with Menus Displayed 220

Figure 111. Typical Variable Change Indicators 221

Figure 112. Disassembly View with Menu Displayed 222

Figure 113. Disassemble From Address Dialog 223

Figure 114. Disassemble Function Dialog 224

xvi 007–2579–004

Contents

Page

Figure 115. Disassemble File Dialog 225

Figure 116. Disassembly View Preferences Dialog with Pop-up Menu 226

Figure 117. Register View . 228

Figure 118. Register View Preferences Dialog 230

Figure 119. Memory View with Menu Displayed 231

Figure 120. Fix+Continue Menu Selections 233

Figure 121. Fix+Continue Status Window 234

Figure 122. Fix+Continue Status Window Menus 235

Figure 123. Fix+Continue Error Messages Window 238

Figure 124. Fix+Continue Build Environment Window 240

Figure 125. Debugger Main View 242

Figure 126. Command Line Interface with Redefined Function 243

Figure 127. Call Stack View 243

Figure 128. Trap Manager Window with Redefined Function 244

Figure 129. Build Process Control Area in Build View Window 260

Figure 130. Build View Window with Typical Data 261

Figure 131. Build View Preferences Dialog 263

Figure 132. Build Options Dialog 264

Figure 133. Build Analyzer Window 266

Figure 134. Build Graph Icons . 268

Figure 135. Build Graph Control Area 268

Figure 136. Build Analyzer Overview Window with Build Analyzer Graph 269

Tables
Table 1. Fix and Continue Compile Time Cycle 6

Table 2. Valid C Operations . 63

Table 3. Valid Fortran Operations 65

Table 4. Fix+Continue Keyboard Accelerators 139

007–2579–004 xvii

About This Guide

This publication documents the WorkShop release 2.7 running on IRIX systems.

The Debugger is a source-level debugging tool that displays program and data
and execution status.

This manual contains the following chapters:

• Chapter 1, page 1, describes how to get started using the Debugger and
gives a general overview of Debugger functionality.

• Chapter 2, page 17, describes how to manage source files.

• Chapter 3, page 23, presents a short Debugger tutorial.

• Chapter 4, page 39, describes how to set various types of traps.

• Chapter 5, page 51, describes methods for controlling process execution.

• Chapter 6, page 57, explains how to examine Debugger data.

• Chapter 7, page 67, presents a short tutorial using Fix and Continue.

• Chapter 8, page 79, describes heap corruption problems and how to detect
them.

• Chapter 9, page 89, describes debugging multiprocess programs.

• Chapter 10, page 103, presents a short tutorial using the X/Motif Analyzer

• Appendix A, page 117, describes all of the Debugger windows, menus, and
other features in detail.

• Appendix B, page 259, describes use of the Build Manager.

Related Publications

The following documents contain additional information that may be helpful:

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Product Reference Manual

• C++ Programmer’s Guide

007–2579–004 xix

Developer MagicTM: Debugger User’s Guide

• Developer Magic: Performance Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Developer Magic: Debugger User’s Guide

• Fortran 77 Language Reference Manual

Obtaining Publications

Silicon Graphics maintains publications information at the following World
Wide Web site:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

xx 007–2579–004

About This Guide

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info () routine) do not have
man pages associated with them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

007–2579–004 xxi

Developer MagicTM: Debugger User’s Guide

We value your comments and will respond to them promptly.

xxii 007–2579–004

Getting Started with the WorkShop
Debugger [1]

The WorkShop Debugger is a UNIX source-level debugging tool that provides
special windows (views) for displaying program data and execution status.
These views update as the program executes. This chapter presents an
overview of the WorkShop Debugger and is divided into these sections:

• Typical Debugger Usage, Section 1.1, page 1

• Debugging with Fix and Continue, Section 1.4, page 14

1.1 Typical Debugger Usage

This section provides a general description of debugging software with
WorkShop. It covers these topics:

• Starting and Exiting the Debugger, Section 1.1.1, page 1

• Using Main View, Section 1.1.2, page 2

• Setting Traps, Section 1.1.3, page 3

• Inspecting Debugger Data, Section 1.1.4, page 4

• Changing Source Code, Section 1.1.5, page 4

• Integration With Other WorkShop Tools, Section 1.1.6, page 5

1.1.1 Starting and Exiting the Debugger

To start the Debugger, use the following syntax:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

The -pid option lets you attach the Debugger to a running process. You can
use this to determine why a live process is in a loop.

The -host option lets you specify a remote host on which the target executable
will be run while the Debugger runs locally. This option is useful in the
following circumstances:

007–2579–004 1

Developer MagicTM: Debugger User’s Guide

• You do not want the Debugger windows to interfere with the application
you are debugging.

• You are supporting an application remotely.

• You do not want to use the Debugger on the target machine for any other
reason.

The executable argument is the name of the executable file for the process you
want to run. It is optional; you can invoke the Debugger first and specify the
executable file name later.

You can also invoke the Debugger with the corefile argument to specify a core
file (with its executable file). This will aid you in determining why a program
crashed.

To exit the Debugger, you can select from several options:

• Select Exit from the Admin menu in the Main View window.

• Type quit at the Debugger command line.

• Press Ctrl-c in the same window where you entered the cvd command.

• Double-click the window system menu or select the Quit entry.

1.1.2 Using Main View

Starting the Debugger with an executable file brings up the Main View, loaded
with source code and ready to run the process with any specified arguments.
You perform most of your work in Main View, which displays the following:

• A menu bar for performing Main View functions and for accessing other
views

• A control panel for specifying and controlling the process to be debugged

• A source code display area for inspecting the source code

• A status line for viewing the state of the program

• The Debugger command line for entering debugging commands (see Section
A.10, page 244, for the syntax)

The major areas of the Main View window are shown in Figure 1, page 3.

2 007–2579–004

Getting Started with the WorkShop Debugger [1]

Menu bar

Control panel

Status area

Source code
display area

Annotation
column

Source filename

Debugger
command line

Figure 1. Major Areas of Main View

1.1.3 Setting Traps

A major part of the debugging process is inspecting data at various points
during execution. A trap is a mechanism for gathering this data. A stop trap
halts a process so that you can manually examine data. A sample trap collects
specific performance data without stopping.

The Debugger lets you set traps at the following points:

• At a line in a file (a breakpoint)

• At an instruction address

• On entry to or exit from a function

• When a signal is received

• When a system call is made, at either the entry or exit point

007–2579–004 3

Developer MagicTM: Debugger User’s Guide

• When a given variable or address is written to, read from, or executed (a
watchpoint)

• At set time intervals (a pollpoint)

For more information on traps, refer to Chapter 4, page 39.

1.1.4 Inspecting Debugger Data

When you stop a process, you have several options for examining the data. You
can inspect the following types of data:

• The call stack at the breakpoint by using the Call Stack View

• The value of specified expressions by using Expression View

• The values, types, or addresses of variables by using the Variable Browser

• Data structures by using the Structure Browser

• The values of an array variable by using the Array Browser

• The values in specified memory locations by using Memory View or
registers by using Register View

• The disassembled code by using Disassembly View

For more information on the various Debugger views, refer to Chapter 6, page
57.

1.1.5 Changing Source Code

To change your source code and recompile, follow these steps:

1. Switch to a text editor by using the Fork Editor selection in the Source
menu.

If you are using a configuration management system, you can check out the
source code by selecting Versioning from the Source menu and
accessing the source through the configuration management shell.

2. Make any changes and save them. In the Main View, pull down the
Source menu and select the Save... option.

3. In the Main View, pull down the Source menu and select Recompile .

4 007–2579–004

Getting Started with the WorkShop Debugger [1]

The Build View window displays and lets you start the compile. Any
compile errors are listed in the window, and you can access the related
source code by clicking the errors. For more information on the Build
Manager, refer to Appendix B, page 259.

When the code is rebuilt successfully, the new executable file reattaches
automatically to the Debugger and the Static Analyzer. Previously set traps
are intact unless you have traps triggered at line numbers and have
changed the line count.

1.1.6 Integration With Other WorkShop Tools

The WorkShop tools are designed so that you can move easily between them in
a work session.

1.1.6.1 Accessing the Performance Analyzer from Main View

You can switch to the Performance Analyzer at any time while debugging.
Selecting Performance Task... from the Admin menu lets you enable data
collection for your experiment. You must specify a performance task before a
process is run. This enables correct data collection. If you are in the middle of a
run, you must terminate the run, select a task, and restart the target to collect
the data. Selecting Performance Analyzer from the Launch Tool submenu
displays the main Performance Analyzer view for analyzing experiment results.

1.1.6.2 Accessing the Static Analyzer from Main View

You can access the Static Analyzer from the Launch Tool submenu. The Static
Analyzer displays source information making it easy to set traps in your source
code.

1.1.6.3 Accessing Editors from Main View

After you solve a problem with the WorkShop tools, you may wish to make the
change in Source View (or your preferred editor) and then recompile.

1.1.6.4 Accessing Configuration Management Tools

If you use ClearCase (available from Silicon Graphics), RCS, or SCCS for
configuration management, you can integrate the tool into the WorkShop
environment by typing

cvconfig [clearcase | rcs | sccs]

007–2579–004 5

Developer MagicTM: Debugger User’s Guide

This enables the Versioning selection of the Source menu that provides
selections for checking files in and out.

1.1.6.5 Recompiling from Main View

To access the Build View window, which lets you start the compile process,
from the Main View pull down the Source menu and select Recompile . To
examine the build dependencies from the Main View, pull down the Admin
menu and select Build Analyzer . For more information on the Build
Manager tools, see Appendix B, page 259.

1.2 Debugging with Fix and Continue

Fix and Continue is integrated with the Debugger. You issue Fix and Continue
commands graphically from the Fix+Continue menu of the Debugger Main
View. You may also issue Fix and Continue commands from the Debugger
command line.

1.2.1 Redefining Functions Using Fix and Continue

Fix and Continue gives you the ability to make changes to a program you are
debugging without having to recompile and link the entire program, and then
continue debugging the code. With Fix and Continue, you can edit a function,
parse the new function, and continue execution of the program being debugged.

Table 1, page 6, compares the cycle time in seconds between a full rebuild and a
Fix and Continue for three typical programs.

Table 1. Fix and Continue Compile Time Cycle

Example Time to Rebuild Time to Fix+Continue

Program A 0:06 0:02

Program B 0:33 0:06

Program C 5:24 0:49

1.2.1.1 Fix and Continue Functionality

Fix and Continue lets you perform the following activities:

6 007–2579–004

Getting Started with the WorkShop Debugger [1]

• Redefine existing function definitions

• Disable, reenable, save, and delete redefinitions

• Set breakpoints in and single-step within redefined code

• View the status of changes

• Examine differences between original and redefined functions

The basic cycle of using Fix and Continue is shown in Figure 2, page 7.

Redefine
function

Continue
debugging

Figure 2. Fix and Continue Cycle

A typical session would have the following scenario:

1. Using Fix and Continue commands, you redefine a function. When you
continue executing the program, the Debugger attempts to call the
redefined function. If it cannot, an information pop-up window appears
and the redefined function will be executed the next time the program calls
that function.

2. You redefine other functions, alternating between debugging, disabling,
reenabling, and deleting redefinitions. You might save function
redefinitions to their own files, or save files to a different name, to be used
later with the present or with other programs.

Frequently during debugging you can review the status of changes by listing
them, showing specific changes, or looking at the Fix and Continue Status

007–2579–004 7

Developer MagicTM: Debugger User’s Guide

View . You can compare changes to an individual function or to an entire file
with the compiled versions. When you are satisfied with the behavior of your
application, save the file thus replacing the compiled source.

1.2.1.2 Fix and Continue/WorkShop Integration

Using Fix and Continue interacts with the following WorkShop tools:

• The WorkShop Debugger Main View, the Source View , and the
Fix+Continue Status window make a clear distinction between
compiled and redefined code and allow editing only in redefined code.

• The following WorkShop entities are knowledgeable about redefined code:

– Call Stack window

– Trap Manager

– Debugger command line

1.2.1.3 How Redefined Code Is Distinguished from Compiled Code

Redefined functions have an identification number and special line numbers
and in the Debugger views are color–coded according to their state (edited,
parsed, and so on).

Line numbers in the compiled file stay the same, no matter how redefined
functions change. However, when you begin editing a function, the line
numbers of the function body are represented in decimal notation (n.1, n.2, ...,
n.m). n is the compiled line number where the function body begins. m is the
line number relative to the beginning of the function body, starting with the
number one.

The Call Stack window and the Trap Manager functions both use
function-relative decimal notation when referring to a line number within the
body of a redefined function.

The Debugger command line reports ongoing status. In addition to providing
the same commands available from the menu, edit commands allow you to
add, replace, or delete lines from files. Therefore, you can operate on several
files at once.

8 007–2579–004

Getting Started with the WorkShop Debugger [1]

1.2.1.4 Restrictions on Fix and Continue

Fix and Continue has the following restrictions when you fix a function in
which you have stopped:

• When using Fix and Continue with C code. you must use the -o32
compiler option. If you do not, you will be prompted for the option.

• Fix and Continue does not support C++ templates.

• You may not add, delete, or reorder local variables in a function.

• You may not change the type of a local variable.

• You may not change a local variable to be a register variable and vice- versa.

• You may not add any function calls that increase the size of the parameter
area.

• You may not add an alloca function to a frame that did not previously use
an alloca function.

• Both the old and new functions must be compiled with the -g option.

In other words, the layout of the stack frames of both the old and new
functions must be identical for you to continue execution in the function
that is being modified. If not, execution of the old function continues and
the new function is executed the next time the function is called.

• If you redefine functions that are in but not on top of the call stack, the
modified code will not be executed when they combine. Modified functions
will be executed only on their next call or on a rerun.

For example, consider the following call stack:

foo()

bar()

foobar()

main()

– If you redefine foo() , you can continue execution provided the layout
of the stack frames are the same.

– If you redefine main() after you have run, it will be executed only when
you rerun.

007–2579–004 9

Developer MagicTM: Debugger User’s Guide

– If you redefine bar() or foobar() , the new code will not be executed
when foo() returns. The code will be executed only on the next call of
bar() or foobar() .

1.2.2 The Fix and Continue Environment

The interface to Fix and Continue is through the Fix+Continue menu and its
associated windows: Status, Message , and Build Environment . These
windows are dependent on Fix and Continue, and do not operate unless it is
installed.

For more complete information on all of the Fix and Continue menus, windows,
and functions, see Section A.9, page 232.

1.2.2.1 Debugger With Fix and Continue Support

Without Fix and Continue, the Debugger source views are Read-Only by
default. That is so you can examine your files with no risk of changing them.
When you select Edit from the Fix+Continue menu, the Debugger source
code status indicator (in the lower-right corner of the Debugger window
remains Read-Only . Edits made using Fix and Continue are saved in an
intermediate state. You must choose the Save File+Fixes As... selection
to save your edits.

When you edit a function, it is highlighted in color. If you switch to the
compiled version of your code, the color changes to show that the function has
been redefined. If you try to edit the compiled version of your code, the
Debugger beeps indicating Read-Only status.

When you have completed your edits and want to see the results, select the
Parse and Load menu option. When the parse and load has executed
successfully, the color changes again. If the color does not change, there may be
errors; check the Message Window .

1.2.2.2 Change ID, Build Path, and Other Concepts

The Fix and Continue methods for accessing functions through ID numbers,
finding files, and so forth, are discussed below:

• Each redefined function is numbered with a change ID. Its status may be
shown as redefined , enabled , disabled , deleted , or detached .

• Fix and Continue needs to know the location of include files and other
parameters specified by compiler build flags. You can set the build

10 007–2579–004

Getting Started with the WorkShop Debugger [1]

environment for all files or for a specific file. You can display the current
build environment from the Fix+Continue menu, the command line, or
the Fix and Continue Status Window. When you finish a Fix and
Continue session, you can unset the build environment.

• Output from a successful run is displayed in the Execution View . This
functionality is the same as it is in the Debugger without Fix and Continue.

1.3 Debugging with the X/Motif Analyzer

The X/Motif Analyzer provides specific debugging support for X/Motif
applications. The X/Motif analyzer is integrated with the Debugger. You issue
X/Motif analyzer commands graphically from the X/Motif analyzer
subwindow of the Debugger Main View (see Figure 3, page 11). To access this
subwindow, select X/Motif Analyzer from the Views menu.

Debugger Views Menu

Figure 3. Launching the X/Motif Analyzer

007–2579–004 11

Developer MagicTM: Debugger User’s Guide

1.3.1 Special Libraries

When you first bring up the X/Motif Analyzer, it may ask you if you want to
change the $LD_LIBRARY_PATHvariable to include
/usr/lib/WorkShop/Motif . In that directory are instrumented versions of
the Silicon Graphics Xlib , Xt , and Xmlibraries. These versions include
debugging symbols and special support for X/Motif Analyzer functions.

It is strongly recommended that you click on the OKbutton and use these
libraries because they are the Silicon Graphics enhanced versions of these
libraries. Clicking OKenables all features of the X/Motif Analyzer. There are no
instrumented MIPS/ABI versions of the libraries.

1.3.2 Using the X/Motif Analyzer

The Analyzer contains examiners for X/Motif objects (for example, widgets and
X graphics contexts) that can be difficult or impossible to inspect with ordinary
debugger functionality. The Analyzer also allows you to set widget-level
breakpoints and collect X–event history information in the same manner as
using the xscope (1) command.

1.3.2.1 Examiners Overview

When you first bring up the X/Motif Analyzer, the X/Motif Analyzer
window is displayed and, by default, it is set to examining widgets. The
window may be blank or may display a widget found in the call stack of a
stopped process.

At the bottom of the X/Motif Analyzer window is a tab panel showing the
current set of examiners. In addition to the Widget examiner, Breakpoints ,
Trace , and Tree examiners are available by default and appear on tabs at the
bottom of the window. These four tabs are always present. Other examiners are
available from the Examine menu of the X/Motif Analyzer window.

Some examiners cannot be manually selected—they appear only when the call
stack context is appropriate. For example, the Callback examiner appears
only when a process is stopped somewhere in a widget callback.

1.3.2.2 Examiners and Selections

If you select text in one examiner and then choose another examiner by using
the Examine menu, the new examiner is brought up and the text is used as an

12 007–2579–004

Getting Started with the WorkShop Debugger [1]

expression for it. If you selected text that is an inappropriate object for the new
examiner, an error is generated.

Alternatively, you can select text, pull down the Examine menu, and choose
Selection . The X/Motif Analyzer attempts to select an appropriate examiner
for the type of selected text. If the type of the text is unknown, the Couldn’t
examine selection in more detail error message is displayed.
Otherwise, the appropriate examiner is chosen and the text is evaluated.

You can accomplish the same thing by triple-clicking on a line of text. If the
type of the text is unknown, nothing happens. Otherwise, the appropriate
examiner is chosen and the text is evaluated.

1.3.2.3 Inspecting Data

X/Motif applications consist of collections of objects (Motif widgets) and make
extensive use of X resources such as windows, graphics context, and so on. The
construction model of an X window system hinders you from inspecting the
internal structures of widgets and X resources because you are presented with
ID values. The X/Motif Analyzer lets you to see the data structures behind the
ID values.

1.3.2.4 Inspecting the Control Flow

Traditional debuggers enable you to set breakpoints only in source lines or
functions. With the X/Motif Analyzer, you can set breakpoints for specific
widgets or widget classes, for specific control flow constructs like callbacks or
event handlers, and for specific X events or requests.

1.3.2.5 Tracing the Execution

The X/Motif Analyzer can trace Xlib -level server events and client requests,
Xt -level event dispatching information, widget life cycle, and widget status
information.

1.3.3 Restrictions and Limitations

The X/Motif Analyzer has the following restrictions and limitations:

• The Breakpoints examiner is active only after you have stopped a process
and if you have changed $LD_LIBRARY_PATH.

007–2579–004 13

Developer MagicTM: Debugger User’s Guide

• Sometimes, gadget names may be unavailable and are displayed as
<object> . You can minimize this condition by getting the widget tree
beforehand.

• editres requests (such as, widget selection and widget tree) work only if
the process is running or if the process is stopped outside of a system call.
This can be annoying when the process is stopped in select() , waiting for
an X server event.

• The process state and appearance of the Debugger Main View flickers while
the X/Motif Analyzer tries to complete an editres request when the
process is stopped.

• editres requests may be unreliable if the process is stopped.

1.4 Customizing the Debugger

If there are Debugger commands or combinations of Debugger commands that
you use frequently, you may find it convenient to create a script composed of
Debugger commands. Debugger scripts are ASCII files containing one
Debugger command and its arguments per line. A Debugger script can in turn
call other Debugger scripts. There are three general methods for running scripts:

• Entering the source command and the filename at the Debugger command
line. This is useful for scripts that you need only occasionally.

• Including the script in a startup file. This is useful for scripts that you want
implemented every time you use the Debugger.

• Defining a button in the graphical interface to run the script. Use this
method for scripts you use frequently but apply only at specific times
during a debugging session.

1.4.1 Using a Startup File

A startup file lets you preload your favorite buttons and aliases in a file that
runs when cvd is invoked. It also is useful if you have traps that you set the
same way each time. The suggested name for the startup file is .cvdrc .
However, you can select a different name as long as you specify its path in the
CVDINIT environment variable. The Debugger uses the following criteria when
looking for a startup file:

1. Checks the CVDINIT environment variable.

14 007–2579–004

Getting Started with the WorkShop Debugger [1]

2. Check for a .cvdrc file in the current directory.

3. Checks for a .cvdrc file in the user’s home directory.

1.4.2 Implementing User-Defined Buttons

You can implement buttons by providing a special Debugger startup file or by
creating them on the fly within a debugging session. Buttons appear in the order
of implementation in a row at the bottom of the control panel area. Currently,
you can define only one row of custom buttons. Figure 4, page 15, is a typical
example of the Debugger Main View with user-defined buttons. The definitions
for the user-defined buttons display in the Debugger command line area.

Custom button
row

Button
specifications

Multiple-command
example

Figure 4. User-Defined Button Example

The syntax for creating a button is as follows:

button label command [$sel]

007–2579–004 15

Developer MagicTM: Debugger User’s Guide

The syntax for creating a multiple-command button is as follows:

button label { command1 [$sel]; command2 [$sel]; ...}

The button command accepts the following options:

label Specifies the button name. Button labels should
be kept short since there is only room for a single
row of buttons. There can be no spaces in a label.

command Specifies one of the Debugger commands, which
are entered at the command line at the bottom of
Main View. See Section A.10, page 244.

$sel Provides a substitute for the current cursor
selection and should be appropriate as an
argument to the selected command.

commandn... Specifies Debugger commands to be applied in
order. Commands must be separated by
semicolons (;) and enclosed by braces ({}). The
multiple-command button is a powerful feature;
it lets you write a short script to be executed
when you click the button.

The following command displays a list of all currently defined buttons:

button

The following command deletes the button corresponding to the label:

unbutton label

You might use this command if you needed room to create a new button. The
effect of unbutton is temporary so that subsequently running the startup file
reactivates the button.

The following command displays the definition of the specified button, if it
exists. If the button does not exist, an error message is displayed:

button label

16 007–2579–004

Managing Source Files [2]

This chapter looks at the details of working with source files. It covers these
topics:

• Accessing Files Used by an Executable, Section 2.1, page 17

• Opening a New File, Section 2.2, page 18

• Path Remapping, Section 2.3, page 19

2.1 Accessing Files Used by an Executable

The File Browser window, available from the Views menu in the Main
View, provides a scrollable list of the source files used by your executable file,
including any files in linked libraries. See Figure 5, page 17.

Figure 5. File Browser Window

The File Browser has a field labeled Search for quickly locating files in the
list. File searching is incremental—as you type the string you are searching for
in the Search field, the first string that matches the entered string is
highlighted.

007–2579–004 17

Developer MagicTM: Debugger User’s Guide

To load a file directly into Main View from the File Browser window, simply
double-click on the file name.

2.2 Opening a New File

Another way to load a file is to specify it by using the Open... selection from
the Source menu. The dialog box, as shown in Figure 6, page 18, lists all
available files and the currently selected directory in the Selection field.

File list
display area

Drop pocket

Selection field

Figure 6. Open Dialog Box

There are several ways to load a file:

• Double-click on the file name

• Type the full pathname of the file in the Selection field and click the OK
button

• Drag the file’s icon into the drop pocket

18 007–2579–004

Managing Source Files [2]

If the file you want to load is not in the current directory, enter the appropriate
directory in the Selection field. Files in the new directory will be listed in the
file list.

If you specify a file name without a full path, the Debugger uses the current
path remapping information to try to locate the file.

You can also open a file in Main View by entering the full file name in the File
field, below the source code display area, and press the Enter key.

2.3 Path Remapping

Path remapping allows you to modify the set of mappings used to redirect file
names located in your executable file to their actual locations in your file
system. Since WorkShop uses full (absolute) pathnames, path remapping
generally is not necessary. However, if you have mounted executable files on a
different tree from the one on which they were compiled, you will need to
remap the root prefix to get access to the files in that hierarchy.

The most basic remapping is for “.”, which allows you to specify the directories
to be searched for files. This basic function works just like dbx and can be
modified by using the use (1) and dir (1) commands in the command line. To
open the Path Remapping dialog box, choose Remap Paths... from the
Project submenu in the Main View Admin menu. The Path Remapping
dialog box appears (see Figure 7, page 20).

007–2579–004 19

Developer MagicTM: Debugger User’s Guide

Figure 7. Path Remapping Dialog

For each prefix listed in the Prefix list, there is an ordered set of substitutions
that is used to find a real file. By default, path remapping is initialized so that
“.” is mapped to the current directory. The Substitution Set list shows the
substitution list for the currently highlighted item in the Prefix list. You can
perform the following operations using the Path Remapping dialog box:

• To view the substitution set for a different prefix, click that prefix.

• To add a new prefix, enter the new value in the Value field below the
Prefix list and click the Add button. A new, empty substitution set is
created. Next, type the desired substitution in the Value field below the
Substitution Set list.

• To modify the currently selected prefix, edit the string in the Value field
and click the Modify button.

20 007–2579–004

Managing Source Files [2]

• To remove the current prefix and its substitution set, select the prefix and
click the Remove button.

007–2579–004 21

A Short Debugger Tutorial [3]

This chapter presents a short tutorial for using the Debugger. The tutorial
applies the Debugger to a program called jello , which provides a walk
through some typical debugging situations. The tutorial is divided into four
parts:

• Starting the Debugger, Section 3.1, page 23

• Performing a Search, Section 3.2, page 25

• Setting Traps, Section 3.3, page 27

• Examining Data, Section 3.4, page 30

Note: WorkShop identifies files with the pathnames in which they were
compiled. The pathnames in the tutorial may not match the ones on your
system.

3.1 Starting the Debugger

In this part of the tutorial, you invoke the Debugger and start a typical process
running. The jello program simulates an elastic polyhedron bouncing around
inside of a revolving cube. The program’s functionality is mainly contained in a
single loop that calculates the acceleration, velocity, and position of the
polyhedron’s vertices.

1. cd to the directory /usr/demos/WorkShop/jello .

2. Enter ls to display directory contents.

3. If the jello file does not exist, type: make jello

4. To invoke the Debugger, type: cvd jello

The Main View window appears as shown in Figure 8, page 24. The
display scrolls automatically to the main function.

007–2579–004 23

Developer MagicTM: Debugger User’s Guide

Target process
command

Execution control
buttons

Current process
information

Source code
display area

Source code
annotation column

Source code file

Debugger command line

Source code
buffer status

Figure 8. Main View Window with jello Source Code

Note: Main View brings up the source file in read-only mode to avoid
inadvertent changes during debugging. You can change this mode by
selecting Make Editable from the Source menu (provided you have
the proper file access permissions).

5. Click the Run button in the upper-right corner of the Main View to start the
jello process.

The jello window opens on your display (see Figure 9, page 25). Enlarge
this window to watch the program execute. The polyhedron is initially
suspended in the center of the cube.

6. Click the left mouse button anywhere inside the jello window.

The polyhedron drops to the floor of the cube.

7. Hold down the right mouse button to display the pop-up menu and select
spin .

24 007–2579–004

A Short Debugger Tutorial [3]

The cube now rotates and the polyhedron bounces. If you select Display
from the menu, you can change the appearance of the polyhedron to
display points only, lines only, full color, visible points only, or single color.

Note: You may encounter flashing colors inside windows while running
jello . This is normal.

Figure 9. The jello Window

3.2 Performing a Search

This part of the tutorial covers the search facility in the Debugger. You will
search through the jello source file for a function called spin . The spin
function recalculates the position of the cube.

1. Choose Search from the Source menu.

The Search dialog box appears.

2. Type spin in the entry field in the dialog box, as shown in Figure 10, page
26.

007–2579–004 25

Developer MagicTM: Debugger User’s Guide

Figure 10. The Search Dialog

3. Click the Apply button.

The search takes place and each instance of spin is highlighted in the
source code and flagged in the scroll bar to the right of the display area.
Figure 11, page 27 shows typical search target indicators. The Next and
Prev buttons let you move from one occurrence to the next in the order
indicated. For more information on Search, see Section A.1.4, page 128.

4. Click the Close button and the dialog box disappears.

5. Click the middle mouse button on the last search target indicator. This
scrolls the source code down to the last occurrence, which is the location of
the spin function.

26 007–2579–004

A Short Debugger Tutorial [3]

Search
target
indicators

Figure 11. Search Target Indicators

3.3 Setting Traps

Stop traps (also called breakpoints) stop program execution at a specified line in
the code allowing you to track the progress of your program and to check the
values of variables at that point. Typically, you set breakpoints in your program
prior to running it under the Debugger. For more information on traps, refer to
Chapter 4, page 39.

In this part of the tutorial, you set a breakpoint at the spin function.

1. Click the left mouse button in the source code annotation column next to
the line containing if ((a+=1)>3600) a -= 3600; .

A stop trap indicator appears in the annotation column as shown in Figure
12, page 28. This stop trap halts execution of jello at the beginning of the
next call to the spin function. When the process stops, an icon indicating
the current program counter (PC) appears and the line becomes highlighted.

007–2579–004 27

Developer MagicTM: Debugger User’s Guide

Stop trap
indicator

Figure 12. Stop Trap Indicator

2. Click the Continue button at the upper-left corner of the Main View
several times so that jello goes through several iterations.

The Continue button resumes execution until the next breakpoint (in this
case, spin) is encountered. Stopping at the spin function allows you to
view the jello image one frame at a time.

3. Select Trap Manager from the Views menu in Main View.

The Trap Manager window appears as shown in Figure 13, page 29.

The Trap Manager lets you list, add, edit, disable, or remove traps in a
process. You set a breakpoint in the spin function by clicking in the source
code annotation column. The trap is displayed in the trap display area.

You can define other traps as well in the Trap Manager. You set conditional
traps in the Condition field near the top of the window. The count
information lets you specify the number of times a trap should be

28 007–2579–004

A Short Debugger Tutorial [3]

encountered before it activates. Trap controls let you manipulate traps. All
traps (active and inactive) are shown in the trap display area.

Trap specification

Trap condition specification

Cycle count
Current count
Trap controls

Trap display area

Search field

Figure 13. Trap Manager Window

4. Click the button to the left of the stop trap in the trap display area.

The trap is temporarily disabled. Trap Manager lets you turn traps on and
off by clicking them.

5. Click the Clear button, move the cursor to the Trap : field, then type

watch display_mode

and click Add.

This sets a watchpoint for the variable display_mode. A watchpoint is a trap
that fires when a specified variable or address is read, written, or executed.

After you continue the process, you can fire this watchpoint by holding
down the right mouse button in the jello window and selecting a
different display option from the Display menu. The variable display_mode
is accessed and the watchpoint fires.

