Developer Magic™: Static Analyzer
User’s Guide

Document Number 007-2580-002

CONTRIBUTORS

Written and Illustrated by John C. Stearns

Edited by Christina Cary

Production by Laura Cooper

Engineering contributions by Lia Adams, Jim Ambras, Trevor Bechtel, Alan Foster,
Christine Hanna, David Henke, Marty Itzkowitz, Mahadevan lyer, Lisa Kvarda,
Allan McNaughton, Ashok Mouli, Sudhir Mohan, Anil Pal, Andrew Palay,
Kim Rachmeler, Jack Repenning, Paul Sanville, Ravi Shankar, Shankar Unni,
Mike Yang, Jun Yu, and Doug Young.

© 1991-1995 Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics is a registered trademark, and Graphics Library are trademarks of
Silicon Graphics, Inc. ClearCase is a trademark of Atria Software, Inc. UNIX is a
registered trademark of UNIX System Laboratories. X Window System is a
trademark of the Massachusetts Institute of Technology. OSF/Motif is a trademark of
the Open Software Foundation.

Developer Magic™: Static Analyzer User’s Guide
Document Number 007-2580-002

Contents

About This Guide xix
Part I: The Static Analyzer 1

Introduction to the WorkShop Static Analyzer 5
How the Static Analyzer Works 6
How You Use the Static Analyzer 7

A Sample Session With the Static Analyzer 11

Tutorial 1: Applying the Static Analyzer to Scanned Files 12

Tutorial 2: Applying the Static Analyzer to Parsed C++ Files 20
Tutorial 3: Using the Compiler to Create a Static Analysis Database 24
Other Static Analyzer Features 25

Static Analyzer: Creating a Fileset and Generating a Database 29
Fileset Specifications 30

Using Regular Expressions 30

Specifying Pathnames 31

Specifying Included Files 31

Defining Symbols in the Fileset 32

Using the Default Fileset 32

Contents

Using the Fileset Editor 33
Adding Lines to the Fileset Contents List 34
Removing Lines From the Fileset Lists 35
Browsing for Fileset Contents 35
Directories List 35
Browsing Directory 35
Language Filters 36
Adding Filenames From Lists 36
Transferring Files in the Fileset Between Modes 37
Leaving the Fileset Editor Window 37
Creating a Fileset Manually 37
Using Command-Line Options to Create and Use a Fileset 38
Generating a Static Analyzer Database 39
Scanner Mode 39
Parser Mode 40
Preparing the Fileset for Parser Mode 40
Invoking the Parser 41
Parser Mode Shortcuts 42
Size Limitations 42
Rescanning the Fileset 43
Search Path for Included Files 44
Changing to a New Fileset and Working Directory 46

4. Static Analyzer: Queries 49
Defining the Scope of a Query 50
Target Text as a Regular Expression 50
Case Sensitivity 51

Making a Query 51
General Queries 53
Macro Queries 54
Variable Queries 54
Function Queries 56
Files Queries 58
Class Queries 58
Method Queries 59
Common Blocks Queries 59
Types Queries 60
Directories Queries 61
Packages Queries 61
Tagged Types Queries 62
Task Types Queries 63
Viewing Source Code 64
Alternate Text Editors 65
Repeating Recent Queries 66
Saving Query Results 66

Static Analyzer: Views 71
Text View 72
Viewing Full Pathnames for Files 73
Sorting Elements in Text View 73
Call Tree View 74
The Static Analyzer Graph Control Panel 75
Setting View Options 76
Viewing Function Definitions and Calls in Source View 77
Tutorial: Working in Call Tree View 78
Class Tree View 81

Contents

vi

The Results Filter 82
Setting Results Filters 83
Filtering by Name, Function, File, and Source 85
Filtering by Header Files and External Functions 85
Combining Results Filters 86
Using the Results Filter Buttons 86
Tutorial: Using the Results Filter 87

Static Analyzer: Working on Large Programming Projects 91
Creating a Fileset Using a Shell Script 92

A Fileset Shell Script 92
Customizing the Fileset for Individual Code Modules 93
Using the Results Filter to Focus Queries 93
Applying Group Analysis Techniques 94

Setting Up a Project Database 95

Querying a Project Database 96

Viewing Suggestions 97

Part I1I: The Browser 99

Getting Started With the Browser 103
Starting Browser View 104
General Characteristics of the Browser 105
Browser View Outline Lists 106
Outline Icons 107
Browser View Menus 107
Other Browser Window Features 108

Using the Browser for C++; A Sample Session 111
Setting Up the Sample Session 112

Understanding the Browser Window 114
Expanding and Collapsing Categories 116

10.

Making Queries 116

Using the Browser Graphical Views 121
Shortcuts for Entering Subjects 124
Generating Man Pages 124

Generating Web Pages 126

Using the Browser for Ada: A Sample Session 131
Setting Up the Sample Session 132

The Browser Reference 143
Browsing Choices Window 144
Browsing Choices Window for C++ 144
Browsing Choices Window for Ada 145
Browser View Window 145
Current Subject Field 146
Name Completion 147
Changing Subject Using “?” 147
Show in Static Analyzer Toggle 147
Last Query Button 147
Browser View Query ldentification Area 148
Browser View List Areas 148
Outline Icons 149
Annotated Scroll Bars and Highlighted Entries
C++ Member List 150
Display Hierarchy 150
Access Categories 150
Scope Categories 150
Class Member Categories 151
Displaying a Member’s Source Code 152
C++ Relation List 153
C++ Relations List Mouse Shortcuts 153
Base Classes Category Hierarchy 153
Derived Classes Category Hierarchy 154

150

Vii

Contents

Ada Member List 155
Display Hierarchy 155
Access Categories 155
Type and Data Member Categories 156

Displaying a Member’s Source Code 156
Ada Relation List 156

Browser View Menu Bar 157
Admin Menu 158
Man Page Generation 158
Web Page Generation 160
Views Menu 162
History Menu 163
Main Queries Menu 164
Preference Menu 166
Browser View Popup Menus 167
Data Members Popup Menu 169
Methods Popup Menu 169
Class Popup Menus 171
Graph Views Window 173
Setting Graph Views Relationships 174
Graph Views Admin Menu 175
Graph Views Window Views Menu 175
Mouse Manipulations 175
Call Graph Window 176
Using the Call Graph Window 178
Call Graph Admin Menu 178

viii

Customizing the C++ Browser 179
Customizing the Browser View Lists 180

Member List Resource 180

Related Class List Resource 181

Other Browser View List Resources 182
Customizing Reference Page Generation 185

Index 187

Figures

Figure 2-1 The Static Analyzer Window 13

Figure 2-2 The Fileset Editor Window 14

Figure 2-3 Static Analyzer Queries Menu and Query Target Field 16

Figure 2-4 The Results of a “List Functions” Query 18

Figure 2-5 Static Analyzer History Menu 19

Figure 2-6 Typical Static Analyzer Call Tree 22

Figure 3-1 The Fileset Editor Window 34

Figure 3-2 The Scanning Options Dialog Box 45

Figure 3-3 The Fileset Selection Browser Window 46

Figure 4-1 The General Options Dialog Box 51

Figure 4-2 Static Analyzer Queries Menu with Submenus 52

Figure 4-3 Queiries Submenu: “General” 53

Figure 4-4 Queiries Submenu: “Macros” 54

Figure 4-5 “List All Global Variables” Results with Variable
Selected 55

Figure 4-6 “Who References?” Results 55

Figure 4-7 Queries Submenu: “Variables” 56

Figure 4-8 Queiries Submenu: “Functions” 56

Figure 4-9 Queiries Submenu: “Files” 58

Figure 4-10 Queiries Submenu: “Classes” 58

Figure 4-11 Queiries Submenu: “Methods” 59

Figure 4-12 Queiries Submenu: “Common Blocks” 59

Figure 4-13 Queiries Submenu: “Types” 60

Figure 4-14 Queiries Submenu: “Directories” 61

Figure 4-15 Queiries Submenu: “Packages” 61

Figure 4-16 Queries Submenu: “Tagged Types” 62
Figure 4-17 Queries Submenu: “Directories” 63

Figures

Figure 4-18 The Source View Window With Highlighted
Source Code 65

Figure 4-19 The Save Query File Browser Window 66

Figure 5-1 Text View Labels 72

Figure 5-2 The General Options Dialog Box 73

Figure 5-3 Call Tree View Displaying Functions and Function Calls
as Nodes and Connecting Arcs 75

Figure 5-4 The View Control Panel 75

Figure 5-5 Views Options Menu 76

Figure 5-6 Incremental Mode Example 79

Figure 5-7 Displaying Node Information at Reduced Scale 80

Figure 5-8 The Results Filter Window 83

Figure 5-9 The Results Filter Query Results 88

Figure 6-1 Results Filter 94

Figure 6-2 A Project Cross-reference Database 95

Figure 7-1 Browsing Choices Dialog Box 104

Figure 7-2 Browser View Features 106

Figure 7-3 Outline Icon Examples 107

Figure 8-1 Steps in Specifying a Parser Fileset 113

Figure 8-2 Initial Browser Display With Item Selected 114

Figure 8-3 Browser View With C++ Data 115

Figure 8-4 Performing a Query on Current Class 118

Figure 8-5 Static Analyzer After Browser Query 119

Figure 8-6 Performing a Query on an Element ina List 120

Figure 8-7 Graph Views Window in Containment Mode 121

Figure 8-8 Comparison of Data Displayed in Browser With Data
Displayed in Containment Graph 122

Figure 8-9 Graph Views Window in Inheritance Mode 123

Figure 8-10 Graph Views Window in Interaction Mode 123

Figure 8-11 Man Page Generator Window 124

Figure 8-12 Man Page Template 125

Figure 8-13 Web Page Generator Window 126

Figure 9-1 Steps in Specifying a Parser Fileset 133

Xii

Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 10-10
Figure 10-11
Figure 10-12
Figure 10-13
Figure 10-14
Figure 10-15
Figure 10-16
Figure 10-17
Figure 10-18
Figure 10-19
Figure 10-20
Figure 10-21
Figure 10-22
Figure 10-23

Figure 10-24
Figure 10-25
Figure A-1

File Dependency View Example 134

Initial Browser Display With Item Selected 135
Browser View With Ada Data 136

Performing a Query on Current Class 138
Accessing Source Code From Browser View 139
Inheritance Graph Example 140

Browsing Choices Window 144

Browser View Window Elements 146

Outline List Icons and Indicator Marks 150
Source View of Class Data Member 152

C++ Relations List Derived Classes Category 154
Browser View Menu Bar With Menus Displayed 157
Browser View Admin Menu 158

Man Page Generator and Typical Man Page Template 159

Web Page Generator Window 160

Typical Web Page Template 161

Views Menu 162

History Menu 163

List of Classes Shown 163

Queries Menu 164

“What Uses” Submenu of Queries Menu 164
“What Is Used” Submenu of Queries Menu 165
Preferences Menu 166

Queries Popup Menus in the C++ Browser View 168
Data Members Popup Menu 169

Queries on Methods Popup Menu 169

“What Is Used” Submenu 172

“What Uses” Submenu 173

Graph Views Window Showing Inheritance
Relationships 174

“Save Graph” Submenu of Admin Menu 175
Displaying a Selected Method in Call Graph 177
Customized Browser View Display 185

xiii

Tables

Table 10-1
Table 1-1

Browser View List Summary 149
Sort Resources for Outline Lists 184

XV

Examples

Example 6-1 Script for Creating Filesets 92

Xvii

About This Guide

This manual is a user’s guide for the ProDev WorkShop Static Analyzer and
Browser, Release 2.5.1.

Note: The features described in this manual that apply to Ada are only
available if you have purchased the ProDev Ada package.

This manual contains the following chapters:

Chapter 1, “Introduction to the WorkShop Static Analyzer,” describes
the Static Analyzer, the WorkShop tool for examining the structure of a
program’s source code and the relationships between its parts, such as
files, functions, and variables.

Chapter 2, “A Sample Session With the Static Analyzer,” provides a
tutorial to introduce you to some major features in the Static Analyzer.

Chapter 3, “Static Analyzer: Creating a Fileset and Generating a
Database,” describes the fileset concept. A fileset is a file that contains
files you specify for inclusion in the analysis. You also specify whether
afile is to be analyzed by the faster scanner mode or the slower, more
thorough parser mode.

Chapter 4, “Static Analyzer: Queries,” describes how you perform
gueries using the Static Analyzer.

Chapter 5, “Static Analyzer: Views,” describes the text and graphical
views that the Static Analyzer uses to present its data.

Chapter 6, “Static Analyzer: Working on Large Programming Projects,”
presents techniques for applying the Static Analyzer to large projects.

Chapter 7, “Getting Started With the Browser,” tells you how to start
the Browser and describes some of the features common to both the
C++ and Ada versions of Browser View.

Chapter 8, “Using the Browser for C++: A Sample Session,” provides a
short tutorial highlighting the C++ features of Browser View.

XiX

About This Guide

= Chapter 9, “Using the Browser for Ada: A Sample Session,”provides a
short tutorial highlighting the Ada features of Browser View.

= Chapter 10, “The Browser Reference,” describes all of the Browser
windows, menus, and other features in detail.

XX

Part |
The Static Analyzer

Introduction to the WorkShop
Static Analyzer

This chapter describes the Static
Analyzer, the WorkShop tool for
examining the structure of a
program’s source code and the
relationships between its parts, such
as files, functions, and variables.

Chapter 1

Introduction to the WorkShop Static Analyzer

Too many software projects today contain massive amounts of code that
may or may not compile, have few or no comments, and are teamed by
programmers unfamiliar with the original code. The ProDev WorkShop
Static Analyzer helps solve problems like these. With the Static Analyzer,
you can analyze source code written in C, C++, Fortran, or Ada (with
ProDev Ada package only). It shows you the code’s structure, including
how functions within programs call each other, where and how variables are
defined, how files depend on each other, where you can find macros, and
other structural details to help you understand the code.

The Static Analyzer provides the answers in text or easily understood
graphic form. Because the Static Analyzer is interactive, you can quickly
zero in on the part of the code structure that interests you, or you can step
back for an overview. And because the Static Analyzer recognizes the
connections between elements of the source code, you can readily trace how
a proposed change to one element will affect related elements.

The following is covered in this chapter:
= “How the Static Analyzer Works”
= “How You Use the Static Analyzer”

Note: The features described in this chapter that apply to Ada are only
available if you have purchased the ProDev Ada package.

Chapter 1: Introduction to the WorkShop Static Analyzer

How the Static Analyzer Works

The Static Analyzer is in essence a database program that reads through one
or more source code files and creates a database that includes functions,
macros, variables, files, and object-oriented elements for C++ and Ada. The
database also includes the interconnections between the elements—which
functions call which other functions, which files include which other files,
and so on.

The Static Analyzer provides two modes for extracting static analysis data
from your source files:

= scanner mode—a fast, general-purpose scanner that looks through code
with minimal sensitivity to the programming language

= parser mode—a language-sensitive scanner that can be run at compile
time by setting a switch

The trade-off between the modes is speed versus accuracy. A very effective
technique is to perform preliminary analysis in scanner mode when you
need to see the overall structure of a large group of files and then focus on a
smaller subset using parser mode to derive detailed relationship
information. Note also that if a program cannot compile, parser mode will
not work and you must use scanner mode.

The Static Analyzer can perform selective searches (called queries) through
the database. The Static Analyzer displays the results of the query in the
guery results area (the interior of its main window). If you’ve used the UNIX
grep command, you’ll find that the Static Analyzer can perform the same
kinds of simple searches through the text of your source code, finding strings
of text as well as regular expressions. The Static Analyzer also performs
much more sophisticated queries that follow connections between elements
of the source code: function calls, file includes, class parenthood, and other
similar relationships.

Be careful not to request too much data! Overly general queries often return
extensive results that are difficult to comprehend (consider, for example, a
guery that asks for all of the functions defined in millions of lines of source
code). The Static Analyzer can restrict the scope of your queries so you can
break down large projects into pieces of a manageable size. For example, you
can see the connections to and from a single function or take a look at all the
classes defined within a single file.

How You Use the Static Analyzer

By default, the Static Analyzer displays the results of your query in text
form. You can scroll through the results, and you can immediately call up the
file that contains any element you see in the results. The file appears in the
Source View window, which shows you the exact source code line where
that element occurs. You can also ask the Static Analyzer to display the
results of the query in a graphic view that shows not only the elements found
but also—using tree form—the relationships between elements. To help you
see the structure more clearly, you can set the scale and orientation of the
tree, or you can call for a full overview that shows all elements in the
structure and helps you scroll to the particular elements you want.

How You Use the Static Analyzer

Typically, in performing static analysis, you create an overview showing
basic relationships and then zero in on the source code requiring further
work or analysis. There are five general steps in the static analysis process:

1. Decide which files to include in your static analysis.

It is good practice to narrow down the set of files to be analyzed as
much as possible. Large static analysis databases are not only difficult
to navigate through, but are time-consuming to build. You specify the
files to be used in a special file called a fileset (see Chapter 3, “Static
Analyzer; Creating a Fileset and Generating a Database” for more
information).

2. Choose how the files will be analyzed: parser mode, scanner mode, a
combination, or differently in multiple passes.

Scanner mode is good for determining the general structure of a
program. It is most appropriate when you are working on
uncompilable code, analyzing large filesets, or performing preliminary
analysis. Parser mode is better when you need detailed relationship
information. You should apply parser mode to smaller filesets, because
it takes longer to extract data.

In some situations, it is desirable to use a combination of modes. For
example, if you need detail but are having compilation problems, you
can apply the scanner to the problem files and the parser to everything
else. A different example would be applying the parser to a few files
where you need detail and the scanner to the rest of the fileset.

Chapter 1: Introduction to the WorkShop Static Analyzer

An example of a multiple-pass scenario is to analyze a large fileset in
scanner mode, zero in on a subset of the files, and then run that subset
through parser mode to get a detailed analysis.

3. Build the static analysis database.

Both scanner mode and parser mode can be invoked within the Static
Analyzer. After you have defined your fileset, the database will be built
when you make your first query or when you select “Rescan” or “Force
Scan.”

Parser mode can also be invoked through the compiler. A particularly
convenient method for using the Static Analyzer parser is to modify an
existing makefile so that it analyzes the files as part of the build process.
This can be done with or without producing object code. You use the
flags: -sa, <directory> and -nocode . For more information on this
approach, see “Tutorial 3: Using the Compiler to Create a Static
Analysis Database” on page 24.

4. Perform static analysis queries and view the results.

The queries can give you a good idea of the structure and the
relationship of components in your program. You can review the results
in text form, as a list of items and their source lines or graphically (a tree
showing relationships between items).

If you’re programming in C++ or Ada, you can make object-oriented
queries by bringing up the Browser, a facility within the Static Analyzer
for viewing structural and relationship information in C++ or Ada
programs.

5. Bring up Source View to edit or view a selected component.

Once you have isolated an area for analysis, you can readily edit the
source code from the Static Analyzer. Double-clicking an element
brings up the corresponding source code in Source View.

Chapter 2

A Samp|e Sessi on This chapter provides a tutorial to

introduce you to some major features

with the Static Analyzer in the Static Analyzer.

Chapter 2

A Sample Session With the Static Analyzer

This chapter shows how you might use the Static Analyzer in a typical
session. It doesn’t go into full detail, but it does explain the fundamental
concepts you’ll need to use the Static Analyzer. It lists related commands and
controls after each tutorial so you can experiment on your own. You’'ll find
more specific details about Static Analyzer features in Chapters 3 - 6.

This chapter discusses the following topics:

= “Tutorial 1: Applying the Static Analyzer to Scanned Files”

= “Tutorial 2: Applying the Static Analyzer to Parsed C++ Files”

= “Tutorial 3: Using the Compiler to Create a Static Analysis Database”

e “Other Static Analyzer Features”

11

Chapter 2: A Sample Session With the Static Analyzer

Tutorial 1: Applying the Static Analyzer to Scanned Files

12

In this tutorial, you will create a fileset for the demo program bounce using
scanner mode and perform some basic queries in text mode.

1.

Move to the /usr/demos/WorkShop/bounce directory by entering the
following:

cd /usr/demos/WorkShop/bounce

This directory contains the source code files (C++) for the demo
program bounce.

List the directory’s contents to see if the file cvstatic.fileset exists (in case
someone worked through a tutorial and forgot to remove the file). If it
does exist, remove it along with any other files the Static Analyzer may
have left:

rm cvstatic.* cvdb* vista.taf

Whenever you run the Static Analyzer, it checks the directory where
you invoked it for cvstatic.fileset and uses the file’s contents as its fileset.
If it doesn’t find cvstatic.fileset, it creates and saves its own fileset
containing the expression *.[cCfF] so that all possible C files (.c), Fortran
files(.f or .F), and C++ files (.C) in the current directory are included.
When you quit the Static Analyzer, any fileset you or the Static
Analyzer created remains in the directory for use in your next Static
Analyzer session.

If you don’t care to use the default fileset, you can create your own or
modify the default fileset using the “Edit Fileset...” selection in the
Admin menu. You can also create your own cvstatic.fileset file by hand;
you'll find instructions in “Creating a Fileset Manually” on page 37.

Start the Static Analyzer by entering the following:
cvstatic &

The Static Analyzer window appears (as shown in Figure 2-1).

Tutorial 1: Applying the Static Analyzer to Scanned Files

Query Target field

Query results area

Figure 2-1 The Static Analyzer Window

4. Choose “Edit Fileset...” from the Admin menu to open the Fileset Editor
window (shown in Figure 2-2).

13

Chapter 2: A Sample Session With the Static Analyzer

Current
directory

Directory list

Move

controls

Include)
subdirectories

Current
directory files

Language
filters

14

= Fileset Editor

Browsing Directory:

Directories

database

L]

Include Subdirectories

Current Fileset:
ic.fil
Parser Fileset
tMove Directory
Parser

Scanner

unce
unce’
op/hounce/Eouncir

FPO -4 COlOf Transfer Files

{EngineCmd.h
plicatior
Application.h

Fortran

Figure 2-2

Scanner Fileset

scanner |

Remove Literal Input

ancel Help

The Fileset Editor Window

Current
fileset

Parser mode
fileset list

Direct entry
field

Scanner
mode fileset
list

Direct entry
field

Literal input
switch

Remove
control

The current working directory appears in the Browsing Directory field at
the top left. Subdirectories (if any) appear in the Directories list field.
The files in the current working directory appear in the Files list field.
You select the files you wish to include in the fileset from these two lists.
For parser mode files, you click the associated Parser button; for
scanning mode, the Scanner button. There are two sets of Parser and
Scanner mode buttons: the upper set moves whole directories and the
lower set individual files. The two fileset list fields Parser Fileset and
Scanner Fileset are at the right of the window.

Tutorial 1: Applying the Static Analyzer to Scanned Files

5. Select the expression *.[cCfF] in both the Parser Fileset and Scanner Fileset
list fields (if it appears), and click the Remove button.

This removes any default expressions from the fileset.
6. Click the C++ language filter button.

This filters the Files list to include only those files with the .C extension
(signifying C++ source files) and selects them all.

7. Now add these source code files to the fileset by clicking the Move
Files:Scanner button.

The Scanner Fileset list now displays the files selected from the Files list.
These files will be scanned into the static analysis database when it is
created.

8. Click the OK button at the bottom of the Fileset Editor window.

Once you've created the fileset, you can query it for useful information.
Your first query prompts the Static Analyzer to extract static analysis
data from the files in the fileset and create a cross-reference database
(using scannner mode). This occurs prior to returning the results of
your query. The database includes the relationships between functions,
files, classes, and other elements of the code in the fileset, and is saved
in a database file along with two accompanying index files. The
database file is named cvstatic.xref; the accompanying files are named
cvstatic.index and cvstatic.posting. These files are stored in the same
directory as the fileset with which they’re associated, and remain there
after the Static Analyzer quits.

Subsequent queries use the same database until you ask the Static
Analyzer to rescan the fileset, which creates an updated database.
When you quit the Static Analyzer and return to it later, it automatically
updates the database, going through any files in the fileset that have
changed since the last session. If you use appropriate wild card
expressions in the fileset, the fileset will automatically accommodate
new files added to specified directories.

9. From a shell, list the contents of the cvstatic.fileset file.

All files and their paths to be included in the fileset should display. If
you had selected files for parsing, they would have compiler flags
following their paths.

10. Click the Queries menu to open it.

15

Chapter 2: A Sample Session With the Static Analyzer

To query the database, you choose a command from the Queries menu.
You’ll find the commands grouped in submenus according to types of
query (see Figure 2-3).

S

General
Macros
Variables
Functions
Files

Classes
Methods
Common Blocks
Jvpes
Directories
Packages
fagged Tvpes
fask Tupes

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

Admin Views History Queries Help

Query Target field ——————|Query Target: | | ‘l

Figure 2-3 Static Analyzer Queries Menu and Query Target Field

The query submenus let you perform different searches:

= “General” searches for text strings, regular expressions, and
symbols.

= “Macros” searches for locations of macro definitions and places
where macros are used.

= “Variables” searches for global and local variables and shows
where they’re defined and who references and sets the variables.

= “Functions” searches for functions, shows where they’re defined,
and shows who calls them and whom they in turn call.

= “Files” searches for files in the fileset (including headers and
libraries) and shows which files are included by which other files.

16

Tutorial 1: Applying the Static Analyzer to Scanned Files

11.

= “Classes” searches C++ files for classes and shows where they’re
defined. It also shows subclass and superclass relationships, and
lists the methods defined within classes.

e “Methods” searches C++ files for methods and shows where
they're defined and declared.

= “Common Blocks” searches Fortran files for common blocks.
= “Types” searches C and C++ files for type information.

= “Directories” lets you list directories or the files in a directory.
= “Packages” lets you look for Ada packages.

= “Tagged Types” lets you look for Ada tagged types.

= “Task Types” lets you look for Ada task types.

To start a query, you choose the query you want from the Queries
menu. The Static Analyzer then searches through its database or
through the original source code to find what you asked for.

If you want to look for a specific function, file, string, or other element,
you enter the target text in the Query Target field above the query results
area (shown in Figure 2-1).

Queries that require text in the Query Target field (such as “Find String”
in the General submenu and “Who Is Called By?” in the Functions
submenu) are grayed in the Queries menu if there is no text present.
More general queries that require no search text (such as “List All
Functions” and “List Global Symbols”) are always available.

Choose “List All Functions” from the “Functions” submenu of the
Queries menu.

The Static Analyzer builds its cross-reference database and notifies you
that it’s doing so. When it’s finished, it displays a list of all functions
found in the fileset (as shown in Figure 2-4), their file, the line number
at which they are first defined or declared, with the actual source line.

