
ProDev ProMP User’s Guide
007–2603–005

Copyright © 1993 1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

Silicon Graphics and the Silicon Graphics logo are registered trademarks of Silicon Graphics, Inc. Origin200 and IRIX are
trademarks of Silicon Graphics, Inc. ToolTalk is a trademark of Sun Microsystems, Inc. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company Limited. X/Open is a trademark of X/Open
Company Ltd. The X device and X Window System are trademarks of the Open Group.

What’s New in This Guide

ProDev ProMP User’s Guide 007–2603–005

New Features Documented:

Support for Fortran 90 and C programs has been added.

Record of Revision

Version Description

Revision level 1993
Original Printing.

2.9 April 1999
This release adds support for programs written in C and Fortran 90.

007–2603–005 i

Contents

Page

Preface xvii

Conventions . xvii

Getting Started With the Parallel Analyzer View [1] 1

Setting Up Your System . 1

Running the Parallel Analyzer View: General Features 2

Compiling a Program for the Parallel Analyzer View 2

Generating Other Reports . 3

OpenMP and PCF Directive Support 3

Reading Files With the Parallel Analyzer View 3

Tutorials . 4

Examining Loops for Fortran 77 Code [2] 5

Setting Up the omp_demo.f Sample Session 6

Compiling the Sample Code . 6

Starting the Parallel Analyzer View Tutorial 7

Restarting the Tutorial . 7

Viewing the Parallel Analyzer View Main Window 7

Using the Loop List Display . 9

Loop List Information Fields . 10

Loop List Icons: The Icon Legend 10

Resizing the Loop List Display 12

Searching the Loop List . 12

Sorting and Filtering the Loop List 12

Sorting the Loop List . 12

007–2603–005 iii

ProDev ProMP User’s Guide

Page

Filtering the Loop List . 13

Filtering the Loop List by Parallelization State 13

Filtering the Loop List by Loop Origin 14

Filtering by Loop Origin: Details for Sorting by Subroutine 15

Viewing Detailed Information About Code and Loops 16

Viewing Original and Transformed Source 16

Viewing Original Source . 16

Viewing Transformed Source 18

Navigating the Loop List . 20

Selecting a Loop for Analysis . 20

Using the Loop Information Display 23

Loop Parallelization Controls 23

Additional Loop Information and Controls 24

Using the Transformed Loops View 25

Transformed Loops View Description 25

Selecting Transformed Loops 26

Examples of Simple Loops . 28

Simple Parallel Loop . 28

Example 1: Simple Parallel Loop 28

Serial Loop . 29

Example 2: Serial Loop . 29

Explicitly Parallelized Loop . 29

Fused Loops . 31

Example 3: Fused Loop . 31

Loop That Is Eliminated . 32

Example 4: Eliminated Loop 32

Examining Loops With Obstacles to Parallelization 32

iv 007–2603–005

Contents

Page

Carried Data Dependence . 32

Unparallelizable Carried Data Dependence 33

Example 5: Unparallelizable Carried Data Dependence 33

Parallelizable Carried Data Dependence 34

Example 6: Parallelizable Carried Data Dependence 34

Multi-line Data Dependence 35

Example 7: Multi-line Data Dependence 35

Reductions . 36

Example 8: Reduction . 36

Input/Output Operations . 37

Example 9: Input/Output Operation 37

Unstructured Control Flow . 37

Example 10: Unstructured Control Flow 37

Subroutine Calls . 38

Unparallelizable Loop With a Subroutine Call 38

Example 11: Unparallelizable Loop With Subroutine Call 38

Parallelizable Loop With a Subroutine Call 38

Example 12: Parallelizable Loop With Subroutine Call 38

Permutation Vectors . 38

Unparallelizable Loop With a Permutation Vector 39

Example 13: Unparallelizable Loop With Permutation Vector 39

Parallelizable Loop With a Permutation Vector 39

Example 14: Parallelizable Loop With Permutation Vector 39

Obstacles to Parallelization Messages 39

Examining Nested Loops . 44

Doubly Nested Loop . 44

Example 15: Doubly Nested Loop 44

Interchanged Doubly Nested Loop 44

007–2603–005 v

ProDev ProMP User’s Guide

Page

Example 16: Interchanged Doubly Nested Loop 45

Triply Nested Loop With an Interchange 45

Example 17: Triply Nested Loop With Interchange 45

Modifying Source Files and Compiling 45

Making Changes . 46

Adding C$OMP PARALLEL DO Directives and Clauses 46

Adding New Assertions or Directives With the Operations Menu 50

Deleting Assertions or Directives 51

Applying Requested Changes . 52

Viewing Changes With gdiff 53

Modifying the Source File Further 54

Updating the Source File . 54

Examining the Modified Source File 55

Added Assertion . 55

Deleted Assertion . 56

Examples Using OpenMP Directives 56

Explicitly Parallelized Loops: C$OMP DO 56

Example 18: Explicitly Parallelized Loop Using C$OMP DO 57

Loops With Barriers: C$OMP BARRIER 59

Example 19: Loops Using C$OMP BARRIER 59

Critical Sections: C$OMP CRITICAL 60

Example 20: Critical Section Using C$OMP CRITICAL 61

Single-Process Sections: C$OMP SINGLE 61

Example 21: Single-Process Section Using C$OMP SINGLE 61

Parallel Sections: C$OMP SECTIONS 61

Example 22: Parallel Sections Using C$OMP SECTIONS 62

Examples Using Data Distribution Directives 62

Distributed Arrays: C$SGI DISTRIBUTE 62

vi 007–2603–005

Contents

Page

Example 23: Distributed Array Using C$SGI DISTRIBUTE 64

Distributed and Reshaped Arrays: C$SGI DISTRIBUTE_RESHAPE 64

Example 24: Distributed and Reshaped Array Using C$SGI DISTRIBUTE_RESHAPE . 65

Prefetching Data From Cache: C*$* PREFETCH_REF 65

Example 25: Prefetching Data From Cache Using C*$* PREFETCH_REF 66

Exiting From the omp_demo.f Sample Session 66

Examining Loops for Fortran 90 Code [3] 67

Setting Up the Sample Session . 67

Compiling the Sample Code . 67

Starting the Parallel Analyzer View 68

Demonstrating Array Statement Transformations 68

Transforming an Array Statement into a DO Loop 68

Transforming an Array Statement in Nested DO Loops 69

Transforming an Array Statement into a Subroutine 71

Exiting From the Session . 73

Examining Loops for C Code [4] 75

Setting Up the c_tutorial.c Sample Session 76

Compiling the Sample Code . 76

Starting the Parallel Analyzer View Tutorial 76

Examples of Simple Loops . 77

Simple Parallel Loop . 77

Serial Loop . 78

Explicitly Parallelized Loop . 78

Fused Loops . 80

Loop That Is Eliminated . 80

Examining Loops With Obstacles to Parallelization 80

007–2603–005 vii

ProDev ProMP User’s Guide

Page

Carried Data Dependence . 81

Unparallelizable Carried Data Dependence 81

Parallelizable Carried Data Dependence 83

Multi-line Data Dependence 83

Reductions . 83

Input/Output Operations . 84

Function Calls . 84

Permutation Vectors . 85

Unparallelizable Loop With a Permutation Vector 85

Parallelizable Loop With a Permutation Vector 85

Examining Nested Loops . 86

Doubly Nested Loop . 86

Doubly Nested Loop . 86

Triple Nested Loop . 86

Modifying Source Files and Compiling 87

Making Changes . 88

Adding #pragma omp parallel for Directives and Clauses 88

Adding New Assertions or Directives With the Operations Menu 91

Deleting Assertions or Directives 92

Updating the Source File . 95

Examining the Modified Source File 95

Added Assertion . 95

Deleted Assertion . 95

Examples Using OpenMP Directives 96

Explicitly Parallelized Loops: #pragma omp for 96

Loops With Barriers: #pragma omp barrier 97

Critical Sections: #pragma omp critical 98

Single-Process Sections: #pragma omp single 98

viii 007–2603–005

Contents

Page

Parallel Sections: #pragma omp sections 98

Examples Using Data Distribution Directives 99

Distributed Arrays: #pragma distribute 99

Distributed and Reshaped Arrays: #pragma distribute_reshape 101

Prefetching Data From Cache: #pragma prefetch_ref 102

Exiting From the Sample Session 103

Using WorkShop With Parallel Analyzer View [5] 105

Setting Up the linpackd Sample Session 105

Starting the Parallel Analyzer View 105

Starting the Performance Analyzer 106

Using the Parallel Analyzer With Performance Data 108

Effect of Performance Data on the Source View 109

Sorting the Loop List by Performance Cost 109

Exiting From the linpackd Sample Session 111

Parallel Analyzer View Reference [6] 113

Parallel Analyzer View Main Window 113

Parallel Analyzer View Menu Bar 115

Admin Menu . 117

Icon Legend… Option . 121

Launch Tool Submenu . 121

Project Submenu . 122

Views Menu . 125

Fileset Menu . 126

Update Menu . 127

Configuration Menu . 129

Operations Menu . 130

Help Menu . 134

007–2603–005 ix

ProDev ProMP User’s Guide

Page

Keyboard Shortcuts . 135

Loop List Display . 136

Resizing the Loop List . 136

Status and Performance Experiment Lines 136

Loop List . 137

Loop Display Controls . 138

Search Loop List Field . 139

Sort Option Button . 139

Show Loop Types Option Button 140

Filtering Option Button . 141

Loop Display Buttons . 142

Loop Information Display . 142

Highlight Buttons . 143

Loop Parallelization Controls in the Loop Information Display 144

Loop Parallelization Status Option Button 144

MP Scheduling Option Button: Directives for All Loops 146

MP Chunk Size Field . 147

Obstacles to Parallelization Information Block 148

Assertions and Directives Information Blocks 149

Compiler Messages . 150

Views Menu Options . 150

Parallelization Control View . 150

Common Features of the Parallelization Control View 151

C$OMP PARALLEL DO and C$OMP DO Directive Information 152

MP Scheduling Option Button: Clauses for One Loop 156

Variable List Option Buttons 156

Variable List Storage Labeling 157

Transformed Loops View . 158

x 007–2603–005

Contents

Page

PFA Analysis Parameters View 159

Subroutines and Files View . 160

Loop Display Control Button Views 162

Source View and Parallel Analyzer View - Transformed Source 162

Appendix A Examining Loops Containing PCF Directives 165

Setting Up the dummy.f Sample Session 165

Compiling the Sample Code . 165

Starting the Parallel Analyzer View 166

Examples Using PCF Directives . 166

Explicitly Parallelized Loops: C$PAR PDO 167

Example 26: Explicitly Parallelized Loop Using C$PAR PDO 167

Loops With Barriers: C$PAR BARRIER 168

Example 27: Loops Using C$PAR BARRIER 169

Critical Sections: C$PAR CRITICAL SECTION 170

Example 28: Critical Section Using C$PAR CRITICAL SECTION 171

Single-Process Sections: C$PAR SINGLE PROCESS 171

Example 29: Single-Process Section Using C$PAR SINGLE PROCESS 171

Parallel Sections: C$PAR PSECTIONS 171

Example 30: Parallel Section Using C$PAR PSECTIONS 172

Exiting From the dummy.f Sample Session 172

Index 173

Figures
Figure 1. Parallel Analyzer View Main Window 9

Figure 2. The Icon Legend… Window 11

Figure 3. Loop Display Controls 12

Figure 4. Show Loop Types Option Button 13

007–2603–005 xi

ProDev ProMP User’s Guide

Page

Figure 5. Filtering Option Button 15

Figure 6. Subroutines and Files View 15

Figure 7. Filtering Option Button 16

Figure 8. Source View . 17

Figure 9. Transformed Source Window 19

Figure 10. Global Effects of Selecting a Loop 22

Figure 11. Loop Information Display Without Performance Data 23

Figure 12. Transformed Loops View for Loop Olid 1 25

Figure 13. Transformed Loops in Source Windows 27

Figure 14. Explicitly Parallelized Loop 30

Figure 15. Source View of C$OMP PARALLEL DO Directive 31

Figure 16. Obstacles to Parallelization 34

Figure 17. Parallelizable Data Dependence 35

Figure 18. Highlighting on Multiple Lines 36

Figure 19. Requesting a C$OMP PARALLEL DO Directive 47

Figure 20. Parallelization Control View After Choosing C$OMP PARALLEL DO… 49

Figure 21. Effect of Changes on the Loop List 50

Figure 22. Adding an Assertion 51

Figure 23. Deleting an Assertion 52

Figure 24. Run gdiff After Update 53

Figure 25. Setting the Checkbox for Run Editor After Update 54

Figure 26. Build View of Build Manager 55

Figure 27. Loops Explicitly Parallelized Using C$OMP DO 58

Figure 28. Loops Using C$OMP BARRIER Synchronization 60

Figure 29. C$SGI DISTRIBUTE Directive and Text Field 63

Figure 30. Array Statement into DO Loop 69

Figure 31. Loop 22 . 70

xii 007–2603–005

Contents

Page

Figure 32. Loop 23 . 71

Figure 33. Array Statement into a Subroutine 72

Figure 34. Explicitly Parallelized Loop 79

Figure 35. Obstacles to Parallelization 82

Figure 36. Creating a Parallel Directive 89

Figure 37. Parallelization Control View 90

Figure 38. Changed Loop List . 90

Figure 39. Adding an Assertion 92

Figure 40. Deleting an Assertion 94

Figure 41. Loops Explicitly Parallelized Using #pragma omp for 97

Figure 42. #pragma distribute Directive and Text Field 100

Figure 43. Starting the Performance Analyzer 107

Figure 44. Parallel Analyzer View — Performance Data Loaded 108

Figure 45. Source View for Performance Experiment 109

Figure 46. Sort by Performance Cost 110

Figure 47. Loop Information Display With Performance Data 111

Figure 48. Parallel Analyzer View Main Window 115

Figure 49. Parallel Analyzer View Menu Bar and Menus 116

Figure 50. Admin Menu . 117

Figure 51. Output Text File Selection Dialog 118

Figure 52. Parallelization Icon Legend 120

Figure 53. Launch Tool Submenu 121

Figure 54. Project Submenu and Windows 124

Figure 55. Views Menu . 125

Figure 56. Fileset Menu . 126

Figure 57. Update Menu . 128

Figure 58. Configuration Menu 129

007–2603–005 xiii

ProDev ProMP User’s Guide

Page

Figure 59. Operations Menu and Submenus 130

Figure 60. Help Menu . 134

Figure 61. Loop List Display . 136

Figure 62. Loop List with Column Headings 137

Figure 63. Loop Display Controls 139

Figure 64. Sort Option Button . 139

Figure 65. Show Loop Types Option Button 140

Figure 66. Filtering Option Button 141

Figure 67. Loop Information Display 143

Figure 68. Loop Parallelization Controls 144

Figure 69. MP Chunk Size Field Changed 148

Figure 70. Obstacles to Parallelization Block 149

Figure 71. Assertion Information Block and Options (n32 and n64 Compilation) 149

Figure 72. Parallelization Control View 151

Figure 73. Parallelization Control View With C$OMP PARALLEL DO Directive 153

Figure 74. Parallelization Control View With C$OMP DO Directive 154

Figure 75. Transformed Loops View 158

Figure 76. PFA Analysis Parameters View 160

Figure 77. Subroutines and Files View 161

Figure 78. Original and Transformed Source Windows 163

Figure 79. Explicitly Parallelized Loops Using C$PAR PDO 168

Figure 80. Loops Using C$PAR BARRIER Synchronization 170

Tables
Table 1. Major Obstacles to Parallelization Messages 40

Table 2. Data Dependence Obstacles to Parallelization 41

Table 3. Add Assertion and Add OMP Directive Menu Options 131

Table 4. Add OMP Section Menu Options 134

xiv 007–2603–005

Contents

Page

Table 5. Parallel Analyzer View Keyboard Shortcuts 135

Table 6. Assertions and Directives Accessed From the Loop Parallelization Controls . . . 146

007–2603–005 xv

Preface

This publication documents the ProDev ProMP release running on IRIX systems.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

... Ellipses indicate that a preceding element can be
repeated.

007–2603–005 xvii

Getting Started With the Parallel Analyzer
View [1]

This chapter helps you get the ProDev ProMP parallel analyzer view running
on your system. It contains the following sections:

• Setting up your system, see Section 1.1, page 1.

• Running the parallel analyzer view: general features, see Section 1.2, page 2.

• Tutorials, see Section 1.3, page 4.

Note: This product was formerly called WorkShop Pro MPF.

1.1 Setting Up Your System

To install the ProDev ProMP software, you should have at least 16 MB of
memory; 32 MB improves overall performance.

ProDev ProMP requires the following software versions (or later versions):

• IRIX system software version 6.2

• MIPSpro Auto-Parallelizing Fortran 77, release 7.2.1

• MIPSpro Auto-Parallelizing Fortran 90, release 7.3

• MIPSpro Auto-Parallelizing C, release 7.3

• ToolTalk 1.1

• WorkShop 2.0

To determine what software is installed on your system, enter the following at
the shell prompt:

% versions

If the items mentioned in this section are not installed, consult your sales
representative, or in the United States call the Silicon Graphics Technical
Assistance Center at 1-(800)-800-4SGI. To order additional memory, consult your
sales representative or call 1-(800)-800-SGI1.

If you have all the software and memory you need, you can install the ProDev
ProMP software.

007–2603–005 1

ProDev ProMP User’s Guide

• For general instructions about software installation, consult the man pages
inst(1M) and swmgr(1M), and the manual, IRIX Admin: Software Installation
and Licensing.

• See also Developer Magic: ProDev Pro MP Release Notes for specific installation
instructions.

The executable is cvpav(1), which is installed in /usr/sbin.

1.2 Running the Parallel Analyzer View: General Features

The process of using the parallel analyzer view involves two steps:

1. Compiling a program with appropriate options.

2. Reading the compiled files with the parallel analyzer view.

1.2.1 Compiling a Program for the Parallel Analyzer View

Before starting the parallel analyzer view to analyze your source (in this case,
Fortran source), run one of the auto-parallelizing compilers with the
appropriate options. For the tutorials presented in subsequent chapters,
makefiles are provided. You can adapt these to your specific source or enter one
of the following commands:

% f90 -apo keep -O3 sourcefile.f

% f77 -apo keep -O3 sourcefile.f

The compiler generates its usual output files and an analysis file
(sourcefile.anl), which the parallel analyzer reads.

The command-line options have the following effects:

-apo keep Saves a .anl file, which has necessary
information for the parallel analyzer view.

-O3 Sets the compiler for aggressive optimization.
The optimization focuses on maximizing code
performance, even if that requires extending the
compile time or relaxing language rules.

See the MIPSpro Fortran 77 Programmer’s Guide, MIPSpro Compiling and
Performance Tuning Guide, and the f90(1) or f77(1) man page for more
information.

2 007–2603–005

Getting Started With the Parallel Analyzer View [1]

Note: The cvpav command assumes that the -apo keep option was used
on each of the Fortran source files named in a single executable or file
specifying several executables. If this is not the case, a warning message is
posted, and the unprocessed files are marked by an error icon within the
parallel analyzer’s subroutines and files view, see Section 6.6.4, page 160.

1.2.1.1 Generating Other Reports

While they are not part of the parallel analyzer view, other parallelization
reports can be generated using the following command-line options:

-apo list Produces a .l file, a listing of those parts of the
program that can run in parallel and those that
cannot.

-mplist Generates the equivalent parallelized program in
a .w2f.f file.

These reports are text files that can be used for analysis. For more detailed
information, see MIPSpro Auto-Parallelizing Option Programmer’s Guide.

1.2.1.2 OpenMP and PCF Directive Support

The MIPSpro auto-parallelizing Fortran compilers support OpenMP directives,
unless you are compiling with the -o32 option. If you put OpenMP directives
in your o32 code, they are treated as comments rather than being interpreted.
For more information on OpenMP directives, see the following:

• Section 2.11, page 56

• The OpenMP Architecture Review Board web site at the following URL:
http://www.openmp.org/

Although using OpenMP directives is recommended, the auto-parallelizing
compilers still support PCF directives. For information on analyzing loops
containing PCF directives, see Appendix A, page 165.

1.2.2 Reading Files With the Parallel Analyzer View

You can run the parallel analyzer view on any of the following objects:

• A source file

• An executable

• A list of files

007–2603–005 3

ProDev ProMP User’s Guide

To run the parallel analyzer view for one of these cases, enter one of the
following commands:

% cvpav -f sourcefile.f
% cvpav -e executable
% cvpav -F fileset-file

The cvpav command reads information from all source files compiled into the
application.

The parallel analyzer view has several other command line options, as well as
several X Window System resources that you can set. See the man page
cvpav(1)(1) for more information.

Note: If you receive a message related to licensing when you start cvpav,
refer to Chapter 7 in the ProDev Pro MP Release Notes. To access the notes,
enter the grelnotes(1) command and choose Products > ProMP.

1.3 Tutorials

For a more detailed introduction to the parallel analyzer view, follow one of
tutorials provided with the product in the following chapters:

• Examining Loops for Fortran 77 Code, seeChapter 2, page 5.

• Examining Loops for Fortran 90 Code, see Chapter 3, page 67.

• Examining Loops for C Code, see Chapter 4, page 75.

• Using WorkShop With Parallel Analyzer View, see Chapter 5, page 105.

• Examining Loops Containing PCF Directives, see Appendix A, page 165.

4 007–2603–005

Examining Loops for Fortran 77 Code [2]

This chapter presents an interactive sample session with the Parallel Analyzer
View. The session demonstrates basic features of the Parallel Analyzer View
and illustrates aspects of parallelization and of the MIPSpro Auto-Parallelizing
Fortran 77 compiler. For tutorials using other compilers, see the following
sections:

• Fortran 90, see Chapter 3, page 67.

• C, see Chapter 4, page 75.

The sample session analyzes demonstration code to illustrate the following:

• Displaying code and basic loop information; these topics are discussed in
the first sections of this chapter:

– Setting Up the omp_demo.f Sample Session, see Section 2.1, page 6.

– Starting the Parallel Analyzer View Tutorial, see Section 2.3, page 7.

– Using the Loop List Display, see Section 2.4, page 9.

– Sorting and Filtering the Loop List, see Section 2.5, page 12.

– Viewing Detailed Information About Code and Loops, see Section 2.6,
page 16.

• Examining specific loops, applying directives and assertions, and modifying
and recompiling; these topics are discussed in the later sections of the
chapter:

– Examples of Simple Loops, see Section 2.7, page 28.

– Examining Loops With Obstacles to Parallelization, see Section 2.8, page
32.

– Examining Nested Loops, see Section 2.9, page 44.

– Modifying Source Files and Compiling, see Section 2.10, page 45.

– Examples Using OpenMP Directives, see Section 2.11, page 56.

– Examples Using Data Distribution Directives, see Section 2.12, page 62.

– Exiting From the omp_demo.f Sample Session, see Section 2.13, page 66.

007–2603–005 5

ProDev ProMP User’s Guide

The topics are introduced in this chapter by going through the process of
starting the Parallel Analyzer View and stepping through the loops and
routines in the sample code. The chapter is most useful if you perform the
operations as they are described.

For more details about the Parallel Analyzer View interface, see Chapter 6, page
113.

2.1 Setting Up the omp_demo.f Sample Session

To use the sample sessions discussed in this guide, note the following:

• /usr/demos/ProMP is the demonstration directory

• ProMP.sw.demos must be installed

The sample session discussed in this chapter uses the following source files in
the directory /usr/demos/ProMP/omp_tutorial:

• omp_demo.f_orig

• omp_dirs.f_orig

• omp_reshape.f_orig

• omp_dist.f_orig

The source files contain many DO loops, each of which exemplifies an aspect of
the parallelization process.

The directory /usr/demos/ProMP/omp_tutorial also includes Makefile
to compile the source files.

2.2 Compiling the Sample Code

Prepare for the session by opening a shell window and entering the following:

% cd /usr/demos/ProMP/omp_tutorial

% make

Doing this creates the following files:

• omp_demo.f: a copy of the demonstration program created by combining
the *.f_orig files, which you can view with the Parallel Analyzer View (or
any text editor), and print

6 007–2603–005

Examining Loops for Fortran 77 Code [2]

• omp_demo.m: a transformed source file, which you can view with the
Parallel Analyzer View, and print

• omp_demo.l: a listing file

• omp_demo.anl: an analysis file used by the Parallel Analyzer View

For more information about these files, see the MIPSpro Auto-Parallelizing Option
Programmer’s Guide.

2.3 Starting the Parallel Analyzer View Tutorial

Once you have the appropriate files from the compiler, start the session by
entering the cvpav(1) command. which opens the main window of the Parallel
Analyzer View loaded with the sample file data (see Figure 1, page 9):

% cvpav -f omp_demo.f

Note: If you receive a message related to licensing, refer to the ProDev ProMP
Release Notes.

2.3.1 Restarting the Tutorial

If at any time during the tutorial you should want to restart from the
beginning, do the following:

• Quit the Parallel Analyzer View by choosing Admin > Exit from the
Parallel Analyzer View menu bar.

• Clean up the tutorial directory by entering the following command:

% make clean

This removes all of the generated files; you can begin again by using the make
command.

