
MineSet™

User’s Guide

Document Number 007-3214-003

MineSet™ User’s Guide
Document Number 007-3214-003

CONTRIBUTORS

Written by Dieter Rathjens
Illustrated by Dany Galgani
Engineering contributions by Barry Becker, Cliff Brunk, Eric Eros,

Joseph E. Fitzgerald, Eben M. Haber, John Hawkes, Andy Kar, Ed Karrels,
Ron Kohavi, Alexander Kozlov, Clayton Kuntz, Peter K. Rathmann,
Mario Schkolnick, Dan Sommerfield, Joel Tesler, Peter Welch

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and the Silicon Graphics logo are registered trademarks, and
MineSet and IRIS InSight are trademarks, of Silicon Graphics, Inc. Oracle is a
registered trademark of Oracle Corporation. INFORMIX is a registered trademark of
Informix Software, Inc. Sybase is a registered trademark, and SQL Server and
SQL*Net are trademarks, of Sybase Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company, Ltd. X
Window System is a trademark of the Massachussets Institute of Technology.

The Tree Visualizer is patented under United States Patents No. 5,528,735 and
5,555,354.

iii

Contents

List of Figures xxi

List of Tables xxix

About This Guide xxxi
Audience for This Guide xxxi
Structure of This Document xxxii
Typographical Conventions xxxv

1. Getting Started 1
MineSet Tools Suite 1

The Tool Manager 3
The DataMover 3
The Association Rules Generator 3
The Decision Tree Inducer and Classifier 4
The Option Tree Inducer and Classifier 4
The Evidence Inducer and Classifier 5
Column Importance 5
Tree Visualizer 6
Map Visualizer 6
Scatter Visualizer 7
Splat Visualizer 7
Rules Visualizer 7
The Evidence Visualizer 8
Statistics Visualizer 8
Record Viewer 8

Basic Tool Execution Scenario 8

iv

Contents

2. Setting Up MineSet 11
Configuring the DataMover Server 11

The User Configuration File 11
Mandatory Configuration File 13
Using MineSet With Existing Data Files 15
Using MineSet to Connect to Remote Databases 16

Loading Sample Datasets 18

3. The Tool Manager 23
Overview of Tool Manager 23
Starting the Tool Manager 25
Choosing a Data Source 27

Choosing an Existing Data File 28
Choosing a Database Table 29

Transforming the Data 34
The Remove Column Button 35
The Bin Column Button 35
Aggregation 42
The Filter Button 47
The Change Types Button 47
The Add Column Button 51
The Apply Classifier Button 52
The Sample Button 52
The Table History Buttons 53
The Current view is Field 54
The Prev and Next Buttons 54

Investigating the Data 58
Using Visualization Tools 58
Using Mining Tools 60
Using Data Files 66

Session Files 67

Contents

v

Pulldown Menus 68
The File Menu 68
The Visual Tools Menu 70
The Help Menu 70

The Tool Manager Options File 71
Statistics Visualizer 71

The StatViz File Menu 72
The StatViz View Menu 73

The Record Viewer 74
Color Options for the MineSet Visualizers 76

Choosing Colors 76
Using the Color Browser 78

4. Using the Tree Visualizer 79
Overview of Tree Visualizer 79
File Requirements 81
Starting the Tree Visualizer 81
Configuring the Tree Visualizer Using the Tool Manager 84

Selecting the Tree Visualizer Tool 84
Undoing Mappings 86
Specifying Tool Options 86
Saving Tree Visualizer Settings 93
Invoking the Tree Visualizer 93

Working in the Tree Visualizer’s Main Window 94
Highlighting an Object or Node 95
Selecting an Object 96
Spotlighting an Object 96
Using the Right Mouse Button 97
Navigating With the Middle Mouse Button 98

External Controls 99
Buttons 99
Thumbwheels 101
Height Slider 102

vi

Contents

Pulldown Menus 102
The File Menu 103
The Show Menu 104
The Display Menu 117
The Selections Menu 118
The Go Menu 119
The Help Menu 121

Null Handling in the Tree Visualizer 122
Sample Configuration and Data Files 124

5. Using the Map Visualizer 127
Overview of Map Visualizer 127
File Requirements 131
Starting the Map Visualizer 132
Configuring the Map Visualizer Using the Tool Manager 134

Generating .gfx and .hierarchy Files 134
Selecting the Map Visualizer Tool 135
Mapping Columns to Visual Elements 137
Undoing Mappings 137
Slider Creation for Mapviz 137
Specifying Tool Options 139
Saving Map Visualizer Settings 143
Invoking the Map Visualizer 143

Working in the Map Visualizer’s Main Window 143
Viewing Modes 145

External Main Window Controls 147
Buttons 147
Height-Adjust Slider and Label 149
Thumbwheels 149

The Animation Control Panel 150
Sliders Controlling Independent Dimensions 151
The Summary Window 154
Animation Buttons and Sliders 155

Contents

vii

Pulldown Menus 158
The File Menu 158
The View Menu 159
The Selections Menu 163
The InterTool Menu 164
The Help Menu 164

Null Handling in the Map Visualizer 165
Sample Configuration and Data Files 167

6. Using the Scatter Visualizer 171
Overview of Scatter Visualizer 171
File Requirements 173
Starting the Scatter Visualizer 174
Configuring the Scatter Visualizer Using the Tool Manager 176

Selecting the Scatter Visualizer Tool 176
Mapping Requirements to Columns 177
Undoing Mappings 178
Slider Creation for Scatterviz 178
Specifying Tool Options 179
Saving Scatter Visualizer Settings 185
Invoking Scatter Visualizer 185
Null Handling in the Scatter Visualizer 185

Working in the Scatter Visualizer’s Main Window 186
Viewing Modes 188

External Controls 190
Buttons 190
Thumbwheels 192

The Animation Control Panel 192
Sliders Controlling Independent Dimensions 193
The Summary Window 196
Animation Buttons and Sliders 197

viii

Contents

Pulldown Menus 199
The File Menu 199
The View Menu 200
The Selections Menu 203
The Help Menu 204

Sample Configuration and Data Files 205

7. Using the Splat Visualizer 207
Overview of the Splat Visualizer 207

Opacity 210
File Requirements 213
Starting the Splat Visualizer 213
Configuring the Splat Visualizer Using the Tool Manager 216

Selecting the Splat Visualizer Tool 216
Mapping Columns to Requirements 217
Undoing Mappings 217
Specifying Tool Options 218
Saving Splat Visualizer Settings 221
Invoking Splat Visualizer 221
Null Handling in the Splat Visualizer 221

Working in the Splat Visualizer’s Main Window 222
Viewing Modes 222

External Controls 225
Buttons 225
Thumbwheels 227

The Animation Control Panel 228
Sliders Controlling Independent Dimensions 228
The Summary Window 232
Animation Buttons and Sliders 233

Contents

ix

Pulldown Menus 238
The File Menu 239
The View Menu 240
The Selection MenuS 243
Splat Type Menu 246
The Help Menu 246

Sample Configuration and Data Files 247

8. Using the Rules Visualizer 251
Overview of Rules Visualizer 251

Data Conversion 254
Association Rules Generator 254
Rules Visualization 256

File Requirements 258
Starting the Rules Visualizer 259
Configuring the Rules Visualizer Using the Tool Manager 262

Setting Up Associations 263
Applying Association Rule Options 266
Mapping Columns to Visual Elements 267
Specifying Ruleviz Options 269
Invoking the Rules Visualizer 271

Working in the Rules Visualizer’s Main Window 272
Viewing Modes 273

External Controls 275
Buttons 275
Thumbwheels 276
The Height Slider 277

Pulldown Menus 278
The File Menu 278
The View Menu 278
The Filter Menu 279
The Help Menu 281

x

Contents

Sample Files 282
Sample Files for the Association Data Converter 282
Sample Files for the Association Rules Generator 282
Sample Files for the Rules Visualization Part 283

9. MineSet Inducers and Classifiers 285
Classifiers 286

Decision Tree Classifiers 287
Option Tree Classifiers 288
Evidence Classifiers 290

Inducers 292
Training Set 294

Record Weights 295
Applying a Classifier 295

Error Estimation 297
Backfitting 301
Confusion Matrices 302
Lift Curves 303
Learning Curves 305
Advanced Options 308

Inducer Modes in Tool Manager 312
Error Options for Inducers 313

Backfitting 314
Confusion matrices 314
Lift curves 314
Loss matrices 315
Weight Setting 315
Learning curves 315
OK and Cancel Buttons 317
Go! Button 317

The Status Window 317

Contents

xi

Applying Classifiers, Testing Classifiers, and Fitting New Data 320
Apply Classifier 321
Test Classifier 322
Fit Data to Classifier 323

Special Options and Limitations 324
Setting Special Options 324
Default Limits and How to Override Them 325
Other Limitations 325

10. Inducing and Visualizing the Decision Tree Classifier 327
Overview 327
Inducing Decision Trees 329
File Requirements 329
Running the Decision Tree Inducer 329
Configuring the Decision Tree Inducer Using the Tool Manager 330

Discrete Labels 330
Classifier Name 331
Decision Tree Options 331

Working in the Tree Visualizer’s Main Window 334
Nodes 334
Lines 336
Using the Main Window to Classify Records 336

External Controls 337
Pulldown Menus 337

The Search and Filter Panels 337
Sample Files 340

11. Inducing and Visualizing the Option Tree Classifier 349
Overview 349
Inducing Option Trees 352
File Requirements 352
Running the Option Tree Inducer 352

xii

Contents

Configuring the Decision Tree Inducer Using the Tool Manager 353
Discrete Labels 354
Classifier Name 354
Option Tree: Further Options 354

Working in the Tree Visualizer’s Main Window 357
Sample Files 358

12. Inducing and Visualizing the Evidence Classifier 363
Overview 363
Inducing Evidence Classifiers 371
File Requirements 372
Running the Evidence Inducer 372
Starting the Evidence Visualizer 373
Configuring the Evidence Inducer Using the Tool Manager 374

Discrete Labels 375
Classifier Name 375
Refining the Inducer With Further Options 376

Working in the Evidence Visualizer’s Panes 378
Viewing Modes 380

External Controls 390
Sliders 391
Thumbwheels 392

Pulldown Menus 393
The File Menu 393
The View Menu 394
The Nominal Order Menu 395
The Selection Menu 395
The Help Menu 396

Sample Files 397

Contents

xiii

13. Column Importance 407
Finding Important Columns 407
Column Importance Notes 411
Column Importance and Relation to Classifiers 412

The Discretization Process 412
The Importance Function 412
Dependence on Other Attributes 413

Sample File 413

14. Multiple Selection and Drill-Through 415
Multiple Selection 415
Drill-Through 416

Tree Visualizer Specific Details 418
Map Visualizer Specific Details 418
Scatter Visualizer Specific Details 418
Splat Visualizer Specific Details 419
Evidence Visualizer Specific Details 419
Rules Visualizer Specific Details 419

15. File Exchange Between MineSet and SAS 421
Overview 421
Converting MineSet Data Files to SAS Data Sets 421

The -names <namefile> Command Line Option 422
The -svsc Option 422

Converting SAS Data Sets Into MineSet Data Files 423
The -nolabel Option 423
The -names <namefile> Option 424
The -nodata Option 424
The -svsc Option 424

xiv

Contents

16. MineSet Web Extensions 425
Overview 425
MineSet Web Extension Files 425

scripts 426
examples 426
examples/rview_dir 427

MineSet Web Installation [Client] 427
MineSet Web Installation [Server] 428

Setting up the Server 428
Local Installation 429

MineSet mtr Files 430
Creating mtr files 430

MineSet Remote View 432
Installing MineSet Remote View 432
Configuring and Using rview_dir.cgi 432

MineSet Web Extension Security Related Issues 436

A. Flat File Support for MineSet 437
The Data File 437

Data Types 438
Arrays 439

The .schema File 441
Variable Names 441
Strings and Characters 442
Comments 442
File Statements 442
Data Statements 442
Input Options 445

Exceptions 445

Contents

xv

B. Creating Data and Configuration Files for the Tree Visualizer 447
The Data File 448

Data Types 449
Enumerations 450
Arrays 450

The Configuration File 452
Sections 452
Options Files 452
Statements 453
Variable Names 453
Option Statements 454
Include Statements 454
Sinclude Statements 454
Strings and Characters 455

Keywords 455
Expressions 456
The Input Section 457

File Statements 457
Data Statements 458
Input Options 460

The Expression Section 462
The Hierarchy Section 463

Levels Statements 464
Key Statements 465
Aggregate Subsection 467
Aggregate Base Subsection 468
Expressions Subsection 469
Sort Statements 470
Hierarchy Options 470

xvi

Contents

The View Section 472
Height Statements 472
Base Height Statements 475
Disk Height Statements 476
Color Statements 477
Base Color Statements 479
Disk Color Statements 480
Label Statements 480
Message Statements 480
The View Options 482

C. Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer 489
The Data File 490

Data Types 491
Fixed Arrays 492

The Configuration File 492
Overview 492
Keywords 495
Expressions 496
The Input Section 496
The Expressions Section 503
The View Section 504

The Hierarchy File 512
The .gfx File 513

D. Creating Data and Configuration Files for the Scatter Visualizer 517
The Data File 517

Data Types 518
Arrays 519
Null Values 519

Contents

xvii

The Configuration File 520
Sections 520
Defaults Files 520
Statements 521
Variable Names 521
Options Statements 521
Include Statements 522
Sinclude Statements 522
Strings and Characters 522
Comments 522
Keywords 523
Expressions 523

The Input Section 524
File Statements 525
Enumeration Statements 525
Data Statements 528
Input Options 530

The Expressions Section 530
The View Section 531

Slider Statement 532
Entity Statement 533
Size Statement 534
Color Statement 535
Axis Statement 538
Summary Statement 539
Message Statement 541
Execute Statement 542
The Filter Statement 542
View Options 543

xviii

Contents

E. Creating Data and Configuration Files for the Splat Visualizer 545
The Data File 545

Data Types 546
Null Values 547

The Configuration File 547
Sections 548
Defaults Files 548
Statements 549
Variable Names 549
Options Statements 549
Include Statements 550
Sinclude Statements 550
Strings and Characters 550
Comments 550
Keywords 551

The Input Section 552
File Statements 552
Enumeration Statements 553
Data Statements 555
Input Options 556

The View Section 556
Slider Statement 557
Opacity Statement 557
Color Statement 559
Axis Statement 561
Summary Statement 562
View Options 563

Contents

xix

F. Creating Data and Configuration Files for the Rules Visualizer 565
The Association Data Converter 566

Association Data Converter File Requirements 566
Files Generated by the Association Data Converter 568
The Association Data Converter Command-line Operation 568
Association Data Converter Examples 570

Association Rules Generator 571
Association Rules Generator Files Requirements 571
Association Rules Generator Command-line Operation 571
Association Rule Examples 577

Rules Visualization 583
Rules Visualization File Requirements 583

G. Format of the Evidence Visualizer’s Data File 597

H. Command-Line Interface to MIndUtil: Classifiers, Discretization, Column
Importance, and File Conversions 601
MIndUtil Invocation and Options 601
General Options 605
Induction Modes 608

Decision Tree Inducer Options 609
Option Tree Inducer Options 610
Evidence Inducer Options 610

Estimate Error 611
Learning Curve 611
Discretization 612
Column Importance and Auto Selection 613
Fit-Data 613
MineSet-to-MLC, MLC-to-MineSet 614
Visualize 615

xx

Contents

I. Nulls in MineSet 617
Semantics of Nulls 617
Representation of Nulls 618
Operations on Nulls 618

Arithmetic Expressions 618
Boolean Expressions 618
Relational operations 619
Testing for nulls 619

Aggregations in the Presence of Nulls 620
Sort Order for Nulls 621
Bins and Arrays With Nulls 621

J. Further Reading and Acknowledgments 623
Further reading 623
Acknowledgments 626

Index 629

xxi

List of Figures

Figure 1-1 Tool Execution Sequence 9
Figure 3-1 The Tool Manager Startup Window 26
Figure 3-2 File Pulldown Menu 27
Figure 3-3 Open New Data File Dialog Box 28
Figure 3-4 Choosing New Database Table Dialog Box 30
Figure 3-5 Specifying Server Name, Login, and Password 30
Figure 3-6 Sample Dialog Box Listing Available DBMS Names/Vendors 31
Figure 3-7 Dialog Box After Selecting Informix or Sybase DBMS 32
Figure 3-8 SQL Query Dialog Box 33
Figure 3-9 The Data Transformations Panel 34
Figure 3-10 Bin Columns Dialog Box 36
Figure 3-11 Binning With Automatically Computed Thresholds 38
Figure 3-12 Aggregate Dialog Box 46
Figure 3-13 Filter Dialog Box 47
Figure 3-14 Change Types Dialog Box 48
Figure 3-15 Types Popup List 49
Figure 3-16 The Add Column Dialog Box 51
Figure 3-17 Sampling Dialog Box 53
Figure 3-18 Table History Buttons 53
Figure 3-19 Edit History Dialog Box 55
Figure 3-20 Zoom Buttons 55
Figure 3-21 Overview Button 56
Figure 3-22 Vertical/Horizontal View Button 56
Figure 3-23 Data Destination Panel 58
Figure 3-24 Columns Mapped to Requirements 60
Figure 3-25 The Associations Tab 61
Figure 3-26 The Column Importance Tab 62

xxii

List of Figures

Figure 3-27 Advanced Mode of Column Importance 63
Figure 3-28 The Data Files Panel 66
Figure 3-29 File Menu 68
Figure 3-30 StatViz File Pulldown Menu 72
Figure 3-31 StatViz View Pulldown Menu 73
Figure 3-32 Sample Record Viewer Screen 75
Figure 3-33 Configuration Option With a Single Color Swatch 76
Figure 3-34 Color Browser 76
Figure 3-35 Multiple Colors Swatches 77
Figure 3-36 Scroll Arrows on Color Browser 77
Figure 3-37 Color Browser Out of Colors 77
Figure 4-1 Example Display in the Tree Visualizer’s Main Window 80
Figure 4-2 Tree Visualizer’s Startup Screen, File Pulldown

Menu Selected 82
Figure 4-3 Data Destination Panel of Tool Manager With Tree

Visualizer Selected 85
Figure 4-4 Tree Visualizer’s Configuration Options Dialog Box 87
Figure 4-5 Tree Visualizer’s Initial View When Specifying store.treeviz 94
Figure 4-6 A Highlighted Object and the Information It Represents 95
Figure 4-7 Example of a Selected (Spotlighted) Object 97
Figure 4-8 Example of the Square as Navigational Base 98
Figure 4-9 Tree Visualizer’s External Button Controls 99
Figure 4-10 Tree Visualizer’s Thumbwheels 101
Figure 4-11 Tree Visualizer’s Height Slider 102
Figure 4-12 Tree Visualizer’s File Pulldown Menu With Options 103
Figure 4-13 Tree Visualizer’s Show Pulldown Menu With Options 104
Figure 4-14 Tree Visualizer’s Overview Window 105
Figure 4-15 Tree Visualizer’s Search Dialog Box 106
Figure 4-16 Sample Results of a Search in the Tree Visualizer 107
Figure 4-17 Detail of the Tree Visualizer’s Search Dialog Box 108
Figure 4-18 Tree Visualizer’s Filter Dialog Box 111
Figure 4-19 Tree Visualizer’s Marks Panel 115
Figure 4-20 Window Resulting From Clicking Mark Button 115

List of Figures

xxiii

Figure 4-21 Main Window With Flags Representing Marks 116
Figure 4-22 Tree Visualizer’s Display Menu 117
Figure 4-23 Tree Visualizer’s Selection Menu 118
Figure 4-24 Tree Visualizer’s Go Pulldown Menu 119
Figure 4-25 Tree Visualizer’s Help Pulldown Menu 121
Figure 4-26 Representation of a Null Value Mapped to Height, Color,

Disk, and Label 123
Figure 5-1 Sample Map Visualizer Screen Showing 1990 U.S. Population 128
Figure 5-2 Sample Map Visualizer Screen Showing Relative Population

of Major U.S. Cities 129
Figure 5-3 Sample Map Visualizer Screen Showing the United States With

Specific Endpoints 130
Figure 5-4 Map Visualizer’s Startup Screen, With File Pulldown

Menu Selected 132
Figure 5-5 Data Destination Panel, With Map Visualizer Selected 136
Figure 5-6 Map Visualizer’s Options Dialog Box 139
Figure 5-7 Population.usa.mapviz Example With the Slider

Moved to 1990 144
Figure 5-8 Example of a Highlighted (Information in the Viewing Window)

and Selected (Information in the Selection: Window) Object 146
Figure 5-9 Top Right Buttons 148
Figure 5-10 Lower Half of Window With Thumbwheels 149
Figure 5-11 Map Visualizer’s Summary Window With Slider and

Animation Controls 150
Figure 5-12 Map Visualizer’s Summary Window With One Slider and

Animation Controls 152
Figure 5-13 If There Are No Independent Dimensions, No Animation

Control Panel Appears 153
Figure 5-14 Map Visualizer’s File Pulldown Menu 158
Figure 5-15 Map Visualizer’s View Pulldown Menu 159
Figure 5-16 Map Visualizer Filter Panel 160
Figure 5-17 Map Visualizer Selections Menu 163
Figure 5-18 Map Visualizer’s InterTool Pulldown Menu 164
Figure 5-19 Map Visualizer’s Help Pulldown Menu 164

xxiv

List of Figures

Figure 5-20 Representation of a Null Value Mapped to Height
(Top Middle Object) and to Color (Bottom Right Object) 166

Figure 6-1 Sample Scatter Visualizer Screen 172
Figure 6-2 Scatter Visualizer Start-Up Screen With File Pulldown

Menu Selected 175
Figure 6-3 Data Destination Panel With Scatter Visualizer Selected 177
Figure 6-4 Scatter Visualizer’s Options Dialog Box 180
Figure 6-5 Initial View When Specifying company.scatterviz 187
Figure 6-6 Cursor Over an Object 189
Figure 6-7 Detail View of Top Right Buttons 190
Figure 6-8 View of Lower Half of Window With Thumbwheels 192
Figure 6-9 Animation Control Panel With Summary Window and

Both Slider Controls 193
Figure 6-10 Animation Control Panel With Summary Window and

One Slider Control 194
Figure 6-11 Scatter Visualizer Without Independent Dimension or An

Animation Control Panel 195
Figure 6-12 Scatter Visualizer’s File Pulldown Menu With Options 199
Figure 6-13 Scatter Visualizer View Menu 200
Figure 6-14 Scatter Visualizer Filter Panel 201
Figure 6-15 The Scatter Visualizer Selections Menu 203
Figure 6-16 Scatter Visualizer Help Menu 204
Figure 7-1 Sample Splat Visualizer With One Slider Control 208
Figure 7-2 Shape of Opacity Function For Low and High Values of u 210
Figure 7-3 Image Where u = 5.3, and u = 30 211
Figure 7-4 File | Open Menu Selection for Splat Visualizer 214
Figure 7-5 Data Destination Panel With Splat Visualizer Selected 216
Figure 7-6 Splat Visualizer’s Options Dialog Box 218
Figure 7-7 Pick Dragger Over Data 224
Figure 7-8 Detail View of Top Right Buttons 225
Figure 7-9 View of Lower Half of Window With Thumbwheels 227
Figure 7-10 Animation Control Panel With Summary Window and

Both Slider Controls 229

List of Figures

xxv

Figure 7-11 Splat Visualizer Without Independent Dimension or An
Animation Control Panel 231

Figure 7-12 The Splat Visualizers Looping Options Below the VCR Controls 234
Figure 7-13 Changed Visualization as a Result of Moving the Slider

(Compare to Figure 7-1) 236
Figure 7-14 Splat Visualizer’s File Pulldown Menu With Options 239
Figure 7-15 Splat Visualizer View Menu 240
Figure 7-16 Splat Visualizer Filter Panel 241
Figure 7-17 The Splat Visualizer’s Selection Menu 243
Figure 7-18 Image With Fixed Selection Box (Gray) and Active Selection

Box (Yellow) 244
Figure 7-19 Splat Visualizer Help Menu 246
Figure 8-1 Execution Sequence of the Rules Visualizer 253
Figure 8-2 Detail View of the Rules Visualizer’s Main Window 257
Figure 8-3 Rules Visualizer Start-Up Screen With File Menu Pulled Down 261
Figure 8-4 Initial Tool Manager Window for Association Generation 263
Figure 8-5 Association Convert Options Dialog Box 265
Figure 8-6 Association Rule Options Dialog Box 266
Figure 8-7 The Rules Visualizer’s Mappings Panel 268
Figure 8-8 Rule Visualizer Options Dialog Box 269
Figure 8-9 Initial Rules Visualizer View When Specifying group.ruleviz 272
Figure 8-10 Cursor Over a Rules Visualizer Object 274
Figure 8-11 Rules Visualizer External Buttons 275
Figure 8-12 Rules Visualizer Thumbwheels 277
Figure 8-13 Rules Visualizer’s Height Slider 277
Figure 8-14 Rules Visualizer File Menu 278
Figure 8-15 Rules Visualizer View Menu 278
Figure 8-16 Rules Visualizer Filter Panel 279
Figure 8-17 Rules Visualizer Help Menu 281
Figure 9-1 The Decision Tree Generated by the Decision Tree Inducer for

Iris Dataset 287
Figure 9-2 The Option Tree Generated by the Option Tree Inducer for the

Cars Dataset 289
Figure 9-3 Results of Evidence Classifier for Iris Database 291

xxvi

List of Figures

Figure 9-4 Method for Building a Classifier 292
Figure 9-5 Using a Classifier to Label New Records 292
Figure 9-6 Tool Execution Sequence for Classifiers 293
Figure 9-7 Sample Records From a Training Set 294
Figure 9-8 Iris Dataset Misclassification, Example 1 296
Figure 9-9 Iris Dataset Misclassification, Example 2 297
Figure 9-10 Estimating the Classifier’s Accuracy 299
Figure 9-11 Classifier Cross-Validation (k=3) 300
Figure 9-12 Confusion Matrix for Iris Dataset 302
Figure 9-13 Lift Curve for the Churn Dataset 304
Figure 9-14 Learning Curve for the Churn Dataset 306
Figure 9-15 Learning Curve for the Adult Dataset with Label set to Gross

Income binned at $50,000 307
Figure 9-16 Confusion Matrix for the Mushroom Dataset using Defaults Settings

308
Figure 9-17 Confusion Matrix for the Mushroom Dataset with Loss Matrix 309
Figure 9-18 Confusion Matrix for the Mushroom Dataset with Loss Matrix

Allowing Unknown Predictions 310
Figure 9-19 Options for Running the Inducer 312
Figure 9-20 Accuracy Options With Holdout 313
Figure 9-21 Accuracy Options With Cross Validation 313
Figure 9-22 Backfitting, Confusion Matrices, Lift Curves Options 314
Figure 9-23 Enabling Loss Matrices and Setting the Weight Attribute 315
Figure 9-24 Learning Curve Options 316
Figure 9-25 The Status Window 318
Figure 9-26 The Test and Apply Classifier Dialog Box: Selecting a Classifier 320
Figure 9-27 The Apply Classifier Panel 321
Figure 9-28 The Test Classifier Panel 322
Figure 9-29 The Fit Data to Classifier Panel 323
Figure 10-1 Decision Tree for the Iris Dataset 328
Figure 10-2 Data Destination Panel in Tool Manager Showing Classifiers 330
Figure 10-3 Further Inducer Options 332
Figure 10-4 Tree Visualizer’s Search Dialog Box 338

List of Figures

xxvii

Figure 11-1 Option Decision Tree for the Cars Dataset 351
Figure 11-2 Data Destination Panel in Tool Manager Showing Classifiers 353
Figure 11-3 Further Inducer Options 355
Figure 12-1 The Evidence Visualizer Applied to the Iris Dataset 364
Figure 12-2 Selecting sepal_length < 5.45 and sepal_width > 3.05 Using the

Iris Dataset 367
Figure 12-3 Selecting Two Contradictory Pies Results in a Gray Pie on the Right 368
Figure 12-4 Veil-Color Attribute in the Mushroom Dataset 370
Figure 12-5 File|Open Menu Selection 373
Figure 12-6 Tool Manager With Data Destination Panel Showing Classifiers 375
Figure 12-7 Classification Options Dialog Box Without Accuracy Estimate 376
Figure 12-8 Evidence Visualizer Window for cars.eviviz 379
Figure 12-9 Label Value “Japan” Selected Using the Cars Dataset 381
Figure 12-10 Pie Charts With the First Binned Range of weightlbs Highlighted 383
Figure 12-11 Bar Chart With the First Binned Range of weightlbs Selected 385
Figure 12-12 Iris Dataset With the Value petal_width .75 - 1.65 Selected 387
Figure 12-13 Bars Showing Evidence For iris-virginica 388
Figure 12-14 Bars Showing Evidence Against iris-virginica 389
Figure 12-15 Evidence Pane Buttons 390
Figure 12-16 Evidence Visualizer Height Scale Slider 391
Figure 12-17 Evidence Visualizer Importance Threshold Slider 392
Figure 12-18 Evidence Visualizer Percent Counts Threshold Slider 392
Figure 12-19 Evidence Pane Thumbwheels 393
Figure 12-20 Evidence Visualizer’s View Menu 394
Figure 12-21 Evidence Visualizer’s Nominal Order Menu 395
Figure 12-22 Evidence Visualizer’s Selection Menu 395
Figure 12-23 Evidence Visualizer’s Help Menu 396
Figure 13-1 The Column Importance Tab 408
Figure 13-2 Advanced Mode of Column Importance 409
Figure 14-1 Table of Values for Selected Objects 416

xxix

List of Tables

Table 3-1 Aggregate Example 1 42
Table 3-2 Aggregate Example 2 42
Table 3-3 Aggregate Example 3 43
Table 3-4 Example of binning 43
Table 3-5 Results When Making Total $ Spent an Array 44
Table 3-6 Results When Specifying Sex_bin 44
Table 3-7 Results of Making an Array by Age_bin and Sex_bin 44
Table 3-8 Results of Distributing Sex_bin and Indexing by Age_bin 44
Table 7-1 Ages 40 to 50 237
Table 7-2 Ages 50 to 60 237
Table 7-3 Interpolation midway between Table 1 and Table 2 237
Table 8-1 Association Rules Components 256
Table 8-2 Example of Hierarchical Levels 256
Table B-1 Keywords for the Tree Visualizer 455
Table C-1 Keywords for the Map Visualizer 495
Table C-2 Characters That Can Follow the Percent Symbol in the

format String 499
Table D-1 Scatter Visualizer Keywords 523
Table D-2 Characters That Can Follow the percent Symbol in the

format String 527
Table E-1 Splat Visualizer Keywords 551
Table E-2 Characters That Can Follow the percent Symbol in the

format String 554
Table F-1 Single-Item Format 567
Table F-2 Multiple-Item Format 568
Table F-3 Options for the Association Data Converter 569
Table F-4 Options for Controlling Rule Generation 572
Table F-5 Options for Restricting Generated Rules 574

xxx

List of Tables

Table F-6 Options for the mapassocgen Command 575
Table F-7 Example Hierarchy 576
Table F-8 Options Set 3 577
Table F-9 Data Example 2 578
Table F-10 Rule Generation Example 1 579
Table F-11 Example Hierarchy 580
Table F-12 Example of Rules at the Lowest Hierarchical Level 581
Table F-13 Second Example of Rules Generated at Lowest Hierarchical Level 583
Table F-14 Field Names and Types for Rules File 585
Table F-15 Operators Used With Expressions 586

xxxi

About This Guide

The MineSet User’s Guide describes the features and capabilities of this suite of four
database mining and five visualization tools. Current information about the MineSet
product can be found on the World Wide Web at
http://www.sgi.com/Products/software/MineSet

Audience for This Guide

If you are using the Tool Manager to extract data from a database into the MineSet tools,
you should understand database structures. It also would be helpful to know SQL.

If you are configuring the tools directly (through the configuration files, or through the
command line in the case of the association rules), you should have some knowledge of
UNIX as well as some programming experience.

Once the data has been loaded into the various visualization tools, you will not need a
database or programming background, although you will be able to interpret the
displays more easily if you have an understanding of the data and what it represents.

xxxii

About This Guide

Structure of This Document

In addition to this preface, the documentation for MineSet consists of the following
chapters:

Chapter 1, “Getting Started”
This provides a brief overview of each MineSet tool and describes the processes that
occur when invoking and using a tool.

Chapter 2, “Setting Up MineSet”
This chapter describes how to set up MineSet by configuring the DataMover.

Chapter 3, “The Tool Manager”
This chapter describes the menus and functions of the initial interface for invoking tools
and tells how to produce their respective configuration files.

Chapter 4, “Using the Tree Visualizer”
This chapter provides a complete description of the Tree Visualizer tool interface. This
tool is valuable for visualizing hierarchical data.

Chapter 5, “Using the Map Visualizer”
This chapter provides a complete description of the Map Visualizer interface. This tool is
valuable for visualizing data that is connected with a geographical location.

Chapter 6, “Using the Scatter Visualizer”
This chapter provides a complete description of the Scatter Visualizer interface. This tool
is valuable for visualizing multidimensional data.

Chapter 7, “Using the Splat Visualizer”
This chapter provides a complete description of the Splat Visualizer. This tool, which is
particularly well suited for application to very large datasets, lets you visually analyze
relationships among several variables, either statically or by animation.

Chapter 8, “Using the Rules Visualizer”
This chapter provides a complete description of the Rules Visualizer. This tool is valuable
for mining large datasets and visualizing correlations in that data.

Chapter 9, “MineSet Inducers and Classifiers”
This chapter provides a brief introduction to classifiers and the algorithms that generate
them, called inducers. Specifically, it introduces the two MineSet classifiers: Decision Tree
and Evidence.

About This Guide

xxxiii

Chapter 10, “Inducing and Visualizing the Decision Tree Classifier”
This chapter describes how to generate and use the Decision Tree Classifier. This tool is
valuable for classifying data according to a set of attributes by making a series of
decisions based on those attributes.

Chapter 11, “Inducing and Visualizing the Option Tree Classifier”
This chapter describes how to generate and use the Option Tree Classifier. This tool
assigns each record to a class. Option trees can contain special option nodes that allow
the classifier to consider the influence of splitting on multiple attributes simultaneously.

Chapter 12, “Inducing and Visualizing the Evidence Classifier”
This chapter describes how to generate and use the Evidence Classifier. This tool is
valuable for classifying data by examining the probabilities of a specified result
occurring based on a given attribute.

Chapter 13, “Column Importance”
This chapter provides a complete description of the column importance tool. It also
describes the relationship between column importance and the importance ranking in
the other data mining tools.

Chapter 14, “Multiple Selection and Drill-Through”
This chapter describes the how to use multiple selection in the MineSet tools, as well as
the concept of drill-through.

Chapter 15, “File Exchange Between MineSet and SAS”
This chapter describes the support for file exchanges between the MineSet and SAS
formats.

Chapter 16, “MineSet Web Extensions”
This chapter describes the MineSet extensions that are provided to let you create or view
visualizations and/or interact with MineSet over the web.

Appendix A, “Flat File Support for MineSet”
This appendix describes the .schema and the .data files that are required for MineSet to
read flat files.

Appendix B, “Creating Data and Configuration Files for the Tree Visualizer”
This appendix explains the required formats of the Tree Visualizer data and
configuration files.

xxxiv

About This Guide

Appendix C, “Creating Data, Configuration, Hierarchy, and GFX Files for the Map
Visualizer”
This appendix explains the required formats of the Map Visualizer data, configuration,
hierarchy, and .gfx files.

Appendix D, “Creating Data and Configuration Files for the Scatter Visualizer”
This appendix explains the required formats of the Scatter Visualizer data and
configuration files.

Appendix E, “Creating Data and Configuration Files for the Splat Visualizer”
This appendix describes the format of the Splat Visualizer’s data file.

Appendix F, “Creating Data and Configuration Files for the Rules Visualizer”
This appendix explains the required formats of the Rules Visualizer data and
configuration files.

Appendix G, “Format of the Evidence Visualizer’s Data File”
This appendix describes the format of the Evidence Visualizer’s data file.

Appendix H, “Command-Line Interface to MIndUtil: Classifiers, Discretization, Column
Importance, and File Conversions”
This appendix describes the MIndUtil program and its options.

Appendix I, “Nulls in MineSet”
This appendix describes how MineSet supports nulls in the data access tools, the mining
tools, and the visualization tools.

Appendix J, “Further Reading and Acknowledgments”
This appendix lists reference sources for further reading about concepts and their
implementations used in the MineSet tools. It also lists acknowledgments for data
sources used in the examples provided with these tools.

Note: The hard copy of this documentation provides all screen shots and illustrations in
black and white. The online version, however, provides these visuals in full, original
color. Thus, if you are reading the hard copy version and find a particular graphic or
screen shot difficult to see, go to the respective page of the online version for greater
clarity.

About This Guide

xxxv

Typographical Conventions

The following type conventions and symbols are used in this guide:

Italics Executable names, filenames, program variables, tools, utilities, variable
command-line arguments, and variables to be supplied by the user in
examples, code, and syntax statements.

Bold Keywords

Fixed-width type

On-screen command-line text and prompts.

Bold fixed-width type

User input, including keyboard keys (printing and non-printing);
literals supplied by the user in examples, code, and syntax statements.

[] Syntax statement arguments surrounded by square brackets denote that
these arguments are optional.

1

Chapter 1

1. Getting Started

This introduction provides an overview of MineSet™, an integrated suite of database
mining and visualization tools, and describes the basic tool execution scenario.

Note: Before using any of the MineSet tools, follow the installation and licensing
instructions in the MineSet release notes. Then your system administrator must set up
the DataMover configuration file. You also can choose to set up some options. The setup
details are described in Chapter 2.

MineSet Tools Suite

The MineSet suite of tools let you mine and graphically display quantitative information
in ways that can help you better visualize, explore, and understand your data. This suite
of data mining and analysis tools can help you organize and examine your data in new
and meaningful ways. The mining tools automatically find patterns and build models
that can be viewed using the visualization tools. Also, the visualization tools can be
applied directly to the data for more insights. These tools provide an enabling power that
lets you gain a deeper, intuitive understanding of your data, and helps you discover
hidden patterns and important trends.

These tools provide a highly interactive, three-dimensional (3D) visual interface that lets
you manipulate visual objects on the screen, as well as perform animations. This ability
to visualize and survey complex data patterns can prove invaluable as a decision support
mechanism.

2

Chapter 1: Getting Started

The MineSet suite consists of three basic components:

• a centralized control module, consisting of a graphical user interface tool called the
Tool Manager, and a process called the DataMover, which runs on the server

• database mining, with five database mining tools:

– Association Rules Generator

– Decision Tree Inducer and Classifier

– Option Tree Inducer and Classifier

– Evidence Inducer and Classifier

– Column Importance

• visualization tools, which let you view your data using eight different visual
metaphors:

– Tree Visualizer

– Map Visualizer

– Scatter Visualizer

– Splat Visualizer

– Rules Visualizer

– Evidence Visualizer

– Statistics Visualizer

– Record Viewer

The following sections provide a brief description of each of the above-mentioned
components.

MineSet Tools Suite

3

The Tool Manager

Each of the mining and visualization tools described below can be configured and started
via a consistent graphical user interface known as the Tool Manager. The Tool Manager

• connects you to the server on which the database and mining tools reside

• lets you access, query, and manipulate data

• creates configuration files for each tool

• extracts data from the database to generate input files for each of the tools

The DataMover

The DataMover is a process that runs on the server on behalf of the user. The DataMover

• connects to databases, flat files or MineSet binary files, and retrieves the data

• invokes the mining tools

• performs additional data manipulation such as binning and aggregation

• returns the data to the Tool Manager for distribution to the visualization tools

• can store the data in files on the server or client for future operations.

The Association Rules Generator

The Association Rules Generator part of this tool processes an input file, then generates
an output file consisting of rules. These rules indicate the frequency with which one item
occurs in a record along with another item. The strength of the association is quantified
by three numbers.

• The first number, the predictability of the rule, quantifies how often X and Y occur
together as a fraction of the number of records in which X occurs. For example,
given that someone has bought milk, how often do they also buy eggs.

• The second number, the prevalence of the rule, quantifies how often X and Y occur
together in the file as a fraction of the total number of records. For example, how
often were milk and eggs bought together.

4

Chapter 1: Getting Started

• The third number is expected predictability. This gives an indication of what the
predictability would be if there were no relationship between the items in the
record. For example, how often were eggs bought, regardless of whether milk was
bought as well.

The Decision Tree Inducer and Classifier

The Decision Tree Classifier classifies data according to a set of attributes by making a
series of decisions based on those attributes. The process is similar to using a biological
key to identify plants. Applying this classifier to determine the profile of someone with
credit worthiness, for example, a decision tree might determine if someone who owns a
home, owns a car that cost between $15,000 and $23,000, and has two children, is a good
credit risk.

The Decision Tree Inducer generates a decision tree classifier from a “training set” (a set
of data that the user has already classified). Then, the structure of the classifier’s decision
tree is displayed using the Tree Visualizer, with each decision being represented by a
node of the tree. The graphical representation can help the user understand the
classification algorithm, as well as provide valuable insights into the data. Finally, the
classifier can be used to classify unclassified data.

The Option Tree Inducer and Classifier

The Option Tree Classifier classifies data using a technique similar to the Decision Tree
classifier. Unlike decision trees, option trees can contain special option nodes, which
allow the classifier to consider the influence of splitting on multiple attributes
simultaneously. For example, an option node in an option tree built to identify a car's the
country of origin might choose miles per gallon, horse power, number of cylinders, and
weight as informative attributes. In a decision tree, a node can choose at most one
attribute for consideration at a time. In an option tree, the results of all options are
“voted” when performing classification. Option trees are often more accurate than
decision trees; however, they generally are much larger.

The Option Tree Inducer generates an Option Tree classifier from a training set in much
the same way that the Decision Tree inducer generates a Decision Tree. The induced
option tree is displayed using the Option Tree Visualizer. This visualization helps you
understand the classifier, and provides insight into which attributes are important in
determining the value of the label. In addition to visualizing the classifer, it can be used
to classify unlabeled data.

MineSet Tools Suite

5

The Evidence Inducer and Classifier

The Evidence Classifier classifies data by examining the probabilities of a specified result
occurring based on a given attribute. For example, it might determine that someone who
owns a car that cost between $15,000 and $23,000 has a 70% chance of being a good credit
risk, and a 30% chance of being a bad credit risk. The classifier predicts the class with the
highest probability based on a simple probabilistic model.

The classifier is first generated from a training set, similar to the decision tree classifier.
The analysis of the data is displayed using the Evidence Visualizer, which shows pie
charts illustrating the different probabilities. This graphical representation can help the
user understand the classification algorithm, as well as providing valuable insights into
the data and answering “what if” questions. Finally, the classifier can be used to classify
unclassified data.

Column Importance

Column Importance determines how important various attributes are for determining
the value of a given label attribute. For example, you can ask MineSet to select
automatically the best three attributes that help determine whether someone is a good
credit risk. The system might select income, own-house, and car-cost. These attributes
then can be mapped to the axes of the Scatter Visualizer, or used in the hierarchy of the
Tree Visualizer.

Column Importance has an advanced mode that provides additional capabilities. First, it
lets you determine how important each of the attributes are. (For example, you could
determine that both income and salary are similar in importance in determining credit
risk. Although income might be slightly better in determining importance, perhaps you
would prefer to use salary because it is easier to obtain.) Second, once you explicitly
choose an attribute, you can determine what other attributes are important in
conjunction with it. (For example, if you have chosen salary rather than income,
house-cost might become more important than own-house, and income would have a
very low importance.)

6

Chapter 1: Getting Started

Tree Visualizer

The Tree Visualizer helps you analyze data that has hierarchical relationships. It provides
an interactive “fly-through” capability for examining the relations between data at
different hierarchical levels. For example, the Tree Visualizer can be used to examine a
company’s product line, graphically displaying each product’s contribution to the
company’s total revenue. Each branch of the hierarchy displays information at increasing
levels of detail, breaking revenues down by product lines and, eventually, individual
products. Another example of using the Tree Visualizer is to show company sales
revenue, displaying a company-wide total as well as sub-totals at regional and other
levels. The fly-through capability in the Tree Visualizer lets you rapidly reposition your
view of the data. The Tree Visualizer’s filtering and searching capabilities let you focus
on specific data elements and queries.

The Tree Visualizer is also used to view the results of the Decision Tree Classifier, with
each decision being represented by a separate node in the tree. Each node also shows bars
showing how the classifier classifies the data based on the decisions up to that point (for
example, 73% of people who own a home and have two children are good credit risks,
while 27% are not).

Map Visualizer

The Map Visualizer lets you visualize data relationships that exist across geographically
meaningful areas. For example, you can visualize different areas of a country, showing
the relative impact of a marketing program. The Map Visualizer’s drill-down capabilities
let you focus on designated regions and perform a more detailed analysis in smaller
geographical elements. One application might be analyzing how one or more products
are being sold across different geographies. A powerful animation feature, coupled with
a capability to connect different views of the same or related data, permits fast
comparisons and difference analyses. This tool lets you visually examine patterns in your
data that are difficult to detect when that data is shown in a tabular, two-dimensional
form.

MineSet Tools Suite

7

Scatter Visualizer

The Scatter Visualizer lets you examine the behavior of data across different dimensions.
The data is shown in a grid representing up to three dimensions. Extra dimensions can
map to the size, color, and label of each displayed entity. Two further independent
dimensions can be assigned as dynamic dimensions. A slider can be use to select specific
values along those dimensions, or a path can be traced through those dimensions, for
animation. During the path traversal, the display changes automatically to reflect the
change in the independent variable.

Splat Visualizer

The Splat Visualizer produces 3D plots of very large data sets. Instead of showing
individual data points, it renders the density of data using varying opacity. It has many
of the same features as the Scatter Visualizer.

Rules Visualizer

The Rules Visualizer visually represents the results of the Association Rules Generator
mining tool. It provides detailed data analysis that lets you examine relationships across
data elements in new ways. In doing so, you might discover relationships that
significantly differ from what you might have expected; this, in turn, can lead to
important discoveries about your data or the processes behind that data. This tool’s
visualization capabilities let you discover additional patterns of co-occurrence between
these data elements. For example, you can use the analysis of products sold during the
last sales promotion to guide your advertising campaign for the next sales period. The
Rules Visualizer’s high performance would let you analyze the results from today’s sales
data in time to alter the advertising campaign for the following day.

8

Chapter 1: Getting Started

The Evidence Visualizer

The Evidence Visualizer visually represents the results of the Evidence Classifier. It
initially shows pie charts that represent how the various attributes contribute to the
decision. For example, it might show that owning a home contributes to being a good
credit risk. It can show how to classify a household that rents, has one child, and drives
a car valued between $8,000 and $12,000.

Statistics Visualizer

The Statistics Visualizer computes and displays summary information for the current
dataset (max, min, standard deviation, distinct values, etc.).

Record Viewer

The Record Viewer lets you view the data in the current table in a row/column
spreadsheet-like tool.

Basic Tool Execution Scenario

Each of the MineSet tools is started, configured, and run in a consistent manner. The
sequence of actions you follow at your workstation and at the host server is shown
schematically in Figure 1-1. A description of the steps inherent in this figure follows.

Basic Tool Execution Scenario

9

Figure 1-1 Tool Execution Sequence

Note: The following steps describe a “typical” interaction with a MineSet tool, and the
sequence of the tool’s actions. Depending on your requirements, some steps might be
skipped (for instance, if the data and configuration files have been generated in a
previous work session).

Client workstation Host server

Tool
manager

Configuration
file

Configuration
file

Visualization
tool

Visual
files

Data
file

DataMover User's
data

source

User

Visualdisplay

Inducer
(MIndUtil)

Classifier

Information & statistics
(accuracy estimate)

OR

10

Chapter 1: Getting Started

1. Start the Tool Manager, which is the graphical interface for generating and
specifying the configuration file, data file, and tools to be used. The Tool Manager
resides on your workstation.

2. The Tool Manager opens a network connection to the DataMover, which runs on the
server.

3. Use the Tool Manager to specify

• the database and table, or a binary or ascii file containing the data on either the
client or the server

• which mining tools, if any, are to be applied

• the data file to be generated

• what tool visualizes the data

• how that data is to be displayed

• an optional file on the client or server in which to save the results for future
processing

Information retrieved via the DataMover is used to guide this interaction. As a
result, the Tool Manager generates a configuration file. This file contains the
user-defined parameters that determine the execution of the following steps.

4. The Tool Manager transmits a copy of the configuration file from step 3 to the
DataMover. The DataMover processes the file by

• accessing the database or file

• performing the specified data transformations

• running the mining tools

• generating the data file

This data file consists of your data in a specific format readable by the MineSet tool.
Then a copy of the data file is placed on your workstation.

5. The Tool Manager invokes the MineSet visualization tool you specified in step 3.

6. The tool accesses the data file and, based on the user-defined parameters entered in
step 3, graphically displays the data.

7. If you generated a classifier, that classifier can be applied to additional data (see
Figure 9-5).

11

Chapter 2

2. Setting Up MineSet

This chapter describes how to set up MineSet, which requires configuring the
DataMover. The configuration has two parts:

• configuring the user’s account on the server (optional), and

• a global configuration, which usually is done by the system administrator

The DataMover is a process that runs on the server, although it is not directly accessible
to users. The DataMover provides access to databases and data stored in flat files, and
transforms data for the mining and visualization tools. The last section of this chapter
describes how to load sample datasets into the supported relational databases.

Configuring the DataMover Server

In order to use the MineSet tools, two configuration files must be created on the server:
one by you, the other by the system administrator.

The User Configuration File

Note: You must have a UNIX® account on every server you want to access.

The DataMover server creates files on the server machine on behalf of each user. The
DataMover configuration file, .datamove, lets you control where these files are created and
whether different classes of files are saved or discarded. This file is located on the server,
in your home directory. A sample .datamove file is located on the server, in the
/usr/lib/MineSet/datamove directory.

If the .datamove file is absent, or if a particular entry is not present in the .datamove file, the
DataMover uses a default value for that entry.

12

Chapter 2: Setting Up MineSet

Each entry in the DataMover’s configuration file must be on a separate line. For example:

file_cache = directory_name
temp_dir = directory_name

where file_cache specifies the location in which the DataMover stores its query
specification and output data files. The location in which the DataMover stores
intermediate files for mining processing is the directory specified after temp_dir. If either
of the file_cache or temp_dir directories do not exist, the DataMover attempts to create
them on its first invocation. The default temp_dir is /usr/tmp and the default file_cache
directory is ./mineset_dir/%U. The %U is a wildcard that is filled in with the user name on
the client machine. This is useful in reducing contention if many users want to log in to
a common account on the server. If multiple sessions were simultaneously connected to
the same file_cache directory, they could overwrite each other’s server files, causing
incorrect and unexpected results. To prevent this, DataMover maintains a lock at the
file_cache directory level. The second and later attempts to connect to a particular
file_cache directory result in failure and an error message.

Once a query result has been returned to the client machine, the DataMover has the
option to delete the query result and specification. The DataMover’s behavior is
controlled by the following options:

keep_temp_files
keep_data_files
keep_query_files

Each of these entries must be on a separate line. All entries default to no. Adding the
entry

keep_query_files = yes

to the .datamove file instructs the DataMover not to delete query specification files when
it is finished processing them.

Some of the files created by the DataMover can be large. Thus, if you specify one of the
keep_* options as yes, you must log on to the server periodically and clean out the file
cache. The settings in the .datamove file can be overridden for each file with a Tool
Manager option.

Configuring the DataMover Server

13

Using MineSet to create a classifier via the Tool Manager typically causes a classifier file
and a classifier-options file to be created in the file_cache directory. You can delete or retain
these files for further use by setting the following options in the .datamove file:

keep_classifier_files=yes
keep_classifier_options_files=no

As with other options in the .datamove files, these must also be on separate lines. It is
worth noting that the predefined default for the keep_classifier_files option is “yes.”

Mandatory Configuration File

The MineSet DataMover server must be configured to find information in the databases.
The DataMover works with Oracle® versions 7.2 or later, INFORMIX®, and Sybase®.

The DataMover server reads the /usr/lib/MineSet/datamove/dm_config file during start up.
This file is not created by Inst during installation. It must be created by the system
administrator, who must log in as root to edit this file. It can be created via an editor such
as jot, vi, or Emacs. An example file can be found in
/usr/lib/MineSet/datamove/dm_config.sample. The format of this file is

Oracle {
"ORACLE_SID", "ORACLE_HOME";
}

Oracle_Remote {
“DATABASE_NAME”, “ADMIN_DIRECTORY”;
}

Informix {
"INFORMIXSERVER", "INFORMIXDIR";
}

Sybase {
"DSQUERY", "SYBASE";
}

Each optional entry describes the databases in use at your site. If your server is not
running any databases, that is, you intended to use MineSet with ASCII files only, simply
make an empty dm_config file.

14

Chapter 2: Setting Up MineSet

The line "ORACLE_SID", "ORACLE_HOME" is filled in with the specific information and
repeated once for each Oracle database to be accessed via the DataMover. ORACLE_SID

and ORACLE_HOME are Oracle specific parameters defining an Oracle instance.

The Oracle_Remote section is for accessing remote Oracle databases via SQL*NET V2.
The DATABASE_NAME entry is a logical name for the remote database, as defined in a
tnsnames.ora file. The ADMIN_DIRECTORY entry is where DataMover searches for the
tnsnames.ora file. This file is described in Oracle’s SQL*NET documentation. Remote
access to databases is described in more detail in “Using MineSet to Connect to Remote
Databases” on page 16.

Each line in the Informix section defines a database server that, in turn, can contain
several databases. The server is checked at runtime to determine which databases it
contains, so there is no need to record the individual databases in the dm_config file. The
first entry is the INFORMIX server (corresponding to the INFORMIXSERVER
environment variable), and the second is the INFORMIX directory (corresponding to the
INFORMIXDIR environment variable).

Each entry in the Sybase section defines a database server (or, in Sybase terminology, an
SQL Server™). The first entry is the Sybase SQL Server name (corresponding to the
DSQUERY environment variable); the second is the Sybase home directory
(corresponding to the SYBASE environment variable).

An example configuration file might be as follows:

Oracle {
"v73", "/usr/people/oracle/v73";
"wrhse", "/opt/oracle";
}

Oracle_Remote {
 “lifeseq”, “/usr/lib/MineSet2/datamove/”;
}

Informix {
"learn_online", "/u5/informix";
}

Sybase {
"MINESET", "/usr/sybase/10.0.2.4";
}

Configuring the DataMover Server

15

This configuration file lets the DataMover access:

• three Oracle databases, one named v73 (installed in /usr/people/oracle/v73), another
named wrhse (installed in /opt/oracle), and a remote database named lifeseq,

• an INFORMIX Server;

• and a Sybase SQL Server.

Each of the INFORMIX and Sybase servers can, in turn, contain multiple databases.

For Sybase, DataMover uses vendor-supplied shared libraries as its connection to the
databases. One of the purposes of the dm_config file is to specify where DataMover must
look for its shared libraries. DataMover looks in the $SYBASE/lib/ directory for the
following shared libraries: libct.so, libcs.so, ibcomn.so, libintl.so, libtcl.so, libinsck.so.

Using MineSet With Existing Data Files

Sometimes it is convenient to use MineSet with data that is already stored as a file, but
requires further processing before it can be mined or visualized. In this case, the data file
can be made available (with a modest effort) to the Tool Manager/DataMover.

First, the data file must be in a tab-delimited format, with the same number of fields in
each line. A numeric or string field with a single “?” character appearing between
delimiters is loaded as a Null value.

For a detailed discussion of null values, refer to Appendix I, “Nulls in MineSet.”

The contents of the data file must be described to Tool Manager/DataMover via a file
with the .schema extension. The format of the .schema file is shown below:

#
A line beginning with a "#" is a comment
#
input {

The first line lists the data file which is described. It
must be a simple filename, not a path.

 file "carmodels.data";

16

Chapter 2: Setting Up MineSet

Fields are listed left to right in the line, legal
types are float, double, int, string, and dataString
Be sure to end every line with a semicolon ";"

 float mpg;
 int cylinders;
 float cubicinches;
 int horsepower;
 int weightlbs;
 double timeaccelerate;
 date when_introduced;
 string origin;

fixedString(3) manufacturer_code;
 dataString model;
}

The schema and data files must be located in the same directory. If you prepare a dataset
in this fashion on the client machine, it can be opened with the Tool Manager’s Find File
dialog. If the file requires any additional processing, it is copied to the server. Sometimes
this is not convenient, especially if the file already exists on the server, or is large. In this
case, the .schema and .data files must be copied (or symbolically linked) into the your
file_cache directory on the server. The directory used as the file cache is specified in your
.datamove file; the default is ./mineset_dir/%U.

Using MineSet to Connect to Remote Databases

Sometimes it might not be feasible to install DataMover on the machine running the
database server. In this situation, DataMover can be installed on an intermediate server,
and DataMover then can use the database vendor’s networking facility to connect to the
remote database. (This sometimes is referred to as a three-tier architecture.)

Configuring the DataMover Server

17

Oracle

MineSet supports two ways to access remote Oracle databases:

• The remote database is specifically mentioned in the dm_config file. For this method,
add entries to the Oracle_Remote section of the dm_config file, as described in the
“Mandatory Configuration File” section, above. Every remote database named in
the dm_config file must be defined in the tnsnames.ora file. This file can be manually
edited, or, more commonly, generated automatically by a network administration
tool provided by Oracle. If this method is chosen, the only Oracle-specific file
needed on the DataMover server is tnsnames.ora; in particular, Oracle need not be
installed on this machine.

• A local Oracle install is used as a gateway to a remote database. In this case, the
dm-config file requires an entry for the local Oracle install, with ORACLE_HOME and
ORACLE_SID. This entry must be in the Oracle , not Oracle_remote section. Entries
for any remote databases must be added to the
$ORACLE_HOME/network/admin/tnsnames.ora file of the Oracle install on the
intermediate server.

Then, when users want to log in to user “system”, password “manager” at database
“remotedb”, they must provide the name of the intermediate server for the Tool
Manager “Log on to server...” dialog and select the intermediate server’s Oracle
database. When logging in to the database, use system@remotedb for the database
username, and manager for the password. (The added @remotedb specifies that
Oracle must use SQL*Net™ to connect to the remote database, instead of using a
local connection.)

Operating across SQL*Net is substantially slower than a local connection, especially for
queries that return a large amount of data. If possible, install DataMover on the same
machine as the Oracle server.

Sybase

A Sybase installation is required on the intermediate DataMover server; this Sybase
installation need not be running an active database, but it is needed for access to the
shared libraries and the interfaces file.

18

Chapter 2: Setting Up MineSet

In order to access the Sybase SQL server running on the remote machine, the interfaces
file on the DataMover server machine must have an entry for this Sybase SQL server.
Please refer to your Sybase manuals for the procedure for creating such entries. Also, the
name of this Sybase SQL server on the remote machine must be included in the dm_config
file on the intermediate DataMover server machine.

Once this setup is done, access to the Sybase SQL server on the remote machine is
handled transparently. The user can choose it and access data from it just like any other
database source, using the panels from the Tool Manager.

Loading Sample Datasets

This section describes how to load the sample datasets included with the MineSet
distribution into one of the supported relational databases.

Installed on the server in /usr/lib/MineSet/DBexamples are

• all the sample data, along with a brief description of what it contains.

• directions on how to load the data using the provided scripts.

Load the sample datasets into a database that has been set up on your server. The data
and these directions (README.server) are installed in /usr/lib/MineSet/DBexamples on the
server.

The /usr/MineSet/DBexamples directory contains scripts for loading the complete set of
data files into one of the supported databases. To load the complete set of data, run one
of the following loader scripts, depending on which database you have. (This assumes
your database and environment are already set up.)

sh load_all_Oracle.sh < userid > < passwd >

sh load_all_Sybase.sh < userid > < passwd >

If you are going to work with an INFORMIX database, use the dbaccess interface to
select

create_all_Informix.sql

followed by

load_all_Informix.sql

Loading Sample Datasets

19

Loading Individual Datasets

Alternatively, you can load, or reload, the sample data separately. Each data directory in
/usr/lib/MineSet/DBexamples on the server contains files necessary to load the data into
any of the supported databases. These files are:

README - explains the data

*.sql - sets up an Oracle table
*.ctl - control file for loading into Oracle

*_syb.sql - sets up a Sybase table
*.bcf.fmt - Sybase format file

*_inf.sql - sets up an INFORMIX table
*_load.sql - loads the data into the INFORMIX table

In the *.ctl file, the separator is declared in the line

" fields terminated by X'20' "

The separator is specified in ASCII hexadecimal; thus:

X'20' is used for ‘ ’
X'2c' is used for ‘,’
X'09' is used for ‘\t’

Loading Into Oracle

Perform the following steps on the server with an Oracle database:

1. Ensure the following environment variables are set correctly:

ORACLE_HOME

ORACLE_SID

20

Chapter 2: Setting Up MineSet

2. Type

sqlplus < userid >/< passwd >
SQL> @<dataset >.sql

Where dataset is the name of the dataset being loaded, and userid/passwd are your
assigned username and password for the Oracle database.

To delete an already existing table, type

SQL> drop table <dataset>;

3. Type

sqlload control = < dataset >.ctl userid = < userid >/< passwd >
log = /tmp/< dataset >.log direct = true

4. Check the resulting dataset.log to ensure the data was loaded correctly.

Loading Into Sybase

Perform the following steps on the server with a Sybase database:

1. Ensure that the following environment variables are set:

SYBASE
DSQUERY

2. To create the table, type

isql -U< userid > -P< passwd > -i < dataset >_syb.sql

Where dataset is the name of the dataset being loaded, and userid/ passwd are your
assigned username and password for the Sybase database.

To delete an already existing table, type

isql -U< userid > -P< passwd >
drop table < dataset >
go

3. To load the data, type

bcp < dataset > in < dataset >.data -U< userid > -P< passwd > -f
<dataset >.bcp.fmt

where dataset is the table name (created via <dataset >_syb.sql), in means "load into
the dbms," <dataset>.data refers to the name of the ASCII data file, and -f points to the
already-created format file. (When reading in from a file, the data types are character.)

Loading Sample Datasets

21

Loading Into INFORMIX

Perform the following steps on the server with an INFORMIX database:

1. Ensure the following environment variables are set:

ONCONFIG
INFORMIXSERVER
INFORMIXTERM

2. To create the table, type

dbaccess

3. If necessary, log into the appropriate database.

4. Choose Query-language, then choose the appropriate database from those listed.

5. Choose <dataset>_inf.sql, and run it.

6. Choose <dataset>_load.sql, and run it (where <dataset> is the name of the dataset
being loaded).

23

Chapter 3

3. The Tool Manager

This chapter discusses the functions of the Tool Manager, which is the graphical user
interface (GUI) that lets you specify data and configuration information for the MineSet
tools in this package. It provides an overview of this interface, then describes every
component of each panel that this interface displays for all MineSet tools.

Note: Any screens dedicated to a specific tool are discussed in the chapter for that tool;
for example, the screen for specifying the Tree Visualizer’s configuration file is discussed
in Chapter 4, “Using the Tree Visualizer.”

Overview of Tool Manager

The Tool Manager provides the initial GUI for most of your interactions with the MineSet
tools. This GUI lets you start the individual tools and specify the following:

• the data you want to analyze

– from a database table

– from a database SQL query

– from a file

• the set of transformations used to get from the data you are capturing to the data
that is displayed:

– mining tools—finds patterns in data

– binning variables—discretizes column values into groups, such as grouping
years by decade

– removing columns—excises unneeded columns to save space

24

Chapter 3: The Tool Manager

– adding new columns—creates columns that are functions of existing columns

– aggregation—finds the average, sum, min, max, or counts of column values.

– filtering—selects a subset of the data based on an expression using column
values.

– sampling—selects a random subset of the data.

– making arrays—takes the values of one column and turning them into an array
indexed by discrete values in another column

– distributing columns—makes two or more new columns from a single column
of values, distributed by the discrete values of another column

• how you want the data displayed on the screen; for instance, as

– a hierarchy (Tree Visualizer)

– a map (Map Visualizer)

– a scatter plot showing relations of numerous independent variables (Scatter
Visualizer and Splat Visualizer)

– associated rules (Rules Visualizer)

– evidence (Evidence Visualizer)

• specific mappings of data values to visual elements on the screen, such as colors,
bars, heights, and so forth

• non-data-related tool options, including

– background colors

– grid spacing

– label sizes

Note: The Tool Manager generally does not support data files not created by the Tool
Manager without some manual work to make them compatible.

Starting the Tool Manager

25

Starting the Tool Manager

You can run the Tool Manager in two modes:

• interactive mode—the Tool Manager provides windows, menus, buttons, and so on,
to let you access, mine, and visualize your data. Interactive mode also lets you save
a description of your actions to a “session file” for future use.

• batch mode—the Tool Manager performs all the actions described in a session file
without bringing up windows. For example, batch mode is useful for lengthy
computations that need to be done every night, so that the data can be fully
prepared each morning.

There are three ways to start the Tool Manager in interactive mode:

• Double-click the MineSet icon, which is in the Applications or the MineSet page of
the icon catalog. The Tool Manager starts with the same configuration used in the
last Tool Manager session.

• Double-click an icon representing a session file saved from a previous invocation of
the Tool Manager. This starts the Tool Manager with that session file.

• Start the Tool Manager from the UNIX shell command line by entering this
command at the prompt:

mineset [sessionFile]

Here, sessionFile is optional and specifies the name of the session file to use. If
you do not specify a configuration file, MineSet starts up with the configuration
most recently used.

To start the Tool Manager in batch mode, enter this command at the UNIX shell prompt:

mineset_batch [-s serverPassword -d databasePassword] sessionFile

The -s and -d options allow you to specify the password for logging into the server and
database respectively. If you do not specify these options, mineset_batch will ask you to
type in the passwords, thus these options are useful when running mineset_batch from a
shell script. To specify that there is no password for either the server or database, use -s
or -d followed by two double quotes, that is,

mineset_batch -s "" -d "" foo.mineset

If you specify one of the two passwords, you must specify both.

26

Chapter 3: The Tool Manager

Figure 3-1 shows the Tool Manager’s startup window.

Figure 3-1 The Tool Manager Startup Window

This window consists of two panels and two information sections. Specification of
servers and data sources is done via popup dialogs accessible from the File menu.

Choosing a Data Source

27

The panels and information sections are

• Data Transformations, which lets you modify the data from your data source.

• Data Destination, which lets you create visualizations based on your data, save the
data to a file, or mine the data for association rules, create classifiers based on the
data, or find important columns in the data.

• The top panel, which provides information on the currently selected data source.

• The bottom panel, which contains a stream of information on the status on certain
operations.

The following sections describe each panel of the main Tool Manager window.

Choosing a Data Source

Data sources are selected via the first set of menu items in the File menu

Figure 3-2 File Pulldown Menu

28

Chapter 3: The Tool Manager

The first three options in the File menu let you select the data source from a

• DBMS Table

• DBMS Query

• Data File

The fourth option, Connect to Server, lets you connect to a server without specifying the
data source.

You must connect to a server to get information from a database or mining tool, or to
apply transformations to an existing data file. It is not necessary if you plan to visualize
an existing client data file without transforming it.

Choosing an Existing Data File

Use the Open New Data File menu option to work with an existing data file. When you
select this option, the dialog in Figure 3-3 appears.

Figure 3-3 Open New Data File Dialog Box

Choosing a Data Source

29

This dialog box, which is similar to a standard file selection dialog box, provides a toggle
at the top to select client versus server files; it also has a label indicating the name of the
current MineSet server, and a push button to let you log in to a new server. The radio
buttons at the top let you select files on your client machine (in any directory accessible
to you) or files that exist in your single cache on the DataMove server.

When you select the name of a file from the list in the left window, the columns of that
data file are shown in the right window.

When you click the Change Server button, a dialog prompts you for a server name, login
name, and password to connect to the server (see Figure 3-5).

If you want to access a data file created outside of Tool Manager, you must create a
.schema file for it. This is a text file containing a configuration “input” section, which gives
the name of the data file and describes its layout. The Tool Manager supports input
sections similar to those for the Tree Visualizer (described in Appendix B), except that it
does not support variable length arrays or the monitor option.

Note: When the Tool Manager and DataMover are running on the same machine, or
when the DataMover machine is accessible via NFS, users might try to access files in the
DataMover cache directory via the Open New Data File dialog box with the Client File
toggle set. Such access corrupts the files. Always access DataMover cache files through
the Open New Data File dialog box with the Server File toggle set.

Choosing a Database Table

Use the Open New DBMS Table menu option to work with tables in a DBMS. Selecting
this option causes the dialog box in Figure 3-4 to be displayed.

30

Chapter 3: The Tool Manager

Figure 3-4 Choosing New Database Table Dialog Box

The name of the currently selected server appears to the left of the Change Server button.
If you click this button, the dialog box shown in Figure 3-5 appears. This lets you specify
a server name, login, and password.

Figure 3-5 Specifying Server Name, Login, and Password

Choosing a Data Source

31

Once you have logged in to a server, click the Change DBMS button to bring up a dialog
box that contains a popup menu listing DBMS names/vendors (see Figure 3-6). Select a
DBMS from the menu, and enter the login name and password to connect to the DBMS.
Note that the DBMS login and password are usually different from those required to
connect to the server.

Figure 3-6 Sample Dialog Box Listing Available DBMS Names/Vendors

If you have logged into is an Oracle DBMS, the dialog box appears as shown in
Figure 3-4, with a list of tables on the left. When you select a table, the columns for that
table are shown on the right.

If the DBMS is Informix or Sybase, the dialog box shown in Figure 3-7 appears, with a list
of databases for the DBMS. Select a database, and the list of tables in that database are
shown.

32

Chapter 3: The Tool Manager

Figure 3-7 Dialog Box After Selecting Informix or Sybase DBMS

Select a table, and click OK. That table is used in the Tool Manager.

Running an SQL Query

Use the Open New DBMS Query menu option to work with tables created via SQL
queries against a DBMS. Selecting this option causes the dialog box in Figure 3-8 to
appear.

Choosing a Data Source

33

Figure 3-8 SQL Query Dialog Box

Selecting a server and DBMS in this dialog box has the same effect as selecting those
items in the Open New DBMS Table dialog box.

The SQL query is shown in the panel at the lower left. You can enter the query there, or
load it from a disk file using the Load SQL from File button. The names of tables and
columns in the current DBMS are shown to help build queries. To have their names
transferred to the SQL query panel, double-click on them.

When you have entered the SQL query, click the Submit SQL Query button to send it to
the DBMS. If the query is successful, the columns in the resulting table are shown in the
list to the right of the query; otherwise, an error message appears.

34

Chapter 3: The Tool Manager

Transforming the Data

The Data Transformations panel lets you manipulate the tables with which you want to
work. After you have selected a table (via the File menu, described above), its column
headings appear in the Current Columns window of the Data Transformations panel
(Figure 3-9).

Figure 3-9 The Data Transformations Panel

The Data Transformation data manipulation options are:

• Remove Column—lets you delete one or more columns that are not relevant to the
current visualization or mining.

• Bin Columns—lets you take a range of values and assign each record to a group (for
example, with a range of ages, 0-18, 19-25, 26-35, and so on).

Transforming the Data

35

• Aggregate—lets you find aggregations (sum, min, max, and so on), group data into
new columns, or make arrays from a column indexed by other columns.

• Filter—lets you select a subset of the data based on an expression involving column
values.

• Change Types—lets you change a column’s name as well as its type.

• Add Column—lets you add a new column based on a mathematical expression.

• Apply Classifier—lets you use a previously created classifier to label new records, to
estimate probabilities for label values, to test the classifier on new data, or to backfit
data to an existing classifier (see Chapter 9, “MineSet Inducers and Classifiers,” for
details).

• Sample—lets you select a random subset of the data. This is useful for very large
data sets.

The Remove Column Button

Remove Column lets you delete columns by selecting the column name or names in the
Current Columns panel, then clicking this button. The items in the Current Columns panel
change to show the new table columns. To choose multiple contiguous columns for
simultaneous removal, drag the mouse over the columns. To choose multiple
non-contiguous columns for simultaneous removal, hold down the Ctrl key while
selecting the additional columns.

The Bin Column Button

Binning lets you sort the information from one or more columns into groups in a new
column or columns (for example, with a range of ages, 0-18, 19-25, 26-35, and so on).
Click Bin Columns to get a dialog box that lets you specify the binning options
(Figure 3-10).

36

Chapter 3: The Tool Manager

Figure 3-10 Bin Columns Dialog Box

This dialog box lets you

• choose the column that is to be divided into bins

• specify the name of the new column to contain values for the bins

• set bin thresholds, or specify a range with thresholds at regular intervals

Transforming the Data

37

To specify binning options for one or more columns, select the column name(s), choose
the appropriate options below, and click the Apply button at the bottom of the dialog box.

If you select only one column for binning, the name of the resulting binned column
appears in the New column name box, and you can type in a new name if you like. In the
example shown in Figure 3-10, mpg_bin is the name for the new column; in this case, it
provides a range of ages. If you select more than one column for binning, New column
name stays inactive.

Next to New column name is a check box labeled Delete original column. When chosen, this
option automatically deletes the original column after binning. Click the check box to
turn this function on or off.

In the middle of the Bin columns dialogue box are two tabs for choosing Automatic
Thresholds or User Specified Thresholds. Choose Automatic Thresholds if you’d like the
computer to suggest the bins or User Specified Thresholds if you’d like to specify the
thresholds yourself.

38

Chapter 3: The Tool Manager

Automatically Computed Thresholds

If you’ve chosen the Automatic Thresholds tab, the program can use machine learning to
suggest bins.

Figure 3-11 Binning With Automatically Computed Thresholds

Transforming the Data

39

The first choice under Automatic Thresholds Computation is between the Automatically
choose number of bins and the Group into: ___ bins buttons. Click Automatically choose
number of bins to let the computer decide the best number of bins. If you choose to specify
the number of bins, click Group into: ___ bins, and type the number of bins you want into
the field.

In the Use approach menu, you can choose between Automatic, Uniform Range, and
Uniform Weight. Each approach uses a different technique to identify thresholds that
separate a value range into the specified number of bins.

If you choose Automatic, you must also select a discrete label. The thresholds are chosen
so that the distributions of labels within different bins are as different as possible. This
approach continues to create thresholds that split the range until no additional interval
is considered significant.

The Min weight per bin text field lets you specify the minimum weight in any bin; this
prevents the creation of bins with less weight than the number specified. No interval is
split if the two resulting subintervals do not each contain at least the minimum weight
you specify. By default, each instance has unit weight. In this situation, specifying the
Min weight per bin is the same as specifying the minimum number of instances per bin.

Rather than specifing the minimum weight per bin, it is possible to have the algorithm
set that value automatically. The check box labeled Auto causes the algorithm to calculate
a value for the minimum weight per bin based on the total weight of the instances: the
more total weight, the higher the minimum weight per bin (the relationship is
logarithmic).

If you choose Uniform Range, the algorithm divides the value range into the specified
number of uniformly sized subintervals. The upper and lower bounds for the extreme
ranges include any values outside the ranges observed in the data. For example, if the
values for an attribute are in the range 3-8, and you specify four bins, the thresholds
identified are 4.25, 5.5 and 6.75, corresponding to the ranges:

• ≤ 4.25

• > 4.25 to 5.5

• > 5.5 to 6.75

• > 6.75

40

Chapter 3: The Tool Manager

If you choose Uniform Weight, the algorithm divides the value range into the specified
number of equal weight bins. Unlike Uniform Range, in which thresholds are identified
that separate the value range into intervals of equal size, Uniform Weight identifies
thresholds that group the instances into subsets of equal weight. By default, each
instance has unit weight. In this case, the Uniform Weight approach produces the specified
number of bins, each containing an approximately equal number of instances.

Both Uniform Range and Uniform Weight let you specify a trimming fraction, which
indicates the fraction of extreme values to be excluded from the value range prior to
generating bins. The default trimming fraction is 0.05. This excludes the 5% of the
instances with the most extreme values (2.5% with the lowest values in the range, and
2.5% with the highest values in the range). Trimming tends to reduce the influence of
outliers on the generation of thresholds.

All of the approaches let you decide whether you want to specify the number of bins or
let the algorithm select the number automatically. For the Uniform Range and Uniform
Weight approaches, the automatic selection of the bins is based on the number of distinct
values: the more distinct values, the more bins are chosen (the relationship is
logarithmic).

Typically, all of the available instances are used when identifying thresholds. When
binned attributes are later used to induce a classifier, the error estimates for that classifier
tend to be overly optimistic. This is because distributional information from the test set
was used to identify thresholds. Use training set only prevents the binning approaches
from looking at the records in the test set when identifying thresholds. This tends to give
a more realistic estimate of the classifiers' error rate. Use training set only requires the user
to specify the same Holdout ratio and Random seed (see “Error Options for Inducers” in
Chapter 9) that are used to create the holdout set for estimating classifier error.

The Use Weight menu lets you weight the instances by any numeric attribute. Changing
instance weight affects both Automatic and Uniform Weight, but has no affect on the
Uniform Range.

If you click Apply, the Tool Manager picks bin thresholds and displays them in the
Thresholds for selected column are text field. The text field at the bottom of the Bin Columns
window shows the progress of the binning algorithm and any errors that occur.

Transforming the Data

41

Specifying Thresholds

If you specify your own thresholds (as shown in Figure 3-10), you can choose between
Use custom thresholds or Use evenly spaced thresholds by clicking either button. When you
type in the thresholds, you must click Apply to make those thresholds effective for the
selected columns.

The Use custom thresholds text box lets you enter the range criteria. For example, you
could enter the numbers 18, 30, 50, 60. This results in the following ranges: 0-18, 19-30,
31-50, 51-60, 61+. Note that you enter only the digits and commas, not the ranges.

To specify equally spaced bins over a range of values, click the Equally Spaced Bins button.
This activates the three text fields below it. You can type the start of the binning range,
the end of the range, and the spacing of the bins, respectively, into these fields. If you are
binning a column that is a date, you can specify units of time for the bin spacing (using
the Date units popup menu under the text fields). This would permit you, for example, to
bin a time period into bins of three weeks. Dates entered into these fields must be typed
in the form “MM/DD/YY”. Possible time units are as follows:

• years

• quarters

• months

• days

• hours

• minutes

• seconds

The Use custom thresholds text box accepts dates either in double quotes (as shown below),
or without. If you enter dates without quotes, the quotes are added automatically.

"1/1/96", "2/1/96", "3/1/96", "4/1/96", "5/1/96", "6/1/96"

However, do not put quotes around dates used with Use evenly spaced thresholds.

Note: If you enter an invalid parameter, an error message is displayed after you click
Apply, informing you of the valid options and letting you either cancel the command or
return to the dialog box to make the appropriate changes.

42

Chapter 3: The Tool Manager

Aggregation

Before describing the features and effects of the Aggregate button (see page 45), this
section provides an introduction to the concept of arrays and distribution as used in the
aggregation feature.

Introduction to Arrays and Distribution

The Aggregate button lets you perform simple aggregations (for example, sum, min, max,
and so on), make arrays and distribute columns.

Table 3-1 illustrates some sample aggregations/calculations.

If you make Total $ Spent into an array indexed by the binned column Age_bin, the
resulting table, now with only two columns, appear as shown in Table 3-2

In this case, making an array reduces the number of columns by one, and also reduces
the number of rows by four. Arrays are useful for the Tree Visualizer tool; they are
necessary if you want to use sliders in Scatter Visualizer and Map Visualizer displays.

Table 3-1 Aggregate Example 1

State Age_bin Total $ Spent

CA 0-20 $50

CA 21-40 $454

CA 41-60 $693

NY 0-20 $35

NY 21-40 $541

NY 41-60 $628

Table 3-2 Aggregate Example 2

State Total $ Spent [Age_bin]

CA [$50, $454, $693]

NY [$35, $541, $628]

Transforming the Data

43

Distributing columns is similar, but different in several important ways. Instead of
producing a single new column holding many values, distributing produces one new
column for each value of the index. For example, if in the first table Total $ Spent were not
made an array, but instead distributed by Age_bin, Table 3-3 would be the result.

Thus, distributing increases the number of columns but decreases the number of rows.

If you have more than one binned column (for example, Age_bins and Sex_bin), you can
make a two-dimensional array (indexed by combinations of Age_bin and Sex_bin). You
also can distribute and make an array at the same time.

Table 3-4 has two binned columns: one for age, one for sex.

Table 3-3 Aggregate Example 3

State Total $_0-20 Total $_21-40 Total $_41-60

CA $50 $454 $693

NY $35 $541 $628

Table 3-4 Example of binning

State Age_bin Sex_bin Total $ Spent

CA 0-20 1 $20

CA 0-20 2 $30

CA 21-40 1 $220

CA 21-40 2 $234

CA 41-60 1 $401

CA 41-60 2 $292

44

Chapter 3: The Tool Manager

If you make Total $ Spent an array indexed by age, and remove Sex_bin, the results are
shown in Table 3-5.

If you do not remove Sex_bin, the results are shown in Table 3-6.

If you make an array by both Age_bin and Sex_bin, the results are shown in Table 3-7.

Finally, if you distribute by Sex_bin and index by Age_bin, the results are shown in
Table 3-8.

Table 3-5 Results When Making Total $ Spent an Array

State Total $ Spent [Age_bin]

CA [$50, $454, $693]

Table 3-6 Results When Specifying Sex_bin

State Sex_bin Total $ Spent [Age_bin]

CA 1 [$20, $220, $401]

CA 2 [$30, $234, $292]

Table 3-7 Results of Making an Array by Age_bin and Sex_bin

State Total $ Spent [Age_bin] [Sex_bin]

CA [$20, $220, $401, $30, $234, $292]

Table 3-8 Results of Distributing Sex_bin and Indexing by Age_bin

State Total $ Spent [Age_bin], Sex = 1 Total $ Spent [Age_bin], Sex = 2

CA [$20, $220, $401] [$30, $234, $292]

Transforming the Data

45

The examples above (with the exception of Table 3-5) had exactly one relevant value for
each array element, and the distribution merely rearranged existing data values. For the
example in Table 3-5, there were two data values for each array element, and these were
summed. MineSet provides several aggregation options for datasets containing more
than one value to be distributed into a given output array element. The most common
option is to add the values (as done in Table 3-5). This is useful when accumulating
expenditures into budgets, for example. You also can take the minimum, maximum, and
average of the total number of values, as well as count them.

When distributing values for a given dataset, it is possible that there are no values
appropriate for a particular bin. In this case, for MIN, MAX, AVG, and SUM
aggregations, the DataMover fills in a value of Null. For COUNT aggregations, the
DataMover fills in a value of 0.

The Aggregate Button

You can use the Aggregate button to create simple aggregations, make arrays, or
distribute columns. Clicking this button causes the Aggregate dialog box to appear
(Figure 3-12). It shows three lists, with the columns in the current table appearing in the
middle list. If you want to aggregate, distribute, or turn a column into an array, select the
name of the column, and click the left arrow button between the left and center lists.
Below are popup menus that let you specify indexes (if the result is to be an array) and a
distribution column (if the result is to be distributed). In addition, at the bottom of the
dialog box are five toggles that let you specify how different values are to be combined
when aggregated: either summed, averaged, the min or max value, or the count. When
you are aggregating number-valued columns, you can choose any combination of these
options. For other types, only count is permitted. If you choose more than one option,
you get more than one result. For example, selecting average and max gives you one
result with average values, and another one holding the max values.

46

Chapter 3: The Tool Manager

Figure 3-12 Aggregate Dialog Box

The three lists of column names are given below:

• Columns to aggregate.

• Group-By columns (the default); this keeps the columns unchanged throughout the
operation. For each set of records with the same combination of values in the Group
By columns, only one record is output in the resulting table, with values in the
aggregated columns summed, averaged, minned, maxed, or counted (depending
on the checkboxes at the bottom of the panel).

• Columns to remove, as can be seen with the Sex_bin column in Table 3-5

After you have finished with the additional aggregate criteria dialog box, the Current
Columns text box in the Table Processing window shows the new column names that
result from applying these criteria.

Transforming the Data

47

The Filter Button

This button lets you filter the data via a mathematical expression. The resulting table
includes only records for which the expression is true (or, if numerical, non-zero). When
you click Filter, the Filter dialog (Figure 3-13) appears.

Figure 3-13 Filter Dialog Box

This dialog box lets you select column names and operators on the left to build an
expression on the right.

The Change Types Button

This button lets you change the name of a column, as well as its type.

48

Chapter 3: The Tool Manager

Changing a Column Type

Some databases store numerical values as strings. Oracle stores all numbers (both
integers and real numbers) in a single format, which defaults to the data type double in
the Tool Manager. You can use the Change Types button to ensure that these values are
processed correctly. To change the type of one or more columns, click the Change Types
button. A new dialog box appears (see Figure 3-14). This dialog box contains a window
with a list of column headings and their respective types.

Figure 3-14 Change Types Dialog Box

First select a column heading in the window. Then click the New type button. This
produces a popup list of the possible types (invalid types are grayed out), as shown in
Figure 3-15.

Transforming the Data

49

Figure 3-15 Types Popup List

• int—represents a 32-bit signed integer.

• float—represents a single-precision floating-point number. The decimal point is
optional when representing a floating-point number.

• double—represents a double-precision floating-point number. The decimal point is
optional when representing a floating-point number.

• dataString—represents a string that is unlikely to appear multiple times. If it
appears multiple times, several copies are made. A dataString can be used to store
an address. Addresses are unlikely to be compared, and each record can have a
different address.

50

Chapter 3: The Tool Manager

• string—represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. However,
reading in strings can be slower than reading in dataStrings because it is necessary
to look for duplications. An example of string use would be for a division name that
appears once for each department in the division. If you are unsure whether to use a
string or a dataString, use a string.

• fixedString—represents a string that is stored internally as a fixed-length array of
characters. These are useful when all the elements in a data column are known to be
approximately the same length. They also are the most efficient way of encoding
very short strings, such as State abbreviations.

• date—represents the date type from the database.

• bin—represents a column created by a binning operation.

• unsupported—represents a database type not supported by MineSet (for example.,
images).

After selecting a new type, click Apply to have the change take effect.

Note that if you try to convert an inappropriate field (such as a name) to a number, the
resulting values are all zeroes.

Note: When the data source is an existing file, there are fewer possibilities available for
changing any given column.

Changing a Column Name

Select the original column, type a new name in the text field, and click Apply. Then click
Close.

To exit this dialog box, click Close.

Transforming the Data

51

The Add Column Button

You can use the Add Column button to create a new column whose values are computed
based on a mathematical expression. For example, you could add a new column whose
values are the ratio of values from two existing columns. Click Add Column to get a dialog
box that lets you specify the new column name and expression (Figure 3-16).

Figure 3-16 The Add Column Dialog Box

In the upper left of this dialog box is a field for entering the new column’s name. Below
this is a popup menu that lets you specify the column type (integer, string, floating point,
and so on).

52

Chapter 3: The Tool Manager

The right-hand side of the dialog contains a large text entry area where you can type in
a definition of the expression (for a complete description of the expression definition
language, see “The Configuration File” in Appendix B). As a shortcut to typing column
names and operators, scrolled lists in the lower left of the dialog display all columns in
the current table and all possible operators. To insert a column name or operator into the
expression, either double-click it in its scrolled list, or select it and click the arrow button
to the right of the scrolled list.

To check the expression you have created, click the Check Expression button. If there is an
error, a dialog box appears, indicating what the error is and where it occurred. When you
click OK, the expression is automatically checked, and the dialog box is not removed
unless the expression is correct.

The Add Column dialog box checks for type compatibility: if you have assigned a
numerical expression to a string column (or vice versa), a warning message appears, and
the type of the new column is automatically changed to be correct.

The Apply Classifier Button

The Apply Classifier button lets you use a previously created classifier to label new records
in the current table, to estimate probabilities for a label value, to test the performance of
the classifier on the current table, or to backfit the current table onto an existing classifier.
See Chapter 9, “MineSet Inducers and Classifiers,” for details.

The Sample Button

This button lets you select a random subset of the data. This is useful for data sets that
are too large to work with easily. When you click Sample, the Sampling dialog box
(Figure 3-17) appears.

Transforming the Data

53

Figure 3-17 Sampling Dialog Box

You can sample two ways: as a percentage of the current table, or by setting the
maximum number of records to put in the sample. Percentage sampling is approximate,
you can get slightly more or slightly fewer records than the exact percentage would
indicate. The random sample is based on a numeric seed that can be specified in the
sampling dialog. If no seed is specified, the number 1 is used as the seed. If you want a
different random sample, specify a different random seed.

The Table History Buttons

Table processing is a series of operations performed by using the buttons described
above. To allow you to see this series of steps, and go back if you made a mistake, there
are two Table History buttons at the bottom of the Table Processing panel (Figure 3-18).
When you click the left arrow button, the columns window shows the table as it
appeared at an earlier step. Clicking the right arrow button brings the table forward to
its current state.

Figure 3-18 Table History Buttons

54

Chapter 3: The Tool Manager

The Current view is Field

To the right of the history buttons is the information field Current view is, which counts
the changes you’ve made and indicates which step you are viewing. The two integers in
this field indicate which table view you’re looking at, out of the total number of table
views that exist. For example, if you’ve made two changes, you can view the original
table (1 of 3), the table after the first change (2 of 3), or the table after the second change (3
of 3).

The Prev and Next Buttons

As you go back and forth using the Table History buttons to view earlier versions of the
table, the Prev: and Next: fields (under the arrow buttons) help you keep track of where
you are in the history of the table. For any table you view, the Prev: field tells you what
the previous change was, and the Next: field tells you the next change.

The Edit Prev. Op Button

The Edit Prev. Op. button allows you to edit the operation shown in the Prev. field. (This
button is not active when Current view is: 1 of n, because that is the original table, with no
previous changes.) When you click the Edit Prev. Op. button, the dialog box for the
previous operation comes up, and you can make changes to that operation. For example,
if the previous operation was binning columns, when you click Edit Prev. Op., the Bin
Columns dialog box appears.

Note that by changing a previous operation, you could affect operations you set up
subsequent to the current one. For example, if you delete a column that you used in a
subsequent binning operation, that binning operation becomes invalid. The Edit History
button can help you avoid such problems.

The Edit History Button

When you click the Edit History button, the Edit History dialog box appears and shows
you the complete history of the Data Transformation table (Figure 3-19). Each version of
the table appears as a box containing a list of the columns, linked by a smaller box
(indicating the operation performed on the table) to the next version of it.

Transforming the Data

55

Figure 3-19 Edit History Dialog Box

As with Edit Prev. Op, changing one operation usually affects (sometimes invalidates)
subsequent operations in the history. The Edit History dialog warns you when changes
affect the history, shows you the new history, and lets you cancel the changes you've
made if the new history is not satisfactory.

Zoom Buttons

Under the window displaying this flow chart are the zoom buttons that let you view the
flow chart closer up or farther away (Figure 3-20). You can choose the zoom by using the
button indicating the percentage, or by clicking the arrow buttons to increase or decrease
the size. The increments of change are the same whether you use the percentage button
or the arrow buttons.

Figure 3-20 Zoom Buttons

56

Chapter 3: The Tool Manager

Overview Button

This button (Figure 3-21) creates, in a separate window, an overview of the entire history
chart that is synchronized with the Edit History dialog. The overview window shows
you which part of the history is currently visible, and lets you pan to other parts of the
history.

Figure 3-21 Overview Button

Vertical/Horizontal View Button

Next to the zoom buttons is a toggle button that lets you view the flow chart vertically or
horizontally (Figure 3-22). Clicking the button switches you back and forth between the
two points of view.

Figure 3-22 Vertical/Horizontal View Button

For Selected Operation

Under the indicator For Selected Operation are two rows of buttons that become active if
you click one of the operations in the flow chart. Once you select an operation, you can
alter it. The Edit Op button brings up the dialog box for the selected operation, so you can
make changes to it. The Delete Op button removes the operation from the table history,
and the elements that follow in the flow chart move over when it disappears. The Add
New Op. Before and Add New Op. After buttons let you insert a new operation into the table
history.

Transforming the Data

57

For Entire History

Under the For Entire History heading is the Change Data Source... button, which lets you
change the table on which the history operates. When you hold the button down, a menu
appears that lets you choose

• ...to DBMS table

• ...to DBMS query

• ...to Data File

Selecting one of these items causes a dialog box to appear that lets you select the new data
source.

Note: As with editing the history, changing the data source can invalidate history
operations.

Applying or Discarding the Changes

If you decide not to carry out these changes, click Discard Changes; the changes you made
are ignored, and you return to the Data Transformation panel. You might choose Discard
Changes if, for example, you delete a column that was used in a subsequent binning
operation, and the binning operation and linked table also disappear. If that consequence
was not what you wanted, Discard Changes allows you to undo your choice.

If the changes you’ve made in Edit History are what you want, click Apply History Changes
to implement the changes and return to the Data Transformation panel.

58

Chapter 3: The Tool Manager

Investigating the Data

The Data Destination panel (Figure 3-23) lets you direct your processed data to one of the
MineSet visualization or mining tools, or to a data file.

There are three tabs at the top of this panel:

• Viz Tools

• Mining Tools

• Data Files

These are the three possible destinations for your data. They are discussed in greater
detail in later chapters dealing with the Data Destination tools.

Using Visualization Tools

If you choose the Viz Tool tab, the visualization tool panel appears under Data
Destination.

Figure 3-23 Data Destination Panel

Investigating the Data

59

Viz Tool is a popup menu that lets you choose among Map Visualizer, Scatter Visualizer,
Splat Visualizer, Tree Visualizer, Record Viewer, and Statistics Visualizer to determine the type
of visual representation you want for your data.

The first four tools are described in their respective chapters.

The Statistics Visualizer computes and displays summary information for the current
dataset (max, min, standard deviation, distinct values, etc.). To use it, simply select the
Statistics Visualizer from the tool menu, click Invoke Tool, and, once the computations are
complete, a window pops up showing the summary information.

The Record Viewer lets you view the data in the current table in a row/column
spreadsheet-like tool. To use the Record Viewer select it from the tool menu, and click
Invoke Tool.

• Tool Options—lets you further specify options you want to set in the specified tool’s
configuration file.

• Clear Selected—lets you undo the mapping to a selected Visual Element.

• Clear All—clears all mappings.

• Invoke Tool—lets you start the tool you specified (via the top button) using the
configuration file named in the Saved as text field.

Each tool’s requirements are listed individually in the Visual Elements pane. This pane lets
you map a table column to a requirement. To do this,

1. Select a column by clicking its name in the Current Columns pane.

2. Select the requirement to which you want to map the column by clicking on that
requirement in the Visual Elements pane.

The Viz Tool panel now shows the Visual Element and the column to which it has been
mapped (see Figure 3-24).

60

Chapter 3: The Tool Manager

Figure 3-24 Columns Mapped to Requirements

You can clear the mapping at any time by selecting the requirement that has the mapping
you want to change, then clicking the Clear Selected button. You can clear all mappings
using the Clear All button.

If you want to specify other details to fine-tune your mappings or to change the settings
so that the data representations more clearly reflect your intentions, click the Tool Options
button. A dialog box specific to each MineSet tool appears, where you can manually
specify the options to use.

Note: For details on a specific tool’s options, see that tool’s chapter.

Using Mining Tools

The MineSet Classifiers are described in Chapter 9, “MineSet Inducers and Classifiers,”
Chapter 10, “Inducing and Visualizing the Decision Tree Classifier,” Chapter 11,
“Inducing and Visualizing the Option Tree Classifier,” and Chapter 12, “Inducing and
Visualizing the Evidence Classifier.” Column importance is described in Chapter 13.

Investigating the Data

61

Creating Associations for the Rule Visualizer

If you click the Mining Tools tab, then the Associations tab, the panel lets you take the data
file you created in Data Transformations and proceed to the Rule Visualizer. Each step of
the process is shown in the subpanels:

• Creating/Selecting a Binary File—creates a binary file from your data file

• Creating/Selecting a Rules File—runs the Assoc program on the binary file

• Running the Rule Visualizer—runs the Rule Visualizer

If you don’t want to go through this process manually, click the Run Rule Viz button, and
the computer will perform the process using defaults.

Figure 3-25 The Associations Tab

62

Chapter 3: The Tool Manager

Finding Important Columns

Under the Classify tab, Column Importance (Figure 3-26) determines how important
various columns are in discriminating the different values of the label column you
choose. You might, for example, want to find the best three columns for discriminating
the label good credit risk so you can choose them for the Scatter Visualizer. When you
select the label and click Go!, a popup window appears with the three columns that are
the best three discriminators. A measure called “purity” (a number from 0 to 100)
informs you how well the columns discriminate the different labels. Adding more
columns can only increase the purity.

Figure 3-26 The Column Importance Tab

There are two modes of column importance:

• Simple Mode

To invoke the simple mode, choose a discrete label from the popup menu, and
specify the number of columns you want to see.