Note: During this process, you may get a warning dialog box about

multiple function occurrences. This is due to the inaccuracy of scanner
mode; it has problems with #ifdef statements. You may also get an error
message about missing files. This can happen if your include paths are

17

Chapter 2: A Sample Session With the Static Analyzer

18

Query results area —

not set correctly. The missing files are not necessary for this tutorial.
Usually you can tell by looking at the files if you need to include them
in the fileset.

=| Static Analyzer e iD_1

Admin Views History Queries Help

Guery Target: | bounce

List All Functions

Scoping: 233:233

initialize
initialize
~4pplication
handleEvents
registerWindaw

Name File Line Source

Actaor Actaor.C 26 Actor::Actor(Stage *stage)

~fctor Actaor.C 32 Actor::~fctor()

AddBall1Cmd AddBall1Cmd.C 28 AddBallCmd::&ddBallCmd { char *nam
Cmd AddBall1Cmd.C 29 char *color 3 @ Cmd { name, active
doit AddBall1Cmd.C 37 woid AddBallCmd::doit()

undaoit AddBall1Cmd.C 42 woid AddBallCmd::undoit()
Applicatiaon Applicatian. 31 Application::Application (char *a
I Compaonent Applicatian. 32 UIComponent (appClassName)

Applicatian.
Applicatian.
Applicatian.
Applicatian.
Applicatian.

48 wvoid Application::initialize (int
58 wvoid Application::initialize uns
188 Application::~Application()

186 wvoid Application::handleEvents()
113 wvoid &pplication::registerWlindow (

Lo e e e R e Y e Y e |

Function name ;

Source file
Line number

Source code

Figu

re 2-4 The Results of a “List Functions” Query

The Static Analyzer returns the results of all queries in its query results
area (below the Query Target field). It presents this information in text
form (and by the previous type of view if applicable for subsequent
gueries). You can scroll through a text list to find specific data that
interests you. Clicking any part of an element listed (a filename, a
function name, a line number, and so on) pastes it into the Query Target
field so you can use it as the base of your next search. For example, if
you'd like to find out what functions a particular function calls, you can
click its name to put it into the Query Target field and then choose “Who
Is Called By” from the “Functions” submenu of the Queries menu.

Text View allows you to sort the element lines alphanumerically by any
one of the fields in a line. For example, you can sort a list of functions
alphabetically by function name or numerically by line number where

Tutorial 1: Applying the Static Analyzer to Scanned Files

they occur. To sort, click within an element line in the field by which
you want to sort, and then choose “Sort” from the Admin menu. The
Static Analyzer sorts the results of a query according to the field
selected.

12. Click the function name Actor in the query results area.
The Static Analyzer pastes the name into the Query Target field.

13. Choose “Who Is Called By” from the “Functions” submenu of the
Queries menu.

The Static Analyzer displays a list of all functions called by Actor.
14. Clear the Query Target field and then type buffer in it.

We are now going to look for any occurrences of the text string “buffer”
that might lead us to information in the code concerning z-buffering or
data buffering.

15. Choose “Find String” from the “General” submenu of the Queries
menu.

The Static Analyzer returns all the lines of code that contain the text
string “buffer,” even if it only appears in a comment.

16. Click the History menu to open it.

It displays the queries you've made so far, as shown in Figure 2-5.

|§ =! History Tear-off

List Alf Functions
| Who is Calted By?: Actor ||
Find String: butfer E

Figure 2-5 Static Analyzer History Menu

17. Choose “List All Functions” from the History menu to see a list of all
functions once again.
This brings back your previous query results.

18. Double-click the Actor function.

Source View now appears, displaying the source code for Actor. You can
examine it, check it out (if you have a versioning system), or edit it.

19

Chapter 2: A Sample Session With the Static Analyzer

19. Select “Close” from the Source View File menu to close it.

20. Select “Exit” from the Static Analyzer Admin menu to end this tutorial.

Tutorial 2: Applying the Static Analyzer to Parsed C++ Files

20

In this tutorial, you will create a fileset for bounce using parser mode and
perform some detailed static analysis in both text mode and graphic mode.

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following:

cd /usr/demos/WorkShop/bounce
2. Type rm cvstatic.* cvdb* vista.taf

We need to remove these files to avoid using the previous fileset.
3. Start the Static Analyzer by entering the following:

cvstatic -mode PARSER &

The Static Analyzer window appears. The -mode PARSER option causes
the Static Analyzer to use parser files only when queries are performed.

4. Select “Edit Fileset...” from the Admin menu.
We are going to apply parser mode through the Fileset Editor.

5. Remove the wild card defaults (*.[cCfF]) if they appear in the fileset
lists.

6. Select the file called BouncingBall.C in the File list at the lower left and
click the Move Files: Parser button to transfer the file to the Parser Fileset
list.

This enters the file BouncingBall.C into the fileset and sets it for parsing
mode.

7. Click OK to save the new fileset and from a shell, type
cat cvstatic.fileset

The contents of cvstatic.fileset display:
/usr/demos/WorkShop/bounce/BouncingBall.C NCC

Notice that the BouncingBall.C file has a compiler flag indicator as part
of the entry. This is how parser mode files are indicated.

Tutorial 2: Applying the Static Analyzer to Parsed C++ Files

10.

Select “List All Functions” from the Queries Menu.

The Static Analyzer builds a new database using parser mode. Since
BouncingBall.C has a number of include files, this process may take a
few minutes. During the process, a small window called Build Shell
appears that displays any compiler errors or warnings. At the
conclusion of the process, the functions in BouncingBall.C and its
include files are listed in text form in the query results area.

Select “Call Tree View” from the Views menu.

The query results area now changes to graphical form. The functions
are depicted as rectangles. In addition to listing functions, the Static
Analyzer now provides us with relationship information, that is, who
calls which functions. The function calls are shown as arrows (or arcs)
pointing to the functions that were called.

Besides “Call Tree View,” there are two other types of graphical views:
“Class Tree View,” which displays C++ classes and their hierarchy, and
“File Dependency View,” which displays the files in the fileset and their
dependency on each other.

Whenever you use a tree view, the view interprets the results of your
guery according to the type of tree displayed. For example, if you
perform a “Functions” query while you're in file dependency view, the
view changes to show you which files contain the functions returned by
the query. Some views don’t make sense for displaying the results of a
guery, in which case the Static Analyzer switches to the view it thinks is
most reasonable for the query.

Click the Graph Overview button (the fourth button from the left at the
bottom of the Static Analyzer window).

This displays the Call Tree Overview window, a feature to help users
navigate through a graph. It displays the full call tree in overview, with
a small rectangular outline (called the viewport) in the upper-left corner.
The viewport shows which portion of the tree currently appears in the
query results area of the Static Analyzer window and can be dragged
by the mouse to expose other portions of the graph. See Figure 2-6.

21

Chapter 2: A Sample Session With the Static Analyzer

Viewport

Graph Overview button

22

Admin Views History Queries Help

List All Functions Scoping: 233:233

[yesCallack | —+]erecute | —fpost -]

B FPO - 4 Color

E -

1 I~
|

Figure 2-6 Typical Static Analyzer Call Tree

11.

12.

13.

Click in the center of the Call Tree Overview window.

The viewport jumps so that its upper-left corner matches the pointer
location. The query results area in the Static Analyzer window shifts to
display the part of the tree outlined by the viewport in the Call Tree
Overview window.

Drag the viewport around in the Call Tree Overview window by
holding down the left mouse button and moving the mouse. Finish by
dragging the viewport to the upper-left corner of the call tree.

As the viewport moves over the call tree overview, the call tree shown
in the Static Analyzer query results area scrolls to match.

Select “Close” from the Admin menu in the Call Tree Overview
window to close it.

Tutorial 2: Applying the Static Analyzer to Parsed C++ Files

14.

15.

16.

17.
18.
19.

Enter colorSelected in the Query Target field and select “Who Calls?”
from the “Functions” submenu in the Queries Menu.

This reduces the graph to three nodes: colorSelectedCallback and
cancelCallback, which call colorSelected, and colorSelected itself.

Hold the right mouse button down over the node labeled colorSelected
to open its popup menu.

This displays the individual node menu, which provides the selections:
“Hide Node,” “Collapse Subgraph,” “Show Immediate Children,” and
“Show Parents.” The triangular arrow at the right of the colorSelected
node indicates that it has undisplayed child nodes: accordingly the
“Show Immediate Children” is enabled. Since the parents of
colorSelected are already displayed, the “Show Parents” selection is
disabled.

If you hold the right mouse button down over a portion of the query
results area where there are no nodes, the selected nodes menu
displays, which provides the selections: “Hide Selected Nodes,”
“Collapse Selected Nodes,” and “Expand Selected Nodes.”

Choose “Show Immediate Children” from the popup menu.
The Static Analyzer displays the functions called by colorSelected.

For more information on the standard graph controls and node
manipulation, see Appendix A, “Using Graphical Views,” in the
DeveloperMagic: ProDev WorkShop Overview. Note that the view options
menu is unique to the Static Analyzer. It offers options that extend the
range of the nodes you see in the tree to include nodes not included in
the original query.

Open the History menu to review the commands you have selected.
Choose “Exit” from the Admin menu to exit the Static Analyzer.

Remove all the files generated by the Static Analyzer from the
directory:

rm cvstatic.* cvdb* vista.taf

23

Chapter 2: A Sample Session With the Static Analyzer

Tutorial 3: Using the Compiler to Create a Static Analysis Database

24

This tutorial takes you through the steps of creating a static analysis
database, using parser mode.

1.

Type cd /usr/demos/WorkShop/bounce to go to the bounce
demonstration directory.

We will once again analyze the bounce demonstration program.
Type mkdir staticdir

This creates the subdirectory in which we will store the static analysis
database. If a directory named staticdir already exists, remove it or use a
different name.

Type cd staticdir to change directories and then initcvdb.sh

The initcvdb.sh script creates the initial files cvdb*.* necessary for
producing the database.

Change /usr/demos/WorkShop/bounce/Makefile as follows:

The most convenient method for applying the Static Analyzer parser to
a large group of files is to modify the existing makefile so that it
analyzes the files without producing object code.

Change the following line:
CC=CC

to

CC=NCC -sa,staticdir -nocode

Changing to NCCcauses the C++ compiler to be used. The flag -sa tells
the compiler to perform static analysis. Following -sa with ,staticdir
tells the compiler to store the results in the staticdir subdirectory;
otherwise, the current directory is assumed. The flag -nocode saves
you time by telling the compiler not to create object code.

Make sure you are in the /usr/demos/WorkShop/bounce directory and type
make -k

This runs the compiler as you’ve specified in the makefile. This may
take a while. Running parser mode performs the major operations of
compiling, short of creating the object code.

Other Static Analyzer Features

6. Go to the staticdir subdirectory and type
cvstatic -mode PARSER -readonly

This invokes the Static Analyzer set for parsed files. The other mode
options are SCANNER for scanned files and BOTH if you mix scanned
and parsed files. The -readonly ~ safeguard flag protects against
inadvertent changes. You can now perform any valid Static Analyzer
operations, as in the previous tutorials.

Other Static Analyzer Features

You'll find more detailed information about querying in Chapter 5. To
explore on your own, try these commands in the Admin menu, which also
affect queries:

“Rescan”
asks the Static Analyzer to update the cross-reference
database by rescanning any source code files in the fileset
that have changed since the last database update.

“Force Scan”

asks the Static Analyzer to update the cross-reference
database by rescanning all source code files in the fileset,
whether they have changed or not.

“General Options...”
offers options that determine how a query treats the text
string entered in the Query Target field and how filenames
are displayed.

“Set Include Path...”
allows you to set a search path of directories where the
Static Analyzer looks for include files that are mentioned in
the code contained in the fileset.

“Save Query...”
saves the text or graphics results of a query to a file. If the
query results are displayed graphically, this command
allows you to select a file to save the PostScript
representation.

25

Chapter 2: A Sample Session With the Static Analyzer

26

Caution: As you experiment with queries in tree views, you may be
tempted to look at a coding project that includes millions of lines of code. If
S0, be sure to use restricted queries or to use the Results Filter to greatly filter
the results of the query. If you use a very comprehensive query such as “List
All Functions,” the Static Analyzer may be locked into creating a tree view
that consists of hundreds of thousands of nodes and even more arcs,
something akin to drawing a map of the United States with detail enough to
show every driveway of every house in the country! Not only will you have
to wait hours for your results, but the results will probably be so complicated
that they'll be meaningless to you.

And with that warning, you’re left to your own experimentation. For more
details on individual Static Analyzer features, see Chapter 3 through
Chapter 6.

Chapter 3

Static Analyzer: Creating a Fileset
and Generating a Database

This chapter describes the fileset
concept. A fileset is a file that
contains files you specify for
inclusion in the analysis. You also
specify whether a file is to be
analyzed by the faster scanner mode
or the slower, more thorough parser
mode.

Chapter 3

Static Analyzer: Creating a Fileset and
Generating a Database

Before you can perform any static analysis queries, you need to specify the
source code files to be analyzed in afile called a fileset and then generate a
database containing the static analysis information. This chapter covers
these topics:

“Fileset Specifications”

“Using the Fileset Editor”

“Creating a Fileset Manually”

“Using Command-Line Options to Create and Use a Fileset”
“Generating a Static Analyzer Database”

“Rescanning the Fileset”

“Search Path for Included Files”

“Changing to a New Fileset and Working Directory”

Note: The features described in this chapter that apply to Ada are only
available if you have purchased the ProDev Ada package.

29

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

Fileset Specifications

30

A Static Analyzer fileset is a single file used to specify the source code files to
be analyzed. There are five methods for creating a fileset:

< using the Fileset Editor
= creating a file manually

= letting cvstatic do it automatically at startup by defaulting to those files
in the current directory that match the expression *.[cCfF]

= letting cvstatic do it automatically at startup by designating an
executable

= using the compiler to create a fileset (and database) by adding the
-sa,< dbdirectory > option to your makefile

A fileset is a regular ASCII file with a format of one entry per line, each line
separated from the next by a carriage return. The first line of a fileset is
always

-cvstatic

The other entries can be
= regular expressions
« filenames

< included directories preceded by the designator -I

Note: In parser mode only, an entry can be followed by the name of the
compile driver, compilation options such as -ansi , and other user-specified
options such as -D for defining macros (see “Parser Mode™).

Using Regular Expressions

Each line in the fileset can use shell expansion characters, a wild card system
in standard use for specifying filenames in UNIX shells. If you enter a
standard pathname (either absolute or relative), the Static Analyzer reads
the line literally and looks for the file. If you use metacharacters such as
brackets ([]) and asterisks (*), you can specify a number of files with a single
line of text. For example, the default fileset contains the single line:

* [cCFF]

Fileset Specifications

The asterisk specifies any number of characters (zero or greater) before a
period, and the bracketed set of characters specifies any of four single
characters—c, C, f, or F—after the period. The result is that the line specifies
any filenames in the current directory that use a .c, .C, .f, or .F extension.

If you are analyzing Ada files, then the default expression *.[cCfF] is not
appropriate. You may wish to substitute an expression like *.adb.

Note: Don't confuse the shell expansion characters used here with the
regular expressions used in the Fileset Selection Browser; they're completely
different systems. If you want full information about shell expansion
characters, you'll find them described in the reference (man) pages for csh.

Specifying Pathnames

The Static Analyzer resolves absolute pathnames in the fileset from the root;
it resolves relative pathnames from the directory in which you invoke the
Static Analyzer, referred to as the browsing directory. Anytime you change to
a fileset in another directory, however, the Static Analyzer changes the
working directory to match so that any relative filenames in the fileset are
resolved from the fileset's own directory.

Specifying Included Files

Besides specifying filenames, the fileset also can also specify directories to
search for included files. The default search files are the current directory

and /usr/include. Any additional search paths are specified with the prefix -1
followed immediately (without space) by the pathname. For example, the
pathname

-l/usr/include/gl

listed in a fileset asks the Static Analyzer to search through /usr/include/gl for
include files.

Filesets created by the Static Analyzer are named cvstatic.fileset by default. If

you create your own filesets, you can give them any name you wish, but by
convention you should use the .fileset extension.

31

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

32

Defining Symbols in the Fileset

The Static Analyzer lets you define macros to be included in the database.
When you compile with the -sa flag, the fileset is built with one file per line;
lines may also containa-1 flag for including files, -D for defining macros, or
-U for undefining macros. The Static Analyzer doesn’t normally preprocess
source code files before creating a cross-reference database. Some source
code, however, requires preprocessing to resolve ifdef statements before you
can successfully analyze the code.

The way to perform preprocessing is to specify these symbol names and
values in the file cvstatic.fileset and then run cvstatic from the command line
with the -preprocess flag. The macros are specified at the end of the fileset
by appending a line of the form

-D< symbolname >

or

-D< symbolname >=<value >

for each preprocessor symbol you want to define. For example, to set the
macros DEBUGNd BUFFERSIZE you would append two lines like this to the
end of the fileset:

-DDEBUG
-DBUFFERSIZE=8

In like manner, -U undefines macros. These symbol definitions are used for
processing all of the files in the fileset.

Note: Using the -preprocess option increases the scanning time
tremendously (scanner mode only). Use it only when absolutely necessary,
and consider analyzing the code as is, including all the ifdefed sections.

Using the Default Fileset

When you start the Static Analyzer in a directory that doesn't contain a file
named cvstatic.fileset, the Static Analyzer creates a default fileset and saves it
as cvstatic.fileset. The contents of the fileset are:

* [cCFF]

Using the Fileset Editor

Using the Fileset Editor

This line specifies any C, C++, or Fortran files in the working directory. Note
that the line assumes that C++ files have a .C extension, which may not be
the case for all C++ files because there isn't yet a pervasive extension
standard. If your C++ files use .c++, .cc, or other extensions and you want to
use the default fileset, you should edit it to include the extensions you want.

The Fileset Editor window (see Figure 3-1) lets you edit the contents of a
fileset. You invoke it by choosing “Edit Fileset...” from the Admin menu. The
contents of the current fileset appear in the two file lists on the right side of
the window; directories and files that you can add to the fileset appear in the
Directories and Files lists on the left.

The Current Fileset field at the top right of the window is a read-only display
that shows the full pathname of the current fileset. The directory displayed
here is the Static Analyzer’s current working directory. You can’t change
either the fileset or the working directory here; to do so, use the “Change
Fileset...” selection in the Admin menu.

Below the Current Fileset field, there are two list areas. A fileset can contain
two kinds of files: those that are scanned into and those that are parsed into
the database. (For a complete discussion of scanner and parser mode, see
“Generating a Static Analyzer Database.”) The top list area shows the files in
the fileset to be parsed, and the lower one shows the files to be scanned. Both
list areas have vertical scroll bars to scroll through long lists and horizontal
scroll bars to move left and right through long filenames.

To see an example of the Fileset Editor, refer to “Tutorial 1: Applying the
Static Analyzer to Scanned Files.”

33

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

Current
directory

Directory list—

Move
controls

Include)
subdirectories]|

Current -
directory files

Language
filters

34

= Fileset Editor

Browsing Directory:

Directories

database

Current Fileset:

Current
fileset

Parser mode
fileset list

tMove Directory
Parser

Scanner

L 1

Include Subdirectories

Files

Actor.C
Actorh
AddBal
AddBallC
AddEngine
AddEngine
Application.C
Application.h

Direct entry
field

. Transfer Files
tMove Files Scanner

mode fileset

Parser Scanner Fileset list

Scanner

Direct entry
field

Literal input

Remove Literal Input switch

Remove
- control
Cancel Help

Figure 3-1 The Fileset Editor Window

Adding Lines to the Fileset Contents List

Both fileset list areas have direct entry fields immediately below them that
allow you to enter lines in the fileset. You put the pointer in the line entry
field and type. When you press <Enter> , the Fileset Editor enters your line
in the fileset.

Using the Fileset Editor

The line entry field interprets each typed line as soon as you press <Enter> .
If you enter a literal filename such as jello.c or ../bounce/bounce.C, that
filename appears in the fileset list when you press <Enter> . If you enter a
wild card entry such as *.*, the Fileset Editor interprets it, resolving from the
working directory, and places those filenames that match (not the wild card
entry itself) in the fileset list.

If you want to enter a wild card entry in the fileset without having it
immediately interpreted and replaced with actual filenames, turn on the
Literal Input toggle button just below the line entry area. When this button is
on, the Fileset Editor treats any strings you enter literally; it does not
interpret them as shell expansion characters, which allows you to place wild
card lines directly into the fileset. The Static Analyzer interprets these strings
later when you query the fileset.

Removing Lines From the Fileset Lists
To remove a line from a fileset list, click to select it and then click the Remove
button below the lists. The Fileset Editor removes the line from the list. To

remove more than one line at a time, drag the cursor over a range of files or
hold down the <Control> while clicking, then click the Remove button.

Browsing for Fileset Contents

You can use the lists and buttons on the left side of the Fileset Editor window
to browse through available directories for files to add to the fileset.

Directories List
The Directories list shows the subdirectories available in the current
directory; double-click a subdirectory to move to that directory and see its

subdirectories in the Directories list. The “..” entry is the parent directory of
the current directory; double-click it to move up a directory.

Browsing Directory

The Browsing Directory field just above the Directories list shows the current
directory in which you’re browsing. You can use it to type an absolute

35

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

36

pathname to a new directory—put the pointer in the area to type. When you
press <Enter> , the contents of the Directories list change to show the
subdirectories of the directory you entered.

Language Filters

The Files list below the Directories list shows the files contained in the current
directory. You can filter the contents you see there by turning on any or all of
the three filter buttons below the list: the C button, the C++ button, or the
Fortran button. If none of these buttons is turned on, the Files list shows all
files in the current directory. Turning on any single button restricts files listed
to Ada, C, C++, or Fortran files:

e The C button restricts files shown to those with .c extensions.

e The C++ button restricts files shown to those with .C, .cc, or .cxx
extensions.

= The Fortran button restricts files shown to those with .f or .F extensions.

< The Ada button restricts files shown to those with .adb, .ali, .atb, .ads, and
.ats extensions (with ProDev Ada package only).

You can set combinations of these buttons to see different source code file
types.

Adding Filenames From Lists

If you wish to add one or more filenames from the Files list to one of the
fileset lists, select the filename and click the Move Files Parser button or
Scanner button to the right of the Files list depending on how you want
information extracted from the file. The Fileset Editor puts the absolute
pathname of each file in the fileset list.

To add all the files in a directory to the Fileset Contents list, click the directory
name (or directory names if you want more than one) in the Directories list,
then click either the Parser button or Scanner button to the right of the
Directories list. The Fileset Editor (in its default state) adds only the files
contained in that directory, and not files contained within any of its
subdirectories.

Creating a Fileset Manually

Creating a Fileset Manually

To add files contained within a directory's subdirectories, turn on the Include
Subdirectories button. When you click the Add Directories button with this
button turned on, the Fileset Editor adds all files in directories,
subdirectories, and so on, to the fileset lists.

You can specify the kinds of files the Fileset Editor puts in the Parser Fileset
and Scanner Fileset lists when you click the Add Directories button. To do so,
turn on any of the filter buttons below the Files list.

Transferring Files in the Fileset Between Modes

The Fileset Editor lets you change the method of data extraction (parser or
scanner) for files in the fileset. You do this by transferring them from one
fileset list to the other using the two Transfer Files arrows. This is particularly
useful when you discover that a file cannot be parsed, as first thought; you
then transfer it to the scanner mode, which is not sensitive to programming
languages.

Leaving the Fileset Editor Window

You can close the Fileset Editor window by clicking the OK button or the
Cancel button. Click OK to put all the fileset changes you made into effect.
Click Cancel to close the window and return the fileset to the state it was in
when you first opened the Fileset Editor. Your editing changes are ignored.

You can create a fileset by hand if you wish, either by using a text editor that
saves text in a text-only format (vi, for example), or by using the output of
UNIX commands that return filenames. You may find the UNIX find
command particularly useful for returning all specified filenames within a
directory tree. For example, the command

find . -name “*.f" -print > cvstatic.fileset
creates a fileset of all Fortran files (those with a .f extension) found within the

current directory and all of its subdirectories. Note that all the pathnames in
the fileset are relative, determined from the current directory.

37

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

You can pipe the output of the find command through filtering commands
such as sed to further modify the fileset created. For example, the command

find . -name "*.c" -print | sed'/\.\.c/d > cvstatic.fileset

finds C files within a directory tree and strips out any .c files left by the C++
compiler.

Using Command-Line Options to Create and Use a Fileset

38

The Static Analyzer provides three special options when you invoke cvstatic
from the command line:

The -executable option followed by the filename of an executable file
asks the Static Analyzer to create a fileset that contains the absolute
pathname of every file used to compile that executable. For example,
entering

cvstatic -executable jello

while in the /usr/demos/CASEVision/jello directory starts the Static
Analyzer and creates a fileset that includes all the files used to compile
jello.

Note that the executable must not be stripped,; stripped files do not
contain the names of their source files. When using the -executable
option, it’s a good idea to use the fileset editor to exclude files with
“incomplete” names (which can occur with files compiled into lib using
compilers prior to 4.0.1 or non-supported languages like assembler or
Pascal). The -executable option requires that the executable be built
on the same system performing the static analysis.

Note also that this command-line option works only if you have the C,
C++, or Fortran compiler that’s shipped with IRIX™ version 4.0.1 or
greater.

The -fileset option followed by the filename of a fileset asks the
Static Analyzer to start using a fileset other than cvstatic.fileset.

The -mode flag takes the options SCANNERIr COMPILERto indicate the
type(s) of files in the fileset to be used in queries. If you do not use the
-mode flag, then scanner will be assumed for those files in the fileset
without compiler driver specifications (see “Preparing the Fileset for
Parser Mode” on page 40).

Generating a Static Analyzer Database

Generating a Static Analyzer Database

The most time-consuming part of the static analysis process is creating the
database, which is a collection of symbols and their relationships. There are
two methods for extracting static analysis data from a fileset:

= scanner mode, which is fast but not sensitive to the characteristics of
specific programming languages

= parser mode, which is language-specific and thus more thorough

If you need a mix of accuracy and speed, you can combine the two modes by
flagging the files in the fileset according to mode and building the database
with the -mode BOTH flag. You might use this approach if some files cannot
be compiled or if scanner mode is misinterpreting necessary symbols.

Scanner Mode

The quickest way to build a database is to use scanner mode. Since scanner
mode is not sensitive to the characteristics of specific programming
languages, it may miss or incorrectly parse certain symbols (especially in
Fortran). If you are analyzing a large quantity of source code, do not care
about minor inaccuracies, and do not need the language-specific
relationships (such as C types) available in parser mode, then use scanner
mode.

Scanner mode is the default method for building a static analysis database.
Itis run automatically whenever you create a new fileset or perform a rescan,
unless you explicitly specify parser mode.

Scanner mode creates files named cvstatic.fileset, cvstatic.index,
cvstatic.posting, and cvstatic.xref in the directory in which it is started. These
files comprise the Static Analyzer database for the program.