6. Click the Continue button to restart the process.

The process now runs somewhat slower but still at a reasonable speed for
debugging.

007–2579–004 29

Developer MagicTM: Debugger User’s Guide

7. Hold down the right mouse button in the jello window to display the
pop-up menu. From this menu, select Display and then select the conecs
option with the right mouse button.

This triggers the watchpoint and stops the process.

8. Go to the Trap Manager window and click the button next to the
display_mode watchpoint to deactivate it. Click the button next to the
spin stop trap to reactivate it.

This resets the traps for use in this tutorial.

9. Enter 100 in the Cycle Count field, press Enter , and click the Continue
button in Main View.

This takes the process through the stop trap for the specified number of
times, provided no other interruptions occur. The Current Count field
keeps track of the actual number of iterations since the last stop, which is
useful if an interrupt occurs. Note that it updates at interrupts only.

10. Select Close from the Admin menu in Trap Manager to close it.

3.4 Examining Data

This part of the tutorial describes how to examine data after the process stops.

1. Select Call Stack from the Views menu in Main View.

The Call Stack View window appears as in Figure 14, page 31. The
Call Stack View window shows each frame in the call stack at the time
of the breakpoint with the calling parameters and their values. You can also
display the calling parameters’ types, locations, and PC (program counter)
through the Display menu. For more information, see Section 6.1, page 57.

In this example, the spin and main stack frames are displayed in Call
Stack View , and the spin stack frame is highlighted, indicating that it is
the current stack frame.

2. Pull down the Admin menu and choose the Active selection.

By default, the Active toggle button in the Admin menu is turned on.
Active views are those that have been specified to change their contents at
stops or at call stack context changes. If the toggle is on, the call stack is
updated automatically whenever the process stops.

30 007–2579–004

A Short Debugger Tutorial [3]

Figure 14. Call Stack View at spin Stop Trap

3. Double-click the main stack frame.

This shifts the stack frame to the main function, scrolls the source code in
Main View (or Source View) to the place in main where spin was called,
and highlights the call in the designated context color. Any active views are
updated according to the new stack frame.

4. Double-click the spin stack frame.

This returns the stack frame to the spin function.

Select Variable Browser from the Views menu in Main View.

The Variable Browser window appears. This window shows you the
value of local variables at the breakpoint. The variables appear in the left
column (read-only), and the corresponding values appear in the right
column (editable). Since the right column is editable, you can change the
values of the variables if you want.

Your Variable Browser window should resemble the one in Figure 15,
page 32, although you may need to enlarge the window to see all the
variables (the values will be different).

The jello program uses variables a, b, and c as angles (in tenths); ca, cb, cc
as their corresponding cosines; and sa, sb, sc as their sines. Whenever you
stop at spin , these values change.

007–2579–004 31

Developer MagicTM: Debugger User’s Guide

Figure 15. Variable Browser at spin

5. Double-click some different frames in Call Stack View and observe the
changes to Variable Browser and Main View.

These views update appropriately whenever you change frames in Call
Stack View . Notice also the change indicators in the upper-right corners
of the Result fields (see Figure 16, page 33). These appear if the value has
changed. If you click the folded corner, the previous value displays (and the
indicator appears unfolded). You can then toggle back to the current value.

32 007–2579–004

A Short Debugger Tutorial [3]

Change
indicator

Figure 16. Variable Browser after Changes

6. Select Close from the Admin menu in Variable Browser and Close
from the Admin menu in Call Stack View to close them.

7. Select Expression View from the Views menu in Main View.

The Expression View window appears. It lets you evaluate an expression
involving data from the process. The expression can be typed in or more
conveniently cut and pasted from your source code. You can view the value
of variables (or expressions involving variables) any time the process stops.
Enter the expression in the left column, and the corresponding value
appears in the right column. For more information, see Section 6.2, page 60.

8. Hold down the right mouse button in the Expression column to bring up
the Language menu. Then hold down the right mouse button in the
Result column to display the Format menu.

The Language menu (shown on the left side of Figure 17, page 34) lets you
apply the language semantics to the expression.

The Format menu (shown on the right side of Figure 17, page 34) lets you
view the value, type, address, or size of the result. You can further specify
the display format for the value and address.

007–2579–004 33

Developer MagicTM: Debugger User’s Guide

Column sash

Figure 17. Expression View with Language and Format Menus Displayed

9. Click on the first Expression field in the Expression View window.
Then enter (a+1)>3600 in the field and press Enter .

This is a test performed in jello to ensure that the value of a is less than
3600. This uses the variable a that was displayed previously in Variable
Browser . After you press Enter , the result is displayed in the right
column; 0 signifies false.

10. Select Close from the Admin menu in Expression View to close it.

11. Select Structure Browser from the Views menu in Main View.

12. Enter jello_conec in the Expression field and press Enter .

The Structure Browser window displays the structure for the given
expression; field names are displayed in the left column, and values in the
right column. If only pointers are available, the Structure Browser will
dereference the pointers automatically until actual values are encountered.
You can then perform any further dereferencing by double-clicking pointer
addresses in the right column of the data structure objects. A window
similar to the one shown in Figure 18, page 35, now appears.

34 007–2579–004

A Short Debugger Tutorial [3]

Figure 18. Structure Browser Window with jello_conec Structure

13. Click once to focus, then double-click the address of the next field (in the
right column of the jello_conec structure).

Double-clicking the address corresponding to a pointer field dereferences it.
Double-clicking the field name displays the complete name of the field in
the Expression field at the top of the Structure Browser window.
(See Figure 19, page 35.)

Figure 19. Structure Browser Window With Next Pointer Dereferenced

14. Select Close from the Admin menu of Structure Browser window to
close it.

007–2579–004 35

Developer MagicTM: Debugger User’s Guide

15. Select Array Browser from the Views menu in Main View.

The Array Browser lets you see or change values in an array variable. It is
particularly valuable for finding bad data in an array or for testing the
effects of values you enter.

16. Type shadow in the Array field and press Enter .

You can now see the values of the shadow matrix, which displays the
polyhedron’s shadow on the cube. The Array Browser template should
resemble Figure 20, page 36, but with different data values. If any fields are
hidden, you can drag the sash buttons at the right of the window to expose
them.

Array specification
area

Subscript controls
area

Spreadsheet area

Figure 20. Array Visualizer Window for shadow Matrix

17. Select the Col button next to the $k index.

The Array Browser can handle matrices containing up to six dimensions but
displays only two dimensions at a time. Selecting the Col button for $k has
the effect of switching from a display of $i by $j to a display of $i by $k .

36 007–2579–004

A Short Debugger Tutorial [3]

Figure 21, page 37, shows a close-up view of the subscript control area.

Row/column toggles
Index identifiers
Index values
Index sliders
Index minimums
Index maximums
Horizontal scroll bar
Step indicators
Vertical scroll bar

Figure 21. Subscript Control Area in Array Visualizer Window

The row and column toggles indicate whether a vector appears as a row,
column, or not at all in the spreadsheet area. Although any number of
vectors can reside in an array, you can view only two vectors at a time. The
index values show the number of elements in a vector and are used to
change the dimensions of the matrix. The index sliders let you move the
focus cell along the particular vector. The index minimums and index
maximums identify the beginning and ending elements, respectively, in the
vectors. Use the horizontal and vertical scroll bars to expose hidden
portions of the Array Visualizer window.

18. Select Surface from the Render menu.

The Render menu displays the data from the selected array variable
graphically, in this case as a three-dimensional surface. The selected cell is
highlighted by a rectangular prism. The selected subscripts correspond to
the x- and y-axes in the rendering with the corresponding value plotted on
the z-axis. The data can be rendered as a surface, bar chart, multiple lines,
or points.

Select Exit from the Admin menu in Main View to end this tutorial.

007–2579–004 37

Setting Traps [4]

Setting traps is one of the most important functions of a debugger or
performance analyzer. A trap enables you to select a location or condition
within your program at which you can stop the process or collect performance
data automatically. In general, you set or clear traps from Main View or the
Trap Manager. You can also specify traps in the Debugger command line at the
bottom of the Main View. For signal traps, you can also use the Signal Panel
window. For system call traps, use the Syscall Panel window.

When you are debugging a program, you typically set a trap in a process to
determine if there is a problem at that point. WorkShop lets you inspect the call
stack, examine variables, or perform other procedures to get information about
the state of the process.

Traps are also useful for analyzing program performance. They let you collect
data related to resource usage without stopping the process.

This chapter covers the following topics:

• Trap Terminology, Section 4.1, page 39

• Setting Traps in Main View and Source View , Section 4.2, page 40

• Setting Traps in Trap Manager, Section 4.3, page 43

• Setting Traps With Signal Panel and Syscall Panel , Section 4.4, page
48

For a tutorial on the use of traps, see Section 3.3, page 27.

4.1 Trap Terminology

In WorkShop, the term trap refers to any intentional process interruption. A
trap has two dimensions: the trigger, which specifies when the trap fires; and
the action, which is what happens when the trap fires. A trap can either stop a
process or capture data about a process.

4.1.1 Trap Triggers

You can set traps at a specified location or when a specified event occurs. You
can set a trigger at any of the following points:

007–2579–004 39

Developer MagicTM: Debugger User’s Guide

• At a given line in a file (traditionally referred to as a breakpoint)

• At a given instruction address

• At the entry or exit for a given function

• After set time intervals (referred to as a pollpoint)

• When a given variable or address is read, written, or executed (referred to as
a watchpoint)

• When a given signal is received

• When a given system call is entered or exited

In addition, you can specify a condition (as an expression) that must be met
before a trap fires. You can also specify a cycle count, which specifies the
number of passes through a trap before firing it.

4.1.2 Trap Actions

Two actions can occur when a trap is fired:

• One or all processes can stop by using a stop trap. In single process
debugging, a stop trap stops the current process. In multiprocess debugging,
you can specify the stop trap to stop all processes or the current process only.

• Sample performance data can be taken by using a sample trap. Sample traps
are used only in performance analysis, not directly in debugging. They
collect data without stopping the process. You can specify sample traps to
collect such information as call stack data, function counts, basic block
counts, PC profile counts, mallocs/frees , system calls, and page faults.
Sample traps can use any of the triggers that stop traps use. Sample traps
are often set up as pollpoints so that they collect data at set time intervals.

4.2 Setting Traps in Main View and Source View

You can set traps directly in Main View by using the Traps menu or by
clicking the mouse in the source annotation column. You can also specify traps
in the Debugger command line.

4.2.1 Setting Traps with the Traps Menu in Main View

The Traps menu in Main View is shown in Figure 22, page 41.

40 007–2579–004

Setting Traps [4]

Figure 22. Traps Menu in Main View

To set a trap using the Traps menu, you need to identify where trap location
and trap type.

To set a stop trap at a line displayed in Main View (or Source View), click the
cursor in the source annotation column next to the appropriate line in the
source code and select Set Trap , then select Stop or Sample .

For a trap at the beginning or end of a function, highlight the function name in
the source code display area and select Set Trap , then Stop At Function
Entry , Stop At Function Exit , Sample At Function Entry , or
Sample At Function Exit , as appropriate.

Traps are indicated by icons in the source annotation column (and also appear
in Trap Manager window if you have it open). Figure 23, page 42, shows
some typical trap icons. Sampling is indicated by a dot in the center of the icon.
Traps appear in normal color or grayed out, depending on whether they are
active or inactive. A transcript of the trap activity appears in the Debugger
command line area. The active/inactive nature of traps is discussed in Section
4.3.6, page 48.

The Clear Trap selection in the Traps menu deletes the trap on the line
containing the cursor. You must designate a Stop or Sample trap type, since
both types can exist at the same location appearing superimposed on each other.

007–2579–004 41

Developer MagicTM: Debugger User’s Guide

Active stop trap

Inactive stop trap

Active sample trap

Inactive sample trap

Debugger command
line transcript

Figure 23. Typical Trap Icons

4.2.2 Setting Traps with the Mouse

The quickest way to set a trap is to click in the source annotation column in
Main View or Source View . A subsequent click removes the trap. When the
trap is set, an icon appears representing the trap. If data collection mode has
been specified in the Performance Data window, clicking produces a sample
trap; otherwise, a stop trap is entered. (To determine if data collection is on,
look at the upper-right corner of the Debugger Main View to see which
debugging option is selected (Debug Only , Performance , or Purify) .

42 007–2579–004

Setting Traps [4]

4.3 Setting Traps in Trap Manager

The Trap Manager helps you manage all traps in a process. The Trap Manager’s
two major functions are to list all traps in the process (except signals) and to let
you add, delete, modify, or disable traps. The Trap Manager appears in Figure
24, page 43 with the Config , Traps , and Display menus shown.

Trap specification

Trap condition
specification

Cycle Count

Current Count

Trap controls

Trap display area

Search field

Figure 24. Trap Manager Config , Traps , and Display Menus

4.3.1 Setting Single-process and Multiprocess Traps

New or modified traps are entered in the Trap: field. Traps have the following
general form:

[stop | sample] [all] [pgrp] location | condition

007–2579–004 43

Developer MagicTM: Debugger User’s Guide

The entry [stop | sample] refers to the trap action. You can set a default for
the action by using the Stop Trap Default or Sample Trap Default
selections of the Traps menu and omitting it on the command line.

The entries [all] and [pgrp] are used in multiprocess analysis. The [all] entry
causes all processes in the process group to stop or sample when the trap fires.
The [pgrp] entry sets the trap in all processes within the process group that
contains the code where the trap is set. You can set a default for the action by
setting the Stop All Default or Group Trap Default toggles in the
Traps menu.

Sample syntax for the location and condition are shown below.

[stop | sample] [all] [pgrp] at [file \ filename]
[line line-number]

Sets trap at the specified line in the specified file.

[stop | sample] [all] [pgrp] addr instruction-address

Sets trap on the specified instruction address.

[stop | sample] [all] [pgrp] entry function [[file] \
filename]

[stop | sample] [all] [pgrp] in function [[file] \
filename]

Sets trap on entry to the specified function. If the filename is given, the function
is assumed to be in that file’s scope.

[stop | sample] [all] [pgrp] exit function [[file] \
filename]

Sets trap on exit from the specified function. If the filename is given, the
function is assumed to be in that file’s scope.

44 007–2579–004

Setting Traps [4]

[stop | sample] [all] [pgrp] watch expression \ [
[for] read | write | execute [access]]

Sets a watchpoint on the specified expression (using the address and size of the
expression for the watchpoint span). The watchpoint may be specified to fire on
write, read, or execution (or some combination thereof). If not specified, the
write condition is assumed.

[stop | sample] [all] [pgrp] watch addr [ess] address \
[[size] size] [for] read | write | execute \
[access]

Sets a watchpoint for the specified address and size in bytes. The watchpoint
may be specified to fire on write , read , or execute (or some combination
thereof) of memory in the given span. If not specified, the size defaults to 4
bytes.

[stop | sample] [all] [pgrp] signal signal-name

Sets a trap upon receipt of the given signal. Same as the dbx (1) catch
subcommand.

[stop | sample] [all] [pgrp] syscall entry sys-call-name

Sets a trap on entry to the specified system call. This is slightly different from
setting a trap on entry to the function by the same name. A syscall entry trap
sets a trap on entry to the actual system call. A function entry trap sets a trap
on entry to the stub function that calls the system call.

[stop | sample] [all] [pgrp] syscall exit sys-call-name

Sets a trap on exit from the specified system call. This is slightly different from
setting a trap on exit from the function by the same name. A syscall exit trap
sets a trap on exit from the actual system call. A function exit trap sets a trap
on exit from the stub function that calls the system call.

[stop | sample] pollpoint [interval] time [seconds]

007–2579–004 45

Developer MagicTM: Debugger User’s Guide

Sets a trap at regular intervals of seconds. This is typically used only for
sampling.

After you enter the trap (by using the Add or Modify button or by pressing
Enter), the full syntax of the specification appears in the field. The Clear
button clears the Trap and Condition fields and the cycle fields.

Some typical trap examples are provided in Figure 25, page 46. The entries
made in the Trap field are shown in the left portion of the figure, the trap
display in Trap Manager resulting from these entries is shown on the right, and
the trap display shown at the command line in Main View is shown at the
bottom.

Trap entries

Resulting command line
display in Main View

Figure 25. Trap Examples

4.3.2 Setting a Trap Condition

The Condition: field lets you specify the condition necessary for the trap to
be fired. A condition can be any legal expression and is considered to be true if
it returns a nonzero value when the corresponding trap is encountered. The
expression must be valid in the context in which it will be evaluated. For

46 007–2579–004

Setting Traps [4]

example, a Fortran condition like a .gt .2 cannot be evaluated if it is tested
while the program is stopped in a C function.

There are two possible sequences for entering a trap with a condition:

1. Define the trap.

2. Define the condition.

3. Click Add.

and

1. Define the trap.

2. Click Add.

3. Define the condition.

4. Click Modify or press Enter .

An example of a trap with a condition is shown in Figure 25, page 46. The
expression i==1 has been entered in the Condition : field. (If you were
debugging in Fortran, you would use the Fortran syntax, for example,
i .eq .1 .) After the trap has been entered, the condition appears as part of
the trap definition in the display area. During execution, any requirements set
by the trigger must be satisfied first for the condition to be tested. A condition
is true if the expression (valid in the language of the program you are
debugging) evaluates to a nonzero value.

4.3.3 Setting a Trap Cycle Count

The Cycle Count field lets you pass through a trap a specific number of times
without firing. If you set a cycle count of n, the trap will fire the nth time the
trap is encountered and every nth iterations thereafter. The Current Count
field indicates the number of times the process has passed the trap since either
the cycle count was set or the trap last fired. The current count updates only
when the process stops.

4.3.4 Setting a Trap with the Traps Menu

The Traps menu of the Trap Manager lets you specify traps in conjunction
with Main View or Source View . Clicking At Source Line sets a trap at
the line in the source display area containing the current selection. To set a trap

007–2579–004 47

Developer MagicTM: Debugger User’s Guide

at the beginning or end of a function, select the function name in the source
display and click Entry Function or Exit Function .

4.3.5 Moving around the Trap Display Area

The trap display area displays all traps set for the current process. There are
vertical and horizontal scroll bars for moving around the display area. The
Search field lets you incrementally search for any string in any trap.

4.3.6 Enabling and Disabling Traps

Each trap has an indicator to its left for toggling back and forth between active
and inactive trap states. This feature lets you accumulate traps and turn them
on only as needed. Thus, when you do not need the trap, it will not be in your
way. When you do need it, it is readily reenabled.

4.3.7 Saving and Reusing Trap Sets

The Load Traps... selection in the Config menu lets you bring in
previously saved trap sets. This is useful for reestablishing a set of traps
between debugging sessions. The Save Traps... selection of the Config
menu lets you save the current traps to a file.

4.4 Setting Traps With Signal Panel and System Call Panel

You can trap signals by using the Signal Panel and system calls using
System Call Panel (see Figure 26, page 49).

48 007–2579–004

Setting Traps [4]

Figure 26. Signal Panel and System Call Panel

You can select either panel from the Views menu in Main View. The Signal
Panel sets a trap on receipt of the signal(s) selected. The System Call
Panel sets a trap at the selected entry to or return from the system call.

007–2579–004 49

Controlling Process Execution [5]

This chapter tells you how to control process execution. It includes the
following topics:

• Main View Control Panel, Section 5.1, page 51

• Controlling Process Execution Using the PCMenu, Section 5.2, page 55

• Execution View , Section 5.3, page 55

5.1 Main View Control Panel

Process execution is controlled by using the top portion of the Main View
window. See Figure 27, page 51.

Target command

Execution control
buttons

Status line

Figure 27. Main View Control Panel

The Main View window contains a row of execution control buttons that enable
you to control program execution. These buttons are located above the Source
View area. To activate a button, click on it by using the left mouse button. The
Main View control panel is described below.

5.1.1 Status and Entry Fields in the Main View Control Panel

The control panel contains the following fields:

Command Lets you enter the command for running the
process with any argument(s).

Status Displays information about the execution status
of the program you are debugging. The top line

007–2579–004 51

Developer MagicTM: Debugger User’s Guide

in this box tells you whether the program is
running or stopped. The next line lists the current
call stack frame, if applicable. (To see all of the
stack frames, open the Call Stack View from
the Views menu.)

5.1.2 Execution Control Buttons

The execution control buttons enable you to control program execution. The
two control buttons for starting and terminating a process are:

Run Creates a new process for the program and starts
execution. It is also used to rerun a program.

Kill Kills the active process.

The following control buttons are used for process interruptions:

Continue Resumes program execution after a halt and
continues until a breakpoint or other event stops
execution.

Stop Stops execution of the program. When program
execution stops, the current source line is
highlighted in the Main View and annotated with
an arrow indicating the program counter (PC).

Step Into Steps to the next source line and into function
calls. To step a specific number of lines, hold
down the right mouse button over the Step
Into button. This displays the pop-up menu
shown in Figure 28, page 53. You can select one
of the fixed values or enter your own number of
steps by selecting N.... Selecting N...
displays the dialog box shown at the right in
Figure 28, page 53.

52 007–2579–004

Controlling Process Execution [5]

Figure 28. Pop-up Menu and Step Into Dialog

Step Over Steps to the next source line and over function
calls. To step a specific number of lines, hold
down the right mouse button over the Step
Over button. This displays the pop-up menu
shown in Figure 29, page 54. You can select one
of the fixed values or enter your own number of
steps by selecting N.... Selecting N... displays
the dialog box shown at the right in Figure 29,
page 54.

007–2579–004 53

Developer MagicTM: Debugger User’s Guide

Figure 29. Pop-up Menu and Step Over Dialog

Return Executes the remaining instructions in the current
function. Program execution stops upon return
from that procedure.

There is one button in the control panel for spontaneous sampling:

Sample Collects performance data when clicked. A
performance task must have been previously

54 007–2579–004

Controlling Process Execution [5]

specified in the Performance Task window
and data collection must have been enabled.

5.2 Controlling Process Execution Using the PCMenu

The PC (program counter) menu in Main View provides a quick and informal
means of controlling process execution. Options let you manually control
process execution without setting traps. The target location is determined by
the location of the cursor in the source display area. There are two selections:

Continue To Lets you select a target location in the current
process (by placing the cursor in the line). The
process proceeds from the current PC to that
point (provided there are no interruptions) and
stops there, as it would for a stop trap. Continue
To is equivalent to setting a one-time trap. If the
process is interrupted before reaching the target
location, then the command is cancelled.

Jump To Lets you select a target location in the current
process (by placing the cursor in the line). The
location must be in the same function. Instead of
starting from the current PC, Jump To skips over
any intervening code and restarts the process at
the target. This is particularly useful if you want
to get around bad code or irrelevant portions of
the program. It also lets you back up and
reexecute a portion of code.

5.3 Execution View

The Execution View window is a simple shell that lets you set environment
variables and inspect error messages. Your target program I/O, if any, is
displayed in the Execution View window. If the program is I/O-based, then
all interaction takes place in Execution View .

Note: When you launch the debugger, the Execution View window is
launched in iconified form.

007–2579–004 55

Examining Debugger Data [6]

After you have learned how to set traps, the next step is to look at the facilities
for examining the data. This chapter covers:

• Tracing Through Call Stack View , Section 6.1, page 57

• Evaluating Expressions. Section 6.2, page 60

The Debugger also lets you examine data at the machine level. The tools for
viewing disassembled code, machine registers, and data by specific memory
location are described in Appendix A, page 117.

6.1 Tracing through Call Stack View

The Call Stack View window displays the functions in the call stack
(referred to as frames) when the process has stopped. The window is shown in
Figure 30, page 58, with the major menus displayed.

007–2579–004 57

Developer MagicTM: Debugger User’s Guide

Stack
frames

Figure 30. Call Stack View Window

The Call Stack View window lets you see the argument names, values, and
types as well as the locations of functions and the program counter (PC). If
symbolic information for the arguments has been stripped from the executable
file, the label <stripped> appears in place of the arguments. By default call
stack depth is set to 10, but you can reset the depth of the Call Stack View
by selecting Preferences... from the Config menu.

To move through the call stack, double-click a frame in the stack. The frame
becomes highlighted to indicate the current context. The source display in Main
View (or Source View) scrolls automatically to the location where the function
was called and any other active views update. The source display has two
special annotations:

58 007–2579–004

Examining Debugger Data [6]

• The location of the current program state is indicated by a large green
(depending on color scheme) arrow representing the PC.

• The location of the call to the function selected in the Call Stack View
window is indicated by a smaller blue (depending on color scheme) arrow
representing the current context, and the source line becomes highlighted.

Figure 31, page 59, illustrates the correspondence between a frame and the
source code when a frame is clicked in the Call Stack View window. In this
example, the stack frame spin has been selected; Main View scrolls to the place
where the trap occurred. If the second stack (main) had been selected, the
window would have scrolled to the place where the function main calls spin .

Figure 31. Tracing through Call Stack View

007–2579–004 59

Developer MagicTM: Debugger User’s Guide

6.2 Evaluating Expressions

You can evaluate any valid expression at a stopping point in the process and
trace it through the process. Expressions are evaluated by default in the frame
and language of the current context. Expressions may contain data names or
constants; however, they may not contain names known only to the C
preprocessor, as in a #define directive or a macro.

To evaluate expressions, you can use Expression View , which lets you
evaluate multiple expressions simultaneously, updating their values each time
the process stops.

Note: You can also evaluate expressions from the command line.

6.2.1 Expression View Window

The Expression View window is shown in Figure 32, page 61, with its major
menus displayed. The Expression View window has two pop-up menus.
The Language menu is invoked by holding down the right mouse button
while the cursor is in the Expression column. The Format menu is displayed
by holding down the right mouse button in the Result column.

To specify the expression to be evaluated, first click in the Expression column
and then enter the expression in the selected field. This expression can be typed
directly or pasted in from the source code display. It must be a valid expression
in the current or selected language: Ada, C, C++, or Fortran. To change
languages, display the Language menu and make your selection. When you
press Enter , the result of the expression is displayed in the Result column.

60 007–2579–004

Examining Debugger Data [6]

Editable Result
field

Figure 32. Expression View with Major Menus Displayed

To change the type of result information displayed in the right column, hold
down the right mouse button over the right column. This displays the Format
menu. You can see the value as a string, decimal, unsigned, octal, hexadecimal,
float, or characters. You can also display the type, the address (in decimal, octal,
or hexadecimal), or the size of the result in bits.

!
Caution: The Debugger uses the symbol table of the target program to
determine variable type. Some variables in libraries, such as errno and
_environ , are not fully described in the symbol table. As a result, the
Debugger may not know their types. When the Debugger evaluates such a
variable, it assumes that the variable is a fullword integer. This gives the
correct value for fullword integers or pointers, but the wrong value for
non-fullword integers and for floating-point values.

007–2579–004 61

Developer MagicTM: Debugger User’s Guide

To see the value of a variable of unknown type, use C type cast syntax to cast
the address of the variable to a pointer that points to the correct type, for
example, the global variable _environ should be of type char** . You can see
its value by evaluating *(char***)&_environ .

After you display the current value of the expression, you may find it useful to
leave the window open so that you can trace the expression as it changes value
from trap to trap (or when you change the current context by double-clicking in
the call stack). Like other views involved with variables, Expression View
has variable change indicators for value fields that let you see previous values,
as shown in Figure 33, page 62.

Change
indicators

Figure 33. Change Indicators in Expression View

Another useful technique is to save your expressions to a file for later reuse.
Expressions are saved by choosing Save Expressions... from the Config
menu and retrieved by selecting Load Expressions... from the same menu.

6.2.2 Assigning Values to Variables

To assign a value to a variable, click the left column and enter the variable
name. The current value appears in the right column. If this Result field is
editable (highlighted), you can click it and enter a new value or legal
expression. Pressing Enter performs the assignment. You can perform an
assignment to any expression that evaluates to a legal lvalue (in C). The C
operator = is not valid in Expression View . Valid expression operations are
shown in the following paragraphs.

62 007–2579–004

Examining Debugger Data [6]

6.2.3 Evaluating Expressions in C

The valid C expressions are shown in Table 2, page 63.

Table 2. Valid C Operations

Operation Symbol

Arithmetic (unary) + - ++ –
(increment and decrement do not have side effects)

Arithmetic (binary) + - * / %

Logical && || !

Relational < > <= >= == !=

Bit & | ^ << >> ~

Dereference *

Address &

Array indexing []

Conditional ? :

Member extraction . -> (these operations are interchangeable)

Sizeof

Type-cast

Function call

Assignment = += -= /= %= >>= <<= &= ^= |=
(Note that a new assignment is made at each stepping
point. Use assignments with caution to avoid
inadvertently modifying variables.)

6.2.3.1 C Function Calls

Function calls can be evaluated in expressions, as long as enough actual
parameters are supplied. Arguments are passed by value. Following the rules
of C, each actual parameter is converted to a value of the same type as the
formal parameter, before the call. If the types of the formal parameters are
unknown, integral arguments are widened to full words, and floating-point
arguments are converted to doubles.

007–2579–004 63

Developer MagicTM: Debugger User’s Guide

Functions may return pointers, scalar values, unions, or structs. Note that if the
function returns a pointer into its stack frame (rarely a good programming
practice), the value pointed to will be meaningless, since the temporary stack
frame is destroyed immediately after the call is completed.

Function calls may be nested. For example, if your program contains a
successor function succ , the Debugger will evaluate the expression
succ(succ(succ(3))) to 6.

6.2.4 Evaluating Expressions in C++

C++ expressions may contain any of the C operations. You can use the word
this to explicitly reference data members of an object in a member function.
When stopped in a member function, the scope for this is searched
automatically for data members. Names may be used in either mangled or
demangled form. Names qualified by class name are supported (for example,
Symbol::a).

If you wish to look at a static member variable for a C++ class, you need not
specify the variable with the class qualifier if you are within the context of the
class. For example, you would specify myclass::myvariable for the static
variable myvariable outside of class myclass and myvariable inside myclass.

6.2.4.1 Limitations

Constructors may be called from Expression View , just like other member
functions. To call a constructor, you must pass in a first argument that points to
the object to be created. C++ function calls have the same possibility of side
effects as C functions.

6.2.5 Evaluating Expressions in Fortran

Fortran expressions may contain any of the arithmetic, relational, or logical
operators. Relational and logical operator keywords may be spelled in upper
case, lower case, or mixed case.

The usual forms of Fortran constants, including complex constants, may be
used in expressions. String constants and string operations, however, are not
supported. The operators in Table 3, page 65, are supported on data of integral,
real, and complex types.

64 007–2579–004

Examining Debugger Data [6]

Table 3. Valid Fortran Operations

Operation Symbol

Arithmetic (unary) - +

Arithmetic (binary) - + * / **

Logical .NOT. .AND. .OR. .XOR. .EQV .NEQV.

Relational .GT. .GE. .LT. .LE. .EQ. .NE.

Array indexing ()

Intrinsic function calls (except
string intrinsics)

Function subroutine calls

Assignment = (Note that a new assignment is made at
each stepping point. Use assignments with
caution to avoid inadvertently modifying
variables.)

6.2.5.1 Fortran Variables

Names of Fortran variables, functions, parameters, arrays, pointers, and
arguments are all supported in expressions, as are names in common blocks
and equivalence statements. Names may be spelled in upper case, lower case,
or mixed case.

6.2.5.2 Fortran Function Calls

The Debugger evaluates function calls the same way that compiled code does. If
an argument can be passed by reference, it is; otherwise, a temporary expression
is allocated and passed by reference. Following the rules of Fortran, actual
arguments are not converted to match the types of formal arguments. Side
effects can be caused by Fortran function calls. A useful technique to protect
the value of a parameter from being modified by a function subroutine is to
pass an expression such as (parameter + 0) instead of just the parameter
name. This causes a reference to a temporary expression to be passed to the
function rather than a reference to the parameter itself; the value is the same.