Investigating the Data

63

• Advanced Mode

Advanced mode lets you control the choice of columns. To enter advanced mode,
click Advanced Mode in the Column Importance panel. A dialog box appears, as
shown in Figure 3-27. The dialog box contains two lists of column names: the left
list contains available attributes, and the right list contains attributes chosen as
important (by either the user or the column importance algorithm).

Figure 3-27 Advanced Mode of Column Importance

64

Chapter 3: The Tool Manager

Advanced mode can work two different ways: finding several new important
attributes, or ranking available attributes.

• Finding Several Important Attributes

To enter this sub-mode, click the first of the two radio buttons at the bottom of
the dialog (...find [number] additional important columns). If you click Go! with no
further changes, the effect is the same as if you were in Simple Mode, finding
the specified number of important columns and automatically moving them to
the right column. Near each column, the cumulative purity is given (that is, the
purity of all the columns up to and including the one on the line). More
attributes can only increase the purity.

Alternatively, by moving columns names from the left list to the right list, you
can pre-specify columns that you want included and let the system add more.
For example, to select the age column and let the system find three more
columns, click the age column name, then click the right arrow.

Clicking Go! lets you see the cumulative purity of each column, together with
the previous ones in the list. A purity of 100 means that using the given
columns, you can perfectly discriminate the different label values.

• Ranking Available Attributes

Advanced Mode also lets you compute the change in purity that each column
would add to all those that were already selected. For example, you might
choose age, and then ask the system to compute the incremental improvement
in purity that each column would yield.

To enter this sub-mode, click the second of the two radio buttons at the bottom
of the dialog (...compute improved purity for left columns, cumulative purity for right
columns.). This sub-mode permits fine control over the process. If two columns
are ranked very closely, you might prefer one over the other (for example,
cheaper to gather, more reliable, easier to understand).

Investigating the Data

65

Column Importance Notes

Note that with other columns, the importance of features varies from their ranking alone.
For example, while net-income might be a good column individually, it might not be as
important together with salary because they are likely to be highly correlated. The best
set of three columns is not necessarily composed of the columns that rank highest
individually. If two columns give the income in dollars and in another currency, they are
ranked equally alone; however, once one of them is chosen, the other adds no
discriminatory power to the set of best features.

Column selection is useful for finding the best three axes for the Scatter Visualizer, as well
as for finding a good discriminatory hierarchy for the Tree Visualizer.

All floating point values (double or float) are pre-discretized using the automatic
discretization. If a column has no value given to it in the left list, the algorithm did not
consider it, because it either had a single value (for example, when it is discretized into
one interval), or the number of records that it would separate are not statistically
significant.

66

Chapter 3: The Tool Manager

Using Data Files

The Tool Manager lets you save the manipulated table for future use in a data file on the
client or server. If you click the Data Files tab, the panel shown in Figure 3-28 appears.

Figure 3-28 The Data Files Panel

The two toggle buttons in this panel let you specify whether the file is to be saved on the
server or your client machine. The selected name for the client file appears next to the
Client checkbox. If you select Client, the Choose new client file button brings up a dialog for
you to choose the name for the client file. If you select Server, you can type the server
filename directly into the adjacent text field.

Note: Pathnames are not permitted for server files; all server files are stored in the
DataMover cache directory.

Session Files

67

Session Files

The Tool Manager can save a description of your work to a “session file” for future use.
A session file contains a description of the data source you selected, all the
transformations on the data, and the mining or visualization of the data. Each session file
can hold descriptions of only one data source and one data destination; thus, if you
change the destination visual tool or source data table, the session file loses its links to
any previous data source or destination.

Session files can be saved at any time through the entries in the File menu, described
below. The name of the current session appears in the window’s title bar. The Tool
Manager also keeps a parallel session file, called .latest.mineset, in your home directory. It
always has a record of your most recent actions in the Tool Manager. Whenever you start
the Tool Manager without a session file, it reads the contents of the .latest.mineset file to
return you to the state when you last ran MineSet.

Session files also can be used for running the Tool Manager in batch mode, by issuing this
command at the UNIX shell prompt:

mineset_batch [-s serverPassword -d databasePassword] sessionFile

The -s and -d options let you specify the password for logging into the server and
database respectively. If you do not specify these options, mineset_batch will ask you to
type in the passwords, thus these options are useful when running mineset_batch from a
shell script. To specify that there is no password for either the server or database, use -s
or -d followed by two double quotes, that is,

mineset_batch -s "" -d "" foo.mineset

If you specify one of the two passwords, you must specify both.

In batch mode, the Tool Manager does not bring up tools or windows; however, it creates
files for tools. For example, if the session file includes the Tree Visualizer as the data
destination, running the Tool Manager in batch mode produces files for running the Tree
Visualizer, but the Tool Manager does not invoke it.

68

Chapter 3: The Tool Manager

Pulldown Menus

At the top of the Tool Manager window (see Figure 3-1 on page 26) are four pulldown
menus:

• File

• Options

• Visual Tools

• Help

The following sections, describe each of these menus.

The File Menu

The File menu lets you choose what to do with your current session, which is one
complete session with a tool. This includes choosing the server, data source and table, all
the table manipulations, the mapping or classifying of the data, as well as opening or
saving a tool history, changing the working directory, and setting preferences.

Figure 3-29 File Menu

Pulldown Menus

69

The File menu provides five sets of functions:

• The first set is for selecting a data source.

– Open New DBMS Table—lets you select a single table from a DBMS.

– Open New DBMS Query—lets you make an SQL query against the DBMS.

– Open New Data File—lets you select a table from a data file on disk.

– Connect To Server—lets you open a connection to a MineSet server.

• The second set is for opening or saving .mineset files.

– Open Saved Session...—lets you open a .mineset file.

– Reopen Current Session —lets you reopen the current session file from the disk, in
case you do not want to save the current changes.

– Save Current Session—lets you save a currently open .mineset file.

– Save Current Session As...—lets you name (or rename) and save a currently open
history as a .mineset file.

• The third set is for changing the current directory.

– Change Current Directory—lets you specify the directory in which the Tool
Manager creates all data and visualization files.

• The fourth set is for setting preferences. Here you can specify whether to

– use ASCII or binary files,

– include an entry for NULL values when creating arrays

– automatically load the most recent session when starting up the Tool Manager

• The last option, Exit, lets you end the current session and exit the Tool Manager.

70

Chapter 3: The Tool Manager

The Visual Tools Menu

The Visual Tool menu lets you invoke any of the following visual tools directly:

• Evidence Visualizer

• Map Visualizer

• Rule Visualizer

• Scatter Visualizer

• Tree Visualizer

• Splat Visualizer

• Statistics Visualizer

• Record Viewer

If you have created a file that runs within one of these tools, and you want to go back to
it, click the tool. From within the tool, use File|Open to open the data file.

The Help Menu

The Help menu provides information about the elements of the Tool Manager and how
they work:

• Click for Help—Gives help information about a particular item if you press Shift-F1,
then click the item for which you want help.

• Overview—Gives an overview of the online help and how to use it.

• Index—Provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts—Provides the keyboard shortcuts for all of the Tree Visualizer’s
functions that have accelerator keys.

• Product Information—Indicates what version of the Tool Manager you are using.

• MineSet User’s Guide—Invokes the IRIS Insight viewer with the online version of
this manual.

The Tool Manager Options File

71

The Tool Manager Options File

The Tool Manager creates a .mineset file in your home directory. This is used to store the
preference indicating whether to restore the most recent session on startup, as well as the
default server name, login, and password. If you log in to the same server often, edit this
file and specify a server name and login as follows:

default_server_name: mineset
default_server_login: guest
default_server_password:

Whenever you try to log in to a server, these names appear as defaults.

Warning: Putting a password in a file is a great security risk. Do not place a
password in the Tool Manager options file unless you want other people to know that
password.

Statistics Visualizer

The Statistics Visualizer (StatViz) appears as yet another visualization tool in the Data
Destination panel. Unlike the other visualization tools, Statviz is not a separate
application; it is implemented as a separate window within the Tool Manager. In its
current form, Statviz cannot be executed independently of the Tool Manager.

Statviz presents a window which contains one small panel for each column listed in the
Current Columns panel. The Statviz main window has a default size and shows only a
restricted number of column panels. If the number of columns is large, scrollbars appear;
alternatively, you can stretch the StatViz window horizontally or vertically to view more
column panels .

The format of the column panel varies according to a) the column type and b) how many
distinct values exist for that column. Columns are generally divided into two types:
numeric and categorical.

72

Chapter 3: The Tool Manager

A numeric column has integer, float, or double values. The column panel shows the
minimum, maximum, mean, and standard deviation of these numeric values. If there are
N or fewer distinct values (where N is currently 50,000), then you also see the quartiles for
the data: the 25th percentile, 50th percentile (the median), and 75% percentile. These
ranges are shown as a vertical bar divided into different shades of green. If there are more
than N distinct values in the column, the simple min-max-mean-stddev statistics are
shown as a gray vertical bar.

A categorical (or nominal) column has string values. The categorical column panel shows
up to M distinct values, as well as a histogram of the count of the number of instances of
this distinct value (where M is currently 100). The default ordering of the categorical
rows is by decreasing count, but you can use the View pulldown menu to select an
alternative alphabetic sorting. If there are M or fewer distinct categories, then the column
panel also contains the count of distinct values.

The StatViz File Menu

The StatViz File pulldown menu (Figure 3-30) contains six options.

Figure 3-30 StatViz File Pulldown Menu

Statistics Visualizer

73

Open Summary ... lets you open a Statviz summary file that was previously saved using
the Save As Summary option.

Save Summary As ... lets you save the current visualization as a Statviz data file, for
viewing at a later time.

Save Image As ... lets you save the current visualization as an image file.

Print Image ... lets you output the current visualization to the printer as an image.

Close causes the Statviz window to disappear.

The StatViz View Menu

The StatViz File pulldown menu (Figure 3-31) contains two options.

Figure 3-31 StatViz View Pulldown Menu

Sort Nominals By Count specifies that the nominal (categorical) columns show the
histogram of values that is ordered by decreasing per-value counts.

Sort Nominals By Name specifies that those same columns be ordered by the relative
alphabetical order of each data value name.

74

Chapter 3: The Tool Manager

The Record Viewer

The Record Viewer lets you view MineSet data files in a format similar to spreadsheets.
There are five ways to start the Record Viewer.

• Use the Tool Manager to start the Record Viewer. This invokes the Record Viewer on
the data currently configured in the Tool Manager.

• Double-click on the Record Viewer icon, which is in the MineSet page of the icon
catalog. Since no .schema file is specified, you must select one by using File|Open.

• Double-click on any MineSet .schema file. This launches the Record Viewer on that
.schema file.

• Drag a .schema file onto the Record Viewer icon.

• Start the Record Viewer from the UNIX shell command line by entering this
command at the prompt:

recordview [file .schema]

where file .schema is optional and specifies the name of the .schema file to use. If
you do not specify a .schema file, you must use File|Open to specify one.

The Record Viewer shows the data specified by the .schema file in spreadsheet format (see
Figure 3-32).

The Record Viewer

75

Figure 3-32 Sample Record Viewer Screen

If a column is not wide enough to see a specific value, click on it to display that value at
the top of the Record Viewer. You also can change the width of columns by dragging the
separators between the columns.

To read a new .schema file into the Record Viewer, select File|Open. To close the Record
Viewer, select File|Close.

Note that some of the visual tools also bring up record viewers to display the current
selections. These record viewers are built into the visual tools; while their behavior is the
same as the Record Viewer discussed above, they do not allow opening other .schema
files.

76

Chapter 3: The Tool Manager

Color Options for the MineSet Visualizers

Many of the tool option dialogs have options for choosing colors. MineSet has a color list
chooser that uses color swatches. This section describes how to choose, apply, and
change color options for the MineSet Visualizers.

Choosing Colors

If only one color is to be chosen (for example a grid color), a single color swatch appears
(Figure 3-33).

Figure 3-33 Configuration Option With a Single Color Swatch

Clicking the swatch brings up a Color Browser that lets you change the color of that
swatch (Figure 3-34). The Color Browser is described in more detail in the “Using the
Color Browser” section, shown in Figure 3-34.

Figure 3-34 Color Browser

Color Options for the MineSet Visualizers

77

If a list of color swatches is to be chosen, the list of swatches appears (these can be empty
initially), as shown in Figure 3-35.

Figure 3-35 Multiple Colors Swatches

To edit the color, click a swatch with the left mouse button. This also selects the swatch
for making changes to the colors with the buttons. If you click on the swatch with the
middle mouse button, the swatch is selected, but the color chooser does not appear.

Next to the list of swatches are four buttons. First is the Add button, labeled with a plus
sign (+), which adds a new color at the end of the list. A swatch is added, and the color
chooser appears, where you can select the color of that swatch. The Add button is
disabled if the maximum number of colors is already in the list.

Next to the Add button is a Delete button, labeled with a minus sign (-). This button
deletes the selected color. It is disabled if no swatch is selected, or if the list already has
the minimum number of colors.

Next to the Delete button are two buttons to shift the selected color right and left. These
buttons are disabled if no swatch is selected, or if the swatch is already at the end of the
list.

If there are more colors in the list than room to display them, scroll arrows are added at
each end of the list (Figure 3-36).

Figure 3-36 Scroll Arrows on Color Browser

If the hardware runs out of colors, the color swatches are replaced with text labels
showing the color in X notation (Figure 3-37).

Figure 3-37 Color Browser Out of Colors

78

Chapter 3: The Tool Manager

Using the Color Browser

The Color Browser (Figure 3-34) appears when you click a color swatch or the add button
in the Colors panel of the visualizer’s Configuration Options panel.

To select a color using the Color Browser:

1. Move your mouse cursor on top of the small circle in the colored hexagon.

2. Press the left mouse button, and move your mouse around the hexagon. The color
beneath the small circle appears in the rectangle next to the Current Color label. This
rectangle acts as your color palette while you choose a color.

3. Release the mouse button when the small circle is on top of a color you want. The
selected swatch immediately takes on the chosen color.

You can edit several colors without dismissing the Color Browser; clicking any color
in the options panel lets you edit that color in the already posted Color Browser.

4. Click the OK button when you decide on a color. The Color Browser window closes.

79

Chapter 4

4. Using the Tree Visualizer

This chapter discusses the features and capabilities of the Tree Visualizer. It provides an
overview of this database visualization tool, discusses ways of invoking it, then explains
the Tree Visualizer’s functionality when working with the following elements.

• main window

• external controls

• pulldown menus

• overview window

Finally, this chapter lists and describes the sample files provided for this tool.

Overview of Tree Visualizer

The Tree Visualizer is a graphical interface that displays data as a three-dimensional
“landscape.” It presents your data as clustered, hierarchical blocks (nodes) and bars
through which you can dynamically navigate, viewing part, or all, of the dataset.

As shown in Figure 4-1, the Tree Visualizer displays quantitative and relational
characteristics of your data by showing them as hierarchically connected nodes. Each
node contains bars whose height and color correspond to aggregations of data values.
The lines connecting nodes show the relationship of one set of data to its subsets.

80

Chapter 4: Using the Tree Visualizer

Figure 4-1 Example Display in the Tree Visualizer’s Main Window

Values in subgroups can be summed and displayed automatically in the next higher
level. The base under the bars can provide information about the aggregate value of all
the bars. Bars representing negative values are shown below the top of the base. You can
see negative value bars more clearly by disabling the base height (see “The Display
Menu” on page 117, or the “Base Height Statements” section in Appendix B, “Creating
Data and Configuration Files for the Tree Visualizer”).

File Requirements

81

File Requirements

The Tree Visualizer requires the following files:

• A data file consisting of rows of tab-separated fields. This file is easily created using
the Tool Manager (see Chapter 3). If you are generating this file yourself, see
Appendix B, “Creating Data and Configuration Files for the Tree Visualizer” for the
required file format.

Data files are generated by extracting data from a source (such as an Oracle,
INFORMIX, or Sybase database) and formatting it specifically for use by the Tree
Visualizer. Data files have user-defined extensions (the sample files provided with
the Tree Visualizer have a .data extension).

• A configuration file describing the format of the input data and how these are
converted to a hierarchy. This file also is easily created using the Tools Manager (see
Chapter 3). You also can use an editor (such as jot, vi, or Emacs) to produce this file
(see Appendix B, “Creating Data and Configuration Files for the Tree Visualizer”).

Configuration files must have a .treeviz extension. When starting the Tree Visualizer,
or when opening a file, specify the configuration file, not the data file.

Starting the Tree Visualizer

There are five ways to start the Tree Visualizer:

• Use the Tool Manager to configure and start the Tree Visualizer. (See Chapter 3 first
for details on most of the Tool Manager’s functionality, which is common to all
MineSet tools; see below for details about using the Tool Manager in conjunction
with the Tree Visualizer.)

• Double-click the Tree Visualizer icon, which is in the MineSet page of the icon
catalog. The icon is labeled treeviz. Since no configuration file is specified, the
start-up screen requires you to select one by using File|Open.

Starting the Tree Visualizer without specifying a configuration file causes the main
window to show the copyright notice for this tool. Only the File and Help pulldown
menus can be used. For the main window to be fully functional, open a
configuration file by selecting File|Open (Figure 4-2).

82

Chapter 4: Using the Tree Visualizer

Figure 4-2 Tree Visualizer’s Startup Screen, File Pulldown Menu Selected

Starting the Tree Visualizer

83

• If you know what configuration file you want to use, double-click the icon for that
file. This starts the Tree Visualizer and automatically loads the file you specified.
This only works if the filename ends in .treeviz (which is always the case for
configuration files created for the Tree Visualizer via the Tool Manager).

• Drag the configuration file icon onto the Tree Visualizer icon. This starts the Tree
Visualizer and automatically loads the file you specified. This works even if the
filename does not end in .treeviz.

• Start the Tree Visualizer from the UNIX shell command line by entering this
command at the prompt:

treeviz [configFile]

where configFile is optional and specifies the name of the configuration file to use. If
you don’t specify a configuration file, you must use File|Open to specify one (see
Figure 4-2).

Options for invoking the Tree Visualizer

There are a two options that affect how this tool is invoked:

• -warnexecute indicates that if you attempt to execute a command specified in an
execute statement, a warning is displayed and you are given the option to execute
the command or not. This is intended for an insecure environment, such as files
obtained from the Web, and is used automatically when commands are executed via
mtr files.

You can enable this option permanently by adding the line

*minesetWarnExecute:TRUE

to the user’s .Xdefaults file, or by setting the environment variable

MINESET_WARN_EXECUTE

• -quiet eliminates the dialogs that popup to indicate progress. You can enable this
option permanently by adding the line

*minesetQuiet:TRUE

to the user’s .Xdefaults file.

84

Chapter 4: Using the Tree Visualizer

Configuring the Tree Visualizer Using the Tool Manager

This section describes how the Tree Visualizer can be configured using the Tool Manager.
Although the Tool Manager greatly simplifies the task of configuring the Tree Visualizer,
you can construct a configuration file manually for this tool using an editor (see
Appendix B, “Creating Data and Configuration Files for the Tree Visualizer”).

For the Tree Visualizer, the Tool Manager does not support the following:

• Non-aggregated hierarchies where the data is displayed directly without
aggregating it.

• Real-time monitoring.

• A number of very rarely used options (skip missing, overview, shrinkage, root label,
speed, climb speed, leaf leaf margin, root leaf margin, leaf edge margin, initial
position, initial angle, bar label size, base label size, and lod). See Appendix B.

• Variable-length arrays.

• Expressions computed after creating the hierarchy. For example, if you are
computing a percentage, the percentage must be computed after the hierarchy
aggregation takes place, since it is not possible to aggregate the percentages.

Note that the steps required to connect to a data source are described in Chapter 3.

Selecting the Tree Visualizer Tool

Select the Viz Tools tab in the Data Destination panel of the Tool Manager’s main screen
(Figure 4-3). From the popup list of tools, select Tree Visualizer. The mapping
requirements for the Tree Visualizer are displayed in the window on the right side of this
panel. Items in the Visual Elements: list that are preceded by an asterisk are optional.

Configuring the Tree Visualizer Using the Tool Manager

85

Figure 4-3 Data Destination Panel of Tool Manager With Tree Visualizer Selected

Key - Bars lets you define what the bars shown in the Tree Visualizer main window
represent. For example, in a table representing the budget of the 50 United States, the
keys could be state names. If the first key is associated with Alabama, the first bar
represents the values for Alabama.

Height - Bar lets you specify what the bar heights represent. Typically, the higher the bar,
the greater the value represented.

Sort By lets you specify a column, the values of which are used to sort the layout of the
nodes. The sort order defaults to ascending from left to right.

Hierarchy Root Level lets you specify how the table from your data source is converted into
a hierarchy. The Visual Elements list defaults to six hierarchical levels. If you specify a
sixth hierarchy level, the Tree Visualizer automatically adds a seventh. With every extra
level you specify, the Tree Visualizer adds another one. You can specify as many
hierarchy levels as necessary.

86

Chapter 4: Using the Tree Visualizer

Height - Disk—lets you specify what the heights represent for optional disks placed at the
same location as the bar. If no mapping is specified, no disks are displayed.

Height - Base—lets you specify what the base heights represent. If no mapping is
specified, the bar height mapping is used.

Color - Bar—lets you specify what the bar colors represent. The specific colors must be
assigned via the Tool Manager’s Tool Options panel (see “Choosing Colors” and “Using
the Color Browser” in Chapter 3).

Color - Disk—lets you specify what the disk colors represent. This option has an effect
only if the disk height is specified (see “Choosing Colors” and “Using the Color Browser”
in Chapter 3).

Color - Base—lets you specify what the base colors represent. If no mapping is specified,
the bar color mapping is used (see “Choosing Colors” and “Using the Color Browser” in
Chapter 3).

Undoing Mappings

To undo any mapping, select that mapping in the Requirements: window, then click the
Clear Selected button. To undo all mappings, click the Clear All button.

Specifying Tool Options

Clicking the Tool Options button causes a new dialog box to be displayed (Figure 4-4).
This lets you change some of the Tree Visualizer options from their default values.

Configuring the Tree Visualizer Using the Tool Manager

87

Figure 4-4 Tree Visualizer’s Configuration Options Dialog Box

The top of the dialog box has three columns: Bars, Node Bases, and Disks.

88

Chapter 4: Using the Tree Visualizer

Normalize Heights

This option lets you normalize heights across each level of the hierarchy (or across all
levels) of bars, node bases, and disks. Normalizing the heights determines the maximum
value of the height variable; it normalizes all values relative to that height. Thus, if the
maximum value is 30.0, and the maximum bar height was set to 1.0 (in arbitrary units),
a value of 15.0 would be mapped to a value of 0.5.

Normalizing across each level independently normalizes each level of the hierarchy. This
option is most useful if data has been summed up the hierarchy, and prevents the top
level of the hierarchy from dwarfing items at the lowest level. Normalizing across all
levels normalizes everything together, regardless of the level in the hierarchy. If neither
box is checked for bars, no normalization takes place.

Node Bases are normalized independently of Bars. If no boxes are checked, the same
normalization method used for bars is used for node bases, although the values are
normalized independently.

If disks are present and normalize with bars is checked, the disks are normalized in
conjunction with the bars: a disk and a bar representing the same value have the same
height. If one of the other normalize boxes is checked in the Disks column, disks are
normalized independently of the bars: the highest disk and the tallest bar have the same
height, regardless of the actual values represented by them.

Max/Scale Heights

This option lets you specify the height of the tallest bars and node bases. The default is
1.0 (in arbitrary units). If after looking at the view, you see that the heights are too low or
too high, use this field to adjust them. For example, entering 2 in the field causes all bars
to be doubled in height; entering .5 makes all bars half as big.

If normalization was specified, this value represents the height of the tallest bar or base.
If normalization was not specified, all values are scaled by this amount. The latter can be
useful when comparing views of two different datasets.

Configuring the Tree Visualizer Using the Tool Manager

89

Filter out % shortest

This option lets you filter out nodes containing only short bars. First, the tallest bar in the
scene is calculated (if heights are normalized by level, then the tallest bar in each level).
Then only those nodes that contain at least one bar that is the appropriate percentage of
the tallest bar are shown. For example, if you enter 5% in this field, then only those nodes
containing at least one bar that is at least 5% of the height of the tallest bar are shown.
(Also shown are ancestors of such bars). This option is intended as a coarse way to filter
out small, uninteresting nodes. It is not intended as an exact mechanism of identifying
specific nodes of a certain value. Use of this option can accelerate the rendering of slow,
complex scenes, or reduce clutter resulting from many bars near zero height.

Although small nodes are filtered out, they are nonetheless counted in any cumulation
up the hierarchy.

Height Aggregation

By default, the height of the bars of the parent node is the sum of the height of all the bars
of the children; however, these heights can be average, max, min, count, or any of the
values that appear. This aggregation can be used for the values of the bar heights, base
heights, and disk heights.

Colors

This set of options lets you

• specify the list of colors to use

• specify the kind of mapping

• map colors to bars, node bases, and disks

To use these Colors options, you must have mapped a column to the *Color - Bar,
*Color - Disk, or *Color - Base requirements of the Data Destination panel. See
“Choosing Colors” and “Using the Color Browser” in Chapter 3 for a more detailed
explanation of how to choose and change colors.

90

Chapter 4: Using the Tree Visualizer

Color list to use lets you specify the color list using the + button next to the color list label.
This brings up a color editor that lets you specify a color to be added to the list.

Kind of mapping lets you specify whether the color change that is shown in the graphic
display is Continuous or Discrete. If you choose Continuous, the color values (of the bars,
node bases, or disks) shift gradually between the colors entered in the Color list to use
field as a function of the values that are mapped to those colors in the Color mapping field.
If you choose Discrete, the colors change only at the specified boundaries.

Color mapping lets you specify values to which the colors are mapped.

Example 4-1

If you

• used the Color Browser to apply red and green to bars

• selected Discrete for the Kind of mapping

• entered the values 0 100

then the display shows all bars (or node bases or disks) with values of less than 100 in
red, and all those with values greater than or equal to 100 in green.

Example 4-2

If you

• used the Color Browser to apply red and green to bars

• selected Continuous for the Kind of mapping

• entered the values 0 100

then the display shows all bars (or node bases or disks) with values less than or equal to
0 as completely red, those as greater than or equal to 100 as completely green, and those
between 0 and 100 as shadings from red to green.

Configuring the Tree Visualizer Using the Tool Manager

91

Color Aggregation

By default, the values of the colors of the bars of the parent node are the sum of the values
of all the bars of the children; however, these colors can be average, max, min, or any of
the values that appear. This aggregation can be used for the values of the bar colors, base
node colors, and disk colors.

Color by Key

This option lets you automatically color the bars by their key value. This option is
ignored if another coloring was specified. If you specify no color list, or specify
insufficient colors, additional colors are chosen at random. If extra colors are specified,
they are ignored.

Make Fixed

By default, this option places all bars across one row. This option allows changing the
number of rows or columns. If neither rows nor columns are selected, or the number is
set to 0, then neither rows nor columns are fixed, and the closest approximation to a
square is displayed.

Message

This option lets you type in any message you want. The message statement specifies the
message displayed when the pointer is moved over an object or when an object is
selected. By default, the same message is used for the base as for the bars. If no message
is specified, a default message containing the names and values of all the columns is
used.

The format of the message must match the type of data being used:

• Strings must use %s.

• Ints must use integer formats (like %d).

• Floats and doubles must used floating-point formats (like %f).

For a detailed description of the message field, see “Message Statements” in Appendix B.

92

Chapter 4: Using the Tree Visualizer

Execute and Base Execute

These options let you type in a UNIX command that is executed when double-clicking
on a bar or base. If only the Execute field is filled in, it applies to both bars and bases. If
both are filled in, Execute applies to bars, and Base Execute applies to bases. The format
is similar to the message statement. If no execute statement appears, double-clicking has
no effect.

For a detailed description of the Execute field, see “The Execute Statement” in Appendix
B.

Sky Color

You can specify either one or two colors. If only one color is specified, the sky is solid. If
two colors are specified, the sky is shaded between the colors. When specifying two
colors, the first color is for the top of the sky, the second for the bottom.

Ground Color

You can specify either one or two colors. If only one color is specified, the ground is solid.
If two colors are specified, the ground is shaded between the colors. For the ground, the
first color is for the far horizon, the second is for the near ground.

Base Label Color

You can specify the color of the labels on the front of the bases.

Bar Label Color

You can specify the color of the labels on the front of the bars.

Line Color

You can specify the color of the lines connecting the bases.

Configuring the Tree Visualizer Using the Tool Manager

93

Sort Order

If you select the Sort by Key checkbox, the nodes in the display are in sorted order. The
menu next to the checkbox lets you specify whether to sort in ascending or descending
order.

Resetting the Tool Options

If, after you have made changes to the Tool Options dialog box, you want to reset the
values of all options to their default values, click the Reset Options button.

Saving the New Tool Options

Once you have finished making changes to the Tool Options dialog box, click OK to
return to the Tool Manager’s main screen.

Saving Tree Visualizer Settings

The Tool Manager stores information for the Tree Visualizer in several files, all sharing
the same prefix:

• <prefix>.treeviz.data contains data.

• <prefix>.treeviz.schema describes the data file.

• <prefix>.treeviz contains information needed by the Tree Visualizer.

• <prefix>.mineset contains all the information needed to create the other files.

To specify a prefix, use the Save Current Session As ... menu option in the File menu of the
Tool Manager’s main window. If you do not specify a prefix, it is based on the data
source.

When you use the Invoke Tool button, the .data, .schema, and .treeviz files are updated, if
necessary.

Invoking the Tree Visualizer

To see the Tree Visualizer graphically represent your data, click the Invoke Tool button at
the bottom of the Data Destination panel.

94

Chapter 4: Using the Tree Visualizer

Working in the Tree Visualizer’s Main Window

A file’s hierarchy is visible only after a valid configuration file is specified. For example,
specifying store.treeviz results in Figure 4-5.

Figure 4-5 Tree Visualizer’s Initial View When Specifying store.treeviz

Working in the Tree Visualizer’s Main Window

95

The root node of the hierarchy is at the front of the scene, near the bottom of the Tree
Visualizer’s main window. In back of the root node are its descendents; each one consists
of a base with bars on it. You can change what the heights and colors of the bars represent
via the Tool Manager or by manually changing the .treeviz configuration file; usually, the
base represents the aggregate of all the bars. Bases are connected with lines representing
the connection of the nodes to their descendents.

Highlighting an Object or Node

To highlight an object, move the mouse over that object (either a base or a bar). This
causes information about that object to appear over the top left of the view area, under
the Pointer is over: label (Figure 4-6). To highlight a node and obtain information about
that node, place the pointer over a line leading to that node. This information appears in
the same place as that for an object.

Figure 4-6 A Highlighted Object and the Information It Represents

96

Chapter 4: Using the Tree Visualizer

Selecting an Object

To select an object and zoom to it, left-click the mouse on that object. Hold the Ctrl key
down while clicking to select the object without zooming to it. At the top of the window,
under the label “Selection:”, you see information about a selected object. The information
is the same as that shown when highlighting an object. As long as the object is selected,
the information is displayed. This lets you compare information about two objects by
selecting one, then highlighting the other. Using the mouse, you can cut and paste
selection information into other applications, such as reports or databases.

If you hold the Shift key while left-clicking on an object, the selection of that object is
toggled. If the object is currently not selected, it then is selected; conversely, if it is
currently selected, it then is deselected. Using this technique, it is possible to select
multiple objects simultaneously. While the information under the "Selection:" label only
shows the information on the last object selected, it is possible to see the values for all
selections by using Selections|Show Values or by drilling through to the original data
behind the selections (see “The Selections Menu” on page 118).

If an execute statement was specified via Tool Manager or the configuration file, then
double clicking on an object executes the appropriate command. If the -warnexecute

option was specified when invoking the Tree Visualizer, a warning is given first.

Spotlighting an Object

When you select an object, a white spotlight appears on it (Figure 4-7). A yellow spotlight
appears when you are searching (see “The Search Panel” on page 106). Spotlights are
visible even if the selected object is a descendent node in the far background.

The edges of spotlights are surrogates for an object: when you move the pointer over the
edge of a spotlight, the associated object is highlighted, and information about that object
appears above the top left of the view. Left-click the edge of a spotlight to select the
associated object and (if the Ctrl key is not held down) to zoom to it. The spotlight is
active only on the solid lines along the edges, not the translucent section in the center.
This lets you select objects behind the spotlight.

Working in the Tree Visualizer’s Main Window

97

Figure 4-7 Example of a Selected (Spotlighted) Object

Using the Right Mouse Button

When the cursor is in the main window, clicking the right mouse button (or, if the mouse
has been reconfigured, the third button) brings up a menu that lets you select the children
of a node. If you click on a node with children, it provides you with a list of the children.
This list is displayed as long as you hold the mouse button down. If you do not click on
a node, but one is selected, it provides you with a list of children of the selected node. If
nothing is selected, or if the selected node has no children, no menu is displayed.

98

Chapter 4: Using the Tree Visualizer

Navigating With the Middle Mouse Button

To navigate over the scene in the main window, use the middle mouse button. You also
can use external controls to perform all middle mouse button functions (see the “External
Controls” on page 99).

To move through the main window, click the middle mouse button. A small square
appears (see Figure 4-8). Move the cursor out of this square while pressing the mouse to
move your point of reference dynamically through the 3D landscape. The farther the
cursor is from the square, the faster your viewpoint moves. To move the viewpoint
forward, move the mouse up. To move the viewpoint back, move the mouse down.
Moving the mouse left and right causes the viewpoint to shift accordingly. You can move
in any direction as long as a part of your data is visible.

Figure 4-8 Example of the Square as Navigational Base

To move the viewpoint up and down, hold the Shift key down when pressing the middle
mouse button. To move the viewpoint up, move the mouse up. To move the viewpoint
down, move the mouse down. You cannot move below ground level.

To combine horizontal and vertical motion (that is, to move the viewpoint back and forth,
as well as up and down), hold the Alt key down when pressing the middle mouse button.
Note that while moving forward, the viewpoint also moves down, based on the current
tilt. Similarly, while moving backward, the viewpoint moves up, based on the tilt.

Note: You cannot turn from side to side. Tilting the viewpoint requires using external
controls.

External Controls

99

External Controls

Several external controls surround the graphics window. These consist of buttons and
thumbwheels.

Buttons

At the top right of the image area are eleven buttons as shown in Figure 4-9.

Figure 4-9 Tree Visualizer’s External Button Controls

• Home takes you to a designated location. Initially, this location is the first viewpoint
shown after invoking the Tree Visualizer and specifying a configuration file. If you
have been working with the Tree Visualizer and have clicked the Set Home button,
then clicking Home returns you to the viewpoint that was current when you last
clicked Set Home.

• Set Home makes your current location the Home location. Clicking the Home button
returns you to the last location where you clicked Set Home.

• View All lets you view the whole hierarchy, keeping the tilt of the camera. To get an
overhead view of the scene, tilt the camera to point straight down, then click the
View All button. To tilt the camera, see the description of the Tilt thumbwheel (see
“Thumbwheels” on page 101).

Home

Set Home

View All

Go Back

Go Forward

Parent

Move Left

Move Right

First Child

Last Child

Choose Child

100

Chapter 4: Using the Tree Visualizer

• Go Back lets you return to the previous location. If you have just started the Tree
Visualizer and have not moved from the home view, this button is grayed out.

• Go Forward lets you proceed to the location from which you clicked the Go Back
button. If you have not clicked the Go Back button, the Go Forward button is grayed
out.

• Parent is active only when you have an object selected. If a bar is selected, clicking
this button selects the base containing the bar. If a base is selected, clicking this
button moves up the hierarchy to the parent node. Once the root node has been
reached (highest level of the hierarchy), the Parent button is grayed out. Note that
when using Parent, the selected node is changed to the parent of the previously
selected one.

• Move Left lets you select the next sibling to the left. If a bar is selected, the bar to the
left of it is selected. If a base is selected, then, if the parent has another child to the
left, that is selected. This button is greyed out if nothing is selected, or if the current
selection has no sibling to the left.

• Move Right lets you select he next sibling to the right. If a bar is selected, the bar to
the right of it is selected. If a base is selected, then, if the parent has another child to
the right, that is selected. This button is greyed out if nothing is selected, or if the
current selection has no sibling to the right.

• First Child lets you select the first child of the current node. This button is greyed out
if there is no selection, if a bar is selected, or if the current selection has no children.

• Last Child lets you select the last child of the current node. This button is greyed out
if there is no selection, if a bar is selected, or if the current selection has no children.

• Choose Child produces a popup menu that lists all the children of the current node.
This button is greyed out if there is no selection, if a bar is selected, or if the current
selection has no children.

You also can perform these functions using the Go menu (see “The Go Menu” on
page 119.)

External Controls

101

Thumbwheels

Four thumbwheels appear around the lower part of the graphics window border (see
Figure 4-10). They let you dynamically move the viewpoint.

Figure 4-10 Tree Visualizer’s Thumbwheels

• The vertical H (height) thumbwheel, on the upper left, moves the camera up and
down. You cannot move the viewpoint below ground level.

• The vertical Tilt thumbwheel, at the bottom left, tilts the camera. You can tilt the
viewpoint to any position from straight ahead and straight down. You cannot tilt
the viewpoint to look up.

• The horizontal <--> (pan) thumbwheel, at the bottom left, moves the viewpoint
from left to right and back. You cannot rotate the viewpoint.

• The vertical Dolly thumbwheel, on the right, moves the viewpoint forward and
backward.

Thumbwheels

102

Chapter 4: Using the Tree Visualizer

Height Slider

A slider to the top left of the main window (Figure 4-11) lets you rescale all objects in the
window. Pushing the slider up to a value of 2.0 doubles the size of all objects in the main
window. Pulling the slider back down to a value of 1.0 returns the objects in the window
to their original heights.

Figure 4-11 Tree Visualizer’s Height Slider

Pulldown Menus

You also can access all of the Tree Visualizer’s functions via five pulldown menus. These
are labeled File, Show, Display, Go, and Help.

If you start the Tree Visualizer without specifying a configuration file, only the File and
the Help menus are available. The Show, Display, and Go menus are available after a
graph is loaded.

Pulldown Menus

103

The File Menu

The File menu (Figure 4-12) contains nine options.

Figure 4-12 Tree Visualizer’s File Pulldown Menu With Options

• Open loads and opens a configuration file, displaying it in the main window.
Previously displayed data is discarded. Use Open to view a new dataset, or to view
the same dataset after changing its configuration.

• Open Other Window opens a configuration file, but displays its results in a different
window. The current dataset remains open.

• Reopen reopens the currently opened file. This can be used after the configuration or
data file has been updated.

• Copy Other Window opens a new window that displays the same view of the current
dataset. You can interact with these windows independently.

• Save As saves the state of the current Tree Visualizer window into an image file. The
user specifies both the file name (default is treeviz.rgb), format (default is rgb), and
whether to save the entire window, including any legends, or just the main scene
with the graphical objects (default is the full window).

104

Chapter 4: Using the Tree Visualizer

• Print Image outputs the state of the current Tree Visualizer window to a printer. You
can specify the output printer using a Print dialog panel (default is your system's
default printer) and, like the Save As dialog, choose whether to print the entire
window or just the main scene window.

• Start Tool Manager starts the Tool Manager (if not already running), and restores it to
the state it was in when the Tree Visualizer was invoked.

• Close closes the current window (and all panels associated with it). If no other
windows are open, Close exits the application.

• Exit closes all windows and exits the application.

The Show Menu

The Show menu (Figure 4-13) contains four options:

• Overview

• Search Panel

• Filter Panel

• Marks Panel

Each of these options brings up another dialog box for interacting with the data.

Figure 4-13 Tree Visualizer’s Show Pulldown Menu With Options

Pulldown Menus

105

The Overview Window

Select Overview in the Show menu to bring up a new window with an overhead view of
the complete hierarchy (Figure 4-14). If you want the Overview to be brought up
automatically each time the scene is viewed, set the Overview option in the configuration
file (see “Overview” on page 483).

Figure 4-14 Tree Visualizer’s Overview Window

The “X” in the Overview window shows your current location. The Overview helps you
keep track of your location and viewpoint in the entire scene. It can also help you quickly
go to a specific node.

To select an object in the Overview and have the main view zoom to it, left-click that
object. This is similar to left-clicking the object in the main view. Middle-clicking
anywhere in the overview zooms your viewpoint to that location, even if no object is at
that point.

106

Chapter 4: Using the Tree Visualizer

The Search Panel

Select Search in the Show menu to bring up a dialog box that lets you specify criteria to
search for objects (Figure 4-15).

Figure 4-15 Tree Visualizer’s Search Dialog Box

Pulldown Menus

107

Once the search is complete, yellow spotlights highlight objects matching the search
criteria (see Figure 4-16). To display information about an object under a yellow
spotlight, move the pointer over that spotlight; the information appears in the upper left
corner, under the label Pointer is over:. To select and zoom to an object under a yellow
spotlight, left-click the spotlight; if you press the Ctrl key while clicking, zooming does
not occur.

Figure 4-16 Sample Results of a Search in the Tree Visualizer

Items in the Search Panel

To specify whether a search is case-sensitive, click the Ignore Case In Searches checkbox, at
the top of the Search panel. For example, if this toggle is on (a check mark appears on that
button), the string “hello” is the same as “HellO.”

To the right of the case sensitivity checkbox is another, labeled Treat Nulls as Zeros. If this
checkbox is off (the default), comparisons involving nulls cannot return TRUE in a
search. If the it is on, nulls are treated as equal to zero.

108

Chapter 4: Using the Tree Visualizer

Below the case-sensitivity checkbox are controls that let you specify the parts of the
hierarchy to be searched. By default, the whole hierarchy is searched. To limit the levels
searched, select a relational operator (such as <=) from the option menu that lets you
specify the operand for the level. Then use the slider to select the level to be searched.
Level 0 is the root of the hierarchy, level 1 is the level below that, and so forth. To search
the root and the two levels below that, for example, choose <= 2.

Checkboxes also let you choose whether to search the bars or the bases.

When searching through bars, the default is that all bars are searched. To search only a
specific list of bars, you must select them. The Set All button turns on all bars; this is
useful if most of the bars are to be searched, and only a few are to be turned off. The Clear
button turns off all bars. If no bar is selected, the bar list is ignored, and all bars are
searched.

Below the panel for bar labels is a Hierarchy field that lets you specify nodes to search
(Figure 4-17). Below the Hierarchy field are fields that let you specify search criteria for
individual columns (defined in the Current Columns: window of the Tool Manager’s
Table Processing pane, see “Selecting the Tree Visualizer Tool” on page 84).

Figure 4-17 Detail of the Tree Visualizer’s Search Dialog Box

Pulldown Menus

109

To search for numeric values, enter the value, and select a relational operation (=, !=, >,
<, >=, <=). To search for alphanumeric values, enter the string for which you want to
search. You can use any of three types of string comparisons:

• “Contains” indicates that it contains the appropriate string. For example, California
contains the strings Cal and forn.

• “Equals” requires the strings to match exactly.

• “Matches” allows wildcards:

– An asterisk (*) represents any number of characters.

– A question mark (?) represents one character.

– Square braces ([]) enclose a list of characters to match.

For example, California matches Cal*, Cal?fornia, and Cal[a-z]fornia.

In some cases (usually associated with binning in the Tool Manager), an option menu of
values appears, instead of a text field. To ignore that variable, select Ignored in the Option
menu. You can use relational operators (such as >=) with these options. This means that
the specified value as well as subsequent ones are selected.

In addition to numeric and string comparison operations, you can specify Is Null ,
which is true if the value is null.

To the right of each search field is an additional option menu that lets you specify “And”
or “Or” options. For example, you could specify “sales > 20 And < 40.” You can have any
number of And or Or clauses for a given column, but cannot mix And and Or in a single
column.

Note that if different levels of the hierarchy are keyed by different types of data (for
example, the top level is selected by strings, while the second level is selected by
integers), then the “Hierarchy” search field is treated as a string and provides string
operations, not number operations.

If the Ignore Case In Searches checkbox is checked, the comparisons of all string searches
are case-insensitive.

110

Chapter 4: Using the Tree Visualizer

Six buttons are placed across the bottom of the Search panel:

• Search causes the search to be started. This button is automatically activated if the
Enter key is pressed and the panel is active.

• Clear turns off all search spotlights and erases the values from the search fields.

• Next selects and zooms to the next matched object, in left-to-right order. After the
last matched object is selected, clicking Next returns the view to the Home position.
Next is valid only after a search that has found matches.

• Previous selects and zooms in the opposite order from that of the Next button.

• Select causes all objects that matched the search criteria to be selected. The Selections
menu can then interact with these objects.

• Close closes the search window and turns off the search spotlights. If the Search
panel is reopened, it is in the same state as it was before the last Close; clicking Search
again repeats the last search.

The Filter Panel

The Filter panel filters out selected information, thus fine-tuning the displayed hierarchy.
You can use the Filter panel to emphasize specific information, or to shrink the amount
of data for better performance. Figure 4-18 shows a sample Filter panel.

Pulldown Menus

111

Figure 4-18 Tree Visualizer’s Filter Dialog Box

To specify whether a filter is case-sensitive, click the Ignore Case In Filter checkbox, at the
top of the Filter panel. For example, if this toggle is on (a check mark appears on that
button), the string “hello” is the same as “HellO.”

112

Chapter 4: Using the Tree Visualizer

To the right of the case sensitivity checkbox is another, labeled Treat Nulls as Zeros. If this
checkbox is off (the default), comparisons involving nulls cannot return TRUE in a filter.
If the it is on, nulls are treated as equal to zero.

Below the case-sensitivity checkbox are controls that let you specify the parts of the
hierarchy to be filtered. By default, the whole hierarchy is filtered. To limit the levels
filtered, select a relational operator (such as <=) from the option menu that lets you
specify the operand for the level. Then use the slider to select the level to be filtered. Level
0 is the root of the hierarchy, level 1 is the level below that, and so forth. To filter the root
and the two levels below that, for example, choose <= 2.

Checkboxes also let you choose whether to filter the bars or bases.

When filtering bars, the default is that all bars are filtered. To filter only a specific list of
bars, you must select them. The Set All button turns on all bars; this is useful if most of
the bars are to be filtered, and only a few are to be turned off. The Clear button turns off
all bars. If no bar is selected, the bar list is ignored.

Filtering bars does not affect the information in the base, which continues to include the
summary of all bars.

Below the panel for bar labels is a Hierarchy field, which lets you specify nodes to filter.
Below the Hierarchy field are fields that let you specify filter criteria for individual
columns (defined in the Current Columns: window of the Tool Manager’s Table
Processing pane, see “Selecting the Tree Visualizer Tool” on page 84).

To filter for numeric values, enter the value, and select a relational operation (=, !=, >, <,
>=, <=). To filter for alphanumeric values, enter the string for which you want to filter.
You can use any of three types of string comparisons:

• “Contains” indicates that it contains the appropriate string. For example, California
contains the strings Cal and forn.

• “Equals” requires the strings to match exactly.

• “Matches” allows wildcards:

– An asterisk (*) represents any number of characters.

– A question mark (?) represents one character.

– Square braces ([]) enclose a list of characters to match.

For example, California matches Cal*, Cal?fornia, and Cal[a-z]fornia.

Pulldown Menus

113

In some cases (usually associated with binning in the Tool Manager), an option menu of
values appears, instead of a text field. To ignore that variable, select Ignored in the Option
menu. You can use relational operators (such as >=) with these options. This means that
the specified value as well as subsequent ones are selected.

In addition to numeric and string comparison operations, you can specify Is Null ,
which is true if the value is null.

To the right of each filter field is an additional option menu that lets you specify “And”
or “Or” options. For example, you could specify “sales > 20 And < 40.” You can have any
number of And or Or clauses for a given column, but cannot mix And and Or in a single
column.

Note that if different levels of the hierarchy are keyed by different types of data (for
example, the top level is selected by strings, while the second level is selected by
integers), then the “Hierarchy” filter field is treated as a string and provides string
operations, not number operations.

If the Ignore Case In Filters checkbox is checked, the comparisons of all string filters are
case-insensitive.

If a node does not meet the filter criteria, has no bars that meet the criteria, and has no
children that meet the criteria, the node is not shown. There can be, however, cases in
which a specific object meets the filter criteria, but its ancestors up the tree do not. Also,
other bars in the same node might not meet the criteria. Since position is important in
interpreting context, it might not be good to eliminate those bars. Consequently, you are
given an option of selecting one of three radio buttons that control how these objects
should be drawn: Solid, Outline, and Hidden. Note, however, that if objects are drawn in
a less solid form due to the Display Zeros or Display Null menu, they are displayed
appropriately. For example, if Nulls are to be hidden, they are always hidden, regardless
of the filter criteria.

The exception to this is when filtering to specific bars. In such a case, the other bars are
eliminated and don’t take up space, regardless of the radio button settings.

The Height Filter slider lets you filter out those nodes containing only short bars. The size
of a value is shown as a percentage of the maximum height. First, the tallest bar in the
scene is calculated (if heights are normalized by level, then the tallest bar in each level).
Then only those nodes that contain at least one bar that is the appropriate percentage of
the tallest bar are shown.

114

Chapter 4: Using the Tree Visualizer

For example, if you enter 5% in this field, then only those nodes containing at least one
bar that is at least 5% of the height of the tallest bar are shown. (Also shown are ancestors
of such bars). This option is intended as a coarse way to filter out small, uninteresting
nodes. It is not intended as an exact mechanism of identifying specific nodes of a certain
value; use the search panel for that purpose. Use of this option can accelerate the
rendering of slow, complex scenes, or reduce clutter resulting from many bars near zero
height. You can also set this filtering option in the configuration file by using the Height
Filter command.

Although small nodes are filtered out, they are nonetheless counted in any cumulation
up the hierarchy.

The Depth slider, which is under the Height Filter slider, lets you display the hierarchy
so that only a given number of levels are displayed at any given time. When you are at
the top of the hierarchy, only the number of hierarchical levels specified by the slider is
seen. The nodes in the rows are arranged to optimize their visibility. When navigating to
nodes lower in the hierarchy, additional rows are made visible automatically. The nodes
above them automatically adjust their locations to accommodate the newly added nodes;
thus, some nodes might seem to move. Note that the overview shows all nodes in the
hierarchy, not just the top nodes; thus, the layout of the overview might not match the
layout of the main view. The X in the overview approximates the corresponding location
in the main view; there is no exact mapping between the two layouts.

• Click the Filter button to start filtering. If the Enter key is pressed while the panel is
active, filtering automatically starts.

• Click the Close button to close the panel.

The Marks Panel

The Marks panel , from the Tree Visualizer's Show Pulldown Menu (Figure 4-13), lets you
name and store important locations (viewpoints) so that you can easily and quickly
return to them (see Figure 4-19). The location is stored relative to the currently selected
object. If no object is selected, the absolute location is recorded.

All marks can be indicated by colored flags in the main view. If the mark represents a
selected object, the flag is placed on that object. If it represents an absolute position, the
flag is placed at that position. To go to the mark, click the flag. All flags can be turned on
and off using the Mark Flags menu entry in the Display menu. (See Mark Flags in “The
Display Menu” on page 117).

Pulldown Menus

115

Figure 4-19 Tree Visualizer’s Marks Panel

• Click the Mark button to mark the current location. Another dialog box appears (in
Figure 4-20) to prompt you for the name and color of the mark. The default name is
that of the currently selected object. The color controls the color of the flag
appearing in the main window and represents the mark. If you do not want a flag to
represent the mark, click the button with the “Not” symbol (slash through a circle).
To add another color to the palette, click the button with the plus symbol (+) to
bring up a color chooser.

Figure 4-20 Window Resulting From Clicking Mark Button

Figure 4-21 shows a sample main window with flags representing the created marks.

116

Chapter 4: Using the Tree Visualizer

Figure 4-21 Main Window With Flags Representing Marks

• Click the Go to button to go to the current location associated with the selected mark
in the panel. Double-clicking a mark has the same effect. If the object selected by
that mark no longer exists (because it was filtered out, or the data was changed
since the mark was created), the location shown is close to where the object would
have been.

• Click the Delete button to delete the selected mark in the panel.

• Click the Modify button to change the name or color of the selected mark in the
panel.

• Click the Up button to move the selected mark in the panel up the listing order.

• Click the Down button to move the selected mark in the panel down the listing
order.

• Click the Close button to exit the marks panel.

The file storing the marks information has the same name as the configuration file, with
a .marks suffix appended. Whenever a mark is changed, all marks are saved to that file.
If all marks are deleted, the .marks file is removed. If mark changes cannot be saved
(because of a permission error, for instance), a warning appears; this warning is not
repeated when subsequent mark changes are attempted.

Pulldown Menus

117

The Display Menu

The Tree Visualizer's Display menu lets you control several display parameters.

Figure 4-22 Tree Visualizer’s Display Menu

Base Heights is a checkbox that lets you turn the heights of the bases on and off. To see
negative numbers, or to make it easier to compare the bar heights, turn this option off.
Turning it on provides summary information about all the bars. The initial value of this
toggle can be changed with the “base height” statement in the configuration file.

Mark Flags is a toggle option that lets you turn on or off the flags representing marks (also
see “The Marks Panel”).

Zeros is a submenu that controls how objects with zero height are displayed. By default,
they are shown like other objects: a solid cube of height zero (a plane). The submenu lets
you specify them to be displayed as outlines (appearing as a hollow square), or to be
hidden completely (not drawn). The initial value of this of this can be changed using the
“zero” option in the configuration file (see “Zero” on page 485).

Nulls is a submenu that controls how objects of null height are displayed. It has the same
options as the zero menu; however, the default for null options is to display the objects
as an outline. The initial value can be changed using the “null” option in the
configuration file (see “Null” on page 486).

!

118

Chapter 4: Using the Tree Visualizer

The Selections Menu

The Selections menu lets you drill through to the underlying data. This menu has four
items (see Figure 4-23).

Figure 4-23 Tree Visualizer’s Selection Menu

• Show Values displays a table (Record Viewer) of the values for all selected objects.

• Show Original Data retrieves and displays the records corresponding to what has
been selected. The resulting records are shown in a table viewer.

• Send To Tool Manager inserts a filter operation, based on the current box selection(s),
at the beginning of the Tool Manager history. The actual expression used to do the
drill through is determined by extents of the current box selection(s). If nothing is
selected, a warning message appears.

• Complementary Drill Through causes the Show Original Data and Send To Tool Manager
selections, when used, to fetch all the data that are not selected.

For further details on drill-through, see Chapter 14, “Multiple Selection and
Drill-Through.”

Pulldown Menus

119

The Go Menu

The Go menu duplicates the functions of the buttons on the upper right-hand side of the
main window (see Figure 4-24). It also identifies keyboard shortcuts for some functions.

Figure 4-24 Tree Visualizer’s Go Pulldown Menu

• Home takes you to a designated location. By default, this location is the initial view
point of the scene. Initially, this location is the first viewpoint shown after invoking
the Tree Visualizer and specifying a configuration file. If you have been working
with the Tree Visualizer and have clicked the Set Home menu item, then clicking
Home returns you to the viewpoint that was current when you last clicked Set Home.
The keyboard shortcut for this function is Ctrl+H.

• Set Home changes the Home location to your current location. Clicking the Home
menu item then returns you to the viewpoint that was current when you last clicked
Set Home.

120

Chapter 4: Using the Tree Visualizer

• View All shows the whole hierarchy, keeping the tilt of the camera. To get an
overhead view of the scene, tilt the camera to point straight down, then click the
View All menu item. (To tilt the camera, see the description of the Tilt thumbwheel
in “Thumbwheels” on page 101.)

• Go Back lets you return to the previous location. If you have just started the Tree
Visualizer and have not moved from the home view, this menu item is grayed out.
The keyboard shortcut for this function is Ctrl+B.

• Go Forward lets you proceed to the location from which you clicked the Go Back
menu item. If you have not clicked the Go Back menu item, the Go Forward menu
item is grayed out. The keyboard shortcut for this function is Ctrl+R.

• Parent is active only when an object is selected. If a bar is selected, clicking this
menu item selects the base containing the bar. If a base is selected, clicking this
menu item moves up the hierarchy to the parent node. Once the root node has been
reached (highest level of the hierarchy), the Parent menu is grayed out. The
keyboard shortcut for this function is Ctrl+U.

• Move Left lets you select the next sibling to the left. If a bar is selected, the bar to the
left of it is selected. If a base is selected, then, if the parent has another child to the
left, that is selected. This button is greyed out if nothing is selected, or if the current
selection has no sibling to the left.

• Move Right lets you select the next sibling to the right. If a bar is selected, the bar to
the right of it is selected. If a base is selected, then, if the parent has another child to
the right, that is selected. This button is greyed out if nothing is selected, or if the
current selection has no sibling to the right.

• First Child lets you select the first child of the current node. This button is greyed out
if there is no selection, if a bar is selected, or if the current selection has no children.

• Last Child lets you select the lst child of the current node. This button is greyed out if
there is no selection, if a bar is selected, or if the current selection has no children.

Pulldown Menus

121

The Help Menu

The Help menu (see Figure 4-25) provides access to five help functions.

Figure 4-25 Tree Visualizer’s Help Pulldown Menu

• Click for Help turns the cursor into a question mark. Placing this cursor over an
object in the main window and clicking the mouse causes a help screen to appear;
this screen contains information about that object. Closing the help window restores
the cursor to its arrow form and deselects the help function. The keyboard shortcut
for this function is Shift+F1. (Note that it also is possible to place the arrow cursor
over an object and press the F1 function key to access a help screen about that
object.)

• Overview provides a brief summary of the major functions of this tool, including
how to open a file and how to interact with the resulting view.

• Index provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts provides the keyboard shortcuts for all of the Tree Visualizer’s
functions that have accelerator keys.

• Product Information brings up a screen with the version number and copyright notice
for the Tree Visualizer.

• MineSet User’s Guide invokes the IRIS Insight viewer with the online version of this
manual.

122

Chapter 4: Using the Tree Visualizer

Null Handling in the Tree Visualizer

Nulls represent unknown data (see Appendix I, “Nulls in MineSet”).

In the Tree Visualizer, nulls can occur in the following cases:

• The database or data file contains a null value.

• The skipMissing option is not present in the configuration file (see skipMissing in
Appendix B), and data is present for the key value in one node of the hierarchy, but
not in another. For example, in a representation of state budgets, if there is no record
for state income tax for Texas, Texas would have an income tax of null. This is
different for the case where there is a record showing 0 as the income tax for Texas,
in which case it would show a tax of 0.

• When the Tool Manager is used to make an array based on bins and no data falls
into a specific bin, the value for that bin is null. For example, if there is no data for
30-40 year olds, that bin is null.

• When making an array in the Tool Manager and the null enum option is specified,
an extra array entry, corresponding to the first bar in each bar chart, is created to
represent the aggregation of all the values where the bin value is null (see “” in
Appendix I). This bar is labeled with a question mark (?), representing null. If there
is no data for that null bin, the values associated with it are null as well.

Note: if all values throughout the data associated with the null bin are null, the Tree
Visualizer ignores the null bin and does not display it.

• Expressions and aggregations of nulls can generate nulls (see Appendix I).

When a null value is mapped to a visual attribute, special representations are used in the
Tree Visualizer. If null is mapped to height, the object is normally drawn in outline mode
(although this is configurable through the Display menu (see the “The Display Menu”
section) or the configuration file (see “Null” in Appendix B). For a bar or a base, this looks
like an empty square. (It does not look like a cube, since it has no height.) For a disk, it
looks like a circle. If a null value is mapped to a color, it is drawn in a dark grey (see
Figure 4-26).

Null Handling in the Tree Visualizer

123

Figure 4-26 Representation of a Null Value Mapped to Height, Color, Disk, and Label

When selecting an object with a null value, it is shown as a question mark (?) in the
selection field.

124

Chapter 4: Using the Tree Visualizer

Sample Configuration and Data Files

The provided sample configuration and data files demonstrate the Tree Visualizer’s
features and capabilities. The following files are in the directory
/usr/lib/MineSet/treeviz/examples:

• store.data and store.treeviz
When graphically displayed, these files show hypothetical sales data for a store
chain. The hierarchy includes the entire chain, regions, states, cities, and individual
stores. Four products are shown for each level in the hierarchy. In this configuration,
heights represent sales in dollars; colors represent the percentage of the target dollar
amount.

• stateRevenue.data and stateRevenue.treeviz
When graphically displayed, these files show the revenue components of every
state’s budgets for 1992, as obtained from the United States Census Bureau (from
http://www.census.gov/govs/state/stfin92.dat). Heights represent the dollar
amounts in taxes. The descendent nodes in the background show the contribution
of various taxes to the total revenues shown in the root node.

• beer.data and beer2.data, and beer.treeviz and beer2.treeviz
When graphically displayed, these files show fictitious data based on consumer
research of beer purchases. The hierarchy contains three levels:

1. The first is category (for example, beer or ale).

2. The second level is brand codes (randomly assigned).

3. The third is the individual product codes; for example, twelve-pack versus
six-pack (randomly assigned).

Each chart contains seven bars, representing seven age groups. Bar height
represents the total dollars spent by that age group. Colors represent the percentage
of dollars spent by males and females. Brands, products, and data used in these files
are samples only.

Both beer.treeviz and beer2.treeviz produce the same graphical output, but they have
been constructed differently. In beer.treeviz, each type of beer is represented by a
single record, with values for male and for female consumption; these values are
stored in an enumerated array (explained in Appendix B, “Creating Data and
Configuration Files for the Tree Visualizer”).

Sample Configuration and Data Files

125

In beer2.treeviz, there are seven records for each beer, with each record representing
one age group. Note that in the beer file, the age groups are represented in the
configuration file; in the beer2 file, they are included in the data file.

The beer file requires less storage space than the beer2 file; however, the
configuration file is a little more complicated. In some cases, it might be easier to
produce data in the form used by the beer2 file.

Additional examples of the Tree Visualizer to visualize a Decision tree are provided in
Chapter 10.

127

Chapter 5

5. Using the Map Visualizer

This chapter discusses the features and capabilities of the Map Visualizer. It provides an
overview of this database visualization tool, then explains the Map Visualizer’s
functionality when working with the follwing elements:

• main window

• viewing modes

• external controls

• pulldown menus

Finally, it lists and describes the sample files provided for this tool.

Overview of Map Visualizer

The Map Visualizer is a graphical interface that displays data as a three-dimensional
“landscape” of arbitrarily specified and positioned “bar chart” shapes. This tool displays
quantitative and relational characteristics of your geographically oriented data.

Data items are associated with graphical “bar chart” objects in the visual landscape.
However, the objects have recognizable geographical shapes and positions. The
landscape can consist of a collection of these geographical objects, each with individual
heights and colors (see Figure 5-1). You can dynamically navigate through this landscape
by

• panning

• rotating

• zooming to more clearly see areas of interest

128

Chapter 5: Using the Map Visualizer

• drilling down to see increased granularity of geographic details

• drilling up to aggregate data into coarser-grained graphical objects

• using animation to see how the data changes across one or two independent
dimensions.

Figure 5-1 Sample Map Visualizer Screen Showing 1990 U.S. Population

Overview of Map Visualizer

129

The landscape can also consist of a flat plane of these geographical objects drawn as
simple outlines, with “bar chart” cylinders placed at specific locations (see Figure 5-2).

Figure 5-2 Sample Map Visualizer Screen Showing Relative Population of Major U.S. Cities

Another landscape possibility is lines with endpoints at specific point locations, all with
individual widths and colors (see Figure 5-3). Lines have width and color properties,
instead of the height and color properties of the arbitrarily shaped objects and cylinders.

130

Chapter 5: Using the Map Visualizer

Figure 5-3 Sample Map Visualizer Screen Showing the United States With Specific Endpoints

File Requirements

131

File Requirements

The Map Visualizer requires the following files:

• A data file consisting of rows of tab-separated fields. Typically, the Tool Manager
creates this file (see Chapter 3). You can also generate this file without using the Tool
Manager (for the required file format, see Appendix C, “Creating Data,
Configuration, Hierarchy, and GFX Files for the Map Visualizer”).

Data files are the result of extracting raw data from a source (such as an Oracle,
INFORMIX, or Sybase database) and formatting it specifically for use by the Map
Visualizer. Data files have user-defined extensions (the sample files provided with
the Map Visualizer have a .data extension).

• A gfx file consisting of a description of the shapes and locations of the 1-, 2-, or
3-dimensional objects to be displayed.

Gfx files must have a .gfx extension. MineSet includes various .gfx files, including
the United States to the granularity of counties, telephone area codes, and postal zip
codes, as well as Canada to the granularity of provinces. You can also manually
generate .gfx files (see Appendix C, “Creating Data, Configuration, Hierarchy, and
GFX Files for the Map Visualizer” for the required file format).

• A hierarchy file consisting of a description of

– the column names of the various graphical objects to be displayed

– the filenames of the .gfx files that describe the locations and shapes of the
graphical objects

– an optional description of the hierarchical relationship of the graphical objects,
which is used for the drill-down and drill-up functions.

Hierarchy files enable drill down and drill up. This means that information
associated with objects at one level can be aggregated (or, conversely, shown in
greater detail) and displayed at a different level. For example, a hierarchy file
defining the relationships between states and regions comprising multiple states
allows values such as population levels to be displayed at both the individual state
level as well as at regional levels. The gfx_files/usa.state.gfx file, for example,
describes the shapes of the 50 United States; the gfx_files/usa.state.hierarchy file
describes the hierarchy grouping individual states into regions, regions into
East-West areas, and the East-West areas into an aggregated United States.

For more information, see Appendix C, “Creating Data, Configuration, Hierarchy,
and GFX Files for the Map Visualizer”

132

Chapter 5: Using the Map Visualizer

• A configuration file describing the format of the input data and how these are to be
displayed. Typically, this file is created using the Tool Manager (see Chapter 3). You
also can use an editor (such as jot, vi, or Emacs) to produce this file without using
the Tool Manager (see Appendix C, “Creating Data, Configuration, Hierarchy, and
GFX Files for the Map Visualizer”).

Configuration files should have a .mapviz extension. If they do not, they are not
listed when selecting the Open option from the File pulldown menu. When starting
the Map Visualizer, or when opening a file, specify the configuration file, not the
data file.

Starting the Map Visualizer

There are five ways to start the Map Visualizer:

• Use the Tool Manager to configure and start the Map Visualizer. See Chapter 3 first
for details on most of the Tool Manager’s functionality, which is common to all
MineSet tools; see below for details about using the Tool Manager in conjunction
with the Map Visualizer.

• Double-click the Map Visualizer icon, which is in the MineSet page of the icon
catalog. The icon is labeled mapviz. Since no configuration file is specified, the
start-up screen requires you to select one by using File > Open.

Figure 5-4 Map Visualizer’s Startup Screen, With File Pulldown Menu Selected

Starting the Map Visualizer

133

Starting the Map Visualizer without specifying a configuration file causes the main
window to show the copyright notice for this tool. Only the File and Help pulldown
menus can be used. For the main window to be fully functional, open a
configuration file by selecting File > Open (Figure 5-4).

• If you know what configuration file you want to use, double-click the icon for that
configuration file. This starts the Map Visualizer and automatically loads the
configuration file you specified. This only works if the configuration filename ends
in .mapviz (which is always the case for configuration files created for the Map
Visualizer using the Tool Manager).

• Drag the configuration file icon onto the Map Visualizer icon. This starts the Map
Visualizer and automatically loads the configuration file you specified. This works
even if the configuration filename does not end in .mapviz.

• Start the Map Visualizer from the UNIX shell command line by entering this
command at the prompt:

mapviz [configFile]

where configFile is optional and specifies the name of the configuration file to use. If
you don’t specify a configuration file, you must use File > Open to specify one (see
Figure 5-4).

Options for invoking the Map Visualizer

There are a two options that affect how this tool is invoked:

• -warnexecute indicates that if you attempt to execute a command specified in an
execute statement, a warning is displayed and you are given the option to execute
the command or not. This is intended for an insecure environment, such as files
obtained from the Web, and is used automatically when commands are executed via
mtr files.

You can enable this option permanently by adding the line

*minesetWarnExecute:TRUE

to the user’s .Xdefaults file, or by setting the environment variable

MINESET_WARN_EXECUTE

• -quiet eliminates the dialogs that popup to indicate progress. You can enable this
option permanently by adding the line

*minesetQuiet:TRUE

to the user’s .Xdefaults file.

134

Chapter 5: Using the Map Visualizer

Configuring the Map Visualizer Using the Tool Manager

This section describes how the Map Visualizer can be configured using the Tool Manager.
Although the Tool Manager greatly simplifies the task of configuring the Map Visualizer,
you can construct a configuration file manually for this tool using a text editor (see
Appendix C, “Creating Data, Configuration, Hierarchy, and GFX Files for the Map
Visualizer”).

Note that the steps required to connect to a data source are described in Chapter 3.

Generating .gfx and .hierarchy Files

To use the Map Visualizer, you must provide the application with two files that define
the graphical objects to be displayed:

• One or more .gfx files, which define the shapes of the graphical objects displayed.

• A.hierarchy file, which describes the relationship of multiple, interrelated map (.gfx)
files.

These files are not created by the Tool Manager; they must already exist as part of
MineSet (residing in the /usr/lib/MineSet/mapviz/gfx_files directory), or they must be
created by the user. For instructions on their creation, see Appendix C, “Creating Data,
Configuration, Hierarchy, and GFX Files for the Map Visualizer”

The .gfx and .hierarchy files that are part of the MineSet package include

• the individual states of the United States

• the individual counties of the United States

• the individual five-digit ZIP codes of the United States

• the telephone area codes of the United States

• the individual provinces and territories of Canada

• the individual states of Mexico

• the individual states and territories of Australia

• the individual countries of Western and Central Europe

• regional subdivisions of both France and The Netherlands

Configuring the Map Visualizer Using the Tool Manager

135

The Map Visualizer requires a data file with

• One column indicating geographical objects (for example, states). Each row in this
column must indicate a unique geographical object (staying with the example, this
means one row for each state).

• At least one column with numeric values mapped (using arithmetic expressions) to
the heights and/or colors of each geographic bar. These columns can be scalar, a 1D
array, or a 2D array. If the column is an array, a slider must be used to select specific
data points for this mapping to heights and colors.

If both heights and colors are mapped to 1D or 2D arrays, the arrays must have the same
indexes (see Appendix C, “Creating Data, Configuration, Hierarchy, and GFX Files for
the Map Visualizer”).

Selecting the Map Visualizer Tool

Select the Viz Tools tab in the Data Destination panel of the Tool Manager’s main screen
(Figure 5-5). From the popup list of tools, select Map Visualizer. The window on the right
side of this panel displays the mapping requirements for the Map Visualizer. Items in the
Visual Elements list that are preceded by an asterisk are optional.

136

Chapter 5: Using the Map Visualizer

Figure 5-5 Data Destination Panel, With Map Visualizer Selected

• Entity - Bars lets you specify which column contains the keywords of the graphical
objects.

• Height - Bars lets you specify the heights of the geographic bars on the map.

• *Color - Bars lets you assign the colors of the geographic bars. See “Choosing
Colors” and “Using the Color Browser” in Chapter 3 for a more detailed
explanation of how to choose and change colors.

• *Slider1 and *Slider2 let you map columns directly to one or two animation Sliders
(see “Slider Creation for Mapviz,” below).

Configuring the Map Visualizer Using the Tool Manager

137

Mapping Columns to Visual Elements

A column in the Current Columns window should be mapped to the Visual Element
Height - Bars by clicking the column first, then Height - Bars. Optionally, another column
(perhaps even the same column) can be mapped to the Visual Element *Color - Bars.
Another column must be mapped to the Visual Element Entity. This must be a string
column.

Undoing Mappings

To undo a mapping, select the mapping in the Requirements: window, then click the
Clear Selected button. To undo all mappings, click the Clear All button.

Slider Creation for Mapviz

Sliders can be created manually or automatically. The following subsections describe
these methods.

Manual Slider Creation

Tool Manager generates sliders whenever there is an array column present in the current
table. The sliders correspond to the indices of the array columns. If the column has one
index (one-dimensional array), only one slider is created, but if the column has two
indices (two-dimensional array), both an X and a Y slider are created. The current slider
indices are indicated in the Tool Options dialog box from the Tool Manager.

Note that for a slider to be created, all array columns in the current table must have the
same indices. If array columns with differing indices exist in the current table, no slider
is created.

See “Aggregation” in Chapter 3 for more information on creating arrayed columns.

Automatic Slider Creation

If no arrayed columns are in the current table, Tool Manager can automatically generate
sliders by use of the Slider1 and Slider2 mappings. Sliders are created through a
combination of automatic binning and aggregation. These automatic operations occur

138

Chapter 5: Using the Map Visualizer

after clicking Invoke Tool. The operations do not affect the current history operations of
Tool Manager, but they do appear in the configuration files for the tool.

Columns mapped to Slider1 and Slider2 eventually form the indices for the sliders. These
columns must be either numeric (int, float, double) or binned. If a column mapped to a
slider is already binned, no automatic binning is needed for this column, and this column
is used as an index for a slider. However, if the column is not binned, a binned column is
created using the automatic binning options in the Tool Options dialog box.

The three methods of binning are:

• Selecting All Distinct Values creates a bin for every unique value of the column.

• Specify the number of bins you want to create. The thresholds for the bins are
determined using the Uniform Range approach.

• Selecting Automatic automatically determines the number of bins to create and
determines the bin thresholds using the Uniform Range approach.

(See “The Bin Column Button” in Chapter 3 for more information about binning.) The
column used in forming the automatic bins is deleted from the current table.

The binned columns now form the indices of array columns. Note that if you want to
create only one slider, the index must be mapped to Slider1. Attempting to create only
one slider with a mapping to Slider2 is not allowed and generates a Tool Manager error.
Also, a column mapped to a slider cannot be mapped to any other mapping, since it is
removed during the aggregation process.

Once the slider indices are formed, the arrayed columns are created. This is done using
automatic aggregation. Any numeric columns mapped to Height or Color are
aggregated using the automatic aggregation options in the Tool Options dialog box. You
can either specify aggregating by Sum or by Average. The binned columns created from
the slider mappings form the indices for the aggregation. The column mapped to Entity
is the only Group-By column. Any remaining columns in the table are removed. (See
“Aggregation” in Chapter 3 for a description of the aggregation process.)

The aggregation step automatically forms the arrayed columns used for sliders. These
arrayed columns form the new tool mappings. For example, if the column mpg were
mapped to Height, a new column avg_mpg[] is formed and remapped to Height. The
progress of the automatic slider generation is displayed in the Tool Manager status
window.

Configuring the Map Visualizer Using the Tool Manager

139

Specifying Tool Options

Clicking the Tool Options button causes a new dialog box to be displayed (Figure 5-6).
This lets you change some of the Map Visualizer options from their default values.

Figure 5-6 Map Visualizer’s Options Dialog Box

The following sections describe the buttons and fields of the Map Visualizer’s Options
dialog box.

140

Chapter 5: Using the Map Visualizer

Geography

The Entities File specifies a .hierarchy file to be used for the representation of the
geographical "entity" objects, in the Map Visualizer's main window.

The Outlines File specifies outline objects to draw, which appear as a flat plane on which
the 3-D entity objects are placed.

The Find File button lets you browse your files to find the .hierarchy file to be used.

Note that the Entities File and Outlines File fields are optional. If the Entities File is not
supplied, then the Map Visualizer creates graphical entity objects consisting of simple
rectangles that are arbitrarily sized and placed in the scene.

Height

This section specifies an initial height Scale value (default is 1.0) and whether to display
a height legend at the bottom of the Map Visualizer window.

Color

To use these Color options, you must have mapped a column to the *Color - Bars
requirement of the Data Destination panel. See “Choosing Colors” and “Using the Color
Browser” in Chapter 3 for a more detailed explanation of how to choose and change
colors.

Color List—You can specify the color list using the + button next to the color list label. This
brings up a color editor that lets you specify a color to be added to the list.

Mapping—You can specify whether the color change that is shown in the graphic display
is Continuous or Discrete. If you choose Continuous, the color values shift gradually
between the colors entered in the “Color List” field as a function of the values that are
mapped to those colors in the “Mapping” field.

The field to the right of the popup button lets you enter specific values to which the colors
are mapped. You must have the same number of values in this field as there are colors
entered in the Color list to use field.

Configuring the Map Visualizer Using the Tool Manager

141

Example 5-1

If you

• used the Color Browser to choose gray and red

• selected Discrete for the Mapping

• entered the values 0 150000

then the display shows the population of the United States across the time period
1770-1990. States with more than 150,000 square miles are shown in red, the rest are in
gray.

Example 5-2

If you

• used the Color Browser to choose gray and red

• selected Continuous for the Mapping

• entered the values 0 300000

then the display shows the population of the United States across the same time period.
The states’ colors vary from gray to red, depending on their size; the largest states are
shown with the greatest density of red.

You can enter as many colors into this field as necessary for your display. If the number
of values in the column that maps to *Color - Bars exceeds the number of distinct colors
you have chosen, the Map Visualizer adds an appropriate number of randomly chosen
colors at runtime.

Legend On—lets you determine whether a color legend is displayed or hidden.

Normalize On—lets you determine whether the Map Visualizer automatically scales the
colors between the color column's minimum and maximum values (this is called color
normalization), as opposed to you manually specifying threshold values. When
Normalize On is enabled, the threshold values must lie within the range 0 to 100,
representing a percentage of the color column's minimum to maximum numeric range.

142

Chapter 5: Using the Map Visualizer

Sliders

You can manually select a binned column to be associated with the slider(s), where the
binned column indexes an aggregated array that is mapped to height or color.
Alternatively, you can have the Tool Manager automatically perform the binning and
aggregations. For more details on the Slider options, see “Slider Creation for Mapviz” on
page 137.

Message Field

This lets you specify the message displayed when an entity is selected. For a listing and
description of format types that can be entered in this field, see the “Message Statement”
section in Appendix C, “Creating Data, Configuration, Hierarchy, and GFX Files for the
Map Visualizer”

Title field

This lets you specify a string that appears at the bottom of the Map Visualizer main
window. This string must be enclosed in double-quotes.

Execute Field

This option lets you type in a UNIX command that is executed when double-clicking on
an entity. The format is similar to the message statement. If no execute statement appears,
double-clicking has no effect.

For a detailed description of the Execute field, see “Execute Statement” in Appendix C.

Resetting the Tool Options

If, after making changes to the Tool Options dialog box, you want to reset the values of
all options to their default values, click the Reset Options button.

Accepting the Tool Options

Once you have finished making changes to the Tool Options dialog box, click OK to
return the Tool Manager’s main screen.

Working in the Map Visualizer’s Main Window

143

Saving Map Visualizer Settings

The Tool Manager stores information for the Map Visualizer in several files, all sharing
the same prefix:

• <prefix>.mapviz.data contains data.

• <prefix>.mapviz.schema describes the data file.

• <prefix>.mapviz contains information needed by the Map Visualizer.

• <prefix>.mineset contains all the information needed to create the other files.

To specify a prefix, use the Save ... menu option in the File menu of the Tool Manager’s
main window. If you do not specify a prefix, it is based on the data source.

When you use the Invoke Tool button, the .data, .schema, and .mapviz files are updated, if
necessary.

Invoking the Map Visualizer

To see the Map Visualizer graphically represent your data, click the Invoke Tool button at
the bottom of the Data Destination panel.

Working in the Map Visualizer’s Main Window

If you started the Map Visualizer without specifying a configuration file, the main
window shows the copyright notice for the Map Visualizer. Only the File and Help
pulldown menus can be used. For the main window to show all menus and controls,
open a configuration file. Use File > Open (Figure 5-4) to see a list of configuration files.

When a valid configuration file has been specified, its geographical landscape is visible.
For example, Figure 5-7 shows the results of specifying population.usa.mapviz and moving
the Year slider to the far right.

144

Chapter 5: Using the Map Visualizer

Figure 5-7 Population.usa.mapviz Example With the Slider Moved to 1990

This shows the population and population density for each state of the United States. The
population of each state is represented by the height of the state’s graphical shape.
Heights are relative to each other across the entire range of the animation controls.

Working in the Map Visualizer’s Main Window

145

Viewing Modes

The two modes of viewing are grasp and select. To toggle between these modes, move the
cursor into the main window, and press the Esc key. You can also change from one mode
to the other by clicking the appropriate button: to enter select mode, left-click the arrow
button (to the top-right of the main window); to enter grasp mode, left-click the hand
button (immediately below the arrow button, near the top right of the main window).

Grasp Mode

In grasp mode, the cursor appears as a hand. This mode supports panning, rotating, and
scaling the scene’s size in the main window.

• To pan the display, press the middle mouse button and drag it in the direction you
want the display panned.

• To rotate the display, press the left mouse button and move the mouse in the
direction you want to rotate.

• To move the viewpoint forward, press the left and middle mouse buttons
simultaneously and move the mouse downwards. To move the viewpoint
backward, press the left and middle mouse buttons simultaneously and move the
mouse upwards. This is equivalent to the functions provided by the Dolly
thumbwheel.

Select Mode

In select mode, you can highlight an object by positioning the cursor over that object.
Information about that object then appears at the top of the view area. This information
remains visible in the window only as long as the pointer cursor remains over the object.
If you position the pointer cursor over an object and click the left mouse button, the same
information appears in the Selection Window, which is above the main window, under
the “Selection” label (Figure 5-8).

146

Chapter 5: Using the Map Visualizer

Figure 5-8 Example of a Highlighted (Information in the Viewing Window) and Selected
(Information in the Selection: Window) Object

This Selection information remains visible until you select another object or click the
background. Using the mouse, you can cut and paste this text into other applications,
such as reports or databases.

External Main Window Controls

147

Drill down and drill up functionality—To view a finer level of geographical granularity
for an object (if the .data and .hierarchy files support it), click the right mouse button while
the cursor is over that object. This is called “drilling down.” You can repeat this down to
the finest level of granularity supported by the data. If the cursor is positioned over a
specific object when drilling down, only the more detailed sub-objects of that object
appear. If, instead, the cursor is positioned on the background at the time of the mouse
click, then the more detailed sub-objects of the entire set of objects appear. This might
produce a display with a large number of individual objects. The greater the number of
objects, the longer the Map Visualizer takes to construct the scene, and the slower the
performance when moving the animation controls.

To move up one level and view a coarser geographical granularity (“drill up”), click the
middle mouse button. If the cursor is positioned on the background when you click, all
the higher-level objects appear. If the cursor is positioned on a specific object in the scene,
then the scene “returns” to the group of higher-level objects visible when you last drilled
down with the right mouse button.

If an execute statement was specified via Tool Manager or the configuration file, then
double clicking on an object executes the appropriate command. If the -warnexecute

option was specified when invoking the Map Visualizer, a warning is given first.

Note: By default, the Map Visualizer initially displays objects at the lowest level of detail;
thus, initially, only drill-up (to coarser granularity) is active.

External Main Window Controls

Several external controls surround the graphics window. These consist of buttons,
sliders, and a summary window. Each of these controls is described in this section.

Buttons

At the top right of the image area are eight buttons, each of which is selectable with the
left mouse button, as shown in Figure 5-9.

148

Chapter 5: Using the Map Visualizer

Figure 5-9 Top Right Buttons

• Arrow puts you in select mode. When in this mode, the cursor shape is an arrow.
Select mode lets you highlight graphical objects in the main window, as well as drill
down or drill up to different levels of geographical granularity.

• Hand puts you in grasp mode. When in this mode, the cursor shape is a hand. Grasp
mode lets you rotate, zoom, and pan the display in the main window.

• Viewer help (symbolized by a question mark) brings up a help window describing
the viewer itself.

• Home takes you to a designated location. Initially, this location is the first viewpoint
shown after invoking the Map Visualizer and specifying a configuration file. If you
have been working with the Map Visualizer and have clicked the Set Home button,
then clicking Home returns you to the viewpoint that was current when you last
clicked Set Home.

• Set Home makes your current location the Home location. Clicking the Home button
returns you to the last location where you clicked Set Home.

• View All lets you view the entire Map Visualizer display, keeping the angle of view.
To get an overhead view of the scene, rotate the camera so that you are looking
directly down on the display, then click the View All button.

• Seek takes you to the point or object you click after selecting this button. This
changes the perspective and angle of your viewpoint.

• Perspective lets you view the scene in 3D perspective (closer objects appear larger,
farther object appear smaller). Clicking this button toggles 3D perspective on
(default setting) or off.

Note: If Perspective is off, the Dolly thumbwheel becomes the Zoom thumbwheel.

Arrow

Hand

Viewer help

Home

Set Home

View All

Perspective

Seek

External Main Window Controls

149

Height-Adjust Slider and Label

To the left of the Map Visualizer’s main window is a vertical height adjust slider and,
below it, a label containing a numeric value between 0.1 and 100. This slider lets you
change the absolute heights of all the graphical objects in the main window. Moving the
slider up increases the heights of the objects; moving it down decreases their heights. The
numeric value in the label changes accordingly. This value indicates the height
multiplier, the default value of which is 1.0. The height adjust slider is useful for
accentuating relative height differences between objects in the view window.

Thumbwheels

Three thumbwheels appear around the lower part of the main window border (see
Figure 5-10). They let you dynamically move the viewpoint.

Figure 5-10 Lower Half of Window With Thumbwheels

• The vertical thumbwheel Rotx (rotate about the x axis), on the left, rotates the
display up and down.

• The horizontal thumbwheel Roty (rotate about the y axis), at the bottom left, rotates
the scene in the main window around its centerpoint left and right.

• The vertical Dolly thumbwheel, on the right, moves the viewpoint forward and
backward. Note that as you use the Dolly thumbwheel to magnify the scene in the
main window, additional detail can appear. This is not the case with the Zoom
slider, which merely enlarges the scene without adding detail.

Note: If Perspective is off, the Dolly thumbwheel becomes the Zoom thumbwheel,
and the Zoom slider and Zoom factor box disappear.

Thumbwheels

150

Chapter 5: Using the Map Visualizer

The Animation Control Panel

To the right of the Map Visualizer’s main window are several external controls,
depending on the type of data being displayed (see Figure 5-11). These controls can
include

• sliders for independent dimensions

• a summary window containing a color density profile.

• a color legend showing the color density value limits

• buttons and sliders for animation

Figure 5-11 Map Visualizer’s Summary Window With Slider and Animation Controls

The Animation Control Panel

151

Sliders Controlling Independent Dimensions

The number of sliders appearing adjacent to the summary window is dependent on the
dataset displayed in the Map Visualizer’s main window. Datasets can have two, one, or
no independent dimensions.

Datasets With Two Independent Dimensions

If the dataset has two dimensions of independently varying data (such as
nl.births.mapviz), the animation control panel to the right of the main graphics window
becomes visible (as in Figure 5-11).

Within this animation control panel are the 2D summary window and two sliders. The
summary window has a horizontal slider below it for selecting data points of the first
independent dimension, and a vertical slider to the left for selecting data points of the
second independent dimension. The horizontal slider’s dimension is identified by a label
below it. The vertical slider’s dimension is identified by a label above it.

Datasets With One Independent Dimension

For datasets with one independent dimension (such as population.usa.mapviz), only the
slider below the summary window appears, and the summary window is compressed
(see Figure 5-12). This slider’s dimension is identified by a label below it.

152

Chapter 5: Using the Map Visualizer

Figure 5-12 Map Visualizer’s Summary Window With One Slider and Animation Controls

Datasets With No Independent Dimension

For datasets with no independent dimensions (such as population.europe.mapviz), no
animation control panel appears (see Figure 5-13).

The Animation Control Panel

153

Figure 5-13 If There Are No Independent Dimensions, No Animation Control Panel Appears

154

Chapter 5: Using the Map Visualizer

The Summary Window

The summary window provides a 2D representation of the aggregation of values that the
main window displays in 3D. Above this window is a label, Sum Heights, followed by
two rectangles: the first white, the second red. Within the rectangles are numbers; each is
the respective value for the maximum density of that color. This summary color legend
provides a visual and numeric comparison to the densities in the summary window.

The whiter the areas of the summary window, the lower the total values represented by
the heights of the objects in the main window. The greater the density of red shown in
areas of the summary window, the higher the total of those values. The density of these
colors in the summary window provides a summary of the data across the one or two
independent dimensions in the dataset, which is useful for guiding your exploration
through the data.

By default, the summary window also contains a set of black dots, evenly spaced across
the one or two dimensions of data. These dots indicate the precise positions of the
discrete datapoints of the data. You can turn off the dots using the View > Show Data
Points menu option.

Color Density Examples in the Summary Window

After opening the population.usa.mapviz file, for example, the 2D summary window
shows a color range from white (on the left) to red (on the right). White corresponds to
the low aggregate population in the early years of the United States; red represents the
higher aggregate population in later years. In this example, the greater the density of red,
the higher the total population of United States.

For a more complex example, open perhouse.perage.mapviz. This dataset has two
independent dimensions: time and age. The summary window displays these
dimensions as a complex pattern of colors. Place the cursor on the horizontal lines with
the greatest density of red, which runs horizontally across the summary window (this
means the age group making the greatest number of purchases). Click the left mouse
button. The information displayed in the field below the horizontal slider shows that this
represents purchases made by 30- to 39-year-olds.

Now place the cursor at the junction of the densest red horizontal (age group) and
vertical (time frame) parts of the summary window, and click the left mouse button. The
information displayed in the field below the horizontal slider shows that most purchases
were made by 30- to 39-year-olds in May-June 1989 and May-June 1990.

The Animation Control Panel

155

Creating a Path in the Summary Window

If the dataset loaded into the Map Visualizer has at least one independent dimension, it
is possible to view all or any part of that dataset via animation. This is done by first
creating a path in the summary window, then activating the animation controls
described in the next section.

The three ways to draw a path in the summary window are as follows:

• Define a starting point by clicking and holding down the left mouse button, then
draw an arbitrary path by dragging the cursor over the window. End the path by
releasing the left mouse button.

• Define a starting point by clicking the left mouse button, then define an endpoint by
moving the cursor to another part of the window and clicking the middle mouse
button. A path appears between those two endpoints, passing through the
intermediate discrete data point(s) that are closest to the hypothetical straight line
between the endpoints. To add more line segments, continue with repeated middle
mouse clicks.

• Define a starting point by clicking the left mouse button, then drag one of the
independent dimension sliders to draw a straight line along this dimension. If there
are two sliders, then using the second slider will continue to draw a straight line
along the axis controlled by this second slider.

The path you draw can only go through the well-defined discrete data points, identified
by the black dots in the summary window.

Animation Buttons and Sliders

Use the seven VCR-like buttons and two sliders (Path and Speed) below the 2D summary
window to control animation.

156

Chapter 5: Using the Map Visualizer

Animation Buttons

Once a path is drawn in the summary window (see “Creating a Path in the Summary
Window,” above), you can use the VCR-like buttons to control animation along this path.
The middle Stop button is highlighted in blue to indicate an initial state. Use the adjacent
Play Forward button (to the right of Stop) or Play Reverse (to the left) to begin simple
movement along the drawn path in a forward or reverse direction. Forward and Reverse
are defined by the sequence in which the path was drawn, not by a sense of left-to-right
or right-to-left movement.

To stop and restart the animation, click the Stop button, then use the Play Forward or
Reverse button. When you use the Stop button, the animation continues in the current
direction until the position falls on a discrete data point.

Adjacent to the Play buttons are the Single-Step buttons, also Forward and Reverse.
Clicking one of these buttons causes the current path position to change to the next
discrete data point.

On the outside are the Fast Forward and Fast Reverse buttons. Clicking one of these Fast
buttons while in Stop state changes the path position to the end (for Forward) or to the
beginning (for Reverse) of the path. Clicking a Fast button when in Play state increases the
animation speed.

Animation Flow

Below the Animation Buttons are the three Animation Flow buttons.

Play-once (default)—the animation moves either forward or reverse until it reaches the
end of the path, then stops.

Loop—when the animation reaches the end of the path, it automatically resets to the
beginning and starts over again.

Swing—when the animation reaches the end of the path, it reverses direction and retraces
its path to the other end; upon reaching that end, the animation reverses direction again,
beginning the cycle again.

The Animation Control Panel

157

Animation Sliders

While animation is stopped, you can move the Path slider to reset the position along the
path. Note that when you use the Path slider, the cursor in the summary window moves
across the drawn path, and the 1D sliders (below and to the left of the drawing area)
move consistently with the cursor position. Then use the Play or Reverse button to restart
the animation from the newly specified point.

You can drag the Path slider to an arbitrary position on the path between discrete data
points; however, when you release the slider, the path position changes to a stop at the
nearest discrete data point.

Use the Speed slider to adjust the speed of the animation along the path.

Data Points and Interpolation

As animation proceeds, the variables mapped to height and color in the Map Visualizer
also change. However, the variables displayed in the Selection: message box show only
the data values of the nearest discrete data position, not intermediate (interpolated) data
values.

The animation is produced in the following manner: Assume you have data for 10 years,
on a per-year basis (that is, 10 data values) and that these correspond to the height of one
state in the Map Visualizer. The years are 1991 to 2000, the height for 1991 is 20, and the
height for 1992 is 40. As you move the year slider from 1991 to 1992, the height changes
by being uniformly interpolated between 20 and 40. For example, midway between 1991
and 1992, the height appears to be 30. As you approach 1992, the height approaches 40.
However, you cannot stop an animation between discrete data points, and you cannot
drag the Path slider to a stationary position between discrete data points.

The data points in the summary window represent the slider positions corresponding to
the actual data from the data file. For example, the heights 20 and 40 are representations
of actual data, but the height 30 is not. In this example, there would be data points in the
summary window at the slider positions corresponding to each year.

Note that not all variables are required to vary with a slider. For example, in the Map
Visualizer, the area and name of the state do not vary with the slider (for example, year).
If there are two sliders, some variables can vary with only one of the sliders, while other
variables vary with both.

158

Chapter 5: Using the Map Visualizer

Pulldown Menus

Five pulldown menus let you access additional Map Visualizer functions. These are
labeled File, View, Selections, InterTool, and Help. If you start the Map Visualizer without
specifying a configuration file, only the File and the Help menus are available. The View
menu is available after a valid dataset is loaded.

The File Menu

The File menu (Figure 5-14) contains nine options.

Figure 5-14 Map Visualizer’s File Pulldown Menu

• Open loads and opens a configuration file. This causes it to be displayed in the main
window. Previously displayed data is discarded. Use Open to view a new dataset, or
to view the same dataset after changing its configuration.

• Open Other Window opens a configuration file and displays its results in a different
window. The current dataset in the first window remains open.

• Reopen opens the currently open configuration file again.

• Copy Other Window opens a new window displaying the same dataset. You can
interact with these windows independently, or you can synchronize these windows
using the InterTool pulldown menu.

Pulldown Menus

159

• Save As saves the state of the current Map Visualizer window into an image file. The
user specifies both the file name (default is mapviz.rgb), format (default is rgb), and
whether to save the entire window, including any possible legends and Animation
Panel, or just the main scene with the graphical objects (default is the full window).

• Print Image outputs the state of the current Map Visualizer window to a printer. You
can specify the output printer using a Print dialog panel (default is your system's
default printer) and, like the Save As dialog, choose whether to print the entire
window or just the main scene window.

• Start Tool Manager starts the Tool Manager (if not already running), and restores it to
the state it was in when the Map Visualizer was invoked.

• Close closes the current window and all its associated panels. If no other windows
are open, Close exits the application.

• Exit closes all windows and exits the application.

The View Menu

The View menu (Figure 5-15) contains five options. This section describes those options
below.

Figure 5-15 Map Visualizer’s View Pulldown Menu

Filter Panel brings up a filter panel (Figure 5-16), which lets you reduce the number of
entities displayed in the main viewing area, based on one or more criteria. You can use
the filter panel to fine-tune the display, emphasize specific information, or simply shrink
the amount of information displayed. Scale to Filter lets you specify whether the heights
of the graphical objects are scaled across the entire dataset or just across the filtered data.

160

Chapter 5: Using the Map Visualizer

Figure 5-16 Map Visualizer Filter Panel

The filter panel has two panes. The top pane lets you filter based on string variables. To
select all values of a variable, click Set All. To clear the current selections, click Clear. To
select a value, click it. To deselect a value, simply click it again.

The bottom pane lets you filter based on the values of both string and numeric variables.
Only variables whose values do not change as you navigate the slider can be used in
filtering.

Pulldown Menus

161

To filter numeric values, enter the value, and select a relational operation (=, !=, >, <, >=,
<=). To filter alphanumeric values, enter the string. You can use any of three types of
string comparisons:

• Contains indicates that it contains the appropriate string. For example, California
contains the strings Cal and forn.

• Equals requires the strings to match exactly.

• Matches allows wildcards:

• An asterisk (*) represents any number of characters.

• A question mark (?) represents one character.

• Square braces ([]) enclose a list of characters to match.

For example, California matches Cal*, Cal?fornia, and Cal[a-z]fornia.