If the Static Analyzer finds cross-reference files to accompany a fileset, it
determines when they were last updated. It then scans the fileset to see
which files which have been modified or added since that date. The Static
Analyzer updates the cross-reference files with cross-references found in
modified or added files.

39

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

40

Scanner mode is based on a sophisticated pattern matcher. It works by
searching for and identifying common patterns that occur in programs. Both
philosophically, and in terms of the actual implementation, cvstatic is most
closely related to the program grep. If you expect cvstatic to produce the type
of results that can be accomplished only with a full-compilation type of
analysis, you should use the compiler-based parser mode.

If you approach scanner mode as a “’super-grep,” using it as most
programmers currently use grep (or various “tags” packages) to explore a
new program, you can quickly get a quick high-level look at your code.

Parser Mode

Parser mode is language-specific and slower as a result. Use parser mode
when you need to stress accuracy over speed. Parser mode provides
relationship data specific to the programming languages C, Fortran, and
C++, such as querying on types, directories, and Fortran common blocks.
Parser mode uses the compiler to identify entities in the source code, so you
must be able to compile a file in order for it to be parsed. If a source file
cannot compile, then you need to flag that file for scanning and run it
through scanner mode.

Note: The database generated by parser mode can also be used by the C++
Browser (it must be purchased separately).

Preparing the Fileset for Parser Mode

File entries for parser mode take the general form

/fullpath/sourcefile drivername options

where

drivername
refers to the compiler driver and can be “f77” for Fortran,
“ncc” for the Edison C compiler, “NCC” for the standard
C++ compiler, or “DCC” for the Delta C++ compiler.

Generating a Static Analyzer Database

options
lets you choose language level (-ansi , -cckr , -xansi , or
-ansiposix) and user-specified options such as -1 for
including files, -D for defining macros, -nostd , and +p. See
the man page for cc for more information.

The Static Analyzer recognizes the type of language by the file extension.
“.c” extension is considered to be C. “.C” and “.cxx” are considered to be
C++ files. Parser mode assumes that C files are ANSI unless otherwise
specified in the makefile.

Before processing the files, the Static Analyzer must know where to look for
include files. If you are using parser mode, you need to set the include paths
before the Static Analyzer scans the files, so do this before performing any
gueries or selecting “Force Scan.”

Invoking the Parser

There are three methods for creating a fileset with parser mode files:
= Enter the files in the parser mode fileset list in the Fileset Editor.

= Edit the cvstatic.fileset file directly, specifying the compiler and other
options after the file entry.

= Use the compiler to generate the fileset by specifying the flag
-sa[, databasedirectory] and -nocode . Without arguments, the -sa
flag stores the static analysis database in the current directory. If you
enter acomma (,) and a directory, the static analysis database will be
stored in the specified directory. If you specify the flag -nocode , then
the database will be built without creating new object files.

While the database is being built, a window appears, displaying any
messages from the parsing process. This helps you find problems if there is
code that cannot compile.

Parser mode creates a cvstatic.fileset file and some new files named cvdb*.dat,
cvdb* .key, vista.taf, and cvdb.dbd in the current directory. In parser mode,
“Force Scan” rebuilds the database. “Rescan” looks at the time stamps of
files in the database and rebuilds pieces only when they are out of date.

41

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

42

For more information on creating a database in parser mode, see “Tutorial 3:
Using the Compiler to Create a Static Analysis Database.”

Parser Mode Shortcuts

If you want to use parser mode but wish to avoid waiting for the process to
finish, there are two ways to speed things up:

= You can use the compiler with the -nocode flag to skip creating object
files.

= You can build the Static Analyzer database using the compiler and
bring up the graphic user interface later to read this database.

Size Limitations

The limitations and shortcomings mentioned here are largely a consequence
of the grep-like model supported by scanner mode. Still, cvstatic does provide
a more powerful way to approach understanding a set of source files than
using grep.

When you use the Fileset Editor to add entire directories of files, you cannot
enter more than 10,000 files. This limit exists to prevent someone from
inadvertently starting at the root of a file system and trying to add all files.
Note that there is no limitation on the number of files that can be added to
the fileset when the fileset file is constructed in other ways, such as
compiling source files with the -sa flag, or emitting a fileset from a Makefile
rule.

cvstatic displays at most 20,000 lines of unfiltered results from a query in the
Text View. Larger results can, however, be saved to a file or reduced to a more
manageable size using the Results Filter.

cvstatic displays no more than 5,000 functions in the Call Tree View, 10,000
files in the File Dependency View, or 10,000 classes in the Class Tree View.
These are absolute maximum limits, and the actual limits may be much
lower depending on characteristics of the graph being displayed. In
particular, all graph views in cvstatic are displayed in a scrolled X window,
which is sized to accommodate the graph. X imposes a maximum size on
windows that graphs cannot exceed. To get around this limitation, you can

Rescanning the Fileset

Rescanning the Fileset

= use more specific queries to focus on the part of the program that is of
the most interest

= reduce the scale used to view the graph

= use the Results Filter to prune the results of queries

= use the Incremental Mode setting in graph views or the pop-up menus on
nodes of the graph to follow a specific path through a large tree.

After you have generated a database, you can always go back and rescan the
fileset. The Admin menu provides two selections for this purpose:

“Rescan”

“Force Scan”

asks the Static Analyzer to check for new or modified files
since the last scan and to store any cross-references found in
new and modified files in the database. Use this command
anytime you've modified source code files during a Static
Analyzer session and you want to ensure that the Static
Analyzer reflects those changes in the cross-reference files.

asks the Static Analyzer to completely rebuild the
cross-reference files, creating a cross-reference database of
all files specified in the fileset, whether or not they've been
modified since the last scan. “Force Scan” also returns the
Static Analyzer to its initial startup state with no query
results in the main window and no past queries stored in
the History menu. Use this command to restart the Static
Analyzer and to verify the integrity of its cross-reference
files.

There are also two command-line options involved with rescanning the

fileset:

-batch

asks the Static Analyzer to perform the equivalent of the
“Rescan” selection; it updates the cross-reference files to
accommodate new and modified files in the fileset. It
doesn't open the Static Analyzer's main window, however,

43

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

Search Path for Included Files

44

and it quits the Static Analyzer once the scan is finished. You
can use the -batch option to update cross-reference files for
a large set of source code files, using the Static Analyzer as
a background process. Note that you must have a fileset in
the directory where you start the Static Analyzer or that you
must specify a fileset when you start the Static Analyzer, or
this option won’t work.

-noindex
asks the Static Analyzer not to create an inverted index for
the cross-reference database, so it doesn’t create the .index
and .posting files. This makes creating a cross-reference
database faster than it would be without the option, but the
lack of an index makes queries to the database much slower.
Use this option with caution.

Note: This works in scanner mode only.

Whenever the Static Analyzer scans a fileset and finds an included file in
source code, it searches by default for the file in the current directory and
then in /usr/include. If it doesn't find the included file in either of these
directories, it posts a Not Found dialog box that shows the names of those
included files listed but not found in its search path.

To add directories to the search path for included files, choose “Set Include
Path and Flags” from the Admin menu to open the Scanning Options dialog
box shown in Figure 3-2.

The Include Directories list at the top of the box lists all directories that the
Static Analyzer searches in addition to the default search path. To add a
directory to the list, move the pointer to the Directory field below the list,
type in a directory name, then press <Enter> (or click the Add Directory
button). The path should be relative to the directory in which cvstatic is
running. To delete a directory;, click its name in the Include Directories list (this
puts it in the Directories field), then click the Remove Directory button. You can
also add flags such as -1 for including files, -D for defining macros, or -U for
undefining macros, as described in “Defining Symbols in the Fileset” on
page 32.

Search Path for Included Files

=| Set Include Path And Flags

Include Directories And Flags:

Directory/Flag :

‘Add Directoryl ‘ Add Flags | ‘ Remove | ‘ Help |

[Mo Standard Includes

Figure 3-2 The Scanning Options Dialog Box

To exclude /usr/include from the Static Analyzer’s search path, click the No
Standard Includes button to turn on the option. Turn on this option whenever
you don't want to scan standard libraries and headers into a .xref file. By
eliminating these files from a scan, you can greatly reduce the amount of
data the Static Analyzer handles, increase its speed, and concentrate query
results on your custom code. (Note, however, that you won’t be able to find
data in the header files normally found in /usr/include.)

To close the Scanning Options dialog box, click the Close button. Note that
any directories you added to the search path are stored as part of the fileset.
You won't see the directories listed if you open the Fileset Editor, but you
will see them if you examine the fileset file directly; each added search
directory appears in a separate line with a -1 prefix.

45

Chapter 3: Static Analyzer: Creating a Fileset and Generating a Database

Changing to a New Fileset and Working Directory

46

The Static Analyzer uses only one fileset at a time, and resolves each relative
pathname and general line from its current working directory. To change to
a new fileset or a new working directory, use the Fileset Selection Browser
window shown in Figure 3-3 by choosing “Change Fileset...” from the
Admin menu.

= Fileset Selection Browser

Figure 3-3 The Fileset Selection Browser Window

To load a new fileset, change to the directory in which it’s located using the
File Selection field (either by dragging a folder icon into it or by typing
directly), then select the fileset in the Files list. Once you change to a new
fileset, the directory where it’s located becomes the new working directory.

You can use the File Selection field of the Fileset Selection Browser window to
create a new fileset from within the Static Analyzer. If you enter a new
filename such as custom.fileset in the File Selection field (as part of a full
pathname) and then click OK to accept your new fileset, the Static Analyzer
creates a file by that name and saves any fileset edits you make to that file.

Static Ana|yze r: Queries This chapter describes how you

perform queries using the Static
Analyzer.

Chapter 4

Static Analyzer: Queries

This chapter covers queries, which ask the Static Analyzer for specific
information about the source code files included in the fileset. You'll find
these topics here:

« “Defining the Scope of a Query”

e “Making a Query”

= “Viewing Source Code”

= “Repeating Recent Queries”

e “Saving Query Results”

For examples of using queries, refer to “Tutorial 1: Applying the Static

Analyzer to Scanned Files” on page 12 and “Tutorial 2: Applying the Static
Analyzer to Parsed C++ Files.”

49

Chapter 4: Static Analyzer: Queries

Defining the Scope of a Query

50

The Static Analyzer has two types of queries: comprehensive queries, such
as “List All Functions” and “List Global Symbols,” that don't require a query
target; and specific queries, such as “Who Is Called By?” and “List Methods
In Class,” that require a query target. Specific queries are grayed in the
Queries menu unless you supply target text in the Query Target field.

To enter text in the Query Target field, put the pointer in the text area and
type. You can also click an element in the query results area; the Static
Analyzer pastes it into the text area. For example, you can click a function
name displayed in the query results area to enter the function name in the
Query Target field.

To make a query based on target text, choose a query from the Queries menu.
The Static Analyzer returns all elements that match the parameters of the
guery and the target text. You can also make a query by pressing <Enter>
while the pointer is in the Query Target field; the Static Analyzer repeats the
last type of query you made, using the contents of the Query Target field as
target text. Use this convenient keyboard shortcut to repeat a query with a
new target text each time—for example, if you’re following a thread of
function calls.

Target Text as a Regular Expression

The Static Analyzer reads target text in the Query Target field as a regular
expression, which is a system of string constructions used by the UNIX ed
command to construct literal strings or wild card strings. Regular expression
syntax is described in the reference (man) pages for ed; you'll also find the
same description on the Static Analyzer's Help screen for regular
expressions.

If you enter target text without using any regular expression special
characters (which are \, ., *, (,), [, *, $, and +), the Static Analyzer reads the
text as a literal string (without wild cards) and searches only for that text. If
you use special characters to create a wild card expression, the Static
Analyzer searches for a variety of target text in a single query, a useful tool
for expanding the scope of a specific query.

Making a Query

Making a Query

Note: Don't confuse regular expressions with the shell expressions you use
to create a fileset. They're completely different systems. For example, the
regular expression “g.*” matches strings that begin with “q,” while the shell
expression “q.*” matches strings that begin with “q.”

Case Sensitivity

The Static Analyzer normally recognizes the difference between uppercase
and lowercase characters in target text during queries. If you want to ignore
case in target text during a query (useful for Fortran code, which is
case-insensitive), choose “General Options” from the Admin menu to open
the General Options dialog box shown in Figure 4-1. Click the “Ignore Case
In Searches” button to turn it on, then click the Close button to close the
dialog box. You can return to the dialog box to turn off the option when you
want to recognize case in queries.

=| General Options

[1 Ignore Case In Searches
[Full Pathnames

[« Use Source view

[[1 Read Only

Close

Figure 4-1 The General Options Dialog Box

To make a query, choose a query type from the Queries menu, which
organizes queries in submenus of related queries (see Figure 4-2). The Static
Analyzer shows the results in the query results area of its main window,
using the view that is turned on. If the view isn't appropriate for the query
(file dependency view for a function query, for example), the Static Analyzer
informs you; no elements are listed in the query results area.

51

Chapter 4: Static Analyzer: Queries

List Al Functions
Where Defined?
Where Function Used
Whe Calls?

Whe Is Called By?
List Undefined

List Unused Function
List Lgeal Declarations

Ciri+F
Ciri+D

Ciri+C
Ciri+B

List Alf Files

List Alf Header Files
List Matching Files
Whe lncfudes?

Whe Is Included By?

List Al Classes
Where Defined?

List Subclasses

List Superclasses
List Methods In Class

List Alf Method's
Where Defined?
Where Declared?

List Al Common Blocks

List Alf Symbols in Common Block

Where Common Block Defined

Where Common Block RBeferenced

List Alf Types

Where Tvpe Defined
List Functions Of Tvpe
List Data Of Jype
Where Type Used

List Directories
List Files

List All Macros List Ali Global Variables Functions
- . - . submenu
Where Defined? Where Defined?
Where Undefined? Whe Beferences?
Whe Uses? Whe Sets?
List Unused Macros Where Address Taken
Macros submenu Variables submenu
List Global Symbols
List Al Constants
Where Symbof Used Files
Where Defined? submenu
Find String
Find Beguiar Expression
General submenu
=| Static Analyzer
Classes
Admin Views History | Queries | H submenu
Cluery Target: I— General -
Macros [
Variables > 1
Functions > |||
E:es B Il Methods
LA556S " ll submenu
Methods LR >
Common Blocks » - "l
Tes all
Directories > "l
Packages L= "l Common
g s -1 S
fask Tupes " —
~J =]
Tagged Types submenu Task Types submenu
List Alf Tagged Types List Alf Task Types Packages submenu Types
Where Tagged Tvpe Defined Where Task Tvpe Defined List Alf Packages submenu
List Paremt Tagged Tvpes List Entries Where Package Defined
List Derived Tagged Twpes List Body Data List Functions In Package
List Primitive Operations List Body Functions List Data In Package
List Componemnts List Bodyv Tupes List Tvpes In Package Directories
Where Tagged Type Used Where Task Tupe Used Where Package Withed submenu
Figure 4-2 Static Analyzer Queries Menu with Submenus

52

Making a Query

List Global Symbols
List Alf Constants
Where Symbof Used
Where Defined?
Find String

Find Begtilar Expression

Figure 4-3
Queries Submenu: “General”

General Queries

The “General” submenu (see Figure 4-3) contains a variety of
general-purpose queries designed to find strings or nonspecific program
elements. Several of these queries find symbols, which are programmatic
tokens sent to the compiler—macro names, functions, variables, and other
source code elements. The general queries are:

“List Global Symbols”
returns all global symbols it finds in the files defined by the
fileset. It ignores any target text. (Global symbols are
standard elements of code: functions, macros, variables,
classes, and so forth.)

“List All Constants”
returns all constants in the source code (includes enums,
named constants, and Fortran 77 parameters).

“Where Symbol Used?”
expects a symbol name in the Query Target field. It returns
the source code locations of all references to the symbol.

“Where Defined?”
expects a symbol name in the Query Target field. It finds all
symbols that match the target text and returns the source
code locations where those symbols are defined.

“Find String”
expects a literal string in the Query Target field. It returns the
source code locations of all strings that match the target text.
When you use this query, you ask the Static Analyzer not to
interpret the target text as a regular expression, which
allows you to use regular expression special characters as
part of a literal text string.

“Find Regular Expression”
expects a general expression in the Query Target field. It
returns the source code locations of all strings that match
the target text.

53

Chapter 4: Static Analyzer: Queries

List Al Macros
Where Defined?
Where Undefined?
Whe Uses?

List Unused Macros

Figure 4-4
Queries Submenu: “Macros”

54

Macro Queries

The “Macros” submenu (see Figure 4-4) contains queries that deal with
macros:

“List All Macros”
returns all macros it finds in the files defined by the fileset.
It ignores any target text.

“Where Defined?”
expects a macro name in the Query Target field. It finds all
the macros that match the target text and returns the source
code locations where those macros are defined.

“Where Undefined?”
expects a macro name in the Query Target field. It finds all
the macros that match the target text and returns the source
code locations where those macros are undefined (using
#undef).

“Where Used?”
finds all locations where the macro entered in the Query
Target field is used.

“List Unused Macros”
lists macros defined but never used.

Variable Queries

The “Variables” submenu contains queries that deal with variables. In
performing a variable query, you typically list variables first and then select
an individual variable for further information. Figure 4-5 shows the results
of the “List All Global Variables™ selection with the _lastCmd variable
selected. Notice that the variable list has five columns: Name, Function, File,
Line, and Source. These identify the variable, its function or <global> if no
function, the file in which it is defined or declared, the line number at which
it is first defined or declared, and the actual source line.

Making a Query

Current query

Query results

=| Static Analyzer {al[]
Admin Views History Queries Help
Query Target: | _lastCmd
List All Global Variables Scoping: 762:762
Name Functiaon File Line Source
thebpplication <Global> Application.C 29 Application *thefpplication = NULL;
windaw <Global> Bouncedpp.C 28 MainWindow *window = new BounceWindow
Tastlmd <Global> Cmd . C 31 Cmd #*Cmd:: lastCmd = MULL; |

operator <Global> CmdList.C 77 Cmd #CmdList::operator[] { int index
index <Global> CmdList.C 77 Cmd #CmdList::operator[] { int index
_rcontents <Global> CmdList.C 81 return _contents[index];

index <Global> CmdList.C 81 return _contents[index];
colorChooserResources <Global> ColorChooser.C 51 static String colorChooserResources[]
thelnfaolialogManager <Global> InfoDialogManager.C 23 DialogManager *thelnfoDialogManager =

Figure 4-5

“List All Global Variables” Results with Variable Selected

From a list resulting from “List All Global Variables”, you can select individual
variables for specific queries. You do this by clicking the variable name.
Figure 4-6 shows the results of a “Who References?” query.

=| Static Analyzer Lo i[]
Admin Views History Queries Help

Query Target: | _lastCmd

Who References?: _lastCmd Scoping: 77

Name Functiaon File Line Source

_lastCmd <Global> Cmd . C 31 Cmd *Cmd::_lastCmd = NULL;
_lastCmd execute Cmd. C 164 Cmd::_TastCmd = this;

_lastCmd execute Cmd. C 169 Cmd::_TastCmd = NULL;

_lastCmd doit UndaCmd.C 42 if { _lastCmd != HULL 3}
_lastCmd doit UndaCmd.C 46 _lastCmd->undoi);

_lastCmd doit UndaCmd . C 48 _lastCmd = MULL;

_lastCmd <Global> Cmd . h 48 static Cmd *_lastCmd;

Figure 4-6

e |

“Who References?” Results

The column headings are the same as for the “List All Global Variables”
query results. In this case, the Line and Source fields refer to the line where
the reference took place.

55

Chapter 4: Static Analyzer: Queries

The “Variables submenu” appears in Figure 4-7 and offers these selections:

List Alf Globaf Variables

Where Defined? “List All Global Variables”
Who Beferences? returns the global variables it finds in files defined by the
Who Sets? fileset. It ignores any target text.
Where Address Taken “Where Declared?”
Figure 4-7 finds the location where the selected variable was declared.
Queries Submenu: “Variables” “\Where Defined?”

finds the location(s) where the variable was defined.

“Who References?”
expects a variable name in the Query Target field. It finds all
variables that match the target text and returns all
references to those variables.

“Who Sets?”
expects a variable name in the Query Target field. It finds all
variables that match the target text and returns all source
code locations where the values of those variables are set.

“Where Address Taken”
finds all locations where the address of the variable is taken.

“List Unused Variables”
lists all variables that have been defined or declared but not
otherwise used in the source code.

“Where Allocated”
lists all locations where memory was allocated for the
selected variable.

“Where Deallocated”
lists all locations where memory was deallocated for the

List Al Functions Ciri+F selected variable.
Where Defined? Cirf+D
Where Function Used
Who Calls? CHieC Function Queries
Whe Is Called By? Cirt+B
List Undefined The “Functions” submenu (see Figure 4-8)contains queries that deal with
List Unused Function functions. It operates in similar fashion to the variable queries—you create a
List Lgeal Declarations list of functions and select individual functions for detailed queries. The
selections are:
Figure 4-8

Queries Submenu: “Functions”

56

Making a Query

“List All Functions”
returns all functions it finds implemented in the fileset. It
ignores any target text.

“Where Function Declared”
returns the location where the function was declared.

“Where Defined?”
returns all source code locations where those functions are
defined.

“Where Function Used”
returns all source code locations where the function
appears.

“Who Calls?”
returns all source code locations where the function is
called.

“Who Is Called By?”
returns the names of all functions called by the selected (or
entered) function, including the line number and source
code where the call is made.

“List Undefined”
returns all functions called but not implemented in the
fileset (usually library functions).

“List Unused Function”
returns functions that were declared or defined but not
otherwise used in the source code.

“List Local Declarations”
returns all local variables and arguments in the source code
and the line and source code in which the declaration is
made.

57

Chapter 4: Static Analyzer: Queries

List Alf Files

List Alf Header Files
List Matching Files
Whe lncfudes?

Whe Is Included By?

Figure 4-9
Queries Submenu: “Files”

List Al Classes
Where Defined?

List Subclasses

List Superclasses
List Methods In Class

Figure 4-10
Queries Submenu: “Classes”

58

Files Queries

The “Files” submenu (see Figure 4-10) contains queries that deal with files.

“List All Files”
returns all files included in the fileset as well as any
included files specified by files within the fileset (such as
header files). It ignores any target text.

“List All Header Files”
returns all header (<filename>.h) files in the fileset.

“List Matching Files”
expects either a filename in the Query Target field or no
target text at all. If it finds target text, it returns all filenames
that match the regular expression. If it finds no target text, it
returns the same results as the “List All Files” query.

“Who Includes?”
expects a filename in the Query Target field or a selected
filename. It returns the names of all files that include the
file(s) specified by the target text.

“Who is Included By?”
expects a filename in the Query Target field or a selected
filename. It returns the names of all files that are included by
the specified file(s).

Class Queries

The “Classes” submenu (see Figure 4-11) contains queries that deal with
C++ classes:

“List All Classes”
returns all classes it finds in the files defined by the fileset. It
ignores any target text.

“Where Defined?”
expects a class name in the Query Target field. It finds all
classes that match the target text and returns the source
code locations where those classes are defined.

Making a Query

List Alf Method's
Where Defined?
Where Declared?

Figure 4-11
Queries Submenu: “Methods”

List Al Common Blocks
List Alf Symbols in Common Block
Where Common Block Defined

Where Common Block RBeferenced

Figure 4-12
Queries Submenu: “Common Blocks”

“List Subclasses”
expects a class name in the Query Target field. It returns the
immediate subclasses of the classes matching the target text.

“List Superclasses”
expects a class name in the Query Target field. It returns the
immediate superclasses of the classes that match the target
text.

“List Methods In Class”
expects a class name in the Query Target field. It returns
those methods defined within the classes that match the
target text.

Method Queries

The “Methods” submenu (see Figure 4-12) contains queries that deal with
C++ member functions, also called methods:

“List All Methods”
returns all methods in the fileset. It ignores any target text.

“Where Defined?”
expects a method name in the Query Target field. It finds all
methods that match the target text and returns all source
code locations where those methods are defined.

“Where Declared?”
expects a method in the Query Target field. It returns source
code locations of all class declarations that include methods
that match the target text.

Common Blocks Queries
The “Common Blocks” submenu (see Figure 4-13) applies to Fortran source
code only. It contains these selections:

“List All Common Blocks”
lists all common blocks in the fileset.

“List All Symbols in Common Block”
lists all symbols used in common blocks in the fileset.

59

Chapter 4: Static Analyzer: Queries

List Alf Types

Where Tvpe Defined
List Functions Of Tvpe
List Data Of Jype

Where Type Used

Figure 4-13
Queries Submenu: “Types”

60

“Where Common Block Defined”
expects acommon block in the Query Target field. It finds all
common blocks that match the target text and returns the
source code locations where the common blocks are
defined.

“Where Common Block Referenced”
returns all source code locations where the common block
appears.

Types Queries

The “Types” submenu (see Figure 4-14) helps you get type information. It
contains the following choices:

“List All Types”
returns all types used in the source code.

“Where Type Defined”
expects a type in the Query Target field. It finds all types that
match the target text and returns the source code locations
where the types are defined.

“List Functions of Type”
returns all functions of the given type and the source code
locations where they are declared or defined.

“List Data of Type”
returns all data declarations and definitions using the given
type and the source code locations where they are declared
or defined.

“Where Type Used”
returns all source code locations where the type and
functions and data items using the type appear.

Making a Query

List Directories
List Files

Figure 4-14
Queries Submenu: “Directories”

Directories Queries
The “Directories” submenu (see Figure 4-15) helps you determine the
organization of the current fileset. It contains these selections:

“List Directories”
lists all directories in the fileset.

“List Files”
lists all files in the fileset.
Packages Queries

Note: The “Packages” submenu is only available if you have purchased the
ProDev Ada package.

List Aff Packages

Where Package Defined
List Functions In Package
List Data In Package

List Tvpes In Package
Where Package Withed

Figure 4-15 Queries Submenu: “Packages”

The “Packages” submenu helps you get package information when you are
analyzing programs written in Ada. It contains

“List All Packages”
lists all packages in the fileset

“Which Package Defines”
expects a package name in the Query Target field. It finds all
package that match the target text and returns all source
code locations where those packages are defined.

“List Functions”
expects a package name in the Query Target field and returns
all functions declared in the package spec and the body.

61

Chapter 4: Static Analyzer: Queries

62

“List Data”
expects a package name in the Query Target field and returns
data declared in the package spec and body.

“Where Withed”
expects a package name in the Query Target field and returns
all packages that with the given package.

Tagged Types Queries

Note: The “Tagged Types” submenu is only available if you have purchased
the ProDev Ada package.

List Aff Tagged Tvpes

Where Tagged Tvpe Defined
List Paremt Tagged Tvpes
List Derived Tagged Twpes
List Primitive Operations
List Componemnts

Where Tagged Tvpe Used

Figure 4-16 Queries Submenu: “Tagged Types”

The “Tagged Types” submenu

“List All Tagged Types”
lists all tagged types in the fileset.