2.3.2 Viewing the Parallel Analyzer View Main Window

The Parallel Analyzer View main window contains the following components,
as shown in Figure 1, page 9:

• Main menu bar, which includes the following menus:

– Admin

007–2603–005 7

ProDev ProMP User’s Guide

– Views

– Fileset

– Update

– Configuration

– Operations

– Help

• List of loops and control structures, which consists of the following:

– Status information

– Performance experiment information

– Loop list

• Loop display controls, which are the following:

– Search editable text field

– Sort option button (Sort in Source Order)

– Show loop types option button (Show All Loop Types)

– Filtering option button (No Filtering)

– Source and Transformed Source control buttons

– Next Loop and Previous Loop navigation buttons

• Loop information display

8 007–2603–005

Examining Loops for Fortran 77 Code [2]

Main menu
bar

Loop list
display

Loop display
controls

Loop
information
display

Figure 1. Parallel Analyzer View Main Window

2.4 Using the Loop List Display

The loop list display summarizes a program’s structure and provides access to
source code. Each line in the loop list contains an icon and a sequence of
information fields about loops and routines in the program.

007–2603–005 9

ProDev ProMP User’s Guide

2.4.1 Loop List Information Fields

Each loop list entry contains the following fields:

• The icon symbolizes the status of the subroutine or loop.

• The nest field shows the nesting level for the loop.

• The loop-ID gives a description of the loop.

• The variable field indicates the loop index variable.

• The subroutine field contains the name of the subroutine in which the loop
is located.

• The lines field displays the lines in the source code in which the loop is
located.

• The Olid is the original loop ID, an internal identifier for the loop created by
the compiler.

• The file field names the file in which the loop is located.

2.4.2 Loop List Icons: The Icon Legend

The icon at the start of each line summarizes briefly the following information:

• Whether the line refers to a subroutine or function.

• The parallelization status of the loop.

• OpenMP control structures.

To understand the meaning of the various icons, choose Admin > Icon
Legend… . (See Figure 2, page 11.)

10 007–2603–005

Examining Loops for Fortran 77 Code [2]

Figure 2. The Icon Legend… Window

007–2603–005 11

ProDev ProMP User’s Guide

2.4.3 Resizing the Loop List Display

To resize the loop list display and provide more room in the main window for
loop information, use the adjustment button. The adjustment button is a small
square below the Previous Loop button and just above the vertical scroll bar
on the right side of the loop information display. (See Figure 61, page 136.) In
many of the following figures, the loop list is resized from its original
configuration.

2.4.4 Searching the Loop List

The loop list Search field allows you to find occurrences of any character in
the loop list. You can search for subroutine names, a phrase (such as parallel
or region), or Olid numbers. (See Figure 3, page 12.)

The search is not case sensitive; simply key in the string. To find subsequent
occurrences of the same string, press the Enter key.

2.5 Sorting and Filtering the Loop List

This section describes the loop display controls option buttons. They allow you
to sort and filter the loop list, and so focus your attention on particular pieces
of your code. As shown in Figure 1, page 9, the buttons are located in the main
window, below the loop list display. Figure 3, page 12, shows all of the loop
display controls.

Option buttons

Figure 3. Loop Display Controls

2.5.1 Sorting the Loop List

You can sort the loop list either in the order of the source code, or by
performance cost (if you are running the WorkShop performance analyzer). You
usually control sorting with the sort option button, the left-most button below
the Search field.

12 007–2603–005

Examining Loops for Fortran 77 Code [2]

When loops are sorted in source order, the loop-ID is indented according to the
nesting level of the loop. For the demonstration program, only the last several
loops are nested, so you have to scroll down to see indented loop-IDs. For
example, scroll down the loop list until you find a loop whose nest value, as
shown in the loop list, is greater than 2.

When loops are sorted by performance cost, using Sort by Perf.Cost
option button, the list is not indented. The sorting option is grayed out in the
example because the performance analyzer is not currently running.

2.5.2 Filtering the Loop List

You may want to look at only some of the loops in a large program. The loop
list can be filtered according to two features:

• Parallelization status

• Loop origin

The filter parameters are controlled by the two option buttons to the right of the
sort option button.

2.5.2.1 Filtering the Loop List by Parallelization State

Filtering according to parallelization state allows you to focus, for example, on
loops that were not automatically parallelized by the compiler but that might
still run concurrently if you add appropriate directives.

Filtering is controlled by the show loop types option button centered below the
loop list; the default setting is Show All Loop Types, as shown in Figure 4,
page 13.

Parallelization state options

Figure 4. Show Loop Types Option Button

007–2603–005 13

ProDev ProMP User’s Guide

You can select according to the following states of loop parallelization and
processing (which are displayed when you click the show loop types option
button):

• Show All Loop Types, the default.

• Show Unparallelizable Loops displays loops that are running serially
because they could not be parallelized.

• Show Parallelized Loops displays loops that were parallelized.

• Show Serial Loops displays loops that are best run serially.

• Show PCF Directives displays loops containing PCF directives.

• Show OMP Directives displays loops containing OpenMP directives.

• Show Modified Loops displays loops for which modifications have been
requested.

The second, third, and fourth categories correspond to parallelization icons in
the Icon Legend… window (see Figure 2, page 11). Making modifications to
loops is described in Section 2.10.1, page 46.

To see the effects of these options, choose them in turn by clicking on the option
button and selecting each option. If you choose the Show Modified Loops
option, a message appears that no loops meet the filter criterion, because you
have not made any modifications.

2.5.2.2 Filtering the Loop List by Loop Origin

Another way to filter is to choose loops that come from a single file or a single
subroutine or function. These are the basic steps:

1. Open a list of subroutines (or functions) and files from which to choose by
selecting the Views > Subroutines and Files View option.

2. Choose the filter criterion from the filtering option button, the right-most
option button in the Parallel Analyzer View window. Initially the filter
criterion is No Filtering. You can filter according to source file or
subroutine.

To place filtering information in the editable text field that appears above the
option button (Figure 5, page 15), you can do one of the following:

• Enter the file or subroutine name in the text box that appears when you
select Filter by Subroutine or Filter by File.

14 007–2603–005

Examining Loops for Fortran 77 Code [2]

• Choose the file or subroutine of interest in the Subroutines and Files View.

Filtering option text field

Figure 5. Filtering Option Button

2.5.2.3 Filtering by Loop Origin: Details for Sorting by Subroutine

The following procedure describes filtering the loop list by subroutine.

1. Open the subroutines and files view by choosing Views > Subroutines
and Files View. The window opens and lists the subroutines and files in
the file set. (See Figure 6, page 15.)

Function
list

Search
field

Figure 6. Subroutines and Files View

2. Choose Filter by Subroutine from the filtering option button (Figure
7, page 16).

007–2603–005 15

ProDev ProMP User’s Guide

Figure 7. Filtering Option Button

3. Double-click the line for the subroutine OMPDUMMY() in the list of the
Subroutines and Files View window. The name appears in the
Subroutine filtering option text field (Figure 5, page 15), and the loop list
is recreated according to the filter criteria.

You can also try choosing Filter by File with the filtering option
button, but this is not very useful for this single-file example.

4. When you are done, display all of the loops in the sample source file again
by choosing No Filtering with the option button.

5. Close the Subroutines and Files View by choosing its Admin >
Close option.

2.6 Viewing Detailed Information About Code and Loops

This section describes how to examine the following:

• Source code

• Transformed source code

• Details of loop information summarized in the loop list

2.6.1 Viewing Original and Transformed Source

The Parallel Analyzer View gives you views of both your original Fortran
source and a listing that mimics the effect on the source as it is transformed by
the Auto-Parallelizing compiler.

2.6.1.1 Viewing Original Source

Click the Source button on the lower left corner of the loop display controls to
bring up the Source View window, shown in Figure 8, page 17.

16 007–2603–005

Examining Loops for Fortran 77 Code [2]

Colored brackets mark the location of each loop in the file; you can click on a
bracket to choose a loop in the loop list. (See Section 2.6.3, page 20.)

Note that the bracket colors vary as you scroll up and down the list. These
colors correspond to different parallelization icons and indicate the
parallelization status of each loop. The bracket colors indicate which loops are
parallelized, which are unparallelizable, and which are left serial. The exact
correspondence between colors and icons depends on the color settings of your
monitor.

Source code

Loop bracket

Figure 8. Source View

You can search the source listing by using one of the following:

• The File menu in the Source View.

• The keyboard shortcut Ctrl+s when the cursor is in the Source View.

You can locate a loop in the source code, click on its colored bracket in the
Source View, and see more information about the loop in the loop information
display.

007–2603–005 17

ProDev ProMP User’s Guide

For more information about the Source View window, see Section 6.7.1, page
162.

Leave the Source View window open, because subsequent steps in this tutorial
refer to the window.

Note: This window may also be used by the WorkShop Debugger and
Performance Analyzer, so it remains open after you close the Parallel
Analyzer View.

2.6.1.2 Viewing Transformed Source

The compiler transforms loops for optimization and parallelization. The results
of these transformations are not available to you directly, but they are mimicked
in a file that you can examine. Each loop may be rewritten into one or more
transformed loops, it may be combined with others, or it may be optimized
away.

Click the Transformed Source button in the loop display controls (see
Figure 3, page 12). A window labeled Parallel Analyzer View – Transformed
Source opens, as shown in Figure 9, page 19.

18 007–2603–005

Examining Loops for Fortran 77 Code [2]

Transformed
source code

Figure 9. Transformed Source Window

Scroll through the Transformed Source window, and notice that it too has
brackets that mark loops; the color correspondence is the same as for the Source
View.

The bracketing color selection for the transformed source does not always
distinguish between serial loops and unparallelizable loops; some
unparallelizable loops may have the bracket color for a serial loop.

For more information on the Transformed Source window, see Section 6.7.1,
page 162.

Leave the Transformed Source window open; subsequent steps in this tutorial
refer to the window. You should have three windows open:

• Parallel Analyzer View

• Source View

• Transformed Source

007–2603–005 19

ProDev ProMP User’s Guide

2.6.2 Navigating the Loop List

You can locate a loop in the main window by one of the following methods:

• Scrolling through the loop list using one of these:

– Scroll bar.

– Page Up and Page Down keys (the cursor must be over the loop list).

– Next Loop and Previous Loop buttons.

• Searching for the Olid number using the Search field (see Section 2.4.4, page
12).

2.6.3 Selecting a Loop for Analysis

To get more information about a loop, select it by one of the following methods:

• Double-click the line of text in the loop list (but not the icon).

• Click the loop bracket in either of the source viewing windows.

Selecting a loop has a number of effects on the different windows in the Parallel
Analyzer View (see Figure 10, page 22). Not all of the windows in the figure
are open at this point in the tutorial; you can open them from the Views menu.

• In the Parallel Analyzer View, information about the selected loop appears in
the previously empty loop information display (see Section 2.6.4, page 23).

• In the Source View, the original source code of the loop appears and is
highlighted (see Section 2.6.1.1, page 16).

• In the Transformed Source, the first of the loops into which the original loop
was transformed appears and is highlighted in the window. A bright
vertical bar also appears next to each transformed loop that came from the
original loop (see Section 2.6.1.2, page 18).

• The Transformed Loops View shows information about the loop after
parallelization (see Section 2.6.5, page 25).

• The PFA Analysis Parameters View (o32 code only) shows parameter values
for the selected loop (see Section 6.6.3, page 159).

Try scrolling through the loop list and double-clicking various loops, and
scrolling through the source displays and clicking the loop brackets to select

20 007–2603–005

Examining Loops for Fortran 77 Code [2]

loops. Notice that when you select a loop, a check mark appears to the left of
the icon in the loop list, indicating that you have looked at it.

Scroll to the top of the loop list in the main view and double-click the line for
the first loop, Olid 1.

Close the Transformed Loops View and the PFA Analysis Parameters View, if
you have opened them.

007–2603–005 21

ProDev ProMP User’s Guide

Highlighted
in loop list

Loop information
display: updated

Transformed source:
code highlighted

Source view:
code highlighted

Transformed
loops view:
updated

Figure 10. Global Effects of Selecting a Loop

22 007–2603–005

Examining Loops for Fortran 77 Code [2]

2.6.4 Using the Loop Information Display

The loop information display occupies the portion of the main view below the
loop display controls. Initially, the display shows only No loop is
selected. After a loop or subroutine is selected, the display contains detailed
information and controls for requesting changes to your code (see Figure 11,
page 23).

Additional
information
blocks

Loop parallelization
status menu

MP scheduling
menu

MP chunk size
input field

Number of loops
transformed

Figure 11. Loop Information Display Without Performance Data

2.6.4.1 Loop Parallelization Controls

The first line in the loop information display shows the Loop Parallelization
Controls. The following are displayed when no performance information is
available:

• On the first line is the loop Olid and the number of transformed loops
derived from the selected loop.

• The next three lines display two option buttons and an editable text field.

– The top button controls the loop’s parallelization status (see Section
6.5.2.1, page 144).

007–2603–005 23

ProDev ProMP User’s Guide

– The second button controls the loop’s multiprocessor scheduling. It is
shown for all loops but is applicable to parallel loops only; for more
information see Section 6.5.2.2, page 146.

– The MP Chunk size editable text field lets you select the scheduling
chunk size (see the Glossary). (For more information on the MP Chunk
size, see Section 6.5.2.3, page 147).

When the Parallel Analyzer View is run with a performance experiment, by
invoking SpeedShop, an additional block (see Figure 47, page 111) appears
above the parallelization controls. It gives performance information about the
loop.

2.6.4.2 Additional Loop Information and Controls

Up to five blocks of additional information may appear in the loop information
display below the first separator line. These blocks list, when appropriate, the
following information:

• Obstacles to parallelization

• Assertions made

• Directives applied

• Messages

• Questions the compiler asked (o32 only)

Some of these lines may be accompanied by highlight buttons, represented by
small light bulb icons. When you click one of these buttons, it highlights the
relevant part of the code in the Source View and the Transformed Source
windows.

The loop information display shows directives that apply to an entire
subroutine when you select the line with the subroutine’s name. If you select
Olid 1, you see that there are no global directives in the main program.
However, if you find subroutine dst1d(), you will see a directive that applies
to it (see Section 2.12.1, page 62).

The loop information display shows loop-specific directives when you select a
loop. The lines for assertions and directives may have option buttons
accompanying them that provide capabilities, such as, deleting a directive.

24 007–2603–005

Examining Loops for Fortran 77 Code [2]

2.6.5 Using the Transformed Loops View

To see detailed information about the transformed loops derived from a
particular loop, pull down the Views > Transformed Loops View option
(see Figure 12, page 25.).

Figure 12. Transformed Loops View for Loop Olid 1

2.6.5.1 Transformed Loops View Description

The Transformed Loops View contains information about the loops into which
the currently selected original loop was transformed. Each transformed loop
has a block of information associated with it; the blocks are separated by
horizontal lines.

The first line in each block contains:

• A parallelization status icon.

• A highlight button. It highlights the transformed loop in the Transformed
Source window and the original loop in the Source View.

• The identification number of the transformed loop.

The next two lines describe the transformed loop. The first provides the
following information:

007–2603–005 25

ProDev ProMP User’s Guide

• Whether it is a primary loop or secondary loop. A primary look is
transformed from the selected original loop. A secondary loop is
transformed from a different original loop, but it incorporates some code
from the selected original loop.

• Parallelization state.

• Whether it is an ordinary loop or interchanged loop (see the Glossary).

• Nesting level.

• Workload.

The second line displays the location of the loop in the transformed source.

Any messages generated by the compiler are below the description lines. To the
left of the message lines are highlight buttons, and left-clicking them highlights
in the Source View the part of the original source that relates to the message.
Often it is the first line of the original loop that is highlighted, since the
message refers to the entire loop.

2.6.5.2 Selecting Transformed Loops

You can also select specific transformed loops. When you click a highlight
button in the Transformed Loop View, the highlighting of the original source
typically changes color, although for loop Olid 1 the highlighted lines do not
(see Figure 13, page 27). For loops with more extensive transformations, the set
of highlighted lines is different when you select from the Transformed Loops
View (for example, see Section 2.7.4, page 31).

Transformed loops can also be selected by clicking the corresponding loop
brackets in the Transformed Source window.

26 007–2603–005

Examining Loops for Fortran 77 Code [2]

Original
source
code

First
transformed
loop

Figure 13. Transformed Loops in Source Windows

007–2603–005 27

ProDev ProMP User’s Guide

You may either leave the Transformed Loops View open or close it by selecting
its Admin > Close menu item. When looking at subsequent loops, you might
find it useful to see the information in the Transformed Loops View.

2.7 Examples of Simple Loops

Now that you are familiar with the basic features in the Parallel Analyzer View
user interface, you can start examining, analyzing, and modifying loops.

The loops in this section are the simplest kinds of Fortran loops:

• Simple parallel loop, see Section 2.7.1, page 28.

• Serial loop, see Section 2.7.2, page 29.

• Explicitly parallelized loop, see Section 2.7.3, page 29.

• Fused loops, see Section 2.7.4, page 31.

• Eliminated loop, see Section 2.7.5, page 32.

Two other sections discuss more complicated loops:

• Examining loops with obstacles to parallelization, see Section 2.8, page 32.

• Examining nested loops, see Section 2.9, page 44.

Note: The loops in the next sections are referred to by their Olid. Changes to
the Parallel Analyzer View, such as, the implementation of updated OpenMP
standards, may cause the Olid you see on your system to differ from that in
the tutorial. Example code, which you can find in the Source View, is
included in the tutorial to clarify the discussion.

2.7.1 Simple Parallel Loop

Scroll to the top of the list of loops and select loop Olid 2. This loop is a simple
loop: computations in each iteration are independent of each other. It was
transformed by the compiler to run concurrently. Notice in the Transformed
Source window the directives added by the compiler.

Example 1: Simple Parallel Loop

DO 1000 I = 1, NSIZE

A(I) = B(I)*C(I)

1000 CONTINUE

28 007–2603–005

Examining Loops for Fortran 77 Code [2]

Move to the next loop by clicking the Next Loop button.

2.7.2 Serial Loop

Olid 2 is a simple loop with too little content to justify running it in parallel.
The compiler determined that the overhead of parallelizing would exceed the
benefits; the original loop and the transformed loop are identical.

Example 2: Serial Loop

DO 1100 I = 1, NSIZE

A(I) = B(I)*C(I)

1100 CONTINUE

Move to the next loop by clicking the Next Loop button.

2.7.3 Explicitly Parallelized Loop

Loop Olid 3 is parallelized because it contains an explicit C$OMP PARALLEL DO
directive in the source, as is shown in the loop information display (Figure 14,
page 30). The compiler passes the directive through to the transformed source.

The loop parallelization status option button is set to C$OMP PARALLEL DO…,
and it is shown with a highlight button. Clicking the highlight button brings up
both the Source View (Figure 15, page 31), if it is not already opened, and the
Parallelization Control View, which shows more information about the
parallelization directive.

007–2603–005 29

ProDev ProMP User’s Guide

Local parallelization
status option button

Explicit directive

Figure 14. Explicitly Parallelized Loop

If you clicked on the highlight button, close the Parallelization Control View.
(Using the Parallelization Control View is discussed in Section 2.10.1.1, page 46.)

30 007–2603–005

Examining Loops for Fortran 77 Code [2]

C$OMP
PARALLEL DO

Loop Olid 4
code

Figure 15. Source View of C$OMP PARALLEL DO Directive

Close the Source View and move to the next loop by clicking the Next Loop
button.

2.7.4 Fused Loops

Loops Olid 5 and Olid 6 are simple parallel loops that have similar structures.
The compiler combines these loops to decrease overhead. Note that loop Olid 6
is described as fused in the loop information display and in the Transformed
Loops View; it is incorporated into the parallelized loop Olid 5. If you look at
the Transformed Source window and select Olid 5 and Olid 6, the identical lines
of code are highlighted for each loop.

Example 3: Fused Loop

DO 1300 I = 1, NSIZE

A(I) = B(I) + C(I)

1300 CONTINUE
DO 1350 I = 1, NSIZE

AA(I,NSIZE) = B(I) + C(I)

1350 CONTINUE

Move to the next loop by clicking Next Loop twice.

007–2603–005 31

ProDev ProMP User’s Guide

2.7.5 Loop That Is Eliminated

Loop Olid 7 is an example of a loop that the compiler can eliminate entirely.
The compiler determines that the body is independent of the rest of the loop. It
moves the body outside of the loop, and eliminates the loop. The transformed
source is not scrolled and highlighted when you select Olid 7 because there is
no transformed loop derived from the original loop.

Example 4: Eliminated Loop

DO 1500 I = 1, NSIZE

XX = 10.0

1500 CONTINUE

Move to the next loop, Olid 8, by clicking the Next Loop button. This loop is
discussed in Section 2.8.1.1, page 33.

2.8 Examining Loops With Obstacles to Parallelization

There are a number of reasons why a loop may not be parallelized. The loops
in the following parts of this section illustrate some of these reasons, along with
variants that allow parallelization:

• Section 2.8.1, page 32

• Section 2.8.2, page 37

• Section 2.8.3, page 37

• Section 2.8.4, page 38

• Section 2.8.5, page 38

These loops are a few specific examples of the obstacles to parallelization
recognized by the compiler. The final part of this section, Section 2.8.6, page 39,
contains two tables that list all of the messages generated by the compiler that
concern obstacles to parallelization.

2.8.1 Carried Data Dependence

Carried data dependence typically arises when recurrence of a variable occurs
in a loop. Depending on the nature of the recurrence, parallelizing the loop may
be impossible. The following loops illustrate four kinds of data dependence:

• Section 2.8.1.1, page 33

32 007–2603–005

Examining Loops for Fortran 77 Code [2]

• Section 2.8.1.2, page 34

• Section 2.8.1.3, page 35

• Section 2.8.1.4, page 36

2.8.1.1 Unparallelizable Carried Data Dependence

Loop Olid 8 is a loop that cannot be parallelized because of a data dependence;
one element of an array is used to set another in a recurrence.

Example 5: Unparallelizable Carried Data Dependence

DO 2000 I = 1, NSIZE-1

A(I) = A(I+1)
2000 CONTINUE

If the loop were nontrivial (if NSIZE were greater than two) and if the loop
were run in parallel, iterations might execute out of order. For example,
iteration 4, which sets A(4) to A(5), might occur after iteration 5, which resets
the value of A(5); the computation would be unpredictable.

The loop information display in Figure 16, page 34, lists the obstacle to
parallelization.

Click the highlight button that accompanies it. Two kinds of highlighting occur
in the Source View:

• The relevant line that has the dependence

• The uses of the variable that obstruct parallelization; only the uses of the
variable within the loop are highlighted

Move to the next loop by clicking Next Loop.

007–2603–005 33

ProDev ProMP User’s Guide

Obstacle

Figure 16. Obstacles to Parallelization

2.8.1.2 Parallelizable Carried Data Dependence

Loop Olid 9 has a structure similar to loop Olid 8. Despite the similarity
however, Olid 9 may be parallelized.

Example 6: Parallelizable Carried Data Dependence

C*$*ASSERT DO (CONCURRENT)

DO 2100 I = 1, NSIZE

A(I) = A(I+M)
2100 CONTINUE

Note that the array indices differ by offset M. If M is equal to NSIZE and the
array is twice NSIZE, the code is actually copying the upper half of the array
into the lower half, a process that can be run in parallel. The compiler cannot

34 007–2603–005

Examining Loops for Fortran 77 Code [2]

recognize this from the source, but the code has the assertion C*$* ASSERT
DO (CONCURRENT) so the loop is parallelized.

Click the highlight button (Figure 17, page 35) to show the assertion in the
Source View.

Figure 17. Parallelizable Data Dependence

Move to the next loop by clicking the Next Loop button.

2.8.1.3 Multi-line Data Dependence

Data dependence can involve more than one line of a program. In loop Olid 10,
a dependence similar to that in Olid 9 occurs, but the variable is set and used
on different lines.

Example 7: Multi-line Data Dependence

DO 2200 I = 1, NSIZE-1
B(I) = A(I)

A(I+1) = B(I)

2200 CONTINUE

Click the highlight button on the obstacle line.

In the Source View, highlighting shows the dependency variable on the two
lines. (See Figure 18, page 36.) Of course, real programs, typically, have far
more complex dependences than this.

007–2603–005 35

ProDev ProMP User’s Guide

Move to the next loop by clicking Next Loop.

Loop highlighting

Dependent variable
and line highlighted

Figure 18. Highlighting on Multiple Lines

2.8.1.4 Reductions

Loop Olid 11 shows a data dependence that is called a reduction: the variable
responsible for the data dependence is being accumulated or reduced in some
fashion. A reduction can be a summation, a multiplication, or a minimum or
maximum determination. For a summation, as shown in this loop, the code
could accumulate partial sums in each processor and then add the partial sums
at the end.

Example 8: Reduction

DO 2300 I = 1, NSIZE

X = B(I)*C(I) + X

2300 CONTINUE

However, because floating-point arithmetic is inexact, the order of addition
might give different answers because of roundoff error. This does not imply
that the serial execution answer is correct and the parallel execution answer is
incorrect; they are equally valid within the limits of roundoff error. With the
-O3 optimization level, the compiler assumes it is OK to introduce roundoff
error, and it parallelizes the loop. If you do not want a loop parallelized because
of the difference caused by roundoff error, compile with the -OPT:roundoff=0
or 1 option. (See MIPSpro Auto-Parallelizing Option Programmer’s Guide.)