In some cases (usually associated with binning in the Tool Manager), an option menu of
values appears, instead of a text field. To ignore that variable, select Ignored in the Option
menu. You can use relational operators (such as >=) with these options. This means that
the specified value as well as subsequent ones are selected.

In addition to numeric and string comparison operations, you can specify Is Null ,
which is true if the value is null.

To the right of each field is an additional option menu that lets you specify “And” or “Or”
options. For example, you could specify “sales > 20 And < 40.” You can have any number
of And or Or clauses for a given variable, but cannot mix And and Or in a single variable.

Click the Apply button to start filtering. If you press Enter while the panel is active,
filtering starts automatically.

Click the Close button to close the panel.

• Show Window Decoration causes the buttons around the main window to be
displayed. Default for this option is on. Toggle this option to make the window
decoration disappear.

162

Chapter 5: Using the Map Visualizer

• Show Animation Panel causes the animation control panel to be displayed to the right
of the main view. Click this option again to deselect it. When this option is
deselected, the animation panel is not displayed. Not displaying the animation
panel can be useful when you have applied the InterTool menu’s Synchronize All
Mapviz Sliders option (described in the “The InterTool Menu” on page 164) and need
only a single animation control panel on the screen.

• Show Data Points causes a grid of black dots to appear (or disappear) in the 2D
summary window. Each dot denotes the precise position of a discrete data value in
the input dataset. For example, if the input dataset has 10 data values across one
independent dimension, then you see heights and colors of the graphical objects in
the main window vary continuously, based on data values that are interpolations
between these discrete data points. These data point dots in the summary window
help you better understand when the heights and colors are derived directly from
the input data values, and when they are derived indirectly from interpolated
values.

• Use Random Colors causes the configuration file’s color mapping specifications (for
example, white-to-red shadings representing population density) to be ignored.
Random, constant colors are assigned to the graphical objects. Click this option
again to deselect it.

• Display X-Y Coordinates puts the Map Visualizer into a special mode that lets you
identify X-Y vertex pairs at specific points of the scene in the main window. In this
mode, the Map Visualizer resets the cursor to select mode and displays 3D objects
as flat background lines. Clicking the left mouse button on various parts of the
displayed scene causes the corresponding X-Y vertex pair values to appear in the
Selection Details window. You can also enter the vertex pair points into the .gfx file
to identify point objects or the endpoints of line objects for subsequent display. Note
that displaying X-Y coordinates is used for developing and refining .gfx files, not for
data analysis.

When Display X-Y Coordinates mode is initially enabled, or when a point in the
background is selected, the selection window shows the minimum and maximum
X-Y pairs of the currently displayed image in the main window. Add these two
value pairs to the new .gfx file you are generating. The first record in the file
gfx_files/usa.cities.gfx shows an example of how the min-max pairs of the usa.sates.gfx
file were entered into the associated usa.cities.gfx file. This ensures that the X-Y
coordinate pairs in usa.cities.gfx share the same coordinate system as the X-Y
coordinate pairs in usa.sates.gfx.

Pulldown Menus

163

The Selections Menu

The Selection menu lets you drill through to the underlying data. The menu has six items.

Figure 5-17 Map Visualizer Selections Menu

• Select All performs the equivalent of selecting (with the mouse pointer) all the
visible graphical objects in the current scene.

• Show Values displays a table (Record Viewer) of the values for all selected objects.

• Show Original Data retrieves and displays the records corresponding to what has
been selected. The resulting records are shown in a table viewer.

• Send To Tool Manager inserts a filter operation, based on the current box selection(s),
at the beginning of the Tool Manager history. The actual expression used to do the
drill through is determined by extents of the current box selection(s). If nothing is
selected, a warning message appears.

• Use Slider On Drill Through determines whether or not to use the slider position
when creating the drill-through expression. If checked (default), an additional term
is added to the drill-through expression, limiting the drill-through to those records
defined by the slider’s position. If this option is not checked, no such limiting term
is added.

• Complementary Drill Through causes the Show Original Data and Send To Tool Manager
selections, when used, to fetch all the data that are not selected.

For further details on drill-through, see Chapter 14, “Multiple Selection and
Drill-Through.”

164

Chapter 5: Using the Map Visualizer

The InterTool Menu

The InterTool menu has one option, as shown Figure 5-18.

Figure 5-18 Map Visualizer’s InterTool Pulldown Menu

Selecting Synchronize All Mapviz Sliders identifies this Map Visualizer window as one in
a “synchronized sliders” cooperative: changing the current slider positions in one Map
Visualizer window causes/produces the same change in all others currently open. Click
this option again to deselect it. This menu option must be selected in every Mapviz main
window that is to be part of the synchronization.

Note that currently only the sliders’ physical positions are synchronized, not the
underlying meanings of those positions. For example, synchronizing
population.usa.mapviz (with dates ranging from 1770 to 1990) and population.canada.mapviz
(with dates ranging from 1871 to 1991) probably is not useful, since the slider physical
midpoint position represents 1880 in the United States and 1931 in Canada. Generally,
synchronization is useful only when the sliders of each dataset represent the same range
of independent variables.

The Help Menu

The Help menu (see Figure 5-19) provides access to siz options. This section describes
those functions.

Figure 5-19 Map Visualizer’s Help Pulldown Menu

Null Handling in the Map Visualizer

165

• Click for Help turns the cursor into a question mark. Placing this cursor over an
object in the Map Visualizer’s main window and clicking the mouse causes a help
screen for that object to appear. Closing the help window restores the cursor to its
arrow form and deselects the help function. The keyboard shortcut for this function
is Shift+F1. (Note that it also is possible to place the arrow cursor over an object and
press the F1 function key to access a help screen about that object.)

• Overview provides a brief summary of the major functions of this tool, including
how to open a file and how to interact with the resulting view.

• Index provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts provides the keyboard shortcuts for all of Map Visualizer’s
functions that have accelerator keys.

• Product Information brings up a screen with the version number and copyright notice
for the Map Visualizer.

• MineSet User’s Guide invokes the IRIS Insight viewer with the online version of this
manual.

Null Handling in the Map Visualizer

Nulls represent unknown data (see Appendix I, “Nulls in MineSet”).

In the Map Visualizer, nulls can occur when any of the following are true:

• The database or data file contains a null.

• The Tool Manager is used to make an array based on bins and no data falls into a
specific bin. For example, if there is no data for the 30-40-year-old population, that
bin is null.

• The Tool Manager is used to make an array and the null enum option is specified. In
this case, an extra array element is created to represent the aggregation of all the
values for which the bin value is null. The Tool Manager assigns the question mark
(?) character to this extra bin. To view the values of this bin, move the corresponding
slider to its left-most position. If there are no data for that null bin, the values
associated with it are null as well, and the Map Visualizer represents the
corresponding graphical object(s) as a “null object.”

166

Chapter 5: Using the Map Visualizer

• Expressions and aggregations of nulls can generate nulls (see Appendix I, “Nulls in
MineSet”).

• The Map Visualizer uses special representations when a null value is mapped to a
visual attribute. A null height results in a dark grey object with zero height; a null
color results in an object with appropriate height (as defined by the value mapped
to height), but with a dark gray color (see Figure 5-20).

Figure 5-20 Representation of a Null Value Mapped to Height (Top Middle Object) and to
Color (Bottom Right Object)

When selecting an object with a null value, a question mark (?) is shown in the
selection field.

Sample Configuration and Data Files

167

Sample Configuration and Data Files

The provided sample configuration and data files demonstrate the Map Visualizer’s
features and capabilities. The .data and .mapviz files are in the directory
/usr/lib/MineSet/mapviz/examples; the .gfx and .hierarchy files are in the directory
/usr/lib/MineSet/mapviz/gfx_files.

• blocks.mapviz, blocks.data, blocks.gfx, and blocks.hierarchy
This simple example shows four adjacent blocks. The height and color of each block
varies based on the underlying data in blocks.data. You can drill up using the middle
mouse button (see the “Select Mode” section) to see the upper pair and the lower
pair of blocks aggregate; then drill up again to see these upper and lower blocks
aggregate into a single block. You can drill down using the right mouse button to
see the objects of finer granularity reappear.

• population.australia.mapviz, population.australia.data, australia.states.gfx, and
australia.states.hierarchy
The data file contains one row for each Australian state and territory. Each row
contains three tab-separated items: a keyword name for the state or territory, the
population value, and the size of the territory.

This sample graphically displays the 1991 population and population density of the
Australian states and territories. Heights of the graphical objects represent the
relative population; color represents the relative population density. A legend at the
bottom of the display describes the color range and the associated values.

• population.canada.mapviz, population.canada.data, canada.provinces.gfx, and
canada.provinces.hierarchy
The data file contains one row for each Canadian province and territory. In this
example, each row contains 13 blank-separated values (one for each decade
between 1871 and 1991).

This sample graphically displays the population and population density of the
Canadian provinces and territories from 1871 to 1991, in 10-year increments. The
animation control panel lets you dynamically view the datasets across a range of
time. Animation operation is explained in “Sliders Controlling Independent
Dimensions” on page 151.

• population.europe.mapviz, population.europe.data, europe.countries.hierarchy, and
europe.countries.gfx
When graphically displayed, this shows the 1992 population and population
density of countries in Western and Central Europe.

168

Chapter 5: Using the Map Visualizer

• population.usa.mapviz, population.usa.data, usa.sates.gfx, and usa.sates.hierarchy
When graphically displayed, this shows the population and population density of
the United States from 1770 to 1990. The animation controls let you dynamically
view population and density changes across time.

• population.usa.cities.mapviz, population.usa.cities.data, usa.sates.gfx, usa.sates.hierarchy,
and usa.cities.gfx and usa.cities.hierarchy
The usa.sates.gfx file specifies the United States, which is displayed as a background.
The usa.cities.gfx file specifies the location of the cities on this background. The .data
file specifies the population of each city.

This sample graphically displays the population of the 48 largest U.S. cities from
1950 to 1990. No data has been mapped to the colors. The animation controls let you
dynamically view changes across time.

• perhouse.perage.mapviz, perhouse.perage.data, usa.sates.gfx, and usa.sates.hierarchy
This sample graphically displays consumer household spending data from
July-August 1988 to May-June 1991. Color is mapped to the gender of the spending
household member; height represents the average dollar spent per household for a
given time period and age group. This data has two independent dimensions: time
and age. The highest spending is indicated in the summary window (see “The
Summary Window” on page 154) by the areas with the greatest color density,
namely “May-June 1989 (Age: 30-39)” and “May-June 1990 (Age: 30-39).”

• telecom.mapviz, telecom.data, usa.cities.lines.gfx, usa.cities.lines.hierarchy, usa.sates.gfx,
and usa.sates.hierarchy
This sample graphically displays a flat map with arched lines on it. These lines
connect two endpoints. The lines can have variable width and color. In this
example, the widths and colors are random; however, they could relate to the
volume and duration of the connections between the endpoints.

• fasta.m.data, fasta.m.mapviz, fasta.m.gfx, and fasta.m.hierarchy

The data file for this example contains the partial results of a full biological
sequence comparison between two complete genomes (courtesy of Dr. Tom Flores,
European Bioinformatics Institute). When graphically displayed, scientists can
quickly identify and locate the regions of similarity between the two genomes. The
ability to display such large amounts of information in a visual data exploration
method such as this could be extended to include much more information about the
individual genomes. Scientists could explore this data more easily and thereby
perhaps better understand the function and purpose of the similar genetic
sequences.

Sample Configuration and Data Files

169

In this example, the “map” is the circular-shaped genome of a biological organism
called Mycoplasma genitalium (MG). The MG genome is divided into 500 equal
segments, each representing a 1000-nucleotide sequence in the genome. The slider
selects one of the segments of the second genome, called Haemophilus influenzae
(HI), for cross-comparison between the two genomes. The Summary Window in the
Animation Control Panel indicates which segments show the greatest similarities,
and you can move the slider to examine those particular segments of interest. The
bar heights and colors on the “map” therefore indicate the relative similarity of each
MG segment to each HI segment, where higher bars correspond to greater measures
of similarity. This similarity is measured by the “Reciprocal Evalues,” which ranges
from 0.0 to 1.0.

171

Chapter 6

6. Using the Scatter Visualizer

This chapter discusses the features and capabilities of the Scatter Visualizer. It provides
an overview of this database visualization tool, then explains the Scatter Visualizer’s
functionality when working with the

• main window

• external controls

• pulldown menus

Finally, it lists and describes the sample files provided for this tool.

Overview of Scatter Visualizer

The Scatter Visualizer lets you visually analyze relationships among several variables
(see Figure 6-1), either statically or by animation. It is particularly useful for seeing
individual data points when you do not have a large number of records. If your dataset
has a very large number of records consider using the Splat Visualizer. Analysis in the
Scatter Visualizer is done using

• a three-dimensional landscape

• an animation control panel that includes a two-dimensional slider

• graphical objects, called entities, that can be animated in the three-dimensional
landscape

172

Chapter 6: Using the Scatter Visualizer

Figure 6-1 Sample Scatter Visualizer Screen

File Requirements

173

The Scatter Visualizer lets you visualize your data by mapping each record, or row, in the
dataset to an entity in the three-dimensional landscape. Variables in the data can be
mapped to the sizes, colors, and positions of the entities. Also, you can map one or two
numeric variables to the sliders in the animation control panel. If the variables mapped
to sizes, colors, or positions of the entities depend on the variables mapped to sliders, the
sliders can be used to drive an animation. For example, the data might represent the sales
of several companies over time. If the time variable is mapped to a slider and the sales
variable is mapped to size, then the entities grow or shrink as the time slider is animated.

After you create a visualization of your data, the Scatter Visualizer lets you analyze the
data in various ways. The animation control panel lets you trace animation paths in one
or two dimensions. By playing back the path you created, you can watch the size, color,
and motion of the entities for trends or anomalies. In the three-dimensional landscape,
you can orient the display to emphasize particular dimensions or a point of view. The
Scatter Visualizer lets you scale the values of variables to give them greater emphasis.
Also, you can filter the display to show only those entities meeting certain criteria.

File Requirements

The Scatter Visualizer requires the following files:

• A data file, consisting of rows of tab-separated fields. This file is easily created using
the Tool Manager (see Chapter 3). If you are generating this file yourself, see
Appendix D, “Creating Data and Configuration Files for the Scatter Visualizer” for
the required file format.

You can generate data files by extracting data from a source (such as a database) and
formatting it specifically for use by the Scatter Visualizer. Data files have
user-defined extensions (the sample files provided with the Scatter Visualizer have
a .data extension).

• A configuration file, describing the format of the input data and how it is to be
displayed. The Tool Manager can create this file (see Chapter 3), or you can use an
editor (such as jot, vi, or Emacs) to produce this file yourself (see Appendix D,
“Creating Data and Configuration Files for the Scatter Visualizer”).

Configuration files must have a .scatterviz extension. When starting the Scatter
Visualizer, or when opening a file, you must specify the configuration file, not the
data file.

174

Chapter 6: Using the Scatter Visualizer

Options for invoking the Scatter Visualizer

There are a two options that affect how this tool is invoked:

• -warnexecute indicates that if you attempt to execute a command specified in an
execute statement, a warning is displayed and you are given the option to execute
the command or not. This is intended for an insecure environment, such as files
obtained from the Web, and is used automatically when commands are executed via
mtr files.

You can enable this option permanently by adding the line

*minesetWarnExecute:TRUE

to the user’s .Xdefaults file, or by setting the environment variable

MINESET_WARN_EXECUTE

• -quiet eliminates the dialogs that popup to indicate progress. You can enable this
option permanently by adding the line

*minesetQuiet:TRUE

to the user’s .Xdefaults file.

Starting the Scatter Visualizer

There are five ways to start the Scatter Visualizer:

• Use the Tool Manager to configure and start the Scatter Visualizer. (See Chapter 3
for details on most of the Tool Manager’s functionality, which is common to all
MineSet tools; see “Configuring the Scatter Visualizer Using the Tool Manager” on
page 176 for details about using the Tool Manager in conjunction with the Scatter
Visualizer.)

• Double-click the Scatter Visualizer icon, which is in the MineSet page of the icon
catalog. The icon is labeled scatterviz. Since no configuration file is specified, the
start-up screen requires you to select one by using File|Open.

Starting the Scatter Visualizer

175

Figure 6-2 Scatter Visualizer Start-Up Screen With File Pulldown Menu Selected

Starting the Scatter Visualizer without specifying a configuration file causes the
main window to show the copyright notice and license agreement for this tool.
Only the File and Help pulldown menus can be used. For the main window to be
fully functional, open a configuration file by selecting File|Open (Figure 6-2).

176

Chapter 6: Using the Scatter Visualizer

• If you know what configuration file you want to use, double-click the icon for that
configuration file. This starts the Scatter Visualizer and automatically loads the
configuration file you specified. This works only if the configuration filename ends
in .scatterviz (which is always the case for configuration files created for the Scatter
Visualizer via the Tool Manager).

• Drag the configuration file icon onto the Scatter Visualizer icon. This starts the
Scatter Visualizer and automatically loads the configuration file you specified. This
works even if the configuration filename does not end in .scatterviz.

• Start the Scatter Visualizer from the UNIX shell command line by entering this
command at the prompt:

scatterviz [configFile]

configFile is optional and specifies the name of the configuration file to use. If you
don’t specify a configuration file, you must use File|Open to specify one (see
Figure 6-2).

Configuring the Scatter Visualizer Using the Tool Manager

This section describes how the Scatter Visualizer can be configured using the Tool
Manager. Although the Tool Manager greatly simplifies the task of configuring the
Scatter Visualizer, you can construct a configuration file manually for this tool using a
text editor (see Appendix D, “Creating Data and Configuration Files for the Scatter
Visualizer”).

Note that the steps required to connect to a data source are described in Chapter 3.

Selecting the Scatter Visualizer Tool

Select the Viz Tools tab in the Data Destination panel of the Tool Manager’s main screen
(Figure 6-3). From the popup list of tools, select Scatter Visualizer. The mapping
requirements for the Scatter Visualizer are displayed in the window on the right side of
this panel. Items in the Visual Elements list that are preceded by an asterisk are optional.

Configuring the Scatter Visualizer Using the Tool Manager

177

Figure 6-3 Data Destination Panel With Scatter Visualizer Selected

• Axis 1, *Axis 2, *Axis 3 let you assign to the axes in the Scatter Visualizer’s main
window the data you want represented. Assigning data to Axis1 is required.
However, this alone does not produce a useful display. By assigning data to Axis 2,
you can create an XY chart. Assigning data to all three axes produces a 3D chart.

• *Entity-size, *Entity-color, *Entity-label let you assign size, color, and label to the
entities appearing in the Scatter Visualizer’s main window.

• *Summary is the value mapped to the summary column, if you have a slider. It
determines the color of the slider’s background.

• *Slider1 and *Slider2 let you map columns directly to one or two animation Sliders
(see “Slider Creation for Scatterviz,” below).

Mapping Requirements to Columns

You can map requirements to columns by selecting a column name in the Current
Columns window of the Table Processing panel, then selecting a category in the Visual
Elements window.

178

Chapter 6: Using the Scatter Visualizer

Undoing Mappings

To undo a specific mapping, select that mapping in the Visual Elements window (see
Figure 3-24), then click the Clear Selected button. To undo all mappings, click the Clear All
button.

Slider Creation for Scatterviz

Sliders can be created manually or automatically. The following subsections describe
these methods.

Manual Slider Creation

Tool Manager generates sliders whenever there is an array column present in the current
table. The sliders correspond to the indices of the array columns. If the column has one
index (one-dimensional array), only one slider is created, but if the column has two
indices (two-dimensional array), both an X and a Y slider are created. The current slider
indices are indicated in the Tool Options dialog box from the Tool Manager.

Note that for a slider to be created, all array columns in the current table must have the
same indices. If array columns with differing indices exist in the current table, no sliders
are created.

See “Aggregation” in Chapter 3 for more information on creating arrayed columns.

Automatic Slider Creation

If no arrayed columns are in the current table, Tool Manager can automatically generate
sliders by use of the Slider1 and Slider2 mappings. Sliders are created through a
combination of automatic binning and aggregation. These automatic operations occur
after clicking Invoke Tool in the Data Destination Panel. The operations do not affect the
current history operations of Tool Manager, but they do appear in the configuration files
for the tool.

Columns mapped to Slider1 and Slider2 eventually form the indices for the sliders. These
columns must be either numeric (int, float, double) or binned. If a column mapped to a
slider is already binned, no automatic binning is needed for this column, and this column
is used as an index for a slider. However, if the column is not binned, a binned column is
created using the automatic binning options in the Tool Options dialog box.

Configuring the Scatter Visualizer Using the Tool Manager

179

The three methods of binning are:

• Selecting All Distinct Values creates a bin for every unique value of the column.

• Specify the number of bins you want to create. The thresholds for the bins are
determined using the Uniform Range approach.

• Selecting Automatic automatically determines the number of bins to create and
determines the bin thresholds using the Uniform Range approach.

(See “The Bin Column Button” in Chapter 3 for more information about binning.) The
column used in forming the automatic bins is deleted from the current table.

The binned columns now form the indices of array columns. Note that if you want to
create only one slider, the index must be mapped to Slider1. Attempting to create only
one slider with a mapping to Slider2 is not allowed and generates a Tool Manager error.
Also, a column mapped to a slider cannot be mapped to any other mapping, since it is
removed during the aggregation process.

Once the slider indices are formed, the arrayed columns are created. This is done using
automatic aggregation. Any numeric columns mapped to Axis 1, Axis 2, Axis 3,
Entity-size, Entity-color, Entity-label, or Summary are aggregated using the automatic
aggregation options in the Tool Options dialog box. You can either specify aggregating
by Sum or by Average. The binned columns created from the slider mappings form the
indices for the aggregation, and any remaining columns in the table are Group-By
columns. (See “Aggregation” in Chapter 3 for a description of the aggregation process.)

The aggregation step automatically forms the arrayed columns used for sliders. These
arrayed columns form the new tool mappings. For example, if the column mpg were
mapped to Axis 1, a new column avg_mpg[] is formed and remapped to Axis 1. The
progress of the automatic slider generation is displayed in the Tool Manager status
window.

Specifying Tool Options

Clicking the Tool Options button causes a new dialog box to be displayed (Figure 6-4).
This lets you change some of the Scatter Visualizer options from their default values.

180

Chapter 6: Using the Scatter Visualizer

Figure 6-4 Scatter Visualizer’s Options Dialog Box

Configuring the Scatter Visualizer Using the Tool Manager

181

The Scatter Visualizer’s Options dialog box has four basic options blocks:

• Entities

• Sliders

• Axes

• Summary

• Other

Entity Options

This option lets you specify a number of characteristics for the entities that the Scatter
Visualizer then graphically displays.

• Entity Legend On—lets you determine whether the entity legend is displayed or
hidden.

• Entity Size—lets you scale the entity to a max size, a scale size, or a default (no
adjustment). You also can specify whether the legend for entity size is displayed or
hidden.

• Entity Colors—lets you control the colors in which entities are displayed. You can

– specify the list of colors to use

– specify the kind of mapping

– map the list of colors to a list of values

– specify whether the legend for color is displayed or hidden

– map colors to entities

• Entity Shape—lets you choose a visual representation for the entities: cubes, bars, or
diamonds.

To use these Colors options, you must have mapped a column to the *Entity-color
requirement of the Data Destination panel. See “Choosing Colors” and “Using the Color
Browser” in Chapter 3 for a more detailed explanation of how to choose and change
colors.

Color list to use lets you specify the color list using the + button next to the color list label.
This brings up a color editor that lets you specify a color to be added to the list.

182

Chapter 6: Using the Scatter Visualizer

Color mapping let you specify whether the color change that is shown in the graphic
display is Continuous or Discrete. If you choose Continuous, the color values shift
gradually between the colors entered in the Color list to use field as a function of the
values that are mapped to those colors in the Color mapping field.

The field to the right of the popup button lets you enter specific values for mapping the
colors. If you do not specify any mapping values, the range of values in the color variable
is used.

Example 6-1

If you

• used the Color Browser to apply red and green to bars

• selected Continuous for the Kind of mapping

• entered the values 0 100

then the display shows all entities with values less than or equal to 0 as completely red,
those as greater than or equal to 100 as completely green, and those between 0 and 100
as shadings from red to green.

Example 6-2

If you

• used the Color Browser to apply red and green to entities

• selected Discrete for the Kind of mapping

• entered the values 0 50

then the display shows all entities with values of less than 50 in red, and all those with
values greater than or equal to 50 in green.

• Entity Label Color lets you modify a label color by clicking on it. This causes the
Color Choose dialog box to appear, which lets you implement your color changes.

• Entity Label Size controls the size of the entity labels. A smaller number decreases
the size, a larger one increases it.

Configuring the Scatter Visualizer Using the Tool Manager

183

Summary Options

Summary options let you specify what color to use for the Summary window. You can
also specify whether the summary legend, which indicates what the values are, is
displayed or hidden.

If you have an array of values, you can specify an X or Y slider. The popup buttons next
to these options provide a list of available keys, and let you specify which to use as
sliders.

Slider Options

The Slider options control how the slider mappings are interpreted. For details see
“Slider Creation for Scatterviz” on page 178.

Axis Options

The Axis options let you specify the following, for each axis:

• A label. (If you leave this box blank, the Scatter Visualizer defaults to using the
column names for each axis.)

• A size type for each axis. (This can be Max Size, Scale Size, or No Adjustment.)

– Max Size lets you specify that an axis is scaled independently to a specified size.
If one axis has a Max Size that is twice as large as the other, it will be twice as
long, regardless of the data values. This option is most useful when comparing
axes that are in different units (for example, comparing income to age). This
option has no effect on non numeric data.

– Scale Size lets you specify that the axis is scaled based on its maximum value. If
two axes have the same Scale Size, but one has a maximum that is twice the
value of the other, the former will be twice as long as the latter. This option is
useful for comparing axes with the same units (for example, income vs.
expenses). This option does affect the size of non numeric axes.

– No Adjust is equivalent to a Scale Size of 1.0.

• A size value.

• Whether the axis should be extended to include the value 0.

184

Chapter 6: Using the Scatter Visualizer

Other Options

The Other Options, at the bottom of the dialog box, include the following fields:

• Message Lets you specify the message displayed when an entity is selected. For a
listing and description of format types that can be entered in this field, see the
“Message Statement” section in Appendix D, “Creating Data and Configuration
Files for the Scatter Visualizer”

• Execute lets you type in a UNIX command that is executed when double-clicking on
an entity. The format is similar to the message statement. If no execute statement
appears, double-clicking has no effect. For a detailed description of the Execute
field, see “Execute Statement” in Appendix D.

• Hide Label Distance controls the distance at which entity labels become invisible.
Smaller distances might improve performance, but the labels disappear more
quickly. The higher the number, the greater the distance at which labels are hidden.

• Axis Label Size controls the size of the axis labels. A smaller number decreases the
size, a larger one increases it.

• Grid (X, Y, Z) Size lets you specify the spacing between grid lines for the respective
axis. A smaller number decreases the size, a larger one increases it.

• Grid Color lets you modify a grid color by clicking on it. This causes the Color
Choose dialog box to appear, which lets you implement your color changes.

Resetting the Tool Options

If you want to reset the values of all options to their default values, click the Reset Options
button.

Saving the New Tool Options

Once you have finished making changes to the Tool Options dialog box, click OK to
return to the Tool Manager’s main screen.

Configuring the Scatter Visualizer Using the Tool Manager

185

Saving Scatter Visualizer Settings

The Tool Manager stores information for the Scatter Visualizer in several files, all sharing
the same prefix:

• <prefix>.scatterviz.data contains data.

• <prefix>.scatterviz.schema describes the data file.

• <prefix>.scatterviz contains information needed by the Scatter Visualizer.

• <prefix>.mineset contains all the information needed to create the other files.

To specify a prefix, use the Save Current Session As... button in the lower right of the Viz
Tools panel, or the Save... menu option in the File menu. If you do not specify a prefix, it
is based on the data source.

When you use the Invoke Tool button, the .data, .schema, and .scatterviz files are updated, if
necessary.

Invoking Scatter Visualizer

To see Scatter Visualizer graphically represent your data, click the Invoke Tool button at
the bottom of the Data Destination panel.

Null Handling in the Scatter Visualizer

The Scatter Visualizer uses special representations when fields with unknown data
values, or nulls, are mapped to visual attributes. (For a discussion of null values, see
Appendix I, “Nulls in MineSet.”) When a null value is mapped to an entity’s size, the
entity is drawn as the outline of a cube. When a null value is mapped to an entity’s color,
it is drawn in dark grey. When a null value is displayed in the Selection Window or
“Pointer is Over” area, it is shown as a question mark (?). (The Selection Window and
“Pointer is Over” areas are discussed in the “Select Mode” section.)

If a null value is mapped to the x, y, or z position of an entity, the result depends on the
Show Entities with Null Positions option under the View Menu (see “The View Menu”
on page 200). If the option is set, the entity is shown below the range of the
corresponding axis. If the option is not set, the entity is not shown.

186

Chapter 6: Using the Scatter Visualizer

Working in the Scatter Visualizer’s Main Window

If you started the Scatter Visualizer without specifying a configuration file, the main
window shows the copyright notice and license agreement for the Scatter Visualizer.
Only the File and Help pulldown menus can be used. For the main window to show all
menus and controls, open a configuration file. Use File|Open (Figure 6-2) to see a list of
configuration files.

When a valid configuration file has been selected, the 3D landscape it specifies is visible.
For example, selecting company.scatterviz gives results as shown in Figure 6-5.

Working in the Scatter Visualizer’s Main Window

187

Figure 6-5 Initial View When Specifying company.scatterviz

This shows the sales of life insurance, auto insurance, and home insurance with respect
to income brackets over time.

188

Chapter 6: Using the Scatter Visualizer

Viewing Modes

The two modes of viewing are grasp and select. To toggle between these modes, press the
Esc key or click the appropriate cursor button adjacent to the top-right of the viewing
area. (These and the rest of the buttons are described later in this chapter.)

Grasp Mode

In grasp mode, the cursor appears as a hand. This mode supports panning, rotating, and
scaling the scene’s size in the main window.

• To pan the display, press the middle mouse button and drag it in the direction you
want the display panned.

• To rotate the display, press the left mouse button and move the mouse in the
direction you want to rotate. (Also see the thumbwheel controls Rotx and Roty,
described in “Thumbwheels” on page 192.)

• To move the viewpoint forward, press the left and middle mouse buttons
simultaneously and move the mouse downwards. To move the viewpoint
backward, press the left and middle mouse buttons simultaneously and move the
mouse upwards. This is equivalent to the functions provided by the Dolly
thumbwheel.

Select Mode

In select mode, you can highlight an object by positioning the cursor over that object.
Information about that object then appears at the top of the view area, under the Pointer
is over: label (Figure 6-6). This information remains visible in the window only as long as
the pointer cursor remains over the object. If you position the pointer cursor over an
object and click the left mouse button, that same information appears in the Selection
Window, which is above the main window, under the “Selection” label.

This Selection information remains visible until another object is selected, or you click the
black background. Using the mouse, you can cut and paste this selection information into
other applications, such as reports or databases.

Working in the Scatter Visualizer’s Main Window

189

Figure 6-6 Cursor Over an Object

The information is displayed when the cursor is over the object.

190

Chapter 6: Using the Scatter Visualizer

If an execute statement was specified via Tool Manager or the configuration file, then
double clicking on an object executes the appropriate command. If the -warnexecute

option was specified when invoking the Scatter Visualizer, a warning is given first.

Note: Users familiar with Open Inventor can configure the Scatter Visualizer so that the
right mouse button brings up the standard Inventor Menu. This provides additional
functions, such as stereo viewing and spin animation. These functions are provided by
the Open Inventor library. To enable the Open Inventor Menu, add the line
*minesetInventorMenu:TRUE

to your .Xdefaults file.

External Controls

Several external controls surround the main window, including buttons and
thumbwheels. This section describes each type of control.

Buttons

At the top right of the image area are 11 buttons (see Figure 6-7).

Figure 6-7 Detail View of Top Right Buttons

Arrow

Hand

Viewer help

Home

Set Home

View All

Perspective

Seek

Top View

Front View

Right View

External Controls

191

• Arrow puts you in select mode, which lets you highlight entities in the main
window. When in this mode, the cursor shape is an arrow.

• Hand puts you in grasp mode, which lets you rotate, zoom, and pan the display in
the main window. When in this mode, the cursor shape is a hand.

• Viewer help brings up a help window describing the viewer itself.

• Home takes you to a designated location. Initially, this is the first viewpoint shown
after invoking the Scatter Visualizer and specifying a configuration file. If you have
been working with the Scatter Visualizer and have clicked the Set Home button, then
clicking Home returns you to the viewpoint that was current when you last clicked
Set Home.

• Set Home makes your current location the Home location. Clicking the Home button
returns you to the last location where you clicked Set Home.

• View All lets you view the entire graphic display, without changing the angle of
view you had before clicking on this option. To get an overhead view of the scene,
rotate the camera so that you are looking directly down on the entities, then click
the View All button.

• Seek takes you to the point or object you click after selecting this button.

• Perspective is a toggle button that lets you view the scene in 3D perspective (closer
objects appear larger, farther object appear smaller). Clicking this button again turns
3D perspective off.

• Top View lets you view the scene from the top.

• Front View lets you view the scene from the front.

• Right View lets you view the scene from the right side.

192

Chapter 6: Using the Scatter Visualizer

Thumbwheels

Three thumbwheels appear around the lower part of the main window border (see
Figure 6-8). They let you dynamically move the viewpoint.

Figure 6-8 View of Lower Half of Window With Thumbwheels

• The vertical thumbwheel Rotx (rotate about the x axis), on the left, rotates the
display up and down.

• The horizontal thumbwheel Roty (rotate about the y axis), at the bottom left, rotates
the scene in the main window around its centerpoint left and right.

• The vertical thumbwheel Dolly, on the right, moves the viewpoint forward and
backward. Note that as you use the Dolly thumbwheel to magnify the scene in the
main window, additional detail can appear. If Perspective is off, the Dolly
thumbwheel becomes the Zoom thumbwheel.

The Animation Control Panel

The animation control panel, which appears to the right of the main window, consists of
a summary window, with up to two adjacent sliders, an information field, animation
buttons, and animation sliders.

Thumbwheels

The Animation Control Panel

193

Sliders Controlling Independent Dimensions

The number of sliders appearing adjacent to the summary window is dependent on the
dataset displayed in the Scatter Visualizer’s main window. Datasets can have two, one,
or no independent dimensions.

Datasets With Two Independent Dimensions

If the dataset has two dimensions of independently varying data (such as
company.scatterviz), the controls to the right of the main graphics window become visible
(see Figure 6-9).

Figure 6-9 Animation Control Panel With Summary Window and Both Slider Controls

194

Chapter 6: Using the Scatter Visualizer

To the right of the main window are the 2D summary window and slider controls. The
summary window has a horizontal slider below it for selecting data points of the first
independent dimension, and a vertical slider to the left for selecting data points of the
second independent dimension. The horizontal slider’s dimension is identified by a label
below it. The vertical slider’s dimension is identified by a label above it.

Datasets with One Independent Dimension

For datasets with one independent dimension (such as store-type.scatterviz), only the
slider below the summary window appears, and the summary window is compressed
(see Figure 6-10). This slider’s dimension is identified by a label below it.

Figure 6-10 Animation Control Panel With Summary Window and One Slider Control

The Animation Control Panel

195

Datasets With No Independent Dimension

For datasets with no independent dimensions (such as brand.scatterviz), no slider control
appears (see Figure 6-11).

Figure 6-11 Scatter Visualizer Without Independent Dimension or An Animation Control
Panel

196

Chapter 6: Using the Scatter Visualizer

The Summary Window

The summary window provides a 2D representation of the aggregation of values that the
main window displays in 3D. The whiter the areas of the summary window, the lower
the total values represented by the entities in the main window. The greater the color
density in areas of the summary window, the higher the total of those values. The density
of these colors in the summary window provides a summary of the data across the one
or two independent dimensions in the dataset.

By default, the summary window also contains a set of black dots, evenly spaced across
the one or two dimensions of data. These dots indicate the precise positions of the
discrete datapoints. You can turn off these black dots using the View|Show Data Points
menu option.

Color Density Examples in the Summary Window

After opening the company.scatterviz file, for example, the 2D summary window shows a
color range from white (on the left) to red (on the right). White corresponds to a low sales
volume; red represents a higher aggregate sales volume. In this example, the greater the
density of red, the higher the total sales of life, auto, and home insurance.

Creating a Path in the Summary Window

If the dataset loaded into the Scatter Visualizer has at least one independent dimension,
it is possible to view all or any part of that dataset via animation. This is done by first
creating a path in the summary window (this path connects a sequence of data points),
then activating the animation controls described in the next section.

The three ways to draw a path in the summary window are as follows:

• Define a starting point by clicking and holding down the left mouse button, then
draw an arbitrary path by dragging the cursor over the window. End the path by
releasing the left mouse button.

The Animation Control Panel

197

• Define a starting point by clicking the left mouse button, then define an endpoint by
moving the cursor to another part of the window and clicking the middle mouse
button. A line appears between those two points. To add more line segments,
continue with repeated middle mouse clicks.

• Define a starting point by clicking the left mouse button, then drag one of the
independent dimension sliders, thus drawing a straight line along this dimension.
If there are two sliders, use of the second slider causes a straight line to be drawn
along the axis controlled by this second slider.

Animation Buttons and Sliders

The seven VCR-like buttons and two sliders (Path and Speed) below the 2D summary
window let you control the animation.

Animation Buttons

Once a path is drawn in the summary window (see “Creating a Path in the Summary
Window,” above), you can use the VCR-like buttons to control animation along this path.
The middle Stop button is highlighted in blue, indicating an initial state. Use the adjacent
Play Forward button (to the right of Stop) or Play Reverse (to the left) to begin simple
movement along the drawn path in a forward or reverse direction. (Forward and Reverse
are defined by the sequence that the path was drawn, not by the left-to-right or
right-to-left movement.)

To stop and restart the animation, click the Stop button, then use the Play Forward or
Reverse button again. Note that when you stop, the animation continues in the current
direction until the position falls upon a discrete data point.

Adjacent to the Play buttons are the Single-Step buttons, as well as Forward and Reverse.
Clicking on one of these buttons changes the current path position to the next discrete
data point.

On the outside are the Fast Forward and Fast Reverse buttons. Clicking one of these
buttons while in Stop state changes the path position to the end (for Forward) or to the
beginning (for Reverse) of the path. Clicking a Fast button when in Play state increases the
animation speed.

198

Chapter 6: Using the Scatter Visualizer

Animation Flow

Below the Animation Buttons are the three Animation Flow buttons.

Play-once (default)—the animation moves either forward or reverse until it reaches the
end of the path, then stops.

Loop—when the animation reaches the end of the path, it automatically resets to the
beginning and starts over again.

Swing—when the animation reaches the end of the path, it reverses direction and retraces
its path to the other end; upon reaching that end, the animation reverses direction again,
beginning the cycle again.

Animation Sliders

While animation is stopped, you can move the Path slider to reset the position along the
path. Note that when you use the Path slider, the cursor in the summary window moves
across the drawn path, and the 1D sliders (below and to the left of the drawing area)
move consistently with the cursor position. Then use the Play or Reverse button to restart
the animation from the newly specified point. You can drag the Path slider to an arbitrary
position between discrete data points; however, when you release the slider, the path
position changes to the nearest discrete data point.

Use the Speed slider to adjust the speed of the animation along the path.

Data Points and Interpolation

As animation proceeds, the variables mapped to size, color, and axes (positions) in the
Scatter Visualizer changes smoothly. However, the information displayed in the
“Selection:” message box and the Pointer is over: field show only the data values of the
nearest discrete data position; they do not show interpolated data values.

The animation is produced in the following manner: Assume you have data for 10 years,
on a per-year basis (that is, 10 data values) and that these correspond to the size of one
entity in the Scatter Visualizer. Assume further that the years are 1991 to 2000, the size for
1991 is 20, and the size for 1992 is 40. As you move the year slider from 1991 to 1992, the
size changes by being uniformly interpolated between 20 and 40. For example, midway
between 1991 and 1992, the size is 30. As you approach 1992, the size approaches 40.

Pulldown Menus

199

However, you cannot stop an animation between discrete data points, and you cannot
drag the Path slider to a stationary position between discrete data points.

The data points in the summary window represent the slider positions corresponding to
the actual data from the data file. For example, sizes 20 and 40 are representations of
actual data, but size 30 is not. In this example, there would be data points in the summary
window at the slider positions corresponding to each year.

Note that not all variables are required to vary with a slider. If there are two sliders, some
variables can vary with only one of the sliders, while other variables vary with both.

Pulldown Menus

Four pulldown menus let you access additional Scatter Visualizer functions. These are
labeled File, View, Selections, and Help. If you start the Scatter Visualizer without
specifying a configuration file, only the File and the Help menus are available.

The File Menu

The File menu (Figure 6-12) contains six options.

Figure 6-12 Scatter Visualizer’s File Pulldown Menu With Options

200

Chapter 6: Using the Scatter Visualizer

• Open loads and opens a configuration file, displaying it in the main window.
Previously displayed data is discarded. Use Open to view a new dataset, or to view
the same dataset after changing its configuration.

• Reopen reopens the currently opened file. This can be used after the configuration or
data file has been updated.

• Save As saves the state of the current Scatter Visualizer window into an image file.
The user specifies both the file name (default is scatterviz.rgb), format (default is rgb),
and whether to save the entire window, including legends and Animation Panel, or
just the main scene with the graphical objects (default is the full window).

• Print Image outputs the state of the current Scatter Visualizer window to a printer.
You can specify the output printer using a Print dialog panel (default is your
system's default printer) and, like the Save As dialog, choose whether to print the
entire window or just the main scene window.

• Start Tool Manager starts the Tool Manager (if not already running), and restores it to
the state it was in when the Scatter Visualizer was invoked.

• Exit closes all windows and exits the application.

The View Menu

The View menu lets you control certain aspects of what is shown in the Scatter Visualizer
window (Figure 6-13).

Figure 6-13 Scatter Visualizer View Menu

Pulldown Menus

201

• Show Window Decoration lets you hide or show the external controls around the
main window.

• Show null Positions lets you hide or show entities that have null or unknown
position values along one or more axes.

• Show Animation Panel lets you show or hide the animation control panel. This menu
item is disabled for datasets with no independent dimension.

• Show Data Points lets you show or hide the data points in the summary window.
This option is disabled for datasets with no independent dimensions.

• Show Filter Panel lets brings up the Filter Panel. This panel (Figure 6-14) lets you
reduce the number of entities displayed in the main viewing area, based on one or
more criteria. You can use the filter panel to fine-tune the display, emphasize
specific information, or simply shrink the amount of information displayed.

Figure 6-14 Scatter Visualizer Filter Panel

202

Chapter 6: Using the Scatter Visualizer

The Filter panel has two panes. The top pane lets you filter based on string columns.
To select all values of a column, click Set All. To clear the current selections, click
Clear. To select a value, click it. To deselect a value, simply click it again.

The bottom pane lets you filter based on the values of both string and numeric
columns.

To filter numeric values, enter the value, and select a relational operation (=, !=, >, <,
>=, <=). To filter alphanumeric values, enter the string. You can use any of three
types of string comparisons:

• Contains indicates that it contains the appropriate string. For example,
“California” contains the strings “Cal” and “forn”.

• Equals requires the strings to match exactly.

• Matches allows wildcards:

– An asterisk (*) represents any number of characters.

– A question mark (?) represents one character.

– Square braces ([]) enclose a list of characters to match.

For example, California matches Cal*, Cal?fornia, and Cal[a-z]fornia.

For columns which were binned, an option menu of values appears, instead of a
text field. To ignore that column, select Ignored in the Option menu. You can use
relational operators, such as >=, with these options. This means that the specified
value as well as subsequent ones are selected.

In addition to numeric and string comparison operations, you can specify Is Null ,
which is true if the value is null.

To the right of each field is an additional option menu that lets you specify “And” or
“Or” options. For example, you could specify “sales > 20 And < 40.” You can have
any number of And or Or clauses for a given column, but cannot mix And and Or in
a single column.

Scale to Filter lets you specify whether the filtered landscape is rescaled to the size of
the filtered data or remains the size of the entire data set.

Click the Filter button to start filtering. If you press Enter while the panel is active,
filtering starts automatically.

Click the Close button to close the panel.

Pulldown Menus

203

The Selections Menu

The Selections menu lets you drill through to the underlying data.

Figure 6-15 The Scatter Visualizer Selections Menu

• Show Values displays a table (Record Viewer) of the values for all selected objects.

• Show Original Data retrieves and displays the records corresponding to what has
been selected. The resulting records are shown in a table viewer.

• Send To Tool Manager inserts a filter operation, based on the current box selection(s),
at the beginning of the Tool Manager history. The actual expression used to do the
drill through is determined by extents of the current box selection(s). If nothing is
selected, a warning message appears.

• Preferences brings up a panel that lets you select which columns are used in
drill-through. Unlike other visual tools, there are no specific columns in the data
that are designated as the key to the data. It is impossible for the Scatter Visualizer
to determine which columns should be specified in the drill-through expression.
For example, you might have cars data with brand, model, and weight. When
drilling through to the original data, you might want to specify that brand and
model should be considered in the drill-through, but weight should not.

• Complementary Drill Through causes the Show Original Data and Send To Tool Manager
selections, when used, to fetch all the data that are not selected.

For further details on drill-through, see Chapter 14, “Multiple Selection and
Drill-Through.”

204

Chapter 6: Using the Scatter Visualizer

The Help Menu

The Help menu provides access to five help functions (see Figure 6-16).

Figure 6-16 Scatter Visualizer Help Menu

• Click for Help turns the cursor into a question mark. Placing this cursor over an
object in the Scatter Visualizer’s main window and clicking the mouse causes a help
screen to appear; this screen contains information about that object. Closing the help
window restores the cursor to its arrow form and deselects the help function. The
keyboard shortcut for this function is Shift+F1. (Note that it also is possible to place
the arrow cursor over an object and press the F1 function key to access a help screen
about that object.)

• Overview provides a brief summary of the major functions of this tool, including
how to open a file and how to interact with the resulting view.

• Index provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts provides the keyboard shortcuts for all of the Scatter Visualizer’s
functions that have accelerator keys.

• Product Information brings up a screen with the version number and copyright notice
for the Scatter Visualizer.

• MineSet User’s Guide invokes the Insight viewer with the online version of this
manual.

Sample Configuration and Data Files

205

Sample Configuration and Data Files

The provided sample data and configuration files demonstrate the Scatter Visualizer’s
features and capabilities. The following files are in the /usr/lib/MineSet/scatterviz/examples
directory:

• company.data
This file contains fictitious sales data of several insurance companies in three
product categories: life insurance, auto insurance, and home insurance. The data
span ten years (in increments of one year) and includes five income brackets (the
customer’s annual income).

• company.scatterviz
This file specifies that the years form one slider dimension and the income brackets
form the other slider. Sales of life insurance, auto insurance, and home insurance
become the three dimensions in the Scatter Visualizer landscape. The color density
in the slider summary window represents the total sales of all companies across all
categories of insurance.

• company-total.scatterviz
This file contains the same specifications as company.scatterviz, except that the size of
each company is determined by the total sales of that company across all the
categories of insurance.

• company-life.scatterviz
This file contains the same specifications as company.scatterviz, except that the color
of each object indicates the life insurance sales as a fraction of total sales.

• store-type.data and store-type.scatterviz
These files show sales of various product groups by store type during a three-year
period. The single independent variable for which a slider appears is time. Each
entity represents a store type (such as Food Store, Drug Store, Service Station, and
so forth). For each store type, the data file contains the total sales of several product
groups, such as alcoholic beverages, cereal, and so forth. The data spans 36 months,
in increments of one month.

The configuration file uses the month as the single slider dimension. One axis is
sales of alcoholic beverages, the other is sales of tobacco products. A third axis is not
used.

Note: The data file includes other categories. You can edit the configuration file to
use other product categories for the axes (see Appendix D, “Creating Data and
Configuration Files for the Scatter Visualizer”).

206

Chapter 6: Using the Scatter Visualizer

• brand.data and brand.scatterviz
These files show sales of several soft-drink brands in a variety of store types. In this
dataset the brands form the entities, and the store types are associated with the axes.
The total sales are mapped to the size of each brand. The color mapping is random.
Since there are no independent variables, no slider is present.

• cars.data and cars.scatterviz
These files show the weight, horsepower, model year, and acceleration of several car
models.

• people.data and people.scatterviz
These files show the height, weight, density, and cholesterol level for a population
sample.

• nl.births.data and nl.births.scatterviz
These files show birth patterns in the Netherlands. For each region, the population
density, birth rate, and population are shown. The animation sliders are mapped to
the age of the mother and the year.

See /usr/lib/MineSet/scatterviz/examples/README for additional information on the files
in that directory.

207

Chapter 7

7. Using the Splat Visualizer

This chapter discusses the features and capabilities of the Splat Visualizer. It provides an
overview of this database visualization tool, then explains the Splat Visualizer’s
functionality when working with the

• main window

• external controls

• pulldown menus

Finally, it lists and describes the sample files provided for this tool.

Overview of the Splat Visualizer

The Splat Visualizer lets you visually analyze relationships among several variables (see
Figure 7-1), either statically or by animation. It is particularly well-suited for application
to datasets with large numbers of records. Choose the Scatter Visualizer if you want to
see individual data points and do not have a large number of records. Data analysis is
done using

• a three-dimensional landscape

• an animation control panel that includes a two-dimensional slider

• graphical objects, called splats, which represent aggregates of datapoints. Color and
opacity of the splats can change during animation.

208

Chapter 7: Using the Splat Visualizer

Figure 7-1 Sample Splat Visualizer With One Slider Control

The Splat Visualizer lets you visualize your data by mapping columns to axes, sliders,
color, and opacity. The resulting three-dimensional landscape can be thought of as an
approximation to a scatterplot in which every datapoint is drawn separately. It is not
truly a scatterplot, because datapoints that are close together (fall in the same bin) are
aggregated and drawn as a single splat.

Overview of the Splat Visualizer

209

Each numeric column that is mapped to an axis or slider first must be binned. If this
binning step is skipped, the Tool Manager does it using automatic uniform binning (see
“The Bin Column Button” in Chapter 3). String columns can be mapped directly to axes.
Any numeric column can be mapped to a color. The color of a splat is derived by
averaging the value of the column mapped to color for all the data points that fall in a
bin. The opacity of a splat is based on a weighting of the number of datapoints that fall
in a bin. If nothing is mapped to opacity, record counts are used to determine it. The
interactivity of the resulting visualization is independent of the number of data points
represented; it depends only on the number of bins in the axis dimensions. If your dataset
is very large, aggregate explicitly in Tool Manager. This causes the server to perform the
processing, rather than having the entire dataset sent to the client and aggregated there.

Up to two numeric columns can be mapped to the sliders in the animation control panel.
The splats change their color and opacity as the sliders in the animation panel are moved
from point to point along the slider ‘s path. Unlike the Scatter Visualizer, neither the
position nor the size of the splats change; they are at fixed, uniformly spaced positions.
Only their color and opacity change, which can give the illusion of actual movement.

After creating a visualization of your data, the Splat Visualizer lets you analyze the data
in various ways:

• The animation control panel lets you note global shifts and trends in the data.

• The three-dimensional landscape lets you orient the display to emphasize particular
dimensions or a point of view.

• You can use the scale slider (located to the right of the Main Window) to lower the
overall opacity of the splats, so only regions with dense data show up; conversely,
you can increase the scale slider so all regions having any data become visible. The
regions with dense data are likely to show less color variation, because the color is
based on the average of many values (see Figure 7-3).

• You can filter the display to show only those splats meeting certain criteria. You can
filter on the columns corresponding to axes, sliders, count, and color.

• An opaque pick dragger lets you display textual information about individual
splats in the volume.

• A box selector lets you define a selected region for drilling through to the original
data or for sending to the Tool Manager.

If a string column is mapped onto an axis, binning is defined to be the distinct values of
that column. The order of the values along a string axis is automatically determined by
sorting the distinct values by the average aggregate value of the column mapped to color.

210

Chapter 7: Using the Splat Visualizer

Looking at the color changes along a string valued axis lets you see how well that column
correlates with the column mapped to color. The left axis in Figure 7-1 shows occupations
sorted by average income (the average income of everyone with that occupation) along
an axis. The occupation, executive-managerial, listed at the end of the axis, has the
highest average income. This ordering often presents a natural progression for the
values. For example, the ordering for the values of education (the right axis in Figure 7-1)
was generally from low to high; but, in a few cases, there were anomalies in the order.
This unexpected ordering might be interesting because it points out places where the
data does not agree with expectations.

Opacity

The column mapped to opacity should be record count or a column used to weight
record counts. A splat’s opacity, α, is based on this column according to the following
relation:

where weight is the column mapped to opacity. The shape of this function is such that the
opacity asymptotically approaches 1 (totally opaque) as the value of weight becomes
large. The variable u is what is scaled when you adjust the opacity scale slider. Figure 7-2
shows the shape of this function for low and high values of u. Figure 7-3 shows the same
visualization with low and high values of u.

Figure 7-2 Shape of Opacity Function For Low and High Values of u

α 1 e u weight⋅––=

Overview of the Splat Visualizer

211

Figure 7-3 Image Where u = 5.3, and u = 30

If nothing is mapped to opacity, the Splat Visualizer generates a column of ones to
produce record counts when aggregating. This means all records are weighted equally.
A sum aggregation is done on this column, and an average aggregation is done on the
column mapped to color while grouping by all the axis and slider columns. All other
columns are unnecessary and removed. You do not need to map anything to opacity
unless you want each record to be weighted by something other than 1.

You can avoid processing on the client by aggregating in the Tool Manager. This also
avoids having to transfer a large dataset to the client. This is done by

1. Binning the numeric columns which are to be used for axes and sliders.

2. Aggregating the column to be mapped to color by count and average
while grouping by the axis and slider columns.

3. Mapping the resulting count aggregation to opacity.

4. Mapping the resulting average aggregation to color.

212

Chapter 7: Using the Splat Visualizer

For example, using the adult94 data (provided with the distribution):

1. Bin age and hours_per_week.

2. Aggregate gross_income using count and average. Keep education, occupation, age_bin
and hours_per_week_bin, in the group-by pane while removing all the other columns.

3. Map education, occupation, and hours_per_week_bin to the axes.

4. Map avg_gross_income to color, count_gross_income to opacity, and age_bin to a slider.

When you invoke the tool, note that all the processing is done on the server, and that the
datafile, adult94.splatviz.data, contains rows that are aggregates of rows in the original
data. This produces the same visualization as seen in Figure 7-1.

In some cases, you might have a column by which you want to weight the record counts.
For example, if you have a dataset for which one column was population and another was
average_salary (which you want to map to color), you can map population to opacity, and
average_salary to color; then have the Splat Visualizer do the aggregation. Its aggregation
groups-by the axis and slider columns, so that it sum aggregates the opacity column
(which, in this case, is population). The new column is called sum_population. The
average_salary column is revised, so that it is still average salary, but weighted by each
row’s population. In this way, the average salary column still shows the average salary for
all the people it represents.

Alternatively, if you want to avoid client-side processing and storage because of the size
of your dataset, you can perform the same aggregation in Tool Manager by doing the
following:

1. Create a new column, defining temp = population*avg_income.

2. Perform an aggregation: group-by axis and slider columns, sum aggregate
population, and sum aggregate temp.

3. create a new column, defining
avg_salary = sum_temp/sum_population
This creates the weighted average.

4. Now you can map sum_population to opacity, and avg_salary to color.

Note that these steps are the ones taken by the Splat Visualizer if you do not explicitly do
them in the Tool Manager.

File Requirements

213

File Requirements

The Splat Visualizer requires the following files:

• A data file, consisting of rows of tab-separated fields. This file is easily created using
the Tool Manager (see Chapter 3). If you are generating this file yourself, see
Appendix E, “Creating Data and Configuration Files for the Splat Visualizer” for
the required file format.

You can generate data files by extracting data from a source (such as a database) and
formatting it specifically for use by the Splat Visualizer. Data files have user-defined
extensions (the sample files provided with the Splat Visualizer have a .data
extension).

• A configuration file, describing the format of the input data and how it is to be
displayed. The Tool Manager can create this file (see Chapter 3), or you can use an
editor (such as jot, vi, or Emacs) to produce this file yourself (see Appendix E,
“Creating Data and Configuration Files for the Splat Visualizer”).

Configuration files must have a .splatviz extension. When starting the Splat
Visualizer, or when opening a file, you must specify the configuration file, not the
data file.

Starting the Splat Visualizer

There are six ways to start the Splat Visualizer:

• Use the Tool Manager to configure and start the Splat Visualizer. (See Chapter 3 for
details on most of the Tool Manager’s functionality, which is common to all MineSet
tools; see “Configuring the Splat Visualizer Using the Tool Manager” on page 216
for details about using the Tool Manager in conjunction with the Splat Visualizer.)

• Double-click the Splat Visualizer icon, which is in the MineSet page of the icon
catalog. The icon is labeled splatviz. Since no configuration file is specified, the
start-up screen requires you to select one by using File|Open.

• Double-click the Splat Visualizer icon on your Indigo Magic desktop. The startup
screen requires you to select a data file by choosing File > Open.

214

Chapter 7: Using the Splat Visualizer

Figure 7-4 File | Open Menu Selection for Splat Visualizer

Starting the Splat Visualizer

215

Starting the Splat Visualizer without specifying a configuration file causes the main
window to show the copyright notice and license agreement for this tool. Only the
File and Help pulldown menus can be used. For the main window to be fully
functional, open a configuration file by selecting File|Open.

• If you know what configuration file you want to use, double-click the icon for that
configuration file. This starts the Splat Visualizer and automatically loads the
configuration file you specified. This works only if the configuration filename ends
in .splatviz (which is always the case for configuration files created for the Splat
Visualizer via the Tool Manager).

• Drag the configuration file icon onto the Splat Visualizer icon. This starts the Splat
Visualizer and automatically loads the configuration file you specified. This works
even if the configuration filename does not end in .splatviz.

• Start the Splat Visualizer from the UNIX shell command line by entering this
command at the prompt:

splatviz [configFile]

configFile is optional and specifies the name of the configuration file to use. If you
don’t specify a configuration file, you must use File|Open to specify one.

Options for invoking the Splat Visualizer

The -quiet option eliminates the dialogs that popup to indicate progress. You can enable
this option permanently by adding the line

*minesetQuiet:TRUE

to the user’s .Xdefaults file.

216

Chapter 7: Using the Splat Visualizer

Configuring the Splat Visualizer Using the Tool Manager

This section describes how the Splat Visualizer can be configured using the Tool
Manager. Although the Tool Manager greatly simplifies the task of configuring the Splat
Visualizer, you can construct a configuration file manually for this tool using a text editor
(see Appendix E, “Creating Data and Configuration Files for the Splat Visualizer”).

The steps required to connect to a data source are described in Chapter 3.

Selecting the Splat Visualizer Tool

Select the Viz Tools tab in the Data Destination panel of the Tool Manager’s main screen
(Figure 7-5). From the popup list of tools, select Splat Visualizer. The mapping
requirements for the Splat Visualizer are displayed in the window on the right side of this
panel. Items in the Visual Elements list that are preceded by an asterisk are optional.

Figure 7-5 Data Destination Panel With Splat Visualizer Selected

Configuring the Splat Visualizer Using the Tool Manager

217

• Axes —determines which columns are assigned to the axes in the Splat Visualizer’s
main window. Assigning data to the first axis is required; however, this alone does
not usually produce a useful display. By assigning data to Axis 2, you can create an
XY chart. Assigning data to all three axes produces a 3-D chart.

• Color — uses numeric column used to determine the color of the splats.
If you have a two-valued string column, you can create a new numeric column
using an expression such as:
('stringCol'==”value1”)? 1:0

If nothing is mapped to color, the resulting scene is monochromatic.

• Opacity—the tool was designed to have the opacity based on a weighting of records.
If you do not aggregate in the Tool Manager, this requirement need not be mapped;
it will be determined automatically by the tool. If you do count aggregation in the
Tool Manager, or there is a column in the data that already is based on counts, use
that column for this requirement.

• Sliders — the summary slider dimensions. They must be numeric or binned.

• Summary—this is the value to be shown in the summary slider. If no summary
column is mapped, count is used by default. If a summary column is mapped, a
weighted average value for that column is shown in the summary.

Mapping Columns to Requirements

You can map requirements to columns by selecting a column name in the Current
Columns window of the Table Processing panel, then selecting a category in the Visual
Elements window.

Undoing Mappings

To undo a specific mapping, select that mapping in the Requirements window, then click
the Clear Selected button. To undo all mappings, click the Clear All button.

218

Chapter 7: Using the Splat Visualizer

Specifying Tool Options

Clicking the Tool Options button causes a new dialog box to be displayed (Figure 7-6).
This lets you change some of the default values of the Splat Visualizer options.

Figure 7-6 Splat Visualizer’s Options Dialog Box

The Splat Visualizer’s Options dialog box has three basic options blocks:

• Splats

• Summary

• Other

Configuring the Splat Visualizer Using the Tool Manager

219

Splat Options

This option lets you specify a number of characteristics for the Splats that the Splat
Visualizer then graphically displays.

• Splat Colors—lets you control the colors used for the splats. You can

– specify the list of colors to use

– specify the kind of mapping

– map the list of colors to a list of values

• Splat Shape—lets you choose one of the following methods for drawing splats:
constant, linear, Gaussian, texture, or sphere. See page 246 for further explanation of
each of these.

To use these Colors options, you must have mapped a column to the *color requirement
of the Data Destination panel. If nothing is entered in the color list, the default colormap
is used. The default colormap is a continuous spectrum from blue (lowest value) to red
(highest value). See “Choosing Colors” and “Using the Color Browser” in Chapter 3 for
a more detailed explanation of how to choose and change colors.

Color list to use—You can specify the color list using the + button next to the color list
label. This brings up a color editor that lets you specify a color to be added to the list.

Color mapping—You can specify whether the color change that is shown in the graphic
display is Continuous or Discrete. If you choose Continuous, the color values shift
gradually between the colors entered in the Color list to use field as a function of the
values that are mapped to those colors in the Color mapping field.

The field to the right of the popup button lets you enter specific values for mapping the
colors. If you do not specify any mapping values, the range of values in the color column
is used.

Example 7-1

If you

• used the Color Browser to apply red and green to the splats

• selected Continuous for the Kind of mapping

• entered the values 0 100

220

Chapter 7: Using the Splat Visualizer

the display shows all splat with values less than or equal to 0 as completely red, those as
greater than or equal to 100 as completely green, and those between 0 and 100 have a
color which results from a linear interpolation between red and green.

Example 7-2

If you

• used the Color Browser to apply red and green to the splats

• selected Discrete for the Kind of mapping

• entered the values 0 50

the display shows all splats with values of less than 50 in red, and all those with values
greater than, or equal to, 50 in green.

Summary Options

Summary options let you specify what color to use for the Summary window. This is
only applicable if you have mapped a column to the summary.

Other Options

The Other Options, at the bottom of the dialog box, include the following fields:

• Hide Label Distance — controls the distance at which axis tick labels (for string
valued axes) become invisible. Increase this number to make the labels appear at
further distances. The higher the number, the greater the distance at which labels
are hidden.

• Axis Label Size — this controls the size of the axis labels. A smaller number decreases
the size, a larger one increases it.

• Grid Color — lets you modify a grid color by clicking on it. This causes the Color
Chooser dialog box to appear, which lets you implement your color changes.

• Grid (X, Y, Z) Size — lets you specify the spacing between grid lines for the
respective axis. A smaller number decreases the size, a larger one increases it. If the
Size is set to 0, there are no grid lines in that dimension.

Configuring the Splat Visualizer Using the Tool Manager

221

Resetting the Tool Options

Clicking the Reset Options button resets the values of all options to their default values.

Saving Splat Visualizer Settings

Once you have finished making changes to the Tool Options dialog box, click
OK to return the Tool Manager’s main screen. To see the results of your changes, click
Invoke Tool.

The Tool Manager stores information for the Splat Visualizer in several files, all sharing
the same prefix:

• <prefix>.splatviz.data contains data.

• <prefix>.splatviz.schema describes the data file.

• <prefix>.splatviz contains information required by the Splat Visualizer.

Selecting Save Current Session As... saves the current state of the Tool Manager (including
the current tool options) in a <prefix>.mineset file.

When you use Invoke Tool, the .data, .schema, and .splatviz files are updated, if necessary.

Invoking Splat Visualizer

To see Splat Visualizer graphically represent your data, click Invoke Tool at the bottom of
the Data Destination panel.

Null Handling in the Splat Visualizer

The Splat Visualizer uses special representations when fields with unknown data values,
or nulls, are mapped to visual attributes. (For a discussion of null values, see Appendix I,
“Nulls in MineSet.”) When every record in a bin has a null value for the column mapped
to color, the resulting color for that splat is gray. If one or more records in the aggregate
have non-null values for the column mapped to colors, then that value is (or those values
are) used to compute the color. While the sum of a value and null is null, the average of
a value and null is the value (that is,
value + Null = Null; avg(val, Null) = val).

222

Chapter 7: Using the Splat Visualizer

When a null value is displayed in the Pick Window, Selection Window or “Pointer is
Over” area, it is shown as a question mark (?). (The Selection Window and “Pointer is
Over” areas are discussed in the “Select Mode” section.)

For numeric columns containing nulls which are mapped to axes, there is a special null
position below the range defined by the axis. This is to help show that the null value is
discontinuous with the other values. The null positions for numeric axes can be turned
off using the Show Null Positions option under the View Menu (see “The View Menu”
on page 240). For string valued columns mapped to axis, nulls (represented by a ‘?’) are
treated as just another value.

Working in the Splat Visualizer’s Main Window

If you started the Splat Visualizer without specifying a configuration file, the main
window shows the copyright notice and license agreement for the Splat Visualizer. Only
the File and Help pulldown menus can be used. For the main window to show all menus
and controls, open a configuration file. Use File|Open (Figure 7-4) to see a list of
configuration files.

When a valid configuration file has been selected, the 3-D landscape it specifies is visible.

Viewing Modes

The two modes of viewing are grasp and select. To toggle between these modes, press Esc,
or click the appropriate cursor button adjacent to the top-right of the viewing area.
(These and the rest of the buttons are described later in this chapter.)

Grasp Mode

In grasp mode, the cursor appears as a hand. This mode supports panning, rotating, and
scaling the scene’s size in the main window.

• To pan the display, press the middle mouse button and drag it in the direction you
want the display panned.

Working in the Splat Visualizer’s Main Window

223

• To rotate the display, press the left mouse button and move the mouse in the
direction you want to rotate. (Also see the thumbwheel controls Rotx and Roty,
described in “Thumbwheels” on page 227.)

• To move the viewpoint forward, press the left and middle mouse buttons
simultaneously and move the mouse downwards. To move the viewpoint
backward, press the left and middle mouse buttons simultaneously and move the
mouse upwards. This is equivalent to the functions provided by the Dolly
thumbwheel.

Select Mode

In select mode, you can move a 3-D pick dragger through the volume in order to display
information about regions in the scene. This pick dragger is composed of a cylinder and
a square. If you pick on the cylinder and drag, motion is constrained to be parallel to the
cylinder’s axis. If you pick on the square and drag, motion is constrained to the plane
defined by the square. You can cycle through the three possible orientations of the pick
dragger by pressing the Control key with the cursor over the dragger. (You need not press
the mouse button.) In the case of dragging the square portion of the dragger, you can use
the Shift key to constrain the motion along one of the two axes within the plane.
Alternatively, each axis has a disk that aligns with the pick dragger position. Moving the
disk on an axis moves the dragger, and vice-versa.

The dragger lets you pick within a dense cloud of points, freeing you from the limitation
of having to pick regions on the surface.

When the pick dragger is over data, the cylinder changes its color to that of the splat
under it, and information about that region appears at the top of the view area
(Figure 7-7). If no data is present, the cylinder remains light gray, and information about
its position is displayed at the top of the render area for aid in navigation.

When you are done dragging, and have released the mouse button, the message for the
splat you are currently over is shown in the pick window at the top. This pick
information is updated if the animation slider is moved. Using the mouse, you can cut
and paste this selection information into other applications, such as reports or databases.

The pick dragger may be removed from the scene by unchecking Selection|Show Pick
Dragger.

224

Chapter 7: Using the Splat Visualizer

Figure 7-7 Pick Dragger Over Data

The information is displayed when the pick dragger is over the object.

External Controls

225

Note: Users familiar with Open Inventor can configure the Splat Visualizer so that the
right mouse button brings up the standard Inventor Menu. This provides additional
functions, such as stereo viewing and spin animation. These functions are provided by
the Open Inventor library. To enable the Open Inventor Menu, add the line
*minesetInventorMenu:TRUE

to your .Xdefaults file.

External Controls

Several external controls surround the main window, including buttons and
thumbwheels. This section describes each type of control.

Buttons

At the top right of the image area are 11 buttons (see Figure 7-8).

Figure 7-8 Detail View of Top Right Buttons

Arrow

Hand

Viewer help

Home

Set Home

View All

Perspective

Seek

Top View

Front View

Right View

226

Chapter 7: Using the Splat Visualizer

• Arrow puts you in select mode, which lets you highlight entities in the main
window. When in this mode, the cursor shape is an arrow.

• Hand puts you in grasp mode, which lets you rotate, zoom, and pan the display in
the main window. When in this mode, the cursor shape is a hand.

• Viewer help brings up a help window describing the viewer itself.

• Home takes you to a designated location. Initially, this is the first viewpoint shown
after invoking the Splat Visualizer and specifying a configuration file. If you have
been working with the Splat Visualizer and have clicked the Set Home button, then
clicking Home returns you to the viewpoint that was current when you last clicked
Set Home.

• Set Home makes your current location the Home location. Clicking the Home button
returns you to the last location where you clicked Set Home.

• View All lets you view the entire graphic display, without changing the angle of
view you had before clicking on this option. To get an overhead view of the scene,
rotate the camera so that you are looking directly down on the entities, then click
the View All button.

• Seek takes you to the point or object you click after selecting this button.

• Perspective is a toggle button that lets you view the scene in 3-D perspective (closer
objects appear larger, farther object appear smaller). Clicking this button again turns
3-D perspective off.

• Top View lets you view the scene from the top.

• Front View lets you view the scene from the front.

• Right View lets you view the scene from the right side.

External Controls

227

Thumbwheels

Three thumbwheels appear around the lower part of the main window border (see
Figure 7-9). They let you dynamically move the viewpoint.

Figure 7-9 View of Lower Half of Window With Thumbwheels

• The vertical thumbwheel Rotx (rotate about the x axis), on the left, rotates the
display up and down.

• The horizontal thumbwheel Roty (rotate about the y axis), at the bottom left, rotates
the scene in the main window around its centerpoint left and right.

• The vertical thumbwheel Dolly, on the right, moves the viewpoint forward and
backward. Note that as you use the Dolly thumbwheel to magnify the scene in the
main window, additional detail can appear. If Perspective is off, the Dolly
thumbwheel becomes the Zoom thumbwheel.

Thumbwheels

228

Chapter 7: Using the Splat Visualizer

The Animation Control Panel

The animation control panel, which appears to the right of the main window, consists of
a summary window, with up to two adjacent sliders, an information field, animation
buttons, and animation sliders.

Sliders Controlling Independent Dimensions

The number of sliders appearing adjacent to the summary window is dependent on the
slider mappings specified in the configuration file. Datasets can have two, one, or no
independent dimensions.

Datasets With Two Independent Dimensions

If the dataset has two dimensions of independently varying data (such as
adultJobs2.splatviz), the controls to the right of the main graphics window become visible
(see Figure 7-10).

The Animation Control Panel

229

Figure 7-10 Animation Control Panel With Summary Window and Both Slider Controls

230

Chapter 7: Using the Splat Visualizer

To the right of the main window are the 2-D summary window and slider controls. The
summary window has a horizontal slider below it for selecting data points of the first
independent dimension, and a vertical slider to the left for selecting data points of the
second independent dimension. The horizontal slider’s dimension is identified by a label
below it. The vertical slider’s dimension is identified by a label above it.

Datasets with One Independent Dimension

For datasets with one independent dimension (such as adultJobs.splatviz), only the slider
below the summary window appears, and the summary window is compressed (see
Figure 7-1). This slider’s dimension is identified by a label below it.

Datasets With No Independent Dimension

For datasets with no independent dimensions (such as mushroom.splatviz), no slider
control appears (see Figure 7-11). The splats that are neither completely red nor
completely blue indicate that both poisonous and edible mushrooms are plotted at that
location.

The Animation Control Panel

231

Figure 7-11 Splat Visualizer Without Independent Dimension or An Animation Control Panel

232

Chapter 7: Using the Splat Visualizer

The Summary Window

The summary window provides a 2-D representation of the aggregation of values that
the main window displays in 3-D. The whiter the areas of the summary window, the
lower the summary value represented by the splats in the main window. The greater the
color density in areas of the summary window, the higher the summary values. The
summary value is either the total weight of data at that slider position, or the weighted
average of the column that was mapped to summary. The density of these colors in the
summary window provides a summary of the data across the one or two independent
dimensions in the dataset. If no column is explicitly mapped to summary, count is used
to show which positions on the slider represent the most data.

By default, the summary window also contains a set of black dots, evenly spaced across
the one or two dimensions of data. These dots indicate the precise positions of the
discrete datapoints. You can turn off these black dots by unchecking the box at the
bottom of the summary slider window. Slider positions between these positions use
interpolation of the underlying data to produce an image.

Color Density in the Summary Window

After opening the adultJobs.splatviz file, for example, the 2-D summary window shows a
color range from white (on the left) to red (in the middle) to white (on the right). Red
represents more records (12,838 in this case), while white represents fewer records
(3,606). In this example, the greater the density of red in the middle of the slider, means
the highest concentration of people are in the 20-50 age range.

Creating a Path in the Summary Window

If the dataset loaded into the Splat Visualizer has at least one independent dimension, it
is possible to view all or any part of that dataset via animation. This is done by first
creating a path in the summary window (this path connects a sequence of data points),
then activating the animation controls described in the next section.

The Animation Control Panel

233

The three ways to draw a path in the summary window are:

• Define a starting point by clicking and holding down the left mouse button, then
draw an arbitrary path by dragging the cursor over the window. End the path by
releasing the left mouse button.

• Define a starting point by clicking the left mouse button, then define an endpoint by
moving the cursor to another part of the window and clicking the middle mouse
button. A line appears between those two points. To add more line segments,
continue with repeated middle mouse clicks.

• Define a starting point by clicking the left mouse button, then drag one of the
independent dimension sliders, thus drawing a straight line along this dimension.
If there are two sliders, use of the second slider causes a straight line to be drawn
along the axis controlled by this second slider.

Animation Buttons and Sliders

The seven VCR-like buttons and two sliders (Path and Speed) below the 2-D summary
window let you control the animation.

Animation Buttons

Once a path is drawn in the summary window (see “Creating a Path in the Summary
Window,” above), you can use the VCR-like buttons to control animation along this path.
The middle Stop button is highlighted in blue, indicating an initial state. Use the adjacent
Play Forward button (to the right of Stop) or Play Reverse (to the left) to begin simple
movement along the drawn path in a forward or reverse direction. (Forward and Reverse
are defined by the sequence that the path was drawn, not by the left-to-right or
right-to-left movement.)

To stop and restart the animation, click the Stop button, then use the Play Forward or
Reverse button again. Note that when you stop, the animation continues in the current
direction until the position falls upon a discrete data point.

234

Chapter 7: Using the Splat Visualizer

Adjacent to the Play buttons are the Single-Step buttons, as well as Forward and Reverse.
Clicking on one of these buttons changes the current path position to the next discrete
data point.

On the outside are the Fast Forward and Fast Reverse buttons. Clicking one of these
buttons while in Stop state changes the path position to the end (for Forward) or to the
beginning (for Reverse) of the path. Clicking a Fast button when in Play state increases the
animation speed.

Animation Flow

Below the Animation Buttons are the three Animation Flow buttons (Figure 7-12).

Figure 7-12 The Splat Visualizers Looping Options Below the VCR Controls

Play-once (default)—the animation moves either forward or reverse until it reaches the
end of the path, then stops.

Loop—when the animation reaches the end of the path, it automatically resets to the
beginning and starts over again.

Swing—when the animation reaches the end of the path, it reverses direction and retraces
its path to the other end; upon reaching that end, the animation reverses direction again,
beginning the cycle again.

The Animation Control Panel

235

Animation Sliders

While animation is stopped, you can move the Path slider to reset the position along the
path. Note that when you use the Path slider, the cursor in the summary window moves
across the drawn path, and the 1D sliders (below and to the left of the drawing area)
move consistently with the cursor position. Then use the Play or Reverse button to restart
the animation from the newly specified point. You can drag the Path slider to an arbitrary
position between discrete data points; however, when you release the slider, the path
position changes to the nearest discrete data point.

Use the Speed slider to adjust the speed of the animation along the path.

Slider Data Points and Interpolation

As animation proceeds, the size and color of the splats change smoothly. The information
displayed in the message box field shows the interpolated data values. When the slider
motion stops, the slider position snaps to the nearest discrete data position where
interpolated data values are not used.

There is a table for each binned position on the summary slider. Each row in one of these
tables (which is an aggregate of original data) defines a splat in the scene. Tables
corresponding to adjacent bins on the summary need not have the same number of rows
because of the differences in data distribution from one position to the next. For example,
if we change the visualization in Figure 7-1 from showing 40-50 year-olds to one showing
50-60 year-olds by moving the slider one notch to the right (see Figure 7-13), some
positions might show splats where there were none before, and vice versa.

236

Chapter 7: Using the Splat Visualizer

Figure 7-13 Changed Visualization as a Result of Moving the Slider (Compare to Figure 7-1)

For interpolation on a one dimensional slider, two adjacent tables are merged, then
aggregated using the spatial columns as unique keys. The count is simply interpolated
(0 count is assumed if one of the tables lacks a particular row). The average value used
for color is also interpolated, but weighted by the count.

The Animation Control Panel

237

Example 7-3

(This example describes technical details of the interpolation process.) Suppose we want
to show an image that represents an interpolation between the tables for the 40-50
year-olds and the 50-60 year-olds on the external slider. Let Table 7-1 and Table 7-2 be the
tables for age=40-50 and age=50-60, respectively, for the two slider positions.

This is how the Splat Visualizer performs the interpolation. For Table 7-1, a new count
column equal to (1-t)count and a new weighted value column equal to (1-t) (count) (value)
are added. For Table 2, a new count column equal to (t)(count), and a new weighted value
column equal to (t) (count) (value) are added. The two tables are merged together.

The merged table is aggregated using the spatial axes columns as keys, and sum
aggregating the two new columns. This ensures that no two rows have the same binned
values for all the spatial axes. Finally, divide the summed value by the summed count to
get the interpolated values. In this case, the interpolated values are for income. If t=.5, the
resulting table would be Table 7-3.

Table 7-1 Ages 40 to 50

education occupation hours_worked income count

HS-grad

HS-grad

Masters

Exec-Man.

Mach-op

Technician

15-25

15-25

25-35

25000

30000

35000

2

1

3

Table 7-2 Ages 50 to 60

education occupation hours_worked income count

HS-grad

Vocational

Exec-Man.

Mach-op

15-25

35-45

70000

40000

1

2

Table 7-3 Interpolation midway between Table 1 and Table 2

education occupation hours_worked income count

HS-grad

HS-grad

Masters

Vocational

Exec-Man.

Mach-op

Technician

Mach-op

15-25

15-25

25-35

35-45

40000

30000

35000

40000

1.5

.5

1.5

1

238

Chapter 7: Using the Splat Visualizer

If the external query slider has two dimensions, shown in Figure 7-9, bilinear
interpolation is used.

This census dataset contains nearly 150,000 rows. The purpose of the external slider is to
allow navigation through, and show summary info for additional dimensions in the
data. The red regions represent places where the summary value is high; white shows
areas where it is low. When the slider is positioned over a black point, the image shows
uninterpolated data. One can trace a path on the slider and animate it using the VCR
control panel below the slider.

To show how animation is produced, assume you have data for 8 years, 1990-1997 (that
is, eight data points in the summary window). Lets examine how one splat changes as
the slider is moved from one year to the next. Assume that in 1990 a splat at a given
position has value of 20 (to be mapped to color) and a count of 2. Assume further that in
1991 that same splat has a value of 40 and a count of 200. The splat in year 1991 is much
more opaque than the one in 1990 because it represents an aggregation of many more
records (or of much more heavily weighted records). As you move the year slider from
1990 to 1991, the count changes by being linearly interpolated between 2 and 200. The
value is computed by taking an average of the two values weighted by records counts (or
weights). For example, midway between 1990 and 1991, the count is 101, and the value
is ((1-.5)*2*20+.5*200*40)/((1-.5)*2+.5*200) = 39.8. As you approach 1992, the size
approaches 40. You cannot stop an animation between discrete data points, and you
cannot drag the Path slider to a stationary position between discrete data points.

The data points in the summary window represent the slider positions corresponding to
the actual data from the data file. For example, values 20 and 40 represent aggregations
of actual data, but the value 39.8 does not.

Pulldown Menus

Five pulldown menus let you access additional Splat Visualizer functions. These are
labeled File, View, Selection, Splat Type, and Help. If you start the Splat Visualizer
without specifying a configuration file, only the File and the Help menus are available.

Pulldown Menus

239

The File Menu

The File menu (Figure 7-14) contains six options.

Figure 7-14 Splat Visualizer’s File Pulldown Menu With Options

• Open loads and opens a configuration file, displaying it in the main window.
Previously displayed data is discarded. Use Open to view a new dataset, or to view
the same dataset after changing its configuration.

• Reopen reopens the currently opened file. This can be used after the configuration or
data file has been updated.

• Save As saves the state of the current Splat Visualizer window into an image file. The
user specifies both the file name (default is splatviz.rgb), format (default is rgb), and
whether to save the entire window, including any possible legends and Animation
Panel, or just the main scene with the graphical objects (default is the full window).

• Print Image outputs the state of the current Splat Visualizer window to a printer. You
can specify the output printer using a Print dialog panel (default is your system's
default printer) and, like the Save As dialog, choose whether to print the entire
window or just the main scene window.

• Start Tool Manager starts the Tool Manager (if not already running), and restores it to
the state it was in when the Splat Visualizer was invoked.

• Exit closes all windows and exits the application.

240

Chapter 7: Using the Splat Visualizer

The View Menu

The View menu lets you control certain aspects of what is shown in the Splat Visualizer
window.

Figure 7-15 Splat Visualizer View Menu

• Show Window Decoration lets you hide or show the external controls around the
main window.

• Show Null Positions lets you hide or show splats that have null or unknown position
values along one or more axes.

• Show Animation Panel lets you show or hide the animation control panel. This menu
item is disabled for datasets with no independent dimension.

• Show Filter Menu brings up a filter panel (Figure 7-16) that lets you reduce the
number of splats displayed in the main viewing area, based on one or more criteria.
You can use the filter panel to fine-tune the display, emphasize specific information,
or simply shrink the amount of information displayed. Columns other than those
mapped to axes, sliders, opacity, and color are not available for filtering because
they are removed during aggregation. The Set Landscape to Filter checkbox, which
appears in the lower right of the filter panel, lets you specify whether the landscape
in the main window covers the entire dataset or just the filtered data.

Pulldown Menus

241

Figure 7-16 Splat Visualizer Filter Panel

The Filter panel has two panes. The top pane lets you filter based on string columns.
To select all values of a column, click Set All. To clear the current selections, click
Clear. To select a value, click it. To deselect a value, simply click it again.

The bottom pane lets you filter based on the values of both string and numeric
columns.

242

Chapter 7: Using the Splat Visualizer

To filter numeric values, enter the value, and select a relational operation (=, !=, >, <,
>=, <=). To filter alphanumeric values, enter the string. You can use any of three
types of string comparisons:

• Contains indicates that it contains the appropriate string. For example,
“California” contains the strings “Cal” and “forn”.

• Equals requires the strings to match exactly.

• Matches allows wildcards:

– An asterisk (*) represents any number of characters.

– A question mark (?) represents one character.

– Square braces ([]) enclose a list of characters to match.

For example, California matches Cal*, Cal?fornia, and Cal[a-z]fornia.

For columns which were binned, an option menu of values appears, instead of a
text field. To ignore that column, select Ignored in the Option menu. You can use
relational operators, such as >=, with these options. This means that the specified
value as well as subsequent ones are selected.

In addition to numeric and string comparison operations, you can specify Is Null ,
which is true if the value is null.

To the right of each field is an additional option menu that lets you specify “And” or
“Or” options. For example, you could specify “sales > 20 And < 40.” You can have
any number of And or Or clauses for a given column, but cannot mix And and Or in
a single column.

Click the Filter button to start filtering. If you press Enter while the panel is active,
filtering starts automatically.

Click the Close button to close the panel.

Pulldown Menus

243

The Selection MenuS

The Selection menu (Figure 7-17) lets you drill through to the underlying data. The
menu has six items.

Figure 7-17 The Splat Visualizer’s Selection Menu

• Create Box Selection creates a 3-D box selector that can be stretched and translated to
select regions of the volume. While the box selector is active, a selection window is
opened showing information about all of the aggregated data that is represented by
the splats within it (see top of Figure 7-18). Closing this window clears the current
box selection(s). Selecting this option again creates a new box selection, making the
previous selection fixed. The fixed-selection boxes are gray, while the active one is
light yellow (see Figure 7-18). The selected bins, shown in the selection window, are
the bins enclosed by the union of all the selection boxes.

244

Chapter 7: Using the Splat Visualizer

Figure 7-18 Image With Fixed Selection Box (Gray) and Active Selection Box (Yellow)

Pulldown Menus

245

To translate the active selection box, click on one of the faces with the left mouse
button, and drag it in the desired direction. Holding the Shift key while dragging
constrains the motion to the axis to which the drag motion is closest. To change the
extent of the selection box, drag one of the gray scale tabs in the desired direction.
Trying to resize or translate beyond the bounds of the volume is not permitted. The
gray scale tabs constantly resize to maintain constant screen size. If at any time they
appear too big, you can zoom in closer, and they reduce their size relative to the
box.

• Show Original Data retrieves and displays the records corresponding to what has
been selected via Box Selection(s). The resulting records are shown in a table viewer.

• Send To Tool Manager inserts a filter operation, based on the current box selection(s),
at the beginning of the Tool Manager history. The actual expression used to do the
drill through is determined by extents of the current box selection(s). If nothing is
selected, a warning message appears.

• Use Slider On Drill-Through determines whether or not to use the slider position
when creating the drill-through expression. If checked (default), an additional term
is added to the drill-through expression, limiting the drill-through to those records
defined by the slider’s position. If this option is not checked, no such limiting term
is added.

• Complementary Drill Through causes the Show Original Data and Send To Tool Manager
selections, when used, to fetch all the data that are not selected.

• Show Pick Dragger toggles the visibility of the pick dragger (on by default). The pick
dragger is removed when a box selection is started, but it can be made active at the
same time that a box selection is active.

For further details on drill-through, see Chapter 14, “Multiple Selection and
Drill-Through.”

246

Chapter 7: Using the Splat Visualizer

Splat Type Menu

The splats (see Lee Westover, “Footprint Evaluation for Volume Rendering” in
Proceedings of SIGGRAPH ‘90, Vol. 24, No. 4, pages 367-376) are used in this tool to model
clouds of small points.

The Splat Type Menu lets you change the method for drawing the splats. You can select
a method to trade off accuracy with interactivity. Texture splats are the most accurate
representation of the ideal Gaussian density function that is approximated in every
approach; but it is the slowest (unless your platform has a high level of support for
hardware assisted texturing). The five splat types are:

• Constant draws a single, large pixel at each splat location. This is the fastest but least
accurate method.

• Linear draws a small set of triangles to give a linear approximation to a Gaussian
splat.

• Gaussian draws a large set of triangles to approximate a Gaussian splat.

• Texture uses a texture mapped rectangle to give the most accurate representation.
This can be very slow on machines that don’t support hardware assisted texture
mapping.

• Sphere draws an opaque sphere, the radius for which varies with the cube root of the
count (or weight).

The Help Menu

The Help menu provides access to five help functions (see Figure 7-19).

Figure 7-19 Splat Visualizer Help Menu

Sample Configuration and Data Files

247

• Click for Help turns the cursor into a question mark. Placing this cursor over an
object in the Splat Visualizer’s main window and clicking the mouse causes a help
screen to appear; this screen contains information about that object. Closing the help
window restores the cursor to its arrow form and deselects the help function. The
keyboard shortcut for this function is Shift+F1. (Note that it also is possible to place
the arrow cursor over an object and press the F1 function key to access a help screen
about that object.)

• Overview provides a brief summary of the major functions of this tool, including
how to open a file and how to interact with the resulting view.

• Index provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts provides the keyboard shortcuts for all of the Splat Visualizer’s
functions that have accelerator keys.

• Product Information brings up a screen with the version number and copyright notice
for the Splat Visualizer.

• MineSet User’s Guide invokes the Insight viewer with the online version of this
manual.

Sample Configuration and Data Files

The provided sample data and configuration files demonstrate the Splat Visualizer’s
features and capabilities. The following files are in the /usr/lib/MineSet/splatviz/examples
directory:

• mushroom
The mushroom.data file contains pre-aggregated data concerning more than 5,000
mushrooms. The group by columns were: odor, gill_color, and cap_color. For every
combination of these three columns in the original data, there is a count and an
average edibility, where 0 is edible, and 1 is poisonous. An average edibility
between 0 and 1 means some of the mushrooms in that aggregate are edible and
some are poisonous, since mushrooms can not be partially poisonous.

248

Chapter 7: Using the Splat Visualizer

The visualization (Figure 7-11) shows that the unique values for each of these
columns has been sorted along the axes according to average edibility. Odor is
clearly the best determinant of edibility. Also note that most splats are either all 0 or
all 1, meaning these three columns are useful in segmenting the two classes of
mushrooms. Lower the opacity slider to determine which splats have the highest
counts. The most opaque splat represents 288 mushrooms having common values
for odor, gill_color, and cap_color. To confirm this try filtering based on
sum_count_poison>280 and picking on the remaining splats to see their counts.
Note that all mushrooms with gill_color=”buff” are poisonous.

• adultJobs
The adultJobs.data file was derived from adult94, a dataset provided with the
distribution. It was created using an aggregation that grouped by education,
occupation, hrs_worked_per_week(binned), and age (binned). The gross_income column
was aggregated by count and average. For a display using the Splat Visualizer
(Figure 7-1), age_bin was mapped to a slider, while the other group-by columns
were mapped to axes. The count_gross_income column was mapped to opacity, and
avg_gross_income was mapped to color.

When the slider is in the left-most position, the color of the plot is almost entirely
blue. This means that regardless of occupation, education, or number of hours
worked, people younger than 20 have low incomes. Move the slider to the right,
and note how incomes rise faster for higher education and occupations toward the
end of the axis. By the opacity variation you can see that the most common types of
education are HS, some college and Bachelors degree.

Moving the Summary slider shows how the distribution of income changes with
respect to the axes columns as people age.

• adultJobs2
The adultJobs2 file is also based on the adult94 dataset. Here, the axis columns are
working_class, education, and occupation. The two columns mapped to sliders are
age(binned) and hours_worked_per_week(binned). Again, income was aggregated by
count and average for use with opacity and color, respectively. Since there are more
positions on the 2D slider, there are fewer records represented by each position. This
causes greater variation of color and opacity. The red region in the center of the
hrs_per_week dimension of the Summary slider shows that nearly everyone works
between 35 and 45 hours per week (see Figure 7-10). Note that some occupations are
aligned with specific working classes. For example, everyone in the Armed-forces
has Fed-Government for their working class.

Sample Configuration and Data Files

249

• censusIncome
This example is based on a dataset similar to adult94, but was not included with the
distribution because of its size. In attempt to understand the differences between
gross income and total income, gross_income, total_income, and hrs_per_week have
been mapped to axes. Color shows age. By studying the image we can learn that
there are many records where total_income=gross_income, but there are also a larger
portion of records with high total_income, but 0 gross_income. It is surprising that in
many cases gross_income is greater that total_income.

Note where the people of different ages are concentrated. Many old people (yellow)
are in the hrs_per_wk=0 plane. They are probably retirees. Many children and young
adults (blue) are in the line gross_income=total_income=0. Note the fairly opaque
splats near the outside edges of the volume. These positions include all points that
fell in the maximum bin shown for an axis. For example, the highest bin for
total_income is 70300+. Any point higher than 70300 goes in this bin.

To better see the varying density, adjust the opacity slider. At low opacity scales, the
diagonal lines show that for most people gross_income=total_income, or they have
just total_income and no gross_income. As you raise the scale, you can see that almost
the entire volume contains data. This dataset contains 150,000 records.

• churn
Churn is when a customer leaves one company for another. This example shows
customer churn for a telephone company. The data used to generate this example is
in /usr/lib/MineSet/data/churn.schema.

Using column importance, we found that total_day_charge,
number_customer_service_calls, and international_plan were important discriminators.
These columns were mapped to axes. We then created a new numeric column,
churn, which equals churned=="True" , and mapped it to color.

In the resulting visualization, red areas of the volume indicate high churn. The area
corresponding to three or more customer service calls and low total_day charge
corresponds to high churn. You might want to weight big-spending customers more
heavily than others. To do this, create a new column, total_charge, equal to

`total_day_charge`+`total_eve_charge`+`total_night_charge`

or some power of this sum. Then map this total_charge column to opacity. This
means every record is weighted by total_charge. Now the visualization shows
additional areas of interest near the high end of the total_day_charge axis.

See /usr/lib/MineSet/splatviz/examples/README for additional information on the files in
that directory.

251

Chapter 8

8. Using the Rules Visualizer

This chapter discusses the components and capabilities of the Rules Visualizer. It first
provides an overview of this data mining and visualization tool, then it explains this
tool’s functionality when working with the

• main window

• external controls

• pulldown menus

Finally, it lists and describes the provided sample files for these tools.

Overview of Rules Visualizer

The Rules Visualizer gives you the power to mine data by constructing, verifying, and
graphically representing models of patterns in large databases. These patterns are
expressed via association rules, which indicate the frequency of items occurring together
in a database.

Discovering and graphically displaying association rules can be relevant to many
enterprises, including supermarket inventory planning, shelf planning, and attached
mailing in direct marketing.

The tool execution scenario described in Chapter 1 of this document (see Figure 1-1) is
slightly modified for the Rules Visualizer. First, the “raw” data in your database must be
converted into a specially formatted file that can be processed by the association rules
generator part of the Rules Visualizer. When the association rules generator has
processed this file, the results can be displayed by the rules visualizer part of this tool.

252

Chapter 8: Using the Rules Visualizer

Thus, the Rules Visualizer consists of three operations:

1. Data conversion. The association data converter processes a “raw” data file and
creates a file usable by the association rules generator.

2. Association rules generation. The data file created by the association data converter
is processed by the association rules generator, which creates a file usable by the
rules visualizer.

3. Rules visualization. This operation displays the generated association rules.

In addition to the input data and rules file requirements, each operation requires a
configuration file that specifies operational parameters.

The sequence of actions by the user, at the user’s workstation, and at the host server is
shown schematically in Figure 8-1. The phases indicated at the right of the illustration
correlate to the operations listed above.

Overview of Rules Visualizer

253

Figure 8-1 Execution Sequence of the Rules Visualizer

User's
data source

Data Mover

Client
workstation Host server

Tool
manager

Format
file

Rules
Visualizer

Rules file

Configuration
file

Binary (flat)
data file

Association
data

converter

Association
rules
generator

"Raw"
data file

User

Visualdisplay

D
at

a
co

nv
er

si
on

R
ul

es
 v

is
ua

liz
at

io
n

R
ul

es
ge

ne
ra

tio
n

OR

254

Chapter 8: Using the Rules Visualizer

Data Conversion

The association data converter takes a “raw” data file, such as one resulting from a
database query, and creates a binary data file in the format used by the association rules
generator. The internal format of this generated file allows optimum processing by the
rules generator.

Association Rules Generator

One example of applying the association rules generator is to obtain “market basket”
data for customer buying patterns. Here, “market basket” is the set of items bought by
each customer on a single visit to a store. An example rule in this context might be: “80%
of the people that buy diapers buy baby powder.” This percentage is known as the
predictability of the rule.

In the example, “diapers” is the item on the left-hand side (LHS) of the rule, and “baby
powder” is the item on the right-hand side (RHS) of the rule.

Some applications of these rules are as follows:

• If “Fizzy Pop” appears on the RHS, the LHS can help us determine what the store
should do to boost sales of this beverage.

• If “Bagels” appears on the LHS, the RHS can help us determine what products
might be affected if the store no longer sells bagels.