“Where Tagged Types Defined”
expects a tagged type name in the Query Target field and
returns all tagged types that match the target text and
returns all source code locations where those tagged types
are defined.

“List Parent Types”
lists the parent types for the tagged type entered in the
Query Target field.

“List Derived Types”
lists the derived types for the tagged type entered in the
Query Target field.

Making a Query

“List Primitive Operations”
lists the primitive operations for the tagged type entered in
the Query Target field.

“List Components”
lists the parent types for the tagged type entered in the
Query Target field.

“Where Type Used”
returns all declarations of functions and data of this type. as
well as sites where other types derive from this one or refer
toit.

Task Types Queries

Note: The “Task Types” submenu is only available if you have purchased
the ProDev Ada package.

List Aff Task Tvpes

Where Task Tvpe Defined
List Entries

List Body Data

List Body Functions

List Bodyv Tupes

Where Task Tvpe Used

Figure 4-17 Queries Submenu: “Directories”

The “Task Types” submenu

“List All Task Types”
lists all task types in the fileset.

“Where Task Type Defined”
expects a task type name in the Query Target field and
returns all task types that match the target text and returns
all source code locations where those task types are defined.

“List Entries”

63

Chapter 4: Static Analyzer: Queries

Viewing Source Code

64

“List Body Data”
lists the data local to the body for the given task type.

“List Body Functions”
lists all non-entry functions local to the task body.

“List Body Types”
lists all types declared that are local to the task body.

“Where Type Used”
lists all tasks of this type, as well as other types that derive
from this type or refer to it.

When the Static Analyzer returns query results, you can look at each
element’s source code. To do this, double-click an element in the query
results area, or single-click an element and then choose “Edit” from the
Admin menu. Either of these actions opens up the Source View window as
shown in Figure 4-18.

The Source View window opens the file containing the element and
highlights the source line. Although the Source View window is set by
default to be read only, you can edit text if you wish. If you have a
configuration management tool installed, you can use the “Versioning”
selection from the File menu to check out the file for editing.

Viewing Source Code

Admin Views History Queries

GQuery Target: | drau

—— Target line

Selected query
element

(Read Only)

Figure 4-18 The Source View Window With Highlighted Source Code

Alternate Text Editors

If you prefer to view source code in a text editor other than Source View, you
can choose “General Options” from the Admin menu to open the General
Options dialog box, which offers the option Use Source View. Turn this option
off to use the default alternate text editor, vi, whenever you double-click to
see source code. To set a different alternate text editor, add the line

*editorCommand: < editor >
to your .Xdefaults file, where <editor > is the command for the editor you
wish to use. The next time you use the Static Analyzer with the Source View

option turned off, the editor you specified will appear when you view source
code.

65

Chapter 4: Static Analyzer: Queries

Repeating Recent Queries

The Static Analyzer retains a list of your 15 most recent queries and presents
them in the History menu. You can choose any of the queries listed in this
menu to repeat the query. The Static Analyzer remembers the query type and
the target text it used; it doesn't remember any view settings, such as the
view type, view options, or Scope Manager settings. If you change view
settings and then choose a query from the History menu to repeat the query,
the Static Analyzer will return the same query results but will display them
differently.

Saving Query Results

You can save query results by choosing “Save Query...” from the Admin
menu to open the Save Query File Browser window shown in Figure 4-19.
This is the standard Save File Browser.

=| Save Query File Browser

Files

File list Actor.C
Actar.h
AddBallCmd.C
AddBallCmd.h
Application.C
Application.h
AskFirstCmd.C
AskFirstCmd.h

Path navigation bar
File Selection

1 1 LI | 1 1
Drop pocket g fusr/demos/WorkShop/bounce/ \El
[

Text entry field

‘ 014 | ‘ Filter | ‘Cancell ‘ Help |

Figure 4-19 The Save Query File Browser Window
To save query results, move to a directory in which you want to make the

save. To specify a directory, you can use the path navigation bar, enter a path
in the text field, or drag a folder into the drop pocket. Then click the OK

66

Saving Query Results

button to save the query results and close the Save Query File Browser
window.

The Static Analyzer saves the contents of the query results area to the file you
named in the Browser. If you’re in Text View, the Static Analyzer saves the
results in text format; if you’re looking at a graphical view, the graph is saved
in PostScript format. It adds a heading to the text that lists query type and
the target text that specified the query. It also includes field headings (such
as Function, File, and so on) to match those at the top of the query results
area in the main window.

67

Chapter 5

Static Ana|yzer: Views This chapter describes the text and

graphical views that the Static
Analyzer uses to present its data.

Chapter 5

Static Analyzer: Views

This chapter discusses the different views available in the Static Analyzer to
view your query results. The selections “Text View,” “Call Tree View,” “Class
Tree View,” and “File Dependency View” are available in the Static Analyzer
Views menu. The “Results Filter...”” selection can be accessed from the Static
Analyzer Admin menu. You’ll find these topics:

e “Text View”

e “Call Tree View”

e “Class Tree View”
e “The Results Filter”

71

Chapter 5: Static Analyzer: Views

Text View

72

Scoping field

Text View is the Static Analyzer's default view. It displays the results of any
guery and, because it's limited to text, displays query results faster than any
of the tree views.

Text View provides labels at the top of the query results area (as shown in
Figure 5-1) that identify the query type, show the extent of Results Filter
reductions (called Scoping field, discussed later in this chapter), and label the
columns in the query results area. Below the labels, the Static Analyzer lists
the elements returned by a query, one element per line.

Type of query
Column labels

= Static Analzer |

Admin Views History Queries Help
Query Target:
List All Functions Scoping: 220:220

Figure 5-1 Text View Labels

Text View’s arrangement of information within each element line depends
on the query type. The left field always lists the type of element you searched
for; fields to its right show the location of that element and, if applicable, the
contents of the source code line where it's located. For example, Text View
shows the results of a function query with the function name in the first field,
the filename where the function is located in the second field, the line
number of the source code line where the function is defined in the next field,
and the text of the line in the last field. For class queries, Text View shows
any superclasses of returned classes, and for method queries, it shows the
class where each method is defined.

Text View

Full Pathnames toggle

Use the horizontal and vertical scroll bars to scroll left and right to see the
full contents of long lines or up and down to work through long lists of
elements respectively. To see more information at one time, you can enlarge
the Static Analyzer window by dragging a corner.

To see the source code listing where an element occurs, you can double-click
any element line to open the Source View window. It displays the selected
element in the middle of the window, surrounded by adjacent code.

Viewing Full Pathnames for Files

Text View normally shows filenames in the query results area as short base
names. If you want to see the directory as well as the filename (or at least as
full a pathname as the Static Analyzer can find), turn on the Full Pathnames
option: Choose “General Options” from the Admin menu to open the
General Options dialog box shown in Figure 5-2, then click the Full
Pathnames button to turn on the option. Click the Close button to close the
dialog box.

=.§ General Options "

[1 Ignore Case In Searches
[+ Full Pathnames

[« Use Source view

[[1 Read Only

Close

Figure 5-2 The General Options Dialog Box

To return to base filenames, reopen the General Options dialog box and turn
off the Full Pathnames option.

Sorting Elements in Text View

The Static Analyzer normally presents elements in the order in which they
appear within each file of the fileset. To sort the elements in alphanumerical

73

Chapter 5: Static Analyzer: Views

Call Tree View

74

order by a single field, click the field you want within any element line, then
choose “Sort” from the Admin menu. The Static Analyzer sorts the elements
in ascending order by that field.

Call Tree View is designed to display functions and the static calls between
them in a graphic tree form. Because it's intended for functions, it shows
results only for function queries, not for other types of queries such as file
and class queries. A line of text above the query results area identifies the last
type of query made and shows the extent of Scope Manager reductions.

To use Call Tree View (shown in Figure 5-3), choose “Call Tree View” from
the Views menu. It presents each function in the query results area as a node,
a small movable box labeled with the function name, and each function call
as an arc, an arrow drawn from the calling function to the called function.
Because the function relationships are presented in a tree structure,
higher-level functions normally appear on the left side of the window. They
call lower-level functions located farther to the right.

Call Tree View

Admin Views History Queries Help

List All Functions

Scoping: 233:233

Node
Arc

Figure 5-3 Call Tree View Displaying Functions and Function Calls
as Nodes and Connecting Arcs

The Static Analyzer Graph Control Panel
The Static Analyzer graph view control panel (shown in Figure 5-4) below

the query results area offers a set of controls that you can use to change the
view. They help you see query results in the form most useful to you.

Zoom menu

L 100% = [v|[| [-===] =] [1] [Z] | ouery omy |

i Incrememntal Mode

Zoom out button
Zoom in button

Alf Defined

Overview button

Multiple arcs button

Complete Tree

Realign button

Rotate button
View Options menu

Figure 5-4 The View Control Panel

75

Chapter 5: Static Analyzer: Views

Guery Only
Incremental Mode
Alf Defined
Complete Tree

Figure 5-5
View Options Menu

76

To change the scale of the call tree in the query results area to see more or less
of the tree at one time, use the zoom controls: the Zoom menu and the Zoom
Inand Zoom Out buttons. If the tree you're viewing doesn't fit entirely within
the boundaries of the query results area, you can view other parts of the tree
by using the scroll bars or clicking the Overview button and navigating in the
Overview window. By default, Call Tree View shows only a single arc
between two functions, even if the calling function calls more than once. To
see multiple calls between functions in the call tree, click the Multiple Arcs
button. After maneuvering nodes, you can return them to their default
positions by clicking the Realign button. The Static Analyzer's default tree
orientation is horizontal; the tree grows from left to right. To see vertical tree
orientation, that is, top-down (or to toggle back to horizontal), click the
Rotate button.

Call Tree View allows you to directly manipulate nodes and arcs in the query
results area. You can hide, reveal, and rearrange nodes, and you can select a
node or an arc to view either a function or a function call in the Source View
window.

For more information on the graph controls and node/arc manipulation, see
Appendix A, “Using Graphical Views,” in the ProDev WorkShop Overview.

Setting View Options

The View Options menu (at the lower right of the Call Tree View window)
has four view selections that change the number of nodes you see in the
query results area and change the way query results are cleared between
gueries (see Figure 5-5). To open the menu, move the pointer over itand hold
the left mouse button down. Drag up or down to the selection you want,
then release the button. The selections are:

“Query Only”
is the default selection. Only the target and results of each
guery appear in the query results area. Each time you make
a new query, the results of the old query are cleared before
the new results appear.

“Incremental Mode”
is useful for following a chain of function calls. In
incremental mode, the Static Analyzer doesn't erase the
results of the previous query from the query results area. It

Call Tree View

“All Defined”

adds the results of the latest query to the nodes and arcs
already on the screen, so you can incrementally build a tree
as you follow function calls. The Static Analyzer shows the
target and the results of the latest query in target and result
colors. It shows all other nodes in the non-query color so
that you can see which nodes were returned by the query
and which nodes were there before the query.

shows at all times a complete tree of all functions defined
(that is, implemented) within the fileset. When you make a
function query, the Static Analyzer shows the query target
and result nodes in target and result colors. All other nodes
appear in the non-query color, so that the query results
stand out as a subtree within the overall function tree.

“Complete Tree”

shows a complete tree at all times of all the functions known
within the fileset, whether they're defined or not. This
includes all the defined functions shown in “All Defined”
and adds any functions called but not defined. Because
these include calls to external libraries, even a small
program can generate a huge complete tree. The “Complete
Tree” selection, like the “All Defined” option, shows the
results of any queries you make by highlighting in target
and result colors, leaving all other nodes in non-query
colors.

Caution: The Complete Tree selection can easily create unmanageably large
trees for even small programs, so use it with care.

Viewing Function Definitions and Calls in Source View

To view a function definition in Call Tree View, either select the function's
node and choose “Edit Selected Item” from the Admin menu, or
double-click the function's node. The Source View window opens with the
beginning of the function definition highlighted amid surrounding code.

Call Tree View offers a Source View function not available in Text View: You
can view a function call by double-clicking an arc that connects two
functions. The Source View window shows the line of code (listed within the

77

Chapter 5: Static Analyzer: Views

78

calling function) that calls the called function. You can get the same results
by selecting an arc and then choosing “Edit Selected Item” from the Admin
menu.

Tutorial: Working in Call Tree View

This tutorial traces function calls in Call Tree View using the “Incremental
Mode” and “All Defined” viewing options. It first goes from higher- to
lower-level functions using queries, and then returns to higher-level
functions by showing parent nodes using the Node menu.

1. Move to the demo directory jello:
cd /usr/demos/WorkShop/jello

2. Make sure that no fileset and cross-reference files exist in the directory,
so that the Static Analyzer will create its own standard default files:

rm cvstatic.*
3. Start the Static Analyzer:
cvstatic &

4. Select “Edit Fileset” from the Admin menu and move the jello.c file into
the Scanner Fileset field using the Move Files Scanner button. Click OK.

This creates the fileset for this tutorial.

5. Choose “Call Tree View” from the Views menu to put the Static
Analyzer in Call Tree View.

6. Choose “Incremental Mode” from the View Options menu on the
bottom right side of the control panel to turn on the “Incremental
Mode” view option.

7. Move the pointer into the Query Target field and type main .

8. Choose “Who Is Called By” from the “Functions” submenu of the
Query menu to find the functions that main() calls.

The Static Analyzer displays a node named main on the left side of the
query results area, which displays in the target color for this scheme.
It's connected by arcs to a set of lower-order function nodes to the right,
all in the result color.

Call Tree View

9. Drag the vertical scroll bar of the query results area down until you see
the draw_everything node, then click on it to select it.

draw_everything appears in the Query Target field.
10. Move the pointer into the Query Target field, then press <Enter> .

The Static Analyzer repeats its last query using the new target and
returns draw_everything as a target node with several result nodes to its
right. The nodes from the previous query—main and its other
children—still appear in the query results area in non-query color.

11. Select the result node draw_jello, move the pointer into the Query Target
field, and press <Enter> to search for all functions called by draw_jello().

The Static Analyzer returns draw_jello as a target node with result nodes
to its right as shown in Figure 5-6. The nodes from the two previous
gueries are still in the query results area.

Activity history History — Queries Help

GQuery Target: |drau

Whe is Cafled By?: main
Who Is Called BY?: (Wi ts Called By?: draw_everything Scoping: 5:5
Whe Is Cafled By?: draw_jello

Current target

Incrememntal Mode

Figure 5-6 Incremental Mode Example

79

Chapter 5: Static Analyzer: Views

Pointer over selected node

Node menu with function name

80

12. Choose “15%” from the Zoom menu to set scaling to 15%.

The call tree reduces in size so that you can see all of the full call tree,
although the function names are too small to be readable.

13. Hold down the right mouse button over any node in the tree.

The corresponding node menu displays, and the name of the function
appears at the top of the menu. Using this method, you can see a large
part of a tree and orient yourself by displaying the node menus (see
Figure 5-7).

Admin Views History Queries Help
Query Target: swaphuffers
Who Is Called By?: draw_jello Scoping: 5:5

gexit
"B Hide Node

Incremental Mode
Figure 5-7 Displaying Node Information at Reduced Scale

14. Click a node towards the top of the call tree and choose 100% from the
Zoom menu.

This returns you to viewing at 100% and demonstrates one technique
for navigating around a large call tree.

Class Tree View

Class Tree View

Class Tree View, which you set by choosing “Class Tree View” from the
Views menu, displays a class inheritance tree containing the classes found in
C++ files in the fileset. It's not intended for nonclass elements, and it won't
show the results of function, file, and method queries, for example.

Class Tree View looks almost identical to Call Tree View. It includes a line of
text above the query results area that lists the last query and the extent of
Results Filter reductions; it shows elements in the query results area using
nodes and arcs; it offers a control panel to change the view in the query
results area. The main difference is that each node in Class Tree View
represents a class instead of a function, and each arc shows inheritance
instead of a function call. Class trees in horizontal orientation move from
superclasses on the left to subclasses on the right.

When you make class queries in Class Tree View, the Static Analyzer uses
colors in the same way that it does in Call Tree View: target color to mark
target nodes, results color to mark result nodes, and non-query color to mark
nodes not returned by the last query. The view controls also work the same
way, with one minor variation. The Multiple Arcs button has no effect
because no multiple inheritances exist in a class tree.

The selections in the Node and the Selected Node menus work the same way
they do in Call Tree View, working through parents and children of existing
nodes, but they follow class inheritance instead of a chain of function calls.
Using the Source View window in Class Tree View has one minor difference:
you can double-click a node to view source code for a class, but you can't
double-click an arc to see an inheritance.

Note: The Browser lets you gather additional information on the structure,
hierarchy, and method interactions of each C++ class in your application or
library.

File Dependency View

File Dependency View, which you set by choosing “File Dependency View”
from the Views menu, displays the include relationships between files in the
fileset. File Dependency View is similar to Class Tree View and offers the
same controls, colors, and menus. The main difference is that each node in
this view represents a file in the fileset instead of a function, and each arc

81

Chapter 5: Static Analyzer: Views

The Results Filter

82

shows the inclusion of one file by another. An arc leads from the including
file to the included file.

Although File Dependency View displays only files, it can provide useful
information when used in conjunction with other types of queries. For
example, if File Dependency View is displayed and you select “Where Used”
from the “Function” submenu, those files containing the specified function
will be highlighted.

File Dependency View is particularly useful when you are analyzing Ada
source files; it shows you the dependency between packages. If you
double-click arcs in this view, you can see where packages are imported
using the with command and also definitions where packages are brought in.

An include tree in horizontal orientation places including files on the left and
included files on the right. If you use selections from the Node and Selected
Node menus to work through parents and children of existing nodes, you
follow include relationships. A child of a node is a file included by that node;
a parent of the node is a file that includes that node.

The Results Filter is a view tool that works in all of the Static Analyzer's
views; it filters the view to show you a subset of all the results returned by a
guery. The Results Filter filters only the view of query results, not the results
themselves. For example, if a function query returns 18 functions and the
Results Filter is set to filter out 5 of them, the query results area shows only
13 functions. The Static Analyzer, however, retains the full 18 functions
returned by the query; it simply hides the 5 functions filtered by the Results
Filter. If you turn off all filters in the Results Filter, you then see the full 18
functions in the query results area.

When the Results Filter is set to filter, its filters remain turned on to affect the
view of any future queries you make. For example, if the Results Filter is set
to filter out all elements contained in header files, it does so for all queries
that follow. It removes variables found in header files from a “List All Global
Variables” query, and it removes header files from a “List All Files” query.
You must turn off the filters if you want to see the full results of a query.

The Results Filter

The Scoping line, located just above the right corner of the query results area,
tells the extent of any filtering performed by the Results Filter. It lists two
numbers separated by a colon: the first is the number of elements returned
after filtering, the second is the full number of elements returned by the
query. For example,

Scoping: 78:154

tells you that 154 elements were returned by the current query, and after
filtering, the Results Filter shows 78 of them in the query results area.
Setting Results Filters

To open the Results Filter window shown in Figure 5-8, choose “Results
Filter” from the Admin menu.

Figure 5-8 The Results Filter Window

The Results Filter has seven different scope filters. The first five filters
provide fields in which you can enter regular expressions, which allow you
to specify a literal string of characters or a wild card expression that matches

83

Chapter 5: Static Analyzer: Views

84

a set of strings. The last two filters require specific files and functions. The
filters are:

Name
filters by the Name field in Text View. The Name field can list
variables for a variable query, target functions for a function
guery, or other parts of elements, depending on the query
type.

Function
filters by the Function field in Text View. This field can list
functions called by a target function, functions that define
local variables, and other types of functions, depending on
the query type.

File
filters by the File field in Text View. This field can exclude
elements contained in specified files or show only elements
contained in specified files.

Source
filters by the Source field in Text View. This field can exclude
or constrain elements according to strings contained in lines
of source code.

Directory
filters by the Directory field in Text View. This field can
exclude elements contained in specified directories or show
only elements contained in specified directories.

Headers
filters according to whether elements are contained in a
header file or not.

External Functions
filters according to whether elements are contained in
externally defined functions or not.

Although the first five scope filters work using fields in Text View, their
results are the same in tree views such as Call Tree View. They sort by
invisible criteria in these views. For example, you can sort with the Source
scope filter in Call Tree View, even though Call Tree View doesn't show the
Source field for each function it displays.

The Results Filter

Filtering by Name, Function, File, and Source

To filter using the first five scope filters, enter a regular expression in the
appropriate text area, and then click on either the Constrain or Exclude button
following the text area. Constrain filters elements so that only those that
match the regular expression in the appropriate field are displayed in the
guery results area. Exclude filters elements so that elements that match the
regular expression in the appropriate field aren't displayed in the query
results. For example, if you enter jello.c inthe File scope filter and click the
Constrain button, the Static Analyzer displays only elements found in the file
jello.c.

To turn off filtering by any one of these five filters, delete all text from its text
area.

Filtering by Header Files and External Functions

The Headers scope filter allows three options:

Include
displays elements found in header files in addition to
elements found in other files.

Constrain
displays only elements found in header files.

Exclude

displays only elements not found in header files.

The External Functions scope filter also allows three options:

Include
displays elements found in externally defined functions
(functions defined in files outside of the fileset) in addition
to elements found in internally defined files.

Constrain

displays only elements found in externally defined
functions.

85

Chapter 5: Static Analyzer: Views

86

Exclude
displays only elements not found in externally defined
functions.

To turn off filtering by either of these two filters, click their Include button.

Combining Results Filters

You can use results filters singly or in combination to limit the elements you
see to a very specific subset of the query results. For example, you can set the
File filter to show only elements found in the file jello.c. You can then further
refine the filtering by setting the Function filter to show only elements found
in the function draw_everything(). The Static Analyzer combines these two
filters to show only elements found in the function draw_everything(), which
is contained in the file jello.c.

Using the Results Filter Buttons

The Results Filter window displays a row of four buttons across the bottom
of the window:

Apply
applies current scope settings to the query results area to
filter out elements. The Static Analyzer automatically
applies scope settings whenever you click an Include,
Exclude, or Constrain button, so you don't usually need to
click the Apply button.

Clear
clears text from all text fields and returns the bottom two
filters to the Include setting. Click on Clear whenever you
want to turn off filtering by the Results Filter.

Close
closes the Results Filter window.

Help
opens the Help window, where you can find information
about the Results Filter window.

The Results Filter

Tutorial: Using the Results Filter

This tutorial uses the Results Filter to view, in Text View, selected methods
in a fileset of C++ files. It first filters the methods by file and then filters them
further by a string found within each method's source code line.

1.

Move to the demo directory bounce:
cd /usr/demos/WorkShop/bounce

Make sure that no fileset and cross-reference files exist in the directory
so that the Static Analyzer will create its own standard default files:

rm cvstatic.*
Start the Static Analyzer:
cvstatic &

Use the Fileset Editor to create a fileset for bounce. If you need help,
refer to “Tutorial 1: Applying the Static Analyzer to Scanned Files” on
page 12

Choose “List All Methods” from the Methods submenu of the Queries
menu.

The Static Analyzer displays all methods found in the fileset. It uses
Text View. The Scoping field reads 196:196 , which means that all 196
elements returned by the query are displayed in the query results area.
Your version of bounce may be slightly different.

Choose “Results Filter” from the Admin menu to open the Results
Filter window. When it appears, drag it from on top of the Static
Analyzer window so that you can see the query results area.

Move the pointer to the File field in the Results Filter window, type
Application.h and click the Apply button.

The Static Analyzer shows only the methods found in the file
Application.h. The Scoping field shows 16:196 , which means that you
see only 16 elements of the 196 returned by the current query.

Move the pointer to the Source field, type virtual , and click the Apply
button.

87

Chapter 5: Static Analyzer: Views

The Static Analyzer further filters the view as shown in Figure 5-9,
showing only the methods found in the file Application.h, which include
the string “virtual” in their source code line. The Scoping field shows
5:196 .

9. Click the Clear button.

The Static Analyzer clears all text fields and turns off all Results Filter
filtering. All elements of the recent query return to the query results
area, and the Scoping field shows 196:196 .

10. Click the Close button to close the Results Filter window.

Admin Views History Queries Help

Query Target: | Application.h |

List All Methods Scoping: 5:196
Hame Class File Line Source
initialize Application Application.h 58 wirtual void initialize { int #, char #:
initialize Application Application.h 68 wirtual wvoid initialize { unsigned int @

handleEvents Applicat ='i Resulis Fitter
~4pplication Applicat

classMame Applicat

Mame: |

Function: |

Ok

Directory: |

Constrain < Exclude

File: |App1icat10n.h ‘

Source: | virtual

Headers Include <> Constrain < Exclude

External Functions Include <> Constrain < Exclude

Figure 5-9 The Results Filter Query Results

88

Chapter 6

Static Ana|yzer: Working on Large This chapter presents techniques for
applying the Static Analyzer to large

Programming Projects projects.

Chapter 6

Static Analyzer: Working on Large
Programming Projects

The Static Analyzer is a flexible tool. It works on uncompilable code,
analyzes filesets containing files from completely different programs, and
presents query results in a graphic form that's easy to browse through. This
same flexibility can bring unproductive results, however, if you use the
Static Analyzer carelessly on hundreds of thousands (or millions) of lines of
code that are typical of a large programming project. You must narrow your
analysis to a meaningful portion of your project, or you may commit the
Static Analyzer to spend hours to return results so extensive that they have
little meaning.

This chapter recommends techniques to help you get the best results when
using the Static Analyzer for large programming projects. It covers these
topics:

= “Creating a Fileset Using a Shell Script” to find files in separate
directories

= “Customizing the Fileset for Individual Code Modules”
« “Using the Results Filter to Focus Queries”

< “Applying Group Analysis Techniques”

91

Chapter 6: Static Analyzer: Working on Large Programming Projects

Creating a Fileset Using a Shell Script

92

Creating a fileset for a large programming project can be difficult to do by
hand because the source code files may be scattered throughout many
different directories. If so, you can use a shell script to create a fileset for you.

A Fileset Shell Script

The shell script in Example 6-1 is an example that you can modify that
searches through a list of directories for filenames with extensions that
indicate source code files

Example 6-1 Script for Creating Filesets

rm -f cvstatic.fileset
DIRS="/usr/local/src /usr/src "
EXTENSIONS="*c++ *.c *.f"
for DIR in $DIRS
for EXT in $SEXTENSIONS
do
find ${DIRS} -name "$EXT" -print >> cvstatic.fileset
done
done

The first line removes the old fileset. The DIRS second line sets the search
pattern; it assigns a list of directories you want searched to the variable
DIRS. Put the pathname of any directory you want searched in between the
guotes following DIRS, and put a space between pathnames.

The third line creates a list of the file extensions for which you want to
search. Use shell metacharacters to create list entries. In this example, the
script looks for any filenames that end in .c++, .c, or .f. To create an extension
list that looks for different extensions, use shell metacharacters to spell out
the extensions you want, and put the entries between the two quotes
following EXTENSIONS. Be sure to put a space between each entry.