007–2579–004 65

Debugging with Fix+Continue: A Tutorial [7]

This chapter provides an interactive sample session that demonstrates most of
the Fix+Continue functions. The session outlines common tasks you can
perform with Fix+Continue using example C++ application source to illustrate
the use of each function. For complete reference information on the
Fix+Continue user interface, see Section A.9, page 232.

Note: Fix+Continue functionality within the Debugger is limited to programs
compiled with the -o32 compiler option.

Most steps in the session let you use either the graphical interface or the
command line alternatives.

This chapter contains the following sections:

• Setting Up the Sample Session, Section 7.1, page 67

• Redefining a Function, Section 7.2, page 69

• Setting Breakpoints in Redefined Code, Section 7.3, page 73

• Viewing Status, Section 7.4, page 76

• Comparing Original and Redefined Code, Section 7.5, page 76

• Ending the Session, Section 7.6, page 78

7.1 Setting Up the Sample Session

For this tutorial, use the demo files in the /usr/demos/WorkShop/bounce
directory that contains the complete source code for the C++ application
bounce . To prepare for the session, you must create the fileset and launch
Fix+Continue from the Debugger as shown below:

1. cd /usr/demos/WorkShop/bounce

2. make bounce

3. cvd bounce &

The cvd command brings up the Debugger, from which you can use the
Fix+Continue utility. The Execution View icon and the Main View
window (as shown in Figure 34, page 68) appear. Note that the Debugger
shows a source code status indicator of (Read Only) .

007–2579–004 67

Developer MagicTM: Debugger User’s Guide

Fix and Continue
menu

Run button

Source code
display area

Source
annotation
column

Debugger
command line

Source code
status indicator

Figure 34. Debugger Main View With Fix+Continue Menu

4. Open the Execution View and position the window so you can see it and
the Debugger Main View.

5. To see what the program does, click Run. The bounce program opens a
window on your desktop. Click Run in the new window, and then add
balls from the Actors menu to see how the program executes. (You may
need to resize the bounce window.)

6. The Execution View shows the program output (see Figure 35, page 69).

68 007–2579–004

Debugging with Fix+Continue: A Tutorial [7]

Figure 35. Program Results in Execution View

If your screen shows different results, the program files may have been
modified during a previous tutorial session.

7.2 Redefining a Function

In this section, you will do the following:

• Edit a function

• Change the code of an existing function and then parse and load the
function, rebuilding your program to see the effect of your changes on
program output (without recompiling)

• Save the changed function to its own separate file

7.2.1 Editing a Function

1. Choose a function to edit by entering the following on the command line:

cvd> func Clock::speedChanged

This opens the Clock.C file and places the cursor at the beginning of the
Clock::speedChanged function, as shown in Figure 36.

007–2579–004 69

Developer MagicTM: Debugger User’s Guide

Figure 36. Selecting a Function for Redefinition

2. Show line numbers by selecting Show Line Numbers from the Debugger
Display menu.

3. Select Edit from the Debugger Fix+Continue menu, or enter the
Alt-Ctrl-E keyboard accelerator. The function is highlighted.

4. Note the results as shown in Figure 37, page 71. Line numbers changed to a
decimal notation based on the first line number of the function body. The
function body highlights to show that it is being edited. The line numbers
of the rest of the file are not affected.

70 007–2579–004

Debugging with Fix+Continue: A Tutorial [7]

Line number
notation

Highlight

Figure 37. Redefined Function

7.2.2 Changing Code

1. To increase the speed of the ball, change the value of _delta from a value of
1000 to a value of 100 by editing the value within the highlighted area.
Alternatively, you can use the replace_source command to modify the
line.

2. Click the Stop button in the Debugger to halt the bounce process.

3. Select Parse and Load from the Debugger Fix+Continue menu or enter
the Alt-Ctrl-X keyboard accelerator.

Any errors are reported by the Fix+Continue Error Messages window.

If you do have an error, correct it and repeat steps 1 through 3. You can go
to the error location by double-clicking the appropriate line in the
Fix+Continue Error Message window. When you see the change ID
and activated status, continue with the next step.

When the parse and load operation is complete, the highlighting color of
the function changes and a report of successful redefinition is displayed. A
sample report for changing clock speed is shown in the following example:

007–2579–004 71

Developer MagicTM: Debugger User’s Guide

cvd> func Clock::speedChanged

Change id: 1 redefined
Change id: 1 saved func

Change id: 1 file not saved

Change id: 1 modififed

cvd>

4. Select Continue from the Debugger Main View.

5. The new value is not active until the function is called. To call the function,
adjust the slider bar in the Bounce window (see Figure 38, page 72).

Figure 38. Bounce Window

7.2.2.1 Deleting Changed Code

To cancel any change you have made, select Delete Edits from the
Fix+Continue menu in the Main View.

7.2.2.2 Changing Code From the Debugger Command Line

You also can redefine and check the syntax for a function from the Debugger
command line. Try changing _delta to 100 by entering the following at the
Debugger command line:

cvd> replace_source "Clock.C":85

‘‘Clock.C’’:84.0>
‘‘Clock.C’’:84.1>

‘‘Clock.C’’:84.2> _delta = 100 / value;

72 007–2579–004

Debugging with Fix+Continue: A Tutorial [7]

‘‘Clock.C’’:84.3> .

This generates the following output:

Change id: 2 redefined

Change id: 2 modified
Process 5779 stopped at [‘‘select.s’’:12, 0x0fac2010]

Change id: 2 activated

Change id: 2 , build results:

2 enabled /usr/demos/WorkShop/bounce/

Clock.C Clock::speedChanged(int)

cvd>

If you prefer to use the command line, experiment with the add_source and
redefine commands to get the same functionality described for the menu
commands. For details on each command, refer to Section A.10, page 244.

7.2.3 Saving Changes

Your original source files are not updated until the changed source file is saved.
You could save redefined function changes to the Clock.C file. However, if
you did, the file would not match the tutorial. So observe the following steps:

1. Select Save As... from the Fix+Continue menu. A file_name dialog box
opens.

2. The dialog box enables you to save your file changes back to the original
source files or save them to a different file. However, since you do not want
to save your changes, press the Cancel button on the bottom of the dialog
box.

Note: You usually want to wait until you are finished with Fix+Continue
before you save your changes. In addition to the method described above,
you can also save your changes with the Save All Files... option of the
Fix+Continue menu.

7.3 Setting Breakpoints in Redefined Code

To see how the Debugger works with traps in redefined code you will now set
breakpoints, run the Debugger, and view the results (Figure 39, page 75).

1. Choose the function BouncingBall::BouncingBall by entering the
following on the command line:

007–2579–004 73

Developer MagicTM: Debugger User’s Guide

cvd> func BouncingBall::BouncingBall

This opens the BouncingBall.C file and places the cursor at the
beginning of the BouncingBall::BouncingBall function.

2. Select Edit from the Fix+Continue menu or enter Alt-Ctrl-E .

3. Enter the following line after line 35.3:

#define SIZE 15

This makes the size of the balls smaller.

4. Select Parse and Load from the Fix+Continue menu.

5. Set a breakpoint just after the SIZE definition by clicking in the source
annotation column at line 35.5.

Alternatively, you can set a breakpoint by using the command line by
entering stop at # or b #. The # option is the line number at which you
want your breakpoint. Note that in code that has already been parsed and
loaded, the line number is in decimal notation.

74 007–2579–004

Debugging with Fix+Continue: A Tutorial [7]

Figure 39. Stopping After Breakpoints in Redefined Code

6. Select Run, then in the Bounce window pull down the Actors menu and
select Add Red Ball . The Debugger command line reports that the
process stopped at some point in the code. You see the following
information in the Debugger command line:

[1] Stop at file /usr/demos/WorkShop/bounce/BouncingBall.C line 35.6

[0] Process 595 stopped at [‘‘BouncingBall.C’’:35, 0x004088d0]

7. Select Call Stack from the Views menu to view the results of the
breakpoint.

007–2579–004 75

Developer MagicTM: Debugger User’s Guide

8. Select Trap Manager from the Views menu to view the locations of the
traps.

9. Remove the breakpoint by clicking on it in the source annotation column.

7.4 Viewing Status

Pull down the Fix+Continue menu, choose the Views submenu, and select
Status Window . The Fix+Continue Status window opens.

7.5 Comparing Original and Redefined Code

You can use Fix+Continue to compare modified code to the original source.
This section shows you several ways to view your changes.

7.5.1 Switching Between Compiled and Redefined Code

If you want to see how the redefined code makes your executable different,
follow these steps:

1. Click the Run button to view your redefined code. Notice that the balls you
add are smaller in your modified version.

2. Place the insertion point in the BouncingBall function.

3. Select Edit<-->Compiled from the Fix+Continue menu. This disables
your changes.

4. Click the Continue button. Notice that the balls you add are now their
original size, and that the Debugger command line states that the change
has been deactivated.

You can get the same results by entering the disable_changes #
command from the Debugger command line, where # is the redefined
function ID number.

To reenable your changes, do the following:

5. Click on the Stop button.

6. Select Edit<-->Compiled from the Fix+Continue menu. This reenables
your changes. The balls you add will now be smaller.

76 007–2579–004

Debugging with Fix+Continue: A Tutorial [7]

You can get the same results by entering the enable_changes # command
at the Debugger command line.

7.5.2 Comparing Function Definitions

1. Place the cursor in the BouncingBall function.

2. Pull down the Fix+Continue menu and choose the Show Difference
submenu. From the submenu, select the For File option. A window
opens displaying an xdiff comparison of the files as shown in Figure 40,
page 77.

Figure 40. Comparing Compiled and Redefined Function Code

You can get the same result by entering the show_diff # command from
the Debugger command line.

If you do not like xdiff , you can change the comparison tool by pulling
down the Fix+Continue menu, choosing the Show Difference
submenu, and selecting Set Diff Tool... .

007–2579–004 77

Developer MagicTM: Debugger User’s Guide

7.5.3 Comparing Source Code Files

When you have made several redefinitions to a file, you may need a
side-by-side comparison of the entire file. To see how changes to the entire file
look, pull down the Fix+Continue menu, choose the Show Difference
submenu, and select For Function . This opens a xdiff window that
displays the entire file rather than just the function.

You can get the same results from the Debugger command line if you enter the
following command:

show_diff -file BouncingBall.C

7.6 Ending the Session

Exit the Debugger by pulling down the Admin menu and choosing Exit .

78 007–2579–004

Detecting Heap Corruption [8]

This chapter describes heap corruption detection and covers the following
topics:

• Typical Heap Corruption Problems, Section 8.1, page 79

• Detecting Heap Corruption Problems, Section 8.2, page 79

• Heap Corruption Detection Tutorial, Section 8.3, page 83

8.1 Typical Heap Corruption Problems

Due to the dynamic nature of allocating and deallocating memory, the heap is
vulnerable to these common corruption problems:

Boundary overrun Occurs when a program writes beyond the
malloc region.

Boundary underrun Occurs when a program writes in front of the
malloc region.

Access to uninitialized
memory

Occurs when a program attempts to read memory
that has not yet been initialized.

Access to freed memory Occurs when a program attempts to read or write
to memory that has been freed.

Double frees Occur when a program frees some structure that
it had already freed. In such a case, a subsequent
reference can pick up a meaningless pointer,
causing a segmentation violation.

Erroneous frees Occur when a program calls free () on addresses
that were not returned by malloc , such as static,
global, or automatic variables, or other invalid
expressions.

8.2 Detecting Heap Corruption Errors

To detect heap corruption problems, you must relink your executable with a
special WorkShop malloc library (-lmalloc_cv) instead of the standard

007–2579–004 79

Developer MagicTM: Debugger User’s Guide

malloc library (-lmalloc). By default, the -lmalloc_cv library catches the
following errors:

• malloc call failing (returning NULL)

• realloc call failing (returning NULL)

• realloc call with an address outside the range of heap addresses returned
by malloc or memalign

• memalign call with an improper alignment

• free call with an address that is improperly aligned

• free call with an address outside the range of heap addresses returned by
malloc or memalign

If you additionally set the MALLOC_FASTCHKenvironment variable, you can
detect these errors:

• free or realloc calls where the words prior to the user block have been
corrupted

• free or realloc calls where the words following the user block have been
corrupted

• free or realloc calls where the address is that of a block that has already
been freed. This error may not always be detected if the area around the
block is reallocated after it was first freed .

8.2.1 Compiling with the Malloc Library

You can compile your executable from scratch as follows:

cc -g -o targetprogram targetprogram.c -lmalloc_cv

You can also relink it by using:

ld -o targetprogram targetprogram.o -lmalloc_cv ...

An alternative to rebuilding your executable is to use the _RLD_LIST
environment variable to link the -lmalloc_cv library. See the rld(1) man
page.

80 007–2579–004

Detecting Heap Corruption [8]

8.2.2 Setting Environment Variables

After compiling, invoke the Debugger with your executable as the target. In
Execution View , you can set environment variables to enable different levels
of heap corruption detection from within the malloc library, as follows:

MALLOC_CLEAR_FREE

Clears data in any memory allocation freed by free . It requires
that MALLOC_FASTCHKbe set.

MALLOC_CLEAR_FREE_PATTERNpattern

Specifies a pattern to clear the data if MALLOC_CLEAR_FREEis
enabled. The default pattern is 0xcafebeef for the 32-bit
version, and 0xcafebeefcafebeef for the 64-bit versions.
Only full words (double words for 64-bits) are cleared to the
pattern.

MALLOC_CLEAR_MALLOC

Clears data in any memory allocation returned by malloc . It
requires that MALLOC_FASTCHKbe set.

MALLOC_CLEAR_MALLOC_PATTERNpattern

Specifies a pattern to clear the data if MALLOC_CLEAR_MALLOC
is enabled. The default pattern is 0xfacebeef for the 32-bit
version, and 0xfacebeeffacebeef for the 64-bit versions.
Only full words (double words for 64-bits) are cleared to the
pattern.

MALLOC_FASTCHK

Enables additional corruption checks when you call the routines
in this library, libmalloc_cv . Error detection is done by
allocating a space larger than the requested area, and putting
specific patterns in front of and behind the area returned to the
caller. When free or realloc is called on a block, the
patterns are checked, and if the area was overwritten, an error
message is printed to stderr using an internal call to the
routine cvmalloc_error . Under the Debugger, a trap may be
set at exit from this routine to catch the program at the error.

007–2579–004 81

Developer MagicTM: Debugger User’s Guide

MALLOC_MAXMALLOCn

Where n is an integer in any base, sets a maximum size for any
malloc or realloc allocation. Any request exceeding that
size is flagged as an error, and returns a NULL pointer.

MALLOC_NO_REUSE

Specifies that no area that has been freed can be reused. With
this option enabled, no actual free calls are made and process
space and swap requirements can grow quite large.

MALLOC_TRACING

Prints out all malloc events including address and size of the
malloc or free . When running a trace in the course of a
performance experiment, you need not set this variable because
running the experiment automatically enables it. If the option is
enabled when the program is run independently, and the
MALLOC_VERBOSEenvironment variable is set to 2 or greater,
trace events and program call stacks are written to stderr .

MALLOC_VERBOSE

Controls message output. If set to 1, minimal output displays; if
set to 2, full output displays.

For further information, see the man page for malloc_cv .

8.2.3 Trapping Heap Errors Using the Malloc Library

If you are using the -lmalloc_cv library, you can use the Trap Manager to set
a stop trap at the exit from the function cvmalloc_error that is called when
an error is detected. Errors are detected only during calls to heap management
routines, such as malloc() and free() . Some kinds of errors, such as
overruns, are not detected until the block is freed or realloced .

When you run the program, the program halts at the stop trap if a heap
corruption error is detected. The error and the address are displayed in
Execution View . You can also examine the Call Stack View at this point
to get stack information. To find the next error, click the Continue button.

If you need more information to isolate the error, set a watchpoint trap to detect
a write at the displayed address. Then rerun your program. Use
MALLOC_CLEAR_FREEand MALLOC_CLEAR_MALLOCto catch problems from
attempts to access uninitialized or freed memory.

82 007–2579–004

Detecting Heap Corruption [8]

Note: You can run programs linked with the -lmalloc_cv library outside
of the Debugger. The trade-off is that you have to browse through the
stderr messages and catch any errors through visual inspection.

8.3 Heap Corruption Detection Tutorial

This tutorial demonstrates how to detect corruption errors by using the
corrupt program. The corrupt program has already been linked with the
WorkShop malloc library (libmalloc_cv). The corrupt program listing is
as follows:

#include <string.h>

void main (int argc, char **argv)
{

char *str;

int **array, *bogus, value;

/* Let us malloc 3 bytes */
str = (char *) malloc(strlen(‘‘bad’’));

/* The following statement writes 0 to the 4th byte */

strcpy(str, ‘‘bad’’);

free (str);

/* Let us malloc 100 bytes */

str = (char *) malloc(100);

array = (int **) str;

/* Get an uninitialized value */

bogus = array[0];

free (str);

/* The following is a double free */
free (str);

/* The following statement uses the uninitialized value as a pointer */

value = *bogus;

}

007–2579–004 83

Developer MagicTM: Debugger User’s Guide

To start the tutorial:

1. cd /usr/demos/WorkShop/mallocbug

2. Invoke the Debugger by typing:

cvd corrupt &

The Debugger Main View window displays with corrupt as the target
executable.

3. Open the Execution View window (if it is minimized) and set the
MALLOC_FASTCHKand MALLOC_CLEAR_MALLOCenvironment variables.

If you are using the C shell, type:

setenv MALLOC_FASTCHK
setenv MALLOC_CLEAR_MALLOC

If you are using the Korn or Bourne shell, type:

MALLOC_FASTCHK=

MALLOC_CLEAR_MALLOC=

export MALLOC_FASTCHK MALLOC_CLEAR_MALLOC

4. Select Trap Manager from the Views menu in Main View.

5. Type the following command in the Trap field of the Trap Manager
window and click the Add: button:

Stop exit cvmalloc_error

A stop trap is set at the exit from the malloc library routine
cvmalloc_error . This stops the process when a heap corruption error is
detected. The Trap Manager is shown in Figure 41, page 85, with the stop
trap set.

84 007–2579–004

Detecting Heap Corruption [8]

Fatal error
trap

Figure 41. Setting Traps to Detect Heap Corruption

6. Click Run in the Main View control panel to start program execution and
observe Execution View.

A heap corruption is detected and the process stops at one of the traps. The
type of error and its address display in Execution View as shown in
Figure 42, page 86.

007–2579–004 85

Developer MagicTM: Debugger User’s Guide

Figure 42. Heap Corruption Warning Shown in Execution View

7. Select Call Stack from the Views menu in Main View.

Call Stack View is opened displaying the call stack frame at the time of
the error (see Figure 43, page 86).

Figure 43. Call Stack at Boundary Overrun Warning

86 007–2579–004

Detecting Heap Corruption [8]

8. Click the Continue button in the Main View control panel and watch the
Execution View and Call Stack View windows.

The process continues from the stop at the boundary overrun warning until
it hits the next trap where an erroneous free error occurs.

9. Click the Continue button again and watch the Execution View and
Call Stack View windows.

This time the process stops at a bus error. The PC stops at the following
statement because bogus was set to an uninitialized value:

value=*bogus

10. Enter p &bogus on the Debugger command line at the bottom of the Main
View window.

This gives us the address for the bogus variable and has been done in
Figure 44, page 87. We need the bad address so that we can set a
watchpoint to find out when it is written to. (This example has an address
of 0x7fffaef4 ; your address will be different.)

Bus error data

PC at error line

Entry to get bad
address

Problem address
to be watched

Figure 44. Main View at Bus Error

007–2579–004 87

Developer MagicTM: Debugger User’s Guide

11. Deactivate the stop trap by clicking the toggle button next to the trap
description in the Trap Manager window, and click the Kill button in
Main View to kill the process.

12. Type the following command in the Trap field in the Trap Manager
window by using the address you obtained from the Debugger command
line (see Figure 44, page 87) and click the Add: button.

stop watch address 0x7fffaef4 for write

Use the address from your system, not the one in the tutorial. This sets a
watchpoint that is triggered if a write is attempted at that address.

13. Click the Run button and observe Main View.

The process stops at the point where the bogus variable receives a bad
value. Details of the error are displayed in the Main View Status field.

88 007–2579–004

Multiple Process Debugging [9]

WorkShop supports performance analysis and debugging of multiprocess
applications, including processes spawned either with fork or sproc and
threaded applications. You can perform process control operations on a single
process or on all members of a process group. You can attach WorkShop
automatically to child processes. You can also specify spawned processes to
inherit traps. The Trap Manager provides special trap commands to facilitate
debugging multiple processes simultaneously.

Note: The Multiprocess View window is for use by C, C++, and Fortran
users. If you are debugging Ada code, you should use the Task View
window available through the View menu of Main View (see Section A.3.1,
page 149).

This chapter discusses the details of multiprocess debugging in WorkShop and
includes the following topics:

• Debugging with Multiprocess View, Section 9.1, page 89

• Controlling Execution and Setting Traps in a Multiprocess Program, Section
9.2, page 92

• Debugging a Multiprocess Fortran Program, Section 9.3, page 98

9.1 Debugging with Multiprocess View

Multiprocess View operates on a process group. By default, a process group
includes the parent process and all descendants spawned by sproc . Through a
preferences option, processes spawned with fork during the session can be
added to the process group automatically when they are created. Any process
to which you have read/write access can also be added to the process group, if
desired. All sproc ’d processes must be in the same process group, since they
share information.

Note: Any child process that performs an exec with setuid (set user ID)
enabled will not become part of the process group.

Each process in the session can have a standard Main View session associated
with it. However, all processes in a process group share a single
Multiprocess View window. Selecting Multiprocess View... from the
Admin menu in Main View for any process in the group brings up the
Multiprocess View window.

007–2579–004 89

Developer MagicTM: Debugger User’s Guide

When debugging multiprocess applications, you should disable the SIGTERM
signal by selecting the Signal Panel option from the Views menu of Main
View. Although multiprocessing debugging is possible with SIGTERMenabled,
the multiprocess application may not terminate gracefully after execution is
complete.

Currently, Multiprocess View handles the following multiple process situations:

• True multiprocess program, which refers to a tightly integrated system of
sproc ’d processes, generated by the MIPSpro Automatic Parallelization
Option. For more information on parallel processing, see the auto_p(5)
man page, or the MIPSpro Automatic Parallelizer Programmer’s Guide.

• Auto-fork application, which is a process that spawns a child process and then
runs in the background.

• Fork application, which is a process that spawns child processes and can
interact with them. The WorkShop Performance Analyzer supports
applications that fork but not those that exec .

• Locally distributed application, which is an application that involves two
different executables running in different processes on the same host
coordinated by a rendezvous mechanism. To use the Performance Analyzer,
you must have a Main View for each process and enable data collection
accordingly.

Multiprocess View does not support remotely distributed applications.

9.1.1 Invoking the Parent Process

The first step in debugging multiple processes is to invoke the Debugger with
the parent process. Then select Multiprocess View from the Admin menu to
bring up the Multiprocess View window. Figure 45, page 91, shows a
typical Multiprocess View window.

90 007–2579–004

Multiple Process Debugging [9]

Multiprocess
control area

Process
display area

Figure 45. Multiprocess View

To get more information about a process or thread displayed in the process
display area, use the right mouse button to click on the process or thread entry.
This action pops up a Process menu that is applicable to the selected entry.
From the Process menu you can change entry focus, create a new window,
focus attention to a user–entered thread, and add or remove an entry. For
complete details about the Process menu, see Section A.2.5, page 143.

9.1.2 Viewing Process Status

When the Multiprocess View first displays, it lists the status of all processes
and threads in the process group. For definitions of the various status and
states, see Section A.2.3.

9.1.3 Using Control Buttons

The Multiprocess View window uses the same control buttons as Main
View with the following exceptions:

• Buttons are applied to all processes as a group.

• There is no separate Run button.

007–2579–004 91

Developer MagicTM: Debugger User’s Guide

Using a control button in the Multiprocess View window has the same
effect as clicking the button in the Main View window of each individual
process. For definitions of the buttons, see Section A.2.4, page 142.

9.1.4 Multiprocess Traps

As discussed in Chapter 4, page 39, the trap qualifiers [all] and [pgrp] are
used in multiprocess analysis. The [all] entry stops or samples all processes
when a trap fires. The [pgrp] entry sets the trap in all processes within the
process group containing the trap location. The qualifiers can be entered by
default by using the Group Trap Default and Stop All Default
selections in the Traps menu of Trap Manager.

9.1.5 Adding and Removing Processes

To add a process, select Add... from the Process menu. The Add Process
dialog displays. Select one of the listed processes or enter a process ID in the
Process ID field and click the OKbutton.

To remove a process, click on the process name and select Remove from the
Process menu. Be aware that a process in a sproc process group cannot be
removed from the process group. Likewise, you cannot remove a pthread from
a pthread group.

9.1.6 Multiprocess Preferences

The Preferences... option in the Config menu brings up the
Multiprocess View Preferences dialog. The preferences on this dialog
lets you determine when a process is added to the group, specify process
behavior, specify the number of call stack levels to display, and so forth.

For details about Multiprocess View Preference options, see Section
A.2.6, page 144.

9.2 Controlling Execution and Setting Traps in a Multiprocess Program

This section uses a C program that generates numbers in the Fibonacci
sequence to demonstrate some common tasks when using cvd to debug mp
code. The following tasks are demonstrated:

• Stopping a child process on a sproc

92 007–2579–004

Multiple Process Debugging [9]

• Using the Multiprocess View buttons to control all processes

• Setting traps in the parent process only

• Setting group traps

The fibo program uses sproc to split off a child process, which in turn uses
sproc to split off a grandchild process. All three processes churn out Fibonacci
numbers until stopped. If you installed the demo programs, you can find the
source for fibo.c in the /usr/demos/WorkShop/mp directory. A listing of
the fibo.c directory follows:

#include <stdio.h>

#include <sys/types.h>

#include <sys/prctl.h>

int NumberToCompute = 100;

int fibonacci();

void run(),run1();

int fibonacci(int n)
{

int f, f_minus_1, f_plus_1;

int i;

f = 1;

f_minus_1 = 0;
i = 0;

for (; ;) {

if (i++ == n) return f;

f_plus_1 = f + f_minus_1;
f_minus_1 = f;

f = f_plus_1;

}

}

void run()

{

int fibon;

for (; ;) {

NumberToCompute = (NumberToCompute + 1) % 10;

fibon = fibonacci(NumberToCompute);
printf("%d’th fibonacci number is %d\n",

007–2579–004 93

Developer MagicTM: Debugger User’s Guide

NumberToCompute, fibon);

}
}

void run1()

{

int grandChild;

errno = 0;

grandChild = sproc(run,PR_SADDR);

if (grandChild == -1) {

perror("SPROC GRANDCHILD");
}

else

printf("grandchild is %d\n", grandChild);

run();

}

void main ()

{

int second;

second = sproc(run1,PR_SADDR);
if (second == -1)

perror("SPROC CHILD");

else

printf("child is %d\n", second);

run();

exit(0);

}

To start, compile the program and run the Debugger.

1. Compile fibo.c by entering the following command:

cc -g fibo.c -o fibo

2. Invoke the Debugger on fibo as follows:.

cvd fibo &

3. Bring up the Multiprocess View window by selecting Multiprocess
View... from the Admin menu.

94 007–2579–004

Multiple Process Debugging [9]

In the next section, you will set options to control how the process executes.

9.2.1 Using Multiprocess View to Control Execution

To examine each process as it appears, you need to stop child processes as they
are created with sproc . You can control Debugger behavior towards sproc
processes by setting various Multiprocess preferences.

1. Select Preferences... from the Config menu on the Multiprocess
View window.

2. Deactivate Resume child after attach on sproc by toggling off the
switch.

At the same time, you can turn off trap inheritance, so you can experiment
with trap setting later.

3. Click the OKbutton to accept the change.

Now you can run the process.

4. In the Main View, click the Run button.

If you watch the Multiprocess View window, you see the main process
appear and spawn a child process. The child process stops as soon as it
appears, since you turned off the Resume child after attach on
sproc option. You can now use Multiprocess View to open a new
main view for the child process.

5. Use the right mouse button to click on the name of the child process in the
Multiprocess View window and select the Create a new window
option from the Process menu. A new window is displayed that launches
a debug session for the process.

Use the buttons on the Multiprocess View window to control all
processes simultaneously, or use the buttons in each of the Main Views to
control each process separately.

Note: You may get a warning that sproc.s is missing. This is a
reference to assembly code and can be ignored.

6. Click the Continue button in the Multiprocess View window. The first
child now spawns a grandchild process that stops in sprocsp , as shown in
Figure 46, page 96:

007–2579–004 95

Developer MagicTM: Debugger User’s Guide

Figure 46. Examining Process State Using Multiprocess View

9.2.2 Using the Trap Manager to Control Trap Inheritance

This section shows using the Trap Manager to set traps that affect one or all
processes in the fibo process group. For complete information on using the
Trap Manager, refer to Chapter 4, page 39.

1. In the Main View for the parent process, select Trap Manager from the
Views menu.

Traps set using the Traps menu in any of the Main View windows affect
only the process controlled by the individual Main View. For example, see
what happens if you set a stop trap in the first executable line of run() ,
which is line 32:

32 NumbertoCompute = (NumbertoCompute + 1) % 10;

2. Using the Traps menu of the parent process, set a stop trap at line 32 of
fibo.c .

Only the parent process halts. The child processes continue running, as the
Multiprocess View window confirms.

You can use the Trap Manager to edit the trap so that it affects the whole
process group.

3. Insert the word pgrp after the word Stop .

The trap should read Stop pgrp at.. , as shown in Figure 47, page 97.

96 007–2579–004

Multiple Process Debugging [9]

Figure 47. Modifying a Trap to Affect a Process Group

4. Click the Modify button to accept your change to the trap. The trap now
affects the two child processes. Watch the Multiprocess View window
to see the entire process group stop at the trap on line 32.

5. If you set traps by using the Trap Manager, select Group Trap Default
from the Traps menu. This makes the traps affect the entire process group.

6. In the Main View of the parent process, place the cursor in any executable
line in the function fibonacci and select At Source Line from the
Traps menu of the Trap Manager window.

The trap you have just set includes the modifier pgrp . It automatically
affects both child processes.

7. Select Exit from the Admin menu in each Main View to end this tutorial.

You must explicitly close the Multiprocess View window. It does not
close when the Main View windows do.

007–2579–004 97

Developer MagicTM: Debugger User’s Guide

9.3 Debugging a Multiprocess Fortran Program

The first part of this section presents a few standard techniques to assist you in
debugging a parallel program. The second part shows you how to debug the
sample program.

9.3.1 General Fortran Debugging Hints

Debugging a multiprocessed program is more difficult than debugging a
single-processor program. Therefore, try to isolate the problem as much as
possible and try to debug as much as possible on the single-processor version.
If you can, reduce the problem to a single C$DOACROSSloop.

Once you have isolated the problem to a specific DOloop, try changing the
order of iterations in a single-processor version. If the loop can be
multiprocessed, then the iterations can execute in any order and produce the
same answer. If the loop cannot be multiprocessed, changing the order
frequently causes the single-processor version to fail. If it fails, you can use
standard single-process debugging techniques to find the problem.

