IRIS Performer = C
Reference Pages

Document Number 007-2783-001

CONTRIBUTORS

Written by Sharon Clay, Michael Garland, Brad Grantham, Don Hatch, Jim Helman,
Michael Jones, T. Murali, John Rohlf, Allan Schaffer, Christopher Tanner,
and Jenny Zhao

Production by Derrald Vogt

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

IRIS, ImageVision Library, Open GL, Silicon Graphics and the Silicon Graphics logo are
registered trademarks of Silicon Graphics, Inc. CHALLENGE, Extreme Graphics, Galileo Video,
ImageVision, Impressario, Indigo2, Indigo Magic, Indy Video, InPerson, IRIS Annotator, IRIS
Digital Media, IRIS InSight, IRIS POWER C, IRIS Showcase, MediaMail, Mindshare, Open
Inventor, Power Fortran Accelerator, RapidApp, RealityEngine, and XFS are trademarks of
Silicon Graphics, Inc.

IRIS Performer™ C Reference Pages
Document Number 007-2783-001

IRIS Performer 2.0 C Reference Pages Performer(3pf)

NAME
Performer — Overview of IRIS Performer and summary of the C Language Bindings: libpr, libpf, libpfdu,
libpfdb, libpfui, and libpfutil.

DESCRIPTION

Welcome to the IRIS Performer application development environment.

IRIS Performer provides a comprehensive programming interface (with ANSI C and C++ bindings) for
creating real-time visual simulation and other interactive graphics applications. IRIS Performer 2.0 sup-
ports both the IRIS Graphics Library (IRIS GL) and the industry standard OpenGL graphics library; these
libraries combine with the IRIX operating system and REACT extensions to form the foundation of a
powerful suite of tools and features for creating real-time visual simulation applications on Silicon
Graphics systems.

IRIS Performer is an integral part of the Onyx/RealityEngine and Indigo2/Impact visual simulation sys-
tems and provides interfaces to the advanced features of RealityEngine class graphics. IRIS Performer is
compatible with all SGI graphics platforms and attains maximum performance on each. IRIS Performer
provides an extensible basis for creating real-time 3D graphics applications in the fields of visual simula-
tion, entertainment, virtual reality, broadcast video, and computer aided design. IRIS Performer is the
flexible, intuitive, toolkit-based solution for developers who want to optimize performance on Silicon
Graphics systems.

Take a Test Drive

If you are new to IRIS Performer, the best way to start learning about it is to go for a test drive. The
Performer-based sample application perfly is installed in the /usr/sbin directory. To start perfly, all that
you need to do is type

perfly esprit.flt

Type "man pfiXformer" for details on how to drive, fly, or tumble; and rerun perfly with the command
line option "-help" for a full list of features. Type "?" while running perfly to print a list of keyboard com-
mand sequences to the shell window. The source code for this program is in
Jusr/share/Performer/src/sample/perfly.

IRIS Performer Overview

IRIS Performer consists of two main libraries, libpf and libpr, and four associated libraries, libpfdu,
libpfdb, libpfui, and libpfutil.

The basis of IRIS Performer is the performance rendering library libpr, a low level library providing high
speed rendering functions based on pfGeoSets, efficient graphics state control using pfGeoStates, and
other application-neutral functions. Layered above libpr is libpf, a real-time visual simulation environ-
ment providing a high-performance multi-processing database rendering system that takes best

Performer(3pf) IRIS Performer 2.0 C Reference Pages

advantage of IRIS symmetric multiprocessing CPU hardware. The database utility library libpfdu pro-
vides powerful functions for defining both geometric and appearance attributes of three dimensional
objects, encourages sharing of state and materials, and generates efficient triangle strips from indepen-
dent polygonal input. The database library libpfdb uses the facilities of libpfdu, libpf, and libpr to
import database files in many popular industry standard database formats. These loaders also serve as a
guide to developers creating new database importers. libpfui contains the user interface, and input
management facilities common to many interactive applications. Completing the suite of libraries is
libpfutil, the IRIS Performer utility library. It provides a collection of important convenience routines
implementing such diverse tasks as smoke effects, MultiChannel Option support, graphical user interface
tools, input event collection and handling, and various traversal functions.

In addition to these SGI-developed tools, IRIS Performer also includes sample code, databases, games,
and movies contributed by the Friends of Performer: companies and individuals with services of general
interest to the IRIS Performer community.

Program Structure

Most IRIS Performer application programs have a common general structure. The following steps are
typically involved in preparing for a real-time simulation:

Initialize IRIS Performer with pfInit.

2. Specify number of graphics pipelines with pfMultipipe, choose the multiprocessing
configuration by calling pfMultiprocess, and specify the hardware mode with
pfHyperpipe if needed.

Initiate the chosen multiprocessing mode by calling pfConfig.
Initialize the frame rate with pfFrameRate and set the frame-extend policy with pfPhase.

Create, configure, and open windows with pfNewPWin, pfPWinFBConfigAttrs, and
pfOpenPWin, as required.

6. Create and configure display channels with pfNewChan, pfChanTravFunc, pfChanFOV,
and pfChanScene as required.

Once the application has created a graphical rendering environment as shown above, the remaining task
is to iterate through a main simulation loop once per frame.

7. Compute dynamics, update model matrices, etc.

8. Delay until the next frame time: pfSync

IRIS Performer 2.0 C Reference Pages Performer(3pf)

9. Perform latency critical viewpoint updates.

10. Draw a frame by calling pfFrame.
In many applications the viewpoint will be set in step 7 and both step 8 and step 9 are not required. The

more general case is shown since it is typical in head-tracked and other cases where low-latency applica-
tions with last-minute position input must be used.

The libpr Performance Rendering Library

Libpr consists of many low-level hardware oriented facilities generally required for real-time and other
performance-oriented graphics applications. These features include

High-speed rendering functions using the innovative pfGeoSet.

Efficient graphics state management and mode control based on the pfGeoState.

Display lists suitable for rendering between multiple processes.

An extensive collection of fast linear algebra and math routines.

Intersection computation and detection services.

A colortable mechanism for rapid switching of database appearance.

Asynchronous file I/O system for real-time file operations.

Memory allocation oriented to shared memory and mutual exclusion.

High speed clock functions that hide the complexities of hardware clocks.
GeoSets are collections of drawable geometry which group same-type graphics primitives (e.g. triangles
or quads) into one data object. The GeoSet contains no geometry itself, only pointers to data arrays and
index arrays. Geometry arrays may be indexed or non-indexed (i.e. stored in order) depending upon
application requirements. Because all the primitives in a GeoSet are of the same type and have the same
attributes, rendering of most databases is performed at maximum hardware speed. There are many
GeoSet rendering methods, one for each combination of geometry and attribute specification. However,
in IRIS Performer, all GeoSet rendering is performed through a single render dispatching routine,
pfDrawGSet.
GeoStates provide graphics state definitions (e.g. texture or material) for GeoSets. When used in conjunc-

tion with Performer state management functions, GeoSets can be rendered in a prescribed way without
concern for the inherited modes of the graphics pipeline. GeoSets may share GeoStates. Less-used

Performer(3pf) IRIS Performer 2.0 C Reference Pages

Vi

machine modes are not supported.

State Management and Mode Control. IRIS Performer provides functions that bundle together graphics
library state control functions such as lighting, materials, texture, and transparency. They have two pur-
poses: to track state and to allow the creation of display lists that can be rendered later. The application
program can set states in three ways: globally, locally (via GeoState), and directly. State changes made
using direct graphics library calls are not "known" to the IRIS Performer state tracking mechanisms, and
thus defeat IRIS Performer state management. However, functions exist to push state, pop state, and get
the current state so proper intermixing of direct graphics library and IRIS Performer functions can be
achieved.

Display Lists are supported in IRIS Performer. These are not typical graphics library display lists, but
rather simple token and data mechanisms that do not cache geometry or state data and are designed to
allow efficient multiprocessing. These display lists use IRIS Performer state and rendering commands.
They also support function callbacks to allow application programs to perform any required special pro-
cessing during display list rendering.

Windows for IRIS GL, IRIS GL mixed model (GLX), and OpenGL applications can be configured, created
and managed with the pfWindow routines.

Math Support is provided by an extensive set of point, segment, vector, plane, matrix, cylinder, sphere
and frustum functions.

Intersection and collision detection functions are provided to test for the intersection of line segments
with cylinders, spheres, boxes, planes, and geometry. Intersection functions for spheres, cylinders, and
frusta are also provided.

ColorTables are supported by allowing GeoSet color indexes to refer to common tables of RGBA color
information. Color tables are global and may be of any size. Any number of color tables may exist at one
time and they can be activated at any time. The active color table may be switched in real-time without
performance impact.

Asynchronous File I/O is provided by a simple non-blocking file access method. This is provided to
allow applications to retrieve file data during real-time operation.

Memory Allocation is supported with routines to allocate memory from process heap storage, shared
memory arenas, and datapool memory. Shared arenas must be used when multiple processes need to
access data. The arena is created by the application program. Datapools allow applications to create
shared arenas visible to any process where allocations can be locked for easy mutual exclusion on a per
allocation basis.

High Speed Clock support is based on a high speed clock access routine that reports elapsed time in
seconds as a double precision floating point number to highest machine resolution.

IRIS Performer 2.0 C Reference Pages Performer(3pf)

Statistics are maintained by IRIS Performer on the geometry that is drawn, state changes, transforma-
tions, and most internal operations. These statistics can used for application tuning and form the basis for
IRIS Performer’s automatic system load management.

The libpf Visual Simulation Library

libpf is a high level library built on libpr that is architected and implemented to meet the specific needs of
real-time graphics software. Applications developed with libpf are able to provide smooth motion
through elaborate scenes at programmable frame rates, all with very little code development. libpf pro-
vides

Hierarchical scene graph processing and operators.

Transparent multiprocessing for parallel simulation, culling and drawing.

Graphics load measurement and frame rate management.

Level of detail selection with smooth fade and rotational invariance.

Rapid culling to the viewing frustum through hierarchical bounding volumes.

Multiprocessed intersection detection and reporting.

Dynamic coordinate systems for highly interactive graphics.

Multibuffering of changes to the scene graph for simple multiprocessing.
Multiprocessing
libpf provides a pipelined multiprocessing model for implementing visual simulation applications. The
application, visibility culling and drawing tasks can all run in separate processes. The simulation process
updates the scene, the cull process traverses the scene checking for visibility and generates display lists
which are then rendered by the drawing process. libpf multibuffering capabilities allow each process to
have copies of the scene graph and the user data appropriate to its target frame time.
The simulation, culling, and drawing for a graphics pipeline may be combined into one, two or three
processes to allow an application to be tailored to different hardware and expected CPU demand in each
process. For example, culling and drawing are normally done by separate processes in order to obtain
maximum graphics performance, but if an application is simulation bound, it may wish to combine both

cull and draw into a single process.

Statistics are maintained for each IRIS Performer process - application, cull and draw. These statistics can

Vii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

viii

be displayed in a channel, printed, and queried using the pfFrameStats routines.

Graphics Pipes, Windows, and Channels

In addition to the functionality it derives from libpr, libpf supports multiple channels per window, mul-
tiple windows per graphics pipe, grouping of channels to form video walls, and frame synchronization
between multiple graphics pipes. libpf maintains a graphics stress value for each channel and uses it to
attempt to maintain a fixed frame rate by manipulating levels-of-detail (LODs). Like many graphics
libraries, libpf assumes a coordinate system with +Z up, +X to the right and +Y into the screen.

Database

libpf supports a general database hierarchy which consists of the following node types:

pfNode General node (base class)

pfScene Top level node.

pfGroup Node with multiple children.
pfSCS Static coordinate system.

pfDCS Dynamic coordinate system.
pfLayer Layer or decal node.

pfLOD Level of detail node.

pfSwitch Switch node.

pfSequence Sequential animation node.
pfGeode Fundamental geometry node.
pfBillboard Special tracking leaf node.
pfLightPoint One or more emissive light points.
pfLightSource Definition of a graphics hardware light.
pfPartition Special culling acceleration node.
pfText 2D and 3D text geometry.
pfMorph Geometry morphing node.

Each of these is derived from pfNode and any function which requires a pfNode* as an argument can
accept any of the above types. Similarly pfSCS, pfDCS, pfLOD, pfSequence and pfSwitch are derived
from pfGroup and can be used in any function which takes a pfGroup* as an argument.

Nodes can be assembled into a directed graph to represent a scene with its modeling hierarchy.
Geometry and graphics state information is contained in pfGeoStates and pfGeoSets which are attached
to pfGeodes.

Intersection inquiries are made via groups of line segments which can be tested against a subgraph of the
scene. Masks and callbacks can be specified to allow evaluation of line-of-sight visibility, collisions, and
terrain intersections. libpf also provides earth-sky and weather functions for modeling fog, haze and
other atmospheric effects.

IRIS Performer 2.0 C Reference Pages Performer(3pf)

The libpfdu Database Utility Library
libpfdu provides helpful functions for constructing optimized IRIS Performer data structures and scene
graphs. It is used by most of the database loaders in libpfdb to take external file formats containing 3D
geometry and graphics state and load them into IRIS Performer optimized run-time data structures. Such
utilities often prove very useful; most modeling tools and file formats represent their data in structures
that correspond to the way users model data, but such data structures are often mutually exclusive with
effective and efficient IRIS Performer run-time structures.

libpfdu contains many utilities, including DSO support for database loaders and their modes, file path
support, and so on, but the heart of libpfdu is the IRIS Performer database builder and geometry builder.
The builders are tools that allow users to input or output a collection of geometry and graphics state in
immediate mode.

Users send geometric primitives one at a time, each with its corresponding graphics state, to the builder.
When the builder has received all the data, the user simply requests optimized IRIS Performer data struc-
tures which can then be used as a part of a scene graph. The builder hashes geometry into different ‘bins’
based on the geometry’s attribute binding types and associated graphics state. It also keeps track of
graphics state elements (textures, materials, light models, fog, and so on) and shares state elements when-
ever possible. Finally, the builder creates pfGeoSets that contain triangle meshes created by running the
original geometry through the libpfdu triangle-meshing utility.

To go along with each pfGeoSet, the builder creates a pfGeoState (IRIS Performer’s encapsulated state
primitive). The builder generates pfGeoStates that share as many attributes as possible with other pfGeo-
States in the scene graph.

Having created these primitives (pfGeoSets and pfGeoStates) the builder will place them in a leaf node
(pfGeode), and optionally create a spatial hierarchy by running the new database through a spatial
breakup utility function which is also contained in libpfdu.

Note that the builder also allows the user to extend the notion of a graphics state by registering callback
functionality through builder API and then treating this state or functionality like any other IRIS Per-
former state or mode (although such uses of the builder are slightly more complicated). In short, libpfdu
is a collection of utilities that effectively act as a data funnel where users enter flattened 3D graphics infor-
mation and are given in return fully functional and optimized IRIS Performer run-time structures.

The libpfui User Interface Library
The libpfui library provides building blocks for writing manipulation components for user interfaces.
This library provides both C and C++ interfaces. Provided are separate components for motion control (-
pfilnputCoordXform), collision detection between the viewer and objects in the scene (pfiCollide), and
picking of objects in the scene based on current mouse coordinates (pfiPick). The pfilnputCoordXform
utilities update transformation matrices that can be used to drive motion in an application. The actual
mapping of user events is orthogonal to these motion models and can be done using the input collection

Performer(3pf) IRIS Performer 2.0 C Reference Pages

utilities in libpfutil, or directly with custom application code. The pfiXformer is a re-implementation of
the old pfuXformer based on these components and combines several different kinds of motion control in
one complex component. The pfiXformer also provides mapping of user input events, such as mouse and
keyboard, to motion controls which is described in the pfiXformer reference page. Examples of how to
use these utilities can be found in

[usr/ share/ Perforner/src/pguide/libpfui/

The libpfutil Utility Library
The libpfutil library contains a large number of miscellaneous functions that provide support for the fol-
lowing important tasks.

Processor control enables the user to specify which CPU a particular Performer process runs on and to
devote a particular processor to a given process.

Multiprocess rendezvous lets master and slave processes synchronize in a multiprocessing environment.
GLX mixed model routines are provided for compatibility with previous versions of IRIS Performer.
Current development should be based on the pfWindow and pfPipeWindow routines that provide a sin-

gle API for managing IRIS GL, IRIS GL mixed model, and OpenGL windows.

GL and X input handling is handled by an exhaustive set of commands that operate on compressed,
space-efficient queues of events.

Cursor control is provided to easily manipulate the cursors associated with each window managed by
IRIS Performer.

X fonts are supported so that they can be used to draw text in IRIS Performer windows. The main task of
these functions is to simplify the use of X fonts and present a high-level interface to the user.

Graphical User Interfaces (GUIs) are made easily accessible to the user through a set of functions that
provide simple means to create a GUI, set up widgets, manipulate them, set user-defined functions to

control their behavior and do other common tasks.

Scene graph traversal routines provide for different, highly-customizable traversal mechanisms for the
IRIS Performer scene graph.

MultiChannel Option (MCO) is supported on RealityEngine graphics systems by a set of functions that
generically initialize channels for using MCO.

Path following mechanisms allow the user to follow a pre-defined path in a walkthrough application.

IRIS Performer 2.0 C Reference Pages Performer(3pf)

Functions to create paths are also provided.

Various draw styles like haloed lines and wireframe images are supported as a demonstration of the uses
of multi-pass rendering.

Other utilities supported are for timer control to track time in real-time independently of the frame-rate,
managing hash tables, a simple geometric simplification scheme for generating very simple level-of-
detail representations of the scene graph, texture loading and texture animation, random number gen-
eration, flybox control, smoke and fire simulation and converting light point states into textures.

The libpfdb Database Library
libpfdb is a collection of independent libraries (one for each supported file format) that read or write a
particular scene description file format. These loaders are implemented using the IRIX Dynamic Shared
Object facility and are demand loaded as needed.

The loaders in libpfdb have been developed by Silicon Graphics, by modeling tool vendors, and by Per-
former customers. Many are provided in source form as part of this IRIS Performer distribution. Use
these loaders as templates to write custom loaders for whatever formats you require in your applications.
The different kinds of file formats supported by IRIS Performer are listed below

3ds AutoDesk 3DStudio binary data

bin Minor SGI format used by powerflip

bpoly Side Effects Software PRISMS binary

byu Brigham Young University CAD/FEA data
dwb Coryphaeus Software Designer’s Workbench
dxf AutoDesk AutoCAD ASCII format

flt11 MultiGen public domain Flight v11 format
flt14 MultiGen OpenFlight v14 format

gds McDonnell-Douglas GDS things data

gfo Minor SGI format (radiosity output)

im Minor SGI format (IRIS Performer example)
irtp AAI/Graphicon Interactive Real-Time PHIGS
iv SGI Openlnventor / Silicon Studio Keystone
Isa Lightscape Technologies radiosity (ASCII)
Isb Lightscape Technologies radiosity (binary)
m University of Washington mesh data

medit Medit Productions medit modeling tool

nff Eric Haines’ ray tracing test data format

obj Wavefront Technologies data format

Xi

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

Xii

phd
poly
pts
ptu
slk
sgf
sgo
spf
sponge
star
stla
stlb
sV
tri
unc

Minor SGI format (polyhedra)

Side Effects Software PRISMS ASCII data
University of Washington point data

Minor SGI format (IRIS Performer example)
US ARMY SIMNET databases (Texas Instruments)
US NAVY standard graphics format

Minor SGI format

US NAVY simple polygon format

Sierpinski sponge 3D fractal generator

Yale University compact star chart data

3D Structures Stereolithography (ASCII)

3D Structures Stereolithography (binary)
Format of John Kichury’s i3dm modeler
University of Minnesota Geometry Center data
University of North Carolina data

Source code for many of these loaders is provided with IRIS Performer. Loader source code is located in
and below the directory

/usr/sharel/ Perforner/src/libpfdb

While most loaders do in fact "load" data from files, scene graphs can also be generated procedurally.
The sponge loader is an example of such automatic generation; it builds a model of the Menger (Sierpin-
ski) sponge, without requiring an input file. To see the sponge run perfly specify the number of recur-
sions (0, 1, 2, ...) as the filename. For example

perfly 2.sponge

Learning More

Once you've seen IRIS Performer in action, you will want to learn more about it. The IRIS Performer Pro-
gramming Guide and the IRIS Performer Release Notes are the primary sources of information, but the
following overview will give you a head start in your learning process.

IRIS Performer Sample Code

The IRIS Performer sample code can be found in

/usr/share/ Perforner/src/pguide - small exanples

and

IRIS Performer 2.0 C Reference Pages Performer(3pf)

/usr/share/ Performer/src/sanple - sanple applications

and its subdirectories. The "apps" subdirectory contains the various flying demos like perfly and the Per-
former town demo. The "pguide" subdirectory has further subdirectories for each IRIS Performer library.
Each of these directories has example and sample programs that highlight the features of the correspond-
ing library.

IRIS Performer Documentation

In addition to the reference pages on IRIS Performer, an on-line Programming Guide is also provided. To
read this, run Insight and click on the Performer Programming Guide button.

IRIS Performer World Wide Web Home Page

Silicon Surf, the Silicon Graphics World Wide Web Home Page, contains an archive of IRIS Performer-
related technical and promotional material in the Extreme Tech section. The information from the IRIS Per-
former FTP site and mailing list is also accessible via the WWW.

Explore Silicon Surf using the URL

http://ww. sgi . com

or go directly to the IRIS Performer information with the URL

http://ww. sgi . com Technol ogy/ Performer. ht m

IRIS Performer INTERNET FTP Site

An archive of IRIS Performer-related material is available via anonymous FTP from Silicon Graphics. The
FTIP address is

ftp://sgigate.sgi.com pub/ Perforner

Current contents of the IRIS Performer FTP site include
README Overview file
FAQ The IRIS Performer FAQ

Xiii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

Xiv

INFO-PERFORMER Information about the IRIS Performer mailing list

src/ Sample source code and miscellaneous patches
docs/ IRIS Performer documents including SIGGRAPH "94 paper
selected-topics/ Directory of info, Q&A, etc. from mailing list

monthly-archives/ Raw monthly archives of the mailing list
CortaillodCentre/ Goodies from SGI’s Cortaillod Office
RealityCentre/ Goodies from SGI’s RealityCentre in the UK

IRIS Performer Electronic Mailing List

The IRIS Performer mailing list is a resource for developers who are using IRIS Performer to maximize
the performance of their graphics applications on Silicon Graphics hardware. The info-performer list is
intended to be an unmoderated, free-form discussion of IRIS Performer with issues both technical and
non-technical; and to provide feedback to Silicon Graphics about the product. Much like the
comp.sys.sgi.* newsgroups, it is not an official support channel but is monitored by the IRIS Performer
development team, so it’s an excellent source of early information about upcoming events and product
features, as well as a venue for asking questions and having them answered.

To subscribe to the info-performer mailing list, send email to

i nf o- performer-request @gi . com

Once your request is processed you will receive submission and posting instructions, some guidelines,
and a current copy of the Performer Frequently-Asked-Questions (FAQ) list.

The mailing list has become rather large and carries several hundred messages per month. Mailing list
archives are available in the Performer FTP area (see above) in

ftp://sgigate.sgi.com pub/ Perforner/nonthly-archives/

IRIS Performer Frequently Asked Questions

Silicon Graphics maintains a publicly accessible directory of questions that developers often ask about
IRIS Performer, along with answers to those questions. Each question-and-answer pair is provided in a
file of its own, named by topic. To obtain any of these files, use anonymous FTP to connect to
sgigate.sgi.com; then cd to the directory

IRIS Performer 2.0 C Reference Pages Performer(3pf)

/ pub/ Per f or ner/ sel ect ed-t opi cs

and use Is to see a list of available topics. Alternatively, use a World Wide Web browser to look at

ftp://sgigate. sgi.conl pub/ Perforner/sel ected-topics

The Friends of Performer
A number of leading companies in the visual simulation, database modeling, game authoring, and, vir-
tual reality marketplaces produce tools and products that are based on and work with IRIS Performer.
Several of these companies have provided samples of their work for your use and enjoyment. These
software gifts are in the friends component of the IRIS Performer distribution, and are installed in the
directory

/usr/share/ Performer/friends

Check out the gifts and the products that these companies offer.

IRIS Performer Application Programming Interface
The IRIS Performer application programming interface (API) has been designed by following a consistent
set of naming principles that are outlined below. Following that review is a complete listing of the API
grouped by topic for your use as both a quick reference and as an API directory.

Each of the libpf, libpr, libpfdu, libpfdb, libpfui, and libpfutil functions also has a complete reference
page description available via the IRIX man and xman commands. Refer to these reference pages for a
thorough discussion of the functions and data types, features and limitations, performance and resource
implications, and sample code showing how these functions are used in practice.

IRIS Performer Software Conventions
All the IRIS Performer commands have intuitive names that describe what they do. These mnemonic
names make it easy for you to learn and remember the commands. The names may look a little strange to
you if you're unfamiliar with this type of convention because they use a mixture of upper and lowercase
letters. Naming conventions provide for consistency and uniqueness, both for routines and for symbolic
tokens. Following consistent naming practices in the software that you develop will make it easier for
you and others on your team to understand and debug your code. Naming conventions for IRIS Per-
former are as follows:

XV

Performer(3pf) IRIS Performer 2.0 C Reference Pages

XVi

All type, command and token names, associated with libpf or libpr are preceded by the letters pf, denot-
ing the IRIS Performer library. Functions from the other libraries also affix an identifying letter suffix (d, i,
or u) to the pf prefix for scope resolution purposes.

Library | Prefix Example
libpf pf pfNewGeode
libpr pf pfNewGSet

libpfdu | pfd pfdNewGeom

libpfdb | pfd pfdLoadFile_medit
libpfui pfi pfiResetXformerPosition
libpfutil | pfu pfuDownloadTexList

Command and type names are mixed-case, while token names are uppercase. For example, pfTexture is
a type name and PFTEX_SHARPEN is a token name. Underscores are not used in function names except
in the libpfdb libraries, where the underscore serves to separate the common loader name (pfdLoad)
from the file type extension (medit in the example above).

In type names, the part following the pf is usually spelled out in full, as is the case with pfTexture, but in
some cases a shortened form of the word is used. For example, pfDispList is the name of the display-list

type.

Much of IRIS Performer’s interface involves setting parameters and retrieving parameter values. For the
sake of brevity, the word Set is omitted from function names, so that instead of pfSetMtlColor,
pfMtlColor is the name of the routine used for setting the color of a pfMaterial. Get, however, is not
omitted from the names of routines that get information, such as pfGetMtlColor.

Routine names are constructed by appending a type name to an operation name. The operation name
always precedes the type name. In this case, the operation name is unabbreviated and the type name is
abbreviated. For example, the name of the routine that applies a pfTexture is pfApplyTex.

Compound type names are abbreviated by the first initial of the first word and the entire second word.
For example, to draw a display list, which is type pfDispList, use pfDrawDList.

Symbolic token names incorporate another abbreviation, usually shorter, of the type name. For example
pfTexture tokens begin with PFTEX_.
pfDispList tokens begin with PFDL_.

This convention ensures that tokens for a particular type have their own name space.

Other tokens and identifiers follow the conventions of ANSI C and C++ wherein a valid identifier consists
of upper and lower-case alphabetic characters, digits, and underscores, and the first character is not a

IRIS Performer 2.0 C Reference Pages Performer(3pf)

digit.

LIBPF
Initialization
pflInit initializes all internal IRIS Performer data structures while pfExit cleans up before returning con-
trol to the application. The other functions provide support for multiprocessed execution. This involves
configuring IRIS Performer for multiple processes and threads and multiple and multiplexed (hyper)

pipes.

int pflnit(void);

void pfExit(void);

int pfMultipipe(int numPipes);

int pfGetMultipipe(void);

int pfHyperpipe(int numHyperPipes);

int pfGetHyperpipe(pfPipe *pipe);

int pfMultiprocess(int mpMode);

int pfGetMultiprocess(void);

int pfMultithread(int pipe, uint stage, int nprocs);
int pfGetMultithread (int pipe, uint stage);

int pfConfig(void);

pid_t pfGetPID(int pipe, uint stage);

uint pfGetStage(pid_t pid, int *pipe);

void pfStageConfigFunc(int pipe, uint stage, pfStageFuncType configFunc);
pfStageFuncType pfGetStageConfigFunc(int pipe, uint stage);
int pfConfigStage(int pipe, uint stage);

Frame Control
IRIS Performer is designed to run at a fixed frame rate. pfFrame, pfSync and associated functions set a
frame rate the application should run at, initiate each new frame of IRIS Performer processing and syn-
chronize the application process with the specified frame rate.

pfApp, pfCull, pfDraw and pfDBase trigger the default IRIS Performer processing for each stage of the
graphics pipeline. User-defined callbacks can be specified for each of these stages using the pf*Func func-

tions. Data can be allocated for each stage and also passed down the different stages of the pipeline.

The other functions in this set manipulate IRIS Performer memory (pfMemory) and its associated refer-
ence counts.

void pfAppFrame(void);

XVii

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

int

int

void

void

void

void

void
pflsectFuncType
void*

void*

void

void

void
pfDBaseFuncType

void*
void*
void
void
int
void
float
float
float
int
int
int
double
void
int
int
int

pfPipe Functions
A pfPipe is a software rendering pipeline which renders one or more pfChannels into one or more
pfPipeWindows. Typically one pfPipe is created for each hardware graphics pipeline.

pfSync(void);

pfFrame(void);

pfApp(void);

pfCull(void);

pfDraw(void);

pfDrawBin(int bin);
pfIsectFunc(pflsectFuncType func);
pfGetlsectFunc(void);
pfAllocIsectData(int bytes);
pfGetlsectData(void);
pfPasslIsectData(void);
pfDBase(void);
pfDBaseFunc(pfDBaseFuncType func);

pfGetDBaseFunc(void);
pfAllocDBaseData(int bytes);
pfGetDBaseData(void);
pfPassDBaseData(void);
pfPhase(int phase);
pfGetPhase(void);
pfVideoRate(float vrate);
pfGetVideoRate(void);
pfFrameRate(float rate);
pfGetFrameRate(void);
pfFieldRate(int fields);
pfGetFieldRate(void);
pfGetFrameCount(void);
pfGetFrameTimeStamp(void);
pfFrameTimeStamp(double t);
pfGetld(void *mem);
pfAsyncDelete(void *mem);
pfCopy(void *dst, void *src);

pfPipe* pfGetPipe(int pipeNum);

int pfInitPipe(pfPipe *pipe, pfPipeFuncType configFunc);

pfPipe C API
These functions create and manipulate pfPipes. Control can be exercised over the hardware screen used
by the pfPipe and the way a pfPipe swaps color buffers at the end of each frame.

XViii

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfType* pfGetPipeClassType(void);

void pfPipeSwapFunc(pfPipe* pipe, pfPipeSwapFuncType func);
pfPipeSwapFuncType pfGetPipeSwapFunc(const pfPipe* pipe);

void pfGetPipeSize(const pfPipe* pipe, int *xs, int *ys);

void pfPipeScreen(pfPipe* pipe, int scr);

int pfGetPipeScreen(const pfPipe* pipe);

void pfPipeWSConnectionName(pfPipe* pipe, const char *name);
const char* pfGetPipeWSConnectionName(const pfPipe* pipe);
pfChannel* pfGetPipeChan(const pfPipe* pipe, int i);

int pfGetPipeNumChans(const pfPipe* pipe);

pfPipeWindow* pfGetPipePWin(const pfPipe* pipe, int i);

int pfGetPipeNumPWins(const pfPipe* pipe);

int pfGetPipeHyperld(const pfPipe* pipe);

int pfMovePWin(pfPipe* pipe, int where, pfPipeWindow *pw);
pfBuffer* pfGetCurBuffer(void);

pfBuffer C API
The pfBuffer data structure logically encompasses libpf objects such as pfNodes. Newly created objects
are automatically "attached" to the current pfBuffer specified by pfSelectBuffer. Later, any objects
created in buf may be merged into the main IRIS Performer processing stream with pfMergeBuffer. In
conjunction with a forked DBASE process (see pfMultiprocess and pfDBaseFunc), the pfBuffer mechan-
ism supports asynchronous parallel creation and deletion of database objects. This is the foundation of a
real-time database paging system.

pfBuffer* pfNewBuffer(void);

void pfBufferScope(pfBuffer* buffer, pfObject *obj, int scope);
int pfGetBufferScope(pfBuffer* buffer, pfObject *obj);

void pfMergeBuffer(void);

int pfUnrefDelete(void *mem);

int pfDelete(void *mem);

int pfBufferInsert(void *parent, int index, void *child);

int pfBufferRemove(void *parent, void *child);

int pfBufferAdd(void *parent, void *child);

int pfBufferReplace(void *parent, void *oldChild, void *newChild);
void pfSelectBuffer(pfBuffer* buffer);

void pfInitGfx(void);

pfPipeWindow C API
A pfPipeWindow creates a window on the screen managed by a given pfPipe. Programs render to a
pfPipeWindow by attaching a pfChannel of that pfPipe to the pfPipeWindow. Various ways of control-
ling the behavior of pfPipeWindows are provided including specifying their position and size on the
screen, specifying user-specified callbacks to configure them in the DRAW process, controlling lists of
pfWindows that can draw into a singe pfPipewindow, and manipulating pfChannels assigned to the
pfPipeWindows.

Xix

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

XX

pfPipeWindow*
pfType*
void

const char*
void

const char*
void

int

void

uint
pfState*
void

void

void

void

void

void

void

void

void

void

void
pfWindow*
void
pfWindow*
void

int

void

uint

void

Window
void

pfWSDrawable
pfWSDrawable
void

void*

void

pfNewPWin(pfPipe *p);
pfGetPWinClassType(void);
pfPWinName(pfPipeWindow* pwin, const char *name);
pfGetPWinName(pfPipeWindow* pwin);
pfPWinWSConnectionName(pfPipeWindow* pwin, const char *name);
pfGetPWinWSConnectionName(pfPipeWindow* pwin);
pfPWinMode(pfPipeWindow* pwin, int mode, int val);
pfGetPWinMode(pfPipeWindow* pwin, int mode);
pfPWinType(pfPipeWindow* pwin, uint type);
pfGetPWinType(pfPipeWindow* pwin);
pfGetPWinCurState(pfPipeWindow* pwin);
pfPWinAspect(pfPipeWindow* pwin, int X, int y);
pfGetPWinAspect(pfPipeWindow* pwin, int *x, int *y);
pfPWinOriginSize(pfPipeWindow* pwin, int xo, int yo, int xs, int ys);
pfPWinOrigin(pfPipeWindow” pwin, int xo, int yo);
pfGetPWinOrigin(pfPipeWindow* pwin, int *xo, int *yo);
pfPWinSize(pfPipeWindow* pwin, int xs, int ys);
pfGetPWinSize(pfPipeWindow* pwin, int *xs, int *ys);
pfPWinFullScreen(pfPipeWindow* pwin);
pfGetPWinCurOriginSize(pfPipeWindow* pwin, int *xo, int *yo, int *xs, int *ys);
pfGetPWinCurScreenOriginSize(pfPipeWindow” pwin, int *xo, int *yo, int *xs,
int *ys);
pfPWinOverlayWin(pfPipeWindow* pwin, pfWindow *ow);
pfGetPWinOverlayWin(pfPipeWindow* pwin);
pfPWinStatsWin(pfPipeWindow* pwin, pfWindow *sw);
pfGetPWinStatsWin(pfPipeWindow* pwin);
pfPWinScreen(pfPipeWindow* pwin, int screen);
pfGetPWinScreen(pfPipeWindow* pwin);
pfPWinShare(pfPipeWindow* pwin, int mode);
pfGetPWinShare(pfPipeWindow* pwin);
pfPWinWSWindow (pfPipeWindow* pwin, pfWSConnection dsp,
pfWSWindow wsw);
pfGetPWinWSWindow (pfPipeWindow* pwin);
pfPWinWSDrawable(pfPipeWindow* pwin, pfWSConnection dsp,
pfWSDrawable gxw);
pfGetPWinWSDrawable(pfPipeWindow* pwin);
pfGetPWinCurWSDrawable(pfPipeWindow* pwin);
pfPWinFBConfigData(pfPipeWindow* pwin, void *data);
pfGetPWinFBConfigData(pfPipeWindow* pwin);
pfPWinFBConfigAttrs(pfPipeWindow* pwin, int *attr);

IRIS Performer 2.0 C Reference Pages

Performer(3pf)

int*

void
XVisuallnfo*
void

int

void

int
pfWindow*
void
pfGLContext
void

pfList*

int

int

int

int
pfWindow*
void
pfFBConfig
int

int

int

pfPipe*

int

void

pfPWinFuncType

int
void
void
void
void
int
void
void
int
pfChannel*
int
void

pfChannel C API

pfGetPWinFBConfigAttrs(pfPipeWindow* pwin);
pfPWinFBConfig(pfPipeWindow* pwin, XVisuallnfo *vis);
pfGetPWinFBConfig(pfPipeWindow* pwin);
pfPWinFBConfigld(pfPipeWindow* pwin, int vId);
pfGetPWinFBConfigld(pfPipeWindow* pwin);
pfPWinIndex(pfPipeWindow* pwin, int index);
pfGetPWinIndex(pfPipeWindow* pwin);
pfGetPWinSelect(pfPipeWindow* pwin);
pfPWinGLCxt(pfPipeWindow* pwin, pfGLContext gc);
pfGetPWinGLCxt(pfPipeWindow* pwin);
pfPWinList(pfPipeWindow* pwin, pfList *wl);
pfGetPWinList(const pfPipeWindow* pwin);
pfAttachPWinWin(pfPipeWindow* pwin, pfWindow *w1);
pfDetachPWinWin(pfPipeWindow* pwin, pfWindow *w1);
pfAttachPWin(pfPipeWindow* pwin, pfPipeWindow *pw1);
pfDetachPWin(pfPipeWindow* pwin, pfPipeWindow *pw1);
pfSelectPWin(pfPipeWindow* pwin);
pfSwapPWinBuffers(pfPipeWindow* pwin);
pfChoosePWinFBConfig(pfPipeWindow* pwin, int *attr);
pfIsPWinOpen(pfPipeWindow* pwin);
pfQueryPWin(pfPipeWindow” pwin, int which, int *dst);
pfMQueryPWin(pfPipeWindow* pwin, int *which, int *dst);
pfGetPWinPipe(pfPipeWindow* pwin);
pfGetPWinPipelndex(const pfPipeWindow* pwin);
pfPWinConfigFunc(pfPipeWindow* pwin, pfPWinFuncType func);
pfGetPWinConfigFunc(pfPipeWindow* pwin);
pfGetPWinChanIndex(pfPipeWindow* pwin, pfChannel *chan);
pfConfigPWin(pfPipeWindow* pwin);
pfOpenPWin(pfPipeWindow* pwin);
pfClosePWin(pfPipeWindow* pwin);
pfClosePWinGL(pfPipeWindow* pwin);
pfRemoveChan(pfPipeWindow* pwin, pfChannel *chan);
pfAddChan(pfPipeWindow* pwin, pfChannel *chan);
pfInsertChan(pfPipeWindow* pwin, int where, pfChannel *chan);
pfMoveChan(pfPipeWindow* pwin, int where, pfChannel *chan);
pfGetChan(pfPipeWindow* pwin, int which);
pfGetNumChans(const pfPipeWindow* pwin);
pfNodePickSetup(pfNode* node);

A pfChannel’s primary function is to define a viewing frustum which is used both for viewing and for
culling. A pfChannel can be associated with a pfPipe with pfNewChan. All aspects of the pfChannel’s
viewing frustum, field of view (FOV), aspect ratio, view point and viewing direction can be modified. A

XXi

Performer(3pf) IRIS Performer 2.0 C Reference Pages

XXii

custom culling volume for the pfChannel can be set (pfChanCullPtope).

Different queries can be made about the pfChannel (pfGetChan*) and user-defined traversal functions
and mode can be set (pfChanTrav*). Functions are provided to control IRIS Performer’s level-of-detail
(LOD) behavior by specifying view position, field-of-view, and viewport pixel size (pfChanLOD*).
pfChanStress can be used to specify when the system is at stress so that the LOD behavior is suitably
modified.

The pfScene and the pfEarthSky that the pfChannel culls and draws are set using pfChanScene and
pfChanESKky, respectively. The pfChannel’s pfGeoState and pfGeoStateTable can also be specified.
Screen to world-space ray intersections on a pfChannel’s scene can be performed using pfChanPick and
related functions.

IRIS Performer can also sort the database into "bins" which are rendered in a user-specified order. In
addition, geometry within a bin may be sorted by graphics state like texture or by range for front-to-back
or back-to-front rendering. Functions are provided to achieve this behavior (pfChanBinSort and friends).

pfChannel* pfNewChan(pfPipe *p);

pfType* pfGetChanClassType(void);

int pfGetChanFrustType(const pfChannel* chan);

void pfChanAspect(pfChannel* chan, int which, float xyaspect);

float pfGetChanAspect(pfChannel* chan);

void pfGetChanFOV (const pfChannel* chan, float *fovH, float *fovV);

void pfChanNearFar(pfChannel* chan, float n, float f);

void pfGetChanNearFar(const pfChannel* chan, float *n, float *f);

void pfGetChanNear(const pfChannel* chan, pfVec3 11, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
void pfGetChanFar(const pfChannel* chan, pfVec3 1l, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
void pfGetChanPtope(const pfChannel* chan, pfPolytope *dst);

int pfGetChanEye(const pfChannel* chan, pfVec3 eye);

void pfMakePerspChan(pfChannel* chan, float], float r, float b, float t);

void pfMakeOrthoChan(pfChannel* chan, float], float 1, float b, float t);

void pfMakeSimpleChan(pfChannel* chan, float fov);

void pfOrthoXformChan(pfChannel* chan, pfFrustum *fr, const pfMatrix mat);
int pfChanContainsPt(const pfChannel* chan, const pfVec3 pt);

int pfChanContainsSphere(const pfChannel* chan, const pfSphere *sphere);
int pfChanContainsBox(const pfChannel* chan, const pfBox *box);

int pfChanContainsCyl(const pfChannel* chan, const pfCylinder *cyl);

void pfApplyChan(pfChannel* chan);

pfPipe* pfGetChanPipe(const pfChannel* chan);

pfPipeWindow* pfGetChanPWin(pfChannel* chan);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

int
void
void
void
void
void
void
uint
void
int
void
void
void
void
void
void
void
void
void
void
void*
void
void*
size_t
void
pfChanFuncType
void
int
void
uint
void
void

void

float

float

void
pfScene*
void
pfEarthSky*

pfGetChanPWinIndex(pfChannel* chan);
pfChanFOV(pfChannel* chan, float fovH, float fovV);
pfChanViewport(pfChannel* chan, float |, float r, float b, float t);
pfGetChanViewport(const pfChannel* chan, float *1, float *r, float *b, float *t);
pfGetChanOrigin(const pfChannel* chan, int *xo, int *yo);
pfGetChanSize(const pfChannel* chan, int *xs, int *ys);
pfChanShare(pfChannel* chan, uint mask);
pfGetChanShare(const pfChannel* chan);
pfChanAutoAspect(pfChannel* chan, int which);
pfGetChanAutoAspect(const pfChannel* chan);
pfGetChanBaseFrust(const pfChannel* chan, pfFrustum *frust);
pfChanViewOffsets(pfChannel* chan, pfVec3 xyz, pfVec3 hpr);
pfGetChanViewOffsets(const pfChannel* chan, pfVec3 xyz, pfVec3 hpr);
pfChanView(pfChannel* chan, pfVec3 vp, pfVec3 vd);
pfGetChanView(pfChannel* chan, pfVec3 vp, pfVec3 vd);
pfChanViewMat(pfChannel* chan, pfMatrix mat);
pfGetChanViewMat(const pfChannel* chan, pfMatrix mat);
pfGetChanOffsetViewMat(const pfChannel* chan, pfMatrix mat);
pfChanCullPtope(pfChannel* chan, const pfPolytope *vol);
pfGetChanCullPtope(const pfChannel* chan, pfPolytope *vol);
pfAllocChanData(pfChannel* chan, int size);
pfChanData(pfChannel* chan, void *data, size_t size);
pfGetChanData(const pfChannel* chan);
pfGetChanDataSize(const pfChannel* chan);
pfChanTravFunc(pfChannel* chan, int trav, pfChanFuncType func);
pfGetChanTravFunc(const pfChannel* chan, int trav);
pfChanTravMode(pfChannel* chan, int trav, int mode);
pfGetChanTravMode(const pfChannel* chan, int trav);
pfChanTravMask(pfChannel* chan, int which, uint mask);
pfGetChanTravMask(const pfChannel* chan, int which);
pfChanStressFilter(pfChannel* chan, float frac, float low, float high, float s, float max);
pfGetChanStressFilter(const pfChannel* chan, float *frac, float *low, float *high,
float *s, float *max);
pfChanStress(pfChannel* chan, float stress);
pfGetChanStress(const pfChannel* chan);
pfGetChanLoad(const pfChannel* chan);
pfChanScene(pfChannel* chan, pfScene *s);
pfGetChanScene(const pfChannel* chan);
pfChanESky(pfChannel* chan, pfEarthSky *es);
pfGetChanESky(const pfChannel* chan);

XXiii

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

pfEarthSky C API

XXiv

void
pfGeoState*
void
pfList*
void
float
void
void
void
pfList*
int
pfFrameStats*
void
int
void
int

int

int
void
int
void

void
int

pfChanGState(pfChannel* chan, pfGeoState *gstate);
pfGetChanGState(const pfChannel* chan);
pfChanGStateTable(pfChannel* chan, pfList *list);
pfGetChanGStateTable(const pfChannel* chan);
pfChanLODAttr(pfChannel* chan, int attr, float val);
pfGetChanLODAttr(const pfChannel* chan, int attr);
pfChanLODState(pfChannel* chan, const pfLODState *1s);
pfGetChanLODState(const pfChannel* chan, pfLODState *1s);
pfChanLODStateList(pfChannel* chan, pfList *stateList);
pfGetChanLODStateList(const pfChannel* chan);
pfChanStatsMode(pfChannel* chan, uint mode, uint val);
pfGetChanFStats(pfChannel* chan);
pfChanBinSort(pfChannel* chan, int bin, int sortType, int *sortOrders);
pfGetChanBinSort(pfChannel* chan, int bin, int *sortOrders);
pfChanBinOrder(pfChannel* chan, int bin, int order);
pfGetChanBinOrder(const pfChannel* chan, int bin);
pfAttachChan(pfChannel* chan, pfChannel *chan1);
pfDetachChan(pfChannel* chan, pfChannel *chanl);
pfPassChanData(pfChannel* chan);
pfChanPick(pfChannel* chan, int mode, float px, float py, float radius,
pfHit **pickList[]);
pfClearChan(pfChannel* chan);
pfDrawChanStats(pfChannel* chan);
pfChanNodelsectSegs(pfChannel* chan, pfNode *node, pfSegSet *segSet,
pfHit **hits[], pfMatrix *ma);

These functions provide a means to clear the frame and Z-buffer, draw a sky, horizon and ground plane,
and to implement various weather effects like fog and clouds.

pfEarthSky* pfNewESky(void);

pfType* pfGetESkyClassType(void);

void pfESkyMode(pfEarthSky* esky, int mode, int val);

int pfGetESkyMode(pfEarthSky* esky, int mode);

void pfESkyAttr(pfEarthSky* esky, int mode, float val);

float pfGetESkyAttr(pfEarthSky* esky, int mode);

void pfESkyColor(pfEarthSky* esky, int which, float r, float g, float b, float a);

void pfGetESkyColor(pfEarthSky* esky, int which, float *r, float *g, float *b, float *a);
void pfESkyFog(pfEarthSky* esky, int which, pfFog *fog);

pfFog* pfGetESkyFog(pfEarthSky* esky, int which);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfNode C API

A pfNode is an abstract type which cannot be explicitly created. The pfNode routines operate on the
common aspects of other IRIS Performer node types which are derived from pfNode. IRIS Performer
provides four major traversals of the scene graph: ISECT, APP, CULL, and DRAW. These functions (-
pfNodeTrav*) can be used to set which nodes are traversed, the functions to be invoked during the
traversal, when the traversal is initiated and what data is provided to the traversal.

pfType*
void
pfNode*
int

const char*
void

void

void
void*
uint
void

int
pfGroup*
int

void

int
pfNode*
int

int
pfNode*
pfNode*

pfGetNodeClassType(void);

pfNodeTravMask(pfNode* node, int which, uint mask, int setMode, int bitOp);

pfFindNode(pfNode* node, const char *name, pfType *type);

pfNodeName(pfNode* node, const char *name);

pfGetNodeName(const pfNode* node);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode* node, int which, void *data);

pfGetNodeTravData(const pfNode* node, int which);

pfGetNodeTravMask(const pfNode* node, int which);

pfNodeBufferMode(pfNode* node, int mode, int val);

pfGetNodeBufferMode(const pfNode* node, int mode);

pfGetParent(const pfNode* node, int i);

pfGetNumParents(const pfNode* node);

pfNodeBSphere(pfNode* node, pfSphere *sph, int mode);

pfGetNodeBSphere(pfNode* node, pfSphere *sph);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode* node, pfSegSet *segSet, pfHit **hits[]);

pfFlatten(pfNode* node, int mode);

pfClone(pfNode* node, int mode);

pfBufferClone(pfNode* node, int mode, pfBuffer *buf);

pfGroup C API
A pfGroup is the internal node type of the IRIS Performer hierarchy and is derived from pfNode. The
functions allow children to be added to and deleted from a pfGroup node and queries to be made about a

pfGroup node’s children.

pfGroup* pfNewGroup(void);

pfType* pfGetGroupClassType(void);

int pfAddChild(pfGroup* group, pfNode *child);

int pfInsertChild(pfGroup* group, int index, pfNode *child);

XXV

Performer(3pf) IRIS Performer 2.0 C Reference Pages

int pfRemoveChild(pfGroup* group, pfNode *child);

int pfReplaceChild(pfGroup* group, pfNode *oldn, pfNode *newn);
int pfBufferAddChild(pfGroup* group, pfNode *child);

int pfBufferRemoveChild(pfGroup* group, pfNode *child);
pfNode* pfGetChild(const pfGroup* group, int i);

int pfGetNumChildren(const pfGroup* group);

int pfSearchChild(const pfGroup* group, pfNode *n);

pfScene C API

A pfScene is the root of a hierarchical database which may be drawn or intersected with. pfGeoStates
can be attached to and removed from a pfScene.

pfScene* pfNewScene(void);
pfType* pfGetSceneClassType(void);

void pfSceneGState(pfScene* scene, pfGeoState *gs);

pfGeoState* pfGetSceneGState(const pfScene* scene);

void pfSceneGStateIndex(pfScene* scene, int gs);

int pfGetSceneGStateIndex(const pfScene* scene);
pfSCS C API

These functions manipulate the matrix associated with a pfSCS node. A pfSCS node represents a static
coordinate system -- a modeling transform that cannot be changed once created.

pfSCS* pfNewSCS(pfMatrix m);
pfType* pfGetSCSClassType(void);
void pfGetSCSMat(pfSCS* scs, pfMatrix m);

const pfMatrix* pfGetSCSMatPtr(pfSCS* scs);

pfDCS C API

XXVi

These functions manipulate the matrix associated with a pfDCS node. A pfDCS node represents a
dynamic coordinate system -- a modeling transform that can be changed after it is created.

pfDCS* pfNewDCS(void);

pfType* pfGetDCSClassType(void);

void pfGetDCSMat(pfDCS* dcs, pfMatrix m);

const pfMatrix* pfGetDCSMatPtr(pfDCS* dcs);

void pfDCSMatType(pfDCS* dcs, uint val);

uint pfGetDCSMatType(const pfDCS* dcs);

void pfDCSMat(pfDCS* dcs, pfMatrix m);

void pfDCSCoord(pfDCS* dcs, pfCoord *c);

void pfDCSRot(pfDCS* dcs, float h, float p, float r);
void pfDCSTrans(pfDCS* dcs, float X, float y, float z);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void
void

pfDCSScale(pfDCS* dcs, float s);
pfDCSScaleXYZ(pfDCS* dcs, float xs, float ys, float zs);

pfLODState C API
A pfLODState is a definition of how an LOD or group of LODs should respond to range and stress. The
functions form an interface to create LOD states, set their attributes and give them names.

pfLODState*
pfType*
void

float

int

const char*
pfLODState*

pfLOD C API

pfNewLODState(void);

pfGetLODStateClassType(void);
pfLODStateAttr(pfLODState* lodstate, int attr, float val);
pfGetLODStateAttr(pfLODState* lodstate, int attr);
pfLODStateName(pfLODState* lodstate, const char *name);
pfGetLODStateName(const pfLODState* lodstate);
pfFindLODState(const char *findName);

Level-of-detail is a technique for manipulating model complexity based on image quality and rendering
speed. IRIS Performer uses range-based LOD and adjusts for field-of-view and viewport pixel size. Each
pfLOD node has the different levels-of-detail as its children. The pfGroup API can be used to manipulate
this child list. A particular LOD is picked based on a transition range. These transition ranges can be set
by pfLODRange and pfLODTransition to ensure smooth transitions between different LODs. A given
pfLOD can also be associated with a pfLODState.

pfLOD*
pfType*
void
void
void

int

float
void

int

float
void
pfLODState*
void

int

float

pfSwitch C API

pfNewLOD(void);

pfGetLODClassType(void);

pfLODCenter(pfLOD* lod, pfVec3 c);
pfGetLODCenter(const pfLOD* lod, pfVec3 c);
pfLODRange(pfLOD* lod, int index, float range);
pfGetLODNumRanges(const pfLOD* lod);
pfGetLODRange(const pfLOD* lod, int index);
pfLODTransition(pfLOD* lod, int index, float delta);
pfGetLODNumTransitions(const pfLOD* lod);
pfGetLODTransition(const pfLOD* lod, int index);
pfLODLODState(pfLOD* lod, pfLODState *1s);
pfGetLODLODState(const pfLOD* lod);
pfLODLODStateIndex(pfLOD* lod, int index);
pfGetLODLODStateIndex(const pfLOD* lod);
pfEvaluateLOD(pfLOD* lod, const pfChannel *chan, const pfMatrix *offset);

The functions manipulate pfSwitch nodes which are interior nodes in the IRIS Performer node hierarchy
that select one, all, or none of their children. The mode of selection is set by pfSwitchVal.

XXVii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfSwitch* pfNewSwitch(void);

pfType* pfGetSwitchClassType(void);

int pfSwitchVal(pfSwitch* switch, int val);
int pfGetSwitchVal(const pfSwitch* switch);

pfMorph C API

A pfMorph node manipulates the geometric attributes of pfGeoSets and other geometric primitives. Its
primary use is for geometric morphing where the colors, normals, texture coordinates and coordinates of
geometry are smoothly changed over time to simulate actions such as facial and skeletal animation, ocean
waves, morph level-of-detail, and special effects. The attributes of a pfMorph node, the method of access-
ing the source arrays of a pfMorph attribute (non-indexed or indexed) and the weights attached to these
attributes can be set and queried by these functions.

pfMorph* pfNewMorph(void);
pfType* pfGetMorphClassType(void);

int pfMorphAttr(pfMorph* morph, int index, int attr, int nelts, void *dst, int nsrcs, float *alist[],
ushort *ilist[], int n[]);

int pfGetMorphNumAttrs(const pfMorph* morph);

int pfGetMorphSrc(const pfMorph* morph, int index, int src, float **alist, ushort **ilist, int *n);

int pfGetMorphNumSrcs(const pfMorph* morph, int index);

void* pfGetMorphDst(const pfMorph* morph, int index);

int pfMorphWeights(pfMorph* morph, int index, float *weights);

int pfGetMorphWeights(const pfMorph* morph, int index, float *weights);

void pfEvaluateMorph(pfMorph* morph);

pfSequence C API

XXViii

A pfSequence node is a pfGroup node that sequences through a range of its children, drawing each child
for a certain length of time. Children are added to a pfSequence using normal pfGroup APIL The length
of time to draw each child and the range of children to sequence through are set by these functions.

pfSequence* pfNewSeq(void);
pfType* pfGetSeqClassType(void);

void pfSeqDuration(pfSequence* seq, float sp, int nRep);

void pfGetSeqDuration(const pfSequence* seq, float *sp, int *nRep);

void pfSeqlnterval(pfSequence” seq, int imode, int beg, int e);

void pfGetSeqInterval(const pfSequence* seq, int *imode, int *beg, int *e);
void pfSeqMode(pfSequence* seq, int m);

int pfGetSeqMode(const pfSequence* seq);

void pfSeqTime(pfSequence” seq, int index, double time);

double pfGetSeqTime(const pfSequence* seq, int index);

int pfGetSeqFrame(const pfSequence* seq, int *rep);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfLayer C API
A pfLayer is a node derived from pfGroup that supports proper drawing of coplanar geometry on IRIS
platforms so as to prevent distracting artifacts caused by numerical precision when rendering coplanar
geometry on Z-buffer based machines. These functions create pfLayers and define the base layer and the
other (decal) layers.

pfLayer* pfNewLayer(void);

pfType* pfGetLayerClassType(void);

void pfLayerBase(pfLayer* layer, pfNode *n);
pfNode* pfGetLayerBase(const pfLayer* layer);
void pfLayerDecal(pfLayer* layer, pfNode *n);
pfNode* pfGetLayerDecal(const pfLayer* layer);
void pfLayerMode(pfLayer* layer, int mode);
int pfGetLayerMode(const pfLayer* layer);

pfPartition C API
A pfPartition node is a type of pfGroup node which organizes the scene graphs of its children into a
static data structure which can be more efficient for intersections. pfBuildPart constructs a spatial parti-
tioning based on the value of type. The other functions update a partition and control the values of its
attributes.

pfPartition* pfNewPart(void);
pfType* pfGetPartClassType(void);

void pfPartVal(pfPartition* part, int which, float val);
float pfGetPartVal(pfPartition* part, int which);

void pfPartAttr(pfPartition* part, int which, void *attr);
void* pfGetPartAttr(pfPartition* part, int which);

void pfBuildPart(pfPartition* part);

void pfUpdatePart(pfPartition* part);

pfLightPoint C API
A pfLightPoint is a pfNode that contains one or more light points. A light point is visible as one or more
self-illuminated small points but does not illuminate surrounding objects. These functions form an inter-
face to create light points and control various light point parameters like size, number, shape, direction,
color, position and intensity in a fog.

pfLightPoint* pfNewLPoint(int n);

pfType* pfGetLPointClassType(void);

int pfGetNumLPoints(const pfLightPoint* Ipoint);
void pfLPointSize(pfLightPoint* Ipoint, float s);
float pfGetLPointSize(const pfLightPoint* Ipoint);

XXiX

Performer(3pf) IRIS Performer 2.0 C Reference Pages

void pfLPointFogScale(pfLightPoint* Ipoint, float onset, float opaque);

void pfGetLPointFogScale(const pfLightPoint* Ipoint, float *onset, float *opaque);
void pfLPointRot(pfLightPoint* Ipoint, float azim, float elev, float roll);

void pfGetLPointRot(const pfLightPoint* Ipoint, float *azim, float *elev, float *roll);
void pfLPointShape(pfLightPoint* Ipoint, int dir, float he, float ve, float f);

void pfGetLPointShape(const pfLightPoint* Ipoint, int *dir, float *he, float *ve, float *f);
pfGeoSet* pfGetLPointGSet(const pfLightPoint* Ipoint);

void pfLPointPos(pfLightPoint* Ipoint, int i, pfVec3 p);

void pfGetLPointPos(const pfLightPoint* Ipoint, int i, pfVec3 p);

void pfLPointColor(pfLightPoint* Ipoint, int i, pfVec4 clr);

void pfGetLPointColor(const pfLightPoint* Ipoint, int i, pfVec4 clr);

pfLightSource C API
A pfLightSource is a pfNode which can illuminate geometry in a pfScene. The pfLightSource routines
create pfLightSources,

pfLightSource* pfNewLSource(void);

pfType* pfGetLSourceClassType(void);

void pfLSourceColor(pfLightSource* Isource, int which, float r, float g, float b);
void pfGetLSourceColor(pfLightSource* Isource, int which, float* r, float* g, float* b);
void pfLSourceAmbient(pfLightSource* Isource, float 1, float g, float b);

void pfGetLSourceAmbient(pfLightSource* Isource, float* r, float* g, float* b);
void pfLSourcePos(pfLightSource* Isource, float x, float y, float z, float w);
void pfGetLSourcePos(pfLightSource* Isource, float* x, float* y, float* z, float* w);
void pfLSourceAtten(pfLightSource* Isource, float a0, float al, float a2);

void pfGetLSourceAtten(pfLightSource* Isource, float* a0, float* al, float* a2);
void pfSpotLSourceDir(pfLightSource* Isource, float x, float y, float z);

void pfGetSpotLSourceDir(pfLightSource* Isource, float* x, float* y, float* z);
void pfSpotLSourceCone(pfLightSource* Isource, float f1, float {2);

void pfGetSpotLSourceCone(pfLightSource* Isource, float* f1, float* £2);

void pfLSourceOn(pfLightSource* Isource);

void pfLSourceOff(pfLightSource* Isource);

int pfIsLSourceOn(pfLightSource* Isource);

void pfLSourceMode(pfLightSource* Isource, int mode, int val);

int pfGetLSourceMode(const pfLightSource* Isource, int mode);

void pfLSourceVal(pfLightSource* Isource, int mode, float val);

float pfGetLSourceVal(const pfLightSource* Isource, int mode);

void pfLSourceAttr(pfLightSource* Isource, int attr, void *obj);

void* pfGetLSourceAttr(const pfLightSource* Isource, int attr);

pfGeode C API
A pfGeode is a leaf node in the IRIS Performer scene graph hierarchy. It is a list of pfGeoSets which it
draws and intersects with. Functions are provided to creates pfGeode and manipulate the list of
pfGeoStates attached to them.

XXX

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfGeode*
pfType*
int

int

int

int
pfGeoSet*
int

pfText C API

pfNewGeode(void);

pfGetGeodeClassType(void);

pfAddGSet(pfGeode* geode, pfGeoSet *gset);
pfInsertGSet(pfGeode* geode, int index, pfGeoSet *gset);
pfReplaceGSet(pfGeode* geode, pfGeoSet *oldgs, pfGeoSet *newgs);
pfRemoveGSet(pfGeode* geode, pfGeoSet *gset);

pfGetGSet(const pfGeode* geode, int i);

pfGetNumGsSets(const pfGeode* geode);

A pfText node is a list of pfStrings much as a pfGeode is a list of pfGeoSets. The two APIs are also simi-
lar - a new pfText node can be created and the list of pfStrings attached to it can be manipulated by addi-
tion, insertion, removal or replacement.

pfText*
pfType*
int

int

int

int
pfString*
int

pfBillboard C

pfNewText(void);

pfGetTextClassType(void);

pfAddString(pfText* text, pfString *str);

pfInsertString(pfText* text, int index, pfString *str);
pfReplaceString(pfText* text, pfString *oldgs, pfString *newgs);
pfRemoveString(pfText* text, pfString *str);

pfGetString(const pfText* text, int i);

pfGetNumStrings(const pfText* text);

API

A pfBillboard is a pfGeode in which each pfGeoSet rotates to follow the eyepoint. Billboards are useful
for representing complex objects which are roughly symmetrical about one or more axes. A pfBillboard
can contain any number of pfGeoSets which can be added to and removed from the pfBillboard using

pfGeode API. Further, the position, mode and axis of rotation of a pfBillboard can also be manipulated.

pfBillboard* pfNewBboard(void);

pfType*
void
void
void

int

void
void

pfPath C API

pfGetBboardClassType(void);
pfBboardAxis(pfBillboard* bboard, const pfVec3 axis);
pfGetBboard Axis(pfBillboard* bboard, pfVec3 axis);
pfBboardMode(pfBillboard* bboard, int mode, int val);
pfGetBboardMode(pfBillboard* bboard, int mode);
pfBboardPos(pfBillboard* bboard, int i, const pfVec3 pos);
pfGetBboardPos(pfBillboard* bboard, int i, pfVec3 pos);

A pfPath is a dynamically-sized array of pfNode pointers that defines a specific path or chain of nodes
through a scene graph. pfNewPath creates a new path.

XXXi

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfPath* pfNewPath(void);
pfType* pfGetPathClassType(void);
void pfCullResult(int result);

int pfGetParentCullResult(void);
int pfGetCullResult(void);
int pfCullPath(pfPath *path, pfNode *root, int mode);

pfTraverser C API

These functions are provided as a means to obtain information about the behavior of the IRIS Performer
traversal routines. They can be used to determine the pfChannel or pfNode currently being culled or
drawn, set the matrix for the current traversal, determine the path from the root of the scene graph to the
node currently being traversed and the results of culling the node currently being traversed and the
parent of the current node.

pfChannel* pfGetTravChan(const pfTraverser* trav);

pfNode* pfGetTravNode(const pfIraverser* trav);
void pfGetTravMat(const pfTraverser* trav, pfMatrix mat);
int pfGetTravindex(const pfTraverser* trav);

const pfPath* pfGetTravPath(const pfTraverser” trav);

pfFrameStats C API

XXXii

A pfFrameStats structure contains a pfStats class as well as additional statistics classes and support for
tracking frame related tasks. Many of the functions correspond directly to similar functions for the
pfStats class.

fFrameStats* pfNewFStats(void);
p p

pfType* pfGetFStatsClassType(void);
uint pfFStatsClass(pfFrameStats *fstats, uint mask, int val);
uint pfGetFStatsClass(pfFrameStats *fstats, uint emask);
uint pfFStatsClassMode(pfFrameStats *fstats, int class, uint mask, int val);
uint pfGetFStatsClassMode(pfFrameStats *fstats, int class);
void pfFStatsAttr(pfFrameStats *fstats, int attr, float val);
float pfGetFStatsAttr(pfFrameStats *fstats, int attr);
uint pfGetOpenFStats(pfFrameStats *fstats, uint emask);
uint pfOpenFStats(pfFrameStats *fstats, uint enmask);
uint pfCloseFStats(uint enmask);
void pfResetFStats(pfFrameStats *fstats);
void pfClearFStats(pfFrameStats *fstats, uint which);
void pfAccumulateFStats(pfFrameStats *fstats, pfFrameStats* src, uint which);
void pfAverageFStats(pfFrameStats *fstats, pfFrameStats* src, uint which, int num);
void fFStatsCountGSet(pfFrameStats *fstats, pfGeoSet *gset);
p P P g

IRIS Performer 2.0 C Reference Pages Performer(3pf)

int pfQueryFStats(pfFrameStats *fstats, uint which, void *dst, int size);

int pfMQueryFStats(pfFrameStats *fstats, uint *which, void *dst, int size);

void pfDrawFStats(pfFrameStats *fstats, pfChannel *chan);

void pfFStatsCountNode(pfFrameStats *fstats, int class, uint mode, pfNode * node);

LIBPR
Initialization Routines
These routines initialize and configure Performer to use multiple processors and graphics pipelines. All
libpf appliciations must call pfInit and pfConfig before creating a scene graph or initiating rendering
with pfFrame. pflInit initializes shared memory and the clock. pfConfig creates multiple processes based
on the requested configuration and sets up internal data structures for frame-accurate propagation of
data between the processes.

void prInit(void);
void prExit(void);

Shared Memory
This is an interface to creating and manipulating a shared memory area to house the data structures
shared by the different IRIS Performer processes. pfInitArenas creates a shared memory arena that can
be used to allocate memory, locks and semaphores from. The other functions free this arena, control the
directory where it is created, return handles to the shared memory and the semaphore memory and set
the base address and size of these shared memory areas.

int pfInitArenas(void);
int pfFreeArenas(void);
PF_USPTR_T*

pfGetSemaArena(void);
void pfSemaArenaSize(size_t size);
size_t pfGetSemaArenaSize(void);
void pfSemaArenaBase(void *base);
void* pfGetSemaArenaBase(void);
void* pfGetShared Arena(void);
void pfSharedArenaSize(size_t size);
size_t pfGetShared ArenaSize(void);
void pfSharedArenaBase(void *base);
void* pfGetShared ArenaBase(void);
void pfTmpDir(char *dir);

const char * pfGetTmpDir(void);

Draw Modes
IRIS Performer supports a large number of drawing modes like shading, transparency, anti-aliasing and
coplanar geometry. These functions define these modes and enable and disable them.

XXXiii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

void
int
void
int
void
void
void
int
void
int
void
int
void
void
int
void
void
void
float

pfShadeModel(int model);
pfGetShadeModel(void);
pfTransparency(int type);
pfGetTransparency(void);
pfAlphaFunc(float ref, int func);
pfGetAlphaFunc(float* ref, int* func);
pfAntialias(int type);
pfGetAntialias(void);

pfDecal(int mode);
pfGetDecal(void);

pfCullFace(int cull);
pfGetCullFace(void);

pfEnable(int target);

pfDisable(int target);
pfGetEnable(int target);

pfClear(int which, const pfVec4 col);
pfClear(int which, const pfVec4 *col);
pfGLOverride(int mode, float val);
pfGetGLOverride(int mode);

GL Matrix Stack
These functions operate on the graphics library matrix stack. Various standard operations on matrices are
supported.

void
void
void
void
void
void
void
void

pfScale(float x, float y, float z);
pfTranslate(float X, float y, float z);
pfRotate(int axis, float degrees);
pfPushMatrix(void);
pfPushldentMatrix(void);
pfPopMatrix(void);
pfLoadMatrix(const pfMatrix m);
pfMultMatrix(const pfMatrix m);

Notification
These functions provide a general purpose error message and notification handling facility for applica-
tions using IRIS Performer. User-defined functions can be used as notifiers.

XXXiV

void

pfNotifyHandler(pfNotifyFuncType handler);

pfNotifyFuncType pfGetNotifyHandler(void);

void
void

pfDefaultNotifyHandler(pfNotifyData *notice);
pfNotifyLevel(int severity);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

int pfGetNotifyLevel(void);
void pfNotify(int severity, int error, char *format,

Clock Routines

File

These routines provide a simple and consistent interface to the high resolution hardware-specific timers
available on most SGI platforms.

double pfGetTime(void);

pid_t pfInitClock(double time);
void pfWrapClock(void);

void pfClockName(char *name);
const char* pfGetClockName(void);
void pfClockMode(int mode);
int pfGetClockMode(void);
Paths

These functions can be used to specify a UNIX-style file path to search for files in and to find files in such
a path.

void pfFilePath(const char* path);
const char* pfGetFilePath(void);
int pfFindFile(const char* file, char path[PF_MAXSTRING], int amode);

Video Clock Routines

These functions provide an interface to the video retrace clock attached to each graphics pipeline. Once a
video clock is initialised, its current value can be determined and it can be used to synchronize a process
with a time barrier.

int pfStartVClock(void);

void pfStopVClock(void);

void pfInitVClock(int ticks);

void pfVClockOffset(int offset);

int pfGetVClockOffset(void);

int pfGetVClock(void);

int pfVClockSync(int rate, int offset);

pfWindow Routines

IRIS Performer provides a system-independent window paradigm. The prInitGfx function may be called
to initialize the graphics subsystem and acquire the graphics attributes Performer requires. Use
pfGetCurWin to gain access to the current window.

void prinitGfx(void);

XXXV

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfWindow * pfGetCurWin(void);

Window System Routines

The pfWSConnection data structure encapsulates the workstation-independent frame-buffer (window)
facility in IRIS Performer. These functions serve to define specific windowing attributes necessary for the
application, to open and close windows, and to manipulate the window parameters.

void pfCloseWSConnection(pfWSConnection dsp);

pfFBConfig pfChooseFBConfig(pfWSConnection dsp, int screen, int *attr);

pfFBConfig pfChooseFBConfigData(void **dst, pfWSConnection dsp, int screen, int *attr,
void *arena);

void pfSelectWSConnection(pfWSConnection);

pfWSConnection pfOpenWSConnection(const char *str, int shared);
pfWSConnection pfOpenScreen(int screen, int shared);
pfWSConnection pfGetCurWSConnection(void);

const char* pfGetWSConnectionName (pfWSConnection);
void pfGetScreenSize(int screen, int *x, int *y);

Query Features

Use the QueryFeature routines to determine the presence, absence, or limitations of features in the under-
lying graphics implementation, like the availability of attenuation in the lighting model or the availability
of multiple graphics pipes.

int pfQueryFeature(int which, int *dst);
int pfMQueryFeature(int *which, int *dst);
void pfFeature(int which, int val);

Query System

Use the QuerySys routines to determine the capacity and limitations of the underlying graphics imple-
mentation, like the size of texture memory or the number of stencil planes available.

int pfQuerySys(int which, int *dst);
int pfMQuerySys(int *which, int *dst);

pfObject C API

XXXVi

A pfObject is the abstract data type from which the major IRIS Performer data structures are derived.
Although pfObjects cannot be created directly, most IRIS Performer data structures are derived from
them and thus inherit the functionality of the pfObject routines and those for pfMemory.

pfType* pfGetObjectClassType(void);
void pfCopyFunc(pfCopyFuncType func);
pfCopyFuncType pfGetCopyFunc(void);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void

pfDeleteFunc(pfDeleteFuncType func);

pfMergeFuncType pfGetMergeFunc(void);

void

pfMergeFunc(pfMergeFuncType func);

pfDeleteFuncType pfGetDeleteFunc(void);

void

pfPrintFunc(pfPrintFuncType func);

pfPrintFuncType pfGetPrintFunc(void);

int

void

void*
pfType C API

pfGetGLHandle(const pfObject *obj);
pfUserData(pfObject* obj, void* data);
pfGetUserData(pfObject* obj);

Al IRIS Performer data types that derive from pfObject/pfMemory have an associated pfType. The
pfType can be used to determine the class ancestory of both built-in and add-on data types.

pfType* pfNewType(pfIype *parent, char *name);
pfType* pfGetTypeParent(pfType* type);

int pflsDerivedFrom(pfType* type, pfType *ancestor);
void pfMaxTypes(int n);
pfFog* pfGetCurFog(void);

pfFog C API

pfFog is used to simulate atmospheric phenomena such as fog and haze and for depthcueing. The fog
color is blended with the color that is computed for rendered geometry based on the geometry’s range
from the eyepoint. IRIS Performer provides functions for defining fog color, ranges, and other attributes.

pfFog*
pfType*
void
int
void
void
void
void
void
void
void
void
float
void

pfNewFog(void *arena);

pfGetFogClassType(void);

pfFogType(pfFog* fog, int type);

pfGetFogType(const pfFog* fog);

pfFogRange(pfFog* fog, float onset, float opaque);
pfGetFogRange(const pfFog* fog, float* onset, float* opaque);
pfFogOffsets(pfFog* fog, float onset, float opaque);
pfGetFogOffsets(const pfFog* fog, float *onset, float *opaque);
pfFogRamp(pfFog* fog, int points, float* range, float* density, float bias);
pfGetFogRamp(const pfFog* fog, int* points, float* range, float* density, float* bias);
pfFogColor(pfFog* fog, float r, float g, float b);

pfGetFogColor(const pfFog* fog, float* 1, float* g, float* b);
pfGetFogDensity(const pfFog* fog, float range);

pfApplyFog(pfFog* fog);

pfColortable* pfGetCurCtab(void);

pfColortable C API
A pfColortable is a “color indexing’ mechanism used by pfGeoSets. pfGeoSets can be drawn with the
colors defined in the current globally active pfColortable rather than by using the pfGeoset’s own local
color list. This facility can be used for instant large-scale color manipulation of geometry in a scene.

XXXVii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfColortable* pfNewCtab(int size, void *arena);

pfType* pfGetCtabClassType(void);

int pfGetCtabSize(const pfColortable* ctab);

int pfCtabColor(pfColortable* ctab, int index, pfVec4 acolor);

int pfGetCtabColor(const pfColortable* ctab, int index, pfVec4 acolor);
pfVecs* pfGetCtabColors(const pfColortable* ctab);

void pfApplyCtab(pfColortable* ctab);

pfDataPool C API

A pfDataPool is similar to a shared memory malloc arena but adds the ability to lock/unlock pfDataPool
memory for multiprocessing applications. The pfDataPool functions allow related or unrelated processes
to share data and provide a means for locking data blocks to eliminate data collision.

pfDataPool* pfCreateDPool(uint size, char* name);
pfDataPool* pfAttachDPool(char* name);

pfType* pfGetDPoolClassType(void);

const char* pfGetDPoolName(pfDataPool* dpool);
void pfDPoolAttachAddr(void *addr);
void* pfGetDPoolAttachAddr(void);

int pfGetDPoolSize(pfDataPool* dpool);

volatile void* pfDPoolAlloc(pfDataPool* dpool, uint size, int id);
volatile void* pfDPoolFind(pfDataPool* dpool, int id);

int pfDPoolFree(pfDataPool* dpool, void* dpmem);

int pfReleaseDPool(pfDataPool* dpool);

int pfDPoolLock(void* dpmem);

int pfDPoolSpinLock(void* dpmem, int spins, int block);
void pfDPoolUnlock(void* dpmem);

int pfDPoolTest(void* dpmem);

pfDispList* pfGetCurDList(void);

void pfDrawGLObDbj(GLOBJECT obj);

pfDispList C API

XXXViii

A pfDispList is a display list that once open, captures certain libpr commands, such as pfTransparency,
pfApplyTex, or pfDrawGSet. After it is closed, it may be executed through Performer to perform the
recorded commands. pfDispLists are designed for multiprocessing, where one process builds a display
list of the visible scene and another process draws it.

pfDispList* pfNewDList(int type, int size, void *arena);
pfType* pfGetDListClassType(void);

int pfGetDListSize(const pfDispList* dlist);
int pfGetDListType(const pfDispList* dlist);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

int pfDrawDList(pfDispList* dlist);

void pfOpenDList(pfDispList* dlist);

void pfCloseDList(void);

void pfResetDList(pfDispList* dlist);

void pfAddDListCmd(int cmd);

void pfDListCallback(pfDListFuncType callback, int bytes, void* data);
pfFont C API

The pfFont facility provides the capability to load fonts for 3-D rendering with the string drawing rou-
tines from pfString and pfText. IRIS Performer uses this facility to provide wireframe, flat, extruded,
and textured-quad fonts in three dimensions.

pfFont*
pfType*
void
pfGeoSet*
void
const pfVec3*
void
void*
void

float

void

int

pfGeoSet C API

pfNewFont(void *arena);

pfGetFontClassType(void);

pfFontCharGSet(pfFont* font, int ascii, pfGeoSet *gset);
pfGetFontCharGSet(pfFont* font, int ascii);
pfFontCharSpacing(pfFont* font, int ascii, pfVec3 spacing);
pfGetFontCharSpacing(pfFont* font, int ascii);
pfFontAttr(pfFont* font, int which, void *attr);
pfGetFontAttr(pfFont* font, int which);
pfFontVal(pfFont* font, int which, float val);
pfGetFontVal(pfFont* font, int which);
pfFontMode(pfFont* font, int mode, int val);
pfGetFontMode(pfFont* font, int mode);

The pfGeoSet (short for "Geometry Set") is a fundamental IRIS Performer data structure. Each pfGeoSet
is a collection of geometry with one primitive type, such as points, lines, triangles, and homogeneous
attribute bindings, such as "untextured with colors per vertex and normals per primitive,” so that each
pfGeoSet may be presented to the graphics subsystem with as little overhead as possible, using an optim-
ized draw routine, one for each type of pfGeoSet.

pfGeoSet*
pfType*
void

int

void

int

void

int*

void

pfNewGSet(void *arena);

pfGetGSetClassType(void);

pfGSetNumPrims(pfGeoSet* gset, int n);
pfGetGSetNumPrims(const pfGeoSet* gset);
pfGSetPrimType(pfGeoSet* gset, int type);
pfGetGSetPrimType(const pfGeoSet* gset);
pfGSetPrimLengths(pfGeoSet* gset, int *lengths);
pfGetGSetPrimLengths(const pfGeoSet* gset);
pfGSetAttr(pfGeoSet* gset, int attr, int bind, void* alist, ushort* ilist);

XXXiX

Performer(3pf) IRIS Performer 2.0 C Reference Pages

int pfGetGSetAttrBind (const pfGeoSet* gset, int attr);
void pfGetGSetAttrLists(const pfGeoSet* gset, int attr, void** alist, ushort** ilist);
int pfGetGSetAttrRange(const pfGeoSet* gset, int attr, int *min, int *max);
void pfGSetDrawMode(pfGeoSet* gset, int mode, int val);
int pfGetGSetDrawMode(const pfGeoSet* gset, int mode);
void pfGSetGState(pfGeoSet* gset, pfGeoState *gstate);
pfGeoState* pfGetGSetGState(const pfGeoSet* gset);
void pfGSetGStateIndex(pfGeoSet* gset, int id);
int pfGetGSetGStateIndex(const pfGeoSet* gset);
void pfGSetHlight(pfGeoSet* gset, pfHighlight *hlight);
pfHighlight* pfGetGSetHlight(const pfGeoSet* gset);
void pfGSetLineWidth(pfGeoSet* gset, float width);
float pfGetGSetLineWidth(const pfGeoSet* gset);
void pfGSetPntSize(pfGeoSet* gset, float s);
float pfGetGSetPntSize(const pfGeoSet* gset);
void pfGSetlIsectMask(pfGeoSet* gset, uint mask, int setMode, int bitOp);
uint pfGetGSetIsectMask(const pfGeoSet* gset);
void pfGSetDrawBin(pfGeoSet* gset, short bin);
int pfGetGSetDrawBin(const pfGeoSet* gset);
void pfGSetBBox(pfGeoSet* gset, pfBox* box, int mode);
int pfGetGSetBBox(pfGeoSet* gset, pfBox* box);
void pfDrawGSet(pfGeoSet* gset);
int pfQueryGSet(const pfGeoSet* gset, uint which, void *dst);
int pfMQueryGSet(const pfGeoSet* gset, uint *which, void *dst);
int pfGSetlsectSegs(pfGeoSet* gset, pfSegSet *segSet, pfHit **hits[]);
void pfDrawHlightedGSet(pfGeoSet* gset);
void pfGSetPassFilter(uint mask);
uint pfGetGSetPassFilter(void);
pfHit C API

These routines support the testing of intersections of line segments with geometry in pfGeoSets.

pfType* pfGetHitClassType(void);

int pfQueryHit(const pfHit* hit, uint which, void *dst);
int pfMQueryHit(const pfHit* hit, uint *which, void *dst);
pfGeoState* pfGetCurGState(void);

pfGeoState* pfGetCurlndexedGState(int index);

pfList* pfGetCurGStateTable(void);

pfGeoState C API
pfGeoState is an encapsulation of libpr graphics modes and attributes, and is normally bound to
pfGeoSets. The pfGeoState represents a complete graphics state, allowing IRIS Performer to draw
pfGeoSets in an arbitrary order and evaluate state changes in a lazy fashion to reduce overhead caused
by changing graphics state.

x|

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfGeoState*
pfType*
void

int

int

int

void
float
float
float

void
uint
void
void*
void*
void*

void
void
void
void

pfNewGState(void *arena);
pfGetGStateClassType(void);
pfGStateMode(pfGeoState* gstate, int attr, int a);
pfGetGStateMode(const pfGeoState* gstate, int attr);
pfGetGStateCurMode(const pfGeoState* gstate, int attr);
pfGetGStateCombinedMode(const pfGeoState* gstate, int attr,
const pfGeoState *combState);
pfGStateVal(pfGeoState* gstate, int attr, float a);
pfGetGStateVal(const pfGeoState* gstate, int attr);
pfGetGStateCurVal(const pfGeoState* gstate, int attr);
pfGetGStateCombinedVal(const pfGeoState* gstate, int attr,
const pfGeoState *combState);
pfGStatelnherit(pfGeoState* gstate, uint mask);
pfGetGStateInherit(const pfGeoState* gstate);
pfGStateAttr(pfGeoState* gstate, int attr, void* a);
pfGetGStateAttr(const pfGeoState* gstate, int attr);
pfGetGStateCurAttr(const pfGeoState* gstate, int attr);
pfGetGStateCombinedAttr(const pfGeoState* gstate, int attr,
const pfGeoState *combState);
pfLoad GState(pfGeoState* gstate);
pfApplyGState(pfGeoState* gstate);
pfMakeBasicGState(pfGeoState* gstate);
pfApplyGStateTable(pfList *gstab);

pfHighlight * pfGetCurHlight(void);

pfHighlight C API
IRIS Performer supports a mechanism for highlighting individual objects in a scene with a variety of spe-
cial drawing styles that are activated by applying a pfHighlight state structure. Highlighting makes use
of outlining of lines and polygons and of filling polygons with patterned or textured overlays.

pfHighlight* pfNewHlight(void *arena);

pfType*
void

uint
pfGeoState*
void

void

int

void

void

pfGetHlightClassType(void);

pfHlightMode(pfHighlight* hlight, uint mode);

pfGetHlightMode(const pfHighlight* hlight);

pfGetHlightGState(const pfHighlight* hlight);

pfHlightGState(pfHighlight* hlight, pfGeoState *gstate);
pfHlightGStateIndex(pfHighlight* hlight, int id);

pfGetHlightGStateIndex(const pfHighlight* hlight);

pfHlightColor(pfHighlight* hlight, uint which, float r, float g, float b);
pfGetHlightColor(const pfHighlight* hlight, uint which, float *r, float *g, float *b);

xli

Performer(3pf) IRIS Performer 2.0 C Reference Pages

void pfHlightAlpha(pfHighlight* hlight, float a);
float pfGetHlightAlpha(const pfHighlight* hlight);
void pfHlightNormalLength(pfHighlight* hlight, float len, float bboxScale);
void pfGetHlightNormalLength(const pfHighlight* hlight, float *len, float *bboxScale);
void pfHlightLineWidth(pfHighlight* hlight, float width);
float pfGetHlightLineWidth(const pfHighlight* hlight);
void pfHlightPntSize(pfHighlight* hlight, float size);
float pfGetHlightPntSize(const pfHighlight* hlight);
void pfHlightLinePat(pfHighlight* hlight, int which, ushort pat);
ushort pfGetHlightLinePat(const pfHighlight* hlight, int which);
void pfHlightFillPat(pfHighlight* hlight, int which, uint *fillPat);
void pfGetHlightFillPat(const pfHighlight* hlight, int which, uint *pat);
void pfHlightTex(pfHighlight* hlight, pfTexture *tex);
pfTexture* pfGetHlightTex(const pfHighlight* hlight);
void pfHIlightTEnv(pfHighlight* hlight, pfTexEnv *tev);
pfTexEnv* pfGetHlightTEnv(const pfHighlight* hlight);
void pfHlightTGen(pfHighlight* hlight, pfTexGen *tgen);
pfTexGen* pfGetHlightTGen(const pfHighlight* hlight);
void pfApplyHlight(pfHighlight* hlight);
int pfGetCurLights(pfLight *lights|PF_MAX_LIGHTS]);
pfLight C API

A pfLight is a light source that illuminates scene geometry, generating realistic shading effects. A
pfLight cannot itself be seen but attributes such as color, spotlight direction, and position can be set to
provide illuminative effects on scene geometry.

pfLight* pfNewLight(void *arena);

pfType* pfGetLightClassType(void);

void pfLightColor(pfLight* light, int which, float r, float g, float b);

void pfGetLightColor(const pfLight* light, int which, float* r, float* g, float* b);
void pfLightAmbient(pfLight* light, float r, float g, float b);

void pfGetLightAmbient(const pfLight* light, float* r, float* g, float* b);
void pfLightPos(pfLight* light, float X, float y, float z, float w);

void pfGetLightPos(const pfLight* light, float* x, float* y, float* z, float* w);
void pfLightAtten(pfLight* light, float a0, float a1, float a2);

void pfGetLightAtten(const pfLight* light, float* a0, float* al, float* a2);
void pfSpotLightDir(pfLight* light, float x, float y, float z);

void pfGetSpotLightDir(const pfLight* light, float* x, float* y, float* z);
void pfSpotLightCone(pfLight* light, float f1, float 2);

void pfGetSpotLightCone(const pfLight* light, float* f1, float* £2);

xlii

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void pfLightOn(pfLight* light);
void pfLightOff(pfLight* light);
int pflIsLightOn(pfLight* light);

pfLightModel* pfGetCurLModel(void);

pfLightModel C API
A pfLightModel defines characteristics of the hardware lighting model used to illuminate geometry, such
as attenuation, local vs. global lighting model, and ambient energy.

pfLightModel* pfNewLModel(void *arena);

pfType* pfGetLModelClassType(void);

void pfLModelLocal(pfLightModel* Imodel, int 1);

int pfGetLModelLocal(const pfLightModel* Imodel);

void pfLModelTwoSide(pfLightModel* Imodel, int t);

int pfGetLModelTwoSide(const pfLightModel* Imodel);

void pfLModelAmbient(pfLightModel* Imodel, float 1, float g, float b);

void pfGetLModelAmbient(const pfLightModel* Imodel, float* r, float* g, float* b);
void pfLModelAtten(pfLightModel* Imodel, float a0, float al, float a2);

void pfGetLModelAtten(const pfLightModel* Imodel, float* a0, float* al, float* a2);
void pfApplyLModel(pfLightModel* Imodel);

pfLPointState* pfGetCurLPState(void);

pfLPointState C API
A pfLPointState is a libpr data structure which, in conjunction with a pfGeoSet of type PFGS_POINTS,
supports a sophisticated light point primitive type. Examples of light points are stars, beacons, strobes,
and taxiway lights. Light points are different from light sources in that a pfLight is not itself visible but
illuminates scene geometry, whereas a light point is visible as a self-illuminated small point that does not
illuminate surrounding objects.

pfLPointState* pfNewLPState(void *arena);

pfType* pfGetLPStateClassType(void);

void pfLPStateMode(pfLPointState* lpstate, int mode, int val);

int pfGetLPStateMode(const pfLPointState* Ipstate, int mode);

void pfLPStateVal(pfLPointState* Ipstate, int attr, float val);

float pfGetLPStateVal(const pfLPointState* lpstate, int attr);

void pfLPStateShape(pfLPointState* Ipstate, float horiz, float vert, float roll, float falloff,
float ambient);

void pfGetLPStateShape(const pfLPointState* Ipstate, float *horiz, float *vert, float *roll,
float *falloff, float *ambient);

void pfLPStateBackColor(pfLPointState* lpstate, float 1, float g, float b, float a);

void pfGetLPStateBackColor(pfLPointState* Ipstate, float *r, float *g, float *b, float *a);

xliii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

xliv

void pfApplyLPState(pfLPointState* Ipstate);
void pfMakeLPStateRangeTex(pfLPointState* Ipstate, pfTexture *tex, int size, pfFog* fog);
void pfMakeLPStateShapeTex(pfLPointState* Ipstate, pfTexture *tex, int size);

pfMaterial* pfGetCurMtl(int side);

pfMaterial C API

In conjunction with other lighting parameters, a pfMaterial defines the appearance of illuminated
geometry. A pfMaterial defines the reflectance characteristics of surfaces such as diffuse color and shini-
ness.

pfMaterial* pfNewMtl(void *arena);
pfType* pfGetMtlClassType(void);

void pfMtiSide(pfMaterial* mtl, int side);

int pfGetMtlSide(pfMaterial* mtl);

void pfMtlAlpha(pfMaterial* mtl, float alpha);

float pfGetMtlAlpha(pfMaterial* mtl);

void pfMtlShininess(pfMaterial* mtl, float shininess);

float pfGetMtlShininess(pfMaterial* mtl);

void pfMtlColor(pfMaterial* mtl, int acolor, float r, float g, float b);
void pfGetMtlColor(pfMaterial* mtl, int acolor, float* r, float* g, float* b);
void pfMtlColorMode(pfMaterial* mtl, int side, int mode);

int pfGetMtlColorMode(pfMaterial* mtl, int side);

void pfApplyMtl(pfMaterial* mtl);

pfSprite* pfGetCurSprite(void);

pfSprite C API

pfSprite is an intelligent transformation and is logically grouped with other libpr transformation primi-
tives like pfMultMatrix. pfSprite rotates geometry orthogonal to the viewer, so the viewer only sees the
"front" of the model. As a result, complexity is saved in the model by omitting the "back" geometry. A
further performance enhancement is to incorporate visual complexity in a texture map rather than in
geometry. Thus, on machines with fast texture mapping, sprites can present very complex images with
very little geometry. Classic examples of textured sprites use a single quadrilateral that when rotated
about a vertical axis simulate trees and when rotated about a point simulate clouds or puffs of smoke.

pfSprite* pfNewSprite(void *arena);
pfType* pfGetSpriteClassType(void);
void pfSpriteMode(pfSprite* sprite, int which, int val);

int pfGetSpriteMode(const pfSprite* sprite, int which);
void pfSpriteAxis(pfSprite* sprite, float x, float y, float z);
void pfGetSpriteAxis(pfSprite* sprite, float *x, float *y, float *z);

void pfBeginSprite(pfSprite* sprite);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void pfEndSprite(void);

void pfPositionSprite(float X, float y, float z);
void pfInitState(usptr_t* arena);

pfState* pfGetCurState(void);

void pfPushState(void);

void pfPopState(void);

void pfGetState(pfGeoState *gstate);

void pfFlushState(void);

void pfBasicState(void);
void pfOverride(uint mask, int val);
uint pfGetOverride(void);

void pfModelMat(pfMatrix mat);

void pfGetModelMat(pfMatrix mat);
void pfViewMat(pfMatrix mat);

void pfGetViewMat(pfMatrix mat);
void pfTexMat(pfMatrix mat);

void pfGetTexMat(pfMatrix mat);

void pfInvModelMat(pfMatrix mat);
void pfGetInvModelMat(pfMatrix mat);
void pfNearPixDist(float pd);

float pfGetNearPixDist(void);

pfState C API
IRIS Performer manages a subset of the graphics library state for convenience and improved perfor-
mance, and thus provides its own API for manipulating graphics state such as transparency, antialiasing,
or fog. Attributes not set within a pfGeoState are inherited from the pfState.

pfState* pfNewState(void);

pfType* pfGetStateClassType(void);

void pfSelectState(pfState* state);

void pfLoadState(pfState* state);

void pfAttachState(pfState* state, pfState *statel);

pfString C API
pfString provides a pfGeoSet like facility for encapsulating geometry to display a string in 3-D with attri-
butes such as color, arbitrary transformation matrix, and font (see pfFont).

pfString* pfNewString(void *arena);

pfType* pfGetStringClassType(void);

int pfGetStringStringLength(const pfString* string);
void pfStringMode(pfString* string, int mode, int val);

xlv

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

xlvi

int

void

pfFont*

void

const char*
const pfGeoSet*
const pfVec3*
void

void

void

const pfGeoState*
void

void

void

const pfBox*
void

void

void

uint

void

void

int
pfTexture*

pfTexture C API

pfGetStringMode(const pfString* string, int mode);
pfStringFont(p{String* string, pfFont* fnt);

pfGetStringFont(const pfString* string);

pfStringString(pfString* string, const char* cstr);
pfGetStringString(const pfString* string);
pfGetStringCharGSet(const pfString* string, int index);
pfGetStringCharPos(const pfString* string, int index);
pfStringSpacingScale(pfString* string, float sx, float sy, float sz);
pfGetStringSpacingScale(const pfString* string, float *sx, float *sy, float *sz);
pfStringGState(pfString* string, pfGeoState *gs);
pfGetStringGState(const pfString” string);

pfStringColor(pfString* string, float r, float g, float b, float a);
pfGetStringColor(const pfString* string, float *r, float *g, float *b, float *a);
pfStringBBox(pfString* string, const pfBox* newbox);
pfGetStringBBox(const pfString* string);

pfStringMat(pfString* string, const pfMatrix mat);
pfGetStringMat(const pfString* string, pfMatrix mat);
pfStringIsectMask(pfString” string, uint mask, int setMode, int bitOp);
pfGetStringlsectMask(const pfString* string);
pfDrawString(pfString* string);

pfFlattenString(pfString* string);

pfStringIsectSegs(pfString* string, pfSegSet *segSet, pfHit **hits[]);
pfGetCurTex(void);

pfTexture encapsulates texturing data and attributes such as the texture image itself, the texture data for-
mat and the filters for proximity and distance.