Move to the next loop by clicking Next Loop.

36 007–2603–005

Examining Loops for Fortran 77 Code [2]

2.8.2 Input/Output Operations

Loop Olid 12 has an input/output (I/O) operation in it. It cannot be
parallelized because the output would appear in a different order depending on
the scheduling of the individual CPUs.

Example 9: Input/Output Operation

DO 2500 I = 1, NSIZE

print 2599, I, A(I)
2599 format("Element A(",I2,") = ",f10.2)

2500 CONTINUE

Click the button indicating the obstacle, and note the highlighting of the print
statement in the Source View.

Move to the next loop by clicking Next Loop.

2.8.3 Unstructured Control Flow

Loop Olid 13 has an unstructured control flow: the flow is not controlled by
nested if statements. Typically, this problem arises when goto statements are
used; if you can get the branching behavior you need by using nested if
statements, the compiler can better optimize your program.

Example 10: Unstructured Control Flow

DO 2600 I = 1, NSIZE
A(I) = B(I)*C(I)

IF (A(I) .EQ. 0) GO TO 2650

2600 CONTINUE

Because the goto statement is essential to the program’s behavior, the compiler
cannot determine how many iterations will take place before exiting the loop. If
the compiler parallelized the loop, one thread might execute iterations past the
point where another has determined to exit.

Click the highlight button in the Obstacles to Parallelization information block
in the loop information display, next to the unstructured control flow message.
Note that the line with the exit from the loop is highlighted in the Source View.

Move to the next loop by clicking Next Loop.

007–2603–005 37

ProDev ProMP User’s Guide

2.8.4 Subroutine Calls

Unless you make an assertion, a loop with a subroutine call cannot be
parallelized; the compiler cannot determine whether a call has side effects, such
as, creating data dependencies.

2.8.4.1 Unparallelizable Loop With a Subroutine Call

Loop Olid 14 is unparallelizable because there is a call to a subroutine, RTC(),
and there is no explicit assertion to parallelize.

Example 11: Unparallelizable Loop With Subroutine Call

DO 2700 I = 1, NSIZE

A(I) = B(I) + RTC()

2700 CONTINUE

Click the highlight button on the obstacle line; note the highlighting of the line
containing the call and the highlighting of the subroutine name.

Move to the next loop by clicking the Next Loop button.

2.8.4.2 Parallelizable Loop With a Subroutine Call

Although loop Olid 15 has a subroutine call in it similar to that in Olid 14, it
can be parallelized because of the assertion that the call has no side effects that
will prevent concurrent processing.

Example 12: Parallelizable Loop With Subroutine Call

C*$*ASSERT CONCURRENT CALL

DO 2800 I = 1, NSIZE

A(I) = B(I) + FOO()

2800 CONTINUE

Click the highlight button on the assertion line in the loop information display
to highlight the line in the Source View containing the assertion.

Move to the next loop by clicking Next Loop.

2.8.5 Permutation Vectors

If you specify array index values by values in another array (referred to as a
permutation vector), the compiler cannot determine if the values in the
permutation vector are distinct. If the values are distinct, loop iterations do not

38 007–2603–005

Examining Loops for Fortran 77 Code [2]

depend on each other and the loop can be parallelized; if they are not, the loop
cannot be parallelized. Thus, without an assertion, a loop with a permutation
vector is not parallelized.

2.8.5.1 Unparallelizable Loop With a Permutation Vector

Loop Olid 16 has a permutation vector, IC(I), and cannot be parallelized.

Example 13: Unparallelizable Loop With Permutation Vector

DO 3200 I = 1, NSIZE-1

A(IC(I)) = A(IC(I)) + DELTA

3200 CONTINUE

Move to the next loop by clicking the Next Loop button.

2.8.5.2 Parallelizable Loop With a Permutation Vector

An assertion, C*$* ASSERT PERMUTATION, that the index array, IB(I) is
indeed a permutation vector has been added before loop Olid 17. Therefore, the
loop is parallelized.

Example 14: Parallelizable Loop With Permutation Vector

C*$*ASSERT PERMUTATION(ib)

DO 3300 I = 1, NSIZE
A(IB(I)) = A(IB(I)) + DELTA

3300 CONTINUE

Move to the next loop, Olid 18, by clicking Next Loop. This loop is discussed
in Section 2.9.1, page 44.

2.8.6 Obstacles to Parallelization Messages

All of the messages that can be found in an Obstacles to Parallelization
information block (Figure 16, page 34) are found in Table 1, page 40, and Table 2,
page 41. Because they include specific loop and line information, messages that
appear in the loop information display differ slightly from those in the tables.

The next table contains messages concerning major issues, such as, whether a
loop could have gone parallel, could not have gone parallel, or might be able to
go parallel.

007–2603–005 39

ProDev ProMP User’s Guide

Table 1. Major Obstacles to Parallelization Messages

Message Comments

Loop doesn’t have
parallelization directive

Auto-parallelization is off.
Loop doesn’t contain a parallelization
directive.

Loop is preferred serial;
insufficient work to justify
parallelization

Could have been parallelized, but preferred
serial.
The compiler determined there was not
enough work in the loop to make
parallelization worthwhile.

Loop is preferred serial;
parallelizing inner loop is
more efficient

Could have been parallelized, but preferred
serial.
The compiler determined that making an
inner loop parallel would lead to faster
execution.

Loop has unstructured control
flow

Might be parallelizable.
There is a goto statement or other
unstructured control flow in the loop.

Loop was created by peeling
the last iteration of a parallel
loop

Might be parallelizable.
Loop was created by peeling off the final
iteration of another loop to make that loop
go parallel. Compiler did not try to
parallelize this peeled, last iteration.

User directive specifies serial
execution for loop

Might be parallelizable.
Loop has a directive that it should not be
parallelized.

Loop can not be parallelized;
tiled for reshaped array instead

Might be parallelizable.
The loop has been tiled because it has
reshaped arrays, or is inside a loop with
reshaped arrays. The compiler does not
parallelize such loops.

Loop is nested inside a parallel
loop

Might be parallelizable.
Loop is inside a parallel loop. Therefore, the
compiler does not consider it to be a
candidate for parallelization.

40 007–2603–005

Examining Loops for Fortran 77 Code [2]

Message Comments

Loop is the serial version of
parallel loop

Might be parallelizable.
The loop is part of the serial version of a
parallelized loop. This may occur when a
loop is in a routine called from a
parallelized loop; the called loop is
effectively nested in a parallel loop, so the
compiler does not parallelize it.

Tough upper bounds Could not have gone parallel.
Loop could not be put in standard form,
and therefore could not be analyzed for
parallelization.
Standard form is
for (i = lb; i <= ub; i++)

Indirect ref Could not have gone parallel.
Loop contains some complex memory
access that is too difficult to analyze.

Table 2, page 41, lists the Obstacles to Parallelization block messages that deal
with dependence issues, such as, those involving scalars, arrays, missing
information, and finalization.

Table 2. Data Dependence Obstacles to Parallelization

Messages Comments

Loop has carried dependence on scalar
variable

Problem with scalars.
The loop has a carried dependence on a scalar variable.

Loop scalar variable is aliased precluding
auto parallelization

Problem with scalars.
A scalar variable is aliased with another variable, e.g. a
statement equivalencing a scalar and an array.

Loop can not determine last value for
variable

Problem with scalars.
A variable is used out of the loop, and the compiler could
not determine a unique last value.

Loop carried dependence on array Problem with arrays.
The loop carries an array dependence from one array
member to another array member.

007–2603–005 41

ProDev ProMP User’s Guide

Messages Comments

Call inhibits auto parallelization Problem with missing dependence information.
A call in the loop has no dependence information, and is
assumed to create a data dependence.

Input-output statement Problem with missing dependence information.
The compiler does not parallelize loops with input or output
statements.

Insufficient information in array Problem with missing dependence information.
Array has no dependence information.

Insufficient information in reference Problem with missing dependence information.
Unnamed reference has no dependence information.

Loop must finalize value of scalar before it
can go parallel

Problem with finalization.
Value of scalar must be determined to parallelize loop.

Loop must finalize value of array before it
can go parallel

Problem with finalization.
Value of array must be determined to parallelize loop.

42 007–2603–005

Examining Loops for Fortran 77 Code [2]

Messages Comments

Scalar may not be assigned in final
iteration

Problem with finalization.
The compiler needed to finalize the value of a scalar to
parallelize the loop, but it couldn’t because the value is not
always assigned in the last iteration of the loop.
The following code is an example. The variable s poses a
problem; the if statement makes it unclear whether the
variable is set in the last iteration of the loop.
subroutine fun02(a, b, n, s)

integer a(n), b(n), s, n
do i = 1, n

if (a(i) .gt. 0) then

s = a(i)

end if

b(i) = a(i) + s
end do

end

Array may not be assigned in final
iteration

Problem with finalization.
The compiler needed to finalize the value of an array to
parallelize the loop, but it couldn’t because the values are
not always assigned in the last iteration of the loop.
The following is an example. The variable b poses a problem
when the compiler tries to parallelize the i loop; it is not set
in the last iteration.

subroutine fun04(a, b, n)

integer i, j, k, n
integer b(n), a(n,n,n)

do i = 1, n

do j = i + 3, n

c*$* no fusion

do k = 1, n
b(k) = k

end do

do k = 1, n

a(i,j,k) = a(i,j,k) + b(k)

end do

end do
end do

end

007–2603–005 43

ProDev ProMP User’s Guide

2.9 Examining Nested Loops

The loops in this section illustrate more complicated situations, involving
nested and interchanged loops.

2.9.1 Doubly Nested Loop

Loop Olid 18 is the outer loop of a pair of loops and it runs in parallel. The
inner loop runs in serial, because the compiler knows that one parallel loop
should not be nested inside another. However, you can force parallelization in
this context by inserting a C$OMP PARALLEL DO directive with the
C$SGI&NEST clause. For example, see Section 2.12.2, page 64.

Example 15: Doubly Nested Loop

DO 4000 I = 1,NSIZE

DO 4010 J = 1,NSIZE

AA(J,I) = BB(J, I)
4010 CONTINUE

4000 CONTINUE

Click Next Loop to move to the inner loop, Olid 19.

Note: Notice that when you select the inner loop that the end-of-loop
continue statement is not highlighted. This happens for all interior loops and
is a compiler error that disrupts line numbering in the Parallel Analyzer View.
Be careful if you use the Parallel Analyzer View to insert a directive for an
interior loop; check that the directive is properly placed in your source code.

Click Next Loop again to select the outer loop of the next nested pair.

2.9.2 Interchanged Doubly Nested Loop

The outer loop, Olid 20, is shown in the loop information display as a serial
loop inside a parallel loop. The original interior loop is labelled as parallel,
indicating the order of the loops has been interchanged. This happens because
the compiler recognized that the two loops can be interchanged, and that the
CPU cache is likely to be more efficiently used if the loops are run in the
interchanged order. Explanatory messages appear in the loop information
display.

44 007–2603–005

Examining Loops for Fortran 77 Code [2]

Example 16: Interchanged Doubly Nested Loop

DO 4100 I = 1,NSIZE

DO 4110 J = 1,NSIZE
AA(I,J) = BB(I, J)

4110 CONTINUE

4100 CONTINUE

Move to the inner loop, Olid 21, by clicking the Next Loop button.

Click Next Loop once again to move to the following triply-nested loop.

2.9.3 Triply Nested Loop With an Interchange

The order of Olid 22 and Olid 23 has been interchanged. As with the previous
nested loops, the compiler recognizes that cache misses are less likely.

Example 17: Triply Nested Loop With Interchange

DO 5000 I = 1,NSIZE

DO 5010 J = 1,NSIZE

CC(I,J) = 0.
DO 5020 K = 1,NSIZE

CC(I,J) = CC(I,J) + AA(I,K)* BB(K,J)

5020 CONTINUE

5010 CONTINUE

5000 CONTINUE

Double-click on Olid 22, Olid 23, and Olid 24 in the loop list and note that the
loop information display shows that Olid 22 and Olid 24 are serial loops inside
a parallel loop, Olid 23.

Because the innermost serial loop, Olid 24, depends without recurrence on the
indices of Olid 22 and Olid 23, iterations of loop Olid 22 can run concurrently.
The compiler does not recognize this possibility. This brings us to the subject of
the next section, the use of the Parallel Analyzer View tools to modify the
source.

Return to Olid 22, if necessary, by using the Previous Loop button.

2.10 Modifying Source Files and Compiling

So far, the discussion has focused on ways to view the source and
parallelization effects. This section discusses controls that can change the source

007–2603–005 45

ProDev ProMP User’s Guide

code by adding directives or assertions, allowing a subsequent pass of the
compiler to do a better job of parallelizing your code.

You control most of the directives and some of the assertions available from the
Parallel Analyzer View with the Operations menu. (See Table 3, page 131.)

You control most of the assertions and the more complex directives, C$OMP DO
and C$OMP PARALLEL DO, with the loop parallelization status option button.
(See Figure 19, page 47.)

There are two steps to modifying source files:

1. Make changes using the Parallel Analyzer View controls, discussed in the
next subsection, Section 2.10.1, page 46

2. Modify the source and rebuild the program and its analysis files, discussed
in Section 2.10.2, page 52.

2.10.1 Making Changes

You make changes by one of the following actions:

• Add or delete assertions and directives using the Operations menu or the
Loop Parallelization Controls.

• Add clauses to or modify directives using the Parallelization Control View.

• Modify the PFA analysis parameters in the PFA Analysis Parameters View
(o32 only.)

You can request changes in any order; there are no dependencies implied by the
order of requests.

These are the changes discussed in this section:

• Section 2.10.1.1, page 46

• Section 2.10.1.2, page 50

• Section 2.10.1.3, page 51

2.10.1.1 Adding C$OMP PARALLEL DO Directives and Clauses

Loop Olid 22, shown in Example 17, page 45, is a serial loop nested inside a
parallel loop. It is not parallelized, but its iterations could run concurrently.

To add a C$OMP PARALLEL DO directive to Olid 22, do the following:

46 007–2603–005

Examining Loops for Fortran 77 Code [2]

1. Make sure loop Olid 22 is selected.

2. Click on the loop parallelization status option button (Figure 19, page 47),
and choose C$OMP PARALLEL DO… to parallelize Olid 22.

This sequence requests a change in the source code, and opens the
Parallelization Control View (Figure 20, page 49). You can now look at variables
in the loop and attach clauses to the directive, if needed.

Loop
parallelization
status option
button

Figure 19. Requesting a C$OMP PARALLEL DO Directive

Figure 20, page 49, shows information presented in the Parallelization Control
View for a C$OMP PARALLEL DO directive. (For the C$OMP DO directive, see
Section 6.6.1, page 150):

• The selected loop.

• Condition for parallelization editable text field.

• MP scheduling option button.

• MP Chunk size editable text field.

• PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE, LASTPRIVATE, COPYIN,
REDUCTION, AFFINITY, NEST, and ONTO clause windows.

007–2603–005 47

ProDev ProMP User’s Guide

• A list of all the variables in the loop, each with an icon indicating whether
the variable was read, written, or both; these icons are introduced in Section
2.4.2, page 10.

In the list of variables, each variable has a highlight button to indicate in the
Source View its use within the loop; click some of the buttons to see the
variables highlighted in the source view. After each variable’s name, there is a
descriptor of its storage class: Automatic, Common, or Reference. (See Section
6.6.1.5, page 157.)

You can add clauses to the directive by placing appropriate parameters in the
text fields, or using the options menus.

48 007–2603–005

Examining Loops for Fortran 77 Code [2]

Selected loop

MP scheduling
option button

Clauses and
parameter
input fields

Read/write
status

Highlighting button

Variable name

Variable type List of variables
in the loop

Figure 20. Parallelization Control View After Choosing C$OMP PARALLEL DO…

Notice that in the loop list, there is now a red plus sign next to this loop,
indicating that a change has been requested. (See Figure 21, page 50.)

007–2603–005 49

ProDev ProMP User’s Guide

Modified loop

Figure 21. Effect of Changes on the Loop List

Close the Parallelization Control View by using its Admin > Close option.

2.10.1.2 Adding New Assertions or Directives With the Operations Menu

To add a new assertion to a loop, do the following:

1. Find loop Olid 14 (introduced in Example 11, page 38) either by scrolling
the loop list or by using the search feature of the loop list. (Go to the Search
field and enter 14.)

2. Double-click the highlighted line in the loop list to select the loop.

3. Pull down Operations > Add Assertion > C*$*ASSERT
CONCURRENT CALL to request a new assertion. (See Figure 22, page 51.)

This adds an assertion, C*$* ASSERT CONCURRENT CALL, that says it is safe
to parallelize the loop despite the call to RTC(), which the compiler thought
might be an obstacle to parallelization. The loop information display shows the
new assertion, along with an Insert option button to indicate the state of
the assertion when you modify the code. (See Figure 22, page 51.)

50 007–2603–005

Examining Loops for Fortran 77 Code [2]

Menu
selection

Assertion

Figure 22. Adding an Assertion

The procedure for adding directives is similar. To start, choose Operations >
Add Directive.

2.10.1.3 Deleting Assertions or Directives

Move to the next loop, Olid 15 (shown in Example 12, page 38).

007–2603–005 51

ProDev ProMP User’s Guide

To delete an assertion, follow these steps:

1. Find the assertion C*$* ASSERT CONCURRENT CALL in the loop
information display.

2. Select its Delete option button.

Figure 23, page 52, shows the state of the assertion in the information display.
A similar procedure is used to delete directives.

Figure 23. Deleting an Assertion

From this point, the next non-optional step in the tutorial is at the beginning of
Section 2.10.2.3, page 54.

2.10.2 Applying Requested Changes

Now you have requested a set of changes. Using the controls in the Update
menu, you can update the file. These are the main actions that the Parallel
Analyzer View performs during file modification:

1. Generates a sed script to accomplish the following steps.

• Rename the original file to have the suffix .old.

• Run sed on that file to produce a new version of the file, in this case
omp_demo.f.

2. Depending on how you set the two checkboxes in the Update menu, the
Parallel Analyzer View then does one of the following:

• Spawns the WorkShop Build Manager to rerun the compiler on the new
version of the file.

52 007–2603–005

Examining Loops for Fortran 77 Code [2]

• Opens a gdiff window or an editor, allowing you to examine changes
and further modify the source before running the compiler. When you
quit gdiff, the editing window opens if you have set the checkboxes
for both windows. When you quit these tools, the Parallel Analyzer
View spawns the WorkShop Build Manager.

3. After the build, the Parallel Analyzer View rescans the files and loads the
modified code for further interaction.

2.10.2.1 Viewing Changes With gdiff

By default, the Parallel Analyzer View does not open a gdiff window. To
open a gdiff window that shows the requested changes to the source file
before compiling the modified code, toggle the checkbox in Update > Run gdiff
After Update (Figure 24, page 53).

Figure 24. Run gdiff After Update

If you always wish to see the gdiff window, you can set the resource in your
.Xdefaults file:

cvpav*gDiff: True

007–2603–005 53

ProDev ProMP User’s Guide

2.10.2.2 Modifying the Source File Further

After running the sedscript, to make additional changes before compiling the
modified code, open an editor by toggling the Update > Run Editor After
Update checkbox. (See Figure 25, page 54.) An xwsh window with vi running
in it opens with the source code ready to be edited.

Figure 25. Setting the Checkbox for Run Editor After Update

If you always prefer to run the editor, you can set the resource in your
.Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can modify the
resource in your .Xdefaults file and change from xwsh or vi as you prefer.
The following is the default command in the .Xdefault, which you can edit
for your preference:

cvpav*userEdit: xwsh -e vi %s +%d

In the above command, the +%d tells vi at what line to position itself in the file
and is replaced with 1 by default. (You can omit the +%d parameter if you
wish.) The edited file’s name either replaces any explicit %s, or if the %s is
omitted, its filename is appended to the command.

2.10.2.3 Updating the Source File

Choose Update > Update All Files to update the source file to include the
changes requested in this tutorial. (See .) Alternatively, you can use the
keyboard shortcut for this operation, Ctrl+U, with the cursor anywhere in the
main view.

If you have set the checkbox and opened the gdiff window or an editor,
examine the changes or edit the file as you wish. When you exit these tools, the

54 007–2603–005

Examining Loops for Fortran 77 Code [2]

Parallel Analyzer View spawns the WorkShop Build Manager (Figure 26, page
55).

Figure 26. Build View of Build Manager

Note: If you edited any files, verify when the Build Manager comes up that
the directory shown is the directory in which you are running the sample
session; if not, change it.

Click the Build button in the Build Manager window, and the Build Manager
reprocesses the changed file.

2.10.3 Examining the Modified Source File

When the build completes, the Parallel Analyzer View updates to reflect the
changes that were made. You can now examine the new version of the file to
see the effect of the requested changes.

2.10.3.1 Added Assertion

Scroll to Olid 14 to see the effect of the assertion request made in Section
2.10.1.2, page 50. Notice the icon indicating that loop Olid 14, which previously
was unparallelizable because of the call to RTC(), is now parallel.

007–2603–005 55

ProDev ProMP User’s Guide

Double-click the line and note the new loop information. The source code also
has the assertion that was added.

Move to the next loop by clicking the Next Loop button.

2.10.3.2 Deleted Assertion

Note that the assertion in loop Olid 15 is gone, as requested in Section 2.10.1.3,
page 51, and that the loop no longer runs in parallel. Recall that the loop
previously had the assertion that foo() was not an obstacle to parallelization.

2.11 Examples Using OpenMP Directives

This section examines the subroutine ompdummy(), which contains four parallel
regions and a serial section that illustrate the use of OpenMP directives:

• Section 2.11.1, page 56

• Section 2.11.2, page 59

• Section 2.11.3, page 60

• Section 2.11.4, page 61

• Section 2.11.5, page 61

For more information on OpenMP directives, see the MIPSpro 7 Fortran 90
Commands and Directives Reference Manual or the OpenMP Architecture Review
Board Web site: http://www.openmp.org.

Go to the first parallel region of ompdummy() by scrolling down the loop list,
or using the Search field and entering parallel.

To select the first parallel region, double-click the highlighted line in the loop
list, Olid 92.

2.11.1 Explicitly Parallelized Loops: C$OMP DO

The first construct in subroutine ompdummy() is a parallel region containing
two loops that are explicitly parallelized with C$OMP DO directives. With this
construct in place, the loops can execute in parallel, that is, the second loop can
start before all iterations of the first complete.

56 007–2603–005

Examining Loops for Fortran 77 Code [2]

Example 18: Explicitly Parallelized Loop Using C$OMP DO

C$OMP PARALLEL SHARED(a,b)

C$OMP DO SCHEDULE(DYNAMIC, 10-2*2)
DO 6001 I=-100,100

A(I) = I

6001 CONTINUE

C$OMP DO SCHEDULE(STATIC)

DO 6002 I=-100,100

B(I) = 3 * A(I)
6002 CONTINUE

C$OMP END PARALLEL

Notice in Figure 27, page 58, that the controls in the loop information display
are now labelled Region Controls. The controls now affect the entire region.
The Keep option button and the highlight buttons function the same way
they do in the Loop Parallelization Controls. (See Section 2.6.4.1, page 23.)

007–2603–005 57

ProDev ProMP User’s Guide

Region
Controls

Figure 27. Loops Explicitly Parallelized Using C$OMP DO

Click Next Loop twice to step through the two loops. Notice in the Source
View that both loops contain a C$OMP DO directive.

Click Next Loop to step to the second parallel region.

58 007–2603–005

Examining Loops for Fortran 77 Code [2]

2.11.2 Loops With Barriers: C$OMP BARRIER

The second parallel region, Olid 95, contains a pair of loops that are identical to
the previous example except for a barrier between them. Because of the barrier,
all iterations of the first C$OMP DO loop must complete before any iteration of
the second loop can begin.

Example 19: Loops Using C$OMP BARRIER

C$OMP PARALLEL SHARED(A,B)
C$OMP DO SCHEDULE(STATIC, 10-2*2)

DO 6003 I=-100,100

A(I) = I

6003 CONTINUE

C$OMP END DO NOWAIT
C$OMP BARRIER

C$OMP DO SCHEDULE(STATIC)

DO 6004 I=-100,100

B(I) = 3 * A(I)

6004 CONTINUE

C$OMP END PARALLEL

Click Next Loop twice to view the barrier region. (See Figure 28, page 60.)

007–2603–005 59

ProDev ProMP User’s Guide

Figure 28. Loops Using C$OMP BARRIER Synchronization

Click Next Loop twice to go to the third parallel region.

2.11.3 Critical Sections: C$OMP CRITICAL

Click Next Loop to view the first of the two loops in the third parallel
region.This loop contains a critical section.

60 007–2603–005

Examining Loops for Fortran 77 Code [2]

Example 20: Critical Section Using C$OMP CRITICAL

C$OMP DO

DO 6005 I=1,100
C$OMP CRITICAL(S3)

S1 = S1 + I

C$OMP END CRITICAL(S3)

6005 CONTINUE

Click Next Loop to view the critical section. The critical section uses a named
locking variable (S3) to prevent simultaneous updates of S1 from multiple
threads. This is a standard construct for performing a reduction.

Move to the next loop by using Next Loop.

2.11.4 Single-Process Sections: C$OMP SINGLE

This loop has a single-process section, which ensures that only one thread can
execute the statement in the section. Highlighting in the Source View shows the
begin and end directives.