If this technique fails, you need to debug the multiprocessed version. Compile
your code with the -g and -mp_keep flags. The -mp_keep flag saves the file
containing the multiprocessed DOloop Fortran code. The compiler saves the
code in a file named the following:

$TMPDIR/P<user_subroutine_name><machine_name><pid>

The user_subroutine_name option is the name of the subroutine containing
the DOACROSS, the machine_name option is your machine name, and the pid
option is the process ID number of the compilation.

If you have not set the TMPDIRenvironment variable, /tmp is used.

9.3.2 Multiprocess Debugging Session

This section walks you through the process of using the Debugger to debug a
small segment of incorrectly multiprocessed code.

If you installed the demo programs, you can find source for the code you will
be debugging, total.f , in the directory /usr/demos/WorkShop/mp . A
listing follows:

program driver

implicit none

integer iold(100,10), inew(100,10),i,j

98 007–2579–004

Multiple Process Debugging [9]

double precision aggregate(100, 10),result

common /work/ aggregate
call total(100, 10, iold, inew)

do 20 j=1,10

do 10 i=1,100

result=result+aggregate(i,j)

10 continue

20 continue
write(6,*)’ result=’,result

stop

end

subroutine total(n, m, iold, inew)
implicit none

integer n, m

integer iold(n,m), inew(n,m)

double precision aggregate(100, 100)

common /work/ aggregate
integer i, j, num, ii, jj

double precision tmp

C$DOACROSS LOCAL(i,ii,j,jj,num)

do j = 2, m-1

do i = 2, n-1
num = 1

if (iold(i,j) .eq. 0) then

inew(i,j) = 1

else

num = iold(i-1,j) +iold(i,j-1) + iold(i-1,j-1) +
& iold(i+1,j) + iold(i,j+1) + iold(i+1,j+1)

if (num .ge. 2) then

inew(i,j) = iold(i,j) + 1

else

inew(i,j) = max(iold(i,j)-1, 0)
end if

end if

ii = i/10 + 1

jj = j/10 + 1

aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

end do
end do

end

007–2579–004 99

Developer MagicTM: Debugger User’s Guide

In the program, the local variables are properly declared. The inew always
appears with j as its second index, so it can be a share variable when
multiprocessing the j loop. The iold , m, and n are only read (not written), so
they are safe. The problem is with aggregate . The person analyzing this code
reasoned that because j is always different in each iteration, j/10 will also be
different. Unfortunately, since j/10 uses integer division, it often gives the
same results for different values of j .

While this is a fairly simple error, it is not easy to see. When run on a single
processor, the program always gets the right answer. Sometimes it gets the
right answer when multiprocessing. The error occurs only when different
processes attempt to load from and/or store into the same location in the
aggregate array at exactly the same time.

Here are the steps in this exercise:

1. First try reversing the order of the iterations. Replace

do j = 2, m-1

with

do j = m-1, 2, -1

This still gives the right answer when running with one process but the
wrong answer when running with multiple processes. The local variables
look right, there are no equivalence statements, and inew uses only simple
indexing. The likely item to check is aggregate . Your next step is to look
at aggregate with the Debugger.

2. Compile the program with the -g -mp_keep options:

% f77 -g -mp -mp_keep total.f -o total

3. If your debugging session is not running on a multiprocessor machine, you
can force the creation of two threads for example purposes by setting an
environment variable. If you use the C shell, type:

% setenv MP_SET_NUMTHREADS 2

Is you use the Korn or Bourne shell, type:

MP_SET_NUMTHREADS=2

export MP_SET_NUMTHREADS

4. Start the Debugger, type:

% cvd total &

100 007–2579–004

Multiple Process Debugging [9]

The Debugger Main View window displays.

5. Choose Go To Line... from the Source menu and select line 43. This
takes you to line 43, which is the following:

aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

The subroutine touches aggregate in only one place, line 43. You want to
set a stop trap at this line, so you can see what each thread is doing with
aggregate , ii , and jj . You also want this trap to affect all threads of the
process group. One way to do this is to turn on trap inheritance using the
Multiprocess View Preferences dialog box. Another way is to use
the Trap Manager to specify group traps, as follows.

6. From the Views menu, select Trap Manager .

7. In the Trap Manager window, pull down the Traps menu. Select the
Group Trap Default option from the menu.

8. Place the cursor in line 43 in the Main View window to select the line.

9. From the Traps menu of the Traps Manager window, select At Source
Line .

This sets the stop trap, which should read something like the following trap:

Stop pgrp in file /usr/demos/WorkShop/mp/total.f line 43

10. Bring up the Multiprocess View window to monitor status of the two
processes.

Now you are ready to run the program.

11. Click the Run button in the Main View window.

As you watch the Multiprocess View , you see the two processes appear,
run, and stop in the function _total_25_aaaa . The Main View window is
now relative to the master process.

12. Use the right mouse button to click on the name of the slave process in the
Multiprocess View window and select the Create a new window
option from the Process menu.

A new window is displayed that launches a debug session for the process.

Then, invoke the Variable Browser on each process. Look at ii and jj in
Figure 48, page 102.

007–2579–004 101

Developer MagicTM: Debugger User’s Guide

Figure 48. Comparing Variable Values from Two Processes

They have the same values in each process; therefore, both processes may
attempt to write to the same member of the array aggregate at the same
time. So aggregate should not be declared as a share variable. You have
found the bug in your parallel Fortran program.

102 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

This chapter provides a sample session that demonstrates most of the X/Motif
Analyzer functions. The session outlines common tasks you can perform with
the X/Motif Analyzer.

This chapter contains the following sections:

• Setting Up the Sample Session, Section 10.1, page 103

• Navigating the Widget Structure, Section 10.2, page 105

• Examining Widgets, Section 10.3, page 107

• Setting Callback Breakpoints, Section 10.4, page 109

• Using Additional Features of the Analyzer, Section 10.5, page 112

• Ending the Session, Section 10.6, page 116

10.1 Setting Up the Sample Session

For this tutorial, use the demo files in the /usr/demos/WorkShop/bounce
directory that contains the complete source code for the C++ bounce
application. To prepare for the session, you first need to create the fileset, then
launch the X/Motif Analyzer from the Debugger.

10.1.1 Preparing the Fileset

You must enter the commands listed below:

1. cd /usr/demos/WorkShop/bounce

2. make bounce

3. cvd bounce &

The cvd command brings up the Debugger, from which you can use the
X/Motif Analyzer. Upon invocation, you see the Execution View icon
and Main View (shown in Figure 49, page 104) appear. Notice that the
source code status indicator in the lower-right corner of the Debugger Main
View is (Read Only) .

007–2579–004 103

Developer MagicTM: Debugger User’s Guide

Run button

Source code
display area

Source
annotation
column

Debugger
command line

Source code
status indicator

Figure 49. Debugger Main View

4. Click the Execution View icon to open the window and position the
window so you can see it and the Debugger Main View.

5. To see what the program does, click Run. The bounce program opens a
window. Click Run in the new window, resize the window to make it taller,
and then add balls from the Actors menu to see how the program executes.

6. The Execution View shows the program output (see Figure 50, page 105).

104 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

Figure 50. Program Results in Execution View

Note: If your screen shows different results, the program files may have
been modified during a previous tutorial session.

10.1.2 Launching the X/Motif Analyzer

Once the bounce fileset is built and the debugger is active, you need to launch
the X/Motif Analyzer with the following steps:

1. Pull down the Views menu in the menu bar of the debugger Main View.

2. Select X/Motif Analyzer .

3. Click OKwhen asked if you want to change your $LD_LIBRARY_PATH
environment variable to include /usr/lib/WorkShop/Motif . These are
instrumented versions of the Silicon Graphics libraries and add special
support for the X/Motif Analyzer, in addition to containing symbols.

4. Click Kill in the Debugger Main View to kill bounce .

You are now ready to begin the sample session.

10.2 Navigating the Widget Structure

After being launched, the X/Motif Analyzer brings up the X/Motif Analyzer
window with an empty Widget examiner tab panel. The tab panels also show
the Breakpoints , Trace , and Tree examiner tab panels (see Figure 51, page
106).

007–2579–004 105

Developer MagicTM: Debugger User’s Guide

Figure 51. First View of the X/Motif Analyzer (Widget Examiner)

1. Click Run in the Debugger Main View to run bounce again (this time with
the augmented versions of the libraries).

2. Click Run in the bounce window and resize the window to make it taller.

3. Click Select . This brings up an information dialog and changes the cursor
to a plus sign (+). Click Step in the bounce window as instructed by the
dialog. The Widget examiner displays the Step widget structure.

4. Click the Tree tab. The Tree examiner panel displays the widget hierarchy
of the target object (see Figure 52, page 107).

106 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

Figure 52. Widget Hierarchy Displayed by the Tree Examiner

5. Double-click the Run node in the tree. (Run is in the upper-right area of the
window). This brings up the widget examiner that displays the Run widget
structure. Notice that the Parent button shows the name of the current
widget’s parent.

6. In the X/Motif Analyzer window, click the Parent button to switch the
view to the Run widget’s parent, the Control object. The widget examiner
now displays the Control widget structure. You can navigate through the
widget hierarchy using either the Widget examiner or the Tree examiner.

10.3 Examining Widgets

1. In the widget examiner, pull down the Children... menu and select
Run. The Run widget structure is now displayed in the examiner.

007–2579–004 107

Developer MagicTM: Debugger User’s Guide

2. In the bounce window, pull down the Actors... menu and select Add
Red Ball .

3. In the Debugger Main View, enter stop in Clock::timeout in the cvd
command-line area to set a breakpoint in bounce . Notice that the Event
tab (for the event examiner) is added to the tab list.

4. In the Debugger Main View, click Continue a few times to observe the
behavior of bounce with this breakpoint added.

5. Click the Breakpoints tab to go to the breakpoints examiner. This
examiner allows you to set widget-level breakpoints.

6. In the Callback Name text field, enter activateCallback , then click
Add to add a breakpoint for the activateCallback object of the Run
widget. The result is displayed in Figure 53, page 108.

Return button

Widget

specification

Parameter

specification

Breakpoints

Figure 53. Adding a Breakpoint for a Widget

108 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

7. In the Debugger Main View, click the breakpoint arrow to remove the
Clock::timeout breakpoint.

8. In the Debugger Main View, click Continue .

9. In the bounce window, click Stop .

10. In the bounce window, click Run. The process stops in the Run button’s
registered activateCallback . This is the routine that was passed to
XtAddCallback routine. Notice that the Callback tab (for the callback
examiner) is added to the tab list.

10.4 Setting Callback Breakpoints

1. In the X/Motif Analyzer window, click the Breakpoints list item to
highlight the breakpoint.

2. In the X/Motif Analyzer window, delete the widget address in the
Widget text field and click Modify . This changes the activateCallback
breakpoint to apply to all push button gadgets (XmPushButtonGadget , set
in the Class text field) rather than just the Run button (see Figure 54, page
110).

007–2579–004 109

Developer MagicTM: Debugger User’s Guide

Figure 54. Setting Breakpoints for a Widget Class

3. In the Debugger Main View, click Continue .

4. In the bounce window, click Stop . The process now stops in the Stop
button’s activateCallback routine.

5. In the X/Motif Analyzer window, click the Callback tab to go to the
callback examiner. This examiner displays the callback context and the
appropriate call_data structure (see Figure 55, page 111).

110 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

Figure 55. Callback Context Displayed by the Callback Examiner

6. Double-click the window value in the callback structure, fourth line from
bottom.

7. Pull down the Examine menu and select Window. The X/Motif Analyzer
displays the window attributes for that window (the window of the Stop
button). Notice that the Window tab (for the window examiner) is added to
the tab list. See Figure 56, page 112.

You can also accomplish the same action by triple-clicking the window value
in the callback structure of the callback examiner. In general, triple-clicking
on an address brings you to that object in the appropriate examiner.

007–2579–004 111

Developer MagicTM: Debugger User’s Guide

Figure 56. Window Attributes Displayed by the Window Examiner

10.5 Using Additional Features of the Analyzer

1. In the X/Motif Analyzer window, click the Widget tab.

2. Double-click the widget_class value on the fourth line.

3. Pull down the Examine menu and select Widget Class . The X/Motif
Analyzer window displays the class record for the
XmPushButtonGadget routine. Notice that the Widget Class tab (for
the widget class examiner) is added to the tab list.

(Again, the same action can be accomplished by triple-clicking the
widget_class value in the widget examiner.)

112 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

4. Triple-click the superclass value on the third line. The X/Motif Analyzer
window displays the class record for XmLabelGadget , the superclass of
XmPushButtonGadget . (Triple-clicking is a shortcut for automatically
selecting the correct examiner.)

5. Triple-click the superclass value on the third line. The X/Motif Analyzer
window displays the class record for XmGadget, the superclass of
XmLabelGadget .

6. Click the Widget tab to change to the widget examiner.

7. Triple-click the parent value on the fifth line. The X/Motif Analyzer
window displays the control widget, the parent of Run. This action
produces the same results as clicking the Parent button.

8. In the X/Motif Analyzer window, click the tab overflow area (the area
where the tabs overlap, to the far left of the tab list) and select the
Breakpoints tab (see Figure 57).

007–2579–004 113

Developer MagicTM: Debugger User’s Guide

Figure 57. Selecting the Breakpoints Tab From the Overflow Area

9. Change the breakpoint type from Callback to Resource-Change .

10. In the Class text field, enter: Any .

11. In the Resource Name text field, enter: sensitive .

12. Click Add. This adds a breakpoint.

114 007–2579–004

Using the X/Motif Analyzer: A Tutorial [10]

13. In the Debugger Main View, click Continue . The resource change
breakpoint was reached, stopping the process in the XtSetValues routine.

14. In the Debugger Main View, pull down the Views menu and select Call
Stack . Notice the call to XtSetValues on the second line (see Figure 58,
page 115).

Figure 58. Breakpoint Results Displayed by the Call Stack View

15. In the Call Stack View , double-click the Cmdinterface::activate
frame (just below XtSetSensitive). This is where the sensitive resource
was changed.

16. In the X/Motif Analyzer window, click the Widget tab.

17. In the X/Motif Analyzer window, double-click the widget address in the
Widget text field, press backspace, enter _w, and press Enter . The
X/Motif Analyzer displays the Run widget, which is the widget currently
being changed.

18. In the Debugger Main View, click Continue . The process stops again in
the XtSetValues routine, which is another sensitivity change.

19. Double-click the Cmdinterface::active frame (just below
XtSetSensitive).

20. Double-click in Widget field, press backspace, enter _w, and press Enter .
The X/Motif Analyzer window displays the Step widget, which is the
widget now being changed.

007–2579–004 115

Developer MagicTM: Debugger User’s Guide

10.6 Ending the Session

Exit the X/Motif Analyzer by pulling down the Admin menu and choosing
Close . Exit the Debugger by pulling down the Admin menu and choosing
Exit .

Note: If you exit the Debugger, you automatically exit the X/Motif Analyzer.

116 007–2579–004

Debugger Reference [A]

This chapter describes the function of each window, menu, and display in the
Debugger’s graphical user interface and describes the commands available on
the Debugger command line (see Section A.10, page 244).

This chapter contains the following sections:

• Main Window, Section A.1, page 117

• Basic Windows, Section A.2, page 140

• Ada-Specific Windows, Section A.3, page 149

• X/Motif Analyzer Windows, Section A.4, page 155

• Trap Management Windows, Section A.6, page 186

• Data Examination Windows, Section A.7, page 190

• Machine-Level Debugging Windows, Section A.8, page 221

• Fix+Continue Windows, Section A.9, page 232

• Debugger Command Line, Section A.10, page 244

A.1 Main View

The major areas of the Main View window are shown in Figure 59, page 118.

007–2579–004 117

Developer MagicTM: Debugger User’s Guide

Menu bar

Control panel

Status area

Source code
display area

Annotation
column

Source filename

Debugger
command line

Figure 59. Major Areas of the Main View Window

The Main View contains a menu bar, from which you can perform a number of
functions and launch windows. The menu bar contains the following menus,
which are discussed in detail in later pages:

• Admin , Section A.1.1, page 123

• Views , Section A.1.2, page 126

• Query , Section A.1.3, page 127

• Source , Section A.1.4, page 128

• Display , Section A.1.5, page 130

• Perf , Section A.1.6, page 131

• Traps , Section A.1.7, page 133

• PC, Section A.1.8, page 134

118 007–2579–004

Debugger Reference [A]

• Fix+Continue , Section A.1.9, page 134

• Help , Section A.1.10, page 139

Main View also contains several input fields, a source code display area, and
buttons that trigger commonly used actions.

In Main View, actions can be applied to a single process or to all processes. To
force an action to apply to all processes, type the command on the Debugger
command line or click the right mouse button over the Run, Continue , or
Stop button to set the all mode.

The Main View contains the following items:

Commandtext field Displays full pathname of the executable file that
you are currently debugging.

Debug option menu Allows you to conduct performance experiments
using the WorkShop performance tools. The
following menu choices are available:

• Debug Only runs the Debugger in Debug
mode with no performance tools enabled.

• Performance causes performance data to be
gathered and instrumented code to be
generated for performance analysis while
using the Debugger.

• Purify activates the Purify memory
corruption analysis tool. The code displayed
in Main View, Source View , and so forth
will be code generated by Purify. (This option
appears only if Purify is installed on your
system. Purify is not a Silicon Graphics
product nor is it part of the WorkShop
package. It is a product of Rational Software
and is not orderable from nor supported by
SGI.)

Continue [all] Continues execution of the current process or all
processes. This command can be run only after
the running process(es) has stopped. If the
program has not been run or has been killed, the
Continue button is grayed out. If the target
program has not yet started executing, use the
Run command to start execution.

007–2579–004 119

Developer MagicTM: Debugger User’s Guide

Stop [all] Stops execution of the current process or all
processes while it is running. This command is
valid only when a process(es) is running;
otherwise the command button is grayed out.
Traps can also be planted to stop the program at
a specific location or on a particular condition.

Step Into Executes a source line single step of the current
process. If a function call is encountered, it is
stepped into. That is, the current process
continues to the next source statement, even if
that statement is encountered in a function that is
called. The Step Over command can be used to
step over function calls, then stop. If a trap is
encountered while executing Step Into , the
command is canceled and the process is stopped
where the trap was fired. This command can be
run only after the running process(es) has
stopped; otherwise the command button is
grayed out.

When you press the right mouse button over the
Step Into button, a menu pops up to allow you
to choose the number of source lines to be
stepped. If you choose the N... menu entry, a
dialog window is opened to allow you to enter a
step value.

Step Over Executes source line single step of the current
process. If a function call is encountered, it is
stepped over. That is, the current process
continues to the next source statement, but does
not count statements in functions that are called
while stepping. Step Into can be used to step
into function calls, then stop. If a trap is
encountered while executing Step Over , the
command is canceled and the process is stopped
where the trap was fired.

When you press the right mouse button over
Step Over , a menu pops up to allow you to
choose the number of source lines to be stepped.
If you choose the N... menu entry, a dialog
window is opened to allow you to enter a step
value.

120 007–2579–004

Debugger Reference [A]

Return Continues execution of the process until the
current function that is being executed returns.
The process is stopped immediately upon
returning to the calling function. All code within
the current function is executed as usual. If a trap
is encountered while executing the Return
command, the command is canceled and the
process is stopped where the trap was fired. This
command can be run only after the running
process(es) has stopped; otherwise the command
button is grayed out. This command is not
allowed if the executable is instrumented for
performance analysis.

Sample Allows you to manually sample the state of a
process for evaluation by the Performance
Analyzer. This command can be run only when
the process(es) is running and the Enable Data
Collection mode is set on the Performance
panel; otherwise the command button is grayed
out.

Print Prints the value of the currently selected
expression, which is highlighted in Source
View .

Kill [all] Kills the currently running process or all running
processes that you are debugging by sending it
the equivalent of a kill -9 signal. This
command can be run if the process(es) is running
or stopped; otherwise the command button is
grayed out.

Run [all] Runs the program that you are currently
debugging or all programs. After the initial run,
allows you to rerun the program(s) while
maintaining the traps you have set.

Status: area Displays information about the process that you
are debugging.

Source Code area Displays the source code that your are currently
debugging.

007–2579–004 121

Developer MagicTM: Debugger User’s Guide

Annotation column Displays information specific to a line number,
such as breakpoints, location of the PC, and so
forth.

File: text field Displays the name of the file shown in the source
code area.

Command line area Area of the Main View where you can enter
Debugger commands.

Show/Hide annotations
button

This button (see Figure 60, page 123) is visible
only when you run or load a performance
experiment (see the Developer Magic: Performance
Analyzer User’s Guide for more information on the
performance tools). This is a toggle button that
shows or hides performance related annotations.

122 007–2579–004

Debugger Reference [A]

Show/Hide annotations
button with annotations
showing

Show/Hide annotations
button with annotations
hidden

Figure 60. Show/Hide Annotations Button in Main View

A.1.1 Admin Menu

The Admin menu in Main View performs general management functions
dealing with processes, windows, and user preferences. The Admin menu
provides the following selections:

007–2579–004 123

Developer MagicTM: Debugger User’s Guide

Library Search
Path...

Controls where the Debugger looks for DSOs
when you invoke the Debugger on an executable
or core file. The Library Search Path dialog
allows you to reset the LD_LIBRARY_PATHand
_RLD_ROOTenvironment variables. You can also
reset _RLD_LIST to control the set of DSOs that
will be used by the program. See the rld (1) man
page for more information on these variables.
Any changes you make to these variables are
propagated into Execution View when you run
the program.

The Library Search Path dialog opens
automatically if you invoke the Debugger on an
executable or core file and the Debugger is unable
to find all of the required DSOs. You can also
open the Library Search Path dialog by
selecting Library Search Path... from the
Admin Menu. The list of required DSOs displays
at the top of the dialog box, annotated by the
status of each DSO. The status can be OK, Error:
Cannot find library , or Error: Core
file and library mismatch . The status
Error: Core file and library
mismatch indicates that the Debugger found a
DSO that did not match the core file. There are
three fields for the variables below the list area
where you can modify their values.

Insert Before and Insert After move the
shared object specified in the Value field before
or after the selected object in the list. Modify
replaces the selected object in the list with the file
entered in the Value field. Remove deletes the
selected shared object from the list.

Multiprocess
View...

Displays the Multiprocess View window,
which allows you to control processes and
threads. You should note that if you exit from
Multiprocess View , you will exit from your
debugging session.

GLdebug Provides a toggle to turn on GLdebug . GLdebug
is a graphical software tool for debugging

124 007–2579–004

Debugger Reference [A]

application programs that use the IRIS Graphics
Library (GL). GLdebug locates programming
errors in executables when GL calls are used
incorrectly. For more information, refer to the
GLdebug User’s Guide.

Switch Process... Changes the current process. You will be queried
for the new process ID. You can type it in or
paste it from another window, if desired.
Switching processes changes the session.

Switch
Executable...

Changes the current executable. This option also
lets you debug a different core file.

Detach Releases the process from the Debugger. This
allows you to make changes to the source code.
You must detach the process before you
recompile the program.

Load Settings... Allows you to use the previously saved
preference settings to an initialization file used
when the Debugger is first started.

Save Settings... Allows you to save the current preference settings
to an initialization file used when the Debugger is
first started. These can include such items as
window sizes, current views, window
configurations, and so on.

Iconify Iconifies all session views.

Raise Brings all session view windows to the
foreground and redisplays any iconified windows.

Launch Tool Lets you run other WorkShop tools. You can
switch to the other tools by selecting Build
Manager , Static Analyzer , Performance
Analyzer , or Tester . Selecting Debugger lets
you start another debugging session. If you have
WorkShop ProMPF installed on your system, the
Parallel Analyzer selection is also available.

007–2579–004 125

Developer MagicTM: Debugger User’s Guide

Exit Exits all views in the session and terminates the
session.

A.1.2 Views Menu

The Views menu in Main View provides the following selections for viewing
the process(es) and their corresponding data:

Array Browser Displays values from an array or array-slice in a
two-dimensional spreadsheet and optionally in a
three-dimensional representation; that is, a bar
graph, surface, multiple lines, or points in space.
These help you pick out bad data more readily.
Arrays can contain up to 100 x 100 elements.

Call Stack Displays the call stack along with parameters to
the calls. If you double-click an entry in the stack,
you switch the current context to that entry and
you can check the state of variables.

Disassembly View Displays assembly code corresponding to the
source code.

Exception View Displays the Exception View , an Ada-specific
window used for exception handling.

Execution View Displays the Execution View window for
handling the target process’s input and output.

Expression View Evaluates expressions in Fortran, C, or C++. To
enter an expression, select it in the source code
display and paste it into the Expression View
field, using the middle mouse button.

File Browser Displays a scrollable list of source files used by
the current executable. Double-click a file in the
list to load it directly into the source display area
in Main View or Source View. The Search
field lets you find files in the list quickly.

Memory View Displays the value at a given memory address.

Process Meter Monitors the resource usage of a running process
without saving the data. (Used with the
Performance Analyzer.)

126 007–2579–004

Debugger Reference [A]

Register View Displays the values stored in the hardware
registers for the target process.

Signal Panel Displays the signals that can occur. You can
specify which signals trigger traps and which are
to be ignored.

Source View Displays source code. Lets you set traps, perform
searches, and inspect source code without losing
information in Main View.

Structure Browser Displays data structures in a graphical format.
You can dereference pointers by double-clicking.

Syscall Panel Lets you set traps at the entry to or exit from
system calls.

Task View Brings up the Task View , an Ada-specific view
that provides task and callstack information for
processes.

Trap Manager Allows you to set, edit, and manage traps. The
Trap Manager is used by both the Debugger and
the Performance Analyzer.)

Variable Browser Displays values of local variables and parameters
for the current context.

X/Motif Analyzer Provides you with specific debugging support for
X/Motif applications. There are various
examiners for different X/Motif objects, such as
widgets and X graphics contexts, that might be
difficult or impossible to inspect using ordinary
Debugger functionality.

A.1.3 Query Menu

The Query menu lets you perform some of the queries available in the Static
Analyzer. If you have previously built a cvstatic fileset, this is rather
convenient. However, if you need to build the fileset from scratch, the process
becomes more involved.

With a current fileset, you can double-click any defined entity in the source
code, select the Where Defined? option appropriate to its type, and the
source code display area will scroll to the location where the item is defined.

007–2579–004 127

Developer MagicTM: Debugger User’s Guide

A.1.4 Source Menu

The Source menu in Main View provides the following selections to manage
source code files:

Open... Loads a source file.

Save Records changes made during the debugging
session to the source file. You must first select
Make Editable , which appears in the Source
menu when the file is read-only.

Save As... Records changes made during the debugging
session to the source file under a different
filename. . You must first select Make
Editable , which appears in the Source menu
when the file is read-only.

Save As Text... Records the information in the display area as a
text file.

Insert Source... Inserts the text of a file within your current file.

Fork Editor Starts your default editor on the current file. The
default editor is determined by the
editorCommand resource in the app-defaults
file. The value of this resource defaults to wsh
-c vi +%d, which means run vi in a wsh
window and scroll to the current line. If the
editor lets you specify a starting line, enter %din
the resource to indicate the new line number.

Recompile Displays the Build View window, which lets
you compile the source code associated with the
current executable.

Make Read Only /
Make Editable

Toggles the source code displayed between
read-only and writable states so that you can edit
your code.

Search... Searches for a literal case-sensitive, literal
case-insensitive, or regular expression (see Figure
61, page 129). After you have set your target and
clicked Apply (or pressed Enter), each instance
is marked by a search target indicator in the scroll
bar. You can search forward or backward in the
file by clicking the Next and Prev buttons. You
can also click an indicator with the middle mouse

128 007–2579–004

Debugger Reference [A]

button to scroll Main View to that point. Clicking
Reset removes the search target indicators.

Figure 61. The Search Dialog

Go to Line... Lets you scroll to a position in the source code by
specifying a line number. Go to Line...
brings up a dialog box similar to the one shown
in Figure 62, page 129.

Slider

Line specification
field

Figure 62. Go to Line Dialog

007–2579–004 129

Developer MagicTM: Debugger User’s Guide

You can enter a line number or use the slider at
the top of the box to select a line number. You do
not have to display line numbers to use this
feature.

Versioning Provides access to the configuration management
tool, if you have designated one.

The cvconfig script lets you designate
ClearCase, RCS, or SCCS. Type the following:

cvconfig [clearcase | rcs | sccs]

You must have root permissions to run
cvconfig .

The Versioning submenu appears.

Selecting any submenu option displays a shell in
which you can access the configuration
management tool. The following selections are
available on the submenu:

• CheckIn — Saves the source file and checks it
into the database as a new version.

• CheckOut — Recalls the source file from the
tool’s database if you have the proper
authority, locks it, and makes it editable.

• UncheckOut — Cancels the checkout, with
no changes registered.

A.1.5 Display Menu

The Display menu in Main View provides the following selections to annotate
the displayed source code:

Show Line
Numbers /Hide Line
Numbers

Displays or hides line numbers in the annotation
column corresponding to the source code.

Preferences... Displays the Annotations Preferences
dialog box (see Figure 63, page 131), which lets
you show or hide column annotations and menus
specific to the different WorkShop tools. In the
Debugger, you can display trap, PC, and context

130 007–2579–004

Debugger Reference [A]

icons. If you have purchased WorkShop Pro MPF,
you can display and manipulate loop indicators.
The Performance toggle displays experiment
statistics. The Tester module lets you see
coverage statistics. Turning off the Performance
toggle deletes the performance annotations from
the Source View .

Figure 63. Preferences Dialog

Hide Icons /Show
Icons

Hides or displays the annotation column next to
the source code display area.

A.1.6 Perf Menu

The Perf (Performance) menu (see Figure 64, page 132) offers the following
menu selections:

Select Task
submenu

Allows you to choose the task for your
performance analysis. The choices available are
shown in Figure 64, page 132. You may select
only one task per performance analysis run. If
none of the given tasks satisfy your requirements,
you can choose Custom... , which brings up the
configuration dialog open to the General tab.
From here, you can design your own task
requirements.

007–2579–004 131

Developer MagicTM: Debugger User’s Guide

Select Task submenu

Configuration dialog

Figure 64. Perf Menu and Subwindows

Examine Results... Launches the Performance Analyzer. For
complete information about the Performance
Analyzer, see the Developer Magic: Performance
Analyzer User’s Guide.

Configs... Brings up the configuration dialog open to the
Runtime tab as shown in Figure 64, page 132.
The dialog opens with the Experiment
Directory text field filled in with a default

132 007–2579–004

Debugger Reference [A]

value. The Performance Analyzer provides a
default directory named test0000 . If you use
the default or any other name that ends in four
digits, the four digits are used as a counter and
will be incremented automatically for each
subsequent experiment

A.1.7 Traps Menu

The Set Trap submenu contains selections that allow you to set various types
of traps. The following submenu selections are available:

Stop Sets a breakpoint at a designated line in your
source code. To set a breakpoint at a line
displayed in Main View or Source View ,
highlight the the appropriate line in the source
code display area and select the Set Trap
submenu, then choose the Stop option.

Stop At Function
Entry

Sets a breakpoint at the beginning of a function.
To set a breakpoint at a function, highlight the
function name in the source code display area
and select the Set Trap submenu, then choose
the Stop At Function Entry option.

Stop At Function
Exit

Sets a breakpoint at the end of a function. To set
a breakpoint at a function exit, highlight the
function name in the source code display area
and select the Set Trap submenu, then choose
the Stop At Function Exit option.

Sample Sets a sample trap at a designated line in your
source code to collect performance data. To set a
trap, highlight the appropriate line in the source
code display area, pull down the Set Trap
submenu, then select the Sample option.

Sample At Function
Entry

Sets a sample trap at the beginning of a function.
To set a trap, highlight the function name in the
source code display area and select Set Trap ,
then Sample At Function Entry .