pfTexture* pfNewTex(void *arena);

pfType* pfGetTexClassType(void);

void pfTexName(pfTexture* tex, const char *name);

const char* pfGetTexName(const pfTexture* tex);

void pfTexImage(pfTexture* tex, uint* image, int comp, int sx, int sy, int sz);
void pfGetTexImage(const pfTexture* tex, uint** image, int* comp, int* sx, int* sy, int* sz);
void pfTexLoadImage(pfTexture* tex, uint* image);

uint* pfGetTexLoadImage(const pfTexture* tex);

void pfTexBorderColor(pfTexture* tex, pfVec4 clr);

void pfGetTexBorderColor(pfTexture* tex, pfVec4 *clr);

void pfTexBorderType(pfTexture* tex, int type);

int pfGetTexBorderType(pfTexture* tex);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void
int
void
int
void
int
void
void
void
void
pfTexture*
void
void
void
pfList*
void
float
void
int
void
pfTexture*
void
void
void
void
void
void
void
void
void

void

int

void

void

int

int
pfTexEnv*

pfTexFormat(pfTexture* tex, int format, int type);

pfGetTexFormat(const pfTexture* tex, int format);

pfTexFilter(pfTexture* tex, int filt, int type);

pfGetTexFilter(const pfTexture* tex, int filt);

pfTexRepeat(pfTexture* tex, int wrap, int type);

pfGetTexRepeat(const pfTexture* tex, int wrap);

pfTexSpline(pfTexture” tex, int type, pfVec2 *pts, float clamp);

pfGetTexSpline(const pfTexture* tex, int type, pfVec2 *pts, float *clamp);

pfTexDetail(pfTexture* tex, int 1, pfTexture *detail);

pfGetTexDetail(const pfTexture* tex, int *1, pfTexture **detail);

pfGetTexDetailTex(const pfTexture* tex);

pfDetailTexTile(pfTexture* tex, int j, int k, int m, int n, int scram);

pfGetDetailTexTile(const pfTexture* tex, int *j, int *k, int *m, int *n, int *scram);

pfTexList(pfTexture* tex, pfList *list);

pfGetTexList(const pfTexture* tex);

pfTexFrame(pfTexture* tex, float frame);

pfGetTexFrame(const pfTexture* tex);

pfTexLoadMode(pfTexture* tex, int mode, int val);

pfGetTexLoadMode(const pfTexture* tex, int mode);

pfTexLevel(pfTexture* tex, int level, pfTexture* ltex);

pfGetTexLevel(pfTexture* tex, int level);

pfTexLoadOrigin(pfTexture* tex, int which, int xo, int yo);

pfGetTexLoadOrigin(pfTexture* tex, int which, int *xo, int *yo);

pfTexLoadSize(pfTexture* tex, int xs, int ys);

pfGetTexLoadSize(const pfTexture* tex, int *xs, int *ys);

pfApplyTex(pfTexture* tex);

pfFormatTex(pfTexture* tex);

pfLoadTex(pfTexture* tex);

pfLoadTexLevel(pfTexture* tex, int level);

pfSubloadTex(pfTexture* tex, int source, uint *image, int xsrc, int ysrc, int xdst, int ydst,
int xsize, int ysize);

pfSubloadTexLevel(pfTexture* tex, int source, uint *image, int xsrc, int ysrc, int xdst,
int ydst, int xsize, int ysize, int level);

pfLoadTexFile(pfTexture* tex, char* fname);

pfFreeTexImage(pfTexture* tex);

pfldleTex(pfTexture* tex);

pflsTexLoaded(const pfTexture* tex);

pfIsTexFormatted(const pfTexture* tex);

pfGetCurTEnv(void);

xlvii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfTexEnv C API

pfTexEnv encapsulates the texture environment and how the texture should interact with the colors of
the geometry to which it is bound, i.e. how graphics coordinates are transformed into texture coordinates.

pfTexEnv* pfNewTEnv(void *arena);
pfType* pfGetTEnvClassType(void);

void pfTEnvMode(pfTexEnv* tenv, int mode);

int pfGetTEnvMode(const pfTexEnv* tenv);

void pfTEnvComponent(pfTexEnv* tenv, int comp);

int pfGetTEnvComponent(const pfTexEnv* tenv);

void pfTEnvBlendColor(pfTexEnv* tenv, float r, float g, float b, float a);

void pfGetTEnvBlendColor(pfTexEnv* tenv, float* r, float* g, float* b, float* a);
void pfApplyTEnv(pfTexEnv* tenv);

pfTexGen* pfGetCurTGen(void);

pfTexGen C API

The pfTexGen capability is used to automatically generate texture coordinates for geometry, typically for
special effects like projected texture, reflection mapping, and lightpoints (see pfLPointState).

pfTexGen* pfNewTGen(void *arena);
pfType* pfGetTGenClassType(void);

void pfTGenMode(pfTexGen* tgen, int texCoord, int mode);

int pfGetTGenMode(const pfTexGen* tgen, int texCoord);

void pfTGenPlane(pfTexGen* tgen, int texCoord, float x, float y, float z, float d);

void pfGetTGenPlane(pfTexGen* tgen, int texCoord, float* x, float* y, float* z, float* d);
void pfApplyTGen(pfTexGen* tgen);

pfCycleMemory C API

The pfCycleMemory data type is the low-level memory object used by pfCycleBuffers to provide the
illusion of a single block of memory that can have a different value for each process that references it at
one instant in time. For example, a pfGeoSet might have vertex position, normal, color, or texture arrays
that are being morphed in process A, culled in process B, drawn in process C, and intersected with in pro-
cess D, all with different values due to temporal reasons. Refer to the pfCycleBuffer overview for a
description of how the two features work in concert.

pfType* pfGetCMemClassType(void);
pfCycleBuffer* pfGetCMemCBuffer(pfCycleMemory* cmem);
int pfGetCMemFrame(const pfCycleMemory”* cmem);

pfCycleBuffer C API

xlviii

pfCycleBuffer supports efficient management of dynamically modified data in a multi-stage multipro-
cessed pipeline. A pfCycleBuffer logically contains multiple pfCycleMemorys. Each process has a global
index which selects the currently active pfCycleMemory in each pfCycleBuffer. This index can be
advanced once a frame by pfCurCBufferIndex so that the buffers "cycle". By advancing the index
appropriately in each pipeline stage, dynamic data can be frame-accurately propagated down the

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pipeline.
pfCycleBuffer* pfNewCBuffer(size_t nbytes, void *arena);
pfType* pfGetCBufferClassType(void);
pfCycleMemory*

pfGetCBufferCMem(const pfCycleBuffer* cBuf, int index);
void* pfGetCurCBufferData(const pfCycleBuffer* cBuf);
void pfCBufferChanged(pfCycleBuffer* cBuf);
void pfInitCBuffer(pfCycleBuffer* cBuf, void *data);
int pfCBufferConfig(int numBuffers);
int pfGetCBufferConfig(void);
int pfCBufferFrame(void);
int pfGetCBufferFrameCount(void);
int pfGetCurCBufferIndex(void);
void pfCurCBufferIndex(int index);

pfCycleBuffer* pfGetCBuffer(void *data);

pfMemory C API
A pfMemory is the data type from which the major IRIS Performer types are derived and also provides
the primary mechanism for allocating memory used by pfMalloc.

pfType* pfGetMemoryClassType(void);

void* pfMalloc(size_t nbytes, void *arena);

void* pfCalloc(size_t numelem, size_t elsize, void *arena);
char* pfStrdup(const char *str, void *arena);

void* pfRealloc(void *data, size_t nbytes);

size_t pfGetSize(void *data);

void* pfGetArena(void *data);

void pfFree(void *data);

void* pfGetData(const void *data);

pfMemory* pfGetMemory(const void *data);
const char* pfGetTypeName(const void *data);
pfType* pfGetType(const void *data);

int pfIsOfType(const void *data, pfType *type);

int pfIsExactType(const void *data, pfType *type);

int pfRef(void* mem);

int pfUnref(void* mem);

ushort pfGetRef(const void* mem);

int pfCompare(const void* mem1, const void* mem?2);

int pfPrint(const void* mem, uint travMode, uint verbose, FILE* file);

xlix

Performer(3pf) IRIS Performer 2.0 C Reference Pages

int prDelete(void* mem);

int prUnrefDelete(void* mem);

int prCopy(void* dst, const void* src);

pfFile* pfOpenFile(char* fname, int oflag,
pfFile C API

pfFile provides a non-blocking, multiprocessing mechanism for file I/O with a similar interface to the
standard UNIX file I/O functions. The difference is that these routines return immediately without block-
ing while the physical file-system access operation completes and also that instead of an integer file
descriptor, a pfFile handle is used.

pfFile* pfCreateFile(char* fname, mode_t mode);
pfType*

pfGetFileClassType(void);
int pfGetFileStatus(const pfFile* file, int attr);
int pfReadFile(pfFile* file, char* buf, int nbyte);
int pfWriteFile(pfFile* file, char* buf, int nbyte);
off t pfSeekFile(pfFile* file, off_t off, int whence);
int pfCloseFile(pfFile* file);

pfList C API
A pfList is a dynamically-sized array of arbitrary, but homogeneously-sized, elements. IRIS Performer
provides the facility to create, manipulate, and search a pfList.

pfList* pfNewlList(int eltSize, int listLength, void *arena);
pfType*
pfGetListClassType(void);
int pfGetListEltSize(const pfList* list);
void** pfGetListArray(const pfList* list);
void pfListArrayLen(pfList* list, int alen);
int pfGetListArrayLen(const pfList* list);
void pfNum(pfList* list, int newNum);
int pfGetNum(const pfList* list);
void pfSet(pfList* list, int index, void *elt);
void* pfGet(const pfList* list, int index);
void pfResetList(pfList* list);
void pfCombineLists(pfList* lists, const pfList *a, const pfList *b);
void pfAdd(pfList* lists, void *elt);
void pfInsert(pfList* lists, int index, void *elt);
int pfSearch(const pfList* lists, void *elt);
int pfRemove(pfList* lists, void *elt);

IRIS Performer 2.0 C Reference Pages

Performer(3pf)

void pfRemovelndex(pfList* lists, int index);

int pfMove(pfList* lists, int index, void *elt);

int pfFastRemove(pfList* lists, void *elt);

void pfFastRemovelndex(pfList* lists, int index);

int pfReplace(pfList* lists, void *oldElt, void *newElt);

pfWindow C API

These functions provide a single API for creating and managing windows that works across the IRIS GL,
IRIS GLX Mixed Mode, and OpenGL-X environments. Window system independent types have been
provided to match the X Window System types to provide complete portability between the IRIS GL and

OpenGL-X windowing environments.

pfWindow*
pfType*
void

const char*
void

int

void

uint
pfState*
void

void

void

void

void

void

void

void

void

void

void
pfWindow*
void
pfWindow*
void

int

void

uint

void

pfNewWin(void *arena);

pfGetWinClassType(void);

pfWinName(pfWindow* win, const char *name);

pfGetWinName(const pfWindow* win);

pfWinMode(pfWindow* win, int mode, int val);

pfGetWinMode(const pfWindow* win, int mode);
pfWinType(pfWindow* win, uint type);

pfGetWinType(const pfWindow* win);

pfGetWinCurState(const pfWindow* win);

pfWinAspect(pfWindow* win, int x, int y);

pfGetWinAspect(const pfWindow* win, int *x, int *y);
pfWinOriginSize(pfWindow* win, int xo, int yo, int xs, int ys);
pfWinOrigin(pfWindow* win, int xo, int yo);

pfGetWinOrigin(const pfWindow* win, int *xo, int *yo);
pfWinSize(pfWindow* win, int xs, int ys);

pfGetWinSize(const pfWindow* win, int *xs, int *ys);
pfWinFullScreen(pfWindow* win);
pfGetWinCurOriginSize(pfWindow* win, int *xo, int *yo, int *xs, int *ys);
pfGetWinCurScreenOriginSize(pfWindow* win, int *xo, int *yo, int *xs, int *ys);
pfWinOverlayWin(pfWindow* win, pfWindow *ow);
pfGetWinOverlayWin(const pfWindow* win);
pfWinStatsWin(pfWindow* win, pfWindow *ow);
pfGetWinStatsWin(const pfWindow* win);

pfWinScreen(pfWindow* win, int s);

pfGetWinScreen(const pfWindow* win);

pfWinShare(pfWindow* win, uint mode);

pfGetWinShare(const pfWindow* win);

pfWinWSWindow(pfWindow* win, pfWSConnection dsp, pfWSWindow wsWin);

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

pfWSWindow
void

pfWSDrawable
pfWSDrawable

void

const char*
void

void*

void

int*

void
pfFBConfig
void

int

void

int
pfWindow*
void
pfGLContext
void
pfList*
void

void

void

int

int
pfWindow*
void
pfFBConfig
int

int

int
pfWindow*
pfStats*

pfStats C API

pfGetWinWSWindow(const pfWindow* win);
pfWinWSDrawable(pfWindow* win, pfWSConnection dsp, pfWSDrawable wsWin);
pfGetWinWSDrawable(const pfWindow* win);
pfGetWinCurWSDrawable(const pfWindow* win);
pfWinWSConnectionName(pfWindow* win, const char *name);
pfGetWinWSConnectionName(const pfWindow* win);
pfWinFBConfigData(pfWindow* win, void *data);
pfGetWinFBConfigData(pfWindow* win);
pfWinFBConfigAttrs(pfWindow* win, int *attr);
pfGetWinFBConfigAttrs(const pfWindow* win);
pfWinFBConfig(pfWindow* win, pfFBConfig vInfo);
pfGetWinFBConfig(const pfWindow* win);
pfWinFBConfigld(pfWindow?* win, int vld);
pfGetWinFBConfigld(const pfWindow* win);
pfWinIndex(pfWindow* win, int index);
pfGetWinIndex(const pfWindow* win);
pfGetWinSelect(pfWindow* win);
pfWinGLCxt(pfWindow* win, pfGLContext gCxt);
pfGetWinGLCxt(const pfWindow* win);
pfWinList(pfWindow* win, pfList *wl);
pfGetWinList(const pfWindow* win);
pfOpenWin(pfWindow* win);
pfCloseWin(pfWindow* win);
pfCloseWinGL(pfWindow* win);
pfAttachWin(pfWindow* win, pfWindow *w1);
pfDetachWin(pfWindow* win, pfWindow *w1);
pfSelectWin(pfWindow* win);
pfSwapWinBuffers(pfWindow* win);
pfChooseWinFBConfig(pfWindow* win, int *attr);
pfIsWinOpen(const pfWindow* win);
pfQueryWin(pfWindow* win, int which, int *dst);
pIMQueryWin(pfWindow* win, int *which, int *dst);
pfOpenNewNoPortWin(const char *name, int screen);
pfGetCurStats(void);

These functions are used to collect, manipulate, print, and query statistics on state operations, geometry,
and graphics and system operations. IRIS Performer has the ability to keep many types of statistics.
Some statistics can be expensive to gather and might possibly influence other statistics. To alleviate this
problem, statistics are divided into different classes based on the tasks that they monitor. The specific
statistics classes of interest may be selected with pfStatsClass.

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfStats* pfNewStats(void *arena);
pfType* pfGetStatsClassType(void);

uint
uint
void
float
uint
uint
uint
uint
uint
void
void
void
void
void
void
int

int

void
float
void
void
uint
void
float
void
float
float
float
float
float

pfStatsClassMode(pfStats* stats, int class, uint mask, int val);
pfGetStatsClassMode(pfStats* stats, int class);
pfStatsAttr(pfStats* stats, int attr, float val);
pfGetStatsAttr(pfStats* stats, int attr);

pfStatsClass(pfStats* stats, uint enmask, int val);
pfGetStatsClass(pfStats* stats, uint enmask);
pfGetOpenStats(pfStats* stats, uint enmask);
pfOpenStats(pfStats* stats, uint enmask);

pfCloseStats(uint enmask);

pfResetStats(pfStats* stats);

pfClearStats(pfStats* stats, uint which);
pfAccumulateStats(pfStats* stats, pfStats* src, uint which);
pfAverageStats(pfStats* stats, pfStats* src, uint which, int num);
pfCopyStats(pfStats* stats, const pfStats *src, uint which);
pfStatsCountGSet(pfStats* stats, pfGeoSet * gset);
pfQueryStats(pfStats* stats, uint which, void *dst, int size);
pfMQueryStats(pfStats* stats, uint * which, void *dst, int size);
pfStatsHwAttr(int attr, float val);

pfGetStatsHwAttr(int attr);

pfEnableStatsHw (uint which);

pfDisableStatsHw(uint which);

pfGetStatsHwEnable(uint which);

pfFPConfig(int which, float val);

pfGetFPConfig(int which);

pfSinCos(float arg, float* s, float* c);

pfTan(float arg);

pfArcTan2(float y, float x);

pfArcSin(float arg);

pfArcCos(float arg);

pfSqrt(float arg);

pfVec2 C API
Math functions for 2-component vectors. Most of these routines have macro equivalents which are
described in the pfVec2 man page.

void pfSetVec2(pfVec2 vec2, float x, float y);
void pfCopyVec2(pfVec2 vec2, const pfVec2 v);

int

pfEqualVec2(const pfVec2 vec2, const pfVec2 v);

Performer(3pf) IRIS Performer 2.0 C Reference Pages

int

void
float
void
void
void
void
void
float
float
float
float

pfAlmostEqualVec2(const pfVec2 vec2, const pfVec2 v, float tol);
pfNegateVec2(pfVec2 vec2, const pfVec2 v);

pfDotVec2(const pfVec2 vec2, const pfVec2 v);

pfAddVec2(pfVec2 vec2, const pfVec2 v1, const pfVec2 v2);
pfSubVec2(pfVec2 vec2, const pfVec2 v1, const pfVec2 v2);
pfScaleVec2(pfVec2 vec2, float s, const pfVec2 v);
pfAddScaledVec2(pfVec2 vec2, const pfVec2 v1, float s, const pfVec2 v2);
pfCombineVec2(pfVec2 vec2, float a, const pfVec2 v1, float b, const pfVec2 v2);
pfSqrDistancePt2(const pfVec2 vec2, const pfVec2 v);
pfNormalizeVec2(pfVec2 vec2);

pfLengthVec2(const pfVec2 vec2);

pfDistancePt2(const pfVec2 vec2, const pfVec2 v);

pfVec3 C API
Math functions for 3-component vectors. Most of these routines have macro equivalents which are
described in the pfVec3 man page.

void
void

pfSetVec3(pfVec3 vec3, float x, float y, float z);
pfCopyVec3(pfVec3 vec3, const pfVec3 v);

int pfEqualVec3(const pfVec3 vec3, const pfVec3 v);
int pfAlmostEqualVec3(const pfVec3 vec3, const pfVec3 v, float tol);
void pfNegateVec3(pfVec3 vec3, const pfVec3 v);
float pfDotVec3(const pfVec3 vec3, const pfVec3 v);
void pfAddVec3(pfVec3 vec3, const pfVec3 v1, const pfVec3 v2);
void pfSubVec3(pfVec3 vec3, const pfVec3 v1, const pfVec3 v2);
void pfScaleVec3(pfVec3 vec3, float s, const pfVec3 v);
void pfAddScaledVec3(pfVec3 vec3, const pfVec3 v1, float s, const pfVec3 v2);
void pfCombineVec3(pfVec3 vec3, float a, const pfVec3 v1, float b, const pfVec3 v2);
float pfSqrDistancePt3(const pfVec3 vec3, const pfVec3 v);
float pfNormalizeVec3(pfVec3 vec3);
float pfLengthVec3(const pfVec3 vec3);
float pfDistancePt3(const pfVec3 vec3, const pfVec3 v);
void pfCrossVec3(pfVec3 vec3, const pfVec3 v1, const pfVec3 v2);
void pfXformVec3(pfVec3 vec3, const pfVec3 v, const pfMatrix m);
void pfXformPt3(pfVec3 vec3, const pfVec3 v, const pfMatrix m);
void pfFullXformPt3(pfVec3 vec3, const pfVec3 v, const pfMatrix m);
pfVec4 C API

Math functions for 4-component vectors. Most of these routines have macro equivalents which are
described in the pfVec4 man page.

liv

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void
void
int

int

void
float
void
void
void
void
void
float
float
float
float
void

pfSetVecd(pfVecd vec4, float x, float y, float z, float w);
pfCopyVecd(pfVecd vecd, const pfVecs v);

pfEqualVec4(const pfVec4 vecd, const pfVecs v);
pfAlmostEqualVec4(const pfVec4 vec4, const pfVec4 v, float tol);
pfNegateVecd(pfVecd vecd, const pfVecd v);

pfDotVec4(const pfVec4 vecd, const pfVecs v);

pfAddVecd(pfVecd vecd, const pfVecd v1, const pfVecs v2);
pfSubVec4(pfVecd vecd, const pfVecd v1, const pfVecs v2);
pfScaleVec4(pfVecs vecs, float s, const pfVecs v);
pfAddScaledVecd4(pfVecs vecd, const pfVec4 v1, float s, const pfVec4 v2);
pfCombineVec4(pfVecd vecs, float a, const pfVec4 v1, float b, const pfVec4 v2);
pfSqrDistancePt4(const pfVec4 vec4, const pfVecs v);
pfNormalizeVec4(pfVecs vecd);

pfLengthVec4(const pfVec4 vecd);

pfDistancePt4(const pfVec4 vec4, const pfVec4 v);

pfXformVec4(pfVec4 vecd, const pfVecd v, const pfMatrix m);

pfMatrix C API
The pfMatrix data type represents a complete 4x4 real matrix. These routines create transformation
matrices based on multiplying a row vector by a matrix on the right, i.e. the vector v transformed by m is
v *m. Many actions will go considerably faster if the last column is (0,0,0,1).

Some of these routines have macro equivalents which are described in the pfMatrix man page.

void
int

void
void
void
void
void
void
void
void
void
void
void
void
void
void

pfSetMat(pfMatrix mat, float *m);

pfGetMatType(const pfMatrix mat);

pfSetMatRowVec3(pfMatrix mat, int r, const pfVec3 v);
pfSetMatRow(pfMatrix mat, int r, float x, float y, float z, float w);
pfGetMatRowVec3(pfMatrix mat, int r, pfVec3 dst);
pfGetMatRow(pfMatrix mat, int r, float *x, float *y, float *z, float *w);
pfSetMatColVec3(pfMatrix mat, int ¢, const pfVec3 v);
pfSetMatCol(pfMatrix mat, int ¢, float x, float y, float z, float w);
pfGetMatColVec3(pfMatrix mat, int ¢, pfVec3 dst);
pfGetMatCol(pfMatrix mat, int ¢, float *x, float *y, float *z, float *w);
pfGetOrthoMatCoord(pfMatrix mat, pfCoord* dst);
pfMakeldentMat(pfMatrix mat);

pfMakeEulerMat(pfMatrix mat, float hdeg, float pdeg, float rdeg);
pfMakeRotMat(pfMatrix mat, float degrees, float X, float y, float z);
pfMakeTransMat(pfMatrix mat, float x, float y, float z);
pfMakeScaleMat(pfMatrix mat, float x, float y, float z);

Performer(3pf) IRIS Performer 2.0 C Reference Pages

void pfMakeVecRotVecMat(pfMatrix mat, const pfVec3 v1, const pfVec3 v2);
void pfMakeCoordMat(pfMatrix mat, const pfCoord* c);

void pfGetOrthoMatQuat(pfMatrix mat, pfQuat dst);

void pfMakeQuatMat(pfMatrix mat, const pfQuat q);

void pfCopyMat(pfMatrix mat, const pfMatrix v);

int pfEqualMat(const pfMatrix mat, const pfMatrix m);

int pfAlmostEqualMat(const pfMatrix mat, const pfMatrix m2, float tol);

void pfTransposeMat(pfMatrix mat, pfMatrix m);

void pfMultMat(pfMatrix mat, const pfMatrix m1, const pfMatrix m2);

void pfAddMat(pfMatrix mat, const pfMatrix m1, const pfMatrix m?2);

void pfSubMat(pfMatrix mat, const pfMatrix m1, const pfMatrix m2);

void pfScaleMat(pfMatrix mat, float s, const pfMatrix m);

void pfPostMultMat(pfMatrix mat, const pfMatrix m);

void pfPreMultMat(pfMatrix mat, const pfMatrix m);

int pfInvertFullMat(pfMatrix mat, pfMatrix m);

void pfInvertAffMat(pfMatrix mat, const pfMatrix m);

void pfInvertOrthoMat(pfMatrix mat, const pfMatrix m);

void pfInvertOrthoNMat(pfMatrix mat, pfMatrix m);

void pfInvertldentMat(pfMatrix mat, const pfMatrix m);

void pfPreTransMat(pfMatrix mat, float x, float y, float z, pfMatrix m);

void pfPostTransMat(pfMatrix mat, const pfMatrix m, float X, float y, float z);
void pfPreRotMat(pfMatrix mat, float degrees, float x, float y, float z, pfMatrix m);
void pfPostRotMat(pfMatrix mat, const pfMatrix m, float degrees, float x, float y, float z);
void pfPreScaleMat(pfMatrix mat, float xs, float ys, float zs, pfMatrix m);

void pfPostScaleMat(pfMatrix mat, const pfMatrix m, float xs, float ys, float zs);

pfQuat C API
pfQuat represents a quaternion as the four floating point values (x, y, z, w) of a pfVec4. Some of these
routines have macro equivalents which are described in the pfMatrix man page.

void pfGetQuatRot(pfQuat quat, float *angle, float *x, float *y, float *z);
void pfMakeRotQuat(pfQuat quat, float angle, float X, float y, float z);
void pfConjQuat(pfQuat quat, const pfQuat v);

float pfLengthQuat(const pfQuat quat);

void pfMultQuat(pfQuat quat, const pfQuat ql, const pfQuat q2);

void pfDivQuat(pfQuat quat, const pfQuat q1, const pfQuat q2);

void pfInvertQuat(pfQuat quat, const pfQuat q1);

void pfExpQuat(pfQuat quat, const pfQuat q);

void pfLogQuat(pfQuat quat, const pfQuat q);

void pfSlerpQuat(pfQuat quat, float t, const pfQuat q1, const pfQuat q2);

Ivi

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void pfSquadQuat(pfQuat quat, float t, const pfQuat q1, const pfQuat g2, const pfQuat a,
const pfQuat b);
void pfQuatMeanTangent(pfQuat quat, const pfQuat q1, const pfQuat g2, const pfQuat q3);

pfMatStack C API
These routines allow the creation and manipulation of a stack of 4x4 matrices.

pfMatStack* pfNewMStack(int size, void *arena);
pfType* pfGetMStackClassType(void);

void pfGetMStack(const pfMatStack* mst, pfMatrix m);
pfMatrix* pfGetMStackTop(const pfMatStack* mst);
int pfGetMStackDepth(const pfMatStack* mst);
void pfResetMStack(pfMatStack* mst);
int pfPushMStack(pfMatStack* mst);
int pfPopMStack(pfMatStack* mst);
void pfLoadMStack(pfMatStack* mst, const pfMatrix m);
void pfPreMultMStack(pfMatStack* mst, const pfMatrix m);
void pfPostMultMStack(pfMatStack* mst, const pfMatrix m);
void pfPreTransMStack(pfMatStack* mst, float x, float y, float z);
void pfPostTransMStack(pfMatStack* mst, float x, float y, float z);
void pfPreRotMStack(pfMatStack* mst, float degrees, float x, float y, float z);
void pfPostRotMStack(pfMatStack* mst, float degrees, float x, float y, float z);
void pfPreScaleMStack(pfMatStack* mst, float xs, float ys, float zs);
void pfPostScaleMStack(pfMatStack* mst, float xs, float ys, float zs);
pfSeg C API

A pfSeg represents a line segment starting at pos, extending for a length length in the direction dir. The
routines assume that dir is of unit length, otherwise the results are undefined. pfSeg is a public struct
whose data members pos, dir and length may be operated on directly.

void pfMakePtsSeg(pfSeg* seg, const pfVec3 pl, const pfVec3 p2);

void pfMakePolarSeg(pfSeg* seg, const pfVec3 pos, float azi, float elev, float len);
void pfClipSeg(pfSeg* seg, const pfSeg *seg, float d1, float d2);

int pfClosestPtsOnSeg(const pfSeg* seg, const pfSeg *seg, pfVec3 dstl, pfVec3 dst2);

pfPlane C API
A pfPlane represents an infinite 2D plane as a normal and a distance offset from the origin in the normal
direction. A point on the plane satisfies the equation normal dot (x, y, z) = offset. pfPlane is a public struct
whose data members normal and offset may be operated on directly.

void pfMakePtsPlane(pfPlane* plane, const pfVec3 pl, const pfVec3 p2, const pfVec3 p3);
void pfMakeNormPtPlane(pfPlane* plane, const pfVec3 norm, const pfVec3 pos);

Ivii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

Iviii

void
int
int
int
int
void
void
int
int

pfDisplacePlane(pfPlane* plane, float d);

pfHalfSpaceContainsBox(const pfPlane* plane, const pfBox *box);
pfHalfSpaceContainsSphere(const pfPlane* plane, const pfSphere *sph);
pfHalfSpaceContainsCyl(const pfPlane* plane, const pfCylinder *cyl);
pfHalfSpaceContainsPt(const pfPlane* plane, const pfVec3 pt);
pfOrthoXformPlane(pfPlane* plane, const pfPlane *pln, const pfMatrix m);
pfClosestPtOnPlane(const pfPlane* plane, const pfVec3 pt, pfVec3 dst);
pfPlanelsectSeg(const pfPlane* plane, const pfSeg *seg, float *d);
pfHalfSpacelsectSeg(const pfPlane* plane, const pfSeg *seg, float *d1, float *d2);

pfSphere C API
pfSpheres are typically used as bounding volumes in a scene graph. These routines allow bounding
spheres to be created and manipulated.

void
int
int
int
void
void
void
void
void
void
void
void
int

pfMakeEmptySphere(pfSphere* sphere);

pfSphereContainsPt(const pfSphere* sphere, const pfVec3 pt);
pfSphereContainsSphere(const pfSphere* sphere, const pfSphere *sph);
pfSphereContainsCyl(const pfSphere* sphere, const pfCylinder *cyl);
pfSphereAroundPts(pfSphere* sphere, const pfVec3* pts, int npt);
pfSphereAroundSpheres(pfSphere* sphere, const pfSphere **sphs, int nsph);
pfSphereAroundBoxes(pfSphere* sphere, const pfBox **boxes, int nbox);
pfSphereAroundCyls(pfSphere* sphere, const pfCylinder **cyls, int ncyl);
pfSphereExtendByPt(pfSphere* sphere, const pfVec3 pt);
pfSphereExtendBySphere(pfSphere* sphere, const pfSphere *sph);
pfSphereExtendByCyl(pfSphere* sphere, const pfCylinder *cyl);
pfOrthoXformSphere(pfSphere* sphere, const pfSphere *sph, const pfMatrix m);
pfSpherelsectSeg(const pfSphere* sphere, const pfSeg *seg, float *d1, float *d2);

pfCylinder C API
A pfCylinder represents a cylinder of finite length. The routines listed here provide means of creating
and extending cylinders for use as bounding geometry around groups of line segments. The cylinder is
defined by its center, radius, axis and halfLength. The routines assume axis is a vector of unit length, other-
wise results are undefined. pfCylinder is a public struct whose data members center, radius, axis and hal-
fLength may be operated on directly.

void
int

void
void
void
void

pfMakeEmptyCyl(pfCylinder* cyl);

pfCylContainsPt(const pfCylinder* cyl, const pfVec3 pt);
pfOrthoXformCyl(pfCylinder* cyl, const pfCylinder *cyl, const pfMatrix m);
pfCylAroundPts(pfCylinder* cyl, const pfVec3 *pts, int npt);
pfCylAroundSegs(pfCylinder” cyl, const pfSeg **segs, int nseg);
pfCylAroundSpheres(pfCylinder* cyl, const pfSphere **sphs, int nsph);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void
void
void
void
int

pfCylAroundBoxes(pfCylinder* cyl, const pfBox **boxes, int nbox);
pfCylExtendBySphere(pfCylinder* cyl, const pfSphere *sph);
pfCylExtendByCyl(pfCylinder* cyl, const pfCylinder *cyl);

pfCylExtend ByBox(pfCylinder* cyl, const pfVec3 pt);
pfCyllsectSeg(const pfCylinder* cyl, const pfSeg *seg, float *d1, float *d2);

pfBox C API
A pfBox is an axis-aligned box which can be used for intersection tests and for maintaining bounding
information about geometry. A box represents the axis-aligned hexahedral volume: (x, y, z) where min[0]
<=x <= max|[0], min[1] <= y <= max[1] and min[2] <= z <= max[2]. pfBox is a public struct whose data
members min and max may be operated on directly.

void
int

int

void
void
void
void
void
void
void
int

pfMakeEmptyBox(pfBox* box);

pfBoxContainsPt(const pfBox* box, const pfVec3 pt);
pfBoxContainsBox(pfBox* box, const pfBox *inbox);
pfXformBox(pfBox* box, const pfBox *box, const pfMatrix xform);
pfBoxAroundPts(pfBox* box, const pfVec3 *pts, int npt);
pfBoxAroundSpheres(pfBox* box, const pfSphere **sphs, int nsph);
pfBoxAroundBoxes(pfBox* box, const pfBox **boxes, int nbox);
pfBoxAroundCyls(pfBox* box, const pfCylinder **cyls, int ncyl);
pfBoxExtend ByPt(pfBox* box, const pfVec3 pt);
pfBoxExtendByBox(pfBox* box, const pfBox *box);
pfBoxIsectSeg(const pfBox* box, const pfSeg *seg, float *d1, float *d2);

pfPolytope C API
A pfPolytope is a set of half spaces whose intersection defines a convex, possibly semi-infinite, volume
which may be used for culling and other intersection testing where a tighter bound than a pfBox,
pfSphere, or pfCylinder is of benefit.

pfPolytope* pfNewPtope(void *arena);
pfType* pfGetPtopeClassType(void);

int
int
int
int
void
int
int
int
int
int

pfGetPtopeNumFacets(pfPolytope* ptp);

pfPtopeFacet(pfPolytope* ptp, int i, const pfPlane *p);
pfGetPtopeFacet(pfPolytope* ptp, int i, pfPlane *p);
pfRemovePtopeFacet(pfPolytope* ptp, int i);

pfOrthoXformPtope(pfPolytope* ptp, const pfPolytope *src, const pfMatrix mat);
pfPtopeContainsPt(const pfPolytope* ptp, const pfVec3 pt);
pfPtopeContainsSphere(const pfPolytope* ptp, const pfSphere *sphere);
pfPtopeContainsBox(const pfPolytope* ptp, const pfBox *box);
pfPtopeContainsCyl(const pfPolytope* ptp, const pfCylinder *cyl);
pfPtopeContainsPtope(const pfPolytope* ptp, const pfPolytope *ptope);

lix

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfFrustum C API
A pfFrustum represents a viewing and or culling volume bounded by left, right, top, bottom, near and far
planes.

pfFrustum* pfNewFrust(void *arena);
pfType* pfGetFrustClassType(void);

int pfGetFrustType(const pfFrustum* fr);

void pfFrustAspect(pfFrustum* fr, int which, float widthHeightRatio);

float pfGetFrustAspect(const pfFrustum* fr);

void pfGetFrustFOV(const pfFrustum* fr, float* fovh, float* fovv);

void pfFrustNearFar(pfFrustum* fr, float nearDist, float farDist);

void pfGetFrustNearFar(const pfFrustum* fr, float* nearDist, float* farDist);

void pfGetFrustNear(const pfFrustum* fr, pfVec3 11, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
void pfGetFrustFar(const pfFrustum* fr, pfVec3 11, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
void pfGetFrustPtope(const pfFrustum® fr, pfPolytope *dst);

void pfGetFrustGLProjMat(const pfFrustum* fr, pfMatrix mat);

int pfGetFrustEye(const pfFrustum* fr, pfVec3 eye);

void pfMakePerspFrust(pfFrustum® fr, float left, float right, float bot, float top);
void pfMakeOrthoFrust(pfFrustum* fr, float left, float right, float bot, float top);
void pfMakeSimpleFrust(pfFrustum* fr, float fov);

void pfOrthoXformFrust(pfFrustum* fr, const pfFrustum* fr2, const pfMatrix mat);
int pfFrustContainsPt(const pfFrustum® fr, const pfVec3 pt);

int pfFrustContainsSphere(const pfFrustum* fr, const pfSphere *sphere);

int pfFrustContainsBox(const pfFrustum* fr, const pfBox *box);

int pfFrustContainsCyl(const pfFrustum* fr, const pfCylinder *cyl);

void pfApplyFrust(const pfFrustum* fr);

Triangle Intersection
This routine returns the intersection of a triangle with a line segment and is the basis for Performer’s per-
forming intersection testing and picking against geometry contained in pfGeoSets.

int pfTrilsectSeg(const pfVec3 ptl, const pfVec3 pt2, const pfVec3 pt3, const pfSeg* seg, float* d);

LIBPFDU
Database Conversions
IRIS Performer provides an extensive array of converters which load file-based geometry formats into a
pfScene hierarchical scene graph. These functions also provide the capability to set attributes which
modify the behavior of individual loaders.

pfNode* pfdLoadFile(const char *file);

IRIS Performer 2.0 C Reference Pages

Performer(3pf)

int
pfNode*
void*
int
int
FILE*
void
void
int
void
void*
void
float
void

pfdStoreFile(pfNode *root, const char *file);
pfdConvertFrom(void *root, const char *ext);
pfdConvertTo(pfNode* root, const char *ext);
pfdInitConverter(const char *ext);
pfdExitConverter(const char *ext);

pfdOpenFile(const char *file);

pfdAddExtAlias(const char *ext, const char *alias);
pfdConverterMode(const char *ext, int mode, int value);
pfdGetConverterMode(const char *ext, int mode);
pfdConverterAttr(const char *ext, int which, void *attr);
pfdGetConverterAttr(const char *ext, int which);
pfdConverterVal(const char *ext, int which, float val);
pfdGetConverterVal(const char *ext, int which);
pfdPrintSceneGraphStats(pfNode *node, double elapsedTime);

Generate pfGeoSets
These routines are provided to conveniently construct pfGeoSets for various geometric objects. The
resulting objects are always positioned and sized in canonical ways. The user can then apply a transfor-
mation to these pfGeoSets to achieve the desired shape and position.

pfGeoSet * pfdNewCube(void *arena);

pfGeoSet * pfdNewSphere(int ntris, void *arena);

pfGeoSet * pfdNewCylinder(int ntris, void *arena);

pfGeoSet * pfdNewCone(int ntris, void *arena);

pfGeoSet * pfdNewPipe(float botRadius, float topRadius, int ntris, void *arena);
pfGeoSet * pfdNewPyramid(void *arena);

pfGeoSet * pfdNewArrow(int ntris, void *arena);

pfGeoSet * pfdNewDoubleArrow(int ntris, void *arena);

pfGeoSet * pfdNewCircle(int ntris, void *arena);

pfGeoSet * pfdNewRing(int ntris, void *arena);

void
void

pfdXformGSet(pfGeoSet *gset, pfMatrix mat);
pfdGSetColor(pfGeoSet *gset, float 1, float g, float b, float a);

Mesh Triangles
Forming independent triangles into triangle strips (or meshes) can significantly improve rendering per-
formance on IRIS systems. Strips reduce the amount of work required by the CPU, bus, and graphics
subsystem. IRIS Performer provides this utility facility for converting independent triangles into strips.

pfGeoSet* pfdMeshGSet(pfGeoSet *gset);

void
int

pfdMesherMode(int mode, int val);
pfdGetMesherMode(int mode);

Ixi

Performer(3pf) IRIS Performer 2.0 C Reference Pages

Ixii

void pfdShowStrips(pfGeoSet *gset);

Optimize Scene Graphs

pfdCleanTree and pfdStaticize optimize the scene graph. pfdCleanTree removes pfGroups with one or
fewer child and pfSCSes with identity transformations. pfdStaticize conditionally converts pfDCSes to
pfSCSes, usually in preparation for pfFlatten.

pfNode* pfdCleanTree(pfNode *node, pfuTravFuncType doitfunc);

void pfdReplaceNode(pfNode *oldn, pfNode *newn);

void pfdInsertGroup(pfNode *oldn, pfGroup *grp);

void pfdRemoveGroup(pfGroup *oldn);

pfNode* pfdFreezeTransforms(pfNode *node, pfuTravFuncType doitfunc);

Breakup Scene Graphs

pfdBreakup is provided as a utility to break unstructured scene geometry into a spacially subdivided
scene hierarchy. Spacially subdivided geometry is more easily culled and less time is spent drawing
geometry which does not contribute to the final image.

pfNode* pfdBreakup(pfGeode *geode, float geodeSize, int stripLength, int geodeChild);

Generate Hierarchies

For performance reasons, it is desirable that the geometry in a scene be organized into a spatial hierarchy.
However, it is often easiest to model geometry using logical, rather than spatial, divisions.
pfdTravGetGSets and pfdSpatialize can be used to partition an already constructed scene.

pfList* pfdTravGetGSets(pfNode *node);
pfGroup*
pfdSpatialize(pfGroup *group, float maxGeodeSize, int maxGeoSets);

Share pfGeoStates

It is obviously desirable to share state between database objects in IRIS Performer whenever possible.
The notion of pervasive state sharing underpins the entire pfGeoState mechanism. Common data such
as texture, materials, and lighting models are often duplicated in many different objects throughout a
database. This collection of functions provides the means necessary to easily achieve sharing among
these objects by automatically producing a non-redundant set of states.

pfdShare* pfdNewShare(void);

int pfdCleanShare(pfdShare *share);

void pfdDelShare(pfdShare *share, int deepDelete);
void pfdPrintShare(pfdShare *share);

int pfdCountShare(pfdShare *share);

pfList* pfdGetSharedList(pfdShare *share, pfType* type);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfObject* pfdNewSharedObject(pfdShare *share, pfObject *object);
pfObject* pfdFindSharedObject(pfdShare *share, pfObject *object);

int pfdAddSharedObject(pfdShare *share, pfObject *object);
void pfdMakeShared(pfNode *node);

void pfdMakeSharedScene(pfScene *scene);

int pfdCleanShare(pfdShare *share);

int pfdRemoveSharedObject(pfdShare *share, pfObject *object);

pfList* pfdGetNodeGStateList(pfNode *node);

Combine pfLayers

When multiple sibling layer nodes have been created, efficiency will be improved by combining them
together. pfdCombineLayers provides for exactly this kind of optimization.

void pfdCombineLayers(pfNode *node);

Combine pfBillboards

The

The performance of pfBillboard nodes is enhanced when they contain several pfGeoSets each as opposed
to a scene graph with a large number of single pfGeoSet pfBillboards. The pfdCombineBillboards()
traversal creates this efficient situation by traversing a scene graph and combining the pfGeoSets of
sibling pfBillboard nodes into a single pfBillboard node.

void pfdCombineBillboards(pfNode *node, int sizeLimit);

Geometry Builder

It is seldom the case that database models are expressed directly in internal Performer structures (-
pfGeoSets). Instead, models are generally described in geometric constructs defined by the modeller.
The Performer GeoBuilder is meant to simplify the task of translating model geometry into Performer
geometry structures. The GeoBuilder can also create many kinds of polygon mesh (e.g. triangle-strips)
pfGeoSets, which can significantly improve performance.

pfdGeom* pfdNewGeom(int numV);

void pfdResizeGeom(pfdGeom *geom, int numV);

void pfdDelGeom(pfdGeom *geom);

int pfdReverseGeom(pfdGeom *geom);

pfdGeoBuilder* pfdNewGeoBldr(void);

void pfdDelGeoBldr(pfdGeoBuilder* bldr);

void pfdGeoBldrMode(pfdGeoBuilder* bldr, int mode, int val);

int pfdGetGeoBldrMode(pfdGeoBuilder* bldr, int mode);

int pfdTriangulatePoly(pfdGeom *pgon, pfdPrim *triList);

void pfdAddGeom(pfdGeoBuilder *bldr, pfdGeom *Geom, int num);
void pfdAddLineStrips(pfdGeoBuilder *bldr, pfdGeom *lineStrips, int num);
void pfdAddLines(pfdGeoBuilder *bldr, pfdGeom *lines);

Ixiii

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

void
void
void
void
void
void
void
void
void
void
int
const pfList*
void

The Scene Builder

pfdAddPoints(pfdGeoBuilder *bldr, pfdGeom *points);
pfdAddPoly(pfdGeoBuilder *bldr, pfdGeom *poly);
pfdAddIndexedLineStrips(pfdGeoBuilder *bldr, pfdGeom *lines, int num);
pfdAddIndexedLines(pfdGeoBuilder *bldr, pfdGeom *lines);
pfdAddIndexedPoints(pfdGeoBuilder *bldr, pfdGeom *points);
pfdAddIndexedPoly(pfdGeoBuilder *bldr, pfdGeom *poly);
pfdAddIndexedTri(pfdGeoBuilder *bldr, pfdPrim *tri);
pfdAddLine(pfdGeoBuilder *bldr, pfdPrim *line);
pfdAddPoint(pfdGeoBuilder *bldr, pfdPrim *Point);
pfdAddTri(pfdGeoBuilder *bldr, pfdPrim *tri);
pfdGetNumTris(pfdGeoBuilder *bldr);
pfdBuildGSets(pfdGeoBuilder *bldr);

pfdPrintGSet(pfGeoSet *gset);

The Performer Builder is meant to manage most of the details of constructing efficient runtime structures
from input models. It provides a simple and convenient interface for bringing scene data into the applica-
tion without the need for considering how best to structure that data for efficient rendering in Performer.
The Builder provides a comprehensive interface between model input code (such as database file parsers)
and the internal mechanisms of scene representation in Performer. In addition to handling input
geometry, as the GeoBuilder does, the Builder also manages the associated graphics state.

void

void
pfdBuilder *
void

void
pfdBuilder *
void

void

int

void

void *
pfObject *
void

void

void

void

void

void

pfdInitBldr(void);

pfdExitBldr(void);

pfdNewBldr(void);
pfdDelBldr(pfdBuilder *bldr);
pfdSelectBldr(pfdBuilder *bldr);
pfdGetCurBldr(void);
pfdBldrDeleteNode(pfNode *node);
pfdBldrMode(int mode, int val);
pfdGetBldrMode(int mode);
pfdBldrAttr(int which, void *attr);
pfdGetBldrAttr(int which);
pfdGetTemplateObject(pfType *type);
pfdResetObject(pfObject *obj);
pfdResetAllTemplateObjects(void);
pfdMakeDefaultObject(pfObject *obj);
pfdResetBldrGeometry(void);
pfdResetBldrShare(void);
pfdCleanBldrShare(void);

IRIS Performer 2.0 C Reference Pages

Performer(3pf)

void pfdCaptureDefaultBldrState(void);

void pfdResetBldrState(void);

void pfdPushBldrState(void);

void pfdPopBldrState(void);

void pfdSaveBldrState(void *name);

void pfdLoadBldrState(void *name);

void pfdBldrGState(const pfGeoState *gstate);

const pfGeoState *
void

pfdGetBldrGState(void);
pfdBldrStateVal(int which, float val);

float pfdGetBldrStateVal(int which);

void pfdBldrStateMode(int mode, int val);

int pfdGetBldrStateMode(int mode);

void pfdBldrStateAttr(int which, const void *attr);
const void * pfdGetBldrStateAttr(int attr);

void pfdBldrStateInherit(uint mask);

uint pfdGetBldrStateInherit(void);

void pfdSelectBldrName(void *name);

void * pfdGetCurBldrName(void);

void pfdAddBldrGeom(pfdGeom *p, int n);

void pfdAddIndexedBldrGeom(pfdGeom *p, int n);
pfNode * pfdBuild(void);

pfNode * pfdBuildNode(void *name);

void pfdDefaultGState(pfGeoState *def);

const pfGeoState* pfdGetDefaultGState(void);

void pfdMakeSceneGState(pfGeoState *sceneGState,
void pfdOptimizeGStateList(pfList *gstateList,

Haeberli Font Extensions
This is Paul Haeberli’s cool font extension header file - Performer uses Paul’s font library to load fonts
into pfFont structures.

pfFont* pfdLoadFont(const char *ftype, const char *name, int style);
pfFont* pfdLoadFont_typel(const char *name, int style);

Texture Callbacks
These routines are now obsolete in that Performer now supports the notion of texture coordinate genera-
tion in pfGeoStates via the pfTexGen pfObject. However, these routines are still a good example of how
to implement functionality in the draw process through callbacks. Similarly this set of routines also fits
into the builder state extension mechanism - see the pfdBuilder man pages.

int pfdPreDrawTexgenExt(pfTraverser *trav, void *data);

Ixv

Performer(3pf) IRIS Performer 2.0 C Reference Pages

int pfdPostDrawTexgenExt(pfIraverser *trav, void *data);

int pfdPreDrawReflMap(pfTraverser *trav, void *data);

int pfdPostDrawReflMap(pfIraverser *trav, void *data);

int pfdPreDrawContourMap(pfTraverser *trav, void *data);

int pfdPostDrawContourMap(pfIraverser *trav, void *data);

int pfdPreDrawLinearMap(pfTraverser *trav, void *data);

int pfdPostDrawLinearMap(pfIraverser *trav, void *data);

void pfdTexgenParams(const float *newParamsX, const float *newParamsY);

Function Extensors
pfdExtensors provide a framework for extending application functionality. They allow generalized call-
backs to be attached to the model database. These callbacks can be called from any Performer traversal.
The following functions are used to manipulate and install extensors.

int pfdAddState(void *name, long dataSize, void (*initialize)(void *data),
void (*deletor)(void *data), int (*compare)(void *datal, void *data2),
long (*copy)(void *dst, void *src), int token);

void pfdStateCallback(int stateToken, int whichCBack,
pfNodeTravFuncType callback);

pfNodeTravFuncType pfdGetStateCallback(int stateToken, int which);

int pfdGetStateToken(void *name);

int pfdGetUniqueStateToken(void);

pfdExtensor* pfdNewExtensor(int which);

pfdExtensorType* pfdNewExtensorType(int token);

int pfdCompareExtensor(void *a, void *b);

int pfdCompareExtraStates(void *lista, void *listb);

void pfdCopyExtraStates(pfList *dst, pfList *src);

pfdExtensor* pfdGetExtensor(int token);

pfdExtensorType* pfdGetExtensorType(int token);

void * pfdUniqifyData(pfList *dataList, const void *data, long dataSize,

void *(*newData)(long), int (*compare)(void *, void *),
long (*copy)(void *, void *), int *compareResult);

LIBPFUI

Ixvi

void pfilnit(void);

pfiMotionCoord
pfType* pfiGetMotionCoordClassType(void);
pfiMotionCoord * pfiNewMotionCoord(void *arena);

pfilnputCoord

IRIS Performer 2.0 C Reference Pages Performer(3pf)

pfType*

pfiGetInputCoordClassType(void);

pfilnputCoord * pfiNewInputCoord(void *arena);

void
void

pfilnputXform

pfilnputCoordVec(pfilnputCoord *ic, float *vec);
pfiGetInputCoordVec(pfilnputCoord *ic, float *vec);

Building user interfaces requires managing user input events. These functions provide a window system
independent means of handling event streams.

pfilnput *
void

const char *
void

int

void

int

void

void
void
void
void
void

void
void
void
int
pfilnputXform *
void
int
void
void
void
void
int

pfiNewInput(void *arena);
pfilnputName(pfilnput *in, const char *name);
pfilsIXGetName(pfilnput *in);
pfilnputFocus(pfilnput *in, int focus);
pfiGetInputFocus(pfilnput *in);
pfilnputEventMask(pfilnput *in, int emask);
pfiGetInputEventMask(pfilnput *in);
pfilnputEventStreamCollector(pfilnput *in,
pfiEventStreamHandlerType func, void *data);
pfiGetInputEventStreamCollector(pfilnput *in,
pfiEventStreamHandlerType *func, void **data);
pfilnputEventStreamProcessor(pfilnput *in,
pfiEventStreamHandlerType func, void *data);
pfiGetInputEventStreamProcessor(pfilnput *in,
pfiEventStreamHandlerType *func, void **data);
pfilnputEventHandler(pfilnput *in, pfuEventHandlerFuncType func,
void *data);
pfiGetInputEventHandler(pfilnput *in, pfuEventHandlerFuncType *func,
void **data);
pfiResetInput(pfilnput *in);
pfiCollectInputEvents(pfilnput *in);
pfiProcessInputEvents(pfilnput *in);
pfiHaveFastMouseClick(pfuMouse *mouse, int button, float msecs);
pfiNewIXform(void *arena);
pfilXformFocus(pfilnputXform *in, int focus);
pfilsIXformInMotion(pfilnputXform *ix);
pfiStopIXform(pfilnputXform *ix);
pfiResetIXform(pfilnputXform *ix);
pfiUpdateIXform(pfilnputXform *ix);
pfilXformMode(pfilnputXform *ix, int mode, int val);
pfiGetIXformMode(pfilnputXform *ix, int mode);

Ixvii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

void pfiResetIXformPosition(pfilnputXform *ix);

void pfilXformMat(pfilnputXform *ix, pfMatrix mat);

void pfiGetIXformMat(pfilnputXform *ix, pfMatrix mat);

void pfilXformInput(pfilnputXform *ix, pfilnput *in);

pfilnput* pfiGetIXformInput(pfilnputXform *ix);

void pfilXformInputCoordPtr(pfilnputXform *ix, pfilnputCoord *xcoord);

pfilnputCoord* pfiGetIXformInputCoordPtr(pfilnputXform *ix);

void pfilXformMotionCoord(pfilnputXform *ix, pfiMotionCoord *xcoord);

void pfiGetIXformMotionCoord(pfilnputXform *ix, pfiMotionCoord *xcoord);

void pfilXformResetCoord(pfilnputXform *ix, pfCoord *resetPos);

void pfiGetIXformResetCoord(pfilnputXform *ix, pfCoord *resetPos);

void pfilXformCoord(pfilnputXform *ix, pfCoord *coord);

void pfiGetIXformCoord(pfilnputXform *ix, pfCoord *coord);

void pfilXformStartMotion(pfilnputXform *xf, float startSpeed, float startAccel);

void pfiGetIXformStartMotion(pfilnputXform *xf, float *startSpeed,
float *startAccel);

void pfilXformMotionLimits(pfilnputXform *xf, float maxSpeed, float angularVel,
float maxAccel);

void pfiGetIXformMotionLimits(pfilnputXform *xf, float *maxSpeed,
float *angularVel, float *maxAccel);

void pfilXformDBLimits(pfilnputXform *xf, pfBox *dbLimits);

void pfiGetIXformDBLimits(pfilnputXform *xf, pfBox *dbLimits);

void pfilXformBSphere(pfilnputXform *xf, pfSphere *sphere);

void pfiGetIXformBSphere(pfilnputXform *xf, pfSphere *sphere);

void pfilXformUpudateFunc(pfilnputXform *ix,
pfilnputXformUpdateFuncType func, void *data);

void pfiGetIXformUpudateFunc(pfilnputXform *ix,
pfilnputXformUpdateFuncType *func, void **data);

void pfilXformMotionFuncs(pfilnputXform *ix, pfilnputXformFuncType start,
pfilnputXformFuncType stop, void *data);

void pfiGetIXformMotionFuncs(pfilnputXform *ix, pfilnputXformFuncType *start,

pfilnputXformFuncType *stop, void **data);
pfilnputXformTrackball * pfiNewIXformTrackball(void *arena);

void pfilXformTrackballMode(pfilnputXformTrackball *tb, int mode, int val);

int pfiGetIXformTrackballMode(pfilnputXformTrackball *tb, int mode);

pfilnputXformTrackball * pfiCreate2DIXformTrackball(void *arena);

int pfiUpdate2DIXformTrackball(pfilnputXform *tb, pfilnputCoord *icoord,
void *data);

pfType * pfiGetIXformTravelClassType(void);

pfType * pfiGetIXformDriveClassType(void);

Ixviii

IRIS Performer 2.0 C Reference Pages

Performer(3pf)

pfType *

pfType *
pfilnputXformDrive *
void

int

void

float
pfilnputXformDrive *
int

pfilnputXformFly *
void

int
pfilnputXformFly *
int

pfiCollide

pfiGetIXformFlyClassType(void);
pfiGetIXformTrackballClassType(void);
pfiNewIXformDrive(void *arena);
pfilXformDriveMode(pfilnputXformDrive *drive, int mode, int val);
pfiGetIXformDriveMode(pfilnputXformDrive *drive, int mode);
pfilXformDriveHeight(pfilnputXformDrive* drive, float height);
pfiGetIXformDriveHeight(pfilnputXformDrive* drive);
pfiCreate2DIXformDrive(void *arena);
pfiUpdate2DIXformDrive(pfilnputXform *drive, pfilnputCoord *icoord,
void *data);
pfiNewIXFly(void *arena);
pfilXformFlyMode(pfilnputXformFly *fly, int mode, int val);
pfiGetIXformFlyMode(pfilnputXformFly *fly, int mode);
pfiCreate2DIXformFly(void *arnea);
pfiUpdate2DIXformFly(pfilnputXform *fly, pfilnputCoord *icoord,
void *data);

For realistic motion through a scene, an application must detect collisions between the viewer and the
scene. These functions provide that functionality. Typical uses of these utilities are to prevent movement
through walls and to maintain a constant "driving" distance above the ground.

pfType * pfiGetCollideClassType(void);

pfiCollide * pfiNewCollide(void *arena);

void pfiEnableCollide(pfiCollide *collide);

void pfiDisableCollide(pfiCollide *collide);

int pfiGetCollideEnable(pfiCollide *collide);

void pfiCollideMode(pfiCollide *collide, int mode, int val);

int pfiGetCollideMode(pfiCollide *collide, int mode);

void pfiCollideStatus(pfiCollide *collide, int status);

int pfiGetCollideStatus(pfiCollide *collide);

void pfiCollideDist(pfiCollide *collide, float dist);

float pfiGetCollideDist(pfiCollide *collide);

void pfiCollideHeightAboveGrnd(pfiCollide *collide, float dist);
float pfiGetCollideHeightAboveGrnd(pfiCollide *collide);

void pfiCollideGroundNode(pfiCollide *collide, pfNode* ground);
pfNode* pfiGetCollideGroundNode(pfiCollide *collide);

void pfiCollideObjNode(pfiCollide *collide, pfNode* db);
pfNode* pfiGetCollideObjNode(pfiCollide *collide);

void pfiGetCollideMotionCoord(pfiCollide *collide, pfiMotionCoord* xcoord);

Ixix

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

Ixx

void

void

int
pfiPick

pfiCollideFunc(pfiCollide *collide, pfiCollideFuncType func, void *data);
pfiGetCollisionFunc(pfiCollide *collide, pfiCollideFuncType *func, void **data);
pfiUpdateCollide(pfiCollide *collide);

The pfiPick utility facilitates user interaction and manipulation of a scene. It provides a means to translate
mouse locations on the screen into the coordinate space of the world being viewed. Having done this, it
can also determine what objects are being pointed to by the mouse.

pfType *
pfiPick *
void

int

void
void
void
void
void

int
pfNode *
pfGeoSet *
void

int

void

pfiXformer

pfiGetPickClassType(void);

pfiNewPick(void *arena);

pfiPickMode(pfiPick *pick, int mode, int val);
pfiGetPickMode(pfiPick *pick, int mode);
pfiPickHitFunc(pfiPick *pick, pfiPickFuncType func, void *data);
pfiGetPicktHitFunc(pfiPick *pick, pfiPickFuncType *func, void **data);
pfiAddPickChan(pfiPick *pick, pfChannel *chan);
pfilnsertPickChan(pfiPick *pick, int index, pfChannel *chan);
pfiRemovePickChan(pfiPick *pick, pfChannel *chan);
pfiGetPickNumHits(pfiPick *pick);

pfiGetPickNode(pfiPick *pick);

pfiGetPickGSet(pfiPick *pick);

pfiSetupPickChans(pfiPick *pick);

pfiDoPick(pfiPick *pick, int x, int y);

pfiResetPick(pfiPick *pick);

pfiXformer objects provide a simple means for user-controlled motion in a scene. The pfiXformer
updates a transformation matrix based on a selected motion model and user input. This transformation
matrix can be used by the application for whatever purposes it desires. In particular, the matrix can be
used to update the viewpoint defined for a pfChannel or the transformation of a pfDCS node.

pfType* pfiGetXformerClassType(void);

pfiXformer * pfiNewXformer(void* arena);

void pfiXformerModel(pfiXformer* xf, int index, pfilnputXform* model);
void pfiSelectXformerModel(pfiXformer* xf, int which);

pfilnputXform* pfiGetXformerCurModel(pfiXformer* xf);

int pfiGetXformerCurModelIndex(pfiXformer* xf);

int pfiRemoveXformerModel(pfiXformer* xf, int index);

int pfiRemoveXformerModelIndex(pfiXformer* xf, pfilnputXform* model);
void pfiStopXformer(pfiXformer* xf);

void pfiResetXformer(pfiXformer* xf);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void
void
void

void
void
void
void
void
void
void
void
void
pfNode *
void
void
void

void

void

void

int

void

int

void

int

pfType*
pfiTDEXformer *
pfiXformer *

void
void

void
float
void
pfilnputXformTrackball *
void

pfiResetXformerPosition(pfiXformer* xf);
pfiCenterXformer(pfiXformer* xf);
pfiXformerAutoInput(pfiXformer* xf, pfChannel* chan, pfuMouse* mouse,

pfuEventStream* events);
pfiXformerMat(pfiXformer* xf, pfMatrix mat);
pfiGetXformerMat(pfiXformer* xf, pfMatrix mat);
pfiXformerModelMat(pfiXformer* xf, pfMatrix mat);
pfiGetXformerModelMat(pfiXformer* xf, pfMatrix mat);
pfiXformerCoord(pfiXformer* xf, pfCoord *coord);
pfiGetXformerCoord(pfiXformer* xf, pfCoord *coord);
pfiXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);
pfiGetXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);
pfiXformerNode(pfiXformer* xf, pfNode *node);
pfiGetXformerNode(pfiXformer* xf);
pfiXformerAutoPosition(pfiXformer* xf, pfChannel *chan, pfDCS *dcs);
pfiGetXformerAutoPosition(pfiXformer* xf, pfChannel **chan, pfDCS **dcs);
pfiXformerLimits(pfiXformer* xf, float maxSpeed, float angularVel,

float maxAccel, pfBox* dbLimits);
pfiGetXformerLimits(pfiXformer* xf, float *maxSpeed, float *angularVel,

float *maxAccel, pfBox* dbLimits);
pfiEnableXformerCollision(pfiXformer* xf);
pfiDisableXformerCollision(pfiXformer* xf);
pfiGetXformerCollisionEnable(pfiXformer* xf);
pfiXformerCollision(pfiXformer* xf, int mode, float val, pfNode* node);
pfiGetXformerCollisionStatus(pfiXformer* xf);
pfiUpdateXformer(pfiXformer* xf);
pfiCollideXformer(pfiXformer* xf);
pfiGetTDFXformerClassType(void);
pfiNewTDFXformer(void* arena);
pfiCreateTDFXformer(pfilnputXformTrackball *tb,

pfilnputXformDrive *drive, pfilnputXformFly *fly, void *arena);
pfiTDFXformerStartMotion(pfiTDFXformer* xf, float startSpeed,

float startAccel, float accelMult);
pfiGetTDFXformerStartMotion(pfiTDFXformer* xf, float *startSpeed,

float *startAccel, float *accelMult);
pfiTDFXformerFastClickTime(pfiTDFXformer* xf, float time);
pfiGetTDFXformerFastClickTime(pfiXformer* xf);
pfiTDFXformerTrackball(pfiTDFXformer *xf, pfilnputXformTrackball *tb);
pfiGetTDFXformerTrackball(pfiTDFXformer *xf);
pfiTDFXformerDrive(pfiTDFXformer *xf, pfilnputXformDrive *tb);

Ixxi

Performer(3pf) IRIS Performer 2.0 C Reference Pages

pfilnputXformFly * pfiGetTDFXformerFly(pfiTDFXformer *xf);

void pfiTDFXformerFly(pfiTDFXformer *xf, pfilnputXformFly *tb);

pfilnputXformDrive * pfiGetTDFXformerDrive(pfiTDFXformer *xf);

int pfiProcessTDFXformerMouseEvents(pfilnput *, pfuEventStream *,
void *data);

void pfiProcessTDFXformerMouse(pfiTDFXformer *xf, pfuMouse *mouse,
pfChannel *inputChan);

void pfiProcessTDFTrackballMouse(pfiTDFXformer *xf,
pfilnputXformTrackball *trackball, pfuMouse *mouse);

void pfiProcessTDFTravelMouse(pfiTDFXformer *xf, pfilnputXformTravel *tr,
pfuMouse *mouse);

LIBPFUTIL
libpfutil Management

Before using any libpfutil utilities, the library must be initialized. These functions provide for proper ini-
tialization and control of libpfutil.

void pfulnitUtil(void);
pfDataPool* pfuGetUtilDPool(void);
void pfuExitUtil(void);

void pfuDPoolSize(long size);
long pfuGetDPoolSize(void);

volatile void* pfuFindUtilDPData(int id);

Processor Control
In certain circumstances, users may wish to control which CPU a particular IRIS Performer subprocess
runs on. They might even wish to exclusively devote a particular processor to a given subprocess. These

func

int
int
int
int
int
int
int

tions provide control of the scheduling of IRIS Performer subprocesses on a machine’s processors.

pfuFreeCPUs(void);
pfuRunProcOn(int cpu);
pfuLockDownProc(int cpu);
pfuLockDownApp(void);
pfuLockDownCull(pfPipe *);
pfuLockDownDraw(pfPipe *);
pfuPrioritizeProcs(int onOff);

Multiprocess Rendezvous
These rendezvous functions provide the functionality necessary for synchronizing master and slave

proc

Ixxii

esses in a multiprocessing environment.

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void pfulnitRendezvous(pfuRendezvous *rvous, int numSlaves);
void pfuMasterRendezvous(pfuRendezvous *rvous);
void pfuSlaveRendezvous(pfuRendezvous *rvous, int id);

GLX Mixed Mode

The libpfutil GLX routines are now provided for compatibility with previous versions of Performer. New
development should be done based on the pfWindow and pfPipeWindow API that provides a single API
for managing IrisGL, Mixed Mode, and OpenGL windows.

pfuXDisplay *
pfuGLXWindow *
void

const char *

void

int

void

void
void
void
void
pfFBConfig

Input Handling

pfuOpenXDisplay(int screen);

pfuGLXWinopen(pfPipe *p, pfPipeWindow *pw, const char *name);

pfuGetGLXWin(pfPipe *pipe, pfuGLXWindow *gIxWin);

pfuGetGLXDisplayString(pfPipe *pipe);

pfuGLMapcolors(pfVec3 *clrs, int start, int num);

pfuGLXAllocColormap(pfuXDisplay *dsp, pfuXWindow w);

pfuGLXMapcolors(pfuXDisplay *dsp, pfuXWindow w, pfVec3 *clrs, int loc,
int num);

pfuMapWinColors(pfWindow *w, pfVec3 *clrs, int start, int num);

pfuMapPWinColors(pfPipeWindow *pwin, pfVec3 *clrs, int start, int num);

pfuPrintWinFBConfig(pfWindow *win, FILE *file);

pfuPrintPWinFBConfig(pfPipeWindow *pwin, FILE *file);

pfuChooseFBConfig(Display *dsp, int screen, int *constraints, void *arena);

These functions provide an interface for managing X and GL event streams.

pfuEventQueue *
void

void

void

void

void
pfuEventStream *
void

void

void

int

void

void

int

void

pfuNewEventQ(pfDataPool *dp, int id);
pfuResetEventStream(pfuEventStream *es);
pfuResetEventQ(pfuEventQueue *eq);
pfuAppendEventQ(pfuEventQueue *eq0, pfuEventQueue *eql);
pfuAppendEventQStream(pfuEventQueue *eq, pfuEventStream *es);
pfuEventQStream(pfuEventQueue *eq, pfuEventStream *es);
pfuGetEventQStream(pfuEventQueue *eq);
pfuGetEventQEvents(pfuEventStream *events, pfuEventQueue *eq);
pfulncEventQFrame(pfuEventQueue *eq);
pfuEventQFrame(pfuEventQueue *eq, int val);
pfuGetEventQFrame(pfuEventQueue *eq);
pfulncEventStreamFrame(pfuEventStream *es);
pfuEventStreamFrame(pfuEventStream *es, int val);
pfuGetEventStreamFrame(pfuEventStream *es);
pfulnitInput(pfPipeWindow *pw, int mode);

Ixxiii

Performer(3pf) IRIS Performer 2.0 C Reference Pages

void pfuExitInput(void);

int pfuMapMouseToChan(pfuMouse *mouse, pfChannel *chan);

int pfuMouseInChan(pfuMouse *mouse, pfChannel *chan);

void pfuCollectInput(void);

void pfuCollectGLEventStream(pfuEventStream *events, pfuMouse *mouse,
int handlerMask, pfuEventHandlerFuncType handlerFunc);

void pfuCollectXEventStream(pfWSConnection dsp, pfuEventStream *events,

pfuMouse *mouse, int handlerMask,
pfuEventHandlerFuncType handlerFunc);

void pfuGetMouse(pfuMouse *mouse);
void pfuGetEvents(pfuEventStream *events);
void pfulnputHandler(pfuEventHandlerFuncType userFunc, uint mask);

void pfuMouseButtonClick(pfuMouse *mouse,
void pfuMouseButtonRelease(pfuMouse *mouse,
double pfuMapXTime(double xtime);

Cursor Control

Each window managed by Performer, both pfWindows and pfPipeWindows, can have an associated
cursor. These functions can be used to manage the various cursors desired by an application.

Cursor pfuGetInvisibleCursor(void);

void pfuLoadPWinCursor(pfPipeWindow *w, Cursor c);
void pfuLoadWinCursor(pfWindow *w, Cursor c);
Cursor pfuCreateDftCursor(int index);

void pfuCursor(Cursor ¢, int index);

Cursor pfuGetCursor(int index);

void pfulnitGUICursors(void);

void pfuGUICursor(int target, Cursor c);

Cursor pfuGetGUICursor(int target);

void pfuGUICursorSel(Cursor sel);

Cursor pfuGetGUICursorSel(void);

void pfuUpdateGUICursor(void);

OpenGL X Fonts

IXxiv

It is convenient to be able to draw text in Performer windows. When programming with OpenGL, an
application must use X fonts for this purpose. These functions simplify the use of X fonts for this purpose
by hiding much of the low-level font management.

void pfuLoadXFont(char *fontName, pfuXFont *fnt);
void pfuMakeXFontBitmaps(pfuXFont *fnt);
void pfuMakeRasterXFont(char *fontName, pfuXFont *font);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void pfuSetXFont(pfuXFont *);

void pfuGetCurXFont(pfuXFont *);

int pfuGetXFontWidth(pfuXFont *, const char *);

int pfuGetXFontHeight(pfuXFont *);

void pfuCharPos(float x, float y, float z);

void pfuDrawString(const char *s);

void pfuDrawStringPos(const char *s, float X, float y, float z);

Simple GUI
Many applications require a simple user interface. Their needs are often far more restricted than the func-
tionality provided by user interface libraries such as Motif. For those cases in which a simple and efficient
user interface is required, these functions can be used to provide one.

void pfulnitGUI(pfPipeWindow *pw);

void pfuExitGUI(void);

void pfuEnableGUI(int en);

void pfuUpdateGUI(pfuMouse *mouse);

void pfuRedrawGUI(void);

void pfuGUIViewport(float 1, float r, float b, float t);

void pfuGetGUIViewport(float *1, float *r, float *b, float *t);

int pfulnGUI(int x, int y);

void pfuFitWidgets(int val);

void pfuGetGUIScale(float *x, float *y);

void pfuGetGUITranslation(float *x, float *y);

void pfuGUIHIlight(pfHighlight *hlight);

pfHighlight * pfuGetGUIHlight(void);

pfuPanel* pfuNewPanel(void);

void pfuEnablePanel(pfuPanel *p);

void pfuDisablePanel(pfuPanel *p);

void pfuGetPanelOriginSize(pfuPanel *p, float *xo, float *yo, float *xs, float *ys);
pfuWidget * pfuNewWidget(pfuPanel *p, int type, int id);

int pfuGetWidgetType(pfuWidget *w);

void pfuEnableWidget(pfuWidget *w);

void pfuDisableWidget(pfuWidget *w);

int pfuGetWidgetld(pfuWidget *w);

void pfuWidgetDim(pfuWidget *w, int xo, int yo, int xs, int ys);
void pfuGetWidgetDim(pfuWidget *w, int *xo, int *yo, int *xs, int *ys);
void pfuWidgetLabel(pfuWidget *w, const char *label);

int pfuGetWidgetLabelWidth(pfuWidget *w);

const char * pfuGetWidgetLabel(pfuWidget *w);

IXXV

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

void

void

float

void

void

void

void
pfuWidgetActionFuncType
pfuWidgetSelectFuncType
pfuWidgetDrawFuncType
void

void
int

void
void
void
int

void
void
void
void
void

void

void

Scene Graph Traversal
Traversals are widely applicable to many tasks required in Performer applications. These functions pro-
vide a customizable, recursive traversal of an IRIS Performer scene graph.

IXXVvi

pfuWidgetRange(pfuWidget *w, int mode, float min, float max, float val);
pfuWidgetValue(pfuWidget *w, float val);
pfuGetWidgetValue(pfuWidget *w);
pfuWidgetDefaultValue(pfuWidget *w, float val);
pfuWidgetDrawFunc(pfuWidget *w, pfuWidgetDrawFuncType func);
pfuWidgetSelectFunc(pfuWidget *w, pfuWidgetSelectFuncType func);
pfuWidgetActionFunc(pfuWidget *w, pfuWidgetActionFuncType func);
pfuGetWidgetActionFunc(pfuWidget *w);
pfuGetWidgetSelectFunc(pfuWidget *w);
pfuGetWidgetDrawFunc(pfuWidget *w);
pfuWidgetSelections(pfuWidget *w, pfuGUIString *attrList, int *valList,
void (*funcList)(pfuWidget *w), int numSelections);
pfuWidgetSelection(pfuWidget *w, int index);
pfuGetWidgetSelection(pfuWidget *w);
pfuWidgetDefaultSelection(pfuWidget *w, int index);
pfuWidgetDefaultOnOff(pfuWidget * w, int on);
pfuWidgetOnOff(pfuWidget *w, int on);
pfulsWidgetOn(pfuWidget *w);
pfuResetGUI(void);
pfuResetPanel(pfuPanel *p);
pfuResetWidget(pfuWidget *w);
pfuDrawTree(pfChannel *chan, pfNode *node, pfVec3 panXYScale);
pfuDrawMessage(pfChannel *chan, const char *msg, int rel, int just, float x,
float y, int size, int cmode);
pfuDrawMessageCI(pfChannel *chan, const char *msg, int rel, int just,
float x, float y, int size, int textClr, int shadowClr);
pfuDrawMessageRGB(pfChannel *chan, const char *msg, int rel, int just,
float x, float y, int size, pfVec4 textClr, pfVec4 shadowClr);

int pfuTravCountNumVerts(pfNode *node);

int pfuTraverse(pfNode *node, pfuTraverser *trav);

void pfulnitTraverser(pfuTraverser *trav);

void pfuTravCalcBBox(pfNode *node, pfBox *box);

void pfuTravCountDB(pfNode *node, pfFrameStats *fstats);
void pfuTravGLProf(pfNode *node, int mode);

void pfuTravNodeAttrBind(pfNode *node, uint attr, uint bind);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

void pfuTravNodeHlight(pfNode *node, pfHighlight *hl);
void pfuTravPrintNodes(pfNode *node, const char *fname);
int pfuCalcDepth(pfNode *node);

void pfuTravCachedCull(pfNode* node, int numChans);

MultiChannel Option
These functions serve as a generic way of initializing channels when using the Multi-Channel Option
(MCO) available on RealityEngine graphics systems.

void pfuTileChans(pfChannel **chn, int nChans, int ntilesx, int ntilesy);

void pfuConfigMCO(pfChannel **chn, int nChans);

int pfuGetMCOChannels(pfPipe *p);

void pfuTileChan(pfChannel **chn, int thisChan, int nChans, float |, float 1, float b, float t);

MultiPipe Statistics
pfuManageMPipeStats provides a simple mechanism for acquiring frame timing statistics over a period
of time and saving them to a disk file.

int pfuManageMPipeStats(int nFrames, int nSampledPipes);

Path Following
Automated path following can greatly simplify the construction of interactive walkthrough applications.
These functions provide the means for creating and using automated paths.

pfuPath * pfuNewPath(void);

pfuPath * pfuSharePath(pfuPath *path);
pfuPath * pfuCopyPath(pfuPath *path);
pfuPath * pfuClosePath(pfuPath *path);

int pfuFollowPath(pfuPath *path, float seconds, pfVec3 where, pfVec3 orient);
int pfuPrintPath(pfuPath *path);

int pfuAddPath(pfuPath *path, pfVec3 first, pfVec3 final);

int pfuAddArc(pfuPath *path, pfVec3 center, float radius, pfVec2 angles);

int pfuAddFillet(pfuPath *path, float radius);

int pfuAddSpeed(pfuPath *path, float desired, float rate);

int pfuAddDelay(pfuPath *path, float delay);

int pfuAddFile(pfuPath *path, char *name);

Collision Detection
This is the old utility for collision detection. These functions are provided to ease the transition of existing
Performer-based applications to the new API. They should not be used in developing new software and
are likely to be removed in a future release. Refer to the reference pages for more information.

IXxvii

Performer(3pf)

IRIS Performer 2.0 C Reference Pages

void
pfChannel*
void

int

int

int

Timer Control
Tracking the passage of time is essential for interactive applications. Performer provides pfuTimer
objects, which are both real-time and independent of frame rate.

pfuTimer*
void

void
void
void
int
int

Hash Tables
Hash tables are an ubiquitous data structure. They are used internally by Performer, and many Per-
former applications will find them very useful. These functions provide a simple hash table facility to all
Performer-based systems.

pfuCollisionChan(pfChannel *chan);

pfuGetCollisionChan(void);

pfuCollideSetup(pfNode *node, int mode, int mask);

pfuCollideGrnd(pfCoord *coord, pfNode *node, pfVec3 zpr);

pfuCollideGrndObj(pfCoord *coord, pfNode *grndNode, pfVec3 zpr, pfSeg *seg,
pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

pfuCollideObj(pfSeg *seg, pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

pfuNewTimer(void *arena, int size);

pfulnitTimer(pfuTimer *timer, double start, double delta, void (*func)(pfuTimer®),
void *data);

pfuStartTimer(pfuTimer *timer);

pfuStopTimer(pfuTimer *timer);

pfuEvalTimers(void);

pfuEvalTimer(pfuTimer *timer);

pfuActiveTimer(pfuTimer * timer);

pfuHashTable* pfuNewHTable(int numb, int eltsize, void* arena);

void
void

pfuDelHTable(pfuHashTable* ht);
pfuResetHTable(pfuHashTable* ht);

pfuHashElt* pfuEnterHash(pfuHashTable* ht, pfuHashEIt* elt);

int
int
int
int

pfuRemoveHash(pfuHashTable* ht, pfuHashEIt* elt);
pfuFindHash(pfuHashTable* ht, pfuHashEIt* elt);
pfuHashGSetVerts(pfGeoSet *gset);
pfuCalcHashSize(int size);

Geometric Simplification
These functions can be used to automatically generate very simple level-of-detail representations of a sub-
graph from the bounding boxes of the geometric objects contained in that subgraph.

Ixxviii

pfLOD*

pfuBoxLOD(pfGroup *grp, int flat, pfVec4* clr);

pfGeoSet* pfuMakeBoxGSet(pfBox *box, pfVec4 clr, int flat);

IRIS Performer 2.0 C Reference Pages Performer(3pf)

Texture Loading
These functions assist in the sharing and downloading of textures, both of which are important for perfor-
mance. Sharing of texture data reduces memory requirements and can subsequently increase efficiency.
For consistent frame rates, it is also very important to download textures into the graphics pipeline’s phy-
sical texture memory before beginning simulation.

pfTexture* pfuNewSharedTex(const char *filename, void *arena);
pfList* pfuGetSharedTexList(void);

pfList * pfuMakeTexList(pfNode *node);

pfList * pfuMakeSceneTexList(pfScene *node);

void pfuDownloadTexList(pfList *list, int style);

int pfuGetTexSize(pfTexture *tex);

Texture Animation
It may be necessary to animate textures to achieve specific visual effects. These functions allow the appli-
cation to setup sequences of textures which define an animation.

void pfuNewTexList(pfTexture *tex);

pfList * pfuLoadTexListFiles(pfList “movieTexList, char nameList[][PF_MAXSTRING], int len);
pfList * pfuLoadTexListFmt(pfList “movieTexList, const char *fmtStr, int start, int end);
pfSequence * pfuNewProjector(pfTexture *handle);

int pfuProjectorPreDrawCB(pfTraverser *trav, void *travData);

Random Numbers
Generating good random numbers is very important for many simulation tasks. These functions provide
a portable interface to the system random number generator which is somewhat more convenient than
random.

void pfuRandomize(int seed);
long pfuRandomLong(void);
float pfuRandomFloat(void);
void pfuRandomColor(pfVec4 rgba, float minColor, float maxColor);

Flybox Control
These routines provide a simple interface to the BG Systems flybox but do not provide a flight model
based on the flybox.

int pfuOpenFlybox(char *p);

int pfuReadFlybox(int *dioval, float *inbuf);
int pfuGetFlybox(float *analog, int *but);
int pfuGetFlyboxActive(void);

int pfulnitFlybox(void);

IXXix

Performer(3pf) IRIS Performer 2.0 C Reference Pages

Smoke Simulation

These functions simulate the appearance of smoke and fire. They are included both as a utility in simula-
tions as well as a demonstration of how to model such phenomena.

void pfulnitSmokes(void);

pfuSmoke * pfuNewSmoke(void);

void pfuSmokeType(pfuSmoke *smoke, int type);

void pfuSmokeOrigin(pfuSmoke* smoke, pfVec3 origin, float radius);

void pfuSmokeDir(pfuSmoke* smoke, pfVec3 dir);

void pfuSmokeVelocity(pfuSmoke* smoke, float turbulence, float speed);

void pfuGetSmokeVelocity(pfuSmoke* smoke, float *turbulence, float *speed);
void pfuSmokeMode(pfuSmoke* smoke, int mode);

void pfuDrawSmokes(pfVec3 eye);

void pfuSmokeTex(pfuSmoke* smoke, pfTexture* tex);

void pfuSmokeDuration(pfuSmoke* smoke, float dur);

void pfuSmokeDensity(pfuSmoke* smoke, float dens, float diss, float expansion);
void pfuGetSmokeDensity(pfuSmoke* smoke, float *dens, float *diss, float *expansion);
void pfuSmokeColor(pfuSmoke* smoke, pfVec3 bgn, pfVec3 end);

LightPointState Utilities

These functions can derive a texture image from a pfLightPoint specification.

void pfuMakeLPStateShapeTex(pfLPointState *Ips, pfTexture *tex, int size);
void pfuMakeLPStateRangeTex(pfLPointState *Ips, pfTexture *tex, int size, pfFog *fog);

Draw Styles

IXXX

These functions demonstrate how to use multi-pass rendering to achieve various special drawing effects.
Hidden line elimination and haloed lines are two examples of effects which can be created using these
functions.

void pfuPreDrawStyle(int style, pfVec4 scribeColor);

void pfuPostDrawStyle(int style);

void pfuCalcNormalizedChanXY (float* px, float* py, pfChannel”* chan, int xpos, int ypos);
int pfuSaveImage(char* name, int xorg, int yorg, int xsize, int ysize, int saveAlpha);

libpf

libpf is a high-level library for
real-time graphics and visual
simulation.

This library provides a scene graph
structure and database traversals
including view culling, rendering
and collision detection in a
multiprocessed environment.

IRIS Performer 2.0 libpf C Reference Pages pfBillboard(3pf)

NAME
pfNewBboard, pfGetBboardClassType, pfBboardPos, pfGetBboardPos, pfBboardMode, pfGetBboard-
Mode, pfBboard Axis, pfGetBboardAxis — Create and update automatic rotation billboard nodes.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfBillboard * pfNewBboard(void);
pfType* pfGetBboardClassType(void);

void pfBboardPos(pfBillboard* bill, int i, const pfVec3 xyzOrigin);
void pfGetBboardPos(pfBillboard* bill, int i, pfVec3 xyzOrigin);
void pfBboardMode(pfBillboard* bill, int mode, int val);

int pfGetBboardMode(pfBillboard* bill, int mode);

void pfBboardAxis(pfBillboard* bill, const pfVec3 axis);

void pfGetBboard Axis(pfBillboard* bill, pfVec3 axis);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfBillboard is derived from the parent class pfGeode, so each of these member
functions of class pfGeode are also directly usable with objects of class pfBillboard. Casting an object of
class pfBillboard to an object of class pfGeode is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfGeode.

int pfAddGSet(pfGeode* geode, pfGeoSet* gset);

int pfRemoveGSet(pfGeode* geode, pfGeoSet* gset);

int pfInsertGSet(pfGeode* geode, int index, pfGeoSet* gset);

int pfReplaceGSet(pfGeode* geode, pfGeoSet* old, pfGeoSet* new);
pfGeoSet * pfGetGSet(const pfGeode* geode, int index);

int pfGetNumGSets(const pfGeode* geode);

Since the class pfGeode is itself derived from the parent class pfNode, objects of class pfBillboard can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);
pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfBillboard(3pf)

IRIS Performer 2.0 libpf C Reference Pages

int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void
void *

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfBillboard can
also be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfBillboard can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int
const char *
int

int

int

int

int

int

int

void
void *

DESCRIPTION

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfType *type);
pfIsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
pfGetArena(void *ptr);

A pfBillboard is a pfGeode in which each pfGeoSet rotates to follow the eyepoint. Billboards are useful
for complex objects which are roughly symmetrical about one or more axes. The billboard tracks the
viewer by rotating about an axis or a point to present the same image to the viewer using far fewer
polygons than a solid model. A classic example is a textured billboard of a single quadrilateral

IRIS Performer 2.0 libpf C Reference Pages pfBillboard(3pf)

representing a tree.

A pfBillboard can contain any number of pfGeoSets. pfGeoSets are added to and removed from the
pfBillboard using the pfAddGSet and pfRemoveGSet routines used with pfGeodes. Each pfGeoSet
rotates independently to follow the viewer. By convention, the pfGeoSet is rotated about the +Z axis so
that the +Y axis points towards the eye point.

pfNewBboard creates and returns a handle to a pfBillboard. Like other pfNodes, pfBillboards are always
allocated from shared memory and can be deleted using pfDelete.

pfGetBboardClassType returns the pfType* for the class pfBillboard. The pfType* returned by
pfGetBboardClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfBillboard. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfBboardPos specifies the position xyzOrigin for the pfGeoSet with index i. pfGetBboardPos copies the
position of the pfGeoSet with index 7 into xyzOrigin.

Billboards can either rotate about an axis or a point.

Axial billboards rotate about the axis specified by pfBboardAxis. The rotation is about the origin (0,0,0)
of the pfGeoSet. In all cases, the geometry is modeled in the XZ plane, with +Y forward. When rendered,
the billboard is rotated so that the -Y axis points back to the eye point. The +Z axis is the pfGeoSet’s axis
of rotation. An axial rotate billboard is specified by setting the PFBB_ROT mode of the billboard to the
value PFBB_AXIAL_ROT using pfBboardMode. The axis of rotation (x, y, z) is specified using
pfBboardAxis. pfGetBboardAxis returns the axis of the pfBillboard.

Point rotate billboards are useful for spherical objects or special effects such as smoke. They come in two
varieties depending on how the remaining rotational degree of freedom is determined (rotating the -Y
axis towards the eye, still leaves an arbitrary rotation about the pfGeoSet’s Y axis).

If the PFBB_ROT mode on the billboard is set to PFBB_POINT_ROT_EYE, the billboard is
rotated so that the +Z axis of the pfGeoSet stays upright on the screen.

If the PFBB_ROT mode on the billboard is set to PFBB_POINT_ROT_WORLD, the billboard is
rotated so that the angle between the +Z axis of the pfGeoSet and axis specified with
pfBboardAxis is minimized.

Both PFBB_AXIAL_ROT and PFBB_POINT_ROT_WORLD billboards may "spin" about the Y axis of
the pfGeoSet when viewed along the rotation or alignment axis.

After the first pfSync, the number of pfGeoSets, the number and length of the primitives, and planarity of

pfBillboard(3pf) IRIS Performer 2.0 libpf C Reference Pages

the vertices should not be changed.

Some database formats may place a transformation above each billboard for positioning it. As with a
pfGeode containing a small amount of geometry, having many billboards with transformation matrices
above them can be expensive.

Since billboards always rotate towards the eyepoint, billboards in adjacent channels with the same
eyepoint have the same orientation. Channels with different eyepoints will have different billboard orien-

tations.

BUGS
Intersection traversals test only the pfBillboard’s bounding volume, not its individual pfGeoSets.
pfFlatten only transforms the position of a billboard, not the axis and applies only a uniform scale to the
billboard geometry.

SEE ALSO

pfAddGSet, pfRemoveGSet, pfChanTravMode, pfFlatten, pfLookupNode, pfNodeTravFuncs, pfScene,
pfTransparency, pfDelete

IRIS Performer 2.0 libpf C Reference Pages pfBuffer(3pf)

NAME
pfNewBuffer, pfSelectBuffer, pfMergeBuffer, pfBufferScope, pfGetBufferScope, pfBufferAdd, pfBuf-
ferRemove, pfBufferInsert, pfBufferReplace, pfAsyncDelete, pfGetCurBuffer — Create, select, and
merge a pfBuffer.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfBuffer * pfNewBuffer(void);

void pfSelectBuffer(pfBuffer* buf);
int pfMergeBuffer(void);
void pfBufferScope(pfBuffer *buf, pfObject *obj, int scope);
int pfGetBufferScope(pfBuffer *buf, pfObject *obj);
int pfBufferAdd(void *parent, void *child);
int pfBufferRemove(void *parent, void *child);
int pfBufferInsert(void *parent, int index, void *child);
int pfBufferReplace(void *parent, void *oldChild, void *newChild);
int pfAsyncDelete(void *mem);
pfBuffer* pfGetCurBuffer(void);
PARAMETERS

buf identifies a pfBuffer
obj identifies a pfObject

DESCRIPTION
A pfBuffer is a data structure that logically encompasses libpf objects such as pfNodes. Newly created
objects are automatically "attached" to the current pfBuffer specified by pfSelectBuffer. Later, any objects
created in buf may be merged into the main IRIS Performer processing stream with pfMergeBuffer. In
conjunction with a forked DBASE process (see pfMultiprocess and pfDBaseFunc), the pfBuffer mechan-
ism supports asynchronous parallel creation and deletion of database objects. This is the foundation of a
real-time database paging system.

pfNewBuffer creates and returns a handle to a pfBuffer.

pfSelectBuffer makes buf the current pfBuffer. Once buf is current, all subsequently created libpf objects
will be automatically associated with buf and these objects may only be accessed through IRIS Performer
routines when buf is the current pfBuffer (except for pfBufferAddChild and pfBufferRemoveChild, see
the pfGroup man page). A given pfBuffer should only be current in a single process at any given time. In
this way, a pfBuffer restricts access to a given object to a single process, avoiding hard-to-find errors due
to multiprocessed data collisions. pfGetCurBuffer returns the current pfBuffer.

pfBuffer(3pf) IRIS Performer 2.0 libpf C Reference Pages

Only libpf objects are subject to pfBuffer access restrictions. libpf objects include pfNodes such as
pfGroup, pfGeode and pfUpdatables such as pfLODState, pfChannel, pfEarthSky. libpr objects such as
pfGeoSets, pfGeoStates, and pfMaterials have no pfBuffer restrictions so they may be accessed by any
process at any time although care must be taken by the application to avoid multiprocessed collisions on
these data structures.

pfMergeBuffer merges the current pfBuffer with the main IRIS Performer pfBuffer. This main pfBuffer is
created by pfConfig and will resist deletion and merging and should only be made current in the APP
process (however, it is legal to select a different buffer in the APP process). If called in a process other
than the APP, pfMergeBuffer will block until the APP calls pfSync, at which time the APP will merge the
current pfBuffer into the main pfBuffer and then allow the process that requested the merge to continue.
If called in the APP, pfMergeBuffer will immediately execute the merge. After pfMergeBuffer returns,
any objects that were created in the current pfBuffer may only be accessed in the APP process when the
APP pfBuffer has been selected as the current pfBuffer. In other words, the merged pfBuffer has been
"reset” and its objects now "exist" only in the APP pfBuffer. The addresses of libpf objects are not changed
by pfMergeBuffer.

Any number of pfBuffers may be used and merged (pfMergeBuffer) by any number of processes for
multithreaded database manipulation, subject to the following restrictions:

1. A given pfBuffer should be current (via pfSelectBuffer) in only a single process at any
given time.
2. Each process which selects a pfBuffer must be forked, not sproced.

Specifically, pfBuffer usage is not restricted to the DBASE process (see pfConfig).

pfBufferAddChild and pfBufferRemoveChild provide access to nodes that do not exist in the current
pfBuffer. Either, none, or both of group and node may exist outside the current pfBuffer.
pfBufferAddChild and pfBufferRemoveChild act just like their non-buffered counterparts pfAddChild
and pfRemoveChild except that the addition or removal request is not carried out immediately but is
recorded by the current pfBuffer. The request is delayed until the first pfMergeBuffer when both group
and node are found in the main IRIS Performer pfBuffer. The list of pfBufferAddChild and
pfBufferRemoveChild requests is traversed in pfMergeBuffer after all nodes have been merged.
pfBufferAddChild and pfBufferRemoveChild return TRUE if the request was recorded and FALSE oth-
erwise.

In addition to the pfGroup-specific pfBufferAddChild and pfBufferRemoveChild routines, a pfBuffer
allows generic list management for pfGroup, pfGeode, pfText, and pfPipeWindow objects. These func-
tions, pfBufferAdd, pfBufferRemove, pfBufferInsert, pfBufferReplace can be used to manage a
pfGroup’s list of pfNodes, a pfGeode’s list of pfGeoSets, a pfText’s list of pfStrings, or a pfPipeWindow’s
list of pfChannels respectively. These routines infer the proper action to take from the argument types.
For example, the following code fragment is equivalent to pfBufferAddChild(group, geode):

IRIS Performer 2.0 libpf C Reference Pages pfBuffer(3pf)

pf Gr oup *gr oup;
pf Geode *geode;

pf Buf f er Add(gr oup, geode);

pfBufferAdd, pfBufferRemove, pfBufferInsert, pfBufferReplace all act similarly in that they do not
have effect until pfMergeBuffer is called and all parties have been merged into the main IRIS Performer
buffer. They return -1 if the argument types are not consistent (e.g., pfBufferRemove(group, geoset)), 0 if
the request is immediately processed (this happens when all parties already have scope in the current
pfBuffer), and 1 if the request is buffered until the next pfMergeBuffer.

pfBufferScope sets the scope of obj with respect to pfBuffer buf. If scope is TRUE, then obj is "added" to buf
so that when buf is made current (pfSelectBuffer) in a process, obj may be accessed through IRIS Per-
former routines in that same process. When scope is FALSE, obj is "removed" from buf. pfBufferScope’s
primary purpose is to move objects between pfBuffers, particularly from the main APP pfBuffer into an
application pfBuffer typically used for asynchronous database manipulations. In this case the object’s
scope would be set to FALSE in the old pfBuffer and TRUE in the new pfBuffer. It is undefined when an
object has scope in multiple pfBuffers since this violates the multiprocessing data exclusion requirement
of IRIS Performer. pfGetBufferScope returns TRUE or FALSE indicating the scope of obj in pfBuffer buf.