Example 21: Single-Process Section Using C$OMP SINGLE

DO 6006 I=1,100

C$OMP SINGLE

S2 = S2 + I

C$OMP END SINGLE

6006 CONTINUE

Click Next Loop to view information about the single-process section.

Move to the final parallel region in ompdummy() by clicking the Next Loop
button.

2.11.5 Parallel Sections: C$OMP SECTIONS

The fourth and final parallel region of ompdummy() provides an example of
parallel sections. In this case, there are three parallel subsections, each of which
calls a function. Each function is called exactly once, by a single thread. If there
are three or more threads in the program, each function may be called from a
different thread. The compiler treats this directive as a single-process directive,
which guarantees correct semantics.

007–2603–005 61

ProDev ProMP User’s Guide

Example 22: Parallel Sections Using C$OMP SECTIONS

C$OMP PARALLEL SHARED(A,C) PRIVATE(I,J)

C$OMP SECTIONS
call boo

C$OMP SECTION

call bar

C$OMP SECTION

call baz

C$OMP END SECTIONS
C$OMP END PARALLEL

Click Next Loop to view the entire C$OMP SECTIONS region.

Click Next Loop to view a C$OMP SECTION region.

Move to the next subroutine by clicking Next Loop twice.

2.12 Examples Using Data Distribution Directives

The next series of subroutines illustrate directives that control data distribution
and cache storage. The following three directives are discussed:

• Section 2.12.1, page 62

• Section 2.12.2, page 64

• Section 2.12.3, page 65

Descriptions of these directives appear in Table 3, page 131.

2.12.1 Distributed Arrays: C$SGI DISTRIBUTE

When you select the subroutine dst1d(), a directive is listed in the loop
information display that is global to the subroutine. The directive, C$SGI
DISTRIBUTE, specifies placement of array members in distributed, shared
memory. (See Figure 29, page 63.)

62 007–2603–005

Examining Loops for Fortran 77 Code [2]

Figure 29. C$SGI DISTRIBUTE Directive and Text Field

In the editable text field adjacent to the directive name is the argument for the
directive, which in this case distributes the one-dimensional array a(m) among
the local memories of the available processors. To highlight the directive in the
Source View, click the highlight button.

Click Next Loop to move to the parallel loop.

The loop has a C$OMP PARALLEL DO directive, which works with
C$SGI DISTRIBUTE to ensure that each processor manipulates locally stored
data.

007–2603–005 63

ProDev ProMP User’s Guide

Example 23: Distributed Array Using C$SGI DISTRIBUTE

subroutine dst1d(a)

parameter (m=10)

real a(m)

C$DISTRIBUTE a(BLOCK)

C$OMP PARALLEL DO

do i=1,m

a(i)= i
end do

return

You can highlight the C$OMP PARALLEL DO directive in the Source View with
either of the highlight buttons in the loop information display. If you use the
highlight button in the Loop Parallelization Controls, the Parallelization Control
View presents more information about the directive and allows you to change
the C$OMP PARALLEL DO clauses. In this example, it confirms what you see in
the code: that the index variable i is local.

Click Next Loop again to view the next subroutine.

2.12.2 Distributed and Reshaped Arrays: C$SGI DISTRIBUTE_RESHAPE

When you select the subroutine rshape2d(), the subroutine’s global directive
is listed in the loop information display. The directive, C$SGI
DISTRIBUTE_RESHAPE, also specifies placement of array members in
distributed, shared memory. It differs from the directive C$SGI DISTRIBUTE
in that it causes the compiler to reorganize the layout of the array in memory to
guarantee the desired distribution. Furthermore, the unit of memory allocation
is not necessarily a page.

In the text field adjacent to the directive name is the argument for the directive,
which in this case distributes the columns of the two-dimensional array b(m,m)
among the local memories of the available processors. To highlight the directive
in the Source View, click the highlight button.

Click the Next Loop button to move to the parallel loop.

The loop has a C$OMP PARALLEL DO directive (Example 24), which works
with C$SGI DISTRIBUTE_RESHAPE so that each processor manipulates locally
stored data.

64 007–2603–005

Examining Loops for Fortran 77 Code [2]

Example 24: Distributed and Reshaped Array Using C$SGI
DISTRIBUTE_RESHAPE

subroutine rshape2d(b)
parameter (m=10)

real b(m,m)

C$DISTRIBUTE_RESHAPE b(*,BLOCK)

C$OMP PARALLEL DO

C$SGI&NEST (i,j)
do i=1,m

do j=1,m

b(i,j)= i*j

end do

end do
return

If you use the highlight button in the Loop Parallelization Controls, the
Parallelization Control View presents more information. In this example, it
confirms what you see in the code: that the index variable i is local, and that
the nested loop can be run in parallel.

If the code had not had the C$SGI&NEST clause, you could have inserted it by
supplying the arguments in the text field in the Parallelization Control View.
You can use the C$SGI&NEST clause to parallelize nested loops only when both
loops are fully parallel and there is no code between either the do-i and do-j
statements or the enddo-i and enddo-j statements. (See Chapter 6 of the
MIPSpro Fortran 77 Programmer’s Guide.)

Click Next Loop to move to the nested loop. Notice that this loop has an icon
in the loop list and in the loop information display indicating that it runs in
parallel.

Click Next Loop to view the next subroutine, prfetch().

2.12.3 Prefetching Data From Cache: C*$* PREFETCH_REF

Click Next Loop to go to the first loop in prfetch(). The compiler switched
the order of execution of the nested loops, Olid 128 and 129. To see this, look at
the Transformed Source view.

007–2603–005 65

ProDev ProMP User’s Guide

Example 25: Prefetching Data From Cache Using C*$* PREFETCH_REF

subroutine prfetch(a, b, n)

integer*4 a(n, n), b(n, n)

integer i, j, n

do i=1, n

do j=1, n

C*$*PREFETCH_REF = b(i,j), STRIDE=2,2 LEVEL=1,2 KIND=rd, SIZE=4
a(i,j) = b(i,j)

end do

end do

Click Next Loop to move to the nested loop. The list of directives in the loop
information display shows C*$* PREFETCH_REF with a highlight button to
locate the directive in the Source View. The directive allows you to place
appropriate portions of the array in cache.

2.13 Exiting From the omp_demo.f Sample Session

This completes the first sample session.

Quit the Parallel Analyzer View by choosing Admin > Exit.

Not all windows opened during the session close when you quit the Parallel
Analyzer View. In particular, the Source View remains open because all the
Developer Magic tools interoperate, and other tools may share the Source View
window. (See Section 2.6.1.1, page 16.) You must close the Source View
independently.

To clean up the directory, so that the session can be rerun, enter the following in
your shell window to remove all of the generated files:

% make clean

66 007–2603–005

Examining Loops for Fortran 90 Code [3]

This chapter presents an interactive tutorial using the Fortran 90 compiler. It
illustrates how the MIPSpro auto-parallelizing compiler transforms Fortran 90
arrays into loops.

Analyzing a Fortran 90 program is very similar to analyzing a Fortran 77
program. See the previous chapter for reference information that applies to
both compilers.

This chapter describes the following:

• How to set up the sample session. See Section 3.1, page 67.

• Compiling the code. See Section 3.2, page 67.

• Starting the parallel analyzer. See Section 3.3, page 68.

• Demonstrating array statement transformations. See Section 3.4, page 68.

• Exiting from the session. See Section 3.5, page 73.

3.1 Setting Up the Sample Session

Before starting this sample session, make sure ProMP.sw.demos is installed.
The sample session uses the source file f90_tutorial_f90_orig in the
directory /usr/demos/ProMP/f90_tutorial. The file Makefile compiles
the source file.

The source file contains array statements, each of which exemplifies an aspect of
the parallelization process.

3.2 Compiling the Sample Code

Prepare for the session by entering the following in a shell window:

% cd /usr/demos/ProMP/f90_tutorial

% make

This creates the following files:

f90_tutorial.f90 A copy of the demonstration program created by
copying f90_tutorial.f90_orig

007–2603–005 67

ProDev ProMP User’s Guide

f90_tutorial.m A transformed source file, which you can view
with the Parallel Analyzer View and print

f90_tutorial.l A listing file

f90_tutorial.anl An analysis file used by the Parallel
Analyzer View

For more information about these files, see the MIPSpro Auto-Parallelizing Option
Programmer’s Guide.

3.3 Starting the Parallel Analyzer View

Once you have created the files, start the session by entering the cvpav(1)
command. The command opens the main window of the Parallel
Analyzer View and loads the sample file data.

% cvpav -f f90_tutorial.f90

Open the Source View window by clicking the Source button once the main
window opens.

3.4 Demonstrating Array Statement Transformations

This section demonstrates the following transformations:

• Transforming a simple array statement into a DO loop. See Section 3.4.1,
page 68.

• Transforming a single array statement into nested DO loops. See Section
3.4.2, page 69.

• Transforming a simple array statement into a subroutine. See Section 3.4.3,
page 71.

3.4.1 Transforming an Array Statement into a DO Loop

To continue the tutorial begun in the last section, go to loop 5 in the Parallel
Analyzer View window and double-click the highlighted line in the loop list.
First double-click the Source button, and then double-click the Transformed
Source button.

Notice in the Transformed Source window that the following array
statement has been transformed into a DO loop:

68 007–2603–005

Examining Loops for Fortran 90 Code [3]

logical*1 l(12),r,r1

l = .true.

The Transformed Loops View window (see Figure 30, page 69) identifies
line 40 from the source as a Fortran 90 array statement. It notes that a loop was
generated but indicates that the loop array statement was not made parallel
because it contains too little work.

Figure 30. Array Statement into DO Loop

3.4.2 Transforming an Array Statement in Nested DO Loops

Pull down the Show All Loop Types menu and click on Show Fortran 90
Array Stmts. Only the Fortran 90 arrays statements that were transformed
into DO loops are displayed.

The following is the array statement in the source:

logical*8 l(3,12)

.

.

.

l = .true.

007–2603–005 69

ProDev ProMP User’s Guide

Because the array has two dimensions, two nested DO loops are generated.
Double-click first on loop 22, then on loop 23. They are the two new loops
generated from the array statement. The Transformed Loops View window
gives information on each loop. (See Figure 31, page 70 for loop 22 and Figure
32, page 71 for loop 23.)

Figure 31. Loop 22

70 007–2603–005

Examining Loops for Fortran 90 Code [3]

Figure 32. Loop 23

3.4.3 Transforming an Array Statement into a Subroutine

Click on loop 26. Notice in the Transformed Source window how the
following sliced array statement is transformed into an OMP PARALLEL DO
statement, which will itself be converted into a subroutine:

r(:il*2:2) = all(l,id)

The Transformed Loops View (see Figure 33, page 72) shows the process of
converting first to a parallel loop and then to a subroutine:

007–2603–005 71

ProDev ProMP User’s Guide

Figure 33. Array Statement into a Subroutine

72 007–2603–005

Examining Loops for Fortran 90 Code [3]

3.5 Exiting From the Session

This completes the session. Quit the Parallel Analyzer View by choosing
Admin > Exit and close any windows that may still be open.

To clean up the directory so that the session can be rerun, enter the following in
your shell window:

% make clean

007–2603–005 73

Examining Loops for C Code [4]

This chapter presents another interactive sample session with the Parallel
Analyzer View. The session illustrates aspects of the MIPSpro
Auto-Parallelizing C compiler. For tutorials using other compilers, see the
following sections:

• Fortran 77, see Chapter 2, page 5.

• Fortran 90, see Chapter 3, page 67.

Analyzing a C program is very similar to analyzing a Fortran program. See
Chapter 1, page 1, for reference information that applies to both languages.

The following sections comprise the C parallel analyzer session:

• Setting Up the c_tutorial.c Sample Session, see Section 4.1, page 76.

• Compiling the Sample Code, see Section 4.2, page 76.

• Starting the Parallel Analyzer View Tutorial, see Section 4.3, page 76.

• Examples of Simple Loops, see Section 4.4, page 77.

• Examining Loops With Obstacles to Parallelization, see Section 4.5, page 80.

• Examining Nested Loops, see Section 4.6, page 86.

• Modifying Source Files and Compiling, see Section 4.7, page 87.

• Examples Using OpenMP Directives, see Section 4.8, page 96.

• Examples Using Data Distribution Directives, see Section 4.9, page 99.

• Exiting From the c_tutorial.c Sample Session, see Section 4.10, page 103.

The topics are introduced in this chapter by going through the process of
starting the Parallel Analyzer View and stepping through the loops and
routines in the sample code. The chapter is most useful if you perform the
operations as they are described.

For more details about the Parallel Analyzer View interface, see Chapter
6, page 113.

007–2603–005 75

ProDev ProMP User’s Guide

4.1 Setting Up the c_tutorial.c Sample Session

To use the sample sessions discussed in this guide, note the following:

• /usr/demos/ProMP is the demonstration directory

• ProMP.sw.demos must be installed

The sample session discussed in this chapter uses the c_tutorial.c_orig file
in the directory /usr/demos/ProMP/c_tutorial. The source file contains
many loops, each of which exemplifies an aspect of the parallelization process.

The directory /usr/demos/ProMP/c_tutorial also includes Makefile to
compile the source files.

4.2 Compiling the Sample Code

Prepare for the session by opening a shell window and entering the following:

% cd /usr/demos/ProMP/c_tutorial

% make

Doing this creates the following file:

• c_tutorial.c from c_tutorial.c_orig

• c_tutorial.m: a transformed source file, which you can view with the
Parallel Analyzer View, and print

• c_tutorial.l: a listing file

• c_tutorial.anl: an analysis file used by the Parallel Analyzer View

For more information about these files, see the MIPSpro Auto-Parallelizing Option
Programmer’s Guide.

4.3 Starting the Parallel Analyzer View Tutorial

Once you have the appropriate files from the compiler, start the session by
entering the cvpav(1) command, which opens the main window of the
Parallel Analyzer View loaded with the sample file data:

% cvpav -f c_tutorial.c

Note: If you receive a message related to licensing, refer to the ProDev ProMP
Release Notes.

76 007–2603–005

Examining Loops for C Code [4]

If at any time during the tutorial you should want to restart from the
beginning, do the following:

• Quit the Parallel Analyzer View by choosing Admin > Exit from the
menu bar.

• Clean up the tutorial directory by entering the following command:

% make clean

This removes all of the generated files; you can begin again by using the make
command.

4.4 Examples of Simple Loops

The loops in this section are the simplest kinds of C loops:

• Simple parallel loop, see Section 4.4.1, page 77.

• Serial loop, see Section 4.4.2, page 78.

• Explicitly parallelized loop, see Section 4.4.3, page 78.

• Fused loops, see Section 4.4.4, page 80.

• Eliminated loop, see Section 4.4.5, page 80.

Two other sections discuss more complicated loops:

• Examining loops with obstacles to parallelization, see Section 4.5, page 80.

• Examining nested loops, see Section 4.6, page 86.

Note: The loops in the next sections are referred to by their Olid numbers.
Changes to the Parallel Analyzer View, such as, the implementation of
updated OpenMP standards, may cause the Olid numbers you see on your
system to differ from those in the tutorial. The Olid numbers in the tutorial
are not in the same order as in the program. Example code, which you can
find in the Source View, is included in the tutorial to clarify the discussion.

4.4.1 Simple Parallel Loop

Scroll to the top of the list of loops and select loop Olid 5, either by advancing
by using the Next Loop and Previous Loop buttons or by double-clicking
the line at the top of the display.

007–2603–005 77

ProDev ProMP User’s Guide

nsize = sizeof(a);

for (i = 0; i < nsize; i++) {
a[i] = b[i]*c[i];

}

This is a simple loop; computations in each iteration are independent of each
other. It was transformed by the compiler to run concurrently. Notice in the
Transformed Source window the directives added by the compiler.

Move to the next loop by selecting Olid 6.

4.4.2 Serial Loop

Olid 6 is a simple loop with too little content to justify running it in parallel.
The compiler determined that the overhead of parallelizing would exceed the
benefits; the original loop and the transformed loop are identical.

nsize = ARRAYSIZE;
for (i = 0; i < ARRAYSIZE; i++) {

a[i] = b[i]*c[i];

}

Move to the Olid 2 loop.

4.4.3 Explicitly Parallelized Loop

Loop Olid 2 is parallelized because it contains an explicit #pragma omp
parallel for directive in the source, as shown in the Loop Parallelization
Controls area of the window (see Figure 34, page 79). The compiler passes the
directive through to the transformed source.

#pragma omp parallel for shared(a,b,c)

for (i = 0; i < nsize; i++)

a[i] = b[i]*c[i];

The loop parallelization status option button is set to #pragma omp parallel
for…, and it is shown with a highlight button. Clicking the highlight button
brings up both the Source View and the Parallelization Control
View, which shows more information about the parallelization directive.

78 007–2603–005

Examining Loops for C Code [4]

Figure 34. Explicitly Parallelized Loop

If you clicked on the highlight button, close the Parallelization Control
View. (Using the Parallelization Control View is discussed in Section
4.7.1.1, page 88.) Close the Source View and move to the next loop by
clicking the Next Loop button.

007–2603–005 79

ProDev ProMP User’s Guide

4.4.4 Fused Loops

Loops Olid 7 and Olid 8 are simple parallel loops that have similar structures.
The compiler combines these loops to decrease overhead. Note that loop Olid 8
is described as fused in the loop information display, and in the Transformed
Loops View, it is incorporated into Olid 7. If you look at the Transformed
Source window and select Olid 7 and Olid 8, the same lines of code are
highlighted for each loop.

nsize = sizeof(a);
for (i = 0; i < nsize; i++)

a[i] = b[i]+c[i];

for (i = 0; i < nsize; i++)

a[i] = b[i]+c[i];

Move to the next loop by clicking Next Loop twice.

4.4.5 Loop That Is Eliminated

Loop Olid 9 is an example of a loop that the compiler can eliminate entirely.
The compiler determines that the body is independent of the rest of the loop. It
moves the body outside of the loop and eliminates the loop. The transformed
source is not scrolled and highlighted when you select Olid 9 because there is
no transformed loop derived from the original loop.

nsize = sizeof(a);

for (i = 0; i < nsize; i++)

xx = 10.0;

Move to the next loop, Olid 10, by clicking the Next Loop button. This loop is
discussed in Section 4.5.1.1, page 81.

4.5 Examining Loops With Obstacles to Parallelization

There are a number of reasons why a loop may not be parallelized. The loops
in the following sections illustrate some of the reasons, along with variants that
allow parallelization:

• Carried Data Dependence, seeSection 4.5.1, page 81.

• Input/Output Operations, see Section 4.5.2, page 84.

• Function Calls, see Section 4.5.3, page 84.

80 007–2603–005

Examining Loops for C Code [4]

• Permutation Vectors, see Section 4.5.4, page 85.

These loops are a few specific examples of the obstacles to parallelization
recognized by the compiler.

Messages that appear in the graphical user interface offer further tips on
obstacles to parallelization. See Section 2.8.6, page 39 for two tables that list
messages generated by the compiler that concern obstacles to parallelization.

4.5.1 Carried Data Dependence

Carried data dependence typically arises when recurrence of a variable occurs
in a loop. Depending on the nature of the recurrence, parallelizing the loop may
be impossible. The following loops illustrate four kinds of data dependence:

• Unparallelizable Carried Data Dependence, see Section 4.5.1.1, page 81.

• Parallelizable Carried Data Dependence, see Section 4.5.1.2, page 83.

• Multi-line Data Dependence, see Section 4.5.1.3, page 83.

• Reductions, see Section 4.5.1.4, page 83.

4.5.1.1 Unparallelizable Carried Data Dependence

Loop Olid 10 is a loop that cannot be parallelized because of a data
dependence; one element of an array is used to set another in a recurrence.

nsize = sizeof(a);

for (i = 0; i < nsize -1; i++)

a[i] = a[i+1];

If the loop were nontrivial (if nsize were greater than two) and if the loop
were run in parallel, iterations might execute out of order. For example,
iteration 4, which sets a[4] to a[5]), might occur after iteration 5, which resets
the value of a[5]; the computation would be unpredictable.

The loop information display in Figure 35, page 82, lists the obstacle to
parallelization.

Click the highlight button that accompanies it. Two kinds of highlighting occur
in the Source View:

• The relevant line that has the dependence.

007–2603–005 81

ProDev ProMP User’s Guide

• The uses of the variable that obstruct parallelization; only the uses of the
variable within the loop are highlighted.

Move to the next loop by clicking Next Loop.

Figure 35. Obstacles to Parallelization

82 007–2603–005

Examining Loops for C Code [4]

4.5.1.2 Parallelizable Carried Data Dependence

Loop Olid 11 has a structure similar to loop Olid 10. Despite the similarity,
however, Olid 11 can be parallelized.

nsize = sizeof(a);

#pragma concurrent

for (i = 0; i < nsize ; i++)

a[i]= a[i+m];

Note that the array indices differ by offset m. If m is equal to nsize and the
array is twice nsize, the code is actually copying the upper half of the array
into the lower half, a process that can be run in parallel. The compiler cannot
recognize this from the source, but the code has the assertion #pragma
concurrent, so the loop is parallelized.

Click the highlight button to show the assertion in the Source View.

Move to the next loop by clicking the Next Loop button.

4.5.1.3 Multi-line Data Dependence

Data dependence can involve more than one line of a program. In loop Olid 12,
a dependence similar to that in Olid 11 occurs, but the variable is set and used
on different lines.

nsize = sizeof(a);

for (i = 0; i < nsize-1; i++) {
b[i] = a[i];

a[i+1] = b[i];

}

Click the highlight button on the obstacle line.

In the Source View, highlighting shows the dependency variable on two lines.
Of course, real programs usually have far more complex dependences than this.

Move to the next loop by clicking Next Loop.

4.5.1.4 Reductions

Loop Olid 13 shows a data dependence that is called a reduction: the variable
responsible for the data dependence is being accumulated or reduced in some
fashion. A reduction can be a summation, a multiplication, or a minimum or
maximum determination. For a summation, as shown in this loop, the code

007–2603–005 83

ProDev ProMP User’s Guide

could accumulate partial sums in each processor and then add the partial sums
at the end.

nsize = array_size;

x = 0;

for (i = 0; i < nsize; i++)

x = b[i]*c[i] + x;

However, because floating-point arithmetic is inexact, the order of addition
might give different answers due to roundoff error. This does not imply that
the serial execution answer is correct and the parallel execution answer is
incorrect; they are equally valid within the limits of roundoff error. With the
-O3 optimization level, the compiler assumes it is permissible to introduce
roundoff error, and it parallelizes the loop. If you do not want a loop
parallelized because of the difference caused by roundoff error, compile with
the -OPT:roundoff=0 or -OPT:roundoff=1 option. (See MIPSpro
Auto-Parallelizing Option Programmer’s Guide.)

Move to the next loop by clicking Next Loop.

4.5.2 Input/Output Operations

Loop Olid 14 has an input/output (I/O) operation in it. It cannot be
parallelized because the output would appear in a different order, depending
on the scheduling of the individual CPUs.

for (i = 0; i < nsize; i++)

printf("Element A[%d] = %f\n",i,a[i]);

Click the button indicating the obstacle and note the highlighting of the print
statement in the Source View.

Move to the next loop by clicking Next Loop.

4.5.3 Function Calls

Unless you make an assertion, a loop with a function call cannot be
parallelized; the compiler cannot determine whether a call has side effects, such
as creating data dependencies.

Although loop Olid 15 has a function call, it can be parallelized. You can add an
assertion that the call has no side effects that will prevent concurrent processing.

84 007–2603–005

Examining Loops for C Code [4]

nsize = sizeof(ARRAYSIZE);

#pragma concurrent call
for (i = 0; i < nsize; i++)

a[i] = b[i] + foo();

Click the highlight button on the assertion line in the loop information display
to highlight the line in the Source View containing the assertion.

Move to the next loop by clicking Next Loop.

4.5.4 Permutation Vectors

If you specify array index values by values in another array (referred to as a
permutation vector), the compiler cannot determine if the values in the
permutation vector are distinct. If the values are distinct, loop iterations do not
depend on each other, and the loop can be parallelized; if they are not distinct,
the loop cannot be parallelized. Without an assertion, a loop with a
permutation vector is not parallelized.

4.5.4.1 Unparallelizable Loop With a Permutation Vector

Loop Olid 16 has a permutation vector, ic[i], and cannot be parallelized.

for (i = 0; i < nsize-1; i++)

a[ic[i]] = a[ic[i]] + DELTA;

Move to the next loop by clicking the Next Loop button.

4.5.4.2 Parallelizable Loop With a Permutation Vector

An assertion, #pragma permutation(ib), that the index array ib[i] is
indeed a permutation vector has been added before loop Olid 17. Therefore, the
loop is parallelized.

#pragma permutation(ib)

for (i = 0; i < nsize; i++)

a[ib[i]] = a[ib[i]] + DELTA;

Move to the next loop, Olid 18, by clicking Next Loop. This loop is discussed
in Section 4.6.1, page 86.

007–2603–005 85

ProDev ProMP User’s Guide

4.6 Examining Nested Loops

The loops in this section illustrate more complicated situations, involving
nested and interchanged loops.