The association rules generator part of this tool processes an input file, then generates an
output file consisting of the rules. If X and Y are items in a record, then a rule such as

X ⇒ Y

indicates that whenever X occurs in a record, expect Y to occur with some frequency.

Overview of Rules Visualizer

255

Components of a Generated Association Rule

The strength of the association is quantified by three numbers. The first number, the
predictability of the rule, quantifies how often X and Y occur together as a fraction of the
number of records in which X occurs. For example, if the predictability is 50%, X and Y
occur together in 50% of the records in which X occurs. Thus, knowing that X occurs in
a record, expect that 50% of the time Y occurs in that record.

The second number, the prevalence of the rule, quantifies how often X and Y occur
together in the file as a fraction of the total number of records. For example, if the
prevalence is 1%, X and Y occur together in 1% of the total number of records. The lower
the prevalence, the more rules are generated, and the slower the performance of the tool
might be.

Rules that meet a minimum prevalence threshold are important for two reasons:

1. A rule might have business value only if a reasonably significant fraction of records
support the rule. For example, if everyone who buys caviar also buys vodka, the
rule Caviar ⇒Vodka has 100% predictability. However, if only a handful of people
buy caviar, the rule might be of limited value to the retailer.

2. A rule might not be statistically significant if a very small number of records
support the rule. The rule might be due to chance, and it would not be prudent to
make decisions based on such a rule.

You can specify a minimum prevalence threshold for the generated rules. The default
minimum prevalence threshold is 1%. You can also specify a minimum predictability
threshold for the generated rules. The minimum predictability threshold default is 50%.

The third number is expected predictability. The expected predictability is the frequency of
occurrence of the RHS items. So the difference between expected predictability and
predictability is a measure of the change in predictive power due to the presence of the
LHS rule. Expected predictability gives an indication of what the predictability would be
if there were no relationship between the items.

The Association Rules generator does not report rules in which the predictability is less
than the expected predictability. In other words, a rule such as A->B is not reported if the
frequency of A and B occurring together is less than the frequency of B alone.

Note: Given just Y and a rule of the form X ⇒ Y, nothing is known about X. Rules specify
implications only from the LHS to the RHS.

256

Chapter 8: Using the Rules Visualizer

Table 8-1 summarizes the three numbers that quantify the strength of each association
rule.

Hierarchical Data

The rules generator also works on hierarchical data, which includes a component that
relates (or maps) data to new data at varying degrees of generality. The ability to handle
hierarchical data allows rules to be generated at the desired level of generality.

For example, consider the hierarchy shown in Table 8-2. This hierarchical information, in
addition to the “market basket” data that lists the products purchased in each record,
allows rules to be generated at four levels. In contrast to rules learned at the lowest level,
which relate specific products to each other, a rule at the highest level might be “Milk
implies Bread.”

Rules Visualization

The rules visualization part lets you graphically display and explore the generated
association rules. The rules are presented on a grid landscape, with left-hand side (LHS)
items on one axis, and right-hand side (RHS) items on the other. As shown in Figure 8-2,

Table 8-1 Association Rules Components

Measure Description

Prevalence Frequency of LHS and RHS occurring together.

Predictability Fraction of RHS out of all items with LHS, or the prevalence
divided by the frequency of occurrence of LHS items.

Expected Predictability Frequency of occurrence of RHS items.

Table 8-2 Example of Hierarchical Levels

Level Example

Product Group Milk

Category Non-Refrigerated Milk

Brand Lucerne®

Product ID (UPC/SKU Code) 1 pint can of Premium Condensed Milk

Overview of Rules Visualizer

257

attributes of a rule are displayed at the junction of its LHS and RHS item. The display can
include bars, disks, and labels.

Figure 8-2 Detail View of the Rules Visualizer’s Main Window

Disk

Label

Bar

258

Chapter 8: Using the Rules Visualizer

If the displayed view is too small, item labels do not appear on the side of the axes. You
can zoom in on the view until the item labels appear (see the Dolly description in the
“Thumbwheels” section).

A legend indicating the mapping between displayed attributes (such as bar heights and
colors) and the values associated with the underlying rules (such as predictability and
prevalence) can be displayed at the bottom of the main window.

File Requirements

Each of the Rules Visualizer’s three components has its own file requirements. These are
detailed in the following subsections.

Files Required by the Association Data Converter Part

• A “raw” data file that results from extracting raw data from a source (such as a
relational database). This file is processed by the association data converter to
produce the internal binary data file used by the association rules generator.

• A format file that specifies the format of the data file. If the internal binary data file
(see next subsection) is created via the Tool Manager, this format file is created
automatically. If the internal binary data file is created via the command line, this
format file must be created manually (see Appendix F, “Creating Data and
Configuration Files for the Rules Visualizer”).

Files Required by the Association Rules Generator Part

• An internal binary data file, which results from running the association data
converter on your original data.

If you have hierarchical data, the association rules generator also requires the
following two files:

• A mapping file, which specifies the mapping between hierarchical levels.

• A description file, which specifies a string description for each item at a specific
hierarchical level.

Starting the Rules Visualizer

259

Files Required by the Rules Visualization Part

• A rules file that results from running the association rules generator.

• A .ruleviz configuration file that specifies parameters used by the rules visualizer
program (such as mapping colors to prevalence values) when displaying the
generated rules. This file is easily created using the Tool Manager (see Chapter 3).
You also can use an editor (such as jot, vi, or Emacs) to produce this file (see
Appendix F, “Creating Data and Configuration Files for the Rules Visualizer”).

These configuration files must have a .ruleviz extension.

Starting the Rules Visualizer

The Rules Visualizer has three components. The following subsections describe the
procedure for starting each one.

Starting the Association Data Converter Part

There are two ways to start the association data converter part of the Rules Visualizer:

• Use the Tool Manager to configure and start the data converter. (See Chapter 3 first
for details on most of the Tool Manager’s functionality, which is common to all
MineSet tools; see below for details about using the Tool Manager in conjunction
with the data converter.)

• Enter the following command at the UNIX shell command-line prompt:

assoccvt parameters

The parameters are described in Appendix F, “Creating Data and Configuration Files
for the Rules Visualizer.”

260

Chapter 8: Using the Rules Visualizer

Starting the Association Rules Generator Part

There are two ways to start the association rules generator part of the Rules Visualizer:

• Use the Tool Manager to configure and start the association rules generator. (See
Chapter 3 first for details on most of the Tool Manager’s functionality, which is
common to all MineSet tools; see below for details about using the Tool Manager in
conjunction with the association rules generator.)

• If the data with which you are working is non-hierarchical, enter this command at
the UNIX shell command line prompt:

assocgen parameters

If your data is hierarchical, enter this command at the UNIX shell command-line
prompt:

mapassocgen parameters

The parameters for both instances are described in Appendix F, “Creating Data and
Configuration Files for the Rules Visualizer.”

Starting the Rules Visualization Part

There are five ways to start the rules visualization part of this tool:

• Use the Tool Manager to configure and start the Rules Visualizer. (See Chapter 3
first for details on most of the Tool Manager’s functionality, which is common to all
MineSet tools; see below for details about using the Tool Manager in conjunction
with the Rules Visualizer.)

• Double-click the Rules Visualizer icon, which is in the MineSet page of the icon
catalog. The icon is labeled ruleviz. Since no configuration file is specified, the
start-up screen requires you to select one by using File > Open. See Figure 8-3.

Starting the Rules Visualizer

261

Figure 8-3 Rules Visualizer Start-Up Screen With File Menu Pulled Down

262

Chapter 8: Using the Rules Visualizer

• If you know what configuration file you want to use, double-click the icon for that
configuration file. This starts the Rules Visualizer and automatically loads the
configuration file you specified. This only works if the configuration filename ends
in .ruleviz (which is always the case for configuration files created for the Rules
Visualizer via the Tool Manager).

• Drag the configuration file icon onto the Rules Visualizer icon. This starts the Rules
Visualizer and automatically loads the configuration file you specified. This works
even if the configuration filename does not end in .ruleviz.

• Enter this command at the UNIX shell command-line prompt:

ruleviz [configFilename]

When starting the rules visualization part of this tool, you must specify the configuration
file, not the data or rules file.

Option for Invoking the Rules Visualizer

The -quiet option eliminates the dialogs that popup to indicate progress. You can enable
this option permanently by adding the line

*minesetQuiet:TRUE

to the user’s .Xdefaults file.

Configuring the Rules Visualizer Using the Tool Manager

This section describes how the components of the Rules Visualizer can be configured
using the Tool Manager. Although the Tool Manager greatly simplifies the task of
configuring the Rules Visualizer, you can construct a configuration file for this tool using
an editor (see Appendix F, “Creating Data and Configuration Files for the Rules
Visualizer”).

Note that the steps required to connect to a data source are described in Chapter 3.

Configuring the Rules Visualizer Using the Tool Manager

263

The sections below follow the configuration and invocation of the Rules Visualizer
components in the conventional order:

• creating a file for the association rules generator

• generating rules

• displaying rules

Setting Up Associations

To show how to set up associations, the following example uses the cars database table.
Assume that you want to find out if there is an association between miles per gallon,
horsepower, and the year the car was built. For example, did mileage improve over time?
Did engines become less powerful? The following steps (and Figure 8-4) show you how
to set up the associations and map table columns to the data you want to study.

Figure 8-4 Initial Tool Manager Window for Association Generation

264

Chapter 8: Using the Rules Visualizer

1. Specify a server name in the startup window; for this example, aztec .

2. Select Database from the Data Source tab. Connect to the chosen DBMS by logging
in with your username and password.

3. Use either the Single Table or the SQL Query option to extract the information you
want. For this example, choose the cars table from the correct database.

4. (Optional step) In the Data Transformations tab you can choose the transformations
you want do on the data before you give it to the associations engine. One
recommended transformation is to create bins for numeric data. (The binning
operation and the options available for it are described in detail in Chapter 3.) This
leads to more “meaningful” rules from the association engine. For example, instead
of using discrete values for the weightlbs attribute in the “cars” table such as 3504,
3693, 3436, 3433, and so on, it may be more meaningful to give weightlbs_bin value
ranges such as 1600-2500, 2501-3500, and so on.

For this example, click on the Bin Columns ... button, and select all the columns in
the Bin Column window for binning.

Note: If you run associations without binning any of the numerical columns (ints,
floats, doubles) you get the warning message
Running associations on unbinned non-categorical data. Binning is

recommended for producing more useful results.

5. Choose the Mining Tools tab from the Data Destination tab.

6. Choose the Associations tab from the Mining Tools tab.

7. At this point you can either have your data file converted to the associations
internal binary format by clicking on the Assoc Convert Options button, or use a
previously-converted binary file by selecting the Use server file checkbox. This
example assumes you are creating a new binary file from your data file.

Configuring the Rules Visualizer Using the Tool Manager

265

Figure 8-5 Association Convert Options Dialog Box

The database in the Current Columns text panel can contain multiple table columns.
By mapping specific columns to association rules, the association rules generator
can find the association between any possible pair of those items.

8. The Map Columns to Items for Assoc window shows two panels:

• Columns shows the columns in the data

• Items shows the mapping between columns in the data and items

The Map All button on this window can be used to map all the attributes in the data
source to items for the associations engine. The Clear All and Clear Selected buttons
can be used to clear/change the mapping between columns and items.

The default behavior is to map all columns to items. Therefore, if you omit this step
or if you open this window, you find all columns mapped. For this example, click
OK.

266

Chapter 8: Using the Rules Visualizer

9. Click the Run Convert button in the Associations tab to convert the data into an
internal binary file. The name of the binary file created appears in the window (you
can type in another name if you do not like the default provided by the Tool
Manager).

For the cars data, you are setting up a binary file that lets you explore corollaries between
different attributes of cars. The Tool Manager causes the information to be extracted from
the database and converted to a binary format. As this procedure is executed, the
message Waiting for server to create binary files appears. When this procedure
is finished, the message Binary file created appears.

Applying Association Rule Options

After creating the binary file (or choosing a previously created one), you can run the
Association Rules generator. You can choose options for this by clicking on the Assoc
Options button. This causes the dialog box in Figure 8-6 to be displayed.

Figure 8-6 Association Rule Options Dialog Box

Configuring the Rules Visualizer Using the Tool Manager

267

Prevalence—lets you specify the minimum prevalence threshold as a percentage of the
total number of records. The default is 1%. The possible values are 0–100.

Predictability—lets you specify the minimum predictability threshold for rules. Rules
with a predictability below this value are not generated. The default is 50%. The possible
values are 0–100.

Sort Output By—lets you specify how you want the output sorted, by one of the
following:

• the right hand side (RHS) of the rules

• predictability

• prevalence

• the left hand side (LHS) of the rules

Click the buttons to specify which comes first, second, third, and so forth.

Once you have made your association rule options selections, click the OK button. This
returns you to the Tool Manager startup screen.

To start generating rules based on the data you have chosen and the options you have
configured, click the Run Assoc button on the Associations tab.

While the rules are being generated, the message Waiting for server to create

rules file is displayed. When the process is finished, the rules file is downloaded to
your local disk, and the message Rules file received from server is displayed. You
are now ready to visualize these rules.

Mapping Columns to Visual Elements

The Rules Visualizer lets you map attributes of the rules to visual elements of the display.
Clicking on the RuleViz Mappings button brings up the Ruleviz Mappings panel shown in
Figure 8-7.

268

Chapter 8: Using the Rules Visualizer

Figure 8-7 The Rules Visualizer’s Mappings Panel

The visual elements that can be mapped are listed below:

• Height - Bars—lets you specify what the bar heights represent.

• Height - Disks—lets you specify what the disk heights represent.

• Color - Bars—lets you specify what the bar colors represent.

• Color - Disks—lets you specify what the disk colors represent.

• Label - Bars—lets you specify what the bar labels represent.

The default mappings are as follows:

• predictability to bar heights

• expected predictability to disk heights

• prevalence to bar and disk colors

Configuring the Rules Visualizer Using the Tool Manager

269

Specifying Ruleviz Options

Clicking on the Ruleviz Options button causes a new dialog box to be displayed
(Figure 8-8). This lets you change some of the Rules Visualizer options from their default
values.

Figure 8-8 Rule Visualizer Options Dialog Box

This dialog box has two panels: the top one lets you set options for bars and disks; the
bottom one lets you specify options for items, the grid, and labels.

Items in the top panel are listed below:

• Height button—lets you specify whether the bars and disk heights are to be
normalized so that the tallest bar equals the height field value (Max Height), or
whether they are to be scaled by the height field value (Scale Height).

• Height field—lets you enter the maximum or scale value for bar and disk heights.

270

Chapter 8: Using the Rules Visualizer

• Hide Distance—lets you specify the distance at which disks are not graphically
represented. Smaller numbers in this field specify a shorter distance; this means
fewer disks are shown and performance is greater. Larger numbers indicate a
greater distance; this means disks are always visible.

• Legends—lets you enter a text string that appears as mapping information displayed
at the bottom of the main Rules Visualizer window. This is information about
mapping between display entities and data values (for example, bar height
corresponds to predictability values).

• Color list—lets you add or edit a color. To add a color to the list, click the + button. To
edit a color, click the color. See “Choosing Colors” and “Using the Color Browser”
in Chapter 3 for a more detailed explanation of how to choose and change colors.

• Mapping—lets you specify whether the color change that is shown in the graphic
display is Continuous or Discrete. If you choose Continuous, the color values (of the
bars or disks) shift gradually between the colors entered in the Color list field as a
function of the values that are mapped to those colors in the Color list field.

Example 8-1

If you

• used the Color Browser to apply red and green (for bars and/or disks)

• selected Discreet for the Mapping

• entered the values 0 100

then the display shows all bars and/or disks with values of less than 50 in red, and all
those with values greater than or equal to 50 in green.

Example 8-2

If you

• used the Color Browser to apply red and green (for bars and/or disks)

• selected Continuous for the Mapping

• entered the values 0 100

Configuring the Rules Visualizer Using the Tool Manager

271

then the display shows all bars and/or disks with values less than or equal to 0 as
completely red, those as greater than or equal to 100 as completely green, and those
between 0 and 100 as shadings from red to green.

If no mapping and values are specified, a continuous mapping is used, and values are
generated automatically from the minimum value to the maximum value in the data.

Items in the bottom panel are as follows:

• Items On and Grids On checkbox buttons let you determine whether items (the
names on the side of the grid) are displayed or hidden.

• Size (for Items, Grid, and Bar Labels) lets you specify the size for items, the grid, and
bar labels. If you mapped a column value to bar labels in the Requirements panel of
the Tool Manager startup screen, you can specify a size for those labels.

• Color (for Left-Hand Items, Right-Hand Items, Grid, and Bar Labels) lets you specify
the color for LHS and RHS items, the grid, and bar labels. If you mapped a column
value to bar labels in the Requirements panel of the Tool Manager startup screen,
you can specify a size for those labels.

• Hide Distance lets you specify the distance at which the LHS items, RHS items, grid,
or labels become invisible. Smaller distances might improve performance, but the
objects disappear more quickly. The higher the number, the greater the distance at
which labels are hidden.

• Message lets you specify the message displayed when the pointer is moved over an
object or when an object is selected. (See Figure 8-10.)

Invoking the Rules Visualizer

To see the Rules Visualizer graphically represent your data, click the Run RuleViz button
at the bottom of the Associations tab in the Data Destination panel of the main Tool
Manager window.

272

Chapter 8: Using the Rules Visualizer

Working in the Rules Visualizer’s Main Window

The Rules Visualizer part of this tool graphically displays the data in a rules file using the
specifications of a valid configuration file. For example, specifying group.ruleviz results in
the image shown in Figure 8-9.

Figure 8-9 Initial Rules Visualizer View When Specifying group.ruleviz

Working in the Rules Visualizer’s Main Window

273

The rules are presented on a grid, initially displayed with left-hand side (LHS) items
displayed on the left side of the window and right-hand side (RHS) items on the right. A
rule is displayed at the junction of its LHS and RHS items. The display can include bars,
disks, and labels.

When the scene is close enough, the LHS and RHS axes are labeled with the item names,
unless this has been turned off in the configuration file. (To view the grid and rules at
closer range, use the Dolly thumbwheel, described in the “Thumbwheels” section.)

You can change the labels as well as what the heights and colors of the bars and disks
represent by modifying the configuration file via the Tool Manager (see Chapter 3) or
using an editor to change the configuration file.

For example, in Figure 8-9, bar heights correspond to predictability values, bar colors
correspond to prevalence values, and disk heights correspond to expected predictability.

Viewing Modes

The two modes of viewing are grasp and select. To toggle between these modes, press the
Esc key. You also can change from one mode to the other by clicking the appropriate
button: to enter select mode, left-click the arrow button (to the top right of the main
window); to enter grasp mode, left-click the hand button (immediately below the arrow
button, near the top right of the main window).

Grasp Mode

In grasp mode the cursor appears as a hand. This mode supports panning, rotating, and
scaling the scene’s size in the main window.

• To rotate the display, press the left mouse button and move the mouse in the
direction you want to rotate. (Also see the rotating controls Rotx and Roty described
in “Thumbwheels” on page 276.)

• To pan the display, press the middle mouse button and drag it in the direction you
want the display panned.

• To move the viewpoint forward, press the left and middle mouse buttons
simultaneously and move the mouse downwards. To move the viewpoint
backward, press the left and middle mouse buttons simultaneously and move the
mouse upwards. This is equivalent to the functions provided by the Dolly
thumbwheel.

274

Chapter 8: Using the Rules Visualizer

Select Mode

In select mode, you can obtain additional information about a rule by placing the cursor
over a bar. This highlights the selected bar and causes information about the rule
represented by that bar to appear at the top of the main window.

Figure 8-10 Cursor Over a Rules Visualizer Object

External Controls

275

The information is displayed as long as the cursor remains over the object. If you position
the pointer cursor over an object and click the left mouse button, that same information
appears in the Selection Window, which is above the main window, under the
“Selection” label.

This Selection information remains visible until another object is selected, or until no
object is selected (if you click the black background). Using the mouse, you can cut and
paste this text into other applications, such as reports or databases.)

External Controls

Several external controls surround the graphics window. These consist of buttons,
thumbwheels, and sliders.

Buttons

At the top right of the image area are eight buttons, shown in Figure 8-11.

Figure 8-11 Rules Visualizer External Buttons

Arrow

Hand

Viewer help

Home

Set Home

View All

Perspective

Seek

276

Chapter 8: Using the Rules Visualizer

• Arrow puts you in select mode. When in this mode, the cursor shape is an arrow.
Select mode lets you highlight graphical objects in the main window.

• Hand puts you in grasp mode. When in this mode, the cursor shape is a hand. Grasp
mode lets you rotate, zoom, and pan the display in the main window.

• Viewer help brings up a help window describing the viewer itself.

• Home takes you to a designated location. Initially, this location is the first viewpoint
shown after invoking the Rules Visualizer and specifying a configuration file. If you
have been working with the Rules Visualizer and have clicked the Set Home button,
then clicking Home returns you to the viewpoint that was current when you last
clicked Set Home.

• Set Home makes your current location the Home location. Clicking the Home button
returns you to the last location where you clicked Set Home.

• View All lets you view the entire grid and all the rules, keeping the angle of view. To
get an overhead view of the scene, rotate the camera so that you are looking directly
down on the rules grid, then click the View All button. (To rotate the camera, see the
description of the Rotx thumbwheel on page 277.)

• Seek takes you to the point or object you click after selecting this button.

• Perspective is a toggle button that lets you view the scene in 3D perspective (closer
objects appear larger, farther objects appear smaller). Clicking this button toggles
3D perspective on (default setting) or off.

Note: If perspective is off, the Dolly thumbwheel becomes the Zoom thumbwheel.

Thumbwheels

Three thumbwheels appear around the lower part of the graphics window border. They
let you dynamically move the viewpoint.

External Controls

277

Figure 8-12 Rules Visualizer Thumbwheels

• The vertical thumbwheel Rotx (rotate about the x axis), on the left, rotates the
display up and down.

• The horizontal thumbwheel Roty (rotate about the y axis), at the bottom left, rotates
the scene in the main window around its centerpoint left and right.

• The vertical thumbwheel Dolly, on the right, moves the viewpoint forward and
backward. Note that as you use the Dolly thumbwheel to magnify the scene in the
main window, additional detail can appear. This is not the case with the Zoom
slider, which merely enlarges the scene without adding detail.

Note: If perspective is off, the Dolly thumbwheel becomes the Zoom thumbwheel.

The Height Slider

The Height slider, at the upper left corner of the main window, lets you scale the heights
of objects (bars and disks) in the main window.

Figure 8-13 Rules Visualizer’s Height Slider

Thumbwheels

Height slider

278

Chapter 8: Using the Rules Visualizer

Pulldown Menus

The Rules Visualizer has three pulldown menus, labeled File, View, and Help.

The File Menu

The File menu (Figure 8-14) contains three options.

Figure 8-14 Rules Visualizer File Menu

• Open loads and opens a configuration file, displaying it in the main window.
Previously displayed data is discarded.

• Reopen reloads the current configuration file. This is useful if either the
configuration file or data file has changed.

• Exit closes the current window and exits the application.

The View Menu

The View menu (Figure 8-15)contains one option.

Figure 8-15 Rules Visualizer View Menu

Pulldown Menus

279

Use Symmetric Axes controls how items are displayed along the left- and right-hand side
axes. If enabled, every item appears on both axes, making the axes identical. Otherwise,
only the required items appear on each axis.

The Filter Menu

The Filter menu brings up a Filter panel (Figure 8-16) that lets you reduce the number of
rules displayed in the main viewing area, based on one or more criteria. You can use the
filter panel to fine-tune the display, emphasize specific information, or simply shrink the
amount of information displayed.

Figure 8-16 Rules Visualizer Filter Panel

280

Chapter 8: Using the Rules Visualizer

The top pane lets you filter based on string variables, such as LHS and RHS. To select all
values of a variable, click Set All. To clear the current selections, click Clear. To select a
value, click it. To deselect a value, click it again.

The bottom pane lets you filter based on the values of both string and numeric variables.

To filter numeric values, enter the value, and select a relational operation (=, !=, >, <, >=,
<=). To filter alphanumeric values, enter the string. You can use any of three types of
string comparisons:

• Contains indicates that it contains the appropriate string. For example, California
contains the strings Cal and forn.

• Equals requires the strings to match exactly.

• Matches allows wildcards:

– An asterisk (*) represents any number of characters.

– A question mark (?) represents one character.

– Square braces ([]) enclose a list of characters to match.

For example, California matches Cal*, Cal?fornia, and Cal[a-z]fornia.

In addition to numeric and string comparison operations, you can specify Is Null.

Currently, this option does not match any rules, resulting in an empty display.

To the right of each field is an additional option menu that lets you specify “And” or “Or”
options. For example, you could specify “sales > 20 And < 40.” You can have any number
of And or Or clauses for a given variable, but cannot mix And and Or in a single variable.

Click the Filter button to start filtering. If you press Enter while the panel is active,
filtering starts automatically.

Click the Close button to close the panel.

Pulldown Menus

281

The Help Menu

The Help menu (see Figure 8-17) provides access to six options.

Figure 8-17 Rules Visualizer Help Menu

• Click for Help turns the cursor into a question mark. Placing this cursor over an
object in the Rules Visualizer’s main window and clicking the mouse causes a help
screen to appear; this screen contains information about that object. Closing the help
window restores the cursor to its arrow form and deselects the help function. The
keyboard shortcut for this function is Shift+F1. (Note that it also is possible to place
the arrow cursor over an object and press the F1 function key to access a help screen
about that object.)

• Overview provides a brief summary of the major functions of this tool, including
how to open a file and how to interact with the resulting view.

• Index provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts provides the keyboard shortcuts for all of the Rules Visualizer’s
functions that have accelerator keys.

• Product Information brings up a screen with the version number and copyright notice
for the Rules Visualizer.

• MineSet User’s Guide invokes the IRIS Insight viewer with the online version of this
manual.

282

Chapter 8: Using the Rules Visualizer

Sample Files

The provided sample data, rules, and configuration files demonstrate the features and
capabilities of the Rules Visualizers.

Sample Files for the Association Data Converter

There are two sample files provided for each of the two formats of the association data
converter. These files are located in the /usr/lib/MineSet/assoccvt/examples directory.

• sing.dat and sing.fmt
The sing.dat file is a “raw” data file type, as described in the “Files Required by the
Association Data Converter Part” on page 258. The sing.fmt file is the format file
described in the same section. Both files are of the single-item-per-record format.

• mult.dat and mult.fmt
The mult.dat file is a “raw” data file type, as described in the “Files Required by the
Association Data Converter Part” on page 258. The mult.fmt file is the format file
described in the same section. Both files are of the multiple-item-per-record format.

Sample Files for the Association Rules Generator

These files are located in the /usr/lib/MineSet/assocgen/examples directory. Except for the
synthn.dsc file, the sample files for the association rules generator are provided in 2-byte
and 4-byte integer versions. The difference between the respective files is that the 4-byte
integer version requires twice the amount of storage space of the 2-byte integer version.

• synthn.dsc
This is a description file for items at the nth level of the hierarchy. For example, if n
is 0, this file describes the lowest level; if n = 1, the file describes the next higher
level of the hierarchy, and so forth. Description files are common to both 2-byte and
4-byte integer files.

Two-byte Integer Version

• synths.dat
This is a data file with 2-byte integers. It corresponds to the data shown in Table F-9
on page 578.

• synths.map
This is a 2-byte integer mapping file for hierarchical data.

Sample Files

283

Four-byte Integer Version

• synthb.dat
This is a data file with 4-byte integers. It corresponds to the data shown in Table F-9
on page 578.

• synthb.map
This is a 4-byte integer mapping file for hierarchical data.

Sample Files for the Rules Visualization Part

The following sample rules and configuration files are provided for use with the rules
visualization part of this tool. These files correspond to the hierarchical datasets. Rules
files contain the generated rules obtained by running the association rules generator part
of the Rules Visualizer. Rules files must have a .rules extension. Each configuration file
specifies how the corresponding rules file is displayed. Configuration files must have a
.ruleviz extension. The files mentioned in this subsection are in the
/usr/lib/MineSet/ruleviz/examples directory.

• group.rules and group.ruleviz

These files provide the generated rules and configuration specifications for product
groups, such as bread and baked goods, dairy milk, and carbonated beverages.

• category.rules and category.ruleviz

These files provide the generated rules and configuration specifications for product
categories within product groups, such as refrigerated or non-refrigerated milk.

• people94.rules and people94.ruleviz

These files provide the generated rules and configuration specifications for a census
database, showing associations among marital status, education level, age, income,
and other variables.

• germanCredit.rules and germanCredit.ruleviz

These files provide the generated rules and configuration specifications for a credit
database from Germany, showing associations among credit history, employment,
savings, and other variables.

See /usr/lib/MineSet/ruleviz/examples/README for additional information on the files in
that directory.

285

Chapter 9

9. MineSet Inducers and Classifiers

This chapter provides an introduction to classifiers and the algorithms that build them,
called inducers. MineSet provides three inducer-classifier pairs:

• Decision Tree

• Option Tree

• Evidence

The information in this chapter is equally applicable to all the MineSet classifiers. The
chapter consists of two parts: the first part introduces the basic concepts, the second part
details how to apply those concepts via the Tool Manager.

Detailed descriptions of the MineSet inducers and classifiers are provided in Chapter 10,
“Inducing and Visualizing the Decision Tree Classifier,” Chapter 11, “Inducing and
Visualizing the Option Tree Classifier,” and Chapter 12, “Inducing and Visualizing the
Evidence Classifier.”

286

Chapter 9: MineSet Inducers and Classifiers

Classifiers

A classifier predicts one attribute of a set of data given several other attributes. For
example, if you have a dataset of iris flowers, a classifier can be built to predict the type
of iris (iris-setosa, iris-versicolor, or iris-virginica) given the petal length, petal width, sepal
length, and sepal width. The attribute being predicted (in this case, the type of iris) is
called the label, and the attributes used for prediction are called the descriptive attributes.

MineSet can build a classifier automatically from a training set. This training set consists
of records in the database for which the label has been determined, based on the
descriptive attributes. For example, you supply a database table with one column for
each descriptive attribute (such as petal length, petal width, sepal length, and sepal
width) and one column for the label (iris-setosa, iris-versicolor, or iris-virginica). An
algorithm that automatically builds a classifier from a training set is called an inducer.

When a classifier is generated, MineSet also generates a visualization that can help you
understand how the classifier operates. This visualization can also provide valuable
insight into the data itself.

Once a classifier is generated, it can be used to classify records that do not contain the
label attribute. This value is predicted by the classifier.

Note: See Appendix J for a list of further readings about classifiers as well as
acknowledgements for the datasets used in MineSet sample files.

Classifiers

287

Decision Tree Classifiers

Figure 9-1 shows the Decision Tree generated by the Decision Tree inducer for the
example mentioned above.

Figure 9-1 The Decision Tree Generated by the Decision Tree Inducer for Iris Dataset

288

Chapter 9: MineSet Inducers and Classifiers

To understand how the Decision Tree classifier assigns a label to each record, look at the
attributes tested at the nodes and the values on the connecting lines. In the Decision Tree
shown in Figure 9-1, the first test (at the root of the tree) is for petal length. There are two
branches from this root. If the petal length is ≤ 2.6, the left branch is taken; otherwise, the
right branch is taken. The process is repeated until a leaf (final node) is reached. The leaf
is labeled with the predicted class. The leaf represents a rule that is the conjunction of all
tests from the root to the leaf. For example, the right-most leaf, labeled Iris-Virginica ,
matches the rule

petal_length >2.6 and petal_width >1.65 implies iris type = iris-virginica

Option Tree Classifiers

Figure 9-2 shows an Option Tree generated by the Option Tree inducer.

Classifiers

289

Figure 9-2 The Option Tree Generated by the Option Tree Inducer for the Cars Dataset

290

Chapter 9: MineSet Inducers and Classifiers

The top node in this figure is an "Option node," which indicates that several good
attributes can be chosen at the root. A Decision Tree inducer picks the single "best"
attribute for each subtree; however, there might be several good attributes on which to
split. In such cases, an Option Tree can create option nodes. In the example dataset
(Figure 9-2), the task is to predict whether a car was manufactured in Europe, Japan, or
the US. The Decision Tree inducer picks cubic inches for the root. The Option Tree
inducer chose several options: cubic inches, cylinders, weight, mpg, and brand are all
good choices for the root.

Option nodes can appear elsewhere besides the root. With the default settings, however,
they appear only at the root or one level below the root (after a single test node).

Option trees usually take 10 to 15 times longer to build than do Decision trees, but they
provide two significant advantages:

1. Comprehensibility — Option nodes let you see several likely options. Instead of
having to settle for a single attribute, option nodes let you choose from several
options. When you fly over the tree, you can choose to follow an option that you
believe is easier to understand or that you believe is better for predictions based on
background knowledge.

2. Accuracy — In many cases, Option Trees are more accurate (have lower error-rates)
than Decision Trees. Option Trees classify by letting each option "vote" for each label
value, then average the votes. This is similar to having a series of "experts," each one
attempting to predict the label based on a different main criterion. The option node
averages all these experts’ votes. Just as distributing stock investments reduces the
risk, using a mixture of options usually results in a more stable, less risky classifier.

Evidence Classifiers

Figure 9-3 shows the evidence information generated by the evidence inducer.

Classifiers

291

Figure 9-3 Results of Evidence Classifier for Iris Database

The right window of the screen shows the distribution of the classes in the training set.
The left side shows rows of pie charts, one for each attribute. For every value of an
attribute in the data, there is one pie chart matching it in the row for the attribute. Given
a record with an attribute value corresponding to a pie chart, the pie chart represents how
much evidence the classifier “adds” to each possible label value. For example, in
Figure 9-3, a record with petal_width 1.2 (matching the second pie chart in the first row)
adds much evidence for the iris-versicolor label value, little evidence for the iris-virginica
label value, and no evidence for the iris-setosa label value. After evidence is accumulated
from all the attributes (corresponding to one pie from every row), the label value with the
most evidence is predicted.

292

Chapter 9: MineSet Inducers and Classifiers

Inducers

An inducer is an algorithm that builds a classifier from a training set, which consists of
records with labels. The training set is used by the inducer to “learn” how to construct
the classifier, as shown in Figure 9-4.

Figure 9-4 Method for Building a Classifier

Once the classifier is built, its structure can be visualized or used to classify unlabeled
records, as shown in Figure 9-4 and Figure 9-5.

Figure 9-5 Using a Classifier to Label New Records

Running inducers can be a CPU- and I/O-intensive process. For this reason, the MineSet
inducers run on the server, rather than on your workstation (see Figure 9-6).

Training Set
(records with

labels)

Classifier

Inducer

Visualization
files

ClassifierRecords
without
labels

Labels

Inducers

293

Figure 9-6 Tool Execution Sequence for Classifiers

Client workstation Host server

Tool
manager

Configuration
file

Configuration
file

Visualization
tool

Visual
files

Data
file

DataMover User's
data

source

User

Visualdisplay

Inducer
(MIndUtil)

Classifier

Information & statistics
(accuracy estimate)

OR

294

Chapter 9: MineSet Inducers and Classifiers

Training Set

Inducers require a training set, which is a database table containing attributes, one of
which is designated as the class label. The label attribute type must be discrete (binned
values, character string values, or a few integers). The number of possible values for the
label attribute should be small, preferably two or three values. The error-rate of the
classifier is usually lower the fewer the number of label values. An example of this is the
above-mentioned iris type attribute, which takes on one of three values (iris-setosa,
iris-versicolor, or iris-virginica).

Figure 9-7 shows several records from a sample training set.

Figure 9-7 Sample Records From a Training Set

Once a classifier is built, it can classify new records as belonging to one of the classes (see
Figure 9-5). These new records must be in a table that has all the attributes used by the
classifier with the same name and type as they were in the training set. The table need
not contain the label attribute. If it exists, it is ignored during classification.

5.1 3.5 1.4 0.2 Iris-setosa
5.9 3 5.1 1.8 Iris-virginica
6.5 2.8 4.6 1.5 Iris-versicolor
6.3 2.9 5.6 1.8 Iris-virginica
6.5 3 5.8 2.2 Iris-virginica

Record 1
Record 2
Record 3

sepal length sepal width petal length petal width iris type

Descriptive Attributes Label

Training Set

295

Record Weights

Records can have an associated weight. For a detailed discussion of record weighting, see
the “Advanced Options” section on page 308. By default, each record has unit weight. If
record weighting is not used, the weight of a set of records is the number of records in
that set.

Applying a Classifier

After building a classifier, you can apply it to records to predict the label. For example, if
you built a classifier for predicting iris type, you can apply the classifier to records
containing only the descriptive attributes, and a new column is added with the predicted
iris type.

In a marketing campaign, for example, a training set can be generated by running the
campaign at one city and generating label values according to the responses in the city.
A classifier can then be induced and campaign mail can then be sent only to people who
are labeled by the classifier as likely to respond, thus saving mailing costs.

As an example of using mining tools for data quality, after building a classifier you can
apply it to the training set in order to identify records that are mislabeled by the classifier.
Such records might warrant closer investigation. Perhaps they are “noise,” or they might
yield special insights. If, for example, you have a Decision Tree for the iris dataset
induced using the Classify Only mode, by applying the classifier, you get a new column
(iris type_1) containing the predicted labels. You can then add a column that is
defined as type int with the expression (iris type != iris type_1). The new column
has a 1 whenever the classifier misclassifies, and a zero when it correctly classifies.
Figure 9-8 shows a Scatter Visualizer plot of the data where the new column is mapped
to color with the colors set such that green is 0 (OK) and 1 is red (error). By looking at the
plot, it is possible to determine where mistakes are being made.

296

Chapter 9: MineSet Inducers and Classifiers

Figure 9-8 Iris Dataset Misclassification, Example 1

Another alternative is to define the new column as a float with the expression
(iris type != iris type_1) + 0.01 . The Scatter Visualizer can then be used with the
original label mapped to color, and this new column mapped to size. Incorrect
predictions are shown as big cubes; correct predictions are shown as small cubes (see
Figure 9-9).

Error Estimation

297

Figure 9-9 Iris Dataset Misclassification, Example 2

Error Estimation

When a classifier is built, it is useful to know how well you can expect it to perform in
the future (what is the classifier’s error-rate). Factors affecting classification error-rate
include:

• The number of records available in the training set.

Since the inducer must learn from the training set, the larger the training set, the
more reliable the classifier should be; however, the larger the training set, the longer
it takes the inducer to build a classifier. The improvement to the error-rate decreases
as the size of the training set increases (this is a case of diminishing returns).

298

Chapter 9: MineSet Inducers and Classifiers

• The number of attributes.

More attributes mean more combinations for the inducer to compute, making the
problem more difficult for the inducer and requiring more time. Note that
sometimes random correlations can lead the inducer astray; consequently, it might
build less accurate classifiers (technically, this is known as “overfitting”). If an
attribute is irrelevant to the task, remove it from the training set (this can be done
using the Tool Manager).

• The information in the attributes.

Sometimes there is not enough information in the attributes to correctly predict the
label with a low error-rate (for example, trying to determine someone’s salary based
on their eye color). Adding other attributes (such as profession, hours per week,
and age) might reduce the error-rate.

• The distribution of future unlabeled records.

If future records come from a distribution different from that of the training set, the
error-rate probably will be high. For example, if you build a classifier from a
training set containing family cars, it might not be useful when attempting to
classify records containing many sport cars, because the distribution of attribute
values might be very different.

The two common methods for estimating the error-rate of a classifier are described
below. Both of these assume that future records will be sampled from the same
distribution as the training set.

• Holdout: A portion of the records (commonly two-thirds) is used as the training set,
while the rest is kept as a test set. The inducer is shown only two-thirds of the data
and builds a classifier. The test set is then classified using the induced classifier, and
the error-rate or loss on this test set is the estimated error-rate or estimated loss.
Figure 9-10 shows this error estimation method.

Error Estimation

299

Figure 9-10 Estimating the Classifier’s Accuracy

This method is fast, but since it uses only two-thirds of the data for building the
classifier, it does not make efficient use of the data for learning. If all the data were
used, it is possible that a more accurate classifier could be built.

• Cross-validation: The data is split into k mutually exclusive subsets (folds) of
approximately equal size. The inducer is trained and tested k times; each time, it is
trained on all the data minus a different fold, then tested on that holdout fold. The
estimated error-rate is then the average of the errors obtained. Figure 9-11 shows
cross-validation with k=3 (note that the default value is k=10).

Cross-validation can be repeated multiple times (t). For a t times k-fold
cross-validation, k*t classifiers are built and evaluated. This means the time for
cross-validation is k*t times longer. By default, k=10 and t=1, so cross-validation
takes approximately 10 times longer than building a single classifier.

Increasing the number of repetitions (t) increases the running time and improves
the error estimate and the corresponding confidence interval.

You can increase or decrease k. Reducing it to 3 or 5 shortens the running time;
however, estimates are likely to be biased pessimistically because of the smaller
training set sizes. You can increase k, but this is recommended only for very small
datasets.

Evaluation
(percent
correct

predictions)

Classifier

Inducer

Training Set

300

Chapter 9: MineSet Inducers and Classifiers

Figure 9-11 Classifier Cross-Validation (k=3)

Average

Evaluation

Classifier

Inducer

Classifier

Inducer

Classifier

Inducer

Training Set

Evaluation Evaluation

Error Estimation

301

Generally, a holdout estimate should be used at the exploratory stage, as well as on
datasets over 5,000 records. Cross-validation should be used for the final classifier
building phase, as well as on small datasets.

Backfitting

An inducer builds a classifier, which has two parts:

• Structure — For Decision Trees and Option Trees, the structure is the shape of the
tree. For evidence, the structure is the number of bins for every attribute and the
thresholds if the attribute is ordinal.

• Probability estimates — Each part of the structure estimates the probability of each
class. These estimates are commonly based on the counts of training records at
different points in the structure. For decision trees, the probabilities are determined
by the weight of records at the leaves. For the Evidence classifier, the probabilities
are determined by the conditional probabilities for every attribute value or range.

Backfitting a classifier with a set of records does not alter the structure of the classifier,
but updates the probability estimates based on the given data. Backfitting is useful for
several reasons:

1. A structure can be built from a small training set, then backfitted with a big dataset
to improve the probability estimates in the structure. Backfitting is a faster process
than inducing the classifier's structure.

2. When holdout error estimation is used, a portion of the data is left out for testing.
Once the classifier structure is induced and the error estimated, it is possible to
backfit all of the data through the structure, which can reduce the error of the final
classifier. When counts, weights, and probabilities are shown in the classifier's
structure, they reflect all the data, not just the training set portion.

When using drill-through from the visualizers, you can see data corresponding to the
weights shown, which reflect the whole dataset. If backfitting is not used, the weights
shown represent only the training set.

302

Chapter 9: MineSet Inducers and Classifiers

Confusion Matrices

Confusion matrices give a more detailed picture of the errors made by a classifier. Instead
of simply analyzing the number of correct and incorrect predictions, the confusion
matrix shows the type of errors being made.

Figure 9-12 shows a confusion matrix for a Decision Tree that was induced on the iris
dataset.

Figure 9-12 Confusion Matrix for Iris Dataset

Error Estimation

303

The two axes represent:

• the class values predicted by the classifier, and

• the actual class values given in the test set (holdout set).

Entries on the diagonal are correct predictions. Entries off the diagonal indicate incorrect
predictions. This representation shows that iris-versicolor and iris-virginica are frequently
confused, but iris-setosa is always predicted correctly.

When the cost of making different types of mistakes is uneven, it is frequently useful to
understand the type of errors that are being made (see loss matrices below).

Note: The confusion matrix shows the errors made on the test set; thus, it represents the
expected true distribution of errors in an actual situation if the underlying distribution
of the data does not change significantly. The confusion matrix in MineSet is computed
prior to backfitting and is the same whether or not backfitting is applied.

Lift Curves

A lift curve is a graph that plots the cumulative weight of the records from a specified
label value as a function of the weight of all the records. The order in which the records
occur determines the slope of the curve. Typically, a lift curve plots the difference
between randomly ordered records and records sorted based on a classifier's predictions.

For example, in telecommunications, it is valuable to be able to predict which customers
are likely to switch providers (churn). In the dataset churn, about 13.5% of the customers
are likely to switch provider. Figure 9-13 shows the lift curve obtained by using a
Decision Tree classifier on this dataset.

304

Chapter 9: MineSet Inducers and Classifiers

Figure 9-13 Lift Curve for the Churn Dataset

The X axis shows the number of records sampled; the Y axis shows the number of records
corresponding to customers who churn. The lower curve (red) shows the number of
customers expected to churn given a random ordering of the records. The upper curve
(white) shows the percentage of customers that churn when ordered according to the
classifier's score (probability estimate) for each record. Records representing customers
that the classifier identifies as most likely to churn appear first; those less likely to churn
appear last. The lift that the classifier ordering provides can be seen by the difference
between the classifier curve and the random curve.

Error Estimation

305

If some action should be taken before customers churn, it should be prioritized according
to the classifier's score. If the action costs money (for example, an operator contacting the
customer or a mailing), lift curves can help identify a cutoff point that maximizes returns.

Note: The lift curve shows lift on the test set; thus, it represents the expected true lift in
actual situations if the underlying distribution of the data does not change significantly.
The lift curve in MineSet is computed prior to backfitting and is the same whether or not
backfitting is applied.

Learning Curves

A learning curve is a graph that shows the error of the classifier generated by an inducer
as a function of the number of records used to create the classifier. Typically, the more
records used to generate the classifier, the lower its error.

A learning curve is created by generating the specified number of classifiers for each of
the points in the curve. Each classifier is generated using a random sample of the records,
and its error is estimated using the rest of the records (those not used for training).

Figure 9-14 shows a learning curve for the Decision Tree inducer on the Churn dataset.
Figure 9-15 shows a learning curve for the Decision Tree inducer on the adult dataset with
the label set to gross income binned at $50,000 (so one class is gross income less than or
equal to $50,000 and the other class is gross income >$50,000). The X axis shows the
number of records used for training the inducer; the Y axis shows the error. The graph
shows four type of points:

• The yellow points are the actual error estimates taken from the runs.

• The white points are averages.

• The blue points interpolate between the white points.

• The red points show a 95% confidence interval about the average based on actual
error estimates for each run.

The more runs that are requested, and the bigger the test set (portion used to test), the
smaller the confidence interval. The error is generally reduced as more records are used
for training.

306

Chapter 9: MineSet Inducers and Classifiers

We can see that for the churn dataset, the error continues to decrease as the training set
size grows, while for the adult dataset, there is little advantage to training on the whole
datasets. The third point represents about 13,000 records and has an estimated error of
16.96%, while the last point represents about 44,000 records and has an estimated error
of 16.85%.

Figure 9-14 Learning Curve for the Churn Dataset

Error Estimation

307

Figure 9-15 Learning Curve for the Adult Dataset with Label set to Gross Income
binned at $50,000

A small sample might suffice for most of the study, with the full data used only for the
final runs. In many cases, a small sample can result in a sufficiently accurate classifier,
with the error reducing only slightly if the number of records is increased (diminishing
returns). Once a learning curve is seen, the desired sampling point can be determined,
and the "sample" transformation in Tool Manager can be used to generate a sample of this
size (see “The Sample Button” in Chapter 3). Small samples reduce the time needed to
build a classifier and make the knowledge discovery process more interactive.

308

Chapter 9: MineSet Inducers and Classifiers

Advanced Options

MineSet supports several advanced options for all inducers. These let you take into
account different costs for making mistakes and to account for an experimental design
that has a non-uniform sampling process (that is, some parts of the true population are
sampled more heavily than others).

Loss Matrices: Not all mistakes were created equally

Suppose you are trying to classify mushrooms as poisonous or edible. Classifying a
mushroom that is actually edible as poisonous might cost you $2, since you are not eating
it; however, classifying a poisonous mushroom as edible (that is, eating it) might incur a
$10,000 operation.

Figure 9-16 shows a confusion matrix for the mushroom dataset with the Decision Tree
inducer when only a ratio of 0.1 (10%) was used for a training set.

Figure 9-16 Confusion Matrix for the Mushroom Dataset using Defaults Settings

Error Estimation

309

Eight records, representing poisonous mushrooms, were classified as edible (0.1%); 15
records, representing edible mushrooms, were classified as poisonous (0.2%). 3793
edible mushrooms and 3496 poisonous mushrooms were correctly classified. While the
error-rate for the classifier is only 0.31% (less than one percent), our estimated loss would
be $10000*8 + $2*15 = $80,030.

Figure 9-17 shows a confusion matrix for the same dataset, but with the Decision Tree
inducer run using a loss matrix representing the above costs. The new classifier is very
conservative and makes no mistakes in classifying a poisonous mushroom as edible; but
it makes 1558 mistakes (1543+8) in classifying edible mushrooms as poisonous. The total
estimated loss we would incur is thus $10000*0 + $2*1558 = $3116, only 3% of the cost of
the classifier that did not take losses into account.

Figure 9-17 Confusion Matrix for the Mushroom Dataset with Loss Matrix

Loss matrices also allow predicting unknown (null values), which are shown as question
marks (?). For example, suppose it costs us $1 to ask an outside expert whether a
mushroom is poisonous or edible. In that case, some classifications result in an unknown
prediction. Running the Decision Tree inducer yields the confusion matrix shown in

310

Chapter 9: MineSet Inducers and Classifiers

Figure 9-18, where there are 1551 unknowns, and only 15 edible mushrooms are
classified as poisonous. The overall cost is thus $10000*0 + $1*1551 + $15*2 = $1581

Figure 9-18 Confusion Matrix for the Mushroom Dataset with Loss Matrix Allowing
Unknown Predictions

Note that loss matrices are based on probability estimates made at the leaves of the tree.
For reliable estimates:

1. Raise the "split lower bound" in further options of decision trees and option trees
from the default value to a higher value (for example: 5). In general, the larger and
noisier the training set size, the higher this value should be.

2. Use large training sets. You might need large training sets to get reliable estimates
when the costs are not as extreme as in this example.

3. Use Option Trees. While they do not always help, they usually provide better
probability estimates that tend to reduce the loss. For example, running the above
example with $10000 changed to $100 with unknowns not allowed, yields an
estimated loss of $1464 for Decision Trees and an estimated loss of $662 for Option
Trees.

Error Estimation

311

Record Weighting: Not all records were sampled equally

In certain experimental designs, a portion of the true population is sampled more
frequently. For example, while you might want a 1% sample of some population, a small
minority that is already 0.1% of the population results in a 0.001% sample, which might
be too small (for instance, you might get two people). Record weighting lets you give
each record a weight; thus, a subpopulation that was sampled twice as frequently might
get a weight of 0.5, while the rest of the population is given a weight of 1.

As another example, a phone company stores all fraudulent phone calls in the dataset,
while storing only a small fraction of non-fraudulent calls. By using record weighting, it
is possible give each record its true portion of the population.

Finally, some datasets are already aggregated, and the records have a natural "count"
associated with them (for example, statistics about cities in the U.S. usually have an
associated count of the population). This count attribute can be mapped to weight, which
is equivalent to replicating each record by the number of counts.

The semantics of record weighting is that a record weight of 2 is equivalent to two records
with a record weight of 1. Floating point weights are allowed.

Note: High weights can cause splits on single records, since those are deemed to
represent a large number of records. Similarly, weights below 1 can be regarded as
insignificant. Thus, it is important to use weights with a mean of 1 if records represent
unaggregated entities in the real world.

The following section describes the options provided for the classifiers by the Tool
Manager.

312

Chapter 9: MineSet Inducers and Classifiers

Inducer Modes in Tool Manager

There are four modes for running an inducer (shown in Figure 9-19).

• Classifier and Error

• Classifier Only

• Error Estimate

• Learning Curve

Figure 9-19 Options for Running the Inducer

The Classifier and Error mode uses a holdout method to build a classifier: a random
portion of the data is used for training (commonly two-thirds) and the rest for testing.
This holdout proportion can be set in Further Inducer Options (see “Error Estimation” on
page 297). This method is the default mode and is recommended for initial explorations.
It is fast and provides an error estimate.

The Classifier Only mode uses all the data to build the classifier. There is no error
estimation. Use this mode when there is little data or when you build the final classifier.

The Error Estimate mode assesses the error of a classifier that would be built if all the data
were used (as with Classifier Only mode). Estimate Error uses cross-validation, resulting
in long running times. Cross-validation splits the data into k folds (commonly 10) and
builds k classifiers. The process can be repeated multiple times to increase the reliability
of the estimate. You can set the number k and the number of times in Further Inducer
Options, as explained in “Error Options for Inducers,” below.Use this method when
there is little data. The induced classifier is exactly the same as the one induced by the
Classifier Only mode.

The Learning Curve mode assesses the effect of training set size on the error of a classifier.

Error Options for Inducers

313

Error Options for Inducers

The following options are available to fine tune the error estimation for the inducers. The
Error Options available to you depend on the mode you have chosen.

In both Classifier & Error and Estimate Error, you can set a random seed that determines
how the data is split into training and testing sets. Changing the random seed causes a
different split of the data into training and test sets. If the error estimate varies
appreciably, the induction process is not stable.

In Classifier & Error (see Figure 9-20), you can set the Holdout Ratio of records to keep
as the training set. This defaults to 0.666667 (two-thirds). The rest of the records are used
for assessing the error.

Figure 9-20 Accuracy Options With Holdout

In Estimate Error (see Figure 9-21), you can set the number of folds in cross validation
and the number of times to repeat the process.

Figure 9-21 Accuracy Options With Cross Validation

314

Chapter 9: MineSet Inducers and Classifiers

Backfitting

The Backfit test set option is checkmark that can be found under Further Options for all
inducers when using Classifier & Error mode is shown in Figure 9-22.

Figure 9-22 Backfitting, Confusion Matrices, Lift Curves Options

Confusion matrices

The Display confusion matrix option is checkmark under Further Options for all inducers
when using Classifier & Error mode is shown in Figure 9-22.

Lift curves

The Display lift curves option is a checkmark under Further Options for all inducers when
using Classifier & Error mode is shown in Figure 9-22. A lift curve requires a label value
to be chosen. A lift curve is generated and displayed for that label value.

Error Options for Inducers

315

Loss matrices

The Use loss matrix option is a checkmark under Further Options for all inducers (See
Figure 9-23). The Edit matrix button can then be used to define the loss matrix. To avoid
unknowns from being predicted, fill the unknown prediction column with the highest
value in the matrix.

Figure 9-23 Enabling Loss Matrices and Setting the Weight Attribute

Weight Setting

The Use Weight option is a checkmark under Further Options for all inducers (See
Figure 9-23). Choose the column for the weight. The Weight is Attribute option determines
whether the inducer can use this attribute for classification purposes or not. In certain
cases where the weight is a result of a stratified sample that is part of the experimental
design, the classifier should not be given access to the weight column as it is not a
property of the real-word entity.

Learning curves

Learning Curve is a mode in the Classify menu of the Mining Tools tab. It can be used
with any of the inducers. When the Learning Curve mode is selected, the Further Options
dialog box lets you specify Learning Curve Options (shown in Figure 9-24), including:

• the number of points in the learning curve,

• the number of runs per point, and

• the number of records to use at the start and end points.

The number of records to use at each intermediate point is calculated automatically.

316

Chapter 9: MineSet Inducers and Classifiers

Figure 9-24 Learning Curve Options

The number of points in the learning curve must be specified; also, it must be greater than
or equal to 1. The number of records for the starting and ending points can be specified
to allow generating a learning curve for a specific range of the training set. If either of
these options are left blank, they are calculated automatically based on the number of
points in the learning curve and the total number of records in the training set. This
default tends to cover the entire range of the training set. For instance, assume a file
containing 80,000 records. If you specified 3 points in the learning curve, the algorithm
generates points at 20,000, 40,000 and 60,000 records. Often it is useful to "zoom in" on
a smaller range. For example, a learning curve might be generated only for a range of
1000 to 10,000 records.

Generating a learning curve takes a significant amount of CPU time. If ti is the time to
train an inducer on training set i (where i ranges from 1 to the number of points), and
there are k runs per point, the total time is . Increasing the number of runs per
point increases the running time proportionally, but improves the estimate of the
average. The default value of the number of runs is 3.

The Scatter Visualizer’s filter panel can be used to filter some of the data types shown
(average points, confidence intervals, interpolated points, or actual trials). For example,
you might want to remove the data points for the trials and confidence intervals and
show only the averages and interpolated points.

k*Σ tii

The Status Window

317

OK and Cancel Buttons

Once you have specified the Classification Options, click OK to have these options take
effect and to return to the Data Destination panel. To return to the Data Destination panel
without having changes to the options take effect, click Cancel.

Go! Button

After you have set the options, click the Go! button in the Data Destination panel to run
the inducer. The appropriate visualizer will be automatically launched.

The Status Window

After you press Go! in the Data Destination panel, the Status Window at the bottom of
the Tool Manager’s main window shows the inducer’s progress and the output
classifier’s statistics. It displays specific information for the induced classifier. For
example, for decision trees it shows the number of nodes, the number of leaves, and the
depth of the Decision Tree (Figure 9-25). This information is saved automatically on your
workstation under the session file name with a -dt.out, odt.out, or -eviviz.out extension,
depending on whether a Decision Tree, Option Tree, or evidence inducer was executed.

For Classifier & Error, the first series of dots represent reading the file, then information
about the classifier build progress is shown, then the test set classification progress is
shown.

For Classifier Only mode, there is no test set classification phase.

For Estimate Error, the times and folds are shown.

For Learning curves, each average point on the x-axis will be described on a line and each
run for that average point will be represented by a dot.

318

Chapter 9: MineSet Inducers and Classifiers

Figure 9-25 The Status Window

When you have selected the Classifier & Error mode, the Status window contains the
following information:

• The random seed used to split the data into training and test sets.

• The number of records used for training the inducer.

• The number of records used for evaluating the resulting classifier; of the test
records, how many were seen during training, excluding the label attribute. It is
possible to have duplicate records (“seen”) in a dataset; some records can be in both
the training and test set. A large value of seen records indicates that there are many
duplicate records. If their labels are contradictory, it might be impossible to achieve
high accuracy without adding more attributes to the dataset.

The Status Window

319

• The number of correct and incorrect predictions made.

• The average normalized mean squared error represents the accuracy of the
probability estimates. For each test record, the mean squared error is the square of
one minus the probability estimate for the correct label value, plus the sum of the
squares of the probability estimates for the other (incorrect) label values. The
normalized mean squared error is half the mean squared error, which is a value
between zero and one. The average normalized mean squared error is the
normalized mean squared error averaged over all the records in the test set by their
appropriate weights (weighted average).

• The classification error, which is the percent of incorrect predictions.

• Both the average mean squared error and the classification error show the standard
deviation of the mean and the confidence interval for the mean. This is the range
you can expect from the classifier if the data comes from the same distribution. For
error estimates (not losses), a more accurate formula than the standard
two-standard deviation rule is used.

When you have selected the Estimate Error mode, the Status window contains the
following information:

• The number of cross-validation folds and times.

• The random seed.

• The estimated accuracy with standard deviation.

• The 95% confidence interval.

320

Chapter 9: MineSet Inducers and Classifiers

Applying Classifiers, Testing Classifiers, and Fitting New Data

The Apply Classifier button in the Data Transformations panel lets you:

• take a previously created classifier and apply it to new data.

• test a previously created classifier’s performance on the current table.

• fit the current table into a previously created classifier’s structure.

On the top left of this dialog box (Figure 9-26) is a list of all classifiers currently available
on the server. If you select a classifier, the right-hand side lists the column names and
types required by that classifier. If these requirements match the current table, a message
at the bottom states this, and the buttons on the bottom (OK, Run Test, or Fit Data) is
activated. If the current table does not have all the columns required for the selected
classifier, the message at the bottom states this, the columns that are missing are selected
in the list on the right, and the button on the bottom is deactivated.

Figure 9-26 The Test and Apply Classifier Dialog Box: Selecting a Classifier

Applying Classifiers, Testing Classifiers, and Fitting New Data

321

Apply Classifier

The Apply Classifier panel is used to apply a previously created classifier to the current
table, as shown in Figure 9-27. There are two modes of application for the classifer:

• To Predict discrete label values for the records in the current table. For example, if you
created a classifier to determine churn, you can use this option to add a column that
labels each customer as either likely to churn or not likely to churn.

• To generate Estimated probability values for a specified label value. Instead of using
the classifier to predict the label value of each record, it is used to estimate the
probability that each record has a specified label value (for example, churn = True).
Given the classifier created to determine churn, you can use this option to add a
column that indicates the probability that each customer is likely to churn.

The New column name text field lets you specify the name of the new column.

Figure 9-27 The Apply Classifier Panel

322

Chapter 9: MineSet Inducers and Classifiers

Test Classifier

The Test Classifier panel is used to test a previously created classifier on the current table,
as shown in Figure 9-28. The table must contain columns with the names and types
required by the selected classifier. Unlike Apply Classifier, Test Classifier also requires
the table to contain a label column with the same name and type as the label column used
when building the classifier.

The Test Classifier panel has options that lets you

• show the confusion matrix of the classifier on the table records

• show the lift curve of the classifier for a specified label value

• show a visualization of the classifier with the table used as the test-set (this is only
relevant for Decision Tree and Option Tree classifiers)

• select an attribute to use as the record weight

The text field at the bottom of the Test Classifier panel shows the results.

Figure 9-28 The Test Classifier Panel

Applying Classifiers, Testing Classifiers, and Fitting New Data

323

Fit Data to Classifier

The Fit Data to Classifier panel is used to fit the data in the current table to a previously
created classifier, as shown in Figure 9-29. This produces a new classifier with the same
structure as the original one; however, the new one uses the data from the table to update
the probability estimates (see “Backfitting” on page 301). Because all of the data from the
table is being fit into the structure of the classifier, there is no error estimation. Use Test
Classifier to evaluate the performance of the new classifier on a separate test set (disjoint
from the fit data).

The Fit Data to Classifier panel has options that lets you

• show a visualization of the new classifier

• specify a name for the new classifier

• select an attribute to use as the record weight

Figure 9-29 The Fit Data to Classifier Panel

324

Chapter 9: MineSet Inducers and Classifiers

Special Options and Limitations

The following subsections describe how to set special options and the limitations of the
inducers.

Setting Special Options

When the Tool Manager runs an inducer on the server (the MIndUtil program), it passes
certain options to the inducers. Not all options are controlled through the Tool Manager
GUI. Those options not controlled by Tool Manager take on their default values and can
be overridden by setting them in a special file, called .mineset-classopt. Tool Manager
prepends this file to the options sent. The file is optional. Tool Manager looks for it first
in the current directory, then in your home directory. See Appendix H, “Command-Line
Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File
Conversions” for more details about the options.

The file should contain one line per option, in the following format:

<OPTION>=<value>

For example, the special option LOGLEVEL increases the amount of information shown
during the induction process. The default of zero shows very little information. Level 1
shows other options and slightly more information. Level 2 and higher show large
amounts of information about the induction process. These levels are appropriate only if
you have a firm understanding of the induction process. (See Appendix J, “Further
Reading and Acknowledgments.”)

Note that these options are not part of the saved session. If you send files to other users,
you might have to send this file separately to them.

Special Options and Limitations

325

Default Limits and How to Override Them

Two limits and their respective options are as follows:

• Discrete attributes are ignored if they have more than 100 values. Discrete attributes
with many values are usually inappropriate for classification. For example, first
names and street addresses are unlikely to form predictive patterns.

To speed up the induction process, attributes with over 100 values are ignored.

You can override this value by setting MAX_ATTR_VALS to a higher number. For
example, your .mineset-classopt file could contain the line

MAX_ATTR_VALS=500

• Discrete labels with over 25 values are not allowed by default. Automatically
induced classifiers are rarely appropriate for predicting one of a large number of
label values. You should limit the label to a few values (preferably two or three).
You can override this default limit by setting the option MAX_LABEL_VALS to a
higher value in your .mineset-classopt file.

Other Limitations

There are three further limitations:

• Floating point numbers are read into MIndUtil as floats (4 bytes) even if they are
represented as doubles (8 bytes) in the database, in the ASCII file, or in the binary
file. This limits the precision and magnitude of the representations allowed.

• Attributes of type arrays are always ignored.

• Dates are considered strings. Unless there are few dates, such attributes are usually
ignored because of the limit on discrete attributes. You should bin dates before
running an inducer.

327

Chapter 10

10. Inducing and Visualizing the Decision Tree Classifier

This chapter discusses the features and capabilities of the Decision Tree Inducer. Its
associated visualizer, the Tree Visualizer, is described in Chapter 4. This chapter provides
an overview of this tool and discusses the ways of using it to generate Decision Tree
classifiers. It then explains the Tree Visualizer’s functionality when working with the
main window. Finally, it lists and describes the sample files provided for this tool.

Note: It is assumed that you have read Chapter 9, “MineSet Inducers and Classifiers,”
before proceeding with this chapter.

Overview

A Decision Tree classifier assigns each record to a class. The underlying structure used
for classification is a Decision Tree, such as the one shown in Figure 10-1.

328

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Figure 10-1 Decision Tree for the Iris Dataset

Inducing Decision Trees

329

Inducing Decision Trees

A Decision Tree classifier is induced (generated) automatically from data. The data,
which is made up of records and a label associated with each record, is called the training
set (see Chapter 9, “MineSet Inducers and Classifiers”).

File Requirements

The Decision Tree Inducer requires a training set, as described in the “Training Set” in
Chapter 9. Files are generated by extracting data from a source (such as a MineSet ASCII
or binary file, or a table in an Oracle, INFORMIX, or Sybase database). To apply the
generated classifier, you should have a dataset of records with the attributes used by the
classifier, except that the label need not be present.

Running the Decision Tree Inducer

There are two ways to run the Decision Tree inducer:

• From the Tool Manager.

Connect to the server and select a data source (see “Choosing a Data Source” in
Chapter 3).

From the File menu, choose Open New Data File. Log in to a server, and enter the
filename. For the example shown here, the filename entered would be
/usr/lib/MineSet/data/iris.schema as the filename. You’ll see four continuous
attributes and one discrete attribute in the Data Transformation panel. Since there is
only one discrete attribute, the label option automatically shows it. Select the
Decision Tree inducer, and ensure you have selected the Classifier & Error mode. To
run the Inducer, click Go!.

The status window will show the progress, statistics, and the Tree Visualizer will be
launched automatically.

• From the command line.

To induce a Decision Tree classifier from the command line, refer to Appendix H,
“Command-Line Interface to MIndUtil: Classifiers, Discretization, Column
Importance, and File Conversions.”

330

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Configuring the Decision Tree Inducer Using the Tool Manager

To access the options for configuring the Decision Tree inducer, select the Mining Tools
tab on the Data Destination panel (Figure 10-2). From the tabs at the right, select Classify.
Ensure that the inducer you select is Decision Tree (the default). Your selections in the
Mode and Inducer menus determine the options available in the Further Inducer
Options menu. After you have made your selections in these menus, click Go! to run the
inducer, which, in turn, creates the classifier.

Figure 10-2 Data Destination Panel in Tool Manager Showing Classifiers

Discrete Labels

The Discrete Labels menu provides a list of possible discrete labels. Discrete attributes
(binned values, character string values, or a few integers) have a limited number of
values. You should select a label attribute with few values; for instance, two or three (see
“Training Set” in Chapter 9). If there are no discrete attributes, the menu shows No
Discrete Label, and the Go! button is disabled. You then must create a discrete attribute by
binning or adding a new column using the Tool Manager’s Data Transformations panel.

Configuring the Decision Tree Inducer Using the Tool Manager

331

Classifier Name

The generated classifier is named with the prefix of the session filename (as determined
in Tool Manager) and the suffix -dt.class. By default, all classifiers are stored on the server
in the file_cache directory, which defaults to mineset_files. These classifiers can be used for
future classification of unlabeled records; that is, they can be used to predict the labels for
unlabeled datasets (see “Applying a Classifier” and “Backfitting” in Chapter 9).

Decision Tree Options

Selecting Further Classifier Options causes the Classifier Options dialog box
(Figure 10-3) to appear. This dialog box consists of three panels:

• The top panel indicates the choices you made in the Tool Manager’s Data
Destination panel.

• The second pane from the top lets you set the loss matrix and the weight attribute.
See “Loss matrices” and “Weight Setting” in Chapter 9.

• The bottom-left panel lets you specify further Inducer Options.

• The bottom-right panel lets you specify the Error Estimation Options (unless the
mode you chose in the Data Destination panel was Classifier Only, in which case
this area is empty). The options shown in this panel depend on the type of Error
Estimation you chose (see “Applying Classifiers, Testing Classifiers, and Fitting
New Data” in Chapter 9).

332

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Figure 10-3 Further Inducer Options

Decision Tree Inducer Options

To fine-tune the Decision Tree induction algorithm, you can change the following
Decision Tree inducer options (see Figure 10-3).

• Limit tree height by

By default, there is no limit to the height (number of levels) in the Decision Tree.
Limit the height by clicking the checkbox and typing a number for the limit.
Limiting the number of levels speeds up the induction and is useful for studying the
Decision Tree without the distraction of too many nodes. Note that restricting the
size decreases the run time but might increase the error rate. Setting this option does
not affect the attributes chosen at levels before the maximum level.

Configuring the Decision Tree Inducer Using the Tool Manager

333

• Splitting criterion

This option offers three splitting criteria selections. The definitions below are
technical. For a given problem, it is difficult to know which criteria will be best. Try
them all, and select the one that leads to the lowest error estimate - or to a Decision
Tree you find easiest to understand.

Mutual Info is the change in purity (that is, the entropy) between the parent node and
the weighted average of the purities of the child nodes. The weighted average is
based on the number of records at each child node.

Normalized Mutual Info (the default) is the Mutual Info divided by the log (base 2) of
the number of child nodes.

Gain Ratio is the Mutual Info divided by the entropy of the split while ignoring the
label values.

Normalized Mutual Info and Gain Ratio give preference to attributes with few values.

• Split lower bound

This is a lower bound on the weight (normally the number of records if weight was
not set) that must be present in at least two of the node’s children. The default for
this option is 2. For example, if there is a three-way split in the node, at least two out
of the three children must have a weight of two or more (two records or more if
weight is not set). This provides another method of limiting the size of the Decision
Tree.

Increasing the split lower bound tends to increase the reliability of the probability
estimates, because the number of records at each leaf is larger. It also creates smaller
trees and decreases the induction time. If you expect the data to contain noise
(errors or anomalies), or if you use the tree for estimating probabilities (see
“Applying a Classifier” in Chapter 9), increase the split lower bound to 5 or more. If
your dataset is very small (< 100 records), you might want to decrease this number
to 1.

334

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

• Pruning factor

A Decision Tree is built based on the limits imposed by Limit Tree Height and Split
Lower Bound. Statistical tests are then made to determine when some subtrees are
not significantly better than a single leaf node in which case those subtrees are
pruned.

The default pruning factor of 0.7 indicates the recommended amount of pruning to
be applied to the Decision Tree. Higher numbers indicate more pruning; lower
numbers indicate less pruning. If your data might contain noise (errors or
anomalies), increase this number to create smaller trees. The lowest possible value is
0 (no pruning); there is no upper value limit.

Pruning is slower than limiting the tree height or increasing the split lower bound
because a full tree is built and then pruned. Pruning, however, is done selectively,
resulting in a more accurate classifier.

Working in the Tree Visualizer’s Main Window

The Tree Visualizer’s main window shows the Decision Tree. This Decision Tree consists
of nodes connected by lines (see Figure 10-1).

Nodes

There are two types of nodes:

• decision

• leaf

Decision Nodes

Decision nodes specify the attribute that is tested at the node. Values (or ranges of values)
against which the attributes are tested are shown at the lines. Each possible value for the
attribute matches exactly one line. For example, the root of the Decision Tree in
Figure 10-1 tests the attribute petal_length ; the two lines emanating from the node
specify the ranges of values for that attribute (£2.6 and >2.6,) so that every possible
value matches either the right branch or the left branch. If the value is unknown and
there is no line labeled with a question mark (?), the majority class of the current node is
predicted.

Working in the Tree Visualizer’s Main Window

335

Leaf Nodes

Leaf nodes in a Decision Tree specify a class. Follow the left branch in Figure 10-1 from
the root to a leaf labeled iris-setosa . Note that the Decision Tree classifier classifies all
records with petal_length £ 2.6 inches as belonging to the class iris-setosa.

Node Information

The vertical bars atop each node show the distribution of the classes at the node. The base
of each node has a height and a color. The height corresponds to the weight of the
training set records that have reached this node (this is the number of records if weight
was not set). In general, the higher the weight, the more reliable the class distribution at
every node.

The color of the base indicates the error estimate of the subtree based on a traffic-light
analogy: red indicates high error, yellow indicates medium, green indicates low error.
The color of the base is black if no test set records reached a node; thus, there is no error
estimate.

Pointing to a node causes the following information to be displayed:

• Subtree weight — The weight of the training set records that fell in the subtree below
the node pointed to. This value is mapped to the height of the base.

• Test set error/loss — An estimate of the subtree error (or loss if a loss matrix was
given). The number after the +/- is the standard deviation of the estimate. The
higher the standard deviation, the less accurate the error estimate. The error/loss
estimate and the standard deviation are less reliable for leaves with few records or
when the test set error is close to 0% or 100%.

• Test set weight — The weight of records from the test set that reached the node
(number of records if weight was not set).

• Purity — A number from 0 to 100 indicating the skewness of the label value
distribution at the node. If a node has records from a single class, the purity is 100. If
the label values have the same weight, the purity is 0. The purity is computed after
backfitting.

Note that only Classify & Error yields the test set error/loss and weight. You can use the
Test Classifier option (see “Applying Classifiers, Testing Classifiers, and Fitting New
Data” in Chapter 9) to generate a visualization based an existing classifier and a test set.

336

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Lines

All possible outcomes are marked on the horizontal lines emanating from each decision
node. Each line indicates the value (or range of values) against which the attribute of that
node was tested.

Using the Main Window to Classify Records

To classify a record, start at the root, and test how to branch at every decision node. By
following the appropriate lines based on the record’s attribute values, you reach a leaf
node. The label, or class, associated with the leaf node is the predicted classification of
the record.

Some decisions are quickly made and take a shorter path (for example, petal_length £

2.6 implies iris-setosa). Other decisions can take a longer path (for example, the right
branches, petal_length > 2.6 and petal_width > 1.65). In general, every leaf
corresponds to a rule that is the conjunction of all tests at the decision nodes and all the
values (or ranges of values) on the lines leading to it from the root.

In the root of the tree shown in Figure 10-1, the error rate is 6%, with a standard deviation
of 3.39%. The standard deviation is high because the file is small, and the test set only has
50 records. The purity is 0.0, indicating that the distribution is uniform.

The left child of the root has 0 test set error and a purity of 100 because all records with
petal_length £ 2.6 inches are of the iris-setosa class; thus, the prediction of iris-setosa is
likely to be very accurate for all records with petal_length £ 2.6 inches. The right child of
the root has an estimated error of 8.57%. In this child, which matches records whose
petal_length > 2.6 inches, there are no records belonging to the iris-setosa class; thus, the
class is more likely to be iris-versicolor or iris-virginica. Because only two possibilities exist
at this node, there is a higher purity than at the root (36.91).

The Decision Tree leaves segment the data into clusters sharing the same classification
rule (path that leads to each leaf). By looking at the leaves, it is possible to see clusters
that share the same set of properties.

External Controls

337

External Controls

The external controls for the visualizer associated with the Decision Tree classifier are the
same as those for the Tree Visualizer. For a description of these controls, see “External
Controls” in Chapter 4.

One particularly useful control for decision trees is to click the right mouse button when
pointing to a node. This shows the list of children of that node.

Pulldown Menus

The pulldown menus for the visualizer associated with the Decision Tree classifier are the
same as those for the Tree Visualizer. For a description of these menus, see “External
Controls” in Chapter 4.

The Search and Filter Panels

Select Search Panel and Filter Panel in the Show menu to bring up a dialog box that lets
you specify criteria to search/filter for objects (Figure 10-4). The panels are the same ones
described in “The Search Panel” in Chapter 4; however, the item choices for decision
trees are always the same. These are described below.

338

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Figure 10-4 Tree Visualizer’s Search Dialog Box

Pulldown Menus

339

The search/filter can be restricted to specific class labels, either by selecting the values in
the class list or by using the class item, which allows more powerful comparison
operators (such as Matches). Other items are described below:

• Subtree weight lets you restrict the search/filter to bars or bases (depending on the
choice of the radio button bars/bases) with a given weight (number of records if
weight is not set) for the subtree. For example, you can restrict the search to bars
containing a weight of at least 50.

• Test attribute lets you restrict the search/filter to nodes labeled by the given value
that the node is testing. Note that decision node labels represent the test attribute,
while leaf node labels show the predicted label. For example, if you select Test
attribute contains age, only nodes that test the value of age are considered.

• Test value lets you restrict the search/filter to nodes having an incoming line labeled
with a value you specify.

• Percent lets you restrict the search/filter to bars representing a percentage of the
overall weight at a node. For example, you might want to find all nodes such that a
given class accounts for more than 80 percent of the weight. To do this, click the
class label, and select Percent > 80. Setting this item is meaningless if you select
bases and not bars (the value for the bases is 0).

• Purity lets you restrict the search/filter to nodes with a range of purity levels. For
example, if you want to look at pure nodes (with one class predominant), you can
select Purity > 90.

• Test-set subtree weight lets you restrict the search/filter to subtrees with a given
test-set weight (number of test-set records if weight is not set).

• Test set error/loss lets you restrict the search/filter to nodes with a range of estimated
records.

• Mean error/loss standard deviation lets you restrict the search/filter to nodes with a
range of estimated standard deviation for the test set error/loss.

• Level lets you restrict the search/filter to a specific level or range of levels. For
example, you can search only the first five levels.

340

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

The following items and options are less useful for decision trees.

• Hierarchy finds all the nodes that match the given value at the tail of the path from
the root. It then marks the children of these nodes.

• Treat Nulls as Zeros is not used by the Decision Tree inducer because there are no null
items generated for decision trees.

Once the search is complete, yellow spotlights highlight objects matching the search
criteria. To display information about an object under a yellow spotlight, move the
pointer over that spotlight; the information appears in the upper left corner, under the
label Pointer is over:. To select and zoom to an object under a yellow spotlight, left-click
the spotlight; if you press the Shift key while clicking, zooming does not occur.

Once the filter is complete, the scene shows only nodes matching the filter criteria.

Sample Files

The following examples show cases in which the Decision Tree inducer can be useful.
Each of these examples is associated with a sample data file provided with MineSet. By
running the inducer, you can generate the -dt.treeviz files described below.

Note: The data files, which have a .schema extension, are located in /usr/lib/MineSet/data
on the client workstation. The classifier visualization files, which have a -dt.treeviz
extension, reside on the client workstation in /usr/lib/MineSet/treeviz/examples.

Churn

When customers change their phone carrier from one telecommunications company to
another, this is termed “churning.” This is a common problem in the telecommunications
industry. The file /usr/lib/MineSet/treeviz/examples/churn-dt.treeviz shows a Decision Tree
classifier induced for this problem. The file was generated by running the inducer on
/usr/lib/MineSet/data/churn.schema with the label set to churn (True, False). The file given
is fictitious, but based on patterns found in real data.

Note that in this tree the root split is on the time the customers talk during the day (total
day minutes). Customers that talk more than 264 minutes per day churn at a significantly
higher rate (59% versus 11%). These also are probably the most profitable customers.

Sample Files

341

The left subtree represents customers that talk less than 264 minutes per day. They have
a churn rate of 11%; but if they make more than three customer service calls, the churn
rate increases to 49%.

The right subtree represents customers that talk over 264 minutes per day. They have a
churn rate of 59%; but if they have a voice-mail plan, the rate decreases to 9.3%. If they
do not have a voice-mail plan, the churn rate is almost 75%.

Origin of Cars

The cars dataset contains information about different models of cars from the 1970s and
early 1980s. Attributes include weight, acceleration, and miles per gallon (mpg). The file
/usr/lib/MineSet/treeviz/examples/cars-dt.treeviz shows the Decision Tree classifier induced
for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/cars.schema with the label set to origin (Japan, U.S., Europe). If you
have a dataset of car attributes, you might want to know what characterizes cars of
different origins.

Note that in the tree the left split is on brand. The root split is not brand because the
Decision Tree inducer penalizes multi-way splits; and the split on cubic_inches was
deemed a better discriminator. You can use the Tool Manager remove column
transformation to hide the brand, thus making the problem more interesting.

In the Decision Tree, you can see that cubic inches is an excellent discriminator for
U.S.-made cars. Cars with large engines (>169.5 cubic inches) are all made in the U.S., but
smaller cars are made everywhere. By choosing Selections|Show Original Data, you can
see that the one car with a big engine that was not made in the US is a Mercedes. Note
that in this tree, the root node (that is, the entire training dataset) has many more U.S. cars
(62.50%), yet after a single split on the cubic inches, it is more difficult to predict the origin
of cars with small engines. The purity of the root is 16.2 showing that there is one class
(U.S., in this case) that is dominant. The right node (cubic inches > 169.5) has purity 96.81,
indicating that we have identified a very pure subpopulation (almost all cars with large
engines were made in the U.S.). Indeed, the error rate for the right subtree is estimated at
0% (green base). The left node from the root has purity 0.23 and a much higher error rate
of 31.25% (orange base). This subproblem is much harder than the original one: the
number of records for each class is approximately the same.

342

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Gender Attribution

The adult dataset contains information about working adults. This dataset was extracted
from the U.S. Census Bureau. It contains data about people older than 16, with a gross
income of more than $100 per year who work at least one hour a week. You might want
to know how to characterize males and females. The file
/usr/lib/MineSet/treeviz/examples/adult-sex-dt.treeviz shows the Decision Tree classifier
induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/adult.schema, with the label set to sex. Note that this dataset contains
almost 50,000 records; thus, running the Decision Tree Inducer can take several minutes
when you run this on your workstation.

The resulting visualization provides the following insights:

• Relationship is a giveaway attributes for some values. Husbands usually are male.
(Interestingly, there is one husband that is a female, showing data quality problems
at the Census Bureau, which does not recognize same-sex marriages.) Similarly, if
the person is a wife, the person is usually a female, except for three records that
show otherwise.

To make the problem more interesting, remove the relationship attribute and generate a
new Decision Tree. Note that

• The most important attribute is marital status.

• From the height of the bases, most people are either divorced, married to a civilian
spouse, or never married. Few are married with spouse absent, separated, married
to armed-forces spouse, or widowed.

• The distribution at the root shows more males in this dataset. (This database
contains information about working adults and is not representative of the entire
population.)

• The left-most node contains divorced working adults. We can see that the
distribution is more balanced than at the root (60% female, 40% male). The second
node contains married working adults. We can see that 89% are males. The third
node contains working adults that have never married. Their numbers are
approximately equal to those in the divorced group, with slightly more males. The
right-most node contains working widowed adults, of which 81% are females
(probably because of their higher life expectancy).

Sample Files

343

If you want to target working females for a new product, you can use the search panel to
identify segments that have a large population of females. You can do this by choosing

• sex matches female (click female on the top portion of the window).

• subtree weight > 1000

• percent > 80

Three yellow spotlights show the matching nodes. Since two are on one path, look at the
node closest to the root (on the right). The paths translate into the rules

marital status = Widowed implies that 81.23% are female

marital status = Divorced and occupation =
 administrative clerical implies that 87.67% are female

In this training set, 1233 (widowed) and 1045 (divorced and occupation) females satisfy
these rules out of 16,192 at the root. This simple segment contains over 14% of working
women.

Salary Factors

If you have a dataset of working adults, you might want to find out what factors affect
salary. You might then divide the records into two classes: those adults earning ≤ $50,000
a year, and those earning more. Each record then has an attribute with two values: “−
50,000” and “50,000+”. You can run a MineSet classifier to help determine what factors
influence salary. The file /usr/lib/MineSet/treeviz/examples/adult-salary-dt.treeviz shows the
Decision Tree classifier induced for this problem. This file was generated by running the
inducer on /usr/lib/MineSet/data/adult.schema with gross_income binned at the
user-specified threshold of 50000 and the label set to gross_income_bin.

The resulting visualization provides the following insights:

• The root, which represents the entire training set, shows 76.07% of the working
adults earn ≤ $50,000.

• Age is the most important factor. Only 3.07% of the people under 27 years old earn
more than $50,000. Note that the base color is green, indicating a very accurate rule
(about 3% error rate).

344

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

• Education is an important factor for predicting salary for people over 27 years old.
The Census Bureau assigns education levels to each person. The Decision Tree
classifier splits on 12.5; the level 13 matches a Bachelor’s degree. People with a
Bachelor’s degree or higher, go right to the node where about 55% earn over
$50,000.

• Of the segment that is older than 27 years and well educated, relationship is an
important predictor of salary. For those persons that are married, chances of earning
$50,000 or more increase to 73% for husbands and 75% for wives. (Note, however,
that the node containing wives has a small base, indicating that few females match
this rule.) If the person in this group is not married, chances of earning $50,000 or
more decrease to 27% for males and 25% for females.

Iris Classification

In this dataset, each record describes four characteristics of iris flowers: petal width, petal
length, sepal width, and sepal length. Each iris was further classified into the types
iris-setosa, iris-versicolor, or iris-virginica. The goal is to understand what characterizes
each iris type.

Before running a classifier, click the Importance tab in the Tool Manager’s Classifiers tab;
then click Go!. You obtain a ranking of the importance of the features: petal_width,
petal_length, and sepal_length. You can map these to the axes in the Scatter Visualizer,
with the iris_type mapped to the color, and see the clusters.

The file /usr/lib/MineSet/treeviz/examples/iris-dt.treeviz shows the Decision Tree classifier
induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/iris.schema.

Running the Tree Visualizer, you can see that the root has 6% error rate, even though the
purity is very low (0). The purity measures the skewness of the distribution, and, at the
root, the distribution is perfectly uniform: 50 records for each label value. The left branch
(petal-length ≤ 2.6 inches) goes to a green node (zero error) containing only iris-setosas.
The other branches are also quickly able to separate the classes using another test on the
petal_width. The path petal-length > 2.6 and petal-width ≤ 1.65 and petal-length > 5 ends
with an impure leaf containing 4 records. There are three records of type iris-virginica and
one of iris-versicolor. The Decision Tree did not split this node because it was deemed
insignificant (by default, every split must contain two children with at least a weight of
two). The node color is also black, indicating that no test instances reach this node, so we
do not have an estimated error rate for it.

Sample Files

345

To summarize: the flowers with petal length ≤ 2.6 inches are predicted as iris-setosa, those
with petal length > 2.6 inches and <=5 inches and petal width ≤1.65 inches are predicted
as iris-versicolor, and those with a petal length >2.6 inches and a petal width > 1.65 or petal
length > 5 inches and petal width <= 1.65 are predicted as iris-virginica.

Note that because the Decision Tree makes binary splits on continuous attributes while
Column Importance discretizes the data, the root split of the tree is different from the first
attribute in column importance (see Chapter 13 for more details).

Mushroom Classification

The file /usr/lib/MineSet/treeviz/examples/mushroom-dt.treeviz shows the Decision Tree
classifier induced for the classification of mushrooms. This file was generated by running
the inducer on /usr/lib/MineSet/data/mushroom.schema.

The goal is to understand which mushrooms are edible and which are poisonous, given
this dataset. There are over 8000 records in this set; thus, running this inducer might take
several minutes.

Each mushroom has many characteristics, including cap color, bruises, and odor. If you
build a Decision Tree classifier, you can see that using only the odor attribute lets you
determine in 50% of the cases whether the mushroom is poisonous or edible. If the
mushroom has no odor, there is a 3.4% chance it is poisonous. The next attribute to look
at is the shape of the stalk. If it tapers, the mushroom is edible; but if it enlarges, there is
a 11.6% chance the mushroom is poisonous. There are 1032 mushrooms that reach this
node. You can follow the tree down further nodes to see what other attributes to consider.

Party Affiliation

This dataset consists of voting records. The goal is to identify the party a congressperson
belongs to given data about key votes. The dataset includes votes for each member of the
U.S. House of Representatives on the 16 key votes identified by the Congressional
Quarterly Almanac (CQA). The CQA lists nine types of votes: voted for, paired for, and
announced for (these three are simplified to yes); voted against, paired against, and
announced against (these three are simplified to no); voted present, voted present to
avoid conflict of interest, and did not vote or otherwise make a position known (these
three are simplified to an unknown disposition).

346

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

Before running a classifier, look at the 16 votes to see if you can perceive which features
are important. Then run the Decision Tree classifier.

The file /usr/lib/MineSet/treeviz/examples/vote-dt.treeviz shows the Decision Tree classifier
induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/vote.schema.

Breast Cancer Diagnosis

The breast cancer dataset contains information about females undergoing breast cancer
diagnosis. Each record is a patient with attributes such as cell size, clump thickness, and
marginal adhesion. The final attribute is whether the diagnosis is malignant or benign.
The file /usr/lib/MineSet/treeviz/examples/breast-dt.treeviz shows the Decision Tree classifier
induced for this problem. This file was generated by running the inducers on
/usr/lib/MineSet/data/breast.schema.

The Decision Tree shows that uniformity_of_cell_size is a very strong discriminatory
attribute. While the root distribution is about 65% versus 35% (purity is 7.07), the two
children of the root are much more skewed, with the left node having an error rate of only
1.29%. The root alone is an excellent discriminator: if you limit the tree height to a single
level (see “Decision Tree Inducer Options”), the error rate is 7.3%.

Hypothyroid Diagnosis

The hypothyroid diseases dataset is similar to the one for breast cancer. The file
/usr/lib/MineSet/treeviz/examples/hypothyroid-dt.treeviz shows the Decision Tree classifier
induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/hypothyroid.schema.

There are 3163 records in this dataset and most of them do not have hypothyroid
(95.23%). While this means that one can predict “negative” and be correct with high
probability, it’s those people that have hypothyroid that we are most worried about: the
false negatives are very important. By selecting a confusion matrix from Further Inducer
Options, you’ll see that there are five patients with Hypothyroid who were misclassified.

Looking at the Decision Tree, you can see that the root node is “green” (highly accurate).
The single attribute on “fti” at the root shows that it is relatively easy to identify many of
the negative diagnosis. People with high fti are 99.7% negative, and all those where the
value is unknown are also negative (perhaps the doctor decided not to measure this
attribute because something else was obvious), but the rest (218 people) are hard cases

Sample Files

347

(node base is colored orange). We started with 3163 records, but only 218 are really
“interesting” to mine because it was very easy to throw away most cases. In this example
most of the data is uninteresting and you want to concentrate on a small part quickly. Of
the 218 people, you can see that about 66% are positive and 34% negative.

As you move down the tree, increase the height scale (slider on the top left of the
visualizer) to see the different heights. The node that catches most of the people with
hypothyroid has the conditions “fti ≤ 64.5 and tsh > 5.95.” It contains 140 of the 151
records that have hypothyroid.

Pima Diabetes Diagnosis

This dataset is a diagnosis problem for diabetes using statistics gathered from a Native
American tribe in Phoenix Arizona. The task is to determine whether a patient has
diabetes, given some medical attributes, such as blood pressure, body mass, glucose
level, and age.

The file /usr/lib/MineSet/treeviz/examples/pima-dt.treeviz shows the Decision Tree classifier
induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/pima.schema.

DNA Boundaries

There are 3,186 records in this DNA dataset. The domain is drawn from the field of
molecular biology. Splice junctions are points on a DNA sequence at which
“superfluous” DNA is removed during protein creation. The task is to recognize
exon/intron boundaries, referred to as EI sites; intron/exon boundaries, referred to as IE
sites; or neither. The IE borders are referred to as “acceptors” and the EI borders are
“donors.” The records were originally taken from GenBank 64.1 (genbank.bio.net). The
attributes provide a window of 60 nucleotides. The classification is the middle point of
the window, thus providing 30 nucleotides at each side of the junction.

In this example, the root of the Decision Tree shows the distribution of the three classes.
By pointing to the bars, you can see that the composition is about 24% exon/intron, 24%
intron/exon, and 52% none. The “left_01” in front of the root node indicates that this is
an important attribute to look at first. The “left_01” notation refers to the first nucleotide
found to the left of the splice junction in question. The choices of attribute values for this
first nucleotide (and all nucleotides in general) are the “A”, “G”, “T”, and “C”
nucleotides. If the “left_01” nucleotide is a “G”, then the “G” branch is taken and
followed to the next node, where the distribution now shows that such a nucleotide is

348

Chapter 10: Inducing and Visualizing the Decision Tree Classifier

more likely to be an “exon/intron” or an “intron/exon” than at the root: the distribution
is 34% for “exon/intron,” 42% for “intron/exon”, and 24% for “none.” If the “left_01”
nucleotide is an “A”, “T”, or “C”, then the corresponding “A”, “T”, or “C” branch is

taken instead and in all three cases, the probability of “none” increases dramatically
(87%, 87%, and 95% respectively). This testing and branching process is repeated until
the final node with the predicted class (“exon/intron”, “intron/exon”, or “none”) is
reached.

For this dataset, the Evidence Classifier (Chapter 12) is more appropriate than a Decision
Tree due to the probabilistic nature of this domain. This can be verified by comparing the
estimated error rates.

349

Chapter 11

11. Inducing and Visualizing the Option Tree Classifier

This chapter discusses the features and capabilities of the Option Tree inducer. This
chapter provides an overview of this tool and discusses methods for using it to generate
Option Tree classifiers. The Option Tree Visualizer’s functionality is the same as for
Decision Trees and was described in Chapter 10. Finally, it lists and describes the sample
files provided for this tool.

Note: It is assumed that you have read Chapter 9, “MineSet Inducers and Classifiers,”
and Chapter 10 before proceeding with this chapter.

Overview

An Option Tree classifier assigns each record to a class. The underlying structure used for
classification is a Decision Tree, as described in Chapter 10. Figure 11-1 shows an Option
Tree where the goal is to predict for the cars dataset the origin of a car built in the 1970’s
or early 1980’s (the origin points being the U.S., Japan, or Europe). Option Trees extend
a regular Decision Tree classifier by allowing Option Nodes. An Option Node shows
several options that can be chosen at a decision node in the tree. For example, in
Figure 11-1, the root is an option node with five options:

1. cubicinches

2. cylinders

3. weightlbs

4. mpg

5. brand

350

Chapter 11: Inducing and Visualizing the Option Tree Classifier

Option nodes serve two purposes:

1. They enhance comprehensibility of the factors affecting the class label by showing
several choices that can be made. Instead of using a single attribute at a node, an
option node provides you with several options. When flying over the tree, you can
choose to follow an option that

• you believe is easier to understand, or

• you believe is better for predictions based upon your previous experience, or

• you base on the error estimate

In the cars dataset shown in Figure 11-1, you can fly down the cylinders subtree
because it has few values, or you can fly down to the weightlbs subtree because its
estimated error is lower (1.53). Note that error estimates are only estimates;
generally, if the error difference between two options is less than twice their mean
standard deviation, then statistically the errors are not different.

2. They reduce the risk of making a mistake by averaging the votes made by the
options below. Every option leads to a subtree that can be thought of as an “expert.”
The option node averages these experts’ votes. Such averaging can lead to a better
classifier with a lower error rate.

In the cars dataset, shown in Figure 11-1, the root node has an estimated error rate
of 0.76%, which is lower than any of its children! Note that while brand might seem
like a “giveaway” attribute for this task, the training set might not contain all
brands (in fact, it does not contain all of them). For an unseen brand, the Decision
Tree guesses the majority class (U.S.) and makes two errors. However, when there
are other options, they are averaged, and, indeed, the error is reduced.

Overview

351

Figure 11-1 Option Decision Tree for the Cars Dataset

352

Chapter 11: Inducing and Visualizing the Option Tree Classifier

Option Trees, however, have two disadvantages:

1. The time necessary to build an Option Tree under the default setting is about 10 to
15 times longer than that needed to build a Decision Tree.

2. The Tree Visualizer file that is created is more complex, containing 10 to 15 times as
many nodes.

Run the Option Tree inducer on your dataset to determine whether the advantages in
comprehensibility and error rates justify the longer induction time. You might gain
additional insight as to which attributes to remove or use when building a Decision Tree.

Inducing Option Trees

An Option Tree classifier is induced (generated) automatically from data. The data,
which is made up of records and a label associated with each record, is called the training
set (see Chapter 9, “MineSet Inducers and Classifiers”).

File Requirements

The Option Tree inducer requires a training set, as described in the “Training Set” in
Chapter 9. Files are generated by extracting data from a source (such as a MineSet ASCII
or binary file, or a table in an Oracle, INFORMIX, or Sybase database). To apply the
generated classifier, you should have a dataset of records with the attributes used by the
classifier, except that the label need not be present.

Running the Option Tree Inducer

There are two ways to run the Option Tree inducer:

• From the Tool Manager.

Connect to the server and select a data source (see “Choosing a Data Source” in
Chapter 3).