Sample At Function
Exit

Sets a sample trap at the end of a function. To
set, highlight the function name in the source

007–2579–004 133

Developer MagicTM: Debugger User’s Guide

code display area and select Set Trap , then
Sample At Function Exit .

The Clear Trap menu contains selections that allow you to delete a trap on
the line containing the cursor. You must designate Stop or Sample trap type,
since both types can exist at the same location, appearing superimposed on
each other. The following submenu selections are available:

Stop Designates the stop trap type.

Sample Designates the sample trap type.

A.1.8 PC Menu

The PC (program counter) menu in Main View provides the following selections
for controlling the execution of a process:

Continue To Continues the process to the selected point in the
program unless some other event interrupts. You
select a line by placing the cursor in it.

Jump To Goes directly to a selected point within the same
function, jumping over intervening code. Waits
for command to resume execution. You select a
line by placing the cursor in it.

A.1.9 Fix+Continue Menu

The Fix+Continue menu offers the following menu selections:

Edit Allows you to edit functions using the Debugger
editor.

External Edit Allows you to edit functions using an external
editor. The default editor is vi , but can be
changed by using the Set Edit Tool...
pop-up menu in the Admin menu of the Status
window. See Section A.9.1, page 234, for further
information.

Parse and Load Compiles your modified function and loads it for
execution. You can execute the modified function
by clicking on the Run or Continue buttons in
the Debugger main view.

134 007–2579–004

Debugger Reference [A]

Show Difference
submenu

Allows you to see the difference between the
original code and your modifications. See Section
A.1.9.1, page 135, for further information.

Edited<-->Compiled Enables or disables your changes. This switch
allows you to see how your application executed
before and after the changes you made.

Save As... Allows you to save your changes to a file. You
can save changes to the current source file (the
default) or to a separate file.

Save All Files... Launches the Save File+Fixes As... dialog
that allows you to update the current session,
saving all the modified functions to the
appropriate files.

View submenu Allows you to change to different views.
Fix+Continue supports status, message, and build
environment windows. See Section A.1.9.2, page
136, for further information.

Preferences
submenu

Allows you to set your Fix+Continue preferences.
See Section A.1.9.3, page 136, for further
information.

Cancel Edit Takes you out of edit mode and cancels any
changes you have made.

Delete Edits Deletes any changes that you made to functions.

A.1.9.1 Show Difference Submenu

This submenu allows you to view differences between your original and your
modified code. It contains the following options:

For Function Opens a window that shows you the differences
between the original function source and your
modified source.

For File Opens a window that shows you the differences
between the original source file and your
modified version.

Set Diff Tool ... Launches the Fix+Continue Preferences
Dialog (see Figure 65, page 137) that allows you
to set the tool that displays code differences. The
default is xdiff (1). For further information on

007–2579–004 135

Developer MagicTM: Debugger User’s Guide

the Fix+Continue Preferences Dialog , see
Section A.1.9.3, page 136.

A.1.9.2 View Submenu

This submenu allows you to open different Fix+Continue view windows. It
contains the following options:

Status Window Launches the Fix+Continue Status window.
See Section A.9.1, page 234, for more information.

Message Window Launches the Fix+Continue Message window.
See Section A.9.2, page 238, for more information.

Build Environment
Window

Launches the Fix+Continue Build
Environment window. See Section A.9.3, page
239, for more information.

A.1.9.3 Preferences Submenu

This submenu allows you to set various options for the Fix+Continue
environment, such as the difference tool, the external editor command, and so
on. The menu contains the following options:

Show Preferences Launches the Fix+Continue Preference
Dialog (see Figure 65, page 137) that displays
preferences currently enabled for the session, and
allows you to change the settings.

136 007–2579–004

Debugger Reference [A]

Figure 65. Fix+Continue Preferences Dialog

The following preferences are available through
the dialog:

• External Editor Command: text field that
allows you to choose your text editor. The
default is vi .

• File Difference Tool: text field that
allows you to choose the tool to use when
comparing code. The default is xdiff .

• Copy Traps On Previous Definition
toggle. When you edit and parse a function,
Fix+Continue copies traps from the old
definition to the new one by mapping old
lines to new lines. (This mapping is the same
as what can be generated using the UNIX

007–2579–004 137

Developer MagicTM: Debugger User’s Guide

diff utility.) If Copy Traps On Previous
Definition is on and the mapped line the
new definition is modified, then Fix+Continue
will look at the switch.

• Copy Traps Even On Changed Lines
toggle that causes the debugger to copy traps
onto a mapped line.

• Continue Even If Line Has Changed
toggle. When you edit and compile a function
in which your program is currently stopped,
Fix+Continue can continue in the new
definition provided some conditions are
satisfied. The line from which the program
continues depending on the mapping from the
line in which it stopped. In case it can
continue in the new definition from a line
which you have modified, Fix+Continue
consults this toggle to determine whether to
continue in the new or old definition. This
toggle allows you to override the default
behavior.

• Warn Unfinished Edits Before Run
toggle that pops up a warning dialog before a
run if you have unfinished edits.

• Warn Unfinished Edits Before
Continue toggle that pops up a warning
dialog before a continue if you have
unfinished edits.

• Save deactivated code during File
Save toggle. The Fix+Continue file save
substitutes new definitions in place of old
ones. If you want to save your original
functions in the same file, this switch allows
you to save the old (original or compiled)
code under an #ifdef . When you compile,
the old code will not get compiled. You can
manually edit the source to use the old
definition in any way you desire.

138 007–2579–004

Debugger Reference [A]

Reset Factory
Defaults

Sets preferences to the installed defaults.

Save Preferences Allows you to save your preferences to a file.
This item brings up the File dialog.

Load
Preferences...

Allows you to load preferences from a file. This
item brings up the File dialog.

A.1.9.4 Keyboard Accelerators

Use the accelerators in Table 4, page 139, to issue Fix+Continue commands
directly from the keyboard. The accelerators are listed alphabetically by
command.

Table 4. Fix+Continue Keyboard Accelerators

Command Key Sequence

Cancel Edit Ctrl-u

Edit Ctrl-e

External Edit Ctrl-x

Parse And Load Ctrl-p

A.1.10 Help Menu

The Help menu provides the following options:

Click for Help Provides information on the selected window or
menu.

Overview Provides general information on the current tool.

Index... Displays the entire list of help topics,
alphabetically, hierarchically, or graphically.

Keys & Shortcuts Lists the keys and shortcuts for the current tool.

007–2579–004 139

Developer MagicTM: Debugger User’s Guide

Product
Information

Provides copyright and version number
information on the tool.

A.2 Basic Windows

This section discusses additional views available through the Debugger: the
Execution View , Multiprocess View , Source View , and Process
Meter .

A.2.1 Execution View

The Execution View window is a simple shell that lets you set environment
variables and inspect error messages. Your target program I/O, if any, will be
displayed in the Execution View window. If the program is I/O-based, then
all interaction takes place in Execution View .

The Execution View (see Figure 66, page 140) is launched automatically with
the Debugger.

Figure 66. Execution View

A.2.2 Multiprocess View

WorkShop supports debugging of multiprocess applications, including
processes spawned with either fork or sproc commands.

Multiprocess debugging is supported primarily through the Multiprocess
View window. To display this window, select Multiprocess View from the
Admin menu. Multiprocess View displays a hierarchical view of your

140 007–2579–004

Debugger Reference [A]

pthreaded application. Pthreaded processes are marked with a folder icon.
Clicking the folder changes the view to show that process’s pthreads. Clicking
on a thread opens the call stack for the thread.

Figure 67, page 141, shows a typical Multiprocess View .

Multiprocess
control area

Process
display area

Figure 67. Multiprocess View

Note: Main View is attached to the parent process.

A.2.3 Viewing Status

When Multiprocess View comes up, it lists the status of all processes in the
process group. This view includes the following information:

PID: Shows the process identifier (PID).

PPID: Lists the parent process PIDs. Notice in Figure 67,
page 141, that the first process PID#7748 is the
parent process of the second.

Status/State: Shows Status or State depending on how you
have set your preferences on the Preferences
menu. Status is user–level status and State is
the kernel–level status.

Name: Identifies the process by file name.

007–2579–004 141

Developer MagicTM: Debugger User’s Guide

Function/PC: Indicates the current function and program
counter (PC) for any stopped processes.

The following Status and State conditions are possible:

Status State

Running RUNNING

Stopped RUNNING

Stopped on
breakpoint

RUNNING (but at a trap pc)

Waiting to
terminate

JOIN

Thread terminated DEAD

Waiting on kernel READY

Waiting on mutex MUTEX-WAIT

A.2.4 Multiprocess Control Buttons

Multiprocess View uses the same control buttons as Main View with two
exceptions. The buttons are applied to all processes as a group. There is no
separate Run button. Using a control button in Multiprocess View has the
same effect as clicking the button in each process’s Main View window. The
following buttons are available:

Continue [all] Resumes program execution after a halt and
continues until a stop trap or other event stops
execution.

Stop [all] Stops execution of all processes. When program
execution stops, the current source line of each
process is highlighted in its Main View, if one is
active, and annotated with an arrow indicating
the PC.

Step Into [all] Steps to the next source line and into function
calls. To step a specific number of lines, hold
down the right mouse button over the Step
Into button. A pop-up menu displays that lets
you select one of the fixed values or a specified
number of steps.

142 007–2579–004

Debugger Reference [A]

Step Over [all] Steps to the next source line and over function
calls. To step a specific number of lines, hold
down the right button over the Step Over
button. A pop-up menu displays that lets you
select one of the fixed values or a specified
number of steps.

Return [all] Executes the remaining instructions in the current
function. Program execution stops upon return
from that procedure.

Sample [all] Collects performance data for each process (if
performance data collection is enabled).

Kill [all] Terminates all processes in the group.

A.2.5 Controlling Processes

The Process menu lets you control processes and threads.

The Process menu has the following options:

Change focus to
this entry...

Opens a dialog that allows you to switch the
process or thread currently focused on in the
cvmain window to the process or thread selected
in the Multiprocess View window. Selecting a
call stack entry changes cvmain ’s focus to that
process or thread and positions the cvmain
window at the offset of the selected call stack.

Create a new
window...

Opens a dialog that allows you to bring up a new
cvmain window on the selected process or
thread.

Goto... Opens a dialog box that allows you to enter the
name of a thread on which focus should be
switched. This is useful when multiple threads,
all at the same location, are collapsed into a
single line. While Change focus to this
entry... always takes you to the first thread,
Goto... lets you jump to any thread.

Details... Shows thread–specific details.

Add... Opens a dialog in which you can select from a list
of process ids. Selected processes ids are added
to the Multiprocess View group.

007–2579–004 143

Developer MagicTM: Debugger User’s Guide

Remove Removes the highlighted process.

A process in a sproc share group cannot be removed from the process group.

A.2.6 Controlling Preferences

The Preferences... option in the Config menu brings up the
Multiprocess View Preferences dialog . It lets you control when
processes are added to the group and specifies their behavior.

The Multiprocess View preference options are:

Stack Depth Allows you to set how many lines of the call
stack should be displayed when opening the call
stack. Default is 10 lines.

Levels to open Allows you to specify the number of levels of
hierarchy to be displayed. By default, only the
top level of the hierarchy is displayed.

Attach to forked
processes

Automatically attaches new processes spawned
by the fork command to the group. (Note that
processes spawned by sproc are always
attached.)

Copy traps to
forked processes

Copies traps you have set in the parent process to
new forked processes automatically. If you
create parent traps with Trap Manager and
specify pgrp , then the children inherit these traps
automatically, regardless of the state of this flag.

Copy traps to
sproc’d processes

Copies traps you have set in the parent process to
new sproc’d processes automatically. As in the
previous option, if you create parent traps with
the Trap Manager and specify pgrp , the
children inherit these traps automatically, whether
this flag is set or not.

Resume parent
after fork

Restarts the parent process automatically when a
child is forked .

Resume child after
attach on fork

Restarts the new forked process automatically
when it is attached. If this option is left off, a new
process will stop as soon as it is attached.

Resume parent
after sproc

Restarts the parent process automatically when a
child is sproc’d .

144 007–2579–004

Debugger Reference [A]

Resume child after
attach on sproc

Restarts the new sproc’d process automatically
when it is attached. If this option is left off, a new
process will stop as soon as it is attached.

Combine threads at
same location

Displays threads stopped at the same location at
the same time. (It is possible for threads to arrive
at the same location through different logical
routes.)

Show Thread Status
vs Thread State

Displays thread status, which is the user–level
status as opposed to showing thread state, which
is the kernel–level status.

Follow highest
priority thread

Specifies that window focus shift after each event
to the thread that is considered to be the most
interesting thread. Events that may make a
thread interesting include the following: an error
condition, being stopped at a breakpoint, being
stopped waiting on a mutex, and so forth.

A.2.7 Source View

The Source View (see Figure 68, page 146) displays your source, opening
your Main program file by default.

007–2579–004 145

Developer MagicTM: Debugger User’s Guide

Figure 68. Source View

The Source View menu bar contains selections duplicated from the Main
View: Display , Traps , PC, and Fix+Continue . Each of these menus has the
same functionality as its counterpart in the Main View (see Section A.9.4.1, page
241). The only new menu selection is the File menu described below:

Open... Launches the file dialog that allows you to choose
a file to load into Source View .

Save Records changes made to the file during the
current debugging session. You must first select
Make Editable from the Source menu when
the file is read only.

Save As... Records changes made during the debugging
session to the source file under a different
filename.

Save As Text... Records information in the display area as a text
file.

146 007–2579–004

Debugger Reference [A]

Open Separate... Launches the File dialog that allows you to
create a new Source View with the contents of
a different source file.

Insert File... Inserts the text of a file within your current file.

Clone Clones the current window.

Fork Editor Starts your default editor on the current file. The
default editor is determined by the
editorCommand resource in the app-defaults
file. The value of this resource defaults to wsh
-c vi +%d , which means run vi in a wsh
window and scroll to the current line. If the
editor lets you specify a starting line, enter %din
the resource to indicate the new line number.

Recompile Displays the Build View window that lets you
compile the source code associated with the
current executable.

Make Editable Toggles the source code displayed between
read-only and writeable states so that you can
edit your code.

Search Searches for a literal case-sensitive, literal
case-insensitive, or regular expression. After you
have set your target and clicked Apply (or
pressed Enter), each instance is marked by a
search target indicator in the scroll bar. You can
search forward or backward in the file by clicking
the Next or the Prev button. You can also click
an indicator with the middle mouse button to
scroll Main View to that point. Clicking Reset
removes the search target indicators.

Go To Line... Launches the Go To Line dialog that allows
you to go to a specific line in the source. You can
type in the line, or select the line number via the
slider bar.

Versioning Provides access to the configuration management
tool, if you have designated one.

The cvconfig script lets you designate
ClearCase, RCS or SCCS. Type the following:

cvconfig [clearcase | rcs | sccs]

007–2579–004 147

Developer MagicTM: Debugger User’s Guide

You must have root permissions to run
cvconfig .

Selecting any option displays a shell in which
you can access the configuration management
tool. The selections in the submenu are:

Versioning submenu Contains the following options:

• CheckIn — Saves the source file and checks it
into the database as a new version.

• CheckOut — Recalls the source file from the
tool’s database if you have the proper
authority, locks it, and makes it editable.

• UncheckOut — Cancels the checkout, with
no changes registered.

Close Dismisses the Source View window.

A.2.8 Process Meter

The Process Meter monitors resource usage of a running process without
saving the data. Figure 69, page 148, shows the Process Meter in its default
configuration (with only the User Time and Sys Time fields active).

Figure 69. Process Meter

The Process Meter contains its own menu bar that contains the Admin ,
Charts , Scale , and Help menus. The Admin menu is the same as that
described in Section A.3.1.1, page 150. The Help menu is the same as that
described in Section A.1.10, page 139. The other menus are described in the
following sections.

148 007–2579–004

Debugger Reference [A]

A.2.8.1 Charts Menu

The Charts menu contains a set of toggles that allow you to choose which
charts are displayed in the Process Meter window. You can display as many
charts simultaneously as you wish. The following choices are available:

• User/Sys Time (the default)

• Major/Minor Faults

• Context Switches

• Bytes Read/Written

• Read/Write Sys Calls

• Other Sys Calls

• Total Sys Calls

• Signals

• Process Size

A.2.8.2 Scale Menu

The Scale menu allows you to set the time scale for the processes displayed in
the Process Meter window. You can choose a time scale from 2 seconds to
10 minutes.

A.3 Ada-specific Windows

This section discusses the Debugger Task View and Exception View
windows that are specific to Ada code.

A.3.1 Task View

The Task View is an Ada-specific view that provides you with task and call
stack information. If you do not have Ada installed on your system, the Task
View menu option of the Views menu is grayed out.

007–2579–004 149

Developer MagicTM: Debugger User’s Guide

Sort toggles

Process
display area

Process
display tabs

Callstack
display area

Callstack
display tabs

Figure 70. Task View

The Task View menu bar contains the Admin , Config , Layout , Display ,
and Help menus. The Help menu is the same as that described in Section
A.1.10, page 139. Other menus are described in the following sections.

A.3.1.1 Admin Menu

The Admin menu contains the following options:

Active This toggle activates the current window in a set
of cloned windows.

Clone Creates a clone of the current window. This
function is not supported in the current release,
and the option is grayed out.

Save As Text... Launches the Save Text dialog. This dialog
allows you to save your current session as text in
a file you designate.

150 007–2579–004

Debugger Reference [A]

Close Closes the current window.

A.3.1.2 Config Menu

The Config menu contains the following item:

Preferences... Launches the Task View Preference dialog
that allows you to set maximum call stack depth
shown in Task View . Default depth is 32 frames.

A.3.1.3 Layout Menu

The Layout menu contains the following toggles:

Task List Causes only the CallStack View to be shown.

Single Task Causes only the Process Display to be shown.

A.3.1.4 Display Menu

The Display menu is divided into the Task List Format and Callstack
Format sections. The Callstack Format toggles match the toggles that are
contained in the Callstack View Display menu. The Task List Format
toggle buttons are made available in the toggle sort list, as well as what
information is displayed in the Process Display area.

The Task View Display menu contains the following toggles:

Status Displays process status. This toggle is active by
default.

Priority Displays process priority.

Sproc Displays the sproc value of the process. This
toggle is active by default.

Resource Vector Displays process resource vector value.

Arg Values Allows you to set the argument values in Task
View . This toggle is active by default.

Arg Names Allows you to set the argument names in Task
View . This toggle is active by default.

Arg Types Allows you to set the argument types in Task
View .

Location Allows you to set the function location in Task
View . This toggle is active by default.

007–2579–004 151

Developer MagicTM: Debugger User’s Guide

PC Allows you to set the program counter (PC) in
Task View .

In addition to menus, Task View also contains the following items from which
you can select to vary the display:

Sort toggles Allow you to sort the process list by Thread ,
Name, State , Pid , or Location , depending on
which of the buttons is active. Default selection is
Thread .

Process display tabs Allow you to view a list of tasks or details of the
currently running (highlighted) task.

Callstack display tabs Allow you to view all call stack information or
call stack details of the currently selected process.

A.3.2 Exception View

Exception View is an Ada-specific view that allows you to set traps on
exceptions and control exception handling. This view functions only if Ada is
installed. By default, this view displays only the following predefined Ada
exceptions:

• Constraint errors

• Program errors

• Storage errors

• Tasking errors

In addition, a single breakpoint is set on any unhandled exception.

Figure 71 shows a typical Exception View window.

152 007–2579–004

Debugger Reference [A]

Stop
toggles

When option
menus

Exception
names

Figure 71. Exception View

The Admin menu has the following options:

Active Activates the current window in a set of cloned
windows.

Clone Creates a clone of the current window.

Save As Text... Launches the Save Text dialog. This dialog
allows you to save your current session as text in
a file you designate.

007–2579–004 153

Developer MagicTM: Debugger User’s Guide

Close Closes the current window.

The Config menu has the following options:

Load Exceptions... Opens the Load User Defined Exceptions
dialog that allows you to add additional
exceptions to the predefined Ada exceptions.

Save Exceptions... Opens the Save User Defined Exceptions
dialog that allows you to save any user-defined
exceptions to the predefined Ada exceptions.

The Display menu has the following options:

Delete All Deletes all exception traps.

Clear All Traps Clears all exception traps. Clearing traps is not
the same as deleting traps. Clearing only
temporarily affects traps while deleting removes
them permanently.

Reset All Buttons Resets all button functions.

The Stop: boxes toggle on and off to indicate whether a trap is active.

The When: control menus allow you to select when an exception trap fires. The
following choices are available:

Always Stops any time the exception is raised.

WhenOthers Stops when caught by a when others handler
rather than an explicit handler or when
unhandled.

Unhandled Stops when the exception is unhandled.

In the unlabled text field at the bottom right of the window you can enter a
single, fully qualified Ada exception name or a single, fully qualified Ada unit
name. Depending on whether the add , remove , or find mode is active;
pressing Enter will cause one of the following actions to occur:

• add mode:

– Single exception: Adds single exception to the exception list

– Library unit name: Adds all exceptions found in that library unit name
to the exception list

• remove mode:

154 007–2579–004

Debugger Reference [A]

– Single exception: Removes single exception from the exception list

– Library unit name: removes all exceptions found in that library unit
name from the exception list

• find mode

– Single exception: positions top of the exception list to single exception

– Library unit name: positions top of the exception list to the first
exception found in given library unit name

A.4 X/Motif Analyzer Windows

The X/Motif Analyzer provides specific debugging support for X/Motif
applications. There are various examiners for different X/Motif objects, such as
widgets and X Window System graphics context, that might be difficult or
impossible to inspect using ordinary debugger functionality.

To access the X/Motif Analyzer window, pull down the Views menu and
select X/Motif Analyzer (see Figure 72, page 156).

007–2579–004 155

Developer MagicTM: Debugger User’s Guide

Debugger Views Menu

Figure 72. Launching the X/Motif Analyzer Window

A.4.1 Global Objects

Though the X/Motif Analyzer is made up of several different examiner
windows, a number of objects remain constant throughout window changes.
The following examiners are available:

• Breakpoints Examiner, Section A.4.2, page 158

• Trace Examiner, Section A.4.3, page 175

• Widget Examiner, Section A.4.4, page 177

• Tree Examiner, Section A.4.5, page 178

• Callback Examiner, Section A.4.6, page 179

• Window Examiner, Section A.4.7, page 180

• Event Examiner, Section A.4.8, page 181

• Graphics Context Examiner, Section A.4.9, page 182

156 007–2579–004

Debugger Reference [A]

• Pixmap Examiner, Section A.4.10, page 183

• Widget Class Examiner, Section A.4.11, page 184

A.4.1.1 Admin Menu

The Admin menu offers the following menu selections:

Active Activates the current window in a set of cloned
windows. In the current release, this toggle is
always active.

Clone Creates a clone of the current window. This
function is not supported in the current release
and the option is grayed out.

Save As Text... Launches the Save Text dialog. This dialog
allows you to save your current session as text in
a file you designate.

Close Closes the current window.

A.4.1.2 Examine Menu

The Examine menu offers the following options:

Selection Selects the currently highlighted object for
examination.

Widget Uses the current selection as input to the widget
examiner, then opens that examiner (see Section
A.4.4, page 177, for information).

Widget Tree Switches the window view to the widget tree
examiner (see Section A.4.5, page 178, for
information).

Widget Class Switches the window view to the widget class
examiner (see Section A.4.11, page 184, for
information).

Window Switches the window view to the window
examiner (see Section A.4.7, page 180, for
information).

X Event Switches the window view to the X Event
examiner (see Section A.4.8, page 181, for
information).

007–2579–004 157

Developer MagicTM: Debugger User’s Guide

X Graphics Context Switches the window view to the X graphics
context examiner (see Section A.4.9, page 182, for
information).

X Pixmap Switches the window view to the X pixmap
examiner (see Section A.4.10, page 183, for
information).

A.4.1.3 Examiner Tabs

In addition to access through the Examine menu, each examiner can be
accessed through a tab at the bottom of each view (see Figure 73, page 158).

Figure 73. Examiner Tabs

When first launched, the X/Motif Analyzer has the following four tabs:
Breakpoints , Trace , Widget , and Tree . As you select other examiners
through the Examine menu, new tabs are added for the new examiners. Any
of these new tabs may be deleted at any time by selecting the tab, clicking the
right mouse button, and then selecting Remove Examiner . The initial four
tabs may not be removed.

A.4.1.4 Return Button

Both the Widget: and Name: text fields have return buttons (see Figure 74,
page 159) just to the right. Clicking these buttons causes the X/Motif Analyzer
to respond exactly as if you had pressed Return on your keyboard.

A.4.2 Breakpoints Examiner

The Breakpoints examiner is not really an examiner, but a control area where
you can set widget-level breakpoints. The breakpoints examiner is divided into
three areas (see Figure 74, page 159):

• The widget specification area that contains the same information as that in
the Widget examiner. You can select a widget address, name, or class in this
area, as well as move to the widgets parents or children, or select a widget

158 007–2579–004

Debugger Reference [A]

in the application. In cases where the breakpoint type does not apply to
widgets (for example, input-handler breakpoints), this area is blank.

• The parameter specification area, the contents of which vary according to the
type of breakpoint you are setting. For example, for callback breakpoints,
this area contains the callback name and client data; for event-handler
breakpoints, it contains the event type and the client data, and so on.

• The breakpoint area, which contains the breakpoint name, a search field, and
the Add, Modify , Delete , and Step To buttons.

Return button

Widget

specification

Parameter

specification

Breakpoints

Figure 74. Breakpoints Examiner Display in the X/Motif Analyzer Window

The control area has eight different breakpoint types that it can examine. These
types are set through the Breakpoint Type: options. The following
Breakpoint Type: options are available:

007–2579–004 159

Developer MagicTM: Debugger User’s Guide

Callback Widget callback installed by XtAddCallback .
Parameters include callback name and
client_data XtPointer value. See Section
A.4.2.1, page 160, for more information.

Event-Handler Widget event handler installed by
XtAddEventHandler . Parameters include X
event type and client_data XtPointer value.
See Section A.4.2.1.1, page 162, for more
information.

Resource-Change Resource change caused by XtSetValues or
XtVaSetValues . Parameters include resource
name and resource value, both strings. See
Section A.4.2.1.2, page 164, for more information.

Timeout-Procedure Timeout callback installed by
XtAppAddTimeOut . Parameters include
client_data XtPointer value. See Section
A.4.2.1.3, page 165, for more information.

Input-Handler Input callback installed by XtAppAddInput .
Parameters include client_data XtPointer
value. See Section A.4.2.1.4, page 167, for more
information.

State-Change Various widget state changes (for example,
managed or realized). Parameters include widget
state. See Section A.4.2.1.5, page 168, for more
information.

X-Event X event received by target application.
Parameters include X event type. See Section
A.4.2.1.6, page 170, for more information.

X-Request X request received by target application.
Parameters include X request type. See Section
A.4.2.1.7, page 172, for more information.

A.4.2.1 Callback Breakpoints Examiner

When the Callback option of the Breakpoint Type option button in the
Breakpoints Examiner is selected, the Callback Breakpoints Examiner is
displayed.

The Callback Breakpoints examiner contains the following items:

160 007–2579–004

Debugger Reference [A]

Widget: text field Allows you to choose a widget to examine by
entering the widget address.

Name: text field Allows you to choose a widget to examine by
entering the widget name.

Class: text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent: text field Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Callback Name text
field

Allows you to set the name of the callback for the
breakpoint.

Client_Data text field Allows you to pass and get back pointer values
for Client_Data: .

Search: text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button

007–2579–004 161

Developer MagicTM: Debugger User’s Guide

automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.1 Event-Handler Breakpoints Examiner

When the Event-Handler option of the Breakpoint Type: option button
in the Breakpoint Examiner is selected, the examiner appears as shown in
Figure 75, page 162.

Figure 75. Event-Handler Breakpoints Examiner

The Event-Handler Breakpoints examiner contains the following items:

Widget: text field Allows you to choose a widget to examine by
entering the widget address.

Name: text field Allows you to choose a widget to examine by
entering the widget name.

162 007–2579–004

Debugger Reference [A]

Class: text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent: text field Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Event Type : option
button

Takes the place of the Callback Name: text
field in the Callback Breakpoints examiner.
Allows you to set the event type for a given
breakpoint.

Client_Data: text
field

Allows you to pass and get back pointer values
for the Client_Data: .

Search: text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button

007–2579–004 163

Developer MagicTM: Debugger User’s Guide

automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.2 Resource-Change Breakpoints Examiner

When the Resource-Change option of the Breakpoint Type: option
button in the Breakpoint Examiner is selected, the examiner appears.

The Resource-Change Breakpoints examiner contains the following items:

Widget: text field Allows you to choose a widget to examine by
entering the widget address.

Name: text field Allows you to choose a widget to examine by
entering the widget name.

Class: text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent: text field Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Resource Name: text
field

Takes the place of the Callback Name: text
field. Allows you to set the resource name for the
breakpoint.

Resource Value:
text field

Takes the place of the Client Data: text field.
Allows you to set the resource value for the
breakpoint.

Search: text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

164 007–2579–004

Debugger Reference [A]

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button
automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.3 Timeout-Procedure Breakpoints Examiner

When the Timeout Procedure option of the Breakpoint Type option
button in the Breakpoint Examiner is selected, the examiner appears as shown
in Figure 76, page 166.

007–2579–004 165

Developer MagicTM: Debugger User’s Guide

Figure 76. Timeout-Procedure Breakpoints Examiner

The Resource-Change Breakpoints examiner contains the following items:

Breakpoint Type :
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Client_Data: text
field

Allows you to pass in and get back pointer values
for the Client_Data .

Search : text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

166 007–2579–004

Debugger Reference [A]

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button
automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.4 Input-Handler Breakpoints Examiner

When the Input-Handler option of the Breakpoint Type: option button
in the Breakpoint Examiner is selected, the examiner appears as shown in
Figure 77, page 167.

Figure 77. Input-Handler Breakpoints Examiner

007–2579–004 167

Developer MagicTM: Debugger User’s Guide

The Input-Handler Breakpoints examiner contains the following items:

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Client_Data: text
field

Allows you to pass in and get back pointer values
for the Client_Data .

Search: text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button
automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.5 State-Change Breakpoints Examiner

When the State-Change option of the Breakpoint Type: option button in
the Breakpoint Examiner is selected, the examiner appears as shown in Figure
78, page 169.

168 007–2579–004

Debugger Reference [A]

Figure 78. State-Change Breakpoints Examiner

The Resource-Change Breakpoints examiner contains the following items:

Widget: text field Allows you to choose a widget to examine by
entering the widget address.

Name: text field Allows you to choose a widget to examine by
entering the widget name.

Class: text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent button Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

007–2579–004 169

Developer MagicTM: Debugger User’s Guide

Select... button Allows you to select the widget in the target
process.

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

State Type: option
button

Takes the place of the Callback Name: text
field in the Callback Breakpoints examiner.
Allows you to set the state change type for a
given breakpoint.

Search : text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button
automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.6 X-Event Breakpoints Examiner

When you select the X-Event option of the Breakpoint Type: option
button in the Breakpoint Examiner, the examiner appears as shown in Figure
79, page 171.

170 007–2579–004

Debugger Reference [A]

Figure 79. X-Event Breakpoints Examiner

The X-Event Breakpoints examiner contains the following items:

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Event Type: option
button

Takes the place of the Callback Name text field
in the Callback Breakpoints examiner. Allows you
to set the event type for a given breakpoint.