4.6.1 Doubly Nested Loop

Loop Olid 18 is the outer loop of a pair of loops, and it runs in parallel. The
inner loop runs in serial because the compiler knows that one parallel loop
should not be nested inside another. However, you can force parallelization in
for the inner loop by inserting a #pragma omp parallel for directive in
front of the outer loop. For example, see Section 4.9.2, page 101.

for (i = 0; i < nsize; i++) {

for (j = 0; i < nsize; i++)

aa[j][i] = bb[j][i];

Click Next Loop to move to Olid 19.

4.6.2 Doubly Nested Loop

The inner loop, Olid 20, is shown in the loop information display as a serial
loop inside a parallel loop. Olid 19 is labelled as parallel. Explanatory messages
appear in the loop information display.

nsize = array_size;
for (i = 0; i < nsize; i++) {

for (j = 0; j < nsize; j++)

aa[i][j] = bb[i][j];

}

Move to the inner loop, Olid 20, by clicking the Next Loop button. Click Next
Loop once again to move to the following triple-nested loop.

4.6.3 Triple Nested Loop

The following triple-nested loop, with Olids 21, 22, and 23, is transformed into
two serial loops executing under parallel loop Olid 21:

86 007–2603–005

Examining Loops for C Code [4]

for (i = 0; i < nsize; i++) {

for (j = 0; j < nsize; j++) {
cc[i][j] = 0.0;

for (k = 0; k < nsize; k++)

cc[i][j] = cc[i][j] + aa[i][k] * bb[k][j];

}

}

Double-click on Olid 21, Olid 22, and Olid 23 in the loop list and note that the
loop information display shows that Olid 22 and Olid 23 are serial loops inside
a parallel loop, Olid 21.

Because the innermost serial loop, Olid 23, depends without recurrence on the
indices of Olid 21 and Olid 22, iterations can run concurrently. The compiler
does not recognize this possibility. This brings us to the subject of the next
section, the use of the Parallel Analyzer View tools to modify the source.

Return to Olid 21, if necessary, by using the Previous Loop button.

4.7 Modifying Source Files and Compiling

So far, the discussion has focused on ways to view the source and
parallelization effects. This section discusses controls that can change the source
code by adding directives or assertions, allowing a subsequent pass of the
compiler to do a better job of parallelizing your code.

You control most of the directives and some of the assertions available from the
Parallel Analyzer View with the Operations menu . You control most
of the assertions and the more complex directives, #pragma omp for and
#pragma omp parallel for, with the loop parallelization status option
button (see Figure 36, page 89).

There are two steps to modifying source files:

1. Making changes using the Parallel Analyzer View controls, discussed
in the next subsection, Section 4.7.1, page 88.

2. Modifying the source and rebuilding the program and its analysis files,
discussed in Section 4.7.2, page 95.

007–2603–005 87

ProDev ProMP User’s Guide

4.7.1 Making Changes

You make changes by one of the following actions:

• Adding or deleting assertions and directives using the Operations menu
or the Loop Parallelization Controls.

• Adding clauses to or otherwise modifying directives using the
Parallelization Control View window.

• Modifying the PFA analysis parameters in the PFA Analysis
Parameters View (o32 only.)

You can request changes in any order; there are no dependencies implied by the
order of requests.

These are the changes discussed:

• Adding #pragma omp parallel for Directives and Clauses, see Section
4.7.1.1, page 88.

• Adding New Assertions or Directives With the Operations Menu, see
Section 4.7.1.2, page 91.

• Deleting Assertions or Directives, see Section 4.7.1.3, page 92.

4.7.1.1 Adding #pragma omp parallel for Directives and Clauses

Loop Olid 22, shown in Section 4.6.3, page 86, is a serial loop nested inside a
parallel loop. It is not parallelized, but its iterations could run concurrently.

To add a #pragma omp parallel for directive to Olid 22, do the following:

1. Make sure loop Olid 22 is selected.

2. Click on the loop parallelization status option button (see Figure 36, page
89) and choose omp parallel for to parallelize Olid 22.

88 007–2603–005

Examining Loops for C Code [4]

Figure 36. Creating a Parallel Directive

This sequence requests a change in the source code and opens the
Parallelization Control View (see Figure 37, page 90). You can now
look at variables in the loop and attach clauses to the directive, if needed.

007–2603–005 89

ProDev ProMP User’s Guide

Figure 37. Parallelization Control View

Notice that in the loop list there is now a red plus sign next to this loop,
indicating that a change has been requested. (See Figure 38, page 90.)

Figure 38. Changed Loop List

90 007–2603–005

Examining Loops for C Code [4]

Close the Parallelization Control View by using its Admin > Close
option.

4.7.1.2 Adding New Assertions or Directives With the Operations Menu

To add a new assertion to a loop, do the following:

1. Find loop Olid 15 either by scrolling the loop list or by using the search
feature. (Go to the Search field and enter 15.)

2. Double-click the highlighted line in the loop list to select it.

3. Pull down Operations > Add Assertion > ASSERT
CONCURRENT CALL to request a new assertion.

This adds the assertion #pragma assert concurrent call. The assertion
indicates that it is safe to parallelize the loop despite the call to the function
foo, which the compiler considers a possible obstacle to parallelization.

The loop information display shows the new assertion, along with an Insert
button to indicate the state of the assertion when you modify the code. (See
Figure 39, page 92.)

007–2603–005 91

ProDev ProMP User’s Guide

Figure 39. Adding an Assertion

The procedure for adding OpenMP directives is similar. To start, choose
Operations > Add OMP Directive.

4.7.1.3 Deleting Assertions or Directives

Move to loop Olid 17 (shown in Section 4.5.4.2, page 85).

92 007–2603–005

Examining Loops for C Code [4]

To delete an assertion, follow these steps:

1. Find the assertion #pragma permutation(ib) in the loop information
display.

2. Select its Delete option button.

Figure 40, page 94, shows the state of the assertion in the information display.
A similar procedure is used to delete directives.

007–2603–005 93

ProDev ProMP User’s Guide

Figure 40. Deleting an Assertion

For information on applying changes and viewing the changes in a gdiff
window, see Section 4.7.2, page 95.

94 007–2603–005

Examining Loops for C Code [4]

4.7.2 Updating the Source File

Choose Update > Update All Files to update the source file to include
the changes made in this tutorial. Alternatively, you can use the keyboard
shortcut for this operation, Ctrl+U, with the cursor anywhere in the main view.

If you have set the checkbox and opened the gdiff window or an editor,
examine the changes or edit the file as you wish. When you exit these tools, the
Parallel Analyzer View spawns the WorkShop Build Manager.

Note: If you edited any files, verify when the Build Manager comes up that
the directory shown is the one in which you are running the sample session;
if the directory is different, change it.

Click the Build button in the Build Manager window, and the Build Manager
will reprocess the changed file.

4.7.3 Examining the Modified Source File

When the build completes, the Parallel Analyzer View updates to reflect
the changes. You can now examine the new version of the file to see the effect
of the requested changes.

4.7.3.1 Added Assertion

Scroll to Olid 15 to see the effect of the assertion request made in Section 4.7.1.2,
page 91. Notice the icon indicating that loop Olid 15, which previously was
unparallelizable because of the call to the function foo, is now parallel.

Double-click the line and note the new loop information. The source code also
has the assertion that was added.

Move to the next loop by clicking the Next Loop button.

4.7.3.2 Deleted Assertion

Note that the assertion in loop Olid 16 is gone, as requested in Section 4.7.1.3,
page 92, and that the loop no longer runs in parallel. Recall that the loop
previously had the assertion that ib was not an obstacle to parallelization.

007–2603–005 95

ProDev ProMP User’s Guide

4.8 Examples Using OpenMP Directives

This section examines the function omp_demo, which contains parallel regions
and a serial section that illustrate the use of OpenMP directives:

• Explicitly Parallelized Loops: #pragma omp for, see Section 4.8.1, page 96.

• Loops With Barriers: #pragma omp barrier, see Section 4.8.2, page 97.

• Critical Sections: #pragma omp critical, see Section 4.8.3, page 98.

• Single-Process Sections: #pragma omp single, see Section 4.8.4, page 98.

• Parallel Sections: #pragma omp sections, see Section 4.8.5, page 98.

For more information on OpenMP directives, see the MIPSpro C and C++
Pragmas or the OpenMP Architecture Review Board Web site:
http://www.openmp.org.

Go to the first parallel region of omp_demo by scrolling down the loop list or
using the Search field and entering parallel.

To select the first parallel region, double-click the highlighted line in the loop
list, Olid 53.

4.8.1 Explicitly Parallelized Loops: #pragma omp for

The omp_demo function declares a parallel region containing three loops, the
third of which is nested in the second. The first two loops are explicitly
parallelized with #pragma omp for directives.

#pragma omp parallel shared(a,b)

{

#pragma omp for schedule(dynamic,10-2*2)

for (i=0; i < ARRAYSIZE; i++)
a[i] = i;

#pragma omp for schedule(static)

for (i=0; i < ARRAYSIZE; i++) {

b[i] = 3 * a[i];

a[i] = b[i] * a[i];

for (j = 0; j < ARRAYSIZE; j++)
c[j][i] = a[i] + b[j];

}

}

96 007–2603–005

Examining Loops for C Code [4]

Notice in Figure 41, page 97, that the controls in the loop information display
are now labelled Region Controls. The controls now affect the entire region.
The Keep option button and the highlight buttons function the same way as in
the Loop Parallelization Controls.

Figure 41. Loops Explicitly Parallelized Using #pragma omp for

Notice in the Source View that both loops contain a #pragma omp
parallel for directive. Click Next Loop to step to the second parallel
region.

4.8.2 Loops With Barriers: #pragma omp barrier

Olid 58 contains a pair of loops with a barrier between them. Because of the
barrier, all iterations of the first for loop must complete before any iteration of
the second loop can begin.

#pragma omp parallel shared(a,b)

{
#pragma omp for schedule(static, 10-2*2) nowait

for (i=0; i < ARRAYSIZE; i++)

a[i] = i;

#pragma omp barrier

#pragma omp for schedule(static)
for (i=0; i< ARRAYSIZE; i++)

b[i] = 3 * a[i];

} /*omp end parallel */

007–2603–005 97

ProDev ProMP User’s Guide

Click Next Loop twice to go to the third parallel region.

4.8.3 Critical Sections: #pragma omp critical

Click Next Loop to view the first of the two loops in the third parallel region.
This loop contains a critical section.

#pragma omp for

for (i = 0; i < ARRAYSIZE; i++) {

#pragma omp critical(s3)

{
s1 = s1 + i;

}

}

Click Next Loop twice to view the critical section. The critical section uses a
named locking variable (s3) to prevent simultaneous updates of s1 from
multiple threads. This is a standard construct for performing a reduction.

Move to the next loop by using Next Loop.

4.8.4 Single-Process Sections: #pragma omp single

This loop has a single process section, which ensures that only one thread will
execute the statement in the section. Highlighting in the Source View shows
the begin and end directives.

for (i=0; i <ARRAYSIZE; i++) {

#pragma omp single

s2 = s2 + i;

}

} /* omp end parallel */

Move to the final parallel region in omp_demo by clicking the Next Loop
button.

4.8.5 Parallel Sections: #pragma omp sections

The fourth parallel region of omp_demo provides an example of parallel
sections.

98 007–2603–005

Examining Loops for C Code [4]

In this case, there are three parallel subsections, each of which calls a function.
Each function is called once by a single thread. If there are three or more
threads in the program, each function may be called from a different thread.
The compiler treats this directive as a single-process directive, which guarantees
correct semantics.

#pragma omp sections

{
dst1d(n,a);

#pragma omp section

rshape2d(n,c);

#pragma omp section

baz();
} /* omp sections */

Click Next Loop to view the entire #pragma omp sections region. Click
Next Loop to view a #pragma omp section region. Move to the next
subroutine by clicking Next Loop twice.

4.9 Examples Using Data Distribution Directives

The next series of functions illustrates directives that control data distribution
and cache storage. The following topics are described in this section:

• Distributed Arrays: #pragma distribute, see Section 4.9.1, page 99.

• Distributed and Reshaped Arrays: #pragma distribute_reshape, see
Section 4.9.2, page 101.

• Prefetching Data From Cache: #pragma prefetch_ref, see Section 4.9.3,
page 102.

Brief descriptions of these directives appear in Table 3, page 131.

4.9.1 Distributed Arrays: #pragma distribute

When you select the function dst1d(), a parallelized loop icon is listed in the
loop information display. The #pragma distribute directive specifies
placement of array members in distributed, shared memory. (See Figure 42,
page 100.)

007–2603–005 99

ProDev ProMP User’s Guide

Figure 42. #pragma distribute Directive and Text Field

In the editable text field adjacent to the directive name is the argument for the
directive, which in this case distributes the one-dimensional array a among the
local memories of the available processors. To highlight the directive in the
Source View, click the highlight button.

Click Next Loop to move to the parallel loop.

100 007–2603–005

Examining Loops for C Code [4]

The loop has a #pragma parallel for directive, which works with
#pragma distribute to ensure that each processor manipulates locally
stored data.

void dst1d(int m,int a[m])

{

int i;

#pragma distribute a[block]
#pragma omp for

for (i=1; i < m; i++)

a[i] = i;

}

You can highlight the #pragma parallel for directive in the Source View
with either of the highlight buttons in the loop information display. If you use
the highlight button in the Loop Parallelization Controls, the
Parallelization Control View window presents more information about
the directive and lets you to change the #pragma parallel for clauses. In
this example, it confirms what you see in the code: that the index variable i is
local.

Click Next Loop until the next function (rshape2d) is selected.

4.9.2 Distributed and Reshaped Arrays: #pragma distribute_reshape

When you select the function rshape2d, the function’s global directive is listed
in the loop information display. The #pragma distribute_reshape
directive specifies placement of array members in distributed, shared memory.
It differs from the #pragma distribute directive in that it causes the
compiler to reorganize the layout of the array in memory to guarantee the
desired distribution. Furthermore, the unit of memory allocation is not
necessarily a page.

In the text field adjacent to the directive name is the argument for the directive,
which in this case distributes the columns of the two-dimensional array c
among the local memories of the available processors. To highlight the directive
in the Source View, click the highlight button.

Click the Next Loop button to move to the parallel loop.

007–2603–005 101

ProDev ProMP User’s Guide

The loop has a #pragma parallel for directive (see the following example),
which works with #pragma distribute_reshape to enable each processor
to manipulate locally stored data.

static void

rshape2d(int m, int c[m][m])

{

int i,j;
#pragma distribute_reshape c[*][block]

#pragma omp for

for (i=1; i < m; i++) {

for (j = 1; j < m; j++) {

c[i][j] = i*j;
}

}

}

If you use the highlight button in the Loop Parallelization Controls, the
Parallelization Control View presents more information. In this
example, it confirms what you see in the code: that the index variable i is local.

For more information on the #pragma distribute_reshape directive, see
Chapter 13 of the C Language Reference Manual.

Click Next Loop to move to the nested loop. Notice that this loop has an icon
in the loop list and in the loop information display indicating that it does not
run in parallel.

Click Next Loop to view the prfetch function.

4.9.3 Prefetching Data From Cache: #pragma prefetch_ref

Click Next Loop to go to the first loop in prfetch().

static void

prfetch(int n, int a[n][n], int b[n][n])

{

int i, j;

for (i =0; i < n ; i++) {

for (j =0; j < n ; j++) {

a[i][j] = b[i][j];

102 007–2603–005

Examining Loops for C Code [4]

#pragma prefetch_ref=b[i][j],stride=2,2 level=1,2 kind=rd, size=4

#pragma prefetch_ref=b[i][j],stride=2,2 level=1,2 kind=rd, size=4
}

}

}

Click Next Loop to move to the nested loop. The list of directives in the loop
information display shows #pragma prefetch_ref with a highlight button
to locate the directive in the Source View. The directive allows you to place
appropriate portions of the array in cache.

4.10 Exiting From the Sample Session

This completes the sample session. Quit the Parallel Analyzer View by
choosing Admin > Exit.

Not all windows opened during the session close when you quit the Parallel
Analyzer View. In particular, the Source View remains open because all the
Developer Magic tools interoperate, and other tools may share the Source
View window. You must close the Source View separately.

To clean up the directory so that the session can be rerun, enter the following in
your shell window:

% make clean

007–2603–005 103

Using WorkShop With Parallel Analyzer
View [5]

This is a brief demonstration of the integration of ProDev ProMP and the
WorkShop performance tools. WorkShop must be installed for this session to
work.

This sample session examines LINPACK, a standard benchmark designed to
measure CPU performance in solving dense linear equations. Chapter 3 of the
SpeedShop User’s Guide presents a tutorial analysis of LINPACK.

This tutorial assumes you are already familiar with the basic features of the
Parallel Analyzer View discussed in previous chapters. You can also
consult Chapter 6, page 113, for more information.

5.1 Setting Up the linpackd Sample Session

Start by entering the following commands:

% cd /usr/demos/ProMP/linpack

% make

This updates the directory by compiling the source program linpackd.f and
creating the necessary files. The performance experiment data is in the file
test.linpack.cp.

5.1.1 Starting the Parallel Analyzer View

Once the directory has been updated, start the demo by typing:

% cvpav -e linpackd

Note that the flag is -e, not -f as in the previous sample session. The main
window of the Parallel Analyzer View opens, showing the list of loops in the
program.

Scroll briefly through the loop list and the Source View. (Click the Source
button to open it.) Note that there are many unparallelized loops, but there is
no way to know which are important. Also note that the second line in the
main view shows that there is no performance experiment currently associated
with the view.

007–2603–005 105

ProDev ProMP User’s Guide

5.1.2 Starting the Performance Analyzer

Pull down Admin > Launch Tool > Performance Analyzer to start the
Performance Analyzer, as shown in Figure 43, page 107.

The main window of the Performance Analyzer opens; it is empty. A small
window labeled Experiment: also opens at the same time. This window is used
to enter the name of an experiment. For this session, use the installed
prerecorded experiment.

In the Experiment Dir …: text field in the Experiment: window, enter

test.linpack.cpu

Click the OK button. (See Figure 43, page 107.)

The Performance Analyzer shows a busy cursor and fills its main window with
the list of functions in main(). The Parallel Analyzer recognizes that the
Performance Analyzer is active, and posts a busy cursor with a Loading
Performance Data message. When the message goes away, performance data
will have been imported by the Parallel Analyzer.

For more information about the Performance Analyzer and how it affects the
user interface, see Developer Magic: Performance Analyzer User’s Guide.

106 007–2603–005

Using WorkShop With Parallel Analyzer View [5]

Figure 43. Starting the Performance Analyzer

007–2603–005 107

ProDev ProMP User’s Guide

5.2 Using the Parallel Analyzer With Performance Data

Once performance data has been loaded in the Parallel Analyzer View, several
changes occur in the main window, as shown in Figure 44, page 108.

Information
line

Perf. Cost
heading

Percentage
of CPU usage
(inclusive)

No longer
grayed

Figure 44. Parallel Analyzer View — Performance Data Loaded

• A new column, Perf. Cost, appears in the loop list next to the icon column.
The values in this column are inclusive: each reflects the time spent in the
loop and in any nested loops or functions called from within the loop.

• The Performance experiment line, in the main view below the menu bar,
now shows the name of the performance experiment and the total cost of
the run in milliseconds.

• The Sort by Perf.Cost option of the sort option button is now available.

108 007–2603–005

Using WorkShop With Parallel Analyzer View [5]

• In the Source View, three columns appear to the left of the loop brackets.
(These columns may take a few moments to load.) They reflect the
measured performance data:

– Exq Count: the number of times the line has been executed

– Excl Ideal(ms): exclusive, ideal CPU time in milliseconds

– Incl Ideal(ms): inclusive, ideal CPU time in milliseconds

5.2.1 Effect of Performance Data on the Source View

To see the effect of the performance data on the Source View, select Olid 30,
which is in subroutine daxpy(). The Source View appears as shown in Figure
45, page 109.

Execution
count

Exclusive
ideal CPU
time

Inclusive
ideal CPU
time

Figure 45. Source View for Performance Experiment

5.2.2 Sorting the Loop List by Performance Cost

Choose the Sort by Perf.Cost sort option. Note that the third most
expensive loop listed, Olid 30 of subroutine daxpy(), represents approximately
94% of the total time. (See Figure 46, page 110.)

007–2603–005 109

ProDev ProMP User’s Guide

First loop
Second loop

Third loop

Figure 46. Sort by Performance Cost

The first of the high-cost loops, Olid 21 in subroutine dgefa(), contains the
second most expensive loop (Olid 22) nested inside it. This second loop calls
daxpy(), which contains Olid 30—the heart of the LINPACK benchmark. Olid
30 performs the central operation of scaling a vector and adding it to another
vector. It was parallelized by the compiler. Note the C$OMP PARALLEL DO
directive that appears for this loop in the Transformed Source View.

The loop following daxpy() uses approximately 58% of the CPU time. This
loop is the most frequent caller of dgefa(), and so of Olid 30.

Double-click Olid 30. Note that the loop information display contains a line of
text listing the performance cost of the loop, both in time and as a percentage of
the total time. (See Figure 47, page 111.)

110 007–2603–005

Using WorkShop With Parallel Analyzer View [5]

Performance
experiment
line

Performance
cost
information
blocks

Figure 47. Loop Information Display With Performance Data

5.3 Exiting From the linpackd Sample Session

This completes the second sample session.

Close all windows—those that belong to the Parallel Analyzer View as well as
those that belong to the Performance Analyzer and the Source View—by
selecting the option Admin > Project > Exit in the Parallel Analyzer View.

007–2603–005 111

ProDev ProMP User’s Guide

You don’t need to clean up the directory, because you haven’t made any
changes in this session.

If you experiment and do make changes, when you are finished you can clean
up the directory and remove all generated files by entering the following in
your shell window:

% make clean

112 007–2603–005

Parallel Analyzer View Reference [6]

This chapter describes in detail the function of each window, menu, and display
in the ProDev ProMP Parallel Analyzer View’s user interface. It contains the
following main sections:

• Section 6.1, page 113

• Section 6.2, page 115

• Section 6.3, page 136

• Section 6.4, page 138

• Section 6.5, page 142

• Section 6.6, page 150

– Section 6.6.1, page 150

– Section 6.6.2, page 158

– Section 6.6.3, page 159

– Section 6.6.4, page 160

• Section 6.7, page 162

– Section 6.7.1, page 162

6.1 Parallel Analyzer View Main Window

The main window is displayed when the Parallel Analyzer View begins. It
consists of the following elements, shown in Figure 48, page 115:

• Main menu bar, containing these menus:

– Admin: Discussed in Section 6.2.1, page 117.

– Views: See Section 6.2.2, page 125.

– Fileset: See discussion in Section 6.2.3, page 126.

– Update: See Section 6.2.4, page 127.

– Configuration: Find in Section 6.2.5, page 129.

007–2603–005 113

ProDev ProMP User’s Guide

– Operations: See Section 6.2.6, page 130.

– Help: See discussion in Section 6.2.7, page 134.

• Loop list display, which has the following members:

– Status information: See Section 6.3.2, page 136.

– Performance experiment information: Find in Section 6.3.2, page 136.

– Loop list: See Section 6.3.3, page 137.

• Loop display controls, consisting of the following:

– Search editable text field: See Section 6.4.1, page 139.

– Three option buttons displaying default values: Sort in Source
Order, Show All Loop Types and No Filtering. These buttons are
described in Section 6.4.2, page 139, Section 6.4.3, page 140, and Section
6.4.4, page 141.

– Source and Transformed Source control buttons: See Section
6.4.5, page 142.

– Next Loop and Previous Loop loop list navigation buttons: See
description in Section 6.4.5, page 142.

• Loop information display: See Section 6.5, page 142.

114 007–2603–005

Parallel Analyzer View Reference [6]

Main menu
bar

Loop list
display

Loop display
controls

Loop
information
display

Figure 48. Parallel Analyzer View Main Window

6.2 Parallel Analyzer View Menu Bar

This section describes the menus found in the menu bar located at the top of
the Parallel Analyzer View main window as shown in Figure 49, page 116. The
menus are discussed in these sections:

• Section 6.2.1, page 117

• Section 6.2.2, page 125

007–2603–005 115

ProDev ProMP User’s Guide

• Section 6.2.3, page 126

• Section 6.2.4, page 127

• Section 6.2.5, page 129

• Section 6.2.6, page 130

• Section 6.2.7, page 134

Figure 49. Parallel Analyzer View Menu Bar and Menus

Within each menu, the names of some options are followed by keyboard
shortcuts, which you can use instead of the mouse for faster access to these
options. For a summary, see Section 6.2.8, page 135.

You can tear off a menu from the menu bar, so that it is displayed in its own
window with each menu command visible at all times, by selecting the dashed

116 007–2603–005

Parallel Analyzer View Reference [6]

line at the top of the menu (the first item in each of the menus). Submenus can
also be torn off and displayed in their own window.

6.2.1 Admin Menu

Figure 50, page 117, shows the Parallel Analyzer View Admin menu, which
contains file-writing commands, other administrative commands, and
commands for launching and manipulating other WorkShop application views.

Figure 50. Admin Menu

The commands in the Admin menu have the following effects:

Save as Text Saves the complete loop information for all files
and subroutines in the current session in a plain
ASCII file. Choosing Admin > Save as Text brings
up a File Selection dialog, which lets you choose
where to save the file and what name to call it.
(See Figure 51, page 118.)

The default directory is the one from which you
invoked the Parallel Analyzer View; the default
filename is Text.out. The Parallel Analyzer
View asks for confirmation before overwriting an
existing file.