The six-line nested loop at the end of the script looks through each directory
in the DIRS search path and returns any files that match the list of file
extensions in EXTENSIONS. It puts the names of all returned files into the
file cvstatic.fileset in a form that the Static Analyzer reads as a fileset.

Customizing the Fileset for Individual Code Modules

Once you create a fileset with a shell script, you should look at the fileset
before you make any queries. If you find libraries included in the fileset, you
may want to remove them so that you don’t have to analyze the internal
workings of each library function. You may also want to remove all files that
don't apply to your specific area of the project.

Customizing the Fileset for Individual Code Modules

Most programming projects are organized so that the source code is
organized in modules, with individual programmers taking responsibility
for different sets of modules. The Static Analyzer allows you to analyze each
module separately, even if the module won’t compile without other parts of
the system, so it’s wise to bring the Static Analyzer to bear only on the
modules you’re working on. You can then see your own code in detail and
see calls into other modules without having to view the contents of those
modules. You also reduce the size of the cross-reference database with which
you work, which speeds up the time the Static Analyzer takes to refresh the
database and to complete queries of the database.

Using the Results Filter to Focus Queries

Once you create a reduced fileset, you can further improve the efficiency of
your analysis by setting the Static Analyzer's Results Filter (shown in
Figure 6-1).

Two settings are particularly useful for large programming projects:
“Headers” and “External Functions.” If you set “Headers” to Exclude, you
prevent the Static Analyzer from taking the time to display query results that
come from header files. And if you set “External Functions” to Exclude, you
ensure that the Static Analyzer doesn't display query results from libraries
and other non-fileset files.

For example, consider the function foo(), which calls bar(), a function in the
fileset. It also calls XtCreateWidget(), a library function that isn’t in the fileset.
If you set “External Functions” to Exclude and then make the query “Who Is
Called By foo?”, the Static Analyzer will display only bar().

93

Chapter 6: Static Analyzer: Working on Large Programming Projects

©

Mame:

@

Function:

©

File:

@

Directory:

Source:

@

Headers Include <> Constrain < Exclude

External Functions Include <> Constrain < Exclude

Figure 6-1 Results Filter

Although the Results Filter doesn't reduce the time the Static Analyzer takes

to make a query, it does reduce the time it takes to display the results, a
substantial gain if you're using a tree view to display the results of
comprehensive queries.

Applying Group Analysis Techniques

94

Although it's good practice for individual programmers to limit the amount
of source code they analyze with the Static Analyzer to just the modules for
which they’re responsible, sometimes it's useful to analyze all the files in the
programming project. For example, library programmers may want to know
every function that calls a specific library function; that way, they know what

software is affected by changes they make to the library function.

For this and similar cases, you should create a comprehensive
cross-reference database on a project workstation as shown in Figure 6-2.
This arrangement allows users on personal workstations to query the
extensive project database without actually creating the database.

Applying Group Analysis Techniques

Personal workstation

Static Analyzer
|

Personal fileset and

Project workstation

cross-reference

Static Analyzer database

Project fileset and NFS mount Personal workstation
cross-reference /

database

Static Analyzer

Personal fileset and

cross-reference
database

Figure 6-2 A Project Cross-reference Database

Setting Up a Project Database

To create a project cross-reference database, you first need a comprehensive
fileset for the programming project. To maintain consistency, the
programmer in charge of checking in files for builds should make and
maintain the fileset. If the source tree uses a consistent set of directories, the
build programmer can use a shell script like the example earlier in this
chapter to update the fileset automatically.

Once the fileset is up to date, the build programmer creates a cross-reference
database. Because it can take a long time to create a cross-reference database
for a large programming project, you can save time by using the -batch
command-line option when you start the Static Analyzer. It runs the Static
Analyzer in the background, keeps the Static Analyzer window from
opening, and reduces the time necessary to create a cross-reference database.

95

Chapter 6: Static Analyzer: Working on Large Programming Projects

96

It may be useful to run the Static Analyzer in batch mode on the server once
a night. This provides a fresh database for programmers who wish to query
it from their own workstations. To protect the shared database from
automatic modification by outside users, be sure that read and write
permissions for all four Static Analyzer files on the server—cvstatic.fileset,
cvstatic.xref, cvstatic.index, and cvstatic.posting—deny write access to outside
users.

Querying a Project Database

To query a project database from a personal workstation, you must first
mount the project database in a local directory using NFS (the Network File
System). You then start the Static Analyzer using command line options to
specify the project fileset and to set the Static Analyzer to read only so that it
won’t try to modify the project database. For example, this command starts
the Static Analyzer, sets it to read-only, and directs it to the project fileset,
which is NFS-mounted in the directory /project:

cvstatic -readonly -fileset /project/cvstatic.fileset

The first command-line option, -readonly , sets the Static Analyzer so that it
won’t try to rebuild the project database at any time. The second
command-line option, -fileset , sets the fileset to cvstatic.fileset, which is
NFS-mounted in the directory /project.

When you make queries on a large project database, use caution and
common sense. Comprehensive queries such as “List All Functions” won’t
yield useful results—few people find it truly useful to see every function in
millions of lines of code displayed at one time. Comprehensive queries like
this may also take a good deal of time to complete. You’ll find it much more
productive to take a task-oriented approach when querying. Ask what you
really need to know in the project, then make the most specific query that
answers your questions. For example, if you get a bug report on a function,
you might use specific queries such as “Where Defined”, “Who Calls”, or
“Who Is Called By” to get the information you need about that function.

Applying Group Analysis Techniques

Viewing Suggestions

If you do need to make comprehensive queries on a large database, consider
using Text View for your queries. Because Text View doesn't require the
Static Analyzer to build a tree containing thousands of elements, it's much
faster at displaying the results of a comprehensive query than any of the tree
views.

Text View doesn't show connections between calling and called functions in
the query results area, but you can easily follow a chain of functions. First,

click a function name you want, then press <Alt-B> to see which functions
it calls, or press <Alt-C> to see which functions call it.

Tree views show relationships between query elements more clearly than
text view, so you may want to use tree views to display the results of some
gueries. If so, you can reduce the time the Static Analyzer needs to display
tree view results by observing a few limitations.

First, don't use either the “All Defined” or the “Complete Tree” view
options, which display a huge set of elements in the query results area no
matter how limited a query you make. Use the “Query Only” and
“Incremental Mode” view options to restrict the number of elements
displayed for each query.

In Incremental Mode, you can build a tree from scratch by making very
specific queries that identify and then follow only the branch of the tree in
which you’re interested. For example, you may want to follow a chain of
function calls starting with main(). If so, start with the query “Who Is Called
By main?”. Find a function among those called that you want to follow, then
guery the Static Analyzer for the functions called by that function. As you
continue through the call chain, the Static Analyzer displays only the branch
of the call tree that applies, not the entire tree.

97

Chapter 6: Static Analyzer: Working on Large Programming Projects

98

You should also consider viewing query results in a tree view that offers
coarser resolution than you normally use. For example, File Dependency
View displays file elements, each of which may contain many functions. This
is a much coarser view of the database than that offered by Call Tree View,
which displays functions individually in function elements. If you make a
query such as “Who Calls”, while in File Dependency View, the Static
Analyzer shows you each file that contains called functions. You can then
open the Source View window for one of those files; it highlights each called
function in its display area. The same query in Call Tree View would show
you each called function in tree form, but would probably require many
more elements to show query results and would take much longer to return
results.

Part 11
The Browser

Getting Started with the Browser

This chapter describes the Browser,
the portion of the Static Analyzer that
shows specific C++ and Ada
relationships.

Chapter 7

Getting Started With the Browser

This chapter is designed to introduce you to the Browser, a facility accessed
from the Static Analyzer for performing object-oriented queries. It tells you
what you need to run the Browser, shows you how to start it, and presents a
brief overview of its main window and menus. To see examples of the
Browser, see Chapter 8, “Using the Browser for C++: A Sample Session,” and
Chapter 9, “Using the Browser for Ada: A Sample Session.” If you need
specific reference information on any part of the Browser’s user interface, see
Chapter 10, “The Browser Reference.”

This chapter contains the following sections:
= “Starting Browser View”

e “General Characteristics of the Browser”

103

Chapter 7: Getting Started With the Browser

Starting Browser View

104

After you have created a fileset and built a static analysis database, you are
ready to make object-oriented queries using the Browser. To access the
Browser, open the Admin menu in the Static Analyzer and select “Browser.”
The Browser View window appears, along with a chooser window called
Browsing Choices, as shown in Figure 7-1.

Admin

Current 5| Admin View Help

Double—click to view details in browser view
Kind Mame Abstract Delta Template

Figure 7-1 Browsing Choices Dialog Box

The Browsing Choices window lets you select an item from the fileset to be
displayed in Browser View: either a class if you are using C++; or a package,
task, or tagged type, if you are using Ada. The Browser View then displays
detailed information on that item.

General Characteristics of the Browser

General Characteristics of the Browser

The Browser View window shows you the internal structure and relations of
the item you select in a textual, outline format. You can also select
components of the item and perform queries on them. The results to queries
are highlighted in Browser View and can also be displayed in the Static
Analyzer. Browser View can display the contents of C++ and Ada entities.
This section describes the features of the Browser common to both
languages. For the language-specific characteristics, see Chapter 8, “Using
the Browser for C++: A Sample Session,” and Chapter 9, “Using the Browser
for Ada: A Sample Session.”

Some features of the Browser are common to both the C++ and Ada versions.
See Figure 7-2.

105

Chapter 7: Getting Started With the Browser

e Sl

Show Inheritance Graph Cirfr} Show Previous Subject Ciri+P What Is Declared Cirfed Helation Display "
Show Comtainment Graph Cirf+O Show History CirfrH What Is Defined Cinfr £ Member Display "
Show Inferaction Graph Cinfr T What Is Ovepridden By Cirl+R Member Alignment »
Show Friend Graph CirfrF What is Pure Virtual Member Double Click »
Show Call Graph Cirf+A What instaniiates

What Destrovs
What Uses [
What Is Instantiated

Change Current Subject Ciri+lf What Is Used >

Another Browser View Cirfr i/
Close Browser View
Generate Man Pages...

Generate Web Pages...
[Exit Browser CHrieX Admin Views History Queries Preference Help

Current Subject: _ Show in Static Analyzer: [_] No -l

Query display area

Toggle for displaying results
in the Static Analyzer

1 1
Member list area Relations list area

Figure 7-2 Browser View Features

Browser View Outline Lists

The Browser displays its data in outline lists in two side-by-side panes in the
Browser View window. The lists are in a hierarchical, expandable outline
format organized by category. The left pane displays an individual entity
and its internals; the right pane displays other items to which that entity is
related. When you are looking at C++ code, Browser View displays
individual classes and their members in the left pane, and related classes and
members in the right pane. The Ada version displays individual packages

106

General Characteristics of the Browser

and their components on the left, and related packages and components on
the right.

Outline Icons

An outline icon is a diamond-shaped, concave icon. It appears to the left of
component categories in the lists displayed in the Browser. An outline icon
is used to expand or collapse a category. The icon contains an arrow pointing
downward if the category is expanded (all items displayed) or to the right if
the category is collapsed (all items hidden). Clicking the arrow switches
back and forth between collapsing and expanding the category. A
right-pointing outline icon that appears filled indicates that one or more of
the hidden items satisfy the current query. Figure 7-3 illustrates these
conditions.

Collapsed list
with no query matches

Collapsed list
with query matches

oid widgetDestroyed (void);

Figure 7-3 Outline Icon Examples

Browser View Menus

Browser View provides these menus:
= Admin menu—for general housekeeping

= Views menu—for displaying relationships in a graphical format. You
can request four variations of class graphs available based on these
relationships:

107

Chapter 7: Getting Started With the Browser

108

— inheritance, which describes the relationship of parent classes to
derived classes (C++), and parent tagged types to derived tagged
types (Ada).

— containment, which describes the relationship of container classes to
the classes they contain.

— interaction, which describes the relationship of classes using
methods of other classes.

— friends, which describes the relationship of classes declaring other
classes as friends.

You can also request a call graph to view the relationships of selected
methods or functions.

= History menu—for going back to a previous Browser activity

= Queries menu—for performing queries on the current item. (Note that
you can also perform queries on a selected element in either pane by
holding down the right mouse button. These popup queries menus
have different selections depending on the type of element.)

= Preference menu—for changing the appearance of the display and the
behavior enacted by double-clicking with the mouse

Other Browser Window Features

The Current Subject field displays the name of the item you have selected. Its
label indicates the kind of item being displayed. Note that the Current Subject
field provides a form of file completion; if you enter the partial name of an
item and then press the space bar, the name will be completed up to the point
that a unique string can be found.

The Show in Static Analyzer toggle lets you display the results of any queries
in the Static Analyzer window. the Static Analyzer shows more detail,
including source information, than the Browser View does.

The Last Query button lets you display the result of the previous query to the
Static Analyzer.

The Browser has annotated scroll bars. This means that when you perform a
query, tick marks will appear in the scroll bars (if there are any) to indicate
matching elements.

Chapter 8

Usi ng the C++ Browser: This chapter provides a tutorial to

introduce you some major features in

A Sample Session the C++ Browser.

Chapter 8

Using the Browser for C++: A Sample Session

This chapter guides you through an interactive sample session that
demonstrates the main features in the C++ Browser. The session outlines
common tasks you can perform with the Browser, using sample C++ source
code to illustrate the use of each function. For complete reference
information on the Browser user interface, see Chapter 10, “The Browser
Reference.”

This chapter contains the following sections:

= “Setting Up the Sample Session”

= “Understanding the Browser Window”

< “Expanding and Collapsing Categories”

= “Making Queries”

« “Using the Browser Graphical Views”

= “Shortcuts for Entering Subjects”

= “Generating Man Pages”

= “Generating Web Pages”

111

Chapter 8: Using the Browser for C++: A Sample Session

Setting Up the Sample Session

112

The demonstration directory, /usr/demos/WorkShop/bouncentains the
complete source code for the C++ application bounce. To prepare for the
session, you must create the fileset and static analysis database, then launch
the browser from the Static Analyzer.

Prepare for the session by following these steps:

1. Open a shell window, change to the /usr/demos/WorkShop/bounce
directory, and start the Static Analyzer by entering cvstatic

The Static Analyzer window opens.
2. Select “Browser” from the Static Analyzer Admin menu.

This starts the Browser if a parser mode static analysis database has
already been built. If none is available, an error message appears, and
you must specify a parser mode fileset as shown in Figure 8-1. Then
you need to select “Browser” from the Admin menu again. This causes
a new database to be built using parser mode, and takes several
minutes to complete.

Setting Up the Sample Session

1. Click the C++ button to select

=| Fifeset Editor

Browsing Directory: Current Fileset:
| Jusr/demos Maorkshop/bounce | | cvstatic.fileset |
Directories Parser Fileset
tdowve Directory I—
Parser [»]
Scanner E
M
[N
y o
Files [¥]Transfer Files[4]
- hMove Files
Scanner Fileset
Parser ’H
Scanner Eﬂ F
o
[[

all C++ files in the directory.

2. Click the Move Files Parser button

OAda OC §C++ [Fortran [Literal Input

to indicate they are to be parsed.
3. Click OK to complete the specification.

I

Figure 8-1 Steps in Specifying a Parser Fileset

The Browsing Choices chooser window opens at the same time as the
Browser View window so that you can select the first class. The
Browsing Choices chooser window contains the complete list of C++
classes included in the current fileset. Locate the Actor class in the
chooser window. See Figure 8-2.

113

Chapter 8: Using the Browser for C++: A Sample Session

114

Actor class

Admin

Current S | Admin View

Double—click to view details in browser view
Kind Mame Abstract Delta Template

Figure 8-2 Initial Browser Display With Item Selected

Understanding the Browser Window
3. Double-click the Actor class in the chooser window.

The Browsing Choices window closes, and the data for Actor now
appears in the Browser View window. The class name Actor is
displayed in the Current Subject text field. Information about the class
appears in the outline list views in the side-by-side panes (see

Figure 8-3). Actor is now the current subject (class).

Setting Up the Sample Session

Member list

Outline icon indicating
collapsible category

Outline icon indicating __|

expandable category

= Browser liew

Admin

Views History Queries

Actor

C++ Class

~ PUBLIC
v INSTANCE
~ METHODS

v VIRTUAL METHODS
nextFrame

> PROTECTED

Figure 8-3

Preference

Show in Static Analyzer: Mo
Static Analyzer
toggle

v BASE CLASSES Relations list

<=This

v DERIVED CIASSES
EouncingBall
Engine

v USES
Stage

v USED BY
AddBallCmd
AddEngineCmd
EouncingBall
Engine
Stage

Browser View With C++ Data

4. Look at the Browser window.

The member list in Browser View is on the left. It displays members
according to their accessibility: PUBLIC, INSTANCE, or PRIVATE.

Each kind of member can be STATIC or INSTANCE (non-static). Static
objects of a given class contain the same value for a given member.
INSTANCE members can contain different data values in different
instances of that class.

The member pane displays four kinds of class members: TYPES, DATA,
METHODS, and VIRTUAL METHODS.

The relations list displays information on related classes and methods,
based on the point of view of the current class: BASE CLASSES,
DERIVED CLASSES, USES (classes that the current class uses), USED
BY (classes that the current class is used by), FRIENDS, FRIEND
FUNCTIONS, and FRIEND OF relationships.

The layout of the both list displays are customizable.

115

Chapter 8: Using the Browser for C++: A Sample Session

116

Expanding and Collapsing Categories

Click the outline icon to the left of the Protected category (see
Figure 8-3).

This displays the elements in the Protected category and causes the
arrow in the outline icon to point downward.

Click the outline icon to the left of the Protected category again.

This hides the elements and causes the arrow in the outline icon to
point to the right again.

Making Queries
Click the Queries menu and examine it.

To learn details about the structure of your C++ code, you make
queries—predefined questions—about the current class’s members and
related classes. A query provides a focused view of a large, complicated
class structure from the viewpoint of any class or member.

Queries search the static analysis database for specific information
about classes and their members, including class hierarchy, class and
member declarations and definitions, and the interactions among
members and classes (for example, which members call which
members, where a definition overrides another, where an instance is
created or destroyed, and so on).

The C++ Browser provides two types of Queries menus:

= Queries menu—accessed from the menu bar, its queries apply to
the current class

= Element-specific popup menus—Accessed by holding down the
right mouse button while the pointer is over the selected element
you wish to query

The Browser provides answers to queries by highlighting items in the
member and related class lists that match the query. Optionally, you can
display more detailed query results in the Static Analyzer window from
which you launched the Browser.

Setting Up the Sample Session

Click the Show in Static Analyzer toggle button shown in Figure 8-3.

This button lets you view the results of queries in the Static Analyzer
window along with the Browser window. The Static Analyzer window
has the advantage of showing source lines for your queries.

Select “What Uses” from the Queries menu and “To Contain” from its
submenu, as shown in the top part of Figure 8-4.

The Queries menu in the menu bar lets you request relationship
information for the current class. In addition to highlighting the
matching elements in the list, the Browser displays indicator marks in
the scroll bar showing the relative locations of matching elements. Also,
the query is identified in the field over the outline list area. If you click
on an indicator mark, you'll scroll directly to the matching element. See
the lower part of Figure 8-4.

Since you turned on the Static Analyzer toggle, the results are shown
there as well, including the file, line number, and source line for the
classes containing Actor. See Figure 8-5.

117

Chapter 8: Using the Browser for C++: A Sample Session

Browser before query

Queries menu with
selection

Browser after query i

Query type
and target

Scroll bar indicators

Stage

AddEallCmd Query matches
AddEngineCmd

Figure 8-4 Performing a Query on Current Class

118

Setting Up the Sample Session

Admin Views History Queries Help

Guery Target: | |

Locate containers of Actor Scoping: 3:3
Member Class Line Source

Figure 8-5 Static Analyzer After Browser Query

10. Select the constructor method in the Methods category, hold down the
right mouse button, and select “Show Source Where Declared.” See
Figure 8-6.

This displays the Queries menu specific to methods. In this case, the
guery lets us see the source code where it is declared. Source View now
displays with the matching code highlighted.

11. For practice, try a few random queries.
12. Click the Last Query button in Browser View.

Clicking this button displays the results of the most recent query in the
WorkShop Static Analyzer window from which the Browser was
launched.

119

Chapter 8: Using the Browser for C++: A Sample Session

Admin Views History Queries Preference

C++ Class Actor Show in Static Analyzer: Mo

v PUBLIC v BASE CIASSES
v INSTANCE <==This
v METHODS v DERIVED CLASSES
Selected method —constructor-=—fctor (Sinan ¥ BouncingBall
v VIRTUAL MET! . " ~ Engine
vold (ueries on Methods SES
——destructor- L 5 Stage
> PROTECTED that Is Used SED BY
AddBallCn
AddEngineCmd
EouncingBall
at Currently Defines Engine
Defines Stage

ragh
Method-specific

Queries menu vhat Declares

File Display

Source View after Browser query

Figure 8-6 Performing a Query on an Element in a List

120

Setting Up the Sample Session

Using the Browser Graphical Views
Now look at the graphical views supplied by the Browser.

13. Select “Show Containment Graph” from the Views menu in the
Browser window.

The Graph Views window is displayed, set to Containment as shown in
Figure 8-7. You can switch to other relationship modes through the
relation mode menu.

Admin Views

AddBallCmd

Relation mode

Containment menu

Figure 8-7 Graph Views Window in Containment Mode
14. Pull down the Views menu, select “Show Butterfly,” and resize the
Graph Views Window to be smaller.

This eliminates extraneous classes from the graph, displaying only
those classes that Actor contains or is contained by. Now compatre the
graph with the query results shown in the Browser.

121

Chapter 8: Using the Browser for C++: A Sample Session

122

Admin Views History Queries Preference

C++ Class Actar Show in Static Analyzer: Mo

Add call graph for —constructor-= Actor(Stage™); ?

v PUBLIC v BASE CIASSES
v INSTANCE <==This
v METHODS v DERIVED CLASSES
—constructaor—= Act . BouncingBall
v VIRTUAL METHODS Engine
; ' v USES
——destructor—=] 1 Stage
> PROTECTED v USED BY
AddBallCmd
AddEngine
Enuncing

Admin Views

Containment

Figure 8-8 Comparison of Data Displayed in Browser With Data Displayed in
Containment Graph

15. Select “Inheritance” from the relation mode menu (see Figure 8-7).

This shows the inheritance relationships; in this case, the derived
classes BouncingBall and Engine inherit from Actor, as shown in
Figure 8-9.

Setting Up the Sample Session

Admin Views

Inheritance

Figure 8-9 Graph Views Window in Inheritance Mode

16. Select “Interaction” from the relation mode menu.

This displays the classes that directly interact with Actor. Those that use
Actor appear on the left, and those that are used by Actor appear on the
right.

Admin Views

Imteraction

Figure 8-10 Graph Views Window in Interaction Mode

Shortcuts for Entering Subjects

17. Go back to the Browser window, clear the Current Subject field, and type
a question mark (?), followed by <Enter>.

123

Chapter 8: Using the Browser for C++: A Sample Session

18.

This is a shortcut for displaying the Browsing Choices window. Instead
of selecting through the Browsing Choices window, we’re going to
demonstrate how name completion works.

Type Main and press the space bar.

The Browser fills in the rest of the name, MainWindow in this example,
and its data.

Generating Man Pages

The Browser generates reference page templates from your classes so
that all you have to do is fill in the descriptions and provide comments.
To create reference pages for classes in the fileset, follow these steps:

19. From the Browser View Admin menu, select “Generate Man Pages.”

Man page directory area —

Control area

Class display area

The Man Page Generator window opens, as shown in Figure 8-13.

tdan Page Directory:

Set Directory " Jusr/demos,/WaorkShop/bounce [

Warn Overwrite: %] Yes ‘ Select All ” Unselect All ” Generate ” Yiew |

s

Figure 8-11 Man Page Generator Window

124

You can specify the target directory in the area at the top of the window,
either directly in the Man Page Directory field, or by browsing in the
dialog box displayed by clicking the Set Directory button. The control
area lets you receive warnings if a man page already exists, select or
unselect all classes, generate new man pages, and display shells
showing the new man pages.

Setting Up the Sample Session

20. Click the Select All button in the control area.

This selects all the classes in the class list. If you need only a subset of
the list, simply click the desired classes. If you change your mind, you
can remove any current selections by clicking the Unselect All button.

21. Click Generate.
Wait for a few seconds while your files are generated.
22. Click View to view the output files.

A winout window containing the man page text opens, as shown in
Figure 8-12. You can edit this file using a text editor, such as vi.

= winout =[]

CmdInter 3w M L Y CmdInter

NAME

Figure 8-12 Man Page Template

23. Close the winout window using the window menu in the upper left
corner.

125

Chapter 8: Using the Browser for C++: A Sam

ple Session

24

Generating Web Pages

The Browser also lets you generate web pages, that is, documentation
in HTML format compatible with World Wide Web readers.

. From the Browser View Admin menu, select “Generate Web Pages.”

The Web Page Generator window opens, as shown in Figure 8-13.

Web Page Directory:

Web page directory area —

Set Directory " Jusr/demos,/WaorkShop/bounce [

Control area

Warn Overwrite: %] Yes ‘ Select All ” Unselect All ” Generate ” Yiew |

Class display area

s

Figure 8-13 Web Page Generator Window

25.

126

This window operates analogously to the Man Page Generator
window. You specify the target directory by typing directly in the Web
Page Directory field, or by browsing in the dialog box that comes up
when you click the Set Directory button. The control area lets you
receive warnings if a web page already exists, select or unselect all
classes, generate new web pages, and display a shell showing the new
web pages.

Click the Select All button in the control area.

This selects all the classes in the class list. If you need only a subset of
the list, simply click the desired classes. If you change your mind, you
can remove any current selections by clicking the Unselect All button.

Setting Up the Sample Session

26. Click Generate.
Wait for a few seconds while your files are generated.
27. Click View to view the output files.
You’ve reached the end of the sample session. You can exit both the Static

Analyzer and the C++ Browser by pulling down the Static Analyzer Admin
menu and choosing “Exit.”

127

Chapter 9

Using the Browser for ADA:
A Sample Session

This chapter describes in detail the
common tasks you can perform with
the Browser, using example Ada
application.

Chapter 9

Using the Browser for Ada: A Sample Session

This chapter guides you through an interactive sample session that
demonstrates the main features in the Ada Browser. The session outlines
common tasks you can perform with the Browser, using example Ada
application source to illustrate the use of each function. For complete
reference information on the browser’s user interface, see Chapter 10, “The
Browser Reference.”