Window ID: text field Takes the place of the Client_Data: text field.
Allows you to set the Window ID value for the
breakpoint.

Search: text field Allows you to perform a text search through your
breakpoints.

007–2579–004 171

Developer MagicTM: Debugger User’s Guide

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button
automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.2.1.7 X-Request Breakpoints Examiner

When the X-Request option of the Breakpoint Type: option button in the
Breakpoint Examiner is selected, the examiner appears as shown in Figure 80,
page 173.

172 007–2579–004

Debugger Reference [A]

Figure 80. X-Request Breakpoints Examiner

The X-Request Breakpoints examiner contains the following items:

Breakpoint Type:
option button

Allows you to select the type of breakpoint you
wish to set.

Clear button Clears all the current breakpoint selections and
text fields.

Request Type button Launches the Request Type Selection
dialog (see Figure 81, page 174). This dialog
allows you to select the type of X-Request used
for your breakpoint. The information displayed is
in outline form; selecting a given item selects all
its subitems. For example, if you select
Window-Category , CreateWindow ,
ChangeWindowAttributes ,

007–2579–004 173

Developer MagicTM: Debugger User’s Guide

GetWindowAttributes , and so on are also
selected.

Figure 81. Request Type Selection Dialog

Search: text field Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s
settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step
To creates a temporary breakpoint, resumes the
process, and waits until the process stops. This
temporary breakpoint acts exactly like an ordinary
breakpoint, save that the Step To button

174 007–2579–004

Debugger Reference [A]

automatically resumes the process and puts up a
busy cursor until the condition becomes true.

A.4.3 Trace Examiner

The Trace examiner (see Figure 82, page 176) is a control area where you can
trace the execution of your application and collect various forms of data. The
following data is collected:

• X Server Events

• X Server Requests

• Widget Event Dispatch Information

• Widget Resource Changes (through XtSetValues)

• Widget State Changes (create , destroy , manage, realize , and
unmanage)

• Xt Callbacks (widget , event handler , work proc , timeout , input ,
and signal)

007–2579–004 175

Developer MagicTM: Debugger User’s Guide

Figure 82. Trace Examiner

The Trace examiner contains the following items:

Collect Trace:
toggle

Allows you to turn the tracing on and off.

File: text field Allows you to select the filename for the trace. If
no file is selected, a default filename for the trace
is chosen.

Search: text field Allows you to perform an incremental, textural
search for the trace list.

Filter... button Launches a dialog that allows you to select the
trace entry types you want displayed in the list.

176 007–2579–004

Debugger Reference [A]

Clear File button Erases the trace file. Any subsequent trace
information goes to the beginning of the file.

A.4.4 Widget Examiner

The Widget examiner (see Figure 83, page 177) displays the internal Xt widget
structure, as well as the Xt inheritance implementation using nested C
constructs.

Figure 83. Widget Examiner

The Widget examiner contains the following items:

Widget: text field Allows you to choose a widget to examine by
entering the widget address.

Name: text field Allows you to choose a widget to examine by
entering the widget name.

007–2579–004 177

Developer MagicTM: Debugger User’s Guide

Parent button Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children. (It is grayed
out if the selected widget cannot have children.)

Select... button Allows you to select the widget in the target
process.

A.4.5 Tree Examiner

The Tree examiner (see Figure 84, page 178) displays the widget hierarchy.

Figure 84. Tree Examiner

You may double-click a node to view that widget in the Widget examiner.

178 007–2579–004

Debugger Reference [A]

If the Tree examiner is currently selected, it will not automatically fetch the
current widget tree each time the process stops. To force retrieval of the widget
tree, select another examiner and then go back to the Tree examiner. Or, click
on the Tree tab.

You may display the tree according to widget name, widget class, or widget ID.
You can select this by choosing the appropriate option from the widget view
type option button in the lower-right portion of the examiner.

A.4.6 Callback Examiner

The Callback examiner (see Figure 85, page 180) automatically appears when
the process is stopped somewhere in a callback. It first displays the callstack
frame for the callback function. Next, it displays information about the widget
in the callback. Finally, it displays the proper callback structure contained in the
call_data argument to the callback procedure, based on the widget type and
the callback name.

007–2579–004 179

Developer MagicTM: Debugger User’s Guide

Figure 85. Callback Examiner

A.4.7 Window Examiner

The Window examiner (see Figure 86, page 181) displays window attributes for
an X window. These are the attributes returned by XGetWindowAttributes ,
with decoding of the visual structure and enums and masks decoded.
Additionally, the Window examiner shows the parent and children window IDs.

180 007–2579–004

Debugger Reference [A]

Figure 86. Window Examiner

The Window examiner contains the Window: text field that displays the
address of the window that is being examined. You may change to a different
window by entering a new address and pressing Enter .

A.4.8 Event Examiner

The Event examiner (see Figure 87, page 182) displays the event structure for an
XEvent pointer. The proper XEvent union member is used, and enums and
masks are decoded.

007–2579–004 181

Developer MagicTM: Debugger User’s Guide

Figure 87. Event Examiner

The Event examiner contains the X Event: text field, which displays the
address of the X event that is being examined. You may change to a different X
event by entering a new address and pressing Enter .

A.4.9 Graphics Context Examiner

The Graphics Context examiner (see Figure 88, page 183) displays the X
graphics context attributes that are cached by Xlib in the form of an
XGCValues structure. Enums and masks are decoded.

182 007–2579–004

Debugger Reference [A]

Figure 88. Graphics Context Examiner

The Graphics Context examiner contains the GC: text field that displays the
address of the graphics context that is being examined. You may change to a
different context by entering a new address and pressing Enter .

A.4.10 Pixmap Examiner

The Pixmap examiner (see Figure 89, page 184) displays basic attributes of an X
pixmap, like size and depth. It also attempts to provide an ASCII display of
small pixmaps, using the units digit of the pixel values.

007–2579–004 183

Developer MagicTM: Debugger User’s Guide

Figure 89. Pixmap Examiner

The Pixmap examiner displays the contents of an X pixmap. Specify the X
pixmap identifier and optionally, the X colormap identifier, by entering
expressions in the two text areas at the top of the window. Use default as the
colormap identifier to specify the default X colormap for your screen. In the
actual pixmap display, left-click on a pixel to see the pixel value, position, and
red-green-blue intensities.

A.4.11 Widget Class Examiner

The Widget Class examiner (see Figure 90, page 185) displays the Xt widget
class structure, as well as the Xt inheritance implementation using nested C
constructs.

184 007–2579–004

Debugger Reference [A]

Figure 90. Widget Class Examiner

The Widget Class examiner contains the W Class: text field, which displays
the address of the widget class that is being examined. You may change to a
different widget class by entering a new address and pressing Enter .

A.5 Project Management Window

In situations where you have many windows open from one or more projects, it
is easy to lose track of projects. The Project View window can help you
keep track of your projects.

To display the Project View window, pull down the Admin menu, select the
Project submenu, and then select Project View... The Project View
window opens. This window represents the components of a project as buttons.
Elements from the same project are grouped within a rectangle. A dashed-line
rectangle indicates the currently selected project. When you select a project, you
can change its name or change the command.

007–2579–004 185

Developer MagicTM: Debugger User’s Guide

A.5.1 Project View Admin Menu

The Show Applications and Show Window toggles in the Admin menu
determine whether applications or individual windows display as project
element buttons. The Rescan selection reevaluates the state of your projects
and redisplays current elements. Exit closes the window.

A.5.2 Text Fields

The Project: field lets you enter a name to identify the curent project. The
Command: field lets you invoke other tools to be included in the project.

A.5.3 Project Display Area

Elements of a project are represented as buttons. When a button protrudes from
the screen, the item is currently iconified; when it is recessed, the item is
displayed. You can toggle between the two modes.

A.5.4 Project Pop-up Menu

When you hold down the right mouse button inside a rectangle, the project
pop-up menu displays. This menu lets you iconify, raise, or quit the item under
the cursor or all items in the proects as a whole if the cursor is within the
rectangle but not on any individual item.

A.6 Trap Management Windows

In addition to setting traps through the Main View and the command line, the
debugger provides you with three views specific to trap management:

• Trap Manager view

• Signal Panel view

• Syscall Panel view

A.6.1 Trap Manager

The Trap Manager allows you to set, edit, and manage traps (used in both the
Debugger and Performance Analyzer). The X window is shown in Figure 91,
page 187.

186 007–2579–004

Debugger Reference [A]

Figure 91. Trap Manager Window

The Trap Manager window contains the following items (besides the menu
bar, which is discussed below):

Trap: text field Contains a description of the
trap.

Condition: text field Contains the condition of the
trap.

Cycle Count: text field Displays the current cycle
count.

Current Count: text field Displays the current trap
count.

Modify button Allows you to change the
selected breakpoint’s settings.

Add button Allows you to add a new
breakpoint.

Clear button Clears all the current
breakpoint selections and text
fields.

Delete button Deletes the selected
breakpoint.

007–2579–004 187

Developer MagicTM: Debugger User’s Guide

Trap: display area Contains a description of
each trap, and a toggle to
indicate whether or not the
trap is active.

Search: text field Allows you to perform an
incremental, textural search
for the trap list.

The Trap Manager window has a menu bar which contains the Admin ,
Config , Traps , Display , and Help menus. The Admin menu is the same as
that described in Section A.3.1.1, page 150. The Help menu is the same as that
described in Section A.1.10, page 139. The other menus are described in the
following sections.

A.6.2 Config Menu

The Config menu contains the following items:

Load Traps... Brings up the File dialog allowing you to load
the traps from a file.

Save Traps... Brings up the File dialog allowing you to save
the current traps to a file.

A.6.3 Traps Menu

The Traps menu has options that allow you to set traps under a number of
conditions. The following conditions are available:

• At Source Line

• Entry Function

• Exit Function

• Stop Trap Default

• Sample Trap Default

• Group Trap Default

• Stop All Default

188 007–2579–004

Debugger Reference [A]

A.6.4 Display Menu

The Display menu contains the following item:

Delete All Deletes all traps from the trap list.

A.6.5 Signal Panel

The Signal Panel displays the signals that can occur. You can specify which
signals trigger traps and which are to be ignored. The Signal Panel is
shown in Figure 92, page 189.

Figure 92. Signal Panel

The Signal Panel contains an Admin menu (described in Section A.3.1.1,
page 150) and a Help menu (described in Section A.1.10, page 139). Each signal
trigger trap in the display has a toggle associated with it. In addition, the panel
has a Search: field.

007–2579–004 189

Developer MagicTM: Debugger User’s Guide

A.6.6 Syscall Panel

The Syscall Panel lets you set traps at the entry to or exit from system calls.
The Syscall Panel is shown in Figure 93, page 190.

Figure 93. Syscall Panel

The Syscall Panel contains an Admin menu (described in Section A.3.1.1,
page 150) and a Help menu (described in Section A.1.10, page 139). Each
system call in the display has two toggle associated with it: one to set a trap on
entry, one to set a trap on exit. In addition, the panel has a Search field.

A.7 Data Examination Windows

There are several windows that are used primarily to examine your debugging
data:

• Array Browser Window, Section A.7.1, page 191

190 007–2579–004

Debugger Reference [A]

• Call Stack View Window, Section A.7.2, page 204

• Expression View Window, Section A.7.3, page 206

• File Browser Window, Section A.7.4, page 208

• Structure Browser Window, Section A.7.5, page 209

• Variable Browser Window, Section A.7.6, page 219

A.7.1 Array Browser Window

To examine data in an array variable, select Array Browser from the Views
menu at a point in the process where the variable is present. The Array
Browser lets you view elements in a multi-dimensional array (up to 100 x 100
elements), presented in a spreadsheet and graphically, if desired.

007–2579–004 191

Developer MagicTM: Debugger User’s Guide

Array specification
area

Subscript control
area

Graphical display
area

Spreadsheet area

Current element

Figure 94. Array Browser with Display Menu Options

Note: The Render , Color , and Scale tear-off menus are available only if
you have installed Open Inventor.

The array specification area lets you specify the variable and its dimensions. It
consists of the following fields:

Array: Lets you enter the name of the array variable.
This entry is language-dependent.

192 007–2579–004

Debugger Reference [A]

For Fortran, the expression may be an array or a
dummy array variable name. If the last
dimension of the array is unspecified (*), a
subscript value of 1 is assumed initially.

For C and C++, the entry may be an array, a
pointer, or an array pointer. If pointers are used,
the expression is treated as though it were a
single element, in which case you need to use the
subscript controls to see more than the first
element.

Indexing
Expression:

The expression used to view an element in the
array. It is filled in automatically when you
specify an array to view.

The expression supplied is language-specific. It
represents the indexing expression used in the
language to access a particular element. The
subscripts are specified by special indexing
variables ($i , $j , $k , and so forth) that can be
manipulated in the subscript controls area.

The Subscript Controls: area serves two functions: it lets you control
which elements in the variable are to be displayed, and it lets you shift the
current element. The number of dimensions in the array governs the number of
controls that are displayed. A close-up view of the subscript controls area
appears in Figure 95, page 193.

Row/column toggles
Index identifiers
Index values
Index sliders
Index minimums
Index maximums
Step indicators

Figure 95. Subscript Controls: Area in the Array Browser

007–2579–004 193

Developer MagicTM: Debugger User’s Guide

The Subscript Controls: area provides the following features:

Row/column toggles Control whether an index variable represents
rows or columns (or neither) in the spreadsheet
area. You are not limited by the number of
vectors in an array, but you can only view a
two-dimensional orthogonal slice of the array at a
time.

Index identifiers Indicate to which subscript the controls in the
row refer.

Index values Show the value of the subscript for the element
currently in the focus cell. You can enter a
different value if you wish.

Index sliders Let you move the focus cell along the particular
vector.

Index minimums Identify the beginning visible element in a vector.

Index maximums Identify the last visible element in a vector. If you
have an unspecified array, you can use this field
to specify the last element in the vector to be
displayed in the spreadsheet.

Step indicators Specifies the increment between adjacent elements
in a vector to be displayed. A value of 1 displays
consecutive data. Specifying some n greater than
1 lets you display every n element in a vector.

Control area scroll bars Let you expose hidden portions of the subscript
control area if your window is not large enough
for viewing all of the controls.

The spreadsheet area is where numeric data is displayed. It can show two
dimensions at a time (indicated in the upper left corner of the matrix). The
column indexes run along the top of the matrix and the row indexes are
displayed along the left column. The spreadsheet area has scroll bars for
viewing data elements not currently visible in the viewing area. Figure 96, page
195, shows a closeup of the spreadsheet area.

194 007–2579–004

Debugger Reference [A]

Current element value field

Current element identifier

Column indexes

Current element

Row indexes

Element values

Figure 96. Array Browser Spreadsheet Area

The current element is highlighted by a colored rectangle in the spreadsheet
area. Its corresponding expression is shown in the current element identifier
field, and the value is shown in the current element value field.

A.7.1.1 Spreadsheet Menu

The Spreadsheet menu lets you change the appearance of data in the
spreadsheet area. It provides these selections:

Column Width... Lets you specify the width of the spreadsheet
cells in terms of characters. For instance, a value
of 12 indicates that 12 characters, including
punctuation and digits are viewable.

Wrapped Display Lets you display a single dimension of an array
wrapped around the entire spreadsheet area. The
index value for an element is determined by
adding the appropriate row index and column
index values.

Figure 97, page 196, shows an example of a
wrapped array. There is only one index $i . The
current cell is element 4 in the array (by adding 3
and +1).

007–2579–004 195

Developer MagicTM: Debugger User’s Guide

Current
cell

Figure 97. Example of Wrapped Array

A.7.1.2 Format Menu

The Format menu displays a separate menu that you lets you display the
elements in the following formats:

Default toggle Toggles the default format.

Value submenu Contains the following display toggles for
formatted values:

• Decimal

• Unsigned

• Octal

• Hex

• Float

• Char

• String

Type Allows listing by data type.

Bit Size Allows listing by bit size.

The graphical display area presents array data in a three-dimensional graph in
one of the following formats:

• Surface (polyhedron)

• Bar chart

• Points

196 007–2579–004

Debugger Reference [A]

• Multiple lines (array vectors)

A.7.1.3 Render Menu

Note: The Render tear-off menu is available only if you have installed Open
Inventor.

You select the graphical display mode through the Render menu. The Render
menu has the following options:

Surface Exhibits the data as a solid using the data values
as vertices in a polyhedron.

Bar Chart Presents the data values as 3-D bar charts.

Points Simply plots the data values in 3-D space.

Multi Line Plots and connects the data values in each row.

None Lets you display with no graphical display, in
effect turning off graphical display mode.

A.7.1.4 Color Menu

Note: The Color tear-off menu is available only if you have installed Open
Inventor.

If the Color menu is grayed out when the Array Visualizer window first
opens, select the Surface option of the Render menu. The Color menu
provides the following options:

Monotone Ramp Displays the data values in a single tone, with
lower numbers being darker and higher values
lighter in tone.

Hue Ramp Displays the data values in a spectrum of colors
ranging from blue (lowest values) through green,
yellow, orange, and red (highest values).

007–2579–004 197

Developer MagicTM: Debugger User’s Guide

Exception Lets you flag certain conditions by color, usually
for the purpose of spotting bad data. When you
select Exception , the controls shown in Figure
98, page 198 appear in the window.

Figure 98. Color Exception Portion of Array Browser Window

Thus, you can highlight data values less than or
greater than specified values, values of plus or
minus infinity, values of plus or minus underflow,
zero values, and NaN (not a number) values.

198 007–2579–004

Debugger Reference [A]

Surface rendering Bar chart rendering

Point rendering Multiple line rendering

Figure 99. Array Browser Graphic Modes

A.7.1.5 Scale Menu

Note: The Scale tear-off menu is available only if you have installed Open
Inventor.

If the Scale menu is greyed out when the Array Visualizer window first
opens, select the Surface option of the Render menu.

The Scale menu provides options for changing the ratio of the z-dimension,
which represents the value of the element. The number on the left represents
the value of the x and y-dimensions (which are always the same as each other).
The number on the right is the z dimension.

Manipulating the z-dimension affects the ease of spotting differences in values.
If your data is scattered over a narrow range of values, you may wish to
heighten the graph by selecting 10:1 as your scale; this exaggerates the values
in the z-dimension. If your data is in a wide range, selecting 1:2 or 1:10 as
the scale will minimize the differences, flattening the graph.

007–2579–004 199

Developer MagicTM: Debugger User’s Guide

A.7.1.6 Examiner Viewer Controls

The graphical display uses controls and menus from Examiner Viewer.
Examiner Viewer is based on a camera metaphor and borrows terms from the
film industry, such as zoom and dolly, in naming its controls. The graphical
display area of the window is shown in Figure 100, page 201, with its main
controls and menus. Note that the buttons on the upper right side of the
graphical display area may not be visible if the area is too small; you can expose
them by moving either the upper or lower sash to enlarge the display area.

Examiner Viewer provides these controls for viewing the graph. The right side
buttons provide the following functions:

view mode Toggles between a view-only mode (closed eye)
and manipulation mode (open eye).

In view-only mode, the cursor appears as an
arrow and the graph cannot be moved. Clicking
on a portion of the graph selects the
corresponding array element in the spreadsheet.

In manipulation mode, the cursor appears as a
hand and you can move the graph. Dragging the
graph with the left mouse button down moves
the graph in any direction as if it were in a
trackball; a quick movement spins the graph.
Dragging the graph with the left mouse button
and the Ctrl key rolls (rotates) the graph in the
plane of the screen. Dragging the graph with the
middle mouse button moves it without changing
the viewing angle.

If you drag the graph with both the left and
middle mouse buttons down, the graph will
appear to move into or out of the window (this is
the same as the dolly thumbwheel , which is
described in this section).

200 007–2579–004

Debugger Reference [A]

x rotation
control

y rotation
control

Zoom control
and readout

Dolly
control

View mode

Help

Home

Set home

View all

Seek

Figure 100. Examiner Viewer with Controls and Menus

help Runs a special help system containing Inventor
Viewer information.

home Repositions the graph in its original viewing
position.

007–2579–004 201

Developer MagicTM: Debugger User’s Guide

set home Changes the home (original viewing) position for
subsequent use of the home button.

view all Repositions the display area so that the entire
graph is visible.

seek Provides a special cursor that lets you reposition
the graph in the center of the display area or lets
you center the view on a point you select with
the cursor. See Seek to point <or object>
in the Preferences dialog box.

The following controls let you move the graphic display:

x rotation
thumbwheel

Rotates the graph around its x-axis.

y rotation
thumbwheel

Rotates the graph around its y-axis.

zoom slider and
readout

Changes the size of the graph by scaling it.

dolly thumbwheel Changes the size of the graph and adjusts the
angles to maintain perspective. The dolly control
simulates moving the viewing camera back and
forth with respect to the graph.

A.7.1.7 Examiner Viewer Menu

You access the Examiner Viewer menu by holding down the right mouse
button in the graphical display area. The Examiner Viewer menu provides
the following options:

Functions Displays a submenu with the selections Help ,
Home, Set Home, View All , and Seek , which
are the same as the right mouse button controls
described in the previous section, and the Copy
View and Paste View selections. These operate
like standard copy and paste editing commands,
enabling you to transfer graphs.

Draw Style Displays a submenu that controls how the graph
is displayed. The options as is , filled ,
wireframe , and points control how the graph
is displayed when it is static. These override any
Render menu selections. The move wireframe

202 007–2579–004

Debugger Reference [A]

and move points options control how the graph
is displayed while in motion. The selections
single , double , and interactive refer to
buffering techniques used in moving the graph.
These affect the smoothness of the movement.

Viewing The same as the view mode button described in
the previous section. When it is off, you can
select points from the graph to display in the
spreadsheet but cannot move the graph. When
on, it lets you manipulate the graph.

Decoration Displays the right side buttons when it is on and
hides them when it is off.

Headlight Controls the shadow effect on the graph. When it
is on, the light appears to come from the camera.

Preferences Causes the Examiner Viewer Preferences
Sheet dialog to display.

Figure 101. Examiner Viewer Preferences Dialog

Seek animation
time

Lets you specify the time it takes for the graph to
be repositioned after you change the seek point.
See also Seek to point <or object> .

007–2579–004 203

Developer MagicTM: Debugger User’s Guide

Seek to point <or
object>

Lets you change the view of the graph to its
center (object) or to a point in the graph that you
specify with the seek cursor.

Zoom slider ranges
from

Lets you change the Zoom range, that is, the
distance that the object appears to be away from
the front of the window.

Auto clipping
planes

Centers the graph in your view if enabled. If
disabled, it provides controls for removing data
from visibility at either end of the z-axis. This is
useful if you wish to focus on data above or
below a set value.

Enable spin
automation

Lets you spin the graph. You grab the graph with
the mouse, move it quickly in the desired
direction, and release the mouse button. The
graph spins as if in a trackball.

Show point of
rotation axes

Displays a set of three axes. You can move the
graph around the x and y axes using the
thumbwheel controls described in the previous
section. When this option is on, you can set the
size of the axes in pixels.

A.7.2 Call Stack View Window

The Call Stack View (Figure 102, page 205) window displays call stack
entries when a process has stopped.

204 007–2579–004

Debugger Reference [A]

Figure 102. Call Stack View

The source display has two special annotations:

• The location of the current program state is indicated by a large arrow
representing the PC.

• The location of the call to the function selected in the Call Stack View
window is indicated by a small arrow representing the current context. The
source line becomes highlighted.

The Call Stack View contains its own menu bar, which contains the Admin ,
Config , Display , and Help menus. The Admin menu is the same as that
described in Section A.3.1.1, page 150. The Help menu is the same as that
described in Section A.1.10, page 139. The other menus are described in the
following sections.

A.7.2.1 Config Menu

The Config menu contains the following option:

007–2579–004 205

Developer MagicTM: Debugger User’s Guide

Preferences... Launches the Call Stack View Preferences
dialog that allows you the option of setting the
maximum depth of the Call Stack View .

A.7.2.2 Display Menu

The Display menu contains the following toggles:

Arg Values Allows you to set the argument values.

Arg Names Allows you to set the argument names.

Arg Types Allows you to set the argument types.

Location Allows you to set the function location.

PC Allows you to set the PC.

A.7.3 Expression View Window

The Expression View window is shown in Figure 103, page 206.
Expression View displays a collection of expressions that are evaluated each
time the process stops or the context changes.

Figure 103. Expression View

In addition to the items on the menu bar, the window has two pop-up menus:
the Language menu and the Format menu. The Admin menu is the same as
that described in Section A.3.1.1, page 150. The Help menu is the same as that

206 007–2579–004

Debugger Reference [A]

described in Section A.1.10, page 139. The other menus are described in the
following sections.

A.7.3.1 Config Menu

The Config menu contains the following options:

Load
Expressions...

Launches the File menu that allows you to
choose source file from which to load your
expressions.

Save
Expressions...

Launches the File menu that allows you to
choose a file to which you can save your
expressions.

A.7.3.2 Display Menu

The Display menu contains the following option:

Clear All Clears all fields in the view.

A.7.3.3 Language Pop-up Menu

The Language pop-up menu contains three button that allow you to select one
of three languages for evaluation: C, C++, or Fortran. The Language pop-up is
invoked by holding down the right mouse button while the cursor is in the
Expression column.

A.7.3.4 Format Pop-up Menu

The Format pop-up menu is displayed by holding down the right mouse
button in the Result column.

007–2579–004 207

Developer MagicTM: Debugger User’s Guide

Figure 104. Expression View Format Popup with Submenus

The Format popup contains the following options:

Default Sets the format to the default values.

Value Displays a submenu from which you can select a
value of Decimal , Unsigned , Octal , Hex,
Float , Char , or String type.

Type Displays a submenu from which you can select a
type of Decimal , Octal , or Hex.

Bit size Sets the format to Bit Size .

A.7.4 File Browser Window

The File Browser window displays a scrollable list of source files used by
the current executable. Double-click a file in the list to load it directly into the
source display area in Main View or Source View . The Search: field lets
you find files in the list quickly.

208 007–2579–004

Debugger Reference [A]

Figure 105. File Browser Window

The File Browser contains an Admin menu (described in Section A.3.1.1,
page 150) and a Help menu (described in Section A.1.10, page 139). In
addition, the browser has a Search: field.

A.7.5 Structure Browser Window

The Structure Browser window lets you examine data structures and the
relationships of the data within them. It displays complex data structures as
separate graphical objects, using arrows to indicate relationships. A typical
Structure Browser example is shown in Figure 106, page 210, with the
Config , Display , Node, and Format menus displayed.

007–2579–004 209

Developer MagicTM: Debugger User’s Guide

Expression field

Display area
Structure header

Field name
column

Result column

Figure 106. Structure Browser with Menus Displayed

The structure name is entered in the Expression field. It then appears as an
object or set of objects in the display area in the lower portion of the window.
Each structure has a header identifying the structure, color coded by data type.
Below the header are two columns: the left displays the field name and the
right displays the field’s value. If the structures to be displayed exceed the size
of the Structure Browser window, scroll bars appear.

Menu options let you change the way the data displays. The following menus
are available:

Config Used for saving and reusing type-specific formats
and expressions. You can also set preferences
regarding how objects of a given type are to be
displayed.

Display Provides operations for all objects in the display
area.

210 007–2579–004

Debugger Reference [A]

Node Provides operations for selected objects in the
display area only.

Format Lets you change or reformat a specific value in
the result column. It is a pop-up menu that is
accessed by holding down the right mouse button
while the cursor is over the result column.

A.7.5.1 Using the Structure Browser Overview Window to Navigate

WorkShop provides the Structure Browser Overview window (from the
Show Overview option in the Display menu) as another way to navigate
around the display.

This window is a reduced-scale view of the requested structures. The structures
are represented by solid rectangles color-coded by data type. The relative
position of the currently visible area is represented by a transparent rectangle.
This rectangle can be dragged (using the left mouse button) to change the
display of the Structure Browser . Clicking the left mouse button in an area
of this window repositions the currently visible area.

A.7.5.2 Entering Expressions

The Structure Browser accepts any valid expression. If the result type is
simple, a structure displays showing the type and value. If the result type is a
pointer, it is automatically dereferenced until a non-pointer type is reached. If
the result type is a structure or union, an object is displayed showing the
structures’ fields and their values. After the expression is entered, the
Expression field clears. The Structure Browser can display unrelated
structures at the same time; you simply enter new structures by using the
Expression field.

The Expression field is also used to enter strings used in searches.

A.7.5.3 Working in the Structure Browser Display Area

Within the display area, you select objects by clicking in the node headers.
Shift-clicks add the selected object to the current selection. You can drag
selected objects using the middle mouse button.

Clicking the right button while the cursor is in the right column of an object
displays the Format menu, which is used to change the display. You can set a
default format or request that results be displayed by value, type, address, or
size in bits.

007–2579–004 211

Developer MagicTM: Debugger User’s Guide

Holding down the right button in the header of an object brings up the Node
pop-up menu, which is the same as the Node menu in the menu bar. It is used
to change the way selected objects are displayed. When you left-click in the
header of an object, it turns on the resizer, which lets you change the size of the
object. Left-clicking the handle resizes the object and middle-clicking moves it.

Graphical arrows show the pointer relationships among the displayed
structures. If a pointer field is not visible in a structure, its arrow tail is
displayed at the top or bottom of the scrolling area for fields. Otherwise, its tail
is adjacent to its field.

Double-clicking a value field (right column) for a pointer changes the display so
that the data structure it points to is displayed.

Double-clicking a member field (left column) puts the full expression for that
member in the Expression field.

A.7.5.4 Structure Browser Display Menu

The Display menu controls the way structures appear in the display area. The
Display menu provides the following options:

Display Determines contents of the display. The Display
option has the following two options:

• Expression — Displays the structure of the
expression entered in the Expression field.

• Selection — Displays the structure based
on the text from the current selection.

Arrange Rearranges the currently selected nodes.
Arrange has the following two options: (See
Figure 107, page 213.)

• Tree — Arranges nodes into a tree-type
formation, that is, the hierarchy descends from
left to right and child structures are shown as
branches to the right of the parent.

• Linked List — Arranges nodes into a
linked list formation, that is, horizontally.

212 007–2579–004

Debugger Reference [A]

Tree arrangement

Linked list arrangement

Child
node

Next
node

Child
node

Child
node

Next
node

First
node

Parent
node

Figure 107. Tree and Linked List Arrangements of Structures

Search Lets you select structures containing the string
specified in the Expression field. Search has
the following four options:

• Name— Selects structures whose names
contain the specified string.

• Type — Selects structures whose types
contain the specified string.

• Field Name — Selects structures that have a
field whose name contains the specified string.

• Value — Selects structures that have a field
value containing the specified string.

Update Explicitly updates the displayed structures. This
happens automatically in the current Structure
Browser when the process stops. This can be
used in an inactive Structure Browser to
update it. It can also be used to update the
display after changes have been made in other
Debugger views.

Show Overview Brings up the Structure Browser Overview
window.

007–2579–004 213

Developer MagicTM: Debugger User’s Guide

Clear All Clears all structures from the display area.

A.7.5.5 Node Menu

The Node menu has the following options that apply to currently selected
objects:

State Controls the display of nodes. There are three
options:

• Iconic — Displays the node header only.

• Normal — Uses the default chart display but
hides those fields selected to be invisible.

• Detail — Uses the default chart display and
shows all fields.

Geometry Manages graphical objects in the display area.
There are four options:

• Minimize — Sets the vertical size of an object
to the default minimum number of fields. The
initial default is four fields but can be changed
through either the Formatting selection from
the Node menu or the Preferences...
selection from the Config menu.

• Maximize — Displays the object as large
vertically as necessary to fit all of the fields.

• Raise — Raises the selected object(s) to the
top of the display.