007–2603–005 117

ProDev ProMP User’s Guide

Figure 51. Output Text File Selection Dialog

Icon Legend… Provides an explanation of the graphical icons
used in several of the views. Shortcut: Ctrl+S.
See Section 6.2.1.1, page 121.

Iconify Stows all the open windows belonging to a given
invocation of the Parallel Analyzer View as icons
in the style of the window manager you are using.

Raise Brings all open windows in the current session to
the foreground of the screen, in front of other
windows. The command also opens any
previously iconified windows belonging to the
invocation of the Parallel Analyzer View and
brings them to the foreground. Shortcut: Ctrl+R.

Launch Tool Opens various WorkShop tools. See Section
6.2.1.2, page 121.

118 007–2603–005

Parallel Analyzer View Reference [6]

Project Controls project windows. See Section 6.2.1.3,
page 122.

Exit Quits the current session of the Parallel Analyzer
View, closing all windows.

If you have not updated source files and have
pending requests for changes, a dialog box asks if
it is OK to discard the changes. Click OK only if
you want to discard any changes; otherwise, click
Cancel to update the files.

007–2603–005 119

ProDev ProMP User’s Guide

Figure 52. Parallelization Icon Legend

120 007–2603–005

Parallel Analyzer View Reference [6]

6.2.1.1 Icon Legend… Option

This Admin menu option opens the Parallelization Icon Legend (Figure 52,
page 120) which provides the meanings of the icons that appear in various
views, such as the following:

• Parallel Analyzer View, shown in Figure 1, page 9

• Transformed Loops View, shown in Figure 75, page 158

• Subroutines and Files View, shown in Figure 77, page 161

• Parallelization Control View, shown in Figure 72, page 151

6.2.1.2 Launch Tool Submenu

The Admin menu’s Launch Tool submenu contains commands for launching
other WorkShop tools, as well as new sessions of the Parallel Analyzer. (See
Figure 53, page 121.)

To work properly with the other WorkShop tools, the files in the current fileset
must have been loaded into the Parallel Analyzer from an executable. There are
two ways to do this:

• Use the -e option on the command line. (See Section 1.2, page 2.)

• Choose the Fileset > Add File menu option. (See Section 6.2.3, page 126.)

If you launch Workshop tools from a session not based on an executable, the
tools start without arguments.

Figure 53. Launch Tool Submenu

The following six options launch applications from the Launch Tool submenu:

007–2603–005 121

ProDev ProMP User’s Guide

Build Analyzer Launches the Build Manager, a utility that lets
you compile software without leaving the
WorkShop environment. For more information,
see Appendix B, “Using the Build Manager,” in
the Developer Magic: Debugger User’s Guide.

Debugger Launches the WorkShop Debugger, a UNIX®

source-level debugging tool that provides special
windows for displaying program data and
execution status. For more information, see
Chapter 1, “Getting Started with the WorkShop
Debugger,” in the Developer Magic: Debugger
User’s Guide.

Parallel Analyzer Launches another session of the Parallel Analyzer.

Performance Analyzer Launches the Performance Analyzer, a utility that
collects performance data and allows you to
analyze the results of a test run. For more
information, see the Developer Magic: Performance
Analyzer User’s Guide.

Static Analyzer Launches the Static Analyzer, a utility that allows
you to analyze and display source code written in
C, C++, Fortran, or Ada. For more information,
see the Developer Magic: Static Analyzer User’s
Guide.

Tester Launches the Tester, a UNIX-based software
quality assurance tool set for dynamic test
coverage over any set of tests. For more
information, see the Developer Magic: Performance
Analyzer User’s Guide.

If any of these tools is not installed on your system, the corresponding menu
item is grayed out.

If the file /usr/lib/WorkShop/system.launch is absent (that is, if you are
running the Parallel Analyzer View without WorkShop 2.0 installed), the entire
Launch Tool submenu is grayed out.

6.2.1.3 Project Submenu

The Project submenu of the Admin menu contains commands that affect all the
windows containing WorkShop or ProDev ProMP applications that have been
launched to manipulate a single executable. The set of windows is a WorkShop

122 007–2603–005

Parallel Analyzer View Reference [6]

project. The Project submenu and windows that you can open from it are
shown in Figure 54, page 124.

The Project submenu commands are as follows:

Iconify Stows all the windows in the current project as
icons, in the style of the window manager you
are using.

Raise Brings all open windows in the current project to
the foreground of the screen, in front of other
windows. The command also opens any
previously iconified windows in the current
project and brings them to the foreground.

Remap Paths… Lets you modify the set of mappings used to
redirect references to filenames located in your
code to their actual locations in your file system.
However, if you compile your code on one tree
and mount it on another, you may need to remap
the root prefix to access the named files.

Project View… Launches the WorkShop Project View, a tool that
helps you manage project windows.

Exit Quits the current project, closing all windows,
including those of related open applications.
Thus the Source View closes, as well as, for
example, the Parallel Analyzer.

If you have not updated source files and have
pending requests for changes, a dialog box asks if
it is OK to discard the changes. Click OK only if

007–2603–005 123

ProDev ProMP User’s Guide

you want to discard any changes; otherwise, click
Cancel and update the files.

Admin menu

Project
submenu

Project View

Path Remapping window

Figure 54. Project Submenu and Windows

124 007–2603–005

Parallel Analyzer View Reference [6]

6.2.2 Views Menu

The Views menu of the Parallel Analyzer View (Figure 55, page 125) contains
commands for launching a variety of secondary windows, or views, that
provide specific sets of information about, and tools to apply to, selected loops.

Figure 55. Views Menu

The options in the Views menu have the following effects:

Parallelization Control View

Opens a Parallelization Control View for the loop currently
selected from the loop list display. Shortcut: Ctrl+P. For more
information on this view, see Section 6.6.1, page 150.

Transformed Loops View

Opens a Transformed Loops View for the loop currently
selected from the loop list display. Shortcut: Ctrl+T. For more
information on this view, see Section 6.6.2, page 158.

PFA Analysis Parameters View

Opens the PFA Analysis Parameters View, which provides a
means of modifying a variety of PFA parameters. Shortcut:
Ctrl+A. This view is further described in Section 6.6.3, page
159.

Subroutines and Files View

Opens the Subroutines and Files View, which provides a
complete list of subroutine and file names being examined
within the current session of the Parallel Analyzer View.

007–2603–005 125

ProDev ProMP User’s Guide

Shortcut: Ctrl+F. This view is further described in Section
6.6.4, page 160.

6.2.3 Fileset Menu

The Fileset menu (Figure 56, page 126) contains commands for manipulating
the files displayed by the Parallel Analyzer View. A fileset is a list of source
filenames contained in an ASCII file, each on a separate line.

Figure 56. Fileset Menu

The options in the Fileset menu have the following effects:

Rescan All Files The Parallel Analyzer View checks and updates
all the source files loaded into its current session
so they match the versions of those files in the file
system. The Parallel Analyzer View rereads only
the files it needs to.

Delete All Files Removes all files from the current session of the
Parallel Analyzer View. You can then add new
files using the Add File, Add Files from Fileset, or
Add Files from Executable options, described
below.

Delete Selected File Deletes a selected file from the current session of
the Parallel Analyzer View. To select a file for
deletion, open the Subroutines and Files View
and double-click the desired filename.

Add File Adds a new source file to the current session of
the Parallel Analyzer View. Selecting this
command brings up a File Selection dialog that
lets you select a Fortran source file.

126 007–2603–005

Parallel Analyzer View Reference [6]

Before you can select a given source file, you must
compile it to create the .anl file needed by the
Parallel Analyzer View. (See Section 1.2.1, page 2.)

If the current session is based on an executable,
you cannot add files to it until you have deleted
the executable’s fileset. (See the Add Files from
Executable option, described below.)

Add Files from Fileset Lets you add a list of new source files to the
current session of the Parallel Analyzer View.
Choosing this command brings up a File Selection
dialog as it does for the Add File option. If you
select a file containing a fileset list, all Fortran
source files in the list are loaded into the current
session (other files in the list are ignored).

If the current session is based on an executable,
you cannot add files to it until you have deleted
the executable’s fileset.

Add Files from
Executable

Imports all the Fortran source files listed in the
symbol table of a compiled Fortran application.
This command works only if there are no files in
the current session of the Parallel Analyzer View
when the command is selected from the menu.
Selecting this command brings up a File Selection
dialog as it does for the Add File option. Other
WorkShop applications can also operate on files
imported from an executable.

6.2.4 Update Menu

The Parallel Analyzer View Update menu (Figure 57, page 128) contains
commands for placing requested changes to directives and assertions in your
Fortran source code.

007–2603–005 127

ProDev ProMP User’s Guide

Figure 57. Update Menu

The options in the Update menu have the following effects:

Run gdiff After Update Sets a checkbox that causes a gdiff window to
open after you have updated changes to your
source file. This window illustrates in a graphical
manner the differences between the unchanged
source and the newly updated source.

If you always wish to see the gdiff window, you
may set the resource in your .Xdefaults file:

cvpav*gDiff: True

For more information on using gdiff, see the
man page for gdiff(1).

Run Editor After
Update

Sets a checkbox that opens an xwsh shell window
with the vi editor on the updated source file.

If you always wish to run the editor, you can set
the resource in your .Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a
different editor, you can modify the resource in
your .Xdefaults file and change from xwsh or
vi as you prefer. The following is the default
command in the .Xdefaults, which you can edit
for your preference:

cvpav*userEdit: xwsh -e vi %s +%d

In the above command, the +%d tells vi at what
line to position itself in the file and is replaced

128 007–2603–005

Parallel Analyzer View Reference [6]

with 1 by default (you can also omit the +%d
parameter if you wish). The edited file’s name
either replaces any explicit %s, or if the %s is
omitted, the filename is appended to the
command.

Update All Files Writes to the appropriate source files all changes
to loops requested during the current session of
the Parallel Analyzer View. Shortcut: Ctrl+U.

Update Selected File Writes to a selected file changes to loops requested
during the current session of the Parallel
Analyzer View. You choose a file for updating by
double-clicking in the Subroutines and Files View
the line corresponding to the desired filename.
(See also Section 6.6.4, page 160.)

Force a Build to start Performs the Update All Files option and starts a
build.

6.2.5 Configuration Menu

The Configuration menu (Figure 58, page 129) allows you to choose between
having the Parallel Analyzer View use OpenMP or PCF directives.

Figure 58. Configuration Menu

The options are the following:

OpenMP Causes the Parallel Analyzer View to use
OpenMP directives.

007–2603–005 129

ProDev ProMP User’s Guide

PCF Causes the Parallel Analyzer View to use PCF
directives.

6.2.6 Operations Menu

The Parallel Analyzer View Operations menu contains commands for adding
assertions and directives to loops, and removing pending changes to source
files (Figure 59, page 130). The general effects of the Operations menu options
are to prepare a set of requested changes to your source code. For information
on how these changes are subsequently performed see Section 6.2.4, page 127.

Figure 59. Operations Menu and Submenus

The Operations menu is one of two points in the Parallel Analyzer View where
you can add assertions and directives. The other point is discussed in Section
6.5.2, page 144. These two menus focus on different aspects of the
parallelization task:

130 007–2603–005

Parallel Analyzer View Reference [6]

• The Operations menu focuses on automatic parallelization directives, which
may be inserted in code by the MIPSpro Auto-Parallelizing Option, and
memory distribution.

• The parallelization controls in the loop information display focus on manual
(that is, not automatic) parallelization controls, which you can insert to
further parallelize your code.

The assertions and directives you can add from the Operations menu are listed
in two tables. Table 3, page 131, contains a list of directives and assertions for
parallelizing code that can be added with the Add Assertion and Add OMP
Directive menus. Table 4, page 134, lists directives that are available from the
Add OMP Section menu and are used to synchronize access to sections of code
by threads.

Table 3. Add Assertion and Add OMP Directive Menu Options

Option Effect on Compilation For More Information

C*$* ASSERT CONCURRENT CALL Ignore dependences in subroutine
calls that would inhibit
parallelizing.

MIPSpro Auto-Parallelizing
Option Programmer’s Guide ,
Chapter 3

C*$* ASSERT
PERMUTATION (array_name)

Array array_name is a permutation
array.

MIPSpro Auto-Parallelizing
Option Programmer’s Guide ,
Chapter 3

C*$* CONCURRENTIZE Selectively override
C*$* NOCONCURRENTIZE.
Typically inserted during
automatic parallelization.

MIPSpro Auto-Parallelizing
Option Programmer’s Guide ,
Chapter 3

C*$* NOCONCURRENTIZE Do not parallelize file subroutine
(depending on placement).
Typically inserted during
automatic parallelization.

MIPSpro Auto-Parallelizing
Option Programmer’s Guide ,
Chapter 3

C$SGI DISTRIBUTE
C$SGI REDISTRIBUTE

Distribute array storage among
processors. For Origin2000
systems.

MIPSpro Fortran 77
Programmer’s Guide, Chapter
6

C*$* PREFETCH_REF Load data into cache. May be used
with nonconcurrent code.

MIPSpro Compiling and
Performance Tuning Guide,
Chapter 4

007–2603–005 131

ProDev ProMP User’s Guide

Option Effect on Compilation For More Information

C$SGI DYNAMIC Allow run-time array
redistribution. For Origin2000
systems.

MIPSpro Fortran 77
Programmer’s Guide, Chapter
6

C$OMP FLUSH Identifies synchronization points at
which the implementation is
required to provide a consistent
view of memory.

OpenMP Fortran Application
Program Interface, see
http://www.openmp.org

The options in the Operations menu have the following specific effects:

Undo Changes to Loop Removes pending changes to the currently
selected loop. Changes that have already been
written to the source file using the Update menu
commands cannot be undone.

Undo All Changes Removes pending changes to all the loops in the
current fileset. Changes that have already been
written to the source file using the Update menu
commands cannot be undone.

Add Assertion Opens the Add Assertion menu which allows you
to add the following assertions, which are
described in Table 3, page 131:

• C*$*ASSERT CONCURRENT CALL

• C*$*ASSERT PERMUTATION

Add OMP Directive Opens the Add OMP Directive menu which
allows you to add these directives, described in
Table 3, page 131:

• C*$* CONCURRENTIZE

• C*$* NOCONCURRENTIZE

• C$SGI DISTRIBUTE (formerly C*$*
DISTRIBUTE)

• C$SGI REDISTRIBUTE (formerly C*$*
REDISTRIBUTE)

• C*$* PREFETCH_REF

• C$SGI DYNAMIC (formerly C*$* DYNAMIC)

132 007–2603–005

Parallel Analyzer View Reference [6]

• C$OMP FLUSH

Add OMP Parallel Allows you to add the C$OMP PARALLEL
directive. The directive defines a parallel region,
that is a block of code that is to be executed by
multiple threads in parallel.

Add OMP Barrier Allows you to add the C$OMP BARRIER
synchronization directive. This directive causes
each thread to wait at the designated point until
all have reached it.

Add OMP Section Opens the Add OMP Section submenu whose
seven options allow you to add the OpenMP
synchronization directives shown below. The
directives are explained in Table 4, page 134.

• Add OMP Sections: C$OMP SECTIONS

• Add OMP Section: C$OMP SECTION

• Add OMP Critical: C$OMP CRITICAL

• Add OMP Single: C$OMP SINGLE

• Add OMP Atomic: C$OMP ATOMIC

• Add OMP Ordered: C$OMP ORDERED

• Add OMP Master: C$OMP MASTER

To use the Add OMP Section option do the following:

1. Bring up the Source View.

2. Using the mouse, sweep out a range of lines for the new construct.

3. Invoke the appropriate menu item to add the new construct.

When you add a new OMP Section construct, the list is redrawn with the new
construct in place, and the new construct is selected. Brackets defining the new
constructs are not added to the file loop annotations.

Table 4, page 134, lists the directives that can be added with the Add OMP
Section menu. A more detailed explanation of them can be found in the
document OpenMP Fortran Application Program Interface located at Web site of
the OpenMP Architecture Review Board, http://www.openmp.org.

007–2603–005 133

ProDev ProMP User’s Guide

Table 4. Add OMP Section Menu Options

Option Meaning

C$OMP SECTIONS Specifies that the enclosed sections of code
are to be divided among threads in a team.

C$OMP SECTION Delineates a section within C$OMP
SECTIONS.

C$OMP CRITICAL Restrict access to enclosed code to one
thread at a time.

C$OMP SINGLE Only one thread executes the enclosed
code

C$OMP ATOMIC Update memory location atomically, not
simultaneously.

C$OMP ORDERED Execute enclosed code in same order as
sequential execution.

C$OMP MASTER Specify code to be executed by master
thread.

Note: The Parallel Analyzer does not enforce any of the semantic restrictions
on how parallel regions and or sections must be constructed. When you add
nested regions or constructs, be careful that they are properly nested: they
must each begin and end on distinct lines. For example, if you add a parallel
region and a nested critical section that end at the same line, the terminating
directives are not in the correct order.

6.2.7 Help Menu

The Help menu contains commands that allow you to access online information
and documentation for the Parallel Analyzer View. (See Figure 60, page 134.)

Figure 60. Help Menu

134 007–2603–005

Parallel Analyzer View Reference [6]

The options in the Help menu have the following effects:

On Version… Opens a window containing version number
information for the Parallel Analyzer View.

On Window… Invokes the Help Viewer, which displays a
descriptive overview of the current window or
view and its graphical user interface.

On Context Invokes context-sensitive help. When you choose
this option, the normal mouse cursor (an arrow)
is replaced with a question mark. When you click
on graphical features of the application with the
left mouse, or position the cursor over the feature
and press the F1 key, the Help Viewer displays
information on that context.

Index… Invokes the Help Viewer and displays the list of
available help topics, which you can browse
alphabetically, hierarchically, or graphically.

6.2.8 Keyboard Shortcuts

Table 5, page 135, lists the keyboard shortcuts available in the Parallel Analyzer
View:

Table 5. Parallel Analyzer View Keyboard Shortcuts

Shortcut Menu Menu Option

Ctrl+S Admin Icon Legend…

Ctrl+R Admin Raise

Ctrl+P Views Parallelization Control View

Ctrl+T Views Transformed Loops View

Ctrl+A Views PFA Analysis Parameters View

Ctrl+F Views Subroutines and Files View

Ctrl+U Update Update All Files

007–2603–005 135

ProDev ProMP User’s Guide

6.3 Loop List Display

This section describes the loop list display and the various option buttons and
fields that manipulate the information shown in the loop list display, shown in
Figure 61, page 136.

Status line

Performance
experiment line

Loop list

Loop list size
adjustment

Figure 61. Loop List Display

6.3.1 Resizing the Loop List

You can resize the loop list to change the number of loops displayed; use the
adjustment button: a small square below the Previous Loop button.

6.3.2 Status and Performance Experiment Lines

The Status line displays messages about the current status of the loop list,
providing feedback on manipulations of the current fileset.

The Performance experiment line is meaningful if you run the WorkShop
Performance Analyzer. The line displays the name of the current experiment
directory and the type of experiment data, as well as total data for the current
caliper setting in the Performance Analyzer. (See Section 6.2.1.2, page 121, for

136 007–2603–005

Parallel Analyzer View Reference [6]

information on invoking the Performance Analyzer from the Parallel Analyzer
View.) If the Performance Analyzer is not being used, the performance
experiment line displays <none>.

6.3.3 Loop List

The loop list lets you select and manipulate any Fortran DO loop contained in
the source files loaded into the Parallel Analyzer View. Information about the
loops is displayed in columns in the list; the headings of the columns are
shown at the top of Figure 62, page 137, and described below.

Column
headings

Nesting
level

Loop index
variable

Subroutine
name

Location
in code

Loop
identifier

Filename

Figure 62. Loop List with Column Headings

The columns in the loop list contain the following information about each loop,
from left to right:

• Parallelization icon: Indicates the parallelization status of each loop. The
meaning of each icon is described in the Icon Legend dialog box. (See
Section 6.2.1.1, page 121.) When a loop is displayed in the loop information
display (by double-clicking the loop’s row), a green check mark is placed to
the left of the icon to indicate that it has been examined. If any changes are
made from within the loop information display, a red plus sign is placed
above the check mark.

• Perf. Cost (not shown in Figure 62, page 137): The performance cost is
displayed when the WorkShop Performance Analyzer is launched on the

007–2603–005 137

ProDev ProMP User’s Guide

current fileset. (See Section 6.2.1.2, page 121.) The loops can be sorted by
Perf. Cost via the sort option button. (See Section 6.4.2, page 139.)

When performance cost is shown, each loop’s execution time is displayed as
a percentage of the total execution time. This percentage includes all nested
loops, subroutines, and function calls.

• Nest: The nesting level of the given loop.

• Loop-ID: An ID for each loop in the list display. The ID is displayed
indented to the right to reflect the loop’s nesting level when the list is sorted
in source order, and unindented otherwise.

• Variable: The name of the loop index variable.

• Subroutine: The name of the Fortran subroutine in which the loop occurs.

• Lines: The lines in the source file that make up the body of the loop.

• Olid: Original loop id is a unique internal identifier for the loops generated
by the compiler. Use this value when reporting bugs.

• File: The name of the Fortran source file that contains the loop.

To highlight a loop in the list, click the left mouse anywhere in a loop’s row;
typing unique text from the row into the Search field does the same thing. (See
Section 6.4.1, page 139.)

To select a loop, double-click on its row; this will bring up detailed information
in the loop information display below the loop list display. (See Section 6.5,
page 142.) Selecting a loop affects other displays. (See Section 2.6.3, page 20.)

6.4 Loop Display Controls

The loop display controls are shown in Figure 63, page 139, and are discussed
in the next sections.

138 007–2603–005

Parallel Analyzer View Reference [6]

Search loop list field Option buttons

Control buttons Navigation buttons

Figure 63. Loop Display Controls

6.4.1 Search Loop List Field

You can use the search loop list editable text field, shown at the top left of
Figure 63, page 139, to find a specific loop in the loop list display. The Parallel
Analyzer View matches any text typed into the field to the first instance of that
text in the loop list, and highlights the row of the list in which the text occurs.
The search field matches its text against the contents of each column in the loop
list.

As you type into the field, the list highlights the first entry that matches what
you have already typed, scrolling the list if necessary. If you press Enter, the
highlight moves to the next match. If no match is found, the system beeps, and
pressing Enter positions the highlight at the top of the list again.

6.4.2 Sort Option Button

The sort option button is the left-most option button under the loop list search
field shown in Figure 63, page 139. It controls the order in which the loops are
displayed in the loop list display.

Figure 64. Sort Option Button

007–2603–005 139

ProDev ProMP User’s Guide

The choices in the sort option button (Figure 64, page 139) have the following
effects:

Sort in Source Order Orders the loops as they
appear in the source file.

Sort by Perf.Cost Orders the loops by their
performance cost (from
greatest to least) as calculated
by the Workshop Performance
Analyzer. This is the default
setting. You must invoke the
Performance Analyzer from
the current session of the
Parallel Analyzer View to
make use of this option. See
Section 6.2.1.2, page 121, for
information on how to open
the Performance Analyzer
from the current session of
the Parallel Analyzer View.

6.4.3 Show Loop Types Option Button

The show loop types option button is the center option button under the loop
list search field shown in Figure 63, page 139. It controls what kind of loops are
displayed for each file and subroutine in the loop list.

Figure 65. Show Loop Types Option Button

140 007–2603–005

Parallel Analyzer View Reference [6]

The options in the show loop types button (Figure 65, page 140) have the
following effects:

Show All Loop Types Default setting.

Show Unparallelizable Loops Show only loops that could
not be parallelized, and
thereby run serially.

Show Parallelized Loops Show only loops that are
parallelized.

Show Serial Loops Show only loops that are
preferably serial.

Show Modified Loops Show only loops with
pending changes.

Show OMP Directives Show only loops containing
OMP directives.

6.4.4 Filtering Option Button

The filtering option button is the right-most option button under the loop list
search field shown in Figure 63, page 139. It lets you display only those loops
contained within a given subroutine or source file.

Figure 66. Filtering Option Button

The button choices have the following effects:

No Filtering The default setting; lists all loops and routines.

Filter by
Subroutine

Lets you enter a subroutine name into a filtering
editable text field that appears above the option
button. Only loops contained in that subroutine
are displayed in the loop list.

Filter by File Lets you enter a Fortran source filename into a
filtering editable text field that appears above the

007–2603–005 141

ProDev ProMP User’s Guide

option button. Only loops contained in that file
are displayed in the loop list.

To place the name of a subroutine or file in the appropriate filter text field, you
can double-click on a line in the Subroutines and Files View. If the appropriate
type of filtering is currently selected, the loop list is rescanned.

6.4.5 Loop Display Buttons

The loop display controls (Figure 63, page 139) include two control buttons:

• Source: Opens the Source View window, with the source file containing the
loop currently selected (double-clicked) in the loop list. The body of the loop
is highlighted within the window. If no loop is selected, the last selected file
is loaded; if no file is selected, the first file in the fileset is loaded.

For more information on the Source View window, see Section 6.7.1, page
162.

• Transformed Source: Opens a Parallel Analyzer View - Transformed
Source window, with the compiled source file containing the loop currently
selected (double-clicked) in the loop list. The body of the loop is highlighted
within the window. If no loop is selected, the last selected file is loaded; if
no file is selected, the first file in the fileset is loaded.