This chapter contains the following sections:

= “Setting Up the Sample Session”

« “Starting the Browser”

= “Understanding the Browser Window”

= “Making Queries”

« “Using the Browser Graphical Views”

= “Shortcuts for Entering Subjects”

Note: The features described in this chapter are available only if you have
purchased the ProDev Ada package.

131

Chapter 9: Using the Browser for Ada: A Sample Session

Setting Up the Sample Session

132

The demonstration directory, /usr/demos/Ada/WorkShop/tagged_example
contains the complete source code for a simple Ada application called
tagged_example. To prepare for the session, you first need to create the fileset
and static analysis database.

Prepare for the session by following these steps:

1. Open a shell window, and change to the
/usr/demos/Ada/WorkShop/tagged_exampldirectory. Start the Static
Analyzer by entering cvstatic

The Static Analyzer window opens. You need to create a new fileset
using parser mode.

2. Pull down the Admin menu and select “Edit Fileset...”.

To create a parser mode fileset for this example, follow the instructions
shown in Figure 9-1. It takes several minutes to build the database from
the fileset.

Setting Up the Sample Session

=| Fileset Editor

Browsing Directory: Current Fileset:

| Jusr/demosMWorkShop/bouncing_balls | cvstatic.fileset |

Directories Parser Fileset

Move Directory

E O
Parser E
Scanner [
]
5 .
=

[= | |
I Inglude Subdirectories —

Files ETransf&r Filesm

bouncing_balls.adb Move Files Scanner Fileset
gl.ads
soi_gnarl_dbg.adb Parser [i] F

sgi_gnarl_dbg.ads Scanner [a
sgi_pthread dbg.adh

sgi_pthread dbg.ads

[T e |

1. Click the Ada button to select
all Ada files in the directory. W Ade O ¢ O ces O Foriran [Literal Input
2. Click the Move Files Parser button

to indicate they are to be parsed.
]

3. Click OK to complete the specification.

Figure 9-1 Steps in Specifying a Parser Fileset

3. When the fileset is built, select “List All Packages” from the “Packages”
submenu in the Queries menu.
This displays all the packages in the fileset.

4. Select “List All Tagged Types” from the “Types” submenu in the
Queries menu.

This displays all the tagged types in the fileset.
5. Select “List All Files” from the “Files” submenu in the Queries menu.

This displays all the source code files in the fileset.

133

Chapter 9: Using the Browser for Ada: A Sample Session

6. Pull down the Views menu and select “File Dependency View.”

File Dependency shows you the dependency between packages
(packages are defined one to a file). If you double-click arcs in this view,
you can see Where packages are imported using the with clause and also
definitions where packages are brought in.

Admin Views History Queries Help

List All Files Scoping: 6:6

Figure 9-2 File Dependency View Example

Starting the Browser
7. Pull down the Static Analyzer Admin menu and select “Browser.”

This displays the Browser View window and the Browsing Choices
chooser window, which is used to select subjects for browsing. The
Browsing Choices chooser window contains the complete list of Ada
entities (packages, tagged types, and task types) included in the current
fileset. See Figure 9-3.

134

Setting Up the Sample Session

Admin Views History Queries Preference

Current Subject: Show in Static Analyzer:

Admin View
Double—click to view details in browser view

o Mame

Parent package

Figure 9-3 Initial Browser Display With Item Selected

Understanding the Browser Window

8. Double-click the parent package in the chooser window.

The Browsing Choices window is lowered, and the data for parent now

appears in the Browser View window (see Figure 9-4). The subject

parent is now displayed in the Current Subject text field and is identified

as an Ada package. Information about Ada entities appears in the

outline list views in the side-by-side panes.

135

Chapter 9: Using the Browser for Ada: A Sample Session

[ETECT iz |

Admin

Views

History Queries Preference Help

Ada Tagged Type_ Show in Static Analyzer: Mo -l
|

| Static Analyzer

Member pane

toggle
+—— Relations pane

F|
|

136

Figure 9-4 Browser View With Ada Data

9.

10.

11.

Observe the Browser window.

The member pane in Browser View is on the left. It displays “members”
according to their accessibility: SPEC PUBLIC, SPEC PRIVATE, or
BODY.

The member pane displays these kinds of Ada members: DATA, TYPE,
FUNCTIONS, ENTRIES, and PRIMITIVE OPERATIONS.

The relations pane displays information on related Ada entities, based on
the point of view of the current subject: PARENTS and DERIVED.

You can customize the layout of both list displays.

Click the outline icon to the left of the FUNCTIONS category (see
Figure 9-4).

This collapses the category, hiding the items. Outline icons with
right-pointing arrows indicate that a category in the list is expandable,
that is, that elements in the category are hidden from view.

Click the outline icon again to display the items.

Setting Up the Sample Session

12.

13.

Making Queries
Click the Queries menu and observe it.

To learn the details about the structure of your Ada code, you make
queries—predefined questions—about the current subject’s members
and related entities. Queries are a focused view of a large, complicated
structure from the viewpoint of any Ada entity.

Quieries search the static analysis database for specific information
about subjects and their members. The Browser provides two types of
Queries menus: a menu for the current subject that you access from the
menu bar, and element-specific menus that you access by holding
down the right mouse button while the pointer is over the selected
element you wish to query. The Browser answers queries by
highlighting items in the member and related class lists that match the
guery. Optionally, you can display more detailed query results in the
Static Analyzer window from which you launched the Browser.

Select “What Is Declared” from the Queries menu.

The Queries menu in the menu bar lets you request relationship
information for the current subject. In addition to highlighting the
matching elements in the list, the Browser displays indicator marks in
the scroll bar showing the relative locations of matching elements. Also,
the query is identified in the field over the outline list area. If you click
on an indicator mark, you'll scroll directly to the matching element. See
Figure 9-5.

137

Chapter 9: Using the Browser for Ada: A Sample Session

Browser before query

Queries menu with
What Is Declared Cirf+l : selection
Browser after query l

Query type
and target

id new_to_parent (parent); St Scroll bar indicators
Query
matches —

oid overridable parent);

Figure 9-5 Performing a Query on Current Class

Accessing Source Code

14. Select the new_to_parent function, hold down the right mouse button
over it, and choose “Show Source Where Declared.”

This displays Source View containing the source code where
new_to_parent is declared. See Figure 9-6.

138

Setting Up the Sample Session

oid overridable parent);

Zhow Zource Where Declared

Figure 9-6 Accessing Source Code From Browser View

Using the Browser Graphical Views

15. Pull down the Views menu in the Browser window and select “Show
Inheritance Graph.”

139

Chapter 9: Using the Browser for Ada: A Sample Session

The Inheritance Graph window is displayed, as shown in Figure 9-7.
You can switch to other relationship modes through the relation mode
menu.

Admin Views

Graphical display area

Relation menu

Figure 9-7 Inheritance Graph Example

Shortcuts for Entering Subjects

16. Go back to the Browser window, clear the Current Subject field, type a
guestion mark (?), and press <Enter>.

This is a shortcut for displaying the Browsing Choices window. Instead
of selecting through the Browsing Choices window, however, follow
this tutorial to see how name completion works.

17. Type grand and press the space bar.
The Browser fills in the rest of the name (grandparent in this example)
and its data.

This is the end of the sample session. You can exit both the Static Analyzer
and the Ada Browser by choosing “Exit” from the Static Analyzer Admin
menu.

140

Chapter 10

Browser Refe rence This chapter describes in detail the

function of each window, menu,
keyboard accelerator, and display in
the Browser user interface.

Chapter 10

The Browser Reference

This chapter describes all of the windows and features associated with the
Browser. For tutorials demonstrating how the Browser is used, refer to
Chapter 8, “Using the Browser for C++: A Sample Session,” and Chapter 9,
“Using the Browser for Ada: A Sample Session.”

This chapter contains the following sections:

« “Browsing Choices Window”

e “Browser View Window”

“Graph Views Window”
“Call Graph Window”

143

Chapter 10: The Browser Reference

Browsing Choices Window

The Browsing Choices window lets you select items to be browsed from a list
derived from the fileset in the Browser View window. Double-clicking an
item in the selection list causes the Browser View window to be raised
(moved to the front) with the chosen item as the current subject for analysis.

Admin View Help
Double—click to view details in browser view
Column headings Kind Name Abstract Delta Template
Selection list

Figure 10-1 Browsing Choices Window

Browsing Choices Window for C++

With C++ code, the Browsing Choices window displays one column to
indicate the kind of item, a column to identify the item, and three columns
indicating properties, as follows:

= Kind—classes, template definitions, and template instances
= Name—the name of the item

= Abstract—abstract property: concrete (blank), abstract by declaration, or
abstract by inheritance

144

Browser View Window

Browser View Window

= Delta—delta property: dynamic, internal dynamic, or non-dynamic
(blank)

= Template—template property: specific definition, partial instantiation, or
normal (blank)

The Browsing Choices window provides a facility for sorting items by
column. To do this, click in the column you wish to sort on and select “Sort”
from the Admin menu.

Browsing Choices Window for Ada

If you’re using Ada, the Browsing Choices window displays packages, tasks,
and tagged types in the Kinds column. The properties columns are not used
in Ada and appear blank. You can sort the items by kind or name by clicking
in the appropriate column and selecting “Sort” from the Admin menu.

Note: These features are available only if you have purchased the ProDev
Ada package.

Browser View is the primary Browser window (see Figure 10-2). It opens
when you select “Browser” from the Admin menu of the WorkShop Static
Analyzer, but does not display data until you select an item from the list in
the Browsing Choices window. Browser View displays internal and related
information for elements in Ada and C++ programs. The information is
presented in hierarchical lists shown in outline format.

Browser View lets you perform a variety of static analysis database queries,
depending on your current work context. Queries concerning the current
subject are accessed from the Queries menu in the menu bar. You can also
make queries specific to the selected elements in the list area by holding
down the right mouse button to display a popup Queries menu specific to
that type of element. The results of queries are indicated by highlighting
matching elements in the Browser View window. Matching results are also
highlighted in Source View, if itis displayed; and in the Static Analyzer, if the
Show in Static Analyzer toggle is turned on (see “Show in Static Analyzer
Toggle” on page 147).

145

Chapter 10: The Browser Reference

Current subject

You can also launch graphical views showing hierarchies and call graphs
from the Browser View window. In addition, you can generate reference
pages and web pages from Browser View.

Static Analyzer

Current subject kind

Query identification area
Member list area

Admin Views History Queries Preference Help toggle
C++ Class _ Show in Static Analyzer: ﬁ Mo -l L Last Query button
What uses methods of Actor ? o classes|| — Query matches

I — Relations list area
—— Selected element

Qutline icon

146

— Match indicator

BoundingBal Element matching
— query

AddBallCmd
AddEngineCmd

|

]
| |
Sash Annotated scroll bar

Figure 10-2 Browser View Window Elements

Current Subject Field

The Current Subject field indicates the kind and name of the element to be
analyzed. It is directly below the menu bar (see Figure 10-2). The label on
this field is initially Current Subject. To analyze an element, you can type
directly into this field (or select from the Browsing Choices window). The
label changes according to the kind of element you select. You can enter the
following kinds of elements:

e C++class
e C++template definition
e C++template instance

= Ada package (with ProDev Ada only)

Browser View Window

* Ada task (with ProDev Ada only)
< Adatagged type (with ProDev Ada only)

Name Completion

If you type a partial string and then press the <space bar>, the Browser
attempts to complete the element name by searching the fileset. A beep
indicates that more than one matching name exists. If a match is made, press
the <Enter> key to make the change effective.

Changing Subject Using “?”

If you type a question mark (?) into the Current Subject field, the Browsing
Choices window opens. You can select a new item by double-clicking a name
in the selection list.

Show in Static Analyzer Toggle

The Show in Static Analyzer toggle is directly to the right of the Current Subject
field (see Figure 10-2). When the toggle is set (a check mark and the label Yes
appear), the results of all queries are displayed in the WorkShop Static
Analyzer window from which the Browser was launched, including the file,
line number, and source line for the matching items. If no results are found
and the Static Analyzer window is open, it comes to the front with an error
message.

Last Query Button
The Last Query button is at the top right of the window, directly beneath the
Help menu (see Figure 10-2). Clicking this button displays the results of the

most recent query in the WorkShop Static Analyzer window from which the
Browser was launched.

147

Chapter 10: The Browser Reference

148

Browser View Query ldentification Area

The Browser View query identification area is directly above the list area (see
Figure 10-2). This area displays the most recent query as a sentence
containing both the query question and the name of the object of the query.
The number of elements matching the query is displayed at the right end of
the line.

Browser View List Areas

The lower two-thirds of the Browser View window consists of two lists
displayed in side-by-side panes (see Figure 10-2). The lists contain
information about the currently selected subject and are organized by
category in an outline format. The lists are:

< member list—a detailed view of the internals of the current subject.

< relation list—items related to the current subject.

You can change the relative widths of the panes by moving the sash that
separates the panes.

The categories in the lists are different depending on whether you are using
C++ or Ada code (with ProDev Ada only). Table 10-1 summarizes the
contents of each list by programming language. For more information on the
lists, see “C++ Member List” on page 150, “C++ Relation List” on page 153,
“Ada Member List” on page 155, and “Ada Relation List” on page 156.

Browser View Window

Table 10-1 Browser View List Summary
Language Member List Contents Relations List Contents
C++ PUBLIC/INSTANCE/PRIVATE BASE CLASSES (including the
INSTANCE/STATIC current class)/ DERIVED
TYPES/DATA/METHODS/ CLASSES/USES/ USED BY/

FRIEND FUNCTIONS/

VIRTUAL METHODS FRIENDS/FRIEND OF

Ada SPEC PUBLIC/SPEC PRIVATE/ PARENTS (including the current
BODY subject)/ DERIVED

CONTAINS/DATA/TYPE/
FUNCTIONS/ENTRIES/
PRIMITIVE OPERATIONS

Outline Icons

Each category name appears with an outline icon to its left, that is, a
diamond-shaped icon that can be used to collapse (hide) or expand (make
visible) the items under that category. Inside the icon there is an arrow that
indicates whether the category is in the expanded or collapsed state. If the
arrow points downward, the list is in its expanded state; all items are
displayed. If the icon points to the right, the category is in its collapsed state;
all items in that category are hidden. Clicking the arrow toggles the state of
the category, displaying or hiding the category’s contents. Another function
of the outline icon is to indicate when a collapsed list contains items
matching the current query. This is shown with a filled outline icon. See
Figure 10-3.

149

Chapter 10: The Browser Reference

150

Outline icon in
expanded state
Outline icon in
collapsed state
with query matches

Query match
indicators on

oid nextFrame (Drawe scroll bar

——destructor—= ~Actor woid);

Outline icon in
collapsed state

Figure 10-3 Outline List Icons and Indicator Marks

Annotated Scroll Bars and Highlighted Entries

The lists use annotated scroll bars as another way to locate highlighted list
entries. When you make a query on an item in a list, the Browser displays
indicator marks in the scroll bars in both panes corresponding to the relative
positions of matching items. This informs you about all matches even if they
are in collapsed categories or in a portion of the list that is not currently in
view. If you click an indicator with the middle mouse button, you scroll
directly to the matching item in the list. When the thumb of the scroll bar
overlaps a given tick mark, the corresponding entry is visible in the list
window. See Figure 10-3.

C++ Member List

The Browser View member list displays the types, data members, methods,
and virtual methods internal to the current class, template definition, or
template instance when you are analyzing C++ code. It labels constructor
methods as -constructor-> and destructors as --destructor->

Display Hierarchy

The members of the current class are sorted recursively into three nested lists
according to the access specification (PUBLIC, PROTECTED, or PRIVATE) of
each member. Within each of the access categories, the members are sorted
by scope into two categories (INSTANCE and STATIC). Finally, within each

Browser View Window

category, members are displayed by member category type in this order:
TYPE, DATA, METHODS (member functions), and VIRTUAL METHODS.

Here is a schematic of the outline format for each nested list:

Access (PUBLIC, PROTECTED, or PRIVATE)
Scope (INSoTANCE or STATIC)
TYPES
DATA
METHODS
VIRTUAL METHODS

Access Categories

The accessibility categories are:
= public members—accessible by any method or C-style function

= protected members—accessible only by methods in derived classes,
friend classes, or friend functions

= private members—accessible only by methods in the class in which they
are defined, friend classes, or friend functions

Scope Categories

The scope categories are:

= static members—all objects of a given class contain the same value for a
given member

= instance (non-static) members—members in different instances of that
class can contain different data values

Class Member Categories

Class members fall into these categories:
= types—definitions of data types declared within a class

= data—variables that contain state information for a class

151

Chapter 10: The Browser Reference

= methods (or member functions)—definitions of how a class interacts
with other classes and structures

= virtual methods—methods for an object that ensure that the method
invoked is defined by the class from which the object was instantiated,
regardless of type casting

The list organization is customizable. For more information, refer to
Appendix A.

Displaying a Member’s Source Code

Double-clicking any member in the member list opens a Source View
window containing that member’s code with the declaration highlighted.
See Figure 10-4.

Access

Highlighted code for member

Figure 10-4 Source View of Class Data Member

152

Browser View Window

C++ Relation List
The C++ relations list displays the current class and its related classes in the
related class list. The categories in the list are:

e BASE CLASSES—contains the current class and its ancestors, listed
hierarchically

e DERIVED CLASSES—contains descendants of the current class, listed
hierarchically

= USES—contains classes that the current class uses (that is, instantiates,
destroys, interacts with, or contains)

< USED BY—contains classes that the current class is used by

< FRIEND FUNCTIONS—contains global functions declared as friends
by the current class

< FRIENDS—contains classes that are declared as friends by the current
class.

< FRIEND OF—contains classes that declare the current class as a friend.

Within this list, the current class is displayed as follows:
<- This

which refers to the class in the Current Class field.

C++ Relations List Mouse Shortcuts

Double-clicking any class listed in the related class list makes it the new
current class. Double-clicking a friend function brings up a Source View
window highlighting the function’s definition.

Base Classes Category Hierarchy

The Base Classes category shows the ancestors of the current class, if any.
Each indented class is an ancestor of the class listed above it. The Base
Classes category indicates a multiple inheritance relationship by indenting
parent classes to the same level. If a given class has ancestors, it is
accompanied by an outline icon, which works in a similar manner to the

153

Chapter 10: The Browser Reference

Indentation shows
inheritance structure

154

outline icons in the member list. Each ancestor name is followed by its
inheritance access type (public, protected or private) listed in parentheses.

This schematic gives an example of a Base Classes category:

BASE CLASSES
<-This
first_parent_of_This (access type)
parent_of first_parent_class (access type)
second_parent_of_This (access type)
parent_of _second_parent_class (access type)

Derived Classes Category Hierarchy

The Derived Classes category shows the descendants of the current class, if
any. Each indented class is a descendant of the class listed above it. If a given
class has descendants, it is accompanied by an outline icon, which works in
a similar manner to the outline icons in the base classes category and
member list.

This schematic gives an example of a possible Derived Classes category:

DERIVED CLASSES
first_child_of_This
child_of_first_child_class
second_child_of_This
child_of_second_child_class

Figure 10-5 C++ Relations List Derived Classes Category

Browser View Window

Ada Member List

Note: The features described in this section are available only if you have
purchased the ProDev Ada package.

The Ada version of the Browser View member list displays packages, task
types, and tagged types as its current subjects. Packages have functions as
their internal “members.” The internal members for task types are entries
(under Public) and functions. Tagged types have primitive operations as
their internal members.

Display Hierarchy

The members of the current subject are sorted recursively into three nested
lists according to the access specification (SPEC PUBLIC, SPEC PRIVATE, or
BODY) of each member. Under each of the access categories lies the
INSTANCE subcategory. Finally, the members are displayed by member
category type in this order: TYPES, DATA.

Here is a schematic of the outline format for each nested list:

Access (SPEC PUBLIC, SPEC PRIVATE, or BODY)
Scope (INSTANCE)
TYPES
DATA

Access Categories

The accessibility categories are different depending on the type of Ada
entity.
The accessibility categories for packages are:

= spec public—includes declarations of data, functions, and types made
in the public part of the package spec

= spec private—includes declarations of data, functions, and types made
in the private part of the package spec

= body—includes declarations and definitions of data, functions, and
types made in the implementation of the package. These symbols are
usable only within the package body.

155

Chapter 10: The Browser Reference

156

The accessibility categories for tagged types are:
= spec public—includes data lists components of the tagged type.
Functions list primitive operations of the tagged type.

Note: There is no spec private or body section for a tagged type.

The accessibility categories for task types are:

= spec public—includes functions listed here are entries to the task. Types
and data listed here are public (ie usable by a client of the task).

= body—includes types, data, and functions used in the implementation
of the task. These symbols are usable only within the task body.

Note: There is no spec private section for tagged types

Type and Data Member Categories

The other categories are:

= types—definitions of data types declared by a package, task, or tagged
type

= data—variables that contain state information for a package, task, or
tagged type

The list organization is customizable. For more information, refer to
Appendix A, “Customizing the C++ Browser.”

Displaying a Member’s Source Code
Double-clicking any member in the member list opens a Source View

window containing that member’s code, with the declaration highlighted.
See Figure 10-4.

Ada Relation List

The Ada relations list shows parent-derived relationships between tagged
types (with ProDev Ada only).

Browser View Menu Bar

Browser View Menu Bar

This section describes the menus, found in the Browser View menu bar (see
Figure 10-6).

Sl

e

Show Inheritance Graph Cirfr} Show Previous Subject Ciri+P What Is Declared Cirfed Helation Display "
Show Comtainment Graph Cirf+O Show History CirfrH What Is Defined Cinfr £ Member Display "
Show Inferaction Graph Cinfr T What Is Ovepridden By Cirl+R Member Alignment »
Show Friend Graph CirfrF What is Pure Virtual Member Double Click »
Show Call Graph Cirf+A What instaniiates

What Destrovs

What Uses [

What Is Instantiated

Change Current Subject Ctritl} What Is Used L

Another Browser View Cirfr i/
Close Browser View
Generate Man Pages...

Generate Web Pages...
Exit Browser CirfrX

Admin Views History Queries Preference Help

Current Subject: _ Show in Static Analyzer: [_] No -l

F|
|

Figure 10-6 Browser View Menu Bar With Menus Displayed

157

Chapter 10: The Browser Reference

=.§ Admin Tear-off

Change Current Subject CirfrtJ
Another Browser View Cirfr i/
Close Browser View
Generate Man Pages...
Generate Web Pages...
Exit Browser CirfrX

Figure 10-7 Browser View
Admin Menu

158

Admin Menu

The Admin menu contains commands for selecting new subjects,
manipulating Browser View windows, generating reference and web pages,
and exiting the Browser View.

“Change Current Subject”
Lets you select a new current a new subject without
manually typing it into the Current Subject field. Choosing
this command opens the Browsing Choices window (see
Figure 10-1), which contains a scrolling list of all the classes
or packages available from the current fileset. Double-
clicking an item selects it for display in the Browser View
window and closes the Browsing Choices window.

“Another Browser View”
Creates an identical copy of the Browser View window. All
current information displayed within the initial window
appears in the copy, but connections to the graphical view
windows are not carried over to the new Browser View
window.

“Close Browser View”
Shuts the Browser View window and any associated
windows, such as Graph or List of Classes.

Man Page Generation

“Generate Man Pages...”
Opens the Man Page Generator window, which lets you
create reference page templates for classes (C++), packages
(Ada), tasks (Ada), and tagged types (Ada). See Figure 10-8.

Select individual subjects by clicking them. If you want a
reference page for every subject in the list, click Select All.
To remove selections you’ve made, click Unselect All.
Clicking the Generate button creates a reference page
template for each selected subject. If reference pages exist
for any selected subjects, the Browser warns you, unless
you set the Warn Overwrite toggle to No.

Browser View Menu Bar

Target directory
selection

Control panel

Subject display —

Output files go in the directory shown in the Man Page
Directory field, if it exists. To specify a different output
directory, click the Set Directory button in the Man Page
Generator window and enter your choice.

Man page generator window

=| Man Page Generator

[=10]

tdan Page Directory:

| SetDWecuNyIl/uSr/demoS/WorkShop/bDunce

Warn Overwrite: %] Yes ‘ Select All ” Unselect All ” Generate ” Yiew |

Figure 10-8

Generated man page

HEADER FILE
#includ

PUBLIC PR

poid iconid

PROTOCOL SU
Y

DERIVING S

iri ncou

iption

mponent

Man Page Generator and Typical Man Page Template

159

Chapter 10: The Browser Reference

160

Web Page Generation

“Generate Web

Target directory
selection -

Control panel ——

Subject display ——

Pages ...”

Opens the Web Page Generator window (see Figure 10-9),
which lets you create web page templates for classes (C++),
packages (Ada), tasks (Ada), and tagged types (Ada). See
Figure 10-10. These templates are in HTML format and can
be read by viewers compatible with the World Wide Web.

Select individual subjects by clicking them. If you want a
reference page for every subject in the list, click Select All.
To remove selections you’ve made, click Unselect All.
Clicking the Generate button creates a reference page
template for each selected subject. If reference pages exist
for any selected subjects, the Browser warns you, unless
you set the Warn Overwrite toggle to No.

Output files go in the directory shown in the Web Page
Directory field, if it exists. To specify a different output
directory, click the Set Directory button in the Web Page
Generator window and enter your choice.

Web Page Directory:

Set Directory " Jusr/demos,/WaorkShop/bounce I

Warn Overwrite: %] Yes ‘ Select All ” Unselect All ” Generate ” Yiew |

s

Figure 10-9 Web Page Generator Window

Browser View Menu Bar

Figure 10-10 Typical Web Page Template

161

Chapter 10: The Browser Reference

“Exit Browser” Quits the C++ Browser, closing all windows launched from
it (except Source View). The Static Analyzer window from
which the browser was launched is not affected.

Views Menu

The Views menu contains commands for opening graphical views (see
Figure 10-11). For descriptions of the display and controls, refer to

Show Inheritance Graph — Cirf+] Appendix A, “Using Graphical Views.” Each of the first four selections
Show Containment Graph _ Ctri+O opens a Graph Views window for the current class, with a specific

Show Inferaction Graph Ctri+7 relationship; refer to “Graph Views Window” on page 173. The last selection

=.§ Vews Tear—off

Show Eriend Graph CerieF opens a Call Graph window; refer to “Call Graph Window” on page 176.
Show Call Graph Cirf+A
Figure 10-11 Views Menu Describes the relationship between base classes and derived

classes.

“Show Containment Graph”
Describes the relationship of container classes to the classes
they use as components.

“Show Interaction Graph”
Describes the relationship of used classes to the classes that
are their users.

“Show Friend Graph”
Describes the relationship of classes declaring friends to the
classes they declare.

“Show Call Graph”
Opens a Call Graph window. To perform operations in it,
selecta method from the member list display, press the right
mouse button to display the Methods popup menu, and
select “Add,” “Remove,” or “Replace” from the “Call
Graph” submenu.

