
ProDevTM WorkShop: Tester User’s
Guide

007–3986–002

CONTRIBUTORS

Written by Jenn Byrnes
Edited by Rick Thompson
Illustrated by Chrystie Danzer
Production by Glen Traefeld

COPYRIGHT
© 1999, 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
IRIX and Silicon Graphics are registered trademarks and Developer Magic, ProDev, and the Silicon Graphics logo are trademarks of
Silicon Graphics, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
Vampir is a trademark of Pallas, Inc. X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features

This revision of the ProDev WorkShop: Tester User’s Guide supports the 2.9 release of
the MIPSpro WorkShop tools.

007–3986–002 iii

Record of Revision

Version Description

001 April 1999
Initial release as a separate product. Supports ProDev WorkShop
2.8 release.

002 June 2001
Supports ProDev WorkShop 2.9 release.

007–3986–002 v

Contents

About this Guide . xix

Related Publications . xix

Obtaining Publications . xix

Conventions . xix

Man page sections . xx

Reader Comments . xxii

1. Using Tester . 1

Tester Overview . 1

Test Coverage Data . 2

Types of Experiments . 2

Experiment Results . 3

Multiple Tests . 3

Test Components . 4

Usage Model . 5

Single Test Analysis Process 5

Automated Testing . 12

Additional Coverage Testing 14

2. Tester Command Line Interface Tutorial 17

Setting Up the Tutorials . 17

Tutorial #1 - Analyzing a Single Test 18

Instrumenting an Executable 18

Making a Test . 19

007–3986–002 vii

Contents

Running a Test . 20

Analyzing Test Coverage Data 20

Tutorial #2 - Analyzing a Test Set 23

Tutorial #3 - Optimizing a Test Set 29

Tutorial #4 - Analyzing a Test Group 33

3. Tester Command Line Reference 37

Common cvcov Options . 37

cvcov Command Syntax and Description 39

General Test Commands . 40

Coverage Analysis Commands 45

Test Set Commands . 51

Test Group Commands . 53

4. Tester Graphical User Interface Tutorial 55

Setting Up the Tutorial . 55

Tutorial #1 — Analyzing a Single Test 56

Invoking the Graphical User Interface 56

Tutorial #2 — Analyzing a Test Set 68

Tutorial #3 — Exploring the Graphical User Interface 72

5. Tester Graphical User Interface Reference 83

Accessing the Tester Graphical Interface 83

Main Window and Menus . 84

Test Name Input Field . 86

Coverage Display Area . 86

Search Field . 86

Control Area Buttons . 86

Status Area and Query-Specific Fields 87

viii 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Main Window Menus . 87

Test Menu Operations . 88

Views Menu Operations . 98

Queries Menu Operations . 101

Admin Menu Operations . 117

Index . 121

007–3986–002 ix

Figures

Figure 1-1 Instrumentation Process 9

Figure 1-2 Make Test Process 9

Figure 1-3 Run Test Process 10

Figure 1-4 The Queries Menu from the Main Tester Window 11

Figure 1-5 Typical Coverage Testing Hierarchy 15

Figure 4-1 Main Tester Window 58

Figure 4-2 Running Instrumentation 59

Figure 4-3 Selecting Make Test 61

Figure 4-4 Run Test Dialog Box 63

Figure 4-5 List Summary Query Window 64

Figure 4-6 List Functions Query with Options 65

Figure 4-7 List Functions Display Area with Blocks and Branches 66

Figure 4-8 Source View with Count Annotations 67

Figure 4-9 Disassembly View with Count Annotations 68

Figure 4-10 Make Test Dialog Box with Features Used in Tutorial 69

Figure 4-11 Make Test Dialog Box for Test Set Type 71

Figure 4-12 Call Graph for List Functions Query 73

Figure 4-13 Call Graph Display Controls 74

Figure 4-14 Call Graph for List Arcs Query 76

Figure 4-15 Call Graph for List Arcs Query — Multiple Arcs 77

Figure 4-16 Test Analyzer Queries: List Arcs 78

Figure 4-17 Test Analyzer Queries: List Blocks 79

Figure 4-18 Test Analyzer Queries: List Branches 80

007–3986–002 xi

Contents

Figure 5-1 Accessing Tester from the WorkShop Debugger 84

Figure 5-2 Main Test Analyzer Window 85

Figure 5-3 Test Menu Commands 89

Figure 5-4 Run Instrumentation Dialog Box 90

Figure 5-5 Run Test Dialog Box 92

Figure 5-6 Make Test Dialog Box 93

Figure 5-7 Make Test Dialog Box with Test Group Selected 95

Figure 5-8 Delete Test Dialog Box 96

Figure 5-9 List Tests Dialog Box 97

Figure 5-10 Modify Test Dialog Box after Loading Tests 98

Figure 5-11 List Functions Query in Text View Format 99

Figure 5-12 List Functions Query in Call Tree View Format 100

Figure 5-13 List Summary Query in Bar Graph View Format 101

Figure 5-14 Query-Specific Default Fields for a Test or Test Set 102

Figure 5-15 Query-Specific Default Fields for a DSO Test Group 102

Figure 5-16 Queries Menu . 103

Figure 5-17 List Summary Query 104

Figure 5-18 List Functions Query with Options 107

Figure 5-19 List Functions Example in Call Tree View Format 108

Figure 5-20 List Blocks Example 109

Figure 5-21 List Branches Example 110

Figure 5-22 List Arcs Example 111

Figure 5-23 List Instrumentation Example 113

Figure 5-24 “List Line Coverage” Example 114

Figure 5-25 Describe Test Example 115

Figure 5-26 Compare Test Example — Coverage Differences 116

xii 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 5-27 Compare Test Example — Function Differences 117