For more information on the Transformed Source window, see Section 6.7.1,
page 162.

The loop display controls also include two navigation buttons:

• Next Loop: Selects the next loop in the loop list. The information in the
loop information display and all other windows is updated accordingly. If
no loop is currently selected, clicking on the button selects the first loop.

• Previous Loop: Selects the previous loop in the loop list. The information
in the loop information display and all other windows is updated
accordingly. If no loop is currently selected, clicking on the button selects
the first loop.

6.5 Loop Information Display

The loop information display provides detailed information on various loop
parameters, and allows you to alter those parameters to incorporate the changes

142 007–2603–005

Parallel Analyzer View Reference [6]

into the Fortran source. The display is divided into several information blocks
displayed in a scrolling list as shown in Figure 67, page 143.

Information
block

Highlight button

Number of transformed loops

Figure 67. Loop Information Display

Each of these sections and the information it contains is described in detail
below. The display is empty when no loop has been selected.

6.5.1 Highlight Buttons

A highlight button (light bulb, see Figure 67, page 143) appears as a shortcut to
more information related to text in the display. Clicking the button does one or
both of the following:

• Highlights the loop and the relevant line(s) in a Source View window. (See
Section 6.7.1, page 162.)

• If a directive appears in the options menu next to it, the highlight button
presents details about directive clauses in a Parallelization Control View.
(See Section 6.6.1, page 150.)

If directives or assertions with highlight buttons are also listed below the Loop
Parallelization Controls, these buttons highlight the same piece of code as the
corresponding button in the Loop Parallelization Controls, but they do not
activate the Loop Parallelization Control View.

007–2603–005 143

ProDev ProMP User’s Guide

6.5.2 Loop Parallelization Controls in the Loop Information Display

The first line of the Loop Parallelization Controls section shows the Olid of the
selected loop and, on the far right, how many transformed loops were derived
from the selected loop.

Controls for altering the parallelization of the selected loop are shown in Figure
68, page 144. The controls in this section allow you to place parallelization
assertions and directives in your code. Recall that you have similar controls
available through the Operations menu. (See Section 6.2.6, page 130.)

Loop parallelization
status option

Status description

Number of transformed loops

MP Chunk size editable text field

Scheduling description

MP scheduling option

Figure 68. Loop Parallelization Controls

6.5.2.1 Loop Parallelization Status Option Button

The loop parallelization status option button (shown in Figure 68, page 144) lets
you alter a loop’s parallelization scheme. To the right of the option button is the
Loop parallelization status field, a description of the current loop status as
implemented in the transformed source. A small highlight button appears to
the left of this description if the status was set by a directive.

144 007–2603–005

Parallel Analyzer View Reference [6]

The loop parallelization status option button choices follow below. The
directives and assertions mentioned in the choices are described in Table 6,
page 146.

Default Always selects the parallelization scheme that the
compiler picked for the selected loop.

Prefer Parallel Adds the assertion C*$*ASSERT DO PREFER
(CONCURRENT).

Force Parallel Adds the assertion C*$*ASSERT DO
(CONCURRENT).

Prefer Serial Adds the assertion C*$ASSERT DO PREFER
(SERIAL).

Force Serial Adds the assertion C*$*ASSERT DO (SERIAL).

C$OMP PARALLEL DO… Adds the OpenMP directive C$OMP PARALLEL
DO. Selecting this item opens the Parallelization
Control View. See Section 6.6.1, page 150, for
more information.

C$OMP DO… Launches the Parallelization Control View, which
allows you to manipulate the scheduling clauses
for the OpenMP C$OMP DO directive and to set
each of the referenced variables as either
region-default or last-local.

A C$OMP DO must be within a parallel region,
although the tool does not enforce this restriction.
If one is added outside of a region, the compiler
reports an error.

A menu choice is grayed out if you are looking at a read-only file, if you
invoked cvpav with the -ro True option, or if the loop comes from an
included file. So in some cases you are not allowed to change the menu setting.

Table 6, page 146, lists the assertions and directives that you control from the
loop parallelization status option button.

007–2603–005 145

ProDev ProMP User’s Guide

Table 6. Assertions and Directives Accessed From the Loop Parallelization Controls

Assertion or Directive Effect on Compilation For More Information

C*$* ASSERT DO
(CONCURRENT)

Parallelize the loop; ignore
possible data dependences.

MIPSpro Auto-Parallelizing Option
Programmer’s Guide, Chapter 3

C*$* ASSERT DO PREFER
(CONCURRENT)

Attempt to parallelize the
selected loop. If not possible,
try each nested loop.

MIPSpro Auto-Parallelizing Option
Programmer’s Guide, Chapter 3

C*$* ASSERT DO (SERIAL) Do not parallelize the loop. MIPSpro Auto-Parallelizing Option
Programmer’s Guide, Chapter 3

C*$* ASSERT DO PREFER
(SERIAL)

Do not parallelize the loop. MIPSpro Auto-Parallelizing Option
Programmer’s Guide, Chapter 3

C$OMP PARALLEL DO Parallelize the loop, ignore
automatic parallelizer.

OpenMP Fortran Application Program
Interface, see
http://www.openmp.org

C$OMP DO Assign each loop iteration to a
different thread, ignore
automatic parallelizer.

OpenMP Fortran Application Program
Interface, see
http://www.openmp.org

6.5.2.2 MP Scheduling Option Button: Directives for All Loops

The MP scheduling option button (Figure 68, page 144) lets you alter a loop’s
scheduling scheme by changing C$MP_SCHEDTYPE modes and values for
C$CHUNK. For those modes that require a chunk size, there is a editable text
field to enter the value. (See Section 6.5.2.3, page 147.)

These directives affect the current loop and all subsequent loops in a source file.
For more information, see Chapter 5 in the MIPSpro Fortran 77 Programmer’s
Guide. For control over a single loop, use the C$OMP PARALLEL DO directive
clause. (See Section 6.6.1.3, page 156.)

146 007–2603–005

Parallel Analyzer View Reference [6]

The button choices are as follows:

Default Always selects the scheduling scheme that the
compiler picked for the selected loop.

Static Divides iterations of the selected loop among the
processors by dividing them into contiguous
pieces and assigning one to each processor.

Dynamic Divides iterations of the selected loop among the
processors by dividing them into pieces of size
C$CHUNK. As each processor finishes a piece, it
enters a critical section to grab the next piece.
This scheme provides good load balancing at the
price of higher overhead.

Interleaved Divides the iterations into pieces of size C$CHUNK
and interleaves the execution of those pieces
among the processors. For example, if there are
four processors and C$CHUNK = 2, then the first
processor executes iterations 1-2, 9-10, 17-18,…;
the second processor executes iterations 3-4,
11-12, 19-20,…; and so on.

Guided Self Divides the iterations into pieces. The size of
each piece is determined by the total number of
iterations remaining. The idea is to achieve good
load balancing while reducing the number of
entries into the critical section by parceling out
relatively large pieces at the start and relatively
small pieces toward the end.

Run-time Lets you specify the scheduling type at run time.

To the right of the MP scheduling option button is the MP scheduling field, a
description of the current loop scheduling scheme as implemented in the
transformed source. A highlight button appears to the left of this description if
the scheduling scheme was set by a directive.

6.5.2.3 MP Chunk Size Field

Below the MP scheduling description is the MP Chunk size editable text field, a
field that allows you to set the C$CHUNK size for the scheduling scheme you
select.

007–2603–005 147

ProDev ProMP User’s Guide

When you change an entry in the field, the upper right corner of the field turns
down, indicating the change (Figure 69, page 148). To toggle back to the
original value, left-click the turned-down corner (changed-entry indicator). The
corner unfolds, leaving a fold mark. If you click again on the fold mark, you
can toggle back to the changed value. You can enter a new value at any time;
the field remembers the original value, which is always displayed after you
click on the changed-entry indicator.

Changed-entry indicator

Figure 69. MP Chunk Size Field Changed

Be aware of the following when you use the MP Chunk size field:

• Your entry should be syntactically correct, although it is not checked.

• Like any other editable text field, the background color changes when you
cannot make edits. This can happen if you are looking at a read-only file, if
you invoked cvpav with the -ro True option, if the loop comes from an
included file, or in some other cases.

6.5.3 Obstacles to Parallelization Information Block

Obstacles to parallelization are listed when the compiler discovers aspects of a
loop’s structure that make it impossible to parallelize. They appear in the loop
information display below the parallelization controls.

Figure 70, page 149, illustrates a message describing an obstacle. The message
has a highlight button directly to its left to indicate the troublesome line(s) in
the Source View window, and opens the window if necessary. If appropriate,
the referenced variable or function call is highlighted in a contrasting color.

148 007–2603–005

Parallel Analyzer View Reference [6]

Highlight button

Description of obstacle

Figure 70. Obstacles to Parallelization Block

6.5.4 Assertions and Directives Information Blocks

The loop information display lists any assertions and directives for the selected
loop along with highlight buttons. When you left-click the highlight button to
the left of an assertion or directive, the Source View window shows the selected
loop with the assertion or directive highlighted in the code.

Recall that assertions and directives are special Fortran source comments that
tell the compiler how to transform Fortran code for multiprocessing. Directives
enable, disable, or modify features of the compiler when it processes the source.
Assertions provide the compiler with additional information about the source
code that can sometimes improve optimization.

Some assertions or directives appear with an information block option button
that allows you to Keep or Delete it. (If you compile o32, you can also
->Reverse it.) Figure 71, page 149, shows an assertion block and its option
button.

Figure 71. Assertion Information Block and Options (n32 and n64 Compilation)

Assertions and directives that govern loop parallelization or scheduling do not
have associated option buttons; those functions are controlled by the loop
parallelization status option button and the MP scheduling option button. (See
Section 6.5.2, page 144.)

007–2603–005 149

ProDev ProMP User’s Guide

6.5.5 Compiler Messages

The Loop information display also shows any messages generated by the
compiler to describe aspects of the loops created by transforming original
source loops. As an example, the loop information display in Figure 67, page
143, shows there are 11 messages present although only one is shown. Some
messages have associated buttons that highlight sections of the selected loop in
the Source View window.

6.6 Views Menu Options

The views in this section are launched from the Views menu in the main menu
bar of the Parallel Analyzer View. All of the views discussed in this section
contain the following in their menu bars:

• Admin menu: This menu contains a single Close command that closes the
corresponding view.

• Help menu: This menu provides access to the online help system. (See
Section 6.2.7, page 134, for an explanation of the commands in this menu.)

6.6.1 Parallelization Control View

The Parallelization Control View shows parallelization controls (directives and
their clauses), where applicable, and all the variables referenced in the selected
loop, OpenMP construct, or subroutine. It can be opened by either of two ways.

• Selecting the Views > Parallelization Control View option. Figure 72, page
151, shows the Parallelization Control View when it is launched from the
Views menu with the Default loop parallelization status option button; this
is the display for loops without directives.

• Selecting C$OMP PARALLEL DO… or C$OMP DO… in the loop parallelization
status option button (Figure 73, page 153, and Figure 74, page 154). This
approach provides controls for clauses you can append to these directives.

Features that appear no matter which method is used to open the
Parallelization Control View are discussed under Section 6.6.1.1, page 151.
Features that appear only when the view is opened from the loop
parallelization status option button with C$OMP PARALLEL DO… or
C$OMP DO… selected are discussed in the following:

• Section 6.6.1.2, page 152

150 007–2603–005

Parallel Analyzer View Reference [6]

• Section 6.6.1.3, page 156

• Section 6.6.1.4, page 156

Figure 72. Parallelization Control View

6.6.1.1 Common Features of the Parallelization Control View

Independently of how you open the Parallelization Control View, these
elements appear in the window (Figure 72, page 151):

• Selected loop: Contains the Olid of the loop, and the information about the
loop from the Loop-ID and Variable columns of the loop list.

007–2603–005 151

ProDev ProMP User’s Guide

• Directive information section: If a directive is applicable to the loop, this
section lists directive, clauses, and parameter values. (See Section 6.6.1.2,
page 152.)

• Variables Referenced: The listing has two icons for each variable. They
allow you to highlight the variable in the Source View and to determine the
variable’s read/write status; see Section 6.2.1.1, page 121, for an explanation
of these icons.

For discussion of added option buttons that appear if the view is opened
from the loop parallelization status option button when C$OMP PARALLEL
DO… or C$OMP DO… is selected, see Section 6.6.1.4, page 156.

• Add Variable: Located at the bottom of the window frame, this button
allows you to add new variables to a loop.

• List to add: Located at the bottom of the window frame, this editable text
field allows you to indicate the variables you wish to add to the loop. You
may enter multiple variables, with each variable name separated by a space
or comma.

6.6.1.2 C$OMP PARALLEL DO and C$OMP DO Directive Information

Option buttons and editable text fields in addition to those described in Section
6.6.1.1, page 151, are available if you open the Parallelization Control View from
the loop parallelization status option button with either C$OMP PARALLEL DO…
or C$OMP DO… selected. (See Figure 73, page 153, and Figure 74, page 154.)

There are two additional option buttons available:

• MP scheduling option button: This button allows you to alter a loop’s
scheduling scheme by changing the C$MP_SCHEDTYPE clause. See Section
6.6.1.3, page 156, for further information. This is the same button shown in
Figure 68, page 144.

• Synchronization construct option button (C$OMP DO… only): This button
allows you to set the NOWAIT clause at the end of the C$OMP END DO
directive to avoid the implied BARRIER.

152 007–2603–005

Parallel Analyzer View Reference [6]

Loop parallelization
status options

Selected loop
MP scheduling
Chunk size field

Parallelization
condition field

MP scheduling
option button

Clause parameter
fields

Variable type

Variable list options
Highlight button

Variable name

List of loop
variables

Read/write
status

Figure 73. Parallelization Control View With C$OMP PARALLEL DO Directive

007–2603–005 153

ProDev ProMP User’s Guide

Loop parallelization
status options

Selected loop

MP scheduling
Chunk size field

MP scheduling
option button

Clause parameter
fields

Variable type

Variable list options

Highlight button

Variable name

List of loop
variables

Read/write
status

Construct
synchronization
options

Figure 74. Parallelization Control View With C$OMP DO Directive

The following is a list of additional editable text fields that allow you to specify
clauses for the C$OMP PARALLEL DO or C$OMP DO directives. Unless

154 007–2603–005

Parallel Analyzer View Reference [6]

otherwise specified, the clause descriptions come from the OpenMP Fortran
Application Program Interface.

• Condition for parallelization: Allows you to enter a Fortran conditional
statement, for example, NSIZE .GT. 83. (C$OMP PARALLEL DO… only.)

This statement determines the circumstances under which the loop will be
parallelized. The upper right corner of the field changes when you type in
the field. Your entry must be syntactically correct; it is not checked.

• MP Chunk size: Allows you to set the C$CHUNK size for the scheduling
scheme you select. For further information, see Section 6.5.2.3, page 147.

• Private: Declares the variables in a list to be PRIVATE to each thread in a
team.

• Shared: Makes variables that appear in a list shared among all the threads in
a team. All threads within a team access the same storage area for SHARED
data. (C$OMP PARALLEL DO… only.)

• Default: Allows you to specify a PRIVATE, SHARED, or NONE scope attribute
for all variables in the lexical extent of any parallel region. Variables in
THREADPRIVATE common blocks are not affected by this clause.
(C$OMP PARALLEL DO… only.)

• Firstprivate: Provides a superset of the functionality provided by the
PRIVATE clause.

• Lastprivate: Provides a superset of the functionality provided by the
PRIVATE clause.

• Copyin: Applies only to common blocks that are declared as
THREADPRIVATE. (C$OMP PARALLEL DO… only.)

A COPYIN clause on a parallel region specifies that the data in the master
thread of the team be copied to the thread private copies of the common
block at the beginning of the parallel region.

• Reduction: Performs a reduction on the variables that appear in a list with
an operator (+, *, -, .AND., .OR., .EQV., or .NEQV.), or an intrinsic (MAX,
MIN, IAND, IOR, or IEOR).

• Affinity: Allows you to specify the parameters for the affinity scheduling
clause. The two types of affinity scheduling are described below. (For more
details and syntax, see the MIPSpro Fortran 77 Programmer’s Guide.)

007–2603–005 155

ProDev ProMP User’s Guide

– Data affinity scheduling, which assigns loop iterations to processors
according to data distribution.

– Thread affinity scheduling, which assigns loop iterations to designated
processors.

• Nest: Allows you to specify parameters in this clause for concurrent
execution of nested loops. You can use the NEST clause to parallelize nested
loops only when there is no code between either the opening DO statements
or the closing ENDDO statements. For more details and syntax, see the
MIPSpro Fortran 77 Programmer’s Guide.

• Onto: Allows you to specify parameters for this clause to determine
explicitly how processors are assigned to array variables or loop iteration
variables. For more details and syntax, see the MIPSpro Fortran 77
Programmer’s Guide.

6.6.1.3 MP Scheduling Option Button: Clauses for One Loop

The Parallelization Control View contains an MP scheduling option button if it
is opened from the loop parallelization status option button with either
C$OMP PARALLEL DO… or C$OMP DO… selected.

The options that appear have the same names as those for the MP scheduling
option button in the loop information display, shown in Figure 68, page 144.
However, the option button in the Parallelization Control View affects the
C$MP_SCHEDTYPE and C$CHUNK clauses in the C$OMP PARALLEL DO directive,
and so affects only the currently selected loop. Recall that the MP scheduling
option button in the loop information display affects the placement of the
C$MP_SCHEDTYPE and C$CHUNK directives and thus all subsequent loops.

Except for this difference in scope, the effects of both option buttons are the
same; for a description, see Section 6.5.2.2, page 146. For more information, see
the MIPSpro Fortran 77 Programmer’s Guide.

6.6.1.4 Variable List Option Buttons

If the Parallelization Control View is opened from the loop parallelization status
option button when either C$OMP PARALLEL DO… or C$OMP DO… is selected,
each variable listed in the lower portion of the view appears with an option
button. The menu allows you to append a clause to the directive, enabling you
to control how the processors manage the variable. It is an addition to the
highlight and read/write icons discussed in Section 6.6.1.1, page 151.

156 007–2603–005

Parallel Analyzer View Reference [6]

Note: The highlight button may not indicate in the Source View all the
occurrences relevant to a variable subject to a OpenMP directive; you may
need to select the entire parallel region in which the variable occurs.

If the view is opened from the loop parallelization status option button when
C$OMP PARALLEL DO… is selected, these are the variable list option button
choices (Figure 73, page 153):

Default Uses the control established by the compiler.

Shared One copy of the variable is used by all threads of
the MP process.

Local Each processor has its own copy of the variable.

Last-local Similar to Local, except the value of the variable
after the loop is as the logically last iteration
would have left it.

Reduction A sum, product, minimum, or maximum
computation of the variable can be done partially
in each thread and then combined afterwards.

If the view is opened from the loop parallelization status option button when
C$OMP DO… is selected, these are the variable list option button choices (Figure
74, page 154):

Region-default Uses the control established by the compiler for
the parallel region.

Local Each processor has its own copy of the variable.

First-local Similar to Local, except the value of the variable
after the loop is as the logically first iteration
would have left it.

Last-local Similar to Local, except the value of the variable
after the loop is as the logically last iteration
would have left it.

6.6.1.5 Variable List Storage Labeling

In parentheses after each variable name in the list of variables is a word
indicating the storage class of the variable. There are three possibilities:

• Automatic: The variable is local to the subroutine, and is allocated on the
stack.

• Common: The variable is in a common block.

007–2603–005 157

ProDev ProMP User’s Guide

• Reference: The variable is a formal argument, or dummy variable, local to
the subroutine.

6.6.2 Transformed Loops View

The Transformed Loops View contains information about how a loop selected
from the loop list is rewritten by the compiler into one or more transformed loops.

To open this view, choose Views > Transformed Loops View. (See Figure 75,
page 158)

Information block
for one loop

Figure 75. Transformed Loops View

Loop identifying information appears on the first line below the window menu,
and below that is an indication of how many transformed loops were created.

Each transformed loop is displayed in its own section of the Transformed Loops
View in an information block.

158 007–2603–005

Parallel Analyzer View Reference [6]

• The first line in each block for contains:

– A parallelization status icon

– A highlighting button (highlights the loop in the Transformed Source
window and in the original loop in the Source View)

– The Olid number of the transformed loop

• The next line describes the transformed loop, providing information such as
the following:

– Whether it is a primary loop or secondary loop (whether it is directly
transformed from the selected original loop or transformed from a
different original loop, but incorporates some code from the selected
original loop)

– Parallelization state

– Whether it is an ordinary loop or interchanged loop

– Its nesting level

• The last line in the loop’s information block displays the location of the loop
in the transformed source.

Any messages generated by the compiler are below the loop information
blocks. To the left of the message lines are highlight buttons. Left-clicking them
highlights in the Transformed View the part of the original source that relates to
the message. Often it is the first line of the original loop that is highlighted,
since the message refers to the entire loop.

6.6.3 PFA Analysis Parameters View

If you compile with o32, you can use the PFA Analysis Parameters View, which
contains a list of PFA execution parameters accompanied by fields into which
you can enter new values. If you compile with n32 or n64, these parameters
have no effect and this view is not useful.

To open this view, choose Views > PFA Analysis Parameters View in the main
window. (See Figure 75, page 158.)

When you update a source file, any PFA parameters you alter are changed for
that file (Figure 76, page 160). When you change a parameter, the upper right
corner of the field window turns down, as discussed in Section 6.5.2.3, page 147.

007–2603–005 159

ProDev ProMP User’s Guide

Loop
description

Changed-entry
indicator

Numeric editable
text field with
value of parameter

Figure 76. PFA Analysis Parameters View

A full explanation of the PFA parameters, shown in Figure 76, page 160, can be
found in Chapter 4, “Customizing PFA Execution,” in the POWER Fortran
Accelerator User’s Guide.

6.6.4 Subroutines and Files View

The Subroutines and Files View contains a list from the file(s) in the current
session of the Parallel Analyzer View (Figure 77, page 161). Below each filename
in the list is an indented list of the Fortran subroutines it contains. Each item in
the list is accompanied by icons to indicate file or subroutine status:

• A green check mark appears to the left of the file or subroutine name if the
file has been scanned correctly or the subroutine has no errors.

160 007–2603–005

Parallel Analyzer View Reference [6]

• A red plus sign is above the green check mark shows if any changes have
been made to loops in the file using the Parallel Analyzer View.

• A red international not symbol replaces the check mark if an error occurred
because a file could not be scanned or a subroutine had errors.

File line

Subroutine lines

Search field

Figure 77. Subroutines and Files View

The Search field in the Parallel Analyzer View uses the subroutine and file
names listed in the Subroutines and Files View as a menu for search targets; see
Section 6.4.1, page 139.

You can select items in the list for two purposes:

• To save changes to a selected file: click the filename and use the Update >
Update Selected File option at the top of the Parallel Analyzer View main
window. (See Section 6.2.4, page 127.)

007–2603–005 161

ProDev ProMP User’s Guide

• To select a file or subroutine for loop list filtering, discussed in Section 6.4.4,
page 141, double-click on it. The selected name appears in the filtering text
field; if the item is appropriate for the selected filtering option, the loop list
is rescanned.

At the bottom of the window is a Search editable text field, which you can use
to search the list of files and subroutines.

6.7 Loop Display Control Button Views

These views are summoned by clicking on the Source and Transformed
Source loop display control buttons.

6.7.1 Source View and Parallel Analyzer View - Transformed Source

The Source View window and the Transformed Source window together present
views of the source code before and after compiler optimization (Figure 78,
page 163). The two windows use the WorkShop Source View interface.

Both the Source View and Transformed Source windows contain bracket
annotations in the left margin that mark the location and nesting level of each
loop in the source file. Clicking on a loop bracket to the left of the code chooses
and highlights the corresponding loop.

In the Transformed Source window, an indicator bar (a vertical line in a different
color) indicates each loop that was transformed from the selected original loop.

If the source windows are invoked from a session linked to the WorkShop
Performance Analyzer (see Section 6.2.1.2, page 121), any displayed sources files
known to the Performance Analyzer are annotated with performance data.

162 007–2603–005

Parallel Analyzer View Reference [6]

Original loop

First transformed
loop is highlighted

Colored bars indicate
loops transformed
from selected loop

Figure 78. Original and Transformed Source Windows

007–2603–005 163

ProDev ProMP User’s Guide

Note: The File and Display menus shown in the Source View and
Transformed Source windows are standard Source View menus, and are
described in the Developer Magic: Debugger User’s Guide.

164 007–2603–005

Examining Loops Containing PCF
Directives [A]

The content of this appendix is similar to that of Section 2.11, page 56, except it
uses the older PCF (Parallel Computing Forum) directives instead of OpenMP
directives. For more information on PCF directives, see the MIPSpro Fortran 77
Programmer’s Guide.

A.1 Setting Up the dummy.f Sample Session

To use this sample session, note the following:

• /usr/demos/ProMP is the PCF demonstration directory

• ProMP.sw.demos must be installed

The sample session discussed in this chapter uses the following source files in
the directory /usr/demos/ProMP/tutorial:

• dummy.f_orig

• pcf.f_orig

• reshape.f_orig

• dist.f_orig

The source files contain many DO loops, each of which exemplifies an aspect of
the parallelization process.

The directory /usr/demos/ProMP/tutorial also includes Makefile to
compile the source files.