162

Browser View Menu Bar

Show Previous Subject Ciri+P
Show History CirfrH

Figure 10-12 History Menu

History Menu

The History menu contains commands that let you quickly select previously
chosen subjects for display in the Browser View window (see Figure 10-12).
If no class was selected previously, a message appears.

“Show Previous Subject”
Sets the current subject to the previously displayed class,
and the information in the Browser View window changes
to reflect this.

“Show History”
Opens a “List of Subjects Shown” chooser window for
selecting previously viewed subjects (see Figure 10-13). The
window presents the previous subjects in reverse
chronological order, that is, the most recent subject appears
at the bottom of the list.

[terorsuecsshown 1]

Items

Selection

‘ 014 | ‘ Applyl ‘Cancell ‘ Help |

Figure 10-13 List of Classes Shown

To select a subject, click it and press Apply or OK. Double-
clicking a subject has the same effect as OK; it makes the
selection and closes the window. The selected class then
becomes the current subject in the Browser View window.

163

Chapter 10: The Browser Reference

=.§ Queries Tear-off

What Is Declared
What Is Defined

What Is Pure Virtual
What [nstantiales
What Destrovs

What Uses

What Is Instantiated
What Is Destroved
What Is Used

Cirf+l
Cirf+E
What Is Ovepridden By Cirl+R

»

Figure 10-14 Queries Menu

What Uses

Main Queries Menu

The main Queries menu is accessed from the menu bar and applies to the
current subject (see Figure 10-14). The selections are:

“What Is Declared”
Displays all methods declared by the current class.

“What Is Defined”
Displays all members defined by the current class.

“What Is Overridden By”
Displays all inherited methods that the current class
overrides.

“What is Pure Virtual”
Displays all pure virtual functions in the current subject.

“What Instantiates”
Displays classes that instantiate the current class by
invoking its constructors or by using its new methods.

“What Destroys”
Displays classes that destroy the current class by invoking
its destructors or by using its delete methods.

”What Uses” submenu (see Figure 10-15)

What Is Instantiated
What Is Destroved
What Is Used

Figure 10-15 “What Uses”
Submenu of Queries Menu

164

To Contain

As Friend
Methods

Data Members

Displays the classes that use the current class in these
contexts:

“To Contain” displays classes that use the current class
as either an embedded or linked component.

“As Friend” displays classes that use the current class
as a friend class.

“Methods” displays classes that use the methods
defined by the current class.

“Data Members” displays classes that use (by
modifying, reading, or taking the address) data
members defined by the current class.

“What Is Instantiated”
Displays classes that the current class instantiates by
invoking its constructors.

Browser View Menu Bar

“What Is Destroyed”
Displays classes that the current class destroys by invoking
its destructors.

“What Is Used” submenu (see Figure 10-16)
Displays those classes used by the current class in these

contexts:
What Is Used - —— = “To Contain” highlights classes that the current class
= To Contain uses as either embedded or linked components.
As Friend . L
> e < “AsFriend” highlights classes that the current class

By Methods friend ol

By Data Access uses as friend classes.
Figure 10-16 “What Is Used™ = “By Methods” highlights classes whose methods are
Submenu of Queries Menu used by the current class.

= “By Data Access” highlights classes whose data
members are assigned, read, or have their address
taken by the current class.

Additional queries on subjects, data members, and
methods are accessible from popup menus described in
“C++ Member List” on page 150 and “C++ Relation List”
on page 153.

165

Chapter 10: The Browser Reference

166

Preference Menu

The Preference menu allows you to control how the class information is
displayed in the window (see Figure 10-17).

< Declaration Order
<& End To Fnd Sort

< Declaration Order
<& End To Fnd Sort
< Mame Sort

Helation Display

Member Display "
Member Alignment »
Member Double Click »

¥ Afign Names
o Afigr Arglists

< Show Definition
< Show Declaration
<& Show Decl If No Defrr

Figure 10-17 Preferences Menu

The selections are:

“Relation Display” submenu
Allows you to control how the class relations are displayed:

= “Declaration Order” displays the related classes in
order of their declaration or the detection of their
relation.

= “End To End Sort” displays a sorted list of related
classes.

“Member Display” submenu
Allows you to control how the class members are displayed:

= “Declaration Order” displays the members in order of
their declaration.

Browser View Popup Menus

Browser View Popup Menus

“End To End Sort” performs an end-to-end sort of the
member display strings and displays the result.

“Name Sort” performs a sort based on the name of the
members and displays the result.

“Member Alignment” submenu
Allows you to control how members line up:

“Align Names” aligns the member names in the
display. A radio button indicates if this feature is
enabled or disabled.

“Align Arglists” aligns the member function argument
lists in the display. A radio button indicates if this
feature is enabled or disabled.

“Member Double Click” submenu
Lets you select which related source code is displayed in
Source View when you double-click an item in the member

list:

“Show Definition” displays the source code where the
item is defined.

“Show Declaration” displays the source code where
the item is declared.

“Show Decl if no Defn” displays the code where the
item is defined; if there is no definition, then the source
code containing the declaration is displayed instead.

The Browser View popup queries menus provide queries for currently
selected items in the outline list areas. These menu are accessed by selecting
an item and then holding down the right mouse button. Figure 10-18 shows
all of the popup menus available in Browser View.

This section describes:

e “Data Members Popup Menu”

« “Methods Popup Menu”

“Class Popup Menus”

167

Chapter 10: The Browser Reference

Many of the same queries in the class popup menus appear in more than one
menu. To eliminate this redundancy, each query is described once and
presented in a single list rather than by menu.

]
g

Methods menu

e
Glueries on Data Members

What Modifies

What Feads

What Accesses

What Defines
Zhow Zource Where Defined

Data Members menu

< DATA

< PROTECTED
& INSTANCE

XtAppContest

~Application (.

appContexd;

char*

char*
int

Display™

Widget W

hainindow*™* windows;
& METHODS

void getResources

_applicationClas:
_display;

_name;
_numiindows;

{cons

hainbindow
UCompaonent
& USED BY
EouncingBall
Dialoghlanager
Engine
hainbindow

woid main(int,char
< FRIENDS
hainbindow

void installDestroyHandler (void)
void setDefaultResources (const
& VRTUAL METHODS

2y

Al What |s Overriden

Queries on Methods Admin Views History Queries Preference Help Gueries on Base Class
i Ui L+t Clas: Show in Static Analyzer: [_| Mo vt s Deekies
What Is Used What Is Defined
Call Gragh What Is Overridden
What Declares & PUBLIC & BASF CIASSES Show Source
YWhat Currently Defines & INSTANCE £ <—This Mew Browser View
] & METHODS < UlComponent (publit
What Else Defines
& VIRTUAL METHODS BasicComponent Base Classes menu
What Gverloads const const char* classiame (. < DERIVED CIASSES ’ﬁl{f
. & & ;

Show Source VWhere Declared \xo!d manage " S SlmulatllonAp;Ia Gueries on Derived Class
Show Source YWhere Defined void unmanage (v BallSimulation

——destructor—= & USES Wihat Is Used L

What |s Owverloaded

Zhow Source
Mew Browser View

Derived Classes menu

|

Glueries on Used
What Uses "
What Instantiates
What Destroys

Zhow Source
Mew Browser View

-

Glueries on Friend Class ||

Uses menu

|

Glueries on Users

What Lses

Glueries on Friend Of Class ||

What |s Lsed

Glueries on Friend Function ||

II What It Lses

Zhow Source
Mew Browser View

Zhow Source
Mew Browser View

|| Zhow Source “

Friend Functions menu

Friend of menu

168

Friends menu

What |s Lsed »
What Instantiates
What Destroys

Zhow Source
Mew Browser View

Used By menu

Figure 10-18 Queries Popup Menus in the C++ Browser View

Browser View Popup Menus

=]

Glueries on Data Members
What Modifies
What Reads
What Accesses
What Defines
Show Source VWhere Defined

Figure 10-19 Data Members
Popup Menu

Data Members Popup Menu

The Data Members popup menu performs these queries on data members
selected in the member display list:

“What Modifies”
Highlights all methods and classes in which the selected
data member is assigned a value.

“What Reads” Highlights all methods and classes in which the selected
data member is read.

“What Accesses”
Highlights all classes where the selected data member is
assigned a value, read, or its address is taken.

“What Defines”
Highlights the class that defines the selected data member.

“Show Source Where Defined”
Displays the source code where the data is defined in a
Source View window.

Methods Popup Menu

The Methods popup menu lets you perform the following queries on
methods shown in Figure 10-20.

(= N Y

Glueries on Methods All {method and data access)
What Uses IMethod Calls
What Is Used »| Data Access
Call Gragh », Data Modification
What Declares \" Data Read
What Currently Defines
What Else Defines
What Overloads Add
Zhow Zource Where Declared Replace
Show Source VWhere Defined Remove

Figure 10-20 Queries on Methods Popup Menu

169

Chapter 10: The Browser Reference

The Methods popup menu provides these queries:

“What Uses”
Highlights all methods and classes that use the currently
selected method.

“What Is Used” submenu
Contains these menu items:

< “All (method and data access)” highlights all data
members, methods, and classes the currently selected
method uses.

= “Method Calls” highlights all methods called by the
currently selected method.

= “Data Access” highlights all data members that have
been assigned, read, or had their address taken by the
currently selected method.

- “Data Modification” highlights all data members
assigned by the currently selected method.

= “Data Read” highlights all data members read by the
currently selected method.

“Call Graph” submenu
Contains these menu items:

= “Add” adds the currently selected method and its
calling structure to the Call Graph window, if one is
open. If not, “Add” opens a Call Graph window before
adding the method.

= “Replace” replaces all methods in the display with the
selected method and its calling structure in the Call
Graph window.

= “Remove” removes the currently selected method and
its calling structure from the Call Graph window.

“What Declares”
Highlights the class that declares the currently selected
method.

170

Browser View Popup Menus

“What Currently Defines”
Highlights the class that provides the current definition for
the method.

“What Else Defines”
Highlights all classes that define the currently selected
method.

“What Overloads”
Highlights all methods and classes that overload the
currently selected method.

Class Popup Menus

This section describes the popup menus available in the related class list
display. These menus are shown in Figure 10-18. (Note that the queries
menu that displays when you select <-This is not shown here; it’s exactly the
same as the main Queries menu shown in Figure 10-14.)

Many of the items in the class popup menus are common to more than one
menu. To eliminate the redundancy of describing them in each menu, this
section presents all the queries in a single list in alphabetical order. The
menus they belong to are shown in parentheses. Here are the menu items:

“New Browser View” (all menus except Friend Functions)
Opens a new Browser View window displaying the selected
class.

“Show Source” (all menus)
Opens a Source View window on a file containing the
declaration of the selected item. The first line of the
declaration is highlighted in the source.

“What Destroys” (Uses and Used By)
Highlights all members of the current class that destroy the
selected class.

“What Instantiates” (Uses and Used By)
Highlights all members of the current class that instantiate
the selected class.

“What Is Declared” (Base Classes)
Highlights all methods declared by the selected base class.

171

Chapter 10: The Browser Reference

“What Is Defined” (Base Classes)
Highlights all members defined by the selected base class.

“What Is Overloaded” (Derived Classes)
Highlights all members of the current class that are
overloaded by the selected class.

“What Is Overridden” (Base Classes)
Highlights all the methods of the selected base class that are
overridden by the current class.

“What Is Overridden” (Derived Classes)
Highlights all the methods of the current class that are
overridden by the selected derived class.

“What Is Used” (Friends)
Highlights all members of the current class that the selected
friend class uses.

“What Is Used” (Derived Classes and Used By Classes)
Contains these queries in the submenu (see Figure 10-7):

lry Feading Data WMembers

x:z: :z gizl:riden o [—— - “by Accessing Any Member” highlights all members
What Is Overloaded by el viethods (of the current class) that the selected class uses.

at 15 Lhveripade
Show Source sy etezsling Ukiba it = “py Calling Methods” highlights all methods (of the
New Browser View by Modifying Data Members current class) that the selected class uses.

Figure 10-21 ”What Is Used”
Submenu

172

= “by Accessing Data Members” highlights all data
members (of the current class) that the selected class
modifies, reads, or takes the address of.

= “by Modifying Data Members” highlights all data
members (of the current class) to which the selected
class assigns a value.

< “by Reading Data Members” highlights all data
members (of the current class) from which the selected
class reads a value.

“What It Uses” (Friend Function)
Highlights all members of the current class that the selected
friend function uses.

“What Uses” (Friend of Class)
Highlights all members of the current class that use the
friend class.

Graph Views Window

What Uses

YWhat Instantiates
What Destroys
Show Source

[New Browser View

by Accessing Ay Member
by Calling Methods
by Accessing Data
by Modifying Data

lry Feading Data

Figure 10-22 ”What Uses”

Submenu

Graph Views Window

“What Uses” submenu (Uses Classes)
Contains these queries in the submenu (see Figure 10-7):

“by Accessing Any Member” highlights all members
(of the current class) that use the selected class.

“by Calling Methods” highlights all methods (of the
current class) that use the methods of the selected class.

“by Accessing Data” highlights all data members (of
the current class) that modify, read, or take the address
of data members of the selected class.

“by Modifying Data” highlights all data members (of
the current class) that assign a value to data members
of the selected class.

“by Reading Data” highlights all data members (of the
current class) that read a value from data members of
the selected class.

The Browser provides the Graph Views window, a graphical view for
showing relationships between classes in the fileset (see Figure 10-23). It
depicts classes as nodes and relationships as arcs. The Graph Views window
can show four types of class relationships:

= |nheritance
e Containment
= |nteraction

e Friends

173

Chapter 10: The Browser Reference

174

Admin menu Views menu

Relationship menu

Figure 10-23 Graph Views Window Showing Inheritance Relationships

Setting Graph Views Relationships

You can display the graphical views by selecting any of the following items
from the Views menu of the Browser View window:

“Show Inheritance Graph”

“Show Containment Graph”

“Show Interaction Graph”

“Show Friends Graph”

Graph Views Window

Figure 10-24 “Save Graph”
Submenu of Admin Menu

Once the Graph Views window is displayed, you can switch to any of the
other relationships by using the Relationship menu at the bottom right of the
Graph Views window (see Figure 10-23).

Graph Views Admin Menu

The Graph Views Admin menu contains two commands:

“Save Graph” Allows you to save the graph to a file. It brings up the file
selection dialog shown in Figure 10-24. When you select
your file and click OK, you save the graph as a PostScript[]
file with the name specified in “Selection.”

“Close” Closes the Graph Views window.

Graph Views Window Views Menu

The Graph Views window Views menu (see Figure 10-23) commands control
which classes included in the current fileset are displayed in the Graph
Views window. The choices are:

“Show All” Displays all classes included in the fileset as nodes, and
their relations as arcs, as chosen from the relationship
option menu.

“Show All Related”
Displays only those classes included in the chain of
relations, which includes the current class.

“Show Butterfly”
Displays only those classes that are the immediate relatives
(for example, parents and children for an inheritance
relation of the current class).

Mouse Manipulations
Double-clicking any subject in the Graph Views window causes it to become

the new current subject in both the Browser View and Graph Views
windows.

175

Chapter 10: The Browser Reference

Call Graph Window

The Call Graph window shows all calls made from selected methods in the
member list, including calls made from its target methods. You can invoke it

by
= selecting “Call Graph” from the Views menu in Browser View

= selecting a method in the member list, displaying the Methods popup
menu, and selecting “Call Graph:Add.” This displays the Call Graph
window the first time and adds new methods to the graph each time
you select “Call Graph:Add.”

Figure 10-25 illustrates the second method for displaying Call Graph. The
user has selected the initialize method in the Browser window and then
selected “CallGraph:Add” from the Methods popup menu. The initialize
method now appears in the Call Graph window with the methods that it
calls.

Call Graph Window

Browser View

[HowerVlew -0

Admin Views History Queries Preference Help

C++ Class | Bouncelindow | Show in Static Analyzer: [_[No -l

Query identifier

Add call graph for method void initialize(void); ?

Selected method —_

void initialize {void);
void widgetDestroyed (void);
& PRIVATE

Glueries on Methods

& INSTANCE What Uses lic)
& DATA What Is Used » public)
Clock™* _clock; Call Graph pEo-- -]

ContrtilPaneI _controlPanel; Whal Dedlares Add
oo ——— i Replace
& STATIC What Currently Defines
& METHODS What Else Defines Remove

void widgetDestroyedCallback (Widd ywhat Overloads

Method Zhow Zource Whefe Declared
ethods popup menu _| :
with “Call Graph:Add” Zhow Source fhere Defined

Call Graph window —

Admin
Selected node =
identifier — |Hode Selected: MainWindow::initialize(vojd);

[Malnyfdowintialize(void |

B
{UiComponent: UiCompanent(const |
| MenuBar: installDestroyHandler(vo|

Target method [anuvinovemtatee v, | -~ NSRS SBAENER

Argument list

Figure 10-25 Displaying a Selected Method in Call Graph

177

Chapter 10: The Browser Reference

178

Using the Call Graph Window

You add, replace, or remove methods in the Call Graph by choosing from the
Call Graph submenu in the Methods popup menu in the Browser View
member list (see Figure 10-25), as follows:

= “Add” adds the currently selected method and its calling structure to
the Call Graph window, if one is open. If not, “Add” opens a Call
Graph window and then adds the method.

= “Replace” replaces all methods in the display with the selected method
and its calling structure in the Call Graph window.

= “Remove” removes the currently selected method and its calling
structure from the Call Graph window.

The action you request is displayed in the message area in Browser View. In
the Call Graph window, there is also a message area that identifies the
method and its arguments.

In the Call Graph window, double-clicking any method node opens a Source
View window displaying the code that defines the method. The definition is
highlighted in the source.

For information on manipulating graphs, see Appendix A, “Using
Graphical Views,” in the ProDev WorkShop Overview.

Call Graph Admin Menu

The Call Graph window’s Admin menu contains the following selections:

“Show Arglist” toggle
Lets you display or hide the argument list for each method,
as shown in Figure 10-25.

“Clear” Removes all methods from the Call Graph window.

“Save Graph” Displays a file selection dialog for saving the graph to a
PostScript file.

“Close” Closes the Call Graph window.

Appendix A

Customizing the C++ Browser

The C++ Browser lets you customize your display and the way you work
with reference pages (man pages). These formats are implemented as X
application resources that you can redefine in your local . Xdefaults file. After
editing it, run xrdb .Xdefaults and then reopen the Static Analyzer.
This appendix covers these topics:

e “Customizing the Browser View Lists”

« “Customizing Reference Page Generation”

179

Appendix A: Customizing the C++ Browser

Customizing the Browser View Lists

180

This section shows you how to customize the outline formats of Browser
View lists by applying your own keyword headers and rearranging the
features of each list.

Member List Resource

The layout of the Browser View member list is controlled by this resource:

Cvstatic*memberOrder

The general format of this resource is as follows:

Level-1-keyword: HEADING [keyword], HEADING [keyword],..;
Level-2-keyword: HEADING [keyword], HEADING [keyword],...;
Level-3-keyword: HEADING [keyword], HEADING [keyword],...;

The three level keywords are Protection, Scope, and Member. The order in
which these are used determines the level of nesting in the outline list used
for protection, scope, and member headings, respectively.

Headings may consist of any string you choose to describe the heading
category. The headings listed with the level-1 keyword become top-level
headings in the outline list, the level-2 headings appear indented under each
of the level-1 headings, and the level-3 headings appear indented beneath
each of the level-2 headings.

Each heading in a level has an associated keyword that determines the sort
of items that appear under the heading. The allowable keywords are as
follows for each associated level keyword:

Protection: [public] , [protected] , [private]
Scope: [instance] , [static]
Member: [type] ,[data] ,[method] |, [virtualmethod]

Customizing the Browser View Lists

It is also possible to combine the types associated with two or more
keywords under one heading by using the construction for any given
heading:

HEADING [keywordl+keyword2+...]

You can also control whether a heading is expanded or collapsed when the
browser starts up. Placing an asterisk (*) at the end of the heading string
causes that heading to be collapsed by default:

HEADING* [keyword]

The default assignment for the outline resource of the member list can be
found in /usr/lib/X11/app-defaults/Cvstatic. The contents of the file appear
below:

Cvstatic*memberOrder: Protection: PUBLIC [public],
PROTECTED* [protected], PRIVATE* [private]; Scope: INSTANCE
[instance], STATIC [static]; Member: TYPE* [type], DATA

[data], METHODS [method], VIRTUAL_METHODS [virtualmethod];

Note: The sample above is a single line.

You can override this definition by placing your own definition in your local
.Xdefaults file. For example, to make the display look like the sample in
Figure A-1, add this line:

Cvstatic*memberOrder: Member: IS (Type) [type], Data

Members--------------------- [data],
Methods [method], Virtual
Methods-------------------- [virtualmethod]; Scope:

Non-Static [instance], Static [static]; Protection: Private
[private], Protected [protected], Public [public];
Related Class List Resource

The layout of the Browser View related class list is controlled by this
resource:

Cvstatic*relationOrder

The construction of this resource is similar to the member list, but simpler:
HEADING [keyword], HEADING [keyword],...

181

Appendix A: Customizing the C++ Browser

182

The headings and keywords work as described for the member list, but there
is no concept of level keywords in the related class list.

The allowable keywords for the related class list are as follows:

[base] , [derived] ,[uses] ,[usedby] |, [friendfunction] , [friend] ,
[friendof]

Note: In the related class list, headings cannot contain multiple keywords,
as they can in the member list. +

As in the member list, you can control whether a heading in the related class
list is expanded or collapsed when the browser starts up. Placing an asterisk
(*) at the end of the heading string causes that heading to be collapsed by
default:

HEADING* [keyword]

The default assignment for the related class list outline resource can be
found in /usr/lib/X11/app-defaults/Cvstatic, and is listed below for your
convenience:

Cvstatic*relationOrder: BASE CLASSES [base], DERIVED CLASSES
[derived], USES [uses], USED BY [usedby], FRIEND FUNCTIONS
[friendfunction], FRIENDS [friend], FRIEND OF [friendof]

You can override this definition by placing your own definition in your local
.Xdefaults file. For example, for the display shown in Figure A-1, try this:

Cvstatic*relationOrder: Parent Classes [base], Child Classes
[derived], Used Classes [uses], User Classes [usedby],
Friend Functions [friendfunction], Friend Classes [friend],
Friend Of [friendof]

Other Browser View List Resources

XWindows resources listed in this section, found in
/usr/lib/X11/app-defaults/Cvstatic, can be modified in your local . Xdefaults file.
The default values are listed with each resource. You can set any true value
to false.

Customizing the Browser View Lists

Cvstatic*completeClassName: true
enables ClassName completion; by typing a space in the
current class field, you complete a class name from the list
of classes in the fileset (if set to true, as it is by default).

Cvstatic*showMessageArea: true
enables the message area in the Browser View window (if
set to true, as it is by default).

Cvstatic*scream: true
enables warning beeps when there are 0 results for a query,
or when a class name has more than one completion in the
current class field (if set to true, as it is by default).

Cvstatic*indentationWidth: 15
sets the indentation in the outline lists in pixels. Figure A-1
shows the making the following change to the resource:

Cvstatic*indentationWidth: 10

Cvstatic*nameAlign: true
aligns names of the members under the same parent so that
the type declarations and member (variable and function)
names form left-justified columns (if set to true, as it is by
default).

Cvstatic*arglistAlign: true
aligns the argument lists of member functions under the
same parent so they form a left-justified column (if set to
true, as it is by default).

Cvstatic*sort: true
sorts items in the outline lists based on the value of the
entire string denoting an item (if set to true, as it is by
default). For example, given two members, voidf and int
k, the C++ Browser listsintk before void f in the list.

Cvstatic*nameSort: true
sorts items in the outline lists based on the string value of
the name of a member (if set to true, as it is by default). For
example, void f would be listed before intk).

183

Appendix A: Customizing the C++ Browser

184

Using both of the previous resources in conjunction sorts first by type and
then by name, as shown in Table A-1.

Table A-1 Sort Resources for Outline Lists

sort name Sort effect

false false Members are in declaration order

false true Members are sorted based on the name and not on type or
return type. This behavior is shown in Figure A-1.

true false Members are sorted based on the their return type or type.
Within the same return type, members appear in
declaration order.

true true Members are sorted both on their type or return type and

their name. This is the default behavior.

Figure A-1 shows the Browser View display using the sample resources set

in . Xdefaults.

Customizing Reference Page Generation

Headings appear in reversed order
Headings are different
All headings expanded

Indentation changed from 15 to 10 pixels

Members sorted on name only

Figure A-1 Customized Browser View Display

Customizing Reference Page Generation

The resources in this section are associated with the Man Pages for Classes
window, available from the Browser View Admin menu item “Generate
Man Pages.”