Figure 5-28 Admin Menu . 118

Figure 5-29 “Set Defaults” Dialog Box 118

Figure 5-30 Launch Tool Submenu 119

007–3986–002 xiii

Tables

Table 1-1 Common Queries for a Single Test 10

007–3986–002 xv

Examples

Example 1-1 Making Tests and Running Them 12

Example 1-2 Applying a Make-and-Run Script 13

Example 2-1 lssum Example 20

Example 2-2 lssource Example 21

Example 2-3 tut_make_testset Script: Making Individual Tests 23

Example 2-4 tut_make_testset Script: Making and Adding to the Test Set 24

Example 2-5 Contents of the New Test Set 25

Example 2-6 Running the New Test Set 26

Example 2-7 Examining the Results of the New Test Set 27

Example 2-8 Source with Counts 27

Example 2-9 Test Contributions by Function 30

Example 2-10 Arc Coverage Test Contribution Portion of Report 30

Example 2-11 Test Set Summary after Removing Tests [8] and [7] 32

Example 2-12 Setting up a Test Group 33

Example 2-13 Examining Test Group Results 35

Example 3-1 cattest Example 41

Example 3-2 cattest Example without -r 41

Example 3-3 cattest Example with -r 42

Example 3-4 lsinstr Example 43

Example 3-5 Test Description File Examples 43

Example 3-6 lssum Example 45

Example 3-7 lsfun Example 46

Example 3-8 lsblock Example% 46

007–3986–002 xvii

Contents

Example 3-9 lsbranch Example 47

Example 3-10 lsarc Example 48

Example 3-11 lscall Example 48

Example 3-12 lsline Example 49

Example 3-13 lssource Example 50

Example 3-14 diff between Two Tests 51

Example 3-15 diff between Different Instrumentations of the Same Test 51

Example 3-16 Optimizing Test Sets 53

xviii 007–3986–002

About this Guide

This publication documents the ProDev WorkShop Tester release 2.9 running on IRIX
systems.

Related Publications
The following documents contain additional information that may be helpful:

• ProDev WorkShop: Debugger User’s Guide

• Developer Magic: ProDev WorkShop Overview

• C++ Language System Library

• C++ Language System Overview

• C++ Programmer’s Guide

• Fortran 77 Language Reference Manual

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

007–3986–002 xix

About this Guide

manpage(x) Man page section identifiers appear in parentheses after
man page names. The following list describes the
identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have man
pages associated with them.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

Man page sections
The entries in this document are based on a common format. The following list
shows the order of sections in an entry and describes each section. Most entries
contain only a subset of these sections.

xx 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Section heading Description

NAME Specifies the name of the entry and briefly states its
function.

SYNOPSIS Presents the syntax of the entry.

IMPLEMENTATION Identifies the systems to which the entry applies.

STANDARDS Provides information about the portability of a utility or
routine.

DESCRIPTION Discusses the entry in detail.

NOTES Presents items of particular importance.

CAUTIONS Describes actions that can destroy data or produce
undesired results.

WARNINGS Describes actions that can harm people, equipment, or
system software.

ENVIRONMENT
VARIABLES

Describes predefined shell variables that determine
some characteristics of the shell or that affect the
behavior of some programs, commands, or utilities.

RETURN VALUES Describes possible return values that indicate a library
or system call executed successfully, or identifies the
error condition under which it failed.

EXIT STATUS Describes possible exit status values that indicate
whether the command or utility executed successfully.

MESSAGES Describes informational, diagnostic, and error messages
that may appear. Self-explanatory messages are not
listed.

ERRORS Documents error codes. Applies only to system calls.

FORTRAN
EXTENSIONS

Describes how to call a system call from Fortran.
Applies only to system calls.

BUGS Indicates known bugs and deficiencies.

EXAMPLES Shows examples of usage.

FILES Lists files that are either part of the entry or are related
to it.

007–3986–002 xxi

About this Guide

SEE ALSO Lists entries and publications that contain related
information.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xxii 007–3986–002

Chapter 1

Using Tester

This chapter describes the Tester usage model. It shows the general approach of
applying Tester for coverage analysis. It contains these sections:

• Tester Overview, "Tester Overview", page 1

• Usage Model, "Usage Model", page 5

Tester Overview
WorkShop Tester is a UNIX-based software quality assurance toolset for dynamic test
coverage over any set of tests. The term covered means the test has executed a
particular unit of source code. In this product, units are functions, individual source
lines, arcs, blocks, or branches. If the unit is a branch, covered means it has been
executed under both true and false conditions. This product is intended for software
and test engineers and their managers involved in the development, test, and
maintenance of long-lived software projects.