When using pfBuffers for database paging, it is sometimes desirable to retain certain, common database
models ("library models") in memory. Examples are trees, houses, and other "culture" which are
instanced on paged terrain patches. One instancing mechanism is to create the library models in one
pfBuffer and later use pfBufferAddChild to attach the models to scene graphs created in another
pfBuffer. This is classic instancing which uses transformations (pfSCS) to properly position the models.
However, this mechanism suffers from 2 performance problems:

1. pfMergeBuffer will adversely impact the APP process, proportional to the number of
pfBufferAddChild and pfBufferRemoveChild requests.
2. Transformations in the scene graph reduce IRIS Performer’s ability to sort the database

(see pfChanBinSort) and matrix operations have some cost in the graphics pipeline.

An alternative to classic instancing is "flattening" which creates a clone of the instanced subtree and then
applies the transformation to all geometry in the cloned subtree. This method eliminates the performance
problems listed above but does increase memory usage.

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf)

is a version of pfClone which clones node and its subtree, which resides in buf, into the current pfBuffer.
mode is the same argument as that passed to pfClone (it is currently ignored). Once cloned, a subtree may
be flattened with pfFlatten:

pfBuffer(3pf) IRIS Performer 2.0 libpf C Reference Pages

Example 1: Instancing with pfBufferAddChild

I'i braryBuffer = pfNewBuffer();
pf Sel ect Buf fer (i braryBuffer);

| oadLi braryQoj ects();

pagi ngBuf fer = pfNewBuffer();
pf Sel ect Buf f er (pagi ngBuf fer);

whil e (!done)

{
pf Node *newst uf f;
pf SCS *treelLocati on;
/* Load newterrain tile or whatever */
newStuff = | oadStuff();
/* Create pfSCS which is location of tree */
treeLocation = pf NewSCS(treeMatrix);
/* Add library nodel of a tree to treeLocation */
pf Buf f er AddChi | d(treeLocation, libraryTree);
/* Add instanced tree to newy | oaded stuff */
pf AddChi | d(newSt uf f, treeLocation);

}

Example 2: Instancing with pfBufferClone and pfFlatten

libraryBuffer = pfNewBuffer();
pf Sel ect Buffer(libraryBuffer);

| oadLi braryQj ects();

pagi ngBuf fer = pf NewBuffer();
pf Sel ect Buf f er (pagi ngBuffer);

whi |l e (!done)
{

10

IRIS Performer 2.0 libpf C Reference Pages pfBuffer(3pf)

pf Node *newst uf f;
pf SCS *treelLocation;

/* Load new terrain tile or whatever */
newSt uff = loadStuff();

/* Create pfSCS which is location of tree */
treeLocati on = pf NewSCS(treeMatri x);

/* Cone tree nodel fromlibrary into current, paging buffer */
newlree = pfBufferdone(libraryTree, 0, libraryBuffer);

/* Transformcloned tree */
pf AddChi | d(treeLocation, newlree);
pf Fl atten(treeLocation);

/* Get rid of unneeded treeLocation */
pf RenmoveChi | d(treeLocati on, newlree);
pf Del et e(treeLocation);

/* Add cloned, flattened tree to newy | oaded stuff */
pf AddChi | d(newSt uf f, newTree);

pfAsyncDelete is a special version of pfDelete which is useful for asynchronous database deletion.
Instead of having immediate effect, pfAsyncDelete simply registers a deletion request at the time of invo-
cation. These deletion requests are then processed in the DBASE trigger routine, pfDBase (pfDBase is
automatically called if you have not registered a DBASE callback with pfDBaseFunc). Thus, if the
DBASE processing stage is configured as its own process via pfMultiprocess, then the deletion will be
carried out asynchronously without affecting (slowing down) the main processing pipelines.

pfAsyncDelete may be called from any process and returns -1 if mem is NULL or not derived from
pfMemory and returns TRUE otherwise. Note that unlike pfDelete pfAsyncDelete does not check mem’s
reference count and return TRUE or FALSE indicating whether mem was successfully deleted or not.
Instead, the reference count check is delayed until the next call to pfDBase. At this time there is no way
to query the success of an pfAsyncDelete request.

Note that pfDBase should only be called from within the database callback function (pfDBaseFunc) in

the DBASE process just like pfCull and pfDraw should only be called in the pfChannel CULL and
DRAW callbacks respectively (pfChanTravFunc).

11

pfBuffer(3pf) IRIS Performer 2.0 libpf C Reference Pages

Example 2: How to use a pfBuffer

/* Must create these in shared nmenory */
static pfGoup **Tiles;

static int *Til eSt at us;
/*
* Load new tiles and del ete ol d ones.
*/
voi d
pageDBase(voi d *dat a)
{

static pfBuffer *buf = NULL;
pf Group *root;

if (buf == NULL)

{
buf = pfNewBuffer();
pf Sel ect Buf f er (buf);

/* Asynchronously del ete unneeded tiles and update their status */
for (all UnneededTil es)

{
/*
* Scene does not have scope in 'buf’ so use pfBufferRenpveChild
* Tiles[i] is not really renoved until pfMergeBuffer
*/
pf Buf f er RenmoveChi | d(Scene, Tiles[i]);
/* Delete Tiles[i] at pfDBase tine if Tiles[i] only has Scene as
a parent.
*/
pf AsyncDel ete(Tiles[i]);
/* Update tile status */
TileStatus[i] = TILE_DELETED;
}
/*
* Synchronously | oad needed tiles and update their status.
*/

LoadNeededDat abaseTi | es(Tiles, TileStatus);

12

IRIS Performer 2.0 libpf C Reference Pages pfBuffer(3pf)

for (allLoadedTil es)

{
/*
* Scene does not have scope in 'buf’ so use pfBufferAddChild
* | oadedTile[i] is not really added until pfMergeBuffer
*/
pf Buf f er AddChi | d(Scene, | oadedTile[i]);
}

/*

* Merge newy loaded tiles into main pfBuffer then carry out
* all pfBufferAdd/ RenoveChild requests.

*/

pf Mer geBuf fer();

/*

* Carry out pfAsyncDel ete requests. Call *after* pfMergeBuffer()
* so that all pfBufferRenoveChild requests have been processed
* and child reference counts have been properly decrenented.

*/

pf DBase() ;

pflnit();

Tiles = pfMalloc(sizeof (pf Goup*) * NUMTILES, pfGetSharedArena());
TileStatus = pfMlloc(sizeof(int) * NUMTILES, pfGetSharedArena());
pf Mul ti process(PFMP_APP_CULL_DRAW | PFMP_FORK_DBASE) ;

pf Config();

pf DBaseFunc(pageDBase) ;

whi | e(! done)

{

pf Sync();

/* Renmpbve and request del etion of unneeded tiles */
UpdateTil eStatus(Tiles, TileStatus);

pf Frame();

13

pfBuffer(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES
pfGetCurBuffer will return the APP pfBuffer immediately after pfConfig returns.

SEE ALSO
pfBufferAddChild, pfBufferRemoveChild, pfConfig, pfDBaseFunc, pfDelete, pfFrame, pfMultiprocess,
pfGroup

14

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

NAME

pfNewChan, pfGetChanClassType, pfGetChanPipe, pfChanViewport, pfGetChanViewport,
pfGetChanOrigin, pfGetChanSize, pfChanLODState, pfGetChanLODState, pfChanLODStateList,
pfGetChanLODStateList, pfGetChanPWinIndex, pfGetChanPWin, pfChanTravFunc, pfGetChan-
TravFunc, pfAllocChanData, pfChanData, pfGetChanData, pfGetChanDataSize, pfPassChanData,
pfClearChan, pfAttachChan, pfDetachChan, pfChanShare, pfGetChanShare, pfChanFOV,
pfGetChanFOV, pfChanNearFar, pfGetChanNearFar, pfChanAutoAspect, pfGetChanAutoAspect,
pfGetChanBaseFrust, pfGetChanPtope, pfMakePerspChan, pfMakeOrthoChan, pfMakeSimpleChan,
pfGetChanFrustType, pfChanAspect, pfGetChanAspect, pfOrthoXformChan, pfGetChanNear,
pfGetChanFar, pfGetChanEye, pfApplyChan, pfChanContainsPt, pfChanContainsSphere, pfChan-
ContainsCyl, pfChanContainsBox, pfChanCullPtope, pfGetChanCullPtope, pfChanPick, pfChanNo-
delsectSegs, pfChanScene, pfGetChanScene, pfChanESky, pfGetChanESky, pfChanGState,
pfGetChanGState, pfChanGStateTable, pfGetChanGStateTable, pfChanStressFilter, pfGetChan-
StressFilter, pfChanStress, pfGetChanStress, pfGetChanLoad, pfChanTravMode, pfGetChanTrav-
Mode, pfChanTravMask, pfGetChanTravMask, pfChanBinSort, pfGetChanBinSort, pfChanBinOrder,
pfGetChanBinOrder, pfChanView, pfGetChanView, pfChanViewMat, pfGetChanViewMat, pfChan-
ViewOffsets, pfGetChanViewOffsets, pfGetChanOffsetViewMat, pfGetChanFStats, pfChan-
StatsMode, pfDrawChanStats, pfChanLODAttr, pfGetChanLODALttr, pfApp, pfCull, pfDraw,
pfDrawBin, pfNodePickSetup — Set and get pfChannel definition parameters.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

pfChannel * pfNewChan(pfPipe *pipe);

pfType* pfGetChanClassType(void);

pfPipe * pfGetChanPipe(const pfChannel *chan);

void pfChanViewport(pfChannel* chan, float |, float r, float b, float t);
void pfGetChanViewport(const pfChannel* chan, float* 1, float* r, float* b, float* t);
void pfGetChanOrigin(const pfChannel* chan, int *xo, int *yo);

void pfGetChanSize(const pfChannel* chan, int *xs, int *ys);

void pfChanLODState(pfChannel* chan, const pfLODState *1s);

void pfGetChanLODState(const pfChannel* chan, pfLODState *1s);
void pfChanLODStateList(const pfChannel* chan, pfList *IsList);
pfList* pfGetChanLODStateList(const pfChannel* chan);

int pfGetChanPWinIndex(pfChannel *chan);

pfPipeWindow * pfGetChanPWin(pfChannel *chan);

15

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

void pfChanTravFunc(pfChannel* chan, int trav, pfChanFuncType func);
pfChanFuncType pfGetChanTravFunc(pfChannel* chan, int trav);

void * pfAllocChanData(pfChannel* chan, int size);

void pfChanData(pfChannel *chan, void *data, size_t size);

void * pfGetChanData(pfChannel* chan);

size_t pfGetChanDataSize(const pfChannel *chan);

void pfPassChanData(pfChannel* chan);

void pfClearChan(pfChannel* chan);

int pfAttachChan(pfChannel* chan0, pfChannel* chanl);

int pfDetachChan(pfChannel* chan0, pfChannel* chanl);

void pfChanShare(pfChannel* chan, uint mask);

uint pfGetChanShare(pfChannel* chan);

void pfChanFOV (pfChannel* chan, float horiz, float vert);

void pfGetChanFOV (const pfChannel* chan, float* horiz, float* vert);

void pfChanNearFar(pfChannel* chan, float near, float far);

void pfGetChanNearFar(const pfChannel* chan, float* near, float* far);

void pfChanAutoAspect(pfChannel”* chan, int which);

int pfGetChanAutoAspect(const pfChannel* chan);

void pfGetChanBaseFrust(const pfChannel* chan, pfFrustum *frust);

void pfGetChanPtope(const pfChannel *chan, pfPolytope *ptope);

void pfMakePerspChan(pfChannel* chan, float left, float right, float bottom, float top);
void pfMakeOrthoChan(pfChannel* chan, float left, float right, float bottom, float top);
void pfMakeSimpleChan(pfChannel* chan, float fov);

int pfGetChanFrustType(const pfChannel* chan);

void pfChanAspect(pfChannel* chan, int which, float widthHeightRatio);

float pfGetChanAspect(const pfChannel* chan);

void pfOrthoXformChan(pfChannel* dst, pfChannel* src, const pfMatrix mat);

void pfGetChanNear(const pfChannel* chan, pfVec3 11, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
void pfGetChanFar(const pfChannel* chan, pfVec3 1l, pfVec3 Ir, pfVec3 ul, pfVec3 ur);

16

IRIS Performer 2.0 libpf C Reference Pages

pfChannel(3pf)

int
void
int
int
int
int
void
void

int
int

void
pfScene *
void
pfEarthSky *
void
pfGeoState*
void

pfList*

void
void

void
float
float
void
int

void

pfGetChanEye(const pfChannel* chan, pfVec3 eye);
pfApplyChan(pfChannel *chan);

pfChanContainsPt(const pfVec3 pt, pfChannel* chan);
pfChanContainsSphere(const pfChannel* chan, const pfSphere* sph);
pfChanContainsCyl(const pfChannel* chan, const pfCylinder* cyl);
pfChanContainsBox(const pfChannel* chan, const pfBox* box);
pfChanCullPtope(pfChannel *chan, const pfPolytope *ptope);
pfGetChanCullPtope(const pfChannel *chan, pfPolytope *ptope);

pfChanPick(pfChannel *chan, int mode, float px, float py, float radius,
pfHit **picklist[]);

pfChanNodelsectSegs(pfChannel *chan, pfNode *node, pfSegSet *segSet,
pfHit **hits[], pfMatrix *mat);

pfChanScene(pfChannel* chan, pfScene *scene);
pfGetChanScene(const pfChannel* chan);
pfChanESky(pfChannel* chan, pfEarthSky *sky);
pfGetChanESky(const pfChannel* chan);
pfChanGState(pfChannel *chan, pfGeoState *gstate);
pfGetChanGsState(const pfChannel *chan);
pfChanGStateTable(pfChannel *chan, pfList *gstable);
pfGetChanGStateTable(const pfChannel *chan);

pfChanStressFilter(pfChannel *chan, float frac, float low, float high, float scale,
float max);

pfGetChanStressFilter(const pfChannel *chan, float *frac, float *low, float *high,
float *scale, float *max);

pfChanStress(pfChannel *chan, float stress);
pfGetChanStress(const pfChannel *chan);
pfGetChanLoad(const pfChannel *chan);
pfChanTravMode(pfChannel *chan, int trav, int mode);
pfGetChanTravMode(const pfChannel *chan, int trav);
pfChanTravMask(pfChannel* chan, int trav, uint mask);

17

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

uint pfGetChanTravMask(const pfChannel* chan, int trav);

void pfChanBinSort(pfChannel *chan, int bin, int sortType, int *sortOrders);
int pfGetChanBinSort(const pfChannel *chan, int bin, int *sortOrders);
void pfChanBinOrder(pfChannel *chan, int bin, int order);

int pfGetChanBinOrder(const pfChannel *chan, int bin);

void pfChanView(pfChannel* chan, pfVec3 xyz, pfVec3 hpr);

void pfGetChanView(pfChannel* chan, pfVec3 xyz, pfVec3 hpr);

void pfChanViewMat(pfChannel* chan, pfMatrix mat);

void pfGetChanViewMat(const pfChannel* chan, pfMatrix mat);

void pfChanViewOffsets(pfChannel* chan, pfVec3 xyz, pfVec3 hpr);
void pfGetChanViewOffsets(const pfChannel* chan, pfVec3 xyz, pfVec3 hpr);
void pfGetChanOffsetViewMat(const pfChannel *chan, pfMatrix mat);
pfFrameStats * pfGetChanFStats(pfChannel* chan);

int pfChanStatsMode(pfChannel* chan, uint mode, uint val);

void pfDrawChanStats(pfChannel* chan);

void pfChanLODAttr(pfChannel* chan, int attr, float val);

float pfGetChanLODAttr(pfChannel” chan, int attr);

void pfApp(void);

void pfCull(void);

void pfDraw(void);

void pfDrawBin(int bin);

void pfNodePickSetup(pfNode *node);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfChannel is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfChannel. Casting an object of
class pfChannel to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

18

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfChannel can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

chan identifies a pfChannel.

node identifies a pfNode.

trav is a symbolic token identifying a traversal:
PFTRAV_CULL

PFTRAV_DRAW

DESCRIPTION
A pfChannel is essentially a view onto a scene. pfNewChan creates a new pfChannel on the pfPipe
identified by pipe. The new pfChannel will be rendered by the pipe into a pfPipeWindow window associ-
ated with pipe (See pfConfigPWin). pfNewChan creates and returns a handle to a pfChannel. pfChan-
nels are always allocated from shared memory.

pfGetChanClassType returns the pfType* for the class pfChannel. The pfType* returned by
pfGetChanClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfChannel. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

PIPE WINDOWS, PIPES, AND CHANNELS
pfGetChanPipe returns the parent pfPipe of chan. pfGetChanPWin returns the pfPipeWindow of chan.

Multiple pfChannels may be rendered by a single pfPipe into a single pfPipeWindow. It is recommended
that multiple pfChannels rather than multiple pfPipes be used to render multiple views on a single

19

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

20

hardware pipeline. If necessary, multiple pfPipeWindows can be rendered by a single pfPipe on a single
hardware pipeline. The handle returned by pfNewChan should be used to identify the pfChannel in IRIS
Performer routines.

Upon creation, pfChannels are automatically assigned to the first pfPipeWindow of its parent pfPipe.
pfGetChanPWin will return the pfPipeWindow of chan.

Channels of a pfPipeWindow are drawn in the order in which they are assigned to the pfPipeWindow.
pfGetChanPWinIndex can be used to get the position of a channel in its pfPipeWindow list. A return
value of (-1) indicates that the channel is not assigned to a pfPipeWindow. Channels can be re-ordered in
their pfPipeWindow, or moved to other pfPipeWindows via list style API on pfPipeWindows. See the
pfAddChan, pfInsertChan, pfMoveChan, and pfRemoveChan man pages for more information.

All active pfChannels are culled and drawn by pfFrame. A pfChannel is by default active but can be
selectively turned on and off by PFDRAW_ON and PFDRAW_OFF arguments to pfChanTravMode.
Multiple pfChannels on a pfPipe will be drawn only if they are assigned to a pfPipeWindow and will be
drawn in the order they were assigned to that pfPipeWindow.

pfChanViewport specifies the fractional viewport used by chan. I, r, b, t specify the left, right, bottom,
and top extents of a viewport in the range 0.0 to 1.0. The fractional viewport is relative to the parent
pfPipe’s graphics window. Channel viewports on a single pfPipe may overlap. Viewport extents are
clamped to the range 0.0 to 1.0.

pfGetChanViewport copies the fractional viewport of chan into [, 7, b, t.

pfGetChanOrigin copies the window coordinates of the origin of chan’s viewport into xo and yo.

pfGetChanSize copies the X and Y pixel sizes of chan’s viewport into xs and ys.

APPLICATION-DEFINED CALLBACKS AND DATA

Although IRIS Performer normally handles all culling and drawing, invocation of user written and
registered extension functions (callback functions) is supported to allow custom culling and drawing by the
application. Furthermore, IRIS Performer manages callback data such that when configured for multipro-
cessing, data contention and synchronization issues are handled transparently.

pfChanTravFunc sets the application, cull or draw-process callback functions for chan. The trav argu-
ment specifies which traversal is to be set and is one of: PFTRAV_APP, PFTRAV_CULL or
PFTRAV_DRAW. User-data that is passed to these functions is allocated on a per-channel basis by
pfAllocChanData. pfAllocChanData returns a pointer to a word-aligned buffer of shared memory of
size bytes. Alternately, applications can provide passthrough data with pfChanData. data is a memory
block of size bytes which should be allocated from a shared malloc arena visible to all IRIS Performer
processes when multiprocessing (see pfMultiprocess).

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

pfGetChanDataSize returns the size of chan’s passthrough data block. pfGetChanData returns a pointer
to a buffer that was set by pfChanData or allocated by pfAllocChanData or NULL if no buffer has been
allocated or set. pfChanTravFunc returns the app, cull or draw callback functions for chan or NULL if
the callback has not been set.

In order to propagate user data downstream to the cull and draw callbacks, pfPassChanData should be
called whenever the user data is changed to indicate that the data should be "passed through" the IRIS
Performer rendering pipeline. The next call to pfFrame will copy the channel buffer into internal IRIS
Performer memory so that the application will then be free to modify data in the buffer without fear of
corruption.

In the cull phase of the rendering pipeline, IRIS Performer invokes the cull callback with a pointer to the
pfChannel being culled and a pointer to the pfChannel’s data buffer. The cull callback may modify data
in the buffer. The potentially modified buffer is then copied and passed to the user’s draw callback.
Modifications to the data buffer are not visible upstream. For example, changes made by the cull or draw
process are not seen by the application process.

When IRIS Performer is configured for multiprocessing (see pfMultiprocess), it is important to realize
that the cull and draw callbacks may be invoked from different processes and thus may run in parallel
with each other as well as with the main application process. IRIS Performer provides both shared arenas
(see pfGetSemaArena and pfGetSharedArena) and channel data (pfAllocChanData) for interprocess
communication.

With user callbacks, it is possible to extend or even completely replace IRIS Performer actions with cus-
tom traversal, culling and drawing. pfApp, pfCull and pfDraw trigger the default IRIS Performer pro-
cessing. This default processing is invoked automatically in the absence of any user callbacks specified by
pfChanTravFunc , otherwise the user callback usually invokes them directly.

pfApp carries out the application traversal for the channel and should only be invoked in the application
callback specified by pfChanTravFunc. The application callback is invoked once for each channel group
that is sharing PFCHAN_APPFUNC.

pfCull should only be called in the cull callback and causes IRIS Performer to cull the current channel and
generate an IRIS Performer display list (see pfDispList) suitable for rendering if the
PFMP_CULL_DL_DRAW multiprocessing mode is enabled (see pfMultiprocess). Then, in the draw
callback only, pfDraw will traverse the pfDispList and send rendering commands to the graphics
hardware, thus drawing the scene.

If the PFMP_CULL_DL_DRAW multiprocessing mode is not set then all display-listable operations will
be applied directly to the graphics pipeline rather than accumulated in a pfDispList for subsequent draw-
ing. In essence, the draw process does the work of both pfCull and pfDraw without the intermediate
step of building a pfDispList. This mode avoids the overhead of building and traversing a pfDispList but
consequently is not suitable for multipass renderings which require multiple invocations of pfDraw.

21

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

22

When the draw callback is invoked, the graphics context will already have been properly configured for
drawing the pfChannel. Specifically, the viewport, perspective and viewing matrices are set to the correct
values. In addition, graphics library light sources corresponding to the active pfLightSources in the scene
will be enabled so that geometry rendered in the draw callback will be properly lit. User modifications of
this initial state are not reset by pfDraw.

If a draw callback is specified, IRIS Performer will not automatically clear the viewport, leaving control of
this to the application. pfClearChan called from the draw callback will clear the channel viewport. If
chan has a pfEarthSky (see pfChanESky), then the pfEarthSky will be drawn. Otherwise, the viewport
will be cleared to black and the z-buffer cleared to its maximum value.

By default, pfFrame causes pfCull and pfDraw to be invoked for each active pfChannel. It is legal for the
draw callback to call pfDraw more than once for multipass renderings.

Example 1: Set up channel callbacks and passthrough data

typedef struct
{

int val ;
} PassDat a;

voi d cul | Func(pf Channel *chan, void *data);
voi d dr awFunc(pf Channel *chan, void *data);

int
mai n()
{
PassDat a *pd;

/* Initialize IRIS Performer */

pflnit();
pf Config();

/* Create and initialize pfChannel ’'chan’ */
chan = pf NewChan(pf Get Pi pe(0));

/* Setup channel passthrough data */
pd = (PassDat a*) pf Al | ocChanDat a(chan, sizeof (PassData));

/* Bind cull and draw cal |l back functions to channel */
pf ChanTr avFunc(chan, PFTRAV_CULL, cull Func);
pf ChanTr avFunc(chan, PFTRAV_DRAW dr awFunc);

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

pd->val = O;
pf PassChanDat a(chan) ;
pf Frane() ;
}
voi d
cul | Func(pf Channel *chan, void *data)
{
PassDat a *pd = (PassDat a*) dat a;
pd- >val ++;
pfaull ();
}
voi d
dr awFunc(pf Channel *chan, void *data)
{
PassDat a *pd = (PassDat a*) dat a;
fprintf(stderr, "%d\n", pd->val);
pf C ear Chan(chan);
pf Draw() ;
}

SHARING ATTRIBUTES THROUGH CHANNEL GROUPS
IRIS Performer supports the notion of a ‘channel group” which is a collection of pfChannels that share cer-
tain attributes. A channel group is created by attaching a pfChannel to another with pfAttachChan. If
chan0 or chanl are themselves members of a channel group, then all channels that are grouped with either
chan0 or chanl are combined into a single channel group. All attached channels acquire the share mask
and shared attributes of the channel group. A channel is removed from a channel group by
pfDetachChan.

The attributes shared by the members of a channel group are specified by the mask argument to
pfChanShare. By definition, all channels in a group have the same share mask. A pfChannel that is
attached to a channel group inherits the share mask of the group. mask is a bitwise OR of the following
tokens which enumerate the attributes that can be shared:

PFCHAN_FOV
Horizontal and vertical fields of view are shared.

23

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

24

PFCHAN_VIEW
The view position and orientation are shared.

PFCHAN_VIEW_OFFSETS
The XYZ and HPR offsets from the view direction are shared.

PFCHAN_NEARFAR
The near and far clip planes are shared.

PFCHAN_SCENE
All channels display the same scene.

PFCHAN_EARTHSKY
All channels display the same earth-sky model.

PFCHAN_STRESS
All channels use the same stress filter parameters.

PFCHAN_LOD
All channels use the same LOD modifiers.

PFCHAN_SWAPBUFFERS
All channels swap buffers at the same time, even when the channels are on multiple
pfPipes.

PFCHAN_SWAPBUFFERS_HW
All channels swap buffers at the same time. The GANGDRAW feature of the
mswapbuffers function is used to synchronize buffer swapping through hardware inter-
locking. This feature can synchronize graphics pipelines across multiple machines.

PFCHAN_STATS_DRAWMODE
All channels draw the same statistics graph.

PFCHAN_APPFUNC
The application callback is invoked once for all channels sharing PFECHAN_APPFUNC.

PFCHAN_CULLFUNC
All channels invoke the same channel cull callback.

PFCHAN_DRAWFUNC
All channels invoke the same channel draw callback.

PFCHAN_VIEWPORT
All channels use the same viewport specification.

pfGetChanShare returns the share mask of chan. The default attributes cause channels within a share
group to share all attributes except PFCHAN_VIEW_OFFSETS, PFCHAN_VIEWPORT and
PFCHAN_SWAPBUFFERS_HW.

Channel groups are useful for multichannel simulations where many of the viewing parameters are the
same across pfChannels. For example, a 3-channel simulation consisting of left, middle, and right views

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

typically shares the near and far clipping planes. With a channel group, the clipping planes need only be
set on a single pfChannel, say the middle one, and all other pfChannels in the group will acquire the same
settings.

Example 1: Set up a single pipe, 3-channel simulation

left pf NewChan(pf Get Pi pe(0));
m ddl e = pf NewChan(pf Get Pi pe(0));
ri ght = pf NewChan(pf Get Pi pe(0));

/* Form channel group with nmiddle as the "master" */
pf AttachChan(m ddle, left);
pf Att achChan(m ddl e, right);

/* Set FOV of all channels */
pf MakeSi npl eFrust (m ddl e, 45.0f);
pf ChanAut oAspect (i ddl e, PFFRUST_CALC_VERT);

/* Set clipping planes of all channels */
pf ChanNear Far (m ddl e, 1.0f, 2000.0f);

pf Set Vec3(hprOf fsets, 0.0f, 0.0f, 0.0f);
pf Set Vec3(xyzOf fsets, 0.0f, 0.0f, 0.0f);

/*

* Set up viewport and view ng of fsets.

* Note that these are not shared by default.

*/

pf ChanVi ewport (left, 0.0f, 1.0f/3.0f, 0.0f, 1.0f);
hprOf fsets[PF_H = 45.0f;

pf ChanVi ewCf fsets(left, xyzOffsets, hprOffsets);

pf ChanVi ewport (mddl e, 1.0f/3.0f, 2.0f/3.0f, 0.0f, 1.0f);
hprO fsets[PF_H = 0.0f;
pf ChanVi ewCr f set s(middl e, xyzOffsets, hprOffsets);

pf ChanVi ewport (right, 2.0f/3.0f, 1.0f, 0.0f, 1.0f);

hpr O f set s[PF_H] = -45.0f;
pf ChanVi ewCr f set s(right, xyzOifsets, hprOffsets);

25

pfChannel(3pf)

IRIS Performer 2.0 libpf C Reference Pages

26

VIEWING FRUSTUM

Many pfChannel frustum routines are borrowed from pfFrustum. These routines have the identical func-
tion as the pfFrustum routines but operate on the pfChannel’s internal viewing frustum. The routine

correspondence is listed in the following table.

pfChannel routine

pfFrustum routine

pfMakeSimpleChan
pfMakePerspChan
pfMakeOrthoChan
pfChanNearFar
pfGetChanNearFar
pfGetChanFOV
pfChanAspect
pfGetChanAspect
pfGetChanFrustType
pfOrthoXformChan
pfGetChanNear
pfGetChanFar
pfGetChanEye
pfApplyChan
pfChanContainsPt
pfChanContainsSphere
pfChanContainsBox
pfChanContainsCyl

pfMakeSimpleFrust
pfMakePerspFrust
pfMakeOrthoFrust
pfFrustNearFar
pfGetFrustNearFar
pfGetFrustFOV
pfFrustAspect
pfGetFrustAspect
pfGetFrustType
pfOrthoXformFrust
pfGetFrustNear
pfGetFrustFar
pfGetFrustEye
pfApplyFrust
pfFrustContainsPt
pfFrustContainsSphere
pfFrustContainsBox
pfFrustContainsCyl

The reader is referred to the pfFrustum man page for details on the function descriptions.

In addition to the pfFrustum routines, IRIS Performer provides the pfChanFOV and pfChanAutoAspect

convenience routines.

The horiz and vert arguments to pfChanFOV specify total horizontal and vertical fields of view (FOV) in
degrees. If either angle is <= 0.0 or >= 180.0, IRIS Performer will automatically compute that field of view
based on the other specified field of view and the aspect ratio of the pfChannel viewport. If both angles
are defaulted in this way, IRIS Performer will use its default of horiz=45.0 with vert matched to the aspect
ratio of the pfChannel. Note that the aspect ratio of a pfChannel is defined by its fractional viewport as

well as the pixel size of its physical display window.

pfChanFOV constructs a on-axis frustum, one where the line from the eyepoint passing through the
center of the image is perpendicular to the projection plane. pfMakeSimpleChan also creates an on-axis
frustum but both horizontal and vertical fields of view are specified with fov.

pfGetChanFOV copies the total horizontal and vertical fields of view into horiz and vert respectively. If
an angle is matched to the aspect ratio of the pfChannel, then the computed angle is returned.

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

The which argument to pfChanAutoAspect specifies which FOV extent to automatically match to the
aspect ratio of chan’s viewport. which is a symbolic token and is one of:

PFFRUST_CALC_NONE
Do not automatically modify field of view.

PFFRUST_CALC_HORIZ
Automatically modify horizontal FOV to match channel aspect.

PFFRUST_CALC_VERT
Automatically modify vertical FOV to match channel aspect.

Automatic aspect ratio matching is useful for situations where the initial size of the display window is not
known or where the display window may change size during runtime. Aspect ratio matching guarantees
that the image will not be distorted in either horizontal or vertical dimensions. pfMakePerspChan and
pfMakeOrthoChan disable automatic aspect ratio matching since it is assumed that the viewing frustum
aspect ratio is completely specified by these commands.

pfChanNearFar specifies the near and far clip distances of the viewing frustum. near and far are the posi-
tive, world-coordinate distances along the viewing ray from the eye point to the near and far clipping
planes which are parallel to the viewing plane. pfGetChanNearFar copies the near and far clipping dis-
tances into near and far. The default values are 1.0 for the near plane and 1000.0 for the far plane.

pfGetChanBaseFrust copies the base viewing frustum of chan into frust. The base viewing frustum has
its eyepoint at the origin and its viewing direction as the +Y axis. The base frustum of a pfChannel is
transformed into world coordinates by the viewing transformation (see pfChanView).
pfOrthoXformChan transforms the base frustum of src by mat and copies the result into the base frustum
of the dst pfChannel. pfGetChanPtope copies the transformed base frustum into dst.

Example 1: Two equivalent ways of defining a typical viewing channel.

This method is the easiest and most common.

/* Set up a sinple view ng frustum?*/
chan = pf NewChan(pi pe0) ;

/*

* Set horizontal FOV to 45 degrees and autonamtically match
* vertical FOV to channel viewport.

*/

pf ChanFOV(chan, 45.0f, -1.0f);

Here’s how to do the same thing using the basic primitives.

27

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

/* Set up a sinple view ng frustum*/
chan = pf NewChan(pi pe0);

/*

* Set horizontal FOV to 45 degrees and automatically nmatch
* vertical FOV to channel viewport.

*/

pf MakeSi npl eChan(chan, 45.0f);

pf ChanAut oAspect (chan, PFFRUST_CALC VERT);

Example 2: Set up a 4 channel, 4 pipe video wall with total horizontal and vertical FOVs of 90 degrees.

/*
* ul == upper left ur == upper right
* |l == lower left Ir == lower right
*/

Il Chan = pf NewChan(pf Cet Pi pe(0));
I rChan = pf NewChan(pf Cet Pi pe(1));
ur Chan = pf NewChan(pf Get Pi pe(2));
ul Chan = pf NewChan(pf Get Pi pe(3));

/* Form channel group with urChan as the "naster" */
pf At t achChan(ur Chan, 11 Chan);
pf At t achChan(ur Chan, |rChan);
pf At t achChan(ur Chan, ul Chan);

/*

* Share viewport but not field of view

* in addition to the default shared attributes.

*/

share = pf Get ChanShar e(ur Chan);

pf ChanShar e(ur Chan, (share & “PFCHAN FOV) | PFCHAN VI EWPORT);

/*

* Set up off-axis viewing frusta which "tile" video wall.

* pf Channel viewport aspect ratio nust be 1:1 or inmage wll
* be distorted.

*/

pf MakePer spChan(l | Chan, -1.0f, 0.0f, -1.0f, 0.0f);

pf MakePer spChan(l r Chan, 0.0f, 1.0f, -1.0f, 0.0f);

pf MakePer spChan(ur Chan, 0.0f, 1.0f, 0.0f, 1.0f);

pf MakePer spChan(ul Chan, -1.0f, 0.0f, 0.0f, 1.0f);

28

IRIS Performer 2.0 libpf C Reference Pages

pfChannel(3pf)

pf ChanNear Far (ur Chan, 1.0f, 2000.0f);

Example 3: Set up a single pipe, 3-channel simulation.
left pf NewChan(pf Get Pi pe(0));

m ddl e = pf NewChan(pf Get Pi pe(0));
ri ght = pf NewChan(pf Get Pi pe(0));

/* Form channel group with nmiddle as the "master" */

pf AttachChan(m ddle, left);
pf Att achChan(m ddl e, right);

/* Set FOV of all channels */
pf MakeSi npl eChan(mi ddl e, 45.0f);
pf ChanAut oAspect (i ddl e, PFFRUST_CALC_VERT);

/* Set clipping planes of all channels */
pf ChanNear Far (m ddl e, 1.0f, 2000.0f);

hprOf fsets[PF_P] = 0.0f;
hprO fsets[PF_R] = 0.0f;
pf Set Vec3(xyzOf fsets, 0.0f, 0.0f, 0.0f);

/*

* Set up viewport and view ng of fsets.

* Note that these are not shared by default.

*/

pf ChanVi ewport (left, 0.0f, 1.0f/3.0f, 0.0f, 1.0f);
hprOf fsets[PF_H = 45.0f;

pf ChanVi ewCf fsets(left, hprOffsets, xyzOffsets);

pf ChanVi ewport (middl e, 1.0f/3.0f, 2.0f/3.0f, O0.Of,
hprO fsets[PF_H = 0.0f;
pf ChanVi ewCr f set s(middl e, hprOffsets, xyzOffsets);

pf ChanVi ewport (right, 2.0f/3.0f, 1.0f, 0.0f, 1.0f);

hpr O f set s[PF_H] = -45.0f;
pf ChanVi ewCr f set s(right, hprOfsets, xyzOffsets);

Example 4: Custom culling to pfChannel viewing frustum.

1.0f);

29

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

30

/*
* User-supplied cull callback (see pfChanTravFunc)
*/

extern void

nmyCul | Func(pf Channel *chan, void *data)

{
pf Box *boundi ngBox = (pfBox*)data;
i f (pf ChanCont ai nsBox(chan, boundi ngBox))
dr awGSet sW t hi nBoundi ngBox() ;
}

pfGetChanAutoAspect returns the aspect ratio matching mode of chan.

A pfChannel normally uses its viewing frustum for culling its pfScene (pfChanScene). However, a cus-
tom culling volume may be specified by pfChanCullPtope. If non-NULL, ptope identifies a pfPolytope
which is used for scene culling. A copy of ptope, internal to chan, is transformed by chan’s viewing matrix
before culling. If ptope is NULL, chan will use its view frustum for culling. A pfPolytope is a set of half
spaces whose intersection defines a convex volume. Culling performance will be proportional to the
number of facets in ptope. pfGetChanCullPtope copies the culling polytope of chan into ptope.

PICKING

pfChanPick is used for screen to world-space ray intersections on a pfChannel’s scene. This operation is
often referred to as picking. Intersections will only occur with parts of the database that are within the
viewing frustum, and that are enabled for picking intersections. The return value of pfChanPick is the
number of successful intersections with the channel scene according to mode.

picklist is a user-supplied pointer. Upon return, the address of an array of pointers to pfHit objects is
stored there. The pfHit objects come from an internally maintained pool and are reused on subsequent
calls. Hence, the contents are only valid until the next invocation of pfChanPick in the current process.
They should not be deleted by the application.

The contents of the pfHit object are queried using pfQueryHit and pfMQueryHit. See the man pages for
pfHit and pfNodelsectSegs for a description of the queries.

mode specifies the behavior of the traversal and type of information that will be returned from the picking
process.

mode is a bitwise OR of tokens. In addition to those tokens that can be specified to pfNodelsectSegs in
the mode field of the pfSegSet, the following values are also allowed:

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

PFPK_M_NEAREST
Return the picking intersection closest to the viewpoint.

PFPK_M_ALL
Return all picking intersections.

PFTRAV_LOD_CUR
When traversing pfLODs, select the child to traverse based on range in the specified chan-
nel.

When PFPK_M_ALL is set, picklist will contain all of the successful picking intersections in order of
increasing distance from the viewer eyepoint. See the pfNodelsectSegs manual page for information on
the PFIS_ intersection tokens.

px, py identify a 2-dimensional point in normalized channel screen coordinates in the range 0.0 to 1.0
(with the lower left corner being (0.0, 0.0)), that corresponds to the channel location to be used for picking.
This 2-dimensional point is used to create a ray from the viewer eyepoint through the near clipping plane
to intersect with the channel scene.

radius is the radius of the picking region in normalized channel coordinates used for the picking of lines.
This argument is provided for coarse picking, and possibly for eventual picking of lines and points which
is currently not implemented. If radius is non-zero, then the mode argument must not specify the
PFTRAV_IS_PRIM mode.

pfNodePickSetup enables the entire database tree under node for picking intersections and should be
called with a pointer to the pfChannel’s scene graph. This effectively calls pfNodeTravMask with
PFIS_SET_PICK. Selective picking can be done by calling pfNodeTravMask, setting the traversal to
PFTRAV_ISECT and including PFIS_SET_PICK in the intersection mask for nodes that are to be enabled
for picking intersections. The picking traversal will not continue past any node that has not been enabled
for picking intersections. See the pfNodeTravMask manual page for more information on intersection
setup.

pfChanNodelsectSegs is identical to pfNodelsectSegs except a pfChannel is provided for evaluating
pfLODs during the intersection traversal. In addition, mat specifies an initial transform, allowing intersec-
tion traversals to begin at non-root nodes. All line segments in segSet will be transformed by mat. mat
may be NULL if no initial transform is needed.

EARTH AND SKY
pfChanScene and pfChanESKky set the pfScene and pfEarthSky that chan will cull and draw.
pfChanScene increments the reference count of scene so that scene must first be removed from chan by
pfChanScene(chan, NULL) before scene can be deleted with pfDelete.

pfGetChanScene and pfGetChanESky return the current pfScene and pfEarthSky for chan.

31

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

32

Example 1: Setting a pfChannel’s pfScene.

voi d
cul I Func(pf Channel *chan, void *data)
{
pfCull ();
}

voi d
dr awFunc(pf Channel *chan, void *data)
{
pf O ear Chan(chan);
pf Draw() ;
}

/* somewhere in application setup phase */

/* set channel’s scene */
pf ChanScene(chan, scene);

/* bind cull and draw process cal | backs */
pf ChanTravFunc(chan, PFTRAV_CULL, cull Func);
pf ChanTravFunc(chan, PFTRAV_DRAW drawFunc);

GEOSTATES

pfChanGState sets chan’s pfGeoState to gstate. If non-NULL, gstate is loaded before chan’s DRAW call-
back is invoked. Specifically, gstate is loaded with pfLoadGState so that the state encapsulated by gstate
becomes the global state that may be inherited by other pfGeoStates within the scene graph. The pfGeo-
State state inheritance mechanism is described in detail in the pfGeoState man page. Note that the chan-
nel pfGeoState is loaded before any scene pfGeoState so that state elements in the scene pfGeoState over-
ride those in the channel’s pfGeoState. pfGetChanGState returns the pfGeoState of chan.

pfChanGStateTable sets chan’s pfGeoState table to gstable. If non-NULL, gstable is made the global
pfGeoState table with pfApplyGStateTable before chan’s DRAW callback is invoked. Any indexed
pfGeoStates, either referenced by a pfScene (pfSceneGStateIndex) or by scene pfGeoSets (-
pfGSetGStateIndex) will be accessed through gstable. Indexed pfGeoStates are useful for efficiently
managing a single database with multiple appearances, e.g., a normal vs. an infrared view of a scene
would utilize 2 pfGeoState tables, each referencing a different set of pfGeoStates.

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

STRESS PROCESSING AND LEVEL-OF-DETAIL
IRIS Performer attempts to maintain the fixed frame rate set with pfFrameRate by manipulating levels-
of-detail (LODs) to reduce graphics load when rendering time approaches a frame period. At the end of
each frame, IRIS Performer computes a load metric for each pfChannel based on the length of time it took
to render the pfChannel. Load is simply the actual rendering time divided by the desired frame interval.

pfChanLODState specifies a global pfLODState to be used for this channel.

pfChanLODStateList specifies a pfList of pfLODStates to be indexed into by pfLODs that have specified
indexes via pfLODLODStateIndex. (See pfLOD and pfLODState).

If stress processing is enabled, IRIS Performer uses the load metric and a user-defined stress filter to com-
pute a stress value which multiplies effective LOD ranges (see pfLOD) for the next frame. Stress > 1.0
"pushes out” LOD ranges so that coarser models are drawn and graphics load is reduced. Stress ==1.0
means the system is not in stress and LODs are not modified.

pfChanStressFilter sets the stress filter used by chan. frac is the fraction of a frame period chan is
expected to take to render. frac should be 1.0 if only a single pfChannel is drawn on a pfPipe and should
be > 0.0 and < 1.0 for multichannel simulations. frac allows the application to apportion rendering time
amongst multiple channels so that a channel drawing a complex scene may be allocated more time than a
channel drawing a simple one. pfGetChanStressFilter returns the stress filter parameters for chan.

low and high define a hysteresis band for system load. When load is >= low and <= high, stress is held con-
stant. When load is < low or > high, IRIS Performer will reduce or increase stress respectively until load
stabilizes within the hysteresis band. low should be <= high and they both should be positive. Stress is
computed using the following algorithm:

/* increase stress when above high | oad | evel */

if (load > high)
S[i] = minimum(S[i-1] + scale*| oad, max);

el se

/* decrease stress when bel ow low | oad | evel */

if (load < low)
Sli] = maximum(S[i-1] - scale*|l oad, 0.0f);

el se

/* stress unchanged when between low and high | oad | evel s */
S[i] = §[i-1];

where S[i] == stress for frame i and load = time[i] * frameRate / frac. By default, scale = 0.0 and max =1.0
so that stress is disabled. Stress is clamped to the range [1.0, max].

pfChannels in a channel group may share a stress filter (PFCHAN_STRESS), and LOD behavior (-

33

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

34

PFCHAN_LOD) (see pfAttachChan). It is useful for pfChannels which draw into adjacent displays to
share LOD behavior. In this case, the LOD multiplier used by all pfChannels in the channel group is the
maximum of each individual pfChannel. This ensures that LOD’s which straddle displays will always be
drawn at the same LOD on each display.

pfGetChanLoad will return the last computed load for chan. The load value is defined as time * fram-
eRate / frac.

The application may choose to not use the default IRIS Performer stress filter by calling pfChanStress to
explicitly set the stress value. Stress values set by pfChanStress will override the default stress values
computed by the stress filter shown above.

pfGetChanStress returns the last computed stress value for chan. The individual stress value is returned
regardless of pfChannel attribute sharing (pfChanShare).

CUSTOMIZING SCENE GRAPH TRAVERSAL

A pfChannel directs two important traversals: cull and draw. In the cull traversal, the pfChannel defines
the viewing frustum that the database is culled to and also defines other parameters that modify level-of-
detail behavior. When drawing, the pfChannel defines the parameters of the "camera” which views the
scene. Inboth cases, a pfChannel traverses a pfScene which is attached to the pfChannel via
pfChanScene. A pfScene is a hierarchy of pfNodes that defines the visual database.

pfChanTravMode sets the traversal mode of chan. trav specifies a traversal type and is either
PFTRAV_CULL or PFTRAV_DRAW, for the culling and drawing traversal respectively. mode specifies
the corresponding traversal mode. The culling mode is a bitwise OR of:

PFCULL_VIEW
When set, PECULL_VIEW enables culling to the viewing frustum. If not set, the entire
database will be rendered every frame. For best drawing performance it is recommended
that PFCULL_VIEW be set. Unless PFECULL_GSET is also set, IRIS Performer culls the
database only down to the pfGeode level.

PFCULL_SORT
When PFCULL_SORT is set, IRIS Performer sorts the database into "bins" which are ren-
dered in a user-specified order. In addition, geometry within a bin may be sorted by graph-
ics state like texture or by range for front-to-back or back-to-front rendering. Unless the cull
stage of the IRIS Performer pipeline becomes the bottleneck or PFMP_CULLoDRAW mode
is used, PFCULL_SORT should be set for optimal drawing performance. Further sorting
details are described below.

PFCULL_GSET
When PFCULL_GSET is set, IRIS Performer culls individual pfGeoSets within pfGeodes.
At the expense of some extra culling time, this can provide a significantly tighter cull both
because of the finer granularity and because pfGeoSet culling uses bounding boxes rather

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

than bounding spheres. However, when traversing portions of the scene graph under a
transformation (pfSCS or pfDCS), IRIS Performer reverts back to a cull which stops at the
pfGeode level.

PFCULL_IGNORE_LSOURCES
When PFCULL_IGNORE_LSOURCES is not set, IRIS Performer will traverse all paths in
the scene hierarchy which end at a pfLightSource node before proceeding with the normal
cull traversal (see pfLightSource). This is required for pfLightSources to illuminate the
scene and will ensure that graphics hardware lighting is properly configured before the
user’s draw callback is invoked (see pfChanTravFunc). If it is set, any pfLightSources in
the pfScene will be ignored.

The pfLightSource cull traversal obeys all traversal rules such as node callbacks, traversal
masks, transformations (pfSCS and pfDCS nodes), and selectors (pfSwitch and pfLOD).

For drawing, mode is either PFDRAW_OFF or PFEDRAW_ON. PFDRAW_OFF essentially turns off chan.
No culling or drawing traversal will take place. Drawing is enabled by default. pfGetChanTravMode
returns the mode corresponding to trav or -1 if trav is an illegal or unknown traversal type.

The PFTRAV_MULTIPASS traversal mode is only active when the pfChannel’s scene has one or more
pfLightSources which use projected texture-type lighting. See the pfLightSource man page for more
details.

By default, culling to the viewing frustum, culling to pfGeoSet bounding boxes, pfLightSource culling,
and sorting is enabled: (PFCULL_VIEW | PEFCULL_GSET | PFCULL_SORT) For convenience, this
default bitmask is provided by the PFCULL_ALL token.

pfChanTravMask sets chan’s drawing mask and is used in conjunction with pfNodeTravMask for selec-
tive culling and drawing of scene graphs on a per-pfChannel basis. During the traversal, the bitwise
AND of the traversal mask and the node mask is computed. If the result is non-zero, the node is culled or
drawn as usual. If off (zero), the behavior is as follows depending on trav:

PFTRAV_CULL
Node is not culled and is considered to be entirely within the viewing frustum. The cull
traversal traverses the node and its children without any view culling.

PFTRAV_DRAW
Node is completely ignored. Both cull and draw traversals skip the node and its children.

Node traversal masks are set by pfNodeTravMask. The default pfNode and pfChannel masks are
Oxftffftff so that a pfChannel culls and draws all pfNodes.

pfGetChanTravMask returns the drawing traversal mask for the specified pfChannel. trav is either
PFTRAV_CULL or PFTRAV_DRAW.

35

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

36

As mentioned above, pfChannels can sort the database for improved image quality and improved render-
ing performance. Database sorting consists of two steps:

1. Partition database into "bins" which are rendered in a particular order.
2. Sort database within each bin by:
2a. Graphics state, in which case there is no particular rendering order or,

2b. Range from the eyepoint in which case the database is rendered either front-to-back or
back-to-front.

During the cull traversal, pfGeoSets are placed into the appropriate bin according to their bin identifier
that was set by pfGSetDrawBin. If the bin identifier is >= 0, the cull traversal will place that pfGeoSet
into the bin with that identifier. If the bin identifier is < 0, then the cull traversal will decide in which
default bin the pfGeoSet belongs.

IRIS Performer provides 2 default bins: PFSORT_OPAQUE_BIN and PFSORT_TRANSP_BIN for
opaque and transparent geometry respectively. Transparent geometry is that which uses
PFTR_BLEND_ALPHA type of pfTransparency. PFTR_MS_ALPHA-type transparency is considered to
be opaque for purposes of binning.

Each draw bin has a rendering order set by pfChanBinOrder. If order is < 0, then bin is not ordered at all -
pfGeoSets which belong to bin are not stored in the bin but are rendered immediately. If order is >=0, it
defines the order in which the bin is rendered, 0 == first, 1 == second etc. The PFSORT_OPAQUE_BIN
bin has a default rendering order of 0 and the PFSORT_TRANSP_BIN bin has a default rendering order
of 1 so that transparent surfaces are rendered after opaque surfaces. It is legal to change the rendering
order of the default bins and for different bins to have the same rendering order although the relative
order of these bins is undefined.

Normally, pfDraw renders all bins in the appropriate order. Individual bins may be rendered with
pfDrawBin when called in the pfChannel’s draw callback (see pfChanTravFunc).

pfChanBinSort defines how pfGeoSets are sorted with a bin. sortType is a symbolic token which identifies
the sorting method for bin:

PFSORT_NO_SORT
Do not sort the bin. sortOrders is ignored.

PFSORT_FRONT_TO_BACK
Sort the pfGeoSets in the bin in increasing range from the eyepoint. Range is computed as
the distance from the pfChannel eyepoint to the center of the pfGeoSet’s bounding box. sor-
tOrders is ignored.

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

PFSORT_BACK_TO_FRONT
Sort the pfGeoSets in the bin in decreasing range from the eyepoint. Range is computed as
the distance from the pfChannel eyepoint to the center of the pfGeoSet’s bounding box. sor-
tOrders is ignored.

PFSORT_BY_STATE
Sort the pfGeoSets in the bin by graphics state. The pfGeoSets in bin are first sorted by
pfGeoState. Then if sortOrders is not NULL, the pfGeoSets will be further sorted by the
ordered list of PFSTATE_* elements in sortOrders. In this case, sortOrders should consist of a
PFSORT_STATE_BGN token followed by 0 or more PFSTATE_* tokens followed by a
PFSORT_STATE_END token followed by a PFSORT_END token to end the list. The
PFSTATE_* tokens define a sorting hierarchy. The elements in sortOrders are copied into
the pfChannel data structure, so in this case it is acceptable to pass static or automatic data
not allocated through pfMalloc.

Example 1: Sorting configuration example

i nt

sortOrders[i ++
sortOrders[i ++
sortOrders[i ++
sortOrders[i ++
sortOrders[i ++

sortOrders[i ++

sort Order s[PFSORT_MAX_KEYS], i = 0;

PFSORT_STATE_BG\;
PFSTATE_FOG,
PFSTATE_MATER! AL;
PFSTATE_TEXTURE;
PFSORT_STATE_END;
PFSORT_END;

pf ChanBi nSort (chan, PFSORT_OPAQUE_BI N, PFSORT_BY_STATE, sortOrders);
pf ChanBi nSort (chan, PFSORT_TRANSP_BI N, PFSORT_BACK_TO FRONT, NULL);

The default sorting order for the PESORT_OPAQUE_BIN bin is by pfGeoState only and the default sort-
ing order for the PESORT_TRANSP_BIN bin is PFESORT_BACK_TO_FRONT.

Sorting by state is limited to the scope of a transformation (pfDCS or pfSCS) or a node with draw call-
backs, i.e. - pfGeoSets affected by different transformations or draw callbacks are not sorted together.
However, range sorting spans both transformation and draw callback boundaries. Thus a range-sorted
scene graph with many transformations and expensive draw callbacks may suffer reduced performance
due to an increased number of transformation and draw callback changes.

VIEWPOINT AND CAMERA SPECIFICATION
pfChanView specifies both the origin and direction of view for a pfChannel. xyz specifies the x,y,z posi-
tion of the viewpoint in world coordinates and hpr specifies the Euler angles (heading, pitch, and roll) in
degrees of the viewing direction relative to the nominal view (as defined below). The order of application

37

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

38

of these angles is ROTy(roll) * ROTx(pitch) * ROTz(heading) where ROTa(angle) is a rotation matrix
about world axis a of angle degrees. In all cases a positive rotation is counterclockwise by the right hand
rule. The nominal viewing coordinate system is +Y = forward, +Z = up, +X = right. For example, a roll of
90 degrees and a heading of -90 degrees would align the view direction with the +X world axis and the up
direction with the -Y world axis.

pfChanViewMat provides another means of specifying view point and direction. mat is a 4x4 homogene-
ous matrix which defines the view coordinate system such that the upper 3x3 submatrix defines the coor-
dinate system axes and the bottom vector defines the coordinate system origin. IRIS Performer defines
the view direction to be along the positive Y axis and the up direction to be the positive Z direction, e.g.,
the second row of mat defines the viewing direction and the third row defines the up direction in world
coordinates. mat must be orthonormal or results are undefined.

The actual viewing direction used for culling and drawing is modified by the offsets specified by
pfChanViewOffsets. The argument xyz defines a translation from the nominal eyepoint. The Euler
angles given in hpr define an additional rotation of the viewing direction from that specified by
pfChanView and pfChanViewMat. Although this has similar functionality to pfChanView, it is
specifically useful for applications which render the same scene into adjacent displays using multiple
pfChannels. Two examples where one would use pfChanViewOffsets as well as pfChanView are
offset-eye stereo image viewing applications, and for video wall applications.

Example 1: Set up a single pipe, 3-channel simulation using pfChanViewOffsets.

left pf NewChan(pf Get Pi pe(0));
m ddl e pf NewChan(pf Get Pi pe(0));
right = pfNewChan(pfGetPipe(0));

/* Form channel group with mddle as the "naster" */
pf AttachChan(m ddl e, left);
pf AttachChan(m ddl e, right);

/* Set FOV of all channels */
pf MakeSi npl eChan(mi ddl e, 45.0f, 45.0f);
pf ChanAut oAspect (m ddl e, PFFRUST_CALC VERT);

/* Set clipping planes of all channels */
pf ChanNear Far (m ddl e, 1.0f, 2000. 0f);

hprOf fsets[PF_P] = 0.0f;
hpr O fsets[PF_R] = 0. 0f;
pf Set Vec3(xyzOf fsets, 0.0f, 0.0f, 0.0f);

/*

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

* Set up viewport and view ng of fsets.

* Note that these are not shared by default.

*/

pf ChanVi ewport (left, 0.0f, 1.0f/3.0f, 0.0f, 1.0f);
hpr O fsets[PF_H = 45.0f;

pf ChanVi ewCf fsets(left, hprOfsets, xyzOfsets);

pf ChanVi ewport (mddle, 1.0f/3.0f, 2.0f/3.0f, 0.0f, 1.0f);
hprO fsets[PF_H = 0.0f;
pf ChanVi ewCf f set s(middl e, hprOffsets, xyzOffsets);

pf ChanVi ewport (right, 2.0f/3.0f, 1.0f, 0.0f, 1.0f);
hpr O fset s[PF_H] = -45. 0f;
pf ChanVi ewCf fsets(right, hprOfsets, xyzOfsets);

Both translation and rotational offsets are encoded in the graphics library’s ModelView matrix. This
ensures that fogging is consistent across multiple, adjacent pfChannels. However, proper lighting
requires a lighting model which specifies a local viewer. Otherwise, geometry which spans multiple
pfChannels will be lit differently on each pfChannel.

Example 2: Local viewer lighting model

pf Li ght Model *I'm
I m = pf NewLMbdel (arena);

pf LModel Local (Im 1);
pf Appl yLModel (1 m);

pfGetChanView copies the view point/direction into xyz and hpr.
pfGetChanViewMat copies the viewing matrix (without viewing offsets) into mat.

pfGetChanViewOffsets copies the view positional and rotational offsets into the indicated arrays (xyz
and hpr).

pfGetChanOffsetViewMat copies the combined nominal and offset viewing matrices into mat. This com-
bined viewing matrix is that used for culling and for configuring the graphics library with the appropriate
transformation. It is defined as offset * nominal where offset is specified by pfChanViewOffsets and
nominal is specified by either pfChanViewMat or pfChanView.

39

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

40

DRAWING FRAME STATISTICS

IRIS Performer keeps track of times spent, and operations done, in the application, cull, and draw stages
of the rendering pipeline and accumulates the data in a pfFrameStats structure. pfGetChanFStats is used
to get this pfFrameStats structure from the indicated channel. pfChanStatsMode selects which of the
enabled statistics classes should be displayed in that channel by pfDrawChanStats or pfDrawFStats.

pfDrawChanStats or pfDrawFStats must be called during each frame that a statistics display is desired
and may be called from any of IRIS Performer’s application, cull, or draw processes. This manual page
give some pointers on how to interpret the statistics to help in tuning your database. Refer to the IRIS
Performer Programming Guide for more detailed information.

pfChanStatsMode takes a pointer to a pfChannel, chan, and mode, which is currently just
PFCSTATS_DRAW, and the corresponding value for val, which is a statistics class enabling bitmask. The
statistics classes displayed by pfDrawChanStats or pfDrawFStats are those statistics classes that have
been enabled by pfChanStatsMode for display, and are also enabled for collection. pfDrawChanStats
displays the contents of the enabled statistics classes of the pfFrameStats structure for channel chan,
according to the current channel stats draw mode (specified with pfChanStatsMode).

At the top of the display is the actual frame rate being achieved and the frame rate set by pfFrameRate
and the phase set by pfPhase. If statistics collection of process frame times has been disabled, then the
actual frame rate will not be known and "???" will be shown. When the graphics statistics class is enabled
for collection, the average number of pfGeoSets and triangles being displayed is also shown on the top of
the statistics display. See the pfStatsClass manual page for more information on enabling statistics
classes.

For the Process Frame Times Statistics class, pfDrawChanStats displays the amount of time, on average,
spent by each process on a single frame, as well as the number of frames that missed the goal, or extended
beyond the time for the specified goal frame rate. When the PFFSTATS_PFTIMES_HIST mode is
enabled (on by default), a timing diagram of previous frames is displayed.

Red vertical lines indicate video retrace intervals and green ones indicate frame boundaries. Horizontal
bars indicate the time taken by pipeline stages. The three different stages: APP, CULL, AND draw are
separated vertically and stages belonging to the same frame are the same color. Each stage of each frame
is labeled with the name of the stage and its offset from the current frame. For example, the current appli-
cation stage is labeled app0 and draw-3 is the draw stage of three frames back. Stages that are in the same
process are connected by thin vertical lines while stages that are a single process by themselves are not.

The bar for the application stage is split into a total of five pieces: time spent cleaning the scene
graph from changes made by the user (drawn at raised level), time spent waiting for the next
frame boundary when the phase is PFPHASE_LOCK or PFPHASE_FLOAT (drawn with thin,
pale, dashed line), the critical time spent between pfSync and pfFrame, the time spent inside
pfFrame possibly cleaning the scene graph again and updating and setting off tasks in forked cull
and intersection processes (drawn in thin elevated line), and the time spent after pfFrame in the

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

user’s application code.

The cull bar is divided into two pieces: first the time spent getting updates from the application
process (slightly raised), and the time spent culling the scene graph.

The draw timing bar is divided into four pieces: the lowest piece represents the time actually
spent in pfDraw() rendering the scene; the darkened parts before and after the pfDraw() line
represent time spent in the user’s channel draw callback routine; the final part displays the time
drawing channel statistics.

The draw timing bar is somewhat inaccurate because the time stamps are taken from the host and
do not reflect when the graphics pipeline actually finished rendering. Therefore, time for graph-
ics work done in one part of the draw might be counted in a following part when the graphics
pipeline FIFO filled up and caused the host to wait. This means that some pfDraw() time could
be counted in the following user callback time, or in the time to draw the statistics. This statistics
class is enabled by default.

When fill statistics are enabled, the main channel will be painted in colors ranging from blue to pink that
indicate per-pixel depth-complexity. The brightest (pinkest) areas are those pixels that have been written
many times. The statistics displayed, in green, include average total depth complexity (total number of
pixel writes), as well as the average, minimum, and maximum number of times a given pixel is written.

When the Graphics Statistics class is enabled for collection and display, detailed statistics on numbers of
primitives, attributes, state changes, and matrix transformations are all displayed. These statistics show
what is being drawn by the graphics pipeline. When the PEFSTATS_GFX_TSTRIP_LENGTHS mode is
enabled, a histogram of triangle strip lengths showing the percentage of triangles in the scene in strips of
given lengths is also displayed. For the strip length statistics, quads are counted as strips of length two
and independent triangles are counted as strips of length one. For graphics performance, it is good to
have much of the database as possible in triangle strips, and making those triangle strips as long as possi-
ble. On a system with RealityEngine graphics, pay special attention to the numbers for texture loads and
number of bytes loaded. If these numbers are non-zero, then it means that hardware texture memory is
being overflowed and swapped regularly and this will degrade graphics performance.

The CPU statistics display will show some of the statistics seen in osview(1). Graphics context switches
occur when there are multiple active graphics windows on the same screen. An application needing high
fixed frame rates should not be encurring graphics context switches. Another useful indicator of graphics
overload is the fifonowait and fifowait numbers. An excessive number of times seen waiting on the
graphics FIFO could indicate a graphics bottleneck and fill statistics should be examined. If there are an
excessive number of process context switches, then it might help performance to restrict the draw process
to a single processor and then isolate that processor. IRIS Performer will not do this automatically; how-
ever, there are utilities in the IRIS Performer utility library, libpfutil (see pfuLockCPU), that enable you
to do this. These utilities are demonstrated in the IRIS Performer Perfly sample application. These utili-
ties use the IRIX REACT extensions via sysmp(2).

41

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

42

When the Database Statistics class is enabled for collection and display, the number of displayed and
evaluated nodes for each node type is shown. When the cull statistics are displayed, a table showing the
total number of nodes and pfGeoSets traversed by the cull process, the number of node bounding sphere
and pfGeoSet bounding boxes tested, and the total number of nodes, and pfGeoSets, (of those traversed)
that were trivially rejected as being outside the viewing frustum, the number that were fully inside the
viewing frustum, and the number that intersected the viewing frustum. The database and culling statis-
tics together can show the efficiency of the database hierarchy. If many of the nodes in the database are
being traversed by the cull process when only a small percentage are actually visible, then this indicates
that the database hierarchy is not spatially coherent. If there are many pfGeoSets in each pfGeode, and
many pfGeoSets are being rejected by the cull, then adding more database hierarchy above current nodes
may actually speed up the culling traversal because cull tests on nodes would be able to accept or reject
large pieces of the database without traversing lower nodes. If the number of pfLOD nodes evaluated is
much more then the number that are actually drawn, then adding LOD hierarchy might help to reduce
the total number of LOD range calculations, which are fairly expensive.

If there are few nodes in the database relative to the number of pfGeoSets and the cull is taking a small
amount of time but the draw is taking longer than desired, then adding more nodes and using a database
hierarchy that is spatially coherent should improve the accuracy of the cull and speed up the draw traver-
sal. If there are only a few pfGeoSets per pfGeode and the cull is taking longer than the draw in multipro-
cess mode, or is taking a significant amount of time in a process shared with the draw, then it might
benefit to not cull down to the pfGeoSet level. Refer to the pfChanTravMode reference page for informa-
tion on setting cull traversal modes.

Graphics load is displayed in the lower portion of the statistics window. The load hysteresis band (see
pfChanStress) is drawn in white and the previous 3 seconds of graphics load is drawn in red. Load is not
scaled and ranges from 0.0 to 1.0 within the lower portion of the statistics window.

If stress is active, the display shows a graph of the previous 3 seconds of stress which is drawn in white.
Stress is drawn into the upper portion and is scaled to fit.

The pfDrawChanStats display is very useful for debugging and profiling a particular application and
also for visualizing the behavior of differing multiprocessing modes and pfPipe phases.

pfDrawChanStats and pfDrawFStats do not actually draw the diagram but set a flag so that the diagram
is drawn just before IRIS Performer swaps image buffers.

Drawing the timing diagram does take a small amount of time in the draw process, so it will perturb the
frame rate and timing data to some degree.

IRIS Performer level-of-detail behavior is primarily dependent on pfChannel viewing parameters such as
view position, field-of-view, and viewport pixel size. IRIS Performer assumes that LODs are modeled for
a canonical FOV of 45 degrees and a viewport size of 1024 pixels. IRIS Performer computes an internal

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

scale value for pfChannels whose FOV or viewport size differ from these defaults. This scale value is
used to modify LOD ranges so that correct LOD behavior is maintained. If your LODs were not modeled
with the above defaults you may use PFELOD_SCALE (see below) to adjust the LOD ranges.

Other LOD modification parameters are set with pfChanLODAttr. attr is a symbolic token that specifies
which LOD parameter to set and is one of the following:

PFLOD_SCALE
val multiplies the range computed between chan’s eyepoint and all pfLOD’s drawn by chan.
This is used to globally increase or decrease level of detail on a per-pfChannel basis. The
default LOD scale is 1.0. See the pfLODState and pfLOD man page for more details.

PFLOD_FADE
val specifies the global fade scale used to fade between levels of detail. Fade is enabled
when val > 0, and is disabled when val <= 0. Fade is disabled by default. Note that when
computing the actual "fade" or transition distances, this scale is multiplied by individual
fade distance values that are specified via pfLODTransition. Default pfLOD transition
ranges are 1.0. See the pfLODState and pfLOD man page for more details.

PFLOD_STRESS_PIX_LIMIT
System stress (pfChanStress) will not affect LOD’s whose projected pixel size exceeds val
pixels. This feature is disabled by default.

PFLOD_FRUST_SCALE
The range multiplier based on chan’s viewport and FOV is multipled by val. Typically, this
feature is enabled with a value of 1.0 and disabled with a value of 0.0.

LOD fade is useful for avoiding distracting LOD switches. When within the fade range, LODs are drawn
semi-transparent so that adjacent LODs smoothly blend together. Fade determines the transparency of an
two independent levels of detail. Here is an example for a pfLOD with 3 levels-of-detail and fade range
of 30 database units:

Swi t ch Range
0 100 250 350

| 20/ 80 LODO/ LODL ° |
100% LODO 140% LOD2
50/ 50 LOD1/ LOD2

=== indi cates where fading is active.

43

pfChannel(3pf) IRIS Performer 2.0 libpf C Reference Pages

44

Fade transparency is complementary so that fading the same LOD child with (fade) and (1.0 - fade) will
generate a fully opaque image. As an example, a fade of 0.7 will cover 70% of the screen area while a fade
of (1.0 - fade) = (1.0 - 0.7) = 0.3 will cover the remaining 30% of the screen area.

IRIS Performer ensures that LODs whose switch range is <= 0.0 do not fade in and also clamps the user-
specified fade range to half the distance between LOD switches. For example, if a pfLOD is specified with
switch ranges 0.0, 100.0, 400.0 and the fade range is 80.0, the result will be:

Example 2: Fade clamping

Range LOD(s) drawn
0-> 50 100% LODO
50 -> 100 100% - > 50% LODO + 0% -> 50% LOD1
100 -> 180 50%-> 0% LOD0 + 50%-> 100% LOD1
180 -> 320 100% LOD1
320 -> 400 100% -> 50% LOD1
400 -> 480 50% - > 0% LOD1

Use fade with discretion since it increases rendering time because two LODs instead of one are drawn
when range is within the fade interval.

pfGetChanLODALtr returns the value of the LOD modification parameter specified by attr.

IRIS Performer computes a stress value based on graphics load (pfChanStress) to modify LODs.
Specifically, when the system approaches overload, simpler LODs are drawn in order to reduce graphics
load. However, in some situations image fidelity considerations make it undesirable to draw low levels-
of-detail of objects which are close to the viewer and thus occupy considerable screen space.
PFLOD_STRESS_PIX_LIMIT limits the effects of stress to LODs whose projected pixel size is less than
val. Projected pixel size is based on the bounding volume of the LOD and is approximate. When val <
0.0, the stress pixel limit is disabled.

PFLOD_SCALE is a global scale that is useful for debugging and for adapting LODs modeled at one FOV
and viewport size to the canonical FOV and viewport size used by IRIS Performer. A val of 0.0 will cause
only the highest LODs are displayed, since the effective distance will be uniformly scaled to 0.0.

All pfChannels on a pfPipe are rendered into a single graphics window so that they can share hardware
resources such as textures. Additionally, each channel is rendered in succession rather than in parallel to
avoid costly graphics context switching.

For best performance, channel buffers allocated by pfAllocChanData should be as small as possible and
pfPassChanData should be called only when necessary to reduce copying overhead.

IRIS Performer 2.0 libpf C Reference Pages pfChannel(3pf)

BUGS

When configured as a process separate from the draw, the cull callback should not invoke IRIS GL or
OpenGL graphics calls since only the draw process is attached to a graphics context. However, the
display listable libpr commands invoked in the cull callback will be correctly added to the current IRIS
Performer libpr display list being built for later processing by the draw process.

Callbacks should not modify the IRIS Performer database but may use pfGet routines to inquire informa-
tion as desired.

Draw callbacks should not attempt to perform framebuffer swapping operations directly since IRIS Per-
former must control this to handle frame and channel synchronization. If user control of buffer swapping
is required, register a pfPipeSwapFunc callback to cause the named user written function to be used by
IRIS Performer for swapping buffers.

Sorting back-to-front is required for accurate rendering of PFTR_BLEND_ALPHA surfaces. The ordering
mechanism described above provides range sorting on a per-pfGeoSet, not a per-triangle basis so some
anomalies may be apparent when rendering transparent surfaces. These anomalies may be reduced by
rejecting back-facing polygons (see pfCullFace and PFSTATE_CULLFACE).

The IRIS Performer world coordinate system is +X = East, +Y = North, +Z = Up and viewing coordinate
system is +X = Right, +Y = Forward, +Z = Up. Note that this is not the same as the IRIS GL or OpenGL
default coordinate system which uses +X = Right, +Y = Up, +Z = Out of the screen. IRIS Performer inter-
nally manages the transformation required to go from a "Z-up’ world to a "Y-up’ world.

Fade-based level of detail transition is supported only on RealityEngine systems and then only when mul-
tisampling is enabled.

Intersections, and thus picking, with lines and points is not yet implemented.

SEE ALSO

pfConfigPWin, pfAddChan, pflnsertChan, pfMoveChan, pfRemoveChan, pfPipeSwapFunc, pfNo-
delsectSegs, pfLoadGState, pfNodeBSphere, pfNodeTravMask, pfStatsClass, pfStatsClassMode, pfConfig,
pfCullFace, pfDispList, pfEarthSky, pfESkyFog, pfObject, pfFrame, pfFrameRate, pfFrustum, pfGet-
SemaArena, pfLightSource, pfLOD, pfMultipipe, pfMultiprocess, pfPolytope, pfPhase, pfScene, pfGet-
SemaArena, pfTransparency, pfuLockCPU

45

pfConfig(3pf)

IRIS Performer 2.0 libpf C Reference Pages

NAME

pfMultipipe, pfGetMultipipe, pfMultithread, pfGetMultithread, pfMultiprocess, pfGetMultiprocess,
pfConfig, pfGetPID, pfGetPipe, pfInitPipe, pfGetStage, pfStageConfigFunc, pfGetStageConfigFunc,
pfConfigStage, pfHyperpipe, pfGetHyperpipe, pfGetPipeHyperld — Configure process and pipeline
models, get pfPipe handle and process ID.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

int

int

int

int

int

int

int
pid_t
pfPipe *
int

uint
void
pfStageFuncType
void
void

int

int

pfMultipipe(int num);

pfGetMultipipe(void);

pfMultithread(int pipe, uint stage, int nprocs);
pfGetMultithread (int pipe, uint stage);
pfMultiprocess(int mode);

pfGetMultiprocess(void);

pfConfig(void);

pfGetPID(int pipe, uint stage);

pfGetPipe(int pipe);

pfInitPipe(pfPipe *pipe, pfPipeFuncType configFunc);
pfGetStage(pid_t pid, int *pipe);
pfStageConfigFunc(int pipe, uint stageMask, pfStageFuncType configFunc);
pfGetStageConfigFunc(int pipe, uint stageMask);
pfConfigStage(int pipe, uint stageMask);
pfHyperpipe(int n);

pfGetHyperpipe(pfPipe *pipe);
pfGetPipeHyperld(const pfPipe *pipe);

t ypedef void (*pfStageFuncType) (int pipe, uint stage);

DESCRIPTION

An IRIS Performer application renders images using one or more pfPipes. A pfPipe is a software render-
ing pipeline that traverses, culls, and draws one or more pfChannels into a single graphics context. The
software rendering pipeline is composed of three functional stages:

46

IRIS Performer 2.0 libpf C Reference Pages pfConfig(3pf)

APP Application processing
CULL Database culling and level-of-detail selection
DRAW Drawing geometry produced by CULL

In addition, IRIS Performer has a separate intersection stage which can operate either synchronously or
asynchronously with the rendering pipeline (see pfIsectFunc).

All stages may be combined into a single process or split into multiple processes for enhanced perfor-
mance on multiprocessing systems. pfMultiprocess controls the partitioning of functional stages into
processes. mode is a bitwise OR of the following tokens:

PFMP_FORK_ISECT
PFMP_FORK_CULL
PFMP_FORK_DRAW
PFMP_FORK_DBASE
PFMP_CULLoDRAW
PFMP_CULL_DL_DRAW

These tokens specify which stages to fork into separate processes and what multiprocessing communica-
tion mechanism to use between the cull and draw processes.

The process from which all other processes are spawned is known as the application process, or APP.
This process is the one that invokes pfConfig and controls the rendering and intersection pipelines
through pfFrame.

User code in the intersection, database, cull, and draw processes are "triggered" by calling pfFrame.
pfFrame causes IRIS Performer to invoke the user callbacks associated with each process. These callbacks
are established by pfIsectFunc, pfDBaseFunc, pfChanTravFunc respectively. See pfFrame for more
details.

Each pfPipe has a CULL and DRAW stage which may be configured as either one or two processes. The
ISECT and DBASE stages are independent of any pfPipe and may run in the same process as the applica-
tion process or as separate processes (PFMP_FORK_ISECT, PFMP_FORK_DBASE). In the latter case,
the user may further multiprocess intersection traversals through any IRIX multiprocessing mechanism
such as fork, sproc, or m_fork. Database processing utilizing the pfBuffer mechanism may be further
parallelized through fork only (See pfBuffer).

For additional performance gains when a pfPipe contains multiple pfChannels, the CULL stage may be
further parallelized on a per-pfChannel basis. When the stage argument to pfMultithread is
PFPROC_CULL, the CULL stage of the pipeth rendering pipeline is split into nprocs, forked, processes
each of which operates singly on a pfChannel. Thus this extra parallelization is only effective when both

47

pfConfig(3pf) IRIS Performer 2.0 libpf C Reference Pages

48

nprocs and the number of pfChannels on pipe are greater than 1. nprocs need not be equal to the number of
pfChannels. Currently, pfMultithread only accepts a stage argument of PFPROC_CULL, returns 1 on
success and -1 otherwise. The CULL is not automatically multithreaded if PFMP_DEFAULT is specified
as the pfMultiprocess mode.

When multithreading the CULL, care must be taken to avoid data collisions in user callback functions. In
particular, pfChannel and pfNode CULL callbacks (pfChanTravFunc, pfNodeTravFuncs) may be
invoked in parallel.

pfGetMultithread returns the number of processes in the processing stage identified by stage on the
pipeth rendering pipeline. Currently, pfGetMultithread only accepts a stage argument of
PFPROC_CULL and returns -1 otherwise.

Thus, the number of processes an application uses is dependent on:
1. The multiprocessing modes set by pfMultiprocess and pfMultithread.
2. The number of rendering pipelines set by pfMultipipe.

3. The number of user-spawned processes.

The following table indicates the number of processes that are implied by each multiprocessing mode
combination as a function of the number of IRIS Performer pfPipes specified.

FORK_ISECT | FORK_CULL | FORK_DRAW # Processes

No No No 1

No No Yes 2

No Yes No 1 + numPipes
No Yes Yes 1 + 2*numPipes
Yes No No 2

Yes No Yes 3

Yes Yes No 2 + numPipes
Yes Yes Yes 2 + 2*numPipes

Here is an example configuration which would be used to generate a high-performance stereo display
using two pfPipes, each associated with a hardware graphics pipeline. In this situation the output of one
pipeline will be displayed for the viewer’s left eye, and the other will go to the right eye. Here, mul-
tithreading the CULL is of no use since each pfChannel is handled by its own pfPipe.

Example 1: Two pfPipe stereo configuration

/* configure two hardware pipelines */
pf Mul ti pi pe(2);

/* operate all processing tasks in parallel */

IRIS Performer 2.0 libpf C Reference Pages pfConfig(3pf)

pf Ml ti process(PFMP_FORK_CULL | PFMP_FORK_DRAW | PFMP_FORK_| SECT);

The processing mode configured by this example looks like:

CULL ---> DRAW left eye

I SECT CULL ---> DRAW right eye

Example 2: One pfPipe stereo configuration using multithreaded CULL

/* operate all processing tasks in parallel */
pf Mul ti process(PFMP_FORK_CULL | PFMP_FORK_DRAW | PFMP_FORK_| SECT) ;

pfMul tithread(0, PFPROC CULL, 2);

The processing mode configured by this example looks like:

CULL left eye

/ CULL right eye

PFMP_CULL_DL_DRAW and PFMP_CULLoDRAW specify how the cull and draw stages should com-
municate.

If PEMP_CULL_DL_DRAW is set the cull stage will build up an IRIS Performer display list (pfDispList)
which contains the entire frame’s worth of data. The draw stage then traverses this pfDispList when
pfDraw is called and sends commands to the graphics hardware. When the cull and draw stages are dif-
ferent processes (PFMP_FORK_DRAW) this mode is always enabled. However, when the cull and draw
stages are the same process, the display list construction may add some overhead. If, in this case,
PFMP_CULL_DL_DRAW is not specified, the cull stage will be delayed until pfDraw is called. pfDraw
will then cull and draw the scene in immediate mode and not use a pfDispList.

49

pfConfig(3pf) IRIS Performer 2.0 libpf C Reference Pages

PFMP_CULL_DL_DRAW is disabled by default but should be used for applications which use multipass
rendering techniques that require multiple calls to pfDraw.

The "0” in PFMP_CULLoDRAW is short for ‘overlap’ and when this bit is set, the multiprocessed cull and
draw stages of the same frame will be overlapped. The cull process (the producer) writes to a FIFO
(implemented as a ring buffer) while the draw process (the consumer) simultaneously reads commands
from the ring buffer.

The main benefit of this configuration is that latency will be reduced a full frame time over the pipelined
(non-overlapped) case. A disadvantage is that the draw process may suffer from reduced throughput if
the cull process cannot keep up. This condition is exacerbated when the cull sorts the database by draw
bin or by graphics state. In each case, the cull retains the database in internal data structures and does not
add drawing commands to the display list until the cull is completed. Consequently, to get the best
throughput from PFMP_CULLoDRAW, database mode sorting and ordering should be disabled.

Example 3: Reasonable sorting setup for PFMP_CULLoDRAW

pf Mul ti process(PFMP_APP_CULL_DRAW | PFMP_CULLODRAW ;

/* Draw opaque geonetry imrediately into CULLODRAW s pf Di spLi st
* Transparent geonetry is still saved and drawn after opaque. */
pf ChanBi nOr der (chan, PFSORT_OPAQUE_BI N, PFSORT_NO ORDER) ;

/* PFCULL_SORT nust be enabled for transparent geonetry to be
ordered, i.e. - drawn last. */
pf ChanTr avMbde(chan, PFTRAV_CULL, PFCULL_ALL);

PFMP_CULLoDRAW is ignored if the cull and draw stages are in the same process.

For convenience, other tokens are provided for common multiprocessing modes:

PFMP_APPCULLDRAW
All stages are combined into a single process. A pfDispList is not used. pfDraw both culls
and renders the scene.

PFMP_APPCULL_DL_DRAW
All stages are combined into a single process. A pfDispList is built by pfCull and rendered
by pfDraw.

50

IRIS Performer 2.0 libpf C Reference Pages pfConfig(3pf)

PFMP_APP_CULLDRAW
The cull and draw stages are combined in a process that is separate from the application
process. A pfDispList is not used. pfDraw both culls and renders the scene. Equivalent to
(PFMP_FORK_CULL).

PFMP_APP_CULL_DL_DRAW
The cull and draw stages are combined in a process that is separate from the application
process. A pfDispList is built by pfCull and rendered by pfDraw. Equivalent to (-
PFMP_FORK_CULL | PFMP_CULL_DL_DRAW).

PFMP_APPCULL_DRAW
The application and cull stages are combined in a process that is separate from the draw
process. Equivalent to (PFMP_FORK_DRAW).

PFMP_APPCULLoDRAW
The application and cull stages are combined in a process that is separate from, but over-
laps, the draw process. Equivalent to (PFMP_FORK_DRAW | PEMP_CULLoDRAW).

PFMP_APP_CULL_DRAW
The application, cull, and draw stages are each separate processes. Equivalent to (-
PFMP_FORK_CULL | PEMP_FORK_DRAW).

PFMP_APP_CULLoDRAW
The application, cull, and draw stages are each separate processes and the cull and draw
process are overlapped. Equivalent to (PFMP_FORK_CULL | PEMP_FORK_DRAW |
PFMP_CULLoDRAW).

PFMP_DEFAULT
IRIS Performer will choose a multiprocessing mode based on the number of pipelines
required and the number of unrestricted processors available. This is also the default mode
if pfMultiprocess is not called. PEMP_DEFAULT will attempt to use as many available
processors as possible except the CULL will not be automatically multithreaded.

By default IRIS Performer uses a single pfPipe. If multiple rendering pipelines are required (in most cases
this will be for machines with multiple hardware pipelines), use pfMultipipe to specify the number of
pfPipes that are created by pfConfig. Multipipe operation absolutely requires that all participating
hardware pipelines be genlocked. Otherwise reduced throughput and increased latency will result.

The multiprocessing mode set by pfMultiprocess is used for all rendering pipelines. However, IRIS Per-
former never multi-threads the application process although the application may choose to do so. If the
application itself multiprocesses, all IRIS Performer calls must be made from the process which calls
pfConfig or results are undefined. When using multiple pipelines, the cull stage must be forked (-
PFMP_FORK_CULL). If not, IRIS Performer defaults to PFMP_APP_CULL_DRAW.

pfMultiprocess, pfMultithread, and pfMultipipe must be called after pfInit but before pfConfig.
pfConfig configures IRIS Performer according to the required number of pipelines and multiprocessing

51

pfConfig(3pf) IRIS Performer 2.0 libpf C Reference Pages

modes, forks the appropriate number of IRIS Performer processes and returns control to the single-
threaded application. pfConfig should be called only once between pfInit and pfExit.

IRIS Performer uses fork to split off processes and will create the specified number of separate processes
only when pfConfig is called. Forked processes do not share the same address space as sproc’ed
processes so the application must establish shared memory communication mechanisms between
processes or use the shared memory features provided by IRIS Performer (see pfPassChanData,
pfMalloc, pfGetShared Arena, pfDataPool).

In particular, care must be taken when the DBASE stage is configured as a separate process. Although
deletion requests (pfDelete) may be made in any process, DBASE frees all the memory so if DBASE is
forked it can only free memory that was allocated out of IRIS Performer’s shared memory arena (-
pfGetSharedArena) or from some other memory arena that is visible to the DBASE process. Conse-
quently it is safest to allocate all objects from a shared memory arena when using a forked DBASE pro-
cess.

In addition to forking processes, pfConfig initializes the number of pfCycleBuffer copies (-
pfCBufferConfig) appropriate to the multiprocessing mode and also initializes the video clock (-
pfInitVClock) to 0.

After pfConfig is called, pfGetPipe should be used to get handles to pfPipes for subsequent use in IRIS
Performer routines. pipe identifies a pipe and ranges from 0 to numPipes - 1 where numPipes is the
number of pipes specified in pfMultipipe.

After pfConfig spawns other processes, pfGetPID will return the process id of a specific pipeline stage or
-1 to indicate error. pipe specifies which pipeline the stage is in and ranges from 0 to numPipes - 1. stage is
a bitmask which identifies one or more stages in the multiprocessing pipeline and may consist of:

Token Stage Description

PFPROC_ISECT The intersection stage
PFPROC_DBASE The database stage
PFPROC_APP The application stage
PFPROC_CULL The cull stage
PFPROC_DRAW The draw stage
PFPROC_CLOCK | The clock process

If stage identifies multiple stages, such as (PFPROC_CULL | PFPROC_DRAW), then the process id will
be returned only if an exact match is made which in this example is only possible if the multiprocessing
mode is PFMP_APP_CULLDRAW. Otherwise a -1 is returned.

pipe is ignored if stage identifies the PFPROC_ISECT, PFPROC_DBASE, or PFPROC_APP stages since
these stages are not associated with any IRIS Performer pipe.

52

IRIS Performer 2.0 libpf C Reference Pages pfConfig(3pf)

pfGetStage is the "inverse" of pfGetPID. Given a process id, pid, pfGetStage will return a bitmask which
identifies the stages that are performed by process pid and will copy into pipe the number of the pipeline
that pid is in if pipe is not NULL. pfGetStage returns -1 if pid is not a known IRIS Performer process.

The stage bitmask used in pfGetPID and pfGetStage identifies the thread number (pfMultithread) as
well as the processing stage(s). The thread ID is OR’ed into the upper bits of the stage bitmask as follows:

threadld = (stage & PFPROC_THREAD MASK) >> PFPROC_THREAD SHI FT;

The PFPROC_THREAD1-7 tokens are provided as a convenience (more than 8 threads are supported).

pfGetMultiprocess and pfGetMultipipe return the multiprocess mode and number of pfPipes
configured.

pfInitPipe is an obsolete routine for initializing the graphics subsystem for a pfPipe. A callback function
configFunc could be provided for initializing pipe in the draw process and was used for opening windows
in the draw process for the pfPipe. This function has been obsoleted by the pfPipeWindow primitive
which can be used to configure windows in either or both the application process and draw process, and
by pfConfigStage which provides a mechanism for initializing any IRIS Performer process or pfPipe
stage. See the pfNewPWin man page for more information on creating and opening IRIS Performer win-
dows.

After pfConfig, stage configuration callbacks may be specified with pfStageConfigFunc and triggered
with pfConfigStage. Configuration callbacks are typically used for process initialization, e.g, assign non-
degrading priorities and locking processes to processors or downloading textures in the DRAW stage
callback. The stageMask argument to pfStageConfigFunc is a bitmask which identifies one or more IRIS
Performer stages (see pfGetPID above). If >= 0, the pipe argument to pfStageConfigFunc selects stage(s)
on a particular pfPipe (pfGetPipe(pipe)). If pipe is < 0 it selects stages of all pfPipes. Note that pipe is
ignored for the PFPROC_ISECT, PFPROC_APP, and PFPROC_DBASE stages since they are not associ-
ated with any pfPipe. configFunc is the callback function to be invoked for the indicated stages.
pfGetStageConfigFunc returns the configuration function used for the stage identified by pipe and
stageMask.

pfConfigStage causes the callback functions to be invoked for the identified stages at the start of process-
ing the current application frame. The current application frame gets to the next stage at the next call to
pfFrame. pipe and stageMask are treated identically as in pfStageConfigFunc. When multiprocessing, the
callback functions are invoked in the appropriate processes.

Example 4: Stage configuration

53

pfConfig(3pf) IRIS Performer 2.0 libpf C Reference Pages

voi d
configFunc(int pipe, uint stage)
{
/* Fix CULL processes to processor 1 and 3 */
if (stage == PFPROC_CULL)
sysnp(MP_MJSTRUN, 2*pi pe+l);

/* Fi x DRAW processes to processor 2 and 4 */
else if (stage == PFPROC_DRAW
sysnp(MP_MJSTRUN, 2*pi pe+2);

pf Ml ti pi pe(2);
pf Mul ti process(PFMP_APP_CULL_DRAW ;
pf Config();

pf St ageConfi gFunc(-1, PFPROC_CULL|PFPROC_DRAW confi gFunc);
pf Confi gSt age(-1, PFPROC_CULL|PFPROC_DRAW ;

pf Frame();

pfHyperpipe supports the hyperpipe hardware feature of VGXT/Skywriter and Onyx/RealityEngine2
research systems. n indicates the number of pfPipes that should be configured together in hyperpipe
mode. Hyperpipes will run at a fraction of the system frame rate as defined by pfFrameRate. For exam-
ple, if n is 2, then each pfPipe in the hyperpipe group will run at half the system frame rate so their aggre-
gate rate will be equal to the system frame rate.

pfGetHyperpipe returns the total number of pfPipes in the hyperpipe group that pipe belongs to.
pfGetPipeHyperld returns the position of pipe in its hyperpipe group. The following example configures
a two-pipeline hyperpipe system:
Example 5: Hyperpipe Example

pf Hyper pi pe(2);

pf Config();
pf Get Hyper pi pe(pf Get Pi pe(0)); /* This returns 2 */
pf Get Pi peHyper | d(pf Get Pi pe(1)); /* This returns 1 */

54

IRIS Performer 2.0 libpf C Reference Pages pfConfig(3pf)

NOTES

BUGS

In practice, user callbacks in the intersection process call only pfNodelsectSegs and user callbacks in the
database process uses the pfBuffer mechanism to asynchronously create and delete scene graphs to
implement database paging.

If PEMP_DEFAULT is not used, it is up to the application to tailor the number of IRIS Performer
processes to the number of processors. Care must be taken to avoid thrashing, starvation, and deadlock.

If pfIsectFunc is called before pfConfig and the multiprocessing mode is PFMP_DEFAULT, then
pfConfig will fork the intersection process if there are enough processors. Otherwise, you must explicitly
fork the intersection process by setting the PFMP_FORK_ISECT bit in the argument passed to
pfMultiprocess.

When using PFMP_CULLoDRAW, multipass algorithms (e.g. - landing lights on RealityEngine) which
call pfDraw more than once per frame will not work.

If PEMP_CULLoDRAW is used, modifications to pfChannel passthrough data (see pfPassChanData)
made by the cull callback will not be passed along to the draw callback. However, modifications made by
the application process will still make it to both cull and draw callbacks.

PFMP_CULLoDRAW usually has no effect when IRIS Performer is in the free-running frame rate control
mode specified by pfPhase(PFPHASE_FREE_RUN). Instead, use PFPHASE_FLOAT or
PFPHASE_LOCK.

When in PFMP_CULLoDRAW mode, the draw time recorded by IRIS Performer statistics does not
include the time the draw process spends waiting for the cull process to begin filling the ring buffer.

pfHyperpipe assumes that the pfPipe to hardware pipe association is ordered, e.g. that pipe 0 renders to
screen 0, pipe 1 renders to screen 1, and so on.

SEE ALSO

fork, m_fork, pfChannel, pfCycleBuffer, pfInit, pflsectFunc, pfDBaseFunc, pfPipe, sproc

55

pfDBaseFunc(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfDBaseFunc, pfGetDBaseFunc, pfAllocDBaseData, pfGetDBaseData, pfPassDBaseData, pfDBase —
Set database callback, allocate and pass database data.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

void pfDBaseFunc(pfDBaseFuncType func);
pfDBaseFuncType pfGetDBaseFunc(void);

void * pfAllocDBaseData(int bytes);

void * pfGetDBaseData(void);

void pfPassDBaseData(void);

void pfDBase(void);

typedef void (*pfDBaseFuncType) (void *userData);

DESCRIPTION

56

The func argument to pfDBaseFunc specifies the database callback function. This function will be
invoked by pfFrame and will be passed a pointer to a data buffer allocated by pfAllocDBaseData. If a
separate process is allocated for database processing by the PFMP_FORK_DBASE mode to
pfMultiprocess, then pfFrame will cause func to be called in the separate (DBASE) process.
pfGetDBaseFunc returns the database callback or NULL if none is set.

The database function’s primary purpose is to provide asynchronous database creation and deletion
when using the pfBuffer mechanism and a forked DBASE process (see PFMP_FORK_DBASE,
pfMultiprocess, and pfNewBuffer).

When the database function is in a separate process, it will run asynchronously with the rest of the
rendering pipeline. Specifically, if the database function takes more than a frame time, the rendering pipe-
line will not be affected.

If a database function has been specified by pfDBaseFunc, it must call pfDBase to carry out default IRIS
Performer database processing. pfDBase should only be called from within the DBASE callback in the
DBASE process just like pfCull and pfDraw should only be called in the pfChannel CULL and DRAW
callbacks (pfChanTravFunc) respectively. If a database function has not been specified or is NULL, IRIS
Performer automatically calls pfDBase from pfFrame.

pfAllocDBaseData returns a pointer to a chunk of shared memory of bytes bytes. This memory buffer
may be used to communicate information between the database function and application. Database data
should only be allocated once. pfGetDBaseData returns the previously allocated database data.

IRIS Performer 2.0 libpf C Reference Pages pfDBaseFunc(3pf)

When the database function is forked, pfPassDBaseData should be used to copy the database data into
internal IRIS Performer memory when the next pfFrame is called. Once pfFrame is called, the application
may modify data in the database data buffer without fear of colliding with the forked database function.
However, modifications to the database data chunk made by the DBASE process will not be visible to the
APP process, i.e, there is no "upstream" propagation of passthrough data.

NOTES
Currently, pfDBase carries out asynchronous deletion requests made with pfAsyncDelete.