Configuring the Decision Tree Inducer Using the Tool Manager

353

• From the File menu, choose Open New Data File. Log in to a server, and enter the
filename. For the example shown here, the filename entered would be
/usr/lib/MineSet/data/cars.schema as the filename. You’ll see several
attributes in the Data Transformation panel. Verify that origin is shown as the
discrete label. Select the Option Tree inducer, and ensure you have selected the
Classifier & Error mode. To run the Inducer, click Go!.

The Status window shows the progress and resulting statistics from the command
line.

To induce an Option Tree classifier from the command line, refer to Appendix H,
“Command-Line Interface to MIndUtil: Classifiers, Discretization, Column
Importance, and File Conversions.”

Configuring the Decision Tree Inducer Using the Tool Manager

To access the options for configuring the Option Tree inducer, select the Mining Tools tab
on the Data Destination panel (Figure 11-2). From the tabs at the right, select Classify.
Ensure that the inducer you select is Option Tree. Your selections in the Mode and
Inducer menus determine the options available in the Further Inducer Options menu
(Figure 11-3). After you have made your selections in these menus, click Go! to run the
inducer, which, in turn, creates the classifier.

Figure 11-2 Data Destination Panel in Tool Manager Showing Classifiers

354

Chapter 11: Inducing and Visualizing the Option Tree Classifier

Discrete Labels

The Discrete Labels menu provides a list of possible discrete labels. Discrete attributes
(binned values, character string values, or a few integers) have a limited number of
values. You should select a label attribute with few values; for instance, two or three (see
“Training Set” in Chapter 9). If there are no discrete attributes, the menu shows No
Discrete Label, and the Go! button is disabled. You then must create a discrete attribute by
binning or adding a new column using the Tool Manager’s Data Transformations panel.

Classifier Name

The generated classifier is named with the prefix of the session filename (as determined
in Tool Manager) with the suffix -odt.class. By default, all classifiers are stored on the
server in the file_cache directory, which defaults to mineset_files. These classifiers can be
used for future classification of unlabeled records; that is, they can be used to predict the
labels for unlabeled datasets (see “Applying a Classifier” and “Backfitting” in
Chapter 9).

Option Tree: Further Options

Selecting Further Classifier Options causes the Further Inducer Options dialog box to
appear. This dialog box consists of three panels:

• The top panel indicates the choices you made in the Tool Manager’s Data
Destination panel.

• The second pane from the top lets you set the loss matrix and the weight attribute.
See “Loss Matrices: Not all mistakes were created equally” and “Record Weighting:
Not all records were sampled equally” in Chapter 9.

• The bottom-left panel lets you specify further Inducer Options.

• The bottom-right panel lets you specify the Error Estimation Options (unless the
mode you chose in the Data Destination panel was Classifier Only, in which case
this area is empty). The options shown in this panel depend on the type of Error
Estimation you chose (see “Error Estimation” in Chapter 9).

Configuring the Decision Tree Inducer Using the Tool Manager

355

Figure 11-3 Further Inducer Options

356

Chapter 11: Inducing and Visualizing the Option Tree Classifier

Option Tree Inducer Further Options

To fine-tune the Option Tree induction algorithm, you can change all the options for
Decision Trees described in Chapter 10. In addition, the following new options are
provided (see Figure 11-3):

• Max # root options

This integer option, which defaults to 5, restricts the number of options created at
the root. While the inducer might not allow this number of options because other
attributes are inferior, many natural datasets will have many good attributes that
could be chosen.

• Decrease

This integer option, which defaults to 2, defines the amount by which the number of
options decreases at every level. With the default of 5 for Max # root options, it
implies that there are at most three options (5-2=3) for the second level of decision
nodes. The third level of decision nodes is restricted to a single option (3-2=1).
Levels further down are similarly restricted to a single option.

• Min fitness ratio

This ratio determines when to exclude attributes as options. When the inducer gives
a fitness score to each attribute, it chooses the best attribute and other attributes that
might also be good as options. The fitness ratio determines how good those other
options must be. A factor value of f implies that to be considered an option, an
attribute must rank at least f*b, where b is the score for the best attribute. A fitness
ratio of 1 picks all the attributes (so the limiting options described above are reached
if there are attributes on which to split). A fitness ratio of 0 causes a regular Decision
Tree to be created (no option nodes).

Working in the Tree Visualizer’s Main Window

357

The time to induce an Option Tree is closely related to the number of option nodes
created. Because option nodes usually are created near the top (where they are most
useful for both comprehensibility and error reduction), a good approximation for the
time to induce an Option Tree is: the number of options created that have no children
options times the time to build a Decision Tree. Under the default setting, the root node
can have up to five options, and each child can have up to three options. The total options
then can be up to 15 (3 times 5). If the option Max # root options is increased to 6, the
number of options then is limited by 48 (6*4*2); if it is increased to 7, the number of
options is then limited by 105 (7*5*3). Keeping the Max # root options to 5, but changing
the decrease to 1, limits the options by 120 (5*4*3*2). The expected induction time for the
last example, thus, is two orders of magnitude longer than for a regular Decision Tree.
Decreasing the Min fitness ratio option usually results in less options than the limiting
factor, thus reducing induction time.

Working in the Tree Visualizer’s Main Window

The Tree Visualizer’s main window shows the Option Tree. The navigation is the same
as for decision trees. One feature that is very useful for option trees is clicking the right
mouse button on an option node. This presents the list of children, which are the options.

Note that:

• The left-most option would have been the only option chosen by the Decision Tree
inducer. As you go right, the options are ranked lower by the fitness scoring.
Sometimes, it is interesting to see that the fitness scores do not necessarily match the
test-set error shown. This is expected, as the inducer is using a non-perfect scoring
function. The test-set estimate also has natural variability: the larger the test-set, the
more accurate the estimate.

• The option node can have a different error rate than every one of its children.
Because the option node averages the children’s predictions, its error rate can be
different. In some cases, its error is strictly lower than that of every child, showing
that averaging helps.

• The distribution of instances (shown in bars) at every child of an option node is
exactly the same as that of the option node itself. This is because there was no
decision made by the option node: options are being presented as children.

358

Chapter 11: Inducing and Visualizing the Option Tree Classifier

Sample Files

The following examples show cases in which the Option Tree inducer can be useful. Each
of these examples is associated with a sample data file provided with MineSet. By
running the inducer, you can generate the -odt.treeviz files described below. The text
describing the scenario and goal for each task is described in “Sample Files” in
Chapter 10. Here we describe the specific advantages and disadvantages of Option Trees
for several of the example datasets.

Note: The data files, which have a .schema extension, are located in /usr/lib/MineSet/data
on the client workstation. The classifier visualization files, which have a -odt.treeviz
extension, reside on the client workstation in /usr/lib/MineSet/treeviz/examples.

Churn

The Option Tree for this dataset shows that total day charge, total day minutes, and
customer service calls are all good attributes for the root: they all have approximately the
same estimated error rate. You can choose to fly down to one subtree or another, based
on your preferences and understanding of the data. Note that while the right subtree
starts with customer service calls, the second test is on total daily charge or total daily
minutes (as the root’s left option). However, because a split already occurred on an
attribute, the thresholds are different.

Origin of Cars

The Option Tree for this dataset shows several good attributes for the root, including:
cubic inches, cylinders, weight lbs, mpg, and brand. Note that the root has a lower
estimated error rate than any of the children.

Sample Files

359

Iris Classification

This is an example where Option Trees seem to be performing worse than Decision Trees.
The root for the Decision Tree shows 6% error and the root for the Option Tree shows 8%
error, so it seems that Option Trees perform worse. Be cautioned about making inferences
regarding the error rates:

• The standard deviation of the error estimate is fairly high: 3.88% and 3.39%. A rule
of thumb in statistics is that if the difference is less than two standard deviations,
the difference is not statistically significant at the 95% confidence level. A difference
of 2% is not larger than even a single standard deviation; hence, the classifier error
rates are not statistically different at the 95% confidence level

• For small files (Iris has 150 records), different random seeds give different results.
For example, changing the seed to 3 improves the Option Tree classifier’s error from
8% to 4% without changing the Decision Tree classifier’s error rate (remember to
reset the seed). This does not imply that a more accurate classifier has been
generated, rather that the error estimate is not stable. Because only 50 records are
used for testing, each mistake is 2%. The difference between 4% and 8% is making
two more mistakes.

• For small files (Iris has 150 records), use the “Estimate Error” option in MineSet. It
results in better estimates that have narrower confidence intervals. When you run
this mode, the status window shows that the Decision Tree classifier has an
estimated error of 4.67% 1.73%, and the Option T ree classifier has an estimated
error of 4.00% 1.61%. The dif ference is not significant in this case either, but the
Option Tree is slightly superior.

• Even if the error rate is higher for Option Trees, they might be (and usually are)
better at assigning probability estimates. For this dataset, the estimated mean
squared error for Decision Trees is 2.99; for Option Trees it is 2.01 (although the
difference is not significant at the 95% confidence level).

360

Chapter 11: Inducing and Visualizing the Option Tree Classifier

Mushroom Classification

The Option Tree for this dataset shows that all five options chosen at the root have zero
error rate estimates. Looking at the result, you might prefer the left option (bruises)
because it is as accurate but is easier to measure than odor (the root test of the induced
Decision Tree). You might want to remove odor and gill size, then build a regular
Decision Tree that turns out to be just as accurate (0% estimated error rate).

Note, however, that removal of a root option to have a sibling option selected by the
Decision Tree might not necessarily result in the same accurate classifier that is shown in
the Option Tree. The removed attribute might have been used lower down in the tree. For
example, removing brand from the cars dataset significantly increases the error rate,
even though four out of five options do not use it at the root.

Party Affiliation

This dataset behaves very similarly to the Iris dataset. The Option Tree has a slightly
higher estimated error rate, which is not significantly different. Under “Estimate error,”
the cross-validated estimate shows that it is slightly better (but not significantly so at the
95% level) both on error rate and on mean squared error.

Breast Cancer Diagnosis

The error rate for Option Trees is slightly lower than that for Decision Trees, both for
Classifier & Error and for Estimate Error; however, the difference is not significant (at 95%).

Hypothyroid Diagnosis

The error rates for this dataset are very low (less than 1%), but this is because most people
who were tested for hypothyroid (95%) did not suffer from it. If we use a loss matrix that
attempts to avoid false negatives (by penalizing by 100 a prediction of negative when the
actual value is hypothyroid), we can see that the loss for Option Trees is significantly
lower than that of Decision Trees: 180 versus 523 (total), or 0.17 versus 0.5 (per record).
This difference is significant at the 95% confidence level.

Sample Files

361

DNA Boundaries

For this dataset, the Option Tree is slightly more accurate than the Decision Tree;
however, looking at the root options, you might notice that it chooses left 1,2, and right
1,2,5. Given the background knowledge that attributes closer to the boundary can be
more important, you might want to exclude the option split on right 5. After updating the
maximum number of root options to 4 (down from 5), and running the Option Tree again,
the error rate decreases from 5.84% to 4.71%. This is significantly better (at the 95%
confidence level) than the Decision Tree error rate of 7.06% 0.79%.

363

Chapter 12

12. Inducing and Visualizing the Evidence Classifier

This chapter discusses the features and capabilities of the Evidence Classifier and
Visualizer. It provides an overview of this classification tool as well as the inducer that
generates it. It describes the ways of invoking this tool. It then explains the Evidence
Visualizer’s functionality when working with the

• Label Probability Pane

• Evidence Pane

Finally, it lists and describes the sample files provided for this tool.

Note: It is assumed that you have read Chapter 9, “MineSet Inducers and Classifiers,”
before proceeding with this chapter.

Overview

The Evidence Classifier assigns each record in a dataset to a class. The Evidence
Visualizer displays the structure of an evidence classifier (Figure 12-1). The visualizer
can help you understand the importance of specific attribute values for classification.
Also, it can be used to gain insight into how classification is done, as well as to answer
“what if” questions.

364

Chapter 12: Inducing and Visualizing the Evidence Classifier

Figure 12-1 The Evidence Visualizer Applied to the Iris Dataset

The Evidence pane (on the left) consists of rows of pie charts or bars for the attributes
used by the classifier. Characterization of a particular class label can be achieved by
selecting one of the values in the Label Probability Pane (on the right). There is one pie
chart or bar for each discrete value of the attribute. In the case where the attributes are
not discrete, the continuous range has been discretized (binned) in a way that maximizes
the differences between adjacent pie charts. Pie height is proportional to the weight of
records having that attribute value. (If no weight attribute is set, the height represents the
number of records.) If no filtering is done, the sum of the pie heights for every row is the
same because it is equal to the total weight of the dataset. The height of the graphical
objects can be scaled to exaggerate the differences between the pie charts. You can adjust

Overview

365

an importance threshold slider to filter out attributes that are less useful for classification.
By adjusting a percent counts threshold, all values having counts below a certain
percentage of the total are filtered out.

The kinds of questions you might answer by using the Evidence Visualizer are as follows:

• What is the likelihood that a new record, for which you know only the values for a
few attributes, has a certain label?

• Which values of which attributes are the most useful for classifying the label?

• What is the distribution of records by attribute values?

• What are the characteristics of records that have a certain label?

• What is the probability that an attribute takes on a certain value given that it has a
specific label value?

The prior probability for each class label is depicted in the pie chart in the Label Probability
Pane, on the right of the screen. The prior probability for a class label is the probability of
seeing this label in the data for a randomly chosen record, ignoring all attribute values.
Mathematically, this is the number of records with the class label divided by the total
number of records.

The conditional probabilities, depicted by pie charts in the Evidence Pane on the left of the
screen, show the relative probability of each attribute value given (conditioned on) each
label value. The size of a pie slice indicates the amount of evidence the classifier adds to
the prior probability after taking into account a given attribute value in a record. If the
size of the slices are equal, the value is irrelevant, and the classifier adds the same amount
of evidence to all classes.

By default, values of nominal attributes are sorted by the size of the slices corresponding
to one of the classes. This aids in identifying important values. If the label is a binned
attribute, the class that is the highest bin is used. If the label is nominal, then the class
with the largest slice in the prior probability pie is used. If a particular class is selected,
and then a sort by label probability is requested, the selected class is used for determining
the ordering. Alternatively, the values of the nominal attributes can be sorted
alphabetically or by count.

366

Chapter 12: Inducing and Visualizing the Evidence Classifier

Technically, the slice of the pie represents the normalized conditional probability of an
attribute value A, given the class label L. The conditional probability, P(A|L), is the
probability that a random record chosen only from records with label L takes the value
A. Under the default settings, the probability is computed based on record counts. For
example, P(0.75 < petal width ≤ 1.65 | iris-versicolor) is 91.6, because there are 36 records
with label iris-versicolor, and 33 of them have a petal width in this range.

The Evidence Inducer, sometimes called Naive-Bayes (or Simple Bayes), builds a model
that assumes the probabilities of each attribute value are independent given the class. For
example, this assumes that the four attributes (sepal_length, sepal_width, petal_length, and
petal_width) are independent for each class of iris (iris-setosa, iris-versicolor, and
iris-virginica). While this simplistic model is rarely true, the model is excellent for initial
explorations of data and its classification prediction performance is very good in
practical applications.

Each attribute value, or range of values, defines exactly one pie chart, which, in turn,
gives the conditional probabilities for each class label. To classify a given record, one
computes the probability of each class by multiplying its prior probability by the
appropriate conditional probability from each row in the matrix. The final product gives
the relative probability for each class and the highest value is the predicted class. If an
attribute has an unknown value, it is ignored. (The unknown value does not add
evidence to any of the classes.) The unknown values are denoted by a question mark (?).
These NULL values are represented by pies that are slightly offset from the rest of the
pies and are on the left. Pies representing null values can not be selected, because they
are not used in the classification process.

This process of classification can be done interactively using the Evidence Visualizer.
Simply select all the values for the attributes that you know. The probability pie on the
right changes to show the distribution you would expect, given the attribute values you
selected on the left. For example, selecting the pie for sepal_length < 5.45 inches and the
pie for sepal_width > 3.05 inches shows that an iris with these characteristics belongs
almost certainly to the class iris-setosa (see Figure 12-2).

Overview

367

Figure 12-2 Selecting sepal_length < 5.45 and sepal_width > 3.05 Using the Iris Dataset

The classes listed under the pie chart on the right are in order of slice size. The class with
the largest probability is at the top. As values on the left are selected, this order changes
to reflect the changing probability pie. The class that would be predicted given current
selections is always shown at the top. If the label is a binned attribute, colors are assigned
according to a continuous spectrum: the highest bin is red; otherwise, random colors are
used.

368

Chapter 12: Inducing and Visualizing the Evidence Classifier

For some combinations of selected values, the probability pie on the right turns
completely gray. This occurs when the values selected are contradictory according to the
model. For example, in iris.eviviz there are no iris flowers that have petal_width < .75
inches and petal_length > 4.85 inches. Thus, selecting the two pies on the left representing
these two values results in a gray pie on the right (see Figure 12-3).

Figure 12-3 Selecting Two Contradictory Pies Results in a Gray Pie on the Right

Overview

369

You can eliminate the possibility of getting a grey pie by using the Laplace correction
option (see page 377). If Laplace correction is not used, clicking one pie on the left yields
exact posterior proportions on the right. After clicking more than one pie on the left, the
posterior probability pie might not reflect exactly the true proportions in the original
data; however, it is a good estimate.

Importance is a measure of predictive power with respect to a label. The Evidence Pane
provides valuable insight not only into the importance of each attribute value affecting
the class value, but also into the importance of specific attribute values. For example, in
the mushroom dataset (described on page 403), the veil-color attribute has little
importance because its attribute value usually is white (see Figure 12-4) and does not add
much evidence to either class.

370

Chapter 12: Inducing and Visualizing the Evidence Classifier

Figure 12-4 Veil-Color Attribute in the Mushroom Dataset

However, if the veil color is brown or orange, the mushroom is likely to be edible, while
if it is yellow, it is likely to be poisonous. Similarly, a “test for AIDS” might not be an
important attribute for determining whether a patient has a deadly disease because most
people would not test positive. However, the value POSITIVE for this test is highly
informative because most patients that test positive do have a deadly disease.

Inducing Evidence Classifiers

371

Inducing Evidence Classifiers

The automatic induction of evidence classifiers is a process whereby counts (or weights)
are used to calculate the probabilities. Evidence classifiers are automatically induced
(generated) from data. The data, which is made up of records and a label associated with
each record, is called the training set (see Chapter 9).

The probabilities are generated using the following method:

1. All continuous attributes are discretized (binned), such that class distributions in
these ranges are as different as possible. The number of ranges is determined
automatically. To override the automatic binning, bin the given column with respect
to the label using the Automatic Thresholds option under the Data Transformations’
Bin Column button.

2. The prior probabilities are the proportions of each class in the training set.

3. The conditional probabilities are the probabilities of each attribute value
conditioned on each class label in the training set. (The pies show them normalized
for each attribute value.)

The number of pies in a row is the number of discrete ranges produced by the inducer. If
there is just one range, it means that this attribute by itself was not useful in predicting
the label. Initially, the prior probabilities of the labels are displayed in the Label
Probability Pane.

An optional Auto Column selection mode removes attributes that are not useful or that
increase the error rate.

An optional Laplace correction can be applied to the probabilities, which avoids extreme
probabilities (for example, probabilities of zeros and ones). We may prefer not to assign
a probability of 1 to the event “a patient tested positive for AIDS has a deadly disease.”
We may want to assign a probability close to 1 (but not 1), in order to allow for errors or
unrepresentative samples.

Note that the Evidence Visualizer shows the probabilities of classes. The classifier itself
can have a loss matrix. The loss matrix does not affect the probabilities; therefore, it does
not change the visualization, but it is taken into account when the classifier is applied.
The predicted class is the one with the least expected loss under the probability estimates.

372

Chapter 12: Inducing and Visualizing the Evidence Classifier

File Requirements

The Evidence Visualizer requires a training set, as described on page 294 of Chapter 9,
“MineSet Inducers and Classifiers.” Files are generated by extracting data from a source
(such as a MineSet ASCII or binary file, or a table in an Oracle, INFORMIX, or Sybase
database). The Evidence Visualizer data file is output as a result of running the Evidence
Inducer. The format of this file, which has a .eviviz extension, is described in Appendix G.
When starting the Evidence Visualizer or when opening a file, you must specify the data
filename. To apply the generated classifier, you should have a dataset of records with the
same attributes and type as those used by the classifier, except that the label need not be
present.

Running the Evidence Inducer

There are two ways to run the evidence inducer:

• From the Tool Manager

Connect to the server and select a data source (see “Choosing a Data Source” in
Chapter 3).

From the File menu, choose Open New Data File. Log in to a server, and type
/usr/lib/MineSet/data/iris.schema as the filename. You’ll see four continuous
attributes and one discrete attribute in the Data Transformation panel. Since there is
only one discrete attribute, the label option automatically shows it. Select the
Evidence Inducer, and ensure that you have selected the Classifier & Error mode. To
run the Inducer, click Go!.

The Status window shows the progress and resulting statistics.

• From the command line

To induce an evidence classifier from the command line, refer to Appendix H,
“Command-Line Interface to MIndUtil: Classifiers, Discretization, Column
Importance, and File Conversions.”

Starting the Evidence Visualizer

373

Starting the Evidence Visualizer

There are six ways to start the Evidence Visualizer:

• Run the Evidence Inducer from the Tool Manager under the Classify tab. After the
inducer builds the classifier, it automatically invokes the Evidence Visualizer. See
below for details about using the Tool Manager in conjunction with the Evidence
Visualizer.

• Use the Tool Manager to start the Evidence Visualizer from the Visual Tools menu.
(See Chapter 3 for details on the Tool Manager’s functionality, which is common to
all MineSet tools.)

• Double-click the Evidence Visualizer icon on your Indigo Magic desktop. The
startup screen requires you to select a data file by choosing File|Open.

Figure 12-5 File|Open Menu Selection

• If you know what configuration file you want to use, double-click the icon for that
configuration file. This starts the Evidence Visualizer and automatically loads the
configuration file you specified. This works only if the configuration filename ends
in .eviviz (which is always the case for configuration files created for the Evidence
Visualizer via the Tool Manager).

374

Chapter 12: Inducing and Visualizing the Evidence Classifier

• If you know what configuration file you want to use, drag its icon onto the Evidence
Visualizer icon. This starts the Evidence Visualizer and automatically loads the
configuration file you specified.

• Start the Evidence Visualizer from the UNIX shell command line by entering this
command at the prompt:

eviviz [dataFile]

Here, dataFile is optional and specifies the name of the configuration file to use. If
you don’t specify a configuration file, you then must use File|Open to specify one
(see Figure 12-5).

Options for invoking the Evidence Visualizer

The -quiet option eliminates the dialogs that popup to indicate progress. You can enable
this option permanently by adding the line

*minesetQuiet:TRUE

to the user’s .Xdefaults file.

Configuring the Evidence Inducer Using the Tool Manager

To access the options for configuring the Evidence Inducer, select the Mining Tools tab on
the Data Destination panel (Figure 12-6). From the subsequent tabs, select Classify.
Ensure that the inducer you select is Evidence. Your selections in the Mode menu
determines the options available in the Further Inducer Options menu. After you have
made your selections in these menus, click Go! to run the inducer, which, in turn, creates
the classifier.

Configuring the Evidence Inducer Using the Tool Manager

375

Figure 12-6 Tool Manager With Data Destination Panel Showing Classifiers

Discrete Labels

The Discrete Labels menu provides a list of possible discrete labels. Discrete attributes
(binned values, character string values, or integers) have a limited number of values.
Select a label attribute with few values; for instance, two or three (see “Training Set” in
Chapter 9). If there are no discrete attributes, the menu shows No Discrete Label, and the
Go! button is disabled. You then must create a discrete attribute by binning or adding a
new column using the Tool Manager’s Data Transformations panel.

Classifier Name

The generated classifier is named with the prefix of the session filename (as determined
in Tool Manager) and the suffix -evi.class. By default, all classifiers are stored on the
server. These classifiers can be used for future classification of unlabeled records; that is,
they can be used to predict the labels for unlabeled datasets (see “The Apply Classifier
Button” in Chapter 3).

376

Chapter 12: Inducing and Visualizing the Evidence Classifier

Refining the Inducer With Further Options

Selecting Further Inducer Options causes the Inducer Options dialog box to appear (see
Figure 12-7). This dialog box consists of three panels:

• The top panel shows the choices you made in the Tool Manager’s Data Destination
panel. The type of Error Estimation is determined by the model.

• The bottom-left panel lets you specify further Inducer Options.

• The bottom-right panel lets you specify the Error Estimation Options (unless the
mode you chose in the Data Destination panel was Classifier Only, in which case
this area is empty). The options shown in this panel depend on the type of Error
Estimation you chose (see “Error Estimation” in Chapter 9).

Figure 12-7 Classification Options Dialog Box Without Accuracy Estimate

Configuring the Evidence Inducer Using the Tool Manager

377

Evidence Inducer Options

By choosing Further Inducer Options, you can fine-tune the Evidence inducer.

• Laplace Correction

This biases the probabilities towards the average, thus avoiding extreme numbers
(such as 0 and 1). This means every pie in the Evidence Pane has a non-zero slice for
each class. The fewer the records in a bin, the more it is changed towards the
average. If the Laplace correction is checked, and the factor is left empty or set to 0,
an automatic Laplace correction is applied, using a heuristic that applies a factor of
1/training-set-weight.

• Set Minimum Weight per Bin

The Evidence Inducer discretizes all continuous attributes. This option lets you
define the minimum number of instances per bin. The automatic setting has a
heuristic that sets this number based on the dataset size: the larger the dataset, the
larger the bin size. If your dataset is very large, you might obtain more discrete
ranges than you want. To reduce the number of bins, raise this value.

• Automatic column selection

This applies a process that chooses only those columns that help prediction the
most. Because extra columns can degrade the prediction accuracy of the evidence
classifier, this process searches for a good subset of the columns automatically. Only
those columns found to be useful are used. This process can take a long time,
especially if there are many columns. It is useful for eliminating highly correlated
columns that could degrade accuracy.

Automatic column selection conducts a search for the best set of columns that
reduce the error of the classifier. The selection of these columns is done by
estimating the error of different attribute sets using the wrapper approach (see
Appendix J, “Further Reading and Acknowledgments”). Each feature subset is
evaluated by estimating the classifier's error using cross-validation. Columns are
added or removed based on the error estimates using a best-first search mechanism.
In the default mode, the search begins with an empty set of features. By selecting
the Backwards option, the search starts with the full set of options; this is slower,
since larger models are initially built.

378

Chapter 12: Inducing and Visualizing the Evidence Classifier

Working in the Evidence Visualizer’s Panes

If you started the Evidence Visualizer without specifying a configuration file, the main
screen shows the copyright notice for the Evidence Visualizer. Only the File and Help
pulldown menus are available. To view all menus and controls in the main window, open
a configuration file. Use File|Open (see Figure 12-5) to see a list of configuration files.

When a valid configuration file is specified, the two panes in the main screen display
graphics. For example, specifying cars.eviviz results in the output displayed in
Figure 12-8.

Working in the Evidence Visualizer’s Panes

379

Figure 12-8 Evidence Visualizer Window for cars.eviviz

In the Evidence Pane on the left, one row of pie charts appears for each attribute in the
dataset that the classifier is using. Each pie chart corresponds to a value for the attribute
associated with the row. In the Label Probability Pane on the right, a list of all class labels
appears under a large pie chart of the prior probability distribution. Note that the color
of the slices correspond to the color associated with each class label. This prior
probability represented by the pie shows the proportion of data with each class label.

380

Chapter 12: Inducing and Visualizing the Evidence Classifier

Viewing Modes

Each of the Evidence Visualizer’s main window panes has two modes of viewing: grasp
and select.

Viewing Modes in the Label Probability Pane

The Label Probability Pane is located on the right of the Evidence Visualizer’s main
window. The top two buttons of those aligned vertically between the panes toggle
between the grasp and select modes. Alternatively, the Esc key also toggles the viewing
mode for both panes.

In grasp mode, the cursor appears as a hand that lets you pan and scale the scene’s size.

• To pan (translate) the display, press the middle mouse button and drag it in the
direction you want the display panned.

• To enlarge the scene, press the left mouse button, and drag the mouse downward.

• To shrink the scene, press the left mouse button, and move the mouse upward.

Viewing Modes in the Evidence Pane

The Evidence Pane is located on the left of the Evidence Visualizer’s main window. The
top two buttons of those aligned vertically between the panes toggle between the grasp
and select modes. Alternatively, the Esc key also toggles the viewing mode for both
panes.

In grasp mode, the cursor appears as a hand, so you can pan, rotate, and scale the scene’s
size. (The Label Probability pane contains only 2D geometry; thus, rotation is disabled.)

• To rotate the display, press the left mouse button and move the mouse in the
direction you want. (Also see “Thumbwheels” on page 392.)

• To pan (translate) the display, press the middle mouse button, and drag it in the
direction you want the display panned.

• To enlarge the viewpoint, simultaneously press the left and middle mouse buttons
and move the mouse downward. To shrink the viewpoint, simultaneously press the
left and middle mouse buttons, and move the mouse upward. This is equivalent to
the functions provided by the Dolly thumbwheel.

Working in the Evidence Visualizer’s Panes

381

Selecting Items in the Label Probability Pane

In select mode, the cursor appears as an arrow. You can then select one of the class labels
by clicking the button to the left of it. Once a class label is selected, a white box appears
around the button next to the label (see Figure 12-9). The size of that slice (the probability
of predicting that label value) appears in the text output line at the top. To deselect a class
label, click on it again. Moving the mouse over the button next to a class label, in pick
mode, causes the size of that slice (in percent) to appear in the output line at the top.

Figure 12-9 Label Value “Japan” Selected Using the Cars Dataset

382

Chapter 12: Inducing and Visualizing the Evidence Classifier

If no label is selected, the Evidence Pane on the left displays pie charts (see Figure 12-8).
The pie charts show the effect each attribute value has on the distribution in the Label
Probability Pane.

If a label is selected, the representation on the left displays bar charts (see Figure 12-9).
The height of each bar shows the evidence in favor of the selected label value. Technically,
evidence for is the negative log of the quantity one minus the size of the slice matching the
selected label in the corresponding pie of the pie chart representation.

The grayness of the bars is based on the 95% confidence interval. This, in turn, depends
on the weight for that value. Hence, bars that are nearly gray have low weight and a large
confidence interval. The height of gray bars is not likely to be very accurate. Conversely,
the height and corresponding evidence value for a fully saturated bar can be relied on
because it is based on large weight, representing many records. The exact number of
records (weight) can be found by looking at the text output line when that bar is
highlighted.

As the default, the amount of evidence common to all the labels is subtracted. This means
that the height of a bar for each value is reduced by the height representing the label for
which the evidence is smallest. If you select a different label, the bars and their colors
change to represent the new class label. Selecting the same label again deselects it, and
the Evidence Pane again displays the pie charts. Uncheck the View|Subtract minimum
evidence option if you do not want to subtract the common evidence.

Selecting Items in the Evidence Pane

In select mode, the cursor appears as an arrow. You can highlight an object (either a pie
chart or a bar) by moving the cursor over that object. Information about that object then
appears above the Evidence Pane. The information is displayed as long as the cursor is
over the object.

• If the object is a pie chart, then the message takes this format:

<attribute name>: <value or range>
weight = <weight>

Here, weight is the total weight of the data points that fall in that range or have that
value for that attribute (see Figure 12-10). The pie height is proportional to this
number. Unless record weighting is used, the weight shows record counts.

Working in the Evidence Visualizer’s Panes

383

Figure 12-10 Pie Charts With the First Binned Range of weightlbs Highlighted

• If the object is a bar, then the message takes this format:

(<attribute> = <value>) ==> Prob(<selected label>) = x% [low%-high%]
Evidence=z
<selected label> ==> Prob(<attribute> = <value>) = y% [low%-high%]
count = <count>

See Figure 12-11.

384

Chapter 12: Inducing and Visualizing the Evidence Classifier

Here, x is the probability that a record has the selected label given that it has the
highlighted attribute value. The bracketed range, [low%-high%] gives the 95%
confidence interval. Similarly, y% is the probability that a record has the highlighted
attribute value given the selected label (see Figure 12-11). Note that the height of the
bar shows evidence, not probability. The amount of evidence, z, is directly related to
the bar heights. Evidence can be summed in order to determine which class is
predicted (unlike probability, which must be multiplied). Count is the number of
data points having that value.

Technically, evidence for is defined as

while evidence against is defined as

A is the attribute value, L is the selected label value, and N is the number of label
values. When computing the bar heights, a very small number is added inside the
brackets of the above expressions to prevent the bars from becoming infinitely tall.
The word “for” or “against” in the Evidence Pane has a box around it to indicate
that it may be clicked on. Do this to toggle the representation.

The height of the gray rectangular base (on which the bars stand) represents the
amount of evidence contributed by the prior probability. For example, if the label is
car cylinders, there are very few three cylinder cars, so the base is low when evidence
for is showing, and high when evidence against is showing. You can add to this height
the height of individual bars that are on top.

Evidence for can be useful in determining which values are the most helpful in
predicting a particular label value.

The amount of evidence (bar height) is not derived directly from either probability
shown while highlighting. Instead, the evidence depends on the conditional
probability relative to the other probabilities for all the other label values according
to the equation above.

1 −
P(A|Li)

P(A|L)-log
Σ
i=1

N

P(A|Li)

P(A|L)-log
Σ
i=1

N

Working in the Evidence Visualizer’s Panes

385

Figure 12-11 Bar Chart With the First Binned Range of weightlbs Selected

You can also select one pie chart or bar from an attribute row by clicking the left mouse
button while the cursor is over one of the attribute values. This causes the object to be
drawn with a white bounding box surrounding it (see Figure 12-12). Note that it is not
possible to select a pie chart corresponding to an unknown value of an attribute (if one
exists, it is in the first position, has a question mark for its value, and is slightly offset
from the other pies). Trying to do so results in a beep. The large pie chart in the Label

386

Chapter 12: Inducing and Visualizing the Evidence Classifier

Probability Pane on the right changes to reflect the item you select; it now shows the
posterior probability, given the attribute value that was just selected. Note that the
classes remain ordered, so the one corresponding to the largest slice is at the top of the
list on the right. The Evidence Visualizer arrives at this new probability distribution by
multiplying the probabilities of all the selected objects together, then multiplying this
result by the prior probability.

This multiplication corresponds to a conditional independence assumption. When this
assumption is violated, and multiple values for attributes are chosen, the predicted class
probabilities are likely to be too extreme, although the final classification might be
correct. The estimated error shown in the Status window when you run the inducer can
help you determine how reasonable this assumption is. If the error rate/loss is low, the
assumption is reasonably robust in the domain.

Before clicking on a pie, the Evidence Visualizer appears as shown in Figure 12-1. This
shows that given no additional information, there is an approximately equal likelihood
that an iris will be designated type iris-setosa, iris-versicolor, or iris-virginica. If you click a
pie for petal_width .75 - 1.65, the pie on the right changes to that shown in Figure 12-12.
This indicates that if the petal width is between .75 and 1.65, the iris probably belongs to
the class iris-versicolor. You then can select additional values to further change the
distribution, but you can select at most one pie or bar from each row. The order in which
you select pies or bars does not matter.

Working in the Evidence Visualizer’s Panes

387

Figure 12-12 Iris Dataset With the Value petal_width .75 - 1.65 Selected

When a particular label has been selected in the Label Probability Pane, the Evidence
Pane shows bars rather than pies for each value of an attribute. The title over the bars
reads Evidence For . The box around the For indicates that it can be selected
(Figure 12-13).

388

Chapter 12: Inducing and Visualizing the Evidence Classifier

Figure 12-13 Bars Showing Evidence For iris-virginica

Clicking the For in the Evidence For title toggles it to display Against . As a result, the
bar heights change to show evidence against the label (Figure 12-14).

Working in the Evidence Visualizer’s Panes

389

Figure 12-14 Bars Showing Evidence Against iris-virginica

Selecting bars has the same effect on the large probability pie in the Label Probability
Pane to the right as did selecting pies. The bar height indicates the amount of evidence
for or against the selected label contributed by that selected value. Since log probabilities
are used to represent evidence, the bar heights are added to accumulate evidence
(whereas probabilities must be multiplied).

390

Chapter 12: Inducing and Visualizing the Evidence Classifier

External Controls

Several external controls surround the Evidence Pane: buttons, thumbwheels, and
sliders. This section describes each type of control.

At the top right of the Evidence Pane area are eight buttons (Figure 12-15). These buttons
are described below.

Figure 12-15 Evidence Pane Buttons

• Arrow puts you in select mode for both panes. When in this mode, the cursor
becomes an arrow. Select mode lets you highlight, or select, entities in the Evidence
Pane or select labels in the Label Probability Pane.

• Hand puts you in grasp mode for both panes. When in this mode, the cursor
becomes a hand. Grasp mode lets you rotate, zoom, and pan the display in the
Evidence Pane, or pan and zoom in the Label Probability Pane.

• Viewer Help brings up a help window describing the viewer itself.

• Home takes you to a designated location. Initially, this location is the first viewpoint
shown after invoking the Evidence Visualizer and specifying a configuration file. If
you have been working with the Evidence Visualizer and have clicked the Set Home
button, then clicking Home returns you to the viewpoint that was current when you
last clicked Set Home.

• Set Home makes your current location the home location. Clicking the Home button
returns you to the last location where you clicked Set Home.

Arrow

Hand

Viewer help

Home

Set Home

View All

Perspective

Seek

External Controls

391

• View All lets you view the entire graphic display, keeping the angle of view you had
before clicking this option. To get an overhead view of the scene, rotate the camera
so that you are looking directly down on the entities, then click the View All button.

• Seek takes you to the point or object you click after selecting this button.

• Perspective is a button that lets you view the scene in 3D perspective (closer objects
appear larger; farther objects appear smaller). Clicking this button again turns 3D
perspective off.

If Perspective is off, the Dolly thumbwheel becomes the Zoom thumbwheel. (The
Dolly thumbwheel is described in “Thumbwheels” on page 392.)

Sliders

The Evidence Visualizer contains three sliders: Height Scale, Importance Threshold, and
Percent Counts Threshold.

The Height Scale Slider (Figure 12-16), which is located in the upper left of the Evidence
Visualizer, scales the height of the pies and bars. You can use this slider to magnify small
differences.

Figure 12-16 Evidence Visualizer Height Scale Slider

392

Chapter 12: Inducing and Visualizing the Evidence Classifier

The Importance Threshold Slider, located at the bottom right of the Evidence Visualizer
window (Figure 12-17), filters out attributes that are not as useful for classifying the
selected label. This quality, assigned a value between 0 and 100 by the inducer, is called
importance. This measure is on an absolute scale. To understand how importance is
calculated, see “Column Importance and Relation to Classifiers” on page 412. As the
slider is moved to the right, attributes that fall below the requisite importance value are
removed from the scene. If the attributes are sorted by importance (the default), then the
ones at the bottom are the first to be removed.

Figure 12-17 Evidence Visualizer Importance Threshold Slider

The Percent Weight Threshold Slider, located at the bottom right of the Evidence
Visualizer window (Figure 12-18), filters out values having counts less than the
percentage indicated by the slider (up to a maximum of 2%). This slider helps visualize
attributes that have a large number of values, many of which occur infrequently (and,
hence, are not as useful). For example, if an attribute has one hundred and one values,
removing values with counts less than 1% of the total might remove all values, and must
remove at least 2.

Figure 12-18 Evidence Visualizer Percent Counts Threshold Slider

Thumbwheels

Three thumbwheels appear around the lower part of the main window border (see
Figure 12-19). They let you dynamically move the viewpoint. Rotx and Roty rotate the
scene about the x or y axis, respectively. The Dolly thumbwheel moves the virtual camera
forward or backward.

Pulldown Menus

393

Figure 12-19 Evidence Pane Thumbwheels

Note: If Perspective is off, the Dolly thumbwheel becomes the Zoom thumbwheel.

Pulldown Menus

Three pulldown menus let you access additional Evidence Visualizer functions: File,
View, and Help. If you start the Evidence Visualizer without specifying a configuration
file, only the File and the Help menus are available.

The File Menu

The File menu (Figure 12-5) lets you open a new configuration file, reopen the current
configuration file, or exit the Evidence Visualizer.

Thumbwheels

394

Chapter 12: Inducing and Visualizing the Evidence Classifier

The View Menu

The View menu lets you control certain aspects of what is shown in the Evidence
Visualizer pane (Figure 12-20).

Figure 12-20 Evidence Visualizer’s View Menu

This menu contains three options:

• Show Window Decoration lets you hide or show the external controls around the
main window.

• Sort By Importance lets you display the attributes sorted according to their
usefulness in classifying with respect to the chosen label. If this option is turned off,
then the attributes will appear in the same order they did under “Current Columns”
in the Tool Manager.

• Subtract Minimum Evidence applies only when a label has been selected and the bars
are shown. With this option on (the default), the height that is the minimum over all
the label values is subtracted. This amount may be different for each value of each
attribute, but for a given attribute value, the amount subtracted is constant across
label values. Activating this option magnifies small differences by subtracting the
least common denominator among all the label values.

Pulldown Menus

395

The Nominal Order Menu

The Nominal Order menu lets you control how values for nominal attributes are ordered
(Figure 12-21).

Figure 12-21 Evidence Visualizer’s Nominal Order Menu

The three choices are:

• Alphabetical implies values for nominal attributes are sorted from left to right, in
alphabetical order.

• Count sorts values from left to right, with those having the largest number of
records appearing toward the left.

• Label Probability (the default) sorts the values of nominal attributes by the size of the
slices corresponding to one of the classes. If the label is a binned attribute, the
highest bin is used by default. If the label is nominal, then whatever class has the
largest slice in the prior probability pie is used by default. If a particular class is
selected, and then sort by label probability is requested, the selected class is used for
determining the ordering. In all cases, if there is a NULL value, it remains at the far
left.

The Selection Menu

The Selection menu allows drill-through to the underlying data (Figure 12-22).

Figure 12-22 Evidence Visualizer’s Selection Menu

396

Chapter 12: Inducing and Visualizing the Evidence Classifier

There are three menu items:

• Show Original Data causes the records corresponding to the selected item to be
displayed in a record viewer.

• Send to Tool Manager causes a filter operation to be inserted at the beginning of the
Tool Manager history. The actual expression used to do the drill-through is
determined by

– the values selected in the Evidence Pane, and

– the class selected on the right.

Currently, only one value or value range can be selected for each attribute, and only
one class label can be selected. All of the selections are ANDed to form a
drill-through expression that is used to do the filtering in Tool Manager. If nothing is
currently selected, a warning message appears.

• Complementary Drill Through uses the complement of the expression defined by the
selected objects for drill-through.

The Help Menu

The Help menu provides access to five help functions (see Figure 12-23).

Figure 12-23 Evidence Visualizer’s Help Menu

Sample Files

397

• Click for Help turns the cursor into a question mark. Placing this cursor over an
object in the Evidence Visualizer pane, and clicking the mouse, causes a help screen
to appear; this screen contains information about that object. Closing the help
window restores the cursor to its arrow form and deselects the help function. The
keyboard shortcut for this function is Shift+F1. (Note that it also is possible to place
the arrow cursor over an object and press the F1 function key to access a help screen
about that object.)

• Overview provides a brief summary of the major functions of this tool, including
how to open a file and how to interact with the resulting view.

• Index provides an index of the complete help system. This option is currently
disabled.

• Keys & Shortcuts provides the keyboard shortcuts for all of the Evidence
Visualizer’s functions that have accelerator keys.

• Product Information brings up a screen with the version number and copyright
notice for the Evidence Visualizer.

• MineSet User’s Guide invokes the IRIS Insight viewer with the online version of
this manual.

Sample Files

The following examples show cases in which classifiers might be useful. Each of these
examples is associated with a sample dataset provided with MineSet. By running the
inducer, you can generate the .eviviz files described below.

Note: The data files, which have a .schema extension, are located in /usr/lib/MineSet/data
on the client workstation. The classifier visualization files, which have a .eviviz extension,
reside on the client workstation in /usr/lib/MineSet/eviviz/examples.

398

Chapter 12: Inducing and Visualizing the Evidence Classifier

Churn

Churn is when a customer leaves one company for another. This example shows what
causes customer churn for a telephone company. The data used to generate this example
is in /usr/lib/MineSet/data/churn.schema. The file
/usr/lib/MineSet/eviviz/examples/churn.eviviz shows the structure of the classifier induced
using the attribute churned as the label. The error rate for this classifier is 12%. 14.1% of
the records represent customers who churned. The two most important attributes,
total_day_minutes and total_day_charge, are clearly correlated. A more accurate classifier
can be induced if one of these attributes is removed first (the error rate becomes 11%). If
you run the inducer after selecting Automatic Feature Selection from the Further Inducer
Options, the error-rate drops to 10.5% using only 4 attributes (total day charge, number
of service calls, voice mail plan, and number of voice mail messages). All 29 customers
who had a total_day_charge above 53.78 churned.

A high number of customer service calls is a predictor of churn. Many customer service
calls might indicate frustration in using a complicated equipment or receiving unreliable
service. Customers with the International plan are also more likely to churn. The people
in some states were much more likely to churn than those in others; for example,
California and New Jersey have the most churn, Virginia the least. To see just those states
that have more than 2% of the total number of records, slide the % Counts Threshold
slider all the way to the right. This eliminates most of the values for state from the display.
If you also select Nominal Order|count, then the state with the most records, West
Virginia (WV), is left-most. Many of the attributes (at the bottom of the list) are not useful
in discriminating churn. Note that day_charge is a great predictor, but night_charge is not.

Origin of Cars

The cars dataset contains information about different models of cars from the 1970s and
early 1980s. Attributes include weight, acceleration, and miles per gallon (mpg). The file
/usr/lib/MineSet/eviviz/examples/cars.eviviz shows the structure of the Evidence Classifier
induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/cars.schema with the label set to origin (Japan, U.S., Europe) and the
cylinders column changed to type string. The cylinders were changed to type string in
order to see all values and avoid the automatic discretization.

Sample Files

399

If you have a dataset of car attributes, you might want to know what characterizes cars
of different origins. From the distribution of label values in the pie on the right we can
see that most cars in this dataset were made in the U.S. (62.5%) and a smaller number in
Japan (20.2%) and Europe (17.3%). Clearly brand is the best predictor of origin, since each
brand is associated with only one country of origin. For this reason, it has the highest
importance and is at the top of the list. By looking at the height of the pies, it can be seen
that many cars have four cylinders, most weigh less that 3000 lbs and most can reach 60
miles per hour in less than 20 seconds but more than 13.

Look at the distribution of slices for individual attribute values. If a car has an engine size
>169 cubic inches, it is almost certainly made in the U.S.; it certainly was not made in
Japan. Other pies show that U.S. cars generally have six or eight cylinders, low miles per
gallon, high horsepower (over 134), heavy weight (over 2981 pounds), and fast
acceleration. Japanese cars have better gas mileage, three or four cylinders (and a few six
cylinders), and smaller engines. If you click “Europe” in the Label Probability Pane, you
can see bars representing evidence for a car being European. For example, five cylinders
strongly indicates that a car is European. The height of the corresponding pie, however,
shows that there were only three cars with five cylinders in the data. If a car’s mileage is
good, there is much evidence for it being European. If a car’s mileage is > 41, then there
is an 83% chance that it’s European. If a car is European, there is only a 10.4% chance that
its mileage is better than 41 mpg. But only 2% of Japanese cars—and no U.S. cars—have
mpg in this range, so Europe gets the most evidence.

Suppose you wanted to predict where a car came from knowing only that it got 40 mpg
and weighed 3000lbs. Select the appropriate pies (or bars): mpg=30.95-41.15 and
weightlbs=2981.5+. The resulting probability distribution on the right shows 84% U.S.,
16% European. There is no possibility it is Japanese because there were no Japanese cars
in the training set with weightlbs>2981.5 . If you run the inducer again with Laplace
correction turned on (with a value of .5), you get a different answer: 16% chance for
European, 82% chance for U.S., and a 2% chance for Japanese. This is because Laplace
correction prevents any slice in the pies from going completely to 0. Certainly, there is no
fundamental reason why the Japanese could not make a car that weighs more than
2981lbs; hence, when the probabilities (pies) are multiplied together, the possibility of
predicting a Japanese car is not eliminated.

400

Chapter 12: Inducing and Visualizing the Evidence Classifier

Gender Attribution

The adult dataset contains information about working adults. This dataset was extracted
from the U.S. Census Bureau. It contains data about people older than 16, with a gross
income of more than $100 per year who work at least one hour a week. You might want
to know how to characterize males and females. The file
/usr/lib/MineSet/eviviz/examples/adult-sex.eviviz shows the structure of the Evidence
Classifier induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/adult.schema, with the label set to sex, after removing the relationship
column (which would have made the classifier trivial).

In the Evidence Visualizer, the Label Probability Pane shows that the prior probability of
working males is higher than that of females.

• Marital status is the most important predictor of gender. If a worker is a
married-civilian-spouse there is a greater probability of being male. A worker who is
widowed and working, however, is much more likely to be female.

• The second attribute listed shows occupation. Study this to learn which occupations
are popular with a particular gender. The various occupations are listed from left to
right in order of decreasing male dominance: Armed forces (100%), Craft-repair (95%),
Transport-moving (95%), and Farming-fishing (94%). Female trades are
Private-house-service (94%) and Adm-clerical (67%). By clicking on the button next to
“Female” in the Label Probability Pane, and then moving the mouse over
occupation=Adm-clerical, one can see that 23% of females have an Adm-clerical job.
Conversely, given that one’s job is Adm-clerical, there is a 67% chance that the gender
is Female.

Suppose you wanted to find out the probability of being female given that a person
is widowed and has occupation=Adm-clerical. This can be done by clicking on the pies
or bars representing these values and reading 95% from the test at the top when you
move the mouse over the box next to “Female” (in pick mode).

Sample Files

401

• If the working class is either self-employed-incorporated or
self-employed-not-incorporated, the probability that the person is a male is higher.
Conversely, if the working class is state-gov, the conditional probability that the
person is a female is higher, but the posterior probability (after taking into account
the prior probability) is not higher (click it and look at the posterior probability on
the right). The size of the female slice increased by selecting state-gov, but not so
much that it would lead you to predict that a person was female, given only that
they worked for the state.

By rotating the view, you can see that most people work in private industry by
looking at the height of the pie.

• By looking at the gross-income attribute, you can see that the higher the income
range, the higher the probability of being male.

• Education generally does not indicate much about gender, except for doctorate
degrees, where you are more likely to find males.

• Different occupations have different distributions for males and females.

• The race attribute shows that African-Americans have a higher percentage of
females working than the percentage of other races in the conditional probability.
Click the value to see that the posterior is about equal between males and females.

• Males in this dataset work more hours per week than do females.

Salary Factors

If you have a dataset of working adults, you might want to find out what factors affect
salary. First bin gross_income into five bins, with thresholds at 10,000, 20,000, 30,000, and
60,000. Each record then has an attribute with one of five values. You can run a MineSet
classifier to help determine what factors influence salary. The file
/usr/lib/MineSet/eviviz/examples/adult-salary.eviviz shows the Evidence classifier induced
for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/adult.schema with gross_income divided into five bins using
user-specified thresholds.

The attributes in the Evidence Visualizer are ranked by importance; thus, relationship,
marital status, age, occupation, education, hours per week, and sex are considered most
important. Since the label is numeric, a continuous spectrum is used to assign colors to
each class. Red is assigned to the highest bin (60,000+). The class labels are listed in the
Label Probability Pane according to slice size. As you click on values in the Evidence
Pane, the order of the class labels changes to keep the label for the largest predicted class
at the top.

402

Chapter 12: Inducing and Visualizing the Evidence Classifier

• Relationship shows that husbands and wives are likely to make more money than
unmarried workers or workers not in a family. Wives make slightly higher income
than husbands.

• Marital status shows that most people are married (the second pie chart from the left
is tall). Married workers earn more money than unmarried people.

• Age shows that age is a crucial factor. Until the age of 61, when many people retire,
the probability of making over $50,000 increases as workers get older.

• Different occupations yield different probabilities. Executive and professional jobs
raise the evidence for making over $60,000 per year.

• Education is an important factor. When considering just education, the highest
evidence for earning over $60,000 is given to workers whose educational level
includes a masters or doctoral degree, or matriculation from professional schools.

• Hours per week show that the more hours worked, the higher the evidence for
earning more money.

• Sex shows that being a female gives evidence for making less than $60,000 per year.

• Adjust the Percent Counts slider to remove values of native_country, education and
occupation values with low counts are removed.

Iris Classification

In this dataset, each record describes four characteristics of iris flowers: petal width, petal
length, sepal width, and sepal length. Each iris was further classified into the types
iris-setosa, iris-versicolor, or iris-virginica. The goal is to understand what characterizes
each iris type.

Before running a classifier, click the Column Importance tab in the Tool Manager’s
Classifiers tab; then click Go!. You obtain a ranking of the importance of the features:
petal_width, petal_length, and sepal_length. You can map these to the axes in the Scatter
Visualizer, with the iris_type mapped to the color and see the clusters.

The file /usr/lib/MineSet/eviviz/examples/iris.eviviz shows the structure of the Evidence
Classifier induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/iris.schema.

Sample Files

403

In the Evidence Visualizer, we can see that petal_length and petal_width are excellent
discriminatory attributes, while sepal_length and sepal_width are not as good. Move the
importance threshold slider to the right to see that the sepal-based attributes disappear
first.

Mushroom Classification

The file /usr/lib/MineSet/eviviz/examples/mushroom.eviviz shows the structure of the
Evidence Classifier induced for this problem. This file was generated by running the
inducer on /usr/lib/MineSet/data/mushroom.schema.

The goal is to understand which mushrooms are edible and which ones are poisonous,
given this dataset. There are over 8000 records in this set; thus, running this inducer
might take several minutes. Note that under the default mode of the one-third holdout
for accuracy estimation, a third of the records are kept for testing.

Each mushroom has many characteristics, including cap color, bruises, and odor. The
Evidence Visualizer orders attributes by importance (that is, usefulness in predicting the
label). Odor and color appear at the top of the list because the distributions in the pies is
most different from value to value for these attributes. Since all the attributes in this
dataset are nominal, all the values are sorted from left to right by how well they predict
edibility. You might want to order the values alphabetically or by weight (prevalence). To
do this, select the appropriate method from the nominal order menu. You can see a
characterization of poisonous mushrooms by changing the pointer to an arrow (click the
arrow icon at the top right of the main screen), then clicking the button by that class label
in the right pane. High bars are associated with values that indicate the mushrooms are
poisonous.

In the Evidence Visualizer, move the importance threshold slider to the right. The
attributes with the lowest importance are removed from the scene. The most important
attribute by far is odor, as its importance is 92; all other attributes have importance less
than 48. Almost all values are good discriminators, but if there is no odor (none), then
there is a mix of both classes. The Evidence Visualizer lets you see specific values that
might be critical, even if the attribute itself is not always important. For example,
stalk_color_below_ring is not a good discriminatory attribute because most of the time it
takes on the value white. White offers no predictive power because there are equal
amounts of edible and poisonous mushrooms with this value. When
stalk_color_below_ring takes the value gray or buff, it provides excellent discrimination,
but there are very few mushrooms with these values.

404

Chapter 12: Inducing and Visualizing the Evidence Classifier

Party Affiliation

This dataset consists of voting records. The goal is to identify the party a congressperson
belongs to given data about key votes. The dataset includes votes for each member of the
U.S. House of Representatives on the 16 key votes identified by the Congressional
Quarterly Almanac (CQA). The CQA lists nine types of votes: voted for, paired for, and
announced for (these three are simplified to yes), voted against, paired against, and
announced against (these three are simplified to no), voted present, voted present to
avoid conflict of interest, and did not vote or otherwise make a position known (these
three are simplified to an unknown disposition).

Before running a classifier, look at the 16 votes to see if you can perceive which features
are important. Then run the Evidence Visualizer. For this dataset, you might want to
order the values alphabetically, so that all no votes are on the left, undecided is in the
middle, and yes is on the right.

Some issues clearly define one’s party affiliation. Democrats tended to vote for a
physician fee freeze and aid for El Salvador, while Republicans voted for adoption of a
budget resolution and aid to the Contras in Nicaragua.

Immigration was an issue not split along party lines; nevertheless, politicians had strong
positions on it because only 7 out of the 235 were undecided on this issue.

The file /usr/lib/MineSet/eviviz/examples/vote.eviviz shows the structure of the Evidence
Classifier induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/vote.schema.

Breast Cancer Diagnosis

The breast cancer dataset contains information about females undergoing breast cancer
diagnosis. Each record represents a patient with attributes such as cell size, clump
thickness, and marginal adhesion. The final attribute is whether the diagnosis is
malignant or benign. The file /usr/lib/MineSet/eviviz/examples/breast.eviviz shows the
structure of the Evidence Classifier induced for this problem. This file was generated by
running the inducer on /usr/lib/MineSet/data/breast.schema.

In the Evidence Visualizer, you can see that sample_code_number was discretized into one
range that is equally split, meaning that it does not indicate whether the breast cancer is
benign or malignant.

Sample Files

405

Hypothyroid Diagnosis

The hypothyroid diseases dataset is similar to the one for breast cancer. The file
/usr/lib/MineSet/eviviz/examples/hypothyroid.eviviz shows the structure of the Evidence
Classifier induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/hypothyroid.schema.

There are 3163 records in this dataset and most of them do not have hypothyroidism
(95.45%). While this means that one can predict “negative” and be correct with high
probability, it’s those people that have hypothyroidism that we are most worried about.
In technical terms, the false negatives are very important.

Look at the pie for tsh between 6.35 and 27.5. It shows much evidence for
hypothyroidism. When you click on it, however, the posterior pie still predicts
“negative” because the prior probability for “negative” was so great.

This is a case where you might want to adjust the loss matrix to skew the posterior
probability toward predicting hypothyroidism in order to avoid false negatives. There
might be a high cost associated with predicting that someone is healthy when they
actually have the disease; predicting them sick when they are actually healthy means
they take a more accurate test or a treatment they do not need.

In the Evidence Visualizer, you can see that fti is very important. The first two ranges
(besides the unknown) give a lot of evidence for hypothyroidism.

Pima Diabetes Diagnosis

This dataset is a diagnosis problem for diabetes using statistics gathered from an Indian
tribe in Phoenix Arizona. The task is to determine whether a patient has diabetes, given
some medical attributes, such as blood pressure, body mass, glucose level, and age.

The file /usr/lib/MineSet/eviviz/examples/pima.eviviz shows the structure of the Evidence
Classifier induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/pima.schema.

In the Evidence Visualizer, you can see that many attributes are irrelevant by themselves.
As plasma_glucose increases, the probability of having diabetes increases. The number of
pregnancies is also a good indicator when it is high (above 6), as is age (above 27).

406

Chapter 12: Inducing and Visualizing the Evidence Classifier

DNA Boundaries

The file /usr/lib/MineSet/eviviz/examples/dna.eviviz shows the structure of the Evidence
Classifier induced for this problem. This file was generated by running the inducer on
/usr/lib/MineSet/data/dna.schema.

There are 3,186 records in this DNA dataset. The domain is drawn from the field of
molecular biology. Splice junctions are points on a DNA sequence at which
“superfluous” DNA is removed during protein creation. The task is to recognize
exon/intron boundaries, referred to as EI sites; intron/exon boundaries, referred to as IE
sites; or neither. The IE borders are referred to as “acceptors” and the EI borders are
“donors.” The records were originally taken from GenBank 64.1 (genbank.bio.net). The
attributes provide a window of 60 nucleotides. The classification is the middle point of
the window, thus providing 30 nucleotides at each side of the junction.

From the Evidence Visualizer, you can see that attributes near the center are chosen as
very important. Attributes further away from the splice junction are less important.

If you click and select the pie charts in the left pane corresponding to “left_01: G” and
“left_02: A”, then the pie chart in the label probability pane on the right will change to
show the probability distribution of each class as predicted by the evidence classifier.
Given these two values, the pie chart shows that the evidence model built assigns the
highest probability to “intron/exon”, followed by “exon/intron” and “none”.

The accuracy improves slightly if you invoke automatic feature selection, although
running time increases dramatically (sometimes hours). In such cases, run feature
selection once, and continue mining only with the chosen features.

407

Chapter 13

13. Column Importance

This chapter discusses the features and capabilities of the Column Importance mining
tool, and the relationship between column importance and the importance ranking in the
other data mining tools. Because of the differences in representation for classification
models, different attributes may be judged more important for different models. A
sample file, provided with MineSet, is discussed at the end of this chapter.

Note: This chapter assumes that you have read Chapter 9, “MineSet Inducers and
Classifiers.”

Finding Important Columns

Column Importance is run from the Importance tab on the Data Destination panel
(Figure 13-1). It determines how important various columns are in discriminating the
different values of the label column you choose. You might, for example, want to find out
the best three columns for discriminating the label good credit risk so you can choose them
for the Scatter Visualizer. When you select the label and click Go!, a popup window
appears with the three columns that are the best three discriminators. A measure called
“purity” (a number from 0 to 100) informs you how well the columns discriminate the
different labels. Adding more columns can only increase the purity.

408

Chapter 13: Column Importance

Figure 13-1 The Column Importance Tab

There are two modes of column importance:

• Simple Mode

To invoke the Simple mode, choose a discrete label from the popup menu, and
specify the number of columns you want to see, then click Go!.

• Advanced Mode

Advanced mode lets you control the choice of columns. To enter Advanced mode,
click Advanced Mode in the Column Importance panel. A dialog box appears, as
shown in Figure 13-2. As with Further Inducer Options (see “Record Weights” in
Chapter 9), you can select a weight attribute and decide whether it behaves as a
regular attribute for determining importance. The dialog box contains two lists of
column names: The left list contains the available attributes and the right list
contains attributes chosen as important (by either the user or the column
importance algorithm).

Finding Important Columns

409

Figure 13-2 Advanced Mode of Column Importance

410

Chapter 13: Column Importance

Advanced mode can work two different ways: finding several new important
attributes or ranking available attributes.

• Finding Several Important Attributes

To enter this submode, click the first of the two radio buttons at the bottom of
the dialog (...find [number] additional important attributes). If you click Go! with no
further changes, the effect is the same as if you were in Simple mode, finding
the specified number of important columns and automatically moving them to
the right column. Near each column, the cumulative purity is given (that is, the
purity of all the columns up to and including the one on the line. More
attributes can only increase the purity.

Alternatively, by moving column names from the left list to the right list, you
can prespecify columns that you want included and let the system add more.
For example, to select the cylinders column and let the system find three more
columns, click the cylinders column name, then click the right arrow between
the lists.

Clicking Go! lets you see the cumulative purity of each column, together with
the previous ones in the list. A purity of 100 means that using the given
columns, you can perfectly discriminate the different label values in the dataset.

• Ranking Available Attributes

Advanced mode also lets you compute the change in purity that each column
would add to all those that were already marked important, that is, they are in
the list on the right. For example, you might move cylinders to the list on the
right, and then ask the system to compute the incremental improvement in
purity that each column remaining in the left column would yield. The
cumulative purity is computed for columns on the right.

To enter this submode, click the second of the two radio buttons at the bottom
of the dialog (...compute improved purity for left columns, cumulative purity for right
columns.). This submode permits fine control over the process. If two columns
are ranked very closely, you might prefer one over the other (for example,
because it is cheaper to gather, more reliable, or easier to understand).

Column Importance Notes

411

Column Importance Notes

Note that with other columns, the importance of features varies from their ranking alone.
For example, while net-income might be a good column individually, it might not be as
important together with salary because they are likely to be highly correlated. The best
set of three columns is not necessarily composed of the columns that rank highest
individually. If two columns give the income in dollars and in another currency, they are
ranked equally alone; however, once one of them is chosen, the other adds no
discriminatory power to the set of best features.

Column selection is useful for finding the best three axes for the Scatter Visualizer, as well
as for finding a good discriminatory hierarchy (hierarchy that separates different label
values) for the Tree Visualizer when you select the label to be the key used in the Tree
Visualizer.

All floating point values (doubles or floats) are prediscretized using the automatic
discretization (see Chapter 3, “The Tool Manager”). If a column has no value given to it
in the left list, the algorithm did not consider it; this is because it either had a single value
(for example, when it is discretized into one interval), or the number of records that it
would separate is not statistically significant.

If you are using column importance on a large file (above 5000 records), you might want
to change the internal error estimation technique used by the search mechanism. By
default, column importance uses tenfold cross-validation, which yields reliable error
estimates, but can take a long time. One approach that reduces the run time is to lower
the number of folds. For instance, you can run three folds rather than ten folds by adding
the following line to the .mineset_classopt file in your home directory:

FSS_CV_FOLDS=3

Another approach that reduces run time even more significantly is to use holdout error
estimation rather than cross-validation. You can switch from cross-validation to holdout
by adding the following line to the .mineset-classopt in your home directory:

FSS_ACC_ESTIMATOR=hold-out

412

Chapter 13: Column Importance

Column Importance and Relation to Classifiers

This section describes the differences among Column Importance, the importance
ranking chosen by the Evidence Inducer, and the splits chosen by the Decision Tree
Inducer. As Column Importance uses all of the data, these descriptions assume that you
are running the inducers in “Classifier Only” mode, so that the inducers are using all of
the data as well.

The Discretization Process

The column importance algorithm and the Evidence Inducer discretize all continuous
attributes using the automatic discretization algorithm (the same algorithm that is
applied in automatic binning in the Tool Manager). The decision tree algorithm does not
pre-discretize attributes (columns) and finds thresholds as the tree is built.

The main advantage of the automatic discretization is that it discretizes the continuous
range into several intervals at once, while the decision tree makes only binary splits.

The main advantage of the decision tree algorithm is that it discretizes subsets of the data
(those that reach a specific node where a test is done). Thus the discretization is “local”
to those records as opposed to a “global” discretization.

The Importance Function

The Evidence Inducer and Column Importance rank attributes based on “mutual
information” as the purity measure. The Decision Tree Inducer defaults to “normalized
mutual information,” which penalizes multi-way splits (see the description of splitting
criterion in Chapter 10, “Inducing and Visualizing the Decision Tree Classifier”). Thus,
the Decision Tree Inducer prefers an attribute with few values over attributes with many
values. The default for decision trees can be changed to “mutual information.”

Sample File

413

Dependence on Other Attributes

The Evidence Inducer ranks each attribute independently. If several attributes are highly
correlated, they have similar ranking. If you use the Advanced mode from Column
Importance, and the “...compute improved purity” option without any attributes chosen
as important (that is, moved to the list on the right), the attribute ranking shown matches
the sort order chosen by the Evidence Inducer.

Column Importance and the Decision Tree Inducer both provide more powerful
importance capability than the Evidence Inducer. Both choose an importance ranking
with respect to other attributes. In Column Importance, attributes are judged as
important relative to the set of attributes in the list on the right. If two attributes are
highly correlated and one is chosen, the other does not rank very highly. Similarly, in a
decision tree, important attributes are chosen with respect to attributes on the path to the
root node.

Decision trees provide a flexible importance ranking because different attributes can be
chosen at different subtrees. For example, one attribute can be chosen for the left child of
the root and another for the right child of the root. While this is appropriate for Decision
Trees, it is inappropriate for choosing a small set of attributes for a Scatter Visualizer or
for linear regression. For those cases, column importance is superior because it builds an
“oblivious” Decision Tree, where every level of the tree tests the same attribute across the
nodes. With column importance, a single attribute must be chosen for all combinations
of the previously chosen attributes.

Sample File

The following example shows a case in which Column Importance might be useful. This
example is associated with a sample dataset provided with MineSet. It shows how to
work with the Column Importance mining tool, and explains the different outcomes and
options.

When customers change their phone carrier from one telecommunications company to
another, this is termed "churning." This is a common problem in the telecommunications
industry. The Column Importance mining tool lets you look at some properties of this
file, which can be found in /usr/lib/MineSet/data/vhurn.schema with the label set to churn
(True, False). The file given is fictitious, but based on patterns found in real data.

414

Chapter 13: Column Importance

Running the simple Column Importance mode yields the following three attributes:

• Total Day Charge.

• Number of customer service calls.

• State.

By running "compute improved purity" from the advanced mode, you can see that Total
Day Charge and Total Day Minutes have the same purity ranking (48.67). By moving one
of them to the right (for example, Total Day Minutes) and rerunning Compute Improved
Purity, you can see that there is no value to the other (Total Day Charge). These two
attributes are highly correlated.

Looking at the attributes when Total Day Minutes is on the right, we can see that the
following are good:

• International plan (4.1)

• Number of Customer Service Calls (8.1).

• State (4.7)

You can choose to move International Plan to the right, because this information is
readily available and easy to measure.

The other two attributes (Number of Customer Service Calls and State) remain highly
important (in fact, their importance increases), so they are apparently not correlated with
the International Plan.

By looking at the importance of attributes this way, you can determine which ones can
be substituted with others that are equally good (or almost as good), but are easier to
measure or understand. By looking at the purity, you can determine how much the
additional attributes help. For example, in the above scenario, state significantly
improves the purity. In the iris dataset, the third attribute chosen (sepal length) raises the
purity only slightly higher. In some cases, the simpler, two-dimensional scatterplot
might be easier to understand.

415

Chapter 14

14. Multiple Selection and Drill-Through

This chapter provides an introduction to multiple selection and drill-through. With these
features, you can select multiple values in the visual tools, show the data associated with
that tool, and send your selection to the Tool Manager to view the original data or to
analyze it using another tool.

These features are common to all tools in MineSet, although certain tools have additional
behavior based on the type of tool. Tool-specific details are provided at the end of this
chapter.

Multiple Selection

In most of the tools, multiple selection is done using Shift-Mouse 1. Clicking mouse
button 1 on an object without pressing Shift selects the object under the cursor while
deselecting all other previously selected objects. Holding down Shift while clicking
mouse button 1 toggles the selection of that object without affecting any other selections.
(Note that the Evidence Visualizer and the Splat Visualizer have a different interface,
described at the end of this chapter.)

When you select an item, a message describing that item appears in the tool's main
window; by default, the visual tools only show information on the last object selected. To
see a table of all selected objects, choose the Show Values entry from the Selection
pull-down menu. A separate Record Viewer window displays a table, which shows the
values for all selections (see “The Record Viewer” in Chapter 3).

416

Chapter 14: Multiple Selection and Drill-Through

Figure 14-1 Table of Values for Selected Objects

If a message has been set for the particular tool, that message also appears in the table.
Columns in this table can be resized by dragging the separators between the columns.
You also can click on a value to display the complete text of that value at the top of the
table.

Drill-Through

Show Values displays the data after all processing is done by the tool manager, data
mover, and visual tool. It is often useful to see or manipulate the original data from the
data source that resulted in the current selections. This is referred to as drill-through.
There are two entries on the Selections menu that perform drill-through:

• Send to Tool Manager — When this is selected, the history of operations that
produced the visualization is placed in the Tool Manager. A filter operation
corresponding to the user's selection in the visual tool is added to the history. The
filter is placed as early in the history as possible, given the restrictions described in
the four paragraphs after the following bullet.

Drill-Through

417

• Show Original Data — As with Send to Tool Manager, this option starts with the
history of operations used to produce the visualization, and adds a filter operation
as early as possible in the history. All operations coming after the filter in the history
are removed. This new history is used to produce a table shown in the Record
Viewer. If the filter can be placed at the beginning of the history, the data shown are
the original records; otherwise, a warning is issued, indicating that the data are not
totally original. The state of the Tool Manager is not altered (unless it is currently
not running).

In either case, the Tool Manager performs the operation. If the Tool Manager is not
running, it is started automatically.

Only visualizations generated using the Tool Manager can be used for drill-through.
Each .schema file for these visualizations includes a history section that informs the Tool
Manager how that file was generated. A few special-purpose mining visualizations such
as Learning Curves, Confusion Matrices, Lift Curves, and the Rules Visulizer do not include
a history and do not support drill-through.

When you select objects for drill-through, you are implicitly specifying a filter statement
based on the visualized table. If the table was transformed before visualization, the Tool
Manager might have to change the filter to place it earlier in the history. For example, if
the filter is based on a binned column, the Tool Manager must change it so it refers to the
pre-binned column.

The filter cannot always be placed at the beginning of the history because the Tool
Manager cannot adjust the filter for all operations. Specifically, if the filter refers to any
column created via Add Column, Aggregate, or Apply Classifier, the filter cannot be placed
earlier in the history than the operation that created the column. Furthermore, the Tool
Manager can never move a filter earlier than an existing "Sample" operation, since that
would dramatically change the output of the sampling.

The Show Original Data mode tries to truncate the history to show the records from as
early a stage as possible. To prevent this mode from showing more records than were
selected, however, the truncation does not remove any other existing filter operations
(either user-created or the result of previous drill-through). For example, if a
user-specified filter operation exists at the end of the history, Show Original Data shows
data processed by the entire history (which is the same as Show Values).

418

Chapter 14: Multiple Selection and Drill-Through

Tree Visualizer Specific Details

The Tree Visualizer selects drill-through criteria based on the location in the hierarchy
and, if appropriate, the bar selected on that node. For example, in a sales hierarchy with
region, city, and store, and with bars representing products, selecting the furniture bar
for a particular city can generate a drill-through request selecting everything for which
region="Western" and city="Mountain View" and product=”furniture” .

In the Decision Tree, the drill-through request is based on the decision criteria. For
example, for an automobile decision tree, a drill-through request might be: cubicinches

<= 170 and mpg>20 and origin=US . In both cases, selecting the top node of the tree
generates a drill-through of the entire dataset.

For both Decision Trees and normal hierarchies, selecting the top node of the tree
generates a drill-through of the entire dataset.

Note that in previous versions Shift-left mouse button prevented the Tree Visualizer from
zooming to an object. For consistency with other selection paradigms, the Shift key is
now used for toggling a selection; consequently, Ctrl is now used to prevent zooming.
Ctrl can be used with or without Shift.

Map Visualizer Specific Details

Drill-through in the Map Visualizer is based on the regions selected.

Scatter Visualizer Specific Details

The Scatter Visualizer does not have a key with which to select columns used for
drill-through. The default is to select all columns that have not been aggregated to arrays,
and that are not mapped to the sliders. From the Selections pull-down menu, there is a
Preferences panel that lets you select an alternate list of columns to be used in the
drill-through.

Drill-Through

419

Splat Visualizer Specific Details

The Splat Visualizer uses a Selection box rather than Shift to select multiple objects. From
the Selection menu select Create Box Selection. The box has tabs that can be used to resize
it, or it can be moved. You can create more than one box.

The Record Viewer is tied to the Selection box; when the Table Viewer is dismissed, the
selections are cleared. Drill-through is based on where the box is within the axes, and,
optionally, on the sliders, if the Use Slider on Drill Thru item on the Selection menu is
checked.

Evidence Visualizer Specific Details

You can select up to one object per row. There is no Show Values menu item. Selecting one
of the label values limits drill-through to that class.

Rules Visualizer Specific Details

Multiple selection and drill-through are not implemented in the Rules Visualizer.

421

Chapter 15

15. File Exchange Between MineSet and SAS

This chapter describes the support for file exchanges between MineSet and SAS.

Overview

Exchanging data sets between MineSet and SAS is done through two utilities: mineset2sas
and sas2mineset. To convert a MineSet .schema and .data file pair into a SAS data set, use
mineset2sas. To convert a SAS data set into MineSet .schema and .data files, use sas2mineset.
Both mineset2sas and sas2mineset invoke the SAS executable; thus, SAS must be installed
on the machine on which these conversion utilities are used.

Converting MineSet Data Files to SAS Data Sets

Use mineset2sas to convert MineSet data files into SAS data sets. The syntax for this is

mineset2sas < MineSet file > < SAS libref.datafile > [opts...]

Options are

• -svsc to save the script sent to SAS. The script normally is deleted after use.

• -names < namefile > to save trimmed column names in <namefile>. The script
normally is deleted after use.

For example:

mineset2sas cars sasuser.cars

mineset2sas converts the MineSet .schema and .data file into a SAS data file. Currently, only
string and numeric data types are supported. The MineSet .data file must be in ASCII
format; binary format is not supported.

422

Chapter 15: File Exchange Between MineSet and SAS

SAS column names (or, in SAS terminology, variable names) can consist of only letters,
numbers, and underscore characters. The first character in a column name cannot be a
number. Furthermore, SAS column names can be up to eight characters long. Since any
character string can be a legal MineSet column name, mineset2sas maps MineSet column
names to legal SAS column names. The rules for this mapping are:

• Any invalid character is replaced with an underscore.

• If the first character is a digit, an underscore is prepended to the column name.

• Column names are truncated to eight characters. If this truncation results in
non-unique column names, the ends of the conflicting column names are replaced
with sequential numbers, thus creating unique column names.

To preserve as much of the full column names as possible, mineset2sas also saves the first
40 characters of each column name as the column label.

The -names < namefile > Command Line Option

To get a listing of the column names before and after conversion into SAS format, specify
the -names < namefile > command line option. When mineset2sas executes, it writes out
a mapping of the column name changes to the specified file. For example:

 `date of birth` -> `date_of_`
 `92census` -> `_92censu`
 `# of days to end of quarter` -> `__of_da0`
 `# of days to end of year` -> `__of_da1`
 `# of davenports` -> `__of_da2`

The -svsc Option

The mineset2sas utility reads the schema for the specified data file, and writes a
customized SAS script. SAS, which must be installed in /usr/sbin/sas, is invoked with this
script to read and convert the data. The script sent to SAS is normally deleted after use.
With the -svsc option, the script is saved as the file mineset2sas.sas. If there is an error in
the script processing, the SAS error log is saved as mineset2sas.log.

Converting SAS Data Sets Into MineSet Data Files

423

Converting SAS Data Sets Into MineSet Data Files

Use sas2mineset to convert SAS data sets into MineSet data files. The syntax for this is

sas2mineset <SAS libref.datafile> <MineSet file> [opts...]

Options are

• -nodata creates only a .schema file, no .data file.

• -svsc saves the scripts sent to SAS.

• -nolabel indicates that you do not want labels used for column names.

• -names < namefile > restores long column names from <namefile>, created by
mineset2sas.

For example,

sas2mineset sasuser.houses houses

The sas2mineset utility converts a SAS data file into MineSet .schema and .data files.
Currently, this utility supports only string, numeric, and date data types.

The -nolabel Option

SAS only supports eight-character long column names, but allows optional 40 character
labels for each column. MineSet sets no limit on the column name length, so, by default,
sas2mineset uses the column labels to name the columns in the output file, if labels have
been defined. To force sas2mineset to use the SAS column name for each column, even if
a label is specified, add the -nolabel option to the command line.

424

Chapter 15: File Exchange Between MineSet and SAS

The -names < namefile > Option

If a MineSet data file is converted into SAS with mineset2sas and then back to MineSet
format with sas2mineset, a column name map file can be created to keep track of the
original column names. To have sas2mineset use a name map file created by mineset2sas,
add the -names < namefile > option to the command line, and specify the same name
map file as specified when the file was converted into SAS format with mineset2sas. This
option is useful only for data files with column names longer than 40 characters, since
mineset2sas can save up to 40 characters in the column label.

Note that the -name < namefile > option overrides the -nolabel option.

The -nodata Option

To create just a MineSet schema file without downloading the data from a SAS data file,
add the -nodata option to the command line.

The -svsc Option

The sas2mineset utility writes two customized SAS scripts to retrieve the specified data
file. The first script extracts column descriptions; the second extracts the data. The scripts
are normally deleted after use. With the -svsc option, the scripts are saved as
getschema.sas and getdata.sas, respectively. If there is an error in the script processing, the
SAS error logs are saved as getschema.log and getdata.log, respectively.

425

Chapter 16

16. MineSet Web Extensions

This chapter describes the MineSet extensions that are provided to let you create or view
visualizations and/or interact with MineSet over the web.

Overview

MineSet Web extension allows visualizing files and data generated by MineSet software
over the Web. This can be done in two ways.

• MineSet mtr extension
MineSet mtr extension lets you place MineSet configuration, schema and data files
into an archive file, which can be embedded in a web page as an html tag. Once the
user clicks on the hyperlink in Netscape, the browser automatically invokes the
mineset_weblaunch program. This brings up the MineSet visual tool. The machine
that the browser is running on must have the MineSet client software installed.

• MineSet Remote View
MineSet Remote View extension allows machines that do not have MineSet
software installed to view visualizations through the Web. This is done via two cgi
scripts that are included with the MineSet software distribution. The cgi scripts
must be configured properly and installed in the Web Server machine. The cgi script
rview_file.cgi must get called from an .html file with a MineSet visual tool file as an
argument. The cgi script rview_dir.cgi provides the client (user who accesses the
script) with a list of available visualizations. The user then can select any file via
multiple popup menus and click on the invoke button to launch the MineSet tool.

MineSet Web Extension Files

All MineSet Web Extension files are located in the /usr/lib/MineSet/www directory, which
contains three subdirectories.

426

Chapter 16: MineSet Web Extensions

scripts

examples

Script Purpose

mineset_webinstall_server This program configures the httpd server. Use it to configure the server and the MineSet
Remote View Program. If the web server is a remote machine, copy this file along with
mineset_wsf.tar to the remote machine.

mineset_webinstall_client This program configures the Web browser (Netscape). Use it to configure the client.

mineset_weblaunch This program is invoked by the web browser (Netscape). It un-archives the mtr file and
bring up the appropriate viewer.

mineset_makemtr This program creates one or more mtr files from files created either by Tool Manager or
created manually. The mtr file is sent over the network and is used by mineset_weblaunch
to invoke MineSet visual tools.

mineset_wsf.tar This is a tar file of various files needed by mineset_webinstall_server. If the web server is
a remote machine, copy this file along with mineset_webinstall_server to the remote
machine.

File Purpose

index.html This file provides an index of all the mtr files supplied with MineSet.

rview_file.html This file illustrates how you should embed hyperlinks to invoke mineset_rview on files and
directories.

adult-salary.eviviz.mtr mtr file of /usr/lib/MineSet/eviviz/examples/adult-salary.eviviz.

nl.births.mapviz.mtr mtr file of /usr/lib/MineSet/mapviz/examples/nl.births.mapviz.

company.scatterviz.mtr mtr file of /usr/lib/MineSet/scatterviz/examples/company.scatterviz.

cars-dt.treeviz.mtr mtr file of /usr/lib/MineSet/treeviz/examples/cars-dt.treeviz.

cars-odt.treeviz.mtr mtr file of /usr/lib/MineSet/treeviz/examples/cars-odt.treeviz.

churn-dt.treeviz.mtr mtr file of /usr/lib/MineSet/treeviz/examples/churn-dt.treeviz.

MineSet Web Installation [Client]

427

examples/rview_dir

MineSet Web Installation [Client]

During the MineSet client installation the client part of the web extension is
automatically installed under most circumstances. To see whether it was automatically
installed run the following command.

sh -c "grep mineset /usr/local/lib/netscape/mime.types > /dev/null ;
echo $?"

If the output is 0 then you don't need to do the client installation. If the output is not 0
then you need to install the MineSet web-client extension. A program is provided for the
MineSet Web installation. Before you start the installation you must make sure that
MineSet Client is installed in the machine you're trying to configure. If it is not installed
please install the MineSet software before you try to configure the MineSet Web
Extension.

To configure the client, run the following command.

cd /usr/lib/MineSet/www/scripts ; ./mineset_webinstall_client

The program prompts you for the location of the files mailcap and mime.types. After you
provide the correct names, the program adds the corresponding entries to the files.

File Purpose

.treeviz. Treeviz configuration and data files to be dynamically indexed by rview_dir.cgi.

.mapviz. Mapviz configuration and data files to be dynamically indexed by rview_dir.cgi.

.eviviz. Eviviz configuration and data files to be dynamically indexed by rview_dir.cgi.

.scatterviz. Scatterviz configuration and data files to be dynamically indexed by rview_dir.cg.

.ruleviz. Ruleviz configuration and data files to be dynamically indexed by rview_dir.cgi.

428

Chapter 16: MineSet Web Extensions

MineSet Web Installation [Server]

A program is provided for the MineSet Web installation. Before you start the installation
you must make sure the following software, listed

below is installed. If you're not familiar with the details contact your system
administrator or webmaster and request that the installation be done for you.

For MineSet Web installation to work properly, you need

• a Netscape browser

• an httpd server

Setting up the Server

The server can be running on either the local machine or a remote machine. You must
know:

• the name of the machine on which your httpd server runs, and

• the directory where the publicly accessible .html files are stored

Typically the files are located under /var/www/htdocs. The machine name is included
between http:// and the first /. If you are accessing files by using
http://some-machine.xxx.com/file.html, then some-machine is the name of the machine, and
xxx.com is the domain name. An httpd daemon must be installed an running on
some-machine.

You also must know where the httpd configuration files are stored in the server. If you
are running the Netscape fast-track server, the configuration files usually are in
/usr/ns-home/httpd-machine/config, where machine is the name of your machine. If you are
running a version of ncsa-httpd or apache, the files might be located in
/usr/local/etc/httpd/conf or /var/www/server/conf. If you are not sure where the config files
are located, contact your system administrator or webmaster.

Once you know where your Server configuration files are located, you need the
following two files to perform the installation

• mineset_webinstall_server

• mineset_wsf.tar

MineSet Web Installation [Server]

429

Local Installation

A script is provided with MineSet that helps with the MineSet installation. Since
configuration of Web Servers varies from machine to machine, the program prompts you
for the location of files. It tries to make a reasonable guess and provides defaults;
however, it is better if you know where the files are located before you supply them to
the program.

Configuring MineSet Web Extensions for the Local Server

To start the installation, enter the following

cd /usr/lib/MineSet/www/scripts
./mineset_webinstall_server -s

You are prompted for the location of your server mime.types file. Once you give the
correct file name, it adds an entry and tries to restart the httpd daemon. If it can not
restart your daemon, you must do it manually. If you're not sure about how to restart the
httpd daemon, ask your system administrator or webmaster.

Configuring MineSet Web Extensions for Remote Server

First copy over the following two files to the server

• mineset_webinstall_server

• mineset_wsf.tar

Once you're copied them over, cd to the directory where you copied the files. Then start
the installation by entering

./mineset_webinstall_server -s

It prompts you for the location of your server mime.types file. Once you give the correct
file name, it adds an entry and tries to restart the httpd daemon. If it can not restart your
daemon, you must do it manually. If you're not sure about how to restart the httpd
daemon, ask your system administrator or webmaster.

430

Chapter 16: MineSet Web Extensions

MineSet mtr Files

For MineSet mtr extension to work, you must have MineSet software installed in your
machine or the machine where the Netscape browser is installed. MineSet mtr files are
archives of MineSet files generated by the Tool Manager or created manually. Creating
an mtr file is very easy. Once created, it can be used as a hyperlink in an html page. The
mtr files are very effective in sharing multiple visualizations over the web, eliminating
the need for attaching huge files in mails, remote copies, or file transfers (ftp).

Since mtr files are in a compressed format and use the underlying http protocol, the
transfer of an mtr file is very fast and does not require a cumbersome setup on the part
of administrators.

Creating mtr files

An mtr file can be created in 3 ways.

1. From Files created by Tool Manager

Once you have launched a tool from the Tool Manager, go to the directory from
where you launched the Tool Manager and invoke mineset_makemtr using the name
of the file(s) as the arguments. For example, if you have launched the Tree
Visualizer and the Rule Visualizer from Tool Manager, then to create mtr files use
the following command.

% mineset_makemtr foo.treeviz foo.ruleviz

This creates two files called foo.treeviz.mtr and foo.ruleviz.mtr.

2. Mapviz files with .gfx extensions

If you have generated a Mapviz visualization that uses the .gfx extension, you must
use the "-f" option of mineset_makemtr, and mention all the files that you want to
include in the archive. For example, you can use the following command

% mineset_makemtr -f sales.mapviz sales.mapviz.schema
sales.mapviz.data sales.hierarchy sales.gfx

MineSet mtr Files

431

3. From Files not created by Tool Manager

If you've created some files without using Tool Manager, you still can create a mtr
file from those files. You must use the -l option of mineset_makemtr. Suppose you
want to create a mtr file from the MineSet scatterviz example directory, use the
following command.

% mineset_makemtr -l
/usr/lib/Mineset/scatterviz/examples/company.scatterviz

4. Creating an mtr file from given files

Under certain circumstances, you might want to generate an mtr file while
bypassing the checks performed by mineset_makemtr. If the checks are not
performed, you are not guaranteed that the mtr file will work. You must check its
usability by launching it from the web. You also must use the -f option of
mineset_makemtr. Suppose you want to create an mtr file from the following files:
foo.treeviz, foo.treeviz.schema, and foo.treeviz.data, then use the following command.

% mineset_makemtr -f foo.treeviz foo.treeviz.schema
foo.treeviz.data

Unlike the other options, this one can create only one mtr file.

5. Creating a hyperlink to the mtr file

After the mtr file is created, it should be moved to the directory containing all your
.html files. For Netscape to launch an mtr file, you can invoke it directly by entering

http://yourserver/directory/foo.treeviz.mtr

in the Netscape Location window; or you can make a link to it from a page by
adding the following line in the .html file for that page.

foo.treeviz.mtr

After you launches a visualization via the Web browser from an mtr file, a temporary
directory is created to store the files. These files are deleted after the visualization tools
are launched. If you want to save these files, set the environment variable
MINESET_MTR_FILE_SAVE to TRUE; mineset_weblaunch then prompts you if want to
save or delete the file. If you click Save, the files are saved; otherwise, they are deleted.

432

Chapter 16: MineSet Web Extensions

MineSet Remote View

MineSet remote view lets you view MineSet visual tools over the web on any UNIX
platform and on PCs. The X Server running on the UNIX machine must be
OpenGL-enabled. The PCs must be running an OpenGL-enabled X server, such as
HummingBird Exceed 3D. You also should have:

• Perl version 5.002 or greater installed on your (server) machine

• the CGI.pm module version 2.35 or greater. The CGI.pm module is included with
the MineSet distribution and is installed in the proper place during Remote View
Installation.

Installing MineSet Remote View

First you must copy over mineset_webinstall_server and mineset_wsf.tar to the machine on
which you are going to install Remote view. To do this, enter

% cd /usr/lib/MineSet/www/scripts
% ./mineset_webinstall_server -r

You are prompted for the location of your Perl binary, the Perl library and your Perl
version. It provides reasonable defaults. If the default is correct, you can hit Enter to
install MineSet Remoteview in the proper place. If you are not sure about some of the
answers, ask your system administrator or webmaster.

Configuring and Using rview_dir.cgi

The rview_dir.cgi program that is supplied with the MineSet distribution is generic and
must be configured properly. By default, it works only for example files installed under
/usr/lib/MineSet/www/examples. Here are the steps you must follow to configure
rview_dir.cgi.

MineSet Remote View

433

1. Rename the rview_dir.cgi program

Copy the program and rename it with a unique suffix, such as rview_<login>.cgi
where <login> is your login name. Since rview_<login>.cgi indexes one directory at a
time, you must have multiple copies of the script with the $DIR entry set to a
particular directory to have multiple directories indexed. To set the $DIR entry
properly, edit the rview_<login>.cgi program, and look for the following line

############# EDIT THE LINE BELOW ################
$DIR="/usr/lib/MineSet/www/rview_dir"
##

Replace /usr/lib/MineSet with the full pathname of the directory that will contain
your visualization files. This directory must be available and readable by the user id
(uid) under which the httpd daemon is running. Suppose your files reside in
/usr/people/jdoe/mineset_files, then the $DIR entry in rview_jdoe looks like

############# EDIT THE LINE BELOW ################
$DIR="/usr/people/jdoe/mineset_files"
##

There are several other options that you can set in both rview_dir.cgi and in
rview_file.cgi.

Variable Purpose

$BODY_FILE Default is /usr/lib/MineSet/www/examples/rview_file_body.txt. This file contains the text that will be
displayed when the cgi script is invoked. This file can contain embedded html tags.

$PR_KILL Default is OFF

This variable specifies whether a visual tool invoked by the user will get killed after a certain period
of time. This is an useful feature to avoid overloading the server. To turn this feature on, set
$PR_KILL="ON".

$TIMEOUT Default is 10 minutes

If $PR_KILL is "ON" then the processes will get killed after this number of minutes.

434

Chapter 16: MineSet Web Extensions

2. Invoke rview_dir.cgi

rview_dir.cgi is invoked in the following way

http://yourserver/cgi-bin/rview_dir.cgi

When invoked, rview_dir reads the text from the file specified in $BODY_FILE; it
then creates a web page with popup menus and an Invoke button for each of the
visual tools. A user can choose any file. Clicking on the Invoke Viztool button invokes
the selected visual tool.

$LOGGING Default is ON

This variable, if set to "ON, " provide detailed logging information. The information is in the
following format.

display user time program filename

where

display = Name of the display the user entered

user = Name of the user if available

time = Time the program was launched

program = Name of the launched visual tool

filename = Name of the file that was viewed

$LOGFILE Default is /usr/tmp/rview-log

If $LOGGING is ON then the logfile where the entries will get recorded is specified in $LOGFILE.
The log file should reside in a secure place. The file must be writable by the userid under which the
cgi scripts are run. This is generally nobody.

$THIS_URL Default is http://localhost/cgi-bin/rview_dir.cgi

This entry should be set to the full URL entry an user uses to access the script.

$RESTRICT Default is OFF

This is available only in rview_file.cgi. If it is on, files only in the directory $RESTRICT_DIR are shared.
If $RESTRICT is set to ON and $RESTRICT_DIR="public_html , then files residing in public_html
for any user can be accessed over the web. This is for security reason; you can turn it off if you are
sure there are no confidential files in your directory.

$RESTRICT_DIR Default is public_html

This entry should be set to a directory name where users store their.html files.

Variable Purpose

MineSet Remote View

435

3. Configuring and using rview_file.cgi

The rview_file.cgi takes a file name as an argument so once the script is installed
properly in cgi-bin it can handle any request. The user does not need to change the
script, only enter the location of the file in a .html file. All the variables (listed above)
that are set in rview_dir.cgi are supported in rview_file.cgi. A single file can embed
links to multiple visualizations via different submit buttons. A sample file,
rview_file.html, is included with the distribution. It is located in the
/usr/lib/MineSet/www/examples directory. For each visual file you embed, there must
be two entries. If you want the user to see the visualization generated by the Scatter
Visualizer on the iris dataset, add the following lines to an .html file

<INPUT NAME="View Scatterviz" TYPE="hidden"
VALUE="/usr/lib/MineSet/examples/iris.scatterviz">
Clicking on the following button will bring up a view of the iris
dataset. The tool that will be launched is scatterviz.
<INPUT TYPE="submit" NAME="button" value="View Scatterviz">

For the script to work properly, the quoted string after the NAME= entry on the first
line must be exactly equal to the quoted string after the value= entry on the last
line. For example, the entry View Scatterviz appears both after the <INPUT NAME=

entry in the first line, and <INPUT TYPE="submit" NAME="button value=" in the
fourth line.

Also ensure that

• the following line appears in the .html file

<form method=post action="/cgi-bin/rview_file.cgi">

• you have a text box to which the user can set the DISPLAY. For example

DISPLAY <INPUT TYPE="TEXT" NAME="DISPLAY" SIZE=30>

• you add a line asking the user to give the program access to the Xserver. You
can put the following lines in your html page

Since the visual tools will run on this server, you need to
grant us access to your DISPLAY. You can do this easily by
executing the command xhost + machine

Replace "machine" with the name of the machine on which the cgi script
resides.

The easiest way to create a customized .html file that includes all of the above is to
copy rview_file.html and edit it as necessary.

436

Chapter 16: MineSet Web Extensions

MineSet Web Extension Security Related Issues

It is very important to understand the security implications before installing MineSet
Web Extensions. The following security concerns should be addressed before you install
the web extensions.

• MineSet mtr file extensions

When you publish an mtr file, the files that are included in it are sent to the client
and can be saved by the user.

• MineSet mtr file extensions

For rview_login to work, you (the client) must use the command xhost + machine .
This allows the server to use your X display and compromises security. This is a
limitation of the X protocol and not of MineSet Web Extensions. If you enter the
command xhost + machine to invoke a visual tool, then xhost - machine as soon as
you quit the MineSet visual tool.

• Most MineSet visualization tools support an -execute option in the configuration
files. Double-clicking on an object executes the command listed in the -execute

option. This can be used maliciously to embed arbitrary commands in the
configuration file, which then are triggered when a user double-clicks on an object.
To prevent this, a warning message appears, asking whether the user really wants
to execute this command. This feature can be turned off by setting the environment
variable MINESET_IGNORE_WARN_EXECUTE to TRUE. Set this variable only if
you're going to launch mtr files from trusted machines.

437

Appendix A

A. Flat File Support for MineSet

This appendix describes the .schema and the .data files that are required for MineSet to
read flat files. The Tool Manager also generates .schema files for inclusion as the input
section of the .schema files for Tree Visualizer, Map Visualizer, Scatter Visualizer, and
Splat Visualizer.