Cvstatic*manPageDirPath: <default manpage directory path>
The default is the current directory (.). To place generated
reference pages in the windTunnel directory (that you have
created) use this:

Cvstatic*manPageDirPath: ./manpage/windTunnel

185

Appendix A: Customizing the C++ Browser

Cvstatic*manPageSuffix: .< suffix >
The default <suffix> is 3. The name of a reference page is
<class_name >.3. To change the suffix to 4, use this:

Cvstatic*manPageSuffix: .4

Cvstatic*manPageViewCommand: < commands>
Pressing the View button in the Man Pages for Classes
window executes the command specified by this resource.
The argument given is the set of reference pages for the
classes that are selected. By default, View displays the most
recently generated reference page in a read-only window.
The default commands are:

Cvstatic*manPageViewCommand: winterm -H -c man
-d

Cvstatic*manPageCopyRightMessage: < string >
The default string is “Copyright 1994 by Silicon Graphics.”
A customized example is:

Cvstatic*manPageCopyRightMessage: Copyright
1994 by Fred Smythe

186

Index

Symbols

? in Current Class field, 149

A

access specification, 152, 156

”Add” to Call Graph, 171, 179

”Align Arglists”, 168

”Align Names”, 168

”All (method and data access)” used by method, 171
All Defined view option, 77, 99

annotated scroll bars, 151

”Another Class View” selection in Class View Admin
menu, 159

arcs, 74

argument list, 179
”As Friend”, 165
”As Friends”, 166

B

base classes
sublist, 155

batch command-line option, 45, 97
browsing directory, 33
by Accessing Any Member” of class, 174

by Accessing Any Member” used by derived
class, 173

by Accessing Data Members” used by derived
class, 173

by Accessing Data” of class, 174

by Calling Methods” of class, 174

by Calling Methods” used by derived class, 173
By Data Access”, 166

By Method Calls”, 166

by Modifying Data Members” by derived class, 173
by Modifying Data” of class, 174

by Reading Data Members” by derived class, 173

C

C++ Browser
customizing, 181

”Call Graph” submenu, 171
Call Graph window and, 163

Call Graph window, 177

call tree view, 74-80
tutorial, 78

Call Tree View selection in Static Analyzer Views
menu, 74

”Change Current Class” selection in Class View
Admin menu, 159

Change Fileset command, 35, 48

chooser window
List of Classes, 106, 159

187

Index

Class Graph window, 174
class queries, 60
class tree view, 21, 81

“Class Tree View” selection in Static Analyzer Views

menu, 81

Class View, 147

Admin menu, 159

History menu, 164

member list, 151

message area, 149

outline lists, 150

Preference menu, 167

Views menu, 163
”Clear” selection in Call Graph Admin menu, 179
”Close Class View” selection in Class View Admin

menu, 159

common block queries, 61
Complete Tree view option, 77,99
Constrain button, 85
cross-reference database, 6, 15

creating a project database, 97

index, 46

guerying a project database, 98

shared for project, 96
current class

<-This, 155
Current Class field, 148
customizing

C++ Browser resources, 181
cvstatic.fileset, 33, 34, 98
cvstatic.index, 15, 98
cvstatic.posting, 15, 98
cvstatic.xref, 15, 98

188

D

”Data Access” by method, 171

database
creating for sample session, 114, 134

database, see cross-reference database
”Data Members”, 165

data members
queries, 170
used by current class, 166

”Data Modification” by method, 171
”Data Read” by method, 171

derived classes
sublist, 156

destroy
class, 172
classes, 165
current class, 165

Directory filter, 85
directory queries, 63

double-clicking
Call Graph node, 179
opening Source View, 153, 157
related class list entries, 155

E

Edit Fileset command, 35

”Edit Fileset” selection in Static Analyzer Admin
menu, 114, 136

Exclude button, 85

“Exit Browser” selection in Class View Admin
menu, 163

External Functions filter, 85, 95

Index

F

File Dependency View, 21
using to view function calls, 100
“File Dependency View” selection in Static Analyzer
Views menu, 82
File filter, 84
file queries, 60
fileset, 31-48
changing, 48
creating, 35-47
by hand, 39
for sample session, 114, 134
from executable, 40
with a shell script, 94-95
with command-line option, 40
with UNIX find command, 39
custom, 12
customizing for code modules, 95
default, 12,34
filename extensions, 35
filenames in, 12
parser mode, 42
pathnames in, 32
personal and project, 97
scanner mode, 41
scanning, 15, 45-47
specifications, 32-33
specifying with command-line option, 40
updating, 41
using shell expansion characters, 32
fileset command-line option, 98
Fileset Editor, 35-39
Add Files button, 38
Browsing Directory text area, 37
browsing for contents, 37
Current Fileset text area, 35
Directories list, 37
Files list, 38
filter buttons, 38

literal entry, 37
removing entries, 37
wild card entry, 37

“Find Regular Expression” selection in the
Queries:General submenu, 55

“Find String” selection in the Queries:General
submenu, 55

Force Scan command, 45
“Force Scan” selection in Queries menu, 25

friend
classes, 166
current class, 165

Function filter, 84
function queries, 58

G

General Options
command, 53, 66
dialog box, 53, 73
“General Options...” selection in Queries menu, 25

“General Options” selection in Static Analyzer
Admin menu, 73

general queries, 55

”Generate Man Pages” selection in Class View
Admin menu, 159

generating man pages for C++ classes, 126
Graph Overview, 76

H

Headers filter, 85, 95
highlighted
member declaration, 153, 157
method definition, 179
query results, 118, 139

189

Index

History menu, 67
History menu, Class View, 164

Include button, 86
included files, searching for, 33, 46

Incremental Mode view option, 76, 99
building a tree, 99

inherited methods, 165

instantiate
current class, 165

L

Last Query button, 149

“List All Classes” selection in the Queries:Classes
submenu, 60

“List All Common Blocks” selection in the
Queries:Common Blocks submenu, 61

“List All Constants” selection in the Queries:General
submenu, 55

“List All Files” selection in the Queries:Files
submenu, 60

“List All Functions” selection in the
Queries:Function submenu, 59

“List All Global Variables” selection in the
Queries:Variables submenu, 58

“List All Header Files” selection in the Queries:Files
submenu, 60

“List All Macros” selection in the Queries:Macro
submenu, 56

“List All Methods” selection in the Queries:Methods
submenu, 61

“List All Symbols in Common Block” selection in the
Queries:Common Blocks submenu, 61

190

“List All Types” selection in the Queries:Types
submenu, 62

“List Data of Type” selection in the Queries:Types
submenu, 62

“List Directories” selection in the Queries:Directories
submenu, 63

“List Files” selection in the Queries:Directories
submenu, 63

“List Functions of Type” selection in the
Queries:Types submenu, 62

“List Global Symbols” selection in the
Queries:General submenu, 55

“List Local Declarations” selection in the
Queries:Function submenu, 59

“List Matching Files” selection in the Queries:Files
submenu, 60

“List Methods In Class” selection in the
Queries:Classes submenu, 61

List of Classes Shown window, 164

“List Subclasses” selection in the Queries:Classes
submenu, 61

“List Superclasses” selection in the Queries:Classes
submenu, 61

“List Undefined” selection in the Queries:Function
submenu, 59

“List Unused Function” selection in the
Queries:Function submenu, 59

“List Unused Macros” selection in the Queries:Macro
submenu, 56

“List Unused Variables” selection in the
Queries:Variables submenu, 58

Index

M

macro queries, 56
Man Page Generator window, 159
man pages
customizing generation, 189
generating for C++ classes, 126

“Member Display” submenu
”Name Sort”, 168

”Member Display” submenu, 167
”Declaration Order”, 167
"End To End Sort", 168

member list, 151
resource, 181

members

types displayed, 117, 138
menu bar

Class View, 158

message area
Class View, 149

”Method Calls” by method, 171
method queries, 61
”Methods”, 165

methods
used by current class, 166

Multiple Arcs button, 76
multiple inheritance, 155

N

Name filter, 84
”New Class View”, 172

nodes, 74
colors, 77,81
hiding and revealing, 76-78

noindex command-line option, 46

O

outline
customizing display, 181
icons, 150

P

parent classes
multiple inheritance, 155
parser mode, 42
pop-up Menus
Queries on Data Members, 170
Queries on Methods
Call Graph submenu, 179
”What Uses” submenu, 174

Preference menu, 167
”Align Arglists”, 168
”Align Names”, 168
”Member Display” submenu, 167
”Relation Display” submenu, 167

private members
access, 152, 157

protected members
access, 152, 157

public members
access, 152, 157

Q

queries, 6, 51-68
case sensitivity, 53
commands, 25
defining, 52-53
making, 53-65
regular expressions, use of, 52
relationship to views, 21
repeating, 67

191

Index

saving the results of, 67
scope of, 6
search text, 17
starting, 17
target text, 52
types of, 16, 55-65
query
C++ code and, 118, 139
Queries menu selections, 165
result in Static Analyzer, 149
Query Only view option, 76, 99
query results area, 18
Query Target text area, 17, 52

R

readonly command-line option, 98
Realign button, 76
regular expressions, 33,52, 84
related class list, 154
resource, 183
”Relation Display” submenu, 167
”Declaration Order”, 167
”End To End Sort”, 167
”Remove” method in Call Graph, 171, 179
”Replace” method in Call Graph, 171, 179
Rescan command, 45
“Rescan” selection in Queries menu, 25
resources
customizing C++ Browser, 181
Results Filter, 82-89
combining filters, 86
filtering, 83
filter types, 84
seeing scope reduction numbers, 83
setting filters, 85
tutorial, 87
using with large projects, 95-96

192

“Results Filter” selection in Static Analyzer Admin
menu, 83

Rotate button, 76

S

sample session
C++ Browser, 113, 133

Save Query File Browser, 67
“Save Query...” selection in Queries menu, 25

“Save Query...” selection Static Analyzer Admin
menu, 67

scanner mode, 41

scope, 152

Scoping line, 83

scroll bars, annotated, 151

search path, 46

Set Include Path and Flags command, 46

“Set Include Path...” selection in Queries menu, 25

shell expansion characters, 32

”Show All Related” selection of Class Graph Views
menu, 176

”Show AlI” selection of Class Graph Views
menu, 176

”Show Arg List” toggle in Call Graph Admin
menu, 179

”Show Butterfly” selection of Class Graph Views
menu, 176

”Show Call Graph” selection in Class View Views
menu, 163

”Show Containment Graph” selection in Class View
Views menu, 163

”Show Friend Graph” selection in Class View Views
menu, 163

“Show Inheritance Graph” selection in Class View
Views menu, 163

Index

Show in Static Analyzer button, 149

”Show Interaction Graph” selection in Class View
Views menu, 163

”Show Previous Class” selection in Class View
History menu, 164

”Show Source”, 172

"Show Source Where Defined" data query, 170
“Sort” selection in Static Analyzer Admin menu, 74
Source filter, 85

Source View, 7
Call Graph method mode and, 179
Class View member, 153, 157
starting, 65, 73, 77
Static Analyzer highlights, 65
Static Analyzer
batch mode, 45
command-line options, 40
executable option, 40
fileset option, 40
group analysis techniques, 96
order of activities, 7
overview, 5-7
queries, 51-68
starting command, 40
uses
with large programming projects, 93-100
using alternate text editors with, 66

T

text view, 72-74, 99
elements, 72
fields, 72
full and short pathnames, 73
labels, 72
sorting, 18
sorting elements, 73
speed of, 72

“To Contain”
“What Is Used” submenu, 166

”To Contain”
”What Uses” submenu, 165

tree views, 99
nodes and arcs, 74-78
options, 76
starting Source View, 77
structure, 74
tutorial, 78

type queries, 62

U

Use Source View option, 66
using
C++ Browser, 113, 133

\Y

variable queries, 56

view controls, 75-77

viewing source code, 65-66

View Options menu, 76

viewport, 21

views, 7, 71-89
caution in using, 26
relationship to queries, 21
setting scope, 82
suggestions for large projects, 99

Views menu, Class View, 163

193

Index

W

"What Accesses” data members, 170
”What Currently Defines” method, 172
”What Declares” method, 171

”"What Defines” data members, 170
”What Destroys” class, 172

”What Destroys” selection in Class View Queries
menu, 165

”What Instantiates” class, 172

”What Instantiates” selection in Class View Queries
menu, 165

”What Is Declared” by base class, 172

”What is Declared” selection in Class View Queries
menu, 165

”What Is Defined” by base class, 173

”What Is Defined” selection in Class View Queries
menu, 165

”What Is Destroyed” selection in Class View Queries
menu, 165

”What Is Instantiated” selection in Class View
Queries menu, 165

”What Is Overloaded” by derived class, 173
”"What is Overridden By”, 165
”What Is Used” by friend class, 173

“What Is Used” submenu
in Class View Queries menu, 166

”"What Is Used” submenu, 173
Queries on Methods pop-up, 171

"What It Uses”, 173

”What Modifies” data members, 170
”What Overloads” method, 172
”What Reads” data members, 170
”What Uses” friend class, 173
”What Uses” methods, 171

”What Uses” submenu in Class View Queries
menu, 165

194

“Where Address Taken” selection in the
Queries:Variables submenu, 58

“Where Allocated” selection in the Queries;Variables
submenu, 58

“Where Common Block Defined” selection in the
Queries:Common Blocks submenu, 62

“Where Common Block Used” selection in the
Queries:Common Blocks submenu, 62

“Where Deallocated” selection in the
Queries:Variables submenu, 58

“Where Declared?” selection in the Queries:Methods
submenu, 61

“Where Declared?” selection in the Queries:Variables
submenu, 58

“Where Defined?” selection in the Queries:Classes
submenu, 60

“Where Defined?” selection in the Queries:Function
submenu, 59

“Where Defined?” selection in the Queries:General
submenu, 55

“Where Defined?” selection in the Queries:Macro
submenu, 56

“Where Defined?” selection in the Queries:Methods
submenu, 61

“Where Defined?” selection in the Queries:Variables
submenu, 58

“Where Function Declared” selection in the
Queries:Function submenu, 59

“Where Function Used” selection in the
Queries:Function submenu, 59

“Where Symbol Used?” selection in the
Queries:General submenu, 55

“Where Type Defined” selection in the Queries: Types
submenu, 62

“Where Type Used” selection in the Queries:Types
submenu, 62

“Where Undefined?” selection in the Queries:Macro
submenu, 56

Index

“Where Used?” selection in the Queries:Macro
submenu, 56

“Who Calls?” selection in the Queries:Function
submenu, 59

“Who Includes?” selection in the Queries:Files
submenu, 60

“Who Is Called By?” selection in the
Queries:Function submenu, 59

“Who is Included By?” selection in the Queries:Files
submenu, 60

“Who References?” selection in the Queries:Variables
submenu, 58

“Who Sets?” selection in the Queries:Variables
submenu, 58

working directory, 35
changing, 48

X

Xdefaults file, 181

Xdefaults file, 66

z

Zoom In button, 76
Zoom menu, 76
Zoom Out button, 76

195

Index

196

Index

Symbols

? in Current Class field, 149

A

access specification, 152, 156

”Add” to Call Graph, 171, 179

”Align Arglists”, 168

”Align Names”, 168

”All (method and data access)” used by method, 171
All Defined view option, 77, 99

annotated scroll bars, 151

”Another Class View” selection in Class View Admin
menu, 159

arcs, 74

argument list, 179
”As Friend”, 165
”As Friends”, 166

B

base classes
sublist, 155

batch command-line option, 45, 97
browsing directory, 33
by Accessing Any Member” of class, 174

by Accessing Any Member” used by derived
class, 173

by Accessing Data Members” used by derived
class, 173

by Accessing Data” of class, 174

by Calling Methods” of class, 174

by Calling Methods” used by derived class, 173
By Data Access”, 166

By Method Calls”, 166

by Modifying Data Members” by derived class, 173
by Modifying Data” of class, 174

by Reading Data Members” by derived class, 173

C

C++ Browser
customizing, 181

”Call Graph” submenu, 171
Call Graph window and, 163

Call Graph window, 177

call tree view, 74-80
tutorial, 78

Call Tree View selection in Static Analyzer Views
menu, 74

”Change Current Class” selection in Class View
Admin menu, 159

Change Fileset command, 35, 48

chooser window
List of Classes, 106, 159

187

Index

Class Graph window, 174
class queries, 60
class tree view, 21, 81

“Class Tree View” selection in Static Analyzer Views

menu, 81

Class View, 147

Admin menu, 159

History menu, 164

member list, 151

message area, 149

outline lists, 150

Preference menu, 167

Views menu, 163
”Clear” selection in Call Graph Admin menu, 179
”Close Class View” selection in Class View Admin

menu, 159

common block queries, 61
Complete Tree view option, 77,99
Constrain button, 85
cross-reference database, 6, 15

creating a project database, 97

index, 46

guerying a project database, 98

shared for project, 96
current class

<-This, 155
Current Class field, 148
customizing

C++ Browser resources, 181
cvstatic.fileset, 33, 34, 98
cvstatic.index, 15, 98
cvstatic.posting, 15, 98
cvstatic.xref, 15, 98

188

D

”Data Access” by method, 171

database
creating for sample session, 114, 134

database, see cross-reference database
”Data Members”, 165

data members
queries, 170
used by current class, 166

”Data Modification” by method, 171
”Data Read” by method, 171

derived classes
sublist, 156

destroy
class, 172
classes, 165
current class, 165

Directory filter, 85
directory queries, 63

double-clicking
Call Graph node, 179
opening Source View, 153, 157
related class list entries, 155

E

Edit Fileset command, 35

”Edit Fileset” selection in Static Analyzer Admin
menu, 114, 136

Exclude button, 85

“Exit Browser” selection in Class View Admin
menu, 163

External Functions filter, 85, 95

Index

F

File Dependency View, 21
using to view function calls, 100
“File Dependency View” selection in Static Analyzer
Views menu, 82
File filter, 84
file queries, 60
fileset, 31-48
changing, 48
creating, 35-47
by hand, 39
for sample session, 114, 134
from executable, 40
with a shell script, 94-95
with command-line option, 40
with UNIX find command, 39
custom, 12
customizing for code modules, 95
default, 12,34
filename extensions, 35
filenames in, 12
parser mode, 42
pathnames in, 32
personal and project, 97
scanner mode, 41
scanning, 15, 45-47
specifications, 32-33
specifying with command-line option, 40
updating, 41
using shell expansion characters, 32
fileset command-line option, 98
Fileset Editor, 35-39
Add Files button, 38
Browsing Directory text area, 37
browsing for contents, 37
Current Fileset text area, 35
Directories list, 37
Files list, 38
filter buttons, 38

literal entry, 37
removing entries, 37
wild card entry, 37

“Find Regular Expression” selection in the
Queries:General submenu, 55

“Find String” selection in the Queries:General
submenu, 55

Force Scan command, 45
“Force Scan” selection in Queries menu, 25

friend
classes, 166
current class, 165

Function filter, 84
function queries, 58

G

General Options
command, 53, 66
dialog box, 53, 73
“General Options...” selection in Queries menu, 25

“General Options” selection in Static Analyzer
Admin menu, 73

general queries, 55

”Generate Man Pages” selection in Class View
Admin menu, 159

generating man pages for C++ classes, 126
Graph Overview, 76

H

Headers filter, 85, 95
highlighted
member declaration, 153, 157
method definition, 179
query results, 118, 139

189

Index

History menu, 67
History menu, Class View, 164

Include button, 86
included files, searching for, 33, 46

Incremental Mode view option, 76, 99
building a tree, 99

inherited methods, 165

instantiate
current class, 165

L

Last Query button, 149

“List All Classes” selection in the Queries:Classes
submenu, 60

“List All Common Blocks” selection in the
Queries:Common Blocks submenu, 61

“List All Constants” selection in the Queries:General
submenu, 55

“List All Files” selection in the Queries:Files
submenu, 60

“List All Functions” selection in the
Queries:Function submenu, 59

“List All Global Variables” selection in the
Queries:Variables submenu, 58

“List All Header Files” selection in the Queries:Files
submenu, 60

“List All Macros” selection in the Queries:Macro
submenu, 56

“List All Methods” selection in the Queries:Methods
submenu, 61

“List All Symbols in Common Block” selection in the
Queries:Common Blocks submenu, 61

190

“List All Types” selection in the Queries:Types
submenu, 62

“List Data of Type” selection in the Queries:Types
submenu, 62

“List Directories” selection in the Queries:Directories
submenu, 63

“List Files” selection in the Queries:Directories
submenu, 63

“List Functions of Type” selection in the
Queries:Types submenu, 62

“List Global Symbols” selection in the
Queries:General submenu, 55

“List Local Declarations” selection in the
Queries:Function submenu, 59

“List Matching Files” selection in the Queries:Files
submenu, 60

“List Methods In Class” selection in the
Queries:Classes submenu, 61

List of Classes Shown window, 164

“List Subclasses” selection in the Queries:Classes
submenu, 61

“List Superclasses” selection in the Queries:Classes
submenu, 61

“List Undefined” selection in the Queries:Function
submenu, 59

“List Unused Function” selection in the
Queries:Function submenu, 59

“List Unused Macros” selection in the Queries:Macro
submenu, 56

“List Unused Variables” selection in the
Queries:Variables submenu, 58

Index

M

macro queries, 56
Man Page Generator window, 159
man pages
customizing generation, 189
generating for C++ classes, 126

“Member Display” submenu
”Name Sort”, 168

”Member Display” submenu, 167
”Declaration Order”, 167
"End To End Sort", 168

member list, 151
resource, 181

members

types displayed, 117, 138
menu bar

Class View, 158

message area
Class View, 149

”Method Calls” by method, 171
method queries, 61
”Methods”, 165

methods
used by current class, 166

Multiple Arcs button, 76
multiple inheritance, 155

N

Name filter, 84
”New Class View”, 172

nodes, 74
colors, 77,81
hiding and revealing, 76-78

noindex command-line option, 46

O

outline
customizing display, 181
icons, 150

P

parent classes
multiple inheritance, 155
parser mode, 42
pop-up Menus
Queries on Data Members, 170
Queries on Methods
Call Graph submenu, 179
”What Uses” submenu, 174

Preference menu, 167
”Align Arglists”, 168
”Align Names”, 168
”Member Display” submenu, 167
”Relation Display” submenu, 167

private members
access, 152, 157

protected members
access, 152, 157

public members
access, 152, 157

Q

queries, 6, 51-68
case sensitivity, 53
commands, 25
defining, 52-53
making, 53-65
regular expressions, use of, 52
relationship to views, 21
repeating, 67

191

Index

saving the results of, 67
scope of, 6
search text, 17
starting, 17
target text, 52
types of, 16, 55-65
query
C++ code and, 118, 139
Queries menu selections, 165
result in Static Analyzer, 149
Query Only view option, 76, 99
query results area, 18
Query Target text area, 17, 52

R

readonly command-line option, 98
Realign button, 76
regular expressions, 33,52, 84
related class list, 154
resource, 183
”Relation Display” submenu, 167
”Declaration Order”, 167
”End To End Sort”, 167
”Remove” method in Call Graph, 171, 179
”Replace” method in Call Graph, 171, 179
Rescan command, 45
“Rescan” selection in Queries menu, 25
resources
customizing C++ Browser, 181
Results Filter, 82-89
combining filters, 86
filtering, 83
filter types, 84
seeing scope reduction numbers, 83
setting filters, 85
tutorial, 87
using with large projects, 95-96

192

“Results Filter” selection in Static Analyzer Admin
menu, 83

Rotate button, 76

S

sample session
C++ Browser, 113, 133

Save Query File Browser, 67
“Save Query...” selection in Queries menu, 25

“Save Query...” selection Static Analyzer Admin
menu, 67

scanner mode, 41

scope, 152

Scoping line, 83

scroll bars, annotated, 151

search path, 46

Set Include Path and Flags command, 46

“Set Include Path...” selection in Queries menu, 25

shell expansion characters, 32

”Show All Related” selection of Class Graph Views
menu, 176

”Show AlI” selection of Class Graph Views
menu, 176

”Show Arg List” toggle in Call Graph Admin
menu, 179

”Show Butterfly” selection of Class Graph Views
menu, 176

”Show Call Graph” selection in Class View Views
menu, 163

”Show Containment Graph” selection in Class View
Views menu, 163

”Show Friend Graph” selection in Class View Views
menu, 163

“Show Inheritance Graph” selection in Class View
Views menu, 163

Index

Show in Static Analyzer button, 149

”Show Interaction Graph” selection in Class View
Views menu, 163

”Show Previous Class” selection in Class View
History menu, 164

”Show Source”, 172

"Show Source Where Defined" data query, 170
“Sort” selection in Static Analyzer Admin menu, 74
Source filter, 85

Source View, 7
Call Graph method mode and, 179
Class View member, 153, 157
starting, 65, 73, 77
Static Analyzer highlights, 65
Static Analyzer
batch mode, 45
command-line options, 40
executable option, 40
fileset option, 40
group analysis techniques, 96
order of activities, 7
overview, 5-7
queries, 51-68
starting command, 40
uses
with large programming projects, 93-100
using alternate text editors with, 66

T

text view, 72-74, 99
elements, 72
fields, 72
full and short pathnames, 73
labels, 72
sorting, 18
sorting elements, 73
speed of, 72

“To Contain”
“What Is Used” submenu, 166

”To Contain”
”What Uses” submenu, 165

tree views, 99
nodes and arcs, 74-78
options, 76
starting Source View, 77
structure, 74
tutorial, 78

type queries, 62

U

Use Source View option, 66
using
C++ Browser, 113, 133

\Y

variable queries, 56

view controls, 75-77

viewing source code, 65-66

View Options menu, 76

viewport, 21

views, 7, 71-89
caution in using, 26
relationship to queries, 21
setting scope, 82
suggestions for large projects, 99

Views menu, Class View, 163

193

Index

W

"What Accesses” data members, 170
”What Currently Defines” method, 172
”What Declares” method, 171

”"What Defines” data members, 170
”What Destroys” class, 172

”What Destroys” selection in Class View Queries
menu, 165

”What Instantiates” class, 172

”What Instantiates” selection in Class View Queries
menu, 165

”What Is Declared” by base class, 172

”What is Declared” selection in Class View Queries
menu, 165

”What Is Defined” by base class, 173

”What Is Defined” selection in Class View Queries
menu, 165

”What Is Destroyed” selection in Class View Queries
menu, 165

”What Is Instantiated” selection in Class View
Queries menu, 165

”What Is Overloaded” by derived class, 173
”"What is Overridden By”, 165
”What Is Used” by friend class, 173

“What Is Used” submenu
in Class View Queries menu, 166

”"What Is Used” submenu, 173
Queries on Methods pop-up, 171

"What It Uses”, 173

”What Modifies” data members, 170
”What Overloads” method, 172
”What Reads” data members, 170
”What Uses” friend class, 173
”What Uses” methods, 171

”What Uses” submenu in Class View Queries
menu, 165

194

“Where Address Taken” selection in the
Queries:Variables submenu, 58

“Where Allocated” selection in the Queries;Variables
submenu, 58

“Where Common Block Defined” selection in the
Queries:Common Blocks submenu, 62

“Where Common Block Used” selection in the
Queries:Common Blocks submenu, 62

“Where Deallocated” selection in the
Queries:Variables submenu, 58

“Where Declared?” selection in the Queries:Methods
submenu, 61

“Where Declared?” selection in the Queries:Variables
submenu, 58

“Where Defined?” selection in the Queries:Classes
submenu, 60

“Where Defined?” selection in the Queries:Function
submenu, 59

“Where Defined?” selection in the Queries:General
submenu, 55

“Where Defined?” selection in the Queries:Macro
submenu, 56

“Where Defined?” selection in the Queries:Methods
submenu, 61

“Where Defined?” selection in the Queries:Variables
submenu, 58

“Where Function Declared” selection in the
Queries:Function submenu, 59

“Where Function Used” selection in the
Queries:Function submenu, 59

“Where Symbol Used?” selection in the
Queries:General submenu, 55

“Where Type Defined” selection in the Queries: Types
submenu, 62

“Where Type Used” selection in the Queries:Types
submenu, 62

“Where Undefined?” selection in the Queries:Macro
submenu, 56

Index

“Where Used?” selection in the Queries:Macro
submenu, 56

“Who Calls?” selection in the Queries:Function
submenu, 59

“Who Includes?” selection in the Queries:Files
submenu, 60

“Who Is Called By?” selection in the
Queries:Function submenu, 59

“Who is Included By?” selection in the Queries:Files
submenu, 60

“Who References?” selection in the Queries:Variables
submenu, 58

“Who Sets?” selection in the Queries:Variables
submenu, 58

working directory, 35
changing, 48

X

Xdefaults file, 181

Xdefaults file, 66

z

Zoom In button, 76
Zoom menu, 76
Zoom Out button, 76

195

Index

196

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

General impression of the document

Omission of material that you expected to find
Technical errors

Relevance of the material to the job you had to do

Quiality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2580-002.

Thank you!

Three Ways to Reach Us

To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgiltechpubs

To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