• Lower — Lowers the selected object(s) to the
bottom of the display.

Select Lets you select objects in various ways. There are
six options:

• Parents — Selects all objects that have
pointers pointing to a selected object.

• Children — Selects all objects pointed to by
any fields in a selected object.

214 007–2579–004

Debugger Reference [A]

• Ancestors — Selects all objects pointed to a
selected object or pointing to an object that
has a descendant pointing to a selected object.

• Descendant — Selects all objects pointed to
by any fields in a selected object or pointed to
by any children of a selected object.

• Family — Selects all ancestors and
descendants of a selected object.

• All — Selects all objects.

Formatting Brings up the type formatting dialog for this type.

Dereference Ptrs Dereferences any pointers in selected objects.

Pattern Layout Displays selected structures that are connected by
pointers to position related structures in the same
way.

Remove Removes selected object from the display.

A.7.5.6 Formatting Fields

Each field in a data structure has certain display characteristics. These can be
specified for all objects in the Structure Browser Preferences dialog box
or for type-specific objects only in the Structure Browser Type
Formatting dialog box. To display the Structure Browser Preferences
dialog box, select Preferences... from the Config menu (see Figure 108,
page 216).

007–2579–004 215

Developer MagicTM: Debugger User’s Guide

Figure 108. Structure Browser Preferences Dialog

The dialog has the following fields:

Default Structure
Field Count

Sets the number of fields to be displayed initially.

Default Structure
Width

The width in pixels of the object.

Default Iconic
Width

The width in pixels of the object when it is in
iconic form.

Automatic
Dereference Limit

Limits the number of structures that are
automatically dereferenced.

Dereference Ptrs
By Default

Toggles automatic dereferencing on and off.

To bring up the Structure Browser Type Formatting dialog box, select
the set of structures under consideration and select Node Formatting from
the Node menu (see Figure 109, page 217).

216 007–2579–004

Debugger Reference [A]

Figure 109. Structure Browser Type Formatting Dialog

The dialog box has the following fields:

Type Name Displays the current data type.

Default Field
Count

Lists number of fields to be displayed initially for
objects of that type.

Default Structure
Width

Displays the width in pixels of the object.

Default Iconic
Width

Displays the width in pixels of the object when it
is in iconic form.

Default State Brings up a pop-up menu that lets you specify
whether structures are first displayed as icons
(Iconic), with the minimum number of fields

007–2579–004 217

Developer MagicTM: Debugger User’s Guide

displayed (Normal) or with all fields displayed
(Detail).

Type Color Provides a submenu for color coding. It lets you
select a color for the header and overview
rectangles for objects of a given type.

For structure and union types, the list box shows all the fields with their types.
For each field, you can change the result format to one of the following types:

• Default

• Decimal

• Unsigned

• Octal

• Hex

• Float

• Char

• String

• Type

• Dec addr

• Oct addr

• Hex addr

• Size in Bits

You can also specify whether a field is visible in normal state, and if it is a
pointer field, whether it should be automatically dereferenced.

Once you specify the format for this type, you can apply it to any combination
of the following through the toggle buttons in the bottom left portion of the
window:

• Selected instances

• All existing instances

• Any future instances of this type

218 007–2579–004

Debugger Reference [A]

A.7.6 Variable Browser Window

The Variable Browser window lets you view and change the values of local
variables and arguments at a specific point in a process. (Global variables can
be viewed or changed using Expression View or the Evaluate
Expression selection from the Data menu for one-shot evaluations.) In
addition to providing values, the Variable Browser is useful for getting a
quick list of the local variables in a scope without having to search for their
names. A sample Variable Browser window with the Language and
Format menus displayed is shown in Figure 110, page 220.

Typically, you inspect variable values at the following points:

• At a breakpoint

• At a frame in a call stack

• As you step through a process

Note: A useful technique is to set a trap at the entry to a function and
inspect the values of the variables there. Some variables may be in an
uninitialized state at that point. You can then step through the function and
make sure that no uninitialized variables are used inadvertently.

A.7.6.1 Entering Variable Values

The Variable Browser lets you change the values of variables in the
window. You simply enter the new value in the result column and press
Enter . Thus, you can force new values into the process and see their effect.

007–2579–004 219

Developer MagicTM: Debugger User’s Guide

Column sash

Figure 110. Variable Browser with Menus Displayed

A.7.6.2 Changing Variable Column Widths

The Variable Browser has a sash between columns that lets you adjust the
relative widths of the Variable and Result columns (see Figure 110, page
220). For example, you may wish to adjust for short variable names and long
result values.

A.7.6.3 Viewing Variable Changes

The Debugger views that are involved with variables (that is, the Variable
Browser and Expression View) have indicators that show when the
variable has changed since the last breakpoint. If you click the indicator, you
can view the previous value. The variable change indicators for a Variable
Browser window are shown in Figure 111, page 221.

220 007–2579–004

Debugger Reference [A]

Change indicator
(current value)

Change indicator
(former value)

No change indicator
(unchanged value)

Figure 111. Typical Variable Change Indicators

A.8 Machine-level Debugging Windows

The Debugger offers three views useful in debugging at the machine level: the
Disassembly View , Register View , and Memory View .

A.8.1 Disassembly View

The Disassembly View lets you look at machine-level code rather than
source-level code. A typical Disassembly View window appears in Figure
112, page 222, with the Disassemble menu displayed.

007–2579–004 221

Developer MagicTM: Debugger User’s Guide

Process control
buttons

Display area

PC indicator

Figure 112. Disassembly View with Menu Displayed

A.8.1.1 Similarities with Main View

At the top of the window are the same process control buttons as those in
Debugger Main View. They behave the same way except for Step Into and
Step Over , which do machine-level instruction stepping instead of
source-level. Remember that you select the number of steps by holding down
the right mouse button over the Step Into and Step Over buttons.

The menus are basically the same as in Main View except for the Disassemble
menu. The PC menu selections Continue To and Jump To are based on
machine-level instructions rather than source-level steps. The Config menu
has a Preferences... selection that brings up a dialog box oriented to
Disassembly View .

222 007–2579–004

Debugger Reference [A]

You can set traps either by using the Traps menu or by clicking in the
annotation column of the source display area that contains the disassembled
code.

A.8.1.2 Disassemble Menu

The Disassemble menu lets you display disassembled code. It contains the
following items:

Address... Allows you to disassemble a specified number of
lines, starting from a specified source line address
(see Figure 113, page 223).

Figure 113. Disassemble From Address Dialog

Function... Allows you to disassemble a specified number of
lines, starting from the beginning address of a
specified function name (see Figure 114, page
224).

007–2579–004 223

Developer MagicTM: Debugger User’s Guide

Figure 114. Disassemble Function Dialog

File... Allows you to disassemble a specified number of
lines, starting from the address corresponding to
a specified line number in a specified file (refer to
Figure 115, page 225). If you have a current
selection in Main View or Source View , its file
and cursor position are used as the default
filename and line number, respectively.

224 007–2579–004

Debugger Reference [A]

Figure 115. Disassemble File Dialog

A.8.1.3 Disassembly View Preferences

Selecting Preferences... from the Config menu brings up the
Disassembly View Preferences dialog box (shown in Figure 116, page
226) so that you can change the global preferences.

007–2579–004 225

Developer MagicTM: Debugger User’s Guide

Figure 116. Disassembly View Preferences Dialog with Pop-up Menu

The dialog box provides you with the following options:

Number of
instructions to
disassemble

Controls the default number of disassembly lines
shown when the process stops. This number
appears in the dialog boxes selected from the
Disassemble menu (see Figure 113, page 223,
Figure 114, page 224, and Figure 115, page 225).
The default is all instructions, indicating that the
entire function will be disassembled.

Minimum lines
around current
instruction

Controls the display of the disassembled code,
enabling you to view at least the specified
number of instructions before and after the
current instruction.

Register name
display format

Controls how register names are displayed. The
available modes are Hardware , Compiler , and
Assembler .

Show embedded
source annotation

Turns on interleaved source lines in the
appropriate positions.

Show source file
and line number

Displays the filename and file position along with
each machine instruction.

226 007–2579–004

Debugger Reference [A]

Show function name
and line number

Displays the function name and file position
along with each machine instruction.

Show machine
address

Displays the memory address of each machine
instruction.

Show instruction
value

Displays the instruction word along with each
machine instruction.

Show jal targets
numerically

Controls whether the target address of a jal
instruction is displayed as a hex address or
symbolic label.

A.8.2 Register View Window

Register View window lets you examine and modify register values. You
bring it up by selecting Register View from the Views menu in Main View.
Figure 117, page 228, shows a typical Register View window that has been
resized to show all available registers.

Register View displays each register with its current value. A question mark
(?) displayed immediately before a register value signifies that the value is
suspect; it may not be valid for the current frame. This can occur if a register is
not saved across a function call. A colored marker indicates that a register
value has changed since the last time the process stopped.

007–2579–004 227

Developer MagicTM: Debugger User’s Guide

Current register value field Modify button

Current register
field

General register
display area

Special register
display area

Floating register
display area

Double register
display area

Figure 117. Register View

A.8.2.1 Register View Window

The major features of the Register View window are the following:

Current register
field

Identifies the currently selected register. You can
switch to a different register by entering its name
(either by hardware name or by alias) in this field
and pressing Enter . You can also switch registers
by clicking on the new register in the display area.

228 007–2579–004

Debugger Reference [A]

Current register
value field

Shows the contents of the selected register. You
can assign a new value to a register by entering
either a literal or an expression into the Value
field. You then click on the Modify button to
change the value or press Enter .

Register display
area

Shows the registers organized into four groups:
general, special, floating, and double. Note that
the general registers are identified by both their
hardware and software names. Double registers
have a one-to-two correspondence with the
floating registers.

Note: The special registers p0 , p1 , and p2 are empty in the figure. These are
used for instrumentation and display values only when instrumentation has
taken place.

A.8.2.2 Changing the Register View Display

The Preferences... selection in the Config menu lets you change the
Register View display. It brings up the Register View Preferences
dialog box (see Figure 118, page 230).

The register display toggle buttons let you specify which types of registers are
to be displayed by default.

007–2579–004 229

Developer MagicTM: Debugger User’s Guide

Display toggle
area

Register
formatting
area

Figure 118. Register View Preferences Dialog

The register formatting area lets you select formats for any of the registers.

The default fields in the top row let you change defaults for the four major
types, which are set as follows:

• General registers — hexadecimal

• Special registers — hexadecimal

• Float registers — floating point

• Double registers — floating point

The rows in the register formatting area let you change the modes for the
individual registers.

A.8.3 Memory View

The Memory View window lets you examine and modify memory. A typical
Memory View window appears in Figure 119, page 231.

230 007–2579–004

Debugger Reference [A]

Current address
field

Current address
value field

Memory display
area

Memory address column
Memory contents

Display control buttons

Figure 119. Memory View with Menu Displayed

A.8.3.1 Viewing a Portion of Memory

To view a portion of memory, enter the beginning memory location in the
Address field. You can enter the literal value or an expression that evaluates to
an integer address. These address specifications must be in the language of the
current process as indicated by the call stack frame. For example, you can enter
0x7fff4000+4 as the memory address when stopped in a C function or enter
$7fff4000+4 as the equivalent for a Fortran routine. Press Enter while the
cursor is in the field or click the View button to display the contents of that
location and the subsequent locations in the display area. This also displays the
contents of the first address in the Value field where it can be modified.

The memory display area shows the contents of individual byte addresses. The
column at the left of the display shows the first address in the row. The
contents at that address are shown immediately to its right, followed by the
contents of the next seven byte locations. If you enlarge the Memory View
window, you can see additional rows of memory.

007–2579–004 231

Developer MagicTM: Debugger User’s Guide

A.8.3.2 Changing the Contents of a Memory Location

To change the contents of a memory location, you select the address to be
changed, either by direct entry or by clicking on the byte value in the display
area. You can enter a single value or a sequence of hex byte values separated
by spaces (for example, 00 3a 07 b2) in the Value field. You can also enter a
quoted string to change a consecutive range of values to the ASCII values of
that string. Pressing Enter while the cursor is in the Value field or clicking the
Modify button substitutes the new value(s) starting at the specified location.

A.8.3.3 Changing the Memory Display Format

The Mode menu lets you change the format of the value field or byte locations
to either decimal, octal, hex, or ASCII.

A.8.3.4 Moving around the Memory View Display Area

The four control buttons at the upper right of the window help you move
around the display area. These buttons are:

Up Moves displayed bytes up a single row.

Down Moves displayed bytes down a single row.

Page Up Moves displayed bytes upward by as many rows
as are currently displayed.

Page Down Moves displayed bytes downward by as many
rows as are currently displayed.

A.9 Fix+Continue Windows

The Fix+Continue utility interacts with several WorkShop windows. The
Debugger and Source View access the Fix+Continue utility from the menu
bar. The results of running redefined code are displayed in the Debugger
Execution View . Special line numbers (in decimal notation) applied to
redefined functions appear in several WorkShop views (refer to Section A.9.4,
page 241).

Note: Fix+Continue functionality within the debugger is limited to programs
compiled with the -o32 compiler option.

Fix+Continue comes with the following windows devoted entirely to
Fix+Continue functions:

232 007–2579–004

Debugger Reference [A]

• Status window

• Message window

• Build Environment window

This section describes Fix+Continue menu selections and windows.

The Fix+Continue menu is available from the Debugger Main View menu
bar. The menu selections operate on the selected function or on the file shown
in Source View . The Fix+Continue menu is also available from Source
View and from the Fix+Continue Status window.

Fix+Continue menu

Show Difference submenu

View submenu

Preferences submenu

Figure 120. Fix+Continue Menu Selections

007–2579–004 233

Developer MagicTM: Debugger User’s Guide

A.9.1 Fix+Continue Status Window

The Fix+Continue Status window (see Figure 121, page 234) provides you
with a summary of the modifications you have made during your session. It
also allows you quick access to your modified functions and somewhat
expanded menu options.

Function list

Function ID #

Function status

Function name

Filename for
function

Figure 121. Fix+Continue Status Window

The function ID number, status, name, and filename are displayed in the
window. Double-clicking a line in the window brings up the corresponding
source in the Debugger main window.

The menus and submenus that provide you with extra functionality through the
Status window (see Figure 122, page 235) are described below.

234 007–2579–004

Debugger Reference [A]

Figure 122. Fix+Continue Status Window Menus

A.9.1.1 Admin Menu

The Admin menu contains an option for closing the window.

Close Closes the status window.

A.9.1.2 View Menu

The View menu contains options for sorting information in the window and
displaying file names.

Sort Status View Sorts the information in the status view according
to the field currently selected.

007–2579–004 235

Developer MagicTM: Debugger User’s Guide

Show Long
Filenames

Toggles among absolute (long) pathnames,
relative pathnames, or base names.

A.9.1.3 Fix+Continue Menu

The Fix+Continue menu available from the Fix+Continue Status
window is somewhat different from that available through the Debugger Main
View. It contains a number of options and submenus that are described below.
These options and submenus are active on the function that you select in the
Source View . You can select a function by clicking on it. The following
options and submenus are available:

External Editor Allows you to edit with an external editor such as
vi , rather than the Debugger’s default editor.

Parse And Load Parses your modified function and loads it for
execution. You can execute the modified function
by clicking on the Run or Continue buttons in
the Debugger main view.

Update All
Files...

Launches the Save File+Fixes As... dialog
that allows you to update the current session
while saving all the modified functions to the
appropriate files.

Show Difference
submenu

Allows you to show the difference between the
original source and your modified code. You can
show the difference in the code in one of the two
following ways:

• For Function — Shows the differences for
the current function only.

• For File — Shows the differences for the
entire file that contains the current function.

Enable submenu Allows you to enable the changes in your
modified code in one of the following ways:

• Function — Enables the changes in the
current function.

• Functions in File — Enables the changes
to the current function in its own file.

• All Functions — Enables the changes to all
functions in the modified code.

236 007–2579–004

Debugger Reference [A]

Disable submenu Has the same menu choices as the Enable
submenu, but disables rather than enables.

Save submenu Allows you to save your code changes to a file.
You can save the changes in one of the following
ways:

• Function... — Launches the File dialog,
allowing you to save only the current function
to a file.

• File... — Launches the Save
File+Fixes As... pop-up window
allowing you to save the entire file that
contains the current function.

Delete submenu Has the same menu choices as the Save
submenu, but deletes rather than saves.

Show submenu Allows you to launch any of the following
windows:

• Message Window — Launches a
Fix+Continue Error Messages window
for the selected function. See Section A.9.2,
page 238, for more details.

• Build Env for File — Launches a
Fix+Continue Build Environment
window for the file shown in the Source
View . See Section A.9.3, page 239, for more
details on the Fix+Continue Build
Environment window.

• Default Build Env — Launches the
Fix+Continue Build Environment
window to show the options that are to be
used in cases where they could not be
obtained from the target. See Section A.9.3,

007–2579–004 237

Developer MagicTM: Debugger User’s Guide

page 239, for details on the Fix+Continue
Build Environment window.

A.9.2 Fix+Continue Error Messages Window

The Fix+Continue Error Messages window (see Figure 123, page 238)
contains a list of errors and other system messages that pertain to your source
modifications, parses, and attempts to run your modified source.

Error messages

Clear button

Rescan button

Next button

Clear button

Figure 123. Fix+Continue Error Messages Window

You can highlight the source line where the error occurred by double-clicking
the appropriate line in the window. The Fix+Continue Error Messages
window contains the following buttons:

Clear Clears all the parsing errors and warnings.

Next Puts a tick mark on the next unticked error
warning entry in the parse messages. It displays
the corresponding file and line in the Source
view, highlighting it according to the type of

238 007–2579–004

Debugger Reference [A]

error or warning. Next does not function after all
the entries in the messages are ticked.

Rescan Erases all the ticks, so that you can rescan all the
error warnings from the beginning.

The added functionality available through the window’s Admin and View
menus is described below.

A.9.2.1 Admin Menu

The Admin menu allows you to perform either of the following two operations:

Clear All Clears all messages in the window.

Close Closes the window.

A.9.2.2 View Menu

The View menu allows you to set any of the following toggles:

Show Warnings Causes compile warnings to be displayed in the
parse errors list.

Append Parse
Messages

Causes parse messages to be appended to the
parse errors list.

Append Load
Messages

Causes load messages to be appended to the load
errors list.

A.9.3 Fix+Continue Build Environment Window

This section describes the Fix+Continue Build Environment window (see
Figure 124, page 240). The Fix+Continue Build Environment window
provides you with the build information for your source code in your current
environment. It displays the command that was used to build your executable
and the name of the file that contains the function that you currently have
selected.

007–2579–004 239

Developer MagicTM: Debugger User’s Guide

Clear button

Set button

Unset button

Done button

Cancel button

Files button

OK button

Figure 124. Fix+Continue Build Environment Window

The compiler and associated flags that were used to compile the file are
normally gathered from the target. You can use this window to make any
changes to these flags.

The window allows you to select your build environment setting through the
Build Environment Setting toggle that contains the following two options:

Default Sets the build environment to default that is
displayed in the window.

File Specific Sets the build environment to that of the file that
contains the currently selected function. You can

240 007–2579–004

Debugger Reference [A]

change the file by clicking the Select File
button, which launches the File dialog.

The Fix+Continue Build Environment window also contains the
following buttons:

Select File Launches the File dialog and allows you to
select a file from which to set the build
environment.

Clear Clears the window.

Set Sets the build environment to what is displayed
in the window.

Unset Unsets the build environment.

Done Dismisses the window.

A.9.4 Changes to Debugger Views

When you use Fix+Continue, Debugger views change to show redefined
functions or stopped lines containing redefined functions.

A.9.4.1 Main View

All Fix+Continue functions are available through the Fix+Continue menu on
the Debugger Main View. See Figure 125, page 242, for details.

007–2579–004 241

Developer MagicTM: Debugger User’s Guide

Source
view

Editable
function

Decimal
notation

Fix and
Continue
menu

Annotated
scroll
bar

Source
code
status
indicator

Figure 125. Debugger Main View

You can select commands from the Fix+Continue menu or enter them at the
Debugger command line. The source code status is Read Only . Color coding
shows the differences between editable code, enabled redefinitions, disabled
definitions, and breakpoints. Line numbers in redefined functions have decimal
notation that is used for every reference to the line number. The integer portion
of the decimal is the same as the first line of the function. This ensures that
compiled source code line numbers remain unchanged.

A.9.4.2 Command Line Interface

The Debugger command line interface accepts Fix+Continue commands and
reports status involving redefined functions or files. Figure 126, page 243,
shows a function successfully redefined using the command line. Change id 1
was previously redefined and assigned the number 1.

242 007–2579–004

Debugger Reference [A]

Specify function with
Change id 1

Figure 126. Command Line Interface with Redefined Function

A.9.4.3 Call Stack View

The Call Stack View recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure 127, page 243.

Decimal notation for line number

Figure 127. Call Stack View

A.9.4.4 Trap Manager

The Trap Manager recognizes redefined functions. It uses the decimal notation
for line numbers, as shown in Figure 128, page 244.

007–2579–004 243

Developer MagicTM: Debugger User’s Guide

Decimal notation
for line numbers

Figure 128. Trap Manager Window with Redefined Function

A.10 Debugger Command Line

To use the Debugger commands, which are entered at the command line at the
bottom of Main View (see Figure 59, page 118), you should be familiar with
dbx commands. For more information, refer to the dbx Reference Manual. The
syntax for the debugging commands is as follows:

add_source {" filename”:line_number }

Prompts you to add source code lines (for example,
add_source "fmain.c":15.2). line_number must be within
the body of a function. Entering a period (.) specifies the end of
your input. The source lines you provide are added after the
specified line. This command returns an ID existing or new,
depending on whether the function affected has already been
changed or not. The resulting new definition of the function is

244 007–2579–004

Debugger Reference [A]

executed on its entry next time. See also delete_source and
replace_source . Applies to –o32 code only.

alias [shortform command]

Lists all aliases without arguments. With arguments, it assigns
command to shortform.

assign expression1=expression2

Assigns expression2 to expression1.

attach pid

Attaches to specified process ID (pid).

call function_name [argument, ...]

Executes the specified function with any arguments supplied.

catch [signal_name | all]

With no arguments, lists signals to be trapped. If a signal is
specified, it’s added to the list. If all is specified, it traps all
signals.

clear [all | source_line]

Clears breakpoints. The all option clears all breakpoints. The
source_line option clears the breakpoint at the specified source
line.

clearbuffer

Clears the currently displayed lines.

clearcalls

Cancels pending function calls.

cont in function_name

Continues execution from the current line to the entry to the
specified function.

cont to line_number

Continues execution from the current line until the specified
line.

007–2579–004 245

Developer MagicTM: Debugger User’s Guide

continue [all]

Continues executing a program, or all programs, after a
breakpoint. You can use both c and cont as aliases for
continue .

continue [signal]

Sends specified signal and continues executing a program after
a breakpoint.

corefile [filename]

With no arguments, reports whether data referencing
commands reference a core file. If so, displays the current core
file. With filename provided, specifies core file to be debugged.

delete all

Deletes all traps.

delete [,displaynumber,. . .]

Deletes the specified expression from the display.

delete_changes { func_spec | -all | {-file filename}}

Deletes changes corresponding to the selected functions (for
example, delete_changes getNumbers -file fmain.c).
Once IDs are deleted, you will not be able to use the IDs again
because the IDs associated with the selected functions are
released. The default is -all . See also save_changes .
Applies to –o32 code only.

delete_source {" filename”:line_number[,line_number]}

Deletes the given line(s) if line_number or ,line_number (range) is
within the body of a function. An example is:

delete_source "fmain.c":8.6,8.7

This command returns an ID existing or new, depending on
whether the function affected has already been changed or not.

246 007–2579–004

Debugger Reference [A]

The resulting new definition of the function is executed on its
entry next time. Applies to –o32 code only.

delete trap_number [, trap_number, ...]

Deletes the specified breakpoint from the status list.

detach

Detaches from the current process.

disable all

Deactivates all traps.

disable_changes { func_spec | -all | {-file filename}}

Disables specified changes for selected functions (for example,
disable_changes getNumbers -file fmain.c . Nothing
happens if the selected function is already disabled. The
compiled definition of the function is executed on its next entry.
You can invoke this command when the process is stopped or
on a running process when a function entry breakpoint is set.

disable trap_number [, trap_number, ...]

Deactivates a trap set by stop command.

display [expression, ...]

With expression, adds expression to the list of expressions
displayed whenever the process stops. With no arguments, lists
all expressions.

007–2579–004 247

Developer MagicTM: Debugger User’s Guide

down [expression]

Moves down the specified number of frames in the call stack.

dump

Prints local variable values.

enable all

Reactivates all inactive traps.

enable_changes { func_spec | -all | {-file filename}}

Enables specified changes for selected functions (for example,
enable_changes getNumbers -file fmain.c . Nothing
happens if the selected function is already enabled. The latest
accepted definition of the function is redefined on its next entry.
You can invoke this command when the process is stopped or
on a running process when a function entry breakpoint is set.
Applies to –o32 code only.

enable trap_number [,trap_number, ...]

Reactivates a disabled breakpoint.

248 007–2579–004

Debugger Reference [A]

expression/[count] [format] or expression,[count] /[format]

Prints the contents of the memory address specified by
expression, according to the specified format. count represents
the number of formatted items. The following format options
are available:

d Prints a short word in decimal.

D Prints a long word in decimal.

o Prints a short word in octal.

O Prints a long word in octal.

x Prints a short word in
hexadecimal.

X Prints a long word in
hexadecimal.

b Prints a byte in octal.

c Prints a byte as a character.

s Prints a string of characters that
ends in a null byte.

f Prints a single-precision real
number.

007–2579–004 249

Developer MagicTM: Debugger User’s Guide

g Prints a double-precision real
number.

file [filename]

Displays the name of the current or specified file (filename). If a
file is specified, it becomes the current file.

func [func_name]

Moves to the source code corresponding to the specified frame
in the call stack or to the function in the executable if not on the
stack.

givenfile [filename]

With no arguments, displays name of current object file. With
filename, specifies object file to be debugged.

goto linenumber

Skips over lines going directly to the specified line number.
Unlike dbx (1), cvd (1) does not begin execution at the specified
line.

ignore [signal_name | all]

With no arguments, lists those signals not to be trapped. If a
signal is specified, this command removes it from the list of
signals to be trapped. If all is specified, ignores all signals.

kill [pid][all]

Kills the specified process currently controlled by the Debugger
or kills all processes.

list [[expression1 [, expression2]] | [function_name]]

Lists source lines in expression1 for expression2 number of lines.
The default is 10 lines. Optionally, you can specify the name of
a function from which you want lines listed.

list_changes [func_spec | -all | {-file filename}]

Lists one or more lines using the following syntax:

change_id isEnabled filename function_spec

250 007–2579–004

Debugger Reference [A]

For example:

4 enabled foo.c foo

8 disabled A.c++ A::bingo

The default is list_changes -all .

next [int]

Steps over the specified number of source instructions. This
command does not step into procedures. The default is one
instruction.

nexti [int]

Steps over the specified number of machine instructions. This
command does not step into procedures. The default is one line.

print expression[, expression, ...]

Prints the value of the specified expression(s). If the expression
is a character pointer or array, both the string and address print.

printd expression [, expression, ...]

Prints the value of the specified expression(s) in decimal format.
You can use pd as an alias.

printo expression [, expression, ...]

Prints the value of the specified expression(s) in octal format.
You can use po as an alias.

printregs

Prints the contents of the registers.

printx expression[, expression, ...]

Prints the value of the specified expression(s) in hexadecimal
format. You can use px as an alias .

pwd

Displays the current directory.

quit

Exits the debugging session.

007–2579–004 251

Developer MagicTM: Debugger User’s Guide

redefine func_spec

[-edit |{ -read filename[line_number, line_number]}]
Specifies a new body for a function. The new definition is
checked, and errors (if any) are printed. The new function body
is redefined on the next function entry. Breakpoints (if set) on
the old definition are put on the new definition based on their
relative line number position from the beginning of the function
definition. (Note that some breakpoints may not make it to the
new definition.) You can invoke this command when the
process is stopped or on a running process when a function
entry breakpoint is set. There are three ways to provide a new
definition:

• -edit pops up an editor of your choice containing the
current definition of the function. The specification of the
new definition is complete when you exit the editor. You
may not leave the editor open.

• -read takes the contents of the file specified (within the line
numbers if given) as the new function definition.

• No option allows you to type in replacement code from the
next line. A period in the first column on a fresh line
terminates the definition. For example:

redefine getNums
"/usr/fmain.c’’:8.1> {

"/usr/fmain.c’’:8.2> printf(‘‘In getNums.\n’’);

"/usr/fmain.c’’:8.3> }

"/usr/fmain.c’’:8.4> .

You can use a combination of characters (yet to be
determined) to open an editor of your choice containing the
lines typed. The specification of the new definition is
complete when you exit the editor. Applies to –o32 code
only.

replace_source {" filename": line_number[, line_number]}

Prompts you to type in replacement source if line_number or
,line_number (range) is within the body of a function. The source
lines you provide replace the specified line(s). An example is:
replace_source "fmain.c":12 . This command returns an
existing or new id depending on whether the function affected

252 007–2579–004

Debugger Reference [A]

has already been changed or not. The resulting new definition
of the function is executed on its entry next time. See also
add_source and delete_source . Applies to –32 code only.

rerun

Runs the program again using the same arguments.

return

Continues executing the current procedure and returns to the
next sequential line in the calling function.

run [all]

Runs the program (s).

runtime_check func_spec [-options key [key,...]]

Enables all run-time checking options by default. If -options
is specified, then run-time checking is restricted to the keys. The
result of theruntime checks are printed the next time the
specified function (func_spec) is entered. You can invoke this
command on a stopped or a running process.

save_changes { func_spec| {-file filename}} [-[w|a]] filename_to_save

Saves (enabled or disabled) function redefinitions or an entire
file to another file (filename_to_save). The following example
shows how to save a function definition:

save_changes getNumbers getNumbersFunc

If you specify the -file option, then before saving to
filename_to_save, all function changes are applied to the compiled
source of the file (with the condition that the file has had only
its functions redefined, and has not been edited since the last
build). An example of saving an entire file is the following:

save_changes -file fmain.c fmain.c

The -w option replaces the filename_to_save. The -a option
appends to the file_to_save. An example of adding a function to
a file is the following:

See also delete_changes . Applies to –o32 code only.