WorkShop Tester provides these general benefits:

• Provides visualization of coverage data, which yields immediate insight into
quality issues at both engineering and management levels

• Provides useful measures of test coverage over a set of tests/experiments

• Lets you view the coverage results of a dynamically shared object (DSO) by
executables that use it

• Provides comparison of coverage over different program versions

• Provides tracing capabilities for function arcs that go beyond traditional test
coverage tools

• Supports programs written in C, C++, and Fortran

• Is integrated into the CASEVision family of products

• Allows users to build and maintain higher quality software products

There are two versions of Tester:

007–3986–002 1

1: Using Tester

• cvcov is the command line version of the test coverage program.

• cvxcov is the GUI version of the test coverage program.

Most of the functionality is available from either program, although the graphical
representations of the data are available only from cvxcov, the GUI tool.

Test Coverage Data

Tester provides the following basic coverage:

• Basic block—how many times was this basic block executed?

• Function—how many times was this function executed?

• Branch—did this condition take on both TRUE and FALSE values?

You can also request the following coverage information:

• Arc—was function F called by function A and function B? Which arcs for function
F were not taken?

• Source line coverage—how many times has this source line been executed and
what percentage of source lines is covered?

• When the target program execs, forks, or sprocs another program, only the
main target is tested, unless you specify which executables are to be tested, the
parent and/or child programs.

Note: When you compile with the -g flag, you may create assembly blocks and
branches that can never be executed, thus preventing “full” coverage from being
achieved. These are usually negligible. However, if you compile with the01 flag (the
default), you can increase the number of executable blocks and branches.

Types of Experiments

You can conduct Tester coverage experiments for:

• Separate tests

• A set of tests operating on the same executable

• A list of executables related by fork, exec, or sproc commands

2 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

• A test group of executables sharing a common dynamically shared object (DSO)

Experiment Results

Tester presents the experiment results in these reports:

• Summary of test coverage, including user parameterized dynamic coverage metric

• List of functions, which can be sorted by count, file, or function name and filtered
by percentage of block, branch, or function covered

• Comparison of test coverage between different versions of the same program

• Source or assembly code listing annotated with coverage data

• Breakdown of coverage according to contribution by tests within a test set or test
group

The graphical user interface lets you view test results in different contexts to make
them more meaningful. It provides:

• Annotated function call graph highlighting coverage by counts and percentage
(ASCII function call graph supported as well)

• Annotated Source View showing coverage at the source language level

• Annotated Disassembly View showing coverage at the assembly language level

• Bar chart summary showing coverage by functions, lines, blocks, branches, and
arcs

Multiple Tests

Tester supports multiple tests. You can:

• Define and run a test set to cover the same program.

• Define and run a test group to cover programs sharing a common DSO. This
approach is useful if you want to test different client programs that bind with the
same libraries.

• Automate test execution via command line interface as well as GUI mode.

007–3986–002 3

1: Using Tester

Test Components

Each test is a named object containing the following:

• Instrumentation file—This describes the data to be collected.

• Executable—This is the program being instrumented for coverage analysis.

• Executable list—If the program you are testing can fork, exec, or sproc other
executables and you want these other executables included in the test, then you
can specify a list of executables for this purpose.

• Command—This defines the program.

• Instrumentation directory—The instrumentation directory contains directories
representing different versions of the instrumented program and related data.
Instrumentation directories are named ver##<n> where n is the version number.
Several tests can share the same instrumentation directory. This is true for tests
with the same instrumentation file and program version. The instrumentation
directory contains the following files, which are automatically generated:

<program|DSO>.Binmap basic block & branches bitmap file

<program|DSO>.Graph arc data

<program|DSO>.Log instrumentation log file (cvinstr)

<program|DSO>.Map function map file

<program|DSO>_Instr instrumented executable

As part of instrumentation, you can filter the functions to be included or excluded
in your test, through the directives INCLUDE, EXCLUDE, and CONSTRAIN.

• Experiment results—Test run coverage results are deposited in a results directory.
Results directories are named exp##<n> where n corresponds to the
instrumentation directory used in the experiment. There is one results directory
for each version of the program in the instrumentation directory for this test. Note
that results are not deposited in the instrumentation directory because the
instrumentation directory may be shared by other tests. The results directory is
different when you run the test with or without the -keep option.

When you run your test without the -keep option the results directory contains
the following files:

COV_DESC Description file of experiment.

COUNTS_<exe> Counts file for each executable; <exe> is an
executable file name.

4 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

USER_SELECTIONS Instrumentation criteria.

When you run your test with the -keep option the results directory contains the
following files:

COV_DESC Description file of experiment.

COUNTS_ <exe> Counts file for each executable; <exe> is an
executable file name.

USER_SELECTIONS Instrumentation criteria.

COUNTS_<n> Basic block and branch counts database.

DESC Experiment description file.

FPTRACE_<n> Function pointer tracing database.

LOG Experiment log file (cvmon).

TRAP N/A.

USAGE_<n> N/A.

There are also soft links of the instrumentation data files in the results directory to
the instrumentation directory described above.

Usage Model
This section is divided into three parts:

• "Single Test Analysis Process", page 5, shows the general steps in conducting a test.

• "Automated Testing", page 12, discusses using scripts to automate your testing.

• "Additional Coverage Testing", page 14, describes strategies using multiple tests.

Single Test Analysis Process

In performing coverage analysis for a single test, you typically go through the
following steps:

1. Plan your test.

Test tools are only as good as the quality and completeness of the tests themselves.