This appendix first discusses the data file, then the .schema file; the final section notes the
exceptions in these files for some tools.

The Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields
separated by one tab. (Other separators are also allowed—see “Input Options” on
page 445—but only one can separate each field). All lines must contain the same fields.
(The interpretation of the fields is specified by the .schema file, described in the next
section.) For example, the first few lines of retail store data might look like this:

Eastern Maryland Baltimore 1816 appliances 72 115 138
Eastern Maryland Baltimore 1816 clothing 355 344 395
Eastern Maryland Baltimore 1816 electronics 156 182 209
Eastern Maryland Baltimore 1816 furniture 78 75 82
Eastern Massachusetts Boston 1331 appliances 48 68 81
Eastern Massachusetts Boston 1331 clothing 307 258 296
Eastern Massachusetts Boston 1331 electronics 38 183 210
Eastern Massachusetts Boston 1331 furniture 52 69 75
Eastern Massachusetts Boston 1220 appliances 37 63 75
Eastern Massachusetts Boston 1220 clothing 233 240 276
Eastern Massachusetts Boston 1220 electronics 175 208 239
Eastern Massachusetts Boston 1220 furniture 35 53 58

In this example, the first five columns are strings: region, state, city, store ID, and product.
These are followed by three numbers, representing current sales, last year’s sales, and the
sales target.

438

Appendix A: Flat File Support for MineSet

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; doing so generates blank fields. It is possible to use other
characters, such as a colon (:), as a separator. In this case, the first line appears as:

Eastern:Maryland:Baltimore:1816:appliances:72:115:138

The order of the columns must match the format of the .schema file. For some visual tools,
the order of the rows can affect the layout of the final graphic. See the tool-specific
appendices for details.

Any field in the data can also be a “?”, indicating that the data is null (unknown). See
Appendix I, “Nulls in MineSet.”

Note: MineSet also supports a binary format, which currently is not documented.

Data Types

MineSet supports integer, floating-point number, and string data types, as well as arrays
of these types. The following data types are supported:

• int represents a 32-bit signed integer.

• float represents a single-precision floating point number. The decimal point is
optional. Numbers in exponential “e” notation are also accepted.

• double represents a double-precision floating point number. The decimal point is
optional when representing a floating point number. Numbers in exponential “e”
notation are also accepted. The superior precision of double can be useful for
accurately representing large numbers, since float can represent only seven or eight
significant digits accurately. This superior accuracy, however, consumes twice the
memory space of float.

The Data File

439

• dataString represents a string that is unlikely to appear multiple times. If it appears
multiple times, several copies are made. A dataString can be used to store an
address. Addresses are unlikely to be compared, and each record can have a
different address.

• string represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. Reading in
strings can be slower than reading in dataStrings because it is necessary to look for
duplications. An example of string use is a division name that appears once for each
department in the division. If you are unsure whether to use a string or a
dataString, use a string.

• fixed string represents a string of fixed length. Like a dataString, if a fixed string
appears multiple times, multiple copies are made. In general, fixed strings are used
internally for representations of data from data bases, and are generally better to
use than strings or dataStrings.

• date represents a date and time. In the data file, date must appear as MM/DD/YY
HH:MM:SS.

Arrays

In MineSet, you can use one-dimensional or two-dimensional arrays of fixed or variable
size.

In a fixed-sized array, all entries of the given type have the same number of values. For
example, the budgets of the 50 United States, can be represented by a separate float
column for each state, or by a single array with 50 floats.

A special form of a fixed array is an “enumerated array.” Like the normal fixed array,
there are a fixed number of values in the array; however, the values are associated with
an enumeration. For each value in the enumeration, there is a single entry in the array.
For example, if there is an enumeration representing the 50 states, an enumerated array
based on this enumeration has 50 values.

440

Appendix A: Flat File Support for MineSet

A variant of the “enumerated array” is the “null enumerated array,” which has an
additional entry at the beginning for null (represented as a “?”). For example, with the
enumeration of the 50 states, the null enumerated array has 51 values, one for NULL, and
the remaining 50 for the 50 states. The null array element could be used for entries where
the state is unknown.

The tree visualizer also supports variable length arrays (see Appendix B, “Creating Data
and Configuration Files for the Tree Visualizer,” for details).

As with the columns, arrays are represented as values separated by tabs or other
separators. For a fixed-sized array, the same separator can be used for columns and for
individual array elements (in which case, array elements are not visually distinguished
from separate columns). You can also define a different separator. In the sales example
(on page 437), for example, you can treat the location as a four-element array, rather than
as four columns. It then could be represented like this:

Eastern:Maryland:Baltimore:1816 appliances 72 115 138

Here, the array is separated by colons, and the columns are separated by tabs. (For clarity,
the rest of this document uses tabs to separate columns, and colons to separate array
elements.)

For a variable-length array, you must use different separators for the array and for the
columns; otherwise, it is impossible to determine where the variable-length array ends
and the other columns begin.

Null Values

Any field or array element in the data file can also have the value “?” (question mark),
indicating an unknown or null value (see the discussion of nulls in Appendix I).

The .schema File

441

The .schema File

The schema file consists of an input section, which defines the name, and format of the
file. (The .schema files generated by the Tool Manager can also contain a history section,
which is a copy of the .mineset file. This section is used by drill-through and would
normally not be present in manually generated .schema files.)

A typical input section might look like this:

input {
 file "store";

 string region;
 string state;
 string city;
 string storeId;
 string product;
 float sales;
 float lastYear;
 float target;

 options separator ‘:’;
}

This example states that the input file is called store, and that there are eight fields: five of
type string, three of type float.

Variable Names

A variable name can appear in two formats:

• In the first format, it is a letter followed by a number of letters, digits, or
underscores. It cannot be a keyword, and should not be quoted.

• In the alternate form, the variable name should be surrounded by back quotes (‘).
In this form, the variable name can match a keyword, and can contain even
non-alphanumeric characters. The primary purpose of this second form is for
.schema files generated automatically by the Tool Manager.

There is no scoping of variable names; a given variable name can only be declared once
in the .schema file.

442

Appendix A: Flat File Support for MineSet

Strings and Characters

Strings and characters in the .schema file follow C conventions. Strings are in double
quotation marks ("), and characters are in single quotation marks (’). All standard
backslash conventions are followed (for example, \n represents a new line).

Comments

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol to the end of the line is ignored, up to the end of the line.

File Statements

The file statement names the data file to be read. This statement is required. Its syntax is:

file " filename ";

Filename must be in double quote marks. If it is a relative pathname (no leading slash), it
is first sought in the directory containing the current .schema file. If include statements are
present, this might not be the same as the initially loaded .schema file. If it is not found in
the current .schema file’s directory, the file is sought in the current directory.

Data Statements

The data statements declare the columns in the data file. The columns must be declared
in the order they appear in the data file. The format of most data statements is

type name ;

where type is int, float, double string, dataString, date, and fixedString(n), where n is an
integer representing the width of the string; name is the variable name. Unlike in C, only
one variable can be declared per statement.

The .schema File

443

Enumerations

The syntax for declaring an enumeration is:

enum type name { value , value ...};

For example:

enum string state {
 "Alabama",
 "Alaska",
 ...
 “Wyoming"
};

The word “string” indicates that the enumeration maps integers to strings; they can also
be mapped to other types.

Note that for compatibility with MineSet 1.0, “enum” can be replaced with “key.”

Once an enumeration is declared, a column can be declared to be of that enumeration
using the following syntax:

enum enumname columnname ;

For example:

enum state st;

declares st to be a variable of state enumeration. The input file corresponding to this
column must contain values from 0-49 (or “?” representing null); however, the output
shows the state name.

Enumerations also can be used to declare enumerated arrays (see “Enumerated Arrays”).

Fixed Arrays

Arrays are also declared using data declarations. The simplest form is the fixed array. The
declaration syntax is

type name [number] ;

For example:

float revenue [50];

444

Appendix A: Flat File Support for MineSet

You can also override the separator by declaring it as

type name [number] separator ‘ char ’;

For example:

float revenue [50] separator ‘:’;

If no separator is specified, the default column separator (usually a tab) is used.

Enumerated Arrays

To declare an enumerated array, first declare the enumeration (see the “Enumerations”
subsection on page 443). Then declare the array using the following syntax:

type name [enum keyname];

or

type name [enum keyname] separator ‘ char ’;

For example:

float revenue [enum state];

As with the normal fixed array, you can also specify a separator. Note that for
compatibility with MineSet 1.0, the word "enum" can be omitted from within the
brackets. To declare a null enumerated array, use the syntax:

type name [null enum keyname];

or

type name [null enum keyname] separator ` char ';

For example:

float revenue [null enum state];

indicates that the array contains one additional value at the beginning, corresponding to
null.

Exceptions

445

Input Options

The input section of a data file has several options. All options statements begin with the
word options and have one or more comma-separated options.

• The separator option defines the separator between columns in the data file. The
default separator is a tab. The syntax is:

options separator ‘ char ’;

For example:

options separator ‘:’;

Note: Arrays can override the separator.

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

 options backslash off;
 options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Also, within strings standard C-style backslash processing is done.

Exceptions

The following exceptions apply to the .schema and .data files:

• The Tree Visualizer supports only one-dimensional arrays.

• The Tree Visualizer supports variable-length arrays.

• The Map Visualizer and the Scatter Visualizer support a special enum format for
dates.

• The Tree Visualizer and the Map Visualizer support the Monitor option.

Note: These exceptions are discussed in detail in the respective tool’s appendix.

447

Appendix B

B. Creating Data and Configuration Files for the Tree
Visualizer

The first part of this appendix describes the types and formats of data supported by the
Tree Visualizer. Data input to the Tree Visualizer must be provided as a single file
containing raw data, usually in a tab-separated ASCII text form.

The second part discusses the configuration file, which describes how the Tree Visualizer
reads in, and graphically displays, the data file.

Note that both the data and configuration files can be generated automatically by the
Tool Manager (see Chapter 3).

Note: Read Chapter 4, “Using the Tree Visualizer,” before using this appendix.

448

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields
separated by one tab. (Other separators are also allowed—see “Input Options” on
page 460—but only one can separate each field). All lines must contain the same fields.
(The interpretation of the fields is specified by the configuration file, described in the next
section.) For example, using the retail store data (store.treeviz file) provided as part of the
Tree Visualizer package, the first few lines of the input file look like this:

Eastern Maryland Baltimore 1816 appliances 72 115 138
Eastern Maryland Baltimore 1816 clothing 355 344 395
Eastern Maryland Baltimore 1816 electronics 156 182 209
Eastern Maryland Baltimore 1816 furniture 78 75 82
Eastern Massachusetts Boston 1331 appliances 48 68 81
Eastern Massachusetts Boston 1331 clothing 307 258 296
Eastern Massachusetts Boston 1331 electronics 38 183 210
Eastern Massachusetts Boston 1331 furniture 52 69 75
Eastern Massachusetts Boston 1220 appliances 37 63 75
Eastern Massachusetts Boston 1220 clothing 233 240 276
Eastern Massachusetts Boston 1220 electronics 175 208 239
Eastern Massachusetts Boston 1220 furniture 35 53 58

In this example, the first five columns are strings: region, state, city, store ID, and product.
These are followed by three numbers, representing current sales, last year’s sales, and the
sales target. (The specific mapping to those values is defined in the configuration file,
described in the section “The Configuration File.”)

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; doing so generates blank fields. It is possible to use other
characters, such as a colon (:), as a separator. In this case, the first line appears as:

Eastern:Maryland:Baltimore:1816:appliances:72:115:138

The order of the columns must match the format of the configuration file. The order of
the rows affects the layout of the final graphic, unless the configuration file specifies
sorting. Generally, objects appearing earlier in the file appear to the left of objects
appearing later in the file.

Any field in the data can also be a “?”, indicating that the data is null (unknown). See
Appendix I, “Nulls in MineSet.”

The Data File

449

Data Types

The Tree Visualizer supports integer, floating-point number, and string data types, as
well as arrays of these types. The following data types are supported:

• int represents a 32-bit signed integer.

• float represents a single-precision floating point number. The decimal point is
optional. Numbers in exponential “e” notation are also accepted.

• double represents a double-precision floating point number. The decimal point is
optional when representing a floating point number. Numbers in exponential “e”
notation are also accepted. The superior precision of double can be useful for
accurately representing large numbers, since float can represent only seven or eight
significant digits accurately. This superior accuracy, however, consumes twice the
memory space of float.

• dataString represents a string that is unlikely to appear multiple times. If it appears
multiple times, several copies are made. A dataString can be used to store an
address. Addresses are unlikely to be compared, and each record can have a
different address.

• string represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. Reading in
strings can be slower than reading in dataStrings because it is necessary to look for
duplications. An example of string use is a division name that appears once for each
department in the division. If you are unsure whether to use a string or a
dataString, use a string.

• fixed string represents a string of fixed length. Like a dataString, if a fixed string
appears multiple times, multiple copies are made. In general, fixed strings are used
internally for representations of data from data bases, and are generally better to
use than strings or dataStrings.

• date represents a date and time. In the data file, date must appear as MM/DD/YY
HH:MM:SS.

450

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Enumerations

You can create a special data type that maps consecutive integers to strings. These types
are referred to as enumerations, or enums. For example, you can create a state enum that
maps 0 to Alabama, 1 to Alaska, and so on. Often, enums are created by the Tool Manager
to represent bins. For example, 0 might map to a bin representing <10, 1 to the bin 10-20,
and so on.

Arrays

With the Tree Visualizer, you can use one-dimensional arrays of fixed or variable size.

In a fixed-sized array, all entries of the given type have the same number of values. For
example, the budgets of the 50 United States, can be represented by a separate float
column for each state, or by a single array with 50 floats.

A special form of a fixed array is an “enumerated array.” Like the normal fixed array,
there are a fixed number of values in the array; however, the values are associated with
an enumeration. For each value in the enumeration, there is a single entry in the array.
For example, if there is an enumeration representing the 50 states, an enumerated array
based on this enumeration has 50 values. (Note that in MineSet release 1.0, the
enumerated array was referred to as a “keyed fixed array.”)

A variant of the “enumerated array” is the “null enumerated array.” This is a variant of
the enumerated array with an additional entry at the beginning for null (represented as
a “?”). For example, with the enumeration of the 50 states, the null enumerated array has
51 values, one for NULL, and the remaining 50 for the 50 states. The null array element
could be used for entries where the state is unknown.

A variable-length array can have a different number of entries in each instance of the
array. Often this is useful for representing organizations in which different parts have
different depths. For example, one department could be represented by
Gomez:Shapiro:Lacy (three entries), while another is Gomez:Wong:McMartin:Singe
(four entries).

A variable-length entry with zero values can also be declared by passing an empty string.
This can be used to specify data for the top level of a hierarchy.

The Data File

451

When representing an organization with variable-length arrays, be careful. The Tree
Visualizer computes the height for each level of the hierarchy separately, giving the
highest bar on each level a user-specified height and normalizing the other bars
accordingly. For example: Imagine a U.S.-based organization with a domestic and an
international sales force. Domestic sales are divided up into states, which are divided
into cities. International sales are divided into continents, which are divided into
countries and cities. You can have locations such as domestic:California:Mountain View,
and international:Europe:Italy:Rome. When displaying organizational hierarchies of this
type, it is best to normalize heights at each level. If this is not done, small parts of the
organization (for example, Mountain View) would be dwarfed by large parts of the
organization (for example, domestic).

When the system tries to match up the levels, the normalization process might introduce
anomalies. Usually, this is not the case at the highest level (domestic is matched with
international); however, at lower levels this correspondence is no longer valid. Domestic
cities (for example, Mountain View) are at the third level, but the third level for
international is a country (for example, Italy). Comparing domestic cities against foreign
countries usually has little validity. In this case, it is recommended that you introduce
artificial levels to balance the hierarchies (for example,
domestic:USA:California:Mountain View), thus matching cities.

Variable-length arrays might also be useful when some of the regions being compared
are subdivided further than others. For example, an organization might have
USA:California:San Francisco and USA:California:Los Angeles, but only USA:Wyoming.
There is no need to construct an artificial third level just to keep the arrays balanced, as
long as each level in the array matches the same level in other arrays.

Starting up the Tree Visualizer takes longer when variable-length arrays are read in than
when fixed-length arrays or individual columns are read in. Unless the data is variable
length, it is best not to use variable-length arrays.

As with the columns, arrays are represented as values separated by tabs or other
separators. For a fixed-sized array, the same separator can be used for columns and for
individual array elements (in which case, array elements are not visually distinguished
from separate columns). You can also define a different separator. In the sales example
(on page 448), for example, you can treat the location as a four-element array, rather than
as four columns. It then could be represented like this:

Eastern:Maryland:Baltimore:1816 appliances 72 115 138

452

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Here, the array is separated by colons, and the columns are separated by tabs. (For clarity,
the rest of this document uses tabs to separate columns, and colons to separate array
elements.)

For a variable-length array, you must use different separators for the array and for the
columns; otherwise, it is impossible to determine where the variable-length array ends
and the other columns begin.

The Configuration File

The configuration file format is flexible. Words in it must be separated by spaces, and it
is case-sensitive. Except for the include statement and text within quoted strings, spacing
and line breaks are irrelevant.

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol to the end of the line is ignored.

Sections

The configuration file consists of a series of sections, each of which has this syntax:

sectionKeyword
{
 statements...
}

where sectionKeyword names the section. A semicolon (;) can follow the closing brace (})
but is not required. The order of the sections is significant, since sections can refer to
variables defined in previous sections.

Options Files

As each section is encountered, a special configuration file (referred to as a “options file”)
is also read in. Options files have names in the form:

sectionName.treeviz.options

The Configuration File

453

Options files normally contain options statements. These files are searched in the
following order:

1. The directory /usr/lib/MineSet/treeviz. This directory usually contains system
defaults.

2. The ~/.MineSet directory (where the tilde, ~, indicates your home directory). You can
set up personal defaults in this directory.

3. The current directory. This lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the options files have been read in; thus, options
in the configuration file override those in the options files.

Statements

A statement has the following syntax:

statementKeyword info ;

where statementKeyword defines the statement, and info varies according to the keyword.
A statement can be another section (using the brace format defined under “Sections”).

Variable Names

A variable name can appear in two formats:

• In the first format, it is a letter followed by a number of letters, digits, or
underscores. It cannot be a keyword, and should not be placed in quotation marks.

• In the alternate form, the variable name should be surrounded by back quotes (‘).
In this form, the variable name can match a keyword, and can contain even
non-alphanumeric characters. The primary purpose of this second form is for
configuration files generated automatically by the Tool Manager.

There is no scoping of variable names; a given variable name can be declared only once
in the configuration file.

454

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Option Statements

Many sections have options statements, which have this syntax:

options key info, key info... ;

where key defines the specific option, and info depends on the key. In some cases, the key
can be more than one word. To maximize the number of allowable variable names, most
option keys are meaningful only within the appropriate option statement; keys do not
conflict with variable names. You can declare several options on the same line, separating
them by commas or placing them in several options statements. For example, the
following two examples are equivalent:

options home angle 30, shrinkage 10.0;

and

options home angle 30;
options shrinkage 10.0;

If two conflicting values for the same option appear, the last value is taken.

Include Statements

The configuration file can contain lines of the form:

include "filename"

These lines can appear anywhere in the configuration file, but each must be on its own
line. The filename must be in quotation marks; anything after the closing quotation mark
is ignored. Include statements can be nested. If a relative pathname (one not beginning
with a slash) is specified, the file is first sought relative to the directory containing the
current configuration file. (If include statements are present, this might not be the same
as the initially loaded configuration file.) If it is not found in the current configuration
file, the include is sought in the current directory. If the file is not found, an error message
appears.

Sinclude Statements

A statement similar to an include is sinclude, which has the syntax:

sinclude "filename"

Keywords

455

This is identical to the include statement, except that no error appears if the file does not
exist; instead, the sinclude statement is ignored.

Strings and Characters

Strings and characters in the configuration file follow C conventions. Strings are in
double quotes ("), and characters are in single quotation marks (‘). All standard backslash
conventions are followed (for example, \n represents a new line).

Keywords

The currently recognized keywords are listed in Table B-1. Variables cannot have these
names unless they are surrounded by back quotes (‘). Tokens appearing only in option
statements are not keywords, and can be used for variable names.

Table B-1 Keywords for the Tree Visualizer

aggregate disk int normalize

any divide isSummary off

ascending double key on

average enum label options

back execute landscape scale

base expressions legend separator

buckets file levels sort

color filter max string

colors float message sum

count height min view

dataString hierarchy modulus

descending input none

456

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Expressions

Expressions are accepted in several places in the input. Expressions follow standard C
syntax. The following operations are supported:

 + - * / % == != > < >= <= && || ! & | ^ ?:

Also, the following functions are available:

• divide(x, y, z) divides x by y, unless y is zero. If y is zero, the result is z; this is
equivalent to the C construct y==0 ? z : x/y.

• modulus(x, y, z) is similar to divide, but for modulus.

• hierarchy(string) is valid only within a hierarchy. It produces a string describing the
components of the hierarchy, separated by string. For example:

hierarchy(":")

might produce

Western:California:Mountain View

The hierarchy function is most useful in the execute statement, passing the
hierarchy information to the command being executed.

• isSummary() returns 1 if the expression is being applied to base information;
otherwise, it returns zero. Often, this is useful with the ?: operator, particularly in
message and execute statements.

Type handling is similar to that in C. Expressions using int and float promote both sides
to float. Expressions using int and double, or float and double promote both sides to
double. The result of a relational expression (for example, ==, <) is always an int. Type
casting is also supported.

Unlike in C, strings can be compared using relational expressions; the strings are
compared alphabetically.

The Input Section

457

The Input Section

The first section of a data file is normally the input section. It defines the name and format
of the file. A typical input section might look like this:

input {
 file "store";

 string region;
 string state;
 string city;
 string storeId;
 string product;
 float sales;
 float lastYear;
 float target;

 options separator ‘:’;
}

This example states that the input file is called store, and that there are eight fields: five of
type string, three of type float.

When the input section is entered, the options file, input.treeviz.options, is read in.

File Statements

The file statement names the data file to be read. This statement is required. Its syntax is:

file " filename ";

Filename must be in double quote marks. If it is a relative pathname (no leading slash), it
is first sought in the directory containing the current configuration file. If include
statements are present, this might not be the same as the initially loaded configuration
file. If it is not found in the current configuration file’s directory, the file is sought in the
current directory.

458

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Data Statements

The data statements declare the columns in the data file. The columns must be declared
in the order they appear in the data file. The format of most data statements is

type name ;

where type is int, float, double string, dataString, date, and fixedString(n), where n is an
integer representing the width of the string; name is the variable name. Unlike in C, only
one variable can be declared per statement.

Enumerations

The syntax for declaring an enumeration is:

enum type name { value , value ...};

For example:

enum string state {
 "Alabama",
 "Alaska",
 ...
 “Wyoming"
};

The word “string” indicates that the enumeration maps integers to strings; they can also
be mapped to other types.

Note that for compatibility with MineSet 1.0, “enum” can be replaced with “key.”

Once an enumeration is declared, a column can be declared to be of that enumeration
using the following syntax:

enum enumname columnname ;

For example:

enum state st;

The Input Section

459

declares st to be a variable of state enumeration. The input file corresponding to this
column must contain values from 0-49 (or “?” representing null); however, the output
shows the state name.

Enumerations also can be used to declare enumerated arrays (see “Enumerated Arrays”).

Fixed Arrays

Arrays are also declared using data declarations. The simplest form is the fixed array. The
declaration syntax is

type name [number] ;

For example:

float revenue [50];

You can also override the separator by declaring it as

type name [number] separator ‘ char ’;

For example:

float revenue [50] separator ‘:’;

If no separator is specified, the default column separator (usually a tab) is used.

Enumerated Arrays

To declare an enumerated array, first declare the enumeration (see the “Enumerations”
subsection). Then declare the array using the following syntax:

type name [enum keyname];

or

type name [enum keyname] separator ‘ char ’;

For example:

float revenue [enum state];

460

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

As with the normal fixed array, you can also specify a separator. Note that for
compatibility with MineSet 1.0, the word "enum" can be omitted from within the
brackets. To declare a null enumerated array, use the syntax:

type name [null enum keyname];

or

type name [null enum keyname] separator ` char ';

For example:

float revenue [null enum state];

indicates that the array contains one additional value at the beginning, corresponding to
null.

Variable-Length Arrays

To declare a variable-length array, do not include a number in the brackets ([]). With a
variable-length array, you must include a separator that is different from the one
specified as a column separator. The syntax is:

type name [] separator ‘ char ’;

For example:

string category [] separator ‘:’;

Input Options

The input section of a data file has several options. All options statements begin with the
word options and have one or more comma-separated options.

• The separator option defines the separator between columns in the data file. The
default separator is a tab. The syntax is:

options separator ‘ char ’;

For example:

options separator ‘:’;

Note: Arrays can override the separator.

The Input Section

461

• The monitor option allows a dynamic update of the data displayed. When the
specified file is changed (for example, through the touch command), the data file
(not the configuration file) is reread. The data file should not be used to trigger the
updates. This prevents the data file being read at the same time it is being updated.
The syntax of the monitor option is

options monitor " filename ";
options monitor " filename " timeout ;

where filename is the file to watch, and the optional timeout specifies the number of
seconds to wait after the file changes. If the user interacts with the application in
any way during this timeout (via the mouse or keyboard), the timeout restarts.
Updating the file can take a few seconds. By specifying a timeout, the chances of an
update occurring while the user is interacting with the tool are minimized (but the
update is delayed). If no timeout is specified, the update occurs immediately.

The file being monitored must exist at the start of the program. When this file is
being updated, it must not be removed and re-created; instead, only its modify time
should be updated (for example, through the touch command). If the file is deleted,
subsequent updates are not shown.

Suppose a program extractor extracts data from a database into a data file. If you
want the program to update the data file every 10 minutes, the script might look
like this:

extractor > dataFile; # create first data file
touch trigger; # create the trigger file
while (sleep 600) # sleep 10 minutes
do
 extractor > dataFile; # create new data file
 touch trigger; # force a reread
done & # this loop goes in the
 # background
treeviz configFile; # run treeviz
kill $! # when treeviz exits, kill the
 # update loop

The monitor option can be used only if the file alteration monitor /usr/etc/fam is
installed (this can be found in the subsystem desktop_eoe.sw.fam).

462

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The input section of a configuration file might look like this:

input
{
 file "dataFile"
 #data declarations here
 options monitor "trigger" 15;
}

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

 options backslash off;
 options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Also, within strings standard C-style backslash processing is done.

The Expression Section

The expression section of a data file lets you define additional columns that are
expressions of existing columns. For example, one column can be defined as the sum of
two other columns. The expressions are calculated before the definition of the hierarchy.
In many cases, it is more appropriate to apply the expressions after creating the
hierarchy; the expressions then should be defined within the hierarchy section (described
later), and the expressions section can be omitted.

The following is a sample expression section. This section assumes two existing columns
of type float, “male” and “female”; these represent spending by males and females on
various goods. Two columns are added: “total” represents the total dollars spent, and
“pctFemale” represents the percentage of dollars spent by females.

expressions
{
float total = male+female;
float pctFemale = divide (female*100, total, 50.0);
}

Note: The pctFemale calculation uses “total,” defined in the previous statement. Also,
note the use of the divide function rather than the / operator. This results in 50% for the
case where there are no dollars spent at all; using the / operator generates a divide by zero
error in such a case.

The Hierarchy Section

463

The format of the expressions section is:

expressions
{

expressionDeclaration ;
 ...
}

where expressionDeclaration has the following syntax:

type name = expression ;

Since the expressions section has no options, no options file is read in for it.

The Hierarchy Section

The hierarchy section of a data file describes how the previously read table is converted
into a hierarchy. Here is a sample hierarchy section:

hierarchy
{
 levels region, state, city, storeId;
 key product;
 aggregate
 {
 sum sales;
 sum lastYear;
 sum target;
 }
 expressions
 {
 float pctLastYear = divide(sales*100, lastYear, 100.0);
 float pctTarget = divide(sales*100, target, 100.0);
 }
}

The parts of the hierarchy section are described below.

When entering the hierarchy section, the hierarchy.treeviz.options options file is read in.

464

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Levels Statements

The levels statement defines how the table is converted into a hierarchy. The format is:

levels name, name...;

where name represents a column previously defined in the input or the expressions
section. How the hierarchy is created depends on the types of the columns defined.

If the columns represent simple types (for example, strings or numbers), each column is
converted into a single level of the hierarchy. The top level of the hierarchy is a single,
all-inclusive node. The next level contains one node for each unique value in the first
column. The third level contains one node for each unique value in the second column,
and so on. Hierarchies created in this way are always balanced: All branches in the
hierarchy go to the same depth (namely one greater than the number of columns
specified in the levels statement).

In the case where the column is an array, there can be only a single column specified in
the levels statement. Each value in the array is mapped to one level in the hierarchy. The
top level is a single node representing the total aggregation. The next level contains one
node for each unique value of the first value in the array; the third level contains one
node for each unique value of the first two values of the array, and so on.

If the array is of fixed type, this hierarchy is balanced. If a variable array is used, the
hierarchy is not necessarily balanced (some branches can go deeper than others).

A variable-length array can be used to specify the hierarchy, even if the hierarchy is
balanced to a fixed depth. When using columns or fixed arrays to specify the levels, you
can specify data associated only with those levels at the bottom (or leaf) nodes. In this
case, all higher nodes in the hierarchy must be aggregated. However, rather than relying
on automatic aggregation, you might want to supply your own data for each level of the
hierarchy (if, for example, the calculation can not be done automatically by the Tree
Visualizer). In that case, use variable-length arrays to specify levels and provide separate
data for each level.

The Hierarchy Section

465

For example, the data file might contain lines such as:

Domestic:Western 43
Domestic:Eastern 57
Domestic 85
Intl:Europe 52
Intl:Asia 39
Intl 94

 133

Note: The last line has an empty value for the location; the number 133 is translated to
the top of the hierarchy.

Key Statements

The key statement specifies those keys that are used to select the bars at each node in the
hierarchy. The key corresponds to the bars displayed in the final view. The syntax of the
key statement is:

key name [sort [ascending|descending]};

where name is the name of one of the previously defined columns. It cannot be the name
of a column used in the levels statement. Only a single key statement can be made.

By default, the bars generated by the key statement appear in the order first encountered.
If the key is an enumerated array, the bars appear in the order of the enumeration;
otherwise they appear in the order in which values are first encountered in the data file.
Adding the word sort at the end of the key statement sorts the bars. Sorting depends on
the type: Strings are sorted alphabetically, and numbers are sorted numerically.
Enumerations are sorted on the index of the enumeration, not the string that the
enumeration refers to. If, however, the key is an enumerated array, the sorting takes place
according to the enumeration string (to sort based on the enumeration index, leave it
unsorted). Optionally, the word sort can be followed by ascending or descending to
specify the sort order; the default is ascending.

If the key column is a simple type (for example, a string), the unique values of that key
are looked up in the original table. The order of the values is the same as the one in which
the key values appear in the original input table. Although it is not required, the same
keys are often repeated in the same order. For example, in the following table, the fifth
column is the key, and has the values “appliances,” “clothing,” “electronics,” and
“furniture.”

466

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Eastern Maryland Baltimore 1816 appliances 72 115 138
Eastern Maryland Baltimore 1816 clothing 355 344 395
Eastern Maryland Baltimore 1816 electronics 156 182 209
Eastern Maryland Baltimore 1816 furniture 78 75 82
Eastern Massachusetts Boston 1331 appliances 48 68 81
Eastern Massachusetts Boston 1331 clothing 307 258 296
Eastern Massachusetts Boston 1331 electronics 38 183 210
Eastern Massachusetts Boston 1331 furniture 52 69 75
Eastern Massachusetts Boston 1220 appliances 37 63 75
Eastern Massachusetts Boston 1220 clothing 233 240 276
Eastern Massachusetts Boston 1220 electronics 175 208 239
Eastern Massachusetts Boston 1220 furniture 35 53 58

The key can also be any column of the enumerated array type. In this case, the
enumeration is used as the key for specifying the bars. Other columns in the input can
also be enumerated array types, as long as they use the same enumeration. For example,
this table can also be input as

Eastern Maryland Baltimore 1816
 72:355:156:78 115:344:182:75 138:395:209:82
Eastern Massachusetts Boston 1331
 48:307:38:52 68:258:183:69 81:296:210:75
Eastern Massachusetts Boston 1200
 837:233:175:35 63:240:208:53 75:276:239:58

For clarity, each line has been wrapped onto two lines; however, in the file these should
be on single lines. The input section for this data appears as

input
{
 file "...";
 key string product {
 "appliances", "clothing", "electronics", "furniture"
 }
 string region;
 string state;
 string city;
 string storeId;
 float sales [enum product] separator ‘:’ ;
 float lastYear [enum product] separator ‘:’ ;
 float target [enum product] separator ‘:’ ;
}

Note: Since the arrays are fixed, the use of a colon separator for the arrays is not required;
however, it might make it easier for a human to read the input.

The Hierarchy Section

467

In this example, the hierarchy section appears as follows:

hierarchy
{
 levels region, state, city, storeId;
 key sales;
 ...
}

Since sales is an enumerated array, it used its key type (product) as the key to generating
the bars; thus, each graph in the final view has four bars. Note that lastYear and target
must use the same key type for their array.

Arrays other than enumerated arrays can not be specified as the key.

Aggregate Subsection

The aggregate subsection of the hierarchy section describes how values are aggregated
at higher levels of the hierarchy. An example is:

aggregate
{
 sum sales;
 sum lastYear;
 sum target;
}

This indicates that sales, lastYear, and target are to be summed at higher levels of the
hierarchy (each level summing the values in the level below it). In addition to the sum
aggregation, the aggregations average, min, max, count, and any are allowed. All are
self-explanatory, except for any, which indicates that any of the values can be used. This
aggregation is used if you expect the same value (for example, a string) to appear
everywhere in the hierarchy and if you just want it to populate the entire hierarchy.

A special case is when the key is an enumerated array. Here, the key is normally also
aggregated.

In the case where a variable-length array specifies data for all levels of the hierarchy
simultaneously (as opposed to merely specifying the data at the leaf nodes), the
aggregate section cannot be used.

468

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The two forms an aggregate statement can take are

agg name;
name1 = agg name2;

In both cases, the aggregate (agg) is one of sum, average, min, max, count, and any. The
first form was illustrated above; it aggregates a column, and the result is given the same
name as the original column being aggregated. The second form aggregates the column
name2, but gives the result the name name1. This second form is useful if the same value
is being aggregated multiple times. Since using the first form creates two aggregations
with the same name, the second form can be used to differentiate the aggregations.

For example, if you have a column named expenses and want to aggregate it to show the
maximum and minimum expenses, you can use

aggregate
{
 maxExpenses = max expenses;
 minExpenses = min expenses;
}

Aggregate Base Subsection

This subsection specifies how values in the base are aggregated. It can be used only if the
aggregate subsection is not present. (If the aggregate section is present, the base is
aggregated using the aggregations specified in it).

A sample aggregate base subsection is:

aggregate base
{
 sum sales;
 sum lastYear;
}

An aggregate statement takes the form

agg name;

The Hierarchy Section

469

where the aggregate (agg) is one of sum, average, min, max, count, and any, (similar to the
aggregate section). The aggregation is applied to all the bars on that base to give the
appropriate value for the base. After the base is aggregated, its values correspond to all
of the columns used in specifying the bars. Any column not specified in the aggregate
base section has a value of zero. Because the base values correspond to the bar values, the
second form of the aggregate statement (using the =), cannot be used in the aggregate
base section.

Expressions Subsection

An expressions subsection of the hierarchy section is similar to the expressions section
described earlier, except that it is applied after the hierarchy is created and aggregated.
The syntax is identical, but it is declared within the hierarchy section, not external to it.

To give an example of the difference between calculating the expressions before and after
creating the hierarchy, take the example of male and female dollars spent. Assume you
want to calculate the percentage of dollars spent by women. The expressions might be:

expressions
{
 float total = male+female;
 float pctFemale = divide (female*100, total, 50.0);
}

Assume you calculated these variables before creating the hierarchy. Then, when
aggregating the data up the hierarchy, summing the percentages is not useful. Averaging
the percentages results in a believable number; however, it averages percentages of large
dollars with percentages of small dollars, and produces incorrect results. (To make this
clearer, suppose that on one product, males spent $99, and females spent $0. On another
product, males spent $0, and females spent $1. On the first product females spent 0%, and
on the second they spent 100%. Averaging these gives 50%, but in reality, females spent
only 1% of the dollars spent on the two products combined.)

The base data should be aggregated first, then the expressions should be applied. (In the
example, after aggregating, the result is a combined spending of $99 for males, and $1 for
females; if the percentage is calculated after the aggregation, the correct value of 1%
results.)

470

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Sort Statements

By default, the order of the nodes within each level of the hierarchy is based on the order
of the data in the input file. However, sometimes it is desirable to sort the hierarchy. The
sort statement can appear in one of two forms:

sort name [, ascending|descending];
sort key [, ascending|descending];

In the first form, one column name (not used in the level statement) is used for sorting.
The column can be the result of an aggregation or an expression. In the second form, the
value used in the level statement is the one used in laying out the hierarchy.

The hierarchy can be sorted in ascending or descending order. If neither option is
specified, the default is descending order if the first form of the sort is used (this places
the largest columns on the left); the default is ascending order if the second form is used
(this typically sorts alphabetically).

Note that sort statements affect the sorting of only the branches of the hierarchy; they do
not affect the bars within each node of the hierarchy.

Hierarchy Options

There are two options in the hierarchy section: skipMissing and organization. The format
for the skipMissing option is

options skipMissing;

If this option is off (the default) and some values of the key are not present for a given
hierarchy node, dummy entries are created with values of 0. This guarantees that all
graphs in the hierarchy have the same number of bars, and the same layout. If this option
is on, no such entries are generated. This results in variable-length tables in the hierarchy,
and bars exist only for items in the input. The position of these bars, however, is not
meaningful. This option is not useful if the key is an enumerated array (for which all
values are supplied).

The Hierarchy Section

471

The skipMissing option increases memory usage and should be avoided, if possible.

The format for the organization option is

options organization same;

options organization contains;

options organization unknown;

The organization option provides hints about the hierarchy organization that allow for
more efficient algorithms. This option is most useful if no hierarchy aggregation is done.
The same value specifies that all nodes in the hierarchy contain entries for the same item
(for example, all nodes could contain “appliances,” “clothing,” “electronics,” and
“furniture”). The contains value indicates that a parent node contains entries for all values
that its children contain. For example, if a node contains “appliances,” its parent node
must also contain “appliances,” although not all of its child nodes must contain
appliances. The unknown value means that no assumptions are to be made regarding the
contents of individual nodes.

If no organization is specified, the Tree Visualizer determines the organization as follows.

• If there is no aggregate subsection, unknown is used.

• If there is an aggregate section, but the skipMissing option is provided, contains is
used; otherwise, same is used. Since this is normally correct when an aggregate
subsection is provided (unless skipMissing is used but nothing is missing), there
normally is no need to provide an organization if the aggregate subsection is
present.

If the organization specified does not match the data, the results are unspecified. For
example, same should not be specified, unless all nodes have the same entries.

472

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The View Section

The view section of a data file describes how the hierarchy is displayed, including the
mapping of heights, colors, labels, and so forth. A sample view section is:

view hierarchy landscape
{
 height sales, normalize levels, max 2.0;
 height legend label "Height: Total sales";
 base height max 1.0;
 disk height target, legend label "Disk height: Target
 sales";
 color pctTarget, scale 0 100 200 500;
 color colors "red" "gray" "green" "blue";
 color legend label "Color: % of target" "0%" "100%"
 "200%" "500%";
 options columns 4;
 message "$%,.2f, %.0f%% of target, %.0f%% of last year",
 sales, pctTarget, pctLastYear;
}

The first words of the view section (before the opening brace) describe the type of view.
The only view type supported is view hierarchy landscape; thus, these words must
introduce the view section.

When entering the view section, the viewHierarchyLandscape.treeviz.options options file is
read in. Note that there is not a simple view.treeviz.options options file, the full name
viewHierarchyLandscape must be used.

Height Statements

The height statement describes how the columns are mapped to the height of objects. It
consists of a series of clauses separated by commas. Alternatively, it can be specified as
multiple height statements. Thus: the following three examples are equivalent:

• height sales, normalize levels, max 2.0;

• height sales;

height normalize levels;

height max 2.0;

• height sales, normalize levels;

height max 2.0;

The View Section

473

The first clause normally contains the name of a column that is to be mapped to height
(“sales,” in the example). The column must be of a number type (int, float, or double);
float is the most efficient. If no height column is specified, all bars are flat, and the
remaining height clauses have no effect.

Normalize Clause

The normalize clause determines the maximum value of the height variable; it
normalizes all values relative to that height. Thus, if the maximum value is 30.0, and that
bar was given a height of 1.0 (in arbitrary units), a value of 15.0 would be mapped to a
value of 0.5.

The syntax of the normalize clause can be

normalize This normalizes all values against one another, throughout the
hierarchy.

normalize levels
This performs independent normalization at each level of the hierarchy.

normalize none
This performs no normalization, and is the default.

The second form is particularly useful in cases where the data is aggregated up the
hierarchy. For example, assume the sales data is aggregated up the company. Comparing
the sales of the company as a whole to the sales of a single individual has little meaning;
in a large company, the heights of the bars for the individuals are so small as to be
indistinguishable from zero. It makes more sense to compare sales people to sales people,
offices to offices, regions to regions, and so on. Normalizing levels does this.

Regardless of which form of normalization is used, the base (if shown) is always
normalized independently of the bars. By default, the same normalization mechanism
for the bars is used for the base.

474

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The scale Clause

The scale clause scales the height of all objects; all values are multiplied by the scale. The
syntax of the scale clause is:

scale float

where float is a floating point number (the decimal point is optional). For example, to
double the heights, specify

scale 2

The filter Clause

Large datasets can contain many graphics. This results in poor performance. In many
cases, the data values are small and of little informative value. The filter clause prefilters
the data based on the height variable, so that only the nodes with the highest bars are
shown. The syntax of the filter clause is:

filter > float %

The > and % characters must be typed literally. For example:

filter > 5%

This example filters out all charts containing no bars greater than 5% of the maximum
bar height, except for those containing descendants in the hierarchy containing such
bars. Note that if a chart contains just one bar that meets this criterion, the entire chart is
shown.

The filter value can be changed interactively through the filter panel (see “The Filter
Panel” in Chapter 4).

The filter clause is permitted only on the height statement.

The View Section

475

The legend Clause

The legend clause defines the meaning of the height mappings. Any string can be placed
in the height legend. The legend clause has the following syntaxes:

legend off This turns off the height legend (this is the default).

legend on This turns on the height legend.

legend label string
This changes the legend. If legend label is used, legend on is
unnecessary.

By default, the legend has the following syntax:

height: varname

where varname is the name of the variable that is mapped to height.

It is possible to declare separate legends for the height, the base height, and the disk
height.

Base Height Statements

The base height statement specifies how the height of the base is calculated. The format
is similar to the height statement, except that it is preceded by the word “base.” If the
base height statement is omitted, the height of the base is calculated using the same
values as in the height statement (the same variable, normalization mechanism, max
value, and so on). You also can specify only some of the clauses for the base, in which
case everything else is the same as the height statement. For example:

height sales, normalize levels, max 2.0;
base height max 1.0;

In this case, the base height is based on sales, and it is normalized by levels. The maximum
height, however, is only 1.0 instead of 2.0. Usually, the visual effect is better if the base
height max is less than the max for the bars.

The filter clause is not permitted on the base height statement.

476

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The on and off Clauses

The initial value of the base height can be turned on and off via the on and off clauses. To
turn it off, use

base height off

To turn it on, use the default:

base height on

The base height can be changed interactively using the Base Height option in the Display
menu. The on and off clauses are valid only with base height. Do not use them with the
height or disk height statements.

Disk Height Statements

You can place a disk on each bar to indicate an additional item of data. This is done with
the disk height statement. The disk height statement’s syntax is similar to that of the
height statement, but it is preceded by the word “disk.” For a disk to be displayed, there
must be a clause specifying the column to be mapped to the disk. Other clauses are
optional; if these are omitted, the height statement’s defaults are used.

If the height statement has a normalize clause, and the disk height statement has no
normalize or max clause, then the disks are normalized with the bars (they are drawn to
the same scale). If the disk height statement has either a normalize clause or a max clause,
the disks are normalized independently of the bars. For example:

height sales, normalize levels, max 2.0;
disk height target;

In this case, the bars are mapped to the variable “sales,” and the disks are mapped to
“target.” Both are normalized, with the maximum value of sales or target on each level
mapped to a value of 2.0. If instead this example is written as

height sales, normalize levels, max 2.0;
disk height target, normalize levels;

the bars are mapped so the highest bar at each level is 2.0, and the highest disk on each
level is 2.0, but the bars and disks are not mapped to the same scale. This can be used, for
example, if the bars represent dollars and the disks represent head count.

The filter clause is not permitted on the disk height statement.

The View Section

477

Color Statements

The color statement describes how values are mapped to colors. The format is similar to
that of the height statement, consisting of several clauses that can be separated by
commas or entered as multiple statements.

Color Naming

Color names follow the conventions of the X Window System™, except that the names
must be in quotation marks. Examples of valid colors are “green,” “Hot Pink,” and
“#77ff42.” The last one is in the form “#rrggbb”, in which the red, green, and blue
components of the color are specified as hexadecimal values. Pure saturation is
represented by ff, a lack of color by 00. For example, “#000000” is black, “#ffffff” is white,
“#ff0000” is red, and “#00ffff” is cyan. (A list of available colors is found in the file
/usr/lib/X11/rgb.txt.)

The Color Variable

As with height, you also can specify a single column to be mapped to a color. The column
must be a number type. Unlike for height, there is no normalization of colors.

The key Clause

Instead of specifying a variable, the word key can be specified. This assigns a different
color based on each key, normally for each bar. For example, if the 50 states were the keys,
key assigns a different color to the bar for each state. Since the base is not keyed, when
the key clause is used, the base is always gray.

The colors Clause

The colors clause specifies the colors to be used. The colors clause syntax is:

colors " colorname " " colorname "...

The format for colorname is described “Color Naming.” Note that there are no commas
between the colors. This is because commas are used to separate clauses in the color
statement. A sample colors clause is

colors "red" "gray" "blue"

478

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly; however, if there is a colors
statement, at least as many colors must be specified as are to be mapped. If a key is used,
there must be one color for each key value.

The scale Clause

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example, 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as are to be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale column indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

The buckets Clause

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

The View Section

479

If, in the pctFemale example, you used the buckets clause instead of the scale clause, the
statement would be

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater or equal to 100 are colored red. Values greater than or equal to 50, but
less than 100, are gray. All other values are blue.

The legend Clause

The legend clause creates a legend of the colors. By default, a legend is on for the bar
colors, and off for base and disk colors, although separate legends are permitted for each.
The legend clause syntax can be any of the following:

legend off
legend on
legend "string" "string" ...
legend label "string"
legend "string" "string" ... label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The default legend includes a single label to the left (with the name of the column that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the keys). To override the strings in the colored
labels, specify the strings as: legend "string" "string .

To override the label on the left, specify it following the word label. To eliminate this
label, specify an empty string; that is:

legend label ""

Base Color Statements

The base color statement controls the color of the base. Its syntax is similar to the color
statement, except that it is preceded by the word “base.” If this word is omitted, the base
has the same color as the bars. If the base color statement is present, any omitted clauses
default to the values of the color statement.

480

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Disk Color Statements

The disk color statement controls the color of the disk. The syntax is similar to the color
statement, except that it is preceded by the word “disks.” If the disk color statement is
omitted, the disk has the same color as the bars. If the statement is present, any omitted
clauses default to the values of the color statement.

Since disks are drawn only if a disk height statement is present, a disk color statement
has no effect without a disk height statement.

Label Statements

Label statements specify the labels used when labeling objects in the scene. Normally,
these statements can be omitted. By default, each bar is labeled with its key; each base is
labeled with its position in the hierarchy. The syntaxes of the label statements are:

label name

base label name

line label name

back label name

where name is the name of the column to be used as the label. The first form is used as the
label on the bars. The second form is the label on the bases. The third form labels the lines
connecting the bases. The fourth places labels behind the bases. (Note that bases often
obscure the back labels, so this form is less useful; however, there might be occasions
where it is appropriate.)

Message Statements

The message statement specifies the message displayed when the pointer is moved over
an object or when an object is selected. The syntax is similar to that of the C printf
statement. A sample message statement is

message "%s: $%f, %.0f%% of target, %.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

This could produce the following message:

furniture: $2425.37, 23% of target, 87% of last year

The View Section

481

The formats must match the type of data being used:

• Strings must use %s.

• Ints must use integer formats (such as %d).

• Floats and doubles must use floating point formats (such as %f).

For details of the printf format, see the printf (1) reference (man) page (type man printf

at the shell prompt).

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, “%,f”), commas are inserted in the number for clarity. Currently,
only the United States convention of d,ddd,ddd.dddd is supported, with the decimal
point represented by a period, and commas separating every three places to the left of
the decimal point. For example, if the above format were:

message "%s: $%,f, %,.0f%% of target, %,.0f%% of last year”,
 product, sales, pctTarget, pctLastYear;

it would produce the message:

furniture: $2,425.37, 23% of target, 87% of last year

The $, *, h, l, ll, L, and n printf format options are not supported.

All values, including the format string, are expressions. Thus, if you had a pctFemale
column, but wanted a more gender-neutral message, you could use

message pctFemale>50?"%f%% females":"%f%% males",
pctFemale>50?pctFemale:100-pctFemale;

If pctFemale is 70, the message “70% females” is displayed; if pctFemale is 30, the
message “70% males” is displayed. In this case, you can also achieve the same result with
a single format string:

message "%f%% %s", pctFemale>50?pctFemale:100-pctFemale,
pctFemale>50?"females":"males";

By default, the same message is used for the base as for the bars. It is possible to specify
a different message by using a base message statement, which has the same syntax.

If no message is specified, a default message containing the names and values of all the
columns is used.

482

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The Execute Statement

The execute statement lets you execute a shell command by double-clicking an object.
The syntax is similar to that of the message command; however, since hierarchy
information is not displayed on a separate line, it is useful to include the hierarchy
information and to pass the key information as arguments.

Here is a sample execute statement that uses xconfirm to show a window with
information about the item. (The first line, the string, is broken into multiple lines to fit
into a single page. In an actual file, it should be on a single line. Multi-line strings are not
supported.

execute "xconfirm -t ‘%s’ -t ‘sales of %s’ -t ‘$%,.0f’
 -t ‘target $%,.0f (%.0f%% of target)’
 -t 'last year $%,.0f, %.0f%% of last year'>/dev/null",
 hierarchy(" "), isSummary()?"everything":product,
 sales, target, pctTarget, lastYear, pctLastYear;

This might produce a dialog with the message

Eastern Connecticut Milford
sales of clothing
$348
target $427 (81% of target)
last year $372 (94% of target)

Note the use of hierarchy(" ") to produce a blank-separated description of the hierarchy.
Also note the isSummary()?”everything”:product; this produces the word “everything”
if the base was selected, but otherwise produces the product. An alternative to this is
using separate execute and base execute statements.

If there is no execute statement, double-clicking an object has the same effect as
single-clicking it.

The View Options

The view section has many options. Like other options statements, the options can be
separated by commas, or they can appear in separate lines.

The View Section

483

Sky and Ground Colors

The sky and ground color can be specified using the following syntax:

options sky color colorname
options sky color colorname colorname
options ground color colorname
options ground color colorname colorname

The syntax for color names is the same as that for color naming.

For both the sky and the ground it is possible to specify either one or two colors. If only
one color is specified, the sky or ground is solid. If two colors are specified, the sky or
ground is shaded between the colors. For the sky, the first color is for the top of the sky,
the second for the bottom. For the ground, the first color is for the far horizon, the second
for the near ground.

For example, to have a solid black background, specify:

options sky color "black", ground color "black";

Bar Layout

By default, bars in each chart are laid out as close to a square as possible. You can override
this using either the rows or the columns option:

options rows number
options columns number

Only one of these can be specified.

Overview

Although the overview can be brought up using the Show menu, it can also be
configured to come up automatically at startup. The overview syntax is:

options overview on
options overview off

The first form causes the overview to be displayed at startup. The second form (the
default) turns the overview off. Regardless of the setting, the overview can be invoked
from the Show menu.

484

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

Shrinkage

Hierarchies normally have a large aspect ratio, having greater width than depth. In their
unaltered form, it is impossible to view the entire hierarchy, except from such a far
distance that no detail would be visible. To see the hierarchy more clearly, distant objects
can be shrunk more than perspective normally dictates. The shrinkage option lets you
control the shrinkage for a given graph. The shrinkage option syntax is any of the
following:

options shrinkage auto
options shrinkage float
options shrinkage off

The first form (the default) automatically calculates a shrinkage value. Its results are
usually reasonable, but not necessarily optimal in unusual hierarchical layouts. Thus,
you might want to explicitly set the shrinkage using the second form. For hierarchies in
which some parts are deeper than others, automatic calculation does not work well. The
best shrinkage value depends on the graph being displayed, as well as various layout
options such as margins. You should experiment with each graph. Start with a value of
10.0, then make adjustments. Smaller values result in a narrower hierarchy and increased
distortion. The shrinkage value must be positive; avoid values smaller than 5.0.

Shrinkage can be turned off. This is recommended only for very small hierarchies, as it
produces hierarchies with very large aspect ratios.

Root Label

By default, the root node of the hierarchy gets a label based on the name of the
configuration file. You can override this by using the root label option. The format is

options root label string

This option also affects the string displayed when an object is selected, as well as the
result of the of hierarchy() function.

Note that the root label option has no effect if the base label statement was used (that
statement defines the base label for the root as well as for all other bases).

The View Section

485

Font

The font option controls the font used for drawing the labels. The syntax is

options font " fontname "

where fontname can be any font in the directory /usr/lib/DPS/outline/base.

It also can be the string default. This attempts to use Helvetica (if available), or the default
Inventor font (if Helvetica is not available). Note that different systems can have different
fonts installed.

Base Label Color

The base label color option controls the color of the labels in front of the bases. The syntax
is

options base label color " color "

Bar Label Color

The bar label color option controls the color of the labels in front of the bars. The syntax is

options bar label color " color "

Line Color

The line color option controls the color of the lines connecting the nodes in the hierarchy.
The syntax is

options line color " color "

Zero

The zero option lets you determine whether bars, disks, and bases of height zero are
drawn solid, as an outline, or hidden completely. In the last case, space is left for the
object, but it is not drawn. The default value is solid. This option can be changed at run
time using the Display menu (see “The Display Menu” in Chapter 4).

486

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

The syntax for the zero option is

options zero solid

options zero outline

options zero hidden

Null

The null option lets you determine whether bars, disks, and bases of height null (see
Appendix I, “Nulls in MineSet”) are drawn solid, outline, or hidden completely. In the
last case, space is left for the object, but it is not drawn. The default value is outline. This
option can be changed at run time using the Display menu (see “The Display Menu” in
Chapter 4). The syntax is

options null solid

options null outline

options null hidden

Other Options

There are 10 other options to control the layout of the display, level of detail, and other
parameters. Generally, it is not necessary to adjust these parameters. The values of many
of the options are in arbitrary units. Adjust the options by increasing or decreasing the
value. For the default values of these parameters, see the file
/usr/lib/MineSet/treeviz/viewHierarchyLandscape.

• options speed float

Controls the speed during free-form (middle-mouse) horizontal navigation
(forward, backward, and side to side). The larger the value, the faster the motion.

• options climb speed float

Controls the speed when moving up and down using Shift + middle mouse. The
larger the value, the faster the motion.

• options leaf leaf margin float

Controls the distance between adjacent nodes in the hierarchy. Larger values move
the nodes farther away.

The View Section

487

• options root leaf margin float

Controls the distance between a node and its children. Larger values move the
nodes farther away.

• options leaf edge margin float

Adds margin space next to nodes at the edge of a subhierarchy.

• options initial position float float float

Provides the initial x, y, and z position from which the scene is viewed. A value of 0
0 0 positions the viewer at the root of the hierarchy; since the user is looking
forward, the root probably is not visible. Increasing x, y, and z moves the camera to
the right, up, and back, respectively. A typical position has a zero x, positive y, and
positive z. If unspecified, the initial position depends on the layout of the hierarchy.

• options initial angle float

Provides the initial angle, measured in degrees, from which the hierarchy is viewed.
The value must be between 0 and 90. A value of 0 looks at the scene horizontally; a
value of 90 looks straight down.

• options bar label size float

Specifies the size of the labels in front of the bars. Larger values result in larger
labels.

• options base label size float

Specifies the size of the labels in front of the bases. Larger values result in larger
labels.

• options lod [bar float float] [bar label float [float]]

 [base float float] [base label float [float]] [disk float]

[motion float]

Controls the level of detail. The parameters can appear in any order, be omitted, or
placed in multiple lod options. These options control the changing form, or
disappearance of, objects, thus providing better system performance.

Except for the motion parameter, all float values represent the size of the object when the
form change or disappearance takes place. The smaller the value specified, the smaller
and farther away the object is when the change takes place. Smaller values provide nicer
graphics but slower system performance. The numbers of the different parameters
cannot be compared directly because the size of the object also determines when the

488

Appendix B: Creating Data and Configuration Files for the Tree Visualizer

change takes place. A value of 0.0 means no level of detail changes for that parameter.
This setting can significantly slow the rendering process.

bar controls when a bar is drawn with less detail. The first value specifies when the object
is drawn as a pair of planes; the second value specifies when the object is drawn as a
single line.

bar label controls when the labels on the bars disappear. If two values are specified, the
first value specifies when the label is drawn in a lower-quality, fast font; the second value
controls when it disappears.

base controls when the bases, and the bar charts in front on top of them, disappear. The
first number is based on the width of the base; the second on the height of the base plus
the tallest bar on it.

base label controls when the label in front of the base disappears. If two values are
specified, the first value specifies when the label is drawn in a lower-quality, fast font; the
second value controls when it disappears.

initial depth controls the initial depth to which the hierarchy is viewed. When you are at
the top of the hierarchy, you see only the number of hierarchical levels specified by the
slider. The nodes in the rows are arranged to optimize their visibility. When navigating
to nodes lower in the hierarchy, additional rows are made visible automatically. The
nodes above them automatically adjust their locations to accommodate the newly added
nodes; thus, some nodes might seem to move. Note that the overview shows all nodes in
the hierarchy, not just the top nodes, so the layout of the overview might not match the
layout of the main view. The X in the overview approximates the corresponding location
in the main view; there is no exact mapping between the two layouts.

An initial depth of zero, or one greater than the depth of the hierarchy, shows the entire
hierarchy.

Once the Tree Visualizer is running, the depth can be changed through the filter panel.

disk controls when the disk disappears.

motion controls changes in some of the level of detail calculations when the scene is
animated. A value greater than 1.0 defaults to 1.0. A value of 1.0 specifies that motion has
no effect on the level of detail. Smaller values change the level of detail at a proportional
distance. For example, a value of 0.5 means that during animation, level of detail changes
occur at half the normal distance.

489

Appendix C

C. Creating Data, Configuration, Hierarchy, and GFX Files
for the Map Visualizer

The first part of this appendix describes the types and formats of data supported by the
Map Visualizer. Data input to the Map Visualizer must be provided as a single file
containing raw data, usually in a tab-separated ASCII text form.

The second part discusses the configuration file, which describes how the Map Visualizer
reads in, and displays, the data file.

Both the data and configuration files can be generated automatically by the Tool Manager
(see Chapter 3).

Note: Read Chapter 5, “Using the Map Visualizer,” before using this appendix.

490

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

The Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields
separated by one tab. (Other separators are also allowed, but only one can separate each
field. See “Input options” on page 501.) All lines must contain the same fields. The
interpretation of the fields is specified by the configuration file, described in “The
Configuration File” on page 492. Using the U.S. population data
(examples/population.usa.data file), provided as part of the Map Visualizer package, the
first few lines of this input file appear as shown below:

AL 0 0 0 1000 9000 127901 309527 590756 771623 964201 996992
1262505 1513401 1828697 2138093 2348174 2646248 2832961 3061743
3266740 3444354 3894025 4040587 51705
AR 0 0 0 0 1000 14000 30000 98000 210000 435000 484000 803000
1128000 1312000 1574000 1752000 1854000 1949000 1910000 1786000
1923000 2286000 2351000 53187
AZ 0 0 0 0 0 0 0 0 0 0 10000 40000 88000 123000 204000 334000
436000 499000 750000 1302000 1775000 2717000 3665000 114000
CA 0 0 0 0 0 0 0 0 93000 380000 560000 865000 1213000 1485000
2378000 3427000 5677000 6907000 10586000 15717000 19971000 23668000
29760021 158706

In this example, the first column is a two-character string identifying the graphical object:
the state. (This string locates a record in a .gfx file containing information about the shape
of the graphical object.) The tab separator is followed by a grouping of 23 numeric values,
which represent the state’s population from 1770 through 1990, in 10-year increments.
The next tab separator is followed by a single numeric value, which specifies the state’s
area in square miles.

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. The order of the columns must
match the format specified by the configuration file.

Any field in the data can also be a “?”, indicating that the data is null (unknown). See
Appendix I, “Nulls in MineSet.”

The Data File

491

Data Types

The Map Visualizer supports integer, floating point number, and string data types, as
well as arrays of these types. The following data types are supported:

• int represents a 32-bit signed integer.

• float represents a single-precision floating point number. The decimal point is
optional. Numbers in exponential “e” notation are also accepted.

• double represents a double-precision floating point number. The decimal point is
optional when representing a floating point number. Numbers in exponential “e”
notation are also accepted. The superior precision of double can be useful for
accurately representing large numbers, since float can represent only seven or eight
significant digits accurately. This superior accuracy, however, consumes twice the
memory space of float.

• dataString represents a string that is unlikely to appear multiple times. If it appears
multiple times, multiple copies are made.

• string represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. Processing is
somewhat slower when looking for duplicate strings as they are read in. An
example of string use is for a division name that appears once for each department
in the division. If you are unsure whether to use a string or a dataString, use a
string.

• fixed string represents a string of fixed length. Like a dataString, if a fixed string
appears multiple times, multiple copies are made. In general, fixed strings are used
internally for representations of data from data bases, and are generally better to
use than strings or dataStrings.

• date represents a date and time. In the data file, date must appear as MM/DD/YY
HH:MM:SS.

492

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Fixed Arrays

With the Map Visualizer, you can use one- or two-dimensional arrays of fixed size. In a
fixed-sized array, all entries of the given type have the same number of values. Arrays
contain the data values across one or two independent variables, that is, those
dimensions controlled by the sliders.

A variant of the “enumerated array” is the “null enumerated array.” This is a variant of
the enumerated array with an additional entry at the beginning for null, which is
represented by “?”.

The Configuration File

The configuration file format is flexible. Words in it must be separated by spaces, and it
is case-sensitive. Except for the include statement and text within quoted strings, spacing
and line breaks are irrelevant.

Overview

The configuration file’s structure and grammar are explained in the following sections.

Sections

The configuration file consists of a series of sections, each of which has the following
syntax:

sectionKeyword
{
 statements...
}

where sectionKeyword names the section. A semicolon (;) can follow the closing brace (})
but is not required. The order of the sections is significant, since sections can refer to
variables defined in previous sections.

The Configuration File

493

Defaults Files

As each section is encountered, a special configuration file (referred to as a defaults file) is
also read in. The defaults file has the same name as the section. Defaults files contain
options statements. These files are searched in the following order, as specified by the
X-resource Mapviz*configPath in the file /usr/lib/X11/app-defaults/Mapviz.

1. The directory /usr/lib/MineSet/mapviz. This directory contains system defaults.

2. The ~/.MineSet directory (where the tilde, ~, indicates your home directory). You can
set up personal defaults in this directory.

3. The current directory. This lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the defaults files; thus, options in the
configuration file override those in the defaults files.

Statements

A statement has the following syntax:

statementKeyword info ;

where statementKeyword defines the statement, and info varies according to the keyword.
A statement can be another section (using the brace format defined under “Sections” on
page 492).

Variable Names

A variable name can appear in two formats:

• In the first format, it is a letter followed by a number of letters, digits, or
underscores. It cannot be a keyword, and should not be placed in quotation marks.

• In the alternate form, the variable name should be surrounded by back quotes (‘).
In this form, the variable name can match a keyword, and can contain even
non-alphanumeric characters. The primary purpose of this second form is for
configuration files generated automatically by the Tool Manager.

There is no scoping of variable names; a given variable name can be declared only once
in the configuration file.

494

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Option Statements

Many sections have options statements, which have the syntax:

options key info, key info... ;

where key defines the specific option, and info depends on the key. In some cases, the key
can be more than one word. To maximize the number of allowable variable names, most
option keys are meaningful only within the appropriate option statement; keys do not
conflict with variable names. You can declare several options on the same line, separating
them by commas or placing them in several options statements. If two conflicting values
for the same option appear, the last value is taken.

Include Statements

The configuration file may contain lines of the form

include "filename"

These lines can appear anywhere in the configuration file, but each must be on its own
line. The filename must be in quotes; anything after the closing quote is ignored. The
number of nested includes is unlimited. If a relative pathname (one not beginning with
a slash) is specified, the file is first sought in the directory containing the current
configuration file. If include statements are present, this might not be the same as the
initially loaded configuration file. If it is not found in the current configuration file, the
include is sought in the current directory. If the file is not found, an error message
appears.

Sinclude Statements

A statement similar to an include is sinclude, which has the syntax:

sinclude "filename"

This is identical to the include statement, except that no error is given if the file does not
exist; instead, the sinclude statement is ignored.

The Configuration File

495

Strings, Characters, and Comments

Strings and characters in the configuration file follow C conventions. Strings are in
double quotation marks (“), and characters are in single quotation marks (’). All standard
backslash conventions are followed (for example, \n represents a new line).

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol to the end of the line is ignored.

Keywords

The currently recognized keywords are listed below. Variables can not have these names
unless they are surrounded by back quotes (‘). Tokens appearing only in option
statements are not keywords, and can be used for variable names.

Table C-1 Keywords for the Map Visualizer

buckets expressions level outlines

color file map scale

colors float message separator

datapoints from modulus slider

dataString height monitor string

date input null summary

divide int objects title

double key off to

enum label on view

execute legend options

496

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Expressions

Expressions are accepted in several places in the input. Expressions follow standard C
syntax The following operations supported:

+ - * / % == != > < >= <= && || ! & | ^ ?:

Also, the following functions are available:

• divide(x, y, z) divides x by y, unless y is zero. If y is zero, the result is z; this is
equivalent to y==0 ? z : x/y.

• modulus(x, y, z) is similar to divide, but for modulus.

Type handling is similar to that in C. Expressions using int and float promote both sides
to float. Expressions using int and double, or float and double promote both sides to
double. The result of a relational expression (for example, ==, <) is always an int. Type
casting is also supported.

Unlike in C, strings can be compared using relational expressions; the strings are
compared lexicographically.

The following sections explain the use and syntax of the Map Visualizer configuration
file’s input, expression, and view geography sections.

The Input Section

The first section of a data file is normally the input section. It defines the name and
format of the data file. A typical input section might look like this:

input
 {
 file
 "/usr/lib/MineSet/mapviz/examples/population.usa.data";
 enum int Year from 1770 to 1990 by 10;
 string states;
 float population[enum Year] separator ' ';
 float sqMiles;
 }

The Configuration File

497

This example specifies that the input data file is called population.usa.data, and that there
are three tab-separated (the default) fields as follows:

• one of type string

• one a fixed-length vector of type float, with each value separated by a space

• one a scalar value of type float

When the input section is entered, the defaults file,
/usr/lib/MineSet/mapviz/input.mapviz.options, is read in.

File Statements

The file statement names the data file to be read. This statement is required. Its syntax is

file " filename ";

The file name must be in double quotation marks. If it is a relative pathname (no leading
slash), it is first sought in the directory containing the current configuration file. If include
statements are present, this might not be the same as the initially loaded configuration
file. If it is not found in the current configuration file’s directory, the file is sought in the
current directory.

Enum Statements

Enum statements declare enumeration variables that index into array fields. The enum
statement has three forms.

• The first form is

enum type name from value1 to value2 by increment ;

This declares an enum with values starting at value1 and incremented by increment
until they reach or exceed value2. For example, the statement:

enum int age from 20 to 70 by 10;

declares age as an array dimension with the values 20, 30, 40, 50, 60, and 70.

498

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Type must be a number type (int, float, or double) or date (see “Dates” on page 498).

• The second enum statement form is

enum type name from value1 to value2 across numberOfValues ;

This declares an enum with values ranging from value1 to value2. The
numberOfValues is an integer specifying the number of values. For example, the
statement

enum int age from 20 to 70 across 6;

declares age as an enum with the values 20, 30, 40, 50, 60, and 70.

Type must be a number type (int, float, or double) or date (see “Dates” on page 498).

• The third enum statement explicitly lists the enumeration values. Its form is

enum type name { value1 , value2 , ..., valueN };

Type can be any type or date (see “Dates” on page 498).

Dates

The enum statement includes special support for a date type that handles date and time
values starting Jan 1, 1753. The date type is valid only within enum statements. A date
enum statement can have the following syntaxes:

enum date “ format ” name from “ value1 ” to “ value2 ” across
 numberOfValues ;
enum date “ format ” name { value1 , value2 , ..., valueN };
enum date “ format ” name from “ value1 ” to “ value2 ” by

“ increment ”;

The format string specifies the format of the values; it is useful for controlling how dates
are displayed in the animation control panel. The syntax of the format string is similar to
the scanf function in C. Various units of time are represented by special characters
preceded by the percent symbol (%). For example:

enum date cq “Calendar Q%Q, %Y” from “Calendar Q1, 1980” to “Calendar
Q3, 1985” by “1 quarter”;

The Configuration File

499

The “Calendar Q” in the format string matches the “Calendar Q” in value1 and value2. The
%Q in the format string indicates that the next number in value1 and value2 is the calendar
quarter. The comma and space in the format string match the commas and spaces in the
values. Finally, the %Y in the format string specifies that the year values are next.

Table C-2 lists the characters that can follow the percent symbol and the units of time
they represent.

With the exception of N, each character matches an integer of the specified precision. N
matches 3 or more characters giving the English name of the month.

The from-to-by form of the enum statement includes an increment value. For dates, the
increment is a quoted string containing an integer, an optional space, and one of the
special characters in Table C-2 or one of the symbols year, quarter, month, day, hour,
minute, and second. The plural forms of these symbols are also accepted. Note that these
symbols are not keywords, since they have special meaning only in the increment string.
The following are examples of valid increments:

“1 year”
“7 days”
“4h”

Table C-2 Characters That Can Follow the Percent Symbol in the format String

Character Time Unit Precision

Y year 4

Q calendar quarter 1

M month 2

N month name >= 3

D day 2

h hour 2

m minute 2

s second 2

500

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Data Statements

The data statements declare the columns in the data file. The columns must be declared
in the order they appear in the data file. The format of most data statements is

type name ;

where type is int, float, double string, dataString, date, and fixedString(n), where n is an
integer representing the width of the string; name is the variable name. Unlike in C, only
one variable can be declared per statement.

Fixed Arrays

Fixed arrays can also be declared using simple numeric data declarations; however, if
you also are going to declare a slider, you must use the enum declaration form. The
declaration syntax is

type name [number] ;

For example:

float revenue [50];

You can also override the separator by declaring it as

type name [number] separator ’ char ’;

For example:

float revenue [50] separator ’:’;

If no separator is specified, the default separator (usually a tab) is used.

Fixed arrays can also be two-dimensional, such as

enum string products {“bread”,“milk”,”cheese”,”cereal”,
”apples”,”lettuce”,”juice”,”toothpaste”,”soap”,”eggs”};

enum year from 1985 to 1994 by 1;

float prices[enum products][enum year];

or

float prices[10][20];

which might be used for an array of prices for a set of 10 products over a 20-year period.

The Configuration File

501

Using the prices array, for example, if you specified in the Tool Manager that data was to
be retrieved from the database in "wide" mode (with a bin for null values), the
enumerated products are declared as:

float prices[null enum products][enum year];

and the first column contains the prices for unknown products (products not in the
enumerated list of ten known products) declared in the enum string products statement.

Input options

The input section of a data file has several options. All options statements begin with the
word “options” and have one or more comma-separated options.

• The separator option defines the separator between columns in the data file. The
default separator is a tab. The syntax is

options separator ’ char ’;

For example:

options separator ’:’;

Note: Arrays can override the separator.

• The monitor option allows a dynamic update of the data displayed. When the
specified file is changed (for example, through the UNIX touch command), the data
file (not the configuration file) is reread. Note that although the data file could be
used to trigger the updates, it is better to use a different file so that the data file is
not read while it is being updated. The syntax of the monitor option is:

options monitor " filename ";
options monitor " filename " timeout ;

where filename is the file to watch, and the optional timeout specifies the number of
seconds to wait after the file changes. If the user interacts with the application in
any way during this timeout (via the mouse or keyboard), the timeout restarts.
Updating the file can take a few seconds. By specifying a timeout, the chances of an
update occurring while the user is interacting with the tool are minimized. This
might delay the update. If no timeout is specified, the update occurs immediately.

The file being monitored must exist at the start of the program. When this file is
being updated, it must not be removed and re-created; instead, only its modify time
should be updated (for example, through the touch command). If the file is deleted,
subsequent updates are not shown.

502

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Suppose a program extractor extracts data from a database into a data file. If you
want the program to update the data file every 10 minutes, the script you write
might look like this:

extractor > dataFile; # create first data file
touch trigger; # create the trigger file
while (sleep 600) # sleep 10 minutes
do
extractor > dataFile; # create new data file
touch trigger; # force a reread
done & # this loop goes in the
 # background
mapviz configFile; # run mapviz
kill $! # when mapviz exits, kill
 # the update loop

The monitor option can be used only if the file alteration monitor /usr/etc/fam is
installed (this can be found in the subsystem desktop_eoe.sw.fam).

The input section of configuration file might look like this:

input
{
 file "dataFile:
 #data declarations here
 options monitor "trigger" 15;
}

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

 options backslash off;
 options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Also, within strings standard C-style backslash processing is done.

The Configuration File

503

The Expressions Section

The expressions section pf a data file lets you define additional columns that are
expressions of existing columns. For example, one column can be defined as the sum of
two other columns. The following is a sample expression section. This section assumes
two existing fixed-length columns of type double: “male” and “female”; these represent
spending by males and females on various goods across time (one independent
dimension). Two columns are added: “total” represents the total dollars spent, and
“pctFemale” represents the percentage of dollars spent by females.

expressions
{
double total[enum month] = male+female;
double pctFemale[enum month] = divide(female*100,total,50.0);
}

Note: The pctFemale calculation uses “total,” defined in the previous section. Also, note
the use of the divide function rather than the / operator. This results in 50% for the case
where there are no dollars spent at all; using the / operator generates a divide by zero
error in such a case. (The divide function is described in the “Expressions” section.)

The format of the expressions section is

expressions
{

expressionDeclaration ;
 ...
}

where expressionDeclaration has the following syntax:

type name = expression ;

The format of expression has already been described.

Since the expressions section has no options, no defaults file is read in for it.

504

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

The View Section

The view section of a data file describes how the graphic objects are displayed, including
the mapping of heights, colors, labels, and so forth. A sample view section is

view map
{
 map objects "usa.states.hierarchy";
 slider Year;
 height population;
 height legend label "Height: U.S. Population (1770-1990)";
 color density, scale 0 250 500 750 1000;
 color colors "white" "#ffc0c0" "#ff8080" "#ff4040" "red";
 color legend label "Color: Pop. Density" "0/sq-mile"
 "250/sq-mile" "500/sq-mile" "750/sq-mile"
 "1000/sq-mile";
 message "population %,.0f %,.1f per sq mile",
 population, density;
 execute "xconfirm -t 'Population %,.0f'
 -t 'averaging %,.1f per sq mile'
 -t 'across %,.0f sq-miles' > /dev/null",
 population, density, sqMiles;
 }

The first words of the view section (before the opening brace) describe the type of view.
The only view type supported is view map; thus, these words must introduce the view
section.

When entering the view section, the viewMap.mapviz.options defaults file is read in. Note
that there is no simple view defaults file, so the full name viewMap.mapviz.options must
be used.

Title Statement

The title statement inserts a title string at the bottom of the main window. The syntax is

title string ;

where string is a string enclosed by double- quotation makes.

The Configuration File

505

Map Statement

The map statement specifies how the graphical objects are to be drawn in the main
window. The map statement has three possible syntaxes: one required, the other two
optional. The required syntax is

map objects hierarchy_filename ;

where “objects” is a keyword, and hierarchy_filename is a filename enclosed in double
quotation marks. This statement names the .hierarchy file describing the 3D graphical
objects that exhibit heights and colors.

The following map statements are optional:

• map outlines hierarchy_filename;

Declares graphical objects that are drawn as flat lines on which the map objects
objects are placed. See the samples provided in examples/population.usa.cities.mapviz.

• map level column_name;

Specifies an alternative level of the geographical hierarchy for initial display. For
example, in the examples/population.usa.mapviz file, the unstated default is

map level states;

and the main window initially displays individual states. If, instead, the
configuration file specified

map level eastWest;

the main window initially displays the United States as two halves: East and West.

Slider Statement

The slider statement identifies a key to be used as a slider dimension. Its syntax is

slider [enum] enumName;

where enumName is the name of an enum variable declared in the input section. Note that
the enum keyword is optional.

There can be 0, 1, or 2 slider statements. The first slider statement applies to the
horizontal slider. The second slider statement applies to the vertical slider. If there is no
slider statement, the resulting display does not include animation.

506

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

No slider statement is required if “height” and “color” map to non-array variables. One
slider statement can be included if “height” and “color” map to one-dimensional arrays.
Two slider statements can be included if “height” and “color” map to:

• two-dimensional arrays, or

• one-dimensional arrays, where dimensions are enum variable names that one of the
sliders controls.

Height Statement

The height statement describes how the columns of data are mapped to the height of
objects. It consists of a series of clauses separated by commas. The first clause normally
contains the name of a column to be mapped to height (“population,” in the example in
the section “The View Section” on page 504). The column must be of a number type (int,
float, or double), of which float is the most memory-efficient. If the column is a
fixed-length array, the view section also must contain at least one, and no more than two,
slider statements.

If no height column is specified, all bars are flat, and the remaining height clauses have
no effect.

The scale clause lets you scale the height values. Normally, the height variable is mapped
directly to the height of the graphical objects, so that the tallest object (with the largest
numeric value) rises towards the top of the view window. With the optional scale clause,
all values are multiplied by the scale. The scale clause syntax is

scale float

The legend clause defines the meaning of the height mappings. Any string can be placed
in the height legend. The legend clause has the following syntaxes:

legend off This turns off the height legend (this is the default).

legend on This turns on the height legend. The legend can be changed by using the
legend label form, in which case legend on is unnecessary. The legend’s
default syntax is

height: varname

where varname is the name of the variable that is mapped to height.

The Configuration File

507

legend label string
where string is the name of the variable that is mapped to height. The
legend can be changed by using the legend label form. If legend label is
used, legend on is unnecessary.

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
that of the height statement, consisting of several clauses that can be separated by
commas or entered as multiple statements.

Color naming follows the conventions of the X Window System, except that the names
must be in quotation marks. Examples of valid colors are “green,” “Hot Pink,” and
“#77ff42.” The last one is in the form “#rrggbb”, in which the red, green, and blue
components of the color are specified as hexadecimal values. Pure saturation is
represented by ff, a lack of color by 00. For example, “#000000” is black, “#ffffff” is white,
“#ff0000” is red, and “#00ffff” is cyan.)

The color variable lets you specify a single column to be mapped to a color (as with
height). The column must be a number type.

The colors clause specifies the colors to be used. The colors clause’s syntax is

colors " colorname " " colorname "...

The format for colorname is described above. Note that there are no commas between the
colors. This is because commas are used to separate clauses in the color statement. A
sample colors clause is

colors "red" "gray" "blue"

 Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly; however, if there is a colors
statement, at least as many colors must be specified as are to be mapped.

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example 25% is pinkish, and 55% is a
slightly bluish gray.

508

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

The syntax for the scale clause is

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as are to be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale column indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

If, in the pctFemale example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater or equal to 100 are colored red. Values greater than or equal to 50, but
less than 100, are gray. All other values are blue.

The normalize clause controls a form of color normalization, analogous to height
normalization. By default, color normalization is off. The syntax is

normalize off;
normalize on;

The Configuration File

509

When color normalization is on, the color scale (or buckets) list of values must range
between 0 and 100. These color values then represent relative percentages of the range
from the minimum to the maximum for a given viewed scene. For example,

color totalSales;legend off
color scale 0 100, colors “white” “red”, normalize on;

generates colors in the range of “white” to “red,” where “white” corresponds to the
minimum “totalSales” and “red” corresponds to the maximum “totalSales” for the
particular set of graphical objects being viewed. See
/usr/lib/MineSet/mapviz/examples/variations.articles.france.mapviz for a more elaborate
example.

The legend clause creates a legend of the colors. By default, the color legend is off. The
legend clause syntax can be any of the following:

legend off
legend on
legend "string" "string" ...
legend label "string"
legend "string" "string" ... label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The default legend includes a single label to the left (with the name of the column that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the keys). To override the strings in the colored
labels, specify the strings as:

legend "string" "string

To override the label on the left, specify it following the word label. To eliminate this
label, specify an empty string; that is

legend ""

510

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

Message Statement

The message statement specifies the message displayed when an object is selected. The
syntax is similar to the C printf statement. A sample message statement is

message "%s: $%f, %.0f%% of target, %.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

This could produce the following message:

furniture: $2425.37, 23% of target, 87% of last year

The formats must match the type of data being used:

• Strings must use %s.

• Ints must use integer formats (such as %d).

• Floats and doubles must use floating point formats (such as %f).

For details of the printf format, see the printf (1) reference (man) page (type man printf

at the shell prompt).

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, “%,f”), commas are inserted in the number for clarity. Currently,
only the United States convention of d,ddd,ddd.dddd is supported, with the decimal
point represented by a period, and commas separating every three places to the left of
the decimal point. For example, if the above format were:

message "%s: $%,f, %,.0f%% of target, %,.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

it would produce the message:

furniture: $2,425.37, 23% of target, 87% of last year

The $, *, h, l, ll, L, and n printf format options are not supported.

All values, including the format string, are expressions. Thus, if you had a pctFemale
column, but wanted a more gender-neutral message, you can use:

message pctFemale>50?"%f%% females":"%f%% males",
 pctFemale>50?pctFemale:100-pctFemale;

The Configuration File

511

If pctFemale is 70, the message “70% females” is displayed; if pctFemale is 30, the
message “70% males” is displayed. In this case, you can also achieve the same result with
a single format string:

message "%f%% %s", pctFemale>50?pctFemale:100-pctFemale,
 pctFemale>50?"females":"males";

If no message is specified, a default message containing the names and values of all the
columns is used.

Execute Statement

The execute statement lets you execute a shell command by double-clicking an object.
The syntax is similar to that of the message command.

Here is a sample execute statement that uses xconfirm to show a window with
information about the item. Note that the command line (string) is shown as three lines.
In an actual file, this should be on a single line. Multi-line strings are not supported.

execute "xconfirm -t '%s' -t 'population %,.0f' -t '%,.0f per
 sq mile' -t '%,.0f sq-miles' > /dev/null", states,
 population, density, sqMiles;

This might produce a dialog with the message:

CA
64 per sq mile
266,807 sq-miles

If there is no execute statement, double-clicking an object has the same effect as
single-clicking it.

Summary Statement

The summary statement specifies the initial setting of the Show Data Points pulldown
menu option. The syntax is

summary datapoints on;

or

summary datapoints off;

The summary statement is optional, and the default setting is off.

512

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

The Hierarchy File

The hierarchy file defines the object hierarchy, allowing objects to be displayed at
different levels of aggregation. It enables the drill up and drill down capabilities of the
Map Visualizer (see “File Requirements” in Chapter 5). The hierarchy file is specified in
the .mapviz configuration file with the map object hierarchy_filename statement (see
“The View Section” on page 504 and “Map Statement” on page 505).

Here are the first few lines of the usa.states.hierarchy file:

states regions eastWest USA
usa.states.gfx usa.states.gfx
 usa.states.gfx usa.states.gfx
AL E_S_CENTRAL USA_E USA_ALL
AR W_S_CENTRAL USA_W USA_ALL
AZ MOUNTAIN USA_W USA_ALL
CA PACIFIC USA_W USA_ALL
CO MOUNTAIN USA_W USA_ALL
CT NEW_ENGLAND USA_E USA_ALL
DE MID_ATLANTIC USA_E USA_ALL

This defines how states combine into regions, sectors, and into a single object
encompassing all states.

The first record is a list of column names of the hierarchy; each name must be separated
by a single tab (‘\t’) character. One of the column names must match a type string
column in the data file, as declared in the configuration file’s input section on page 496).
In this example, the first column name, states, is also the name of a data column in the
example population.usa.mapviz. The number of column names in this record must be the
same as the number of columns of hierarchy data, beginning at the third record of the
.hierarchy file. If there is only one column name (for example,
gfx_files/canada.provinces.hierarchy), then there are only two records in the .hierarchy file.

The second record is a list of .gfx file pathnames, where each pathname is separated by a
single tab (‘\t’) character. Each column name in the first record must have a matching .gfx
file pathname.

If there is a single column name (and .gfx file pathname), then only these two records
must be in the file. If there are multiple column names and pathnames, then starting at
the third record in the .hierarchy file is an N-column table of keywords of graphical
objects, where N is the number of column names in the first record. Looking at the
sample file, the first column contains “states” keywords, the second column “regions”

The .gfx File

513

keywords, the third the “eastWest” keywords, and the fourth the “USA” keyword. The
matching .gfx files contain the positions and shapes of each of the column’s graphical
objects.

The third and remaining records in the hierarchy file are the hierarchy data. These
records define how objects at one level correspond to objects at other levels.

The .gfx File

The .gfx files define the geometry of each object used by the Map Visualizer when
displaying the objects. Each .gfx file contains multiple records, one for each object being
displayed. Each record contains:

• the gfx keyword name

• the gfx full name

• the vertex pair count

• the shape hint

• the vertex pairs

The following steps guide you through the procedure for building .gfx files.

1. Using a digitizing scanner, convert a geographical image into an RGB image file
format. Note that the image itself is not used by the Map Visualizer; it is just used as
a template for defining the graphical objects in Step 6 on page 514.

2. Launch the i3dm application in /usr/demos/bin/. (If this application is not currently
installed, it can be installed from the IRIX™ 5.3 or 6.2 distribution, in the subsystem
demos.sw.tools.) This creates windows on your screen: a Menu window on the left,
an Input window across the bottom, and four windows (labeled TOP, Pers, Front,
and Right) on the right. All i3dm windows must remain displayed (not iconified) for
i3dm to work.

3. Move the cursor to the Front window.

4. Press the right mouse button to display options. Continue holding the right mouse
button, and scroll to the Image Background option, then to the Load Image option.
The Input window (at the bottom of your screen) prompts you for a name to apply
to this image.

5. Enter the name of the RGB image file. The image appears in the Front window.

514

Appendix C: Creating Data, Configuration, Hierarchy, and GFX Files for the Map Visualizer

6. Delineate the shape of each object in the image by pointing and clicking at
significant points on the boundary of each object. Do this in a clockwise sequence
for each object. Each identified point is called a “vertex” and is represented by
numeric x- and y-axis values. These values are assigned by the i3dm application
and exist in a relative frame of reference for that RGB image file. The following
procedure is used to delineate each object’s shape:

■ Use the middle mouse button to drag the image in the Front window so that the
object you are going to delineate is completely exposed. If this is not possible,
see step 8.

■ Go to the Menu window, and click the right mouse button on the Create
pulldown menu.

■ Choose the Line option.

■ Start the point-and-click process of selecting vertices with the left mouse button
in the Front window. Note that the greater the number of vertices you identify,
the more accurate the resulting graphical image is.

■ Note the red line crosshairs as you move the cursor over the image. As you click
the left mouse button to declare each vertex, a small red box appears at that
point. The box of the previous vertex changes to a small “x,” and a yellow line
connects the new vertex to the previous vertices. As you move clockwise
around the object, stop selecting vertices immediately before you are about to
close the shape (that is, before clicking on the first vertex you selected when
starting to delineate the object).

■ Go to the Menu window, and click the right mouse button on the Attrib
pulldown menu.

■ Scroll to the Name option. The Input window (at the bottom of your screen)
prompts you for a name.

■ Enter a unique identifier for the object you have just delineated. Do not use
spaces. The becomes the object’s gfx keyword name. For example, in
population.usa.mapviz the gfx column is specified as the first column in the data
file. This first column contains strings such as “CA” and “NY.” These are the
keyword names for the states. These keyword names are the gfx keyword
names in the associated gfx file.

■ Go to the Menu window, and click the right mouse button on Done.

7. Repeat Step 6 for every other object in the same image. If the object adjoins a
previously identified object, you must reuse common vertices by selecting them
with the middle mouse button instead of the left mouse button. Using the middle

The .gfx File

515

mouse button while the crosshairs are positioned close to a previously selected
vertex ensures that the newly selected vertex is identical to the previously selected
one.

Caution: If a graphical object is too large to fit into the Front window, you must
identify the vertices in sections. After all the objects are declared and the vertex
information written to an ASCII file, you must edit this output file to join the sections
of each subdivided object.

8. When all objects are identified, save the recorded vertices in a file. To do this:

■ Go to the Menu window and press the right mouse button on the File pulldown
menu.

■ Scroll down to the File i3dm format option and choose it. The Input window (at
the bottom of your screen) prompts you for a filename.

■ Enter a filename, specifying the .i3dm suffix.

9. Exit the i3dm application. To do this

■ Go to the Menu window, and choose the File pulldown menu.

■ Scroll to the Exit option, and choose it.

10. Convert the i3dm format file into a gfx file format by using the convert.i3dm utility,
using the following syntax:

/usr/lib/MineSet/mapviz/convert.i3dm inputFilename
outputFilename.gfx

For each object, the utility prompts you to

• confirm the object’s keyword name (which defaults to the Attrib name you
supplied in Step 6, substep 6, above, when identifying the vertices)

• declare the object’s full name (which is the name the user sees in the Map
Visualizer’s Selection window when using the mouse to select a geographical
object)

• declare if the object has a concave shape that requires special handling

Note: Declaring an object to be concave results in an accurate graphical display, but
at the cost of slower performance. One strategy is to declare no objects as concave,
examine the display to determine which objects are inaccurately drawn, then
manually edit the gfx files for those objects, changing the string “convex” to
“concave.” Another strategy is to declare all objects as “concave” (assuming there are
few objects), then determine if the resulting performance is acceptable.

517

Appendix D

D. Creating Data and Configuration Files for the Scatter
Visualizer

The first part of this appendix describes the types and formats of data supported by the
Scatter Visualizer. Data input to the Scatter Visualizer must be provided as a single file
containing raw data, usually in a tab-separated ASCII text form.

The second part discusses the configuration file, which describes how the Scatter
Visualizer reads in, and displays, the data file.

Both the data and configuration files can be generated automatically by the Tool Manager
(see Chapter 3).

Note: Read Chapter 6, “Using the Scatter Visualizer,” before using this appendix.

The Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields
separated by one tab. (Other separators are also allowed, but only one can separate each
field. See “Input Options” on page 530.) All lines must contain the same fields. The
interpretation of the fields is specified by the configuration file, described in the next
section. Using the store sales data provided as part of the Scatter Visualizer package (file
/usr/lib/MineSet/scatterviz/examples/store-type.data), the first few lines of the input file
appear as:

LIQUOR STORE 4300,4460,4800,4900,4700,4200,4250,4200
2700,2800,2750,3000,2900,2600,2500,2650
1600,1650,1900,1950,2000,2200,2300,2300
GROCERY STORE 700,900,600,800,877,755,800,600
3000,2900,3100,2800,2899,2950,3400,3300
10000,11000,9000,9800,9700,9650,9770,9700

518

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

In this sample file listing, each line consists of four fields, separated by tabs. The first field
is a string that identifies a store type. The second field is an array of eight numbers,
separated by commas, which might be sales of alcohol over an eight-day period. The
third and fourth fields are also arrays of eight numbers that could represent sales of
tobacco and food, respectively, over the same eight-day period.

The sample data file has other fields in the same format, but these are not shown. These
additional fields correspond to sales of other products (see the configuration file
/usr/lib/MineSet/scatterviz/examples/store-type.scatterviz for a listing of all the fields).

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. The order of the fields must match
the format specified by the configuration file.

Data Types

The Scatter Visualizer supports integer, floating-point number, and string data types, as
well as arrays of these types. The following data types are supported:

• int represents a 32-bit signed integer.

• float represents a single-precision floating point number. The decimal point is
optional. Numbers in exponential “e” notation are also accepted.

• double represents a double-precision floating point number. The decimal point is
optional when representing a floating point number. Numbers in exponential “e”
notation are also accepted. The superior precision of double can be useful for
accurately representing large numbers, since float can represent only seven or eight
significant digits accurately. This superior accuracy, however, consumes twice the
memory space of float.

The Data File

519

• dataString represents a string that is unlikely to appear multiple times. If it appears
multiple times, several copies are made. A dataString is typically used to store an
address. Addresses are unlikely to be compared, and each record can have a
different address.

• string represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves much memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. Processing is
somewhat slower when looking for duplicate strings as they are read in. An
example of string use is for a division name that appears once for each department
in the division. If you are unsure whether to use a string or a dataString, use a
string.

• fixed string represents a string of fixed length. Like a dataString, if a fixed string
appears multiple times, multiple copies are made. In general, fixed strings are used
internally for representations of data from data bases, and are generally better to
use than strings or dataStrings.

• date represents a date and time. In the data file, date must appear as MM/DD/YY
HH:MM:SS.

Arrays

With the Scatter Visualizer, you can use fields that are one- or two-dimensional arrays of
fixed size. In a fixed-sized array field, all entries of the given field are arrays with the
same number of values. Arrays contain the data values across one or two independent
variables (those dimensions controlled by the sliders). In the listing from the file
store-type.data, the second, third, and fourth fields are arrays.

Null Values

Any field or array element in the data file can also have the value “?” (question mark),
indicating an unknown or null value (see the discussion of nulls in Appendix I).

520

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

The Configuration File

The configuration file format is flexible. Words in it must be separated by spaces, and it
is case-sensitive. Except for the include statement and text within quoted strings, spacing
and line breaks are irrelevant.

Sections

The configuration file consists of a series of sections, each of which has the form:

sectionKeyword
{
statements...
}

where sectionKeyword names the section. The order of the sections is significant, since
sections can refer to variables defined in previous sections.

Defaults Files

As each section is encountered, a special configuration file (referred to as a defaults file) is
also read in. Defaults files normally contain options statements. These files are searched
in the following order:

1. The directory /usr/lib/MineSet/scatterviz. This directory usually contains system
defaults.

2. The ~/.MineSet directory (where the tilde, ~, indicates your home directory). You can
set up personal defaults in this directory.

3. The current directory. This lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the defaults files; thus, options in the
configuration file override those in the defaults files.

The Configuration File

521

Statements

A statement has the following form:

statementKeyword info ;

where statementKeyword defines the statement, and info varies according to the keyword.

Variable Names

A variable name can appear in two formats:

• In the first format, it is a letter followed by a number of letters, digits, or
underscores. It cannot be a keyword, and should not be quoted.

• In the alternate form, the variable name should be surrounded by back quotes (‘).
In this form, the variable name can match a keyword, and can contain even
non-alphanumeric characters. The primary purpose of this second form is for
configuration files generated automatically by the Tool Manager.

There is no scoping of variable names; a given variable name can only be declared once
in the configuration file.

Options Statements

Many sections have options statements, which have the form

options optionName info , optionName info ... ;

where optionName defines the specific option, and info depends on the option. In some
cases, optionName can be more than one word. To maximize the number of allowable
variable names, most option names are meaningful only within the appropriate options
statement; option names do not conflict with variable names. You can declare several
options on the same line, separating them by commas or placing them in several options
statements. If two conflicting values for the same option appear, the last value is taken.

522

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

Include Statements

The configuration file can contain lines of the form

include "filename"

These lines can appear anywhere in the configuration file, but each must be on its own
line. The filename must be in quotation marks; anything after the closing quote is
ignored. The number of nested includes is unlimited. If a relative pathname (one not
beginning with a slash) is specified, the file is first sought in the directory containing the
current configuration file. If include statements are present, this might not be the same as
the initially loaded configuration file. If it is not found in the current configuration file,
the include is sought in the current directory.

Sinclude Statements

A statement similar to an include is sinclude, which has the form

sinclude "filename"

This is identical to the include statement, except that no error is given if the file does not
exist; instead, the sinclude statement is ignored.