007–2579–004 253

Developer MagicTM: Debugger User’s Guide

setbuildenv [" filename"] compiler-flag-list

Overrides default build environment flags (compiler options).
Without filename, the flags are passed along with -c -g flags to
the compiler for any function in any file except those set
separately with setbuildenv . An example is the following:

setbuildenv -DnameA -Idir

If filename is given, this command sets separate flags specifically
for that file. For example, consider the following:

setbuildenv "fermat.c" -DnameB -Ianotherdir

Applies to –o32 code only. See also unsetbuildenv .

sh [shell_command]

Call a shell if no arguments; otherwise, executes the specified
shell command.

showbuildenv [" filename"]

Lists all the build environment flags set. showbuildenv with a
filename lists any build environment specifications that have
been set separately with setbuildenv " filename" . Applies to
–o32 code only.

show_changes [func_spec | -all | {-file filename}]

Prints the code of all enabled redefinitions of the specified
function(s). The default is show_changes -all . See also
enable_changes and disable_changes . Applies to –o32
code only.

show_diff { func_spec | {-file filename}}

Launches a xdiff comparing the compiled source and its latest
redefinition for the specified function. If -file filename is
specified, xdiff shows the difference between the compiled
file and the file with all redefinitions applied to the compiled
source of the file (with the condition that the file has had only

254 007–2579–004

Debugger Reference [A]

its functions redefined, and has not been edited since the last
build). Applies to –o32 code only.

source filename

Executes commands in the specified file.

status

Displays a list of currently set breakpoints and traces.

step [int]

Steps the specified number of source instructions. This
command steps into procedures. The default is one instruction.

stepi [int]

Steps the specified number of machine instructions. This
command steps into procedures. The default is one line.

stop at [filename:] line_number[if expression]

Traps at the specified line in the specified file. If the if option
is used, the trap fires only if expression is true.

stop in [filename:] function_name [if expression]

Traps at the entry to the specified function. If the if option is
used, then the trap fires only if expression is true. If the filename
is given, the function is assumed to be in that file’s scope.

syscall catch | ignore [call | return] \ [sys_call_name | all]

The catch option adds a system call to the list of system calls
to be trapped. The ignore option removes a system call from

007–2579–004 255

Developer MagicTM: Debugger User’s Guide

the system call trap list. The call option specifies the entry to
the system call and return signifies the return from the call.

trace [variable] at [[" filename [line_number “:] \ | function_name] \ [if
expression]]

Traces the specified variable. You can specify a file and/or test
condition. You can also specify a line number or a function
where the trace is to take place.

unalias aliasname

Cancels the alias specified as aliasname.

undisplay [displaynumber, ...]

Stops display of expression with specified displaynumber when
the process stops. Removes the expression from the display list.

unsetbuildenv [" filename"]

Disregards the default build environment flags if specified
earlier. For all functions in files that don’t have an overriding
build environment, unsetbuildenv passes only the -c and
-g flags.

If filename is given, this command disregards the build
environment flags specified for the file earlier. Further
redefinition of the functions in the file use the default build
environment flags, if set. Applies to –o32 code only. See also
setbuildenv .

256 007–2579–004

Debugger Reference [A]

up [expression]

Moves up the specified number of frames in the call stack. up
moves in the direction of the caller.

use [path]

Uses the specified path to search for source files.

whatis identifier

Displays all the qualifications of the specified variable.

when at filename:] line_number { command[; command ...]}

Stops the process and performs other Debugger commands
when the process reaches a specified line number.

when in [filename:] function_name { command [; command ...]}

Stops the process and performs other Debugger commands at
entry to function. If the filename is given, the function is
assumed to be in that file’s scope.

which [identifier]

Displays the qualification of the specified variable.

where [thread]

Performs a stack trace showing the activation levels of a
program or, optionally, of the specified thread.

007–2579–004 257

Using the Build Manager [B]

WorkShop lets you compile software without leaving the WorkShop
environment. Thus, you can look for problems using the WorkShop analysis
tools (Static Analyzer, Debugger, and Performance Analyzer), make changes to
the source, suspend your testing, and run a compile. WorkShop provides two
tools to help you compile:

• Build View—for compiling, viewing compile error lists, and accessing the
code containing the errors in Source View (the WorkShop editor) or an
editor of your choice. Build View helps you find files containing compile
errors so that you can quickly fix them, recompile, and resume testing.

• Build Analyzer—for viewing build dependencies and recompilation
requirements and accessing source files.

Build View uses the UNIX make(1) facility as its default build software.
Although cvmake can be set up to run any program instead of make (for
example, gnumake), cvbuild will only parse and display standard makefiles
(in particular, it does not understand gnu make constructs).

B.1 Build View Window

You can access the Build View window from the WorkShop analysis tools,
from the command line (by typing cvmake), or from the Build Analyzer
(see next section).

To access Build View from WorkShop, select Recompile from the Source
menu in the Main View window in the Debugger or from the File menu in
Source View (for more information on Main View and Source View , refer to
Chapter 1, page 1). Selecting Recompile detaches the current executable from
the WorkShop analysis tools and displays Build View . You can edit the
Directory and Target(s): fields as needed and click Build to compile. If
the source compiles successfully, the new executable is reattached when you
reenter the WorkShop analysis tools.

The Build View window has three major areas:

• Build Process Control Area, Section B.2, page 260

• Transcript Area, Section B.3, page 261

• Error List Area, Section B.4, page 261

007–2579–004 259

Developer MagicTM: Debugger User’s Guide

B.2 Build Process Control Area

The build process control area lets you run or stop the build and view the
status. See Figure 129, page 260.

Build command
directory

Target directory

Build process
control buttons

Status field

Figure 129. Build Process Control Area in Build View Window

The directory in which the build will run displays in the Directory: field at
the top of the area. The current directory displays by default. You can specify
the build using make, smake, pmake, clearmake , or any other builder and
any flags or options that the builder understands (see Section B.5.1, page 262,
and Section B.5.2, page 263). The target to be built is specified in the
Target(s): field.

The build process control buttons let you control the build process. The
following buttons are available:

Build Runs (or reruns) a build. If you have modified
any files you will be prompted to save the new
versions prior to the compile.

Interrupt Stops a build.

Suspend Stops a build temporarily.

Resume Restarts a suspended build.

The status field is to the right of the build process control buttons. It indicates
the progress of the build.

260 007–2579–004

Using the Build Manager [B]

B.3 Transcript Area

The transcript area displays the verbatim output from the build. The vertical
scroll bar lets you go through the list; the horizontal scroll bar lets you see long
messages obscured from view. A sash between the compile transcript area and
the error list area lets you adjust the lengths of the lists displayed. See Figure
130, page 261.

Transcript area

Error list area

Figure 130. Build View Window with Typical Data

B.4 Error List Area

The error list area consists of the error list display and three control buttons.
The following buttons are available:

Next Error Brings up the default editor scrolled to the next
error location. This button is below the error list
display.

Rescan Refreshes the error list display.

007–2579–004 261

Developer MagicTM: Debugger User’s Guide

Clear Clears the error list display area.

The error list area displays compile errors (see Figure 130, page 261). The errors
are annotated according to their severity level (fatal has a solid icon and the
warning icon is hollow). Double-clicking the text portion of an error brings up
the default editor scrolled to the error location and displays a check mark to
help you keep track of where you are in the error list. Check marks also display
when you click the Next Error button.

B.5 Build View Admin Menu

The Admin menu in Build View has two selections in addition to the
standard WorkShop entries:

• Build View Preferences... , Section B.5.1, page 262

• Build Options... , Section B.5.2, page 263

For information on Launch Tool , Project , and Exit menu selections, refer
to Section A.1.1, page 123.

B.5.1 Build View Preferences

The Preferences... selection brings up the dialog box shown in Figure 131,
page 263. The options are:

Maker Program field Lets you enter the program you use to build your
executable.

Macro Settings field Lets you enter build macros, such as

CFLAGS=-g.

Makefile field Lets you enter the name of a makefile if you do
not wish to use the default.

Discard Duplicate
Errors button

Eliminates subsequent duplicates of errors in the
error list area.

Show Warnings
button

Toggles the option to display warnings in the list.

262 007–2579–004

Using the Build Manager [B]

Figure 131. Build View Preferences Dialog

B.5.2 Build Options

The Build Options Dialog lets you add the options shown in Figure 132,
page 264, to your make command.

007–2579–004 263

Developer MagicTM: Debugger User’s Guide

Figure 132. Build Options Dialog

B.5.3 Using Build View

The steps in running a compile using Build View are as follows:

1. Bring up the Build View window.

2. Edit the Target(s): and Directory: fields as required.

3. Specify your preference regarding duplicate errors and warnings using the
Admin menu (optional).

4. Click Build to start the build. All compile information displays in the
transcript area. Errors are grouped in a list below.

5. Click Interrupt to terminate or Suspend for a temporary stop, if you
want to stop the build. The Resume button restarts a suspended build.

6. Double-click an error to bring up your preferred editor with the appropriate
source code. A check mark indicates that an error has been accessed.

264 007–2579–004

Using the Build Manager [B]

Note: The default editor is determined by the editorCommand resource
in the app-defaults file. The value of this resource defaults to wsh -c
vi +%d , which means run vi in a wsh window and scroll to the current
line. If the editor lets you specify a starting line, enter %d in the resource
to indicate the new line number.

7. Click Build to restart the build.

B.6 Build Analyzer Window

The Build Analyzer window displays a graph indicating the source files and
derived files in the build, and their dependency relationships and current
status. Source files refers to input files, such as code modules, documentation,
data files, and resources. Derived files refers to output files, such as compiled
code. You request builds in Build Analyzer by either:

• Double-clicking a derived module

• Making a selection from the Build menu

You access Build Analyzer from WorkShop by selecting Launch Tool from
the Admin menu in Main View. Outside of WorkShop, you can access Build
Analyzer by typing cvbuild at the command line. A typical Build
Analyzer window appears in Figure 133, page 266, with the menus displayed.

007–2579–004 265

Developer MagicTM: Debugger User’s Guide

Build specification area

Build graph area

Build graph control area

Figure 133. Build Analyzer Window

B.7 Build Specification Area

The three fields in the build specification area identify the working directory,
makefile script, and target file(s) for compilation. You can edit the
Directory: , Makefile: , and Target(s): fields directly. The Target(s):
field also lets you specify a search string for locating a file in the build graph.

B.8 Build Graph Area

The build graph area displays the specified source and derived files and their
dependency relationships. Files are depicted as rectangles; dependency
relationships are shown as arrows, with the supplying file at the base of the
arrow and the dependent file at the head. The colors used to depict the files

266 007–2579–004

Using the Build Manager [B]

depends on your color scheme. Build Analyzer differentiates the two types
of files by depicting one with light characters on a dark background and the
other with dark text on a light background. If you double-click a source file
icon, an editor is brought up for that file. Double-clicking a derived file starts a
build and displays Build View.

In addition to dependency relationships, Build Analyzer indicates the status of
the files and relationships as follows:

• Source file availability status: normal or checked out

– Normal means that the source file is read-only and needs to be made
writable to be edited. Normal files appear as light rectangles with black
text.

– Checked out means that you have a writable version of this file
available and can thus edit it. A checked out file appears in a different
color (from normal files) with a shadow.

• Derived file compile status: current or obsolete

– When applied to a derived file, the term current means that none of the
files on which the derived file depends have been edited since the
derived file was created. Current derived files appear as dark rectangles
with white text.

– Obsolete means that one or more of the source files have been
modified since the derived file was created. Obsolete files appear in the
same color as current derived files but with a colored outline.

• Dependency relationship: current or obsolete

– Current means that the derived file is up to date with the source files.
Note that a relationship can be current even if both files are obsolete.
This happens when a file on which both files are dependent has been
modified. Current arcs are black.

– Obsolete means that the source file has changed and the derived file has
not been updated accordingly. Obsolete arcs appear as colored arrows.

Some typical build graph icons are shown in Figure 134, page 268.

007–2579–004 267

Developer MagicTM: Debugger User’s Guide

Derived file-normal state

Source file-normal state

Dependency arc-obsolete state
Source file-checked out state

Dependency arc-current state

Derived files-obsolete state

Figure 134. Build Graph Icons

The main.c and hello.h source files are in their normal state. The source files
warn.c++ and foo.h are checked out and thus appear highlighted and with
dropped shadows. The derived file main.o is current, since it has not changed
since the last compile. The black dependency arcs indicate that the source and
derived files at either end are current with each other. When an arc is
highlighted, it indicates that the source has changed since the last compile. The
derived files warn.o and a.out are obsolete because warn.c++ has changed.

B.9 Build Graph Control Area

The build graph control area contains a row of graph control buttons similar to
the ones in the WorkShop Static Analyzer and the Call Graph View in the
Performance Analyzer. The Overview button is particularly useful in the
Build Analyzer because it helps you quickly find obsolete files where a lot
of dependencies are involved.

The build graph control area is shown in Figure 135, page 268.

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button (disabled)

Realign button

Rotate button

Figure 135. Build Graph Control Area

268 007–2579–004

Using the Build Manager [B]

B.9.1 Build Analyzer Overview Window

Since build graphs can get quite complicated, an overview mode (similar to
those in Static Analyzer and Profiling View) is supplied that lets you view the
entire graph at a reduced scale. To display the overview window, you click the
overview icon (see Figure 135, page 268).

Figure 136, page 269, shows a typical Build Analyzer Overview window
with the resulting graph. The window has a movable viewport that lets you
select the portion of the build graph displayed in Build Analyzer . Source
files that have changed and derived files needing recompilation are highlighted
for easy detection. In this particular color scheme, the Build Analyzer
Overview window displays normal source files in turquoise, checked out
source files in pink, current derived files in dark blue, and obsolete derived files
in yellow. Arcs appear only in black in this window.

Viewport

Figure 136. Build Analyzer Overview Window with Build Analyzer Graph

007–2579–004 269

Developer MagicTM: Debugger User’s Guide

B.9.2 Build Analyzer Menus

The Build Analyzer window contains the following menus:

• Admin

• Build

• Filter

• Query

B.9.2.1 Admin Menu

The Admin menu provides one selection Refresh Graph Display in
addition to the standard WorkShop selections.

Refresh Graph
Display

Refreshes the window.

Launch Tool Lets you execute the WorkShop tools. For more
information, see the Section A.1.1, page 123.

Project Lets you control the WorkShop tools operating on
the same executable as a group. For more
information, see Section A.1.1, page 123.

B.9.2.2 Build Menu

The selections in the Build menu let you perform builds as follows:

Build Default
Target

Performs a make with no arguments.

Build Selected
Target(s)

Performs the build(s) as entered in the
Target(s): field.

Show Build Rule Displays a dialog box showing the makefile line
for the selected node.

B.9.2.3 Filter Menu

The Filter menu has only one selection:

Select files to
show in graph

Opens the File Filter dialog box that lets you
enter a regular expression to filter files displayed
in the build graph.

270 007–2579–004

Using the Build Manager [B]

The upper list area lets you specify files to be
excluded from the build graph. The lower list is
for specifying files to appear in the graph.

B.9.2.4 Query Menu

The Query menu lets you request information about the build graph. The
following selections are available:

Why Is This File
Out Of Date?

Identifies the source files requiring this file to be
recompiled. This query only applies to derived
files.

What Will Changing
This File Affect?

Shows all derived files dependent on this source
file.

007–2579–004 271

Index

A

access to freed memory, 79
Access to uninitialized memory, 79
accessing files, 17
Active selection in admin menu, 30
active toggle, 150, 157
Add button in trap manager, 29
adding a breakpoint, 109
Address... selection in disassemble menu, 223
Admin menu, 235

general description, 124
Library search path..., 124

admin menu, 157
active toggle, 150, 157
clone, 150, 157
close, 151, 157
save as text, 150, 157

alias debugger command, 245
all trap debugger command option, 44
arguments, command line, 51
Arrange selection in structure browser display

menu, 212
Array browser, 4, 36

general description, 192
subscript controls, 37

Array browser selection in views menu, 36, 126
Array field in array browser, 192
array subscripts, 193
array variables, 4, 192
assign debugger command, 245
assigning values to variables, 63
attach debugger command, 245
Automatic dereference limit field in structure

browser preferences box, 216

B

boundary overruns, 79
boundary underrun, 79
breakpoint, 3
breakpoint results, viewing, 115
breakpoint type option button, 160
breakpoint, adding, 109
breakpoints examiner, 158

callback, 160
event-handler, 162
input-handler, 167
resource-change, 164
state-change, 168
timeout-procedure, 165
X-event, 170

breakpoints tab, 113
breakpoints, setting, 73
breakpoints, setting for a class, 110
Build analyzer, 265
Build environment window, 239
Build manager, 259
build path, 10
Build view, 259

C

C expressions, 63
C function calls, 64
C++ expressions, 64
call debugger command, 245
Call stack, 4
Call stack selection in views menu, 30, 126
Call stack view, 30, 57, 204
call stack view, 243
callback breakpoints examiner, 160
callback context, viewing, 111

007–2579–004 273

Developer MagicTM: Debugger User’s Guide

callback examiner, 111, 179
callstack view, 115
catch debugger command, 245
change id, 10
changes, re-enabling, 76
classes, examining widget, 109
Clear all selection in structure browser display

menu, 214
Clear button in trap manager, 29
clear debugger command, 245
Clear trap selection in traps menu, 42
clearbuffer debugger command, 245
clearcalls debugger command, 245
Click for help selection in help menu, 139
clone current window, 150, 157
close current window, 151, 157
code, changing, 71
code, changing from command line, 72
code, comparing, 76
code, deleting changed, 72
code, switching between compiled and

redefined, 76
Col button in array browser, 36
Column width... selection in array browser

display menu, 195
Command field in main view, 51
command line interface, 242
comparing function definitions, 77
Condition field in trap manager, 46
Config menu in structure browser, 210
Config menu in trap manager, 43
cont in debugger command, 245
cont to debugger command, 245
continue signal debugger command, 246
Continue button in main view, 28, 29, 52
continue debugger command, 246
Continue to selection in disassembly view pc

menu, 223
Continue to selection in pc menu, 55, 134
corefile debugger command, 246
cvd

Execution view, 104
Main view, 103

Cycle count field in trap manager, 30, 47

D

data structures, 4
dbx commands, 244
Debugger

call stack view, 243
changes to views, 241
command line interface, 242
exiting, 2
main view, 241
process execution control, 51
starting, 1, 23
trap manager, 243

debugger
Execution view, 104
Main view, 103

Debugger command line, , 2, 244
Debugger data, 57
Debugger views, 57, 204, 218
Debugger with fix and continue support

Fix and continue
debugger support with, 10

Debugger, exiting, 79
Default field count field in structure browser

type formatting, 217
Default iconic width field in structure browser

preferences box, 216
Default iconic width field in structure browser

type formatting box, 217
Default state field in structure browser type

formatting box, 217
Default structure field count field in structure

browser preferences box, 216
Default structure width field in structure

browser preferences box, 216
Default structure width in structure browser

type formatting box, 217
delete all debugger command, 246
delete trap debugger command, 247

274 007–2579–004

Index

Dereference ptrs by default field in structure
browser preferences box, 216

Dereference ptrs selection in structure browser
node menu, 215

detach, 247
Detach selection in admin menu, 125
Detail selection in structure browser

submenu, 214
difference tools, 78
disable all debugger command, 247
disable debugger command, 247
disabling traps, 29
Disassemble file dialog box, , 225
Disassemble function dialog box, , 224
Disassemble menu in disassembly view, 223
disassembled code, 4
Disassembly view, 4

preferences, , 225
Disassembly view selection in views menu, 126
display area in structure browser, 211
display debugger command, 247
Display menu

Main view, 130, 270
Display menu in structure browser, 210
Display menu in traps manager, 43
Display selection in structure browser display

menu, 212
double frees, 79
down debugger command, 248
dump debugger command, 248

E

enable all debugger command, 248
enable trap debugger command, 248
environment variables

setting, 55, 140
erroneous frees, 79
Error messages window, 238
event examiner, 181
event-handler breakpoints examiner, 162
examin menu

widget tree, 157
examine menu, 157

selection, 157
widget, 157
widget class, 157
X event, 157

examiner
breakpoint, 109
breakpoints, 158
callback, 111, 179
callback breakpoints, 160
event, 181
event-handler breakpoints, 162
graphics context (GC), 182
input-handler breakpoints, 167
pixmap, 183
resource-change breakpoints, 164
state-change breakpoints, 168
timeout-procedure breakpoints, 165
trace, 175
tree, 107, 178
widget, 106, 177
widget class, 184
window, 112, 180
X-event breakpoints, 170

examiner menu
X graphics context, 158
X pixmap, 158

examiner tabs, 158
examiners

overview, 12
selections, 13

examining debugger data, 4, 57
Examining view data, 30
examining widget classes, 109
examining widgets, 108
Exception view selection in views menu, 126
execution control buttons, 52
Execution view, 55, 104, 140
Execution view selection in views menu, 126
Exit selection in admin menu, 126
exiting debugger, 79

007–2579–004 275

Developer MagicTM: Debugger User’s Guide

exiting the debugger, 2
Expression column in expression view, 60, 207
expression count debugger command, 249
Expression field in structure browser, 34, 211
Expression selection in structure browser

display submenu, 212
Expression view, 4, 33, 60, 206
Expression view selection in views menu, 33, 126
expressions

C, 63
C++, 64
Fortran, 64

F

File browser, 17
File browser selection in views menu, 126
file debugger command, 250
File menu, source view, 146
“File...” selection in disassemble menu, 224
files

opening, 18
files, comparing source code, 78
files, finding, 11
finding files, 11
Fix and continue

basic cycle, 7
build path, 10
change id, 10
environment, 10
functionality, 7
redefining functions with, 6
restrictions, 9
starting, 6
WorkShop integration, 8

Fix+continue
breakpoints, 73
Build environment window, 239
changing code, 71
changing code from command line, 72
deleting changed code, 72
editing a function, 70

Error message window, 238
GUI, 232
menu operations, 134
sample session, 67
Session, 236
Show difference, 135
Status window, 76, 234
traps, 73
View, 136

Fix+Continue menu, 236
Fork editor selection in source menu, 4, 128
Format menu in expression view, 33, 60, 206, 208
Format menu in structure browser, 211
Format menu in variable browser, 219
formatting fields in structure browser, , 215
Fortran expressions, 64
Fortran function calls, 67
Fortran variables, 65
frames, 57, 204
func debugger command, 250
function definitions, comparing, 77
function, editing, 70
function, redefining

Fix+continue
redefining functions, 69

Function... selection in disassemble menu, 223
functions, identifying, 10

G

Geometry selection in structure browser node
menu, 214

givenfile debugger command, 250
GLdebug, 124
GLdebug selection in admin menu, 124
Go to line... selection in source menu, 129
goto debugger command, 250
Goto dialog box, 129
graphics context (GC) examiner, 182

276 007–2579–004

Index

H

heap corruption
detection, 79

heap corruption problems
defined, 79

Help menu, 139
Hide icons selection in display menu, 131
Hide line numbers selection in display menu, 130

I

Iconic selection in structure browser
submenu, 214

Iconify selection in admin menu, 125
identifying functions, 10
ignore debugger command, 250
index identifiers in array browser, 194
index maximum specification in array

browser, 194
index minimum specification in array

browser, 194
index sliders in array browser, 194
index values in array browser, 194
Index... selection in help menu, 139
Indexing expression field in array browser, 193
input-handler breakpoints examiner, 167
Insert source... selection in source menu, 128
integration of workShop tools, 5
interface, command line, 242

J

jello program, 23
Jump to selection in disassembly view pc

menu, 223
Jump to selection in pc menu, 55, 134

K

Keys & shortcuts selection in help menu, 139
Kill button in main view, 52
kill debugger command, 250

L

Language menu in expression view, 33, 60,
206, 207

Language menu in variable browser, 219
Launch selection in admin menu, 126
launching the x/Motif analyzer, 11
launching x/Motif analyzer, 105
$LD_LIBRARY_PATH, setting, 12
Library search path dialog box, 124
Linked list selection in structure browser

display menu, 213
list debugger command, 250
Load expressions... selection in expression

view config menu, 62
Load settings... selection in admin menu, 125
Load traps... selection in config menu in trap

manager, 48

M

Main view, 103
Command field, 51
Continue button, 52
control panel, 51
Display menu, 130, 270
general description, 2
Kill button, 52
PC menu, 55
Run button, 52
Sample button, 55
Status field, 52
Step into, 52
Step over button, 54

007–2579–004 277

Developer MagicTM: Debugger User’s Guide

Stop button, 52
main view, debugger, 241
Make editable selection in source menu, 128
Make read only selection in source menu, 128
managing source files, 17
Maximize selection in structure browser node

submenu, 214
memory locations, 4
Memory view, 4, 230
Memory view mode menu, 232
Memory view selection in views menu, 126
menu operations, 134
Message window

Admin menu, 239
buttons, 238
View menu, 239

Messages window, 238
Minimize selection in structure browser node

submenu, 214
Minimum lines around current instruction field

in disassembly view preferences box, 226
multiprocess traps, 43
multiprocess view, 89
Multiprocess view... selection in admin

menu, 124

N

“N...” selection in step into menu, 53
“N...” selection in step over menu, 53
next debugger command, 251
nexti debugger command, 251
Node menu in structure browser, 211
Node pop-up menu in structure browser, 212
Normal selection in structure node submenu, 214
Number of instructions to disassemble field in

disassembly view preferences box, 226

O

Open... selection in source menu, 128

opening files, 18
Overview selection in help menu, 139

P

path remapping, 19
Pattern layout in structure browser node

menu, 215
PC, 134
PC menu, 55, 134

Continue to, 55
Jump to, 55

PC menu in disassembly view, 223
PC menu in main view, 55
performance data

Sample button, 55
pgrp trap debugger command option, 44
pixmap examiner, 183
pollpoint, 4
pollpoint trap debugger command option, 45
Preference menu, 136
preparing the fileset, 103
print expression debugger command, 251
printd expression debugger command, 251
printo expression debugger command, 251
printregs debugger command, 251
printx expression debugger command, 251
process execution control, 51

Main view control panel, 51
PC menu, 55

Process meter selection in views menu, 126
Product information selection in help menu, 140
program counter, 55, 134
program output, tracking, 11
pwd debugger command, 251

Q

quit debugger command, 251

278 007–2579–004

Index

R

Raise selection in admin menu, 125
Raise selection in structure browser node

submenu, 214
Read-Only

debugger status, 10
Recompile selection in the source menu, 128
redefining functions, 6
Register name display format field in

disassembly view preferences box, 226
Register view, 4, 227
Register view formatting, 230
Register view preferences dialog box, 230
Register view selection in views menu, 127
Register view window, 228
registers, 4
“Remap paths...” selection in session menu, 19
Remove selection in structure browser node

menu, 215
removing traps with mouse, 42
rerun debugger command, 253
resource-change breakpoints examiner, 164
restrictions and limitations, 13
Result column in expression view, 60, 208
Return button in main view

Main view
Return button, 54

return debugger command, 253
row/column toggles in array browser, 194
Run button in main view, 52
run debugger command, 253

S

Sample At Function Entry, 133
Sample at function entry selection in traps

submenu, 41
Sample at function exit selection in traps

submenu, 41, 134
Sample button in main view, 55
sample session, 103

Interpreter, 67
preparing fileset, 103
setting up, 103

sample session setup, 67
sample trap, 40
sample trap command, 43
sample traps, 3
save as text, 150, 157
Save as text... selection in source menu, 128
Save as... selection in source menu, 128
Save expressions... selection in expression view

config menu, 62
Save selection in source menu, 128
Save settings... selection in admin menu, 125
Save traps... selection in config menu in trap

manager, 48
saving to source file, 73
Search field in trap manager, 48
“Search” selection in source menu, 25
“Search” selection in structure browser display

menu, 213
Search... selection in source menu, 128
Select selection in structure browser node

menu, 214
selection, 157
selection in structure browser display menu, 212
Session submenu, 236
Set trap selection in traps menu, 41, 133
setting traps, 27
setting traps with the mouse, 42
sh debugger command, 254
Show difference submenu, 135
Show embedded source annotation field in

disassembly view preferences box, 226
Show icons selection in display menu, 131
Show instruction value field in disassembly

view preferences box, 227
Show jal target numerically field in

disassembly view preferences box, 227
Show line numbers selection in display

menu, 130

007–2579–004 279

Developer MagicTM: Debugger User’s Guide

Show machine address field in disassembly
view preferences box, 227

Show overview selection in structure browser
display menu, 213

Show source file and line number field in
disassembly view preferences box, 226

Signal panel, 48
Signal panel selection in views menu, 127
signal trap debugger command option, 45
signals

traps, 3
source annotation column

traps, 41
source code display area, 2
source code status indicator, 10, 68
source debugger command, 255
source file, saving to, 73
source files

managing, 17
Source view

File menu, 146
Source view selection in views menu, 127
special libraries, 12
spreadsheet area in array browser, 194
stack frame, 31
stack frames, 58, 205
starting fix and continue, 6
starting the debugger, 1, 23
starting the x/Motif analyzer, 11
starting, process execution, 52
State selection in structure browser node

menu, 214
state-change breakpoints examiner, 168
status debugger command, 255
Status field in main view, 51, 52
status line

Main view, 2
Status window, 76, 234

Admin menu, 235
Fix+Continue menu, 236
Preference menu, 136
View menu, 235

status, viewing, 76

step debugger command, 255
step indicators in array browser, 194
Step into button in disassembly view, 222
Step into button in main view, 52
Step over button in disassembly view, 222
Step over button in main view, 53
stepi debugger command, 255
stop at debugger command, 255
Stop at function entry selection in traps

submenu, 41, 133
Stop at function exit selection in traps

submenu, 41, 133
Stop button in main view, 52
stop in debugger command, 255
stop trap, 40
stop trap command, 43
stop traps, 3, 27
stopping, process execution, 52
Structure browser, 4

general description, 209
Structure browser preferences dialog box, 216
Structure browser selection in views menu, 34,

127
subscript controls in array browser, 37
subscripts

array, 193
Switch executable... selection in admin menu, 125
Switch process dialog box, 125
Switch process... selection in admin menu, 125
syscall debugger command, 255
Syscall panel, 48
Syscall panel selection in views menu, 127
syscall trap debugger command option, 45
system calls

traps, 4

T

tab overflow area, 113
tabs, 114
tabs, examiner, 158

280 007–2579–004

Index

Task view selection in views menu, 127
timeout procedure breakpoints examiner, 165
trace debugger command, 256
trace examiner, 175
tracking program output, 11
trap actions, 39
trap condition, 46
trap examples, 46
Trap manager, 28
trap manager, 243
Trap manager menus, 43
Trap manager selection in views menu, 127
trap terminology, , 39
traps, 3, 27

disabling, 29
general description, 39
one-time, 55
removing with mouse, 43
setting conditions, 46
setting cycle count, 47
setting with mouse, 42
Signal panel, 48
Syscall panel, 48
triggering, 39

Traps menu in main view, 41
Traps menu in trap manager, 43, 47
traps multiprocess, 43
traps, setting, 73
tree examiner, 107, 178
Tree selection in structure browser display

submenu, 212
triggering traps, 39
Type color field in structure browser type

formatting box, 218
Type formatting dialog, , 217
Type name field in structure browser type

formatting box, 217

U

unalias debugger command, 256
undisplay debugger command, 256

Update selection in structure browser display
menu, 213

use debugger command, 257
using

Interpreter, 67
using the x/Motif analyzer, 12

V

Variable browser, 4, 31
general description, 219

Variable browser selection in views menu, 31, 127
variables

assignment, 63
view changes in debugger, 241
View menu, 235
View submenu, 136
view, call stack, 243
viewing status, 76
views

Debugger, 219
Views menu in main view, 126

W

watch command, 29
watch trap debugger command option, 45
watchpoint, 29
watchpoints, 4
whatis debugger command, 257
when at debugger command, 257
when in debugger command, 257
where debugger command, 257
which debugger command, 257
widget class examiner, 184
widget class menu item, 157
widget classes, examining, 109
widget examiner, 177
widget hierarchy, 107
widget item, 157

007–2579–004 281

Developer MagicTM: Debugger User’s Guide

widget structure, navigating, 105
widget tree menu item, 157
widgets, examining, 108
window attributes, viewing, 112
window examiner, 112, 180
window menu item

examine menu
window, 157

WorkShop integration, 8
Wrapped display selection in array browser

display menu, 195

X

X event menu item, 157

X graphics context menu item, 158
X pixmap menu item, 158
X-event breakpoints examiner, 170
X/Motif analyzer

additional features, 112
default view, 106
launching, 11, 105
navigating widget structure, 105
restrictions and limitations, 13
sample session, 103
starting, 11
using, 12

X/Motif analyzer selection in views menu, 127
xdiff, 77

282 007–2579–004

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2579-004.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