2. Create (or reuse) an instrumentation file.

007–3986–002 5

1: Using Tester

The instrumentation file defines the coverage data you wish to collect in this test.
You can define:

• COUNTS—three types of count items perform tracking. bbcounts tracks
execution of basic blocks. fpcounts counts calls to functions through function
pointers. branchcounts tracks branches at the assembly language level.

• INCLUDE/EXCLUDE—lets you define a subset of functions to be covered.
INCLUDE adds the named functions to the current set of functions.
EXCLUDE removes the named functions from the set of functions. Simple
pattern matching is supported for pathnames and function names. The basic
component for inclusion/exclusion is of the form:

<shared library | program name>:<functionlist>

INCLUDE, EXCLUDE, and CONSTRAIN (see below) play a major role in
working with DSOs. Tester instruments all DSOs in an executable whether you
are testing them or not, so it is necessary to restrict your coverage accordingly.
By default, the directory /usr/tmp/cvinstrlib/CacheExclude is used as
the excluded DSOs cache and /usr/tmp/cvinstrlib/CacheInclude as
the included DSOs cache. If you wish to override these defaults, set the
CVINSTRLIB environment variable to the desired cache directory.

• CONSTRAIN—equivalent to EXCLUDE *, INCLUDE < subset>. Thus, the
only functions in the test will be those named in the CONSTRAIN subset. You
can constrain the set of functions in the program to either a list of functions or
a file containing the functions to be constrained. The function list file format is:

function_1

function_2
function_3

...

You can use the -file option to include an ASCII file containing all the
functions as follows:

CONSTRAIN -file filename

The default instrumentation file
/usr/WorkShop/usr/lib/WorkShop/Tester/default_instr_file
contains:

COUNTS -bbcounts -fpcounts -branchcounts

EXCLUDE libc.so.1:*

6 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

EXCLUDE libC.so:*
EXCLUDE libInventor.so:*

EXCLUDE libMrm.so.1:*

EXCLUDE libUil.so.1:*

EXCLUDE libX11.so.1:*

EXCLUDE libXaw.so:*
EXCLUDE libXawI18n.so:*

EXCLUDE libXext.so:*

EXCLUDE libXi.so:*

EXCLUDE libXm.so.1:*

EXCLUDE libXmu.so:*

EXCLUDE libXt.so:*
EXCLUDE libcrypt.so:*

EXCLUDE libcurses.so:*

EXCLUDE libdl.so:*

EXCLUDE libfm.so:*

EXCLUDE libgen.so:*
EXCLUDE libgl.so:*

EXCLUDE libil.so:*

EXCLUDE libks.so:*

EXCLUDE libmf.so:*

EXCLUDE libmls.so:*

EXCLUDE libmutex.so:*
EXCLUDE libnsl.so:*

EXCLUDE librpcsvc.so:*

EXCLUDE libsocket.so:*

EXCLUDE libtbs.so:*

EXCLUDE libtermcap.so:*
EXCLUDE libtermlib.so:*

EXCLUDE libtt.so:*

EXCLUDE libview.so:*

EXCLUDE libw.so:*

EXCLUDE nis.so:*
EXCLUDE resolv.so:*

EXCLUDE straddr.so:*

EXCLUDE tcpip.so:*

The excluded items are all dynamically shared objects that might interfere with
the testing of your main program.

007–3986–002 7

1: Using Tester

Note: If you do not use the default_instr_file file, functions in shared
libraries will be included by default, unless your instrumentation file excludes
them.

The minimum instrumentation file contains the line:

COUNTS -bbcounts

You create an instrumentation file using your preferred text editor. Comments are
allowed only at the beginning of a new line and are designated by the “#”
character. Lines can be continued using a back slash (\) for lists separated with
commas. White space is ignored. Keywords are case insensitive. Options and
user-supplied names are case sensitive. All lines are additive to the overall
experiment description.

Here is a partial instrument file:

COUNTS -bbcounts -fpcounts -branchcounts

defines the counting options, in this case,<

basic blocks, function pointers, and branches.

CONSTRAIN program:abc, xdr*, functionF, \
classX::methodY, *::methodM, functionG

constrains the set of functions in the

‘‘program’’ to the list of user specified functions

EXCLUDE libc.so.1:*

...

Note: Instrumentation can increase the size of a program two to five times. Using
DSO caching and sharing can alleviate this problem.

3. Apply the instrument file to the target executable(s).

This is the instrumentation process. You can specify a single executable or more
than one if you are creating other processes through fork, exec, or sproc.

The command line interface command is runinstr. The graphical user interface
equivalent is the Run Instrumentation selection in the Test menu.

The effect of performing a run instrument operation is shown in Figure 1-1, page
9. An instrumentation directory is created (.../ver##<n>). It contains the
instrumented executable and other files used in instrumentation.

8 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Run instrument

.../ver##<n>

<instrumented executable(s)>
<other instrumentation data>

Target executable(s)

Instrument file

Figure 1-1 Instrumentation Process

4. Create the test directory.

This part of the process creates a test data directory (test0000) containing a test
description file named TDF. See Figure 1-2, page 9.

Make test
.../test<nnnn>

TDF
Command line

Instrument directory

Figure 1-2 Make Test Process

Tester names the test directory test0000 by default and increments it
automatically for subsequent make test operations. You can supply your own
name for the test directory if you prefer.

The TDF file contains information necessary for running the test. A typical TDF
file contains the test name, type, instrument directory, description, and list of
executables. In addition, for a test set or test group, the TDF file contains a list of
subtests.