SEE ALSO
pfAsyncDelete, pfConfig, pfFrame, pfMultiprocess, pfNewBuffer

57

pfDCS(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewDCS, pfGetDCSClassType, pfDCSTrans, pfDCSRot, pfDCSCoord, pfDCSScale,
pfDCSScaleXYZ, pfDCSMat, pfGetDCSMat, pfGetDCSMatPtr, pfDCSMatType, pfGetDCSMatType
— Create, modify and get the matrix of a dynamic coordinate system.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

pfDCS * pfNewDCS(void);

pfType * pfGetDCSClassType(void);

void pfDCSTrans(pfDCS *dcs, float x, float y, float z);
void pfDCSRot(pfDCS *dcs, float h, float p, float r);
void pfDCSCoord(pfDCS *dcs, pfCoord *coord);
void pfDCSScale(pfDCS *dcs, float s);

void pfDCSScaleXYZ(pfDCS *dcs, float x, float y, float z);
void pfDCSMat(pfDCS *dcs, pfMatrix m);

void pfGetDCSMat(pfDCS *dcs, pfMatrix m);

const pfMatrix* pfGetDCSMatPtr(pfDCS *dcs);

void pfDCSMatType(pfDCS *dcs, uint val);

uint pfGetDCSMatType(pfDCS *dcs);

PARENT CLASS FUNCTIONS

58

The IRIS Performer class pfDCS is derived from the parent class pfSCS, so each of these member func-
tions of class pfSCS are also directly usable with objects of class pfDCS. Casting an object of class
pfDCS to an object of class pfSCS is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfSCS.

void pfGetSCSMat(pfSCS *scs, pfMatrix mat);
const pfMatrix* pfGetSCSMatPtr(pfSCS *scs);

Since the class pfSCS is itself derived from the parent class pfGroup, objects of class pfDCS can also be
used with these functions designed for objects of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

IRIS Performer 2.0 libpf C Reference Pages pfDCS(3pf)

int pfSearchChild(pfGroup *group, pfNode* child);
pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);

int pfBufferAddChild(pfGroup *group, pfNode *child);

int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfDCS can also be
used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void
void *

pfGetParent(const pfNode *node, int i);

pfGetNumParents(const pfNode *node);

pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);

pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfDCS can also be
used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDCS can also
be used with these functions designed for objects of class pfMemory.

59

pfDCS(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

dcs identifies a pfDCS

DESCRIPTION

60

A pfDCS (Dynamic Coordinate System) is a pfSCS whose matrix can be modified.

pfNewDCS creates and returns a handle to a pfDCS. Like other pfNodes, pfDCSes are always allocated
from shared memory and can be deleted using pfDelete.

pfGetDCSClassType returns the pfType* for the class pfDCS. The pfType* returned by
pfGetDCSClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfDCS. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

The initial transformation is the identity matrix. The transformation of a pfDCS can be set by specifying a
matrix or translation, scale and rotation. When independently setting translation, rotation, and scale, the
pfDCS matrix is computed as S*R*T, where S is the scale, R is the rotation, and T is the translation. The
order of effect is then scale followed by rotation followed by translation.

pfDCS operations are absolute rather than cumulative. For example:

pf DCSTrans(dcs, 2.0f, 0.0f, 0.0f);
pf DCSTrans(dcs, 1.0f, 0.0f, 0.0f);

specifies a translation by 1 unit along the X coordinate axis, not 3 units.

By default a pfDCS uses a bounding sphere which is dynamic, so it is automatically updated when the
pfDCS transformation is changed or when children are added, deleted or changed. This behavior may be
changed using pfNodeBSphere. The bound for a pfDCS encompasses all B(i)*S*R*T, where B(i) is the

IRIS Performer 2.0 libpf C Reference Pages pfDCS(3pf)

bound for the child 'i" and S*R*T represents the scale, rotation, and translation transformation of the
pfDCS.

pfDCSTrans sets the translation part of the pfDCS to (x, y, z). The rotational portion of the matrix is
unchanged.

pfDCSScale sets the scale portion of the pfDCS to scale uniformly by a scale factor s. This supersedes the
previous scale leaving the rotation and translation unchanged. pfDCSScaleXYZ specifies a non-uniform
scale of x, y, z.

pfDCSRot sets the rotation portion of the matrix:
h Specifies heading, the rotation about the Z axis.
p Specifies pitch, the rotation about the X axis.

r Specifies roll, rotation about the Y axis.

The matrix created is R*P*H, where R is the roll transform, P is the pitch transform and H is the heading
transform. The new (h,p,r) combination replaces the previous specification, leaving the scale and transla-
tion unchanged. The convention is natural for a model in which +Y is "forward," +Z is "up" and +Xis
"right". To maintain 1/1000 degree resolution in the single precision arithmetic used internally for sine
and cosine calculations, the angles h, p, r should be in the range of -7500 to +7500 degrees.

pfDCSCoord sets the rotation and translation portion of the pfDCS according to coord. This is equivalent
to:

pf DCSRot (dcs, coord->hpr[0], coord->hpr[1], coord->hpr[2]);
pf DCSTr ans(dcs, coord->xyz[0], coord->xyz[1], coord->xyz[2]);

pfDCSMat sets the transformation matrix for dcs to m.

Normally pfDCSMat is used as a replacement for the above routines which individually set the scale,
rotation and translational components. The mechanisms can be combined but only if the supplied matrix
can be represented as scale followed by a rotation followed by a translation (e.g. a point pt is transformed
by the matrix as: pt’ = pt*S*R*T), which implies that no shearing or non-uniform scaling is present.

pfDCSMatType allows the specification of information about the type of transformation the matrix
represents. This information allows Performer to speed up some operations. The matrix type is specified
as the OR of

61

pfDCS(3pf)

IRIS Performer 2.0 libpf C Reference Pages

62

PFMAT_TRANS:
matrix may include a translational component in the 4th row.

PFMAT_ROT
matrix may include a rotational component in the left upper 3X3 submatrix.

PFMAT_SCALE
matrix may include a uniform scale in the left upper 3X3 submatrix.

PFMAT_NONORTHO
matrix may include a non-uniform scale in the left upper 3X3 submatrix.

PFMAT_PROJ
matrix may include projections.

PFMAT_HOM_SCALE
matrix may include have mat[4][4] != 1.

PFMAT_MIRROR
matrix may include mirroring transformation that switches between right handed and left
handed coordinate systems.

pfGetDCSMatType returns the matrix type as
set by pfDCSMatType. If no matrix type is set the default is "0, corresponding to a general
matrix.

The transformation of a pfDCS affects all its children. As the hierarchy is traversed from top to
bottom, each new matrix is pre-multiplied to create the new transformation. For example, if
DCSb is below DCSa in the scene graph, any geometry G below DCSa is transformed as
G*DCSb*DCSa.

pfFlatten cannot flatten pfDCSes since they may change at run-time. In this case pfFlatten will
compute a pfSCS representing the accumulated static transformation that the pfDCS inherits and
insert it above the pfDCS. Static transformations below a pfDCS are flattened as usual. See
pfFlatten for more details.

The presence of transformations in the scene graph impacts the performance of intersection, cul-
ling and drawing. pfGeoSet culling (see PFCULL_GSET in pfChanTravMode) is disabled in por-
tions of the scene graph below pfDCSes.

Both pre and post CULL and DRAW callbacks attached to a pfDCS (pfNodeTravFuncs) will be
affected by the transformation represented by the pfDCS, i.e. - the pfDCS matrix will already
have been applied to the matrix stack before the pre callback is called and will be popped only
after the post callback is called.

pfGetDCSMat copies the transformation matrix value from dcs into the matrix m. For faster
matrix access, pfGetDCSMatPtr can be used to get a const pointer to dcs’s matrix.

IRIS Performer 2.0 libpf C Reference Pages pfDCS(3pf)

SEE ALSO
pfCoord, pfGroup, pfChanTravMode, pfLookupNode, pfFlatten, pfMatrix, pfNode, pfSCS, pfScene,
pfTraverser, pfDelete

63

pfEarthSky(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewESky, pfGetESkyClassType, pfESkyMode, pfGetESkyMode, pfESkyAttr, pfGetESkyAttr,
pfESkyColor, pfGetESkyColor, pfESkyFog, pfGetESkyFog — Create and control weather, Earth-Sky
model, and screen clearing.

FUNCTION SPECIFICATION

#include <Performer/pf.h>
pfEarthSky * pfNewESky(void);
pfType * pfGetESkyClassType(void);

void pfESkyMode(pfEarthSky *esky, int mode, int val);

int pfGetESkyMode(pfEarthSky *esky, int mode);

void pfESkyAttr(pfEarthSky *esky, int attr, float val);

float pfGetESkyAttr(pfEarthSky *esky, int mode);

void pfESkyColor(pfEarthSky *esky, int which, float r, float g, float b, float a);

void pfGetESkyColor(pfEarthSky *esky, int which, float *r, float *g, float *b, float *a);
void pfESkyFog(pfEarthSky *esky, int which, pfFog *fog);

pfFog * pfGetESkyFog(pfEarthSky *esky, int which);

PARENT CLASS FUNCTIONS

64

The IRIS Performer class pfEarthSky is derived from the parent class pfObject, so each of these member

functions of class pfObject are also directly usable with objects of class pfEarthSky. Casting an object of

class pfEarthSky to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfEarthSky can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

IRIS Performer 2.0 libpf C Reference Pages pfEarthSky(3pf)

int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
esky identifies a pfEarthSky.
DESCRIPTION

These functions provide a means to clear the frame and Z-buffer, draw a sky, horizon and ground plane,
and to implement various weather effects. Once the earth-sky is set in a channel, it should be the first
thing drawn when a scene is rendered.

pfNewESky creates and returns a handle to a pfEarthSky. Like other pfNodes, pfEarthSkies are always
allocated from shared memory and can be deleted using pfDelete.

pfNewESky creates a pfEarthSky and sets up reasonable defaults. To render the earth and sky model, it
must be added to a pfChannel. By default, the mode is to render a full screen clear unless either the sky
or ground is turned on. pfEarthSky is called automatically in the draw process, unless a draw callback is
present, in which case, it must be explicitly called using pfClearChan.

pfGetESkyClassType returns the pfType* for the class pfEarthSky. The pfType* returned by
pfGetESkyClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfEarthSky. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfESkyMode is used to set the earth-sky rendering mode. pfGetESkyMode is used to obtain the earth-
sky rendering mode. These functions currently accept the two mode arguments PFES_BUFFER_CLEAR,
and PFES_CLOUDS.

PFES_BUFFER_CLEAR may have the following values:

PFES_FAST
The default mode. This simply clears the color and Z buffers. The clear color can
be set using pfESkyColor. Dithering is turned off during the clear.

PFES_TAG Initializes the framebuffer to a known state very
rapidly. Has an effect only when multisampling. Often, this mode is used as an
optimization before rendering a background that covers the entire screen. See
pfClear for the details and restrictions of the mode PFCL_MSDEPTH.

65

pfEarthSky(3pf) IRIS Performer 2.0 libpf C Reference Pages

PFES_SKY
Causes a sky and horizon backdrop to be drawn. These are drawn using large
polygons that are recalculated each frame, using information about the clipping
planes, field of view, and eyepoint vertical position for the selected channel. They
are drawn instead of a screen clear, forcing the Z buffer to a known state. If the
viewpoint goes below the ground plane, the area below the horizon will not be
cleared. In the case of PFES_SKY, the screen is never cleared below the lower edge
of the horizon.

PFES_SKY_GRND
Add a ground plane to the sky and horizon model drawn by PFES_SKY.

PFES_SKY_CLEAR
Draw the sky and horizon, and clear the screen below the edge of the horizon.

PFES_CLOUDS is used to set the type of cloud layer. Currently, the only value supported is:

PFES_OVERCAST
This cloud type is a non-textured, opaque region that has a color and both top and
bottom dimensions. This, being the only choice at present, is the default type.

pfESkyColor is used to set the colors referenced by the earth-sky rendering routines. pfGetESkyColor
returns the indicated color component of the earth-sky mode. The components are:

PFES_SKY_TOP The color of the sky directly above the viewpoint.
PFES_SKY_BOT The color of the sky where it joins the horizon.
PFES_HORIZ The color of the bottom edge of the horizon.
PFES_GRND_FAR The color of the ground plane where it meets the horizon.
PFES_GRND_NEAR The color of the ground plane directly below the viewer.
PFES_CLOUD_BOT The color of the bottom of the opaque cloud layer.
PFES_CLOUD_TOP The color of the top of the opaque cloud layer.
PFES_CLEAR The color for simple screen clearing.

The fog color is set as explained in the pfFog reference page.

pfESkyAttr is used to set a number of attributes. The companion function pfGetESkyAttr is used to
return these same attribute values. The tokens and their meanings are listed below:

PFES_GRND_HT Set the ground height for the ground plane that is
used when PFES_SKY_GRND is enabled and defines the bottom edge of the horizon which
is used in all of the modes that draw a sky. The ground plane extends from the eyepoint to
the horizon with a width greater than the field of view. Note that objects placed on the
ground with the same height may not Z buffer correctly. Also, as objects move into the

66

IRIS Performer 2.0 libpf C Reference Pages pfEarthSky(3pf)

distance, the Z buffer resolution for those pixels will decrease, making proper priority reso-
lution of small distances between the ground plane and objects less likely.

PFES_HORIZ_ANGLE Set the vertical displacement of the horizon band
in degrees. The horizon band is blended into the sky bottom color so it may appear to be
less than this angle. This angle remains constant for any heading. To simulate directional
horizon glow, the angle and color can be changed each frame to achieve the correct appear-
ance.

PFES_CLOUD_TOP Set the cloud layer upper position. The cloud layer
is enabled when the cloud base is less than the cloud top. By default, it is disabled (base >
top). Each token is followed by a height value. The cloud layer is opaque. The cloud layer
thickness is simply (top - bottom).

PFES_CLOUD_BOT Set the cloud layer lower position. The cloud layer
is enabled when the cloud base is less than the cloud top. By default, it is disabled (base >
top). Each token is followed by a height value. The cloud layer is opaque. The cloud layer
thickness is simply (top - bottom).

PFES_TZONE_TOP Set the transition zone for exiting a cloud layer.
Provided to allow a smooth transition out of clouds. This transition is enabled by making
the transition height greater than the cloud top. It is disabled by doing the opposite or by
disabling the cloud layer. By default, the transition zone is disabled.

PFES_TZONE_BOT Set the transition zone for entering a cloud layer.
Provided to allow a smooth transition into clouds. This transition is enabled by making the
transition height less than the cloud bottom. It is disabled by doing the opposite or by disa-
bling the cloud layer. By default, the transition zone is disabled.

PFES_GRND_FOG_TOP Set the height of the ground fog layer. Ground
fog is enabled when a valid pfFog is set. By default ground fog is disabled.

pfESkyFog sets which type of fog to use when in ground fog or general visibility. The token may be one
of the following values:

PFES_GRND

PFES_GENERAL
pfGetESkyFog returns the indicated fog selection.

Several different fog functions may be defined at initialization, then just switched in using this routine.
Distant haze and different curves would be done this way. If ground fog is enabled, and the viewer is
transitioning out of the ground fog layer, the fog will be blended into clear visibility or PFES_GENERAL
fog.

Due to the design of the graphics library, fog would be discontinuous in adjacent channels which use

rotational viewing offsets (See pfChanViewOffsets). However, when attached to a pfChannel (see
pfChanESky) that has a rotational viewing offset, a pfEarthSky will automatically adjust the ranges of the

67

pfEarthSky(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

pfFog set by pfESkyFog to account for any rotational offsets so that fog is continuous across adjacent
channels.

pfEarthSky does not work properly for off-axis viewing frusta.

Because PFES_TAG only has effect when multisampling, care must be taken for cross-platform portabil-
ity. Background renderings that rely on the depth buffer having been reset (e.g. backgrounds that do not
disable z buffering with zfunction(ZF_ALWAYS) in IRIS GL or glDepthFunc(GL_ALWAYS) in
OpenGL) may need to request a normal depth buffer clear when not multisampling.

When multisamling, PFES_SKY_GND and PFES_SKY are significantly faster than PFES_SKY_CLEAR.
In IRIX 5.3 IRIS GL on Indigo2/Extreme systems the Z-buffer is not fully updated after a window is

moved unless a full Z-clear operation is performed. In such cases your software must detect REDRAW
events and fully clear the Z-buffer.

SEE ALSO

68

pfChanViewOffsets, pfClear, pfFog, pfNewChan, zfunction, glDepthFunc, pfDelete

IRIS Performer 2.0 libpf C Reference Pages pfFrame(3pf)

NAME
pfFrameRate, pfGetFrameRate, pfFieldRate, pfGetFieldRate, pfVideoRate, pfGetVideoRate, pfSync,
pfFrame, pfAppFrame, pfGetFrameCount, pfFrameTimeStamp, pfGetFrameTimeStamp, pfPhase,
pfGetPhase — Set and get system frame and video rate, phase, and frame count. Synchronize and initiate
frame.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

float pfFrameRate(float rate);

float pfGetFrameRate(void);

int pfFieldRate(int fields);

int pfGetFieldRate(void);

void pfVideoRate(float vrate);

float pfGetVideoRate(void);

int pfSync(void);

int pfFrame(void);

int pfAppFrame(void);

int pfGetFrameCount(void);

void pfFrameTimeStamp(double time);
double pfGetFrameTimeStamp(void);
void pfPhase(int phase);

int pfGetPhase(void);

DESCRIPTION
IRIS Performer is designed to run at a fixed frame rate. The rate argument to pfFrameRate specifies the
desired rate in units of frames per second. The actual rate used is based on the video timing of the
display hardware. rate is rounded to the nearest frame rate which corresponds to an integral multiple of
video fields.

For a 60Hz video rate, possible frame rates are (in Hz) 60.0, 30.0, 20.0, 15.0, 12.0, 10.0, 8.57, 7.5, 6.67, and
6.0. These rates would mean that the number of fields per frame would range from 1 (for 60Hz) to 10 (for
6Hz). pfFrameRate returns the actual frame rate used or -1.0 if it is called before pfConfig.

pfVideoRate specifies the system video rate as vrate fields per second. If pfVideoRate is not called, then
IRIS Performer determines the video field rate at pfConfig time and will not be aware of changes in video

timing made during application run-time until pfVideoRate is called.

pfGetVideoRate returns the video timing in number of video fields per second or -1.0 if it is called before

69

pfFrame(3pf) IRIS Performer 2.0 libpf C Reference Pages

70

the video rate has been determined. The IRIS Performer video clock (see pfInitVClock) runs at this video
field rate and is initialized to 0 by pfConfig.

An alternate way of specifying a desired frame rate is pfFieldRate. fields is the number of video fields per
simulation frame. The corresponding frame rate will then be the video field rate (see pfGetVideoRate)
divided by fields. pfGetFieldRate returns the number of video fields per simulation frame.

Frame rate is a per-machine metric and is used by all pfPipes. It controls the rate at which multiprocess-
ing pipelines run and affects computed system load and related stress metrics (see pfChanStress). Since
frame rate is global it follows that all hardware pipelines used by a single IRIS Performer application
should be genlocked, i.e., the video signals are synchronized by hardware. Otherwise the video signals of
the pipes will be out of phase, reducing graphics throughput and increasing latency. Genlock is crucial
for proper multipipe operation and requires some simple, platform-specific cabling and software
configuration through the setmon call.

Depending on the phase as is discussed below, pfSync synchronizes the application process with the
frame rate specified by pfFrameRate (when phase is PFPHASE_LOCK or PFPHASE_FLOAT), or to the
system rendering rate (when phase is PFPHASE_FREE_RUN or PFPHASE_LIMIT). In the first case,
pfSync sleeps until the next frame boundary, then awakens and returns control to the application. In the
second case, pfSync sleeps until the draw process begins rendering a new frame or returns immediately if
in single-process operation. pfSync returns the current frame count and should only be called by the
application process when multiprocessing.

pfFrame initiates a new frame of IRIS Performer processing by doing the following:

Triggers all processing stages that are configured as a separate process.
Inlines all processing stages that are not configured as a separate process.

Sets the current, global pfCycleBuffer index (see pfCurCBufferIndex) which is guaranteed
not to be in use by any other IRIS Performer process.

4. Sets the frame’s time stamp (pfFrameTimeStamp).

pfFrame triggers all IRIS Performer processing stages (APP, ISECT, DBASE, CULL, and DRAW). If a
stage is partitioned into a separate process, pfFrame will allow that process to run. Otherwise, pfFrame
itself will carry out the processing associated with the stage. pfFrame will directly invoke all user call-
backs that are in the same process as that which called pfFrame. Otherwise, a callback will be invoked by
the process of which it is a part, e.g., the ISECT callback will be invoked by the ISECT process if
PFMP_FORK_ISECT is set in the argument to pfMultiprocess.

AIL'IRIS Performer stage callbacks have a block of associated data known as "user data.” User data is
passed as an argument to the stage callback. To simplify data flow in a multiprocessing environment, IRIS
Performer copies user data into internal buffers and propagates the data down multiprocessing pipelines.

IRIS Performer 2.0 libpf C Reference Pages

pfFrame(3pf)

To restrict data copying to only those frames in which user data changes, use the pfPass<*>Data func-
tions. pfPass<*>Data signifys that the user data has changed and needs to be copied. pfFrame will then
copy the data into its internal buffer and the stage callback will receive the updated user data. Stage call-

backs and user data functions are listed below.

Stage Callback Allocation Pass

APP pfChanTravFunc | pfAllocChanData | pfPassChanData
CULL | pfChanTravFunc | pfAllocChanData | pfPassChanData
DRAW | pfChanTravFunc | pfAllocChanData | pfPassChanData
ISECT pflsectFunc pfAlloclsectData pfPasslsectData
DBASE pfDBaseFunc pfAllocDBaseData | pfPassDBaseData

pfFrame triggers the APP, CULL and DRAW stages of all pfPipes so it must be called every frame a new
display is desired. IRIS Performer will attempt to cull and draw all active pfChannels on all pfPipes
within a single frame period. Multiple pfChannels on a single pfPipe will be processed in the order they
were added to the pfPipe. pfFrame returns the current frame count and should only be called by the
application process when multiprocessing.

If specified, pfChannel cull and draw callbacks (pfChanTravFunc) will be invoked by the appropriate
process which may or may not be the same process that called pfFrame. If these callbacks are not
specified, pfCull and pfDraw will be called instead. pfChannel passthrough data which is passed to
pfChannel function callbacks (see pfPassChanData) is copied into internal memory at pfFrame time.

In typical operation, pfFrame should closely follow pfSync in the main application loop. Since the CULL
does not start until pfFrame is called, considerable processing between pfSync and pfFrame can reduce
system throughput. However, any updates to the database or view made at this time will be applied to
the current frame so latency is reduced for these updates. Updates made after pfFrame will be applied to
the next frame. pfFrame returns the current frame count.

pfFrame will automatically call pfSync if the application did not call pfSync before calling pfFrame. This
means the application need not call pfSync.

It is crucial to keep the time spent in the application process less than a frame’s time so the system can
meet the desired frame rate. If the application process exceeds a single frame’s time, pfFrame will not be
called often enough to meet the frame rate.

The following code fragment is an example of an application’s main processing loop:

Example 1: Main simulation loop.

71

pfFrame(3pf) IRIS Performer 2.0 libpf C Reference Pages

72

pf FraneRat e(30. 0f) ; /* Set desired frame rate to 30Hz */
whi l e (!done)
{
app_funcs(); /* Performapplication-specific functions */

update_positions(); /* Update noving nodels for frame N */

pf Sync(); /* Sleep until next frane boundary */
updat e_vi ew() ; /* Set view for frame N */
pf Frane(); /* Trigger cull and draw for frame N */

pfAppFrame triggers a traversal that updates the state of the scene graph for the next frame. This
includes updating the state of pfSequence nodes and invoking APP callbacks on nodes in the scene graph.
If pfAppFrame is not invoked directly, pfSync or pfFrame invokes it automatically. Note that when the
view is not set until after pfSync, as in the example above, the view point in the channel during the appli-
cation traversal contains the eye point from the previous frame.

pfGetFrameCount returns the current frame count. The frame count is initialized to 0 by pfConfig and is
incremented by each call to pfFrame.

pfGetFrameRate returns the current system frame rate (possibly rounded) previously set by
pfFrameRate. Note that this is not necessarily the same as the achieved frame rate.

pfSync synchronizes the application process to a particular rate. This rate may be fixed, for example a
steady 20Hz or may vary with the rendering rate. In addition, the drawing process may be synchronized
to either a steady or a varying rate. pfPhase specifies the synchronization methods used by pfSync and
the drawing process (if it is a separate process). phase is a symbolic constant that specifies the phase of all
process pipeline(s). It can take on the following values:

PFPHASE_LOCK
pfSync synchronizes to the next frame boundary and the drawing process begins drawing
and swaps its rendering buffers only at fixed frame boundaries.

PFPHASE_FLOAT
pfSync synchronizes to the next frame boundary but the drawing process can begin draw-
ing and swap its rendering buffers at non-frame boundaries.

PFPHASE_FREE_RUN
pfSync synchronizes to the rendering rate so the application runs at its peak (and usually
non-constant) capability.

IRIS Performer 2.0 libpf C Reference Pages pfFrame(3pf)

PFPHASE_LIMIT
pfSync synchronizes to the rendering rate but the rendering rate is limited to that frame
rate specified by pfFrameRate.

If locked, the drawing process will swap buffers only on frame boundaries. A benefit of locking is that
such pipelines are self-regulating so synchronizing two pfPipes together is simple, even across different
machines. Another benefit is that latency is minimized and predictable. The major drawback is that if a
view takes slightly longer than a frame to render (it has ‘frame-extended’), then an entire frame is skipped
rather than a single vertical retrace period. However, if minimal distraction is crucial, the phase can float
so that buffer swapping may happen on non-frame boundaries. In this case it is not guaranteed that the
windows on pfPipes will swap together; they may get out of phase resulting in inconsistent images if the
displays are adjacent and are displaying the same scene.

The difference between phase lock and phase float becomes less apparent with increasing frame rate. At
a rate equal to the vertical retrace rate, there is no difference. Also, if pfPipes do not 'frame extend’, then
there is no difference.

Applications which do not require a fixed frame rate may use PFPHASE_FREE_RUN or
PFPHASE_LIMIT. PFPHASE_FREE_RUN essentially disables IRIS Performer’s fixed frame rate
mechanisms and will cause the application to run at its rendering rate so it slows down when rendering
complex scenes and speeds up when rendering simple scenes. In this case, the frame rate specified by
pfFrameRate no longer affects the system frame rate but is still used to compute system load and stress.

PFPHASE_LIMIT is equivalent to PFPHASE_FREE_RUN except that the application can go no faster
than the frame rate specified by pfFrameRate although it may go slower. Thus fixed frame rate behavior
is achieved if the time required to process a frame never takes longer than that specified by pfFrameRate.

pfPhase may be called any time after pfConfig.

pfGetPhase returns the current phase. The default phase is PFPHASE_FREE_RUN.

pfFrameTimeStamp sets the time stamp of the current frame to fime. The frame time stamp is used when
evaluating all pfSequences. Normally, pfFrame sets the frame time stamp immediately before returning

control to the application although the application may set it to account for varying latency in a non-
constant frame rate situation. Time is relative to pfInit when the system clock is initialized to 0.

SEE ALSO
pfChanStress, pfConfig, pflsectFunc, pfInitVClock, pfCycleBuffer, pfGetTime

73

pfFrameStats(3pf)

IRIS Performer 2.0 libpf C Reference Pages

NAME

74

pfNewFStats, pfGetFStatsClassType, pfDrawFStats, pfCopyFStats, pfGetOpenFStats, pfOpenFStats,
pfCloseFStats, pfFStatsCountNode, pfFStatsClass, pfGetFStatsClass, pfFStatsClassMode, pfGetFS-
tatsClassMode, pfFStatsAttr, pfGetFStatsAttr, pfResetFStats, pfClearFStats, pfFStatsCountGSet, pfAc-
cumulateFStats, pfAverageFStats, pfQueryFStats, pfMQueryFStats — Specify pfFrameStats modes and
get collected values.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

#include <Performer/pfstats.h>
pfFrameStats * pfNewFStats(void);

pfType*
void
void
uint
uint
uint
void
uint
uint
uint
uint
void
float
void
void
void
void
void
int

int

pfGetFStatsClassType(void);

pfDrawFStats(pfFrameStats *fstats, pfChannel *chan);
pfCopyFStats(pfFrameStats *dst, pfFrameStats *src, uint dSel, uint sSel, uint classes);
pfGetOpenFStats(pfFrameStats *fstats, uint emask);
pfOpenFStats(pfFrameStats *fstats, uint enmask);

pfCloseFStats(uint enmask);

pfFStatsCountNode(pfFrameStats *fstats, int class, uint mode, pfNode * node);
pfFStatsClass(pfFrameStats *fstats, uint enmask, int val);
pfGetFStatsClass(pfFrameStats *fstats, uint enmask);
pfFStatsClassMode(pfFrameStats *fstats, int class, uint mask, int val);
pfGetFStatsClassMode(pfFrameStats *fstats, int class);
pfFStatsAttr(pfFrameStats *fstats, int attr, float val);
pfGetFStatsAttr(pfFrameStats *fstats, int attr);

pfResetFStats(pfFrameStats *fstats);

pfClearFStats(pfFrameStats *fstats, uint which);
pfFStatsCountGSet(pfFrameStats * fstats, pfGeoSet * gset);
pfAccumulateFStats(pfFrameStats* dst, pfFrameStats* src, uint which);
pfAverageFStats(pfFrameStats* dst, pfFrameStats* src, uint which, int num);
pfQueryFStats(pfFrameStats *fstats, uint which, float *dst, int size);
pfMQueryFStats(pfFrameStats *fstats, uint *which, float *dst, int size);

IRIS Performer 2.0 libpf C Reference Pages pfFrameStats(3pf)

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFrameStats is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfFrameStats. Casting
an object of class pfFrameStats to an object of class pfObject is taken care of automatically. This is also
true for casts to objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFrameStats
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
fstats identifies a pfFrameStats.
DESCRIPTION

The pfFrameStats utilities provide for the collection of statistics about all parts of IRIS Performer process-
ing of a scene for a given frame. These statistics can be kept automatically on every pfChannel or Users
may accumulate and store their own statistics. Routines for operating on, displaying, and printing statis-
tics are also provided.

The frame statistics for a channel are gotten by first getting the pointer to the channel’s statistics structure
with pfGetChanFStats, and then enabling the desired statistics classes. When a channel is automatically
accumulating frame statistics, it enables the necessary statistics hardware and statistics accumulation in
the correct processes.

The resulting collected statistics can then be displayed in a channel, queried, or printed. These statistics
may be accumulated and averaged over a specified number of frames or seconds. The pfFrameStats
declarations are contained in pfstats.h. The class of process frame timing statistics for each of the IRIS
Performer processes of application, cull and draw, is enabled by default.

75

pfFrameStats(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfNewFStats creates and returns a handle to a pfFrameStats. pfFrameStats are always allocated from
shared memory and can be deleted using pfDelete.

pfGetFStatsClassType returns the pfType* for the class pfFrameStats. The pfType* returned by
pfGetFStatsClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfFrameStats. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type
derived from a Performer type rather than to test for strict equality of the pfType*’s.

A pfFrameStats structure contains pfStats statistics as well as additional statistics classes and support for
tracking frame related tasks. Many pfFrameStats routines are borrowed from pfStats. These routines
have the identical function as the pfStats routines but operate on a pfFrameStats rather than a pfStats. The
routine correspondence is listed in the following table.

76

pfFrameStats routine pfStats routine
pfAccumulateFStats pfAccumulateStats
pfAverageFStats pfAverageStats
pfClearFStats pfClearStats
pfCloseFStats pfCloseStats
pfFStatsAttr pfStatsAttr
pfFStatsClass pfStatsClass
pfFStatsClassMode pfStatsClassMode
pfGetFStatsClassMode | pfGetStatsClassMode
pfFStatsCountGSet pfStatsCountGSet
pfGetFStatsAttr pfGetStatsAttr
pfGetFStatsClass pfGetStatsClass
pfOpenFStats pfOpenStats
pfCloseFStats pfCloseStats
pfGetOpenFStats pfGetOpenStats
pfMQueryFStats pfMQueryStats
pfOpenFStats pfOpenStats
pfGetOpenFStats pfGetOpenStats
pfQueryFStats pfQueryStats
pfResetFStats pfResetStats

The reader is referred to the pfStats man page for details on the routine description.

Only the additional support for pfFrameStats above and beyond that of pfNewStats is discussed here.
There are also examples showing different basic operations with pfFrameStats at the end of this reference
page. The pfFrameStats structure stores accumulated statistics in several buffers. The following is a list

of the frame statistics buffers:

IRIS Performer 2.0 libpf C Reference Pages

pfFrameStats(3pf)

PFFSTATS_BUF_PREV
PFFSTATS_BUF_CUR
PFFSTATS_BUF_CUM
PFFSTATS_BUF_AVG

Statistics for previous completed frame

Buffer for current statistics collection

Statistics accumulated since last update

Statistics averaged over previous update period

These different buffers can be queried with pfQueryFStats and printed with pfPrint. The desired
PFFSTATS_BUEF_* token is simply bitwise OR-ed with the desired statistics value token.

The following table of additional frame statistics classes, their naming token, and their enable token for
forming bitmasks. Notice that pfFrameStats tokens start with PEFSTATS*.

Frame Statistics Class Table

Class

PFSTATS_* Token

PFSTATS_EN* token

Process frame times

Database

Cull

PFFSTATS_PFTIMES

PFFSTATS_DB

PFFSTATS_CULL

This table lists the frame statistics modes and tokens.

PFFSTATS_ENPFTIMES

PFFSTATS_ENDB

PFFSTATS_ENCULL

Frame Statistics Class Mode Table

Class

PFSTATS_ Token

Modes

Process frame times

Database

Cull

PFFSTATS_PFTIMES

PFFSTATS_DB

PFFSTATS_CULL

PFFSTATS_PFTIMES_BASIC
PFFSTATS_PFTIMES_HIST

PFFSTATS_DB_VIS
PFFSTATS_DB_EVAL

PFFSTATS_CULL_TRAV

pfDrawFStats displays the pfFrameStats structure fstats in the channel specified by chan. This is useful
for displaying the statistics in a special channel separate from the main scene channel. pfDrawChanStats
may be called from IRIS Performer’s application, cull, or draw processes and must be called each frame a
statistics display is desired. See pfDrawChanStats for a detailed explanation of the channel statistics

display.

77

pfFrameStats(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfFStatsClass takes a pointer to a statistics structure, fstats, and will set the classes specified in the bit-
mask, enmask, according to the val, which is one of the following:

PFSTATS_ON Enables the specified classes.

PFSTATS_OFF Disables the specified classes.
PFSTATS_DEFAULT Sets the specified classes to their default values.
PFSTATS_SET Sets the class enable mask to enmask.

All stats collection can be set at once to on, off, or the default by using PFSTATS_ALL for the bitmask
and the appropriate value for the enable flag. For example, the following function call will enable all
frame statistics, as well as basic statistics classes, with their current class mode settings.

pf FStat sd ass(fstats, PFSTATS ALL, PFSTATS ON);

Only statistics classes that are enabled with pfFStatsClass are able to be printed with pfPrint, collected,
copied, accumulated, averaged, and queried.

pfGetFStatsClass takes a pointer to a statistics structure, fstats, and the statistics classes of interest
specified in the bitmask, enmask. The frame statistics classes are enabled through pfFStatsClass and the
frame statistics class bitmasks may be combined with the basic statistics classes. If any of the statistics
classes specified in enmask are enabled, then pfGetFStatsClass will return the bitmask of those classes,
and will otherwise return zero.

pfFStatsClassMode takes a pointer to a pfFrameStats structure, fstats, the name of the class to set, class, a
mask of class modes, mask, and the value for those modes, val. The pfFrameStats classes include all of the
pfStats classes. If class is PESTATS_CLASSES, then all pfFrameStats classes will have their modes set
according to mask and val. Each statistics class has its own mode tokens that may be used for mask. mask
may also be one of PFSTATS_ALL or 0x0. val is one of the statistics value tokens: PFSTATS_ON,
PFSTATS_OFF, PFSTATS_SET, or PFSTATS_DEFAULT. See the pfStats reference page for more gen-
eral information on pfStats statistics classes and value tokens under pfStatsClassMode. The following
describes the additional classes for frame statistics and their corresponding modes.

Process Frame Times Modes:

PFFSTATS_PFTIMES_BASIC
This mode enables a running average of the time for each IRIS Performer process of applica-
tion, cull, and draw to complete the tasks for a single frame. This mode is enabled by
default.

PFFSTATS_PFTIMES_HIST
In this mode, a history of time stamps for different tasks within each of the IRIS Performer
process of application, cull, draw, and the intersection process, is maintained. Examples of
time stamps include when each processes starts and ends processing a frame, and the

78

IRIS Performer 2.0 libpf C Reference Pages pfFrameStats(3pf)

application frame number for that frame for that processes. There are special additional
time stamps for each process. For the application processes there are time stamps to mark
when the application starts and finishes cleaning the scene in pfSync, a time stamp when the
application wakes up to sync to the next frame boundary (done when the application is run-
ning with phase set to PFPHASE_LOCK or PFPHASE_FLOAT), and a time stamp to mark
when the application returns after setting off a forked CULL or ISECT process. The time
stamps for each process are defined in the pfFStatsValPFTimes* data type and queried by
providing the corresponding PFFSTATSVAL_PFTIMES_HIST_* tokens to pfQueryFStats.

Database Statistics Modes:

PFFSTATS_DB_VIS
This mode enables tracking of how many pfNodes of each different type are visible and
drawn in a given frame. This mode is enabled by default. These statistics are queried by
providing the desired PFFSTATSVAL_VISIBLE* token to pfQueryFStats.

PFFSTATS_DB_EVAL
This mode enables tracking of how many pfNodes of each different type have special
evaluations in a given frame. Node types that require special evaluation steps include
piBillboard, pfSCS, pfDCS, pfLayer, pfLightPoint, pfLightSource, pfPartition, and pfSe-
quence. There are also query tokens to query what processes the evaluation step for a given
node type is done in. This mode is enabled by default. These statistics are queried by pro-
viding the desired PEFSTATSVAL_EVALUATED* token to pfQueryFStats.

Cull Statistics Modes:

PFFSTATS_CULL_TRAV
There is only one cull frame statistics mode and it tracks culling traversal statistics: how
many pfGeoSets and pfNodes of each type are traversed in the cull operation, how many
pfNodes are trivially in or out of the viewing frustum, and how many must pass through a
bounding sphere or bounding box test. These statistics are queried by providing one of the
PFFSTATSVAL_CULLTRAY tokens to pfQueryFStats. There are also statistics on the test
results of the cull traversal, queried with the PFFSTATSVAL_CULLTEST* tokens.

pfGetFStatsClassMode takes a pointer to a statistics structure, fstats, and the name of the class to query,
class. The return value is the mode of class.

pfFStatsAttr takes a pointer to a statistics structure, fstats, the name of the attribute to set, attr, and the
attribute value, val. Frame statistics provide additional attributes beyond the basic pfStats attributes.
These attributes are only relevant when automatic statistics collection is being done by a parent channel.
These attributes are:

79

pfFrameStats(3pf) IRIS Performer 2.0 libpf C Reference Pages

80

PFFSTATS_UPDATE_FRAMES
The number of frames over which statistics should be averaged. The default valueis 2. If
val is 0, statistics accumulation and averaging is disabled and only the CUR and PREV
statistics for enabled classes will be maintained. This is recommended for applications that
are not using the averaged statistics and require a high, fixed frame rate.

PFFSTATS_UPDATE_SECS
The number of seconds, over which statistics should be averaged. The default uses the
number of frames. As with PFFSTATS_UPDATE_FRAMES, if val is 0, statistics accumula-
tion and averaging is disabled and only the CUR and PREYV statistics for enabled classes
will be maintained.

PFFSTATS_PFTIMES_HIST_FRAMES
For the Process Frame Times Statistics, PEFSTATS_PFTIMES, the number of frames of
time-stamp history to keep. The default value is 4.

pfGetFStatsAttr takes a pointer to a statistics structure, fstats, and the name of the attribute to query, attr.
The return value is that of attribute attr.

pfQueryFStats takes a pointer to a statistics structure, fstats. which is a PESTATSVAL_* or
PFFSTATSVAL_* token that specifies the value or values to query in which, and dst destination buffer
that is a pointer to a float, a pfStatsVal* or pfFStatsVal* structure. The size of the expected return data is
specified by size and if non-zero, will prevent pfQueryFStats from writing beyond a buffer that is too
small. The return value is the number of bytes written to the destination buffer. The return value is the
number of bytes written to the destination buffer. A single PFFSTATS_BUEF_* token should be bitwise
OR-ed into the which flag to select a frame stats buffer: PREV, CUR, AVG, or CUM. If no frame statistics
buffer is selected, then the query accesses the CUR buffer by default. If multiple stats buffers are selected,
no results will be written and a warning message will be printed. In a running application, one should
query frame statistics in the application process and query the PREV and AVG statistics buffers. The
pfFrameStats query structures and tokens are all defined in pfstats.h. Frame statistics queries may be
mixed with standard statistics queries. There are tokens for getting back all of the statistics, entire sub-
structures, and individual values.

pfMQueryFStats takes a pointer to a statistics structure, fstats, a pointer to the start of an array of query
tokens in which, and a destination buffer dst. The size of the expected return data is specified by size and if
non-zero, will prevent pfQueryFStats from writing beyond a buffer that is too small. The return value is
the number of bytes written to the destination buffer. The return value is the number of bytes written to
the destination buffer. If at any point in the query, an error is encountered, the query will return and not
finish the rest of the requests.

pfCopyFStats: The dSel and sSel arguments explicitly specify the statistics buffers for both source and
destination pfFrameStats structures. If either of these values are 0, then the current pfFrameStats buffer is
used for the corresponding pfFrameStats structure. The classes argument is a _EN* statistics class enable

IRIS Performer 2.0 libpf C Reference Pages pfFrameStats(3pf)

bitmask. Any buffer select token is included with the class bitmask is ignored.

pfFStatsCountNode will count node in the specified stats class for the specified mode of the pfFrameStats
structure fstats. Only one class and mode may be specified, and children of node are not traversed.

pfFStatsCountGSet works as documented for the pfStats statistics structure and accumulates the statis-
tics into the CUR statistics buffer.

The pfClearFStats, pfAccumulateFStats, pfAverageFStats routines all take pointers to a pfFrameStats
structure, fstats, and work as documented for the basic pfStats statistics structure. However, for operating
on a pfFrameStats structure, these routines need to know which pfFrameStats buffer to access. A
pfFrameStats buffer is selected by OR-ing in a _BUF_ token with the statistics class enable. The same
pfFrameStats buffer is used for both source and destination pfFrameStats structures. If no pfFrameStats
buffer is selected with a _BUF_ token, the current pfFrameStats buffer is used.

EXAMPLES
For a class of statistics to be collected, the following must be true:

1. A pfFrameStats structure must be gotten from the channel of interest, or created.

2. The corresponding statistics class must be enabled with pfFStatsClass. No statistics classes
are enabled by default.

3. The corresponding statistics class mode must be enabled with pfFStatsClassMode How-
ever, each statistics class does have a reasonable set of statistics modes enabled by default.

Here a pfFrameStats structure is obtained by the channel of interest and then database, cull, and graphics
statistics are enabled.

pf FrameStats *fstats = NULL;
fstats = pf Get ChanFSt at s(chan);
pf FSt at sO ass(stats, PFSTATS_ENGFX | PFFSTATS ENDB | PFFSTATS ENCULL, PFSTATS ON);

This example shows how to enable and display just the frame times and the number of triangles per
frame. This is a very efficient configuration.

pf FrameStats *fstats = NULL;
fstats = pf Get ChanFSt at s(chan);

/* first, turn off the frame history stats */
pf FSt at sC assMbde(fstats, PFFSTATS PFTI MES, PFFSTATS PFTI MES_H ST, PFSTATS OFF):

/* Only enable the geonetry counts in the graphics stats */
pf FSt at sC assMode(fstats, PFSTATS GFX, PFSTATS GFX_GEOM PFSTATS_SET);

/* disable the display of the verbose graphics stats

81

pfFrameStats(3pf) IRIS Performer 2.0 libpf C Reference Pages

82

* and just have the total tris nunber at the top of your display.
*/
pf ChanFSt at sMbde(chan, PFCSTATS_DRAW PFFSTATS_ENPFTI MES) ;

The following is an example of querying a few specific statistics. Note that if the corresponding stats class
and mode is not enabled then the query will simply return 0 for that value.

uint qtnp[5];
float ftnp[5];
pf FraneStats *fstats = NULL;

fstats = pf Get ChanFSt at s(chan);

qt np[0] = PFFSTATS_BUF_AVG | PFSTATSVAL_GFX_GEOM TRI S;

gtnp[1] = PFFSTATS BUF_AVG | PFFSTATSVAL_ PFTI MES_PROC TOTAL;
gtnp[2] = PFFSTATS BUF_AVG | PFSTATSVAL_CPU SYS_BUSY;

qt np[3] = NULL;

pf MueryFStats(fstats, qtnp, ftnp, sizeof(ftmp));

fprintf(stderr, "Query numtris: %O0f\n", ftnp[0]);
fprintf(stderr, "Query frame time: % Of nsecs\n", ftnp[1]*1000.0f);
fprintf(stderr, "Query sys busy: %O0f%®An", ftnp[2]);

This example shows using a very inexpensive pfFrameStats mode to track frame rates and frames that
missed the goal frame rate.

/* enable only the nost minimal stats - tracking of process frane tinmes */

pf FraneStats *fstats = pf Get ChanFSt at s(chan);

pf FStat sC ass(fstats, PFFSTATS_ENPFTI MES, PFSTATS_SET);

pf FSt at sCl assMobde(fstats, PFFSTATS_PFTI MES, PFFSTATS PFTI MES_BASI C, PFSTATS_SET);

/* turn off accumul ation and averagi ng of stats */
pf FStat sAttr(fstats, PFFSTATS UPDATE_FRAMES, 0. 0f);

#defi ne STAWPS 0

#define TIMES 1

#define M SSES 2

static uint query[] = {
PFFSTATS_BUF_PREV | PFFSTATSVAL_PFTI MES_APPSTANMP,
PFFSTATS_BUF_PREV | PFFSTATSVAL_PFTI MES_PRCC,
PFFSTATS_BUF_PREV | PFFSTATSVAL_PFTI MES_M SSES, NULL

IRIS Performer 2.0 libpf C Reference Pages pfFrameStats(3pf)

b

static pfFStatsVval Proc dst[3];
int i;
if (!FraneStats)

initFraneStats();

/* get the prev franme tines and correspondi ng app frane stanps */
pf MueryFStats(fstats, query, dst, sizeof(dst));

/* record the collected data here */
NOTES
pfDrawFStats does not actually draw the diagram but sets a flag so that the diagram is drawn just before

IRIS Performer swaps buffers.

The CPU statistics from the pfStats class PESTATSHW_CPU are obtained from IRIX process accounting
data at the start and end of the update period. They are then copied into the CUR and AVG buffers.

pfOpenFStats and pfCloseFStats cannot be executed on a pfFrameStats structure. All actual frame statis-
tics collection is done only by individual pfChannels. Frame statistics can be copied and accumulated

into additional pfFrameStats structures.

The pfDrawChanStats manual page gives some pointers on how to interpret the statistics to help in tun-
ing your database. Refer to the IRIS Performer Programming Guide for more detailed information.

BUGS
The checking of size in pfQueryFStats and pfMQueryFStats is not yet implemented.

SEE ALSO
pfChanStatsMode, pfDrawChanStats, pfGetChanFStats, pfStats, pfDelete

83

pfGeode(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewGeode, pfGetGeodeClassType, pfAddGSet, pfRemoveGSet, pfInsertGSet, pfReplaceGSet,
pfGetGSet, pfGetNumGSets — Create, modify, and query a geometry node.

FUNCTION SPECIFICATION

#include <Performer/pf.h>
pfGeode * pfNewGeode(void);
pfIype* pfGetGeodeClassType(void);

int pfAddGSet(pfGeode* geode, pfGeoSet* gset);

int pfRemoveGSet(pfGeode* geode, pfGeoSet* gset);

int pfInsertGSet(pfGeode* geode, int index, pfGeoSet* gset);

int pfReplaceGSet(pfGeode* geode, pfGeoSet* old, pfGeoSet* new);
pfGeoSet * pfGetGSet(const pfGeode* geode, int index);

int pfGetNumGsSets(const pfGeode* geode);

PARENT CLASS FUNCTIONS

84

The IRIS Performer class pfGeode is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfGeode. Casting an object of class
pfGeode to an object of class pfNode is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

int pfFlatten(pfNode *node, int mode);

int pfNodeName(pfNode *node, const char *name);

const char * pfGetNodeName(const pfNode *node);

pfNode* pfFindNode(pfNode *node, const char *pathName, pfType *type);
pfNode* pfLookupNode(const char *name, pfType* type);

int pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

void pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

uint pfGetNodeTravMask(const pfNode *node, int which);

void pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,

pfNodeTravFuncType *post);

IRIS Performer 2.0 libpf C Reference Pages pfGeode(3pf)

void pfNodeTravData(pfNode *node, int which, void *data);
void * pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfGeode can also
be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeode can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfIype *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
geode identifies a pfGeode.
DESCRIPTION

The name "pfGeode" is short for Geometry Node. A pfGeode is a leaf node in the IRIS Performer scene
graph hierarchy and is derived from pfNode so it can use pfNode API. A pfGeode is simply a list of
pfGeoSets which it draws and intersects with. A pfGeode is the smallest cullable unit unless
PFCULL_GSET is set by pfChanTravMode in which case IRIS Performer will cull individual pfGeoSets
within pfGeodes.

The bounding volume of a pfGeode is that which surrounds all its pfGeoSets. Unless the bounding
volume is considered static (see pfNodeBSphere), IRIS Performer will compute a new volume when the
list of pfGeoSets is modified by pfAddGSet, pfRemoveGSet, pfInsertGSet or pfReplaceGSet. If the
bounding box of a child pfGeoSet changes, call pfNodeBSphere to tell IRIS Performer to update the
bounding volume of the pfGeode.

pfNewGeode creates and returns a handle to a pfGeode. Like other pfNodes, pfGeodes are always

85

pfGeode(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

86

allocated from shared memory and can be deleted using pfDelete.

pfGetGeodeClassType returns the pfType* for the class pfGeode. The pfType* returned by
pfGetGeodeClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfGeode. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfAddGSet appends gset to geode’s pfGeoSet list. pfRemoveGSet removes gset from the list and shifts
the list down over the vacant spot. For example, if gset had index 0, then index 1 becomes index 0, index 2
becomes index 1 and so on. pfRemoveGSet returns a 1 if gset was actually removed and 0 if it was not
found in the list. pfAddGSet and pfRemoveGSet will cause IRIS Performer to recompute new bounding
volumes for geode unless it is configured to use static bounding volumes.

pfInsertGSet will insert gset before the pfGeoSet with index index. index must be within the range 0 to
pfGetNumGSets(geode). pfReplaceGSet replaces old with new and returns 1 if the operation was suc-
cessful or 0 if old was not found in the list. pfInsertGSet and pfReplaceGSet will cause IRIS Performer to
recompute new bounding volumes for geode unless it is configured to use static bounding volumes.

pfGetNumGSets returns the number of pfGeoSets in geode. pfGetGSet returns a handle to the pfGeoSet
with index index or NULL if the index is out of range.

If database sorting is disabled, that is if the PFCULL_SORT mode of pfChanTravMode is not set, the
pfGeoSets in a pfGeode will be drawn in the order they appear on the list. If sorting is enabled, there is
no guarantee about the drawing order, since the reordering of GeoSets for minimum state-changing over-
head is one of the primary design motivations of IRIS Performer’s libpf and libpr.

pfGeode geometry is not multibuffered by IRIS Performer when in multiprocessing mode in order to save
memory. Therefore there are some restrictions on dynamic geometry. Modified vertex positions will be
culled properly only if a static bound is defined which surrounds all possible excursions of the dynamic
geometry. Since the draw process may be drawing the geometry at the same time the application process
is modifying it, cracks may appear between polygons which share a dynamic vertex. Creation and dele-
tion of vertices are not currently supported by IRIS Performer. However, the application may handle its
own multibuffering of pfGeodes through mutual exclusion with locks or through the use of parallel data
structures and pfSwitch nodes to achieve any kind of dynamic geometry.

The shifting behavior of pfRemoveGSet can cause some confusion. The following sample code shows
how to remove all pfGeoSets from geode:

IRIS Performer 2.0 libpf C Reference Pages pfGeode(3pf)

i nt i;
int n = pf Get NunGSet s(geode) ;
for (i =0; i <n; i++)

pf RenbveGSet (geode, pf Get GSet (geode, 0)); /* 0, not i */

Alternately, you can traverse the list from back to front, in which case the shift never hits the fan.

i nt i
int n = pf Get NunGSet s(geode) ;
for (i =n-1; i >=0; i--)

pf RenmoveGSet (geode, pf Get GSet (geode, i)); /* i, not 0 */

When sorting is enabled (see pfChanTravMode and PFCULL_SORT), transparent pfGeoSets are drawn
last unless the pfGeode has a pre or post draw callback (see pfNodeTravFuncs). Drawing transparent
pfGeoSets after opaque geometry reduces artifacts when blended transparency (see pfTransparency) is
used and can improve fill rate performance.

SEE ALSO
pfChanTravMode, pfGeoSet, pfNode, pfNodeTravFuncs, pfTransparency, pfDelete

87

pfGetld(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME
pfGetld — Get unique id of libpf object.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

int pfGetld(void *unknown);

PARAMETERS
unknown is a pointer to a libpf object

DESCRIPTION
Al IRIS Performer objects defined in the libpf library have a unique integer identifier. pfGetld returns
the identifier of unknown or -1 if unknown is not a libpf data type.

SEE ALSO
pfNode, pfUpdatable

88

IRIS Performer 2.0 libpf C Reference Pages pfGroup(3pf)

NAME

pfNewGroup, pfGetGroupClassType, pfAddChild, pfInsertChild, pfReplaceChild, pfRemoveChild,
pfSearchChild, pfGetChild, pfGetNumChildren, pfBufferAddChild, pfBufferRemoveChild - Create,
modify, and query a group node.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfGroup *
pfType *
int

int

int

int

int
pfNode *
int

int

int

PARENT CLASS FU

pfNewGroup(void);

pfGetGroupClassType(void);

pfAddChild(pfGroup *group, pfNode *child);
pfInsertChild(pfGroup *group, int index, pfNode *child);
pfReplaceChild (pfGroup *group, pfNode *old, pfNode *new);
pfRemoveChild(pfGroup *group, pfNode* child);
pfSearchChild(pfGroup *group, pfNode* child);
pfGetChild(const pfGroup *group, int index);
pfGetNumChildren(const pfGroup *group);
pfBufferAddChild(pfGroup *group, pfNode *child);
pfBufferRemoveChild(pfGroup *group, pfNode *child);
NCTIONS

The IRIS Performer class pfGroup is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfGroup. Casting an object of class

pfGroup to

an object of class pfNode is taken care of automatically. This is also true for casts to objects of

ancestor classes of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

pfGetParent(const pfNode *node, int i);
pfGetNumParents(const pfNode *node);
pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
pfGetNodeBSphere(pfNode *node, pfSphere *bsph);
pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);
pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);
pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);
pfLookupNode(const char *name, pfType* type);
pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

89

pfGroup(3pf) IRIS Performer 2.0 libpf C Reference Pages

void pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

uint pfGetNodeTravMask(const pfNode *node, int which);

void pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

void pfNodeTravData(pfNode *node, int which, void *data);

void * pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfGroup can also
be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGroup can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
group identifies a pfGroup.
DESCRIPTION

A pfGroup is the internal node type of the IRIS Performer hierarchy and is derived from pfNode. A
pfGroup has a list of children which are traversed when group is traversed. Children may be any pfNode
which includes both internal nodes (pfGroups) and leaf nodes (pfNodes). Other nodes which are derived
from pfGroup may use pfGroup API. IRIS Performer nodes derived from pfGroup are:

pfScene

pfSwitch

pfLOD

90

IRIS Performer 2.0 libpf C Reference Pages pfGroup(3pf)

pfSequence
pfLayer
pfSCS
pfDCS
pfMorph

pfNewGroup creates and returns a handle to a pfGroup. Like other pfNodes, pfGroups are always allo-
cated from shared memory and can be deleted using pfDelete.

pfGetGroupClassType returns the pfType* for the class pfGroup. The pfType* returned by
pfGetGroupClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfGroup. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfAddChild appends child to group and increments the reference count of child. pfRemoveChild
removes child from the list and shifts the list down over the vacant spot, e.g. - if child had index 0, then
index 1 becomes index 0, index 2 becomes index 1 and so on. pfRemoveChild returns a 1 if child was
actually removed and 0 if it was not found in the list. pfRemoveChild decrements the reference count of
child but does not delete child if its reference count reaches 0.

pfInsertChild inserts child before the child with index index. index must be within the range 0 to
pfGetNumChildren(group).

pfReplaceChild replaces old with new and returns 1 if the operation was successful or 0 if old is not a
child of group.

pfSearchChild returns the index of child if it was found in the children list of group or -1 if it was not
found.

pfGetNumChildren returns the number of children in group. pfGetChild returns a handle to the child
with index index or NULL if the index is out of range.

The bounding volume of a pfGroup encompasses all its children. Modifications to the child list of a
pfGroup will cause IRIS Performer to recompute new bounding volumes for the pfGroup unless it is
configured to use static bounding volumes (see pfNodeBSphere).

pfBufferAddChild and pfBufferRemoveChild provide access to nodes that do not exist in the current
pfBuffer (See the pfBuffer man page). Either, none, or both of group and node may exist outside the current
pfBuffer. pfBufferAddChild and pfBufferRemoveChild act just like their non-buffered counterparts
pfAddChild and pfRemoveChild except that the addition or removal request is not carried out immedi-
ately but is recorded by the current pfBuffer. The request is delayed until the first pfMergeBuffer when
both group and node are found in the main IRIS Performer pfBuffer. The list of pfBufferAddChild and

91

pfGroup(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfBufferRemoveChild requests is traversed in pfMergeBuffer after all nodes have been merged.
pfBufferAddChild and pfBufferRemoveChild return TRUE if the request was recorded and FALSE oth-
erwise.

SEE ALSO
pfLookupNode, pfNode, pfBuffer, pfDelete

92

IRIS Performer 2.0 libpf C Reference Pages pflnit(3pf)

NAME

pfInit, pfExit — Initialize and terminate IRIS Performer processes.

FUNCTION SPECIFICATION

#include <Performer/pf.h>
int pfInit(void);
void pfExit(void);

DESCRIPTION

NOTES

pflnit initializes internal IRIS Performer data structures and must be the first IRIS Performer call in an
application except for the following:

pfNotifyLevel
pfShared ArenaSize
pfShared ArenaBase

pfTmpDir

pflInit is required by all Performer applications whether they use libpf or not. But pfInit has slightly dif-
ferent behavior applications that only use libpr and do not include pf.h. for these applications, pfInit
does not set up any shared memory arenas. If shared memory is required, it should be explicitly set up
by calling pfInitArenas before pfInit.

pfExit closes graphics windows, frees all IRIS Performer data structures, deletes all IRIS Performer shared
memory arenas (see pfGetSharedArena), kills all spawned IRIS Performer processes, then returns control
to the application. pfExit also turns off the video retrace clock (see pfVClock). After calling pfExit an
application may restart IRIS Performer with pfInit.

User processes forked or sproced after pfConfig will be terminated by pfExit. Those forked or sproced
before pfConfig will be sent a SIGCLD signal.

Since pfExit deletes all shared memory arenas, any memory used by the application that was created out
of IRIS Performer shared memory is now invalid.

BUGS
Currently pfExit returns directly to the operating system, terminating the simulation application as well.
However, it does turn off video retrace CPU interrupts while exiting (see pfVClock).

SEE ALSO

pfConfig, pfGetShared Arena, pfMalloc, pfVClock

93

pflsectFunc(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pflsectFunc, pfGetlsectFunc, pfAllocIsectData, pfGetlsectData, pfPassIsectData — Set intersection call-
back, allocate and pass intersection data.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

void pfIsectFunc(pflsectFuncType func);
pflIsectFuncType pfGetlsectFunc(void);

void * pfAllocIsectData(int bytes);

void * pfGetlsectData(void);

void pfPasslIsectData(void);

typedef void (*pflsect FuncType) (void *userData);

DESCRIPTION

94

The func argument to pfIsectFunc specifies the intersection callback function. This function will be
invoked by pfFrame and will be passed a pointer to a data buffer allocated by pfAllocIsectData. If a
separate process is allocated for intersections by the PFMP_FORK_ISECT mode to pfMultiprocess, then
pfFrame will cause func to be called in the separate process. pfGetIsectFunc returns the intersection call-
back or NULL if none is set.

Within the intersection callback, the user may further multiprocess intersection queries through any IRIX
multiprocessing mechanism such as fork, sproc, or m_fork. All of these processes may call
pfNodelsectSegs in parallel.

When the intersection function is in a separate process, it will run asynchronously with the rest of the
rendering pipeline. Specifically, if the intersection function takes more than a frame time, the rendering
pipeline will not be affected and the next invocation of the intersection function will be delayed until trig-
gered by the next pfFrame. Changes to the scene graph made by the application process are only pro-
pagated to the intersection process after the intersection function returns.

Any modifications made to the scene graph by a forked intersection function will not be reflected in the
scene graph that is seen by any other IRIS Performer functions. To be safe, only pfNodelsectSegs (which
does not modify the scene graph) should be called from within the intersection function.

pfAllocIsectData returns a pointer to a chunk of shared memory of bytes bytes. This memory buffer may
be used to communicate information between the intersection function and application. Intersection data

should only be allocated once. pfGetlsectData returns the previously allocated intersection data.

When the intersection function is forked, pfPassIsectData should be used to copy the intersection data

IRIS Performer 2.0 libpf C Reference Pages

pflsectFunc(3pf)

into internal IRIS Performer memory when the next pfFrame is called. Once pfFrame is called, the appli-
cation may modify data in the intersection data buffer without fear of colliding with the forked intersec-
tion function.

Example 1: Multiprocessed intersections.

typedef struct

{

}

voi d

int frameCount ; /* For frame stanping collisions */
pf Node *col | i dee; /* pfNode to collide with */
int nuntCol i sions; /* Nunmber of collision vectors */
pf Seg *col | i si onVecs[MAXCOLLI SI ONS] ;

| sect Stuff;

i sect Func(voi d *dat a)

{

IsectStuff istuff = (IsectStuff*) data;

pf Nodel sect Segs(i stuff->collidee, etc...);

pf Mul ti process(PFMP_FORK_| SECT | PFMP_APP_CULL_DRAW ;
pf Config();

pf | sect Func(i sect Func);
isectData = (IsectStuff*) pfAlloclsectData(sizeof(lsectStuff));

i sect Dat a->col | i dee = (pf Node*) scene;

whil e (!done)

{
pf Sync(); /* Sleep until next frane boundary */
update_view(); /* Set view for frame N */

i sect Dat a- >f rameCount = pf Get FranmeCount () ;

pf Passl sectData(); /* Pass intersection data to */
/* intersection process */

pf Frane(); /* Trigger cull, intersection for frame N */

95

pflsectFunc(3pf) IRIS Performer 2.0 libpf C Reference Pages

app_funcs(); /* Performapplication-specific functions */
update_positions(); /* Update noving nodels for frame N + 1 */

/*
* Act on result of previous collisions and set up isectData
* for nore collisions.
*/

updat e_col | i sions(isectData);

If pfIsectFunc is called before pfConfig and the multiprocessing mode is PFMP_DEFAULT, then
pfConfig will fork the intersection process if there are enough processors. Otherwise, you must explicitly

fork the intersection process by setting the PFMP_FORK_ISECT bit in the argument passed to
pfMultiprocess.

SEE ALSO
pfConfig, pfMultiprocess, pfNodelsectSegs

96

IRIS Performer 2.0 libpf C Reference Pages pfLOD(3pf)

NAME

pfNewLOD, pfGetLODClassType, pfLODRange, pfGetLODRange, pfGetLODNumRanges, pfLOD-
Transition, pfGetLODTransition, pfGetLODNumTransitions, pfLODCenter, pfGetLODCenter,
pfLODLODState, pfGetLODLODState, pfLODLODStateIndex, pfGetLODLODStateIndex,
pfEvaluateLOD - Create, modify, and query level of detail nodes.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

pfLOD * pfNewLOD(void);

pfType* pfGetLODClassType(void);

void pfLODRange(pfLOD *lod, int index, float range);

float pfGetLODRange(const pfLOD *lod, int index);

int pfGetLODNumRanges(const pfLOD *lod);

void pfLODTransition(pfLOD *lod, int index, float distance);
float pfGetLODTransition(const pfLOD *lod, int index);

int pfGetLODNumTransitions(const pfLOD *lod);

void pfLODCenter(pfLOD *lod, pfVec3 center);

void pfGetLODCenter(const pfLOD *lod, pfVec3 center);
void pfLODLODState(pfLOD *lod, pfLODState *Is);

void pfGetLODLODState(pfLOD *lod);

void pfLODLODStateIndex(pfLOD *lod, int index);

void pfGetLODLODStateIndex(pfLOD *lod);

float pfEvaluateLOD(pfLOD *lod, const pfChannel *chan, const pfMatrix *offset);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfLOD is derived from the parent class pfGroup, so each of these member func-
tions of class pfGroup are also directly usable with objects of class pfLOD. Casting an object of class
pfLOD to an object of class pfGroup is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

int pfSearchChild(pfGroup *group, pfNode* child);

97

pfLOD(3pf)

IRIS Performer 2.0 libpf C Reference Pages

98

pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);
int pfBufferAddChild(pfGroup *group, pfNode *child);
int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfLOD can also be
used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void
void *

pfGetParent(const pfNode *node, int i);

pfGetNumParents(const pfNode *node);

pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);

pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLOD can also be
used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLOD can also
be used with these functions designed for objects of class pfMemory.

pfType *

pfGetType(const void *ptr);

IRIS Performer 2.0 libpf C Reference Pages pfLOD(3pf)

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
lod identifies a pfLOD.
DESCRIPTION

A pfLOD is a level-of-detail (LOD) node. Level-of-detail is a technique for manipulating model complex-
ity based on image quality and rendering speed. Typically, a model is drawn in finer detail when close to
the viewer (occupies large screen area) than when it is far away (occupies little screen area). In this way,
costly detail is drawn only when necessary.

Additionally, IRIS Performer can adjust LODs based on rendering load. If a scene is taking too long to
draw, IRIS Performer can globally modify LODs so that they are drawn coarser and render time is
reduced (see pfChanStress).

IRIS Performer uses range-based LOD and adjusts for field-of-view and viewport pixel size. Range is
computed as the distance from the pfChannel eyepoint which is drawing the scene to a point designated
as the center of a pfLOD. This range is then potentially modified by pfChannel attributes (see
pfChanLODACttr, pfChanStress). This range indexes the pfLOD range list to select a single child to draw.

pfLOD is derived from pfGroup so it can have children and use pfGroup API to manipulate its child list.
In addition to a list of children, a pfLOD has a list of ranges which specify the transition points between
levels-of-detail. pfNewLOD creates and returns a handle to a pfLOD. Like other pfNodes, pfLODs are
always allocated from shared memory and can be deleted using pfDelete.

pfGetLODClassType returns the pfType* for the class pfLOD. The pfType* returned by
pfGetLODClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLOD. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfLODCenter sets the object-space point which defines the center of lod. center is affected by any
transforms in the hierarchy above lod (see pfSCS). pfGetLODCenter copies the LOD center point into

99

pfLOD(3pf) IRIS Performer 2.0 libpf C Reference Pages

100

center.

pfLODRange sets the value of range list element index to range which is a floating point distance specified
in world coordinates. A child is selected based on the computed range (LODRange) from the eyepoint to
the pfLOD center and the range list (Ranges) according to the following pseudocode decision test:

if (LODRange < Ranges[0])
dr aw not hi ng;

el se

if (LODRange >= Ranges[i] && LODRange < Ranges[i +1])
draw Child[i];

el se

if (LODRange >= Ranges[N-1] where N is length of Ranges)
dr aw not hi ng;

Ranges specified by pfLODRange must be positive and increasing with index or results are undefined.
pfGetLODRange returns the range with index index and pfGetLODNumRanges returns the number of
ranges currently set.

Normally, LOD transitions are abrupt switches that can cause distracting visual artifacts. On hardware
which supports it, IRIS Performer can blend between levels-of-detail for a smooth transition. Blended
level-of-detail transitions are enabled by setting a non-zero transition range with pfChanLODA ttr.
Blending is discussed in greater depth in the pfChanLODACttr reference page.

pfLODTransition sets the distance over which IRIS Performer should transition or "fade" between an
lod’s children. The number of transitions is equal to the number of LOD children + 1. Thus Transi-
tions[0] specifies the distance over which LOD child 0 should fade in. Transitions[1] specifies the distance
over which IRIS Performer will fade between child 0 and child 1. Transitions[N] specifies the distance
over which the last lod child will fade out. Note that performer will regulate the transition such that the
fade will be centered based on the ranges specified by pfLODRange. It is also important to note the
pfLODTransition distances should be specified such that there is no overlap between transitions or rea-
sonable, but undefined, behavior will result. Thus, it is important to consider pfLODRanges when speci-
fying transition distances. pfGetLODTransition returns the range with index index and
pfGetLODNumRanges returns the number of ranges currently set.

Note that in practice IRIS Performer will multiply this transition distance by a global transition scale (this
scale is set by calls to pfChanLODAttr with the PFLOD_FADE token).

The default behavior of pfLODTransition is that each transition is set to a distance of 1.0 (except Transi-
tions[0] which is set to 0.0 by default). This makes it easy to specify a "global fade range" by controlling a
pfChanLODACttr attribute - PFLOD_FADE. By setting PFLOD_FADE to 10.0, all transitions that have
not be explicitly set will use 10.0 * 1.0 = 10.0 as their fade distance (except Transitions[0] which will not

IRIS Performer 2.0 libpf C Reference Pages pfLOD(3pf)

NOTES

fade at all).

Note that if one does not desire control over individual lod transitions, it is not necessary to call
pfLODTransition.

pfLODLODState associates the given pfLOD and pfLODState. This enables the control of how a particu-
lar pfLOD responds to stress and range. pfGetLODLODState returns the pfLODState associated with
lod if there is one or NULL if one does not exist.

pfLODLODStateIndex allows pfLODStates to be indexed on a per channel basis. index is an index into
an pfList of pfLODStates specified via pfChanLODStateList. pfGetLODLODStateIndex returns the
index currently specified for lod or -1 if no index has been specified.

Note that if an out of range index is specified for a given pfLOD then the pfLODState specified as the glo-
bal pfLODState for that channel will be used.

pfEvaluateLOD returns the index of the child that the Performer Cull traversal would produce given a
specific channel and matrix offset. The integer portion of the return value represents the selected child,
while the floating point portion of the return is used to distinguish the fade ratio between two visible lods
if lod fading is turned on for the given channel (see pfChanLODAttr). Thus an index of 1.0 would
correspond to Performer’s decision to draw only child one. A value of 1.25 would mean Performer
would be 25% across the FADE transition between child one and child two - meaning that child one
would be 75% opaque while child two would be 25% opaque. Similarly a value of 3.9 would represent
child three being 10% opaque (solid) while child four was 90% opaque. The value -1.0 is returned when
no children are visible. Note that negative floating point values (like -.3) mean that Performer is currently
fading in child 0 and that it is 70% opaque. Thus return values will range from -1.0 <= return value < N+1
where N is the number of children for the LOD. (See pfChannel and pfLODState)

Intersection traversals currently always intersect with an LODRange of 0. To intersect with other ranges,
a pfSwitch with the same parent and children as the pfLOD can be created with the pfLOD used for
drawing and the pfSwitch used for intersecting (see pfChanTravMask).

SEE ALSO

pfChanLODALttr, pfChanStress, pfChannel, pfGroup, pfLODState, pfLookupNode, pfDelete

101

pfLODState(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewLODState, pfGetLODStateClassType, pfLODStateAttr, pfGetLODStateAttr, pfLODSta-
teName, pfGetLODStateName, pfFindLODState — Create, modify, and query level of detail state.

FUNCTION SPECIFICATION

#include <Performer/pf.h>
pfLODState * pfNewLODState(void);

pfType * pfGetLODStateClassType(void);

void pfLODStateAttr(pfLODState *1s, long attr, float val);
float pfGetLODStateAttr(pfLODState *Is, long attr);

int pfLODStateName(pfLODState *Is, const char *name);

const char * pfGetLODStateName(const pfLODState *Is);
pfLODState * pfFindLODState(const char *name);

PARENT CLASS FUNCTIONS

102

The IRIS Performer class pfLODState is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfLODState. Casting an object of
class pfLODState to an object of class pfObject is taken care of automatically. This is also true for casts
to objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLODState
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);

int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

int pfGetRef(const void *ptr);

int pfCopy(void *dst, void *src);

int pfDelete(void *ptr);

int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);

IRIS Performer 2.0 libpf C Reference Pages pfLODState(3pf)

void * pfGetArena(void *ptr);
PARAMETERS

Is identifies a pfLODState.
DESCRIPTION

pfLODState encapsulates a definition of how an LOD or group of LODs should respond to distance from
the eyepoint and stress. Currently, there are 8 attributes that can be used to define LOD child selection
and child transition distance based on a LOD'’s distance from the channel’s viewpoint and the channel’s
stress (see pfNewChan and pfChanStress).

pfNewLODState creates and returns a handle to a pfLODState. Like other pfNodes, pfLODStates are
always allocated from shared memory and can be deleted using pfDelete.

pfGetLODStateClassType returns the pfType* for the class pfLODState. The pfType* returned by
pfGetLODStateClassType is the same as the pfType* returned by invoking pfGetType on any instance
of class pfLODState. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type
derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfLODStateAttr and pfGetLODStateAttr are used to set and get the following attributes:

PFLODSTATE_RANGE_RANGESCALE, PFLODSTATE_RANGE_RANGEOFFSET
directly modify the geometric range used to determine the current LOD child.

PFLODSTATE_RANGE_STRESSSCALE, PFLODSTATE_RANGE_STRESSOFFSET
modify the way the current channel stress affects the range computation.

PFLODSTATE_TRANSITION_RANGESCALE, PFLODSTATE_TRANSITION_RANGEOFFSET
directly modify the transition widths set by pfLODTransition.

PFLODSTATE_TRANSITION_STRESSSCALE, PELODSTATE_TRANSITION_STRESSOFFSET
modify the way transition widths are adjusted by the channel stress value.

These scale and offset values adjust the LOD selection process in the following way, presented in pseu-
docode:

ef fectiveRange =
Overal | LODScal e *
(Range * RANGE_RANGESCALE + RANGE_RANGEOFFSET) *
(Stress * RANGE_STRESSSCALE + RANGE_STRESSOFFSET) ;

effectiveTransitionWdth[i] =
Overal | FadeScal e *
(Trans[i] * TRANSITION_RANGESCALE + TRANSITION_RANGEOFFSET) /
(Stress * TRANSITION_STRESSSCALE + TRANSITION_STRESSOFFSET) ;

103

pfLODState(3pf) IRIS Performer 2.0 libpf C Reference Pages

OverallLODScale and OverallFadeScale are the PFLOD_SCALE and PFLOD_FADE attributes set with
pfChanLODALttr. Both are global values that affect the switching and transition ranges of all pfLODs in
the scene.

The default values for all SCALE and OFFSET attributes are 1.0 and 0.0 respectively except
TRANSITION_STRESSSCALE and TRANSITION_STRESSOFFSET which are 0.0 and 1.0 respec-
tively, i.e., transition ranges are not scaled by stress by default.

A pfLODState influences a pfLOD’s behavior in one of 3 ways:
1. Direct reference. A pfLOD may directly reference a pfLODState with pfLODLODState.

2. Indexed. A pfLOD may index a pfLODState with pfLODLODStateIndex. When the LOD
is evaluated, the indexth entry of the evaluating pfChannel’s pfLODState table is used. A
pfChannel’s pfLODState table is set with (pfChanLODStateList). With indexed pfLOD-
States, different pfChannels can have different LOD behavior by using different pfLOD-
State tables, e.g., an infrared channel may not "see" cold objects as well as a visual channel
so "cold" pfLODs will index a different pfLODGState in the infrared channel than in the
visual channel.

3. Inherited from pfChannel. A pfLOD which does not directly reference or index a pfLOD-
State will use the pfLODState of the evaluating pfChannel (pfChanLODState). This is the
default pfLOD behavior.

When a pfLOD references or indexes a pfLODState, the SCALE and OFFSET parameters of the pfLOD-
State are multiplied and added, respectively, to the corresponding SCALE and OFFSET parameters of the
evaluating pfChannel’s pfLODState, e.g., effective RANGE_RANGESCALE = pfLODState’s
RANGE_RANGESCALE * pfChannel’s RANGE_RANGESCALE.

Multiple pfLODs may share the same pfLODState reference or index.

pfLODStateName and pfGetLODStateName set and get the name of a particular pfLODState while
pfFindLODState will return the first pfLODState defined with the given name.

SEE ALSO

104

pfLOD, pfChannel, pfChanLODAttr, pfChanStress

IRIS Performer 2.0 libpf C Reference Pages pfLayer(3pf)

NAME
pfNewLayer, pfGetLayerClassType, pfLayerMode, pfGetLayerMode, pfLayerBase, pfGetLayerBase,
pfLayerDecal, pfGetLayerDecal — Create, modify, and query layer nodes for decals and coplanar

polygons.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfLayer * pfNewLayer(void);
pfType* pfGetLayerClassType(void);

void pfLayerMode(pfLayer *layer, int mode);
int pfGetLayerMode(const pfLayer *layer);
void pfLayerBase(pfLayer *layer, pfNode *base);

pfNode * pfGetLayerBase(const pfLayer *layer);
void pfLayerDecal(pfLayer *layer, pfNode *decal);
pfNode * pfGetLayerDecal(const pfLayer *layer);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLayer is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfLayer. Casting an object of class
pfLayer to an object of class pfGroup is taken care of automatically. This is also true for casts to objects
of ancestor classes of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

int pfSearchChild(pfGroup *group, pfNode* child);

pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);

int pfBufferAddChild(pfGroup *group, pfNode *child);

int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfLayer can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);
int pfGetNumParents(const pfNode *node);

105

pfLayer(3pf)

IRIS Performer 2.0 libpf C Reference Pages

106

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void
uint
void

void

void
void *

pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);

pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLayer can also be
used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLayer can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int

const char *
int

int

int

int

int

int

int

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfType *type);
pfIsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);
pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);

IRIS Performer 2.0 libpf C Reference Pages pfLayer(3pf)

void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);

PARAMETERS
layer identifies a pfLayer.

DESCRIPTION

On Z-buffer based machines, numerical precision can cause distracting artifacts when rendering coplanar
geometry. A pfLayer is a node derived from pfGroup that supports proper drawing of coplanar
geometry on IRIS platforms.

A pfLayer can be thought of as a stack of geometry where each layer has visual priority over the
geometry beneath it in the stack. An example of a 3 layer stack consists of stripes which are layered over
a runway which is layered over the ground. The bottommost layer is called the "base” while the other
layers are called "decals". When using certain hardware mechanisms (PFDECAL_BASE_STENCIL) to
implement pfLayers, the "base" is special because it defines the depth values which are used to determine
pfLayer visibility with respect to other scene geometry and which are written to the depth buffer.

pfNewLayer creates and returns a handle to a pfLayer. Like other pfNodes, pfLayers are always allo-
cated from shared memory and can be deleted using pfDelete.

pfGetLayerClassType returns the pfType* for the class pfLayer. The pfType* returned by
pfGetLayerClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLayer. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

Since pfLayer is derived from pfGroup, pfGroup API may be used to manipulate its child list. IRIS Per-
former considers child 0 to be the base geometry and children 1 through N-1 to be decals. Decals are ren-
dered in order such that decal[i+1] is drawn atop decal[i]. In other words, decal[i+1] has visual priority
over decal[i] even though they are coplanar. pfLayerBase and pfLayerDecal are convenience routines for
setting the base and decal children of layer in the common case where there is only one decal child.
pfGetLayerBase and pfGetLayerDecal return the base and first child of layer.

The mode argument to pfLayerMode specifies which hardware mechanism to use and is one of:

PFDECAL_BASE_DISPLACE
Use slope-based polygon displacement to slightly displace the depth values of decal
geometry closer to the eye so they have visual priority. Each decal is displaced more than its

predecessor to properly resolve priority between decals. The maximum number of decals is
8.

107

pfLayer(3pf) IRIS Performer 2.0 libpf C Reference Pages

108

PFDECAL_BASE_DISPLACE | PFDECAL_LAYER_OFFSET
Use slope-based polygon displacement to slightly displace the depth values of decal
geometry closer to the eye so they have visual priority. In addition, decal geometry is offset
a constant amount to eliminate anomalies caused by geometry which is nearly perpendicu-
lar to the view. Each decal is displaced and offset more than its predecessor to properly
resolve priority between decals. The maximum number of decals is 8.

PFDECAL_BASE_STENCIL
Use the stencil-buffer logic to determine visibility of decal geometry. There is no limit to the
number of decals.

PFDECAL_BASE_FAST
Use a decaling mechanism appropriate to the hardware that produces the fastest, but not
necessarily the highest quality, decaling.

PFDECAL_BASE_HIGH_QUALITY
Use a decaling mechanism appropriate to the hardware that produces the highest quality,
but not necessarily the fastest, decaling.

The default layer mode is PEDECAL_BASE_FAST. pfGetLayerMode returns the mode of layer.

The different pfLayer modes offer quality-feature tradeoffs listed in the table below:

DISPLACE | STENCIL | (DISPLACE | OFFSET)
Quality medium high high
Sorting enabled disabled enabled
Coplanarity | notrequired | required not required
Multipass ok not ok ok
Containment | notrequired | required not required

The STENCIL mechanism offers the best image quality but at a performance cost since the base and layer
geometry must be rendered in order, obviating any benefits of sorting by graphics state offered by
pfChanBinSort. When multisampling on RealityEngine, this mechanism also significantly reduces pixel
fill performance. An additional constraint is that STENCILed layers must be coplanar or decal geometry
may incorrectly show through base geometry. A subtle but important issue with STENCILed layers is
that they are unsuitable for multipass renderings (projected textures) since multiple surfaces are visible at
a given pixel. For proper results, each layer in the "stack" must be completely contained within the boun-
daries of the base geometry.

The DISPLACE mechanism offers the best performance since layers can be sorted by graphics state,
because the displace call itself is usually faster than other mode changes, and because there is no pixel fill
rate penalty when it is in use. However, in IRIS GL the displace mechanism is only slope-based, so when
geometry becomes nearly perpendicular to the view, i.e., has little or no slope, the displacement is too lit-
tle to conclusively determine visibility. To solve this problem, the OFFSET mechanism adds a constant

IRIS Performer 2.0 libpf C Reference Pages pfLayer(3pf)

NOTES

offset to the decal geometry. This mode can be very expensive (RealityEngine) so when using it the data-
base should be sorted with PFSTATE_DECAL as the first sorting key (see pfChanBinSort). Both
DISPLACE mechanisms do not require that geometry within a single layer be coplanar and also produce
a single visible surface at each pixel for multipass renderings. The main disadvantage is that decal
geometry may incorrectly poke through other geometry due to the displacement of the decal geometry.
Another disadvantage is that the maximum number of decals is 8.

The performance differences between STENCIL and DISPLACE modes are hardware-dependent so
some experimentation and benchmarking is required to determine the most suitable method for your
application.

Using PFDECAL_BASE_STENCIL for pfLayer nodes requires several steps for proper operation. First,
the graphics hardware must support stencil plane rendering. Secondly, the graphics context must be
configured with at least one stencil plane, and the lowest order bit of the allocated stencil planes be
reserved for IRIS Performer use. pfInitGfx configures the graphics context in just this way.

The use of displacements for rendering coplanar geometry can cause visual artifacts such as decals "Z
fighting" or "flimmering" when viewed perpendicularly, and the "punching through" of decals that
should mask base geometry when both are viewed obliquely. The former artifact can be eliminated by
specifying PFEDECAL_BASE_DISPLACE | PFDECAL_LAYER_OFFSET as the layer mode. If unaccept-
able artifacts still persist, the database should be modified to eliminate the need for coplanar rendering or
PFDECAL_BASE_HIGH_QUALITY should be used.

When using PFDECAL_LAYER_OFFSET, the minimum depth buffer range set with Isetdepth must be
incremented an extra 1024 * max layers so the negative displacement of the layers does not wrap.
pfInitGfx does this automatically.

BUGS
IRIS Performer properly renders coplanar geometry only on machines that have a hardware stencil buffer
allocated or which support displaced polygon rendering.

SEE ALSO

pfChanBinSort, pfDecal, pfGroup, pfInitGfx, pfLookupNode, pfNode, pfDelete

109

pfLightPoint(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewLPoint, pfGetLPointClassType, pfGetNumLPoints, pfLPointSize, pfGetLPointSize,
pfLPointColor, pfGetLPointColor, pfLPointRot, pfGetLPointRot, pfLPointShape, pfGetLPointShape,
pfLPointFogScale, pfGetLPointFogScale, pfLPointPos, pfGetLPointPos, pfGetLPointGSet — Set and
get pfLightPoint size, color, shape, rotation and position.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

pfLightPoint * pfNewLPoint(int num);

pfType * pfGetLPointClassType(void);

int pfGetNumLPoints(const pfLightPoint *lpoint);

void pfLPointSize(pfLightPoint *lpoint, float size);

float pfGetLPointSize(const pfLightPoint *Ipoint);

void pfLPointColor(pfLightPoint *Ipoint, int index, pfVec4 clr);

void pfGetLPointColor(const pfLightPoint *lpoint, int index, pfVec4 clr);

void pfLPointRot(pfLightPoint *lpoint, float azim, float elev, float roll);

void pfGetLPointRot(const pfLightPoint *Ipoint, float *azim, float *elev, float *roll);

void pfLPointShape(pfLightPoint *lpoint, int dir, float henv, float venv, float falloff);

void pfGetLPointShape(const pfLightPoint *Ipoint, int *dir, float *henv, float *venv,
float *falloff);

void pfLPointFogScale(pfLightPoint *Ipoint, float onsetScale, float opaqueScale);

void pfGetLPointFogScale(const pfLightPoint *Ipoint, float *onsetScale, float *opaqueScale);

void pfLPointPos(pfLightPoint *lpoint, int index, pfVec3 pos);

void pfGetLPointPos(const pfLightPoint *Ipoint, int index, pfVec3 pos);

pfGeoSet* pfGetLPointGSet(const pfLightPoint *Ipoint);

PARENT CLASS FUNCTIONS

110

The IRIS Performer class pfLightPoint is derived from the parent class pfNode, so each of these member

functions of class pfNode are also directly usable with objects of class pfLightPoint. Casting an object of

class pfLightPoint to an object of class pfNode is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);
int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);

IRIS Performer 2.0 libpf C Reference Pages pfLightPoint(3pf)

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void
uint
void

void

void
void *

pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLightPoint can
also be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightPoint
can also be used with these functions designed for objects of class pfMemory.

pfType *
int

int

const char *
int

int

int

int

int

int

int

void

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfIype *type);
pflsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);

111

pfLightPoint(3pf) IRIS Performer 2.0 libpf C Reference Pages

void * pfGetArena(void *ptr);

PARAMETERS

Ipoint identifies a pfLightPoint.

DESCRIPTION

112

pfLightPoint is now obsoleted in favor of the libpr primitive pfLPointState. pfGetLPointGSet returns the
underlying pfGeoSet of Ipoint from which the pfLPointState can be found:

gset = pf Get LPoi nt GSet (| point);
gstate = pf Get GSet GSt at e(gset);
I pstate = pfGetGStateAttr(gstate, PFSTATE_LPO NTSTATE);

A pfLightPoint is a pfNode that contains one or more light points. The light point node is quite different
from a pfLightSource; it is visible as one or more self-illuminated small points but these points do not
illuminate surrounding objects. In contrast to this, a pfLightSource does illuminate scene contents but is
itself not a visible object. All the light points in a pfLightPoint node share all their attributes except point
location and color.

pfNewLPoint creates and returns a handle to a pfLightPoint. Like other pfNodes, pfLightPoints are
always allocated from shared memory and can be deleted using pfDelete. num specifies the maximum
number of individual light points the node may contain. The function pfGetNumLPoints returns this
maximum number of light points that the pfLightPoint node Ipoint can hold. This is the value set when
the light point node was created using pfNewLPoint and is the size of the internal position and color
arrays used to represent the light points.

pfGetLPointClassType returns the pfType* for the class pfLightPoint. The pfType* returned by
pfGetLPointClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLightPoint. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfLPointSize sets the screen size of each point of light in Ipoint. size is specified in pixels and is used as
the argument to pntsizef. Whenever possible, antialiased points are used but the actual representation of
a light point depends on the hardware being used. See the pntsizef man page for a description of avail-
able light point sizes on IRIS hardware. pfGetLPointSize returns the size of Ipoint.

pfLPointColor sets the color of light point index in Ipoint to clr. The actual color displayed depends on
light point direction, shape, position, and fog. clr specifies red, green, blue and alpha in the range 0.0 to
1.0. A pfLightPoint is turned off with an alpha of 0.0 since it will be rendered as completely transparent.
pfGetLPointColor copies the indexth color into clr.

IRIS Performer 2.0 libpf C Reference Pages pfLightPoint(3pf)

pfLPointRot is used for directional lights. The direction of all light points in Ipoint is the positive Y axis,
rotated about the X axis by elev then rotated about the Z axis by azim. roll only affects the light envelope
as described below. The direction vector is rotated by any transformations (see pfSCS, pfDCS) above
Ipoint in the hierarchy.

pfGetLPointRot copies Ipoint’s rotation into azim, elev, and roll.

pfLPointShape describes the intensity distribution of a light point about its direction vector. dir is a sym-
bolic token:

PFLP_OMNIDIRECTIONAL
Ipoint will be drawn as omnidirectional light points. Light distribution is equal in all direc-
tions. All other arguments are ignored.

PFLP_UNIDIRECTIONAL
Ipoint will be drawn as unidirectional point lights. Light distribution is an elliptical cone
centered about the light direction vector.

PFLP_BIDIRECTIONAL
Ipoint will be drawn as bidirectional light points. Light distribution is two elliptical cones
centered about the positive and negative light direction vectors.

henv and venv are total angles (not half-angles) in degrees which specify the horizontal and vertical
envelopes about the direction vector. An envelope is a symmetric angular spread in a specific plane
about the light direction vector. The default direction is along the positive Y axis so the horizontal
envelope is in the X plane and the vertical in the Z plane. Both direction and envelopes are rotated by the
pfLPointRot and any inherited transformations. The default envelope angles are 360.0 degrees which is
equivalent to an omnidirectional light.

When the vector from the eyepoint to the light position is outside a light’s envelope, the light point is not
displayed. If within, the intensity of the light point is computed based on the location of the eye within
the elliptical cone. Intensity ranges from 1.0 when the eye lies on the light direction vector to 0.0 on the
edge of the cone. falloff is an exponent which modifies the intensity. A value of 0 indicates that there is no
falloff and values > 0 increase the falloff rate. The default falloff is 4. As intensity decreases, the light
point’s transparency increases.

pfGetLPointShape copies Ipoint’s shape parameters into dir, henv, venv, and falloff.

In general, the real world intensity of emissive light points is much greater than that of reflective surfaces.
Consequently, when fog is active, light points should be more visible through the fog. pfLPointFogScale
sets the fog range scale factors that affects all light points in Ipoint. onsetScale and opaqueScale multiply the
onset and opaque ranges (pfFogRange) of the currently active fog. Thus if the scale factors are greater
than 1.0, the light points will be more visible through fog than reflective surfaces. The default fog scale
factors are both 4.0. pfGetLPointFogScale copies the fog scale factors of Ipoint into onsetScale and opa-
queScale.

113

pfLightPoint(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

pfLPointPos sets the position of light point with index index to pos. index is clamped to the range [0,
num-1]. All positions are transformed by any inherited transformations. The final position and orienta-
tion of a light point 7 is transformed by R * T[index] * M where R is a rotation matrix defined by
pfLPointRot, T[i] is the position of light point i, and M is the transformation inherited by Ipoint from its
hierarchy.

pfGetLPointPos copies the indexth position into pos.

Light point processing in IRIS Performer has been subsumed by the new pfLPointState mechanism,
which is both more powerful and more efficient. Application developers are encouraged to transition to
these new light point facilities.

pfLightPoint nodes, unlike pfLPointState GeoSets, do not provide size or intensity modulation based on
distance to the viewer and the viewport size. Also, directional lights are significantly more expensive to
cull than omnidirectional lights.

Falloff distribution is cosine(incidence angle) " falloff.
When sorting is enabled (see pfChanTravMode and PFCULL_SORT), light points are drawn after

opaque geometry unless the pfLightPoint node has a pre-draw or post-draw callback (see
pfNodeTravFuncs).

SEE ALSO

114

pfLookupNode, pfNode, pfLPointState

IRIS Performer 2.0 libpf C Reference Pages pfLightSource(3pf)

NAME

pfNewLSource, pfGetLSourceClassType, pfLSourceAmbient, pfGetLSourceAmbient, pfLSour-
ceColor, pfGetLSourceColor, pfLSourceAtten, pfGetLSourceAtten, pfSpotLSourceDir,
pfGetSpotLSourceDir, pfSpotLSourceCone, pfGetSpotLSourceCone, pfLSourcePos, pfGetLSourcePos,
pfLSourceOn, pfLSourceOff, pfIsLSourceOn, pfLSourceMode, pfGetLSourceMode, pfLSourceVal,
pfGetLSourceVal, pfLSourceAttr, pfGetLSourceAttr — Create pfLightSource, specify pfLightSource pro-

perties.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfLightSource * pfNewLSource(void);

pfType *
void
void
void
void
void
void
void
void
void
void
void
void
void
void
int
void
int
void
float

void

pfGetLSourceClassType(void);

pfLSourceAmbient(pfLightSource* Isource, float r, float g, float b);
pfGetLSourceAmbient(pfLightSource* Isource, float* r, float* g, float* b);
pfLSourceColor(pfLightSource* Isource, int which, float r, float g, float b);
pfGetLSourceColor(pfLightSource* Isource, int which, float* r, float* g, float* b);
pfLSourceAtten(pfLightSource* light, float constant, float linear, float quadratic);
pfGetLSourceAtten(pfLightSource* light, float *constant, float *linear, float *quadratic);
pfSpotLSourceDir(pfLightSource* Isource, float x, float y, float z);
pfGetSpotLSourceDir(pfLightSource* Isource, float* x, float* y, float* z);
pfSpotLSourceCone(pfLightSource* Isource, float f1, float {2);
pfGetSpotLSourceCone(pfLightSource* Isource, float* f1, float* £2);
pfLSourcePos(pfLightSource* Isource, float x, float y, float z, float w);
pfGetLSourcePos(pfLightSource* Isource, float* x, float* y, float* z, float* w);
pfLSourceOn(pfLightSource* Isource);

pfLSourceOff(pfLightSource* Isource);

pfIsLSourceOn(pfLightSource* Isource);

pfLSourceMode(pfLightSource *Isource, int mode, int val);
pfGetLSourceMode(const pfLightSource *Isource, int mode);
pfLSourceVal(pfLightSource *lsource, int mode, float val);
pfGetLSourceVal(const pfLightSource *Isource, int mode);
pfLSourceAttr(pfLightSource *Isource, int attr, void *obj);

115

pfLightSource(3pf) IRIS Performer 2.0 libpf C Reference Pages

void* pfGetLSourceAttr(const pfLightSource *Isource, int attr);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightSource is derived from the parent class pfNode, so each of these
member functions of class pfNode are also directly usable with objects of class pfLightSource. Casting
an object of class pfLightSource to an object of class pfNode is taken care of automatically. This is also
true for casts to objects of ancestor classes of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

int pfFlatten(pfNode *node, int mode);

int pfNodeName(pfNode *node, const char *name);

const char * pfGetNodeName(const pfNode *node);

pfNode* pfFindNode(pfNode *node, const char *pathName, pfType *type);
pfNode* pfLookupNode(const char *name, pfType* type);

int pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

void pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

uint pfGetNodeTravMask(const pfNode *node, int which);

void pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

void pfNodeTravData(pfNode *node, int which, void *data);

void * pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLightSource can
also be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightSource
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);
int pfIsOfType(const void *ptr, pfType *type);

116

IRIS Performer 2.0 libpf C Reference Pages pfLightSource(3pf)

int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
Isource identifies a pfLightSource.
DESCRIPTION

A pfLightSource is a pfNode which can illuminate geometry in a pfScene. In addition, pfLightSource sup-
ports a technique known as "projected texturing” which can simulate high quality, real time spotlights
and shadows on certain graphics hardware.

pfNewLSource creates and returns a handle to a pfLightSource. Like other pfNodes, pfLightSources are
always allocated from shared memory and can be deleted using pfDelete.

pfGetLSourceClassType returns the pfType* for the class pfLightSource. The pfType* returned by
pfGetLSourceClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLightSource. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type
derived from a Performer type rather than to test for strict equality of the pfType*’s.