Strings and Characters

Strings and characters in the configuration file follow C conventions. Strings are in
double quotation marks ("), and characters are in single quotation marks (’). All standard
backslash conventions are followed (for example, \n represents a new line).

Comments

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol to the end of the line is ignored, up to the end of the line.

The Configuration File

523

Keywords

The keywords recognized by the Scatter Visualizer are listed in Table D-1. Variables
cannot have these names unless they are surrounded by back quotes (‘). Tokens
appearing only in option statements are not keywords, and can be used for variable
names.

Currently, the keywords execute, min, monitor, and time are not used by the Scatter
Visualizer.

Expressions

Expressions are accepted in several places in the input. Expressions follow the syntax of
C. The following operations are supported:

+ - * / % == != > < >= <= && || ! & | ^ ?:

Table D-1 Scatter Visualizer Keywords

across average axis buckets

by color colors dataString

date divide double entity

execute expressions file float

from include input int

key label legend max

message min modulus monitor

off on options scale

separator sinclude size slider

string sum summary time

to view

524

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

Also, the following functions are available:

• divide(x, y, z) divides x by y, unless y is zero. If y is zero, the result is z; this is
equivalent to y==0 ? z : x/y.

• modulus(x, y, z) is similar to divide, but for modulus.

Type handling is similar to that in C. Expressions using int and float promote both sides
to float. Expressions using int and double, or float and double promote both sides to
double. The result of a relational expression (for example, ==, <) is always an int. Type
casting is also supported.

Unlike in C, strings can be compared using relational expressions; the strings are
compared lexicographically.

The Input Section

The first section of a configuration file is normally the input section. It defines the name
and format of the data file. A typical input section might look like this:

input {
 file "company.data";
 string company;
 slider int income from 20000 to 60000 by 10000;
 slider date “%N %Y” purchaseDate from “Jan 1990” to “Dec
 1992” by “1 month”;
 options array separator ‘,’;
 float lifeSales[income][purchaseDate];
 float autoSales[income][purchaseDate];
 float homeSales[income][purchaseDate];
 string location;
 }

This example states that the input file is called company.data, and that there are five fields:
company, lifeSales, autoSales, homeSales, and location. The company and location fields are of
type string, while the other three fields are two-dimensional arrays of type float. Two
slider dimensions are declared:

• income, which is of type int, ranges from 20000 to 60000 in increments of 10000; and

• purchaseDate, which is of type date and ranges from January 1990 to December 1992
in increments of 1 month.

The Input Section

525

The arrays lifeSales, autoSales, and homeSales contain values for each income and purchase
date. Individual values within the arrays are separated by commas.

When the input section is entered, the defaults file inputDefaults is read in.

File Statements

The file statement names the data file to be read. This statement is required. Its form is:

file " filename ";

filename must be in double quotation marks. If it is a relative pathname (no leading slash),
it is first sought in the directory containing the current configuration file. If include
statements are present, this might not be the same as the initially loaded configuration
file. If it is not found in the current configuration file’s directory, the file is sought in the
current directory.

Enumeration Statements

Enumeration statements declare enumerations, or enums, that index into array fields.
The enum statement has three forms.

• The first enum statement form is

enum type name from value1 to value2 by increment ;

This declares an enum with values starting at value1 and incremented by increment
until they reach or exceed value2. For example, the statement

enum int age from 20 to 70 by 10;

declares age as an enum with the values 20, 30, 40, 50, 60, and 70.

Type must be a number type (int, float, or double) or date (see “Dates” on page 526).

526

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

• The second enum statement form is

enum type name from value1 to value2 across numberOfValues ;

This declares an enum with values ranging from value1 to value2. The
numberOfValues is an integer specifying the number of values. For example, the
statement:

enum int age from 20 to 70 across 6;

declares age as an enum with the values 20, 30, 40, 50, 60, and 70.

Type must be a number type (int, float, or double) or date (see “Dates” on page 526).

• The third enum statement explicitly lists the enum values. Its form is:

enum type name { value1 , value2 , ..., valueN };

Type can be any type or date (see “Dates” on page 526).

Dates

The enum statement includes special support for a date type that handles date and time
values starting Jan 1, 1753. The date type is valid only within enum statements. A date
enum statement can have the following syntaxes:

enum date “ format ” name from “ value1 ” to “ value2 ” across
 numberOfValues ;
enum date “ format ” name { value1 , value2 , ..., valueN };
enum date “ format ” name from “ value1 ” to “ value2 ” by

“ increment ”;

The format string specifies the format of the values; it is useful for controlling how dates
are displayed in the animation control panel. The syntax of the format string is similar to
the scanf function in C. Various units of time are represented by special characters
preceded by the percent symbol (%). For example,

enum date cq “Calendar Q%Q, %Y” from “Calendar Q1, 1980” to “Calendar
Q3, 1985” by “1 quarter”;

The “Calendar Q” in the format string matches the “Calendar Q” in value1 and value2. The
%Q in the format string indicates that the next number in value1 and value2 is the calendar
quarter. The comma and space in the format string match the commas and spaces in the
values. Finally, the %Y in the format string specifies that the year values are next.

The Input Section

527

Table D-2 lists the characters that can follow the percent symbol and the units of time
they represent.

With the exception of N, each character matches an integer of the specified precision. N
matches 3 or more characters giving the English name of the month.

The from-to-by form of the enum statement includes an increment value. For dates, the
increment is a quoted string containing an integer, an optional space, and one of the
special characters in Table D-2 or one of the symbols year, quarter, month, day, hour,
minute, and second. The plural forms of these symbols are also accepted. Note that these
symbols are not keywords, since they have special meaning only in the increment string.
The following are examples of valid increments:

“1 year”
“7 days”
“4h”

Table D-2 Characters That Can Follow the percent Symbol in the format String

Character Time Unit Precision

Y year 4

Q calendar quarter 1

M month 2

N month name >= 3

D day 2

h hour 2

m minute 2

s second 2

528

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

Data Statements

The data statements declare the fields in the data file. The fields must be declared in the
order they appear in the data file. The format of most data statements is

type name ;

where type is int, float, double string, dataString, date, and fixedString(n), where n is an
integer representing the width of the string; name is the variable name. Unlike in C, only
one variable can be declared per statement.

A data field can also be based on an enumeration. The syntax is

enum enumName name;

The field must contain ints corresponding to the values of the enum. For example, if the
enum ageGroup is declared as

enum string ageGroup {"below 30", "30-39", "40-49", "50-59",
"60 or above"};

the field age can be declared as

enum ageGroup age;

The field should contain ints between 0 and 4, where 0 is displayed as “below 30,” 1 as
“30-39”, and so forth.

Only one variable can be declared per statement.

Arrays

Arrays are also declared using data declarations. The declaration syntax for
one-dimensional arrays is one of the following:

type name [number] ;
type name [enumName] ;
type name [null enumName] ;

For example:

float revenue [50];

The Input Section

529

The declaration syntax for two-dimensional arrays is one of the following:

type name [number1][number2] ;
type name [enumName1][enumName2] ;
type name [null enumName1][null enumName2] ;

For example:

float revenue [50][10];

When enums are used, the number of values in the array is taken from the declaration of
the enum. For example, given the statements

enum int age from 20 to 70 by 10;
float clothingPurchases[age];

the array clothingPurchases must have six values, corresponding to the enum values 20,
30, 40, 50, 60, and 70.

The keyword null indicates an extra value at the beginning of the array, corresponding
to null. Thus, the statements

enum int age from 20 to 70 by 10;
float clothingPurchases[null age];

declare clothingPurchases as an array with seven values: the first value corresponding to
null or unknown age values, and the remaining six values corresponding to age values
20, 30, 40, 50, 60, and 70.

You can override the separator between values in an array by declaring it as:

type name [number] separator ‘ char ’;

For example:

float revenue [50][10] separator ‘:’;

If no separator is specified, the default separator (usually a tab) is used.

530

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

Input Options

All options statements begin with the word “options” and have one or more
comma-separated options.

• The separator option defines the separator between fields in the data file. The
default separator is a tab. The syntax is

options separator ‘ char ’;

For example:

options separator ‘:’;

Note: The separator is used also to separate values within arrays; however, arrays
can override the separator.

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

options backslash off;

options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Within strings, this causes standard C-style backslash processing.

The Expressions Section

The expressions section of a configuration file lets you define additional fields that are
expressions of existing fields. For example, one field can be defined as the sum of two
other fields.

The format of the expressions section is

expressions
{
expressionDeclaration ;
...
}

The View Section

531

where expressionDeclaration has the following form:

type name = expression ;

The following is a sample expression section. This section assumes two existing array
fields of type double: “male” and “female”; these represent spending by males and
females on various goods across time (one independent dimension). Two fields are
added: “total” represents the total dollars spent, and “pctFemale” represents the
percentage of dollars spent by females.

expressions
{
double total[36] = male+female;
double pctFemale[36] = divide (female*100, total, 50.0);
}

Note: The pctFemale calculation uses “total,” defined in the previous statement. Also,
note the use of the divide function rather than the / operator. This results in 50% for the
case where there are no dollars spent at all; using the / operator generates a divide by zero
error.

The expressions section has no options; thus, no defaults file is read in for it.

The View Section

The view section of a configuration file describes how the data is displayed, including
the mapping of sizes, colors, axes, and so on. The default values for these options are in
/usr/lib/MineSet/scatterviz/view.scatterviz.options. Its form is

view
{
viewStatement ;
...
}

532

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

A sample view section is

view {
 slider month;
 entity brand;
 axis male$, color “blue”;
 axis female$, color “red”;
 size total$, max 5;
 color pctFemale, scale 0 50 100, colors “blue” "gray"
 "red";
 message "brand %s, total sales %,.0f",brand, total$;
 }

When entering the view section, the viewDefaults file is read in.

Slider Statement

The slider statement identifies an enum to be used as a slider dimension. Its syntax is one
of the following:

slider enumName;
slider null enumName;

The enum name is declared in the input section. If the keyword null is present, the slider
includes a position at the beginning corresponding to null or unknown values of the
enum. Arrays indexed by the slider must be declared to match the null in the slider
statement.

There can be 0, 1, or 2 slider statements. The first slider statement applies to the
horizontal slider, the second to the vertical slider. If there is no slider statement, the
resulting display does not include animation.

The View Section

533

Entity Statement

The entity statement lets you specify a variable that uniquely identifies the entities in the
display. The entity statement consists of a series of clauses, separated by commas:

entity clause1, clause2,...

Alternatively, the clauses can be given in separate entity statements.

The Entity Variable

The first clause of the entity statement normally contains the name of the entity variable
(brand in the example on page 532).

The Label Clause

This clause defines how the entities are labeled. It has the following forms:

• label off

This turns off the labels.

• label on

This turns on the labels. The default labels use the entity variable as the label for
each entity.

• label variable

This turns on the labels and uses the given variable to label the entities. When this
form is used, it is not necessary to specify label on.

The Label Color Clause

This clause turns on the labels and specifies their color. It has the form:

label color “colorname”

where colorname is the name of a color in a special format. (Color naming is explained in
“Color Statement” on page 535.) The default label color is gray.

534

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

The Legend Clause

The legend clause explains what the entities are. Any string can be placed in the entity
legend. The legend clause has the following forms:

• legend off

This turns off the entity legend.

• legend on

This turns on the entity legend (this is the default). The default legend is

Entity: varname

where varname is the name of the entity variable.

• legend label “string”

This turns the legend on and explicitly sets the legend string. If this form is used,
legend on is unnecessary.

Size Statement

The size statement describes how a field of data is mapped to the sizes of entities. The
size statement consists of a series of clauses, separated by commas:

size clause1, clause2,...

Alternatively, the clauses can be given in separate size statements.

The Size Variable

The first clause normally contains the name of a field to be mapped to size (total$, in the
view example on page 531). The field must be of a number type (int, float, or double), of
which float is the most efficient. The field can be an array that is indexed by slider
dimensions. If no size field is specified, all entities are the same size.

The Max Clause

Normally, the size variable is mapped to the size of the entities, so that the biggest entity
has a size of 5. This size can be changed by specifying a different value. If there is no size
variable, the default maximum size is 2.5. The max clause has the form

max float

The View Section

535

The Scale Clause

Instead of using the max clause to affect size values, the scale clause can be used to scale
these values; all values are multiplied by the scale. The scale clause’s syntax is

scale float

The Legend Clause

The legend clause defines the meaning of the size mappings. Any string can be placed in
the size legend. The legend clause has the following forms:

• legend off

This turns off the size legend.

• legend on

This turns on the size legend (this is the default). The default legend is:

size: varname

where varname is the name of the variable that is mapped to size.

• legend label “string”

This turns the legend on and explicitly sets the legend string. If this form is used,
legend on is unnecessary.

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
the size statement, consisting of several clauses that can be separated by commas, or
entered as multiple statements. The syntax is:

color clause1, clause2,...

Color Naming

Color names follow the conventions of the X window system, except that the names must
be in quotes. Examples of valid colors are “green,” “Hot Pink,” and “#77ff42.” The latter
is in the form “#rrggbb”, in which the red, green, and blue components of the color are
specified in hexadecimal value. Pure saturation is represented by ff, a lack of color by 00.
For example,”#000000” is black, “#ffffff” is white, “#ff0000” is red, and “#00ffff” is cyan.

536

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

The Color Variable

As with size, you also can specify a single field to be mapped to an entity color. The field
can be an array that is indexed by slider dimensions. If the field is an array, it must be a
number type. If the field is a number type, the scale and buckets clauses described below
can be used to map a range of colors to the values of the field. If the field is not a number
type, it is sorted, and each unique value is assigned a color.

The colors Clause

The colors clause specifies the colors to be used. The colors clause’s syntax is:

colors " colorname " " colorname "...

The format for colorname is described in “Color Naming” on page 535. Note that there are
no commas between the colors, because commas are used to separate clauses in the color
statement. A sample colors clause is:

colors "red" "gray" "blue"

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly. If there is a colors statement,
at least as many colors must be specified as are to be mapped.

The scale Clause

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as are to be mapped to the largest index.

The View Section

537

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale field indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

Use the scale clause only in conjunction with a numeric color variable.

The buckets Clause

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

If, in the above example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater than or equal to 100 are colored red. Values greater than, or equal to,
50 but less than 100, are gray. All other values are then blue.

Use the buckets clause only with a numeric color variable.

The legend Clause

The legend clause creates a legend of the colors. The legend clause syntax can be any of
the following:

legend off
legend on
legend "string" "string" ...
legend label "string"

538

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The default legend includes a single label to the left (with the name of the field that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the field). To override the strings in the colored
labels, specify the strings as:

legend "string" "string"

To override the label on the left, specify it following the word label. To eliminate this label,
specify an empty string; that is:

legend label ""

Axis Statement

The axis statement causes a variable to be used as an axis in the 3D landscape. The
variable’s values determine where the entities are positioned on the axis. There can be up
to three axis statements. Like the size and color statements, the axis statement contains a
series of comma-separated clauses, but all of them must be specified in a single
statement.

axis clause1, clause2,...

The Axis Variable

As with size and color, you can specify a field to be used as an axis. The field can be an
array that is indexed by slider dimensions. If the field is an array, it must be of type
number. If the field is not of type number, it is sorted, and each unique value is assigned
a position along the axis.

The Label Clause

The label clause has the form:

label "string"

The string is used to label the axis. It appears in the landscape, at the end of the axis line.
The default label is the name of the axis variable.

The View Section

539

The Max Clause

Normally, the axis variable is mapped directly to the position of the entities along the
axis0. The max clause lets you normalize the values of the axis variable, so that the
maximum value is mapped to the specified max. The max clause’s syntax is:

max float

The Scale Clause

Instead of using the max clause to affect position values, the scale clause can be used to
scale the values. All values are multiplied by the scale. The scale clause syntax is

scale float

The Color Clause

The color clause specifies the color used for the axis line and label. It has the form:

color " colorname "

The Extend Clause

The extend clause specifies whether the axis should be extended automatically to include
the value zero. It has the form:

extend on
extend off

Summary Statement

The summary statement specifies a summation to be calculated over all the entities. The
summary is used to color the drawing window in the animation control panel. Like the
size and color statements, the summary statement has several clauses that can be
specified in one statement, separated by commas, or in separate statements.

summary clause1, clause2,...

540

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

The Summary Variable

You can specify the variable to be used in the summary. This variable must be of number
type. Typically, the summary variable is an array indexed by slider dimensions, so that
the summary value varies across the slider dimensions.

The Color Clause

The color clause specifies the color used to display the summary values in the drawing
window. It has the form

color “colorname”

Various shades of the color, from white to the specified color, are used to represent
summary values. The minimum summary value is mapped to white, while the
maximum summary value is mapped to the specified color. The default summary color
is red.

The Legend Clause

The legend clause creates a legend of the summary colors. The legend clause syntax can
be any of the following:

legend off
legend on
legend label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The legend includes a single label to the left (which defaults to the aggregation function
and variable used in the summary), and two colored labels on the right (with the
minimum and maximum summary values). To override the label on the left, specify it
following the word label. To eliminate this label, specify an empty string; that is

legend label ""

The View Section

541

Message Statement

The message statement specifies the message displayed when an entity is selected. The
syntax is similar to that of the C printf statement. A sample message statement is

message "%s: $%f, %.0f%% of target, %.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

This could produce the following message:

furniture: $2425.37, 23% of target, 87% of last year

The formats must match the type of data being used:

• Strings must use %.

• Ints must use integer formats (such as %d.

• Floats and doubles must use floating point formats (such as %f).

For details of the printf format, see the printf (1) reference (man) page (type man printf

at the shell prompt).

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, “%,f”), commas are inserted in the number for clarity. Only the
United States convention of d,ddd,ddd.dddd is supported, with the decimal point
represented by a period, and commas separating every three places to the left of the
decimal point. For example, if the above format were:

message "%s: $%,f, %,.0f%% of target, %,.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

it would produce the message:

furniture: $2,425.37, 23% of target, 87% of last year

The $, *, h, l, ll, L, and n printf format options are not supported.

All values, including the format string, are expressions. Thus, if you had a pctFemale
field, but wanted a more gender-neutral message, you could use:

message pctFemale>50?"%f%% females":"%f%% males",
 pctFemale>50?pctFemale:100-pctFemale;

542

Appendix D: Creating Data and Configuration Files for the Scatter Visualizer

If pctFemale is 70, the message “70% females” is displayed; if pctFemale is 30, the
message “70% males” is displayed. In this case, you can also achieve the same result with
a single format string:

message "%f%% %s", pctFemale>50?pctFemale:100-pctFemale,
 pctFemale>50?"females":"males";

If no message is specified, a default message containing the names and values of all the
fields is used.

Execute Statement

The execute statement lets you execute a shell command by double-clicking an object.
The syntax is similar to that of the message command.

Here is a sample execute statement that uses xconfirm to show a window with
information about the item. Note that the command line (string) is shown as three lines.
In an actual file, this should be on a single line. Multi-line strings are not supported.

execute "xconfirm -t '%s' -t 'population %,.0f' -t '%,.0f per
 sq mile' -t '%,.0f sq-miles' > /dev/null", states,
 population, density, sqMiles;

This might produce a dialog with the message:

CA
64 per sq mile
266,807 sq-miles

If there is no execute statement, double-clicking an object has the same effect as
single-clicking it.

The Filter Statement

The filter statement specifies that only entities meeting certain filter criteria are displayed
initially (see page 201). The filter criteria are in the form of expressions whose values
must all be true or nonzero for an entity to be displayed (expressions are described in
“Expressions” on page 523).

The syntax of the filter statement is

filter expression , expression ,...

The View Section

543

For example, the statement

filter state == "CA" || state == "WA", sales > 9000, pctTarget >= 90;

specifies that only records from California or Washington state, with sales greater than
9000 and a pctTarget value greater than or equal to 90 should be displayed initially.

After the Scatter Visualizer is invoked, the filter criteria can be changed or removed
interactively using the filter panel.

View Options

The view section of the configuration file has several options for controlling parameters
of the display. These options can appear in a single options statement, separated by
commas, or in separate options statements. The syntax of the options statement is

options option, option,...

The following options are available:

• entity label size float

controls the size of the entity labels.

• axis label size float

controls the size of the axis labels.

• hide entity label distance float

controls the distance at which entity labels become invisible. Smaller distances
might improve performance, but the labels disappear more quickly.

• grid color “colorname”

controls the color of the grid.

• grid size float float float

controls the spacing between grid lines. It applies the three values to grid lines
along the x, y, and z axes, respectively.

• entity shape shapeName

specifies the shape used to display entities. shapeName can be “cube,” “bar,” or
“diamond.”

545

Appendix E

E. Creating Data and Configuration Files for the Splat
Visualizer

The first part of this appendix describes the types and formats of data supported by the
Splat Visualizer. Data input to the Splat Visualizer must be provided as a single file
containing raw data, usually in a tab-separated ASCII text form.

The second part discusses the configuration file, which describes how the Splat
Visualizer reads in, and displays, the data file.

Both the data and configuration files can be generated automatically by the Tool Manager
(see Chapter 3).

Note: Read Chapter 7, “Using the Splat Visualizer,” before using this appendix.

The Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields
separated by one tab. (Other separators are also allowed, but only one can separate each
field. See “Input Options” on page 556.) All lines must contain the same fields. The
interpretation of the fields is specified by the configuration file, described in the next
section. Using the adultJobs data file provided as part of the Splat Visualizer package (file
/usr/lib/MineSet/splatviz/examples/adultJobs.data), the first few lines of the input file appear
as:

Bachelors Adm-clerical 3 3 51189.4869565217 115
Bachelors Exec-managerial 2 5 70722.6271186441 59
Bachelors Adm-clerical 2 3 37876.328358209 134
Bachelors Exec-managerial 3 0 34436.8 5
Bachelors Tech-support 1 2 37583.66667 3
Bachelors Tech-support 1 3 13711.33333 3
Bachelors Tech-support 1 4 29878.74193 31

546

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

In this sample file listing, each line consists of six fields, separated by tabs. The first field
is a string that identifies level of education. The second field is a string which identifies
occupation. The third field identifies the age bin. The fourth field identifies the number
of hours per week worked bin. The fifth field quantifies the average gross income. The
sixth field is the number of records in the aggregate (i.e., the count). This data file was
derived from /usr/lib/MineSet/data/adult94.data by performing Tool Manager operations
(specifically binning and aggregation).

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. The order of the fields must match
the format specified by the configuration file.

Data Types

The Splat Visualizer supports the following seven data types:

• int represents a 32-bit signed integer.

• float represents a single-precision floating point number. The decimal point is
optional. Numbers in exponential “e” notation are also accepted.

• double represents a double-precision floating point number. The decimal point is
optional when representing a floating point number. Numbers in exponential “e”
notation are also accepted. The superior precision of double can be useful for
accurately representing large numbers, since float can represent only seven or eight
significant digits accurately. This superior accuracy, however, consumes twice the
memory space of float.

• dataString represents a string that is unlikely to appear multiple times. If it appears
multiple times, several copies are made. A dataString is typically used to store an
address. Addresses are unlikely to be compared, and each record can have a
different address.

The Configuration File

547

• string represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves much memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. Processing is
somewhat slower when looking for duplicate strings as they are read in. An
example of string use is for a division name that appears once for each department
in the division. If you are unsure whether to use a string or a dataString, use a
string.

• fixed string represents a string of fixed length. Like a dataString, if a fixed string
appears multiple times, multiple copies are made. In general, fixed strings are used
internally for representations of data from data bases, and are generally better to
use than strings or dataStrings.

• date represents a date and time. In the data file, date must appear as MM/DD/YY
HH:MM:SS.

Null Values

Any field element in the data file can also have the value “?” (question mark), indicating
an unknown or null value (see the discussion of nulls in Appendix I).

The Configuration File

The configuration file format is flexible. Words in it must be separated by spaces, and it
is case-sensitive. Except for the include statement and text within quoted strings, spacing
and line breaks are irrelevant.

548

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

Sections

The configuration file consists of a series of sections, each of which has the form:

sectionKeyword
{
statements...
}

where sectionKeyword names the section. The order of the sections is significant, since
sections can refer to variables defined in previous sections.

Defaults Files

As each section is encountered, a special configuration file (referred to as a defaults file) is
also read in. Defaults files normally contain options statements. These files are searched
in the following order:

1. The directory /usr/lib/MineSet/splatviz. This directory usually contains system
defaults.

2. The ~/.MineSet directory (where the tilde, ~, indicates your home directory). You can
set up personal defaults in this directory.

3. The current directory. This lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the defaults files; thus, options in the
configuration file override those in the defaults files.

The Configuration File

549

Statements

A statement has the following form:

statementKeyword info ;

where statementKeyword defines the statement, and info varies according to the keyword.

Variable Names

A variable name can appear in two formats:

• In the first format, it is a letter followed by a number of letters, digits, or
underscores. It cannot be a keyword, and should not be quoted.

• In the alternate form, the variable name should be surrounded by back quotes (‘).
In this form, the variable name can match a keyword, and can contain even
non-alphanumeric characters. Configuration files generated automatically by the
Tool Manager use this form.

There is no scoping of variable names; a given variable name can only be declared once
in the configuration file.

Options Statements

Many sections have options statements, which have the form

options optionName info , optionName info ... ;

where optionName defines the specific option, and info depends on the option. In some
cases, optionName can be more than one word. To maximize the number of allowable
variable names, most option names are meaningful only within the appropriate options
statement; option names do not conflict with variable names. You can declare several
options on the same line, separating them by commas or placing them in several options
statements. If two conflicting values for the same option appear, the last value is taken.

550

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

Include Statements

The configuration file can contain lines of the form

include "filename"

These lines can appear anywhere in the configuration file, but each must be on its own
line. The filename must be in quotation marks; anything after the closing quote is
ignored. The number of nested includes is unlimited. If a relative pathname (one not
beginning with a slash) is specified, the file is first sought in the directory containing the
current configuration file. If include statements are present, this might not be the same as
the initially loaded configuration file. If it is not found in the current configuration file,
the include is sought in the current directory.

Sinclude Statements

A statement similar to an include is sinclude, which has the form

sinclude "filename"

This is identical to the include statement, except that no error is given if the file does not
exist; instead, the sinclude statement is ignored.

Strings and Characters

Strings and characters in the configuration file follow C conventions. Strings are in
double quotation marks ("), and characters are in single quotation marks (’). All standard
backslash conventions are followed (for example, \n represents a new line).

Comments

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol to the end of the line is ignored, up to the end of the line.

The Configuration File

551

Keywords

The keywords recognized by the Splat Visualizer are listed in Table E-1. Variables cannot
have these names unless they are surrounded by back quotes (‘). Tokens appearing only
in option statements are not keywords, and can be used for variable names.

Currently, the keywords execute, min, monitor, weight, and time are not used by the
Splat Visualizer.

Table E-1 Splat Visualizer Keywords

across average axis buckets

by color colors weight

dataString date divide double

execute expressions file float

from include input int

key label legend max

message min modulus monitor

off on options opacity

scale separator sinclude size

slider string sum summary

time to view

552

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

The Input Section

The first section of a configuration file is normally the input section. It defines the name
and format of the data file. A typical input section might look like this:

input {
 file "adultJobs.data";
 enum string `age_bin_k` {"- 20", "20-30", "30-40",
"40-50", "50-60", "60-70", "70+"};
 enum string `hours_per_week_bin_k` {"- 20", "20-25", "25-30",
"30-35", "35-40", "40-45", "45-50", "50-55", "55-60", "60-65",
"65-70", "70+"};
 string `education`;
 string `occupation`;
 enum `age_bin_k` `age_bin`;
 enum `hours_per_week_bin_k` `hours_per_week_bin`;
 double `avg_gross_income`;
 int `count_gross_income`;
}

This example states that the input file is called adultJobs.data, and that there are six fields:
education, occupation, age_bin, hours_per_week_bin, avg_gross_income, and
count_gross_income. The education and occupation fields are of type string. The age_bin and
hours_per_week_bin are of type enum, where the values of these enums is defined by
age_bin_k and hours_per_week_bin_k respectively. The column avg_gross_income is of type
double and the field count_gross_income is of type int.

When the input section is entered, the defaults file inputDefaults is read in.

File Statements

The file statement names the data file to be read. This statement is required. Its form is:

file " filename ";

filename must be in double quotation marks. If it is a relative pathname (no leading slash),
it is first sought in the directory containing the current configuration file. If include
statements are present, this might not be the same as the initially loaded configuration
file. If it is not found in the current configuration file’s directory, the file is sought in the
current directory.

The Input Section

553

Enumeration Statements

Enumeration statements declare enumerations, or enums. The enum statement has three
forms.

• The first enum statement form is

enum type name from value1 to value2 by increment ;

This declares an enum with values starting at value1 and incremented by increment
until they reach or exceed value2. For example, the statement

enum int age from 20 to 70 by 10;

declares age as an enum with the values 20, 30, 40, 50, 60, and 70.

Type must be a number type (int, float, or double) or date (see “Dates” on page 553).

• The second enum statement form is

enum type name from value1 to value2 across numberOfValues ;

This declares an enum with values ranging from value1 to value2. The
numberOfValues is an integer specifying the number of values. For example, the
statement:

enum int age from 20 to 70 across 6;

declares age as an enum with the values 20, 30, 40, 50, 60, and 70.

Type must be a number type (int, float, or double) or date (see “Dates” on page 553).

• The third enum statement explicitly lists the enum values. Its form is:

enum type name { value1 , value2 , ..., valueN };

Type can be any type or date (see “Dates” on page 553).

Dates

The enum statement includes special support for a date type that handles date and time
values starting Jan 1, 1753. The date type is valid only within enum statements. A date
enum statement can have the following syntaxes:

enum date “ format ” name from “ value1 ” to “ value2 ” across
 numberOfValues ;
enum date “ format ” name { value1 , value2 , ..., valueN };
enum date “ format ” name from “ value1 ” to “ value2 ” by

“ increment ”;

554

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

The format string specifies the format of the values; it is useful for controlling how dates
are displayed in the animation control panel. The syntax of the format string is similar to
the scanf function in C. Various units of time are represented by special characters
preceded by the percent symbol (%). For example,

enum date cq “Calendar Q%Q, %Y” from “Calendar Q1, 1980” to “Calendar
Q3, 1985” by “1 quarter”;

The “Calendar Q” in the format string matches the “Calendar Q” in value1 and value2. The
%Q in the format string indicates that the next number in value1 and value2 is the calendar
quarter. The comma and space in the format string match the commas and spaces in the
values. Finally, the %Y in the format string specifies that the year values are next.

Table E-2 lists the characters that can follow the percent symbol and the units of time they
represent.

With the exception of N, each character matches an integer of the specified precision. N
matches 3 or more characters giving the English name of the month.

Table E-2 Characters That Can Follow the percent Symbol in the format String

Character Time Unit Precision

Y year 4

Q calendar quarter 1

M month 2

N month name >= 3

D day 2

h hour 2

m minute 2

s second 2

The Input Section

555

The from-to-by form of the enum statement includes an increment value. For dates, the
increment is a quoted string containing an integer, an optional space, and one of the
special characters in Table E-2 or one of the symbols year, quarter, month, day, hour,
minute, and second. The plural forms of these symbols are also accepted. Note that these
symbols are not keywords, since they have special meaning only in the increment string.
The following are examples of valid increments:

“1 year”
“7 days”
“4h”

Data Statements

The data statements declare the fields in the data file. The fields must be declared in the
order they appear in the data file. The format of most data statements is

type name ;

where type is int, float, double string, dataString, date, and fixedString(n), where n is an
integer representing the width of the string; name is the variable name. Unlike in C, only
one variable can be declared per statement.

A data field can also be based on an enumeration. The syntax is

enum enumName name;

The field must contain ints corresponding to the values of the enum. For example, if the
enum ageGroup is declared as

enum string ageGroup {"below 30", "30-39", "40-49", "50-59",
"60 or above"};

the field age can be declared as

enum ageGroup age;

The field should contain ints between 0 and 4, where 0 is displayed as “below 30,” 1 as
“30-39”, and so forth.

Only one variable can be declared per statement.

556

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

Input Options

All options statements begin with the word “options” and have one or more
comma-separated options.

• The separator option defines the separator between fields in the data file. The
default separator is a tab. The syntax is

options separator ‘ char ’;

For example:

options separator ‘:’;

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

options backslash off;

options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Within strings, this causes standard C-style backslash processing.

The View Section

The view section of a configuration file describes how the data is displayed, including
the mapping of sizes, colors, axes, and so on. The default values for these options are in
/usr/lib/MineSet/splatviz/view.splatviz.options. Its form is

view
{
viewStatement ;
...
}

The View Section

557

A sample view section is

view {
 slider `age_bin`;
 opacity `count_gross_income`;
 color `avg_gross_income`;
 axis `education`, color "grey";
 axis `occupation`, color "grey";
 axis `hours_per_week_bin`, max 100, color "grey";
 options grid size 0 0 0;
 summary `count_gross_income`, color "red";
}

When entering the view section, the viewDefaults file is read in.

Slider Statement

The slider statement identifies an enum column to be used as a slider dimension. Its
syntax is one of the following:

slider columnName;

The columnName name is declared in the input section. If this column contains nulls, the
slider includes a beginning position corresponding to those null values.

There can be 0, 1, or 2 slider statements. The first slider statement applies to the
horizontal slider, the second to the vertical slider. If there is no slider statement, the
resulting display does not include animation.

Opacity Statement

In the Splat Visualizer, the opacity is based on counts or record weights. If a column is
mapped to this requirement, it is used to weight each record (rather than using 1), when
computing a value for the opacity. Thus, if you had a column with values for population,
density, or the result of a count aggregation, you might want to map this column to the
count/opacity requirement. If you had no such column, the requirement is left
unmapped, and a column of 1's is used by default.

558

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

In the Splat Visualizer, this column (if present) is sum aggregated, and its name is
prepended with "sum_". If no column is present, the record count is used. In either case,
the values of this column are used to compute opacity. The legend at the bottom of the
main window shows this column name after "opacity:".

The opacity statement describes how a column is mapped to the opacity of the splats.
The opacity statement consists of a series of clauses, separated by commas:

opacity clause1, clause2,...

Alternatively, the clauses can be given in separate opacity statements.

The Opacity Variable

The first clause normally contains the name of a field to be mapped to opacity
(count_gross_income, in the view example on page 556). The field must be of a number
type (int, float, or double).

The Legend Clause

The legend clause defines the meaning of the opacity mapping. The legend clause has
the following forms:

• legend off

This turns off the opacity legend.

• legend on

This turns on the opacity legend (this is the default). The default legend is:

opacity: count

where count is a column that the tool has created by counting the number of
records in each aggregate. If a column was mapped to opacity, the name of this
column prepended with "sum_" is shown in the legend. This new column is
computed by sum aggregating the column mapped to count.

• legend label “string”

This turns the legend on and explicitly sets the legend string. If this form is used,
legend on is unnecessary.

The View Section

559

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
the count statement, consisting of several clauses that can be separated by commas, or
entered as multiple statements. The syntax is:

color clause1, clause2,...

Color Naming

Color names follow the conventions of the X window system, except that the names must
be in quotes. Examples of valid colors are “green,” “Hot Pink,” and “#77ff42.” The latter
is in the form “#rrggbb”, in which the red, green, and blue components of the color are
specified in hexadecimal value. Pure saturation is represented by ff, a lack of color by 00.
For example,”#000000” is black, “#ffffff” is white, “#ff0000” is red, and “#00ffff” is cyan.

The Color Variable

As with opacity, you also can specify a column to be mapped to splat color. If the column
is a number type, the scale and buckets clauses described below can be used to map a
range of colors to the values of the field.

The colors Clause

The colors clause specifies the colors to be used. The colors clause’s syntax is:

colors " colorname " " colorname "...

The format for colorname is described in “Color Naming” on page 559. Note that there are
no commas between the colors, because commas are used to separate clauses in the color
statement. A sample colors clause is:

colors "red" "gray" "blue"

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly. If there is a colors statement,
at least as many colors must be specified as are to be mapped.

560

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

The scale Clause

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as are to be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale field indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

Use the scale clause only in conjunction with a numeric color variable.

The buckets Clause

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

If, in the above example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

The View Section

561

All values greater than or equal to 100 are colored red. Values greater than, or equal to,
50 but less than 100, are gray. All other values are then blue.

Use the buckets clause only with a numeric color variable.

The legend Clause

The legend clause creates a legend of the colors. The legend clause syntax can be any of
the following:

legend off
legend on
legend "string" "string" ...
legend label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The default legend includes a single label to the left (with the name of the field that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the field). To override the strings in the colored
labels, specify the strings as:

legend "string" "string"

To override the label on the left, specify it following the word label. To eliminate this label,
specify an empty string; that is:

legend label ""

Axis Statement

The axis statement causes a variable to be used as an axis in the 3D landscape. The
variable’s values determine where the entities are positioned on the axis. There can be up
to three axis statements. Like the size and color statements, the axis statement contains a
series of comma-separated clauses, but all of them must be specified in a single
statement.

axis clause1, clause2,...

562

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

The Axis Variable

As with size and color, you can specify a field to be used as an axis. The field can be an
array that is indexed by slider dimensions. If the field is an array, it must be of type
number. If the field is not of type number, it is sorted, and each unique value is assigned
a position along the axis.

The Label Clause

The label clause has the form:

label "string"

The string is used to label the axis. It appears in the landscape, at the end of the axis line.
The default label is the name of the axis variable.

The Color Clause

The color clause specifies the color used for the axis line and label. It has the form:

color " colorname "

Summary Statement

The summary statement specifies aggregate information to be calculated for all data
defined by the slider position. The summary is used to color the drawing window in the
animation control panel. Like the count and color statements, the summary statement
has several clauses that can be specified in one statement, separated by commas, or in
separate statements.

summary clause1, clause2,...

The Summary Variable

You can specify the variable to be used in the summary. This variable must be of number
type. If no summary variable is specified, sum of counts is used. If a variable is specified,
then weighted the average of that variable (for all the data at the slider location) is used.

The View Section

563

The Color Clause

The color clause specifies the color used to display the summary values in the drawing
window. It has the form

color “colorname”

Various shades of the color, from white to the specified color, are used to represent
summary values. The minimum summary value is mapped to white, while the
maximum summary value is mapped to the specified color. The default summary color
is red. If no slider variable is specified, this statement has no effect.

The Legend Clause

The legend clause creates a legend of the summary colors. The legend clause syntax can
be any of the following:

legend off
legend on
legend label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The legend includes a single label to the left (which defaults to the aggregation function
and variable used in the summary), and two colored labels on the right (with the
minimum and maximum summary values). To override the label on the left, specify it
following the word label. To eliminate this label, specify an empty string; that is

legend label ""

View Options

The view section of the configuration file has several options for controlling parameters
of the display. These options can appear in a single options statement, separated by
commas, or in separate options statements. The syntax of the options statement is

options option, option,...

564

Appendix E: Creating Data and Configuration Files for the Splat Visualizer

The following options are available:

• axis label size float

controls the size of the axis labels.

• hide label distance float

controls the distance at which axis labels become invisible. Smaller distances might
improve performance, but the labels disappear more quickly.

• grid color “colorname”

controls the color of the grid.

• grid size float float float

controls the spacing between grid lines. It applies the three values to grid lines
along the x, y, and z axes, respectively.

• shape splatType

specifies the type of splat used. The shapeName can be “constant,” “linear,”
"gaussian","texture", or “sphere.”

565

Appendix F

F. Creating Data and Configuration Files for the Rules
Visualizer

This appendix describes

• data and configuration files

• command-line operation

• example files and commands

for each of the three components of the Rules tool (association data converter, association
rules generator, and rule visualizer).

The Rules tool is completely operable via the Tool Manager (see Chapter 3).
Alternatively, all components of the Rules tool can be invoked via the command-line
interface and/or files created with a text editor, such as jot, vi, or Emacs. This second
mode of operation lets you create configuration files needed for the association data
converter and the association rules generator. It also lets you set up a process (using
standard UNIX facilities) to run the association data converter and the association rules
program nightly on new data using those configuration files.

The examples used in the following sections can be found in the
/usr/lib/MineSet/assoccvt/examples/ and /usr/lib/MineSet/assocgen/examples/ directories.
Descriptions and instructions for use can be found in the README file in these
directories.

Note: Read Chapter 8, “Using the Rules Visualizer,” before using this appendix.

566

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

The Association Data Converter

The association data converter converts a raw data file (such as a user’s ASCII data file)
into a file of the format used by the association rule generator program. The association
data converter requires as input a raw data file and a format file. Its output is a specially
formatted data file for use by the association rules generator. Note that the process
described below is for preparing data files for use by the associations program manually
(that is, via the command line). When the associations program is run via the Tool
Manager, this process is done automatically.

In the following description, %s denotes a string-valued input, %f denotes a
floating-point number input, and %d denotes an integer number input.

Association Data Converter File Requirements

The association data converter requires:

• a raw data file (this is the user’s data for running associations) in one of two accepted
formats.

• a format file, which describes the raw data file’s format.

The Raw Data File

The raw data file input from the association data converter can be in one of two formats:

• Single-item format

– Each record has one item and an identifier.

– All items with the same identifier are grouped on successive lines in the file
(they need not be sorted, just grouped.)

– Each record has the same length.

• Multiple-item format

– Each record has multiple items and an identifier.

– All items associated with the same identifier are in a single record.

– Each record has the same length.

The Association Data Converter

567

The Format File

The format file specifies the format of the raw data file to the association data converter.

The format file follows one of the forms listed in Table F-1 or Table F-2, depending on the
raw data file’s format (single or multiple item).

Table F-1 Single-Item Format

List of required items in the format file (Format 1)

Letter “S” to indicate single-item format file

Number of bytes in each record (excluding record separator, such as LF)

Number of fields that make up the identifier

Total number of bytes in the identifier

Offset and length in bytes for each field that makes up the identifier

Number of fields that make up the item

Total number of bytes in the item

Offset and length in bytes for each field that makes up the item

Description flag indicating if descriptions should be produced along with names
(either a 0 [meaning No] or 1 [meaning Yes])

If the description flag is 1, the following are required too:

Number of fields that make up the description

Total number of bytes in the description

Offset and length in bytes for each field that makes up the description

568

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Files Generated by the Association Data Converter

The association data converter generates two files:

• The output data file contains the converted data from the raw data file in a format
required by the association rules generator.

• The output names file contains auxiliary descriptor information used by the
association rules generator.

The Association Data Converter Command-line Operation

Table F-3 lists the set of options for controlling the association data converter. A
description of each option follows the table. An example of invoking the program is:

assoccvt -ifile sing.data -ofile sing.bin sing.format sing.names

Table F-2 Multiple-Item Format

List of required items in the format file (Format 2)

The letter “M” to indicate multiple-item format file

Number of bytes in each record (excluding record separator such as LF)

Number of items in each record

For each item:

Name of the item (column name/domain)

Number of fields of the record that make up the item

Total number of bytes in the item

Number of buckets (discrete bins or categories); 0 for categorical items

Offset and length in bytes for each field that makes up item

The Association Data Converter

569

Options for controlling data conversion from raw to internal format are listed below. A
description of each option follows the table.

-ifile %s
Specifies the name of the raw data file, which serves as input to the association data
converter. This file contains the data to be converted.

-ofile %s
Specifies the name of the file that contains the data converted by the association data
converter.

-isize %d
Specifies the binary integer size in the output data file.

There are two required arguments on the association data converter command line:

• The name of the format file to be used by the association data converter

• The name of the file containing the description of the integer codes in the output
data file

Table F-3 Options for the Association Data Converter

Option Format Required Default Value Comments

-ifile %s no stdin Name of raw data file (input)

-ofile %s no stdout Name of output data file

-isize %d no 4 Size of binary numbers in output
file

570

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Association Data Converter Examples

The following commands illustrate the use of the association data converter on the
example files in /usr/lib/MineSet/assoccvt/examples. The file sing.data is an example of data
in the single item format and has some simple grocery store transactions. Each line has a
transaction number and the name of an item bought in that transaction. The format of
this file is described by sing.format. The file mult.data is an example about automobiles
and has data about cars of different origin (American, Japanese, European) regarding
attributes such as MPG, weight, etc. The values for these attributes are in discrete ranges
rather than exact numbers. The format of this file is described by the file mult.format.

assoccvt -ifile sing.data -ofile sing.bin sing.format sing.names
assoccvt -ifile mult.data -ofile mult.bin mult.format mult.names

To test whether the files for data conversion are correctly installed, run any or all of the
following commands from the shell command line. Then, using the UNIX diff command,
compare the files created to those with the same name in
/usr/lib/MineSet/assoccvt/examples.

Enter:

assoccvt -ifile sing.data -ofile sing.bin sing.format sing.names

Then compare sing.bin with /usr/lib/MineSet/assoccvt/examples/sing.bin, and compare
sing.names with /usr/lib/MineSet/assoccvt/examples/sing.names.

Enter:

assoccvt -ifile mult.data -ofile mult.bin mult.format mult.names

Then compare mult.bin with /usr/lib/MineSet/assoccvt/examples/mult.bin; and compare
mult.names with /usr/lib/MineSet/assoccvt/examples/mult.names.

Association Rules Generator

571

Association Rules Generator

The association rules generator generates association rules among items in a set of data.
Its required inputs are described in the following subsections. Its output is a specially
formatted rules file, which can be used by the rule visualization part of the Rules
Visualizer (see Chapter 8).

Association Rules Generator Files Requirements

The association rules generator programs, assocgen and mapassocgen, require:

• a data file in the internally required format

• a configuration file, which specifies various program parameters

• (for mapassocgen only) a mapping file, which specifies the mapping between
hierarchical levels

• (for mapassocgen only) a description file, which specifies a string description for each
item at a specific hierarchical level

Association Rules Generator Command-line Operation

Rules are generated by applying one of two commands, along with one or more
parameters. The command used depends on whether the data for which rules are to be
generated are non-hierarchical or hierarchical (see “ “Starting the Association Rules
Generator Part” in Chapter 8). The commands are:

• assocgen—which generates rules based on nonhierarchical data.

• mapassocgen—which generates rules based on hierarchical data.

572

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Numerous options control the rule-generation process. Many of these are common to
both the assocgen and mapassocgen commands. Options fall into one of the following
categories:

• Rule Generation Options— control the process of rule generation.

• Rule Restriction Options—place restrictions on the set of generated rules.

• Hierarchical Data Options—define parameters used only when generating rules from
hierarchical data (using mapassocgen.)

The -ropts string separates the first two sets of options. This string is required if there are
any options from the second or third set.

The -vopts string separates the second and third sets of options. This string is required if
there are any options from the third set.

An example rule generation command line (for which the parameters are explained in
the following sections) might be:

assocgen -prev 20 -tran mult.bin -ropts -names mult.names
-rout -mult.rules

Rule Generation Options Common to assocgen and mapassocgen

Table F-4 lists the set of options for controlling the rule-generation process. A description
of each option follows the table.

Table F-4 Options for Controlling Rule Generation

Option Format Default Value Comments

-tran %s (stdin) Data file path

-prev %f (1.0) Prevalence threshold (as a percentage)

-uniq %d Number of items in dataset

-dir %s (/usr/tmp) Directory for temporary files

-tprefix %s (A_) Prefix for temporary files

-msg %s (assocgen.msg) Message file

Association Rules Generator

573

-tran %s
Specifies the path for the file. By default, the file is read from stdin.

-prev %f
Specifies the minimum prevalence threshold as a percentage of the total number of
records. The default is 1.0%. If the prevalence threshold results in a minimum count less
than 3, an error message is displayed, and no rules are generated.

-uniq %d
Specifies the number of unique or distinct items across all records (if known). Specifying
this (or an upper bound) speeds processing.

-dir %s
Specifies the directory to store temporary files, including the message file (see -msg,
below). The default is ./ .

-tprefix %s
Specifies the prefix to be used for temporary files, except the message file (see -msg,
below). The default prefix is A_.

-msg %s
Specifies the message file. The default is assocgen.msg.

Rule Restriction Options Common to assocgen and mapassocgen

Table F-5 lists the set of options for restricting generated rules. Options in this set are used
after those listed in Table F-4 and separated on the command line from the former
options by -ropts. A description of each option follows the table.

574

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

-pred %f
Specifies the minimum predictability threshold for rules. Rules with a predictability
below this value are not generated. The default is 50%.

-rnum
Output only the number of rules generated, not the rules themselves.

-rsort %d [%s]+
Specifies the sort order for rules. The first number denotes the number of sorting fields
specified; the second field specifies the fields. The four keys for sorting rules are (in
order):

• RHS—items on right-hand side of rule

• PRED—predictability of rule

• PREV—prevalence of rule

• LHS—items on left-hand side of rule

Table F-5 Options for Restricting Generated Rules

Option Format Default Value Comments

-pred %f (50.0) Minimum predictability (as a
percentage)

-rnum (FALSE) Print only the number of rules
generated

-rsort %d [%s]+ (4 RHS PRED PREV LHS) Field sorting order. Fields can be
all or any subset. PRED and
PREV are sorted in descending
order.

-names %s Name of file containing item
descriptions

-rout %s (stdout) Name of file in which to output
rules

Association Rules Generator

575

-names %s
Specifies the name of the file which contains the descriptions of the items. This is
typically the names file created during the assoccvt step.

-rout %s
Specifies the name of the file in which rules are to be written. If this is not specified, rules
are written to stdout.

Hierarchical Data Options Common to assocgen and mapassocgen

There are no hierarchical data options common to both assocgen and mapassocgen. See
“Hierarchical Data Options for mapassocgen Only” on page 577.

Rule-Generation Options for mapassocgen Only

In addition to the options provided by the assocgen program, the mapassocgen program
provides two additional options (Table F-6). These options are rule-generation options
and thus must be specified in the first set of options (the set before the -ropts string). A
description of each option follows the table.

-agg %d
Specifies the level of the hierarchy at which the rules are desired. Level 0 is the lowest
level of the hierarchy, level 1 is the next level up in the hierarchy, and so on.

-map %d [%d]+ %s
Specifies a file that allows the mapassocgen to map the lowest level in the hierarchy
(present in the data) to the level at which the rules are desired. The first number specifies
the total number of levels of aggregation. Next, for each level, a number denotes the size
in bytes for the mapping value for that level. The lowest level is the implicit sequence 0,
1, 2, 3, and so on, and is not present in the map file. Finally, the path is given for the map
file.

Table F-6 Options for the mapassocgen Command

Option Format Comments

-agg %d Hierarchical level for which rules are to be obtained.

-map %d [%d]+ %s File for mapping lowest hierarchical level to level for
which rules are to be obtained.

576

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

The values at the lowest level are the integers 0, 1, 2, 3, and so on. The map file lists the
values at the new level (or levels) in the same order. First list the value(s) corresponding
to level 1, then the value(s) corresponding to value 2, and so on. The values at the lowest
level (level 0) are omitted because the list of values is in the implicit order 0, 1, 2, 3, and
so forth.

Table F-7 provides an example from the dataset used in the “Hierarchical Data Example”
section. This example has two hierarchical levels:

The first line in the mapping file (/usr/lib/MineSet/assocgen/examples/synth.map) indicates
that the value “0” at the lowest level is mapped to value “1” at the next level; the second
line indicates that the value “1” at the lowest level is mapped to value “0” at the next
level; and so forth.

Table F-7 Example Hierarchy

Level 0 Level 1

Milk Dairy

Chips Snack

Coffee Beverage

Eggs Dairy

Tea Beverage

Soda Snack

Cheese Dairy

Butter Dairy

Association Rules Generator

577

Rule Restriction Options for mapassocgen Only

There are no rule restriction options specific to mapassocgen only. See “Rule Restriction
Options Common to assocgen and mapassocgen” on page 573.

Hierarchical Data Options for mapassocgen Only

The option used for hierarchical data is listed in Table F-8. A description follows the table.

-lvldesc %d %s
Specifies the hierarchical level and the corresponding string description file. Each string
description file must be on a separate line. The strings are mapped, in order, to items 0,
1, 2, 3, and so forth, at the hierarchy level.

This option succeeds all other options and must be separated from them by -vopts.

Association Rule Examples

Assume you have the data listed in Table F-9. This example is based on the data in the
file /usr/lib/MineSet/assoccvt/examples/synth.data. In this example, each row represents one
transaction, and the transaction id is implicit.

Table F-8 Options Set 3

Option Comments

-lvldesc %d %s Hierarchical level, string description file

578

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

After using assocgen on the file produced by running the sample data in Table F-9 through
assoccvt, the rule file that is output has the following format:

1 1 30.0000 75.00 60.00 Item=Chips Item=Milk

The first pair of numbers denote the number of items on the LHS and RHS of the rule,
respectively. These are always 1’s, since only a single item is supported for the LHS and
the RHS. The next three numbers denote (in percentages) the prevalence, predictability,
and expected predictability. Then the LHS item is listed, followed by the RHS item. In the
example above, the LHS is item “Item=Chips”, the RHS is item “Item=Milk.”

The expected predictability is the frequency of occurrence of the RHS items. The
difference between expected predictability and observed predictability is a measure of
the increase in predictive power due to the presence of the LHS rule. Expected
predictability gives an indication of what the predictability would be if there were no
relationship between the items.

Table F-9 Data Example 2

Item Item Item

Milk Chips Coffee

Milk Chips Eggs

Milk Chips Coffee

Chips Coffee Eggs

Milk Coffee Cheese

Milk Eggs Cheese

Milk Tea Butter

Eggs Tea Soda

Eggs Tea Soda

Eggs Tea Soda

Association Rules Generator

579

Nonhierarchical Data Example

Assume the minimum prevalence threshold is 30% (3 records out of 10 in the example
below). With a default minimum predictability threshold of 50%, and given the input file
described above, the assocgen program generates the set of rules shown in Table F-10.

The fields in each line correspond to

• the number of items on the LHS of the rule (always 1)

• the number of items on the RHS of the rule (always 1)

• the prevalence

• the predictability

• the expected predictability (explained in the following section)

• the name (or code) of the item on the LHS

• the name (or code) of item on the RHS

Table F-10 Rule Generation Example 1

1 1 30.0000 75.00 60.00 Item=Chips Item=Milk

1 1 30.0000 75.00 60.00 Item=Coffee Item=Milk

1 1 30.0000 75.00 40.00 Item=Coffee Item=Chips

1 1 30.0000 50.00 40.00 Item=Milk Item=Chips

1 1 30.0000 75.00 40.00 Item=Chips Item=Coffee

1 1 30.0000 50.00 40.00 Item=Milk Item=Coffee

1 1 30.0000 100.00 60.00 Item=Soda Item=Eggs

1 1 30.0000 75.00 60.00 Item=Tea Item=Eggs

1 1 30.0000 100.00 40.00 Item=Soda Item=Tea

1 1 30.0000 50.00 40.00 Item=Eggs Item=Tea

1 1 30.0000 75.00 30.00 Item=Tea Item=Soda

1 1 30.0000 50.00 30.00 Item=Eggs Item=Soda

580

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Hierarchical Data Example

Using the example dataset in “Nonhierarchical Data Example” on page 579, Table F-11
shows the mapping of the values at the lowest level to the highest level. The first column
represents data at the lowest hierarchical level, while the values Snack, Dairy, and
Beverage in the second column represent a higher hierarchical level.

In this example, value “Milk” is mapped to “Dairy”, value “Chips” is mapped to
“Snack”, and so on. “Snack”, “Dairy”, and “Beverage” can be represented as integers 0,
1, and 2 in the mapping file. Then, the -map option can be specified as

-map 2 4 synth.map

where 2 indicates two levels in the hierarchy, 4 indicates a 4-byte integer for each value
in the map file, and synth.map is the name of the map file. The binary file synth.map for
our running example can be found in /usr/lib/MineSet/assocgen/examples and contains the
following values (for purposes of illustration, numbers are provided in decimal rather
than binary form):

1 0 2 1 2 0 1 1

Table F-11 Example Hierarchy

Level 0 Level 1

Milk Dairy

Chips Snack

Coffee Beverage

Eggs Dairy

Tea Beverage

Soda Snack

Cheese Dairy

Butter Dairy

Association Rules Generator

581

To obtain rules at the lowest hierarchical level, specify -agg 0. The program output for
this is shown in Table F-12.

When listing each item, the program shows the complete hierarchical description. For
example, 0|1 indicates that item 1 (“Chips”) is mapped to value 0 (“Snack”) at the next
higher level in the hierarchy. If you specify -agg 1, you get the rules at the next higher
level of the hierarchy (which, for this example, is the top level):

1 1 80.0000 80.00 80.00 1 0
1 1 80.0000 100.00 100.00 0 1

To see the strings “Snack,” “Beverage,” and “Dairy” instead of values 0, 1, and 2 at the
top-level hierarchy, specify a third set of options (described in the “Example of Applying
Description Files” on page 582).

Table F-12 Example of Rules at the Lowest Hierarchical Level

1 1 30.0000 75.00 60.00 0 | 1 1 | 0

1 1 30.0000 75.00 60.00 2 | 2 1 | 0

1 1 30.0000 75.00 40.00 2 | 2 0 | 1

1 1 30.0000 50.00 40.00 1 | 0 0 | 1

1 1 30.0000 75.00 40.00 0 | 1 2 | 2

1 1 30.0000 50.00 40.00 1 | 0 2 | 2

1 1 30.0000 100.00 60.00 1 | 7 1 | 3

1 1 30.0000 75.00 60.00 0 | 5 1 | 3

1 1 30.0000 100.00 40.00 1 | 7 0 | 5

1 1 30.0000 50.00 40.00 1 | 3 0 | 5

1 1 30.0000 75.00 30.00 0 | 5 1 | 7

1 1 30.0000 50.00 30.00 1 | 3 1 | 7

582

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Example of Applying Description Files

Using the example in “Hierarchical Data Example” on page 580, you can specify a
description file for the top-level hierarchy (level 1) as follows:

mapassocgen -tran < dataFileName > -agg 1 -map 2 4
<hierarchyMappingFileName > -ropts -vopts
-lvldesc 1 < level1descriptionFileName >
-rout <rulesFileName>

The description file level1descriptionFileName now looks like this:

Snack
Dairy
Beverage

The rules at level 1 of the hierarchy then appear like this:

1 1 80.0000 80.00 80.00 Dairy Snack
1 1 80.0000 100.00 100.00 Snack Dairy

Similarly, you can specify a description file for the items at the lowest level. If the
description file, synth0.names, looks like this:

Milk
Chips
Coffee
Eggs
Tea
Soda
Cheese
Butter

then item 0 is mapped to “Milk,” item 1 is mapped to “Chips,” and so on. Then if you
specify the options string

-lvldesc 1 synth1.names -lvldesc 0 synth0.names

after -vopts, the rules generated at the lowest hierarchical level are shown in Table F-13.

Rules Visualization

583

Rules Visualization

The rules visualization part of the Rules Visualizer graphically displays rules resulting
from the association rules generator.

Rules Visualization File Requirements

The rules visualization requires:

• a rules file in the internally required format.

• a configuration file, which specifies various display parameters.

Table F-13 Second Example of Rules Generated at Lowest Hierarchical Level

1 1 30.0000 75.00 60.00 Snack | Chips Dairy | Milk

1 1 30.0000 75.00 60.00 Beverage | Coffee Dairy | Milk

1 1 30.0000 75.00 40.00 Beverage | Coffee Snack | Chips

1 1 30.0000 50.00 40.00 Dairy | Milk Snack | Chips

1 1 30.0000 75.00 40.00 Snack | Chips Beverage | Coffee

1 1 30.0000 50.00 40.00 Dairy | Milk Beverage | Coffee

1 1 30.0000 100.00 60.00 Dairy | Butter Dairy | Eggs

1 1 30.0000 75.00 60.00 Snack | Soda Dairy | Eggs

1 1 30.0000 100.00 40.00 Dairy | Butter Snack | Soda

1 1 30.0000 50.00 40.00 Dairy | Eggs Snack | Soda

1 1 30.0000 75.00 30.00 Snack | Soda Dairy | Butter

1 1 30.0000 50.00 30.00 Dairy | Eggs Dairy | Butter

584

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

The Rules File

The rules file is generated by the association rules generator (See “Association Rules
Generator” on page 571).

The Configuration File

The configuration file describes how the data from the rules file is to be displayed. This
file consists of three sections:

• The input section—specifies the rules file to be used.

• The expressions section (optional)—creates new viewing parameters.

• The view section—specifies how the data is presented.

An example configuration file, group.ruleviz, is

input {
 file “group.rules”;
}

expressions {
 float ratio = expected / predictability;
}

view {
 height predictability, max 10, legend on;
 disk height expected, legend on;
 color prevalence, scale 0 10, colors “white” “purple”,
 legend on;
 options grid size 6;
 message “LHS: %s\nRHS: %s\npredictability: %.2f
 expected: %.2f prevalence: %.2f”,
 LHS, RHS, predictability, expected, prevalence;
}

Rules Visualization

585

Input Section

The input section has the form:

input { file “rules Filename ”; }

The file statement specifies the rules file. It is the only statement in the input section.

Expressions

The expressions section of the configuration file defines field names to be used
subsequently in both this section itself and in the view section. This section specifies new
fields in terms of the fields in the rules file. For example, the following line specifies the
ratio between predictability and expected predictability:

expressions { float ratio = predictability / expected; }

The expression section uses field names defined in the rules file. These field names and
their types are listed in Table F-14.

Table F-14 Field Names and Types for Rules File

Rules File Field Name Type Notes

numLHS int Always 1.

numRHS int Always 1.

prevalence float

predictability float

expected float

LHS string

RHS string

586

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Expressions are defined with a combination of field names and operators. The operations
and their symbols are listed in Table F-15.

Table F-15 Operators Used With Expressions

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

== Equals

!= Not equals

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

&& AND

|| OR

! NOT

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

A?B:C If (A), then B else C

Rules Visualization

587

Also, the following functions are available:

• divide(x, y, z) divides x by y, unless y is zero. If y is zero, the result is z; this is
equivalent to y==0 ? z : x/y.

• modulus(x, y, z) is similar to divide, but for modulus.

The following sample code illustrates some of the possible expressions:

float variable0 = expected / predictability;
float variable1 = prevalence +1;
float variable2 = variable1 - 1;
float variable3 = variable1 * 3;
float variable5 = 10 % 4;
float variable6 = variable1;
float variable7 = variable1 || 87;
float variable8 = variable1 && 34;
float variable9 = (7 < 5 ? 4 : 3);
float variable10 = divide(15,8,9);
float variable11 = modulus(15,0,9);
float variable12 = (“abc” < “def” ? 1 : 2);
int variable 13 = (int) variable 12;

Expressions using int and float promote both sides to float. Expressions using int and
double, or float and double, promote both sides to double. The result of a relational
expression (for example, ==, <) is always an int. Type casting is also supported.

Strings can be compared using relational expressions; the strings are compared
lexicographically.

View Section

The view section describes how data is presented. A rule is displayed at the junction of
its left-hand-side and right-hand-side items. The view section lets you specify what is
shown at the junctions.

The view section has the form:

view { viewStatement; ... }

You can view bars, disks, and labels at the junctions. The bars and disks have heights and
colors.

588

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Height Statement

The height statement describes how the rules are mapped to the heights of bars and
disks. The height statement consists of a series of clauses, separated by commas.
Alternatively, it can be specified as multiple height statements.

height sales, max 2.0;

or

height sales;
max 2.0;

The first clause normally contains the name of a column that is to be mapped to bar
height (sales, in the example). The column must be of a number type (int, float, or
double); float is the most efficient. If no height column is specified, all bars are flat, and
the remaining height clauses have no effect.

The max clause specifies the height of the tallest bars. If no max clause is specified, the
height is 1.0 in arbitrary units. If, after looking at the view, you see that the heights are
too low or too high, use the max clause to adjust them. The syntax of the max clause is

max float

where float is a floating point number (the decimal point is optional). For example, to
specify the maximum height as 2, enter:

max 2

The scale clause scales the arbitrary height values; all values are multiplied by the scale.
The syntax of the scale clause is

scale float

Do not use the scale clause with the max clause.

The legend clause specifies whether mapping information is displayed in the lower
window pane. This information is about mapping between display entities and data
values (for example, bar height corresponds to predictability values). The legend clause
has the following syntaxes:

• legend off

This turns off the height legend (this is the default).

Rules Visualization

589

• legend on

This turns on the height legend. The legend can be changed by using the legend
label form, in which case legend on is unnecessary. By default, the legend has the
following syntax:

height: varname

where varname is the name of the variable that is mapped to height.

• The legend can be changed by using the legend label form:

legend label " string "

If legend label is used, legend on is unnecessary.

By default, the height statement affects bars. To specify disks, begin the statement with
disk height:

disk height sales, max 2.0;

If no max or scale clause is specified for disk heights, the disks inherit the clause specified
for bars.

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
the height statement, consisting of several clauses that can be separated by commas, or
entered as multiple statements.

Color names must be in quotation marks. Examples of valid colors are “green,” “Hot
Pink,” and “#77ff42.” The last one is in the form “#rrggbb”, in which the red, green, and
blue components of the color are specified as hexadecimal values. Pure saturation is
represented by ff, a lack of color by 00. For example, “#000000” is black, “#ffffff” is white,
“#ff0000” is red, and “#00ffff” is cyan. You can use the colorview program to determine
the names of the colors available on your workstation.

The color variable lets you map a column to a color. The column must be a number type.
There is no normalization of colors.

The colors clause specifies the colors to be used. The colors clause syntax is:

colors " colorname " " colorname "...

590

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

The format for colorname has been described above. Note that there are no commas
between the colors. This is because commas are used to separate clauses in the color
statement. A sample colors clause is

colors "red" "gray" "blue"

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, all bars have the same color.

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example, 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as are to be mapped to the largest index.

Values in the scale clause must be in increasing order. Any value less than the first color
is assigned the value of the first color. Any value greater than the last value is assigned
the last color. Intermediate values are interpolated.

For example, assume the pctFemale column indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

Rules Visualization

591

If, in the above example, you use the buckets clause instead of the scale clause, the
statement is:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater or equal to 100 are colored red. Values greater than or equal to 50, but
less than 100, are gray. All remaining values is blue.

If a color variable is specified, but neither a scale clause nor a buckets clause is given, a
default scale clause is used. The values are generated automatically, ranging from the
minimum value to the maximum value in the data.

The Legend Clause

The legend clause creates a legend of the colors. The legend clause syntax can be any of
the following:

legend off
legend on
legend "string" "string" ...
legend label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. It
can be omitted if other legend statements are included. Specifying only legend on
generates the default legend.

The default legend includes a single label to the left (with the name of the field that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause or the buckets clause). To override the strings in the colored labels, specify
the strings as shown:

legend "string" "string"

To override the label on the left, specify it following the word label. To eliminate this label,
specify an empty string; that is:

legend label ""

592

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

By default, the color statement affects bars. To affect disks, begin the statement with disk
color:

disk color pctFemale;

If no colors, scale, or buckets clause is given for disk colors, the disks inherit the clauses
given for bars.

Label Statement

You can specify a variable name and a color for labels to appear in front of the bars, at the
base. By default, no labels appear. The color is a single color (unlike the bars and disks).
For example, the following line displays the numeric predictability value in red at the
base of each bar:

label predictability, color “red”;

Message Statement

The message statement specifies the message displayed when the pointer is moved over
an object or when an object is selected. The syntax is similar to that of the C printf
statement. A sample message statement is

message "LHS: %s\NRHS: %s\npredictability/expected: %.2f",
LHS, RHS, predictability/expected;

This could produce the following message:

LHS: milk
RHS: bread
predictability/expected: 2.00

The formats must match the type of data being used:

• Strings must use %s.

• Ints must use integer formats (such as %d).

• Floats and doubles must use floating point formats (such as %f).

For details of the printf format, see the printf (1) reference (man) page (type man printf

at the shell prompt).

Rules Visualization

593

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, %,f), commas are inserted in the number for clarity. Currently, only
the United States convention of d,ddd,ddd.dddd is supported, with the decimal point
represented by a period, and commas separating every three places to the left of the
decimal point. For example, if the above format were:

message "LHS: %s\nRHS: %s\npredictability/expected: %.2f",
 LHS, RHS, predictability/expected;

it would produce the message:

LHS: milk
RHS: bread
predictability/expected: 1,000.00

The $, *, h, l, ll, L, and n printf format options are not supported.

All values, including the format string, are expressions. Thus, if want to distinguish rules
with predictability greater than twice the expected, you can use

message predictability > expected*2 ? "LHS: %s\nRHS:
 %s\npredictability/expected: HIGH" : "LHS: %s\nRHS:
 %s\npredictability/expected: LOW" , LHS, RHS;

This could produce the message

LHS: milk
RHS: bread
predictability/expected: LOW

or:

LHS: milk
RHS: cake
predictability/expected: HIGH

You could also achieve the same result with a single format string:

message "LHS: %s\nRHS: %s\npredictability/expected: %s",
 LHS, RHS, predictability > expected*2 ? "HIGH" : "LOW";

If no message is specified, a default message is used.

594

Appendix F: Creating Data and Configuration Files for the Rules Visualizer

Item Statement

An item statement describes the item names displayed along the LHS and RHS axes. An
item statement has the form

item colors <colorLeft> <colorRight>;

The colors are absolute colors, like the label color. There is also a statement to turn on/off
the item names:

item <off|on>;

Grid Statement

The grid statement describes the grid on which the rules are displayed. A grid statement
has the form

grid color <color>;

or

grid <off|on>;

The color is a single color.

Options

The options statement lets you fine-tune certain parameters of the display. When the
view section is first entered, options are loaded from the defaults file
/usr/lib/MineSet/ruleviz/view.ruleviz.options. This file is searched for in the following
directories, in the order listed:

• /usr/lib/MineSet/ruleviz

• ~/.MineSet (where ~ is your home directory)

• the current directory

The file is not required to be present.

Options specified directly in the configuration file override those in the defaults files. The
syntax of the options statement is

options option , option , ...

Rules Visualization

595

The following options are available:

• bar label size

• hide bar label distance

• hide disk distance

• grid size

• item size

• hide item distance

• font

The following is a description of each option.

• options bar label size float

Specifies the size of the labels in front of the bars. Larger values result in larger
labels.

• options hide bar label distance float

Specifies the distance at which the bar labels are not drawn. Smaller distances
improve performance, but the labels might not be visible.

• options hide disk distance float

Specifies the distance at which disks are not drawn. Smaller distances improve
performance, but the disks might not be visible.

• options grid size float

Specifies the width and depth of grid cells.

• options item size float

Specifies the size of the items.

• options hide item distance float

Specifies the distance at which the items are not drawn. Smaller distances improve
performance, but the items might not be visible.

• options font ”fontName”

Specifies the font used for items and bar labels.

597

Appendix G

G. Format of the Evidence Visualizer’s Data File

The purpose of this appendix is to describe the Evidence Visualizer’s input data file. This
file is a textual representation of the evidence classifier. The data file is generated
automatically through the Tool Manager. In some instances one may wish to edit this file
in order to alter label or attribute names, or to rearrange values.

The Evidence Visualizer requires a data file containing the label and attributes, along
with counts and probabilities. These are used to create the graphics. It is output as a result
of running the Evidence Inducer through the Tool Manager. The format of the data file is:

#MineSet 2.0

<type> "<label>" <L>
"<label1>" <count1> <probability1>
"<label2>" <count2> <probability2>
:
"<labelL>" <countL> <probabilityL>

<M>

<type> "<attrib1>" <N1> <importance1>
"<value1_1>" <count1_1_1> <prob1_1_1> ... <count1_1_L> <prob1_1_L>
"<value1_2>" <count1_2_1> <prob1_2_1> ... <count1_2_L> <prob1_2_L>
:
"<value1_N1>" <count1_N1_1> <prob1_N1_1> ... <count1_N1_L> <prob1_N1_L>

<type> "<attrib2>" <N2> <importance2>
"<value2_1>" <count2_1_1> <prob2_1_1> ... <count2_1_L> <prob2_1_L>
"<value2_2>" <count2_2_1> <prob2_2_1> ... <count2_2_L> <prob2_2_L>
:
"<value2_N2>" <count2_N2_1> <prob2_N2_1> ... <count2_N2_L> <prob2_N2_L>

:
:
:

598

Appendix G: Format of the Evidence Visualizer’s Data File

"<attribM>" <NM> <importanceM>
"<valueM_1>" <countM_1_1> <probM_1> ... <countM_1_L> <probM_1_L>
"<valueM_1>" <countM_2_1> <probM_2_2> ... <countM_2_L> <probM_2_L>
:
"<valueM_NM>" <countN1_NM_1> <probM_NM_1> ... <countM_NM_L> <probM_NM_L>

history {
:
:
}

Where L is the number of label values, M is the number of attributes, and N is the number
of values or bins for attribute i. The <>’s indicate variables. The actual file has numbers
or strings. A null is considered a unique value if it is present in an attribute. If NULLs
exist for an attribute they always appear as the first value (i.e., the first line following the
attribute header) and are represented by "?".

The <type> can be

• NOMINAL, which currently implies a string valued attribute (or an integer
attribute which is used for the label).

• ENUM, which is used for attributes binned in Tool Manager.

• AUTO-ENUM, which is used for attributes that have been discretized automatically
by the inducer. If a type is not present, AUTO-ENUM is assumed.

Lines beginning with # are comments (and ignored by the program).

An optional history section can be included at the end of the file. It is used by Tool
Manager for drill-through. Without this section, drill-through is not possible (in the
Evidence Visualizer or any other MineSet tool).

The counts are the number of records (or sum of weights) in the table with that particular
attribute value (or range of values); hence, the sum of the counts for each attribute equals
the total number of records in the table (unless record weighting was used). The
probability is the number of counts for that attribute value divided by the total number
of counts. If the data file was generated with Laplace correction turned on, the probability
is only approximately the number of counts for that attribute value divided by the total
number of counts (see “Refining the Inducer With Further Options” in Chapter 12). Thus,
the probability value indicates the proportion of records with labelX that have this
attribute value instead of another value.

599

Data files must have a .eviviz extension. When starting the Evidence Visualizer, or when
opening a file, you must specify the data file.

A sample Evidence Visualizer data file, /usr/lib/MineSet/eviviz/examples/cars.eviviz,
follows.

#MineSet 2.0
#automatically generated
NOMINAL "origin" 3
"Europe" 73 0.179803
"Japan" 79 0.194581
"US" 254 0.625616
6
AUTO_ENUM "mpg" 5 25.448
"?" 3 0.0410959 0 0 5 0.019685
"- 16.1" 0 0 0 0 87 0.34252
"16.1-21.05" 10 0.136986 5 0.0632911 77 0.30315
"21.05-30.95" 43 0.589041 28 0.35443 67 0.26378
"30.95+" 17 0.232877 46 0.582278 18 0.0708661
NOMINAL "cylinders" 5 29.1759
"8" 0 0 0 0 108 0.425197
"4" 66 0.90411 69 0.873418 72 0.283465
"6" 4 0.0547945 6 0.0759494 74 0.291339
"3" 0 0 4 0.0506329 0 0
"5" 3 0.0410959 0 0 0 0
AUTO_ENUM "horsepower" 4 22.3514
"?" 2 0.0273973 0 0 4 0.015748
"- 78.5" 40 0.547945 46 0.582278 25 0.0984252
"78.5-134" 31 0.424658 33 0.417722 131 0.515748
"134+" 0 0 0 0 94 0.370079
AUTO_ENUM "weightlbs" 4 28.5157
"- 2379.5" 43 0.589041 57 0.721519 30 0.11811
"2379.5-2959.5" 18 0.246575 22 0.278481 57 0.224409
"2959.5-3274" 9 0.123288 0 0 29 0.114173
"3274+" 3 0.0410959 0 0 138 0.543307
AUTO_ENUM "time_to_60" 3 10.0055
"- 13.45" 3 0.0410959 3 0.0379747 78 0.307087
"13.45-19.45" 52 0.712329 75 0.949367 162 0.637795
"19.45+" 18 0.246575 1 0.0126582 14 0.0551181
AUTO_ENUM "year" 1 2.84217e-14
"ignore" 73 1 79 1 254 1

600

Appendix G: Format of the Evidence Visualizer’s Data File

Note that the sum of the probabilities corresponding to a particular label value for a
given attribute always equals 1. Consider attribute weightlbs, for label value US (the first
one), we have .11811+.224409+.114173+.543307=1.0 . Also note that attributes mpg and
horsepower have null values.

601

Appendix H

H. Command-Line Interface to MIndUtil: Classifiers,
Discretization, Column Importance, and File
Conversions

The first part of this appendix describes the MIndUtil program and its options. The
second part lists and describes the general options for MIndUtil. The final part describes
the specific modes available. The MIndUtil program comes with the server side of the
MineSet images and is invoked automatically by DataMover on the server when
working through Tool Manager. MIndUtil provides extra functionality not directly
available from ToolManager and may be easier to use in a batch environment (for
example, when you use cron jobs).

MIndUtil Invocation and Options

MIndUtil provides the MineSet inducers and additional mining utilities, such as
discretization (binning). It also provides features for file conversions. In the following
description, all examples assume the UNIX shell is csh or tcsh. Users of sh and ksh can
transform setenv ENV val into env=val; export env.

The syntax for invoking MIndUtil is:

MIndUtil [-s] [-o <optionfile>] [-O <option>=<value>]

where the -s option suppresses environment options (described below). The -o option
allows reading options from an ASCII option specification file containing one
<option>=<value> per line. By convention, MineSet uses the suffix .classify-opt for such
option files. The -O option (uppercase) allows setting a specific option by following it
with the option name, an equal sign, and the value. The -o and -O can be repeated
multiple times. If an option is set more than once, the last time it is set determines its
value. For example, if it is set through an option file and then set again through using the
-O flag, the latter one determines its value.

602

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

Each option has a unique name; all option names are written in uppercase letters. If you
want to set up the .datamove file to keep data and classifier option files on the server, the
following lines must be in the .datamove file:

keep_data_files=yes
keep_classifier_options_files=yes

This ensures that the option specification files ending with the .classify-opt extension
(consisting of the options passed to MIndUtil via the Tool Manager) are not erased from
the server after you invoke inducers through Tool Manager.

Example With MIndUtil Options

A typical file (iris-dt.classify-opt) might contain the following lines:

MODE=classify-and-error
LABEL=iris type
ALGORITHM=decision-tree
DT_SPLIT_BY=normalized-mutual-info
DT_LBOUND_MIN_SPLIT=2
DT_PRUNING_FACTOR=0.7
DT_MAX_LEVEL=0
CLASSIFIER_NAME=iris-dt.class
VIZ_NAME=iris-dt.treeviz
TRAIN_FRACTION=0.666667
ACC_EST_SEED=7258789
BACKFIT_TEST_SET=Yes
DISP_CONFUSION_MAT=No
DISP_LIFT_CURVE=No

Given a schema file (iris.schema, which references iris.data), you can run MIndUtil from
the command line to induce a decision tree by using the options file as follows:

MIndUtil -o iris-dt.classify-opt -O FLAT_FILE=iris-dt.schema

This is exactly the way MIndUtil is invoked by DataMover.

MIndUtil Invocation and Options

603

Options in MIndUtil can be set through a hierarchy of levels. An option set at a higher
level (see below) overrides any setting from a lower level. The levels are:

• Hard-coded default—Many options have a hard-coded default value. If the value is
not overridden in any of the higher levels, the hard-coded default is used.

• Environment option—An environment variable can contain the option’s value. You
can set the environment variable with the same name as the option itself. For
example,

setenv FLAT_FILE iris-dt.schema

sets the FLAT_FILE option to iris.schema.

An environment variable takes precedence over hard-coded defaults. The
command-line option -s suppresses environment variables.

• Command-line options—You can set specific options with -O <option>=<value>

For example, to generate a decision tree from iris.classify-opt, set the pruning factor
to 0, and set the minimum records in a split to 1, use:

MIndUtil -o iris-dt.classify-opt \ -O FLAT_FILE=iris-dt.schema -O
DT_PRUNING_FACTOR=0 \ -O DT_LBOUND_MIN_SPLIT=1

This induces a larger tree for the iris dataset. Command-line options take
precedence over environment variables and hard-coded defaults.

The order of command line arguments is important: Options to the right override
earlier options to their left. Thus, the -O options override the values set in the
iris.classify-opt file.

• User input—If an option is required but the option was not set using any of the
above levels in the hierarchy, you are prompted for the option, and you can type a
value.

If you type ?, a help string appears to explain the meaning of the option. User input
has the highest precedence and given values override command line options,
environment variables, and hard-coded defaults.

604

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

A special environment variable, called PROMPTLEVEL, determines when to prompt the
user for an option. The variable has three possible values:

• Required-only prompts you for required options only. There are no prompts for
options with a hard-coded default value. This is the lowest level prompting mode
and the default.

• Basic prompts you for basic options (each option is hard-coded as basic or not),
whether or not they have a default value. Some options are defined as “nuisance”
(non-basic) options and are not prompted for by this mode. The purpose of this
mode is to prompt for the most commonly used options.

If the option has a default, you can change it to be a nuisance option by setting the
option value to an exclamation mark (“!”). A nuisance option can be changed to a
non-nuisance option by setting its value to be a question mark (“?”). For example,
you can type:

setenv PROMPTLEVEL basic
MIndUtil -o iris-dt.classify-opt -O DT_MAX_LEVEL="?"

You now are prompted for most options (non-nuisance) with defaults taken from
iris.classify-opt. To accept the default, press Enter. Since FLAT_FILE is not defined in
iris.classify-opt and is a required option, you are prompted for FLAT_FILE without a
default. DT_MAX_LEVEL is a nuisance option, but setting it to a question mark
specifies to prompt for it.

• All prompts you for all options, regardless of their nuisance setting.

When MIndUtil is executed from Tool Manager, all options except the schema filename
are passed from the client through an options file <file>.classify-opt. On the server, the
DataMover invokes MIndUtil with the options file and the appropriate schema file.

Tool Manager prepends any options it finds in .mineset-classopt on the client workstation.
The file is searched first in the current directory, then in the home directory. The first one
found is used.

When an option requires one of a given set of values (for instance, an enumerated
option), a prefix of the desired option value can be used, and comparison is
case-insensitive. If there are multiple values with the given prefix, the first one in the list
is chosen. For example, the first option in MIndUtil is MODE, which takes on one of the
following values: classify-only, classify-and-error, estimate-error, learning-curve, discretize,
auto-select, compute-importance, test-classifier, fit-data, mineset-to-mlc, mlc-to-mineset, score,
upload-mlc, upload-mineset, visualize. Setting the option to “c” selects classify-only. In
scripts, use the full option name for future compatibility.

General Options

605

To facilitate repeat runs of a program under the same options, these can be saved in a file.
The name of the file can be set through the environment variable OPTIONS_FILE. For
example, if you run MIndUtil as

MIndUtil -o iris-dt.classify-opt \ -O FLAT_FILE=”iris-dt.schema”
-ODT_MAX_LEVEL=1 \ -O OPTIONS_FILE=”foo.opt”

the options will be saved in the file foo.opt, which you can edit and rerun by typing:

MIndUtil -o foo.opt

General Options

MIndUtil is written using MLC++, the machine learning library in C++ (see
http://www.sgi.com/Technology/mlc). More options can be used for those familiar
with MLC++. Here are the important ones shared by many modes.

All filename specifications require the file suffix, except where detailed below.

• MODE is an enumerated option containing one of the following: classify-only,
classify-and-error, estimate-error, learning-curve, discretize, auto-select,
compute-importance, test-classifier, fit-data, mineset-to-mlc, mlc-to-mineset, score,
upload-mlc, upload-mineset, visualize.

• Classify-only builds a classifier using all the data.

• Classify-and-error splits the data into a training set and a test set; a classifier is
built from the training set and evaluated on the test set. If the classifier is a
decision tree or option tree, the error estimates are added at the tree nodes for
the visualization.

• Estimate-error performs cross-validation to estimate the error of a classifier
built using the induce option.

• Learning-curve generates a learning curve.

• Discretize allows discretizing continuous attributes.

• Auto-select allows finding a set of important attributes together with
prespecified attributes.

• Compute-importance computes the importance of each attribute as if it were
used individually with a prespecified set of attributes.

606

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

• Test-classifier evalutes a previously induced classifier on new data. If a decision
tree or option tree is used, the error estimates are added at the tree nodes for the
visualization.

• Fit-data allows fitting new data to the structure of an existing classifier
(backfitting).

• MineSet-to-MLC and MLC-to-MineSet allow converting files from MLC++
format to MineSet format and vice versa.

• Score generates a label values for each record, performing the same function as
apply-classifier in the data-transformation panel of Tool Manager. This option is
not supported and not documented further.

• upload-MLC and upload-MineSet allow uploading a file in either MLC++ or
MineSet format to a database. This option is not supported and not documented
further. There may be loss of type information when files are uploaded, since
MLC++ supports a smaller set of types than MineSet.

• Visualize allows converting a classifier to a visualization.

The details of each mode are described in the next section.

• FLAT_FILE is a string defining the MineSet schema file to use. The file specification
must be complete (that is, with the .schema extension) and the file can be either a
MineSet ASCII or binary file. See “Using MineSet With Existing Data Files” in
Chapter 2 for a description of schema files.

• LOSS_FILE is the name of the loss matrix file. The loss file is optional. If it is
supplied the format should be as follows:

nodefault.
 ?,Iris-setosa: 10
 Iris-setosa,Iris-setosa: 0
 Iris-versicolor,Iris-setosa: 1
 Iris-virginica,Iris-setosa: 1
 ?,Iris-versicolor: 10
 Iris-setosa,Iris-versicolor: 1
 Iris-versicolor,Iris-versicolor: 0
 Iris-virginica,Iris-versicolor: 1
 ?,Iris-virginica: 1
 Iris-setosa,Iris-virginica: 1
 Iris-versicolor,Iris-virginica: 1
 Iris-virginica,Iris-virginica: 0
endloss

General Options

607

where each line other than the first and the last contain the predicted and the actual
label values followed by a colon and the loss. The first line may be default, in which
case all unspecified entries are zero on the diagonal and one off the diagonal. If
nodefault is used, all matrix entries must be specified.

• LABEL is the name of the column or attribute that is to be used as the label
whenever it is needed. The label name must be one of the columns in the schema
file.

• WEIGHT is the name of the attribute that should determine the weight of each
instance. It must be an integer or a floating point attribute and should be part of the
schema.

• WEIGHT_IS_ATTRIBUTE is a Boolean option that determines whether the weight
attribute can be used by the classifier as a regular attribute. In certain cases where
the weight is a result of a stratified sample that is part of the experimental design,
the classifier should not be given access to the weight column as it is not a property
of the real-word entity.

• DISC_TYPE is an enumerated option taking on the value uniform-weight,
uniform-range, or entropy. It determines the discretization mode: uniform-weight
invokes uniform binning by record weights (ranges are not uniform); uniform-range
invokes uniform binning by range, while entropy invokes “automatic” binning
based on minimizing entropy that is nonuniform (see “The Bin Column Button” in
Chapter 3). The default is entropy.

• DISC_MIN_SPLIT is an floating point value specifying the minimum weight of
instances that must be in each bucket when discretization is being done. A value of
zero automatically determines a value for DISC_MIN_SPLIT that grows slowly as
the weight of the dataset grows.

• LOGLEVEL is an integer >= 0 defining the amount of logging information to print
during the run. The default is zero. This option is hidden; you are not prompted for
it.

• DRIBBLE is a Boolean operation defining whether to dribble output during
processing in order to show progress. The default is TRUE. This option is hidden;
you are not prompted for it.

• LINE_WIDTH is an integer > 1 defining the line width for the output. Automatic
wrapping occurs to break words before this width. Wrapped lines begin with the
WRAP_PREFIX string. The default line width is 79. This option is hidden; you are
not prompted for it.

608

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

Induction Modes

This section describes the options for induction modes: classify-only and
classify-and-error.The classify-only mode induces a classifier using the whole dataset. The
classify-and-error mode induces a classifier on a portion of the dataset and tests it on a
holdout set. The modes require specifying an ALGORITHM option, which can be
decision-tree, option-tree, or evidence. Options shared by both inducers in train-and-test
mode are:

• VIZ_NAME is a string defining the visualization name whenever appropriate. For
the decision tree inducer and option tree inducer, this fully specified filename is the
name of the configuration file (recommended suffix is .treeviz) and a suffix of .data is
automatically added to the data file needed. For the evidence inducer, only one
filename is needed (recommended suffix is .eviviz).

• CLASSIFIER_NAME is a string defining the classifier name whenever appropriate.

• BACKFIT_TEST_SET is a Boolean option determining whether to backfit the test set
data into the classifier’s structure (see “Backfitting” in Chapter 9).

• DISP_CONFUSION_MAT is a Boolean defining whether to display a confusion
matrix (see “Confusion Matrices” in Chapter 9). If this is set to yes, the option
CONFUSION_MAT_SCATTERVIZ_NAME is needed, which determines the fully
specified scatterviz file name (recommended suffix .scatterviz).

• DISP_LIFT_CURVE is a Boolean defining whether to display a lift curve (see “Lift
Curves” in Chapter 9). If this is set to yes, the followig options are needed:
LIFT_CURVE_LABEL_VALUE, identifying the label value for which to generate the
lift curve, and LIFT_CURVE_SCATTERVIZ_NAME , which determines the fully
specified scatterviz file name (recommended suffix .scatterviz).

• HOLDOUT_PERCENT is a floating point number between 0 and 1. It determines
what ratio of the records to use as a training set. The rest are used as a test set. The
default is two-thirds.

• RANDOM_SEED is an integer serving as the seed for the random-number
generator used to split the records into training and test sets.

Induction Modes

609

Decision Tree Inducer Options

The following options are available for decision trees (ALGORITHM = decision-tree):

• DT_MAX_LEVEL, an integer >=0, limits the number of levels to grow the decision
tree. The default of zero implies no limit.

• DT_PRUNING_FACTOR, a floating point number >=0, determines the pruning
factor. Zero implies no pruning. The default is 0.7.

• DT_LBOUND_MIN_SPLIT, a float that provides a lower bound on the weight of
records required to trickle down to at least two branches in a given node. No split
will be made otherwise. The default is 2.

• DT_MIN_SPLIT_WEIGHT, a floating point number >=0, is the minimum ratio of
training records divided by the number of classes that are required to trickle down
to at least two branches in a given node. The default is is 0.1. This option is not
controllable from Tool Manager.

• DT_SPLIT_BY is an enumerated option taking one of the following values:
mutual-info, normalized-mutual-info, gain-ratio. It specifies the evaluation criterion
for choosing the attribute to split on at every node (see Chapter 10 for details). The
default is normalized-mutual-info.

• DT_ADJUST_THRESHOLDS is a Boolean operator determining whether splits on
continuous attributes have thresholds that are midpoints between two data points
or whether the thresholds should be actual data values. The default is FALSE (that
is, not to adjust the thresholds to data values). This option is not controllable from
Tool Manager.

This option is useful when you want to avoid splits on fractional values if attributes
take on only integer values.

610

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

Option Tree Inducer Options

The following options are available for the option tree inducer (ALGORITHM =
option-tree) in addition to the options listed above for decision trees, which are all
applicable to option trees too:

• ODT_MULTI_SPLIT_MAX_SIZE is an integer option determining the maximum
number of splits at the root. The default is five.

• ODT_MULTI_SPLIT_WIDTH_CHANGE is an integer option determining the
change in the maximum width allowed at every level of the tree. The default is -2.
With the default ODT_MULTI_SPLIT_MAX_SIZE of 5, option nodes will only be
generated for the root (up to 5) and for the second level (up to 3). All levels below
will have no option nodes.

• ODT_FITNESS_INITIAL_RATIO is a floating point value iwhich determines when
to exclude attributes as options. When the inducer gives a fitness score to each
attribute, it chooses the best attribute and other attributes that might also be good as
options. The fitness ratio determines how good those other options must be. A
factor value of f implies that to be considered an option, an attribute must rank at
least f*b from the best scoring node, where b is the score for the best attribute. A
fitness ratio of 1 picks all the attributes (so the limiting options described above are
reached if there are attributes on which to split). A fitness ratio of 0 causes a regular
decision tree to be created (no option nodes).

Evidence Inducer Options

The following options are available for the evidence inducer (ALGORITHM= evidence):

• EVI_LAPLACE_CORRECTION, a Boolean determining whether to apply the
Laplace correction (see Chapter 12). The default is false.

• EVI_AUTO_FEATURE_SELECTION, a Boolean determining whether to apply
feature subset selection (see Chapter 10). The default is false.

Estimate Error

611

Estimate Error

If the MODE is estimate-error, cross-validation will be performed. The following options
are available:

• CV_FOLDS is an integer determining the number of cross-validation folds. The
default is 10. See Chapter 9 for details.

• CV_TIMES is an integer determining the number of times to repeat
cross-validation. The default is 1. See Chapter 9 for details.

All other options are the same as for the induction modes.

Learning Curve

If MODE is learning-curve, a learning curve is generated (see “Learning Curves” in
Chapter 9). All the options for the inducer modes are the same, plus the following:

• LEARN_CURVE_NUM_POINTS is an integer >0 that determines the number of
points on the learning curve,

• LEARN_CURVE_RUNS_PER_POINT is an integer > 0 that determines how many
times to run the inducer for each point on the learning curve. The more runs, the
better the error estimate and the narrower the confidence interval.

• LEARN_CURVE_MIN_RECORDS is an integer that determines the minimum
number of records, or what value for the x-axis should the learning curve start at. A
value of -1 invokes an automatic heuristic.

• LEARN_CURVE_MAX_RECORDS is an integer that determines the maximum
number of records, or what value for the x-axis should the learning curve end at. A
value of -1 invokes an automatic heuristic.

612

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

Discretization

If MODE is discretize, discretization (binning) of attributes is performed and thresholds
are determined. The following options are available:

• OUTPUT_NAME is the name of the file to contain the results.

• DISC_TRAIN_ONLY is a Boolean option that determines whether only the training
set should be used for determining the discretization intervals. If a model is built
and tested, it is important that the test set not be used for any part of the induction
process. If this option is yes, HOLDOUT_PERCENT and RANDOM_SEED will be
requested (see “Induction Modes” on page 608).

• ATTR_X, where X starts at 0 and increases. This defines the names of the attributes
that you would like discretized.

• BINS_X, where X starts at 0 and increases. This specifies the number of bins to
discretize ATTR_X into. Note that this is an upper bound and entropy binning may
choose a lower number of bins. If the number of bins is zero, automatic heuristics
are used.

Example: A discretization of two attributes, sepal width and petal length, according to
label iris type, such that the number of bins is automatically determined, and only the
training set portion of the dataset is used, can be done using the following options:

MODE=discretize
ATTR_0=sepal width
BINS_0=0
ATTR_1=petal length
BINS_1=0
DISC_TRAIN_ONLY=Yes
HOLDOUT_PERCENT=0.666667
RANDOM_SEED=7258789
DISC_TYPE=entropy
DISC_MIN_SPLIT=0
LABEL=iris type
WEIGHT=sepal length
WEIGHT_IS_ATTRIBUTE=Yes
OUTPUT_NAME=iris.disc

Column Importance and Auto Selection

613

Column Importance and Auto Selection

If MODE is auto-select or compute-importance, corresponding to the Find Importance
and Compute Importance modes in the Tool Manager’s Column Importance, the
following options are available:

• OUTPUT_FILE is the name of the file to contain the results.

• ATTR_X, where X starts at 0 and increases. This defines the names of preselected
attributes. All other attributes are candidates for auto-selection or are ranked if
column importance is chosen.

• SELECT_N, an integer that determines the number of attributes to automatically
select in auto-select mode, which corresponds to the non-Advanced mode and the
advanced “find...” mode in column importance in the Tool Manager.

Example: To choose three attributes that can be used together with petal width to classify
iris type, the following options can be used:

MODE=auto-select
LABEL=iris type
SELECT_N=3
ATTR_0=petal length
DISC_TYPE=entropy
DISC_MIN_SPLIT=0
OUTPUT_NAME=feature.fss

In this example, the discretization mode was entropy and the minimum number of
instances in a bin was set to 0, indicating automatic MIN_SPLIT.

Fit-Data

If the MODE is fit-data, the following options are available:

• TEST_CLASSIFIER_IN determines the input classifier, which usually contains a
.class suffix.

• TEST_CLASSIFIER_OUT is the name of the generated classifier (the .class suffix is
recommended).

• TEST_SHOW_VIZ is a Boolean option that determines if a visualization should also
be generated. If the option’s value is yes or true, VIZ_NAME must be supplied as
the file name to output the visualization.

614

Appendix H: Command-Line Interface to MIndUtil: Classifiers, Discretization, Column Importance, and File Conversions

MineSet-to-MLC, MLC-to-MineSet

These modes provide facilities to convert from MLC++ format to MineSet format and
vice versa (see http://www.sgi.com/Technology/mlc). They can be used to convert UC
Irvine (http://www.ics.uci.edu/~mlearn/MLRepository.html) formatted files or C4.5
formatted files, which are common in the machine learning community.