Note that the Instrument Directory can be either the instrumentation directory
itself (such as ver##0) or a directory containing one or more instrumentation
subdirectories.

The command line interface command is mktest. The graphical user interface
equivalent is the Make Test selection in the Test menu.

5. Run the instrumented version of the executable to collect the coverage data.

007–3986–002 9

1: Using Tester

This creates a subdirectory (exp##0) under the test directory in which results
from the current experiment will be placed. See Figure 1-3, page 10. The
commands to run a test use the most recent instrumentation directory version
unless you specify a different directory.

Run test

.../test<nnnn>

TDF exp##0
 <experimental results>

Test description file (TDF)

Figure 1-3 Run Test Process

The command-line interface command is runtest. The graphical user interface
equivalent is the Run Test selection in the Test menu.

6. Analyze the results.

Tester provides a variety of column-based presentations for analyzing the results.
The data can be sorted by a number of criteria. In addition, the graphical user
interface can display a call graph indicating coverage by function and call.

The Tester interface provides many kinds of queries for performing analysis on a
single test. Table 1-1, page 10, shows query commands for a single test that are
available either from the command line or the graphical user interface Queries
menu.

Table 1-1 Common Queries for a Single Test

Command
Line

Graphical User
Interface Description

lsarc List Arcs Shows the function arc coverage. An arc is a
call from one function to another.

lsblock List Blocks Shows basic block count information.

lsbranch List Branches Shows the count information for assembly
language branches.

lsfun List Functions Shows coverage by function.

lssum List Summary Provides a summary of overall coverage.

10 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Command
Line

Graphical User
Interface Description

lsline List Line Coverage Shows coverage for native source lines.

cattest Describe Test Describes the test details.

diff Compare Test Shows the difference in coverage between
programs.

lsinstr List Instrumentation Show instrumentation details for a test.

Other queries are accessed differently from either interface.

• lscall—Shows a function graph indicating caller and callee functions and
their counts. From the graphical user interface, function graphs are accessed
from a Call Tree View (Views menu selection).

• lssource—Displays the source or assembly code annotated with the
execution count by line. From the graphical user interface, you access source
or assembly code from a Source View (using the Source button) or a
Disassembly View (using the Disassembly button), respectively.

The queries available in the graphical user interface are shown in Figure 1-4, page
11.

Figure 1-4 The Queries Menu from the Main Tester Window

007–3986–002 11

1: Using Tester

Automated Testing
Tester is best suited to automated testing of command-line programs, where the test
behavior can be completely specified at the invocation. Command-line programs let
you incorporate contextual information, such as environment variables and current
working directory.

Automated testing of server processes in a client-server application proceeds basically
the same as single-program cases except that startup time introduces a new factor.
Tester can substantially increase the startup time of your target process so that the
instrumented target process will run somewhat slower than the standard,
uninstrumented one. Tests which start a server, wait a while for it to be ready, and
then start the client will have to wait considerably longer. The additional time
depends on the size and complexity of the server process itself and on how much and
what kind of data you have asked Tester to collect. You will have to experiment to
see how long to wait.

Automated testing of interactive or nondeterministic tests is somewhat harder. These
tests are not completely determined by their command line; they can produce different
results (and display different coverage) from the same command line, depending
upon other factors, such as user input or the timing of events. For tests such as these,
Tester provides a -sum argument to the runtest command. Normally each test run is
treated as an independent event, but when you use runtest -sum, the coverage
from each run is added to the coverage from previous runs of the same test case.
Other details of the coverage measurement process are identical to the first case.

In each case, you first need to instrument your target program, then run the test, sum
the test results if desired, and finally analyze the results. There are two general
approaches to applying cvcov in automated testing

• If you have not yet created any test scripts or have a small number of tests, you
should create a script that makes each test individually and then runs the
complete test set. See Example 1-1, which shows a script that automates a test
program called target with different arguments:

Example 1-1 Making Tests and Running Them

instrument program

cvcov runinstr -instr_file instrfile mypath/target

test machinery
make all tests

cvcov mktest -cmd ‘‘target A B C’’ -testname test0001

cvcov mktest -cmd ‘‘target D E F’’ -testname test0002

12 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

...
define testset to include all tests

cvcov lstest > mytest_list

cvcov mktset -list mytest_list -testname mytestset

run all tests in testset and sum up results

cvcov runtest mytestset

• If you have existing test scripts of substantial size or an automated test machinery
setup, then you may find it straightforward to embed Tester by replacing each test
line with a script containing two Tester command lines for making and running
the test and then accumulating the results in a testset, such as in Example 1-2. Of
course, you can also rewrite the whole test machinery as described in Example 1-1,
page 12.

Example 1-2 Applying a Make-and-Run Script

instrument program

cvcov runinstr -instr_file instrfile mypath/target

test machinery
make and run all tests

make_and_run ‘‘target A B C’’

make_and_run ‘‘target D E F’’

...

make testset
cvcov lstest > mytestlist

cvcov mktset -list mytestlist -testname mytestset

accumulate results

cvcov runtest mytestset

where the make_and_run script is:

#!/bin/sh

testname=‘cvcov mktest -instr_dir /usr/tmp -cmd ‘‘$*’’‘

testname=‘expr ‘‘$testname’’ : ‘‘.*Made test directory: ‘.*’’’‘
cvcov runtest $testname

Note that both examples use simple testset structures—these could have been nested
hierarchically if desired.