Most pfLightSource routines are borrowed from pfLight. These routines have the identical function as
the pfLight routines but operate on a pfLightSource rather than a pfLight. The routine correspondence is
listed in the following table.

pfLightSource routine pfLight routine
pfLSourceAmbient pfLightAmbient
pfGetLSourceAmbient | pfGetLightAmbient
pfLSourceColor pfLightColor
pfLSourceAtten pfLightAtten
pfGetLSourceColor pfGetLightColor
pfLSourcePos pfLightPos
pfGetLSourcePos pfGetLightPos
pfSpotLSourceCone pfSpotLightCone

117

pfLightSource(3pf) IRIS Performer 2.0 libpf C Reference Pages

118

pfGetSpotLSourceCone | pfGetSpotLightCone
pfSpotLSourceDir pfSpotLightDir
pfGetSpotLSourceDir pfGetSpotLightDir
pfLSourceOn pfLightOn
pfLSourceOff pfLightOff
pflsLSourceOn pflsLightOn

The reader is referred to the pfLight man page for details on the routine description.

When enabled by pfLSourceOn, a pfLightSource influences all geometry that is in the same pfScene if it is
not culled during the cull traversal. Its position in the hierarchy does not affect its area of influence. A
pfLightSource is enabled by default and is explicitly disabled with pfLSourceOff.

pfLightSources are processed somewhat differently than other nodes. If the
PFCULL_IGNORE_LSOURCES mode is not enabled by pfChanTravMode, the cull stage will begin with
a special traversal of all paths which lead from the current pfScene to pfLightSources before it traverses
the pfScene geometry. This initial traversal is no different from the ordinary cull traversal except that the
traversal order is path-directed rather than an in-order traversal. Specifically, all switches (pfSwitch,
pfLOD, pfSequence) and transformations (pfSCS, pfDCS) will affect the traversal. Note that nodes that lie
on paths to pfLightSource nodes will be traversed multiple times; specifically, any cull or draw callbacks
(pfNodeTravFuncs) will be invoked multiple times.

pfLightSources are culled to the viewing frustum only if they have been assigned a non-null bounding
volume (pfNodeBSphere). If a pfLightSource has a null bounding volume (radius < 0) then it is not
culled and has global effect over its pfScene. By default pfLightSources have null bounding volumes.
After the pfLightSource traversal comes the database traversal which (usually) visually culls the current
pfScene and ignores pfLightSources.

A pfLightSource inherits the current transformation from any pfSCSes and pfDCSes above it in the hierar-
chy. This matrix transforms the light source’s position and direction depending on the light’s type, i.e.- if
it is a local, infinite, or spotlight.

All hardware lights corresponding to pfLightSources in a pfScene will be properly configured before the
pfChannel’s draw callback is invoked (see pfChanTravFunc). Consequently, all geometry rendered in
the pfChannel draw callback will be illuminated by the pfScene’s light sources. However, any draw call-
back assigned to the pfLightSource node by pfNodeTravFuncs will be invoked before the pfChannel
draw callback is invoked so that anything drawn in the node callback will be obscured if the channel
viewport is cleared (see pfClearChan). Example 1: Adding a pfLightSource to a pfScene.

sun = pf NewLSource();

/* Set slightly yellow color */
pf LSour ceCol or (sun, PFLT_DI FFUSE, 1.0f, 1.0f, .8f);

IRIS Performer 2.0 libpf C Reference Pages pfLightSource(3pf)

/* Set a high anmbient |evel */
pf LSour ceCol or (sun, PFLT_AMBI ENT, .4f, .4f, .3f);

/* Time of day is high noon */
pf LSour cePos(sun, 0.0f, 1.0f, 0.0f, 0.0f);

pf AddChi | d(scene, sun);

A pfLightSource supports 3 different lighting mechanisms as listed in the following table:

Lighting | Normals | Texture | Effects Are | Shadows | Extra Draw

Method Used Required Per-? Pass(es)

pfLight Yes No Vertex No None
PROJTEX No Yes Pixel No +(0-1)
SHADOW No Auto Pixel Yes +(0-2)

The normal use of a pfLightSource is as a pfLight which computes lighting at geometry vertices, taking
into account the surface curvature as represented by geometry normals. This kind of lighting offers the
highest performance but does not produce per-pixel effects or shadows. Lighting using projected tex-
tures, referred to as PROJTEX, produces high quality spotlights since the spotlight boundary is computed
on a per-pixel, rather than a per-vertex basis as it is with pfLight. However, PROJTEX lighting does not
take surface normals into account, requires hardware texture mapping for decent performance, and
requires that textured geometry be rendered twice, once with their normal texture and once with the pro-
jected texture. SHADOW lighting is similar to PROJTEX but adds shadows at the cost of an additional
rendering pass. In this case a special texture map, called a shadow map, is automatically generated by the
pfLightSource and then projected onto the scene. Typically, pfLight-type lighting is used in conjunction
with PROJTEX or SHADOW so that lighting is a function of both per-pixel projected texturing and per-
vertex surface curvature.

SHADOW and PROJTEX lighting are separately enabled and disabled with the
PFLS_SHADOW_ENABLE and PFLS_PROJTEX_ENABLE tokens to pfLSourceMode. val should be
either PF_ON or PF_OFF. When either is enabled, pfChannels rendering the pfLightSource’s scene
automatically enter "multipass mode" since multiple renderings of the scene are usually required.

pfChanTravMode with the PFTRAV_MULTIPASS traversal token offers some control over the multiple
renderings of the scene. The PEMPASS_GLOBAL_AMBIENT bit indicates that the alpha bitplanes of the
pfChannel’s viewport contain the ambient intensity of the scene. Note that the pfChannel will not clear
the viewport alpha to this intensity but expects it to have already been properly cleared. If using a
pfEarthSky to clear the viewport, you can specify the ambient alpha with pfESkyColor. Global ambient is
not required and does have some extra cost. It is not particularly useful for PROJTEX lighting since
ambient intensity can be easily incorporated in the projected texture (instead of black, just use gray

119

pfLightSource(3pf) IRIS Performer 2.0 libpf C Reference Pages

120

outside the spotlight) but is useful for SHADOWS which otherwise would be completely black.

By default, emissive surfaces (including light points) are attenuated by PROJTEX and SHADOW lighting
which is not correct since emissive surfaces should shine even if in shadow or outside the cone of a pro-
jected spotlight. If a scene has emissive surfaces, set the PEMPASS_EMISSIVE_PASS bit in the
PFTRAV_MULTIPASS mode and the emissive surfaces will be properly rendered. Note that the emis-
sive rendering pass is not a full pass - rather it is a pass of only the emissive surfaces.

In situations where the scene is entirely non-textured, PFMPASS_NONTEX_SCENE can be specified as
part of the PFTRAV_MULTIPASS traversal mode of a pfChannel. In this case a complete rendering pass
is eliminated so that the total number of rendering passes is numProjLights + 2 *
numNonFrozenShadowLights.

PROJTEX lighting requires that a pfTexture be specified with the PFLS_PROJ_TEX token to
pfLSourceAttr. obj should be an intensity-alpha (2-component) pfTexture* with identical intensity and
alpha components. If Isource is the only pfLightSource in the scene using PROJTEX lighting, the texture
may be a full-color, 4-component texture.

SHADOW lighting does not require a pfTexture, rather one is automatically created and configured by
the pfLightSource. The size of the texture(shadow) map may be specified with the
PFLS_SHADOW_SIZE token to pfLSourceVal. val is then the square size of the texture map. The size of
the shadow map greatly influences the quality and performance of SHADOW lighting. Large shadow
map sizes increase quality but decrease performance. The default shadow map size is 256. SHADOW
lighting requires that the viewport of each pfChannel which renders the pfLightSource’s scene be at least
as big as the shadow map. Otherwise, shadows will be clipped and visual anomalies will occur.

Both SHADOW and PROJTEX lighting require that a pfFrustum be specified with the
PFLS_PROJ_FRUSTUM token to pfLSourceAttr. obj defines the projection of the texture (shadow) map
and should be a nominal, i.e., non-transformed pfFrustum®*. For SHADOW lighting, the field-of-view and
near and far clipping planes should bracket the scene to be shadowed as tightly as possible for best
results. A sloppy fit of pfFrustum to scene will result in blocky, poor-quality shadows.

By default, SHADOW lighting requires that the scene be rendered from the point of view of the pfLight-
Source to produce a shadow map. By default, pfChannels automatically do this for each SHADOW
pfLightSource in their scene. However, a new shadow map is only required if the pfLightSource or
objects in the scene change. In the special case where the pfLightSource and scene are totally static (e.g.,
the sun illuminating a sleepy town), the shadow map need not be recomputed. In this case
pfLSourceMode(PFLS_FREEZE_SHADOWS, PF_ON) will disable the automatic recomputation of the
shadow map, increasing performance.

For best results, SHADOW lighting requires that the scene be slightly displaced in depth when rendering
the shadow map. This reduces artifacts such as "self-shadowing". The
PFLS_SHADOW_DISPLACE_SCALE and PFLS_SHADOW_DISPLACE_OFFSET tokens to

IRIS Performer 2.0 libpf C Reference Pages pfLightSource(3pf)

pfLSourceVal specify displacement values. The default values are 1.0 and 256.0 respectively but experi-
mentation is required for best results (both values should be positive).

For pfLightSources which are near the eye, a pfFog can be used to simulate range-attenuation of the light.
Range-attenuation is enabled with the PFLS_FOG_ENABLE token to pfLSourceMode and by specifying
a pfFog with the PFLS_PROJ_FOG token to pfLSourceAttr. The pfFog color should be the ambient color
of the projected texture. Only a single range-attenuated projected pfLightSource is supported for a given
pfChannel.

A pfLightSource’s intensity is set with the PFLS_INTENSITY token to pfLSourceVal. val simply scales
the color(s) of all 3 lighting types: pfLight, PROJTEX, SHADOW. A scene containing multiple, full-
intensity pfLightSources can be easily saturated so setting pfLightSource intensities is a simple way to
"normalize" lighting within a scene. For example, when using 3 pfLightSources to illuminate a scene, an
intensity of .33 would be reasonable. Example 2: Range-attenuated, projected texture lighting for landing
light

pf Li ght Sour ce *spot ;
pf Text ure *spot Tex;
pf Frust um *spot Fr ust ;

pf Fog *spot Fog;
pf DCS *spot DCS;
pf Channel *chan;

pf Ear t hSky *esky;

/1l Create and | oad 2-conponent spotlight
spot Tex = pf NewTex(arena);
pf LoadTexFi | e(spot Tex, "spot.inta");

// Create and configure projected texture frustum
spot Frust = pf NewFrust (arena);

pf MakeSi npl eFrust (spot Frust, 60.0f);

pf Frust Near Far (spot Frust, 1.0f, 100.0f);

/1 Create and configure range-attenuati on fog nodel
spot Fog = pf NewFog(arena);

pf FogCol or (spot Fog, 0.1f, 0.1f, 0.1f);

pf FogRange(spot Fog, 0.0f, 100.0f);

/] Create and configure projected texture |ight source
spot = pf NewLSource();

pfLSourceAttr(spot, PFLS PRQJ_TEX, spotTex);
pfLSourceAttr(spot, PFLS PRQJ_FRUST, spotFrust);
pfLSourceAttr(spot, PFLS PRQJ_FOG, spotFog);

121

pfLightSource(3pf)

IRIS Performer 2.0 libpf C Reference Pages

122

pf LSour ceMbde(spot, PFLS _PRQJTEX_ENABLE, 1);

/] Set spotDCS to viewing matrix to nove |light around with eye

spot DCS = pf NewDCS() ;
pf AddChi | d(spot DCS, spot);
pf AddChi | d(scene, spot DCS);

/1 Enabl e em ssive pass since scene has em ssive surfaces

pf ChanTr avMbde(chan, PFTRAV_MULTI PASS,

PFMPASS_EM SSI VE_PASS|PFMPASS_GLOBAL_ANBI ENT) ;

/1 Set anmbient intensity to .1
pf ESkyCol or (esky, PFES CLEAR r, g, b, .1f);
pf ChanESky(chan, esky);

Example 3: Multiple, shadow-casting, colored pfLightSources

pf Li ght Sour ce *shad0O, *shadl;

pf DCS *shadDCS0, *shadDCS1;
pf Frust um *shadFr ust ;

pf Channel *chan;

pf Ear t hSky *esky;

/1 Create and configure shadow frustum
shadFrust = pf NewFrust (arena);

pf MakeSi npl eFrust (shadFrust, 60.0f);

pf Frust Near Far (shadFrust, 1.0f, 100.0f);

/1 Create and configure shadow casting |ight sources
shad0 = pf NewLSource();

pf LSour ceMbde(shad0, PFLS_SHADOW ENABLE, 1);

pf LSourceAttr(shad0, PFLS PRQJ_FRUST, shadFrust);

pf LSour ceCol or (shad0, PFLT_DI FFUSE, 1.0f, 0.0f, 0.0f);
pf LSour ceVal (shadO, PFLS_I NTENSITY, .5f);

shadl = pf NewLSource();

pf LSour ceMbde(shadl, PFLS_SHADOW ENABLE, 1);

pf LSourceAttr(shadl, PFLS PRQJ_FRUST, shadFrust);

pf LSour ceCol or (shadl, PFLT_DI FFUSE, 0.0f, 0.0f, 1.0f);
pf LSour ceVal (shadl, PFLS | NTENSI TY, .5f);

/1 Set DCSes to nove |ights around

IRIS Performer 2.0 libpf C Reference Pages pfLightSource(3pf)

NOTES

shadDCSO0 = pf NewDCS() ;
pf AddChi | d(shadDCS0, shad0);
pf AddChi | d(scene, shadDCSO0) ;

shadDCS1 = pf NewDCS() ;
pf AddChi | d(shadDCS1, shadl);
pf AddChi | d(scene, shadDCS1);

/1 Enabl e gl obal anbi ent
pf ChanTr avMbde(chan, PFTRAV_MULTI PASS, PFMPASS GLOBAL_AMBI ENT);

// Set anbient intensity to .1
pf ESkyCol or (esky, PFES CLEAR, r, g, b, .1f);
pf ChanESky(chan, esky);

To respect the limited number of active light sources allowed by graphics library implementations, IRIS
Performer supports at most PF_MAX_LIGHTS active light sources.

If you want light sources to affect only portions of the scene, then set one or more pfLights on the pfGeo-
States which are attached to the pfGeoSets that you wish to illuminate (see pfGStateAttr and
PFSTATE_LIGHTS for further details).

Shadows are supported only by RealityEngine when using IRIS GL.

PROJTEX and SHADOW lighting on RealityEngine require local lighting for proper effects (-
pfLModelLocal).

SHADOW lighting on RealityEngine requires the depth buffer to be configured with 32 bits (zbsize()).
Note that it is legal to have multisample buffers allocated in addition, the only requirement is that the
non-multisampled depth buffer be 32 bits. Also note that on RealityEngine, a 32-bit depth buffer requires
12-bit color.

On RealityEngine, shadows and projected textures are not clipped or properly computed behind the
pfLightSource. Instead, geometry behind the pfLightSource will be textured randomly. The only wor-
karound is to ensure that all geometry behind the pfLightSource is not visible to the pfChannel.

Local lighting results in improper shading of flat-shaded triangle and line strips (-

PFGS_FLAT_TRISTRIPS, PFGS_LINE_TRISTRIPS) which often manifests itself as "faceting" of planar
polygons. The only solution is either to use infinite lighting or not use FLAT primitives. Note that when
using the IRIS Performer triangle meshing routine, pfdMeshGSet, the construction of non-FLAT strips is

123

pfLightSource(3pf) IRIS Performer 2.0 libpf C Reference Pages

easily enforced with pfdMesherMode(PFDMESH_LOCAL_LIGHTING, 1).

SEE ALSO
pfChanTravFunc, pfChanTravMode, pfNode, pfSCS, pfDCS, pfGeoSet, pfGeoState, pfLight, pfDelete

124

IRIS Performer 2.0 libpf C Reference Pages pfMorph(3pf)

NAME

pfNewMorph, pfGetMorphClassType, pfMorphAttr, pfMorphWeights, pfGetMorphWeights, pfGet-
MorphNumAttrs, pfGetMorphSrc, pfGetMorphNumSrcs, pfGetMorphDst, pfEvaluateMorph —
Create, modify, and query a pfMorph node.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfMorph * pfNewMorph(void);

pfType *

int

int
int
int
int
int
void *

void

pfGetMorphClassType(void);

pfMorphAttr(pfMorph *morph, int index, int floatsPerElt, int nelts, void *dst, int nsrcs,
float *alist[], ushort *ilist[], int nlist[]);

pfMorphWeights(pfMorph *morph, int index, float *weights);
pfGetMorphWeights(const pfMorph *morph, int index, float *weights);
pfGetMorphNumAttrs(const pfMorph *morph);

pfGetMorphSrc(const pfMorph *morph, int index, int src, float **alist, ushort **ilist,
int *nlist);

pfGetMorphNumSrcs(const pfMorph *morph, int index);
pfGetMorphDst(const pfMorph *morph, int index);
pfEvaluateMorph(pfMorph *morph);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfMorph is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfMorph. Casting an object of
class pfMorph to an object of class pfGroup is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfGroup.

int
int
int
int
int
pfNode *
int
int
int

pfAddChild(pfGroup *group, pfNode *child);
pfInsertChild(pfGroup *group, int index, pfNode *child);
pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
pfRemoveChild(pfGroup *group, pfNode* child);
pfSearchChild(pfGroup *group, pfNode* child);
pfGetChild(const pfGroup *group, int index);
pfGetNumChildren(const pfGroup *group);
pfBufferAddChild(pfGroup *group, pfNode *child);
pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfMorph can also
be used with these functions designed for objects of class pfNode.

125

pfMorph(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

int pfFlatten(pfNode *node, int mode);

int pfNodeName(pfNode *node, const char *name);

const char * pfGetNodeName(const pfNode *node);

pfNode* pfFindNode(pfNode *node, const char *pathName, pfType *type);
pfNode* pfLookupNode(const char *name, pfType* type);

int pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

void pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

uint pfGetNodeTravMask(const pfNode *node, int which);

void pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

void pfNodeTravData(pfNode *node, int which, void *data);

void * pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfMorph can also
be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMorph can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

int pfGetRef(const void *ptr);

int pfCopy(void *dst, void *src);

126

IRIS Performer 2.0 libpf C Reference Pages pfMorph(3pf)

int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
morph identifies a pfMorph.
DESCRIPTION

A pfMorph node does not define geometry; rather, it manipulates geometric attributes of pfGeoSets and
other geometric primitives. While pfMorph is very general, its primary use is for geometric morphing
where the colors, normals, texture coordinates and coordinates of geometry are smoothly changed over
time to simulate actions such as facial and skeletal animation, ocean waves, continuous level-of-detail,
and advanced special effects. In these situations, the rigid body transformations provided by matrices do
not suffice - instead, efficient per-vertex manipulations are required.

A pfMorph consists of one or more "sources" and a single "destination"” which together are termed an
"attribute”. Both sources and destination are arrays of "elements" where each element consists of 1 or
more floating point numbers, e.g., an array of pfVec3 coordinates. The pfMorph node produces the desti-
nation by computing a weighted sum of the sources. By varying the source weights and using the morph
destination as a pfGeoSet attribute array, the application can achieve smooth, geometric animation. A
pfMorph can "morph" multiple attributes.

pfNewMorph creates and returns a handle to a pfMorph. Like other pfNodes, pfMorphs are always allo-
cated from shared memory and can be deleted using pfDelete.

pfGetMorphClassType returns the pfType* for the class pfMorph. The pfType* returned by
pfGetMorphClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfMorph. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfMorphAttr configures the indexth attribute of morph. floatsPerElt specifies how many floating point
numbers comprise a single attribute element. For example, when morphing pfGeoSet coordinate and tex-
ture coordinate arrays (PFGS_COORD3, PFGS_TEXCOORD?), floatsPerElt would be 3 and 2 respec-
tively. nelts specifies how many attribute elements are in the destination array. If the required number of
pfGeoSet coordinates is 33, then nelts would be 33, not 33 * 3 = 99. dst is a pointer to the destination array
which should be at least of size floatsPerElt * nelts * sizeof(float). If dst is NULL, then morph will automati-
cally create and use a pfCycleBuffer of appropriate size. (pfCycleBuffers are useful when IRIS Performer
is configured to multiprocess.)

There are 2 distinct methods of accessing the source arrays of a pfMorph attribute: non-indexed and

indexed. Indexing provides a means of efficiently applying sparse changes to the destination array. The
nsrcs argument to pfMorphAttr specifies how many source arrays are provided in alist, i.e., alist[i] is the

127

pfMorph(3pf) IRIS Performer 2.0 libpf C Reference Pages

128

i’th source and is treated as an array of elements where each element consists of floatsPerElt floating point
numbers. Index arrays and their lengths are provided in ilist and nlist respectively. If ilist is NULL then all
sources are non-indexed. If ilist is non-NULL, it contains a list of index lists corresponding to the source
lists in alist. If nlist is NULL, then the index lists are assumed to be nelts long and if non-NULL, the length
of each index list is specified in nlist. ilist may contain NULL pointers to mix indexed and non-indexed
source arrays.

All source arrays referenced in alist and ilist are reference counted by pfMorphAttr.

pfMorphWeights specifies the source weights of the indexth attribute of morph in the array weights.
weights should consist of nsrcs floating point numbers where nsrcs is the number of attribute sources
specified in pfMorphAttr. If index is < 0, then weights is used for all attributes of morph.
pfGetMorphWeights copies the weights of the indexth attribute of morph into weights. weights should be
an array of at least nsrcs floats.

A pfMorph node is evaluated, i.e., its destination array is computed, during the APP traversal which is
triggered directly by the application through pfAppFrame (see pfAppFrame) or indirectly by pfSync.
Alternately, the pfMorph node may be explicitly evaluated by calling the function pfEvaluateMorph. In
all cases, destination elements are computed as in the following pseudocode:

zero destination array;

for (s=0; s<nsrcs; s++)

{

if (ilist == NULL || ilist[s] == NULL)
{

/* Source is non-indexed */

for (i=0; i<nelts; i++)

for (e=0; e<floatsPerElt; e++)
dst[i][e] += weights[s] * alist[s][i][e];

}
el se
{

/* Source is indexed */
int ni ndex;
if (nlist == NULL)
ni ndex = nelts;
el se

ni ndex = nlist[s];

for (i=0; i<nindex; i++)

IRIS Performer 2.0 libpf C Reference Pages pfMorph(3pf)

for (e=0; e<floatsPerElt; e++)
dst[ilist{s][i]][e] += weights[s] * alist[s][i][e];

Note that the actual implementation is much more efficient than above, particularly for the special
weights of 0 and 1.

Since pfMorph is a pfGroup, it is guaranteed to be evaluated before its children in the APP traversal. The
pfMorph is only evaluated by the APP traversal when its weights change.

pfGetMorphNumAttrs returns the number of morph’s attributes.

pfGetMorphSrc returns the srcth source parameters of the indexth attribute of morph. The source attribute
array and index array pointers are copied into alist and ilist respectively. The size of the srcth index array
is copied into nlist and the number of floats per element is returned by pfGetMorphSrc.

pfGetMorphNumSrcs returns the number of sources of the indexth attribute of morph.

pfGetMorphDst returns the indexth destination array of morph. The destination array is either that pro-
vided earlier by pfMorphAttr or the pfCycleBuffer automatically created when NULL was passed as the
dst argument to pfMorphAttr.

SEE ALSO
pfAppFrame, pfCycleBuffer, pfGroup, pfDelete, pfLookupNode

129

pfNode(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME
pfGetNodeClassType, pfGetParent, pfGetNumParents, pfNodeBSphere, pfGetNodeBSphere,
pfClone, pfBufferClone, pfFlatten, pfNodeName, pfGetNodeName, pfFindNode, pfLookupNode,
pfNodelsectSegs, pfNodeTravMask, pfGetNodeTravMask, pfNodeTravFuncs, pfGetNodeTravFuncs,
pfNodeTravData, pfGetNodeTravData — Set and get pfNode parents and bounding spheres.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfType * pfGetNodeClassType(void);
pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

int pfFlatten(pfNode *node, int mode);

int pfNodeName(pfNode *node, const char *name);

const char * pfGetNodeName(const pfNode *node);

pfNode* pfFindNode(pfNode *node, const char *pathName, pfType *type);
pfNode* pfLookupNode(const char *name, pfType* type);

int pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

void pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

uint pfGetNodeTravMask(const pfNode *node, int which);

void pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

void pfNodeTravData(pfNode *node, int which, void *data);

void * pfGetNodeTravData(const pfNode *node, int which);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfNode is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfNode. Casting an object of
class pfNode to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

130

IRIS Performer 2.0 libpf C Reference Pages

pfNode(3pf)

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfNode can also
be used with these functions designed for objects of class pfMemory.

pfType *

int
int

const char *

int
int
int
int
int
int
int

void

void *
PARAMETERS

node

which

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfType *type);
pflsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
pfGetArena(void *ptr);

identifies a pfNode

typedef struct _pf SegSet

{

node;

void * user Dat a;

segs[PFI S_MAX_SEGS] ;
acti veMask;
i sect Mask;

void * bound;

(*di scFunc) (pfHi t*);

} pf SegSet;

typedef int (*pfNodeTravFuncType) (pfTraverser *trav, void *userData);

identifies the traversal: PFTRAV_ISECT, PFTRAV_APP, PFTRAV_CULL or PFTRAV_DRAW,
denoting the intersection, application,

131

pfNode(3pf) IRIS Performer 2.0 libpf C Reference Pages

DESCRIPTION
A pfNode is an abstract type. IRIS Performer does not provide any means to explicitly create a pfNode.
Rather, the pfNode routines operate on the common aspects of other IRIS Performer node types.

The complete list of IRIS Performer nodes (all derived from pfNode) is:
pfLightPoint
pfText
pfGeode
pfBillboard
pfLightSource
pfGroup
pfSCS
pfDCS
pfPartition
pfScene
pfSwitch
pfLOD
pfSequence
pfLayer

Any IRIS Performer node is implicitly a pfNode, and a pointer to any of the above nodes may be used
wherever a pfNode* is required as an argument.

The various pfNode types have certain common properties such as a set of parents, a name, an intersec-
tion mask, bounding geometry, callback functions and callback data.

pfGetNodeClassType returns the pfType* for the class pfNode. The pfType* returned by
pfGetNodeClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfNode. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfGetNumParents returns the number of parents node has in the scene graph. A node may have multiple
parents because it was explicitly added to multiple parents with pfAddChild. In such cases it said to be
‘instanced’. Also, leaf geometry nodes such as pfGeodes, pfLightPoints, and pfBillboards, may have mul-
tiple parents as a result of a pfClone. pfGetParent returns the ith parent of node or NULL if i is out of the
range 0 to pfGetNumParents - 1.

132

IRIS Performer 2.0 libpf C Reference Pages pfNode(3pf)

pfNodeBSphere sets the bounding volume of node. Each pfNode has an associated bounding volume
used for culling and intersection testing and a bounding mode, either static or dynamic. By definition, the
bounding volume of a node encloses all the geometry parented by node, which means that the node and
all its children fit within the node’s bounding volume.

Only a subset of the pfNode types actually contain geometry. These are known as "leaf nodes" in IRIS
Performer. They are:

pfBillboard

pfGeode

pfLightPoint

These and other nodes may indirectly contain geometry through user-supplied function callbacks set by
pfNodeTravFuncs.

Normally IRIS Performer automatically computes bounding volumes but provides routines to explicitly
set bounding volumes. This is useful for pfNodes which draw custom geometry through node callbacks
(pfNodeTravFuncs).

The bsph argument to pfNodeBSphere is the bounding sphere of node. If the bsph is NULL, IRIS Per-
former will compute the bounding sphere of node.

The mode argument to pfNodeBSphere specifies whether or not the bounding volume for node should be
recomputed when an attribute of node changes or something in the scene graph below node changes (if
node is a pfGroup). If the mode is PFBOUND_STATIC, IRIS Performer will not modify the bound once it
is set or computed. If the mode is PFBOUND_DYNAMIC, IRIS Performer will recompute the bound
after children are added or deleted or after the matrix in a pfDCS changes. Changes in pfSwitches,
pfLODs and pfSequences do not affect bounds above them in the scene graph.

pfGetNodeBSphere returns the current bounding mode and copies into bsph a pfSphere which encloses
node and its children The return value is the bounding mode which is either PFBOUND_DYNAMIC or
PFBOUND_STATIC indicating whether or not the bounding volume is updated automatically when its
children change.

IRIS Performer supports two methods of node instancing. The first method is to simply add a node to
more than one parent using pfAddChild or pfReplaceChild (see pfGroup). In this case the graph rooted
by the instanced node is shared by all its parents. This type of instancing is called shared instancing.

pfClone provides instancing which shares geometry but not variable state like transformations (pfDCS)
and switches (pfSwitch). pfClone copies the entire scene graph from node down to, but not including,
leaf geometry nodes such as pfGeodes, pfBillboards and pfLightPoints. These leaf nodes are instanced by
reference in the cloned scene graph. pfClone returns the root pfNode of the cloned graph or NULL to
indicate error. This type of instancing is called common geometry instancing. An attempt to clone a leaf
geometry node simply returns the handle to that node.

133

pfNode(3pf) IRIS Performer 2.0 libpf C Reference Pages

134

Cloning is recommended for instances of dynamic and articulated models. For example: Shared instances
of a model with pfDCSes in its hierarchy will share the pfDCSes as well as the geometry. This means that
all instances will have the exact same articulation. However, a common geometry instance will share
only geometry and as a result of the cloning process will have its own pfDCSes allowing manipulation
independently of any other instances. This example creates a cloned instance:

if ((clone = pfdone(carMdel, 0)) != NULL)
pf AddChi | d(car DCS_3, cl one);

The mode argument to pfClone is reserved for future extensions and must be 0 in this release of IRIS Per-
former.

When cloning, if the global copy function (pfCopyFunc) is NULL, user data pointers (pfUserData) are
copied to each new node and the reference counts of pfMemory-derived user data are incremented. If
pfCopyFunc is not NULL, it will be invoked with the destination and source nodes as arguments. It is
then the responsibility of the copy function to handle the copy of user data.

pfBufferClone is identical to pfClone but allows cloning across pfBuffers. buf identifies the pfBuffer
which contains node and its subtree. The clone of node and its subtree is placed in the current buffer set by
pfSelectBuffer. See the pfBuffer man page for more details.

pfFlatten is a database pre-processing step which ‘flattens’ the transformation hierarchy of the scene
graph rooted by node. Coordinates and normals contained in leaf geometry nodes such as pfGeodes,
pfBillboards and pfLightPoints are transformed by any inherited static transformations (pfSCS).
pfFlatten automatically clones any pfNode or pfGeoSet that is multiply referenced. Specifically, if node
has multiple parents, node and its entire subtree will be cloned. If a pfDCS is encountered, pfFlatten
inserts a pfSCS in between the pfDCS and its parent.

Flattening can substantially improve performance, especially when pfSCSes are being used to instance a
relatively small amount of geometry since the cost of the transformation approaches the cost of drawing
the geometry. However, it can also increase the size of the database since it copies instanced nodes and
geometry. Flattening is highly recommended for pfBillboards. Flattening also increases the ability of IRIS
Performer to sort the database by mode (see pfChanBinSort), often a major performance enhancement,
since sorting does not cross transformation boundaries.

pfFlatten does not remove pfSCSes from the hierarchy; instead it sets their transformations to the identity
matrix. For improved traversal performance, these flattened pfSCS nodes should be removed from the
hierarchy.

The mode argument to pfFlatten is currently ignored and should be 0.

Al IRIS Performer database nodes may be assigned a character string name. Individual node names need

IRIS Performer 2.0 libpf C Reference Pages pfNode(3pf)

not be unique but to access a node with a non-unique name, an unambiguous pathname to the node must
be given. The pathname doesn’t need to be a full path. All that’s required is enough to distinguish the
node from others with the same name.

pfNodeName sets the name of node to the string name. If the name is unique a 1 will be returned and if
the name is not unique, a 0 will be returned. Node names are kept in a global table which is used for
resolving the first path component of a path name by pfLookupNode. In this case, unambiguous resolu-
tion is only possible if the first path component is unique. pfGetNodeName returns the name of the node
or NULL if the name has not been set.

pfFindNode is a general search routine for finding named pfNodes. pfFindNode begins searching for
the node of type type and identified by a ' /’-separated path name pathName. The search begins at node and
uses a depth-first traversal. pfFindNode returns NULL if it cannot find the node. Note that the type
checking performed by pfFindNode is equivalent to pfIsOfType, not pfIsExactType, e.g. searching for a
pfGroup includes derived classes such as pfSwitch.

The string pathName can be either a name or a ’/’-separated pathname. If the name contains no '/’ charac-
ters, it is assumed to be unique and the global name table is searched. If pathName contains '/’ characters,
it is assumed to be a path. Paths are searched by first finding the node corresponding to the first com-
ponent of the path in a global name table. The find routine then traverses the subtree rooted at that node,
searching for the rest of the path. The first node encountered during the search traversal which matches
pathName is returned.

Example 1:

pf Node *newhouse, *newdoor;
pf DCS *door;

/* Create "house" nodel with nanmed subparts including "door" */

/* Create a new instance of "house" */
newhouse = pfd one(house, 0);

/* G ve cloned house a new nane */
pf NodeNane(newhouse, "newhouse");

/* Find the door part of the new house */
door = (pfDCS*) pfFindNode(newhouse, "door", pfGetDCSO assType());

pfNodelsectSegs intersects a group of line segments with a scene or portion thereof. The intersection
operation traverses the scene graph, testing a group of segments against bounding geometry and eventu-
ally model geometry within pfGeoSets. node specifies the node at which intersection traversal starts.

135

pfNode(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfNodelsectSegs returns the number of segments which intersected something. hits is an empty array
supplied by the user through which results are returned. The array must have an entry for each segment
in segSet. Upon return, hits[i][0] is a pfHit* which gives the intersection result for the ith segment in seg-
Set. The pfHit objects come from an internally maintained pool and are reused on subsequent requests.
Hence, the contents are only valid until the next invocation of pfGSetIsectSegs in the current process.
They should not be freed by the application.

segSet is a pfSegSet structure specifying the intersection request. In the structure, segs is an array of line
segments to be intersected against the pfGeoSet. activeMask is a bit vector specifying which segments in
the pfSegSet are to be active for the current request. If bit[i] of the activeMask is set to 1, it indicates the
corresponding segment in the segs array is active.

The bit vector mode specifies the behavior of the intersection operation and is a bitwise OR of the follow-
ing:
PFTRAV_IS_PRIM
Intersect with quads or triangle geometry.

PFTRAV_IS_GSET
Intersect with pfGeoSet bounding boxes.

PFTRAV_IS_GEODE
Intersect with pfGeode bounding sphere.

PFTRAV_IS_NORM
Return normals in the pfHit structure.

PFTRAV_IS_CULL_BACK
Ignore back-facing polygons.

PFTRAV_IS CULL_FRONT
Ignore front-facing polygons.

PFTRAV_IS_PATH
Retain traversal path information.

PFTRAV_IS_NO_PART
Do not use partitions for intersections.

For several types of pfGroups, the traversal of children can be controlled for the traversal.

For pfSwitches, the default is to traverse only the child or children specified by the current switch value.
This can be changed OR-ing one of the following into the mode argument.

PFTRAV_SW_ALL
Traverse all children of pfSwitches.

136

IRIS Performer 2.0 libpf C Reference Pages pfNode(3pf)

PFTRAV_SW_NONE
Don’t traverse any children of pfSwitches.

For pfSequences, the default is to traverse only the current child in the sequence. This can be changed
OR-ing one of the following into the mode argument.

PFTRAV_SEQ_ALL
Intersect with all children of pfSequences.

PFTRAV_SEQ_NONE
Intersect with no children of pfSequences.

For pfLODs, the default is to traverse only the child that would be active at range 0. This can be changed
OR-ing one of the following into the mode argument. Also, see pfChanNodelsectSegs for child selection
based on range.

PFTRAV_LOD_ALL
Intersect with all children of pfLODs (default is range 0).

PFTRAV_LOD_NONE
Intersect with no children of pfLODs (default is range 0).

For pfLayers, the default is to traverse all children. This can be changed OR-ing one of the following into
the mode argument.

PFTRAV_LAYER_NONE
Intersect with no children of pfLayers (default is all).

PFTRAV_LAYER_BASE
Intersect with no children of pfLayers (default is all).

PFTRAV_LAYER_DECAL
Intersect with no children of pfLayers (default is all).

The bit fields PFTRAV_IS_PRIM, PFTRAV_IS_GSET, and PFTRAV_IS_GEODE indicate the level at
which intersections should be evaluated and discriminator callbacks, if any, invoked. If none of these
three fields are specified, no intersection testing is done.

In the pfSegSet, isectMask is another bit vector which directs the intersection traversal. At each stage of
the intersection operation, the mask is bit-wise AND-ed with the mask of the pfNode or pfGeoSet. If the
mask is non-zero the intersection continues with the next object, either a pfNode within a pfGroup or a
primitive within a pfGeoSet. The mask of a pfNode is set using pfNodeTravMask and that of a pfGeoSet
by pfGSetIsectMask. The mask can be used to distinguish parts of the scene graph which might respond
differently to vision or collision. For example, as a wall would stop a truck but shrubbery would not.

The bound field in a pfSegSet is an optional user-provided bounding volume around the set of segments.
Currently, the only supported volume is a cylinder. To use a bounding cylinder, perform a bitwise OR of

137

pfNode(3pf) IRIS Performer 2.0 libpf C Reference Pages

PFTRAV_IS_BCYL into the mode field of the pfSegSet and assign the pointer to the bounding volume to
the bound field.

pfCylAroundSegs will construct a cylinder around the segments. When a bounding volume is supplied,
the intersection traversal may use the cylinder to improve performance. The largest improvement is for
groups of at least several segments which are closely grouped segments. Placing a bounding cylinder
around small groups or widely dispersed segments can decrease performance.

The userData pointer allows an application to associate other data with the pfSegSet. Upon return and in
discriminator callbacks, the pfSegSet’s userData pointer can be obtained from the returned pfHit with
pfGetUserData.

discFunc is a user supplied callback function which provides a more powerful means for controlling inter-
sections than the simple mask test.

If discFunc is NULL, the default behavior clips the end of the segment after each successful intersection at
the finest resolution (pfGeode bounding volume , pfGeoSet bounding box, pfGeoSet geometry) specified
in mode. Thus, the segment is clipped by each successful intersection so that the intersection point nearest
the starting point of the segment is returned upon completion.

If a discriminator callback is specified, whenever an intersection occurs, the discFunc callback is invoked
with a pfHit structure containing information about the intersection. The discriminator may then return a
value which indicates whether and how the intersection should continue. The continuation selectors are
PFTRAV_CONT, PFTRAV_PRUNE, and PFTRAV_TERM.

PFTRAV_CONT
Indicates that the traversal should continue traversing the pfGeoSets beneath a pfGeode.
The discriminator function can examine information about candidate intersections and
judge their validity and control the continuation of the traversal with its return value.

PFTRAV_PRUNE
Indicates the traversal should return from the current level of the search and continue. If
returned on a pfGeoSet primitive or bounding box test, PFTRAV_PRUNE stops further
testing of the line segment against that pfGeoSet. If returned on the test against a pfGeode
bounding volume, the pfGeode is not traversed for that line segment.

PFTRAV_TERM
Indicates that the search should terminate for this segment of the pfSegSet. To have
PFTRAV_TERM or PFTRAV_PRUNE apply to all segments, PFTRAV_IS_ALL_SEGS can
be OR-ed into the discriminator return value. This causes the entire traversal to be ter-
minated or pruned.

The callback may OR other bitfields into the status return value:

138

IRIS Performer 2.0 libpf C Reference Pages pfNode(3pf)

PFTRAV_IS_IGNORE
Indicates that the current intersection should be ignored, otherwise the intersection is taken
as valid.

PFTRAV_IS_CLIP_START
Indicates for pruned and continued traversals that before proceeding the segment should be
clipped to start at the current intersection point.

PFTRAV_IS_CLIP_END
Indicates for pruned and continued traversals that before proceeding the segment should be
clipped to end at the current intersection point.

If discFunc is NULL, the behavior is the same as if the discriminator returned PFTRAV_CONT |
PFTRAV_IS_CLIP_END, so that the intersection nearest the start of the segment will be returned.

In addition to the discriminator callback, pre- and post- intersection callbacks are available for each node.
These behave identically to the pre- and post-callbacks for the cull traversal and can be used to prune,
continue or terminate the traversal at any node.

Both pfNodelsectSegs and the discriminator callback return information about an intersection in a pfHit
object which can be examined using the pfQueryHit and pfMQueryHit calls. The information includes
the intersection point, current matrix transformation, scene graph, and path. See the reference page for
pfHit for further details.

In multiprocess applications, pfNodelsectSegs should be called from the APP process or from the ISECT
process (in the callback specified by pfIsectFunc). When called in the APP process, pfNodelsectSegs
should be called after pfFrame and before pfSync for best system throughput.

pfNodeTravMask sets the traversal masks of node which are used to control traversal during the intersec-
tion, cull, and draw traversals. If the bitwise AND of the node’s mask for that traversal type and the
mask for the current traversal is zero, the traversal is disabled at that node. By default, the node masks
are all 1’s. Traverser masks are set by pfNodelsectSegs/pfChanNodelsectSegs for the intersection
traversal and pfChanTravMask for the CULL and DRAW traversals. pfGetNodeTravMask returns the
specified traversal mask for the node.

Bits in the setMode argument indicate whether the set operation should be carried out for just the specified
pfNode (PFTRAV_SELF), just its descendents (PFTRAV_DESCEND) or both itself and descendents.

The descendent traversal goes down into pfGeoSets.

The bitOp argument is one of PF_AND, PF_OR, or PF_SET and indicates whether the new mask should
be AND-ed with the old mask, OR-ed with the old mask or set outright, respectively.

Efficient intersections require that information be cached for each pfGeoSet to be intersected with. To
create this cache, PFTRAV_IS_CACHE should be OR-ed into the setMode when first setting the

139

pfNode(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

140

intersection mask. Because of the computation involved, the cache is best created at setup time. Subse-
quent changes to the masks themselves do not require PFTRAV_IS_CACHE to be specified. However,
for dynamic objects whose geometry changes (e.g. pfGeoSets whose vertex arrays are being changed),
additional calls with the PFTRAV_IS_CACHE in setMode should be used to recompute the cached infor-
mation. PFTRAV_IS_UNCACHE can be OR-ed into the setMode to disable caching.
PFTRAV_IS_CACHE and PFTRAV_IS_UNCACHE can only be specified when which is
PFTRAV_ISECT.

pfNodeTravFuncs specify the user supplied functions which are to be invoked during the traversal indi-
cated by which. For each traversal, there is a pre and post traversal callback. pre is invoked before node and
its children are processed while post is invoked after. The pre- and post- methodology supports save and
restore or push and pop programming constructs. Node callbacks are passed pointers to the user sup-
plied traversal data pointer for that node and a pfTraverser which defines the current traversal state.
pfGetNodeTravFuncs copies node’s pre and post callbacks of traversal type which into pre and post respec-
tively.

The data argument to pfNodeTravData is the pointer which is passed to the traversal callbacks indicated
by which. Both pre- and post-callbacks will be passed data in addition to a pfTraverser*. When multipro-
cessing, data should point to memory in a shared arena. pfGetNodeTravData returns the current data
pointer for the specified traversal.

When instanced geometry is flattened, the copy created by pfFlatten shares pfGeoSet attribute arrays
with the original when possible. This means that the newly flattened pfGeoSet may share some arrays
(e.g. color array), but not other arrays (e.g. the vertex array) with the original.

The post-cull callback is a good place to implement custom level-of-detail mechanisms.

Currently, nodes use spheres as the default bounding volume. This may change in a future release.
libpfutil contains sample code for computing the bounding box for a subgraph of the scene.

It’s an interesting fact that although a node’s bounding volume completely contains the geometry of the
nodes that it parents, it may well not completely contain the bounding volumes of those same nodes. Do
you understand when this situation would occur?

Finding a node by name can be expensive, particularly for path based searches. These functions are pri-
marily intended to get handles to nodes which are loaded from disk and should be used sparingly at
simulation time.

In Performer 2.0, pfLookupNode replaces a number of functions from 1.2, e.g. pfLookupBboard. See the
scripts in /usr/share/Performer/src/tools for help in porting code.

IRIS Performer 2.0 libpf C Reference Pages pfNode(3pf)

BUGS

If the graph under a node cloned by pfClone contains an object instanced within the graph, (i.e. a node
having two or more parents within the graph), the new graph will contain multiple copies of the
instanced node rather than duplicating the connectivity of the original graph.

pfFlatten transforms the vertex arrays of non-instanced geometry in place. If a pfGeoSet belongs to mul-
tiple pfGeodes or a vertex array is shared between pfGeoSets the array is still flattened in place.

It is not possible to get multiple intersection results per segment without a discriminator callback.

Bounding cylinders do not work when non-orthonormal transformations are present in the pfDCS and
pfSCS nodes of a scene graph.

The path returned by pfGetTravPath is valid only when invoked from a cull callback.

SEE ALSO

pfAddChild, pfCylAroundSegs, pfDelete, pfClone, pfFlatten, pfGetType, pfFindNode, pfLookupNode,
pfNodelsectSegs, pfNodeName, pfNodeTravFuncs, pfCopyFunc, pfChanBinSort, pfGSetlsectMask,
pfQueryHit, pfMQueryHit, pfBillboard, pfDCS, pfFrame, pfGeode, pflsectFunc, pfLightPoint, pfScene,
pISCS, pfSeg, pfGSetlsectSegs, pfSync, pfIraverser

141

pfPartition(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME
pfNewPart, pfGetPartClassType, pfPartVal, pfGetPartVal, pfPartAttr, pfGetPartAttr, pfBuildPart,
pfUpdatePart — Create and update pfPartition spatial partitioning node.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfPartition * pfNewPart(void);
pfType * pfGetPartClassType(void);

void pfPartVal(pfPartition* part, int which, float val);
float pfGetPartVal(pfPartition *part, int which);

void pfPartAttr(pfPartition* part, int which, void *attr);
void * pfGetPartAttr(pfPartition *part, int which);

void pfBuildPart(pfPartition* cset);

void pfUpdatePart(pfPartition* cset);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPartition is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfPartition. Casting an object of
class pfPartition to an object of class pfGroup is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

int pfSearchChild(pfGroup *group, pfNode* child);

pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);

int pfBufferAddChild(pfGroup *group, pfNode *child);

int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfPartition can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);

142

IRIS Performer 2.0 libpf C Reference Pages pfPartition(3pf)

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void
uint
void

void

void
void *

pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfPartition can
also be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPartition can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int

const char *
int

int

int

int

int

int

int

void

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfIype *type);
pflsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);

143

pfPartition(3pf) IRIS Performer 2.0 libpf C Reference Pages

void * pfGetArena(void *ptr);

DESCRIPTION
A pfPartition is a type of pfGroup for organizing the subgraph of a scene into a static data structure
which is more efficient for intersection testing with pfNodelsectSegs for some databases. pfPartition
does not affect culling performance nor does it improve intersection performance under transformation
nodes, pfSwitch nodes, pfMorph nodes or pfSequence nodes.

pfNewPart creates and returns a handle to a pfPartition. Like other pfNodes, pfPartitions are always
allocated from shared memory and can be deleted using pfDelete.

pfGetPartClassType returns the pfType* for the class pfPartition. The pfType* returned by
pfGetPartClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfPartition. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

pfBuildPart constructs a 2D spatial partitioning based on the type.

Within the confines of the parameters set by pfPartAttr, IRIS Performer attempts to construct an optimal
partition based on the distribution of vertices within the pfGeoSets in the subgraph of the scene rooted at
the partition. Information about the selected partitioning is displayed when the pfNotifyLevel is debug
or higher. Because the search for the optimal partitioning is compute intensive, once the partitioning has
been determined for a particular database, the range of the search should be restricted using pfPartAttr.

pfUpdatePart causes the scene graph under the partition to be traversed and any changes incorporated
into the spatial partitioning. The partitioning itself does not change.

pfPartAttr sets the partition attribute attr to the attribute attr. Partition attributes are:

PFPART_MIN_SPACING
attr points to a pfVec3 specifying the minimum spacing between partition dividers in each
dimension. If not specified, the default is 1/20th of the bounding box diagonal. When a
partition is built, a search is made between PFPART_MAX_SPACING and
PFPART_MIN_SPACING.

PFPART_MAX_SPACING
attr points to a pfVec3 specifying the maximum spacing between partition dividers in each
dimension. If not specified, the default is 1/10th of the bounding box diagonal. When a
partition is built, a search is made between PFPART_MAX_SPACING and
PFPART_MIN_SPACING.

144

IRIS Performer 2.0 libpf C Reference Pages pfPartition(3pf)

PFPART_ORIGIN
attr points to a pfVec3 specifying an origin for the partition. If not specified, a search is
done to find an optimal origin.

pfGetPartAttr returns the partition attribute attr.

pfPartVal sets the partition value val to the value val. Partition values are:

PFPART_FINE
A value between 0.0 and 1.0 which indicates how fine of a partitioning should be con-
structed. The subdivision is limited by PFPART_MIN_SPACING adn
PFPART_MAX_SPACING. 1.0 causes extremely fine subdivision. 0.0 causes no subdivi-
sion. 0.5 is usually a good value and is the default.

pfGetPartVal returns the partition value val.

A pfPartition behaves like a pfGroup when the mode in the pfSegSet used with pfNodelsectSegs
includes PFTRAV_IS_NO_PART.

NOTES
pfPartitions are primarily useful for databases containing many axis-aligned objects for which bounding
spheres are a poor fit and when only one or two segments are made per call to pfNodelIsectSegs. For
example, terrain following on gridded terrain is likely to benefit. For databases such as this which them-
selves have a regular grid, it is also important for performance that the origin and spacing of the partition
align exactly the terrain grid. pfPartitions do not currently help with the problem pfGeoSets containing
too much geometry.

BUGS
The search for an optimal grid is very thorough so that it takes a very long time if the search domain is
large. Once a good partitioning for a database is determined, the PEPART_MIN_SPACING,
PFPART_MAX_SPACING and PFPART_ORIGIN can be set equal for much faster building.

Currently only partitionings in the XY plane are supported.

SEE ALSO
pfGroup, pfLookupNode, pfNode, pfNodelsectSegs, pfNotifyLevel, pfScene

145

pfPath(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME
pfNewPath, pfGetPathClassType, pfCullPath — Create, modify, and maintain a node path.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfPath* pfNewPath(void);
pfType * pfGetPathClassType(void);
int pfCullPath(pfPath *path, pfNode *node, int mode);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPath is derived from the parent class pfList, so each of these member func-
tions of class pfList are also directly usable with objects of class pfPath. Casting an object of class pfPath
to an object of class pfList is taken care of automatically. This is also true for casts to objects of ancestor
classes of class pfList.

void pfAdd(pfList* list, void* elt);

void pfCombineLists(pfList* dst, const pfList *a, const pfList *b);
int pfFastRemove(pfList* list, void* elt);

void pfFastRemovelndex(pfList* list, int index);
void * pfGet(const pfList* list, int index);

const void ** pfGetListArray(const pfList* list);

int pfGetListArrayLen(const pfList* len);

int pfGetListEltSize(const pfList* list);

int pfGetNum(const pfList* list);

void pfInsert(pfList* list, int index, void* elt);

int pfMove(pfList* lists, int index, void *elt);
void pfListArrayLen(pfList* list, int len);

void pfNum(pfList *list, int num);

int pfRemove(pfList* list, void* elt);

void pfRemovelndex(pfList* list, int index);

int pfReplace(pfList* list, void* old, void* new);
void pfResetList(pfList* list);

int pfSearch(const pfList* list, void* elt);

void pfSet(pfList* list, int index, void *elt);

Since the class pfList is itself derived from the parent class pfObject, objects of class pfPath can also be
used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);

146

IRIS Performer 2.0 libpf C Reference Pages pfPath(3pf)

void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPath can also
be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

A pfPath is a dynamically-sized array of pointers. A pfPath consisting of pfNode pointers can define a
specific path or chain of nodes through a scene graph.

pfNewPath creates and returns a handle to a pfPath. pfPaths are usually allocated from shared memory.
The path element size is sizeof(void*) and the initial number of elements in the path is 4. pfPaths can be
deleted using pfDelete.

pfGetPathClassType returns the pfType* for the class pfPath. The pfType* returned by
pfGetPathClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfPath. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

pfCullPath traverses and culls the chain of nodes specified in path, beginning at root. If path is NULL,
then root will be traversed in-order. If root is NULL, then the exact chain of nodes specified in path will be
traversed. If neither root nor path is NULL, then the paths traversed will be all paths emanating from root
which reach the first node in path and then continue down the nodes specified in path.

mode is a bitmask indicating which type of "switching" nodes (pfLOD, pfSequence, pfSwitch) to evaluate
and may be either:

147

pfPath(3pf) IRIS Performer 2.0 libpf C Reference Pages

PFPATH_IGNORE_SWITCHES
Do not evaluate any switches in the node path.

or else it is the bitwise OR of the following;:

PFPATH_EVAL_LOD
Evaluate any pfLOD nodes in the node path.

PFPATH_EVAL_SEQUENCE
Evaluate any pfSequence nodes in the node path.

PFPATH_EVAL_SWITCH
Evaluate any pfSwitch nodes in the node path.

When an enabled switch node is encountered, traversal will terminate if the next node in the path is not
one selected by the switch. As a convenience, PFPATH_EVAL_SWITCHES is defined to enable all three
of these switchs (PFPATH_EVAL_LOD, PFPATH_EVAL_SWITCH, and PFPATH_EVAL_SEQUENCE).

Example 1: Path culling

scene
[\ \
|/ scsO group0
\ / \
swi tchO geode2
/\
/ \
geode0 geodel

path = pf NewPat h();

pf Add(pat h, sw tchO0);

pf Add(pat h, geodel);

/s

* In cull callback. This will cull the follow ng paths:

* scene -> switchO -> geodel
* scene -> scs0 -> switchO -> geodel

* Note that both path traversals will term nate at sw tchO

* if the pfSwitch’s switch value is not 1.
*/

148

IRIS Performer 2.0 libpf C Reference Pages pfPath(3pf)

pfCul | Pat h(path, scene, PFPATH_EVAL_SW TCHES);

pfCullPath should only be called in the cull callback function set by pfChanTravFunc. The pfChannel
passed to the cull callback will be used to traverse the path, that is its LOD attributes will affect the
pfLODs traversed and nodes will be culled to its viewing frustum.

SEE ALSO
pfChanTravFunc, pfCull, pfList

149

pfPipe(3pf)

IRIS Performer 2.0 libpf C Reference Pages

NAME

pfGetPipeSize, pfGetPipeClassType, pfPipeScreen, pfGetPipeScreen, pfPipeWSConnectionName,
pfGetPipeWSConnectionName, pfGetPipePWin, pfMovePWin, pfPipeSwapFunc, pfGetPipeSwap-
Func, pfGetPipeNumPWins, pfGetPipeNumChans, pfGetPipeChan — Initialize and get window infor-

mation for a pfPipe.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

void

pfType *

void

int

void

const char *
pfPipeWindow *
int

void
pfPipeSwapFuncType
int

int

pfChannel *

pfGetPipeSize(const pfPipe *pipe, int *xsize, int *ysize);
pfGetPipeClassType(void);

pfPipeScreen(pfPipe *pipe, int screen);
pfGetPipeScreen(const pfPipe *pipe);
pfPipeWSConnectionName(pfPipe *pipe, const char *name);
pfGetPipeWSConnectionName(const pfPipe *pipe);
pfGetPipePWin(const pfPipe *pipe, int which);
pfMovePWin(pfPipe* pipe, int where, pfPipeWindow *pwin);
pfPipeSwapFunc(pfPipe* pipe, pfPipeSwapFuncType func);
pfGetPipeSwapFunc(const pfPipe* pipe);
pfGetPipeNumPWins(const pfPipe *pipe);
pfGetPipeNumChans(const pfPipe *pipe);
pfGetPipeChan(const pfPipe *pipe, int which);

/* pfPipe-specific types */
typedef voi d (*pfPi peFuncType) (pf Pi pe *p);
typedef void (*pfPi peSwapFuncType) (pf Pi pe *p, pfPi peW ndow *pw);

PARAMETERS
pipe identifies a pfPipe.

DESCRIPTION
A pfPipe is a software rendering pipeline which renders one or more pfChannels into one or more pfPi-
peWindows. A pfPipe can be configured as multiple processes for increased throughput on multiproces-
sor systems. Multiple pfPipes can operate in parallel in support of platforms with multiple graphics pipe-
lines. The number of pfPipes and the multiprocessing mode used are set by pfMultipipe and
pfMultiprocess respectively (see pfConfig).

150

A pfPipe references one or more pfPipeWindows which in turn reference one or more pfChannels. A
pfChannel is simply a view of a scene which is rendered into a viewport of a pfPipeWindow. A

IRIS Performer 2.0 libpf C Reference Pages pfPipe(3pf)

pfPipeWindow is a graphics window managed by its parent pfPipe.

pfPipes, pfPipeWindows, and pfChannels form a hierarchy with the following rules:

1. Ascreen (i.e. hardware graphics display) can have multiple pfPipes but should only have
one drawing to it

A pfPipe may only draw to one screen

A pfPipe may render to multiple pfPipeWindows

A pfPipeWindow belongs to a single fixed pfPipe and thus also to a single fixed screen
A pfPipeWindow may have multiple pfChannels

AL T

A pfChannel always belongs to a pfPipe but may change pfPipeWindows or might not
belong to any pfPipeWindow. a channel not assigned to a pfPipeWindow is culled but not
drawn.

The following is an example pfPipe->pfPipeWindow->pfChannel configuration.

Example 1:

The screen:

har dwar e screen/ graphi cs pipeline

pf Channel 2 | |

pf Pi peW ndow0 | | |

151

pfPipe(3pf) IRIS Performer 2.0 libpf C Reference Pages

| pf Channel 1 | |

The hi erarchy:

screenO

|

|
pfPipe0 --------------------- +
/ \ |
/ \ |
/ \ |
pf Pi peW ndow0 pf Pi peW ndowl |
/ \ \ |
/ \ \ |

pf Channel 0 pf Channel 1 pf Channel 2 pf Channel 3
(not drawn)

The code: (in application process)

/* Calls that create the hierarchy: */

pf Pi pe *pi pe = pf Get Pi pe(0);
pf Pi peW ndow *pwi N0 = pf NewPW n(pi pe);
pf Pi peW ndow *pwi n1 = pf NewPW n(pi pe);

pf Channel *chanO
pf Channel *chanl
pf Channel *chan2

pf NewChan(pi pe) ;
pf NewChan(pi pe) ;
pf NewChan(pi pe) ;

pf AddChan(pwi n0, chanO);
pf AddChan(pwi n0, chanl);
pf AddChan(pwi nl, chan2);

/* Calls that cause the wi ndow to be opened at next pfFrane() */
pf OQpenPW n(pwi n0) ;

pf OQpenPW n(pwi nl);

pf Frane();

152

IRIS Performer 2.0 libpf C Reference Pages pfPipe(3pf)

If a pfPipe has no windows at the time pfFrame is called, a full screen pfPipeWindow will be opened for
pipe and all pfChannels of pipe will be assigned to that pfPipeWindow.

pfGetPipeClassType returns the pfType* for the class pfPipe. The pfType* returned by
pfGetPipeClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfPipe. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

pfPipeScreen specifies the hardware screen, screen, (graphics pipeline) used for rendering by the pfPipe,
pipe. The screen of the pfPipe may be specified in the application process before the call to open or
configure any pfPipeWindows (pfOpenPWin, pfConfigPWin) on pipe, or may be specified implicitly by
the screen of the first opened pfPipeWindow. A pfPipe is tied to a specific hardware pipeline and the
screen of a pfPipe cannot be changed once determined. For single pipe operation, if the screen of a pfPipe
or pfPipeWindow is never explicitly set in single pipe configuration, the screen will be taken from the
default screen of the current pfWSConnection, or current X Display. For multipipe operation, if the
screen of a pfPipe or pfPipeWindow is never explicitly set and pfMultipipe() has been used to configure
multiple pfPipes, then pfPipes will automatically be assigned to hardware screens in order, i.e., pfGet-
Pipe(0) -> screen 0, pfGetPipe(1) -> screen 1, etc. If a custom mapping of pfPipes to screens is desired, the
screens of all pfPipes must be specified before the configuration of the first pfPipe which will happen at
the first call to pfFrame. See the pfGetCurWSConnection reference page for more details on how to
manage X display connections.

pfPipeWSConnectionName allows you to specify both a window server target and screen for the pfPipe.
This is useful for doing remote rendering, or for running on a system with multiple window servers. This
call should be made in the application process, before the first call to pfFrame.
pfGetPipeWSConnectionName will return the current window server target name. A window server
target specified on a pfPipe will take precedence over any such targets specified on pfPipeWindows of
that pfPipe. If the window server target of a pfPipe has not been set, it may be implicitly set from the first
such setting on a child pfPipeWindow. The window server target of a pfPipe may not be changed after
the first call to pfFrame. See the pfGetCurWSConnection reference page for more details on how to
manage X display connections.

pfGetPipeScreen can be used to get the screen of a pfPipe. A return value of (-1) indicates that the screen
of the pfPipe is undefined. pfGetPipeSize returns the size of the screen used by pipe.

For best performance only one pfPipe should render to a given hardware pipeline. If multiple views on a
single screen are desired, use multiple pfChannels, and if necessary, multiple pfPipeWindows.

Normally a pfPipe swaps the color buffers at the end of each frame. However, if special control is needed
over buffer swapping, pfPipeSwapFunc will register func as the buffer swapping function for pipe.
Instead of swapping buffers, func will be called and will be expected to swap the color buffers of the pro-
vided pfPipeWindow. pfGetPipeSwapFunc returns the buffer swapping function of pipe or NULL if

153

pfPipe(3pf) IRIS Performer 2.0 libpf C Reference Pages

none is set.

If you wish to frame lock multiple pfPipes so that each pfPipe swaps its color buffers at the same time,
then you should create a channel group consisting of one or more pfChannels on each pfPipe and make
sure PFECHAN_SWAPBUFFERS is shared. In addition, separate hardware graphics pipelines *must* be
genlocked for proper frame-locking.

pfGetPipePWin returns the pointer to the pfPipeWindow at the location specified by which in the pfPi-
peWindow list on pipe.

pfGetPipeNumPWins returns the number of pfPipeWindows that have been created on pipe.
pfGetPipeNumChans returns the number of pfChannels that have been created on pipe.

pfMovePWin moves the specified pfPipeWindow pwin to the location specified by where in the pfPi-
peWindow list on pipe. The move includes removing pwin from its current location by moving up the ele-
ments in the list that follow it and then inserting pwin into its new location. If pwin is attached to pipe, (-1)
is returned and pwin is not inserted into the list. Otherwise, where is returned to indicate success. where
must be within the range [0 .. n] where n is the number returned by pfGetPipeNumPWins(), or else (-1) is
returned and no move is executed.

pfGetPipeChan returns the pointer to the pfChannel at location which in the list of pfChannels on pipe.

Example 2: How to frame lock pfPipes

| eft Chan = pf NewChan(pf Get Pi pe(0));
ri ght Chan = pf NewChan(pf Get Pi pe(1));

/* BPFCHAN_SWAPBUFFERS i s shared by default */
pf Att achChan(| eft Chan, ri ght Chan);

/* Pipe 0 and pipe 1 are now frame-| ocked */

NOTES
pfPipes cannot be deleted.

SEE ALSO
pfAttachChan, pfNewChan, pfConfig, pfMultipipe, pfMultiprocess, pfPipeWindow, pfGetCurWSCon-
nection

154

IRIS Performer 2.0 libpf C Reference Pages pfPipeWindow(3pf)

NAME

pfNewPWin, pfGetPWinClassType, pfPWinAspect, pfPWinConfigFunc, pfPWinFBConfig,
pfPWinFBConfigAttrs, pfPWinFBConfigData, pfPWinFBConfigld, pfPWinFullScreen, pfPWinGLCxt,
pfPWinlIndex, pfPWinList, pfPWinMode, pfPWinName, pfPWinOrigin, pfPWinOriginSize,
pfPWinOverlayWin, pfPWinScreen, pfPWinShare, pfPWinSize, pfPWinStatsWin, pfPWinType,
pfPWinWSConnectionName, pfPWinWSDrawable, pfPWinWSWindow, pfGetPWinAspect,
pfGetPWinChanlIndex, pfGetPWinConfigFunc, pfGetPWinCurOriginSize, pfGetPWinCurScreenOri-
ginSize, pfGetPWinCurState, pfGetPWinCurWSDrawable, pfGetPWinFBConfig,
pfGetPWinFBConfigAttrs, pfGetPWinFBConfigData, pfGetPWinFBConfigld, pfGetPWinGLCxt,
pfGetPWinIndex, pfGetPWinList, pfGetPWinMode, pfGetPWinName, pfGetPWinOrigin,
pfGetPWinOverlayWin, pfGetPWinPipe, pfGetPWinPipelndex, pfGetPWinScreen, pfGetPWinSelect,
pfGetPWinShare, pfGetPWinSize, pfGetPWinStatsWin, pfGetPWinType, pfGetPWinWSConnection-
Name, pfGetPWinWSDrawable, pfGetPWinWSWindow, pfAttachPWin, pfAttachPWinWin, pfDeta-
chPWin, pfDetachPWinWin, pfClosePWin, pfClosePWinGL, pfConfigPWin, pfOpenPWin,
pfIsPWinOpen, pfMQueryPWin, pfQueryPWin, pfChoosePWinFBConfig, pfSelectPWin,
pfSwapPWinBuffers, pfGetNumChans, pfAddChan, pfGetChan, pfInsertChan, pfMoveChan,
pfRemoveChan, pfInitGfx — Initialize and manipulate pfPipeWindows within a pfPipe

FUNCTION SPECIFICATION

#include <Performer/pf.h>

pfPipeWindow* pfNewPWin(pfPipe *p);

pfType* pfGetPWinClassType(void);

void pfPWinAspect(pfPipeWindow *pwin, int X, int y);

void pfPWinConfigFunc(pfPipeWindow *pwin, pfPWinFuncType func);
void pfPWinFBConfig(pfPipeWindow *pwin, XVisuallnfo *vi);
void pfPWinFBConfigAttrs(pfPipeWindow *pwin, int *attr);
void pfPWinFBConfigData(pfPipeWindow *pwin, void *data);
void pfPWinFBConfigld(pfWindow *win, int id);

void pfPWinFullScreen(pfPipeWindow *pwin);

void pfPWinGLCxt(pfPipeWindow *pwin, pfGLContext gc);
void pfPWinIndex(pfPipeWindow *pwin, int index);

void pfPWinList(pfPipeWindow *pwin, pfList *wlist);

void pfPWinMode(pfPipeWindow *pwin, int mode, int val);
void pfPWinName(pfPipeWindow *pwin, const char *name);

155

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C Reference Pages

void pfPWinOrigin(pfPipeWindow *pwin, int xo, int yo);

void pfPWinOriginSize(pfPipeWindow *pwin, int xo, int yo, int xs, int ys);

void pfPWinOverlayWin(pfPipeWindow *pwin, pfWindow *ow);

void pfPWinScreen(pfPipeWindow *pwin, int screen);

void pfPWinShare(pfPipeWindow *pwin, int mode);

void pfPWinSize(pfPipeWindow *pwin, int xs, int ys);

void pfPWinStatsWin(pfPipeWindow *pwin, pfWindow *sw);

void pfPWinType(pfPipeWindow *pwin, uint type);

void pfPWinWSConnectionName(const pfWindow *win, const char *name);

void pfPWinWSDrawable(pfPipeWindow *pwin, pfWSConnection dsp,
pfWSDrawable gxw);

void pfPWinWSWindow (pfPipeWindow *pwin, pfWSConnection dsp,
pfWSWindow wsw);

void pfGetPWinAspect(pfPipeWindow *pwin, int *x, int *y);

int pfGetPWinChanIndex(pfPipeWindow *pwin, pfChannel *chan);

pfPWinFuncType pfGetPWinConfigFunc(pfPipeWindow *pwin);

void pfGetPWinCurOriginSize(pfPipeWindow *pwin, int *xo, int *yo, int *xs, int *ys);

void pfGetPWinCurScreenOriginSize(pfPipeWindow *pwin, int *xo, int *yo, int *xs,
int *ys);

pfState* pfGetPWinCurState(pfPipeWindow *pwin);

pfWSDrawable pfGetPWinCurWSDrawable(pfPipeWindow *pwin);

XVisuallnfo* pfGetPWinFBConfig(pfPipeWindow *pwin);

int* pfGetPWinFBConfigAttrs(pfPipeWindow *pwin);

void* pfGetPWinFBConfigData(pfPipeWindow *pwin);

int pfGetPWinFBConfigld(const pfWindow *win);

pfGLContext pfGetPWinGLCxt(pfPipeWindow *pwin);

int pfGetPWinIndex(pfPipeWindow *pwin);

pfList* pfGetPWinList(const pfPipeWindow *pwin);

int pfGetPWinMode(pfPipeWindow *pwin, int mode);

const char* pfGetPWinName(pfPipeWindow *pwin);

156

IRIS Performer 2.0 libpf C Reference Pages pfPipeWindow(3pf)

void
pfWindow*
pfPipe*

int

int
pfWindow*
uint

void
pfWindow*
uint

const char*
pfWSDrawable
Window
int

int

int

int

void

void

void

void

int

int

int
pfFBConfig

pfWindow*
void

int

pfGetPWinOrigin(pfPipeWindow *pwin, int *xo, int *yo);
pfGetPWinOverlayWin(pfPipeWindow *pwin);
pfGetPWinPipe(pfPipeWindow *pwin);
pfGetPWinPipelndex(const pfPipeWindow *pwin);
pfGetPWinScreen(pfPipeWindow *pwin);
pfGetPWinSelect(pfPipeWindow *pwin);
pfGetPWinShare(pfPipeWindow *pwin);
pfGetPWinSize(pfPipeWindow *pwin, int *xs, int *ys);
pfGetPWinStatsWin(pfPipeWindow *pwin);
pfGetPWinType(pfPipeWindow *pwin);
pfGetPWinWSConnectionName(const pfWindow *win);
pfGetPWinWSDrawable(pfPipeWindow *pwin);
pfGetPWinWSWindow (pfPipeWindow *pwin);
pfAttachPWin(pfPipeWindow *pwin, pfPipeWindow *pw);
pfAttachPWinWin(pfPipeWindow *pwin, pfWindow *w);
pfDetachPWin(pfPipeWindow *pwin, pfPipeWindow *pw);
pfDetachPWinWin(pfPipeWindow *pwin, pfWindow *w);
pfClosePWin(pfPipeWindow *pwin);
pfClosePWinGL(pfPipeWindow *pwin);
pfConfigPWin(pfPipeWindow *pwin);
pfOpenPWin(pfPipeWindow *pwin);
pfIsPWinOpen(pfPipeWindow *pwin);
pfMQueryPWin(pfPipeWindow *pwin, int *which, int *dst);
pfQueryPWin(pfPipeWindow *pwin, int which, int *dst);

pfChoosePWinFBConfig(pfPipeWindow *pwin, pfWSConnection dsp, int screen,
int *attr);

pfSelectPWin(pfPipeWindow *pwin);
pfSwapPWinBuffers(pfPipeWindow *pwin);
pfGetNumChans(const pfPipeWindow *pwin);

157

pfPipeWindow(3pf)

IRIS Performer 2.0 libpf C Reference Pages

void
pfChannel*
void
void
void

extern void

pfAddChan(pfPipeWindow *pwin, pfChannel *chan);
pfGetChan(pfPipeWindow *pwin, int which);
pfInsertChan(pfPipeWindow *pwin, int where, pfChannel *chan);
pfMoveChan(pfPipeWindow *pwin, int where, pfChannel *chan);
pfRemoveChan(pfPipeWindow *pwin, pfChannel *chan);
pfInitGfx(void);

[* pfPi peW ndow specific types */
typedef void (*pfPWnFuncType) (pf Pi peW ndow *pw) ;

/* X-W ndow system based Perforner types */

t ypedef Displ ay

*pf WsConnect i on;

typedef XVisuallnfo pf FBConfi g;

t ypedef W ndow pf WBW ndow,
typedef Drawabl e pf WEDr awabl e;
#i f def | RI SGL

typedef int pf GLCont ext ;
#el se /* OPENGL */

t ypedef GLXCont ext pf GLCont ext ;

#endi f

PARENT CLASS FUNCTIONS

The IRIS Performer class pfPipeWindow is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfPipeWindow. Casting
an object of class pfPipeWindow to an object of class pfObject is taken care of automatically. This is also
true for casts to objects of ancestor classes of class pfObject.

158

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPipeWindow
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);
int pfIsOfType(const void *ptr, pfType *type);

IRIS Performer 2.0 libpf C Reference Pages pfPipeWindow(3pf)

int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

pwin identifies a pfPipeWindow.
dsp identifies a pfWSConnection.
wsw identifies a pfWSWindow.
gxw identifies a pfWSDrawable.
gc identifies a pfGLContext.

DESCRIPTION
IRIS Performer programs render a pfChannel to a pfPipeWindow of the same parent pfPipe. Multiple
pfPipeWindows can be open on a single pfPipe. A pfPipe and all of its windows have the same screen, or
hardware graphics pipeline. By default, pfChannels are assigned to the first pfPipeWindow of a pfPipe.
pfChannels can be removed from the pfPipeWindow and assigned to other pfPipeWindows. pfPipeWin-
dows can be opened/closed and created at any time. Refer to the pfPipe reference page for more infor-
mation on how pfPipeWindows fit into the hierarchy of pfPipes, pfPipeWindows, and pfChannels.

pfPipeWindows are similar to pfWindows but are tracked /maintained by libpf and are needed by libpf to
draw pfChannels. Because of their similarity, many of the pfPipeWindow routines are identical to pfWin-
dow routines accept for the fact that the pfPWin<*> routines operate on a pfPipeWindow and the
pfWin<*> routines operate on a pfWindow. These corresponding routines are listed in the table below
and their functionality is documented in the pfWindow reference page.

159

pfPipeWindow(3pf)

IRIS Performer 2.0 libpf C Reference Pages

160

pfPipeWindow routine pfWindow routine
pfPWinAspect pfWinAspect
pfPWinFBConfig pfWinFBConfig
pfPWinFBConfigAttrs pfWinFBConfigAttrs
pfPWinFBConfigData pfWinFBConfigData
pfPWinFBConfigld pfWinFBConfigld
pfPWinFullScreen pfWinFullScreen
pfPWinGLCxt pfWinGLCxt
pfPWinIndex pfWinIndex
pfPWinMode pfWinMode
pfPWinName pfWinName
pfPWinOrigin pfWinOrigin
pfPWinOriginSize pfWinOriginSize
pfPWinOverlayWin pfWinOverlayWin
pfPWinScreen pfWinScreen
pfPWinShare pfWinShare
pfPWinSize pfWinSize
pfPWinStatsWin pfWinStatsWin
pfPWinWSConnectionName pfWinWSConnectionName
pfPWinWSDrawable pfWinWSDrawable
pfPWinWSWindow pfWinWSWindow
pfGetPWinAspect pfGetWinAspect

pfGetPWinCurOriginSize
pfGetPWinCurScreenOriginSize
pfGetPWinCurState
pfGetPWinCurWSDrawable
pfGetPWinFBConfig
pfGetPWinFBConfigAttrs
pfGetPWinFBConfigData
pfGetPWinFBConfigld
pfGetPWinGLCxt
pfGetPWinIndex
pfGetPWinlList
pfGetPWinMode
pfGetPWinName
pfGetPWinOrigin
pfGetPWinOverlayWin
pfGetPWinScreen
pfGetPWinSelect
pfGetPWinShare
pfGetPWinSize

pfGetWinCurOriginSize
pfGetWinCurScreenOriginSize
pfGetWinCurState
pfGetWinCurWSDrawable
pfGetWinFBConfig
pfGetWinFBConfigAttrs
pfGetWinFBConfigData
pfGetWinFBConfigld
pfGetWinGLCxt
pfGetWinIndex
pfGetWinList
pfGetWinMode
pfGetWinName
pfGetWinOrigin
pfGetWinOverlayWin
pfGetWinScreen
pfGetWinSelect
pfGetWinShare
pfGetWinSize

IRIS Performer 2.0 libpf C Reference Pages

pfPipeWindow(3pf)

pfPipeWindow routine pfWindow routine
pfGetPWinStatsWin pfGetWinStatsWin
pfGetPWinType pfGetWinType
pfGetPWinWSConnectionName | pfGetWinWSConnectionName
pfGetPWinWSDrawable pfGetWinWSDrawable
pfGetPWinWSWindow pfGetWinWSWindow
pfChoosePWinFBConfig pfChooseWinFBConfig
pfAttachPWin pfAttachWin
pfSelectPWin pfSelectWin
pfSwapPWinBuffers pfSwapWinBuffers
pfIsPWinOpen pfIsWinOpen
pfQueryPWin pfQueryWin
pfMQueryPWin pfMQueryWin

pfNewPWin creates and returns a handle to a pfPipeWindow on the screen managed by pipe. Like other
pfUpdatables, pfPipeWindows are always allocated from shared memory. The pipe of a pfPipeWindow
cannot be changed. pfGetPWinPipe returns a pointer to the pfPipe of pwin. Like other pfObjects, pfPi-

peWindows must be created in the application process.

pfGetPWinClassType returns the pfType* for the class pfPipeWindow. The pfType* returned by
pfGetPWinClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfPipeWindow. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type
derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfWinFBConfigld allows you to directly set the OpenGL X visual id to be used in configuring the result-
ing OpenGL/X window. pfGetWinFBConfigld will return the current OpenGL visual id of the window
(or -1 if the id is not known, or if running under IRIS GL). This routine is useful in multiprocess operation
if you want to be able to directly specify the framebuffer configuration of an X window in the application
process. See the XVisualIDFromVisual(3X11) and XGetVisuallnfo(3X11) reference pages for more
information about X visuals. This functionality is not supported under IRIS GL operation.

pfPWinScreen will set the screen of pwin and on the parent pfPipe. Once set, the screen cannot be
changed. If the screen of the parent pfPipe had already been set when the pfPipeWindow was created,
the pfPipeWindow will inherit that screen setting and will not accept another. The pfPipeWindow will
direct all rendering comments to the hardware graphics pipeline specified by screen. As with pfWindows,
if a screen is never set, the default screen of the current window system connection will be set as the
screen when the window is opened with pfOpenPWin::. pfGetPWinScreen will return the screen of the
pfPipeWindow. If the screen has not yet been set, (-1) will be returned. See the pfGetCurWSConnection

161

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C Reference Pages

162

reference page for more information on the specification of a default screen. See the pfPipeScreen refer-
ence page for special restrictions and proper specification of pfPipe and pfPipeWindow screens in mul-
tipipe configurations.

pfPWinWSConnectionName allows you to specify the exact window server and default screen for the
successive opening of the window. This can be used for specifying remote displays or on machines run-
ning more than one window server. pfGetPWinWSConnectionName will return the name specifying
the current window server target. As with the setting of screens, a window server target specified on a
pfPipe will take precedence over a target set on a pfPipeWindow. If a window server target is not
specified for the parent pfPipe of a pfPipeWindow, the parent pfPipe will inherit the window setting.
Because of these restrictions, this routine must be called in the application process, before the first call to
pfFrame. See the pfPipeScreen reference page for special restrictions and proper specification of pfPipe
and pfPipeWindow screens in multipipe configurations.

pfGetPWinlIndex returns the index of pwin in the pfPipeWindow list of the parent pfPipe.

pfChannels are assigned to a pfPipeWindow upon their creation. pfPipeWindows also have list-style API
for adding, removing, inserting, and reordering pfChannels on a pfPipeWindow: pfAddChan will
append chan as the last pfChannel of pwin. pfInsertChan will insert chan as the whereth pfChannel of
pwin. pfMoveChan will move chan from its current position in the pfChannel list of pwin to position
where. 1f chan does not belong to pwin, no action is taken and an error flag of (-1) is returned; otherwise,
where is returned. pfRemoveChan will remove chan from pwin. If chan does not belong to pwin, no action
is done and an error flag of (-1) is returned. Otherwise, the previous index of chan is returned.
pfGetChan returns a pointer to the indexth pfChannel of pwin. pfGetNumChans returns the number of
pfChannels attached to pwin. pfGetPWinChanIndex returns the index of the chan in the channel list, or
(-1) if the pfChannel is not attached to pwin.

pfClosePWin can be called from the application process to close a window. However, if additional draw
process work is needed to be done, a pfConfigPWin draw process callback should be used.

pfConfigPWin, called from the application process, will trigger the configuration callback function to be
called in the draw process for the current frame. If no user configuration callback function has been
specified, a default configuration function will be called that will open and initialize pwin.
pfPWinConfigFunc, called from the application process, specifies a draw process callback function, func,
to configure pwin. The configure function can be used to make draw process calls to open, initialize, and
close pfPipeWindows. In this window configuration callback function pfOpenPWin can be called on the
pfPipeWindow, or an IRIS GL or OpenGL window can be created and assigned to the pfPipeWindow.
pfGetPWinConfigFunc returns the pointer to the user-specified window configuration callback function,
or NULL of no such function has been set.

pfOpenPWin will cause pwin to be opened and initialized via pfInitGfx. If called from the application
process, the pfPipeWindow will be automatically opened in the draw process for the corresponding
frame. If called in the draw process, the pfPipeWindow will be opened automatically. Similarly,

IRIS Performer 2.0 libpf C Reference Pages pfPipeWindow(3pf)

pfClosePWin and pfClosePWinGL can be called from either the application process or the draw process
and will cause the pwin or the graphics context, respectively, to be closed in the draw process for the
given frame. If application specific work needs to be done in the draw process for manipulating pfPi-
peWindows, pfConfigPWin should be used.

IRIS Performer automatically calls pfInitGfx for windows that it creates and opens. For pfPipeWindows,
pfInitGfx does the same operations as for pfWindows, and in addition, will apply a default material and
a default MODULATE texture environment (pfApplyTEnv), and enable backface culling (pfCullFace(-
PFCF_BACK)).

pfPWinList can be used to specify a pfList of pfWindows, wlist, that can draw into a single pfPipeWin-
dow. This enables a pfPipeWindow to maintain a list of alternate framebuffer configurations for the base
pfPipeWindow. A pfPipeWindow always maintains a default main graphics pfWindow and a pfWindow
list. Two of the windows in this list are so commonly needed that they have special names and can be
created automatically for the user: OVERLAY and STATS. The user can also add his own pfWindows to
the pfWindow list for additional configurations. This list may only hold pfWindows, NOT pfPipeWin-
dows. With window lists, we have an effective pfWindow hierarchy of: screen->pfPipe-
>pfPipeWindow|[graphics, stats, overlay, ...]->pfChannel(s). See the pfWinList reference page for more
information on these alternate framebuffer configuration windows.

pfPWinIndex selects pfWindow index from the alternate configuration window list to be the current
pfWindow the pfPipeWindow shall render to. All the pfChannels attached to the pfPipeWindow will
automatically be drawn into this current pfWindow. See pfWinIndex for more details of this operation.
pfGetPWinIndex will return the current index of the pfPipeWindow.

pfPWinType sets the type of a pfPipeWindow where fype is an or-ed bitmask that may contain the type
constants listed below. pfGetPWinType returns the type of a pfPipeWindow. A change in the type of a
pfPipeWindow takes effect upon the call to pfOpenPWin. The type of an open pfPipeWindow cannot be
changed. The pfWindow type attributes all start with PFPWIN_TYPE_ and are:

PFPWIN_TYPE_X
has identical characteristics to the PFWIN_TYPE_X specification for pfWindows. See the
pfWinType reference page for more information.

PFPWIN_TYPE_SHARE
Specifies that this window should be automatically attached to the first pfPipeWindow
on the parent pfPipe. See the pfAttachWin reference page for more details.

PFPWIN_TYPE_STATS
has identical characteristics to the PFWIN_TYPE_STATS specification for pfWindows.
See the pfWinType reference page for more information.
Note that the pfWindow type settings of PFEWIN_TYPE_NOPORT and PFWIN_TYPE_OVERLAY are
not supported for pfPipeWindows. pfGetPWinType will return the type of pwin.

163

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C Reference Pages

EXAMPLES
The following is an example of basic pfPipeWindow creation:

{ /* in the application process after pfConfig() */
pf Pi peW ndow * pw;
pw = pf NewPW n(pf Get Pi pe(0));
pf PW nNanme(pw, " Pi peWn");
pf PWnOri gi nSi ze(pw, 0, 0, 500, 500);
pf PW nType(pw, PFPW N_TYPE_X);
pf OpenPW n(pw) ;
/* set off the draw process to open w ndow */
pf Frame();

If special draw process operations are to be done with the opening of the window, a pfConfigPWin call-
back function should be used.

{
/* in the application process pfPipeWndow init callback */
pf PW nConf i gFunc(pw, OpenPi peW n) ;
/* trigger the draw process to call the config call back
* for this frane
*/
pf Conf i gPW n(pw) ;
}

/* in the draw process pfPi peWndow init callback */
voi d OpenPi peW n(pf Pi peW ndow * pw)

{
pf OQpenPW n(pw) ;
/* do other application specific draw process work,
* such as downl oadi ng scene textures, displaying
* wel come nessages, etc.
*/
}

The following is an example that shows the creation of multiple pfPipeWindows for a single pfPipe and
the assignment of pfChannels to the different windows:

{
pf Channel *chan[MAX_CHANS] ;
pf Pi peW ndow * pwi n[MAX_PW NS] ;
pf Pi pe *p = pf Get Pi pe(0);

164

IRIS Performer 2.0 libpf C Reference Pages pfPipeWindow(3pf)

for (int loop=0; |oop < NumW ns; | oop++)
{
pf Pi peW ndow * pw;
char str[PF_MAXSTRI NG ;
pwi n[|1 oop] = pf NewPW n(p);
sprintf(str, "IRIS Perforner - Wn %", |oo0p);
pf PW nNane(pw n[| oop], str);
pf PWnOrigi nSi ze(pwi n[1 oop], (| oop&x1)*315, ((|oop&0x2)>>1)*340, 300, 300);
pf PW nConfi gFunc(pwi n[1 oop], OpenPi peWn);
pf Confi gPW n(pwi n[| oop]) ;

/* Create and configure a pfChannel for each pfPi peWndow. */
for (int loop=0; |oop < NumW ns; | oop++)
{

chan[| oop] = pf NewChan(p);

pf AddChan(pw n[1 oop], chan[l oop]);

/* set off the draw process to config w ndow */
pf Frane() ;

pfOpenPWin and pfClosePWin can both be called from the application process, or from the draw pro-
cess. The following example demonstrates using pfConfigPWin to close a pfPipeWindow:

{
/* in the application process specify a close config func */
pf PW nConf i gFunc(pw, O osePi peWn) ;
pf Confi gPW n(pw) ;

}

/* in the draw process pfPipeWndow init callback */
voi d d osePi peW n(pf Pi peW ndow * pw)
{
pf Gl osePW n(pw) ;
/* do other application specific draw process calls */

165

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

166

pfPipeWindows handle the multiprocessing details of IRIS Performer applications for pfWindows. pfPi-
peWindows must be created in the application process. However, with some minor exceptions, pfPi-
peWindows may be configured, opened, closed, and edited in either the application process or draw pro-
cess. Typically, a pfPipeWindow is created and configured in the application process. Custom graphics
state is initialized in a pfPWinConfigFunc callback function. The pfPipeWindow of a channel or a
channel’s position in a pfPipeWindow list may only be modified in the application process. The
specification of the current drawing window with pfSelectPWin must be done in the drawing process.
Explicit specification of the pfGLContext or pfFBConfig must be done in the drawing process. pfPi-
peWindow queries are also best done in the draw process as the query may have to access the graphics
context to provide the requested information.

IRIS Performer 2.0 libpf C Reference Pages pfPipeWindow(3pf)

The following table shows from which process pfPipeWindow routines may be called.

pfPipeWindow routine Application Process | Draw Process
pfNewPWin Yes No
pfPWinAspect Yes Yes
pfPWinConfigFunc Yes No
pfPWinFBConfig Yes No
pfPWinFBConfigAttrs Yes Yes
pfPWinFBConfigData No Yes
pfPWinFBConfigld Yes Yes
pfPWinFullScreen Yes Yes
pfPWinGLCxt No Yes
pfPWinIndex Yes Yes
pfPWinList Yes Yes
pfPWinMode Yes Yes
pfPWinName Yes Yes
pfPWinOrigin Yes Yes
pfPWinOriginSize Yes Yes
pfPWinOverlayWin Yes Yes
pfPWinScreen Yes Yes
pfPWinShare Yes Yes
pfPWinSize Yes Yes
pfPWinStatsWin Yes Yes
pfPWinType Yes Yes
pfPWinWSConnectionName | Yes No
pfPWinWSDrawable Yes Yes
pfPWinWSWindow Yes Yes

167

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C Reference Pages

pfPipeWindow routine | Application Process | Draw Process
pfAttachPWin Yes Yes
pfClosePWin Yes Yes
pfClosePWinGL Yes Yes
pfConfigPWin Yes Yes
pfOpenPWin Yes Yes
pfIsPWinOpen Yes Yes
pfMQueryPWin No Yes
pfQueryPWin No Yes
pfChoosePWinFBConfig | No Yes
pfSelectPWin No Yes
pfSwapPWinBuffers No Yes
pfGetNumChans Yes Yes
pfAddChan Yes No
pfGetChan Yes Yes
pfInsertChan Yes No
pfMoveChan Yes No
pfRemoveChan Yes No

Note that whenever any pfObjects are given to a pfPipeWindow, such as pfPWinList, the data must be
valid for access by the graphics process. This data, such as pfLists and pfWindows, should always be
allocated from shared memory. Structures provided by X, such as that returned by
pfChoosePWinFBConfig, or pfChooseFBConfig, will not have been allocated in shared memory. There-
fore, those routines must be called from the draw process. Under OpenGL operation, pfWinFBConfigld
can be used to set the framebuffer configuration of an X window in the application proceess.

pfPipeWindows support windows in the multiprocessed libpf environment and are the glue between
pfChannels and pfPipes. There are times when you might want to use pfWindows, instead of pfPipeWin-
dows, even in a libpf application. For example, popping up a simple dialog window in the draw process
should use pfWindows and not pfPipeWindows. Additionally, if you want to maintain alternate win-
dows with different visual (framebuffer) configurations for your pfPipeWindow, you use pfWindows
that are alternate framebuffer configurations for the base pfPipeWindow. The PFWIN_STATS_WIN,
PFWIN_OVERLAY_WIN, and other pfPWinList windows must themselves be pfWindows and not pfPi-
peWindows. See the pfPWinList routine below and the pfWindow man page for more information.

BUGS
pfPipeWindows cannot be deleted.

SEE ALSO
pfChannel, pfPipe, pfWindow, pfGetCurWSConnection, XGetVisuallnfo, XVisuallDFromVisual

168

IRIS Performer 2.0 libpf C Reference Pages pfSCS(3pf)

NAME
pfNewSCS, pfGetSCSClassType, pfGetSCSMat, pfGetSCSMatPtr — Create and get matrix for a static
coordinate system node.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfSCS * pfNewSCS(pfMatrix mat);
pfType* pfGetSCSClassType(void);
void pfGetSCSMat(pfSCS *scs, pfMatrix mat);

const pfMatrix* pfGetSCSMatPtr(pfSCS *scs);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSCS is derived from the parent class pfGroup, so each of these member func-
tions of class pfGroup are also directly usable with objects of class pfSCS. Casting an object of class
P£fSCS to an object of class pfGroup is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

int pfSearchChild(pfGroup *group, pfNode* child);

pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);

int pfBufferAddChild(pfGroup *group, pfNode *child);

int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSCS can also be
used with these functions designed for objects of class pfNode.

fGroup * fGetParent(const pfNode *node, int i);
P P P P

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);
int pfFlatten(pfNode *node, int mode);

int pfNodeName(pfNode *node, const char *name);

const char * pfGetNodeName(const pfNode *node);

169

pfSCS(3pf)

IRIS Performer 2.0 libpf C Reference Pages

pfNode*
pfNode*
int

void
uint
void

void

void
void *

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSCS can also be
used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSCS can also
be used with these functions designed for objects of class pfMemory.

pfType *
int

int
const char *
int

int

int

int

int

int

int

void
void *

PARAMETERS

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfType *type);
pfIsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
pfGetArena(void *ptr);

scs identifies a pfSCS

DESCRIPTION

A pfSCS node represents a static coordinate system -- a modeling transform that cannot be changed once
created. pfSCS nodes are similar to but less flexible than pfDCS nodes. What they lack in changeability
they make up in performance.

170

IRIS Performer 2.0 libpf C Reference Pages pfSCS(3pf)

pfNewSCS creates and returns a handle to a pfSCS. Like other pfNodes, pfSCSes are always allocated
from shared memory and can be deleted using pfDelete.

pfNewSCS creates a pfSCS using mat as the transformation matrix.

By default a pfSCS uses a dynamic bounding volume so it is automatically updated when children are
added, deleted or changed. This behavior may be changed using pfNodeBSphere. The bound for a
pfSCS encompasses all B(i)*mat, where B(i) is the bound for the child i” and mat is the transformation
matrix of the pfSCS.

pfGetSCSClassType returns the pfType* for the class pfSCS. The pfType* returned by
pfGetSCSClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfSCS. Because IRIS Performer allows subclassing of built-in types, when decisions are made based on
the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from a
Performer type rather than to test for strict equality of the pfType*’s.

The transformation of a pfSCS affects all its children. As the hierarchy is traversed from top to bottom,
each new matrix is pre-multiplied to create the new transformation. For example, if SCSb is below SCSa
in the scene graph, any geometry G below SCSa is transformed as G*SCSb*SCSa.

Static transformations represented by pfSCSes may be 'flattened’ in a pre-processing step for improved
intersection, culling, and drawing performance. pfFlatten accumulates transformations in a scene graph,
applies them to geometry, and sets flattened pfSCSes to the identity matrix. Flattening is recommended
when available memory and scene graph structure allow it. See pfFlatten for more details.

pfGetSCSMat copies the transformation matrix for scs into mat. For faster matrix access,
pfGetSCSMatPtr returns a const pointer to scs’s matrix.

Both pre and post CULL and DRAW callbacks attached to a pfSCS (pfNodeTravFuncs) will be affected
by the transformation represented by the pfSCS, i.e. - the pfSCS matrix will already have been applied to
the matrix stack before the pre callback is called and will be popped only after the post callback is called.

SEE ALSO
pfGroup, pfLookupNode, pfFlatten, pfMatrix, pfNode, pfTraverser, pfDelete

171

pfScene(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewScene, pfGetSceneClassType, pfSceneGState, pfGetSceneGState, pfSceneGStateIndex,
pfGetSceneGStateIndex — Create a scene or root node, set and get scene pfGeoState or pfGeoState index.