A.2 Compiling the Sample Code

Prepare for the session by opening a shell window and entering the following:

% cd /usr/demos/ProMP/tutorial

% make

This creates the following files:

007–2603–005 165

ProDev ProMP User’s Guide

• dummy.f: a copy of the demonstration program created by combining the
*.f_orig files, which you can view with the Parallel Analyzer View or a
text editor, and print

• dummy.m: a transformed source file, which you can view with the Parallel
Analyzer View, and print

• dummy.l: a listing file

• dummy.anl: an analysis file used by the Parallel Analyzer View

For more information about these files, see the MIPSpro Auto-Parallelizing Option
Programmer’s Guide.

A.3 Starting the Parallel Analyzer View

Once you have created the appropriate files with the compiler, start the session
by entering the following command, which opens the main window of the
Parallel Analyzer View loaded with the sample file data:

% cvpav -f dummy.f

Open the Source View window by clicking the Source button after the Parallel
Analyzer View main window opens.

A.4 Examples Using PCF Directives

This section discusses the subroutine pcfdummy(), which contains four parallel
regions and a single-process section that illustrate the use of PCF directives:

• Section A.4.1, page 167

• Section A.4.2, page 168

• Section A.4.3, page 170

• Section A.4.4, page 171

• Section A.4.5, page 171

To go to the first explicitly parallelized loop in pcfdummy(), scroll down the
loop list to Olid 92.

Select this loop by double-clicking the highlighted line in the loop list.

166 007–2603–005

Examining Loops Containing PCF Directives [A]

A.4.1 Explicitly Parallelized Loops: C$PAR PDO

The first construct in subroutine pcfdummy() is a parallel region, Olid 92,
containing two loops that are explicitly parallelized with C$PAR PDO
statements. (See Figure 79, page 168.) With this construct, the second loop can
start before all iterations of the first complete.

Example 26: Explicitly Parallelized Loop Using C$PAR PDO

C$PAR PARALLEL SHARED(A,B) LOCAL(I)
C$PAR PDO dynamic blocked(10-2*2)

DO 6001 I=-100,100

A(I) = I

6001 CONTINUE

C$PAR PDO static
DO 6002 I=-100,100

B(I) = 3 * A(I)

6002 CONTINUE

C$PAR END PARALLEL

Notice in the loop information display that the parallel region has controls for
the region as a whole. The Keep option button and the highlight buttons
function the same way they do in the Loop Parallelization Controls. (See
Section 2.6.4.1, page 23.)

Click Next Loop twice to step through the two loops. You can see in the
Source View that both loops contain a C$PAR PDO directive.

Click Next Loop to step to the second parallel region.

007–2603–005 167

ProDev ProMP User’s Guide

Figure 79. Explicitly Parallelized Loops Using C$PAR PDO

A.4.2 Loops With Barriers: C$PAR BARRIER

The second parallel region, Olid 95, contains a pair of loops identical to the
previous example, but with a barrier between them. Because of the barrier, all
iterations of the first C$PAR PDO must complete before any iteration of the
second loop can begin.

168 007–2603–005

Examining Loops Containing PCF Directives [A]

Example 27: Loops Using C$PAR BARRIER

C$PAR PARALLEL SHARED(A,B) LOCAL(I)

C$PAR PDO interleave blocked(10-2*2)
DO 6003 I=-100,100

A(I) = I

6003 CONTINUE

C$PAR END PDO NOWAIT

C$PAR barrier

C$PAR PDO static
DO 6004 I=-100,100

B(I) = 3 * A(I)

6004 CONTINUE

C$PAR END PARALLEL

Click Next Loop twice to view the barrier region. (See Figure 80, page 170.)

Click Next Loop twice to go to the third parallel region.

007–2603–005 169

ProDev ProMP User’s Guide

Figure 80. Loops Using C$PAR BARRIER Synchronization

A.4.3 Critical Sections: C$PAR CRITICAL SECTION

Click Next Loop to view the first of the two loops in the third parallel region,
Olid 100. This loop contains a critical section.

170 007–2603–005

Examining Loops Containing PCF Directives [A]

Example 28: Critical Section Using C$PAR CRITICAL SECTION

C$PAR PDO

DO 6005 I=1,100
C$PAR CRITICAL SECTION (S3)

S1 = S1 + I

C$PAR END CRITICAL SECTION

6005 CONTINUE

Click Next Loop to view the critical section.

The critical section uses a named locking variable (S3) to prevent simultaneous
updates of S1 from multiple threads. This is a standard construct for
performing a reduction.

Move to the next loop by clicking Next Loop.

A.4.4 Single-Process Sections: C$PAR SINGLE PROCESS

Loop Olid 102 has a single-process section, which ensures that only one thread
can execute the statement in the section. Highlighting in the Source View shows
the begin and end directives.

Example 29: Single-Process Section Using C$PAR SINGLE PROCESS

DO 6006 I=1,100

C$PAR SINGLE PROCESS

S2 = S2 + I

C$PAR END SINGLE PROCESS

6006 CONTINUE

Click Next Loop to view information about the single-process section.

Move to the final parallel region in pcfdummy() by clicking Next Loop.

A.4.5 Parallel Sections: C$PAR PSECTIONS

The fourth and final parallel region of pcfdummy(), Olid 104, provides an
example of parallel sections. In this case, there are three parallel subsections,
each of which calls a function. Each function is called exactly once, by a single
thread. If there are three or more threads in the program, each function may be
called from a different thread. The compiler treats this directive as a
single-process directive, which guarantees correct semantics.

007–2603–005 171

ProDev ProMP User’s Guide

Example 30: Parallel Section Using C$PAR PSECTIONS

C$PAR PARALLEL shared(a,c) local(i,j)

C$PAR PSECTIONS
call boo

C$PAR SECTION

call bar

C$PAR SECTION

call baz

C$PAR END PSECTIONS
C$PAR END PARALLEL

Click Next Loop to view the parallel section.

A.5 Exiting From the dummy.f Sample Session

This completes the PCF sample session.

Close the Source View window by choosing its File > Close option.

Quit the Parallel Analyzer View by choosing Admin > Exit.

To clean up the directory, enter the following in your shell window to remove
all of the generated files:

% make clean

172 007–2603–005

Index

A

Add assertion submenu
in operations menu, 132

Add file
option in fileset menu, 126

Add files from executable
option in fileset menu, 127

Add files from fileset
option in fileset menu, 127

Add omp atomic
option in add omp section submenu, 133

Add omp barrier
option in operations menu, 133

Add omp critical
option in add omp section submenu, 133

Add omp directive
option in operations menu, 132

Add omp master
option in add omp section submenu, 133

Add omp ordered
option in add omp section submenu, 133

Add omp parallel
option in operations menu, 133

Add omp section
option in add omp section submenu, 133

Add omp section submenu
Add omp atomic option, 133
Add omp critical option, 133
Add omp master option, 133
Add omp ordered option, 133
Add omp section option, 133
Add omp sections option, 133
Add omp single option, 133
in operations menu, 133

Add omp sections
option in add omp section submenu, 133

Add omp single
option in add omp section submenu, 133

Add variable button
in parallelization control view, 152

adding an assertion, 50, 91
adjustment button

resize loop list display, 12, 136
Admin menu

Exit option, 119
Icon legend… option, 118, 121
Iconify option, 118
in parallel analyzer view, 117
in views menu options, 150
Launch tool submenu, 118, 121
Project submenu, 119
Raise option, 118
Save as text option, 117

AFFINITY clause, 47
Parallelization control view and, 155

Affinity field
in parallelization control view, 155

analyzing loops
C, 75
Fortran 77, 5
Fortran 90, 67

apo keep command line option, 2
assert concurrent call

adding, 91
deleting, 93

assertions
adding from loop parallelization controls, 144
adding from operations menu, 130
controlling, 46, 87
deleting, 52, 93

Assertions information block
in loop information display, 149

Automatic storage
variable list storage label, 157

007–2603–005 173

ProDev ProMP User’s Guide

B

barrier
OpenMP, 59, 97
PCF, 168

brackets
colors, 17
loop, 27

bugs, reporting, 138
Build analyzer

option in launch tool submenu, 122
Build manager, 52

C

C, 75
C$CHUNK variable, 146, 147

MP scheduling option button and, 146
Parallelization control view and, 155

C$MP_SCHEDTYPE variable, 146
MP scheduling option button and, 146

C$OMP atomic, 134
C$OMP barrier, 59, 133
C$OMP critical, 60, 134
C$OMP do, 56, 146
C$OMP do…

option in loop parallelization status option
button, 145

Parallelization control view and, 152
C$OMP flush, 132, 133
C$OMP master, 134
C$OMP ordered, 134
C$OMP parallel, 133
C$OMP parallel do, 29, 146

adding, 46
C$SGI distribute and, 63
C$SGI&NEST and, 44

C$OMP parallel do…
option in loop parallelization status option

button, 145
Parallelization control view and, 152

C$OMP section, 134

C$OMP sections, 61, 134
C$OMP single, 61, 134
C$PAR barrier, 168
C$PAR critical section, 170
C$PAR pdo, 167
C$PAR psections, 171
C$PAR single process, 171
C$SGI distribute, 62, 131, 132
C$SGI dynamic, 132
C$SGI redistribute, 131, 132
C*$* assert concurrent call, 38, 131, 132

adding, 50
deleting, 52

C*$* assert do (CONCURRENT), 35, 146
C*$* assert do (SERIAL), 146
C*$* assert do prefer (CONCURRENT), 146
C*$* assert do prefer (SERIAL), 146
C*$* assert permutation, 39, 131, 132
C*$* concurrentize, 131, 132
C*$* noconcurrentize, 131, 132
C*$* prefetch_REF, 65, 131, 132
cache

prefetching data from, 65, 102
caliper setting in performance analyzer, 136
changed-entry indicator, 147
check mark, 137
closing all windows, project submenu, exit

option, 123
colors, brackets and icons, 17
command line options, 4
Common storage

variable list storage label, 158
compiler messages, 150
compiling

C, 76
Fortran 77, 6
Fortran 90, 67

Condition for parallelization field
in parallelization control view, 155

Configuration menu
in parallel analyzer view, 129
OpenMP option, 129

174 007–2603–005

Index

PCF option, 130
COPYIN clause, 47

Parallelization control view and, 155
THREADPRIVATE directive and, 155

Copyin field
in parallelization control view, 155

critical section
OpenMP, 60, 98
PCF, 170

cvpav
compiling for, 2
installing, 1
opening editor, 54, 128
starting, 3

D

data dependence
carried

parallelizable, 34, 83
unparallelizable, 33, 81

multi-line, 35, 83
daxpy subroutine, linpackd session, 109
Debugger

option in launch tool submenu, 122
Default

C$MP_SCHEDTYPE mode, 147
option in loop parallelization status option

button, 145
option in mp scheduling option button, 147
option in variable list option button, 157

DEFAULT clause, 47
Parallelization control view and, 155

Default field
in parallelization control view, 155

Delete all files
option in fileset menu, 126

Delete information block option button, 149
Delete selected file

option in fileset menu, 126
demonstration

OpenMP, 7

PCF, 166
demonstration directory

Fortran 90 sample session, 67
OpenMP sample session, 6, 76
PCF sample session, 165

dgefa subroutine, linpackd session, 110
directive information

in parallelization control view, 152
directives

adding from loop parallelization controls, 144
adding from mp scheduling option menu, 146
adding from operations menu, 130
controlling, 46, 87
deleting, 52, 93
OpenMP, 96

Directives information block
in loop information display, 149

distributed and reshaped array
C$SGI distribute_RESHAPE, 64
#pragma distribute_reshape, 101

distributed arrays, 62, 99
dst1d function, 99
dst1d subroutine, omp_demo.f session, 62
Dynamic

C$MP_SCHEDTYPE mode, 147
option in mp scheduling option button, 147

E

Exit
option in admin menu, 119
option in project submenu, 123

explicitly parallelized loop
OpenMP, 56, 96
PCF, 167

F

file
update, 52

007–2603–005 175

ProDev ProMP User’s Guide

File loop list field, 138
Fileset menu

Add file option, 126
Add files from executable option, 127
Add files from fileset option, 127
Delete all files option, 126
Delete selected file option, 126
in parallel analyzer view, 126
Rescan all files option, 126

Filter by file
option in filtering option button, 141

Filter by subroutine
option in filtering option button, 141

filtering
by file, 15
by parallelization state, 13
option menus, 13

filtering option button, 15
Filter by file option, 141
Filter by subroutine option, 141
in loop display controls, 141
No filtering option, 141

First-local
option in variable list option button, 157

FIRSTPRIVATE clause, 47
Parallelization control view and, 155

Firstprivate field
in parallelization control view, 155

foo subroutine, omp_demo.f session, 56
Force a build to start

option in update menu, 129
Force parallel

option in loop parallelization status option
button, 145

Force serial
option in loop parallelization status option

button, 145
Fortran 77, 5
Fortran 90, 67
function call

parallelizable, 84

G

gdiff, 53
Guided self

option in mp scheduling option button, 147
Scheduling, c$MP_SCHEDTYPE mode, 147

H

Help menu
in parallel analyzer view, 134
in views menu options, 150
Index… option, 135
On context option, 135
On version… option, 135
On window… option, 135

highlight button, 24, 143
directives, 144

highlighting a loop, 138

I

Icon legend…
dialog box, 121
option in admin menu, 118, 121

Iconify
option in admin menu, 118
option in project submenu, 123

icons
check mark, 21
description, 121
loop list, 10

Index…
option in help menu, 135

information blocks
Assertions, 149
Directives, 149
Obstacles to parallelization, 148
option buttons

Delete, 149

176 007–2603–005

Index

Keep, 149
Reverse, 149

input/output operation, 37, 84
Interleaved

C$MP_SCHEDTYPE mode, 147
option in mp scheduling option button, 147

K

Keep information block option button, 149
keyboard shortcuts, 135

L

Last-local
option in variable list option button, 157

LASTPRIVATE clause, 47
Parallelization control view and, 155

Lastprivate field
in parallelization control view, 155

Launch tool submenu
Debugger option, 122

Launch tool submenu
Build analyzer option, 122
in admin menu, 118, 121
Parallel analyzer option, 122
Performance analyzer option, 122
Static analyzer option, 122
Tester option, 122

light bulb button, 24
Lines loop list field, 138
LINPACK, 105
List to add field

in parallelization control view, 152
Local

option in variable list option button, 157
loop

complex, 44, 86
detailed information, 16
doubly nested, 44, 86
examining simple, 28, 77

explicitly parallelized, 29, 78
fused, 31, 80
information blocks, 24
optimized away, 32, 80
primary, 26
secondary, 26
serial, 29, 78
simple parallel, 28, 78
status, 137
transformed, 26

selecting, 27
with obstacles to parallelization, 32, 80

loop display controls, 138
buttons, 142
control button

Source, 142
Transformed source, 142

navigation button
Next loop, 142
Previous loop, 142

option button
filtering, 141
show loop types, 140
sort, 139

loop information display, 23
in parallel analyzer view, 143
Loop parallelization controls, 144

loop list, 137
column contents, 137
filtering, 13
in loop list display, 10
sorting, 13

loop list display, 10, 136
loop list, 10

Loop parallelization controls, 23
in loop information display, 144
loop parallelization status option button, 144
MP chunk size field, 147
MP scheduling option button, 146

loop parallelization status option button
C$OMP do… option, 145
C$OMP parallel do… option, 47, 145

007–2603–005 177

ProDev ProMP User’s Guide

Default option, 145
Force parallel option, 145
Force serial option, 145
in loop parallelization controls, 144
#pragma omp parallel for… option, 88
Prefer parallel option, 145
Prefer serial option, 145

Loop-ID
loop list field, 10, 138

M

main window
menu bar, 115

make clean, 73, 103
OpenMP sample session, 7, 66, 77
PCF sample session, 172
performance session, 112

memory
required to install, 1

messages
obstacles to parallelization, 32, 81

modifying source files, 46, 87
MP chunk size field, 47

in loop parallelization controls, 147
in parallelization control view, 155

MP scheduling option button
Default option, 147
Dynamic option, 147
Guided self option, 147
in loop parallelization controls, 146
in parallelization control view, 156, 152
Interleaved option, 147
Run-time option, 147
Static option, 147

MP scheduling option menu, 146

N

NEST clause, 47
Parallelization control view and, 156

Nest field
in loop list, 10, 138
in parallelization control view, 156

nested loops, 44, 86
Next loop navigation button

in loop display controls, 142
No filtering

option in filtering option button, 141

O

O3
command line option, 2
optimization level, 36, 84

obstacles to parallelization, 32, 80
Obstacles to parallelization information block

dependence messages, 41
in loop information display, 148
messages, 39

Olid
loop list, 10
loop list field, 138

omp_demo, 96
ompdummy subroutine, omp_demo.f

session, 56, 61
On context

option in help menu, 135
On version…

option in help menu, 135
On window…

option in help menu, 135
ONTO clause, 47

Parallelization control view and, 156
Onto field

in parallelization control view, 156
OpenMP

option in configuration menu, 129
OpenMP directives, 96
Operations menu

Add assertion submenu, 132
Add omp barrier option, 133

178 007–2603–005

Index

Add omp directive option, 132
Add omp parallel option, 133
Add omp section submenu, 133
in parallel analyzer view, 130
Undo all changes option, 132
Undo changes to loop option, 132

original loop id. See Olid, 10

P

Parallel analyzer
launching, 122
option in launch tool submenu, 122

Parallel Analyzer View
source view, 16

Parallel analyzer view
Admin menu, 117
compiling for, 2
Configuration menu, 129
Fileset menu, 126
Help menu, 134
installing, 2
loop information display, 143
menu bar, 115
OpenMP support, 3
Operations menu, 130
starting, 3
Update menu, 127
Views menu, 125

Parallel Analyzer View - transformed source, 27
Parallel analyzer view - transformed source

Transformed source control button and, 162
parallel sections

OpenMP, 61, 98
PCF, 171

parallelization
status option menu, 13

Parallelization control view, 150
Add variable button, 152
brought up by a highlight button, 64, 101
C$CHUNK variable and, 155
C$OMP do… button and, 152

C$OMP parallel do… button and, 152
directive clauses

AFFINITY, 156
COPYIN, 155
DEFAULT, 155
FIRSTPRIVATE, 155
LASTPRIVATE, 155
NEST, 156
ONTO, 156
PRIVATE, 155
REDUCTION, 155
SHARED, 155

directive fields
Affinity, 155
Condition for parallelization, 155
Copyin, 155
Default, 155
Firstprivate, 155
Lastprivate, 155
MP chunk size field, 155
Nest, 156
Onto, 156
Private, 155
Reduction, 155
Shared, 155

directive information, 152
List to add field, 152
loop status option menu and, 145
MP scheduling option button, 152

one loop clauses, 156
option in views menu, 125
Selected loop field, 152
Synchronization construct option button, 152
variable list option button, 156

C$OMP do… option and, 157
C$OMP parallel do… option and, 157
Default option, 157
First-local option, 157
Last-local option, 157
Local option, 157
Reduction option, 157
Region-default option, 157

007–2603–005 179

ProDev ProMP User’s Guide

Shared option, 157
variable list storage labels

Automatic, 157
Common, 157
Reference, 158

Variables referenced section, 152
parallelization icon

in loop list, 137
PCF

option in configuration menu, 130
pcfdummy subroutine, dummy.f session, 166
Perf. cost loop list field, 137
performance

and memory, 1
cost per loop, 138

Performance analyzer, 105
launching, 122
option in launch tool submenu, 122
performance experiment line, 136

Performance experiment line, 136
performance session

exiting, 111
starting, 105

permutation vector, 38, 85
parallelizable, 39, 85
unparallelizable, 39, 85

PFA analysis parameters view
in views menu, 159
option in views menu, 125

plus sign, 137
red, 137

#pragma concurrent, 83
#pragma concurrent call, 85
#pragma distribute, 99
#pragma omp barrier, 97
#pragma omp critical, 98
#pragma omp for, 96
#pragma omp parallel for, 78, 86

adding, 88
#pragma omp sections, 98
#pragma omp single, 98
#pragma parallel for

and #pragma distribute, 101

#pragma permutation, 85
#pragma prefetch_ref, 102
Prefer parallel

option in loop parallelization status option
button, 145

Prefer serial
option in loop parallelization status option

button, 145
Previous loop navigation button

in loop display controls, 142
prfetch function, 102
prfetch subroutine, omp_demo.f session, 65
PRIVATE clause, 47

Parallelization control view and, 155
Private field

in parallelization control view, 155
Project submenu, 123

Exit option, 123
Iconify option, 123
in admin menu, 119
Project view… option, 123
Raise option, 123
Remap paths… option, 123

Project view…
option in project submenu, 123

R

Raise
option in admin menu, 118
option in project submenu, 123

recurrence, 33, 81
Reduction

option in variable list option button, 157
reduction, 36, 83
REDUCTION clause, 47

Parallelization control view and, 155
Reduction field

in parallelization control view, 155
Reference storage

variable list storage label, 158

180 007–2603–005

Index

Region-default
option in variable list option button, 157

Remap paths…
option in project submenu, 123

Rescan all files
option in fileset menu, 126

resize loop list display, 12
Reverse information block option button, 149
round-off, 36
roundoff, 84
rshape2d function, 101
rshape2d subroutine, omp_demo.f session, 64
RTC subroutine, omp_demo.f session, 38, 50, 55
Run editor after update

option in update menu, 128
Run gdiff after update

option in update menu, 128
Run-time

C$MP_SCHEDTYPE mode, 147
option in mp scheduling option button, 147

S

sample session
analyzing loops, 5
Performance analyzer, 105

Save as text
option in admin menu, 117

Search field
in subroutines and files view, 161
loop list, 50, 91

editable text field, 139
searching source code, 17
sed, 52
Selected loop field

in parallelization control view, 151
selecting a loop, 20, 138
Shared

option in variable list option button, 157
SHARED clause, 47

Parallelization control view and, 155
Shared field

in parallelization control view, 155
Show all loop types

option in show loop types option button, 141
show loop types option button, 13

in loop display controls, 140
Show all loop types option, 141
Show modified loops option, 141
Show omp directives option, 141
Show parallelized loops option, 141
Show serial loops option, 141
Show unparallelizable loops option, 141

Show modified loops
option in show loop types option button, 141

Show omp directives
option in show loop types option button, 141

Show parallelized loops
option in show loop types option button, 141

Show serial loops
option in show loop types option button, 141

Show unparallelizable loops
option in show loop types option button, 141

single-process section
OpenMP, 61, 98
PCF, 171

software
required to install, 1

Sort by perf. cost
option in sort option button, 140

Sort in source order
option in sort option button, 140

sort option button
in loop display controls, 139
Sort by perf. cost option, 140
Sort in source order option, 140

sorting
by performance cost, 109, 138

Source control button, 16
in loop display controls, 142
Source view, 162

source files
examining modified, 55, 95
manipulating fileset, 126

007–2603–005 181

ProDev ProMP User’s Guide

modifying, 46, 87
undoing changes, 130
updating, 52, 54, 95, 127
viewing, 16

Source view, 27
opening, 142
Source control button and, 162

Static
C$MP_SCHEDTYPE mode, 147
option in mp scheduling option button, 147

Static analyzer
option in launch tool submenu, 122

Status line, 136
Subroutine and files view, 15

keyboard shortcut, 15
subroutine call

parallelizable, 38
unparallelizable, 38

Subroutine loop list field, 138
Subroutines and files view

filtering text field and, 142
in views menu, 160
option in views menu, 125
Search field, 161

Synchronization construct option button
in parallelization control view, 152

T

Technical assistance center, 1
Tester

option in launch tool submenu, 122
transformed

source files, viewing, 18
Transformed loops view

in views menu, 158
option in views menu, 125
using, 25

Transformed source
window, opening, 142

Transformed source control button, 18
in loop display controls, 142

in parallel analyzer view - transformed
source, 162

turned-down corner of mp chunk size field, 147

U

Undo all changes
option in operations menu, 132

Undo changes to loop
option in operations menu, 132

unstructured control flow, 37
Update all files

option in update menu, 129
Update menu

Force a build to start option, 129
in parallel analyzer view, 127
Run editor after update option, 128
Run gdiff after update option, 128
Update all files option, 129
Update selected file option, 129

Update selected file
option in update menu, 129

updating files, 52, 53

V

Variable
loop list, 10

variable list option buttons
C$OMP do… option and, 157
C$OMP parallel do… option and, 157
Default option, 157
First-local option, 157
in parallelization control view, 156
Last-local option, 157
Local option, 157
Reduction option, 157
Region-default option, 157
Shared option, 157

variable list storage labels

182 007–2603–005

Index

Automatic, 157
Common, 157
Reference, 158

Variable loop list field, 138
Variables referenced section

in parallelization control view, 152
versions command, 1
vi, 54
viewing source, 16
Views menu

in parallel analyzer view, 125
options menus

Admin menu, 150
Help menu, 150

Parallelization control view option, 125
PFA analysis parameters view option, 125
Subroutines and files view option, 125
Transformed loops view option, 125

W

windows, closing all, project submenu, exit
option, 123

WorkShop, 105
debugger, launching, 122

WorkShop build manager, 53, 55, 95

X

X resources, 4
.Xdefaults, 128
.Xdefaults xdefaults, 54
xwsh, 54

007–2603–005 183