After running your test machinery, you can use cvcov or cvxcov to analyze your
results. Make sure that your test machinery does not remove the products of the test
run (even if the test succeeds), or it may destroy the test coverage data.

007–3986–002 13

1: Using Tester

Additional Coverage Testing

After you have created and run your first test, you typically need additional testing.
Here are some scenarios.

• You can define a test set so that you can vary your coverage using the same
instrumentation. You can analyze the new tests singly or you can combine them in
a set and look at the cumulative results. If the tests are based on the same
executable, they can share the same instrumentation file. You can also have a test
set with tests based on different executables but they should have the same
instrumentation file.

• You can change the instrumentation criteria to gather different counts or examine
a different set of functions.

• You can create a script to run tests in batch mode (command line interface only).

• You can run different programs that use a common dynamically shared object
(DSO) and accumulate test coverage for a test group containing the DSO.

• You can run the same tests using the same instrumentation criteria for two
versions of the same program and compare the coverage differences.

• You can run a test multiple times and sum the result over the runs. This is
typically used for GUI-based applications.

As you conduct more tests, you will be creating more directories. A typical coverage
testing hierarchy is shown in Figure 1-5, page 15.

There are two different instrumentation directories, ver##0 and ver##1. The test
directory test0000 contains results for a single experiment that uses the
instrumentation from ver##0. (Note that the number in the name of the experiment
results directory corresponds to the number of the instrumentation directory.) Test
directory test0001 has results for two experiments corresponding to both
instrumentation directories, ver##0 and ver##1.

14 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Test Directories

.../ver##0

<instrumented executable(s)>
<other instrumentation data>

Instrumentation Directories

.../ver##1

<instrumented executable(s)>
<other instrumentation data>

.../test0000

exp##0
<experiment results>

TDF

.../test0001

exp##0
<experiment results>

TDF exp##1
<experiment results>

Figure 1-5 Typical Coverage Testing Hierarchy

007–3986–002 15

Chapter 2

Tester Command Line Interface Tutorial

The tutorials in this chapter are based on simple programs written in C. To run them,
you need the C compiler. The chapter is broken down into these sections:

• "Setting Up the Tutorials", page 17, shows you how to run the script that creates
the files needed for the tutorials.

• "Tutorial #1 - Analyzing a Single Test", page 18, takes you through the steps of
performing coverage analysis for a single test.

• "Tutorial #2 - Analyzing a Test Set", page 23, discusses creating additional tests to
achieve full coverage.

• "Tutorial #3 - Optimizing a Test Set", page 29, explains how to fine-tune a test set
to eliminate redundant tests.

• "Tutorial #4 - Analyzing a Test Group", page 33, explains how you would use a
test group to analyze the coverage of a dynamically shared object (DSO) in
different executables sharing the DSO.

Note that if you are going to run these tutorials, you must run them in order; each
tutorial builds on the results of previous tutorials.

If you would rather have the test data built automatically, run the following script:

/usr/demos/WorkShop/Tester/setup_Tester_demo

If at any time a command syntax is not clear, enter the following:

cvcov help < commandname >

Setting Up the Tutorials
1. Enter the following commands to set up the tutorials:

% cp -r /usr/demos/WorkShop/Tester /usr/tmp/tutorial

% cd /usr/tmp/tutorial

% echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > alphabet

% make -f Makefile.tutorial copyn

007–3986–002 17

2: Tester Command Line Interface Tutorial

This moves some scripts and source files used in the tutorial to
/usr/tmp/tutorial, creates a test file named alphabet, and makes a simple
program, copyn, which copies n bytes from a source file to a target file.

2. To see how the program works, try a simple test by typing:

% copyn alphabet targetfile 10

% cat targetfile

ABCDEFGHIJ

You should see the first 10 bytes of alphabet copied to targetfile.

Tutorial #1 - Analyzing a Single Test
Tutorial #1 discusses the following topics:

• Instrumenting an executable

• Making a test

• Running a test

• Analyzing test coverage data

Instrumenting an Executable

This is the first step in providing test coverage. The user defines the instrumentation
criteria in an instrumentation file.

1. Enter the following to see the instrumentation directives in the file
tut_instr_file used in the tutorials:

% cat tut_instr_file

COUNTS -bbcounts -fpcounts -branchcounts

CONSTRAIN main, copy_file

We will be getting all counting information (blocks, functions, branches, and arcs)
for the two functions specified in the CONSTRAIN directive, main and
copy_file.

2. Enter the following command to instrument copyn:

18 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

% cvcov runinstr -instr_file tut_instr_file copyn
cvcov: Instrument "copyn" of version "0" succeeded.

Directory ver##0 has been created by default. This contains the instrumented
executable, copyn_Instr, and other instrumentation data.

Making a Test

A test defines the program and arguments to be run, instrument directory,
executables, and descriptive information about the test.

1. Enter the following to make a test:

% cvcov mktest -cmd "copyn alphabet targetfile 20"

You will see the following message:

cvcov: Made test directory:

"/usr/var/tmp/tutorial/test0000"

Directory test0000 has been created by default. It contains a single file, TDF,
the test description file.

Note: The directory /usr/var/tmp is linked to /usr/tmp.