FUNCTION SPECIFICATION

#include <Performer/pf.h>
pfScene * pfNewScene(void);
pfType * pfGetSceneClassType(void);

void pfSceneGState(pfScene *scene, pfGeoState *gstate);
pfGeoState * pfGetSceneGState(const pfScene *scene);

void pfSceneGStateIndex(pfScene *scene, int index);

int pfGetSceneGStateIndex(const pfScene *scene);

PARENT CLASS FUNCTIONS

172

The IRIS Performer class pfScene is derived from the parent class pfGroup, so each of these member

functions of class pfGroup are also directly usable with objects of class pfScene. Casting an object of

class pfScene to an object of class pfGroup is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild (pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

int pfSearchChild(pfGroup *group, pfNode* child);

pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);

int pfBufferAddChild(pfGroup *group, pfNode *child);

int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfScene can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfGetParent(const pfNode *node, int i);

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);
pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

IRIS Performer 2.0 libpf C Reference Pages pfScene(3pf)

int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void
void *

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfScene can also
be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfScene can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int
const char *
int

int

int

int

int

int

int

void
void *

PARAMETERS

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfIype *type);
pflsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
pfGetArena(void *ptr);

scene identifies a pfScene.

173

pfScene(3pf) IRIS Performer 2.0 libpf C Reference Pages

gstate identifies a pfGeoState.

DESCRIPTION

174

A pfScene is the root of a hierarchical database which may be drawn or intersected with. pfScene is
derived from pfGroup so it can use pfGroup and pfNode APIL. A pfScene may have children like a
pfGroup but it cannot be a child of another node. Its special purpose is to serve as the root node of a scene
graph.

pfNewScene creates and returns a handle to a pfScene. Like other pfNodes, pfScenes are always allo-
cated from shared memory and can be deleted using pfDelete.

pfGetSceneClassType returns the pfType* for the class pfScene. The pfType* returned by
pfGetSceneClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfScene. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

IRIS Performer will automatically carry out the APP, CULL, and DRAW traversals on pfScenes which are
attached to pfChannels by pfChanScene. The CULL and DRAW traversals are directly or indirectly trig-
gered by pfFrame while the APP traversal is triggered by pfAppFrame.

Multiple pfChannels may reference the same pfScene but each pfChannel references only a single
pfScene.

pfSceneGState attaches gstate to scene. The pfGeoState of a pfScene defines the "global state” which may
be inherited by other pfGeoStates. This state inheritance mechanism is further described in the pfGeoState
man page.

The scene pfGeoState is defined as the global state by pfLoadGState. This pfGeoState will be loaded
before the pfChannel DRAW callback (pfChanTravFunc) is invoked so any custom rendering in the call-
back will inherit the state set by the scene pfGeoState. pfGetSceneGState returns the directly referenced
pfGeoState of scene or the appropriate pfGeoState in the global table if scene indexes its pfGeoState or
NULL if the index cannot be resolved.

The scene pfGeoState may be indexed through a global table by assigning an index with
pfSceneGStateIndex and specifying the table with pfApplyGStateTable. Usually this table is provided
by the pfChannel (pfChanGStateTable). pfGetSceneGStateIndex returns the pfGeoState index of scene
or -1 if scene directly references its pfGeoState.

It is not necessary to provide a scene pfGeoState, but it is a convenient way to specify the default inherit-
able values for all pfGeoState elements on a per-scene basis.

IRIS Performer 2.0 libpf C Reference Pages pfScene(3pf)

SEE ALSO
pfApplyGStateTable, pfChanScene, pfChanTravFunc, pfGeoState, pfGroup, pfDelete

175

pfSequence(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME

pfNewSeq, pfGetSeqClassType, pfSeqTime, pfGetSeqTime, pfSeqlnterval, pfGetSeqInterval,
pfSeqDuration, pfGetSeqDuration, pfSeqMode, pfGetSeqMode, pfGetSeqFrame — Control animation
sequence nodes.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfSequence * pfNewSeq(void);

pfType *
void
double
void
void
void
void
void

int

int

pfGetSeqClassType(void);

pfSeqTime(pfSequence *seq, int frame, double time);
pfGetSeqTime(const pfSequence *seq, int frame);
pfSeqlInterval(pfSequence *seq, int mode, int begin, int end);
pfGetSeqInterval(const pfSequence *seq, int “mode, int *begin, int *end);
pfSeqDuration(pfSequence *seq, float speed, int nReps);
pfGetSeqDuration(const pfSequence *seq, float *speed, int *nReps);
pfSeqMode(pfSequence *seq, int mode);

pfGetSeqMode(const pfSequence *seq);

pfGetSeqFrame(const pfSequence *seq, int *repeat);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfSequence is derived from the parent class pfGroup, so each of these member

functions of class pfGroup are also directly usable with objects of class pfSequence. Casting an object of

class pfSequence to an object of class pfGroup is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfGroup.

176

int
int
int
int
int
pfNode *
int
int
int

pfAddChild(pfGroup *group, pfNode *child);
pfInsertChild(pfGroup *group, int index, pfNode *child);
pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
pfRemoveChild(pfGroup *group, pfNode* child);
pfSearchChild (pfGroup *group, pfNode* child);
pfGetChild(const pfGroup *group, int index);
pfGetNumChildren(const pfGroup *group);
pfBufferAddChild(pfGroup *group, pfNode *child);
pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSequence can
also be used with these functions designed for objects of class pfNode.

IRIS Performer 2.0 libpf C Reference Pages pfSequence(3pf)

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void
void *

pfGetParent(const pfNode *node, int i);

pfGetNumParents(const pfNode *node);

pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);

pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);

pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSequence can
also be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSequence can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int

const char *
int

int

int

int

int

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfIype *type);
pflsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);
pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

177

pfSequence(3pf) IRIS Performer 2.0 libpf C Reference Pages

int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

seq identifies a pfSequence.

DESCRIPTION

178

A pfSequence is a pfGroup that sequences through a range of its children, drawing each child for a certain
length of time. Its primary use is for animations, where a sequence of objects or geometry (children)
represent a desired visual event. pfNewSeq creates and returns a handle to a pfSequence. Like other
pfNodes, pfSequences are always allocated from shared memory and can be deleted using pfDelete.

pfGetSeqClassType returns the pfType* for the class pfSequence. The pfType* returned by
pfGetSeqClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfSequence. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

Children are added to a pfSequence using normal pfGroup API (pfAddChild). The length of time that a
child is drawn is specified by pfSeqTime. frame is the index of a child that should be drawn for time
seconds. If frame < 0, then all children will be displayed for time seconds. If time = 0.0 or time is not
specified for a particular child, then it will not be drawn at all. If time < 0.0 the sequence will pause at
child frame and draw it repeatedly until the sequence is resumed or stopped (see pfSeqMode below).
pfGetSeqTime returns the time for frame frame.

pfSeqlnterval specifies the interval or range of frames (children) to sequence. begin and end specify the
beginning and ending indexes of seq respectively. Indexes are inclusive and should be in the range 0,
numChildren - 1. Anindex < 0 is equivalent to numChildren - 1 for convenience. end may be less than
begin for reverse sequences. The default sequence interval is 0, numChildren - 1.

mode specifies how seq is sequenced over the range from begin to end if it is a repeating sequence.

PFSEQ_CYCLE
seq will go from begin to end then restart at begin.

PFSEQ_SWING
seq will go back and forth from begin to end. The endpoint frames are drawn only once
when the swing changes directions.

The default mode is PFSEQ_CYCLE. pfGetSeqlnterval copies the interval parameters into mode, begin,
and end.

pfSeqDuration controls the duration of an sequence. speed divides the time that each sequence frame is

IRIS Performer 2.0 libpf C Reference Pages pfSequence(3pf)

displayed. Values < 1.0 slow down the sequence while values > 1.0 speed up the sequence. The default
speed is 1.0. nReps is the number of times seq repeats before stopping. If nReps is < 0, seq will sequence
indefinitely and if == 0 the sequence is disabled. If nReps is > 1, seq will sequence for nReps cycles or
swings depending on the sequencing mode set by pfSeqInterval.

The number of repetitions for both PFSEQ_CYCLE and PFSEQ_SWING is increased by 1 every time an
endpoint of the sequence is reached. Therefore PFSEQ_CYCLE begins to repeat itself after 1 repetition
while PFSEQ_SWING repeats itself after 2 repetitions. Note that for 1 repetition, both modes are
equivalent.

The default value for nReps is 1. pfGetSeqDuration copies the duration parameters into speed and nReps.

pfSeqMode controls the run-time execution of seq. mode is a symbolic token:

PFSEQ_START
Restarts the sequence from its beginning. Once started, a sequence may be stopped,
paused, or started again in which case it is restarted from its beginning.

PFSEQ_STOP
Stops the sequence. After an sequence is stopped, it is reset so that further executions of the
sequence begin from the starting index.

PFSEQ_PAUSE
Pauses the sequence without resetting it. When paused, the current child will be drawn
until the sequence is either stopped or resumed.

PFSEQ_RESUME
Resumes a paused sequence.

Sequences are evaluated once per frame by pfAppFrame. The time used in the evaluation is that set by
pfFrameTimeStamp. This time is automatically set by pfFrame but it may be overridden by the applica-
tion to account for varying latency due to non-constant frame rates.

pfGetSeqMode returns the mode of seq. The mode will automatically be set to PFSEQ_STOP if the
sequence completes the number of repetitions set by pfSeqDuration.

pfGetSeqFrame returns the index of the child which seq is currently drawing and also copies the number
of repetitions it has completed into repeat.

SEE ALSO
pfAppFrame, pfFrame, pfFrameTimeStamp, pfGroup, pfNode, pfDelete

179

pfSwitch(3pf) IRIS Performer 2.0 libpf C Reference Pages

NAME
pfNewSwitch, pfGetSwitchClassType, pfSwitchVal, pfGetSwitchVal — Create, modify, and query a
switch node.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfSwitch * pfNewSwitch(void);

pfIype* pfGetSwitchClassType(void);

int pfSwitchVal(pfSwitch *sw, int val);
int pfGetSwitchVal(const pfSwitch *sw);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSwitch is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfSwitch. Casting an object of
class pfSwitch to an object of class pfGroup is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfGroup.

int pfAddChild(pfGroup *group, pfNode *child);

int pfInsertChild(pfGroup *group, int index, pfNode *child);

int pfReplaceChild(pfGroup *group, pfNode *old, pfNode *new);
int pfRemoveChild(pfGroup *group, pfNode* child);

int pfSearchChild(pfGroup *group, pfNode* child);

pfNode * pfGetChild(const pfGroup *group, int index);

int pfGetNumChildren(const pfGroup *group);

int pfBufferAddChild(pfGroup *group, pfNode *child);

int pfBufferRemoveChild(pfGroup *group, pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSwitch can also
be used with these functions designed for objects of class pfNode.

fGroup * fGetParent(const pfNode *node, int i);
P P p P

int pfGetNumParents(const pfNode *node);
void pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
int pfGetNodeBSphere(pfNode *node, pfSphere *bsph);

pfNode* pfClone(pfNode *node, int mode);

pfNode* pfBufferClone(pfNode *node, int mode, pfBuffer *buf);
int pfFlatten(pfNode *node, int mode);

int pfNodeName(pfNode *node, const char *name);

const char * pfGetNodeName(const pfNode *node);

180

IRIS Performer 2.0 libpf C Reference Pages pfSwitch(3pf)

pfNode*
pfNode*
int

void
uint
void

void

void
void *

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

pfNodeTravData(pfNode *node, int which, void *data);

pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSwitch can also
be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSwitch can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int
const char *
int

int

int

int

int

int

int

void
void *

PARAMETERS

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfIype *type);
pflsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
pfGetArena(void *ptr);

sw identifies a pfSwitch.

DESCRIPTION

A pfSwitch is an interior node in the IRIS Performer node hierarchy that selects one, all, or none of its
children. It is derived from pfGroup so it can use pfGroup API to manipulate its child list.

pfNewSwitch creates and returns a handle to a pfSwitch. Like other pfNodes, pfSwitches are always

181

pfSwitch(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

allocated from shared memory and can be deleted using pfDelete.

pfGetSwitchClassType returns the pfType* for the class pfSwitch. The pfType* returned by
pfGetSwitchClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfSwitch. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfSwitchVal sets the switch value of sw to val. val may be an integer ranging from 0 to N-1 with N being
the number of children of sw or it may be a symbolic token: PESWITCH_ON or PFSWITCH_OFF in
which case all children or no children are selected. pfGetSwitchVal returns the current switch value.

The validity of the switch value delayed until the switch is actually evaluated (usually by a traversal such

as CULL). For example, it is legal to set a switch value of 2 on a pfSwitch node with no children, provided
at least 2 children are added before the pfSwitch is evaluated.

PF_ON and PF_OFF tokens will NOT work with pfSwitchVal.

SEE ALSO

182

pfGroup, pfLookupNode, pfNode, pfScene, pfDelete

IRIS Performer 2.0 libpf C Reference Pages pfText(3pf)

NAME

pfNewText, pfGetTextClassType, pfAddString, pfRemoveString, pfInsertString, pfReplaceString,
pfGetString, pfGetNumStrings — Create, modify, and query a 3D text node.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfText *
pfType *
int

int

int

int
pfString *

int

pfNewText(void);

pfGetTextClassType(void);

pfAddString(pfText* text, pfString* string);
pfRemoveString(pfText* text, pfString* str);
pfInsertString(pfText* text, int index, pfString* str);
pfReplaceString(pfText* text, pfString* old, pfString* new);
pfGetString(const pfText* text, int index);
pfGetNumStrings(const pfString* string);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfText is derived from the parent class pfNode, so each of these member func-
tions of class pfNode are also directly usable with objects of class pfText. Casting an object of class
pfText to an object of class pfNode is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char
pfNode*
pfNode*
int

void

uint

void

void

pfGetParent(const pfNode *node, int i);
pfGetNumParents(const pfNode *node);
pfNodeBSphere(pfNode *node, pfSphere *bsph, int mode);
pfGetNodeBSphere(pfNode *node, pfSphere *bsph);
pfClone(pfNode *node, int mode);

pfBufferClone(pfNode *node, int mode, pfBuffer *buf);
pfFlatten(pfNode *node, int mode);

pfNodeName(pfNode *node, const char *name);

* pfGetNodeName(const pfNode *node);

pfFindNode(pfNode *node, const char *pathName, pfType *type);

pfLookupNode(const char *name, pfType* type);

pfNodelsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);

pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

pfGetNodeTravMask(const pfNode *node, int which);

pfNodeTravFuncs(pfNode* node, int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

pfGetNodeTravFuncs(const pfNode* node, int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

183

pfText(3pf) IRIS Performer 2.0 libpf C Reference Pages

void pfNodeTravData(pfNode *node, int which, void *data);
void * pfGetNodeTravData(const pfNode *node, int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfText can also be
used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfText can also
be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

text identifies a pfText.
string identifies a pfString.

DESCRIPTION

184

A pfText is analogous to a pfGeode. A pfText encapsulates pfStrings in a scene graph as a pfGeode
encapsulates pfGeoSets. A pfText is a leaf node in the IRIS Performer scene graph hierarchy and is
derived from pfNode so it can use pfNode API. A pfText is simply a list of pfStrings.

The bounding volume of a pfText is that which surrounds all its pfStrings. Unless the bounding volume
is considered static (see pfNodeBSphere), IRIS Performer will compute a new volume when the list of
piStrings is modified by pfAddString, pfRemoveString, pfInsertString or pfReplaceString. If the
bounding box of a child pfString changes, call pfNodeBSphere to tell IRIS Performer to update the
bounding volume of the pfText.

pfNewText creates and returns a handle to a pfText. Like other pfNodes, pfTexts are always allocated
from shared memory and can be deleted using pfDelete.

IRIS Performer 2.0 libpf C Reference Pages pfText(3pf)

pfGetTextClassType returns the pfType* for the class pfText. The pfType* returned by
pfGetTextClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfText. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

pfAddString appends str to text’s pfString list. pfRemoveString removes str from the list and shifts the
list down over the vacant spot. For example, if str had index 0, then index 1 becomes index 0, index 2
becomes index 1 and so on. pfRemoveString returns a 1 if str was actually removed and 0 if it was not
found in the list. pfAddString and pfRemoveString will cause IRIS Performer to recompute new bound-
ing volumes for text unless it is configured to use static bounding volumes.

pflnsertString will insert str before the pfString with index index. index must be within the range 0 to
pfGetNumStrings(text). pfReplaceString replaces old with new and returns 1 if the operation was suc-
cessful or 0 if old was not found in the list. pfInsertString and pfReplaceString will cause IRIS Performer
to recompute new bounding volumes for text unless it is configured to use static bounding volumes.

pfGetNumStrings returns the number of pfStrings in text. pfGetString returns a handle to the pfString
with index index or NULL if the index is out of range.

Here is a sample code snippet demonstrating how to use pfText, pfFont, and pfString to add 3D text to a
scene graph:

/* Initialize Perforner and create pfScene "scene" */

/* Get shared nenory arena */
arena = pf Get SharedArena();

/* Append standard directories to Perforner search path, PFPATH */
pfFil ePath(".:/usr/share/Performer/data");

/* Create 3D nessage and place in scene. */

text = pfNewText();

pf AddChi | d(scene, text);

if (pfFindFile("Tines-E fin.of", path, R OK))

{
str = pfNewString(arena);
pf Stri ngvbde(str, PFSTR DRAWSTYLE, PFSTR_EXTRUDED);
pf Stri ngvbde(str, PFSTR_JUSTIFY, PFSTR_M DDLE);
pf StringCol or(str, 1.0f, 0.0f, 0.8f, 1.0f);
pfStringString(str, "Welcone to IRIS Perforner");
pfFlattenString(str);

185

pfText(3pf) IRIS Performer 2.0 libpf C Reference Pages

pf AddString(text, str);

}
el se
{
pf Not i f y(PFNFY_WARN, PFNFY_PRI NT, "Coul dn’t find font file.");
exit(0);
}
SEE ALSO

pfGeoSet, pfNode, pfNodeTravFuncs, pfString, pfFont, pfDelete

186

IRIS Performer 2.0 libpf C Reference Pages pfTraverser(3pf)

NAME
pfCullResult, pfGetCullResult, pfGetParentCullResult, pfGetTravChan, pfGetTravMat, pfGetTrav-
Node, pfGetTravindex, pfGetTravPath — Set and get traversal masks, callback functions and callback
data, and get pfIraverser attributes.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

void pfCullResult(int result);

int pfGetCullResult(void);

int pfGetParentCullResult(void);

pfChannel * pfGetTravChan(const pfIraverser *trav);

void pfGetTravMat(const pfTraverser *trav, pfMatrix mat);
pfNode * pfGetTravNode(const pflraverser *trav);

int pfGetTravindex(const pfTraverser *trav);

const pfPath * pfGetTravPath(const pfTraverser *trav);

typedef int (*pfNodeTravFuncType) (pfTraverser *trav, void *userData);

PARAMETERS
node identifies a pfNode

which identifies the traversal: PFTRAV_ISECT, PFTRAV_APP, PFTRAV_CULL or PFTRAV_DRAW,
denoting the intersection, application, cull or draw traversals respectively.

DESCRIPTION
IRIS Performer provides four major traversals: intersection, application, cull, and draw that are often
abbreviated as ISECT, APP, CULL, and DRAW. A traversal is typically an in-order traversal of a
directed acyclic graph of pfNodes otherwise known as a subgraph. The actual traversal method,
traverser structure, and traversal initiation used depends on the traversal type as well as the multipro-
cessing mode as shown in the following table.

187

pfTraverser(3pf) IRIS Performer 2.0 libpf C Reference Pages

188

Traversal Traverser Traversee Trigger
PFTRAV_ISECT pfSegSet subgraph | pfNodelsectSegs(),
pfChanNodelsectSegs
PFTRAV_APP pfTraverser | pfScene pfApp()
CULL_DL_DRAW is set
PFTRAV_CULL pfChannel | pfScene pfCull()
PFTRAV_DRAW pfChannel | pfDispList | pfDraw()

CULL_DL_DRAW is not set
PFTRAV_CULL pfChannel | pfScene pfDraw()
PFTRAV_DRAW

Typical traversal callback usage:

ISECT
Collision detection, terrain following, line of sight

APP Application-specific behavior, motors

CULL
Custom level-of-detail selection, culling

DRAW
Custom rendering

When PFMPCULL_DL_DRAW is not set in the multiprocessing mode argument to pfMultiprocess (and
the cull and draw stages are in the same process), then pfDraw simultaneously culls and draws the
pfScene attached to the pfChannel by pfChanScene. Otherwise, pfCull culls and builds up a pfDispList
which is later rendered by pfDraw.

If the traversal CULL mask and node CULL mask AND to zero at a node, the CULL traversal disables
view culling and trivially accepts the node and all its descendents. Note that unlike other traversals, a
mask result of 0 does not prune the node.

If the traversal DRAW mask and node DRAW mask AND to zero at a node, the CULL traversal prunes
the node, so descendents are neither CULL-traversed nor drawn.

If the traversal APP mask and the node APP mask AND to zero, the APP traversal prunes the node and
its descendents.

If the ISECT masks AND to zero, the ISECT traversal prunes the node. The intersection mask is typically
used to control traversals of different types of objects, e.g. different bits may indicate ground, water, foli-
age, and buildings, so they may be intersected selectively. See (pfNodeTravMask).

IRIS Performer 2.0 libpf C Reference Pages pfTraverser(3pf)

In many respects a traversal appears to the user as an atomic action. The user configures a traverser,
triggers it with the appropriate routine and awaits the results. Node callbacks are supported to provide
user extensibility and configuration into this scenario. They are user-supplied routines that are invoked
in the course of a traversal. Callbacks return a value which can control traversal on a coarse-grained
basis. In addition, draw callbacks can render custom geometry and cull callbacks can substitute custom
culling for the default IRIS Performer culling.

The pre- or post-callbacks for the cull and intersection traversals may return PFTRAV_CONT,
PFTRAV_PRUNE, PFTRAV_TERM to indicate that traversal should continue normally, skip this node
or terminate the traversal, respectively. PFTRAV_PRUNE is equivalent to PFTRAV_CONT for the
post-callback. Currently, the return value from the draw callbacks is ignored.

pfCullResult, pfGetCullResult, and pfGetParentCullResult can all be called in the pre-cull callback and
all but pfCullResult may be called in the post-cull callback. pfGetCullResult returns the result of the
cull for the node that the cull callback is associated with. pfGetParentCullResult returns the cull result
for the parent of the node that the cull callback is associated with. When called within the pre-cull call-
back, pfCullResult specifies the result of cull for the node that the pre-cull callback is associated with.
This essentially replaces default IRIS Performer cull processing with user-defined culling. result is a token
which specifies the result of the cull test and should be one of:

PFIS_FALSE
Node is entirely outside the viewing frustum and should be pruned.

PFIS_MAYBE | PFIS_TRUE
Node is partially inside the viewing frustum and the children of the node should be cull-
tested.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN
Node is totally inside the viewing frustum so all the children of the node should be trivially
accepted without further cull testing.

If pfCullResult is not called within the pre-cull callback, IRIS Performer will use its default geometric cul-
ling mechanism that compares node bounding volumes to the current culling frustum to determine if the

node may be within view.

In the post-cull callback pfGetCullResult will return the result of the cull set by pfCullResult or the
result of the default cull if pfCullResult was not called.

The evaluation order of the cull and draw traversal masks and callbacks is illustrated in the following
pseudo-code:

Example 1: Cull and draw traversal mask and callback evaluation order.

189

pfTraverser(3pf) IRIS Performer 2.0 libpf C Reference Pages

/* Return if draw nmask test fails */
if ((drawvask & nodeDrawVask) == 0)
return PFTRAV_CONT;

/* Call pre-cull callback */
if (precull)

rtn = (*preCull)(traverser, cullData);

if (rtn == PFTRAV_PRUNE)
return PFTRAV_CONT;

else if (rtn == PFTRAV_TERM
return PFTRAV_TERM

/* Disable viewculling if cull nmask test fails */
if ((cull Mask & nodeCul | Mask) == 0)
di sabl eVi enCul | i ng();

/* Performdefault culling if pfCull Result was not called */
if (luserCalledpfCull Resul tInThePreCul |l Cal | back)

cull Result = cul |l Test (node);

if (cull Result == PFIS_FALSE)

{
/* Call post-cull callback */
if (postCull)
{
rtn = (*postCull)(traverser, cullData);
if (rtn == PFTRAV_PRUNE)
return PFTRAV_CONT;
else if (rtn == PFTRAV_TERM
return PFTRAV_TERM
}
return PFTRAV_CONT,;
}
el se
/* Trivially accept node and all its children */

if (cull Result == PFIS_ALL_IN)
di sabl eVi enCul | i ng();

/* Call pre-draw call back */

190

IRIS Performer 2.0 libpf C Reference Pages pfTraverser(3pf)

if (preDraw
(*preDraw) (traverser, drawbata);

eval uat eNodeAndIl t sChi I dren();
/* Call post-draw call back */
i f (postDraw)

(*postDraw) (traverser, drawbata);

/* Call post-cull callback */

if (postCull)
{
rtn = (*postCull)(traverser, cullData);
if (rtn == PFTRAV_PRUNE)
return PFTRAV_CONT;
el se
if (rtn == PFTRAV_TERM
return PFTRAV_TERM
}

return PFTRAV_CONT,

Example 2: Use of DRAW callbacks to save and restore state.

extern int
preDraw(pf Traverser *trav, void *data)
{

pf PushState();

pf Enabl e(PFEN_TEXGEN) ;

pf Appl yTGen((pf TexGen*) dat a) ;

return PFTRAV_CONT;
extern int
post Draw(pf Traverser *trav, void *data)
{

pf PopState();

return PFTRAV_CONT;

191

pfTraverser(3pf) IRIS Performer 2.0 libpf C Reference Pages

NOTES

BUGS

192

/*

* Set up draw cal |l backs and user data to draw 'geode’ in
* EYE_LI NEAR t exgen node.

*/

pf TexGen *tgen;
tgen = pf NewTGen(pf Get Shar edArena());

pf TGenMbde(t gen, PF_S, PFTG EYE LI NEAR);
pf TGenMbde(t gen, PF_T, PFTG EYE LI NEAR);

pf NodeTr avFuncs(geode, PFTRAV_DRAW preDraw, postDraw);
pf NodeTr avDat a(geode, PFTRAV_DRAW tgen);

libpr graphics calls like pfApplyTGen should be made in a DRAW callback only. Specifically, libpr
graphics calls made in a CULL callback are not legal and have undefined behavior.

The intersection, application, cull and draw callbacks are passed a pfTraverser which can be used to
query the channel, current transformation matrix and current node. pfGetTravChan returns the current
channel for the cull, and draw traversal. It returns the current channel for intersection traversals initiated
with pfChanNodelsectSegs and NULL for intersection traversals initiated with pfNodelsectSegs.

pfGetTravMat sets mat to the current transformation matrix, which is the concatenation of the matrices
from the root of the scene down to and including the current node. Since no transformation hierarchy is
retained in the draw process, in a draw callback, the current matrix should be queried using the getmatrix
or pfGetModelMat/pfGetViewMat routines.

pfGetTravNode returns the current node being traversed and pfGetTravIindex returns the child index of
the current node, i.e.- the index of the current node in its parent’s list of children. pfGetTravPath returns
a pointer to the list of nodes which defines the path from the scene graph root to the current node.

The post-cull callback is a good place to implement custom level-of-detail mechanisms.

The path returned by pfGetTravPath is valid only when invoked from a cull callback.

IRIS Performer 2.0 libpf C Reference Pages pfTraverser(3pf)

SEE ALSO
pfAddChild, pfClone, pfFrame, pfNode

193

libpr

libpr is a low-level library for
high-performance graphics
applications.

This library provides a wide range of
functions useful functions including
optimized rendering, graphics state
management, math functions, and
shared memory utilities.

IRIS Performer 2.0 libpr C Reference Pages pfAlphaFunc(3pf)

NAME
pfAlphaFunc, pfGetAlphaFunc — Specify alpha function and reference value

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfAlphaFunc(float ref, int mode);
void pfGetAlphaFunc(float *ref, int *mode);

PARAMETERS
ref is a reference value with which to compare source alpha at each pixel. This value should be a float
in the range 0 through 1.

mode is a symbolic constant that specifies the conditional comparison that source alpha and ref must pass
for a pixel to be drawn.

DESCRIPTION
pfAlphaFunc sets the alpha function mode and reference value which affects all subsequent geometry.
mode is a symbolic constant that specifies the conditional comparison that source alpha and ref must pass
for a pixel to be drawn. For example:

if (source al pha mode ref)
draw t he pi xel

where the alpha value boolean function mode is be one of:
PFAF_ALWAYS
PFAF_EQUAL
PFAF_GEQUAL
PFAF_GREATER
PFAF_LEQUAL
PFAF_LESS
PFAF_NEVER
PFAF_NOTEQUAL
PFAF_OFF

If it was desired to only draw pixels whose alpha value was greater than or equal to 50% of the represent-
able range, then a mode of PEAF_GEQUAL and a ref of 0.5 would produce the hardware pixel rendering
conditional:

if (source al pha PFAF_GEQUAL 0.5)
draw t he pi xel

The the default mode is PEAF_OFF and default ref value is 0. The alpha function and reference value state
elements are identified by the PESTATE_ALPHAFUNC and PFSTATE_ALPHAREEF tokens respectively.
Use these tokens with pfGStateMode and pfGStateVal, to set the alpha function and reference value of a

197

pfAlphaFunc(3pf) IRIS Performer 2.0 libpr C Reference Pages

pfGeoState and with pfOverride to override subsequent alpha function and reference value changes.

Here is an example:
/*
* Setup pfGeoState so that only pixels whose al pha is > 40
* are drawn once the pfGeoState is applied with pfAppl yGState.
*/
pf GSt at eMbde(gst at e, PFSTATE_ALPHAFUNC, PFAF_GREATER);
pf GSt at eVal (gstate, PFSTATE _ALPHAREF, (40.0f/255.0f));

/*

* Override al pha function. The al pha reference value can still
* be changed.

*/

pf Overri de(PFSTATE_ALPHAFUNC, PF_ON);

/*

* Al subsequent attenpts to set alpha function will be ignored
* until pfOverride is called to unlock it.

*/

pfAlphaFunc is a display-listable command. If a pfDispList has been opened by pfOpenDList,
pfAlphaFunc will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDrawDList.

pfGetAlphaFunc copies the current alpha function reference value and mode into ref and mode respec-
tively.

NOTES
pfAlphaFunc is typically used for textures with alpha that simulate trees and other complicated geometry
having many holes. See the IRIS GL afunction(3g) or OpenGL glAlphaFunc manual page for further
details.

SEE ALSO
afunction, glAlphaFunc, pfDispList, pfGeoState, pfState

198

IRIS Performer 2.0 libpr C Reference Pages pfAntialias(3pf)

NAME
pfAntialias, pfGetAntialias — Specify antialiasing mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfAntialias(int mode);
int pfGetAntialias(void);

PARAMETERS
mode is a symbolic constant and is one of:
PFAA_OFF Antialiasing will be disabled.
PFAA_ON Antialiasing will be enabled. The antialiasing mechanism used depends on
the machine type.
DESCRIPTION

pfAntialias sets the hardware antialiasing mode. Geometry drawn subsequent to calling pfAntialias will
be antialiased according to mode. The antialiasing mechanism used is machine-dependent: multisampling
on RealityEngine systems and non-multisampling on all others. In addition, if available, pfAntialias will
enable a special hardware mode that efficiently renders points using multisampled circles rather than
squares. See the IRIS GL multisample(3g) reference page and the SGIS_multisample section of the
OpenGL glintro(3g) reference page for more detailed information on multisampled antialiasing.

If mode is PFAA_ON, then antialiasing will be enabled. On machines which do not support multisam-
pling, PEAA_ON will enable line and point antialiasing. Polygons will not be antialiased. In this case it is
recommended that pfAntialias be enabled only for points and lines since it may reduce the speed of
polygon rendering.

In pure IRIS GL windows (not GLX), the framebuffer will be reconfigured as needed and as possible to
support multisampling. Since pfAntialias may configure hardware buffers, it is best called at initializa-
tion time for performance reasons. On RealityEngine systems, multisample buffers are configured and
multisampling is enabled if the combination of Video Output Format and Raster Manager count support
multisampling. Specifically, pfAntialias will attempt to configure the IRIS GL window with 12 bit color
buffers, 8 subsamples, 24 bits of depth buffer, and 4 bits of stencil. If this is not available, 1 bit of stencil
will be used. Non-multisample buffers, configured by such IRIS GL calls as zbsize(3g) and stensize(3g)
are all deallocated. If the hardware configuration does not support 8 subsamples then pfAntialias will
attempt to acquire 4 subsamples.

If mode is PFAA_OFF, for pure IRIS GL windows, pfAntialias will deallocate all multisample buffers and
allocate non-multisample buffers accordingly: 12-bit color buffer, 32 bit depth buffer, 4 bit stencil buffer.

X windows cannot have their framebuffer resources reconfigured. X windows for both IRIS GL and

OpenGL are, by default, created with multisample buffers if they are available in the current hardware
configuration. The default configuration, if available will be 8 subsamples, 24 bits of depth buffer, and 4

199

pfAntialias(3pf) IRIS Performer 2.0 libpr C Reference Pages

NOTES

200

bits of stencil. If this is not available, 1 bit of stencil will be used, and then 4 subsamples will be allocated
if 8 are not still available. The exact framebuffer configuration of windows can be specified via
pfWinFBConfigAttrs.

For X windows, if mode is PFAA_OFF, the antialiasing mode will be disabled but the buffers cannot be
deallocated and there might be associated framebuffer operations that are not truly disabled. Because of
this, the full performance benefit expected by turning off antialiasing may not be achieved.

The antialiasing mode state element is identified by the PFSTATE_ANTIALIAS token. Use this token
with pfGStateMode to set the antialiasing mode of a pfGeoState and with pfOverride to override subse-
quent antialiasing mode changes.

pfAntialias is a display-listable command. If a pfDispList has been opened by pfOpenDList, pfAntialias
will not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDrawDList.

pfGetAntialias returns the current antialiasing mode.

Example 1:

/* Set up 'antialiased pfGeoState */
pf GSt at eMbde(gstate, PFSTATE_ANTI ALI AS, PFAA ON);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Draw antialiased gset */
pf Dr awGSet (gset) ;

Example 2:

/* Override antialiasing node to PFAA _OFF */
pf Anti al i as(PFAA_CFF) ;
pf Overri de(PFSTATE_ANTI ALI AS, PF_QON);

pfQueryFeature can be used to determined what features are available on the current hardware
configuration. pfQuerySys can be used to query the exact extent of hardware resources, such as number
of subsamples available for multisampling.

When using antialiasing without multisampling, blending is used which may conflict with other tran-
sparency modes. Specifically, all geometry will be blended which may cause artifacts and may

IRIS Performer 2.0 libpr C Reference Pages pfAntialias(3pf)

substantially reduce performance. For this reason pfAntialias should be used with discretion on all but
RealityEngine systems.

For pure IRIS GL windows, since pfAntialias may configure hardware buffers, it is best called at initiali-
zation time for performance reasons.

In the default framebuffer configurations, the 4 bit of stencil buffer is allocated to support depth complex-
ity fill statistics; see the pfStats reference man page for more information. 1 bit of stencil is required for
the support of high quality decals; see the pfDecal reference page for more information.

Not all machines support stencil planes and in these cases, stencil bits will not be allocated. Indy plat-
forms under IRIS GL operation do not support stencil. Additionally, the Extreme graphics platforms only
support stencil with reduced depth buffer resolution and so stencil will not be allocated by default.

Under OpenGL operation, if a window has been configured with multisample buffers, the state of pfAn-
tialias() is used internally to track whether or not multisampling is being done. This knowledge is used
for doing the fast TAG clear pfClear(), and for drawing multisampled points. IRIS Performer will not
detect a GL call made to enable or disable multisampling so if you do this you must return state to match
IRIS Performer’s internal state or the results will be undefined.

SEE ALSO
blendfunction, glBlendFunc, linesmooth, glHint(GL_LINE_SMOOTH_HINT), pntsmooth,
glHint(GL_POINT_SMOOTH_HINT), mssize, multisample, glintro, pfQueryFeature, pfQuerySys, pfWin-
dow, pfChooseFBConlfig, pfDispList, pfGeoState, pfOverride, pfState

201

pfBox(3pf)

IRIS Performer 2.0 libpr C Reference Pages

NAME

DESCRIPTION

202

pfMakeEmptyBox, pfBoxExtendByPt, pfBoxExtendByBox, pfBoxAroundPts, pfBoxAroundBoxes,
pfBoxAroundSpheres, pfBoxAroundCyls, pfBoxContainsPt, pfBoxContainsBox, pfBoxIsectSeg,
pfXformBox — Operate on axis-aligned bounding boxes

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void
void
void
void
void
void
void
int

int

int

void

pfMakeEmptyBox(pfBox *box);

pfBoxExtendByPt(pfBox *dst, const pfVec3 pt);
pfBoxExtendByBox(pfBox *dst, const pfBox *box);
pfBoxAroundPts(pfBox *dst, const pfVec3 *pts, int npt);
pfBoxAroundBoxes(pfBox* dst, const pfBox **boxes, int nbox);
pfBoxAroundSpheres(pfBox *dst, const pfSphere **sphs, int nsph);
pfBoxAroundCyls(pfBox *dst, const pfCylinder **sphs, int ncyl);
pfBoxContainsPt(const pfBox* box, const pfVec3 pt);
pfBoxContainsBox(const pfBox *box1, const pfBox *box2);
pfBoxIsectSeg(const pfBox* box, const pfSeg* seg, float* d1, float* d2);
pfXformBox(pfBox *dst, const pfBox *box, const pfMatrix xform);

typedef struct

{

pf Vec3 mn;
pf Vec3 max;
} pf Box;

A pfBox is an axis-aligned box which can be used for intersection tests and for maintaining bounding
information about geometry. A box represents the axis-aligned hexahedral volume: (x, y, z) where min[0]
<= x <= max|[0], min[1] <=y <= max[1] and min[2] <= z <= max[2]. pfBox is a public struct whose data
members min and max may be operated on directly.

pfMakeEmptyBox sets dst to appear empty to extend operations.

pfBoxExtendByPt extends the size of box dst to include the point pt.

pfBoxExtendByBox extends the size of box dst to include the box box.

IRIS Performer 2.0 libpr C Reference Pages pfBox(3pf)

pfBoxAroundPts, pfBoxAroundBoxes pfBoxAroundCyls and pfBoxAroundSpheres set dst to be an
axis-aligned box encompassing the given primitives. npt, nbox, ncyls and nsph are the number of points,
boxes, and spheres in the respective primitive lists.

pfBoxContainsPt returns TRUE or FALSE depending on whether the point pt is in the interior of the
specified box.

The return value from pfBoxContainsBox is the OR of one or more bit fields. The returned value may be:

PFIS_FALSE:
The intersection of the second box argument and the first box is empty.

PFIS_MAYBE:
The intersection of the second box argument and the first box might be non-empty.

PFIS_MAYBE | PFIS_TRUE:
The intersection of the second box argument and the first box is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN:
The second box argument is non-empty and lies entirely inside the first box.

pfBoxIsectSeg intersect the line segment seg with the volume of an axis-aligned box box. The possible
return values include all of the above as well as:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfBoxIsectSeg they contain the starting and ending positions
of the line segment (0 <= d1 <= d2 <= seg->length) intersected with the specified volume.

pfXformBox sets dst to a box which contains box as transformed by the matrix xform, i.e. a box around

(box * xform). Because transformed boxes must be axis-aligned, most rotations cause the box to grow, and
the transformation is not reversed by the inverse rotation.

203

pfBox(3pf) IRIS Performer 2.0 libpr C Reference Pages

NOTES

The bit fields returned by the contains functions are structured so that bitwise AND-ing the results of

sequential tests can be used to compute composite results, e.g. testing exclusion against a number of half
spaces.

Because pfBoxes are axially aligned, they tend to grow when transformed. Hence, they are best for static
geometry or other cases in which the bounding geometry does not need to be transformed.

SEE ALSO
pfSeg, pfSphere

204

IRIS Performer 2.0 libpr C Reference Pages pfClear(3pf)

NAME
pfClear — Clear specified graphics buffers

FUNCTION SPECIFICATION
void pfClear(int which, const pfVec4 color);

PARAMETERS
which is a mask that specifies which buffers are to be cleared. which is a bitwise OR of:
PFCL_COLOR Clear color buffer to color.
PFCL_DEPTH Clear depth buffer to maximum value of our defined depth range.

PFCL_MSDEPTH Fast clear of the multisample depth buffer.
PFCL_STENCIL Clear stencil buffer to 0.

PFCL_DITHER Enable dithering during the color clear. By default, pfClear turns off dith-
ering for color clears.

color specifies the red, green, blue, and alpha components of the color buffer clear color. Each com-
ponent is defined in the range 0.0 to 1.0. If color is NULL then a black fully opaque color will be
used.

DESCRIPTION
pfClear clears the buffers specified by which in the current graphics window. The actual screen area
cleared depends on many GL state settings including viewport and screen or scissor mask (IRIS GL
scrmask or OpenGL glScissor), current draw buffer (front, back, left, right, overlay, etc.), and the
existence of a depth buffer for PFCL_DEPTH and stencil buffer for PFCL_STENCIL. See the IRIS GL
clear(3g) or OpenGL glClear(3g) reference page for more details.

If which includes PFCL_COLOR and color is NULL, then any selected color buffer will be cleared to black
fully opaque pixels using cpack(0xff000000) in IRIS GL and glColor4£(0,0,0,1) in OpenGL.

PFCL_MSDEPTH has effect only when multisampling (See pfAntialias). In this case, instead of writing
the maximum depth value into each individual pixel subsample, each pixel is "tagged" as having the max-
imum depth value. This clear is much faster than a full depth buffer clear; however, the color buffer is
not cleared so results from previous frames will be left in the color buffer if not redrawn. This requires
that each pixel in the viewport be covered by geometry. Often this is accomplished by drawing one or
more large background polygons (often textured) at the far clip plane to "clear" the framebuffer to an
interesting background rather than depth buffer and then incurring the additional cost of clearing draw-
ing background polygons. This requires that the background rendering disable depth buffer testing (e.g.
zfunction(ZF_ALWAYS) in IRIS GL or glDepthFunc(GL_ALWAYS) in OpenGL). Otherwise, a normal
depth buffer clear will be required if multisampling is not in use or not supported in the current frame-
buffer configuration. Note that the background drawing should leave depth buffering enabled so that it’s
depth values will be written.

The follow example shows how to clear all buffers with one pfClear call:

205

pfClear(3pf) IRIS Performer 2.0 libpr C Reference Pages

/*

* Clear color buffer to black, depth buffer to the nmaxi mumdepth val ue,
* and stencil buffer to O.

*/

pf A ear (PFCL_DEPTH | PFCL_COLOR | PFCL_STENCI L, NULL);

pfClear is a display-listable command. If a pfDispList has been opened by pfOpenDList, pfClear will
not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDrawDList.

NOTES
PFCL_MSDEPTH is only available on RealityEngine systems, and then only in the multisample antialias-
ing mode. For performance reasons, the depth buffer for the entire window rather than just the current
viewport is cleared with OpenGL on Indy, i.e. scissoring is disabled. Also, Indy depth buffer clears are
significantly slower under IRIS GL than under OpenGL.

SEE ALSO
pfAntialias, pfDispList, glClear, glDepthFunc, clear, multisample, gconfig, zclear, zfunction, czclear

206

IRIS Performer 2.0 libpr C Reference Pages pfColortable(3pf)

NAME
pfNewCtab, pfGetCtabClassType, pfGetCtabSize, pfApplyCtab, pfCtabColor, pfGetCtabColor,
pfGetCtabColors, pfGetCurCtab — Specify color table properties

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfColortable * pfNewCtab(int size, void *arena);

pfType* pfGetCtabClassType(void);

int pfGetCtabSize(const pfColortable *ctab);

void pfApplyCtab(pfColortable *ctab);

int pfCtabColor(pfColortable *ctab, int index, pfVec4 color);

int pfGetCtabColor(const pfColortable *ctab, int index, pfVec4 color);
pfVecd * pfGetCtabColors(const pfColortable *ctab);

pfColortable * pfGetCurCtab(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfColortable is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfColortable. Casting an object
of class pfColortable to an object of class pfObject is taken care of automatically. This is also true for
casts to objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);

void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfColortable
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

int pfGetRef(const void *ptr);

int pfCopy(void *dst, void *src);

207

pfColortable(3pf) IRIS Performer 2.0 libpr C Reference Pages

int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

208

A pfColortable is a ‘color indexing” mechanism used by pfGeoSets. It is not related to the graphics library
hardware rendering notion of color index mode. 1f pfColortable operation is enabled, pfGeoSets will be
drawn with the colors defined in the current globally active pfColortable rather than using the pfGeoSet’s
own local color list. This facility can be used for instant large-scale color manipulation of geometry in a
scene.

pfNewCtab creates and returns a handle to a pfColortable. arena specifies a malloc arena out of which
the pfColortable is allocated or NULL for allocation off the process heap. size is the number of pfVec4
color elements to allocate for the pfColortable. pfColortables can be deleted with pfDelete.

The number of color elements in the pfColortable is returned by pfGetCtabSize.

pfGetCtabClassType returns the pfType* for the class pfColortable. The pfType* returned by
pfGetCtabClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfColortable. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfTypeto test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfApplyCtab selects ctab as the current, global pfColortable. If colorindex mode is enabled (pfEnable(-
PFEN_COLORTABLE)), then all subsequent pfGeoSets will use the pfVec4 array supplied by the global
color table rather than their own local color array. Colorindex mode works for both indexed and non-
indexed pfGeoSets.

pfApplyCtab is a display-listable command. If a pfDispList has been opened by pfOpenDList,
pfApplyCtab will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDrawDList.

pfGetCurCtab returns the currently active pfColortable or NULL if there is none active.

Colors in a pfColortable are pfVec4’s which specify red, green, blue, and alpha in the range [0..1].
pfCtabColor and pfGetCtabColor respectively set and get the color at index index. To support high per-
formance manipulation of colortables, IRIS Performer allows direct access to the array of pfVec4 colors of
a pfColortable. pfGetCtabColors returns a pointer to this array which may be manipulated directly.
However care must be taken not to write data outside the array limits.

The pfColortable state element is identified by the PFSTATE_COLORTABLE token. Use this token with
pfGStateAttr to set the pfColortable of a pfGeoState and with pfOverride to override subsequent

IRIS Performer 2.0 libpr C Reference Pages pfColortable(3pf)

colortable changes.

Example 1:

/* Set up ’'colorindexed pfGeoState */
pf GStateAttr(gstate, PFSTATE COLORTABLE, ctab);
pf GSt at eMbde(gst at e, PFSTATE_ENCOLORTABLE, PF_QON);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Draw gset col orindexed with ctab */
pf Dr awGSet (gset) ;

Example 2:

pf Enabl e(PFEN_COLORTABLE) ;
pf Appl yCt ab(ct ab) ;

/*

* Qverride active pfColortable to 'ctab’ and col ori ndex enable
* to PF_ON.

*/

pf Overri de(PFSTATE_COLORTABLE | PFSTATE_ENCOLORTABLE, PF_QN);

NOTES

pfColortables can be used to simulate FLIR (Forward Looking Infrared) and NVG (Night Vision Goggles)
and for monochrome display devices which separate video components for stereo display purposes.
More flexible FLIR and NVG simulation is available through the use of indexed pfGeoStates.

SEE ALSO
pfDelete, pfDispList, pfEnable, pfGeoSet, pfGeoState, pfOverride, pfState

209

pfCullFace(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME
pfCullFace, pfGetCullFace — Specify face culling mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfCullFace(int mode);
int pfGetCullFace(void);

PARAMETERS
mode is a symbolic constant and is one of:
PFCF_OFF Face culling is off,
PFCF_BACK Polygons that are back-facing will be culled.
PFCF_FRONT Polygons that are front-facing will be culled.
PFCF_BOTH Polygons that are front and back-facing will be culled.
DESCRIPTION

pfCullFace sets the face culling mode used to cull all subsequent polygons. A polygon is considered to
be backfacing if its vertices are in clockwise order (screen coordinates). Frontfacing polygon vertex order-
ing is counterclockwise.

pfGetCullFace returns the current face culling mode.

The face culling mode state element is identified by the PFSTATE_CULLFACE token. Use this token
with pfGStateMode to set the face culling mode of a pfGeoState and with pfOverride to override subse-
quent face culling mode changes.

pfCullFace is a display-listable command. If a pfDispList has been opened by pfOpenDList, pfCullFace
will not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDrawDList.

Example 1:

/* Set up 'face-culled pfGeoState */
pf GSt at eMbde(gst ate, PFSTATE_CULLFACE, PFCF_BACK);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Draw face-cull ed gset */
pf Dr awGSet (gset) ;

210

IRIS Performer 2.0 libpr C Reference Pages pfCullFace(3pf)

Example 2:

/* Override face culling node to PFCF_OFF */
pf Cul | Face(PFCF_CFF) ;
pf Overri de(PFSTATE_CULLFACE, PF_ON);

NOTES
Backface culling with pfCullFace(PFCF_BACK) can significantly improve performance for "solid" data-
bases whose polygons are oriented consistently and where objects are closed. With these databases you
cannot see backfacing polygons since they are always obscured by nearer front-facing ones. The graphics
hardware can quickly reject backfacing polygons so use of backface culling is strongly encouraged to
increase performance.

Face culling should be disabled when using two-sided lighting, since the two-sided lighting is only useful
for distinguishing backfacing objects.

SEE ALSO
backface, frontface, pfDispList, pfGeoState, pfOverride, pfState

211

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfNewCBuffer, pfGetCBufferClassType, pfGetCurCBufferData, pfGetCBufferCMem, pfCBuffer-
Changed, pfInitCBuffer, pfCBufferConfig, pfGetCBufferConfig, pfCBufferFrame, pfGetCBuffer-
FrameCount, pfGetCurCBufferIndex, pfCurCBufferIndex, pfGetCBuffer, pfGetCMemFrame,
pfGetCMemCBuffer, pfGetCMemClassType — Create, initialize, manage pfCycleBuffer and pfCy-
cleMemory memory

FUNCTION SPECIFICATION

#include <Performer/pr.h>

pfCycleBuffer * pfNewCBuffer(size_t nbytes, void *arena);

pfType * pfGetCBufferClassType(void);
void * pfGetCurCBufferData(const pfCycleBuffer *cbuf);
pfCycleMemory *
pfGetCBufferCMem(const pfCycleBuffer *cbuf, int index);
void pfCBufferChanged(pfCycleBuffer *cbuf);
void pfInitCBuffer(pfCycleBuffer *cbuf, void *data);
int pfCBufferConfig(int numBulffers);
int pfGetCBufferConfig(void);
int pfCBufferFrame(void);
int pfGetCBufferFrameCount(void);
int pfGetCurCBufferIndex(void);
void pfCurCBufferIndex(int index);
pfCycleBuffer * pfGetCBuffer(void *data);
int pfGetCMemFrame(const pfCycleMemory *cmem);

pfCycleBuffer * pfGetCMemCBuffer(pfCycleMemory *cmem);
pfType * pfGetCMemClassType(void);

PARENT CLASS FUNCTIONS

212

The IRIS Performer class pfCycleBuffer is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfCycleBuffer. Casting
an object of class pfCycleBuffer to an object of class pfObject is taken care of automatically. This is also
true for casts to objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

IRIS Performer 2.0 libpr C Reference Pages pfCycleBuffer(3pf)

int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfCycleBuffer
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

Together, pfCycleBuffer and pfCycleMemory provide an automated mechanism for managing dynamic
data in a pipelined, multiprocessing environment. In this kind of environment, data is typically modified
at the head of the pipeline and must propagate down it in a "frame-accurate” fashion. For example,
assume the coordinates of a pfGeoSet are modified for facial animation. If a two-stage rendering pipeline
is used, then it is likely that the coordinates will be modified in the head of the pipeline, at the same time
they are being rendered in the tail of the pipeline. If only a single memory buffer is used, then the
pfGeoSet might be rendered when its coordinates are only partially updated, potentially resulting in
cracks in the facial mesh or other anomalies.

A solution to this problem is to use two memory buffers for the coordinates, one written to by the head
and one read from by the tail of the pipeline. In order for the new coordinates to propagate to the render-
ing stage we could copy the newly updated buffer into the renderer’s buffer during a handshake period
between the two stages. However, if the buffer is large, the copy time could become objectionable.
Another alternative is to simply swap pointers to the two buffers - the classic "double-buffering"
approach. This is much more efficient but requires that the contents of the buffer be completely updated
each frame. Otherwise the render stage will access a "stale" buffer that represents the facial expression at a
previous time so that the animation will appear to go backwards.

The pfCycleBuffer /pfCycleMemory combination supports efficient dynamic data management in an N-
stage pipeline. A pfCycleBuffer logically contains multiple pfCycleMemorys. Each process has a global
index which selects the currently active pfCycleMemory in each pfCycleBuffer. This index can be
advanced once a frame by pfCurCBufferIndex so that the buffers "cycle". By advancing the index
appropriately in each pipeline stage, dynamic data can be frame-accurately propagated down the

213

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C Reference Pages

214

pipeline.

While pfCycleBuffers can be used for generic dynamic data, a prominent use is as attribute arrays for
pfGeoSets. pfGSetAttr accepts pfCycleBuffer memory for attribute arrays and the pfGeoSet will index the
appropriate pfCycleMemory when rendering and intersection testing. Currently, pfGeoSets do not sup-
port pfCycleBuffer index lists.

pfNewCBuffer returns a pfCycleBuffer allocated out of arena or off the heap if arena is NULL. The argu-
ment nbytes specifies the length of each associated pfCycleMemory. pfCycleBuffers can be deleted with
pfDelete.

The number of pfCycleMemorys allocated for each pfCycleBuffer is specified by pfCBufferConfig which
is typically called only once at initialization time. pfGetCBufferConfig returns the number set by
pfCBufferConfig.

pfGetCBufferClassType returns the pfType* for the class pfCycleBuffer. The pfType* returned by
pfGetCBufferClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfCycleBuffer. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type
derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfGetCMemClassType returns the pfType* for the class pfCycleMemory.

pfInitCBuffer initializes all pfCycleMemorys of cbuf to the data referenced by data. data should be at least
of size nbytes.

pfCycleMemory is derived from pfMemory and also provides access to its raw data in the form of a void*
pointer through the pfGetData call. Thus pfCycleBuffer memory is arranged in a hierarchy: pfCy-
cleBuffer -> pfCycleMemory -> void* and various routines exist which convert one handle into another.
These routines are listed in the following table.

} pfCycleBuffer* } pfCycleMemory* } void*
pfCycleBuffer* NA pfGetCBufferCMem | pfGetCurCBufferData
pfCycleMemory* | pfGetCMemCBuffer | NA pfGetData
void* pfGetCBuffer pfGetMemory NA

The currently active pfCycleMemory portion of a pfCycleBuffer is selected by the global index specified
by pfCurCBufferIndex, and is returned by pfGetCurCBufferIndex. One can think of this in pseudocode
as

IRIS Performer 2.0 libpr C Reference Pages pfCycleBuffer(3pf)

current pfCycleMenory = pf Cycl eBuffer[pf Cur CBuf f er | ndex]

Thus one should always get a new handle to the currently active data whenever the global index changes.
Data modification that is incremental, (such as a +=.2) must retain a handle to the previous data for
proper results (current a = previous a + .2).

As mentioned above, cycling buffer pointers is efficient but requires that the buffers be completely
updated each frame. If the data at some time becomes static, it must then be copied into those buffers that
are out of date. pfCycleBuffer supports this copying automatically with pfCBufferChanged in conjunc-
tion with pfCBufferFrame. pfCBufferFrame advances a global frame counter that is used to frame-
stamp pfCycleMemorys. After cbuf has been updated, pfCBufferChanged frame-stamps cbuf with the
current frame count. Then if cbuf is not changed in a later frame, pfCBufferFrame will automatically
copy the latest pfCycleMemory into its currently active, sibling pfCycleMemory. This copying will con-
tinue until all selected pfCycleMemorys contain the latest data. pfGetCMemFrame returns the frame
stamp of cmem. pfGetCBufferFrameCount returns the current, global, pfCycleBuffer frame count.

The following are examples of pfCycleBuffer usage for libpr-only and libpf applications. When using
libpf, pfConfig and pfFrame call pfCBufferConfig and pfCBufferFrame respectively so the application
should not call the latter routines. In addition, libpf calls pfCurCBufferIndex in each process so that

pfCycleBuffer changes are properly propagated down the processing pipelines.

Example 1: libpr-only pfCycleBuffer example

pf Vec3 *prevVerts, *curVerts;
/*

* Configure nunber of pfCycleMenorys per pfCycleBuffer

*/

pf CBuf f er Conf i g(nunBuf f ers);

verts = pf NewCBuffer(sizeof (pfVec3) * numVerts, arena);
pf GSet Attr(gset, PFGS _COORD3, PFGS_PER VERTEX, verts, NULL);

whi | e(! done)
{
static int index = 0;
pf Cur CBuf f er | ndex(i ndex) ;

curVerts = pf Get Cur CBuf f er Dat a(verts);

/* Conpute new positions of nass-spring system?*/

215

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C Reference Pages

for (i=0; i<nunVerts; i++)
curVerts[i] = prevVerts[i] + netForceVector * deltaTine;

/* Indicate that 'verts' has changed */
pf CBuf f er Changed(verts);

prevVerts = curVerts;

/* Advance cycl ebuffer frane count */
pf CBuf f er Frame() ;

/* Advance buffer index. */
index = (index + 1) % nunBuffers;

Example 2: libpf pfCycleBuffer example

pf Vec3 *prevVerts, *curVerts;

pflnit();
pf Mul ti process(nphode);

/*

* This calls pfCBufferConfig() with the nunber of buffers
* appropriate to the multiprocessi ng node.

*/

pf Config();

verts = pf NewCBuffer(sizeof (pfVec3) * nunVerts, pfGetSharedArena());
pf GSet Attr (gset, PFGS_COORD3, PFGS_PER VERTEX, verts, NULL);

whi | e(! done)

{
curVerts = pfGet Cur CBuf ferData(verts);

/* Conput e new positions of nmass-spring system*/

for (i=0; i<nunVerts; i++)
curVerts[i] = prevVerts[i] + netForceVector * deltaTine;

216

IRIS Performer 2.0 libpr C Reference Pages pfCycleBuffer(3pf)

/* Indicate that 'verts' has changed */
pf CBuf f er Changed(verts);

prevVerts = curVerts;

/* This calls pfCBufferFrame() */
pf Frane() ;

NOTES
The global index which selects the currently active pfCycleMemory is unique for a given address space.
Specifically, share group processes like those spawned by sproc will share the same global index.

SEE ALSO
pfDelete, pfGetData, pfGetMemory, pfMemory

217

pfCylinder(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfMakeEmptyCyl, pfCylAroundSegs, pfCylAroundPts, pfCylAroundBoxes, pfCylAroundSpheres,
pfCylExtendByBox, pfCylExtendBySphere, pfCylExtendByCyl, pfCylContainsPt, pfCyllsectSeg,
pfOrthoXformCyl — Operations on cylinder definitions.

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void
void
void
void
void
void
void
void
int

int

void

pfMakeEmptyCyl(pfCylinder *cyl);

pfCylAroundSegs(pfCylinder *dst, const pfSeg **segs, int nseg);
pfCylAroundPts(pfCylinder *dst, const pfVec3 *pts, int npt);
pfCylAroundBoxes(pfCylinder *dst, const pfBox **boxes, int nbox);
pfCylAroundSpheres(pfCylinder *dst, const pfSphere **sphs, int nsph);
pfCylExtendByBox(pfCylinder *dst, const pfBox *box);
pfCylExtendBySphere(pfCylinder *dst, const pfSphere *sph);
pfCylExtendByCyl(pfCylinder *dst, const pfCylinder *cyl);
pfCylContainsPt(const pfCylinder* cyl, const pfVec3 pt);
pfCyllsectSeg(const pfCylinder* cyl, const pfSeg* seg, float* d1, float* d2);
pfOrthoXformCyl(pfCylinder *dst, const pfCylinder *cyl, const pfMatrix xform);

typedef struct

{
pf Vec3 center;
f1 oat r adi us;
pf Vec3 axi s;
fl oat hal f Lengt h;
} pfCylinder;
DESCRIPTION

218

A pfCylinder represents a cylinder of finite length. The routines listed here provide means of creating
and extending cylinders for use as bounding geometry around groups of line segments. The cylinder is
defined by its center, radius, axis and halfLength. The routines assume axis is a vector of unit length, other-
wise results are undefined. pfCylinder is a public struct whose data members center, radius, axis and hal-
fLength may be operated on directly.

pfMakeEmptyCyl sets dst so that it appears empty to other operations.

pfCylAroundSegs, pfCylAroundPts, pfCylAroundSpheres and pfCylAroundBoxes set dst to a cylinder

IRIS Performer 2.0 libpr C Reference Pages pfCylinder(3pf)

which contains a set of line segments, points, spheres or boxes, respectively. These routines are passed
the address of an array of pointers to the objects to be encompassed along with the number of objects.

pfCylExtendByBox, pfCylExtendBySphere, and pfCylExtendByCyl set dst to a cylinder which contains
both the pfSphere dst and the box box, the sphere sph or the cylinder cyl, respectively.

pfCylContainsPt returns TRUE or FALSE depending on whether the point pt is in the interior of the
specified pfCylinder.

pfCyllsectSeg intersects the line segment seg with the volume of the cylinder cyl. The possible return
values are:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfCylIsectSeg they contain the starting and ending positions
of the line segment (0 <= d1 <= d2 <= seg->length) intersected with the cyl.

pfOrthoXformCyl sets dst to the cylinder cy! transformed by the orthogonal transformation xform. dst =
cyl * xform. If xform is not an orthogonal transformation the results are undefined.

SEE ALSO
pfBox, pfCylinder, pfSeg, pfSphere, pfVec3

219

pfDataPool(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfCreateDPool, pfGetDPoolSize, pfGetDPoolName, pfReleaseDPool, pfAttachDPool, pfDPoolAlloc,
pfDPoolFree, pfDPoolFind, pfDPoolLock, pfDPoolSpinLock, pfDPoolUnlock, pfDPoolTest,
pfDPoolAttachAddr, pfGetDPoolAttachAddr, pfGetDPoolClassType — Create, control and allocate
from locked memory pools.

FUNCTION SPECIFICATION

#include <Performer/pr.h>

pfDataPool* pfCreateDPool(uint size, char *name);

int pfGetDPoolSize(pfDatalPool *dpool);
const char* pfGetDPoolName(pfDataPool* dpool);
int pfReleaseDPool(pfDataPool *dpool);

pfDataPool* pfAttachDPool(char *name);
volatile void* pfDPoolAlloc(pfDataPool *dpool, uint size, int id);

int pfDPoolFree(pfDataPool *dpool, void *dpmem);
volatile void* pfDPoolFind(pfDataPool *dpool, int id);

int pfDPoolLock(void *dpmem);

int pfDPoolSpinLock(void* dpmem, int spins, int block);
void pfDPoolUnlock(void *dpmem);

int pfDPoolTest(void *dpmem);

void pfDPoolAttachAddr(void *addr);

void* pfGetDPoolAttachAddr(void);

pfType * pfGetDPoolClassType(void);

PARENT CLASS FUNCTIONS

220

The IRIS Performer class pfDataPool is derived from the parent class pfObject, so each of these member

functions of class pfObject are also directly usable with objects of class pfDataPool. Casting an object of

class pfDataPool to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDataPool can
also be used with these functions designed for objects of class pfMemory.

IRIS Performer 2.0 libpr C Reference Pages pfDataPool(3pf)

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
dpool identifies a pfDataPool.
DESCRIPTION

A pfDataPool is similar to a shared memory malloc arena but adds the ability to lock/unlock pfDataPool
memory for multiprocessing applications. The datapool functions allow related or unrelated processes to
share data and provide a means for locking data blocks to eliminate data collision. These functions use
the shared arena functions (see usinit).

pfCreateDPool creates and returns a handle to a pfDataPool. size is the size in bytes of the pfDataPool.
name is the name of the pfDataPool and is also the name of the memory-mapped file used by the pfData-
Pool. This file is created in the directory "/usr/tmp" unless the environment variable PFTMPDIR is
defined, in which case the file is created in the directory named in the PFTMPDIR environment variable.
name should be unique among all pfDataPool names and only a single process should create a given
pfDataPool with name name.

pfGetDPoolClassType return the pfType* for the class pfDataPool. The pfType* returned is the same as
the pfType* returned by invoking pfGetType on any instance of class pfDataPool. Because IRIS Per-
former allows subclassing of built-in types, when decisions are made based on the type of an object, it is
usually better to use pfIsOfType to test if an object is of a type derived from a Performer type rather than
to test for strict equality of the pfType*’s.

pfGetDPoolSize and pfGetDPoolName return the size in bytes and the string name of dpool respectively.
pfAttachDPool allows the calling process to attach to a pfDataPool with name name that may have been
created by another process. A handle to the found pfDataPool is returned or NULL if it was not found or
could not be accessed.

pfReleaseDPool hides dpool so that no other processes may attach to it although all previously attached

processes may still access it. Additionally, a released pfDataPool will be removed from the file system

221

pfDataPool(3pf) IRIS Performer 2.0 libpr C Reference Pages

222

(deleted) once all attached processes exit. pfReleaseDPool returns TRUE if successful and FALSE other-
wise.

pfDPoolAlloc returns a pointer to a block of memory of size bytes that was allocated out of dpool or
NULL if there is not enough available memory in dpool. size is in bytes and can range from 1 to the size of
the pfDataPool. The actual size allocated is always rounded up to the next 16 byte boundary. id is an
integer id assigned to the block of memory that is used to reference it by pfDPoolFind. Block id’s should
be unique or the results are undefined.

pfDPoolFind returns a pointer to a block of pfDataPool memory which is identified by id or NULL if id
was not found. The calling process must be attached to the datapool memory.

pfDPoolFree frees the memory block previously allocated by pfDPoolAlloc and makes it available to be
reallocated.

pfDPoolLock, pfDPoolSpinLock and pfDPoolUnlock lock and unlock access to a block of pfDataPool
memory that was allocated by pfDPoolAlloc. When the lock cannot be acquired, pfDPoolLock yields the
processor causing the current thread to block until the lock is available. pfDPoolSpinLock provides
more control by accepting arguments to control the spinning and blocking. When block is FALSE,
pfDPoolSpinLock returns rather than yielding the processor if the lock cannot be acquired. spins
specifies the number of times to spin before yielding or returning. A spins value of -1 invokes the default,
currently 600. pfDPoolLock and pfDPoolSpinLock return 1 upon acquisition of the lock, 0 upon failure
to acquire the lock and -1 upon error. pfDPoolUnlock relinquishes the lock on the block of memory.

There are a fixed number of locks (currently 4096) allocated for each pfDataPool and a new lock is con-
sumed when an allocation in that pfDataPool is first locked. Subsequent releases and locks do not require
further lock allocations.

Example:

typedef struct SharedData
{

float a, b, c;
} SharedDat a;

pf Dat aPool *pool ;
Shar edDat a *dat a;

/* create a DataPool with roomfor 4 SharedData structures */
pool = pf Creat eDPool (4*si zeof (SharedData), "dpool For SharedDat a");

/* allocate SharedData structure in the data pool with | D=153 */
data = (Shar edDat a*) pf DPool Al | oc(pool, sizeof (SharedData), 153);

IRIS Performer 2.0 libpr C Reference Pages pfDataPool(3pf)

NOTES

/* wite to the DataPool w th cooperative nmutual exclusion */
pf DPool Lock((voi d*)dat a);

dat a- >a = 370.0;

data->b = 371.0;

dat a- >c = 407.0;

pf DPool Unl ock((voi d*)data);

pfDPoolLock attempts to acquire a hardware lock associated with dpmem. If another process has already
acquired the lock, the calling process will not return until the lock is acquired. Whether the process
blocks or spins is a function of the machine configuration. (see usconfig). pfDPoolUnlock unlocks
dpmem. A process which double-trips a lock by calling pfDPoolLock twice in succession will block until
the lock is unset by another process. A process may unlock a lock that was locked by a different process.
pfDPoolTest returns 0 if dpmem is unlocked and 1 if it is locked.

pfDataPool memory may be accessed without using the lock and unlock feature; however this defeats the
mutual exclusion feature provided by pfDataPool functions.

A data pool must occupy the same range of virtual memory addresses in all processes that attach to it.
pfAttachDPool will fail if something else has already been mapped into the required address space, e.g.
as a result of mmap or sbrk. To minimize this risk, pfCreateDPool tries to place new datapools above the
main shared memory arena created by pfInitArenas. The address at which the next datapool will be
created can be overridden by calling pfDPoolAttachAddr with the addr argument specifying the desired
address. An addr of NULL tells Performer to return to its normal placement efforts. The next attachment
address is returned by pfGetDPoolAttachAddr.

In the absence of a shared memory arena created by pfInitArenas, pfCreateDPool lets the kernel choose
the data pool placement.

Deleting a data pool with pfDelete or unmaps the data pool from virtual memory as well as deleting the
pfDataPool data structure.

When a datapool is created, a file is created in " /usr/tmp" or PFTMPDIR. The file name will end with
the string ".pfdpool". If pfReleaseDPool is not called to unlink the datapool, this file will remain in the
file system after the program exits, taking up disk space.

When using pfDataPools between unrelated processes, you can reduce memory conflicts by having the
application that uses more virtual memory create the datapool and having the smaller application attach
to the datapool before allocating memory that might cause conflicts. Alternately, if an address is known
to be safe for both applications, it can be specified using pfDPoolAttachAddr.

223

pfDataPool(3pf) IRIS Performer 2.0 libpr C Reference Pages

SEE ALSO
amalloc, pflnitArenas, usconfig, usinit, ussetlock, ustestlock, usunsetlock

224

IRIS Performer 2.0 libpr C Reference Pages pfDecal(3pf)

NAME
pfDecal, pfGetDecal - Set and get decal mode for drawing coplanar polygons

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfDecal(int mode);
int pfGetDecal(void);

PARAMETERS
mode is a symbolic constant specifying a decaling mode and is one of:

PFDECAL_OFF
Decaling is off

PFDECAL_BASE
Subsequent drawn geometry is considered to be ‘base’ geometry. Use the default decaling
mechanism.

PFDECAL_LAYER
Subsequent drawn geometry is considered to be ‘layered’ geometry. Use the default decaling
mechanism.

PFDECAL_BASE_FAST, PFDECAL_LAYER_FAST
Use a decaling mechanism appropriate to the hardware that produces the fastest, but not
necessarily the highest quality, decaling.

PFDECAL_BASE_HIGH_QUALITY, PFDECAL_LAYER_HIGH_QUALITY
Use a decaling mechanism appropriate to the hardware that produces the highest quality, but
not necessarily the fastest, decaling.

PFDECAL_BASE_DISPLACE, PFDECAL_LAYER_DISPLACE
Use the polygon displacement technique (displacepolygon in IRIS GL and
glPolygonOffsetEXT in OpenGL) to slightly displace the depth values of layer geometry
toward the eyepoint.

PFDECAL_BASE_DISPLACE, PFDECAL_LAYER_DISPLACE_AWAY
Use the polygon displacement technique (displacepolygon in IRIS GL and
glPolygonOffsetEXT in OpenGL) to slightly displace the depth values of layer geometry
away from the eyepoint.

PFDECAL_BASE_STENCIL, PFDECAL_LAYER_STENCIL
Use the stencil buffer technique (stencil in IRIS GL; glStencilFunc, glStencilOp, and
glEnable(GL_STENCIL_TEST) in OpenGL) to determine visual priority.

DESCRIPTION
In some cases, such as when drawing stripes on a runway, it is easier to draw coplanar polygons than it is
to model the geometry without coplanar faces. However, on Z-buffer based machines, coplanar polygons
can cause unwanted visual artifacts because the visual priorities of the coplanar polygons are subject to
the finite numerical precision of the graphics pipeline. This results in a "torn" appearance and "twinkling"

225

pfDecal(3pf) IRIS Performer 2.0 libpr C Reference Pages

226

from frame to frame.

Decaled geometry can be thought of as a stack where each layer has visual priority over the geometry
beneath it in the stack. An example of a 3 layer stack consists of stripes which are layered over a runway
which is layered over the ground. The bottommost layer is called the "base” while the other layers are
called "decals" or "layers". When using certain hardware mechanisms (PFDECAL_BASE_STENCIL) to
implement pfDecal, the "base" is special because it defines the depth values which are used to determine
layer visibility with respect to other scene geometry and which are written to the depth buffer.

Certain decaling mechanisms (currently only DISPLACE) require that each layer in the layer stack be
identified for proper rendering. The PFDECAL_LAYER_1 - PFDECAL_LAYER_7 tokens are provided
for this purpose and should be logically OR’ed into the layer mode, e.g., PFDECAL_LAYER_DISPLACE |
PFDECAL_LAYER_2. Note that the layer identifier is extracted from the mode as follows:

layerld = (node & PFDECAL_LAYER MASK) >> PFDECAL_LAYER_SHIFT;

pfDecal is used to draw visually correct coplanar polygons that are arranged as ‘base” and ‘layer’
polygons as shown here:

/* Prepare to draw base pol ygons */
pf Decal (PFDECAL_BASE_DI SPLACE) ;

/* draw base geonetry using IRI'S Performer or graphics library */

/* Prepare to draw first | ayer polygons */
pf Decal (PFDECAL_LAYER DI SPLACE) ;

/* draw | ayer geometry using IRI'S Performer or graphics library */

/* Prepare to draw second | ayer polygons */
pf Decal (PFDECAL_LAYER DI SPLACE | PFDECAL_LAYER 1);

/* draw | ayer geometry using |RI'S Performer or graphics library */

/* exit decal node */
pf Decal (PFDECAL_COFF) ;

IRIS Performer 2.0 libpr C Reference Pages pfDecal(3pf)

The different pfDecal modes offer quality-feature tradeoffs listed in the table below:

| DISPLACE | STENCIL | (DISPLACE | OFFSET)

Quality medium high high

Order not required | required not required
Coplanarity | notrequired | required not required
Containment | notrequired | required not required

The STENCIL mechanism offers the best image quality but at a performance cost since the base and layer
geometry must be rendered in strict order. When multisampling on RealityEngine, this mechanism also
significantly reduces pixel fill performance. An additional constraint is that STENCILed layers must be
coplanar or decal geometry may incorrectly show through base geometry. For proper results, each layer
in the "stack” must be completely contained within the boundaries of the base geometry.

The DISPLACE mechanism offers the best performance since layers can be sorted by graphics state,
because the displace call itself is usually faster than other mode changes, and because there is no pixel fill
rate penalty when it is in use. However, in IRIS GL the displace mechanism is only slope-based, so when
geometry becomes nearly perpendicular to the view, i.e., has little or no slope, the displacement is too lit-
tle to conclusively determine visibility. To solve this problem, logically OR-ing the
PFDECAL_LAYER_OFFSET bit into the layer mode will add a constant offset to the decal geometry. This
mode can be very expensive (RealityEngine) so when using it the database should be sorted so that all
layers are drawn at the same time, i.e., draw all PFEDECAL_LAYER 1 layers together etc. Both
DISPLACE mechanisms do not require that geometry within a single layer be coplanar. The main disad-
vantage is that decal geometry may incorrectly poke through other geometry due to the displacement of
the decal geometry.

The performance differences between STENCIL and DISPLACE modes are hardware-dependent so
some experimentation and benchmarking is required to determine the most suitable method for your
application.

pfDecal is a display-listable command. If a pfDispList has been opened by pfOpenDList, pfDecal will
not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDrawDList.

pfGetDecal returns the current decal mode.

The decaling mode state element is identified by the PESTATE_DECAL token. Use this token with

pfGStateMode to set the decaling mode of a pfGeoState and with pfOverride to override subsequent
decaling mode changes.

227

pfDecal(3pf) IRIS Performer 2.0 libpr C Reference Pages

EXAMPLES
Example 1:

/* Set up 'base’ pfCeoState */
pf GSt at eMbde(gst at e, PFSTATE_DECAL, PFDECAL_BASE) ;

/* Attach pfGeoState to pfCGeoSet */
pf GSet GSt at e(gset, gstate);

/* Draw base pfGeoState */
pf Dr awGSet (gset) ;

Example 2:

/* Override decaling node to PFDECAL_OFF */
pf Decal (PFDECAL_COFF) ;
pf Overri de(PFSTATE_DECAL, PF_ON);

NOTES
PFDECAL_BASE_FAST currently implies displacepolygon on machines that support this feature. The
use of displacements for rendering coplanar geometry can cause visual artifacts such as decals "Z
fighting" or "flimmering" when viewed perpendicularly and punching through geometry that should be
in front of them when viewed obliquely. In these cases, use PFEDECAL_LAYER_OFFSET, modify the
database should by cutting away overlapping polygons to eliminate the need for coplanar rendering or
use PFDECAL_BASE_HIGH_QUALITY or PFDECAL_BASE_STENCIL.

PFDECAL_BASE_STENCIL is implemented with stencil planes and requires the framebuffer to be
configured with at least one stencil bit (see stensize(3g) and mssize(3g)). The first stencil bit should be
considered as reserved for pfDecal.

When using PFDECAL_LAYER_OFFSET, the minimum depth buffer range set with Isetdepth must be
incremented an extra 1024 * max layers so the negative displacement of the layers does not wrap.
pfInitGfx does this automatically.

SEE ALSO
mssize, pfDispList, pfGStateMode, pfGeoState, pfOverride, pfState, pfInitGfx, stencil, stensize

228

IRIS Performer 2.0 libpr C Reference Pages pfDispList(3pf)

NAME
pfNewDList, pfGetDListClassType, pfOpenDList, pfResetDList, pfCloseDList, pfGetDListSize,
pfGetDListType, pfAddDListCmd, pfDListCallback, pfDrawDList, pfDrawGLODbj, pfGetCurDList —
Create and control a display list

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfDispList * pfNewDList(int type, int size, void *arena);
pfType* pfGetDListClassType(void);

void pfOpenDList(pfDispList *dlist);

void pfResetDList(pfDispList *dlist);

void pfCloseDList(void);

int pfGetDListSize(const pfDispList *dlist);

int pfGetDListType(const pfDispList *dlist);

void pfAddDListCmd(int cmd);

void pfDListCallback(pfDListFuncType callback, int nbytes, void *data);
int pfDrawDList(pfDispList *dlist);

void pfDrawGLObj(GLOBJECT obj);

pfDispList * pfGetCurDList(void);

typedef void (*pfDLi st FuncType)(void *data);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfDispList is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfDispList. Casting an object of
class pfDispList to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);

void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDispList can
also be used with these functions designed for objects of class pfMemory.

229

pfDispList(3pf) IRIS Performer 2.0 libpr C Reference Pages

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

dlist identifies a pfDispList.

DESCRIPTION

230

A pfDispList is a reusable display list that captures certain libpr commands. pfNewDList creates and
returns a handle to a new pfDispList. The arguments specify the type and size of the display list.
pfDispLists can be deleted with pfDelete.

type is a symbolic token that specifies a type of pfDispList and is either PFDL_FLAT or PFDL_RING. A
PFDL_FLAT display list is a linear list of commands and data while a PFDL_RING is configured as a
ring buffer (FIFO). A ring buffer is provided for multiprocessed paired producer and consumer applica-
tions where the producer writes to the buffer while the consumer simultaneously reads from, and draws
the buffer. IRIS Performer automatically ensures ring buffer consistency by providing synchronization
and mutual exclusion to processes on ring buffer full or empty conditions. pfGetDListType returns the
type of dlist.

pfGetDListClassType returns the pfType* for the class pfDispList. The pfType* returned by
pfGetDListClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfDispList. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfTypeto test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

The size argument to pfNewDList gives a hint in words about how much storage the pfDispList will
require. If more storage is required, IRIS Performer will automatically grow the pfDispList by size words
at a time. arena specifies the malloc arena out of which the pfDispList is allocated or NULL for allocation
off the heap. pfGetDListSize returns the size of dlist that was requested by pfNewDList, not its current
si1ze.

pfOpenDList opens dlist for appending and puts the calling process into display list mode. When in
display list mode, display-listable libpr commands are recorded in the currently active display list rather

IRIS Performer 2.0 libpr C Reference Pages pfDispList(3pf)

than being executed immediately. libpr commands that may be recorded in a pfDispList say so in their
respective man pages. Only one pfDispList may be open at a time. pfGetCurDList returns the currently
active display list or NULL if the calling process is in immediate mode.

The currently active pfDispList is a global value but is stored in the PRDA process header so that share
group processes (see sproc) need not share the same currently active pfDispList.

Each pfDispList maintains head and tail pointers that indicate where in the list commands are to be
appended and evaluated respectively. Commands entered into the display list are appended after the
head pointer and increment the head pointer appropriately. Commands drawn by pfDrawDList incre-
ment the tail pointer but do not remove commands from the list. In the PFDL_RING case, IRIS Per-
former ensures that the tail pointer does not overrun the head pointer and vice versa by spinning
processes.

Both head and tail pointers are reset to the beginning of the pfDispList by pfResetDList so that any addi-
tions to the current pfDispList will overwrite previously entered commands. The tail pointers of flat lists
are automatically reset by pfDrawDList when the tail pointer reaches the head pointer so that the
pfDispList may be rendered again from the beginning.

pfCloseDList ‘closes’ the active pfDispList and returns the application to immediate mode.

For PFDL_FLAT display lists, pfDrawDList traverses dlist from the tail to the head pointer, and then
resets the tail pointer to the beginning of dlist. If the pfDispList is a PFDL_RING, pfDrawDList will con-
tinually draw the display list, returning control to the application only on PFDL_END_OF_FRAME or
PFDL_RETURN commands (see pfAddDListCmd). After returning, a subsequent call to pfDrawDList
will restart drawing from the previous position in the list.

pfDrawDList interprets the commands and data in dlist and executes libpr state routines that in turn exe-
cute graphics library commands that send command tokens down the graphics pipeline. pfDrawDList is
itself a display-listable command provided dlist is not the currently active pfDispList.

The following example draws a pfGeoSet into a pfDispList and then subsequently draws the pfDispList:
/* Open DList and append GSet */
pf OpenDLi st (dlist);
pf Enabl e(PFEN_W REFRAME) ;
pf Dr awGSet (gset) ;

/* O ose DList and return to i nmedi ate node */
pf C oseDLi st ();

/* Draw 'gset’ in wirefrane */
pf DrawDLi st (dlist);

231

pfDispList(3pf) IRIS Performer 2.0 libpr C Reference Pages

pfDListCallback allows custom rendering in the middle of a display list by putting a function callback
and data in the current display list. Up to 64 bytes of user-data may be copied into the display list. nbytes
specifies the length of data that data references. When a callback token is encountered while drawing a
display list, the function callback will be called with a pointer to the user data that is cached in the display
list. A callback may call pfPushState upon entering and pfPopState when leaving to ensure that any
state changes made in the callback will be not inherited by subsequent geometry.

pfAddDListCmd adds cmd to the currently active display list. cmd is one of the following symbolic
tokens, both of which return control to the application but indicate different situations.
PFDL_RETURN
PFDL_END_OF_FRAME

pfDrawGLODj will directly draw the graphics library display list object identified by obj (via callobj in
IRIS GL or glCallList in OpenGL) if there is no active pfDispList. If there is an open pfDispList, then
pfDrawGLODbj will simply add the identifier and command to the active pfDispList.

IRIS Performer optimizes pfDispList’s when they are being built by eliminating redundant mode changes
and by unwinding pfGeoStates into their component parts. As a result, modifications to objects after they
are placed in a pfDispList may be ignored by the pfDispList. To be safe, do not modify any objects that
were placed in one or more pfDispLists.

Here is an example of this phenomenon:

/* Attach gstateO to gset */
pf GSet GSt at e(gset, gstateO);

/* Open dlist as current pfDispList */
pf QpenDLi st (dlist);
pf Dr awGSet (gset) ;

/* Return to i medi ate node */
pf A oseDLi st ();

/* Attach gstatel to gset */
pf GSet GSt at e(gset, gstatel);

/*

* dlist will use gstate0 and not be aware that gset was nodified to
* use gstatel.

*/

pf DrawDLi st (dlist);

232

IRIS Performer 2.0 libpr C Reference Pages pfDispList(3pf)

SEE ALSO
pfDelete, pfGeoState, pfObject, pfState, callobj, sproc

233

pfEnable(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME
pfEnable, pfDisable, pfGetEnable — Enable and disable graphics modes.

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfEnable(int mode);
void pfDisable(int mode);
int pfGetEnable(int mode);

PARAMETERS
mode is a symbolic constant that specifies the enable target which is to be enabled or disabled. The
enable targets are:

PFEN_LIGHTING Hardware lighting

PFEN_TEXTURE Hardware texturing

PFEN_FOG Hardware fogging

PFEN_WIREFRAME Wireframe display mode

PFEN_COLORTABLE Colortable display mode

PFEN_HIGHLIGHTING Highlight display mode

PFEN_LPOINTSTATE Light point mode

PFEN_TEXGEN Automatic texture coordinate generation
DESCRIPTION

pfEnable and pfDisable enable and disable various graphics library and IRIS Performer modes. By
default all modes listed above are disabled, i.e., when a pfState is first created, its enable modes are all
PF_OFF.

pfGetEnable returns the enable status of the indicatedmode.

234

IRIS Performer 2.0 libpr C Reference Pages pfEnable(3pf)

Each pfEnable/pfDisable mode token corresponds to a PFSTATE_ token that identifies the state element
and is used in pfGeoState routines and pfOverride. The PFEN_ / PFSTATE_ correspondence is illus-
trated in the following table:

Enable Token State Token
PFEN_LIGHTING PFSTATE_ENLIGHTING
PFEN_TEXTURE PFSTATE_ENTEXTURE
PFEN_FOG PFSTATE_ENFOG
PFEN_WIREFRAME PFSTATE_ENWIREFRAME

PFEN_COLORTABLE PFSTATE_ENCOLORTABLE
PFEN_HIGHLIGHTING | PFSTATE_ENHIGHLIGHTING
PFEN_LPOINTSTATE PFSTATE_ENLPOINTSTATE
PFEN_TEXGEN PFSTATE_ENTEXGEN

Once enabled or disabled, these mode changes will not take effect until their associated IRIS Performer
state elements are applied. The following table lists the modes, state objects, and provoking activation
routine for each mode.

Enable Mode Required State | Activation Routine
PFEN_LIGHTING pfLightModel | pfApplyLModel
pfMaterial
pfLight
normals

PFEN_TEXTURE pfTexture pfApplyTex
pfTexEnv

texture coordinates
PFEN_FOG pfFog pfApplyFog
PFEN_COLORTABLE pfColortable pfApplyCtab
PFEN_HIGHLIGHTING | pfHighlight pfApplyHlight
PFEN_LPOINTSTATE | pfLPointState | pfApplyLPState

PFEN_TEXGEN pfTexGen pfApplyTGen

PFEN_WIREFRAME none none

Use the PFSTATE_ tokens with pfGStateMode to set the enable modes of a pfGeoState and with
pfOverride to override subsequent enable mode changes:

235

pfEnable(3pf) IRIS Performer 2.0 libpr C Reference Pages

Example 1:

/* Set up textured pfCGeoState */

pf GSt at eMbde(gst at e, PFSTATE_ENTEXTURE, PF_ON);
pf GStateAttr(gstate, PFSTATE TEXTURE, tex);

pf GStateAttr(gstate, PFSTATE _TEXENV, texEnv);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Draw textured gset */
pf Dr awGSet (gset) ;

Example 2:

/* Override lighting and texturing enabl e nodes to PF_OFF */
pf Di sabl e(PFEN_LI GHTI NG) ;

pf Di sabl e(PFEN_TEXTURE) ;

pf Overri de(PFSTATE_ENLI GHTI NG | PFSTATE_ENTEXTURE, PF_ON);

pfEnable and pfDisable are display-listable commands. If a pfDispList has been opened by
pfOpenDList, then pfEnable and pfDisable will not have immediate effect. They will be captured by the
pfDispList and will take effect when that pfDispList is later drawn with pfDrawDList.

pfBasicState disables all of the above modes.

notes When lighting is disabled, Imcolor mode is set to LMC_COLOR which effectively turns it off. Then
when enabled, the Imcolor mode is restored to that of the current front material if there is one.

SEE ALSO
pfDispList, pfGeoSet, pfGeoState, pfOverride, pfState

236

IRIS Performer 2.0 libpr C Reference Pages pfFPConfig(3pf)

NAME
pfFPConfig, pfGetFPConfig — Specify floating-point tolerances and exception handling

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfFPConfig(int which, float val);
float pfGetFPConfig(int which);

DESCRIPTION
pfFPConfig allows you to set some tolerances used by the IRIS Performer math routines. The which field
specifies which floating point attribute is to be set. val specifies the value that attribute should take. Sup-
ported values are:

PFFP_UNIT_ROUNDOFF
Specifies the tolerance applied to testing for equality, usually scaled by the magnitude of the
operand. The default is 1.0e-5. For performance reasons, the appropriately scaled tolerance
is not used pervasively.

PFFP_ZERO_THRESH
Specifies how large in magnitude a floating point number can be before it should be con-
sidered non-zero. The default is 1.0e-15.

PFFP_TRAP_FPES
Enables and disables trapping of floating point exceptions with values 1.0 and 0.0, respec-
tively. Normally, these floating point errors are handled through kernel exceptions or by
the floating point hardware, and may be nearly invisible to an application except from per-
formance degradation, sometimes very significant, which they can cause. When enabled,
pfNotify events are generated for the floating point exceptions mentioned above and mes-
sages displayed or passed to the user supplied pfNotify handler.

An application can also turn on floating point exception handling via the general Performer pfNotify
notification mechanism. Calling pfNotifyLevel with the PENFY_FP_DEBUG notification level configures
pfFPConfig to enable exceptions. Alternately, an appropriate setting of the environment variable
PFNFYLEVEL will enable this processing as well. Use of the pfNotifyLevel function is preferable because
then the PENFYLEVEL environment variable can be used when necessary to override the specification.

BUGS
Enabling floating point exceptions may cause the values returned from exceptions to be different from the
system defaults. Once a PFNFY_FP_INVALID exception has been reported, all subsequent exceptions
will generate incorrect return values.

SEE ALSO
handle_sigfpes, pfNotifyLevel

237

pfFeature(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME
pfQueryFeature, pfMQueryFeature, pfFeature — Graphics feature availability routines

FUNCTION SPECIFICATION
#include <Performer/pr.h>
int pfQueryFeature(int which, int *dst);
int pfMQueryFeature(int *which, int *dst);
void pfFeature(int which, int val);

DESCRIPTION
IRIS Performer make runtime determinations regarding the existence and relative speed of certain graph-
ics features for the current operating graphics library (IRIS GL or OpenGL) on the current hardware
configuration. These functions provide the ability to both query these results, and to override the
existence of a given feature. IRIS Performer makes use of the following useful routines in determining its

information: getgdesc(3g), XGetVisualIlnfo(3X11), glGetString(3g), gIXQueryExtensionsString(3g), and
getinvent(3).

pfQueryFeature takes a PFQFTR_ token and returns in dst a token that indicates whether or not that
feature exists and whether the feature is reasonable to use in a real-time application. The return value is
the number of bytes successfully written. The tokens are documented below and special note is made
where performance is commonly an issue. These pfQueryFeature return values will be one of:

PFQFTR_FALSE
indicates that the feature is not available on the current hardware configuration.

PFQFTR_TRUE
indicates that the feature is available on the current hardware configuration.

PFQFTR_FAST
indicates that the feature is reasonable for real-time on the current hardware
configuration.

The pfQueryFeature tokens must be one of:

PFQFTR_VSYNC
queries the status of the graphics video clock. See the pfInitVClock reference page for
more information.

PFQFTR_VSYNC_SET
queries the write-ability of the graphics video clock. See the pfInitVClock reference page
for more information.

PFQFTR_GANGDRAW
queries the availability of "gang" swapbuffers where multiple graphics pipelines may be
forced to swap framebuffers simultaneously. See the pfChanShare reference page for
more information.

238

IRIS Performer 2.0 libpr C Reference Pages pfFeature(3pf)

PFQFTR_HYPERPIPE
queries the support for hyperpipe hardware. See the pfHyperpipe reference page for
more information.

PFQFTR_STEREO_IN_WINDOW
queries the support for doing stereo with multiple buffers in a single window. See the
IRIS GL stereobuffer(3g) and OpenGL glDrawBufferMode(3g) reference pages for more
information.

PFQFTR_MULTISAMPLE
queries the support and relative performance of multisampled antialiasing. See the
pfAntialias reference page for more information.

PFQFTR_MULTISAMPLE_TRANSP
queries the support and relative performance of multisampled transparency. See the
pfTransparency reference page for more information.

PFQFTR_MULTISAMPLE_ROUND_POINTS
queries the support and relative performance of round multisampled light points.

PFQFTR_MULTISAMPLE_STENCIL
queries the support and relative performance of multisampled stencil.

PFQFTR_COLOR_ABGR
queries the support and relative performance of image data in the IRIS GL style ABGR
format. This format may be slow or unsupported in some OpenGL implementations.
This is relevant to the OpenGL glDrawPixels(3g) command.

PFQFTR_DISPLACE_POLYGON
queries the support for polygon displacement in screen Z used for doing decals. See the
pfDecal reference page for more information.

PFQFTR_POLYMODE
queries the support for polygon fill modes. See the IRIS GL polymode(3g) and OpenGL
glPolygonMode(3g) reference pages for more information.

PFQFTR_TRANSPARENCY
queries the support for and relative performance of transparency.

PFQFTR_FOG_SPLINE
queries the support for spline fog. See the pfFog reference page for more information.

PFQFTR_ALPHA_FUNC
queries the support for alpha functions. See the pfAlphaFunc reference page and the
IRIS GL blendfunction(3g) and OpenGL glBlendFunc(3g) reference pages for more
information.

239

pfFeature(3pf) IRIS Performer 2.0 libpr C Reference Pages

240

PFQFTR_ALPHA_FUNC_COMPARE_REF
queries the support for comparative alpha functions. Some graphics platforms under
IRIS GL do not support the comparison alpha functions. See the pfAlphaFunc reference
page for more information.

PFQFTR_BLENDCOLOR
queries the support for specification of a blend color to use with alpha functions. Refer to
the IRIS GL blendcolor(3g) and the OpenGL extension glBlendColor(3g) for more infor-
mation.

PFQFTR_BLEND_FUNC_SUBTRACT
queries the support for additional differencing alpha blending functions.

PFQFTR_BLEND_FUNC_MINMAX
queries the support for additional min/max alpha blending functions.

PFQFTR_TEXTURE
queries the support and relative performance of texture mapping.

PFQFTR_TEXTURE_16BIT_IFMTS
queries the support and relative performance of 16-bit texel formats. These formats take
up less texture memory and can provide a significant performance improvement at the
cost of some loss of image quality. See the pfTexFormat reference page for more infor-
mation.

PFQFTR_TEXTURE_SUBTEXTURE
queries the support for dynamic loading of parts or all of textures after the texture has
been defined.

PFQFTR_TEXTURE_TRILINEAR
queries the support for trilinear MIPmapping for minification filtering of texture maps.

PFQFTR_TEXTURE_DETAIL
queries the support for detailing of magnified texture maps. See the pfTexFilter and
pfTexDetail reference pages for more information.

PFQFTR_TEXTURE_SHARPEN
queries the support for sharpening of magnified texture maps. See the pfTexFilter refer-
ence page for more information.

PFQFTR_TEXTURE_3D
queries the support for three-dimensional textures.

PFQFTR_TEXTURE_PROJECTIVE
queries the support for projected textures.

PFQFTR_TEXTURE_MINFILTER_BILINEAR_CMP
queries the support for special bilinear LEQUAL/GEQUAL minification filters for doing
real-time shadows.