MineSet-to-MLC provides the following options:

• SPLIT_TRAIN_TEST, whether to split the data into two files: a training set and a
test set.

• MLCFILE, the filename to export to. Suffixes of .names, .data, and .test are appended
to this stem if SPLIT_TRAIN_TEST is true; otherwise, the suffixes are .names and
.all. You can then run MLC++ inducers on these files, independent of MineSet.

MLC-to-MineSet provides the following options:

• DATAFILE, the file to import. If no suffix is given, it is assumed to be .data. It is
recommended that you concatenate the training and test sets into a .all file and use
that for importing.

• NAMESFILE, the names file describing the DATAFILE. A reasonable default is
automatically suggested based on the DATAFILE option.

• OUTPUT_DATA, a MineSet output file. This should have a .data suffix.

• OUTPUT_SCHEMA, a MineSet schema file. This should have a .schema suffix.

• OUTPUT_LABEL, a string indicating what name to use for the label attribute.

• REMOVE_UNKNOWN_INST, a Boolean option indicating whether to remove
records that have attributes with unknown values. The default is FALSE.

Visualize

615

Visualize

This mode lets you generate visualization files from classifiers. The following options are
available:

• CLASSIFIER_NAME is the name of the classifier, including the file suffix.

• VIZ_NAME is a string defining the visualization name. For the decision tree
inducer, this fully specified file name will be the name of the configuration file
(recommended suffix is .treeviz) and a suffix of .data will be automatically added to
the data file needed. For the evidence inducer, only one file name is needed
(recommended suffix is .eviviz).

Note that the classifier does not contain error estimation information, so decision trees
and option trees will just show the structure and distributions, not error estimates. You
can use the test-classifier option within the apply-classifier option in ToolManager to
generate a visualization that contains error estimates.

617

Appendix I

I. Nulls in MineSet

Nulls represent unknown data. MineSet supports nulls in the data access tools, the
mining tools, as well as the visualization tools. The purpose of this appendix is to give
you a better understanding of the way MineSet handles nulls.

Semantics of Nulls

Unknown data values are often represented as nulls in data sources. While it is possible
to associate different semantics with nulls, the most commonly used semantic is that of
nulls representing missing or unknown values. For example, if a data record is made up
of fields representing FIRSTNAME, MIDDLENAME, LASTNAME, and if a person’s
MIDDLENAME is not known, it can be represented by the null value.

Some databases, such as Oracle RDBMS, do not distinguish between null and empty
strings. In such a case, it is not possible to distinguish between an unknown middle name
and a person who does not have a middle name. On the other hand, Sybase RDBMS
distinguishes between null and empty strings.

Like most relational databases, MineSet associates the semantics of unknown values
with nulls. The ability to distinguish between null values and nonexistent values
depends on the source of data. Thus, when accessing data from Sybase, MineSet can
differentiate between nulls and nonexistent values.

Nulls can occur in data for a variety of reasons: They can occur naturally in data as a
means to represent unknown data, or they can come about as the result of doing certain
kinds of aggregations. For example, if there are no flights between San Francisco and
MineSet City, a query such as "find the average flight time from San Francisco to MineSet
City" yields a null value.

618

Appendix I: Nulls in MineSet

Representation of Nulls

In data files, as well as in the visual tools, nulls are represented by the string "?" (question
mark). Thus, if Joe Miner’s middle name is unknown, his name is represented in our
example data file (having schema FIRSTNAME, MIDDLENAME, LASTNAME) as:

Joe ? Miner

The graphical representation of nulls varies from tool to tool. See the chapters on the
individual tools for a discussion of how they represent them graphically.

Operations on Nulls

Given the semantic that nulls represent unknown values, it becomes straightforward to
give meaning to expressions involving nulls.

Arithmetic Expressions

Arithmetic operations involving nulls always give a null result. For example:

(5 + ?) evaluates to ? (adding 5 to an unknown yields yet another unknown);

(6 / ?) evaluates to ?

Boolean Expressions

In addition to taking on the values of TRUE and FALSE, Boolean variables can also be
null. If a Boolean valued variable has a null (unknown) value, the result of combining it
with another Boolean variable in an expression is unknown, unless it is possible to
determine just from the known value what the result is. In particular:

? and FALSE is FALSE, because FALSE ANDed with anything is always FALSE

? and TRUE is ?

Operations on Nulls

619

? or FALSE is ?

? or TRUE is TRUE, because TRUE ORed with anything is always TRUE

not ? is ?

Relational operations

Relational operations (==, !=, <, >, <=, and >=) involving nulls always evaluate to null.
Some particular cases worth emphasizing are:

? == ? evaluates to ?, not TRUE

? != ? evaluates to ?, not FALSE

? != x evaluates to ?, not FALSE

Given two unknown values, it is unknown whether the two are equal or unequal. This
behavior can be confusing when using a search panel. For example, when searching for
all values not equal to 0, nulls do not show up, yet neither do they show up when
searching for values equal to 0. Because of this, search panels provide the ability to search
explicitly for nulls. (Some search panels provide the option of treating nulls as zeros; see
the individual tool discussions for more information.)

Testing for nulls

The function isNull() can determine whether or not a variable has the value null. For
example:

isNull(X) evaluates to TRUE if variable X has the null value

isNull(X) evaluates to FALSE if variable X has a non-null value

620

Appendix I: Nulls in MineSet

Aggregations in the Presence of Nulls

MineSet stays close to the semantics of SQL and relational databases when aggregating
columns that might have null values. Thus, null values are ignored when computing
SUM, AVG, MIN, MAX, and COUNT. This is best illustrated by an example. Consider a
data file having records representing the number of pets a person has. The schema of this
record is NAME, NUM_PETS, and null (unknown) values are represented by "?".

Then,

SUM(NUM_PETS) = 4

COUNT(NUM_PETS) = 3 (and not 5, even though there are 5 rows of data)

AVG(NUM_PETS) = 1.33

MAX(NUM_PETS) = 3

MIN(NUM_PETS) = 0

In these aggregations, null values are basically ignored (note that the value 0 is different
from ?, and is not ignored).

A special case of this is an aggregation where all the values being aggregated are
themselves null. An even more specialized case is when there are no values being
aggregated: for instance, when summing an empty column. In both these cases, the sum,
average, min, and max are ?, while the count is 0.

Name NUM_PETS

Tesler 3

Rathmann ?

Haber 1

Bhargava 0

Sangudi ?

Sort Order for Nulls

621

Sort Order for Nulls

In an ascending sorted sequence, null values always appear before non-null values. In a
descending sorted sequence, null values always appear after non-null values.

Bins and Arrays With Nulls

MineSet lets you bin numeric data into bins or discrete intervals. It also lets you (via the
aggregation panel in the Tool Manager) create arrays on these bins. When a column of
values is binned, all null values are put in a bin labeled "?". Such a bin label is always
created, whether or not the data being binned has nulls in it. You have control over
whether to use this bin for nulls in your application. You can do so by allowing arrays to
ignore or keep bins for nulls by setting the desired option in the Tool Manager’s
Preferences dialog. For example, if you know that the column being binned has no nulls,
or you intend to study the data corresponding to non-null values only, you can choose to
ignore the bin for nulls.

623

Appendix J

J. Further Reading and Acknowledgments

Some datasets were taken from the UCI repository (Merz, C. J., and Murphy, P. M. (1996).
UCI Repository of machine learning databases, Irvine, CA: University of California,
Department of Information and Computer Science) found at
http://www.ics.uci.edu/~mlearn/MLRepository.html

Further reading

Several papers describing the technology used in MineSet are available at
http://www.sgi.com/Products/software/MineSet/tech/

An excellent, non-technical introduction to data mining and techniques is:

• Michael Berry and Gordon Linoff. Data Mining Techniques. New York: John Wiley &
Sons, 1997. ISBN 0-471-17980-9. See also
http://www.data-miners.com/

A comparative study of data mining tools, including MineSet, was done by the Two
Crows Corporation. It contains a good introduction to data mining

• Two Crows Corporation. Data Mining: Products, Applications & Technologies and
ordering information is available at
http://www.twocrows.com

A paper describing MLC++, the underlying analytical engine used in MineSet, is
described in:

• Ron Kohavi, Dan Sommerfield, and James Dougherty. Data Mining using MLC++, a
Machine Learning Library in C++, Tools with Artificial Intelligence. 1996. See:
http://robotics.stanford.edu/users/ronnyk/

624

Appendix J: Further Reading and Acknowledgments

A general and easy-to-read introduction to machine learning is:

• Weiss, S. M., and C. A. Kulikowski. Computer Systems that Learn. San Mateo, CA:
Morgan Kaufmann Publishers, Inc., 1991.

A general comparison of algorithms and descriptions is provided in:

• Taylor, C., D. Michie, and D. Spiegalhalter. Machine Learning, Neural and Statistical
Classification. Paramount Publishing International, 1994.

An easy-to-read introduction to decision tree induction is:

• Quinlan, J. R. C4.5: Programs for Machine Learning. Los Altos, CA: Morgan Kaufmann
Publishers, Inc., 1993.

An excellent book on decision trees from a statistical perspective is:

• Breiman, L., J. H. Friedman, R. A. Olshen, and C.J. Stone. Classification and Regression
Trees. Wadsworth International Group, 1984.

A good edited volume of machine learning techniques is:

• Dietterich, T. G. and J. W. Shavlik (Eds). Readings in Machine Learning. Morgan
Kaufmann Publishers, Inc., 1990.

A summary of accuracy estimation techniques is given in:

• Kohavi, R. “A study of cross-validation and bootstrap for accuracy estimation and
model selection.” In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, edited by C. S. Mellish. Morgan Kaufmann Publishers, Inc., 1995.
Available at
http://robotics.Stanford.EDU/~ronnyk/

An excellent introduction to the Evidence Classifier (Naive-Bayes) is:

• Kononenko, I. (1993). Inductive and bayesian learning in medical diagnosis. Applied
Artificial Intelligence, pp. 7:317-337.

A good reference to a paper explaining that no classifier can be “best” is:

• Schaffer, C. A conservation law for generalization performance. In Machine Learning:
Proceedings of the Eleventh International Conference, 259-265. Morgan Kaufmann
Publishers, Inc., 1994. Available at
http://wwwcs.hunter.cuny.edu/faculty/schaffer/papers/list.html

Further reading

625

Further Readings About Option Trees

MineSet uses an advanced version of the Option Trees described in:

• Ron Kohavi and Clayton Kunz. Option Decision Trees with Majority Votes. Machine
Learning: Proceedings of the Fourteenth International Conference", Morgan
Kaufmann Publishers, Inc., 1997. (See http://robotics.stanford.edu/users/ronnyk).
The option trees used in MineSet average the predictions and do not simply vote
them as described in this paper. Option Trees were first introduced by Wray Buntine
in his thesis A Theory of Learning Classification Rules, 1992, School of Computing
Science, University of Technology, Sydney.

Further Readings About the Evidence Inducer

The following paper describes the wrapper method used to select the features for the
Evidence Classifier:

• Kohavi, R., Sommerfield, D. (1995). Feature Subset Selection Using the Wrapper Model:
Overfitting and Dynamic Search Space Topology. The First International Conference on
Knowledge Discovery and Data Mining, pp. 192-197. Available at:
http://robotics.Stanford.EDU/~ronnyk/

The following paper describes the Laplace correction option:

• Cestnik, B. (1990). Estimating Probabilities: A crucial Task in Machine Learning.
Proceedings of the Ninth European Conference on Artificial Intelligence, pp.
147-149.

The following paper describes the automatic Laplace correction used in MineSet:

• Kohavi R., Becker B., and Sommerfield D., Improving Simple Bayes, European
Conference on Machine Learning, 1997 (poster). Available at
http://robotics.Stanford.EDU/~ronnyk/

The following paper describes the Evidence Classifier (Naive-Bayes):

• Langley, P., Iba, W., Thompson, K. (1992). An Analysis of Bayesian Classifiers.
Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 223-228.
Available at
http://www.isle.org/~langley/pubs.html

626

Appendix J: Further Reading and Acknowledgments

The following books describe the Evidence Classifier:

• Good, I. J. The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT
Press, 1965.

• Duda, R., Hart, P. Pattern Classification and Scene Analysis, Wiley, 1973.

The following paper shows that while the conditional independence assumption can be
violated, the classification accuracy of the evidence classifier (called Simple Bayes in this
paper) can be good:

• Domingos P., Pazzani M (1996). Beyond independence: conditions for the
optimality of the simple Bayesian classifier. Machine learning, Proceedings of the 13th
International Conference (ICML ’96), pp. 105-112. Available at
http://www.ics.uci.edu/~pedrod/

Further Readings About the Splat Visualizer

The following paper describes and provides further references for the technical details of
the Splat Visualizer.

• Becker, Barry G, "Volume Rendering for Relational Data," to appear in Proceedings of
Information Visualization '97, IEEE Computer Society Press, Los Alamitos CA,
October 19-24, 1997.

The following paper explains how to use Gaussian splats for volume rendering.

• Westover, Lee, “Footprint Evaluation for Volume Rendering” in Proceedings of
SIGGRAPH ‘90, Vol. 24, No. 4, pages 367-376)

Acknowledgments

The iris database (described in Chapter 9, “MineSet Inducers and Classifiers”) was
originally used in Fisher, R. A. 1936. The use of multiple measurements in taxonomic
problems. Annals of Eugenics 7(1):179-188. It is a classical problem in many statistical
texts.

The breast cancer database was obtained from Dr. William H. Wolberg, L. Mangasarian,
and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM News 23(5):1 & 18.
University of Wisconsin Hospitals, Madison, September 1990.

Acknowledgments

627

The data for the mushroom sample file comes from: Audubon Society Field Guide to North
American Mushrooms. New York: Alfred A. Knopf, 1981.

The data on congressional voting was taken from the Congressional Quarterly Almanac,
98th Congress, 2nd session 1984, Volume XL, Congressional Quarterly Inc.: Washington,
D.C., 1985.

The adult dataset was derived from the US Census Bureau survey in 1994
(http://www.census.gov/ftp/pub/DES/www/welcome.html).

629

Index

Symbols

symbol (configuration files), 442, 452, 495, 522, 550
% (percent) character, 474
% shortest option, 89
% symbol (configuration files)

enum statements, 498, 526, 554
message statements, 481, 510, 541, 593

" (double quote) vs. ’ (single quote), 455
* wildcard, 109, 112, 161, 202, 242, 280
; symbol (configuration files), 452, 492
> (greater than) symbol, 474
<--> thumbwheel, 101
? character, 618
? cursor, 121, 165, 204, 247, 281, 397
? wildcard, 109, 112, 161, 202, 242, 280
[] wildcard, 109, 112, 161, 202, 242, 280
\ (backslash) sequences, 442, 455, 495, 522, 550
\ characters, 445, 462
\n sequence, 455
} symbol (configuration files), 452, 492
’ (single closing quotation) characters, 455

Numbers

2D aggregation, 154, 196, 232
2-dimensional arrays, 492, 500, 519

declaring, 525
3D charts, 177, 217, 538, 561
3D landscapes, 79, 127, 208
3D views, 191, 226, 276

A

accelerator keys, 121, 165, 204, 247, 281, 397
accessing help screens, 247, 397

Map Visualizer, 165
Rules Visualizer, 281
Scatter Visualizer, 204
Tree Visualizer, 121

accuracy (classifiers), 297
testing, 312

Add Column button, 51
Add Column dialog box, 51, 52
Add Column option, 35

630

Index

Add New Op. After button, 56
Add New Op. Before button, 56
addresses, 439, 449
adultJobs.data, 248
adult-salary-dt.treeviz, 343
adult-salary.eviviz, 401
adult-salary.schema, 343, 401
adult.schema, 342, 400
adult-sex-dt.treeviz, 342
adult-sex.eviviz, 400
Advanced mode, 408-410
Advanced Mode button, 408
-agg %d command-line option, 575
Aggregate button, 42, 45
Aggregate dialog box, 45, 46
aggregate keyword, 467
Aggregate option, 35
aggregation, 42-46, 80

bar heights, 89
bases, 468
color values, 91
data points, 207, 211, 212
hierarchies, 464, 467, 471, 473
null values and, 617, 620
options, 45, 46
two-dimensional, 154, 196, 232

aggregations
COUNT, 45

algorithms, 285
adjusting, 332, 356

aligning fields in data files, 438, 448
Alphabetical command, 395
alphabetical comparisons, 456
alphanumeric values

filtering, 161, 202, 242, 280
searching for, 109, 112

analyzing
patterns and trends, 209, 251
relationships, 79, 127, 171, 207

And operations, 109, 161, 202, 242, 280
AND operator, 586
animation, 128, 207
animation control panel (Map Visualizer), 150-157

buttons, 156, 197
displaying dates, 498
hiding data points, 162
sliders, 157
starting animation, 156, 197
stopping animation, 156, 197
summary window, 151, 154-155

creating paths, 155
viewing data, 151-153

animation control panel (Scatter Visualizer), 192-199
buttons, ??-198
displaying, 201
hiding data points, 201
summary window, 183, 194, 196

coloring, 539
creating paths, 196

viewing dates, 526
animation control panel (Splat Visualizer), 228-231

buttons, 233, ??-234
displaying, 240
sliders, 235
starting animation, 233
stopping animation, 233
summary window, 220, 230, 232

coloring, 562
creating paths, 232

viewing dates, 554
Animation Flow buttons, 156, 198, 234
animations, 1
annotating data points, 114
any keyword, 467, 469

color values and, 91

631

Index

Apply button, 161
Apply Classifier

Estimated probability values mode, 321
Predict discrete label values mode, 321

Apply Classifier button, 52, 320
Apply Classifier dialog box, 320
Apply Classifier option, 35
Apply Classifier panel, 321
Apply History Changes button, 57
arithmetic functions, 456, 496, 524, 587
arithmetic operators, 586

null values and, 618
Arrays

necessary for Scatter Visualizer and Map
Visualizer, 42

arrays, 42, 439-440, 450-452, 492, 519
converting columns to, 45
declaring, 443, 450, 459, 500, 525, 528
defining keys, 465, 467, 525, 529, 553
enumerating, 439-440, 450
geographic locations, 135
hierarchies and, 464, 467, 470
inducers and, 325
null values and, 440, 444, 450, 460, 492, 621
separators, 440, 451, 452, 460

overriding, 444, 459, 500, 529
sliders and, 183
zero values and, 450

Arrow button, 148, 191, 226, 276, 390
ascending keyword, 465
ascending sort order, 93

hierarchies, 470
keys, 465
null values, 621

ASCII files, 13
aspect ratios, 484
assoccvt command-line option, 259, 568
assocgen command-line option, 260, 571

assocgen program, 571
examples, 282
generation options, 572
restriction options, 573
starting, 260, 571

association data converter, 254, 566-570
command-line options, 568-569
examples, 570
file requirements, 566
output, 568
sample files, 282
starting, 259
testing files, 570

Association Rule Options dialog box, 266
association rules, 254-256

displaying, 271, 273, 587
examples, 577-583
filtering, 279-280
generating, 571
mapping data to, 265, 267-268, 588
predictability, 254, 255, 578

expected, 255, 578
minimum threshold, 255, 267, 574

prevalence, 255, 578
minimum threshold, 255, 267, 573

sorting, 267, 574, 575
visualizing, 256, 279

association rules generator, 254-256, 265, 571-583
command-line options, 571-577
displaying legends, 258
file requirements, 571
output, 254, 574
overview, 3
sample files, 282, 283
setting options, 266-267
starting, 260

associations, 3, 61, 263-266
Associations tab, 61
Assoc window, 265
attaching to servers, 10

632

Index

attributes, 5, 286, 294, 330, 354
availability, 298
discretization algorithm, 412
options, 325
removing, 371
testing, 334, 339

Australian maps, 134, 167
australia.states.gfx, 167
australia.states.hierarchy, 167
Auto Column selection mode, 371
automatically computed thresholds, 38
Automatic column selection option, 377
automatic discretization algorithm, 412
Automatic Thresholds

Uniform Range, 40
Uniform Weight, 40

automatic thresholds
Uniform Range, 39

Automatic Thresholds Computation, 39
Automatic Thresholds tab, 37, 38
avg keyword, 467, 469

color values and, 91
null values and, 620

axes
assigning values, 177, 217, 538-539, 561
display options, 183
invisible labels, 220
labeling, 184, 220, 538, 543, 562, 564

color options, 539, 562
normalizing, 539
scaling values, 539
zero values and, 539

Axes requirement, 217
Axis 1 requirement, 177
axis keyword, 538, 561
Axis Label Size option, 184, 220

Axis Options
No Adjust, 183
Scale Size, 183

Axis options, 183
Max Size, 183

axis statements, 538-539, 561-562
axis variable, 538, 562

B

Backfit test set option, 314
backfitting classifiers, 301, 314
backslash characters, 445, 462
backslash keyword, 530, 556
backslash sequences, 442, 455, 495, 522, 550
bar charts, 127
Bar Label Color option, 92
bars, 79, 85

color options, 86, 91, 270
based on keys, 91, 477
labels, 92, 485
mapping to, 90

decision trees and, 335
equalizing, 470
fixed, 91
generating, 465
geographic regions, 136
heights, 88, 269, 277, 588

adjusting, 473
aggregating, 89
normalizing, 473, 475

labeling, 271, 480, 592, 595
colors, 92, 485
font options, 595
size, 487

laying out, 483

633

Index

negative values and, 80
null values and, 486
scaling, 88, 269, 277
searching, 108, 112
sorting, 465
zero values and, 485

base color statements, 479
Base Execute option, 92
Base Heights command, 117
base height statements, 475
base keyword, 468, 479
Base Label Color option, 92
base message statements, 481
bases, 80, 86, 95

aggregation and, 468
color options, 86, 91, 479

labels, 92, 485
lines, 92
mapping to, 90

decision trees and, 335
heights, 475

legends and, 475
labeling, 92, 485

size, 487
null values and, 486
scaling, 88
selecting, 120
zero values and, 485

batch mode, 25
beer2.data, 124
beer2.treeviz, 124
beer.data, 124
beer.treeviz, 124
bibliography, 624
binary files, 61, 254, 258

binary formats, 438
Bin Column button, 35
Bin Columns dialog box, 36-37
Bin Columns option, 34
binned columns

make 2-d array, 43
Binning

with Automatically Computed Thresholds, 38
binning, 35, 43
binning options, 37
bins, 35, 37

assigning dates, 41
creating automatically, 38
creating manually, 41
null values and, 621
range criteria, 41

bin type, 50
bitwise operators, 586
blank fields, 438, 448, 490, 518, 546
blank lines, 438, 448, 490, 518, 546
blocks.data, 167
blocks.gfx, 167
blocks.hierarchy, 167
blocks.mapviz, 167
Boolean expressions, 618
brand.data, 206
brand.scatterviz, 206
Breast Cancer Diagnosis dataset, 346, 360, 404
breast-dt.treeviz, 346
breast.eviviz, 404
breast.schema, 404
buckets keyword, 478, 508, 537, 560, 590
budgets, 45, 124

634

Index

buttons
Evidence Visualizer, 390
Map Visualizer, 147-148

animation control panel, 156, 197, ??-198, ??-234
Rules Visualizer, 275-276
Scatter Visualizer, 190-191
Splat Visualizer, 225-226

animation control panel, 233
Tree Visualizer, 99-100

search dialog box, 110

C

cache files, 29
calculated columns, 462, 503, 530
calendar quarters, 499, 527, 554
canada.provinces.gfx, 167
canada.provinces.hierarchy, 167
Canadian maps, 134, 167
cars.data, 206, 263
cars-dt.treeviz, 341
cars.eviviz, 398
cars.scatterviz, 206
cars.schema, 341, 398
case-insensitive filters, 113
case-insensitive searches, 109
case-sensitive filters, 111
case-sensitive searches, 107
category.rules, 283
category.ruleviz, 283
census database, 283
censusIncome data file, 249
Change DBMS button, 31
changes, discarding, 57

Change Server button, 29
Change Types Button, 47
Change Types button, 48
Change Types option, 35, 48
changing colors, 77
changing marks, 116
character strings, 50, 439, 449, 491, 519, 547, 550

configuration files, 442, 455, 495, 522, 550
filtering, 161, 202, 242, 280
searching, 109, 112

charts, 127, 177, 217
labeling, 538, 539, 543, 562, 564
normalizing axes, 539
plotting values, 538-539, 561
zero values and, 539

Check Expression button, 52
child nodes

option trees and, 357
selecting, 97, 100, 120
viewing, 100

Choose Child button, 100
choosing colors, 76, 78
Churn dataset, 249, 340, 358, 398, 413

learning curve for, 306
churn-dt.treeviz, 340
churn.eviviz, 398
churn.schema, 249, 398
classes

assigning records, 327, 349, 363
specifying, 335

classification rules, 336
classification types, 298, 299
Classifier & Error mode, 312, 313, 314

viewing output, 317, 318
Classifier only mode, 312, 317
Classifier Options dialog box, 331

635

Index

classifiers, 13, 285, 286
accuracy, 297

testing, 312
applying to records, 295-297, 301
backfitting, 301, 314
column importance and, 412
confusion matrices, 302-303, 314
defined, 286
error rate, 294
generating, 286, 329, 352, 371
learning curves, 305-307

options, 315-316
viewing output, 317

lift curves, 303-305, 314
loading pre-existing, 52, 320
loss matrices, 308-310, 315, 371
naming, 331, 354, 375
predicting unknown values, 309
record weighting, 295, 301, 311, 315

plotting cumulative weights, 303
selecting, 320
training sets and, 286
viewing output, 317

classifying unlabeled data, 4
class labels, 294

searching, 339
selecting, 381

Clear All button, 60, 86, 265
Clear button

filter dialog, 112
search dialog, 108, 110

Clear Selected button, 60, 86, 265
Click for Help command, 121, 165, 204, 247, 281, 397
Close button

filter dialogs, 116
search dialogs, 110

Close command, 104, 159
Color Aggregation options, 91
Color - Bar requirement, 86

Color - Bars requirement, 136
Color - Base requirement, 86
Color Browser, 78

opening, 76
Color by Key option, 91
Color Choose dialog box, 184, 220
Color - Disk requirement, 86
color editor, 90, 140
color keyword, 533, 535, 559
color list, 90, 140, 181, 219, 270
Color mapping option, 90, 182, 219
color mappings

Map Visualizer, 140-141, 507
overriding, 508

Rules Visualizer, 270, 589
overriding, 590

Scatter Visualizer, 182, 535-538
overriding, 536

Splat Visualizer, 217, 219-220, 559-561
overriding, 560

Tree Visualizer, 90, 477-480
null values and, 122
overriding, 478

color names, 477, 507, 535, 559, 589
Color requirement, 217
colors, 76-78, 89

bars, 86, 91, 270
based on keys, 91, 477
labels, 92, 485

bases, 86, 91, 479
labels, 92, 485

changing, 77
continuous ranges, 478, 536, 560
decision trees, 335
disks, 86, 91, 270, 480
entities, 181-182
filling by key, 91, 477
geographic regions, 136
grids, 184, 220, 271, 543, 564

636

Index

ground, 92, 483
labels, 271, 533, 539, 562

bars, 92, 485
bases, 92, 485

legends, 479, 509, 537, 591
displaying for, 561

lines, 92
nodes, 485
normalizing, 508
sky, 92, 483
splats, 209, 217, 219
summary values, 540, 563

colors keyword, 477, 507, 536, 559, 589
Colors option, 89
color statements

Map Visualizer, 507-509
Rules Visualizer, 589-592
Scatter Visualizer, 535-538
Splat Visualizer, 559-561
Tree Visualizer, 477-479

color swatches, 76, 77
color variable, 477, 507, 536, 559, 589
column importance

using on large file, 411
column importance algorithm, 412
Column Importance option, 62-65

modes, 62
Column Importance tool, 407-414

dependence, 413
discrete attributes and, 412
importance ranking, 412, 413
modes, 408-410
purity measure, 412
sample files, 413-414

columns, 5, 442, 458, 500, 528, 555
aggregation options, 45, 46, 467
calculated, 462, 503, 530
changing types, 48
computed, 51
converting to arrays, 45
defining, 437, 445, 448, 460
deleting, 35
mapping to, 177, 208, 217, 472, 506
naming, 51
retrieving, 265
selecting, 407, 411
viewing, 34

Columns to aggregate option, 46
Columns to remove option, 46
Column Type

changing, 48
command-line options

data converter, 568-569
rules generator, 571-577
startup

Evidence Visualizer, 374
Map Visualizer, 133
Rules Visualizer, 259, 260, 262
Scatter Visualizer, 176
Splat Visualizer, 215
Tree Visualizer, 83

commas, adding to numbers, 481, 510, 541, 593
comments

configuration files, 442, 452, 495, 522, 550
data files, 438, 448, 490, 518, 546

company.data, 205
company-life.scatterviz, 205
company.scatterviz, 205

637

Index

company-total.scatterviz, 205
comparing

datasets, 88
locations, 451
regions, 451
strings, 496, 524, 587

alphabetically, 456
dataString vs. string types, 439, 449
filtering types, 202, 242
filtering types and, 161, 280

comparing strings, 50
Complementary Drill Through command, 118, 163,

203, 245, 396
computed columns, 51
conditional probabilities, 365, 371
configuration files, 10

comments, 442, 452, 495, 522, 550
data files and, 438, 448
DataMover, 11-16
Evidence Visualizer

loading, 373
mandatory, 13
Map Visualizer, 132, 492

loading, 132, 133, 158
sample, 167

naming variables, 441, 453, 493, 521, 549
option files and, 453
Rules Visualizer, 259, 571, 584

loading, 262, 278
sample, 283

Scatter Visualizer, 173, 175, 520
formatting, 520
loading, 176
sample, 205, 206

Splat Visualizer, 213, 215, 547
formatting, 547
loading, 215, 239

Tree Visualizer, 81, 452
loading, 83, 103, 200
sample, 124

configuring
DataMover, 11-18
Decision Tree Inducer, 330-334
Evidence Visualizer, 374-377
Map Visualizer, 492-511

Tool Manager and, 134-143
Option Tree inducer, 353
Rules Visualizer, 584-595

Tool Manager and, 262-271
Scatter Visualizer, 520-543

Tool Manager and, 176-185
Splat Visualizer, 547-564

Tool Manager and, 216-221
Tree Visualizer, 452-488

Tool Manager and, 84-93
confusion matrices, 302-303, 314
confusion matrix, 322
connections, 10, 12, 14

remote, 16-18
consecutive integers, 450
Constant command, 246
consumer research sample files, 124
consumer spending sample files, 168
Contains search option, 109, 112, 161, 202, 242, 280
Continuous color setting, 90, 140, 182, 219, 270
controls

Map Visualizer, 147-149
hiding, 161

Rules Visualizer, 275-277
Scatter Visualizer, 190-192

hiding, 201
Splat Visualizer, 225-227

hiding, 240
Tree Visualizer, 99-102

copying data files, 16
Copy Other Window command, 103, 158
COUNT aggregations, 45
Count command, 395

638

Index

count keyword, 467, 469
null values and, 620

Create Box Selection command, 243
credit database, 283
cross-validation

tenforld (default), 411
cross-validation classification, 299, 313
Current Columns text box, 46
Current Columns window, 34
current views, 54
cursor

hand, 145, 188, 222, 273, 380
question mark, 121, 165, 204, 247, 281, 397

cutting selection information, 96, 146, 188, 223, 275

D

database mining tools, 2
database servers

connecting to, 10
data/breast.schema, 346
Data Destination panel, 27, 58
data exchanges, 421
.data filename extensions, 81, 131, 173, 213
data files, 10, 437-440

aligning fields, 438, 448
comments, 438, 448, 490, 518, 546
configuration files and, 438, 448
copying, 16
Decision Tree Inducer, 329
Evidence Visualizer, 372, 597
Map Visualizer, 131, 135, 490-492

naming, 496
reading, 497
sample, 167

null values and, 618
Option Tree inducer, 352
pre-existing, 15
reading, 442
Rules Visualizer, 258, 566, 568, 571

sample, 282
Scatter Visualizer, 173, 517-519

naming, 524
reading, 525
sample, 205, 206

selecting, 28
Splat Visualizer, 213, 545-547

naming, 552
reading, 552
sample, 247

storing, 12
Tree Visualizer, 81, 448-452

naming, 457
reading, 457
sample, 124

Data Files panel, 66
Data Files tab, 66
.datamove files, 11, 12
DataMover, 2, 3, 11-18

connecting to, 10
pre-existing data files and, 15
remote connections, 16-18
running precaution, 29
startup config file, 13

data points, 157, 198, 235
aggregating, 207, 211, 212
annotating, 114
hiding, 162, 201
multi-dimensional, 194, 230
one-dimensional, 194, 230

datasets
classifying, 4, 5, 327, 349, 363
comparing, 88

639

Index

displaying data, 129, 151
3D landscapes, 79, 127, 208
animation control panel, 192-199, 228-231

drilling through, 416-419
restrictions, 417

filtering, 89, 110-114, 474
finding specific values, 106-110, 337-340
geographic regions and, 151-153
hierarchical, 256, 575

accessing, 260
example, 580-581
options, 577
sample files, 283

loading sample, 18
predictions, 286

confusion matrices and, 302
sampling, 312
SAS formats and, 421-424
saving, 66
selecting multiple values, 415
unlabeled, 331, 354
updating, 461, 501

data sources, 27
null values and, 617

data statements, 442
Map Visualizer, 500-501
Scatter Visualizer, 528-529
Splat Visualizer, 555
Tree Visualizer, 458-460

dataString, 49
dataString types, 439, 449, 491, 519, 546
Data Transformations panel, 27, 34
data types, 49, 438

changing, 48
invalid, 48
Map Visualizer, 491-492, 496, 500
Rules Visualizer, 585, 587
Scatter Visualizer, 518-519, 524, 528

Splat Visualizer, 546-547, 555
Tree Visualizer, 449-452, 456, 458
user-defined, 450

dates, 498-499, 526-527, 553-555
assigning to bins, 41
formatting, 498, 526, 554
incrementing, 498, 526, 553
inducers and, 325

date types, 50, 498, 526, 547, 553
days, 499, 527, 554
decimal points, 481, 510, 541, 593

double types, 438, 449
float types, 438, 449

decision nodes, 334
Decision Tree Classifier, 287-288

controls, 337
generating, 329
menus, 337
naming, 331
overview, 4, 327
searching for objects, 337-340

Decision Tree Inducer, 4, 327-348
adjusting induction algorithm, 332
classification rules, 336
Column Importance tool and, 412, 413
configuring, 330-334
overview, 327
required files, 329
sample files, 340-348
starting, 329
viewing node information, 335

decision trees, 288
classifying records, 336
displaying, 317, 334-336, 357
drilling through, 418
error/loss estimates, 335, 339
filtering, 337
generating, 4

640

Index

measure of purity, 335, 339
nodes, 334-336

viewing information, 335
null values and, 340
pruning, 334
searching, 337-340
setting options, 331-334, 354-357
splitting, 333
testing attributes, 334

declaring
arrays, 443, 450, 459, 500, 525, 528
data types, 458, 500, 528, 555
enumerations, 443, 458
keys, 465, 467, 525, 529, 553

sliders and, 505
variables, 442, 453, 458, 493, 500, 528, 555

Decrease option, 356
default directories, 453, 493, 520, 548
default mappings, 265, 268
defaults, resetting

Map Visualizer, 139
Rules Visualizer, 269
Scatter Visualizer, 179
Splat Visualizer, 218, 221
Tree Visualizer, 86

defaults files, 453, 493, 520, 548
views, 504, 532, 557

default sort order, 470
Delete button, 116
Delete Op button, 56
deleting columns, 35
deleting marks, 116
Depth slider, 114
descendent nodes, 95
descending keyword, 465

descending sort order, 93
hierarchies, 470
keys, 465
null values, 621

description files, 258, 571, 577
sample, 282
specifying, 582

descriptive attributes, 286
Diabetes Diagnosis dataset, 347, 405
diff command (UNIX), 570
-dir %s command-line option, 573
directories (temporary), 12
disabling progress dialogs, 83, 133, 174, 262
Discard Changes button, 57
discarding changes, 57
discrete attributes, 325, 330, 354, 412
Discrete color setting, 90, 140, 182, 219, 270
discrete labels, 325, 330, 354, 375
Discrete Labels menu, 330, 354, 375
discretization algorithm, 412
disk color statements, 480
disk height statements, 476
disk keyword, 476, 480
disks, 86

color options, 86, 91, 270, 480, 592
mapping to, 90

distance between, 270, 595
heights, 88, 277, 476

legends and, 475
normalizing, 476

null values and, 486
size, 589
zero values and, 485

Display confusion matrix option, 314

641

Index

displaying
animation control panel, 201, 240
association rules, 271, 273, 587
child nodes, 100
classifier output, 317
data, 79, 127, 129, 151, 208

animation control panel, 192-199, 228-231
overhead projections, 105, 483

decision tree nodes, 335
decision trees, 317, 334-336, 357
entities, 181, 543
hierarchies, 94, 472, 484
labels, 184, 220, 271, 533, 538, 562
messages, 416

Map Visualizer, 142, 510
Rules Visualizer, 271, 592
Scatter Visualizer, 184, 541
Tree Visualizer, 91, 480

option trees, 290, 357
selected objects, 415
splats, 219

Display lift curves option, 314
Display menu (Tree Visualizer), 117
display options

Map Visualizer, 139-142
Rules Visualizer, 269-271, 594
Scatter Visualizer, 179-??, 543
Splat Visualizer, 218-221, 563
Tree Visualizer, 86-??, 482

display parameters, 117
Display X-Y Coordinates command, 162
Display X-Y Coordinates mode, 162
distributions, 42, 43, 45
divide by zero errors, 462
divide function, 456, 496, 524, 587

/ operator vs., 462, 503, 531
dm_config file, 13, 15

remote connections and, 17, 18
DNA Boundaries dataset, 361

DNA dataset, 347, 406
dna.eviviz, 406
dna.schema, 406
documentation, xxxii

online, 281
typographic conventions, xxxv

Dolly thumbwheel, 101, 149, 192, 227, 277, 392
double, 49
double-precision floating-point numbers, 438, 449,

491, 518, 546
double quotes vs. single quotes, 455
double types, 438, 449, 491, 518, 546
Down button, 116
downloading Internet files, 83, 133, 174
drill-down functions, 147
drilling preferences, 203
drilling through datasets, 416-419

restrictions, 417
drill-up functions, 147
-dt.class files, 331
-dt.out filename extension, 317

E

Edit History button, 54
editing, 54, 56

colors, 77
Edit matrix button, 315
Edit Op button, 56
editors, 565
Edit Prev. Op. button, 54
empty strings, 450

null values vs., 617
endpoints, 129

sample files, 168
e notation, 438, 449, 491, 518, 546

642

Index

entities, 533
color options, 181-182
displaying, 181, 543
filtering, 542
labeling, 182, 533, 543
legends, 535
null values and, 185, 201
selecting, 184, 541
size, 181, 534-535
unknown positions, 201

Entities File field, 140
entity

assigning color, 177
assigning label, 177
assigning size, 177

Entity - Bars requirement, 136
Entity Colors option, 181
entity keyword, 533
Entity Label Color option, 182
Entity Label Size option, 182
Entity Legend On option, 181
Entity Options option, 181
Entity requirement, 217
Entity Shape option, 181
Entity Size option, 181
entity statements, 533-534
entity variable, 533
enumerated arrays, 439-440, 450

declaring, 444, 459
hierarchies and, 470
keys as, 465, 467

enumerated values, 497, 525, 553
dates, 498, 526, 553

enumerations, 450
declaring, 443, 458
sliders and, 532, 557

enum keyword, 443, 458, 497, 498, 525, 526, 553
enum statements, 497-499, 525-527, 553-555

equality, 586
Equally Spaced Bins button, 41
Equals search option, 109, 112, 161, 202, 242, 280
Error Estimate mode, 312
error/loss estimate, 335, 339
error options (inducers), 313-317
error rate (classifiers), 294
error rate (option trees), 357
Estimated probability values mde, 321
Estimate Error mode, 313

viewing output, 317, 319
European maps, 134, 167
europe.countries.gfx, 167
europe.countries.hierarchy, 167
-evi.class files, 375
Evidence Classifier, 290-291, 363

generating, 5, 371
loss matrix, 371
naming, 375

Evidence Inducer
Column Importance tool and, 412, 413
running, 372
setting options, 377

Evidence Pane, 380
selecting items, 382

Evidence Visualizer, 5, 363-406, 597
configuring, 374-377
controls, 390-393
drilling through, 419
getting information, 397
history logs, 598
main window, 378-389
menus, 393-397
overview, 8, 363
predictions, 369
probabilities, 365, 371

correcting, 371, 377
required files, 372

643

Index

sample files, 397-406
selecting items, 381, 382
starting, 373-374

from UNIX prompt, 374
startup options, 374
viewing modes, 380

Evidence Visualizer icon, 373
-evi.out filename exension, 317
eviviz command-line option, 374
.eviviz filename extensions, 599
example files

loading, 18
examples directory, 124, 167, 205, 247

association rules, 282, 283
exceptions, 445
exchanging data, 421
execute keyword, 482
Execute option, 92, 142, 184
execute statements

Map Visualizer, 511
enabling warnings, 133
running, 133

Scatter Visualizer, 542
enabling warnings, 174
running, 174

Tree Visualizer, 482
enabling warnings, 83
running, 83, 96

executing queries, 32
executing shell commands, 482, 511, 542
executing UNIX commands, 92, 142, 184
Exit command, 104, 159, 200, 239, 278
exiting

Map Visualizer, 159
Rules Visualizer, 278
Scatter Visualizer, 199
Splat Visualizer, 239
Tree Visualizer, 104, 200

expected predictability, 255, 578
expenditures, 45
exponential notation, 438, 449, 491, 518, 546
expressions, 52, 456, 496, 523

defining, 462, 503, 530, 586
hierarchies and, 469
null values and, 618-619

expressions keyword, 463, 503, 530, 585
expressions sections

Map Visualizer, 503
Rules Visualizer, 585-587
Scatter Visualizer, 530
Tree Visualizer, 462-463

extend keyword, 539
extension files (Web), 425
external controls

Decision Tree Classifier, 337
Evidence Visualizer, 390-393
Map Visualizer, 147-149

hiding, 161
Rules Visualizer, 275-277
Scatter Visualizer, 190-192

hiding, 201
Splat Visualizer, 225-227

hiding, 240
Tree Visualizer, 99-102

F

far horizon, 92
fasta.m.data, 168
fasta.m.gfx, 168
fasta.m.hierarchy, 168
fasta.m.mapviz, 168
Fast Forward button (Map Visualizer), 156, 197
Fast Forward button (Splat Visualizer), 234
Fast Reverse button (Map Visualizer), 156, 197

644

Index

Fast Reverse button (Splat Visualizer), 234
field names, 51
fields, 490, 517, 545

aligning, 438, 448
assigning colors, 477, 507, 536, 559
charts and, 538, 562
data files, 437, 445, 448, 460
defining, 462, 503, 530

data type, 442, 458, 500, 528, 555
input sections, 441, 457

entity size and, 534-535
format files, 567, 568
rules files, 585

field separators, 490, 517, 545
default, 438, 448

file_cache setting, 12
file alteration monitor, 461, 502
file caches, 16

clearing, 12
file keyword, 442, 457, 497, 525, 552
File menu, 27, 68

Evidence Visualizer, 393
Map Visualizer, 158
Rules Visualizer, 278
Scatter Visualizer, 199
Splat Visualizer, 239
Tree Visualizer, 103

filenames
include statements, 454, 494, 522, 550
option files, 452
Rules Visualizer, 259, 283
Scatter Visualizer, 173
Splat Visualizer, 213
Tree Visualizer, 81, 131

file requirements
Decision Tree Inducer, 329
Evidence Visualizer, 372
Map Visualizer, 131
Option Tree inducer, 352
Rules Visualizer, 258, 566, 571, 583
Scatter Visualizer, 173
Splat Visualizer, 213
Tree Visualizer, 81

files, including, 454, 494, 522, 550
file statements, 442
Filter Button, 47
Filter button, 202, 242, 280
filter dialog box, 111
filtering

association rules, 279-280
data, 89, 110-114, 474
decision trees, 337
entities, 542
maps, 159
splats, ??-202, 240-242

filter keyword, 474, 542
Filter menu

Rules Visualizer, 279
Filter option, 35
Filter Out % Shortest option, 89
Filter panel

Map Visualizer, 159-161
Rules Visualizer, 279-280
Scatter Visualizer, 202-??
Splat Visualizer, ??-202, 241-242
Tree Visualizer, 110-114

Filter Panel command, 110, 159, 337

645

Index

filter statement, 542
Find File button, 140
Find File dialog box, 16
finding specific values, 106-110

decision trees, 337-340
First Child button, 100
First Child command, 120
fiscal year quarters, 499, 527, 554
Fit Data to Classifier, 323
Fit Data to Classifier mode, 323
Fit Data to Classifier Panel, 323
fixed-sized arrays, 439, 450, 492, 519

declaring, 443, 459, 500, 525, 528
hierarchies and, 464
separators, 440, 451

fixed strings, 439, 449, 491, 519, 547
fixedString type, 50
flat maps, 168
flat planes, 129
float, 49
floating-point numbers, 411, 438, 449, 491, 518, 546,

585
inducers and, 325

float types, 438, 449, 491, 518, 546, 585
fonts, 485, 595
format files, 258, 567-568
formats

configuration files, 452, 492, 520, 547
data files, 437, 448, 490, 517, 545, 597

data converter, 566
messages, 91
numbers, 481, 510, 541, 593

format strings
dates/time, 498, 526, 554
messages, 481, 510, 541, 592

For Selected Operation options, 56
Front View button, 191, 226
Further Classifier Options command, 331, 354, 376
Further Inducer Options dialog box, 354
Further Inducer Options option, 377
further readings, 624

G

Gain Ratio option, 333
Gaussian command, 246
Gender attribution dataset, 342, 400
generalities, 256
geographical objects, 131, 140
geographic regions, 127, 134, 505

assigning keywords, 136
bar heights, 136
color options, 136
displaying, 513
granularity, 147
legends, 141, 506
messages, 142
scaling, 140, 506
vertical height, 149

Geography File option, 140
germanCredit.rules, 283
germanCredit.ruleviz, 283

646

Index

gfx files, 131, 513-515
generating, 134-135
samples, 167
Web environments, 430

Go Back button, 100
Go Back command, 120
Go Forward button, 100
Go Forward command, 120
Go menu (Tree Visualizer), 119
Go to button, 116
graphical user interface, 23
graphs, 127, 177, 217

labeling, 538, 539, 543, 562, 564
normalizing axes, 539
plotting values, 538-539, 561
zero values and, 539

grasp mode
Evidence Visualizer, 380
Map Visualizer, 145, 148
Rules Visualizer, 273, 276
Scatter Visualizer, 188, 191
Splat Visualizer, 222, 226

greater than symbol (>), 474
Grid (X, Y, Z) Size option, 184, 220
Grid Color option, 184, 220
grid keyword, 594
grids

association rules, 594, 595
color options, 184, 220, 271, 543, 564
labeling, 271
line spacing, 184, 220

grid statements, 594
ground colors, 92, 483
Group-By columns option, 46
group.rules, 283
group.ruleviz, 283

H

Hand button, 148, 191, 226, 276, 390
hand cursor, 145, 188, 222, 273, 380
Height-adjust slider, 149
Height Aggregation option, 89
Height - Bar requirement, 85
Height - Bars requirement, 136
Height - Base requirement, 86
Height button, 269
Height - Disk requirement, 86
Height field, 269
Height filter slider, 113
height keyword, 472, 588, 589
height multiplier, 149
Height Scale slider, 391
Height slider, 102, 277
height statements

Map Visualizer, 506
Rules Visualizer, 588-589
Tree Visualizer, 472-475

Help menu, 70
Evidence Visualizer, 396
Map Visualizer, 164
Rules Visualizer, 281
Scatter Visualizer, 204
Splat Visualizer, 246-247
Tree Visualizer, 121

help screens, accessing, 121, 165, 204, 247, 281, 397
help windows

Map Visualizer, 148
Rules Visualizer, 276
Scatter Visualizer, 191
Splat Visualizer, 226

hexadecimal color values, 477, 507, 535, 559, 589
Hidden option, 113
Hide Distance option, 270

647

Index

Hide Label Distance option, 184, 220
hiding

data points, 162, 201
labels, 184, 220, 271, 533

hierarchical data, 256, 575
accessing, 260
example, 580-581
options, 577
sample files, 283

hierarchies, 79, 463
aggregating, 467, 471, 473
assigning values, 85
defining keys, 465, 470
displaying, 94, 472, 484
getting descriptions, 482
moving through, 120
normalizing heights, 473
populating, 467
setting options, 470
sorting, 470

Hierarchy field, 108, 112
hierarchy files, 131, 512-513

generating, 134-135
samples, 167
specifying, 140

hierarchy function, 456, 484
hierarchy keyword, 463
Hierarchy option, 340
Hierarchy Root Level requirement, 85
hierarchy sections, 463-471

key statements, 465-467
levels statements, 464-465
options, 470
sort statements, 470

hierarchy.treeviz.options, 463

highlighting objects
Map Visualizer, 145, 148, 163, 188
Rules Visualizer, 274
Scatter Visualizer, 188, 203
Splat Visualizer, 223
Tree Visualizer, 95

history sections, 598
history window, 54

removing items, 56
holdout classification, 298, 313
holdout error estimation, 411
holdout ratio, 313
Home button, 99, 148, 191, 226, 276
Home command, 119
home locations, 99, 119, 148, 191, 226, 276

setting, 99, 119, 148, 191, 226, 276
horizontal sliders, 505, 532, 557
hours, 499, 527, 554
H thumbwheel, 101
Hypothyroid Diagnosis dataset, 346, 360, 405
hypothyroid-dt.treeviz, 346
hypothyroid.eviviz, 405
hypothyroid.schema, 346, 405

I

icons, 25
-ifile %s command-line option, 569
Ignore Case In Filter option, 111
Ignore Case In Filters option, 113
Ignore Case In Searches option, 107, 109
importance (defined), 369
importance ranking, 412, 413
Importance Threshold slider, 392

648

Index

include keyword, 454, 494, 522, 550
include statements, 550

Map Visualizer, 494
Scatter Visualizer, 522
Tree Visualizer, 454

incrementing dates, 498, 526, 553
incrementing numeric values, 498, 525, 553
Index command, 121, 165, 204, 247, 281, 397
indexes, 43

color values and, 478, 507, 508, 536, 559, 560, 590
defining keys, 465, 470, 525, 529, 553

Inducer Options dialog box, 376
inducers, 285, 292-293

adjusting information levels, 324
class labels, 294
defined, 286
error options, 313-317
execution modes, 312
limitations, 324-325

overriding, 325
running, 312, 317
setting options, 308, 324-325
tracking progress, 317

induction algorithms, 285
adjusting, 332, 356

INFORMIX tables, 13, 14, 19
loading, 21

input keyword, 441, 457, 496, 524, 552, 585
input sections, 441-445

Map Visualizer, 496-502
data statements, 500-501
enum statements, 497-499
file statements, 497
options, 501

Rules Visualizer, 585

Scatter Visualizer, 524-530
data statements, 528-529
enum statements, 525-527
file statements, 525
options, 530

Splat Visualizer, 552-556
data statements, 555
enum statements, 553-555
file statements, 552
options, 556

Tree Visualizer, 457-462
data statements, 458-460
file statements, 457
options, 460

input transaction files, 254
insurance sample files, 205
int, 49
integers, 438, 449, 491, 518, 546, 585

mapping consecutive, 450
interactive mode, 25
Internet files, 83, 133, 174
InterTool menu, 164
int types, 438, 449, 491, 518, 546, 585
invalid parameters, 41
invalid types, 48
invisible labels, 184, 220
invoking

Decision Tree Inducer, 329
Evidence Visualizer, 373-374

from UNIX prompt, 374
Map Visualizer, 132-133, 143

from UNIX prompt, 133
Option Tree inducer, 352-353
Rules Visualizer, 259-262, 271
Scatter Visualizer, 173, 174-176, 185

from UNIX prompt, 176

649

Index

Splat Visualizer, 213-215, 221
from UNIX prompt, 215
resetting defaults and, 221

Tool Manager, 10, 25-27
from UNIX prompt, 25

Tree Visualizer, 81-83, 84, 93
from UNIX prompt, 83

Iris classification dataset, 344, 359, 402
iris-dt.treeviz, 344
iris.eviviz, 402
iris.schema, 344, 402
isize %d command-line option, 569
isNull function, 202, 242, 619
Is Null operator, 109, 161, 280
isSummary function, 456
item keyword, 594
item statements, 594

K

keep_classifier settings, 13
keep_data_files setting, 12
keep_query_files setting, 12
keep_temp_files setting, 12
Key - Bars requirement, 85
keyboard shortcuts, 121, 165, 204, 247, 281, 397
key keyword, 465, 529

color statements and, 477
keys, 85

arrays, 465, 467, 470, 525, 529, 553
coloring bars and, 91, 477
geographic regions, 136
hierarchies, 465, 470
setting options, 454, 494
sliders, 505

Keys & Shortcuts command, 121, 165, 204, 247,
281, 397

key statements, 465-467
keywords, 455, 495, 523, 551
Kind of mapping color option, 90

L

label keyword, 562
Rules Visualizer, 592
Scatter Visualizer, 533, 538
Tree Visualizer, 480

Label Probability command, 395
Label Probability Pane, 380

selecting items, 381
labels

axes, 184, 220, 538, 539, 543, 562, 564
bars, 271, 480, 592, 595

colors, 92, 485
size, 487

bases, 92, 485
size, 487

color options, 271, 533, 539, 562
bars, 92, 485
bases, 92, 485

distance between, 184, 220, 271
entities, 182, 533, 543
grids, 271
inducers and, 294, 325, 330, 354, 375
main windows, 142, 504
nodes, 484
resizing, 182
setting fonts, 485, 595
size, 543, 595
splats, 220, 562

label statements
Rules Visualizer, 592
Tree Visualizer, 480

650

Index

landscapes, 79, 127, 208
Laplace correction, 369, 371
Laplace correction option, 377
large numbers, 438, 449, 491, 518, 546
Last Child button, 100
Last Child command, 120
leaf nodes, 335
Learning Curve mode, 315
learning curves, 305-307

options, 315-316
viewing output, 317

legend keyword, 506, 509
Rules Visualizer, 588, 591
Scatter Visualizer, 534, 535, 537, 540
Splat Visualizer, 558, 561, 563
Tree Visualizer, 475, 479

Legend On option, 141
legends

association rules, 258
color values, 479, 509, 537, 561, 591
entities, 181, 270, 534, 535
geographic regions, 141, 506
height mappings, 475
splats, 558, 561, 563
summary, 183, 540, 563

Legends option, 270
Level option, 339
levels keyword, 464
levels statements, 464-465
LHS (defined), 574
libraries, 15
lift curve, 322
lift curves, 303-305, 314
Limit tree height to option, 332
Linear command, 246
line breaks, 452

Line Color option, 92
line colors, 92
line spacing (grids), 184, 220
loading example files, 18
loading files

Map Visualizer, 132, 133, 158
Rules Visualizer, 266, 278
Scatter Visualizer, 173, 175-176
Splat Visualizer, 215, 239
Tree Visualizer, 81, 83, 103, 200, 262

loading tables
sample, 19, 20, 21

Load SQL from File button, 33
locations

comparing, 451
marking, 114-116

lod options, 487
LOGLEVEL option, 324
Loop button, 156, 198, 234
loss matrix, 308-310, 315, 371
-lvldesc %d %s command-line option, 577

M

main windows
Evidence Visualizer, 378-389
Map Visualizer, 143-147

labeling, 142, 504
Rules Visualizer, 257, 272-275

displaying legends, 270, 588
Scatter Visualizer, 186-189
Splat Visualizer, 222-224
Tree Visualizer, 80, 94-98

Make Fixed option, 91
-map %d command-line option, 575
Map All button, 265
mapassocgen command-line option, 260, 571

651

Index

mapassocgen program, 571
generation options, 572, 575
hierarchical data options, 577
restriction options, 573
starting, 260, 571

map keyword, 505
mapping

sliders, 136, 177
mapping files, 258, 571, 575

sample, 282
Mapping option, 140
mapping requirements

Map Visualizer, 135-137
Scatter Visualizer, 176-178
Splat Visualizer, 210, 216-217
Tree Visualizer, 84-86

mappings, 58-60, 472
association rules and, 265, 267-268, 588
consecutive integers, 450
default, 265, 268
entity size and, 534-535
geographic locations, 135
hierarchical data, 256
legends and, 475
null values and, 122, 185
strings, 209
table columns, 177, 208, 217, 472, 506
undoing, 60

Map Visualizer, 127-169
animation control panel, 150-157

buttons, 156, 197, ??-198, ??-234
displaying dates, 498
summary window, 151, 154-155
viewing data, 151-153

color mappings, 140-141, 507
configuring, 492-511

Tool Manager and, 134-143

data files, 131, 135, 490-492
naming, 496
reading, 497

data input, 489
data types, 491-492, 496

declaring, 500
displaying data, 127, 129, 151, 504

gfx files and, 513
drilling through, 418
exiting, 159
external controls, 147-149

hiding, 161
file requirements, 131
filter panel, 159-161
fine-tuning granularity, 147
geographic locations, 134

assigning keywords, 136
getting information, 145, 165, 188
help with, 148, 164
keywords, 495
loading files, 132, 133, 158
main window, 143-147

labeling, 142, 504
manipulating views, 145
mapping requirements, 135-137

undoing, 137
menus, 158-165
moving through views, 148
null values and, 165
opening multiple windows, 158
options, 139-143

resetting, 142
saving, 142
startup, 133

overview, 6, 127
printing, 159
resetting defaults, 139
sample files, 167-169

652

Index

saving defaults, 143
selecting objects, 145, 148, 163, 188
sliders, 198
starting, 132-133, 143

from UNIX prompt, 133
startup options, 133
startup screen, 132
synchronizing sliders, 164
viewing modes, 145, 148

Map Visualizer’s Options dialog box, 139-142
Map Visualizer icon, 132
mapviz command-line option, 133
.mapviz extensions, 132
Mark button, 115
Mark Flags command, 117
Marks command, 114
.marks filename extensions, 116
Marks panel, 114-116

getting current location, 116
Matches search option, 109, 112, 161, 202, 242, 280
mathematical expressions, 51
mathematical functions, 456, 496, 524, 587
Max # root options, 356
MAX_ATTR_VALS option, 325
MAX_LABEL_VALS option, 325
max keyword, 467, 469

color values and, 91
null values and, 620
Rules Visualizer, 588
Scatter Visualizer, 534, 539

Max/Scale Heights option, 88
Mean error/loss standard deviation option, 339
measure of purity, 335, 339
memory, 439, 449, 491, 519, 547

menus
Decision Tree Classifier, 337
Evidence Visualizer, 393-397
Map Visualizer, 158-165
Rules Visualizer, 278-281
Scatter Visualizer, 199-204
Splat Visualizer, 238-247
Tool Manager, 68-70
Tree Visualizer, 102-121

message files, 573
message keyword, 480, 510, 541, 592
Message option, 91, 142
messages, 416

Map Visualizer, 142, 510
Rules Visualizer, 271, 592
Scatter Visualizer, 184, 541
Tree Visualizer, 91, 480

message statements
Map Visualizer, 510-511
Rules Visualizer, 592-593
Scatter Visualizer, 541-542
Tree Visualizer, 480-482

MineSet, 1
online documentation, 281
setting up, 11-18
tools, xxxi

overview, 1-10
mineset_batch command-line option, 25
mineset_makemtr command-line option, 430
mineset_makemtr script, 426
MINESET_WARN_EXECUTE variable, 83, 133, 174
mineset_webinstall_client script, 426
mineset_webinstall_server script, 426
mineset_weblaunch script, 426
mineset_wsf.tar script, 426

653

Index

mineset2sas command-line option, 421
mineset2sas utility, 421

running, 421
startup options, 422

.mineset-classopt file, 324
mineset command-line option, 25
MineSet icon, 25
MineSet mtr extension, 425, 430-431

publishing files, 436
startup options, 430, 431

MineSet Remote View, 425, 432-435
installing, 432

MineSet User’s Guide command, 121, 165, 204, 247,
281, 397

Min fitness ratio, 356
minimum predictability threshold, 255, 267, 574
minimum prevalence threshold, 255, 267, 573
min keyword, 467, 469

color values and, 91
null values and, 620

minutes, 499, 527, 554
missing data values, 617
modifing marks, 116
Modify button, 116
modifying colors, 77
modulus function, 456, 496, 524, 587
monitor keyword, 461, 501
months, 499, 527, 554
Move Left button, 100
Move Left command, 120
Move Right button, 100
Move Right command, 120
Move Up command, 120
moving through views, 54
-msg %s command-line option, 573
mtr files, 83, 133, 174, 430

publishing, 436

mult.dat, 282
mult.fmt, 282
multi-dimensional data points, 194, 230
multiple objects, selecting, 96
multiple users, 12
multiple values, 415
Mushroom classification dataset, 247, 345, 360, 403

confusion matrix for, 308, 309, 310
mushroom.data, 247
mushroom-dt.treeviz, 345
mushroom.eviviz, 403
mushroom.schema, 345, 403
Mutual Info option, 333

N

Naive-Bayes, 366
-names command-line option, 424
-names %s command-line option, 575
naming

classifiers, 331, 354, 375
columns, 51
data files, 457, 496, 524, 552
variables, 441, 453, 493, 521, 549

keywords and, 455, 495, 523, 551
viewpoints, 114

negative values, 80
nesting include statements, 454, 494, 522, 550
network connections, 10
New column name text field, 321
New Database Table dialog box, 30
New Data File dialog box, 28
new lines, 455
New type button, 48
Next button, 110
Next field, 54

654

Index

nl.births.data, 206
nl.births.scatterviz, 206
-nodata command-line option, 424
nodes, 79, 95

base heights, 88
decision trees, 334-336

viewing information, 335
disk heights, 88
distance between, 486
filtering, 113
finding specific, 108, 112
labeling, 484
line options, 485
option trees, 357
populating, 471
selecting child, 97, 100, 120
viewing child, 100

-nolabel command-line option, 423
Nominal Order menu, 395
nonexistent values, 617
Normalized Mutual Info option, 333
Normalize Heights option, 88
normalize keyword, 473, 508
Normalize On option, 141
normalizing axes values, 539
normalizing colors, 508
normalizing heights, 88

bars, 473, 475
disks, 476

normalizing trees, 451
NOT operator, 586
null enumerated arrays, 440, 450, 492

declaring, 444, 460

Nulls command, 117
null values, 122, 165, 185, 440, 617

arrays and, 440, 444, 450, 460, 492
binning, 621
decision trees and, 340
defining, 618
display options, 201, 486
empty strings vs., 617
in expressions, 618-619
mapping, 122, 185
objects and, 117
predicting, 309
sorting, 621
splats and, 221
testing for, 619
treating as zeros, 112

numbers, 438, 449, 491, 518, 546, 585
as filters, 280
filtering, 161, 202, 242, 280
formatting, 481, 510, 541, 593
incrementing, 498, 525, 553
searching for, 109, 112
sorting, 465

O

objects
displaying messages

Map Visualizer, 142, 510
Rules Visualizer, 271, 592
Scatter Visualizer, 184, 541
Tree Visualizer, 91, 480

geographical, 131, 140
null heights and, 117
searching for, 106-110, 337-340

655

Index

selecting
Map Visualizer, 145, 148, 163, 188
null values and, 123, 166
Rules Visualizer, 274, 276
Scatter Visualizer, 188, 191
Splat Visualizer, 223, 226
Tree Visualizer, 95, 96, 105, 107

viewing selected, 415
zero heights and, 117

observed predictability, 578
-odt.class files, 354
-odt.out filename extension, 317
-ofile %s command-line option, 569
one-dimensional arrays, 450, 492, 519

declaring, 528
one-dimensional data points, 194, 230
online documentation, 281
opacity, 210, 217
opacity keyword, 558
Opacity requirement, 217
opacity statements, 557-558
opacity variable, 558
Open command, 103, 158, 200, 239, 278
opening database tables, 29
opening files

Map Visualizer, 132, 133, 158
Rules Visualizer, 266, 278
Scatter Visualizer, 173, 175-176
Splat Visualizer, 215, 239
Tree Visualizer, 81, 83, 103, 200, 262

Open New Data File command, 28
Open New DBMS Query command, 32
Open New DBMS Table command, 29
Open Other Window command, 103, 158
operators, 456, 496, 523, 586

relational, 109, 112
filtering data, 161, 202, 242, 280

optional mappings
Map Visualizer, 135
Scatter Visualizer, 176
Tree Visualizer, 84

Option Nodes, 290, 350, 357
defined, 349
ranking, 357

options files, 452
hierarchies, 463, 472

options keyword, 445
Map Visualizer, 494, 501
Rules Visualizer, 594
Scatter Visualizer, 521, 530, 543
Splat Visualizer, 549, 556, 563
Tree Visualizer, 454, 460, 482

options statements, 445, 453, 454, 494, 521, 549
defaults files and, 493, 520, 548
tokens and, 455, 495, 523, 551
views, 482, 543, 563

Option Tree Classifier
overview, 4

Option Tree classifier, 288, 349
generating, 352
naming, 354

Option Tree Inducer, 4
Option Tree inducer, 349-361

adjusting induction algorithm, 356
configuring, 353
Decision Tree vs., 352
displaying option trees, 290, 357
error rates, 357
overview, 349-352
required files, 352
sample files, 358-361
starting, 352-353

Option Tree Visualizer, 4
Oracle tables, 13, 14, 19

loading, 19
remote servers and, 17

656

Index

organizational hierarchies, 451
organization option, 471
Origin of cars dataset, 341, 358, 398
Or operations, 109, 161, 202, 242, 280
OR operator, 586
Other Options option, 184, 220
Outline option, 113
outlines, 117
Outlines File field, 140
output files, 12

data converter, 568
rules generator, 254

Overview command, 105, 121, 165, 204, 247, 281, 397
Overview window (Tree Visualizer), 105, 483

P

panning views
Map Visualizer, 145
Rules Visualizer, 273
Scatter Visualizer, 188
Splat Visualizer, 222

pan thumbwheel, 101
parameters, 41

assoccvt command-line options, 569
assocgen command-line options, 572, 574
display options, 117
mapassocgen command-line options, 575, 577
mineset2sas command-line options, 422
sas2mineset command-line options, 423

Parent button, 100, 120
Party affiliation dataset, 345, 360, 404
pasting selection information, 96, 146, 188, 223, 275
pathnames, 497, 525, 552

data files, 442, 457
include files, 454, 494, 522, 550

Path slider (Map Visualizer), 157, 198

Path slider (Splat Visualizer), 235
patterns, 209, 251
people94.rules, 283
people94.ruleviz, 283
people.data, 206
people.scatterviz, 206
percentages, 474
Percent option, 339
percent symbol (%) in configuration files

enum statements, 498, 526, 554
message statements, 481, 510, 541, 593

perhouse.perage.data, 168
perhouse.perage.mapviz, 168
Perspective button, 148, 191, 226, 276, 391
pick dragger, 223, 245
pima-dt.treeviz, 347
pima.eviviz, 405
pima.schema, 347, 405
Play Forward button (Map Visualizer), 156, 197
Play Forward button (Splat Visualizer), 233
Play-once button, 156, 198, 234
Play Reverse button (Map Visualizer), 156, 197
Play Reverse button (Splat Visualizer), 233
population.australia.data, 167
population.australia.mapviz, 167
population.canada.data, 167
population.canada.mapviz, 167
population.europe.data, 167
population.europe.mapviz, 167
population sample files, 167, 168
population sampling, 311
population.usa.cities.data, 168
population.usa.cities.mapviz, 168
population.usa.data, 168
population.usa.mapviz, 168

657

Index

pound symbol (#) in configuration files, 442, 452,
495, 522, 550

-pred %f command-line option, 574
PRED (defined), 574
predictability, 254, 255, 578

expected, 255, 578
minimum threshold, 255, 267, 574

Predictability option, 267
Predict discrete label values mode, 321
predicting unknown values, 309
predictions, 286, 369

confusion matrices and, 302
pre-existing data files, 15
Preferences command, 203
-prev %f command-line option, 573
PREV (defined), 574
prevalence, 255, 578

minimum threshold, 255, 267, 573
Prevalence option, 267
Prev field, 54
Previous button, 110
printed documentation, xxxii

typographic conventions, xxxv
printf manual page, 481, 510, 541, 592
Print Image command, 104, 159, 200, 239
prior probability, 365, 371
probabilities, 365

correcting, 371, 377
generating, 371

probability estimates, 301
product categories sample files, 283
product group sample files, 283
Product Information command, 121, 165, 204,

247, 281, 397

progress dialogs, disabling, 83, 133, 174, 262, 374
Pruning factor option, 334
purity, 62, 335, 339, 407

testing, 410
purity measure, 412
Purity option, 339

Q

quantities, 79, 127
quarters (calendar), 499, 527, 554
queries, 12

running, 32
question mark (?), 618
question mark cursor, 121, 165, 204, 247, 281, 397
-quiet option, 83, 133, 174, 262, 374
quitting

Map Visualizer, 159
Rules Visualizer, 278
Scatter Visualizer, 199
Splat Visualizer, 239
Tree Visualizer, 104, 200

quotation marks, 41

R

random colors, 162, 478, 507, 536, 559
random samples, 312
random seeds, 313
range criteria, 41
range of values, 41
raw data, 447, 489, 517, 545

658

Index

raw data files, 258
formats, 566
sample, 282

reading
arrays, 451
strings, 439, 449

README files, 19, 206, 249, 283
reassigning data types, 48
records

assigning to classes, 327, 349, 363
availability, 297
classifiers and, 295-297, 301
classifying, 336
format files, 567, 568
raw data files, 566
unlabeled, 298

Record Viewer, 419
record weighting, 295, 301, 311, 315

plotting cumulative weights, 303
splats and, 210

reducing run time, 411
references, 624
regions, comparing, 451
relational expressions, 456, 496, 524, 587

null values and, 619
strings, 456, 496, 524, 587

relational operators, 109, 112
filtering data, 161, 202, 242, 280

relationships, analyzing, 79, 127, 171, 207
relative pathnames, 497, 525, 552

data files, 442, 457
include files, 454, 494, 522, 550

remote server connections, 16-18
Remove Column button, 35
Remove Columns option, 34
Reopen command, 103, 158, 200, 239, 278

required files
Decision Tree Inducer, 329
Evidence Visualizer, 372
Map Visualizer, 131
Option Tree inducer, 352
Rules Visualizer, 258, 566, 571, 583
Scatter Visualizer, 173
Splat Visualizer, 213
Tree Visualizer, 81

Reset Options button, 93, 142, 184, 221
resetting defaults

Map Visualizer, 139
Rules Visualizer, 269
Scatter Visualizer, 179
Splat Visualizer, 218, 221
Tree Visualizer, 86

resetting tool options
Map Visualizer, 142
Scatter Visualizer, 184
Splat Visualizer, 221
Tree Visualizer, 93

resizing labels, 182
revenue sample files, 124
RHS (defined), 574
Right View button, 191, 226
-rnum command-line option, 574
root nodes, 95

labeling, 484
-ropts command-line option, 572
rotating views

Map Visualizer, 145
Rules Visualizer, 273, 277
Scatter Visualizer, 149, 188, 192
Splat Visualizer, 223, 227

Rotx thumbwheel, 149, 192, 227, 277, 392
Roty thumbwheel, 149, 192, 227, 277, 392

659

Index

-rout %s command-line option, 575
-rsort %d command-line option, 574
.rules filename extensions, 283
rules files, 259, 584

creating, 267
sample, 283

Rules Visualizer, 251-283, 565
color mappings, 270, 589
components, 252
configuring, 584-595

Tool Manager and, 262-271
converting data, 254, 263-266, 566
creating associations, 61
current columns, 265
data files, 258, 566, 568, 571
data types, 585, 587
default mappings, 265, 268
displaying rules, 256, 271, 273, 279, 587
drilling through, 419
exiting, 278
external controls, 275-277
file requirements, 258, 566, 571, 583
filtering association rules, 279-280
generating association rules, 254-256, 571

minimum predictability threshold, 255, 267, 574
minimum prevalence threshold, 255, 267, 573
setting options, 266-267

getting information, 274, 281
help with, 276, 281
loading files, 266, 278
main window, 257, 272-275

displaying legends, 270, 588
manipulating views, 273, 276, 277
menus, 278-281

moving through views, 276
options, 269-271

startup, 262
overview, 7, 251
resetting defaults, 269
sample files, 282-283
selecting objects, 274, 276
setting up associations, 263-266
starting, 259-262, 271
startup options, 262
viewing modes, 273, 276

Rules Visualizer icon, 260
Rule Visualizer Options dialog box, 269-271
ruleviz command-line option, 262
.ruleviz filename extensions, 259
Ruleviz Mappings panel, 267
Run Assoc button, 267
Run Convert button, 266
running execute statements

Map Visualizer, 133
Scatter Visualizer, 174
Tree Visualizer, 83, 96

running queries, 32
running shell commands, 482, 511, 542
running UNIX commands, 92, 142, 184
Run Rule Viz button, 61
run time

reducing when running column importance, 411
rview_dir.cgi program, 432

configuring, 435
running, 434

rview_login program, 436

660

Index

S

Salary Factors dataset, 343, 401
sales sample files, 124, 205, 206
sample files

association rules generator, 282
Column Importance, 413-414
Decision Tree Inducer, 340-348
Evidence Visualizer, 397-406
loading, 18
Map Visualizer, 167-169
Option Tree inducer, 358-361
Rules Visualizer, 282-283
Scatter Visualizer, 205-206
Splat Visualizer, 247-249
Tree Visualizer, 124-125
Web extensions, 426

Sample option, 35
sas2mineset command-line option, 423
sas2mineset utility, 421

running, 423
SAS datasets, 421-424
SAS executables, 421
Save As command, 103, 159, 200, 239
Save Current History As command, 93
saving data, 66
saving tool options

Map Visualizer, 142
Scatter Visualizer, 184
Tree Visualizer, 93

scale keyword, 474, 506, 507
Rules Visualizer, 588, 590
Scatter Visualizer, 535, 536, 539
Splat Visualizer, 560
Tree Visualizer, 478

Scale to Filter command, 159

scaling
axes values, 539
bars, 88, 269, 277, 588
bases, 88
colors, 478, 507, 536, 560, 590
disks, 277, 588
entities, 181, 535
geographic regions, 140, 506
main windows

Map Visualizer, 145
Rules Visualizer, 273, 277
Scatter Visualizer, 149, 188, 192
Splat Visualizer, 223, 227

scatterplots, 208
Scatter Visualizer, 171-206

animation control panel, 192-199
displaying, 201
summary window, 183, 194, 196, 539
viewing dates, 526

color mappings, 182, 535-538
configuring, 520-543

Tool Manager and, 176-185
data files, 173, 517-519

naming, 524
reading, 525

data input, 517
data types, 518-519, 524

declaring, 528
displaying data, 196, 531
drilling preferences, 203
drilling through, 418
exiting, 199
external controls, 190-192

hiding, 201
file requirements, 173
filtering data, ??-202, 542
getting information, 188, 204
help with, 191, 204

661

Index

keywords, 523
loading files, 173, 175-176
main window, 186-189
manipulating views, 149, 188, 192
mapping requirements, 176-178

undoing, 178
menus, 199-204
moving through views, 191
null values and, 185
options, 179-??

resetting, 184
saving, 184
startup, 174

overview, 7, 171
printing, 200
resetting defaults, 179
sample files, 205-206
saving defaults, 185
selecting columns, 411
selecting objects, 188, 191, 203
starting, 173, 174-176, 185

from UNIX prompt, 176
startup options, 174
startup screen, 175
viewing modes, 188, 191

Scatter Visualizer icon, 174
scatterviz command-line option, 176
.scatterviz filename extensions, 173
ScatterViz Options dialog box, 181-184
.schema files, 15, 29, 441-445
Search button, 110
Search command, 106
Search dialog box, 106, 107-110, 338
searches, 106-110, 337-340

specifying search criteria, 109, 112
wildcards, 109, 112, 161, 202, 242, 280

Search Panel command, 337
search paths

data files, 442, 457, 497, 525, 552
defaults files, 520, 548
include files, 454, 494, 522, 550
options files, 453, 493

search spotlights, 107
turning off, 110

seconds, 499, 527, 554
sections (configuration files), 452, 492, 520, 548
security, 436
Seek button, 148, 191, 226, 276, 391
Select All command, 163
Select button, 110
selecting bases, 120
selecting classifiers, 320
selecting colors, 76, 78
selecting data files, 28
selecting entities, 184, 541
selecting multiple values, 415
selecting objects

Map Visualizer, 145, 148, 163, 188
null values and, 123, 166
Rules Visualizer, 274, 276
Scatter Visualizer, 188, 191, 203
Splat Visualizer, 223, 226
Tree Visualizer, 95, 96, 107

Overview window, 105
Selection menu

Evidence Visualizer, 395
Map Visualizer, 163
Scatter Visualizer, 203
Splat Visualizer, 243
Tree Visualizer, 118

662

Index

select mode
Evidence Visualizer, 381, 382
Map Visualizer, 145, 148, 188
Rules Visualizer, 274, 276
Scatter Visualizer, 188, 191
Splat Visualizer, 223, 226

semicolons (;) in configuration files, 452, 492
Send To Tool Manager command, 118, 163, 203, 245
Send to Tool Manager command, 396

usage discussed, 416
separator keyword, 444, 445, 556

Map Visualiser, 500, 501
Scatter Visualizer, 529, 530
Tree Visualizer, 459, 460

separators, 501
arrays, 440, 451, 452, 460

overriding, 444, 459, 500, 529
data files, 437, 445, 448, 460, 490, 517, 545
default character, 438, 448
fields, 490, 517, 545
numeric formats, 481, 510, 541, 593

server connections, 12, 14
remote, 16-18

servers
connecting to, 10

Set All button
filter dialog, 112
search dialog, 108

Set Home button, 99, 148, 191, 226, 276, 390
Set Home command, 119
Set Minimum Weight per Bin option, 377
shared libraries, 15
shell commands, 482, 511, 542
shortcut keys, 121, 165, 204, 247, 281, 397
Show Animation Panel command, 162, 201, 240
Show Data Points command, 162, 201

specifying initial settings, 511

Show Entities with Null Positions command, 201
Show Filter Menu command, 240
Show menu (Tree Visualizer), 104
Show Null Positions command, 240
Show Original Data command, 118, 163, 203, 245,

396
usage discussed, 417

Show Pick Dragger command, 245
Show Values command, 118, 163, 203
Show Window Decoration command, 161, 201, 240,

394
shrinking aspect ratios, 484
signed integers, 438, 449, 491, 518, 546
Simple Bayes, 366
Simple mode, 408
sinclude keyword, 454, 494, 522, 550
sinclude statements, 550

Map Visualizer, 494
Scatter Visualizer, 522
Tree Visualizer, 454

sing.dat, 282
sing.fmt, 282
single closing quotation marks, 455
single quotes vs. double quotes, 455
Single-Step buttons (Map Visualizer), 156, 197
Single-Step buttons (Splat Visualizer), 234
size keyword, 534
size statements, 534-535
size variable, 534
skipMissing option, 470, 471
sky colors, 92, 483
slider

creation, 137, 178
creation, automatic, 137, 178
creation,manual, 137, 178
mapping options, 183

663

Index

slider controls
Evidence Visualizer, 391
Map Visualizer, 149, 151, 198

animation control panel, 157
declaring, 500
synchronizing, 164

Rules Visualizer, 277
Scatter Visualizer, 193-195
Splat Visualizer, 228-230

animation control panel, 235
Tree Visualizer, 102

slider keyword, 505, 532, 557
Slider options, 183
sliders

assigning keys, 505
defining dimensions, 505, 519, 524, 532, 557
geographic regions, 142
mapping, 136, 177
summary values, 177

Sliders requirement, 217
small values, filtering out, 113
Solid option, 113
Sort By Importance command, 394
Sort by Key option, 93
Sort By requirement, 85
sorting, 35, 93, 465

association rules, 267, 574, 575
hierarchies, 470

sort keyword, 470
sort order, 465

null values, 621
specifying, 93

Sort Output By option, 267
sort statements, 470
Specifying Thresholds, 41

Use custom thresholds, 41
Use evenly spaced thresholds, 41

Speed slider (Map Visualizer), 157, 198
Speed slider (Splat Visualizer), 235
Sphere command, 246
Splat Colors option, 219
splats

color options, 209, 217, 219
defined, 207
displaying, 219
drawing options, 219, 246
filtering, ??-202, 240-242
labeling, 220, 562
legends, 558, 561, 563
record weighting and, 210
summary values, 217

Splat Shape option, 219
Splats option, 219
Splat Type menu, 246
Splat Visualizer, 207-249

aggregating data points, 207, 211, 212
analyzing data, 209
animation control panel, 228-231

buttons, 233
displaying, 240
summary window, 220, 230, 232, 562
viewing dates, 554

color mappings, 217, 219-220, 559-561
configuring, 547-564

Tool Manager and, 216-221
data files, 213, 545-547

naming, 552
reading, 552

data input, 545
data types, 546-547

declaring, 555
displaying data, 208, 232, 243, 246, 556
drilling through, 419
exiting, 239
external controls, 225-227

hiding, 240

664

Index

file requirements, 213
filtering data, 240-242
getting information, 223, 247
help with, 226, 246
interpolation, 235-238
keywords, 551
loading files, 215, 239
looping options, 234
main window, 222-224
manipulating views, 223, 227
mapping requirements, 210, 216-217

undoing, 217
menus, 238-247
moving through views, 226
null values and, 221
options, 218-221, 234

resetting, 221
overview, 207
printing, 239
resetting defaults, 218, 221
sample files, 247-249
saving defaults, 221
selecting objects, 223, 226
starting, 213-215, 221

from UNIX prompt, 215
resetting defaults and, 221

startup options, 215
viewing modes, 222, 226

Splat Visualizer icon, 213
Splat Visualizer Options dialog box, 218-220
splatviz command-line option, 215
.splatviz.data files, 221
.splatrviz extensions, 213
.splatviz.schema files, 221
Split Lower Bound option, 333
Splitting criterion option, 333
spotlights, 96, 107

turning off, 110

SQL queries, 12
running, 32

SQL Query dialog box, 33
standard deviation, 339
starting

Decision Tree Inducer, 329
Evidence Visualizer, 373-374

from UNIX prompt, 374
Map Visualizer, 132-133, 143

from UNIX prompt, 133
Option Tree inducer, 352-353
Rules Visualizer, 259-262, 271
Scatter Visualizer, 173, 174-176, 185

from UNIX prompt, 176
Splat Visualizer, 213-215, 221

from UNIX prompt, 215
resetting defaults and, 221

Tool Manager, 10, 25-27
from UNIX prompt, 25

Tree Visualizer, 81-83, 84, 93
from UNIX prompt, 83

Start Tool Manager command, 239
Map Visualizer, 159
Scatter Visualizer, 200
Tree Visualizer, 104

startup window, 26
Map Visualizer, 132
Scatter Visualizer, 175
Tree Visualizer, 82

statements (configuration files), 453, 493, 521, 549
stateRevenue.data, 124
stateRevenue.treeviz, 124
statics, 207
Stop button (Map Visualizer), 156, 197
Stop button (Splat Visualizer), 233
store.data, 124
store.treeviz, 124

665

Index

store-type.data, 205
store-type.scatterviz, 205
storing

data files, 12
data locations, 114
strings, 439, 449, 491, 519, 547
temporary files, 573

string, 50
string function, 456
strings, 50, 439, 449, 491, 519, 546, 550

as filters, 280
comparing, 50, 161, 202, 242, 280, 496, 524, 587

alphabetically, 456
dataString vs. string types, 439, 449

configuration files, 442, 455, 495, 522, 550
empty, 450, 617
filtering, 161, 202, 242, 280
hierarchies and, 456
mapping, 209
searching, 109, 112
sorting, 465
storing, 439, 449, 491, 519, 547
zero values and, 450

string types, 439, 449, 491, 519, 547, 585
Submit SQL Query button, 33
Subtract Minimum Evidence command, 394
Subtree weight option, 339
sum keyword, 467, 469

null values and, 620
summary keyword, 511, 539, 562
summary legends, 183, 540, 563
Summary options, 183, 220
Summary requirement, 136, 177, 217
summary statements

Map Visualizer, 511
Scatter Visualizer, 539-540
Splat Visualizer, 562-563

summary values, 80
color options, 540, 563
hierarchies, 467
sliders and, 177
splats, 217

summary variable, 540, 562
summary window (Map Visualizer), 151, 154-155

creating paths, 155
summary window (Scatter Visualizer), 183, 194, 196

creating paths, 196
summary window (Splat Visualizer), 220, 230, 232

creating paths, 232
-svsc command-line option, 422, 424
Swing button, 156, 198, 234
Sybase tables, 13, 14, 19

loading, 20
remote servers and, 17
shared libraries and, 15

Synchronize All Mapviz Sliders command, 164
syntax (configuration files), 452, 453, 492, 520, 547

axis statements, 538, 561
base color statements, 479
base height statements, 475
color statements, 477, 507, 535, 559, 589

buckets clause, 478, 508, 537, 560, 590
colors clause, 477, 507, 536, 559, 589
key clause, 477
legend clause, 479, 509, 537, 561, 591
normalize clause, 508
scale clause, 478, 508, 536, 560, 590

disk color statements, 480
disk height statements, 476
entity statements, 533
enum statements, 525, 553
expressions sections, 463, 503, 530, 585
filter statements, 542
grid statements, 594

666

Index

height statements, 472, 506, 588, 589
filter clause, 474
legend clause, 475, 506
normalize clause, 473
scale clause, 474, 506

hierarchy sections, 463, 470
aggregate statements, 467, 468
key statements, 465
levels statements, 464
sort statements, 470

include statements, 454, 494, 522, 550
input sections, 441, 457, 496, 524, 552, 585

data statements, 442, 458, 500, 528, 555
enum statements, 497, 498, 526, 553
file statements, 442, 457, 497, 525, 552
options, 501

item statements, 594
label statements, 480, 592
message statements, 480, 510, 541, 592

execute clause, 482
opacity statements, 558
options statements, 454, 494, 501, 521, 549

input sections, 445, 460
sinclude statements, 454, 494, 522, 550
size statements, 534
summary statements, 511, 539, 562
view sections, 472, 504, 531, 556, 587

map statements, 505
options, 483, 484, 485, 486, 543, 563, 594
slider statements, 505, 532, 557
title statements, 504

syntax (data files), 438, 448, 490, 517, 545, 597
synthb.dat, 283
synthb.map, 283
synthn.dsc, 282
synths.dat, 282
synths.map, 282
system defaults, 453, 493, 520, 548

T

tab character, 438, 448
Table History buttons, 53
Table history dialog box, 55
Table Processing window, 46
tables

accessing data, 11
classifiers and, 294
deleting columns, 35
hierarchies and, 464, 470
loading

sample, 19, 20, 21
mapping to columns, 177, 208, 217, 472, 506
opening, 29
processing options, 34
retrieving columns, 265
saving data, 66
variable-length, 470
viewing current states, 53

telecom.data, 168
telecom.mapviz, 168
temp_dir setting, 12
temporary directories, 12
temporary files, 573

storing, 573
Test attribute option, 339
Test Classifier

confusion matrix, 322
lift curve, 322

Test Classifier Panel, 322
Test Classifier panel, 322
testing classifier accuracy, 312
Test set error/loss option, 339
Test value option, 339
text editors, 565
text field

Thresholds for selected column are, 40

667

Index

text files, 13
Texture command, 246
three-dimensional charts, 177, 217, 538, 561
three-dimensional landscapes, 79, 127, 208
three-dimensional views, 191, 226, 276
thresholds, 38, 41
thumbwheels

Evidence Visualizer, 392
Rules Visualizer, 276-277
Scatter Visualizer, 149, 192
Splat Visualizer, 227
Tree Visualizer, 101

Tilt thumbwheel, 101
time, 498-499, 526-527, 553-555

bin values, 41
formatting, 498, 526, 554

timeout options, 461
title keyword, 504
tnsnames.ora, 17
tokens, 455, 495, 523, 551
Tool Manager, xxxi, 3, 23-78

configuration options
Decision Tree Inducer, 330-334
Evidence Visualizer, 374-377
Map Visualizer, 134-143
Option Tree inducer, 353
Rules Visualizer, 262-271
Scatter Visualizer, 176-185
Splat Visualizer, 216-221
Tree Visualizer, 84-93

creating classifiers, 13
inducers and, 324
menus, 68-70
nonsupported options, 24
overview, 23
running in batch mode, 25
starting, 10, 25-27

from UNIX prompt, 25
startup window, 26

tool options
Map Visualizer, 139-143
Rules Visualizer, 269-271
Scatter Visualizer, 179-??
Splat Visualizer, 218-221
Tree Visualizer, 86-??

Tool Options button, 60
tools, xxxi

invoking, 59
multiple selection and, 415
overview, 1-10
requirements, 59

Top View button, 191, 226
-tprefix %s command-line option, 573
training sets, 4, 5, 294-296

defined, 286
-tran %s command-line option, 573
Treat Nulls as Zeros option, 112, 340
Tree Visualizer, 79-125

classifiers and, 317
color mappings, 90, 477-480
configuring, 452-488

Tool Manager and, 84-93
data files, 81, 448-452

naming, 457
reading, 457

data input, 447
data types, 449-452, 456

declaring, 458
decision trees and, 334, 357
displaying child nodes, 100
displaying hierarchies, 94, 472, 484
drilling through, 418
exiting, 104, 200
external controls, 99-102
file requirements, 81
filtering data, 89, 110-114, 474
getting information, 95, 96, 107, 121
keywords, 455
loading files, 81, 83, 103, 200, 262

668

Index

main window, 80, 94-98
manipulating views, 98, 101, 486, 487
mapping requirements, 84-86

undoing, 86
marking viewpoints, 114-116
menus, 102-121
moving through, 98, 99, 119
nonsupported options, 84
null values and, 122
opening multiple windows, 103
options, 86-??

resetting, 93
saving, 93
startup, 83

overview, 6, 79
printing, 104
resetting defaults, 86
sample files, 124-125
saving defaults, 93
searching for objects, 106-110
selecting child nodes, 97, 100, 120
selecting columns, 411
selecting objects, 95, 96, 105, 107

null values and, 123, 166
spotlighting information, 96, 107, 110
starting, 81-83, 84, 93

from UNIX prompt, 83
startup options, 83
startup screen, 82

Tree Visualizer icon, 81
Tree Visualizer Options dialog box, 86-??
treeviz command-line option, 83
.treeviz extensions, 81
trends, 209, 251
two-dimensional aggregation, 154, 196, 232
two-dimensional arrays, 492, 500, 519

declaring, 525, 529
type casting, 456, 496, 524, 587
typographic conventions, xxxv

U

undoing changes, 57
undoing mappings, 60

Map Visualizer, 137
Scatter Visualizer, 178
Splat Visualizer, 217
Tree Visualizer, 86

-uniq %d command-line option, 573
UNIX accounts, 11
UNIX commands, 92, 142, 184
UNIX diff command, 570
UNIX startup commands

Evidence Visualizer, 374
Map Visualizer, 133
Rules Visualizer, 259, 260, 262
Scatter Visualizer, 176
Splat Visualizer, 215
Tree Visualizer, 83

unknown data values, 617
unlabeled datasets, 331, 354
unlabeled records, 298
unsupported types, 50
Up button, 116
updating data, 461, 501
usa.cities.gfx, 168
usa.cities.hierarchy, 168
usa.cities.lines.gfx, 168
usa.cities.lines.hierarchy, 168
usa.states.gfx, 168
usa.states.hierarchy, 168, 512
Use approach menu, 39

Auto, 39
Automatic, 39
Min weight per bin, 39

Use custom thresholds text box, 41

669

Index

Use loss matrix option, 315
Use Random Colors command, 162
user-defined data types, 450
user interface, 23
User Specified Thresholds tab, 37, 41
Use Slider On Drill Through command, 163
Use Slider On Drill-Through command, 245
Use Symmetric Axes command, 279
Use Weight menu, 40
Use Weight option, 315
US maps, 134, 168
usr/lib/MineSet/datamove, 11
usr/lib/MineSet/DBexamples, 18
usr/lib/MineSet/mapviz, 493
usr/lib/MineSet/scatterviz, 520
usr/lib/MineSet/splatviz, 548
usr/lib/MineSet/treeviz, 453
usr/lib/MineSet/www, 425

V

values, selecting multiple, 415
variable-length arrays, 450-451

declaring, 460
hierarchies and, 464, 467
separators, 440, 452

variables, 452
as filters, 160, 280
axes values and, 538, 561
axis, 538, 562
color, 477, 507, 536, 559, 589
declaring, 442, 453, 458, 493, 500, 528, 555
entity, 533
naming, 441, 453, 493, 521, 549

keywords and, 455, 495, 523, 551

null values and, 619
opacity, 558
size, 534
summary, 540, 562

variants, 440, 450
Vertical/Horizontal View button, 56
vertical sliders, 505, 532, 557
View All button, 99, 148, 191, 226, 276, 391
View All command, 120
Viewer button, 191
Viewer Help button, 390
Viewer help button, 148, 226, 276
viewHierarchyLandscape.treeviz.options, 472
viewing modes

Evidence Visualizer, 380
Map Visualizer, 145, 148
Rules Visualizer, 273, 276
Scatter Visualizer, 188, 191
Splat Visualizer, 222, 226

view keyword, 472, 587
viewMap.mapviz.options, 504
View menu

Evidence Visualizer, 394
Map Visualizer, 159
Rules Visualizer, 278
Scatter Visualizer, 200
Splat Visualizer, 240

viewpoints, 114
manipulating, 98, 101, 486, 487

view.ruleviz.options, 594
views

current, 54
Map Visualizer, 128, 129

display options, 139-142
moving through, 148
opening multiple, 158
panning, 145
rotating, 145

670

Index

moving through, 54
Rules Visualizer, 258

display options, 269-271, 594
moving through, 276
panning, 273
rotating, 273, 277
three-dimensional, 276

Scatter Visualizer
display options, 179-??, 543
moving through, 191
panning, 188
rotating, 149, 188, 192
three-dimensional, 191

Splat Visualizer
display options, 218-221, 563
moving through, 226
panning, 222
rotating, 223, 227
three-dimensional, 226

Tree Visualizer, 472
display options, 86-??, 482
moving through, 98, 99, 119
opening multiple, 103
overhead projections, 105, 483
spotlighting information, 96, 107, 110

view.scatterviz.options, 531
view sections

See also configuration files
Map Visualizer, 504-511

color statements, 507-509
execute statements, 511
height statements, 506
map statements, 505
message statements, 510-511
slider statements, 505
title statements, 504

Rules Visualizer, 587-595
color statements, 589-592
grid statements, 594
height statements, 588-589
item statements, 594
label statements, 592
message statements, 592-593
options, 594-595

Scatter Visualizer, 531-543
axis statements, 538-539
color statements, 535-538
entity statements, 533-534
execute statements, 542
message statements, 541-542
options, 543
size statements, 534-535
slider statements, 532
summary statements, 539-540

Splat Visualizer, 556-564
axis statements, 561-562
color statements, 559-561
opacity statements, 557-558
options, 563-564
slider statements, 557
summary statements, 562-563

Tree Visualizer, 472-488
base color statements, 479
base height statements, 475
color statements, 477-479
disk color statements, 480
disk height statements, 476
height statements, 472-475
label statements, 480
message statements, 480-482
options, 482-488

671

Index

view.splatviz.options, 556
Visual Element Height - Bars option, 137
Visual Elements pane, 59
visualization tools, 2
Visual Tool menu, 70
Viz Tool menu, 59
Viz Tool panel, 58-60
-vopts command-line option, 572
vote-dt.treeviz, 346
vote.eviviz, 404
vote.schema, 346, 404
voting records example, 345, 360, 404

W

-warnexecute option, 83, 133, 174
warnings, 83, 133, 174
Web environments, 425-436

client installation, 427
extension files, 425
overview, 425
sample files, 426
security, 436
server installation, 428-429

locally, 429
remote systems, 429

Web files, 83, 133, 174
Weight is Attribute option, 315
“what if” questions, 363
wildcards, 202, 242

Map Visualizer, 161
Rules Visualizer, 280
Tree Visualizer, 109, 112

X

xconfirm command, 482, 511, 542
X coordinates (maps), 162
.Xdefaults files, 83, 133, 174
X sliders, 183
XY charts, 177, 217
X-Y vertex pairs, 162

Y

Y coordinates (maps), 162
years, 499, 527, 554
Y sliders, 183

Z

Zeros command, 117
zero values, 450

display options, 485
graphing, 539
nulls as, 112
objects and, 117
returning, 456

zoom buttons, 55

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3214-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