2. Enter the following to get a textual listing of the test:

% cvcov cattest test0000

Test Info Settings

Test /usr/var/tmp/tutorial/test0000

Type single
Description

Command Line copyn alphabet targetfile 20

Number of Exes 1

Exe List copyn

Instrument Directory /usr/var/tmp/tutorial
Experiment List

007–3986–002 19

2: Tester Command Line Interface Tutorial

Running a Test

To run a test, we use technology from the WorkShop Performance Analyzer. The
instrumented process is set to run, and a monitor process (cvmon) captures test
coverage data by interacting with the WorkShop process control server (cvpcs).

1. Enter the following command:

% cvcov runtest test0000

2. You will see the following message:

cvcov: Running test "/usr/var/tmp/tutorial/test0000" ...

Now the directory test0000 contains the directory exp##0, which contains the
results of the first test experiment.

Analyzing Test Coverage Data

You can analyze test coverage data many ways. In this tutorial, we will illustrate a
simple top-down approach. We will start at the top to get a summary of overall
coverage, proceed to the function level, and go finally to the actual source lines.

1. Enter the following to get the summary:

% cvcov lssum test0000

You will see the display shown in Example 2-1.

Example 2-1 lssum Example

% cvcov lssum test0000

Coverages Covered Total % Coverage Weight

Function 2 2 100.00% 0.400

Source Line 17 35 48.57% 0.200

Branch 0 10 0.00% 0.200

Arc 8 18 44.44% 0.200

Block 19 42 45.24% 0.000

Weighted Sum 58.60% 1.000

Notice that although both functions have been covered, we have incomplete
coverage for source lines, branches, arcs, and blocks.

20 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Note: Items are highlighted on your screen to emphasize null coverage. As a
convention in this manual, we are showing highlighting or user input in boldface.

2. Enter the following to look at the line count information for the main function:

% cvcov lssource main test0000

This produces a source listing annotated with counts, shown in Example 2-2.

Example 2-2 lssource Example

% cvcov lssource main test0000

Counts Source
--

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define OPEN_ERR 1
#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])
1 {

int bytes, status;

1 if(argc < 4){

0 printf("copyn: Insufficient arguments.\n");

0 printf("Usage: copyn f1 f2 bytes\n");
0 exit(1);

}

1 if(argc > 4) {

0 printf("Error: Too many arguments\n");

0 printf("Usage: copyn f1 f2 bytes\n");

0 exit(1);
}

1 bytes = atoi(argv[3]);

1 if((status = copy_file(argv[1], argv[2], bytes)) >0){

0 switch (status) {

case SIZE_0:

007–3986–002 21

2: Tester Command Line Interface Tutorial

0 printf("Nothing to copy\n");
0 break;

case NOT_ENOUGH_BYTES:

0 printf("Not enough bytes\n");

0 break;

case OPEN_ERR:
0 printf("File open error\n");

0 break;

}

0 exit(1);

}

1 }

int copy_file(source, destn, size)

char *source, *destn;

int size;

1 {
char *buf;

int fd1, fd2;

struct stat fstat;

1 if((fd1 = open(source, O_RDONLY)) <= 0){

0 return OPEN_ERR;

}
1 stat(source, &fstat);

1 if(size <= 0){

0 return SIZE_0;

}

1 if(fstat.st_size < size){
0 return NOT_ENOUGH_BYTES;

}

1 if((fd2 = creat(destn, 00777)) <= 0){

0 return OPEN_ERR;

}
1 buf = (char *)malloc(size);

1 read(fd1, buf, size);

1 write(fd2, buf, size);

1 return 0;

}

22 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Notice that the 0-counted lines appear in a highlight color. In this example, the
lines with 0 counts occur where there is an error condition. This is our first good
look at branch and block coverage at the source line level. The branch and block
coverage in the summary are at the assembly language level.

Tutorial #2 - Analyzing a Test Set
In the second tutorial, we are going to create additional tests with the objective of
achieving 100% overall coverage. From examining the source code in Example 2-2,
page 21, it seems that the 0-count lines in main and copy_file are due to
error-checking code that is not tested by test0000.

Note: This tutorial needs test0000, which was created in the previous tutorial.

The script tut_make_testset is supplied to demonstrate how to set up this test set.

1. Enter sh -x tut_make_testset to run the script.

Example 2-3, page 23, shows the first portion of the script (as it runs), in which
the individual tests are created. The tut_make_testset script uses mktest to
create eight additional tests. The tests test0001 and test0002 pass too few
and too many arguments, respectively. test0003 attempts to copy from a
nonexistent file named no_file. test0004 attempts to pass 0 bytes, which is
illegal. test0005 attempts to copy 20 bytes from a file called not_enough,
which contains only one byte. In test0006, we attempt to write to a directory
without proper permission. test0007 tries to copy too many bytes. In
test0008, we attempt to copy from a file without read permission.