IRIS Performer 2.0 libpr C Reference Pages pfFeature(3pf)

PFQFTR_READ_MSDEPTH_BUFFER
queries the support for reading the multisample depth buffer.

PFQFTR_COPY_MSDEPTH_BUFFER
queries the support for copying to/from the multisample depth buffer.

PFQFTR_READ_TEXTURE_MEMORY
queries the support for reading texture memory.

PFQFTR_COPY_TEXTURE_MEMORY
queries the support for copying to/from texture memory.

PFQFTR_MTL_CMODE
queries the support and speed of material color mode. On most graphics platforms, this
mode yields significant performance improvements for management of multiple materi-
als. However, on some older low-end platforms, it can have additional cost and should
not be used if multiple materials are not in used.

PFQFTR_LMODEL_ATTENUATION
queries the support for light attenuation on the light model. This is IRIS GL style light
attenuation. See the IRIS GL Imdef(3g) reference page for more information.

PFQFTR_LIGHT_ATTENUATION
queries the support for light attenuation on the light. This is OpenGL style light attenua-
tion. See the OpenGL glLightModel(3g) reference page for more information.

PFQFTR_LIGHT_CLR_SPECULAR
queries the support for specular color components on lights. This is only supported in
OpenGL. See the OpenGL glLight(3g) reference page for more information.

pfMQueryFeature takes an NULL-terminated array of query tokens and a destination buffer and will do
multiple queries. The return value is the number of bytes successfully written. This routine is more
efficient than pfQueryFeature if multiple queries are desired.

pfFeature takes a PFFTR_ token which and a boolean value val and allows the overriding of IRIS
Performer’s determination of the existence of certain features. This can force IRIS Performer to use, or to
stop using, a specific feature. This is useful for running on new graphics platforms that may have con-
siderations that IRIS Performer did not predict, or for making one machine behave like another for a
specific feature. Note that if a particular feature is forced on and it happens to require hardware support
that does not exist, the program may not run. The features that may be set are:

PFFTR_VSYNC
PFFTR_VSYNC_SET
PFFTR_MULTISAMPLE

241

pfFeature(3pf) IRIS Performer 2.0 libpr C Reference Pages

PFFTR_MULTISAMPLE_ROUND_POINT
PFFTR_ALPHA_FUNC_ALL
PFFTR_DISPLACE_POLYGON
PFFTR_POLYMODE
PFFTR_FOG_SPLINE
PFFTR_GANGDRAW
PFFTR_HYPERPIPE
PFFTR_FAST_TRANSPARENCY
PFFTR_TEXTURE_FAST
PFFTR_TEXTURE_16BIT_IFMTS
PFFTR_TEXTURE_SUBTEXTURE
PFFTR_TEXTURE_3D
PFFTR_TEXTURE_DETAIL
PFFTR_TEXTURE_SHARPEN
PFFTR_TEXTURE_OBJECT
PFFTR_TEXTURE_PROJECTIVE
PFFTR_TEXTURE_TRILINEAR

NOTES
pfQueryWin can be used to query the configuration parameters of a given pfWindow. pfQuerySys can
be used to query the specific configuration parameters of the current hardware configuration.

SEE ALSO
getgdesc, XGetVisuallnfo, glGetString, glXQueryExtensionsString, getinvent

242

IRIS Performer 2.0 libpr C Reference Pages pfFile(3pf)

NAME

pfCreateFile, pfOpenFile, pfCloseFile, pfReadFile, pfSeekFile, pfWriteFile, pfGetFileStatus, pfGet-
FileClassType — Asynchronous real-time file access operations

FUNCTION SPECIFICATION

#include
pfFile *
pfFile *
int

int

off_t

int

int

pfType *

PARENT CLASS
The IRIS

<Performer/pr.h>

pfCreateFile(char *path, mode_t mode);
pfOpenFile(char *fname, int oflag,
pfCloseFile(pfFile *file);

pfReadFile(pfFile *file, char *buf, int nbyte);
pfSeekFile(pfFile *file, off_t off, int whence);
pfWriteFile(pfFile *file, char *buf, int nbyte);
pfGetFileStatus(const pfFile *file, int attr);

pfGetFileClassType(void);

FUNCTIONS
Performer class pfFile is derived from the parent class pfObject, so each of these member func-

tions of class pfObject are also directly usable with objects of class pfFile. Casting an object of class

pfFile to
ancestor

an object of class pfObject is taken care of automatically. This is also true for casts to objects of
classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFile can also
be used with these functions designed for objects of class pfMemory.

pfType *
int
int

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfType *type);
pflsExactType(const void *ptr, pfType *type);

const char * pfGetTypeName(const void *ptr);

int
int
int
int

pfRef(void *ptr);
pfUnref(void *ptr);
pfUnrefDelete(void *ptr);
pfGetRef(const void *ptr);

243

pfFile(3pf) IRIS Performer 2.0 libpr C Reference Pages

int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

244

The functions pfCreateFile, pfOpenFile, pfCloseFile, pfReadFile, pfWriteFile, and pfSeekFile operate
in an identical fashion and take similar arguments as the standard UNIX file I/O functions: creat, open,
close, read, write, and Iseek. The difference is that they return immediately without blocking while the
physical file-system access operation completes and also that instead of an integer file descriptor, a pfFile
handle is used. IRIS Performer supports a maximum of PFRTF_MAXREQ pending file I/ O requests.

When called, pfOpenFile and pfCreateFile create a new process using the sproc mechanism that
manages the file operations asynchronously with the calling process. If the calling process has super-user
privileges, the new process will assign itself to processor 0, and lower its priority. The spawned process
will exit when either its pfFile is closed via pfCloseFile or when its parent process (that which called
pfOpenfFile or pfCreateFile) exits.

pfCloseFile closes the open file and terminates the I/O process created by pfOpenFile or pfCreateFile.
pfCloseFile does not free file - use pfDelete for that purpose.

pfGetFileClassType returns the pfType* for the class pfFile. The pfType* returned by
pfGetFileClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfFile. Because IRIS Performer allows subclassing of built-in types, when decisions are made based on
the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from a
Performer type rather than to test for strict equality of the pfType*’s.

pfGetFileStatus returns the status of file corresponding to attr which may be one of:

PFRTF_STATUS Return 0 if last action complete and no other actions pending. 1 if action in
progress, and -1 if last action failed.

PFRTF_CMD Return the current (or last) file I/O action, one of the following:
PFRTF_NOACTION
PFRTF_CREATE
PFRTF_OPEN
PFRTF_READ
PFRTF_WRITE
PFRTF_SEEK
PFRTF_CLOSE
PFRTF_PENDING

IRIS Performer 2.0 libpr C Reference Pages pfFile(3pf)

PFRTF_BYTES Return the number of bytes from the last read or write action.
PFRTF_OFFSET Return the offset from the last seek action.
PFRTF_PID Return the process id of the I/O process associated with file.

NOTES
The need for the pfFile facility has been largely superseded by the IRIX 5 asynchronous 1/0 facility.
These capabilities are accessible through aio_cancel, aio_error, aio_init, aio_read, aio_return,
aio_suspend, and aio_write. Users are encouraged to use the aio functions for performing asynchronous
file operations in programs now in development.

The calling process should always call pfCloseFile to close a file before exiting. If the calling program
exits without doing so, the file will not be closed. Such files can be challenging to remove from the file
system.

SEE ALSO
access, aio_cancel, aio_error, aio_init, aio_read, aio_return, aio_suspend, aio_write, close, creat, fentl,
Iseek, open, read, write

245

pfFilePath(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfFilePath, pfGetFilePath, pfFindFile — Locate files using a search path.

FUNCTION SPECIFICATION

#include <unistd.h>

#include <Performer/pr.h>

void pfFilePath(const char *path);

const char * pfGetFilePath(void);

int pfFindFile(const char *file, char path[PF_MAXSTRING], int amode);
DESCRIPTION

246

pfFilePath specifies one or more search path locations. These locations are directories to be searched for
data files by IRIS Performer applications. This information is used by the pfFindFile function. The path
argument to pfFilePath is a colon-separated list of directory pathnames similar to the PATH environment
variable. Here is a simple example:

pf Fi | ePat h("/usr/bin:/usr/sbin:/usr/local/bin");

pfGetFilePath returns the path list set using pfFilePath or NULL if no path has yet been set. The string
returned is identical in format to the one set via pfFilePath; each of the directory names is colon
separated.

pfFindFile attempts to find file amongst the paths set in the environment variable PFPATH and by
pfFilePath. It also tests the file’s access mode against the amode argument. IRIS Performer routines which
access files use pfFindFile.

The PFPATH environment variable is interpreted in the same format used for the pfFilePath. A C-shell
example that specifies the directories "/usr/data" and "/usr/share/Performer/data" is:

setenv PFPATH "/usr/data:/usr/sharel/ Perfornmner/data"

The search logic used by pfFindFile is this:

1. First the file is sought exactly as named by file. If it exists and passes the subsequent access
test described below, then file will be returned in the path argument.

2. If the file was not found or was not accessible, then each of the locations defined by the
PFPATH environment variable are prepended to the file argument and tested. If it exists
and passes the subsequent access test described below, then the complete path name will be
returned in the path argument.

IRIS Performer 2.0 libpr C Reference Pages pfFilePath(3pf)

NOTES

3. If the file has still not been successfully located, then each of the locations defined by the
most recent call to pfFilePath will be prepended to the file argument and tested. If it exists
and passes the subsequent access test described below, then the complete path name will be
returned in the path argument.

4. If all of these efforts are fruitless, then pfFindFile will give up and return a NULL string in
the path argument.

The mere existence of file in one of the indicated directories is not sufficient, the file must also be accessi-
ble in the access mode defined by amode. This mode is a bitfield composed by OR-ing together the per-
mission attributes defined in <unistd.h> and listed in the following table:

Mode Token | Mode Value Action
R_OK 0x4 Read permission
W_OK 0x2 Write permission
X_OK 0x1 Execute and search
F_ OK 0x0 Existence of file

If the bits set in amode are also set in the file’s access permission mode, then the complete path is copied
into path and TRUE is returned indicating success. If the access modes are not similar, then the search
continues until there are no more paths to search and FALSE is returned indicating failure.

pfCreateFile and pfOpenFile do not use pfFindFile. This is because the search implied can be unpredict-
ably slow when remote directories are present in the search path.

SEE ALSO

access

247

pfFog(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfNewFog, pfGetFogClassType, pfFogType, pfGetFogType, pfFogColor, pfGetFogColor, pfFogRange,
pfGetFogRange, pfFogOffsets, pfGetFogOffsets, pfFogRamp, pfGetFogRamp, pfGetFogDensity,
pfApplyFog, pfGetCurFog — Create, modify and query fog definition

FUNCTION SPECIFICATION

#include <Performer/pr.h>

pfFog* pfNewFog(void *arena);

pfType* pfGetFogClassType(void);

void pfFogType(pfFog *fog, int type);

int pfGetFogType(const pfFog *fog);

void pfFogColor(pfFog *fog, float r, float g, float b);

void pfGetFogColor(const pfFog *fog, float *1, float *g, float *b);

void pfFogRange(pfFog *fog, float onset, float opaque);

void pfGetFogRange(const pfFog *fog, float *onset, float *opaque);

void pfFogOffsets(pfFog *fog, float onset, float opaque);

void pfGetFogOffsets(const pfFog *fog, float *onset, float *opaque);

void pfFogRamp(pfFog *fog, int points, float *range, float *density, float bias);
void pfGetFogRamp(const pfFog *fog, int *points, float *range, float *density, float *bias);
float pfGetFogDensity(const pfFog *fog, float range);

void pfApplyFog(pfFog *fog);

pfFog* pfGetCurFog(void);

PARENT CLASS FUNCTIONS

248

The IRIS Performer class pfFog is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfFog. Casting an object of class
pfFog to an object of class pfObject is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFog can also
be used with these functions designed for objects of class pfMemory.

IRIS Performer 2.0 libpr C Reference Pages pfFog(3pf)

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

pfFog is used to simulate atmospheric phenomena such as fog and haze and for depthcueing. The fog
color is blended with the color that is computed for rendered geometry based on the geometry’s range
from the eyepoint. Fog effects may be computed at geometric vertices and then interpolated or computed
precisely at each individual pixel.

pfNewFog creates and returns a handle to a new pfFog. arena specifies a malloc arena out of which the
pfFog is allocated or NULL for allocation from the calling process” heap. pfFogs can be deleted with
pfDelete.

pfGetFogClassType returns the pfType* for the class pfFog. The pfType* returned by
pfGetFogClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfFog. When decisions are made based on the type of an object, it is usually better to use pfIsOfTypeto
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfFogType sets the fog type to be used when this pfFog is applied. type must be one of:
PFFOG_VTX_LIN
PFFOG_VTX_EXP
PFFOG_VTX_EXP2
PFFOG_PIX_LIN
PFFOG_PIX_EXP
PFFOG_PIX_EXP2
PFFOG_PIX_SPLINE

Detailed descriptions of these fog types are in the IRIS GL fogvertex(3G) and the OpenGL glFog(3G)
reference pages, with the exception of PFFOG_PIX_SPLINE. This is an advanced fog type that allows the
user to define fog densities as a PEFOG_MAXPOINTS point spline curve as described in pfFogRamp.
When fog type PEFOG_PIX_SPLINE is specified the internal fog ramp table will be recomputed using the

249

pfFog(3pf) IRIS Performer 2.0 libpr C Reference Pages

250

current values of fog range, fog offsets, and fog ramp. The default fog type is PFFOG_PIX_EXP2.
pfGetFogType returns the fog type as its value.

pfFogColor specifies the color to be used as the fog blend color. The default fog color is white, whose
RGB value is [1.0, 1.0, 1.0]. pfGetFogColor returns the fog color in the variables specified.

pfFogRange sets the onset and opaque ranges in world coordinate distances. The onset is the range at
which fog blending first occurs. The opaque range is the distance at which scene elements are completely
opaque and appear as the fog color. For the fog types PFFOG_VTX_EXP, PFFOG_VTX_EXP2,
PFFOG_PIX_EXP, PFFOG_PIX_EXP2 only the opaque range is significant; the onset range is always 0.0
in world coordinates. If the fog type is PFFOG_PIX_SPLINE then the internal fog ramp table will be
recomputed whenever the ranges are specified. pfGetFogRange returns the current fog range values.

pfFogOffsets sets the individual onset and opaque range offsets used to modify the fog range. These
offsets are added to the fog range values when the pfFog is applied. Calling this function with offsets of
zero causes the ranges defined by pfFogRange to be used directly. If the fog type is
PFFOG_PIX_SPLINE then the internal fog ramp table will be recomputed whenever the offsets are
specified. pfGetFogOffsets returns the current fog offset values.

pfFogRamp defines the fog density curve using a table rather than as an algebraic function of range. The
fog ramp table is only used with the PFFOG_PIX_SPLINE fog type. From four to PEFOG_MAXPOINTS
control points are used to describe this curve. If fewer than four control points are given, the last point
will be replicated to create four points. Each point consists of a range and fog density pair. These are
given in ascending order in the arrays range and density. The range value is specified in a normalized
form in the numeric range [0..1], with 0.0 corresponding to the fog onset range (plus offset) and 1.0 the
fog opaque range (plus offset). This allows the ranges to be changed while maintaining the same fog den-
sity curve. The fog density at each range point must also be in the [0..1] range, where 0.0 represents no
fog and 1.0 means opaque fog. A Catmull-Rom spline interpolation is used to create hardware fog tables
from this fog ramp table. If the fog type is PFFOG_PIX_SPLINE then the internal fog ramp table will be
recomputed whenever the fog ramp, fog range, or fog offsets are specified. The default fog ramp table
defines a linear interpolation between the onset and opaque ranges. Currently, the bias value must be set
to zero. pfGetFogRamp returns the number of points, range and density arrays, and bias in the variables
specified.

pfGetFogDensity returns the density, ranging from 0 to 1 of fog at range range.

pfApplyFog configures the graphics hardware with the fog parameters encapsulated by fog. Only the
most recently applied pfFog is active although any number of pfFog definitions may be created. Fogging
must also be enabled (pfEnable(PFEN_FOG)) for fog to take effect. Modifications made to this pfFog do
not have effect until pfApplyFog is called. If a pfDispList has been opened by pfOpenDList,
pfApplyFog will be captured by the pfDispList and will only have effect when that pfDispList is later
drawn with pfDrawDList.

IRIS Performer 2.0 libpr C Reference Pages pfFog(3pf)

The fog state element is identified by the PFSTATE_FOG token. Use this token with pfGStateAttr to set
the fog mode of a pfGeoState and with pfOverride to override subsequent fog changes:

Example 1:

/* Set up 'fogged’ pfCeoState */
pf GSt at eMbde(gst at e, PFSTATE_ENFOG, PFFOG ON);
pf GStateAttr(gstate, PFSTATE FOG fog);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Draw fogged gset */
pf Dr awGSet (gset) ;

Example 2:
/* Override so that all geonetry is fogged with 'fog’ */
pf Enabl e(PFEN_FOG) ;

pf Appl yFog(fog);
pf Overri de(PFSTATE_FOG | PFSTATE_ENFOG, PF_ON);

pfGetCurFog returns the currently active pfFog.

NOTES
PFFOG_PIX_SPLINE is only effective on RealityEngine graphics systems. The visual quality of per-pixel
fogging is influenced by the ratio of the distances from the eye to the far and the eye to the near clipping
planes. This ratio should be minimized for best results.

BUGS
pfGetFogDensity does not properly evaluate PFFOG_PIX_SPLINE; instead it linearly interpolates the
spline points.

SEE ALSO
pfDispList, pfEnable, pfGeoState, pfObject, pfOverride, fogvertex, Isetdepth, perspective, glFog

251

pfFont(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfNewFont, pfGetFontClassType, pfFontCharGSet, pfGetFontCharGSet, pfFontCharSpacing, pfGet-
FontCharSpacing, pfFontAttr, pfGetFontAttr, pfFontVal, pfGetFontVal, pfFontMode, pfGetFontMode
— Routines to load fonts for use in Performer.

FUNCTION SPECIFICATION

#include <Performer/pr.h>

pfFont* pfNewFont(void *arena);

pfType* pfGetFontClassType(void);

void pfFontCharGSet(pfFont* font, int ascii, pfGeoSet* gset);
pfGeoSet* pfGetFontCharGSet(pfFont* font, int ascii);

void pfFontCharSpacing(pfFont* font, int ascii, pfVec3 spacing);
const pfVec3* pfGetFontCharSpacing(pfFont* font, int ascii);

void pfFontAttr(pfFont* font, int which, void *attr);

void* pfGetFontAttr(pfFont* font, int which);

void pfFontVal(pfFont* font, int which, float val);

float pfGetFontVal(pfFont* font, int which);

void pfFontMode(pfFont* font, int mode, int val);

int pfGetFontMode(pfFont* font, int mode);

PARENT CLASS FUNCTIONS

252

The IRIS Performer class pfFont is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfFont. Casting an object of class
pfFont to an object of class pfObject is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFont can also
be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);
int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);

IRIS Performer 2.0 libpr C Reference Pages pfFont(3pf)

const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

The pfFont facility provides the capability to load fonts for 3-D rendering with the string drawing rou-
tines from pfString and pfText. The basic methodology is the user provides individual GeoSets to be
used as font characters. Likewise, the user provides 3-D spacings for each character so that Performer can
correctly move the ‘cursor’ or ‘3-D origin” after drawing each character. Note that this facility is com-
pletely general and is independent of external font descriptions - see pfdLoadFont for a description of
loading some PostScript Type I fonts into a pfFont structure.

pfNewFont returns a handle to a new pfFont. arena specifies the malloc arena out of which the pfFont is
allocated or NULL for allocation off the heap. A NULL pointer is returned to indicate failure. pfFonts
can be deleted with pfDelete.

pfGetFontClassType returns the pfType* for the class pfFont. The pfType* returned by
pfGetFontClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfFont. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

pfFont Definition:
Call pfFontCharGSet to set the pfGeoSet which Performer should use when drawing the character
specified by ascii in a pfString. pfGetFontCharGSet returns the pfGeoSet currently being used for the
character specified by ascii. Call pfFontCharSpacing to set the 3D spacing for the character specified by
ascii to be the pfVec3 spacing. This spacing is used to update the cursor position of a pfString after this
character has been drawn. pfGetFontCharSpacing returns a reference to a pfVec3 specifying the spacing
of a given character of a font.

pfFont Attributes:
pfFontAttr sets a particular attribute for a given Performer font, while pfGetFontAttr will return a partic-
ular attribute corresponding to the which token.

Current valid pfFont Attributes: PFFONT_GSTATE PFFONT_BBOX PFFONT_SPACING
PFFONT_NAME

253

pfFont(3pf) IRIS Performer 2.0 libpr C Reference Pages

NOTES

PFFONT_GSTATE specifies a global pfGeoState to be used for every character of a pfFont. Note that
pfGeoStates bound to GeoSets representing characters will take precedence over the PEFONT_GSTATE
pfGeoState. A Font has NO pfGeoState by default.

PFFONT_BBOX specifies a bounding box that will enclose every individual character of a pfFont.

PFFONT_SPACING specifies a global spacing to use to simulate fixed width fonts. This spacing is used
only if the pfFont mode PFFONT_CHAR_SPACING is set to PEFONT_CHAR_SPACING_FIXED or a
spacing is not available (NULL) for a given character. PFFONT_NAME simply specifies a name associ-
ated with a pfFont.

pfFont Modes:

pfFontMode sets a particular mode for a given Performer font, while pfGetFontMode will return the
current value of the mode corresponding to the mode token.

Current valid pfFont Modes: PFFONT_CHAR_SPACING PFFONT_NUM_CHARS
PFFONT_CHAR_SPACING specifies whether to use fixed or variable spacings for all characters of a

pfFont. Possible values are PFFONT_CHAR_SPACING_FIXED and
PFFONT_CHAR_SPACING_VARIABLE - the later being the default.

pfFont Values:

pfFontVal sets a particular value for a given Performer font, while pfGetFontVal will return the
corresponding value associated with the which token.

See pfText for sample code demonstrating pfFont.

SEE ALSO

254

pfBox, pfDelete, pfGeoSet, pfGeoState, pfString, pfText, pfdLoadFont

IRIS Performer 2.0 libpr C Reference Pages pfFrustum(3pf)

NAME

pfNewFrust, pfGetFrustClassType, pfMakePerspFrust, pfMakeOrthoFrust, pfMakeSimpleFrust,
pfGetFrustType, pfGetFrustFOV, pfFrustAspect, pfGetFrustAspect, pfFrustNearFar, pfGetFrustNear-
Far, pfGetFrustNear, pfGetFrustFar, pfGetFrustEye, pfGetFrustPtope, pfGetFrustGLProjMat, pfAp-
plyFrust, pfFrustContainsPt, pfFrustContainsBox, pfFrustContainsSphere, pfFrustContainsCyl,
pfOrthoXformFrust — Operations on frusta

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfFrustum * pfNewFrust(void* arena);

pfType *
void
void
void
int
void
void
float
void
void
void
void
int
void
void
void
int
int
int
int

void

pfGetFrustClassType(void);

pfMakePerspFrust(pfFrustum* frust, float left, float right, float bottom, float top);
pfMakeOrthoFrust(pfFrustum* frust, float left, float right, float bottom, float top);
pfMakeSimpleFrust(pfFrustum* frust, float fov);

pfGetFrustType(const pfFrustum* frust);

pfGetFrustFOV(const pfFrustum* frust, float* fovh, float* fovv);
pfFrustAspect(pfFrustum* frust, int which, float widthHeightRatio);
pfGetFrustAspect(const pfFrustum* frust);

pfFrustNearFar(pfFrustum” frust, float near, float far);

pfGetFrustNearFar(const pfFrustum* frust, float* near, float* far);
pfGetFrustNear(const pfFrustum* frust, pfVec3 ll, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
pfGetFrustFar(const pfFrustum* frust, pfVec3 11, pfVec3 Ir, pfVec3 ul, pfVec3 ur);
pfGetFrustEye(const pfFrustum* frust, pfVec3 eye);

pfGetFrustPtope(const pfFrustum* frust, pfPolytope *ptope);
pfGetFrustGLProjMat(const pfFrustum* frust, pfMatrix mat);
pfApplyFrust(const pfFrustum *frust);

pfFrustContainsPt(const pfFrustum *fr, const pfVec3 pt);
pfFrustContainsBox(const pfFrustum *frust, const pfBox *box);
pfFrustContainsSphere(const pfFrustum *fr, const pfSphere *sph);
pfFrustContainsCyl(const pfFrustum *frust, const pfCylinder *cyl);

pfOrthoXformFrust(pfFrustum* dst, const pfFrustum* src, const pfMatrix mat);

255

pfFrustum(3pf) IRIS Performer 2.0 libpr C Reference Pages

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFrustum is derived from the parent class pfPolytope, so each of these member
functions of class pfPolytope are also directly usable with objects of class pfFrustum. Casting an object of
class pfFrustum to an object of class pfPolytope is taken care of automatically. This is also true for casts
to objects of ancestor classes of class pfPolytope.

int pfGetPtopeNumFacets(pfPolytope *ptope);

int pfPtopeFacet(pfPolytope *ptope, int i, const pfPlane *facet);

int pfGetPtopeFacet(pfPolytope *ptope, int i, pfPlane *facet);

int pfRemovePtopeFacet(pfPolytope *ptope, int i);

void pfOrthoXformPtope(pfPolytope *ptope, const pfPolytope *src, const pfMatrix mat);
int pfPtopeContainsPt(const pfPolytope *ptope, const pfVec3 pt);

int pfPtopeContainsSphere(const pfPolytope *ptope, const pfSphere *sphere);

int pfPtopeContainsBox(const pfPolytope *ptope, const pfBox *box);

int pfPtopeContainsCyl(const pfPolytope *ptope, const pfCylinder *cyl);

int pfPtopeContainsPtope(const pfPolytope *ptope, const pfPolytope *ptopel);

Since the class pfPolytope is itself derived from the parent class pfObject, objects of class pfFrustum can
also be used with these functions designed for objects of class pfObject.

void pfUserData(pfObject *obj, void *data);

void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFrustum can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);

int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

int pfGetRef(const void *ptr);

int pfCopy(void *dst, void *src);

int pfDelete(void *ptr);

int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);

256

IRIS Performer 2.0 libpr C Reference Pages pfFrustum(3pf)

void * pfGetArena(void *ptr);
PARAMETERS
frust identifies a pfFrustum.
DESCRIPTION
A pfFrustum represents a viewing and or culling volume bounded by left, right, top, bottom, near and far
planes.

pfNewFrust creates and returns a handle to a pfFrustum. arena specifies a malloc arena out of which the
pfFrustum is allocated or NULL for allocation off the process heap. pfFrusta can be deleted with
pfDelete.

A new pfFrustum defaults to a simple perspective frustum (see pfMakeSimpleFrust) with FOV =45
degrees, and near and far distances of 1 and 1000.

pfGetFrustClassType returns the pfType* for the class pfFrustum. The pfType* returned by
pfGetFrustClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfFrustum. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfMakePerspFrust configures frust as a perspective frustum with the eye at (0,0,0) and the points (left,
near, bottom) and (right, near, top) being the lower-left and upper-right corners of the viewing plane. The
coordinate system used is: left -> right = +X axis, near -> far = +Y axis, bottom -> top = +Z axis. The far
plane lies at Y = far. Note that the field of view of a frustum configured with pfMakePerspFrust is depen-
dent on the current near plane distance. However, subsequent changes to the near plane distance with
pfFrustNearFar do not affect the field of view, simplifying clip plane modification.

pfMakePerspFrust is similar to the IRIS GL window(3g) command and can generate off-axis projections
that are often used for stereo and "video-wall" displays. With an off-axis frustum, the line from the
eyepoint passing through the center of the image is not perpendicular to the projection plane.

Example 1:

/*

* Make two of f-axis projections which together provide
* horizontal and vertical FOvs of 90 and 45 degrees.
*/

t = pfTan(22.5f);

pf Frust Near Far (1 eft, 1.0f, 1000. 0f);
pf MakePer spFrust (1 eft, -1.0f, 0.0f, -t, t);

pf Frust Near Far (ri ght, 1.0f, 1000. 0f);

257

pfFrustum(3pf) IRIS Performer 2.0 libpr C Reference Pages

258

pf MakePer spFrust (right, 0.0f, 1.0f, -t, t);

pfMakeOrthoFrust configures frust as an orthogonal frustum. The 6 sides of the frustum are: x = left, x =
right, z = bottom, z = top, y = near, y = far. pfMakeOrthoFrust is similar to the IRIS GL ortho2(3g) com-
mand. The near and far distances of an orthogonal frustum are set by pfFrustNearFar.

pfMakeSimpleFrust configures frust as an on-axis perspective frustum with horizontal and vertical
fields-of-view of fov degrees. With an on-axis frustum, the line connecting the center of projection with
the eyepoint is perpendicular to the projection plane. pfMakeSimpleFrust is similar to the IRIS GL
perspective(3g) command. The near and far distances of a simple frustum are set by pfFrustNearFar. For
viewports with non-square aspect ratios, pfFrustAspect may be used to automatically fit either the hor-
izontal or vertical fields of view to the viewport (see below).

pfGetFrustType returns a symbolic token indicating the frustum type of frust and is one of:
PFFRUST_SIMPLE, PFFRUST_ORTHOGONAL, or PFFRUST_PERSPECTIVE. The frustum type is set
by the pfMake<*>Frust routines. Note that it is possible to make a simple frustum with
pfMakePerspFrust if left == -right and bottom == -top.

pfFrustNearFar sets the near and far distances of frust. It will also recalculate the frustum’s geometry
based on the frustum type. If frust is perspective, its field of view will not be changed, only the near and
far planes will be modified. pfGetFrustNearFar copies the near and far distances of frust into near and far.

pfFrustAspect adjusts the horizontal or vertical extent of frust to fit the aspect ratio specified by
widthHeightRatio. which is a symbolic token specifying how to modify frust and is one of:

PFFRUST_CALC_NONE Disable aspect ratio calculation
PFFRUST_CALC_HORIZ Modify horizontal extent of frustum to match the aspect ratio
PFFRUST_CALC_VERT Modify vertical extent of frustum to match the aspect ratio

pfFrustAspect is useful for matching a frustum to a viewport:

Example 2:

getviewport (&, &, &b, &t);
aspect = (float)(r - 1) / (float)(t - b);

/*

* Fit vertical frustumextent to viewport so that horizontal
* FOV is 45 degrees and vertical is based on ’aspect’.

*/

pf MakeSi npl eFrust (frust, 45.0f);

pf Frust Aspect (frust, PFFRUST_CALC VERT, aspect);

IRIS Performer 2.0 libpr C Reference Pages pfFrustum(3pf)

Frustum aspect ratio matching is not persistent. You must call pfFrustAspect each time the frustum
changes shape in order to maintain matched frustum/viewport.

pfGetFrustAspect returns the aspect ratio of frust.

pfGetFrustFOV copies the total horizontal and vertical fields of view into fovh and fovv respectively. The
fields of view for an orthogonal frustum are both 0.0.

pfGetFrustNear returns the four corners of the near (viewing or projection) plane putting the lower-left,
lower-right, upper-left and upper-right vertices into I, Ir, ul, and ur, respectively.

pfGetFrustFar returns the four corners of the far plane putting the lower-left, lower-right, upper-left and
upper-right vertices into I, Ir, ul, and ur, respectively.

pfGetFrustEye copies the eye position of the frustum frust into eye.
pfGetFrustPtope copies the 6 half spaces which define frust into the pfPolytope ptope.

pfGetFrustGLProjMat returns the projection matrix corresponding to frust in the coordinate system of
the Graphics Library, ignoring any transformations applied to frust with pfOrthoXformFrust.

pfApplyFrust configures the hardware projection matrix with the projection defined by frust.
Modifications made to frust do not have effect until pfApplyFrust is called.

pfApplyFrust is a display-listable command. If a pfDispList has been opened by pfOpenDList,
pfApplyFrust will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDrawDList.

pfFrustContainsPt returns TRUE or FALSE depending on whether the point pt is in the interior of the
specified frustum.

pfFrustContainsBox, pfFrustContainsSphere and pfFrustContainsCyl test whether the specified pfFrus-
tum contains a non-empty portion of the volume specified by the second argument, a box, sphere or
cylinder, respectively.

The return value from these functions is the OR of one or more bit fields. The returned value may be:

PFIS_FALSE: The intersection of the primitive
and the pfFrustum is empty.

PFIS_MAYBE: The intersection of the primitive and the
pfFrustum might be non-empty.

259

pfFrustum(3pf) IRIS Performer 2.0 libpr C Reference Pages

PFIS_MAYBE | PFIS_TRUE: The intersection of the primitive and the
pfFrustum is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN: The primitive
is non-empty and lies entirely inside the pfFrustum.

The primary use of pfFrustContainsSphere and pfFrustContainsBox within IRIS Performer is in culling
the database to the view frustum each frame, where speed is paramount. If this computation cannot be
done easily, the function returns PFIS_MAYBE.

pfOrthoXformFrust transforms the frustum using the matrix mat: dst = src * mat. If mat is not orthogonal
the results are undefined.

NOTES
pfFrustum construction orients the frustum with +Z up, +X to the right, and +Y into the screen which is
different than both the IRIS GL and OpenGL viewing coordinate systems which have +Y up, +X to the
right and -Z into the screen.

SEE ALSO

pfBox, pfDelete, pfDispList, pfMatrix, pfObject, pfPlanelsectSeg, pfPolytope, pfSphere, pfState, pfVec3,
ortho, perspective, window

260

IRIS Performer 2.0 libpr C Reference Pages pfGLMatrix(3pf)

NAME
pfScale, pfTranslate, pfRotate, pfPushMatrix, pfPushIdentMatrix, pfPopMatrix, pfLoadMatrix,
pfMultMatrix — Operate on graphics library matrix stack

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfScale(float X, float y, float z);
void pfTranslate(float x, float y, float z);
void pfRotate(int axis, float degrees);
void pfPushMatrix(void);

void pfPushldentMatrix(void);

void pfPopMatrix(void);

void pfLoadMatrix(pfMatrix m);

void pfMultMatrix(pfMatrix m);

DESCRIPTION
These functions are similar to the corresponding IRIS GL and OpenGL graphics library matrix stack com-
mands. The only difference is that these IRIS Performer commands may be applied to and retained in a
pfDispList for subsequent activation.

pfRotate accepts the values PF_X, PF_Y, and PF_Z to select the axis of rotation.

pfPushldentMatrix is equivalent to calling pfPushMatrix followed with a call to pfLoadMatrix with an
identity matrix.

These routines are all display-listable commands. If a pfDispList has been opened by pfOpenDList, these

commands will not have immediate effect but will be captured by the pfDispList and will only have effect
when that pfDispList is later drawn with pfDrawDList.

SEE ALSO
loadmatrix, multmatrix, popmatrix, pushmatrix, rot, scale, translate

261

pfGeoSet(3pf)

IRIS Performer 2.0 libpr C Reference Pages

NAME

262

pfNewGSet, pfGetGSetClassType, pfDrawGSet, pfDrawHlightedGSet, pfGSetNumPrims,
pfGetGSetNumPrims, pfGSetPrimType, pfGetGSetPrimType, pfGSetPrimLengths, pfGetGSetPrim-
Lengths, pfGSetAttr, pfGetGSetAttrBind, pfGetGSetAttrLists, pfGetGSetAttrRange, pfGSet-
DrawMode, pfGetGSetDrawMode, pfGSetGState, pfGetGSetGState, pfGSetGStateIndex,
pfGetGSetGStateIndex, pfGSetLineWidth, pfGetGSetLineWidth, pfGSetPntSize, pfGetGSetPntSize,
pfGSetHlight, pfGetGSetHlight, pfGSetDrawBin, pfGetGSetDrawBin, pfGSetPassFilter, pfGetGSet-
PassFilter, pfQueryGSet, pfMQueryGSet, pfGSetBBox, pfGetGSetBBox, pfGSetlsectMask,
pfGetGSetlsectMask, pfGSetIsectSegs — Create, modify and query geometry set objects

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfGeoSet *
pfType *
void

void

void

int

void

int

void

int*

void

int

void

int

void

int

void
pfGeoState *
void

int

pfNewGSet(void *arena);

pfGetGSetClassType(void);

pfDrawGSet(pfGeoSet *gset);

pfDrawHlightedGSet(pfGeoSet* gset);

pfGSetNumPrims(pfGeoSet *gset, int num);

pfGetGSetNumPrims(const pfGeoSet *gset);

pfGSetPrimType(pfGeoSet *gset, int type);

pfGetGSetPrimType(const pfGeoSet *gset);

pfGSetPrimLengths(pfGeoSet* gset, int *lengths);
pfGetGSetPrimLengths(const pfGeoSet* gset);

pfGSetAttr(pfGeoSet *gset, int attr, int bind, void *alist, ushort *ilist);
pfGetGSetAttrBind(const pfGeoSet *gset, int attr);
pfGetGSetAttrLists(const pfGeoSet *gset, int attr, void **alist, ushort **ilist);
pfGetGSetAttrRange(const pfGeoSet *gset, int attr, int *minIndex, int *maxIndex);
pfGSetDrawMode(pfGeoSet *gset, int mode, int val);
pfGetGSetDrawMode(const pfGeoSet *gset, int mode);
pfGSetGState(pfGeoSet *gset, pfGeoState *gstate);

pfGetGSetGState(const pfGeoSet *gset);

pfGSetGStateIndex(pfGeoSet *gset, int id);

pfGetGSetGStateIndex(const pfGeoSet *gset);

IRIS Performer 2.0 libpr

C Reference Pages pfGeoSet(3pf)

void
float
void
float
void
pfHighlight *
void
int
void
uint
int
int
void
void
void
uint

int

pfGSetLineWidth(pfGeoSet *gset, float width);
pfGetGSetLineWidth(const pfGeoSet *gset);
pfGSetPntSize(pfGeoSet *gset, float size);
pfGetGSetPntSize(const pfGeoSet *gset);
pfGSetHlight(pfGeoSet* gset, pfHighlight *hlight);
pfGetGSetHlight(const pfGeoSet* gset);
pfGSetDrawBin(pfGeoSet *gset, short bin);
pfGetGSetDrawBin(const pfGeoSet *gset);
pfGSetPassFilter(uint mask);

pfGetGSetPassFilter(void);

pfQueryGSet(const pfGeoSet* gset, uint which, void* dst);
pfMQueryGSet(const pfGeoSet* gset, uint* which, void* dst);
pfGSetBBox(pfGeoSet *gset, pfBox *box, int mode);
pfGetGSetBBox(pfGeoSet *gset, pfBox *box);
pfGSetlIsectMask(pfGeoSet *gset, uint mask, int setMode, int bitOp);
pfGetGSetIsectMask(pfGeoSet *gset);
pfGSetlsectSegs(pfGeoSet *gset, pfSegSet *segSet, pfHit **hits[]);

typedef struct

{
int
voi d*
pf Seg
ui nt
ui nt
voi d*
int

} pfSegSet;

node;

user Dat a;

segs[PFI S_MAX_SEGS] ;
acti veMask;

i sect Mask;

bound;

(*di scFunc) (pfHi t*);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGeoSet is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfGeoSet. Casting an object of
class pfGeoSet to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

263

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeoSet can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

gset identifies a pfGeoSet.

attr is a symbolic token that identifies a specific attribute type and is one of:

PFGS_COLOR4 alist must be list of pfVec4 colors
PFGS_NORMALS3 alist must be list of pfVec3 normals,
PFGS_TEXCOORD2 alist must be list of pfVec2 texture coordinates,
PFGS_COORD3 alist must be list of pfVec3 coordinates.

bind is a symbolic token that specifies an attribute binding type and is one of:
PFGS_OFF attr is not specified and is thus inherited,
PFGS_OVERALL attr is specified once for the entire pfGeoSet,
PFGS_PER_PRIM attr is specified once per primitive,
PFGS_PER_VERTEX attr is specified once per vertex.

DESCRIPTION

The pfGeoSet (short for "Geometry Set") is a fundamental IRIS Performer data structure. Each pfGeoSet
is a collection of geometry with one primitive type, such as points, lines, triangles. Each pfGeoSet also has
a single combination of texture, normal, and color attribute bindings, such as "untextured with colors per
vertex and normals per primitive". A pfGeoSet forms primitives out of lists of attributes which may or
may not be indexed. An indexed pfGeoSet uses a list of unsigned shorts to index an attribute list.

264

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

Indexing provides a more general mechanism for specifying geometry than hardwired attribute lists and
also has the potential for substantial memory savings due to shared attributes. Nonindexed pfGeoSet’s
are sometimes easier to construct and may save memory in situations where vertex sharing is not possible
since index lists are not required. Nonindexed pfGeoSet’s also require fewer CPU cycles to traverse and
may exhibit better caching behavior. A pfGeoSet is either completely indexed or non-indexed; hybrid
pfGeoSets that have some attributes indexed and others non-indexed are not supported. For theses cases,
simply construct an identity-map index list and specify it with each "non-indexed" pfGeoSet attribute
array.

pfNewGSet creates and returns a handle to a pfGeoSet. arena specifies a malloc arena out of which the
pfGeoSet is allocated or NULL for allocation off the process heap. pfGeoSets can be deleted with
pfDelete.

pfGeoSet Attributes
pfGSetAttr sets a pfGeoSet attribute binding type, attribute list, and attribute index list. An "attribute” is
either coordinate, color, normal or texture coordinate which is supplied in list form to the pfGeoSet. The
optional attribute index list is a list of unsigned short integers which index the attribute list. The attribute
binding type specifies how the lists are interpreted to define geometry, for example, does the color attri-
bute list provide a color for each vertex (PFGS_PER_VERTEX) or just an overall color for the entire
pfGeoSet (PFGS_OVERALL)?

Only certain combinations of attributes and binding types make sense. For example, vertices clearly must
be specified per-vertex and the utility of texture coordinates specified other than per-vertex is question-
able. The following table shows the allowed combinations:

Bindi Attribute Type

neme COLOR4 NORMAL3 TEXCOORD2 COORD3
PFGS_OFF yes yes yes no
PFGS_OVERALL yes yes no no
PFGS_PER_PRIM yes yes no no
PFGS_PER_VERTEX yes yes yes yes

An OVERALL binding requires an index list of length 1 for indexed pfGeoSets. The value of bind is
unimportant for attr = PFGS_COORDS3 since vertices are always specified on a per-vertex basis. Default
bindings are OFF for all attributes except coordinates.

ilist, if not NULL, is an index array which indexes the attribute array, alist. If ilist is NULL, the pfGeoSet is
non-indexed and accesses the attribute list in sequential order.

If any attribute’s binding is not PFGS_OFF and the corresponding ilist is defined as NULL, the pfGeoSet

is considered to be non-indexed and ALL other specified index lists will be ignored. Nonindexed
interpretation of an attribute list is equivalent to using an index list whose elements are 0,1,2,...,N-1.

265

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

266

Consequently it is possible to emulate a pfGeoSet with mixed indexed and non-indexed attributes by
using an index array whose elements are 0,1,2,...,N-1 with N being the largest possible index.

If attribute and index lists are allocated from the pfMalloc routines, pfGSetAttr will correctly update the
reference counts of the lists. Specifically, pfGSetAttr will decrement the reference counts of the old lists
and increment the reference counts of the new lists. It will not free any lists whose reference counts reach
0. When a pfGeoSet is deleted with pfDelete, all pfMalloc’ed lists will have their reference counts decre-
mented by one and will be freed if their count reaches 0.

When pfGeoSets are copied with pfCopy, all pfMalloc’ed lists of the source pfGeoSet will have their
reference counts incremented by one and those pfMalloc’ed lists of the destination pfGeoSet will have
their reference counts decremented by one. pfCopy copies lists only by reference (only the pointer is
copied) and will not free any lists whose reference counts reach 0.

Attribute lists may be any of the following types of memory:

1. Data allocated with pfMalloc. This is the usual, and recommended memory type for
pfGeoSet index and attribute arrays.

2. Static, malloc(), amalloc(), usmalloc() etc, data subsequently referred to as non-pfMalloc’ed
data. This type of memory is not generally recommended since it does not support refer-
ence counting or other features provided by pfMalloc. In particular, the use of static data is
highly discouraged and may result in segmentation violations.

3. pfCycleBuffer memory. In a pipelined, multiprocessing environment, pfCycleBuffers pro-
vide multiple data buffers which allow frame-accurate data modifications to pfGeoSet attri-
bute arrays like coordinates (facial animation), and texture coordinates (ocean waves, surf).
pfGSetAttr will accept a pfCycleBuffer* or pfCycleMemory* for the attribute list (index lists
do not yet support pfCycleBuffer) and gset will select the appropriate buffer when rendered
or intersected with. See pfCycleBuffer for more details.

pfGetGSetAttrBind returns the binding type of attr and pfGetGSetAttrLists returns the attribute and
index list base pointers. If the gset is non-indexed, send down a dummy ushort pointer instead of NULL
as ilist.

pfGetGSetAttrRange returns the range of attributes in the attribute list identified by attr that are used by
gset. (The total size, in bytes, of the list may be queried through pfGetSize if the list was allocated by
pfMalloc.) If the list is non-indexed, pfGetGSetAttrRange returns the number of contiguous attributes
accessed by gset (the range implicitly beginning at 0). If the list is indexed, pfGetGSetAttrRange returns
the same value as in the non-indexed case but also copies the minimum and maximum indices into minin-
dex and maxIndex. If the attribute list is non-indexed, or the attribute binding type is PFGSS_OFF, 0 and
-1 are returned in minlndex and maxIndex. NULL may be passed instead of minlndex and/or maxIndex
when the min/max index is not required.

pfGetGSetAttrRange is typically used to allocate a new attribute array when cloning a pfGeoSet:

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

int numVerts = pf Get GSet AttrRange(gset, PFGS_COORD3, NULL, &nmax);
nunVerts = PF_MAX2(nunVerts, max + 1);
newerts = (pfVec3*) pfMlloc(sizeof(pfVec3) * nunVerts, arena);

pfGeoSet Primitive Types
pfGSetPrimType specifies the type of primitives found in a pfGeoSet. type is a symbolic token and is one
of:

PFGS_POINTS
PFGS_LINES
PFGS_LINESTRIPS
PFGS_FLAT_LINESTRIPS
PFGS_TRIS
PFGS_QUADS
PFGS_TRISTRIPS
PFGS_FLAT_TRISTRIPS
PFGS_POLYS

The primitive type dictates how the coordinate and coordinate index lists are interpreted to form
geometry. See below for a description of primitive types. pfGetGSetPrimType returns the primitive
type of gset.

pfGSetNumPrims and pfGetGSetNumPrims sets/gets the number of primitives in gset. A primitive is a
single point, line segment, line strip, triangle, quad, triangle strip, or polygon depending on the primitive

type.

A single line strip, triangle strip, or polygon is considered to be a primitive so a pfGeoSet may contain
multiple strips of differing lengths or multiple polygons with differing number of sides. Therefore, for
strip primitives and PFGS_POLYS, a separate array is necessary which specifies the number of vertices in
each strip or polygon. This array is set by pfGSetPrimLengths. lengths is an array of vertex counts such
that lengths[0] = number of vertices in strip/polygon 0, lengths[1] = number of vertices in strip/polygon
1,..., lengths[n-1] = number of vertices in strip /polygon n-1 where n is the number of primitives set by
pfGSetNumPrims. pfGetGSetPrimLengths returns a pointer to the lengths array of gset.

Assuming the coordinate index list is an array V indexed by i, num is the number of primitives, lengths is
the array of strip or polygon lengths and Nv the size of the coordinate index list, the primitive type inter-
prets V in the following ways:

267

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

PFGS_POINTS
The pfGeoSet is a set of num points. Each V[i]is a point,i=0,1, 2, ..., num-1. Nv =num.

PFGS_LINES
The pfGeoSet is a set of num disconnected line segments. Each line segment is drawn from
V[i] to V[i+1],i=0, 2, ..., 2*(num-1). Nv =2 * num.

PFGS_LINESTRIPS
The pfGeoSet is a set of num line strips (also known as polylines). Linestrip[i] is drawn
between V[p+jl,j=0, 1, ..., lengths[i]-1, where p is sum of all lengths[k], 0 <=k <i. Nv =sum
of all lengths[k], k =0, 1, ..., num-1. Note that all lengths[i] values should be >= 2.

PFGS_FLAT_LINESTRIPS
The pfGeoSet is a set of num line strips (also known as polylines). Linestrip[i] is drawn
between V[p+jl,j =0, 1, ..., lengths[i]-1, where p is sum of all lengths[k], 0 <=k <i. Nv =sum
of all lengths[k], k =0, 1, ..., num-1. Note that all lengths[i] value should be >=2.

PFGS_TRIS
The pfGeoSet is a set of num independent triangles. Each triangle is V[i], V[i+1], V[i+2],i=
0,3,6, ..., 3*(num-1). Nv =3 * num.

PFGS_QUADS
The pfGeoSet is a set of num independent quads. Each quad is V[i], V[i+1], V[i+2], V[i+3], i
=0,4,8, ..., 4 (num-1). Nv =4 * num.

PFGS_TRISTRIPS
The pfGeoSet is a set of num triangle strips. Tristrip[i] is drawn between V[p+j],j=0,1, ...,
lengths[i]-1, where p is sum of all lengths[k], 0 <=k <i. Nv = sum of all lengths[k], k=0, 1, ...,
num-1. Note that all lengths[i] values should be >=3.

PFGS_FLAT_TRISTRIPS
The pfGeoSet is a set of num triangle strips. Tristrip[i] is drawn between V[p+j],j=0, 1, ...,
lengths[i]-1, where p is sum of all lengths[k], 0 <=k <i. Nv =sum of all lengths[k], k=0, 1, ...,
num-1. Note that all lengths[i] should be >=3.

PFGS_POLYS

The pfGeoSet is a set of num polygons. Polygonli] is the convex hull of the vertices V[p+i], j
=0, 1, ..., lengths[i]-1 where p is sum of all lengths[k], 0 <=k <i. Nv = sum of all lengths[k], k
=0, 1, .., num-1. Note that all lengths[i] should be >= 3.

PFGS_TRIS, PFGS_QUADS, PEGS_TRISTRIPS, PEGS_FLAT_TRISTRIPS, and PFGS_POLYS are ren-
dered as filled polygons but will be rendered in wire-frame according to the following rules:

1. Always render in wireframe mode if PFEN_WIREFRAME mode is enabled through
pfGSetDrawMode.

268

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

2. Use the wireframe mode set by the attached pfGeoState, if any, as described in
pfGSetGState below.

3. Use the wireframe mode set by pfEnable or pfDisable with the PFEN_WIREFRAME argu-
ment.

A PFGS_PER_VERTEX binding for PFGS_COLOR4 and PFGS_NORMALS is interpreted differently for
PFGS_FLAT_LINESTRIPS and PFGS_FLAT_TRISTRIPS primitive types. With flat-shaded strip primi-
tives, only the last vertex in each primitive defines the shading of the primitive (see pfShadeModel.) Thus
the first vertex in a FLAT_LINESTRIP and the first two vertices in a FLAT_TRISTRIP do not require nor-
mals or colors. Consequently when specifying a PFGS_PER_VERTEX binding for either colors or nor-
mals, you should not specify a color or normal for the first vertex of a line strip or for the first 2 vertices of
a triangle strip. pfDrawGSet will automatically set the shading model to FLAT before rendering
PFGS_FLAT_ primitives.

Example 1:

/* Set up a non-indexed, FLAT_TRI STRI P pf GeoSet */
gset = pf NewGSet (NULL) ;

pf GSet Pri nType(gset, PFGS_FLAT_TRI STRI PS);

pf GSet NunPri ms(gset, 2);

I engths[0] = 4;

lengths[1] = 3;

pf GSet Pri nLengt hs(gset, |engths);

/* Only need 3 colors: 2 for 1st strip and 1 for 2nd */
col ors = (pfVecd*) pfMalloc(sizeof(pfVecd) * 3, NULL);

pf GSet Attr(gset, PFGS _COLOR4, PFGS_PER VERTEX, colors, NULL);
pf GSet Attr (gset, PFGS_COCORD3, PFGS_PER VERTEX, coords, NULL);

pfGeoSet Special Rendering Characteristics
When colortable mode is enabled, either through pfEnable or through pfApplyGState, a pfGeoSet will
not use its local color array but will use the color array supplied by the currently active pfColortable (See
the pfColortable and pfEnable manual pages). pfColortables will affect both indexed and non-indexed
pfGeoSets.

A pfGeoSet of type PFGS_POINTS will be rendered with the special characteristics of light points if a
pfLPointState has been applied. Light point features include:

269

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

270

1. Perspective size.

2. Perspective fading.
3. Fog punch-through.
4. Directionality.

5. Intensity.

See pfLPointState for more details.

pfGSetPntSize and pfGSetLineWidth set the point size and line width of gset. Point size has effect only
when the primitive type is PFGS_POINTS and line width is used only for primitive types PFGS_LINES,
PFGS_LINESTRIPS, PFGS_FLAT_LINESTRIPS and for all primitives drawn in wireframe mode. A
pfGeoSet sets point size and line width immediately before rendering only if the size/width is greater
than zero. Otherwise it will inherit size/width through the Graphics Library.

pfGetGSetPntSize and pfGetGSetLineWidth return gset’s point size and line width respectively.

pfGSetDrawMode further characterizes a pfGeoSet’s primitive type as flat-shaded, wireframe or com-
piled. mode is a symbolic token specifying the mode to set and is one of:

PFGS_FLATSHADE Always render gset with a flat shading model.

PFGS_WIREFRAME Always render and intersect gset in wireframe. For rendering in
wireframe and intersection with solid geometry, enable wireframe on
an attached pfGeoState (See pfGSetGState).

PFGS_COMPILE_GL Compile gset’s geometry into a GL display list and subsequently
render the display list.

val is PF_ON or PF_OFF to enable/disable the mode.

If a pfGeoSet has very few primitives, the CPU overhead in pfDrawGSet may become noticeable. In this
situation, it is reasonable to compile the pfGeoSet into a GL display list which has very little CPU over-
head. However, GL display lists have several drawbacks that must be considered:

Storage
GL display lists will increase memory usage because every vertex, color, etc is copied into
the display list, thus duplicating the pfGeoSet’s attribute arrays. Additionally, GL display
lists cannot index and so do not benefit from vertex sharing.

While it is possible to delete the attribute arrays after the pfGeoSet has been compiled to
free up some memory, it will no longer be possible to intersect with the pfGeoSet’s
geometry (see pfGSetIsectSegs).

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

Flexibility
Once in a GL display list, attributes like coordinates and normals may not be modified.
This precludes dynamic geometry like water and facial animation.

Coherency
If any attribute of the pfGeoSet changes then the burden is on the user to regenerate the GL
display list through pfGSetDrawMode.

In summary, applications with many very small pfGeoSets each of which defines static unchanging
geometry may be suitable for pfGeoSet compilation into GL display lists.

The mechanism of PFGS_COMPILE_GL is illustrated in the following example:

/* W assune 'gset’ is already "built" by this point */

/* Enable GL display |list conpilation and rendering */
pf GSet Dr awibde(gset, PFGS_COWILE G., PF_ON);

/*

* The first pfDrawGSet after pfGSetDrawvbde will conpile
* the pfGeoSet into a GL display list. Note that this is
* a very slow procedure and is generally done at

* initialization time.

*/

pf Dr awGSet (gset) ;

/* This tinme we draw the GL display list */
pf Dr awGSet (gset) ;

/* Disable GL display list npde */
pf GSet Dr awvbde(gset, PFGS_COWPI LE_G., PF_OFF);

/* Free the GL display list and render 'gset’ in imediate node */
pf Dr awGSet (gset) ;

Deciding which shading model to used when draw a pfGeoSet is performed with the following decision
hierarchy:

1. Use flat shading if pfGeoSet consists of either PFGS_FLAT_TRISTRIPS or
PFGS_FLAT_LINESTRIPS or if the mode PFGS_FLATSHADE is enabled with
pfGSetDrawMode.

271

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

272

2. Use the shading model specified by the pfGeoState bound to the pfGeoSet. This is the typi-
cal case in IRIS Performer. See the pfGSetGState description below for further details.

3. Use the shading model set by pfShadeModel.

pfGetGSetDrawMode returns the value of mode or -1 if mode is an unknown mode.

pfGeoSets (Geometry) and pfGeoStates (Appearance)

A pfGeoState is an encapsulation of libpr graphics modes and attributes (see pfState). For example, a
pfGeoState representing a glass surface may reference a shiny pfMaterial and enable transparency. A
pfGeoState does not inherit state from other pfGeoStates. Consequently, when attached to a pfGeoSet via
pfGSetGState, gset will always be rendered with the state encapsulated by gstate, regardless of the order
in which pfGeoSet/pfGeoState pairs are rendered. This behavior greatly eases the burden of managing
graphics state in the graphics library. A pfGeoSet may directly reference or indirectly index a pfGeoState
through a global table.

pfGSetGState "attaches" gstate to gset so that gset may be drawn with a certain graphics state. When
drawn by pfDrawGSet, a pfGeoSet will apply its pfGeoState (if it has one) with pfApplyGState and the
graphics library will be initialized to the proper state for drawing gset. A gstate value of NULL will
remove any previous pfGeoState and cause gset to inherit whatever graphics state is around at the time of
rendering.

pfGSetGStateIndex allows a pfGeoSet to index its pfGeoState. Indexing is useful for efficiently manag-
ing a single database with multiple appearances, e.g., a normal vs. an infrared view of a scene would util-
ize 2 pfGeoState tables, each referencing a different set of pfGeoStates.

Indexed pfGeoStates use a global table of pfGeoState* specified by pfApplyGStateTable. When indexing
a pfGeoState, pfDrawGSet calls pfApplyGState with the indexth entry of this table if the index can be
properly resolved. Otherwise no pfGeoState is applied. pfGetGSetGStateIndex returns the pfGeoState
index of gset or -1 if gset directly references its pfGeoState.

pfGSetGState increments the reference count of the new pfGeoState by one and decrements the reference
count of the previous pfGeoState by one but does not delete the previous pfGeoState if its reference count
reaches zero. pfGSetGStateIndex does not affect pfGeoState reference counts.

It is important to understand and remember that any pfGeoSet without an associated pfGeoState will not
be rendered with the global, default state but will be drawn with the current state. To inherit the global
state, a pfGeoState which inherits all state elements should be attached to the pfGeoSet. pfGeoSets should
share like pfGeoStates for space and rendering time savings. See the pfGeoState reference page for full
details.

pfGetGSetGState returns the pfGeoState associated with gset or NULL if there is none. If gset indexes its
pfGeoState, pfGetGSetGState will look up the pfGeoState index in the global pfGeoState table and return

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

the result or NULL if it cannot resolve the reference.

pfGSetHlight sets hlight to be the highlighting structure used for gset. When this flag is not PFHL_OFF,
this gset will be drawn as highlighted unless highlighting has been overridden as off with pfOverride.
See the pfHighlight manual page for information of creating and configuring a highlighting state struc-
ture. pfGetGSetHlight returns the current GeoSet highlight definition.

pfDrawHlightedGSet is a convenience routine for drawing ONLY the highlighting stage of gset, accord-
ing to the currently active highlighting structure.

Drawing pfGeoSets
pfDrawGSet is a display-listable command. If a pfDispList has been opened by pfOpenDList,
pfDrawGSet will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDrawDList.

If gset has an attached pfGeoState, then pfDrawGSet first calls pfApplyGState before rendering the
pfGeoSet geometry, as shown in the following examples.

Example 3a:

/* Make sure 'gset’ has not attached pfGeoState */
pf GSet GSt at e(gset, NULL);

/* Apply graphics state encapsul ated by 'gstate */
pf Appl yGSt at e(gst ate) ;

/* Draw 'gset’ with graphics state encapsul ated by 'gstate’ */
pf Dr awGSet (gset) ;

Example 3b:

/* Attach 'gstate’ to 'gset’ */
pf GSet GSt at e(gset, gstate);

/* Draw 'gset’ with graphics state encapsul ated by 'gstate’ */
pf Dr awGSet (gset) ;

Example 3c:

273

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

/* Use indexed pfGeoState */
pf GSet GSt at el ndex(gset, 2);

/* Set up and apply pfCeoState table */
pfSet(list, 2, gstate);
pf Appl yGSt at eTabl e(li st);

/* Draw 'gset’ with graphics state encapsul ated by 'gstate’ */
pf Dr awGSet (gset) ;

Examples 3a, 3b, and 3c are equivalent methods for drawing the same thing. Method 3b is recommended
though since the pfGeoState and pfGeoSet pair can be set up at database initialization time.

pfGSetDrawBin sets gset’s draw bin identifier to bin. bin identifies a drawing bin to which gset belongs
and is used for controlling the rendering order of a database. The pfGeoSet draw bin is currently used
only by libpf applications (see pfChanBinOrder) and is ignored by libpr-only applications. The default
pfGeoSet draw bin identifier is -1. pfGetGSetDrawBin returns the draw bin identifier of gset.

The mask argument to pfGSetPassFilter is a bitmask which specifies a pfGeoSet drawing "filter". Only
pfGeoSets which pass the filter test are rendered by pfDrawGSet. mask consists of the logical OR of the
following:

PFGS_TEX_GSET
Draw only textured pfGeoSets

PFGS_NONTEX_GSET
Draw only non-textured pfGeoSets

PFGS_EMISSIVE_GSET
Draw only pfGeoSets which use an emissive pfMaterial or pfLPointState.

PFGS_NONEMISSIVE_GSET
Draw only non-emissive pfGeoSets

PFGS_LAYER_GSET
Draw only pfGeoSets which are layer (as opposed to base) geometry.

PFGS_NONLAYER_GSET
Draw only pfGeoSets which are not layer geometry.

A mask of 0 disables pfGeoSet filtering. Filtering is useful for multipass rendering techniques.
pfGetGSetPassFilter returns the current pfGeoSet filtering mask.

274

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

Intersecting with pfGeoSets
pfGSetlsectMask enables intersections and sets the intersection mask for gset. mask is a 32-bit mask used
to determine whether a particular pfGeoSet should be examined during a particular intersection request.
A non-zero bit-wise AND of the pfGeoSet’s mask with the mask of the intersection request (-
pfGSetlsectSegs) indicates that the pfGeoSet should be tested. The default mask is all 1’s, i.e. Oxffffffff.

pfGetGSetlIsectMask returns the intersection mask of the specified pfGeoSet.

Intersections for geometry whose vertex coordinates don’t change are more efficient when information is
cached for each pfGeoSet to be intersected with. When setting the mask or changing caching,
PFTRAV_SELF should always be part of setMode. OR-ing PFTRAV_IS_CACHE into setMode causes the
creation or update of the cache. Because creating the cache requires a moderate amount of computation,
it is best done at setup time.

For objects whose geometry changes only occasionally, additional calls to pfGSetIsectMask with
PFTRAV_IS_CACHE OR-ed into setMode will recompute the cached information. Alternately, OR-ing
PFTRAV_IS_UNCACHE into setMode will disable caching.

The bitOp argument is one of PF_AND, PF_OR, or PF_SET and indicates, respectively, whether the new
mask is derived from AND-ing with the old mask, OR-ing with the old mask or simply set.

pfGSetBBox sets the bounding volume of gset. Each pfGeoSet has an associated bounding volume used
for culling and intersection testing and a bounding mode, either static or dynamic. By definition, the
bounding volume of a node encloses all the geometry parented by node, which means that the node and
all its children fit within the node’s bounding volume.

The mode argument to pfGSetBBox specifies whether or not the bounding volume for node should be
recomputed when an attribute of gset is changed. If the mode is PFBOUND_STATIC, IRIS Performer
will not modify the bound once it is set or computed. If the mode is PFBOUND_DYNAMIC, IRIS Per-
former will recompute the bound if the number of primitives, the primitive lengths array or the vertex
coordinate arrays are changed. Note that IRIS Performer does not know if the contents of these arrays
changes, only when the pointer itself is set. Recomputation of the bounding box can be forced by calling
pfGSetBBox with a bbox that is NULL.

pfGetGSetBBox copies the bounding box of gset into bbox and returns the current bounding mode.
pfGSetlsectSegs tests for intersection between the pfGeoSet gset and the group of line segments specified
in segSet. The resulting intersections (if any) are returned in hits. The return value of pfGSetIsectSegs is
the number of segments that intersected the pfGeoSet.

hits is an empty array supplied by the user through which results are returned. The array must have an

entry for each segment in segSet. Upon return, hits[i][0] is a pfHit* which gives the intersection result for
the ith segment in segSet. The pfHit objects come from an internally maintained pool and are reused on

275

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

276

subsequent requests. Hence, the contents are only valid until the next invocation of pfGSetIsectSegs in
the current process. They should not be freed by the application.

segSet is a pfSegSet public structure specifying the intersection request. In the structure, segs is an array of
line segments to be intersected against the pfGeoSet. activeMask is a bit vector specifying which segments

in the SegSet are to be active for the current request. If the i'th bit is set to 1, it indicates the corresponding
segment in the segs array is active.

The bit vector mode specifies the behavior of the intersection process and is a bitwise OR of the following:

PFTRAV_IS_PRIM Intersect with primitives (quads or triangles)
PFTRAV_IS_GSET Intersect with pfGeoSet bounding boxes
PFTRAV_IS_NORM Return normal in the pfHit structure

PFTRAV_IS_CULL_BACK Ignore backfacing polygons
PFTRAV_IS_CULL_FRONT Ignore front-facing polygons

The bit fields PFTRAV_IS_PRIM and PFTRAV_IS_GSET, indicate the level at which intersections
should be evaluated and discriminator callbacks, if any, invoked. Note that if neither of these level selec-
tors are specified, no intersection testing is done at all. In the pfSegSet, isectMask is another bit vector. It
is bit-wise AND-ed with the intersection mask of the pfGeoSet. If the result is zero no intersection testing
is done.

The bound field in a pfSegSet is an optional user provided bounding volume around the set of segments.
Currently, the only supported volume is a cylinder. To use a bounding cylinder, bitwise OR
PFTRAV_IS_BCYL into the mode field of the pfSegSet and assign the pointer to the bounding volume to
the bound field. pfCylAroundSegs will construct a cylinder around the segments.

When a bounding volume is supplied, the bounding volume is tested against the pfGeoSet bounding box
before examining the individual segments. The largest improvement is for groups of at least several seg-
ments which are closely grouped segments. Placing a bounding cylinder around small groups or widely
dispersed segments can decrease performance.

The userData pointer allows an application to associate other data with the pfSegSet. Upon return and in
discriminator callbacks, the pfSegSet’s userData pointer can be obtained from the returned pfHit with
pfGetUserData.

discFunc is a user supplied callback function which provides a more powerful means for controlling inter-
sections than the simple mask test. The function acts as a discriminating function which examines infor-
mation about candidate intersections and judges their validity. When a candidate intersection occurs, the
discFunc callback is invoked with a pfHit structure containing information about the intersection.

The callback may then return a value which indicates whether and how the intersection should continue.

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

This value is composed of the following major action specifications with additional modifiers bitwise-
OR-ed in as explained below.

PFTRAV_CONT
Indicates that the process should continue traversing the primitive list.

PFTRAV_PRUNE
Stops further testing of the line segment against the current pfGeoSet.

PFTRAV_TERM
Stops further testing of the line segment completely.

To have PFTRAV_TERM or PFTRAV_PRUNE apply to all segments, PETRAV_IS_ALL_SEGS can be
OR-ed into the discriminator return value. This causes the entire traversal to be terminated or pruned.

The callback may OR into the status return value any of:

PFTRAV_IS_IGNORE
Indicates that the current intersection should be ignored, otherwise the intersection is taken
as valid.

PFTRAV_IS_CLIP_START
Indicates that for pruned and continued traversals that before proceeding the segment
should be clipped to start at the current intersection point.

PFTRAV_IS_CLIP_END
Indicates that for pruned and continued traversals that before proceeding the segment
should be clipped to end at the current intersection point.

If discFunc is NULL, the behavior is the same as if the discriminator returned (PFTRAV_CONT |
PFTRAV_IS_CLIP_END), so that the intersection nearest the start of the segment will be returned.

277

pfGeoSet(3pf)

IRIS Performer 2.0 libpr C Reference Pages

NOTES

278

A pfHit object also conveys information to the discriminator callback, if any. The following table lists
the information which can be obtained from an pfHit.

Query Type Contents
PFQHIT_FLAGS int Status flags
PFQHIT_SEGNUM | int Index of segment in pfSegSet
PFQHIT_SEG pfSeg Segment, as clipped
PFQHIT_POINT pr ec3 Intersection point
PFQHIT_NORM pr ec3 Normal at intersection point
PFQHIT_VERTS pfVec3[3] Vertices of intersected triangle
PFQHIT_TRI int Index of triangle in pfGeoSet primitive
PFQHIT_PRIM int Index of primitive in pfGeoSet
PFQHIT_GSET pfGeoSet * | Pointer to intersected pfGeoSet
PFQHIT_NODE pfNode * Pointer to pfGeode
PFQHIT_NAME char * Name of pfGeode
PFQHIT_XFORM pfMatrix Transformation matrix
PFQHIT_PATH pfPath * Path within scene graph

pfQueryGSet is a convenience routine for determining the values of implicit pfGeoSet parameters. The
which argument is a token which selects the parameter from the set PFQGSET_NUM_TRIS and
PFQGSET_NUM_VERTS. The result is written to the address indicated by dst. The number of bytes
written to dst is returned as the value of pfQueryGSet. pfMQueryGSet is similar but copies a series of
items sequentially into the buffer specified by dst. The items and their order are defined by a NULL-
terminated array of query tokens pointed to by which. For both functions, the return value is the number
of bytes written to the destination buffer.

pfGetGSetClassType returns the pfType* for the class pfGeoSet. The pfType* returned by
pfGetGSetClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfGeoSet. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

The following example shows one way to create a pfGeoSet defining a hexahedron, which is also known

as a cube.

static pfVec3 coords[] =
{

. 0},
0},
0},
0},
0},
-1.0},

i

e e N e N e N B e
T '

ocooooo0

" "

PR PRERPRRERE

cCo0oo0o0o00
'

PR ERERRER

IRIS Performer 2.0 libpr C Reference Pages pfGeoSet(3pf)

{ 1.0, 1.0, -1.0},
{-1.0, 1.0, -1.0}
b
static ushort cindex[] =
{
o, 1, 2, 3, /* front */
0, 3, 7, 4, /* left */
4, 7, 6, 5, /* back */
1, 5, 6, 2, /* right */
3, 2, 6, 7, /* top */
0, 4, 5 1 /* bottom*/
b
static pfVec3 nornms[] =
{
{ 0.0, 0.0, 1.0},
{ 0.0, 0.0, -1.0},
{ 0.0, 1.0, 0.0},
{ 0.0, -1.0, 0.0},
{ 1.0, 0.0, 0.0},
{-1.0, 0.0, 0.0}
b
static ushort nindex[] =
{
0,
5,
1,
4,
2,
3
b

/* Convert static data to pfMalloc’ed data */
static void*
nmendup(voi d *nem size_t bytes, void *arena)

{
void *data = pfMlloc(bytes, arena);
mencpy(data, mem bytes);
return data;

}

279

pfGeoSet(3pf) IRIS Performer 2.0 libpr C Reference Pages

/* Set up an indexed PFGS_QUADS pf GeoSet */
gset = pf NewGSet (NULL);
pf GSet Pri nType(gset, PFGS_QUADS);
pf GSet NunPri ns(gset, 6);
pf GSet Attr(gset, PFGS_COORD3, PFGS_PER VERTEX,
mendup(coords, sizeof(coords), NULL),
(ushort*) nendup(ci ndex, sizeof (cindex), NULL));

pf GSet Attr (gset, PFGS_NORMAL3, PFGS_PER PRI'M
mendup(nor ns, sizeof (norns), NULL),
(ushort*) nendup(ni ndex, sizeof (nindex), NULL));

BUGS

In IRIS GL, PFGS_POLYS are rendered as triangle strips for best performance so that in wireframe the
edges internal to the polygon are visible. In OpenGL the internal edges will not be visible.

SEE ALSO

pfApplyGState, pfColortable, pfCopy, pfCycleBuffer, pfDelete, pfDisable, pfDispList, pfEnable, pfGSet-
DrawMode, pfGeoState, pfHit, pfLPointState, pfMalloc, pfMaterial, pfNewHlight, pfObject,
pfGSetlsectSegs, pfShadeModel, pfState

280

IRIS Performer 2.0 libpr C Reference Pages pfGeoState(3pf)

NAME
pfNewGState, pfGetGStateClassType, pfApplyGState, pfLoadGState, pfGStateMode, pfGetGSta-
teMode, pfGetGStateCurMode, pfGetGStateCombinedMode, pfGStateVal, pfGetGStateVal,
pfGetGStateCurVal, pfGetGStateCombinedVal, pfGStateInherit, pfGetGStateInherit, pfGStateAttr,
pfGetGStateAttr, pfGetGStateCurAttr, pfGetGStateCombinedAttr, pfGStateFuncs, pfGetGSta-
teFuncs, pfApplyGStateTable, pfMakeBasicGState, pfGetCurGState, pfGetCurGStateTable, pfGetCu-
rIndexedGState — Create, modify and query geometry state objects

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfGeoState * pfNewGState(void *arena);
pfType* pfGetGStateClassType(void);

void pfApplyGState(pfGeoState *gstate);

void pfLoad GState(pfGeoState *gstate);

void pfGStateMode(pfGeoState *gstate, int mode, int val);

int pfGetGStateMode(const pfGeoState *gstate, int mode);

int pfGetGStateCurMode(const pfGeoState *gstate, int mode);

int pfGetGStateCombinedMode(const pfGeoState *gstate, int mode,
const pfGeoState *combGState);

void pfGStateVal(pfGeoState *gstate, int gsval, float val);

float pfGetGStateVal(const pfGeoState *gstate, int gsval);

float pfGetGStateCurVal(const pfGeoState *gstate, int gsval);

float pfGetGStateCombinedVal(const pfGeoState *gstate, int gsval,
const pfGeoState *combGState);

void pfGStatelnherit(pfGeoState *gstate, uint mask);

uint pfGetGStateInherit(const pfGeoState *gstate);

void pfGStateAttr(pfGeoState *gstate, int attr, void *data);

void * pfGetGStateAttr(const pfGeoState *gstate, int attr);

void * pfGetGStateCurAttr(const pfGeoState *gstate, int attr);

void * pfGetGStateCombinedAttr(const pfGeoState *gstate, int attr,

const pfGeoState *combGState);

void pfGStateFuncs(pfGeoState* gstate, pfGStateFuncType preFunc,
pfGStateFuncType postFunc, void *data);

281

pfGeoState(3pf)

IRIS Performer 2.0 libpr C Reference Pages

void

void

void

pfGeoState *

pfList*
pfGeoState*

pfGetGStateFuncs(const pfGeoState* gstate, pfGStateFuncType *preFunc,
pfGStateFuncType *postFunc, void **data);

pfApplyGStateTable(pfList *gstab);
pfMakeBasicGState(pfGeoState *gstate);
pfGetCurGState(void);
pfGetCurGStateTable(void);
pfGetCurIndexedGState(int index);

typedef int (*pfGStateFuncType) (pfCGeoState *gstate, void *userData);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfGeoState is derived from the parent class pfObject, so each of these member

functions of class pfObject are also directly usable with objects of class pfGeoState. Casting an object of

class pfGeoState to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

282

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeoState can
also be used with these functions designed for objects of class pfMemory.

pfType *
int

int
const char *
int

int

int

int

int

int

int

void
void *

pfGetType(const void *ptr);
pfIsOfType(const void *ptr, pfType *type);
pfIsExactType(const void *ptr, pfType *type);
pfGetTypeName(const void *ptr);

pfRef(void *ptr);

pfUnref(void *ptr);

pfUnrefDelete(void *ptr);

pfGetRef(const void *ptr);

pfCopy(void *dst, void *src);

pfDelete(void *ptr);

pfCompare(const void *ptrl, const void *ptr2);
pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
pfGetArena(void *ptr);

IRIS Performer 2.0 libpr C Reference Pages pfGeoState(3pf)

PARAMETERS
gstate identifies a pfGeoState.

DESCRIPTION
A pfGeoState is an encapsulation of libpr graphics modes and attributes (see pfState). For example, a
pfGeoState can describe a glass surface by referencing a shiny pfMaterial and enabling transparency.
When a pfGeoState is applied by pfApplyGState it sets up the graphics state through normal libpr rou-
tines such as pfApplyMtl and pfTransparency.

Most pieces of state that may be manipulated through libpr immediate mode routines may be specified
on a per-pfGeoState basis. For customized state management, pfGeoStates provide function callbacks. In
addition, pfGeoStates can be indexed through a global table so a single database can have multiple
appearances while avoiding database duplication.

The primary use of a pfGeoState is to attach it to a pfGeoSet (pfGSetGState) in order to define the
appearance of the geometry encapsulated by the pfGeoSet. As discussed below, pfGeoStates have the
useful property of order-independence so that paired pfGeoSets and pfGeoStates will be rendered con-
sistently regardless of order.

pfGeoState state may either be locally set or globally inherited. By default, if a state element is not
specified on a pfGeoState, then that pfGeoState will inherit that state element from the global state. Glo-
bal state is set through libpr immediate mode functions, e.g., pfApplyMtl, pfTransparency, pfDecal,
pfApplyFog or through pfLoadGState as described below. Local state is set on a pfGeoState through
pfGStateMode, pfGStateAttr, or pfGStateVal.

If all state elements are locally set, then a pfGeoState becomes a full graphics context since all state is
defined at the pfGeoState level. While this is useful, it usually makes sense to inherit most state from glo-
bal default values and explicitly set only those state elements which are expected to change often. Exam-
ples of useful global defaults are lighting model (pfLightModel), lights (pfLight), fog (pfFog), and tran-
sparency (pfTransparency, usually OFF). Highly variable state is likely to be limited to a small set like
textures and materials. By default all pfGeoState state is inherited.

State is pushed before, and popped after pfGeoStates are applied so that pfGeoStates do not inherit state
from each other. As a result pfGeoStates are order-independent and you need not consider the problem
of one pfGeoState corrupting another by state inheritance through the underlying graphics library. The
actual pfGeoState pop is a lazy one and does not happen unless a subsequent pfGeoState needs the
default state restored. This means that the actual state between pfGeoStates is not necessarily the global
state. If a return to global state is required, call pfFlushState which will restore the global state.

It is a performance advantage to locally set as little local pfGeoState state as possible. This may be accom-
plished by setting global defaults which satisfy the majority of pfGeoStates being drawn. For example, if
most of your database is textured, you should enable texturing at initialization time (pfEnable(-
PFEN_TEXTURE)) and configure your pfGeoStates to inherit the texture enable mode.

283

pfGeoState(3pf) IRIS Performer 2.0 libpr C Reference Pages

284

pfNewGState creates and returns a handle to a pfGeoState. arena specifies a malloc arena out of which
the pfGeoState is allocated or NULL for allocation off the process heap. pfGeoStates can be deleted with
pfDelete. All modes and attributes are inherited by default.

pfGetGStateClassType returns the pfType* for the class pfGeoState. The pfType* returned by
pfGetGStateClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfGeoState. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfGStateMode sets mode to val. mode is a symbolic constant specifying the mode to set. Once set, a mode
is no longer inherited but is set to val. mode is a symbolic token and is one of:

PFSTATE_TRANSPARENCY
PFSTATE_ANTIALIAS
PFSTATE_DECAL
PFSTATE_ALPHAFUNC
PFSTATE_ENLIGHTING
PFSTATE_ENTEXTURE
PFSTATE_ENFOG
PFSTATE_CULLFACE
PFSTATE_ENWIREFRAME
PFSTATE_ENCOLORTABLE
PFSTATE_ENHIGHLIGHTING
PFSTATE_ENLPOINTSTATE
PFSTATE_ENTEXGEN

val specifies the value of mode and is a symbolic token appropriate to the type of mode. For example when
mode = PEFSTATE_TRANSPARENCY then val might be PFTR_ON. Only modes which differ from the
global state should be set. Mode values are not inherited between pfGeoStates. By default all modes are
inherited. See the pfState manual page for information on global default settings.

pfGStateVal sets the gsval value to val. gsval is a symbolic constant specifying the state value to set. Once
set, a value is no longer inherited but is set to val. gsval is a symbolic token and can be chosen from any of
the following list (only one choice at present):

PFSTATE_ALPHAREF

pfGStateAttr sets attr state element to a. attr is a symbolic constant specifying an attribute and is one of:

PFSTATE_FRONTMTL
PFSTATE_BACKMTL
PFSTATE_TEXTURE
PFSTATE_TEXENV
PFSTATE_FOG

IRIS Performer 2.0 libpr C Reference Pages pfGeoState(3pf)

PFSTATE_LIGHTMODEL
PFSTATE_LIGHTS
PFSTATE_COLORTABLE
PFSTATE_HIGHLIGHT
PFSTATE_LPOINTSTATE
PFSTATE_TEXGEN

data is a handle to a libpr structure that is returned from a pfNew<*> routine. If attr is
PFSTATE_LIGHTS, a should be an array of pfLight* of length PF_MAX_LIGHTS which specifies which
pfLights should be used by gstate. Empty entries in the light array should be NULL.

A pfGeoState ignores the PFMTL_FRONT and PFMTL_BACK setting of a pfMaterial (see pfMtlSide).
Instead it uses the attribute value, PFSTATE_FRONTMTL or PFSTATE_BACKMTL to decide how to
apply the material. Consequently, it is legal to use the same material for both front and back sides. How-
ever, pfGeoStates do not modify the pfMaterial’s side value which is normally set through pfMtlSide.

Once set, an attribute is no longer inherited but set to 4. Only attributes which differ from the global state
should be set. Attributes are not inherited between pfGeoStates. By default, all attributes are inherited
from the global state.

pfGStateAttr increments the reference count of the supplied attribute and decrements the reference count
of the replaced attribute, if there is one. pfGStateAttr will not delete any pfObject whose reference count
reaches 0.

As discussed above, modes, values and attributes may either be locally set on a pfGeoState or inherited
from the global state. To help resolve the inheritance characteristics of pfGeoStates, 3 different versions of
"get" routines are provided for modes, values and attributes:

1. pfGetGStateMode, pfGetGStateVal, pfGetGStateAttr - The exact mode, value, or attri-
bute of the pfGeoState is returned.
2. pfGetGStateCurMode, pfGetGStateCurVal, pfGetGStateCurAttr - The exact mode,

value, or attribute of the pfGeoState is returned if not inherited. Otherwise the mode,
value, or attribute of the currently active global pfGeoState is returned. Note that this
requires that a pfState be current (see pfSelectState).

3. pfGetGStateCombinedMode, pfGetGStateCombinedVal, pfGetGStateCombinedAttr
- The exact mode, value, or attribute of the pfGeoState is returned if not inherited. Other-
wise the mode, value, or attribute of the combGState is returned.
pfGetGStateMode returns the mode value corresponding to mode.

pfGetGStateVal returns the pfGeoState value corresponding to gsval.

pfGetGStateAttr returns the attribute handle corresponding to attr. If attr is PESTATE_LIGHTS, the

285

pfGeoState(3pf) IRIS Performer 2.0 libpr C Reference Pages

286

returned value is the pfLight* array.

pfGStatelnherit specifies which state elements should be inherited from the global state. mask is a bit-
wise OR of tokens listed for pfGStateMode, pfGStateAttr, and pfGStateVal. All of the state elements
specified in mask will become inherited. All modes and attributes are inherited unless explicitly specified
by setting a mode or attribute with pfGStateAttr, pfGStateMode, or pfGStateVal. pfGetGStateInherit
returns the bitwise OR of the tokens for state which is currently inherited from the global state.

pfApplyGState makes gstate the current graphics state. All modes and attributes of gstate that are not
inherited are applied using libpr immediate mode commands, for example, the PESTATE_TEXTURE
attribute is applied with pfApplyTex. Inherited modes and attributes that were modified by previous
pfGeoStates are reset to their global values. State elements that are overridden (See pfOverride) are not
changed by pfApplyGState.

Another way to apply a pfGeoState is with pfDrawGSet. If a pfGeoSet has an attached pfGeoState (see
pfGSetGState), then pfDrawGSet will call pfApplyGState with the attached pfGeoState so that graphics
state is properly established before the pfGeoSet geometry is rendered.

The following is an example of pfGeoState behavior.

Example 1:

/* Configure global default that pfGeoStates can inherit */
pf Enabl e(PFEN_LI GHTI NG ;

pf Appl yLModel (pf NewLModel (NULL)) ;

pf Li ght On(pf NewLi ght (NULL)) ;

pf Transpar ency(PFTR_OFF) ;

/* New pfGeoState inherits everything */
gstate = pf NewGSt at e(NULL) ;

/* Attach 'gstate’ to 'gset’ */
pf GSet GSt at e(gset, gstate);

/* Configure 'gstate’ with a transparent naterial */

pf GStateAttr(gstate, PFSTATE_FRONTMIL, ntl);
pf GSt at eMbde(gst at e, PFSTATE_TRANSPARENCY, PFTR_QN);

Method A:

IRIS Performer 2.0 libpr C Reference Pages pfGeoState(3pf)

/* Draw transparent 'gset’ */
pf Dr anwGSet (gset) ;

Method B:

/* Renove 'gstate’ from'gset’ */
pf GSet GSt at e(gset, NULL);

/* Apply 'gstate’ */
pf Appl yGSt at e(gst ate) ;

/* Draw transparent 'gset’ */
pf Dr awGSet (gset) ;

Method C:

/* Renmove 'gstate’ from’'gset’ */
pf GSet GSt at e(gset, NULL);

pf Appl ym I (nt 1) ;
pf Transpar ency(PFTR_ON) ;

/* Draw transparent ’'gset’ */
pf Dr awGSet (gset) ;

In the above example, methods A, B, and C are all produce the same visual result. Method A is recom-
mended, however, since the pfGeoState and pfGeoSet pair may be configured at database initialization
time and the use of a pfGeoState provides order-independence when rendering.

The following is an example of pfGeoState inheritance:

/* Configure global default that pfCGeoStates can inherit */
pf Enabl e(PFEN_LI GHTI NG ;

pf Appl yLModel (pf NewLModel (NULL)) ;

pf Li ght On(pf NewLi ght (NULL)) ;

/* Assume 'redM |’ is PFMIL_FRONT */
pf Appl yM | (redM 1) ;

/* New pf GeoStates inherit everything */

287

pfGeoState(3pf) IRIS Performer 2.0 libpr C Reference Pages

gstateA
gstateB

pf NewGSt at e(NULL) ;
pf NewGSt at e(NULL) ;

/* Attach pfCGeoStates to pfGeoSets */
pf GSet GSt at e(gset A, gstateA);
pf GSet GSt at e(gset B, gstateB);

/* Configure 'gstateA” with a green material */
pf GSt at eAttr (gst at eA, PFSTATE_FRONTMIL, greenMl);

/* Draw green 'gset’ */
pf Dr awGSet (gset A) ;

/*

* The FRONTMIL property of gstateB is not set so it inherits
* the global default of 'redMI’ which will be restored

* as the current pfMaterial when gstateB is applied.

*/

/* Draw red 'gset’ */
pf Dr awGSet (gset B) ;

/*

* Note that gsetA and gsetB could be drawn in the opposite
* order with the same results. This is a very inportant

* pfGeoState property.

*/

pfGetCurGState returns the current pfGeoState that was previously applied directly by pfApplyGState
or indirectly by pfDrawGSet.

pfGStateFuncs sets the callbacks and callback data pointer of gstate. The reference count of data is incre-
mented and the reference count of the previous data is decremented but no deletion takes place if the
reference count reaches 0. Callbacks are invoked by pfApplyGState (or indirectly by pfDrawGSet as
described above) in the following order:

postFunc() of previously-applied pfCeoState
setup state according to current pfCGeoState
preFunc() of current pfCGeoState

288

IRIS Performer 2.0 libpr C Reference Pages pfGeoState(3pf)

Notice that the post-callback invocation is delayed until a subsequent pfGeoState is applied. However,
pfPushState, pfPopState, and pfFlushState will invoke any "leftover" post-callback. It is legal to call
pfPushState and pfPopState in the pre and post callbacks respectively but is not usually necessary
because any libpr state set inside pfGeoState callbacks is considered to have been set by the pfGeoState.
Consequently, the global state is not modified and the normal pfGeoState inheritance rules apply to state
set inside the callbacks.

Callbacks are passed a pointer to the parent pfGeoState and the data pointer that was previously supplied
by pfGStateFuncs. The return value from pfGeoState callbacks is currently ignored. pfGetGStateFuncs
gets back the pre and post pfGeoState callbacks and callback data for gstate in preFunc, postFunc, and data,
respectively.

A pfGeoSet may either directly reference or indirectly index a pfGeoState with pfGSetGState and
pfGSetGStateIndex respectively. Indexed pfGeoStates use a global table of pfGeoState pointers that is
set by pfApplyGStateTable. If the global table is NULL or the pfGeoState index is out of the range of the
global table, no pfGeoState is applied, otherwise the indexed pfGeoState is applied when pfDrawGSet is
called. Non-indexed pfGeoState references ignore the current pfGeoState table. pfGetCurGStateTable
returns the current pfGeoState table and pfGetCurlndexedGState returns the indexth pfGeoState* in the
current pfGeoState table or NULL if the index cannot be properly resolved.

pfLoadGState is similar to pfApplyGState except the modes and attributes of gstate can be inherited by
subsequent pfGeoStates. In other words, gstate loads the global state. Overridden state elements are not
modified by pfLoadGState. If set, the pre-callback of gstate is invoked after the graphics state is loaded.
As described above, the post-callback is not invoked until a subsequent pfGeoState is applied or
pfPushState, pfPopState, or pfFlushState is called.

pfApplyGState, pfApplyGStateTable, and pfLoadGState are display-listable commands. If a
pfDispList has been opened by pfOpenDList, these commands will not have immediate effect but will be
captured by the pfDispList and will only have effect when that pfDispList is later executed with
pfDrawDList. Indexed pfGeoStates are resolved at display list creation time, not at display list execution
time. In addition, pfGeoStates are "unwound" into their constituent parts at display list creation time, e.g.,
a pfGeoState may decompose into pfApplyMtl and pfTransparency calls. As a result, changes to a
pfGeoState which have been captured by a pfDispList will *not* be evident when that pfDispList is exe-
cuted (pfDrawDList). pfGeoState indexing and unwinding at display list creation time is done strictly to
improve pfDispList rendering performance.

pfMakeBasicGState configures every state element (value, mode, and attribute) of gstate to be identical to
the state set with pfBasicState. The "basic" state is the initial state of a graphics library window - every-
thing is "off". For example, the PESTATE_ENLIGHTING mode will be set to PF_OFF, and the
PFSTATE_CULLFACE mode will be set to PFCF_OFF. The following code fragment is equivalent to
pfBasicState:

289

pfGeoState(3pf) IRIS Performer 2.0 libpr C Reference Pages

pf GeoState *gstate = pf NewGStat e(NULL);
pf MakeBasi cGSt at e(gstate) ;
pf LoadGSt at e(gst ate) ;

NOTES
In some situations it may appear that pfGeoStates do inherit from each other. This is because IRIS Per-
former currently does not provide any defaults for the state attributes listed above such as
PFSTATE_TEXTURE and PFSTATE_FRONTMTL. Consequently, if the application does not explicitly
set these attributes, it is possible for pfGeoStates which inherit these attributes to inherit them from previ-
ous pfGeoStates.

SEE ALSO
pfAlphaFunc, pfAntialias, pfBasicState, pfCullFace, pfDecal, pfDelete, pfDispList, pfDrawGSet, pfEnable,
pfFog, pfGeoSet, pfLight, pfList, pfLPointState, pfOverride, pfState, pfTexture, pfTexGen, pfIransparency

290

IRIS Performer 2.0 libpr C Reference Pages pfHighlight(3pf)

NAME

pfNewHlight, pfGetHlightClassType, pfApplyHlight, pfHlightMode, pfGetHlightMode,
pfHlightColor, pfGetHlightColor, pfHlightAlpha, pfGetHlightAlpha, pfHlightNormalLength,
pfGetHlightNormalLength, pfHlightLineWidth, pfGetHlightLineWidth, pfHlightPntSize, pfGetH-
lightPntSize, pfHlightLinePat, pfGetHlightLinePat, pfHlightFillPat, pfGetHlightFillPat, pfHlightG-
State, pfGetHlightGState, pfHlightGStateIndex, pfGetHlightGStateIndex, pfHlightTex, pfGetHlight-
Tex, pfHlightTEnv, pfGetHlightTEnv, pfHlightTGen, pfGetHlightTGen, pfGetCurHlight — Control,
create, modify and query highlight state

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfHighlight*
pfType *
void
void
uint
void
void
void
float
void
void
void
float
void
float
void
ushort
void
void
void

pfGeoState *

pfNewHlight(void *arena);

pfGetHlightClassType(void);

pfApplyHlight(pfHighlight * hl);

pfHlightMode(pfHighlight *hl, uint mode);

pfGetHlightMode(const pfHighlight *hl);

pfHlightColor(pfHighlight *hl, uint which, float r, float g, float b);
pfGetHlightColor(const pfHighlight *hl, uint which, float *r, float *g, float *b);
pfHlightAlpha(pfHighlight *hl, float a);

pfGetHlightAlpha(const pfHighlight *hl);
pfHlightNormalLength(pfHighlight* hl, float length, float bboxScale);
pfGetHlightNormalLength(const pfHighlight* hl, float *length, float *bboxScale);
pfHlightLineWidth(pfHighlight* hl, float width);
pfGetHlightLineWidth(const pfHighlight* hl);
pfHlightPntSize(pfHighlight* hl, float size);
pfGetHlightPntSize(const pfHighlight* hl);
pfHlightLinePat(pfHighlight* hl, int which, ushort pat);
pfGetHlightLinePat(const pfHighlight* hl, int which);
pfHlightFillPat(pfHighlight* hl, int which, uint *fillPat);
pfGetHlightFillPat(const pfHighlight* hl, int which, uint *pat);
pfHIightGState(pfHighlight* hl, pfGeoState *gstate);
pfGetHlightGState(const pfHighlight* hl);

201

pfHighlight(3pf) IRIS Performer 2.0 libpr C Reference Pages

void pfHlightGStateIndex(pfHighlight* hl, int id);
int pfGetHlightGStateIndex(const pfHighlight* hl);
void pfHlightTex(pfHighlight* hl, pfTexture *tex);
pfTexture* pfGetHlightTex(const pfHighlight* hl);

void pfHIlightTEnv(pfHighlight* hl, pfTexEnv *tev);
pfTexEnv* pfGetHlightTEnv(const pfHighlight* hl);

void pfHIlightTGen(pfHighlight* hl, pfTexGen *tgen);

pfTexGen* pfGetHlightTGen(const pfHighlight* hl);
pfHighlight * pfGetCurHlight(void);

PARENT CLASS FUNCTIONS

292

The IRIS Performer class pfHighlight is derived from the parent class pfObject, so each of these member

functions of class pfObject are also directly usable with objects of class pfHighlight. Casting an object of

class pfHighlight to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);

void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfHighlight can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);

int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

int pfGetRef(const void *ptr);

int pfCopy(void *dst, void *src);

int pfDelete(void *ptr);

int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);

IRIS Performer 2.0 libpr C Reference Pages pfHighlight(3pf)

PARAMETERS
hl identifies a pfHighlight.

DESCRIPTION
IRIS Performer supports a mechanism for highlighting individual objects in a scene with a variety of spe-
cial drawing styles that are activated by applying a pfHighlight state structure. Highlighting makes use
of outlining of lines and polygons and of filling polygons with patterned or textured overlays.
Highlighted drawing uses a highlighting color, or foreground color, and in some modes, a contrasting, or
background, color. Additionally, there are highlighting modes for displaying the bound normals and
cached bounding boxes of pfGeoState geometry.

A pfHighlight structure can be applied in immediate mode to the current active pfGeoState with
pfApplyHlight, and added to a specific pfGeoState with pfGStateMode. Highlighting can be enabled
and disabled in immediate mode with pfEnable(PFEN_HIGHLIGHTING) and
pfDisable(PFEN_HIGHLIGHTING), and the override for highlighting can be set with
pfOverride(PFSTATE_HIGHLIGHT). Unlike other types of state, a structure may be applied to a
specific pfGeoSet with pfGSetHlight. This will cause the pfGeoSet to be drawn as highlighted with the
specified highlighting structure, unless highlighting has been overridden as off with pfOverride.

This special exception was made because it is assumed that highlighting is to be used dynamically to
highlight specific objects for a short period of time and should not impact the rest of the state structure.

Highlighting does have some performance penalty, in part because some of the highlighting modes make
use of expensive graphics features, and in part because, to offer this flexibility, highlighted objects go
through a slightly slower path in IRIS Performer rendering code.

pfNewHlight creates and returns a handle to a pfHighlight. arena specifies a malloc arena out of which
the pfHighlight is allocated or NULL for allocation off the process heap. pfHighlights can be deleted with
pfDelete.

pfGetHlightClassType returns the pfType* for the class pfHighlight. The pfType* returned by
pfGetHlightClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfHighlight. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfApplyHlight makes /! the current active pfHighlight structure.
pfGetCurHlight returns a pointer to the current active pfHighlight structure.
pfHlightGState sets a highlighting pfGeoState of hl to gstate. This pfGeoState is made the current pfGeo-

State for the highlighting phase of the drawing of the highlighted pfGeoSet. Additional highlighting
mode changes are applied on top of this pfGeoState. This allows a user to make additional custom state

293

pfHighlight(3pf)

IRIS Performer 2.0 libpr C Reference Pages

294

changes to highlighted objects. pfGetHlightGState returns the previously set highlighting pfGeoState of
hl. pfHlightGStateIndex specifies the index into a pfGeoState table to use for the highlighting pfGeo-
State. pfGetHlightGStateIndex returns the previously set highlighting pfGeoState index of hl.

pfHlightMode sets the highlighting mode mode for hl. The mode specifies the drawing style: how the
filled region and polygon outlines of an object should be drawn. This mode is a bitmask composed by
bitwise OR-ing together the following tokens. The default is PFHL_FILL, and a zero mask is ignored.

PFHL_POINTS

PFHL_NORMALS

PFHL_BBOX_LINES

PFHL_BBOX_FILL

PFHL_LINES

PFHL_LINES_R

PFHL_LINESPAT
PFHL_LINESPAT2

PFHL_FILL

PFHL_FILL_R

PFHL_FILLTEX

PFHL_FILLPAT

Selects the display of object vertices as points using the point size specified
by pfHIlightPntSize.

Selects the display of object normals as lines of width determined by
pfHlightLineWidth, length determined by pfHlightNormalLength, and
color determined by pfHlightColor.

Selects the display of the object’s cached bounding box in lines of width
determined by pfHlightLineWidth and color determined by
pfHlightColor.

Selects the display of the object’s cached bounding box as a solid filled box
of the foreground color of Al.

Selects outlining of primitives. The lines are drawn of width determined by
pfHlightLineWidth and color determined by pfHlightColor.

Selects outlining of primitives and reverses foreground and background
colors for the lines.

Selects outlining of primitives with patterned lines.

Selects outlining of primitives with 2-pass patterned lines, using both fore-
ground and background highlighting colors.

Selects filling of polygons with the foreground highlighting color. In this
mode, the highlighted polygons are filled once. The foreground highlight-
ing color is used as the base color of polygons, and as the material color for
lit polygons.

Selects outlining of primitives and reverses foreground and background
colors for fill highlight modes.

Selects the application of a highlight texture on the object geometry. The
default texture may be used, or a texture and associated attributes may be
set with pfHlightTex, pfHlightTEnv, and pfHlightTGen.

Selects patterned filling of polygons with the foreground highlighting
color. This patterning will be done in addition to the normal filling of the
polygons and will be an overlay with the normal base polygons showing
through.

IRIS Performer 2.0 libpr C Reference Pages pfHighlight(3pf)

PFHL_FILLPAT2 Selects 2-pass patterned filling of polygons using both the foreground and
background highlighting colors. This patterning will be done in addition
to the normal filling of the polygons and will be an overlay with the nor-
mal base polygons showing through.

PFHL_SKIP_BASE Causes the normal drawing phase of the highlighted pfGeoSet to be
skipped. This includes the application of the pfGeoState for that pfGeoSet.

pfGetHlightMode returns the highlighting mode of Al.

pfHlightColor sets the specified highlighting color color, PFHL_FGCOLOR or PFHL_BGCOLOR, of %I,
tor, g, and b. pfGetHlightColor copies the specified color, PFHL_FGCOLOR or PFHL_BGCOLOR, of %I,
intor, g, and b.

pfHlightAlpha sets the alpha of hl to a. pfGetHlightAlpha returns the alpha of hl.

pfHlightLineWidth sets the line width to be used for the PFHL_LINES, PFHL_NORMALS, and
PFHL_BBOX highlighting modes of hl to width. If width is not greater than zero, the line width will not
be set by the highlight structure and will be inherited from the current environment.
pfGetHlightLineWidth returns the line width of Al.

pfHlightNormalLength sets a length and a scale factor for the normals drawn in the PFHL_NORMALS
highlighting mode. The normals will be drawn of length normalLength + bboxScale*bboxLength.
pfGetHlightNormalLength will return the normal length and scale values of k! in length and bboxScale,
respectively.

pfHlightPntSize sets the point size to be used for the PFHL_POINTS highlighting mode of Al to size. If
size is not greater than zero, the point size will not be set by the highlight structure and will be inherited
from the current environment. pfGetHlightPntSize returns the point size of hl.

pfHlightLinePat sets the pattern to be used for lines in the PFHL_LINES highlighting modes of kI to pat.
pfGetHlightLinePat returns the highlighting line pattern of hl.

pfHlightFillPat sets the fill pattern to be used in the PFHL_FILLPAT highlighting modes of kI to pat.
pfGetHlightFillPat returns the highlighting fill pattern of hl.

pfHlightTex sets the pfTexture for the PFHL_TEX highlighting modes of kI to tex. pfGetHlightTex
returns the previously set highlighting texture of kl. If a texture is not specified but the PFHL_TEX is
selected for hl, a default two-component texture using the highlighting foreground and background
colors will be used.

pfHIlightTEnv sets the texture environment (pfTexEnv) for the PFHL_TEX highlighting modes of k! to
tev. pfGetHlightTEnv returns the previously set highlighting texture environment of hl. If a texture

295

pfHighlight(3pf) IRIS Performer 2.0 libpr C Reference Pages

environment is not specified but the PFHL_TEX is selected for hl, a default texture blend environment
will be used.

pfHlightTGen sets the texture coordinate generation attribute (pfTexGen) for the PFHL_TEX highlight-
ing modes of hl to tgen. pfGetHlightTGen returns the previously set highlighting pfTexGen of hl. If a
texture coordinate generation function is not specified and the object to be highlighted has no texture
coordinates of its own and the PFHL_TEX is selected for hl, a default texture coordinate generation func-
tion will be used.

EXAMPLES

Example 1: Set up a highlighting structure and apply it in immediate mode to the current pfGeoState.
pf H ghli ght *hl;

/* allocate a new highlight color */
hl = pf NewHl i ght (NULL) ;

/* specify highlight nodes */
pf H i ght Mode(hl, PFHL_FILL);
pfH i ght Col or (hl, PFHL_FGCOLOR, 1.0f, 0.0f, 1.0f);

/* apply highlight */
pf Appl yH i ght (hl);

SEE ALSO

296

pfDelete, pfDisable, pfDrawHIightedGSet, pfEnable, pfGSetHlight, pfGeoState, pfGetGSetHlight, pfOb-
ject, pfOverride, pfState

IRIS Performer 2.0 libpr C Reference Pages pfHit(3pf)

NAME
pfQueryHit, pfMQueryHit, pfGetHitClassType — Intersection and bounding operations on drawable
geometry

FUNCTION SPECIFICATION
#include <Performer/pr.h>

int pfQueryHit(pfHit *hit, uint which, void *dst);
int pfMQueryHit(pfHit *hit, uint *which, void *dst);
pfType * pfGetHitClassType(void);

DESCRIPTION
pfQueryHit and pfMQueryHit read out information from the pfHit object. pfQueryHit copies an item
from the object into the location specified by dst. which specifies the item to be copied using one of the
PFHIT_ tokens listed above. pfMQueryHit copies a series of items sequentially into the buffer specified
by dst. The items and their order are defined by a NULL-terminated array of query tokens pointed to by
which. For both functions, the return value is the number of bytes written to the destination buffer.

PFQHIT_FLAGS returns a bit vector indicating the validity of information in the structure. It is formed
by a bitwise OR-ing of the PFHIT_POINT, PFHIT_NORM, PFHIT_PRIM, PFHIT_TRI, PFHIT_VERTS
and PFHIT_XFORM symbols.

Flags Bit Validity
PFHIT_POINT Point of intersection
PFHIT_NORM | Polygon normal
PFHIT PRIM Index of primitive in pfGeoSet
PFHIT_TRI Index of triangle within primitive
PFHIT_VERTS Triangle vertices
PFHIT_XFORM | Non-identity transformation matrix

Other queried quantities are valid if non-NULL.

PFQHIT_POINT, PFQHIT_NORM and PFQHIT_SEG query the point of intersection, the normal of the
triangle at that point, and the current segment as clipped by the intersection process. All are in local coor-
dinates, i.e. they do not include the transformations of pfSCSes and pfDCSes above them in the scene
graph. When intersecting with primitives inside a pfGeoSet, PFQHIT_PRIM, PFQHIT_TRI and
PFQHIT_VERTS provide the index of the primitive within the pfGeoSet, the triangle within the primi-
tive, and the vertices of the intersected triangle, respectively. PFQHIT_GSET returns the GeoSet.
PFQHIT_NODE returns the parent pfGeode.

PFQHIT_PATH returns a pfPath* denoting the traversal path. Like the pfHit object it is reused and
should not be freed.

pfGetHitClassType returns the pfType* for the class pfHit. The pfType* returned by

297

pfHit(3pf) IRIS Performer 2.0 libpr C Reference Pages

pfGetHitClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfHit. Because IRIS Performer allows subclassing of built-in types, when decisions are made based on
the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from a
Performer type rather than to test for strict equality of the pfType*’s.

SEE ALSO

298

pfCylAroundSegs, pfNodelsectSegs, pfGeoSet, pfObject, pfSeg

IRIS Performer 2.0 libpr C Reference Pages pfLPointState(3pf)

NAME

pfNewLPState, pfGetLPStateClassType, pfLPStateMode, pfGetLPStateMode, pfLPStateVal,
pfGetLPStateVal, pfLPStateShape, pfGetLPStateShape, pfLPStateBackColor, pfGetLPStateBackColor,
pfApplyLPState, pfMakeLPStateRangeTex, pfMakeLPStateShapeTex, pfGetCurLPState — Set and get
pfLPointState size, transparency, directionality, shape, and fog attributes.

FUNCTION SPECIFICATION

#include <Performer/pr.h>
pfLPointState * pfNewLPState(void *arena);

pfType* pfGetLPStateClassType(void);

void pfLPStateMode(pfLPointState *lpstate, int mode, int val);

int pfGetLPStateMode(const pfLPointState *Ipstate, int mode);

void pfLPStateVal(pfLPointState *Ipstate, int attr, float val);

float pfGetLPStateVal(const pfLPointState *Ipstate, int attr);

void pfLPStateShape(pfLPointState *lpstate, float horiz, float vert, float roll, float falloff,
float ambient);

void pfGetLPStateShape(const pfLPointState *Ipstate, float *horiz, float *vert, float *roll,
float *falloff, float *ambient);

void pfLPStateBackColor(pfLPointState *Ipstate, float r, float g, float b, float a);

void pfGetLPStateBackColor(pfLPointState *Ipstate, float *r, float *g, float *b, float *a);

void pfApplyLPState(pfLPointState *Ipstate);

void pfMakeLPStateRangeTex(pfLPointState *Ipstate, pfTexture *tex, int size, pfFog* fog);

void pfMakeLPStateShapeTex(pfLPointState *Ipstate, pfTexture *tex, int size);

pfLPointState* pfGetCurLPState(void);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfLPointState is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfLPointState. Casting
an object of class pfLPointState to an object of class pfObject is taken care of automatically. This is also
true for casts to objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);

void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

299

pfLPointState(3pf) IRIS Performer 2.0 libpr C Reference Pages

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLPointState
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

Ipstate identifies a pfLPointState.

DESCRIPTION

300

A pfLPointState is a libpr data structure which, in conjunction with a pfGeoSet of type PFGS_POINTS,
supports a sophisticated light point primitive type. Examples of light points are stars, beacons, strobes,
runway edge and end illumination, taxiway lights, visual approach slope indicators (VASI), precision
approach path indicators (PAPI), and street lights when viewed from a great distance.

Light points should not be confused with light sources, such as a pfLight. A light point is visible as one or
more self-illuminated small points that do not illuminate surrounding objects. By comparison, a pfLight
does illuminate scene contents but is itself not a visible object.

When a pfLPointState is applied with pfApplyLPState or through its parent pfGeoState (See
pfDrawGSet and pfApplyGState), any pfGeoSet of type PFGS_POINTS will be rendered with the fol-
lowing special light point characteristics (if enabled):

1. Perspective size. Light points can be assigned a real world size and exhibit perspective
behavior, e.g., points closer to the eye will be rendered larger than those points farther away.

2. Perspective fading. Once a light point reaches a minimum size, it may be made more tran-
sparent in order to enhance the perspective illusion. Fading is often more realistic than simply
shrinking the point size to 0.

3. Fog punch-through. Since light points are emissive objects, they must shine through fog more
than non-emissive objects.

IRIS Performer 2.0 libpr C Reference Pages pfLPointState(3pf)

4. Directionality. Light points can be assigned a direction as well as vertical and horizontal
envelopes (or lobes) about this direction vector. Directional light point intensity is then view
position-dependent. Light point direction is defined by the normals (PFGS_NORMALS3) sup-
plied by PFGS_POINTS pfGeoSets.

5. Intensity. Normally, light point color and transparency are defined by the colors (-
PFGS_COLOR4) supplied by PFGS_POINTS pfGeoSets. pfLPointStates provide the addi-
tional capability of modifying the intensity of all points in a light point pfGeoSet by scaling the
alpha of all point colors.

At a minimum, light point usage requires a configuration based on three linked libpr objects: a pfGeoSet,
a pfGeoState attached to that pfGeoSet, and a pfLPointState attached to the pfGeoState. Here are the
details:

1. A pfGeoSet of type PFGS_POINTS. This pfGeoSet must have a PFGS_COLOR4 attribute
binding of PFGS_PER_VERTEX in some situations and should have supplied normals (-
PFGS_NORMALZ3) if the light points are directional.

2. A pfGeoState which is usually attached to the pfGeoSet and
which references a pfLPointState. The pfGeoState should almost always enable transparency
since all light point effects except perspective size require transparency.

3. A pfLPointState configured appropriately and attached to the
pfGeoState listed in step two.

The following example illustrates how to build a comprehensive light point structure that uses texture
mapping to accelerate directionality computations:

/*

* Create pflLPointState and pfGeoState.

*/

pf GeoSt at e *gst = pf NewGSt at e(arena) ;
pfLPoi ntState *|ps = pfNewLPState(arena);
pf GSt at eMbde(gst, PFSTATE _ENLPO NTSTATE, 1);
pf GSt at eAttr (gst, PFSTATE_LPO NTSTATE, | ps);

/*

* Light point projected dianmeter is conputed on CPU. Real world
* size is 0.07 database units and projected size is clanped be
* between 0.25 and 4 pixels.

*/

pf LPSt at eMbde(| ps, PFLPS_SI ZE_MODE, PFLPS_SI ZE MODE ON) ;

pf LPSt at eVal (I ps, PFLPS_SIZE_ M N PI XEL, 0.25f);

pf LPSt at eVal (1 ps, PFLPS_SI ZE_ACTUAL, 0.07f);

pf LPSt at eVal (1 ps, PFLPS_SI ZE_ MAX_PI XEL, 4.0f);

301

pfLPointState(3pf) IRIS Performer 2.0 libpr C Reference Pages

302

* Light points becone transparent when their projected dianeter is
* < 2 pixels. The transparency falloff rate is linear with

* projected size with a scale factor of 0.6. The transparency

* multiplier, NOT the light point transparency, is clanmped to 0. 1.
*/

pf LPSt at eVal (| ps, PFLPS_TRANSP_PI XEL_SI ZE, 2.0f);

pf LPSt at eVal (| ps, PFLPS_TRANSP_EXPONENT, 1.0f);

pf LPSt at eVal (| ps, PFLPS_TRANSP_SCALE, O0.6f);

pf LPSt at eVal (| ps, PFLPS_TRANSP_CLAMP, 0. 1f);

/*

* Light points will be fogged as if they were 4 tines

* nearer to the eye than actual to achi eve punch-through.
*/

pf LPSt at eVal (| ps, PFLPS_FOG SCALE, 0. 25f);

/* Range to light points conputed on CPU is true range */
pf LPSt at eMbde(| ps, PFLPS_RANGE_MODE, PFLPS_RANGE _MODE TRUE);

/*

* Light points are bidirectional but have different (nmgenta)
* back color. Front color is provided by pfGeoSet colors.

*/

pf LPSt at eMbde(| ps, PFLPS_SHAPE_MODE, PFLPS SHAPE MODE Bl _COLOR);
pf LPSt at eBackCol or (I ps, 1.0f, 0.0f, 1.0f, 1.0f);

/*

* 60 degrees horizontal and 30 degrees vertical envel ope.

* Envel ope is rotated -25 degrees about the |ight point

* direction. Falloff rate is linear and anbient intensity is 0.1.
*/

pf LPSt at eShape(| ps, 60.0f, 30.0f, -25.0f, 1.0f, 0.1f);

/*

* Specify that |ight points should use texturing hardware to sinulate
* directionality and use CPU to conpute |ight point transparency and
* fog punch-through. Note that if light points are omidirectional,

* you shoul d use PFLPS_TRANSP_MODE_TEX and PFLPS_FOG MODE TEX i nst ead.
*/

pf LPSt at eMbde(| ps, PFLPS DI R_MODE, PFLPS DI R MODE_TEX);

pf LPSt at eMbde(| ps, PFLPS_TRANSP_MODE, PFLPS_TRANSP_MODE_ALPHA) ;

pf LPSt at eMbde(| ps, PFLPS_FOG MODE, PFLPS_FOG MODE_ALPHA) ;

IRIS Performer 2.0 libpr C Reference Pages

pfLPointState(3pf)

/*

* Make directionality environment map of size 64 x 64 and attach
* it to the light point pfGeoState. We assune that a pfTexEnv of
* type PFTE_MODULATE has been gl obal ly applied with pfAppl yTEnv.
*/

tex = pfNewTex(arena);

pf MakeLPSt at eShapeTex(| ps, tex, 64);

pf GStateAttr(gst, PFSTATE TEXTURE, tex);

pf GSt at eMbde(gst, PFSTATE_ENTEXTURE, 1);

/*

* Make SPHERE _MAP pf TexGen and attach to |ight point pfGeoState.
* pfGeoSet nornals define the per-light |ight point direction.
*/

tgen = pf NewlGen(arena);

pf TGenMode(t gen, PF_S, PFTG SPHERE_MAP);

pf TGenMode(t gen, PF_T, PFTG SPHERE_MAP);

pf GSt at eAttr(gst, PFSTATE_TEXGEN, tgen);

pf GSt at eMbde(gst, PFSTATE_ENTEXGEN, 1);

/*

* Configure light point transparency. Use PFTR_BLEND ALPHA for high

* quality transparency. Set pfAl phaFunc so that |ight points are not

* drawn unl ess their al phas exceed 1 when using 8-bit color resolution.
*/

pf GSt at eMbde(gst, PFSTATE_TRANSPARENCY, PFTR_BLEND_ALPHA);

pf GSt at eVal (gst, PFSTATE_ALPHAREF, 1.0/255.0);

pf GSt at eMbde(gst, PFSTATE_ALPHAFUNC, PFAF_GREATER);

/*

* Disabl e pfFog effects since |ight points are fogged by

* the pfLPointState.

*/

pf GSt at eMbde(gst, PFSTATE_ENFOG 0);

/*

* Disable lighting effects since |light points are conpletely
* em ssive.

*/

pf GSt at eMbde(gst, PFSTATE_ENLI GHTING 0);

/*
* Attach the pfGeoState to a pf GeoSet of type PFGS_PQO NTS and
* you' ve got light points!

303

pfLPointState(3pf) IRIS Performer 2.0 libpr C Reference Pages

304

*/
pf GSet Pri nType(gset, PFGS_PQO NTS);
pf GSet GSt at e(gset, gst);

pfLPointState Modes

Each of the five light point characteristics listed earlier may be achieved through the Graphics Library in
different ways depending on the available graphics hardware. pfLPStateMode /pfLPStateVal provide
control over feature implementation. Modes and their corresponding values accepted by pfLPStateMode
are:

PFLPS_SIZE_MODE /* Perspective size */
PFLPS_SIZE_MODE_ON - Enable perspective light point size. Perspective size is computed
on the CPU.

PFLPS_SIZE_MODE_OFF - Disable perspective light point size.

PFLPS_TRANSP_MODE /* Perspective fading */
PFLPS_TRANSP_MODE_ON - Enable default (CPU-based) light point fading.

PFLPS_TRANSP_MODE_OFF - Disable light point fading.

PFLPS_TRANSP_MODE_ALPHA - Enable light point fading. Compute fade value on CPU
and modify light point alpha. This mode requires that pfGeoSets have a PFGS_COLOR4
binding of PFGS_PER_VERTEX and that there be a unique color for each point.

PFLPS_TRANSP_MODE_TEX - Enable light point fading. Use texture mapping to simulate
fading.

PFLPS_FOG_MODE /* Fog punch-through */
PFLPS_FOG_MODE_ON - Enable default (CPU-based) fog punch-through.
PFLPS_FOG_MODE_OFF - Disable fog punch-through.

PFLPS_FOG_MODE_ALPHA - Enable fog punch-through. Compute fog value on CPU and
modify light point alpha. This mode requires that pfGeoSets have a PFGS_COLOR4 binding
of PFGS_PER_VERTEX and that there be a unique color for each point.

PFLPS_FOG_MODE_TEX - Enable fog punch-through. Use texture mapping to simulate fog.
(Normal fogging should be disabled (pfDisable(PFEN_FOG) or pfGStateMode(g,

PFSTATE_ENFOG, 0)) when PFLPS_FOG_MODE is not PFLPS_FOG_MODE_OFF since
the pfLPointState will fog the points)

IRIS Performer 2.0 libpr C Reference Pages pfLPointState(3pf)

PFLPS_DIR_MODE /* Directionality enable */
PFLPS_DIR_MODE_ON - Enable default (CPU-based) directional light points.

PFLPS_DIR_MODE_OFF - Disable directional light points.

PFLPS_DIR_MODE_ALPHA - Enable directional light points. Compute directionality on
CPU and modify light point alpha. This mode requires that pfGeoSets have a PFGS_COLOR4
binding of PFGS_PER_VERTEX and that there be a unique color for each point.

PFLPS_DIR_MODE_TEX - Enable directional light points. Use texture mapping to simulate
directionality.

PFLPS_SHAPE_MODE /* Directionality shape */
PFLPS_SHAPE_MODE_UNI - Directional light points are unidirectional. Light distribution
is an elliptical cone specified by pfLPStateShape, centered about the light direction vector.

PFLPS_SHAPE_MODE_BI - Directional light points are bidirectional with identical front and
back colors. Light distribution is two elliptical cones, specified by pfLPStateShape, centered
about the positive and negative light direction vectors.

PFLPS_SHAPE_MODE_BI_COLOR - Directional light points are bidirectional with back
color specified by pfLPStateBackColor. Light distribution is two elliptical cones, specified by
pfLPStateShape, centered about the positive and negative light direction vectors.

PFLPS_RANGE_MODE
PFLPS_RANGE_MODE_DEPTH - Range to light point is approximated by depth from eye.
This may be faster, but less accurate than PFLPS_RANGE_MODE_TRUE.

PFLPS_RANGE_MODE_TRUE - Range to light point is true, slanted range to eye. This may
be slower, but more accurate than PFLPS_ RANGE_MODE_DEPTH.

pfLPointState Values

pfLPStateVal sets the attribute of Ipstate identified by which to val. pfGetLPStateVal returns the attribute
of Ipstate identified by which.

Values associated with PFLPS_SIZE_MODE and which have effect only when PFLPS_SIZE_MODE is
PFLPS_SIZE_MODE_ON are the following:

PFLPS_SIZE_MIN_PIXEL
val specifies the minimum diameter, in pixels, of light points. Default value is 0.25. Note
that actual minimum point size is clamped to the minimum supported by the graphics
hardware.

305

pfLPointState(3pf) IRIS Performer 2.0 libpr C Reference Pages

PFLPS_SIZE_MAX_PIXEL
val specifies the maximum diameter, in pixels, of light points. Default value is 4.0. Note
that actual maximum point size is clamped to the maximum supported by the graphics
hardware.

PFLPS_SIZE_ACTUAL

val specifies light point diameter in eye coordinates. Scales do not affect the actual light
point size. Default value is 0.25.

In pseudo-code, the size of a light point is determined as follows:

/* Near Pi xel Di stance is described bel ow */
conmput edSi ze = PFLPS_SIZE ACTUAL * Near Pi xel Di stance / rangeToEye;

i f (PFLPS_SIZE_MODE == PFLPS _SIZE_MODE_ON)
{
/* C anp pixel size of point */
if (conputedSize < PFLPS_SIZE_MIN_PIXEL)
conmput edSi ze = PFLPS_SIZE _MIN_PIXEL;
el se
if (conputedSize > PFLPS_SIZE MAX_PIXEL)
conmput edSi ze = PFLPS_SIZE_MAX_PIXEL,;

i ght Poi nt Si ze = conput edSi ze;

Values associated with PFLPS_TRANSP_MODE and which have effect only when
PFLPS_TRANSP_MODE is not PFLPS_TRANSP_MODE_OFF.
PFLPS_TRANSP_PIXEL_SIZE
val specifies the threshold diameter, in pixels, at which light point alphas are decreased so
that they become more transparent once computed light point size is less than val.
Default value is 0.25.
PFLPS_TRANSP_EXPONENT
val specifies an exponential falloff for light point fading and should be >= 0.0. Values > 0
and < 1 make the falloff curve flatter while values > 1 make it sharper. Default value is
1.0 for a linear falloff based on projected pixel size.
PFLPS_TRANSP_SCALE

val specifies a scale factor for the light point fade multiplier. Values > 0 and < 1 decrease
the falloff rate while values > 1 increase it. Default value is 1.0.

306

IRIS Performer 2.0 libpr C Reference Pages pfLPointState(3pf)

PFLPS_TRANSP_CLAMP - val specifies the minimum fade multiplier.

In pseudo-code, the transparency of a light point is determined as follows:

i f (PFLPS_TRANSP_MODE == PFLPS_TRANSP_MODE_ALPHA &&
PFLPS_TRANSP_PIXEL_SIZE > conput edSi ze)
{

f1 oat a,

a = 1.0f - PFLPS_TRANSP_SCALE *
powf (PFLPS_TRANSP_PIXEL_SIZE - conput edSi ze,
PFLPS_TRANSP_EXPONENT) ;

/* danp al pha multiplier, not al pha */
if (a < PFLPS_TRANSP_CLAMP)
a = PFLPS_TRANSP_CLAMP;

|'i ght Poi nt Al pha *= a;

PFLPS_FOG_SCALE

val specifies a scale factor that multiplies the range from eye to light point before fogging. Values

> 0.0 and < 1.0 cause light points to punch through fog more than non-emissive surfaces. Default
value is 0.25.

In pseudo-code, the fog of a light point is determined as follows:

/* fogFunction ranges fromO (no fog) to 1 (conpletely fogged) */
I'i ght Poi nt Al pha *= 1.0f - fogFunction(rangeToEye * PFLPS_FOG_SCALE);

PFLPS_INTENSITY
val multiplies all light point alphas. Default value is 1.0.

PFLPS_SIZE_DIFF_THRESH

val specifies the threshold, in pixels, at which a new point size should be specified to the Graphics
Library. Itis strictly a tuning parameter which trades off speed for image quality. Default value
is 0.1. Higher values improve performance but may degrade light point image quality.

PFLPS_TRANSP_MODE, PFLPS_FOG_MODE, and PFLPS_DIR_MODE modes each have possible
values of ALPHA and TEX which dictate the mechanism used to simulate the effect. The ALPHA
mechanism is the default and uses the CPU to compute the effect which is then realized by modifying the
alpha of light point colors. pfGeoSets of type PFGS_POINTS which use an ALPHA mechanism should

307

pfLPointState(3pf) IRIS Performer 2.0 libpr C Reference Pages

308

have a PFGS_COLOR4 binding of PFGS_PER_VERTEX even if all point colors are the same, since the
light point alphas will be different based on ALPHA computation by the pfLPointState.

While ALPHA mechanisms are graphics hardware-independent, they may be slower than TEX mechan-
isms on machines which provide hardware texture mapping. By supplying an appropriate pfTexture,
pfTexGen, and pfTexEnv (usually attached to the pfGeoState to which the pfLPointState is attached), you
can use the texture mapping hardware to efficiently simulate directionality or fog punch-through and
perspective fading. At this time it is not possible to support all TEX mechanisms at once:

1. Only PFLPS_DIR_MODE_TEX or,

2. PFLPS_TRANSP_MODE_TEX and/or PFLPS_FOG_MODE_TEX
It is recommended that directional light points use PFLPS_DIR_MODE_TEX since directionality is the
most expensive effect to compute on the CPU.

Two convenience routines, pfMakeLPStateRangeTex and pfMakeLPStateShapeTex are provided to
compute a texture image which accurately mimics certain characteristics of Ipstate.

pfMakeLPStateRangeTex should be used in conjunction with PFLPS_TRANSP_MODE_TEX and/or
PFLPS_FOG_MODE_TEX and will set a computed image on the supplied pfTexture, tex. The image will
be a 2D array of size by size if both PELPS_TRANSP_MODE_TEX and PFLPS_FOG_MODE_TEX are set
on Ipstate or the image will be a 1D array of length size if only 1 of PFLPS_TRANSP_MODE_TEX and
PFLPS_FOG_MODE_TEX is set.

When using PFLPS_TRANSP_MODE_TEX and/or PFLPS_FOG_MODE_TEX, you must supply a
pfTexGen structure which computes the S (and T if both PFLPS_TRANSP_MODE_TEX and
PFLPS_FOG_MODE_TEX are set) texture coordinates as distance from the Z = 0 plane in eye coordi-
nates. For example:

tgen = pf NewTGen(arena);

pf TGenPl ane(tgen, PF_S, 0.0f, 0.0f, 1.0f, 0.0f);
pf TGenPl ane(tgen, PF_T, 0.0f, 0.0f, 1.0f, 0.0f);
pf TGenMbde(tgen, PF_S, PFTG EYE_PLANE);

pf TGenMbde(tgen, PF_T, PFTG EYE_PLANE);

pfMakeLPStateRangeTex takes into account only the following values of Ipstate when building the tex-
ture image and should be called again whenever they change:

PFLPS_TRANSP_PIXEL_SIZE
PFLPS_TRANSP_EXPONENT
PFLPS_TRANSP_SCALE
PFLPS_TRANSP_CLAMP

pfMakeLPStateShapeTex computes an environment map which approximates the directional

IRIS Performer 2.0 libpr C Reference Pages pfLPointState(3pf)

characteristics of Ipstate. The computed image is assigned to tex and its dimensions are size by size. When
using PFLPS_DIR_MODE_TEX, you must supply a pfTexGen structure which uses
PFTG_SPHERE_MAP to compute both S and T. For example:

tgen = pf NewTGen(arena);
pf TGenMbde(t gen, PF_S, PFTG SPHERE MAP):
pf TGenMbde(t gen, PF_T, PFTG SPHERE_MAP):

pfMakeLPStateShapeTex takes into account only the PFLPS_SHAPE_MODE modes and those values
specified by pfLPStateShape. Consequently, pfMakeLPStateShapeTex should be called whenever these
modes/values change.

fog should represent the desired fog ramp, e.g. PFFOG_LINEAR, PFFOG_SPLINE, if
PFLPS_FOG_MODE_TEX is set or NULL if not set. The fog ranges are ignored and fog is not modified.

Each of the four main light point features (size, transparency, fog, and directionality) are view-dependent
effects. Consequently, knowledge about the viewing and modeling transformations is required in certain
situations:

1. When not using libpf. Otherwise, libpf automatically informs libpr of the viewing and
modeling transformations.

2. When using an ALPHA mechanism, e.g., PFLPS_DIR_MODE_ALPHA.
3. When PFLPS_SIZE_MODE is PFLPS_SIZE_ MODE_ON.

Use pfViewMat and pfModelMat to specify the viewing and modeling matrices respectively. For best
performance, these routines should be called only when the corresponding matrix changes. Additionally
you may call pfInvModelMat to specify the inverse of the modeling matrix if you've already computed it
for some other reason. When using PFLPS_SIZE_MODE_ON, use pfNearPixDist to specify the distance,
in pixels, from the eye to the near clip plane. pfLPointState needs this parameter to map world size to
pixel size (but only if not using libpf). pfViewMat, pfModelMat, pfInvModelMat, and pfNearPixDist
are all display-listable commands which may be captured by an open pfDispList.

pfNewLPState creates and returns a handle to a pfLPointState. arena specifies a malloc arena out of
which the pfLPointState is allocated or NULL for allocation off the process heap. pfLPointStates can be
deleted with pfDelete.

pfGetLPStateClassType returns the pfType* for the class pfLPointState. The pfType* returned by
pfGetLPStateClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLPointState. When decisions are made based on the type of an object, it is usually better to use
pfIsOfType to test if an object is of a type derived from a Performer type rather than to test for strict
equality of the pfType*’s.

309

pfLPointState(3pf) IRIS Performer 2.0 libpr C Reference Pages

NOTES

310

pfLPointShape specifies the light distribution characteristics of directional light points. Light point direc-
tions are specified by pfGeoSet normals after they have been transformed by the current modeling matrix.
Note that a PFGS_NORMALS3 binding of PFGS_OVERALL is permitted as well as a binding of
PFGS_PER_VERTEX. Directional light points require that PFLPS_DIR_MODE be
PFLPS_DIR_MODE_ON, PFLPS_DIR_MODE_ALPHA, or PFLPS_DIR_MODE_TEX.

horiz and vert are total angles (not half-angles) in degrees which specify the horizontal and vertical
envelopes about the direction vector. An envelope is a symmetric angular spread in a specific plane
about the light direction vector. The default direction is along the positive Y axis so the horizontal
envelope is in the X plane and the vertical in the Z plane. The envelopes are twisted about the +Y axis by
roll degrees, then rotated by the rotation which takes the +Y axis onto the light point direction vector.
Default values are:

horiz = 90 degrees
vert = 90 degrees
roll = 0 degrees
falloff =1

ambient =0

When the vector from the eyepoint to the light position is outside its envelope, the light point’s intensity is
ambient. If within, the intensity of the light point is computed based on the location of the eye within the
elliptical cone. Intensity ranges from 1.0 when the eye lies on the light direction vector to ambient on the
edge of the cone. falloff is an exponent which modifies the intensity. A value of 0 indicates that there is no
falloff and values > 0 increase the falloff rate. The default falloffis 1. As intensity decreases, the light
point’s transparency increases.

pfGetLPointShape copies Ipstate’s shape parameters into horiz, vert, roll, falloff, and ambient.

pfLPStateBackColor specifies the back color of Ipstate. If Ipstate’s shape mode is not
PFLPS_SHAPE_MODE_BI_COLOR, then the back color has no effect. pfLPStateBackColor copies
Ipstate’s back color components into 7, g, b, a.

pfApplyLPState makes Ipstate the current pfLPointState which affects all subsequently drawn pfGeoSets
of type PEFGS_POINTS. pfApplyLPState is a display-listable command which may be captured by an
open pfDispList. A pfLPointState may also be attached to a pfGeoState. pfGetCurLPState returns the
current pfLPointState or NULL if there is none.

Falloff distribution is cosine(incidence angle) " falloff.

pfApplyLPState changes, but does not restore the texture matrix if PFLPS_DIR_MODE_TEX,
PFLPS_TRANSP_MODE_TEX, or PFLPS_FOG_MODE_TEX is active.

IRIS Performer 2.0 libpr C Reference Pages pfLPointState(3pf)

SEE ALSO
pfDelete, pfDispList, pfFog, pfGeoSet, pfGeoState, pfState, pfTexture, pfTexGen, pfuMakeLPSta-
teRangeTex, pfuMakeLPStateShapeTex

311

pfLight(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME
pfNewLight, pfGetLightClassType, pfLightColor, pfGetLightColor, pfLightAtten, pfGetLightAtten,
pfLightPos, pfGetLightPos, pfSpotLightDir, pfGetSpotLightDir, pfSpotLightCone,
pfGetSpotLightCone, pfLightOn, pfLightOff, pfIsLightOn, pfLightAmbient, pfGetLightAmbient,
pfGetCurLights — Create, modify and query lights

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfLight * pfNewLight(void *arena);

pfType* pfGetLightClassType(void);

void pfLightColor(pfLight *It, int which, float r, float g, float b);

void pfGetLightColor(const pfLight *1t, int which, float *r, float *g, float *b);
void pfLightAtten(pfLight* light, float constant, float linear, float quadratic);
void pfGetLightAtten(pfLight* light, float *constant, float *linear, float *quadratic);
void pfLightPos(pfLight *1t, float x, float y, float z, float w);

void pfGetLightPos(const pfLight *It, float *x, float *y, float *z, float *w);
void pfSpotLightDir(pfLight *1t, float X, float y, float z);

void pfGetSpotLightDir(const pfLight *It, float *x, float *y, float *z);

void pfSpotLightCone(pfLight *It, float exponent, float spread);

void pfGetSpotLightCone(const pfLight *1t, float *exponent, float *spread);
void pfLightOn(pfLight *1t);

void pfLightOff(pfLight *1t);

int pfIsLightOn(pfLight *It);

void pfLightAmbient(pfLight *It, float r, float g, float b);

void pfGetLightAmbient(const pfLight *It, float *r, float *g, float *b);

int pfGetCurLights(pfLight *lights|PF_MAX_LIGHTS]);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLight is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfLight. Casting an object of class
pfLight to an object of class pfObject is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);

312

IRIS Performer 2.0 libpr C Reference Pages pfLight(3pf)

void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLight can also
be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
It identifies a pfLight.
DESCRIPTION

A pfLight is a light source that illuminates scene geometry, generating realistic shading effects. A pfLight
cannot itself be seen but its effect is visible through its illuminative effect on scene geometry. There are
some subtle differences between IRIS GL and OpenGL light operation and additional references are
recommended and should be noted. See the IRIS GL Imdef(3g) or the OpenGL glLight(3g) reference
page for more details on lights and individual lighting parameters.

pfNewLight creates and returns a handle to a pfLight. arena specifies a malloc arena out of which the
pfLight is allocated or NULL for allocation off the process heap. A NULL pointer is returned to indicate
failure. pfLights can be deleted with pfDelete.

pfGetLightClassType returns the pfType* for the class pfLight. The pfType* returned by
pfGetLightClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLight. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfLightColor accepts a token for the color attribute to set (PFLT_AMBIENT, PFLT_DIFFUSE, or
PFLT_SPECULAR) and three floating point values (, g, and b) in the range [0.0 .. 1.0] defining values for
the red, green, and blue components of the indicated attribute of the light source. By default, ther, g, and
b values are all 1.0. pfGetLightColor copies the requested light color values for the given light source

313

pfLight(3pf) IRIS Performer 2.0 libpr C Reference Pages

314

and color attribute into the parameters r, g, and b.

pfLightAtten sets the attenuation parameters of light. The light intensity is scaled at each vertex by:
1.0 / (constant + linear * dist + quadratic * dist"2)

where “dist’ is the distance from the light position to the lit vertex. Note that "dist’ is 1.0 for infinite light
sources. The default attenuation values are constant = 1.0, linear = 0.0, quadratic = 0.0, i.e., light attenuation
is disabled. pfGetLightAtten returns the attenuation parameters of light in constant, linear, and quadratic.
Per-light attenuation is only available in OpenGL. IRIS GL light attenuation is done on the light model;
see the pfLModelAtten reference page for more information.

pfSpotLightDir specifies the direction in which a spot light source emits its light. It receives three float-
ing point values, x, y, and z, specifying the x, y, and z direction vectors. pfGetSpotLightDir copies the x,
y, and z direction vectors into the parameters x, y, and z.

pfSpotLightCone specifies the exponent and spread of the spot light cone, and receives two floating point
values, fI and f2, to set the exponent for the intensity, and the spread of the cone, respectively.
pfGetSpotLightCone copies the current exponent and spread of the cone into the parameters f1 and f2.

pfLightPos receives four floating point values to set the x, y, z, and w, coordinates for the position of the
light source. Typically, the homogeneous coordinate w is 0.0 to indicate that the light position is infinitely
far from the origin in the direction (x, y, z). Local light sources are specified by a non-zero value for w and
usually incur a performance penalty. pfGetLightPos copies the x, y, z and w coordinates of the light
source into the parameters x, y, z and w, respectively.

pfLightOn enables light so that its illumination will influence scene geometry if lighting is properly
enabled (See below). The maximum number of active lights is determined by the particular graphics
library implementation but typically is at least eight.

Modifications made to light do not have effect until pfLightOn is called.

For geometry to be illuminated, the following must be true:
1. Lighting must be enabled: pfEnable(PFEN_LIGHTING)
A pfLightModel must be applied: pfApplyLModel
A pfMaterial must be applied: pfApplyMtl
One or more pfLights must be on: pfLightOn
[Nluminated geometry must have normals: pfGSetAttr, PFGS_NORMAL3

AR

pfLightOn also affects the position of the light in the scene. When called, the current graphics library
ModelView matrix transforms the position of the light set by pfLightPos. Calling pfLightOn when
specific transformations are on the stack will result in different light behaviors, which are outlined in the

IRIS Performer 2.0 libpr C Reference Pages pfLight(3pf)

following paragraphs.

To simulate a light attached to the viewer (simulating a miner’s head-mounted lamp) call pfLightOn only
once with an identity matrix on the stack:

pf Li ght Pos(vi ewer Li ght, 0.0, 0.0, 1.0, 0.0);

/*

* viewerLight always points in direction of view, i.e. - down -Z axis.
*/

pf Pushl dent Mat ri x();

pf Li ght On(vi ewer Li ght) ;

pf PopMat ri x();

/* Draw scene */

To simulate a light "attached" to the world (at a fixed location in world-space coordinates like the sun or
moon) call pfLightOn every frame with only the viewing transformation on the stack:

pf Li ght Pos(sunLight, 0.0, 1.0, 0.0, 0.0);
pf Pushl dent Mat ri x();

/* viewer is at origin |ooking +30 degrees 'up’ */
pf Rot at e(PF_X, -30.0f);

/* sunLi ght al ways points strai ght down on scene */
pf Li ght On(sunLi ght);

/* Draw scene */

pf PopMat ri x();

To simulate a light attached to an object like the headlights of a car, call pfLightOn every frame with the
combined viewing and modeling transformation on the stack:

pf Li ght Pos(headLi ght, 2.0, 0.0, 0.0, 1.0);
pf Pushl dent Mat ri x();

/* Viewer is at origin | ooking +30 degrees 'up’ */
pf Rot at e(PF_X, -30.0f);

315

pfLight(3pf) IRIS Performer 2.0 libpr C Reference Pages

316

/* Car is at (100.0f, 100.0f, 100.0f) */
pf Transl at e(100. Of, 100. 0f, 100. 0f);

/*

* carLight is a point light source at the front of the car
* provided the car is nodel ed such that the headlights are
* 2 units fromthe center of the car in the +X direction.
*/

pf Li ght On(headLi ght);

/* Draw scene */

pf PopMatri x();

pfLightOff disables light so that it does not contribute to scene illumination.
pfIsLightOn returns a boolean indicating whether light is on or not.

pfGetCurLights returns the number of currently active lights, n. The array lights is filled with n pointers
to the pfLight structures of the light sources that are currently ““on”.

The light source state element is identified by the PFSTATE_LIGHT token. Use this token with
pfGStateAttr to set the light array of a pfGeoState and with pfOverride to override subsequent light
source changes:

pfLightAmbient is provided for compatibility with previous versions of IRIS Performer. It accepts three
floating point values in the range from 0.0 through 1.0 to set the 7, g, and b, values for the red, green, and
blue components of the ambient light. By default, lights have ambient red, green, and blue values of 0.0.
pfGetLightAmbient copies the ambient light values for the given light source into the parameters r, g,
and b. For future compatibility, calls to:

pf Li ght Anbient(I't, r, g, b);

should be replaced by
pfLi ght Col or (1t, PFLT_AMBIENT, r, g, b);

and calls to:

IRIS Performer 2.0 libpr C Reference Pages pfLight(3pf)

pf Get Li ght Anbient (It, &, &g, &b);

should be replaced by
pf Get Li ght Col or (1t, PFLT_AMBIENT, &r, &g, &b);

EXAMPLES
Example 1:

pf Li ght *|ight Array[PF_MAX_LI GHTS] ;

for (i=0; i<PF_MAX_LICHTS; i++)
lightArray[i] = NULL;

I'i ght Array[0] i ghtO;
lightArray[1] = light1;

/* Set up specially-lit pfGeoState */
pf GSt at eMbde(gst at e, PFSTATE_ENLI GHTI NG PF_ON);
pf GSt at eAttr (gstate, PFSTATE_LIGHT, |ightArray);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Set normal array. 'gset’ is non-indexed */
pf GSet Attr(gset, PFGS_NORVAL3, PFGS_PER VERTEX, norms, NULL);

/* Draw specially-lit gset */
pf Dr awGSet (gset) ;

Example 2:

pf Li ght On(1i ght0);
pf Li ght On(1ight1);

/*

* Override so that all geometry is lit with lightO and lightl
* if lighting is otherw se properly enabl ed.

*/

pf Overri de(PFSTATE_LI GHT, PF_QN);

317

pfLight(3pf) IRIS Performer 2.0 libpr C Reference Pages

The array of lights passed to pfGStateAttr should be PF_MAX_LIGHTS long and should contain refer-
ences to pfLights that are to be used by the pfGeoState. Empty array elements should be set to NULL.

pfLightOn and pfLightOff are display-listable commands. If a pfDispList has been opened by
pfOpenDList, pfLightOn and pfLightOff will not have immediate effect but will be captured by the
pfDispList and will only have effect when that pfDispList is later drawn with pfDrawDList.

NOTES
Local lighting results in improper shading of flat-shaded triangle and line strips (-
PFGS_FLAT_TRISTRIPS, PFGS_LINE_TRISTRIPS) which often manifests itself as "faceting" of planar
polygons. The only solution is either to use infinite lighting or not use FLAT primitives. Note that when
using the IRIS Performer triangle meshing routine, pfdMeshGSet, the construction of non-FLAT strips is
easily enforced with pfdMesherMode(PFDMESH_LOCAL_LIGHTING, 1).

SEE ALSO
pfDelete, pfDispList, pfGeoState, pfLightModel, pfMaterial, pfObject, pfOverride, pfState, Imbind,
Imcolor, Imdef, glLight, glColorMaterial

318

IRIS Performer 2.0 libpr C Reference Pages pfLightModel(3pf)

NAME
pfNewLModel, pfGetLModelClassType, pfApplyLModel, pfLModelAtten, pfGetLModelAtten,
pfLModelLocal, pfGetLModelLocal, pfLModelTwoSide, pfGetLModelTwoSide, pfLModelAmbient,
pfGetLModelAmbient, pfGetCurLModel — Create, modify and query lighting model

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfLightModel * pfNewLModel(void *arena);

pfType* pfGetLModelClassType(void);

void pfApplyLModel(pfLightModel *Im);

void pfLModelAtten(pfLightModel *lm, float a0, float a1, float a2);

void pfGetLModelAtten(const pfLightModel *Im, float *a0, float *al, float *a2);
void pfLModelLocal(pfLightModel *Im, int 1);

int pfGetLModelLocal(const pfLightModel *Im);

void pfLModelTwoSide(pfLightModel *Im, int t);

int pfGetLModelTwoSide(const pfLightModel *Im);

void pfLModelAmbient(pfLightModel *Im, float r, float g, float b);

void pfGetLModelAmbient(const pfLightModel *Im, float *r, float *g, float *b);

pfLightModel * pfGetCurLModel(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightModel is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfLightModel. Casting
an object of class pfLightModel to an object of class pfObject is taken care of automatically. This is also
true for casts to objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightModel
can also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);

319

pfLightModel(3pf) IRIS Performer 2.0 libpr C Reference Pages

const char * pfGetTypeName(const void *ptr);

int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

Im identifies a pfLightModel.

DESCRIPTION

320

A pfLightModel defines characteristics of the hardware lighting model used to illuminate geometry.
There are some subtle differences between IRIS GL and OpenGL light operation and additional references
are recommended and should be noted. See the IRIS GL Imdef(3g) or the OpenGL glLightModel(3g)
reference page for more details on lighting environments and individual parameters.

pfNewLModel creates and returns a handle to a pfLightModel. arena specifies a malloc arena out of
which the pfLightModel is allocated or NULL for allocation off the process heap. A NULL pointer is
returned to indicate failure. pfLightModels can be deleted with pfDelete.

pfGetLModelClassType returns the pfType* for the class pfLightModel. The pfType* returned by
pfGetLModelClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfLightModel. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type
derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfLModelAtten sets the lighting attenuation factors for Im. al, a2, and a3 specify the constant, linear, and
second-order attenuation factors, respectively. These factors are associated with all non-infinite lights.
The default vales for constant, linear, and quadratic attenuation factors are 1.0, 0.0, and 0.0, respectively,
effectively disabling each. Attenuation on the light model is done only in IRIS GL operation. OpenGL
light attenuation is done per-light. See the pfLightAtten reference page for more information.

pfGetLModelAtten copies the lighting attenuation factors for i into the parameters a1, a2, and a3.
pfLModelLocal specifies whether the light reflection calculations are to be done based on a local or
infinite viewpoint. The default is PF_OFF signifying an infinite viewer for the light model. In general,

local lighting is more expensive than infinite lighting.

pfGetLModelLocal returns a boolean value signifying whether or not the effective viewpoint in Im is a
local viewpoint.

IRIS Performer 2.0 libpr C Reference Pages pfLightModel(3pf)

pfLModelTwoSide specifies whether two-sided lighting is to be used in the given light model. The
default is PF_OFF, disabling two-sided lighting. See the IRIS GL Imdef(3g) or the OpenGL glLightModel
reference page for more details on two-sided lighting.

pfGetLModelTwoSide returns the setting of Im’s two-sided lighting mode.

pfLModelAmbient receives three floating point values in the range from 0.0 through 1.0 to set the red,
green, and blue, values for the amount of the ambient light associated with the scene for the given light
model.

pfGetLModelAmbient copies the red, green, and blue components of the ambient in the given light
model into the parameters r, g, and b, respectively. The default value for the ambient red, green, and blue
light components is 0.2.

pfApplyLModel causes Im, with its current settings, to become the current lighting model. When lighting
is enabled (See below), this lighting model will be applied to all geometry drawn after pfApplyLModel is
called. Modifications to Im, such as changing the ambient color, or setting two-sided lighting, will not be
applied until pfApplyLModel is called with Im.

For geometry to be illuminated, the following must be true:
1. Lighting must be enabled: pfEnable(PFEN_LIGHTING)
2 A pfLightModel must be applied: pfApplyLModel
3 A pfMaterial must be applied: pfApplyMitl
4. One or more pfLights must be on: pfLightOn
5 INluminated geometry must have normals: pfGSetAttr, PFGS_NORMAL3

The lighting model state element is identified by the PFSTATE_LIGHTMODEL token. Use this token
with pfGStateAttr to set the lighting model of a pfGeoState and with pfOverride to override subsequent
lighting model changes:

EXAMPLES
Example 1:

pf LModel TwoSi de(| nodel , PF_ON);

/* Set up two-sided lighting pfGeoState */

pf GSt at eMbde(gst at e, PFSTATE_ENLI GHTI NG PF_ON);
pf GStateAttr(gstate, PFSTATE_LI GATMODEL, | nodel);
pf GStateAttr(gstate, PFSTATE_FRONTMIL, ntl);

pf GStateAttr (gstate, PFSTATE_BACKMIL, ntl);

pf GSt at eMbde(gst ate, PFSTATE_CULLFACE, PF_OFF);

321

pfLightModel(3pf) IRIS Performer 2.0 libpr C Reference Pages

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Set normal array. 'gset’ is non-indexed */
pf GSet Attr (gset, PFGS_NORMAL3, PFGS_PER VERTEX, norns, NULL);

/* Draw lit, two-sided gset */
pf Dr anGSet (gset) ;

Example 2:
pf Appl yLModel (| nodel) ;

/* Override so that all geometry is Ilit with 'Inmodel’ */
pf Overri de(PFSTATE_ LI GHTMODEL, PF_ON);

pfApplyLModel is a display-listable command. If a pfDispList has been opened by pfOpenDList,
pfApplyLModel will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDrawDList.

pfGetCurLModel returns a pointer to the currently active pfLightModel, or NULL if there is no active
pfLightModel.

SEE ALSO

322

pfDelete, pfDispList, pfGeoState, pfLight, glLightModel, pfMaterial, pfObject, pfState, Imbind, Imcolor,
Imdef

IRIS Performer 2.0 libpr C Reference Pages pfList(3pf)

NAME

pfNewList, pfGetListClassType, pfAdd, pfCombineLists, pfFastRemove, pfFastRemovelndex, pfGet,
pfGetListArray, pfGetListArrayLen, pfGetListEltSize, pfGetNum, pflnsert, pfMove, pfListArrayLen,
pfNum, pfRemove, pfRemovelndex, pfReplace, pfResetList, pfSearch, pfSet — Dynamically-sized list

utility

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfList *
pfType *
void
void

int

void
void *
const void **
int

int

int

void

int

void
void

int

void

int

void

int

void

pfNewList(int eltSize, int listLength, void* arena);
pfGetListClassType(void);

pfAdd(pfList* list, void* elt);
pfCombineLists(pfList* dst, const pfList *a, const pfList *b);
pfFastRemove(pfList* list, void* elt);
pfFastRemovelndex(pfList* list, int index);
pfGet(const pfList* list, int index);
pfGetListArray(const pfList* list);
pfGetListArrayLen(const pfList* len);
pfGetListEltSize(const pfList* list);
pfGetNum(const pfList* list);
pflnsert(pfList* list, int index, void* elt);
pfMove(pfList* lists, int index, void *elt);
pfListArrayLen(pfList* list, int len);
pfNum(pfList *list, int num);
pfRemove(pfList* list, void* elt);
pfRemovelndex(pfList* list, int index);
pfReplace(pfList* list, void* old, void* new);
pfResetList(pfList* list);

pfSearch(const pfList* list, void* elt);
pfSet(pfList* list, int index, void *elt);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfList is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfList. Casting an object of class
pfList to an object of class pfObject is taken care of automatically. This is also true for casts to objects of
ancestor classes of class pfObject.

323

pfList(3pf) IRIS Performer 2.0 libpr C Reference Pages

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfList can also
be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pfIsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS

list identifies a pfList.

DESCRIPTION

324

A pfList is a dynamically-sized array of arbitrary, but homogeneously-sized, elements.

pfNewlList creates and returns a handle to a new pfList. eltSize specifies the size in bytes of an individual
list element. The element size is fixed at creation time and cannot be later changed. listLength is the initial
length of the list; listLength * eltSize bytes will be allocated for the list array. The argument arena specifies
a malloc arena out of which the pfList is to be allocated or NULL for allocation from the process heap.
pfLists can be deleted with pfDelete.

pfGetListClassType returns the pfType* for the class pfList. The pfType* returned by
pfGetListClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfList. Because IRIS Performer allows subclassing of built-in types, when decisions are made based on
the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from a
Performer type rather than to test for strict equality of the pfType*’s.

A pfList dynamically increases its array size by a factor of 2 and zeros the additional memory whenever it
runs out of array memory. This way the array size quickly reaches its final size without many realloca-
tions of memory. However, some memory (up to one half of the total allocation) at the end of the array
may be wasted. If you know the exact number of elements in the array, you can specify the pfList array
length either when creating it (the listLength argument to pfNewList) or with pfListArrayLen.

IRIS Performer 2.0 libpr C Reference Pages pfList(3pf)

pfGetListArrayLen returns the current array length of list.

Example 1:

/* Fit list's array to its current nunber of elenments */
pfListArrayLen(list, pfGetNum(list));

pfSet sets the indexth element of list to elt. The list is automatically grown if index is beyond the current
array length.

pfGet returns the element of list at index index or 0 if index is out of bounds.
pfAdd appends elt to list and automatically grows [ist if necessary.

pfRemove removes elt from list and shifts the array down over the vacant spot, e.g. - if elt had index 0,
then index 1 becomes index 0, index 2 becomes index 1 and so on. pfRemove returns the index of elt if elt
was actually removed and -1 if it was not found in the list. pfRemoveIndex removes the indexth element
of list, and like pfRemove, shifts the array down over the vacant spot.

pfFastRemove removes elt from list but does not shift the array; instead it places the last element of the
array into the vacated location so it does not preserve the list ordering. pfFastRemoveIndex replaces the
indexth element with the last element of list.

Note that both pfRemove and pfFastRemove linearly search the array for elt and remove only the first
matching element. To remove all occurrences of elt do the following:
whil e (pfRemove(list, elt) >= 0)
/* empty */ ;

pfSearch returns the index of elt if elt was found in list and -1 otherwise.

pflnsert inserts elt before the array element with index index. index must be within the range [0 ..
pfGetNum(list)].

pfMove deletes elt from its current location and inserts before the array element with index index. index
must be within the range [0 .. pfGetNum(/ist)] or else (-1) is returned and no move is executed. If elt is
not already in /ist, (-1) is returned and elt is not inserted into the list. Otherwise, index is returned to indi-
cate success.

pfReplace replaces the first instance of old with new and returns the index of old if it was found in /ist and
-1 otherwise.

325

pfList(3pf) IRIS Performer 2.0 libpr C Reference Pages

BUGS

pfGetNum returns the number of elements in list. (Actually, list may have holes in its array so pfGetNum
technically should be considered as returning the maximum index of all elements in list.)

pfResetList zeros list’s array and resets the number of elements to 0. It does not resize the array.

pfCombineLists sets dst to a appended with b. dst may be the same as a or b. Lists must have equal ele-
ment sizes to be combined.

For quick access to the list array, pfGetListArray returns a pointer to the internal array of list. Care

should be taken with this routine since out of bounds range checking provided by pfList API is bypassed.
If you add elements to list then use pfNum to set the number of elements of list.

pfLists currently only support an element size of sizeof(void®).

SEE ALSO

326

pfDelete

IRIS Performer 2.0 libpr C Reference Pages pfMatStack(3pf)

NAME

pfNewMStack, pfGetMStackClassType, pfResetMStack, pfPushMStack, pfPopMStack,
pfPreMultMStack, pfPostMultMStack, pfLoadMStack, pfGetMStack, pfGetMStackTop,
pfGetMStackDepth, pfPreTransMStack, pfPostTransMStack, pfPreRotMStack, pfPostRotMStack,
pfPreScaleMStack, pfPostScaleMStack — Create and manipulate a matrix stack.

FUNCTION SPECIFICATION

#include <Performer/pr.h>
pfMatStack * pfNewMStack(int size, void *arena);
pfType* pfGetMStackClassType(void);

void pfResetMStack(pfMatStack *stack);

int pfPushMStack(pfMatStack *stack);

int pfPopMStack(pfMatStack *stack);

void pfPreMultMStack(pfMatStack *stack, const pfMatrix m);

void pfPostMultMStack (pfMatStack *stack, const pfMatrix m);

void pfLoadMStack(pfMatStack *stack, const pfMatrix m);

void pfGetMStack(const pfMatStack *stack, pfMatrix m);

pfMatrix* pfGetMStackTop(const pfMatStack *stack);

int pfGetMStackDepth(const pfMatStack *stack);

void pfPreTransMStack(pfMatStack *stack, float x, float y, float z);

void pfPostTransMStack(pfMatStack *stack, float x, float y, float z);

void pfPreRotMStack(pfMatStack *stack, float degrees, float x, float y, float z);
void pfPostRotMStack(pfMatStack *stack, float degrees, float x, float y, float z);
void pfPreScaleMStack(pfMatStack *stack, float xs, float ys, float zs);

void pfPostScaleMStack(pfMatStack *stack, float xs, float ys, float zs);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfMatStack is derived from the parent class pfObject, so each of these member

functions of class pfObject are also directly usable with objects of class pfMatStack. Casting an object of

class pfMatStack to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);

327

pfMatStack(3pf) IRIS Performer 2.0 libpr C Reference Pages

int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMatStack can
also be used with these functions designed for objects of class pfMemory.

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
DESCRIPTION

328

These routines allow the creation and manipulation of a stack of 4x4 matrices.

pfNewMStack creates and returns a handle to a pfMatStack. arena specifies a malloc arena out of which
the pfMatStack is allocated or NULL for allocation off the process heap. pfMatStacks can be deleted with
pfDelete. size is the number of pfMatrix’s in the matrix stack. The initial depth is 1 and the top of stack is
the identity matrix.

pfGetMStackClassType returns the pfType* for the class pfMatStack. The pfType* returned by
pfGetMStackClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfMatStack. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

pfResetMStack sets the stack depth to 1 and sets the top of stack to the identity matrix.

pfPushMStack pushes down the specified matrix stack duplicating the top. pfPopMStack pops the
matrix stack. Attempting to pop a matrix stack containing only a single element or pushing past the max-
imum depth causes a warning and leaves the stack unchanged.

pfPreMultMStack pre-multiplies the top of the stack by the matrix m and replaces the top of the stack
with the product. Thus if T is the top of the stack, the operation replaces T with m*T. This order
corresponds to that used by OpenGL’s gIMultMatrix. pfPostMultMStack operates similarly but using
post-multiplication, calculating T*m instead.

IRIS Performer 2.0 libpr C Reference Pages pfMatStack(3pf)

NOTES

pfLoadMStack replaces the top of the stack with the matrix m.

pfGetMStack copies the top of the matrix into the matrix m. pfGetMStackTop returns a pointer to the
top of the matrix stack.

pfGetMStackDepth returns the current depth of the stack. Initially the depth is 1.
The following transformations pre- and post- multiply the top of the matrix stack:

pfPreTransMStack and pfPostTransMStack respectively pre- and post- multiply the top of the matrix
stack by the translation matrix generated by the coordinates x, y and z. (See pfMakeTransMat).

pfPreRotMStack and pfPostRotMStack respectively pre- and post- multiply the top of the matrix stack
by the rotation by degrees about the axis defined by (x, y, z). (See pfMakeRotMat). The results are
undefined if the vector (x, y, z) is not normalized.

pfPreScaleMStack and pfPostScaleMStack respectively pre- and post- multiply the top of the matrix
stack by a scaling matrix. (See pfMakeScaleMat). The matrix scales by x in the X direction, y and the Y
direction and z in the Z direction.

pfPreRotMStack and pfPostRotMStack use pfSinCos which is faster than the libm counterpart, but has
less resolution.

pfMatStack is not related to the GL matrix stack.
IMPORTANT: The argument order of degrees and axis to the pfPreRotMStack are not the same as to the

corresponding routine pfRotMStack in the IRIS Performer 1.0 and IRIS Performer 1.1 releases. This
change was first introduced in the IRIS Performer 1.2 release and is present in subsequent releases.

SEE ALSO

pfDelete, pfMakeRotMat, pfMakeScaleMat, pfMakeTransMat, pfMatrix, pfSinCos, multmatrix

329

pfMaterial (3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME

pfNewMtl, pfGetMtlClassType, pfMtlSide, pfGetMtlSide, pfMtlAlpha, pfGetMtlAlpha, pfMtIShini-
ness, pfGetMtlShininess, pfMtlColor, pfGetMtlColor, pfMtlColorMode, pfGetMtlColorMode, pfAp-
plyMtl, pfGetCurMtl — Create, modify and query a material.

FUNCTION SPECIFICATION

#include <Performer/pr.h>
pfMaterial * pfNewMtl(void *arena);
pfType * pfGetMtlClassType(void);

void pfMtlSide(pfMaterial *mtl, int side);

int pfGetMtlSide(pfMaterial *mtl);

void pfMtlAlpha(pfMaterial *mtl, float alpha);

float pfGetMtlAlpha(pfMaterial *mtl);

void pfMtlShininess(pfMaterial *mtl, float shininess);

float pfGetMtlShininess(pfMaterial *mtl);

void pfMtlColor(pfMaterial *mtl, int color, float r, float g, float b);
void pfGetMtlColor(pfMaterial *mtl, int color, float *r, float *g, float *b);
void pfMtlColorMode(pfMaterial *mtl, int side, int mode);

int pfGetMtlColorMode(pfMaterial *mtl, int side);

void pfApplyMtl(pfMaterial *mtl);

pfMaterial * pfGetCurMtl(int side);

PARENT CLASS FUNCTIONS

330

The IRIS Performer class pfMaterial is derived from the parent class pfObject, so each of these member

functions of class pfObject are also directly usable with objects of class pfMaterial. Casting an object of

class pfMaterial to an object of class pfObject is taken care of automatically. This is also true for casts to
objects of ancestor classes of class pfObject.

void pfUserData(pfObject *obj, void *data);
void* pfGetUserData(pfObject *obj);
int pfGetGLHandle(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMaterial can
also be used with these functions designed for objects of class pfMemory.

IRIS Performer 2.0 libpr C Reference Pages pfMaterial(3pf)

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);
int pfRef(void *ptr);
int pfUnref(void *ptr);
int pfUnrefDelete(void *ptr);
int pfGetRef(const void *ptr);
int pfCopy(void *dst, void *src);
int pfDelete(void *ptr);
int pfCompare(const void *ptrl, const void *ptr2);
void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfGetArena(void *ptr);
PARAMETERS
mtl identifies a pfMaterial.
DESCRIPTION

In conjunction with other lighting parameters, a pfMaterial defines the appearance of illuminated
geometry. A pfMaterial defines the reflectance characteristics of surfaces such as diffuse color and shini-
ness. There are some subtle differences between IRIS GL and OpenGL light operation and additional
references are recommended and should be noted. returned to indicate failure. See the IRIS GL
Imdef(3g) or OpenGL glMaterial(3g) reference page for more details on materials parameters.

pfNewMtl creates and returns a handle to a pfMaterial. arena specifies a malloc arena out of which the
pfMaterial is allocated or NULL for allocation off the process heap. A NULL pointer is returned to indi-
cate failure. pfMaterials can be deleted with pfDelete.

pfGetMtlClassType returns the pfType* for the class pfMaterial. The pfType* returned by
pfGetMtlClassType is the same as the pfType* returned by invoking pfGetType on any instance of class
pfMaterial. Because IRIS Performer allows subclassing of built-in types, when decisions are made based
on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived from
a Performer type rather than to test for strict equality of the pfType*’s.

pfMtiSide receives a symbolic token, one of PFMTL_FRONT, PFMTL_BACK, or PFMTL_BOTH indi-
cating which side of a polygon the material should affect. If lighting is to affect the back sides of
polygons, two-sided lighting must be enabled. Two-sided lighting requires a two-sided pfLightModel
(see pfLModelTwoSide) and that face culling be disabled (see pfCullFace) so that backfacing polygons
are not rejected.

pfGetMLtlSide returns the side(s) affected by mtl.

pfMtlAlpha specifies the alpha of mt! in the range 0.0 through 1.0. If transparency is enabled (see
pfTransparency), a material whose alpha is < 1.0 and whose color mode is PFMTL_CMODE_OFF will be

331

pfMaterial (3pf) IRIS Performer 2.0 libpr C Reference Pages

332

transparent with alpha of 1.0 being completely opaque and 0.0 being completely transparent. The default
alpha value is 1.0 or completely opaque. For non-homogeneous transparency, use a color mode other
than PFMTL_CMODE_OFF and transparency will be taken from geometry colors. In OpenGL,
pfMtlAlpha sets the alpha of the AMBIENT, DIFFUSE, EMISSIVE, and SPECULAR colors. However, it
is the DIFFUSE alpha that determines the resulting alpha value from the lighting calculation.

pfGetMtlAlpha returns the alpha of mtl.

pfMtlShininess specifies the specular scattering exponent, or the shininess, of the given material. It
receives a floating point value in the range 0.0 to 128.0. The default shininess value is 0.0, which effec-
tively disables specular reflection.

pfGetMtlShininess returns the shininess of mtl.

pfMtlColor sets a specific color of mtl. color indicates which color is to be set by r, g, and b and is one of
PFMTL_AMBIENT, PFMTL_DIFFUSE, PEMTL_EMISSION, or PFMTL_SPECULAR. The default
colors are:

Light Component }Red Green Blue

PFMTL_AMBIENT 0.2 0.2 0.2
PFMTL_DIFFUSE 0.8 0.8 0.8
PFMTL_EMISSION 0.0 0.0 0.0
PFMTL_SPECULAR | 0.0 0.0 0.0

pfGetMtlColor copies the color of mtl into r, g, and b. color may be one of PFMTL_AMBIENT,
PFMTL_DIFFUSE, PFMTL_EMISSION, or PFMTL_SPECULAR.

pfMtlColorMode specifies how pfGeoSet and Graphics Library color commands affect mtl. side is the
same symbolic token used for pfMtlSide and indicates which side mode affects. mode is a symbolic token
specifying which color property of the material is replaced by color commands:

PFMTL_CMODE_AMBIENT_AND_DIFFUSE, RGB color commands will replace the DIFFUSE
and AMBIENT color property of the current material. This is the default pfMaterial color mode.

PFMTL_CMODE_AMBIENT, RGB color commands will replace the AMBIENT color property
of the current material.

PFMTL_CMODE_DIFFUSE, RGB color commands will replace the DIFFUSE color property of
the current material.

PFMTL_CMODE_EMISSION, RGB color commands will replace the EMISSION color property
of the current material.

IRIS Performer 2.0 libpr C Reference Pages pfMaterial(3pf)

PFMTL_CMODE_SPECULAR, RGB color commands will replace the SPECULAR color pro-
perty of the current material.

PFMTL_CMODE_OFF, RGB color commands will be ignored, i.e., overridden by the material
colors. Additionally, in IRIS GL, the current GL color will not be changed.

PFMTL_CMODE_COLOR, RGB color commands will replace the current color. In IRIS GL, if a
color is the last thing sent before a vertex the vertex will be colored. If a normal is the last thing
sent before a vertex the vertex will be lighted. In OpenGL, if lighting is enabled, lit material
colors are always used. PFMTL_CMODE_COLOR is not available in OpenGL and will be
treated as PFMTL_CMODE_OFF.

In IRIS GL, the alpha specified in RGBA color commands will replace a material’s alpha if its color mode
is PFMTL_CMODE_AMBIENT_AND_DIFFUSE, PEMTL_CMODE_AMBIENT, or
PFMTL_CMODE_DIFFUSE. In OpenGL, materials do not have a single alpha; rather, the AMBIENT,
DIFFUSE, SPECULAR, and EMISSIVE colors have individual alphas which are replaced along with red,
green, and blue when the appropriate color mode is enabled.

When enabled, pfMtlColorMode can offer substantial performance gains by drastically reducing the
number of different pfMaterials required by a database. Instead of using a different pfMaterial for every
unique material color, pfMtlColorMode can take a color component from the geometry, rather than from
mtl. For example, if mode is PFMTL_CMODE_DIFFUSE, then the diffuse color component of mtl is
ignored. Instead, the color specified by a pfGeoSet or the color specified through the Graphics Library
(e.g. cpack(3g) in IRIS GL, glColor(3g) in OpenGL) becomes the new diffuse color. However,
pfGetMtlColor will still return the original diffuse color.

The pfMtlColorMode of mtl must be enabled (other than PFMTL_CMODE_COLOR or
PFMTL_CMODE_OFF) for the colors (PFGS_COLOR4) of any pfGeoSets which use mt! to have effect.
Note that the only way to display per-vertex colors on lit pfGeoSets is to enable pfMtlColorMode on the
pfMaterial used by the pfGeoSets; specifically, pfGeoSets do not support a different pfMaterial for each
vertex.

The default color mode is PFMTL_CMODE_AMBIENT_AND_DIFFUSE which causes both diffuse and
ambient material colors to be replaced by geometry color commands. Specifically, this setting allows
colors specified by pfGeoSets to have effect. When lighting is disabled, the color mode is set to
PFMTL_CMODE_COLOR in IRIS GL and PFMTL_CMODE_OFF in OpenGL.

pfGetMtlColorMode returns the color mode of mtl corresponding to side.
pfApplyMtl makes mtl the current pfMaterial. If lighting is enabled (see below), mt! will be applied to all

geometry drawn after pfApplyMtl is called. Modifications to mtl, such as changing the diffuse color, will
not be applied until pfApplyMtl is called with mtl.

333

pfMaterial (3pf)

IRIS Performer 2.0 libpr C Reference Pages

334

For geometry to be illuminated the following must be true:

1.

A N

Lighting must be enabled: pfEnable(PFEN_LIGHTING),

A pfLightModel must be applied: pfApplyLModel,

A pfMaterial must be applied: pfApplyMtl,

One or more pfLights must be on for diffuse and specular effects: pfLightOn,

Illuminated geometry must have normals for diffuse and specular effects: pfGSetAttr,
PFGS_NORMAL3. Note that ambient and emissive lighting does not require normals.

The front and back material state elements are identified by the PESTATE_FRONTMTL and
PFSTATE_BACKMTL tokens. Use these tokens with pfGStateAttr to set the materials of a pfGeoState
and with pfOverride to override subsequent material changes:

Example 1: Define a 50% transparent, shiny red plastic material

/* Make it red */
pf M1 Col or (redM |, PFMIL_DI FFUSE, 1.0f, 0.0f, 0.0f);

/* Disable color nbde so the PFMIL_DI FFUSE col or is not ignored */
pf M| Col or Mode(redM |, PFMIL_FRONT, PFMIL_CMODE OFF);

/* Make it shiny */
pf M| Col or (redM |, PFMIL_SPECULAR 1.0f, 1.0f, 1.0f);
pf M | Shi ni ness(redM 1, 16.0f);

/* Make it 50%transparent */
pf M1 Al pha(redM I, 0.5f);

/* Set the front material of a pfGeoState */

pf GSt at eMbde(gst at e, PFSTATE_ENLI GHTI NG PF_QN);

pf GSt at eMbde(gst at e, PFSTATE_TRANSPARENCY, PFTR_QN);
pf GStateAttr(gstate, PFSTATE FRONTMIL, redMaterial);

/* Attach gstate to gset */
pf GSet GSt at e(gset, gstate);

/* Set normal array. 'gset’ is non-indexed */
pf GSet Attr(gset, PFGS_NORVAL3, PFGS_PER VERTEX, norms, NULL);

/* Draw transparent, shiny red gset */
pf Dr awGSet (gset) ;

IRIS Performer 2.0 libpr C Reference Pages pfMaterial(3pf)

BUGS

Example 2:

pfM | Side(rt|, PFMIL_FRONT):
pf Appl yM | (nt1);

/* Override so that all geonetry uses 'ntl’ as front material */
pf Overri de(PFSTATE_FRONTMIL, PF_ON);

When setting the pfMaterial(s) of a pfGeoState using pfGStateAttr, the side of the material is ignored.
Instead, the PFSTATE token defines which side the material should be applied to. For example,

pf GStateAttr(gstate, PFSTATE_FRONTMIL, ntl)

will ensure that mtl is always applied to the front side of polygons after gstate is applied.

pfApplyMtl is a display-listable command. If a pfDispList has been opened by pfOpenDList,
pfApplyMtl will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDrawDList.

pfGetCurMtl receives a symbolic token specifying the side of interest, one of PEMTL_FRONT or
PFMTL_BACK, and returns a pointer to the currently active material for that side, or NULL if there is no
active pfMaterial.

IRIS GL does not support Imcolor for back-sided materials. Consequently, pfMtlColorMode has no
effect on back-sided materials.

SEE ALSO

Imbind, Imcolor, Imdef, pfCullFace, pfDelete, pfDispList, pfEnable, pfGSetAttr, pfGeoState, pfLight,
pfLightModel, pfLightOn, pfLModelTwoSide, pfObject, pfState, pfTransparency

335

pfMatrix(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME
pfMakeldentMat, pfMakeTransMat, pfMakeScaleMat, pfMakeRotMat, pfMakeQuatMat, pfMakeEu-
lerMat, pfMakeVecRotVecMat, pfMakeCoordMat, pfGetMatType, pfGetOrthoMatQuat,
pfGetOrthoMatCoord, pfSetMat, pfSetMatRowVec3, pfGetMatRowVec3, pfSetMatColVec3, pfGet-
MatColVec3, pfSetMatRow, pfGetMatRow, pfSetMatCol, pfGetMatCol, pfCopyMat, pfAddMat,
pfSubMat, pfScaleMat, pfTransposeMat, pfMultMat, pfPreMultMat, pfPostMultMat, pfPreTransMat,
pfPostTransMat, pfPreRotMat, pfPostRotMat, pfPreScaleMat, pfPostScaleMat, pfInvertFullMat, pfIn-
vertAffMat, pfinvertOrthoMat, pfInvertOrthoNMat, pfinvertldentMat, pfEqualMat, pfAlmostEqual-
Mat - Set and operate on 4x4 matrices.

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfMakeldentMat(pfMatrix dst);

void pfMakeTransMat(pfMatrix dst, float x, float y, float z);

void pfMakeScaleMat(pfMatrix dst, float x, float y, float z);

void pfMakeRotMat(pfMatrix dst, float degrees, float x, float y, float z);

void pfMakeQuatMat(pfMatrix m, const pfQuat q);

void pfMakeEulerMat(pfMatrix dst, float h, float p, float r);

void pfMakeVecRotVecMat(pfMatrix dst, const pfVec3 v1, const pfVec3 v2);
void pfMakeCoordMat(pfMatrix dst, const pfCoord *c);

int pfGetMatType(const pfMatrix mat);

void pfGetOrthoMatQuat(const pfMatrix m, pfQuat dst);

void pfGetOrthoMatCoord(pfMatrix m, pfCoord* dst);

void pfSetMat(const float *m);

void pfSetMatRowVec3(pfMatrix dst, int row, const pfVec3 v);

void pfGetMatRowVec3(const pfMatrix m, int row, pfVec3 dst);

void pfSetMatColVec3(pfMatrix dst, int col, const pfVec3 v);

void pfGetMatColVec3(const pfMatrix m, int col, pfVec3 dst);

void pfSetMatRow(pfMatrix dst, int row, float x, float y, float z, float w);

void pfGetMatRow(const pfMatrix m, int row, float *x, float *y, float *z, float *w);
void pfSetMatCol(pfMatrix dst, int col, float x, float y, float z, float w);

void pfGetMatCol(const pfMatrix m, int col, float *x, float *y, float *z, float *w);

336

IRIS Performer 2.0 libpr C Reference Pages pfMatrix(3pf)

void
void
void
void
void
void
void
void
void
void
void
void
void
void
int

void
void
void
int

void

void

pfCopyMat(pfMatrix dst, const pfMatrix m);

pfAddMat(pfMatrix dst, const pfMatrix m1, const pfMatrix m2);
pfSubMat(pfMatrix dst, const pfMatrix m1, const pfMatrix m2);
pfScaleMat(pfMatrix dst, float s, pfMatrix m);
pfTransposeMat(pfMatrix dst, pfMatrix m);

pfMultMat(pfMatrix dst, const pfMatrix m1, const pfMatrix m2);
pfPreMultMat(pfMatrix dst, const pfMatrix m);
pfPostMultMat(pfMatrix dst, const pfMatrix m);
pfPreTransMat(pfMatrix dst, float x, float y, float z, pfMatrix m);
pfPostTransMat(pfMatrix dst, const pfMatrix m, float x, float y, float z);
pfPreRotMat(pfMatrix dst, float degrees, float x, float y, float z, pfMatrix m);
pfPostRotMat(pfMatrix dst, const pfMatrix mat, float degrees, float x, float y, float z,);
pfPreScaleMat(pfMatrix dst, float x, float y, float z, pfMatrix m);
pfPostScaleMat(pfMatrix dst, const pfMatrix m, float x, float y, float z);
pfInvertFullMat(pfMatrix dst, const pfMatrix m);
pfInvertAffMat(pfMatrix dst, const pfMatrix m);
pfInvertOrthoMat(pfMatrix dst, const pfMatrix m);
pfInvertOrthoNMat(pfMatrix dst, const pfMatrix m);
pfInvertldentMat(pfMatrix dst, const pfMatrix m);

pfEqualMat(const pfMatrix m1, const pfMatrix m2);
pfAlmostEqualMat(const pfMatrix m1, const pfMatrix m2, float tol);

typedef struct

{
pf Vec3 XyZz;
pf Vec3 hpr;
} pfCoord;

typedef float pfMatrix[4][4];

337

pfMatrix(3pf) IRIS Performer 2.0 libpr C Reference Pages

DESCRIPTION

338

Routines for pfMatrix, a 4X4 matrix.

pfMakeldentMat sets dst to the identity matrix. PFMAKE_IDENT_MAT is an equivalent macro.

The following routines create transformation matrices based on multiplying a row vector by a matrix on
the right, i.e. the vector v transformed by m is v * m. Many actions will go considerably faster if the last
column is (0,0,0,1).

pfMakeTransMat sets dst to the matrix which translates by (x, y, z). Equivalent macro:
PFMAKE_TRANS_MAT.

pfMakeScaleMat sets dst to the matrix which scales by x in the X direction, by y in the Y direction and by
z in the Z direction. Equivalent macro: PFMAKE_SCALE_MAT

pfMakeRotMat sets dst to the matrix which rotates by degrees about the axis denoted by the unit vector (x,
Y, z). If (x, y, z) is not normalized, results are undefined.

pfMakeQuatMat builds a rotation matrix m that expresses the rotation defined by the quaternion g.

pfMakeEulerMat sets dst to a rotation matrix composed of the Euler angles h, p, #: h specifies heading, the
rotation about the Z axis; p specifies pitch, the rotation about the X axis; and, r specifies roll, rotation
about the Y axis. The matrix created is dst = R*P*H, where R is the roll transform, P is the pitch transform
and H is the heading transform. All rotations follow the right hand rule. The convention is natural for a
model in which +Y is "forward,” +Z is "up" and +X is "right". This routine uses pfSinCos which is faster
than the libm counterpart, but has less resolution (see pfSinCos).

pfMakeVecRotVecMat sets dst to the rotation matrix which rotates the vector v1 onto v2, i.e. v2 = v1 * dst.
v1 and v2 must be normalized.

pfMakeCoordMat sets dst to the matrix which rotates by the Euler transform specified by c->hpr and
translates by c->xyz, i.e. dst = R*P*H*T, where R is the roll transform, P is the pitch transform and H is the
heading transform, and T is the translation transform.

pfGetOrthoMatQuat constructs a quaternion dst equivalent to the rotation expressed by the orthonormal
matrix m.

pfGetOrthoMatCoord returns in dst the translation and rotation of the orthonormal matrix, m. The
returned pitch ranges from -90 to +90 degrees. Roll and heading range from -180 to +180.

pfDCSMatType allows the specification of information about the type of transformation the matrix
represents. This information allows Performer to speed up some operations. The matrix type is specified

IRIS Performer 2.0 libpr C Reference Pages pfMatrix(3pf)

as the OR of

PFMAT_TRANS:
matrix includes a translational component in the 4th row.

PFMAT_ROT:
matrix includes a rotational component in the left upper 3X3 submatrix.

PFMAT_SCALE:
matrix includes a uniform scale in the left upper 3X3 submatrix.

PFMAT_NONORTHO:
matrix includes a non-uniform scale in the left upper 3X3 submatrix.

PFMAT_PROJ:
matrix includes projections.

PFMAT_HOM_SCALE:
matrix includes have mat[4][4] != 1.

PFMAT_MIRROR:
matrix includes mirroring transformation that switches between right handed and left
handed coordinate systems.

pfGetMatType computes the type of matrix. This information can be useful if a matrix is to be used
repeatedly, e.g. to transform many objects, but is somewhat time consuming to compute.

pfSetMatRow. dst[row][0] = x, dst[row][1] =y, dst[row][2] = z, dst[row][3] = w. Use the arguments to set
row row of dst. row mustbe 0,1, 2, or 3. Equivalent macro: PEFSET_MAT_ROW.

pfGetMatRow. *x = dst[row][0], *y = dst[row][1], *z = dst[row][2], *w = dst[row][3]. Get the arguments to
row row of dst. row mustbe 0,1, 2, or 3. Equivalent macro: PFEGET_MAT_ROW.

pfSetMatCol. dst[0][col] = x, dst[1][col] =y, dst[2][col] = z, dst[3][col] = w. Use the arguments to set col col
of dst. colmustbe 0,1, 2, or 3. Equivalent macro: PESET_MAT_COL.

pfGetMatCol. *x = dst[0][col], *y = dst[1][col], *z = dst[2][col], *w = dst[3][col]. Get the arguments to col col
of dst. colmustbe 0,1, 2, or 3. Equivalent macro: PFEGET_MAT_COL.

pfSetMatRowVec3. dst[row][i] = v[i],i=0, 1, 2. Set row row of dst to the vector v. row mustbe0, 1, 2, or
3. Equivalent macro: PFSET_MAT_ROWYVECS3.

pfGetMatRowVec3. dst[i] = m[row][i], i=0, 1, 2. Return row row of m and in dst. row mustbe0, 1, 2, or
3. Equivalent macro: PFEGET_MAT_ROWVEC3.

pfSetMatColVec3. dst[i][col] =v[i],i=0, 1, 2. Set column col of dst to the vector v. col mustbe0, 1,2, or
3. Equivalent macro: PFSET_MAT_COLVEC3.

339

pfMatrix(3pf) IRIS Performer 2.0 libpr C Reference Pages

340

pfGetMatColVec3. dst[i] = m[i][col],i=0, 1, 2. Return column col of m in dst. col mustbe 0, 1,2, or 3.
Equivalent macro: PFGET_MAT_COLVECS3.

pfSetMat. dst[i][j] = m[i*4+j], 0 <=1i,j <= 3.

pfCopyMat: dst = m. Copies m into dst. Equivalent macro: PFCOPY_MAT
pfPreTransMat: dst = T(x,y,z) * m, where T(x,y,z) is the matrix which translates by (x,y,z).
pfPostTransMat: dst = m * T(x,y,z), where T(x,y,z) is the matrix which translates by (x,y,z).

pfPreRotMat: dst = R(degrees, x,y,z) * m, where R(degrees,x,y,z) is the matrix which rotates by degrees about
the axis (x,y,2).

pfPostRotMat: dst = m * R(degrees, x,y,z), where R(degrees,x,y,z) is the matrix which rotates by degrees
about the axis (x,y,z).

pfPreScaleMat: dst = S(x,y,z) * m, where S(x,y,z) is the matrix which scales by (x,y,z).
pfPostScaleMat: dst = m * S(x,y,z), where S(x,y,z) is the matrix which scales by (x,y,z).
pfAddMat: dst = m1 + m2. Sets dst to the sum of m1 and m2.

pfSubMat: dst = m1 - m2. Sets dst to the difference of m1 and m?2.

pfScaleMat: dst =s * m. Sets dst to the product of the scalar s and the matrix m. This multiplies the full
4X4 matrix and is not a 3D geometric scale.

pfTransposeMat: dst = Transpose(m1). Sets dst to the transpose of m.

pfMultMat: dst = m1 * m2. Sets dst to the product of m1 and m?2.

pfPostMultMat: dst = dst *m. Postmultiplies dst by m.

pfPreMultMat: dst = m * dst. Premultiplies dst by m.

pflnvertFullMat, pfinvertAffMat, pfInvertOrthoMat, pfInvertOrthoNMat, and pfInvertldentMat, set
dst to the inverse of m for general, affine, orthogonal, orthonormal and identity matrices respectively.
They are listed here in order of decreasing generality and increasing speed. If the matrix m is not of the
type specified in the routine name, the result is undefined. pfInvertFullMat returns FALSE if the matrix

is singular and TRUE otherwise.

pfEqualMat(m1, m2) = (m1 == m2). Tests for strict component-by-element equality of two matrices m1

IRIS Performer 2.0 libpr C Reference Pages pfMatrix(3pf)

and m2 and returns FALSE or TRUE. Macro equivalent: PFEQUAL_MAT.

pfAlmostEqualMat(m1, m2, tol). Tests for approximate element-by-element equality of two matrices m1
and m2. It returns FALSE or TRUE depending on whether the absolute value of the difference between
each pair of elements is less than the tolerance tol. Macro equivalent: PFALMOST_EQUAL_MAT.

Routines can accept the same matrix as source, destination, or as a repeated operand.

NOTES
Some of these routines use pfSinCos and pfSqrt, which are faster but have less resolution than the libm
counterparts. (See pfSinCos)

SEE ALSO
pfSinCos, pfSqrt, pfVec3, pfVecs

341

pfMemory(3pf) IRIS Performer 2.0 libpr C Reference Pages

NAME
pfGetMemoryClassType, pfGetType, pfIsOfType, pfIsExactType, pfGetTypeName, pfGetMemory,
pfGetData, pfRef, pfUnref, pfUnrefDelete, pfGetRef, pfCopy, pfDelete, pfCompare, pfPrint, pfMal-
loc, pfCalloc, pfRealloc, pfFree, pfGetArena, pfGetSize, pfStrdup — Reference, copy, delete, print and
query pfMemory

FUNCTION SPECIFICATION
#include <Performer/pf.h>

pfType * pfGetMemoryClassType(void);

pfType * pfGetType(const void *ptr);

int pfIsOfType(const void *ptr, pfType *type);
int pflsExactType(const void *ptr, pfType *type);
const char * pfGetTypeName(const void *ptr);

pfMemory * pfGetMemory(const void *ptr);

void * pfGetData(const void *ptr);

int pfRef(void *ptr);

int pfUnref(void *ptr);

int pfUnrefDelete(void *ptr);

int pfGetRef(const void *ptr);

int pfCopy(void *dst, void *src);

int pfDelete(void *ptr);

int pfCompare(const void *ptrl, const void *ptr2);

void pfPrint(const void *ptr, uint which, uint verbose, FILE *file);
void * pfMalloc(size_t nbytes, void *arena);

void * pfCalloc(size_t numelem, size_t elsize, void *arena);
void * pfRealloc(void *ptr, size_t nbytes);

void pfFree(void *ptr);

void * pfGetArena(void *ptr);

size_t pfGetSize(void *ptr);

char * pfStrdup(const char *str, void *arena);

342

IRIS Performer 2.0 libpr C Reference Pages pfMemory(3pf)

DESCRIPTION
pfMemory is the base class from which all major IRIS Performer classes are derived and is also the type
used by the IRIS Performer memory allocation routines such as pfMalloc and pfFree.

Because most IRIS Performer data structures are derived from pfMemory, they inherit the functionality of
the pfMemory routines described here. In practice this means you can use the pfMemory routines listed
above with most any IRIS Performer object, such as pfMaterial, pfList, pfFog, pfFrustum, pfChannel,
pfGroup, pfGeode or with a data pointer returned by pfMalloc.

pfMemory supports the following:

1. Typed data structures.

2 Memory arena allocation.

3. Memory chunks which know their size.
4 Reference counting.

with only a 4 word overhead.

Although the IRIS Performer general memory allocation routines (pfMalloc) create pfMemories, they
return void* so the application can treat the allocation as raw data. Consequently, all routines that would
normally take a pfMemory* take a void* and infer the pfMemory handle so that applications can treat
pfMemory as raw memory. However, one caveat is that routines which take raw memory such as
pfGSetAttr or pfFree should not be passed a pointer to static data since the routines may not be able to
successfully infer the pfMemory handle from the void*.

--------------- <------ pfMenory*

| pf Menory |

| header |

| |

--------------- <------ void* returned by
| | al | ocation routines
| raw data |

Routines which convert between pfMemory* and void* are:

343

pfMemory(3pf) IRIS Performer 2.0 libpr C Reference Pages

344

void* -> pfMemory*: pfGetMemory
pfMemory* -> void*: pfGetData

Note that is it legal to pass either a pfMemory* or a void* to those routines which are prototyped as
accepting a void*, e.g., pfRef. In this way, a single set of routines supports the same feature set including
reference counts, copy, and delete for pfMemories used as IRIS Performer data types like pfGeoSet as
well as for pfMemories used as raw data like pfGeoSet attribute arrays.

pfGetMemoryClassType returns the pfType* for the class pfMemory. The pfType* returned by
pfGetMemoryClassType is the same as the pfType* returned by invoking pfGetType on any instance of
class pfMemory. Because IRIS Performer allows subclassing of built-in types, when decisions are made
based on the type of an object, it is usually better to use pfIsOfType to test if an object is of a type derived
from a Performer type rather than to test for strict equality of the pfType*’s.

All objects derived from pfMemory have a type identifier (pfType*) that is returned by pfGetType

Example 1: API sharing.
dcs = pf NewDCS() ;

/* pfDCS uses pfGoup routine */
pf AddChi | d(dcs, geode);

/* pfDCS uses pfNode routine */
pf NodeTr avMask(dcs, PFTRAV_I SECT, DCS_MASK, PFTRAV_SELF | PFTRAV_DESCEND, PF_SET);

Each data type derived from pfMemory has an associated routine for getting a pointer to its correspond-
ing pfType, e.g. pfGetDCSClassType() returns the pfType* corresponding to the pfDCS class. The exact
type of an object is tested by comparing its pfType* to that returned by one of these pfGet<*>ClassType
routines or with the pflsExactType test, e.g.

if (pfGetType(obj) == pfGet G oupCd assType()) ...

if (pflsExact Type(obj, pfGetGoupd assType())) ...

But since IRIS Performer allows subclassing and the creation of new types in C++, it’s more often desir-
able to know whether a particular object is of a type derived from a particular type defined by IRIS Per-
former. In particular, exact type tests makes application code more likely to fail on scene graphs pro-
duced by database loaders that use subclassing. pfIsOfType performs this test and returns TRUE if

IRIS Performer 2.0 libpr C Reference Pages pfMemory(3pf)

mem’s type is derived from type:

if (pflsOf Type(obj, pfGetGoupd assType())) ...

If "obj’ is a pfDCS, then the above conditional would evaluate TRUE since pfDCS is derived from
pfGroup.

pfGetTypeName returns a string that identifies the type of mem. For example, if mem is a pfDCS, the
string returned is "pfDCS".

All pfMemories have a reference count which indicates how many times the pfMemory is referenced,
either by other pfMemories or by the application. Reference counts are crucial for many database opera-
tions, particularly deletion, since it is highly dangerous to delete a pfMemory which is still being used,
i.e., its reference count is greater than 0.

Reference counts may be incremented and decremented by pfRef and pfUnref respectively. pfGetRef
returns the reference count of mem. pfUnrefDelete will decrement the reference count of mem and delete
it if the count is <= 0. Thus it is equivalent to calling pfUnref followed by pfDelete.

pfDelete frees the memory associated with mem if its reference count is <= 0. When an object is freed, it
decrements the reference count of all pfMemories that it once referenced and will delete any of these
pfMemories with reference counts that are <= 0. Thus, pfDelete will follow all reference chains until it
encounters a pfMemory which it cannot delete. Note that the reference count of a pfNode is incremented
each time it is added as a child to a pfGroup. Thus, a pfNode must be removed from all its parents before
it can be deleted.

When multiprocessing in a libpf application, pfNodes should be pfDeleteed only in the APP or DBASE
processes as should libpr objects that are referenced directly or indirectly by pfNodes, like pfGeoSets and
pfGeoStates. If you wish to delete objects in processes other than the APP or DBASE, use pfAsyncDelete.

Example 2: Dele