Example 2-3 tut_make_testset Script: Making Individual Tests

% sh -x tut_make_testset
+ cvcov mktest -cmd copyn alphabet target -des not enough arguments

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0001"

+ cvcov mktest -cmd copyn alphabet target 20 extra_arg \

-des too many arguments
cvcov: Made test directory: "/usr/var/tmp/tutorial/test0002"

+ cvcov mktest -cmd copyn no_file target 20 -des cannot access file

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0003"

007–3986–002 23

2: Tester Command Line Interface Tutorial

+ cvcov mktest -cmd copyn alphabet target 0 -des pass bad size arg

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0004"

+ echo a

+ 1> not_enough

+ cvcov mktest -cmd copyn not_enough target 20 -des not enough data \

(less bytes than requested) in original file

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0005"

+ cvcov mktest -cmd copyn alphabet /usr/bin/target 20 \

-des cannot create target executable due to permission problems

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0006"

+ ls -ld /usr/bin
drwxr-xr-x 3 root sys 3584 May 12 18:25 /usr/bin

+ cvcov mktest -cmd copyn alphabet targetfile 200

-des size arg too big

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0007"

+ cvcov mktest -cmd copyn /usr/adm/sulog targetfile 20 \

-des no read permission on source file

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0008"

After the individual tests are created, the script uses mktset to make a new test
set and addtest to include the new tests in the set. Example 2-4, page 24, shows
the portion of the script in which the test set is created and the individual tests
are added to the test set.

Example 2-4 tut_make_testset Script: Making and Adding to the Test Set

+ cvcov mktset -des full coverage testset -testname tut_testset
cvcov: Made test directory: "/usr/var/tmp/tutorial/tut_testset"

+ cvcov addtest test0000 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0000" to "tut_testset"

+ cvcov addtest test0001 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0001" to "tut_testset"

24 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

+ cvcov addtest test0002 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0002" to "tut_testset"

+ cvcov addtest test0003 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0003" to "tut_testset"

+ cvcov addtest test0004 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0004" to "tut_testset"

+ cvcov addtest test0005 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0005" to "tut_testset"

+ cvcov addtest test0006 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0006" to "tut_testset"

+ cvcov addtest test0007 tut_testset
cvcov: Added "/usr/var/tmp/tutorial/test0007" to "tut_testset"

+ cvcov addtest test0008 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0008" to "tut_testset"

2. Enter cvcov cattest tut_testset to check that the new test set was created
correctly.

This is shown in Example 2-5, page 25. The index numbers in brackets in the
subtest list are used to identify the individual tests as part of a test set. This index
is used to list the contribution of each test.

Example 2-5 Contents of the New Test Set

% cvcov cattest tut_testset
Test Info Settings

--

Test /usr/var/tmp/tutorial/tut_testset

Type set

Description full coverage testset
Number of Exes 1

Exe List copyn

Number of Subtests 9

Subtest List

[0] /usr/var/tmp/tutorial/test0000

007–3986–002 25

2: Tester Command Line Interface Tutorial

[1] /usr/var/tmp/tutorial/test0001
[2] /usr/var/tmp/tutorial/test0002

[3] /usr/var/tmp/tutorial/test0003

[4] /usr/var/tmp/tutorial/test0004

[5] /usr/var/tmp/tutorial/test0005

[6] /usr/var/tmp/tutorial/test0006
[7] /usr/var/tmp/tutorial/test0007

[8] /usr/var/tmp/tutorial/test0008

Experiment List

3. Enter the following to run the tests in the test set:

% cvcov runtest tut_testset

By applying the runtest command to the test set, we can run all the tests
together. See Example 2-6, page 26. Note that when you run a test set, only tests
without results are run; tests that already have results will not be run again. In
this case, test0000 has already been run. If you need to rerun a test, you can do
so using the -force flag.

Example 2-6 Running the New Test Set

% cvcov runtest tut_testset
cvcov: Running test "/usr/var/tmp/tutorial/test0000" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0001" ...

copyn: Insufficient arguments.

Usage: copyn f1 f2 bytes

cvcov: Running test "/usr/var/tmp/tutorial/test0002" ...

Error: Too many arguments
Usage: copyn f1 f2 bytes

cvcov: Running test "/usr/var/tmp/tutorial/test0003" ...

File open error

cvcov: Running test "/usr/var/tmp/tutorial/test0004" ...

Nothing to copy
cvcov: Running test "/usr/var/tmp/tutorial/test0005" ...

Not enough bytes

cvcov: Running test "/usr/var/tmp/tutorial/test0006" ...

File open error

cvcov: Running test "/usr/var/tmp/tutorial/test0007" ...
Not enough bytes

cvcov: Running test "/usr/var/tmp/tutorial/test0008" ...

File open error

26 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

4. Enter cvcov lssum tut_testset to list the summary for the test set.

Example 2-7, page 27, shows the results of the tests in the new test set with lssum.

Example 2-7 Examining the Results of the New Test Set

% cvcov lssum tut_testset

Coverages Covered Total % Coverage Weight

Function 3 3 100.00% 0.400

Source Line 33 33 100.00% 0.200

Branch 9 10 90.00% 0.200

Arc 18 18 100.00% 0.200

Block 48 52 92.31% 0.000
Weighted Sum 98.00% 1.000

5. Enter cvcov lssource main tut_testset to see the coverage for the
individual source lines as shown in Example 2-8, page 27.

Example 2-8 Source with Counts

% cvcov lssource main tut_testset

Counts Source

--

#include <stdio.h>

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

#define OPEN_ERR 1

#define NOT_ENOUGH_BYTES 2
#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])

9 {
int bytes, status;

9 if(argc < 4){

1 printf("copyn: Insufficient arguments.\n");

1 printf("Usage: copyn f1 f2 bytes\n");
1 exit(1);

007–3986–002 27

2: Tester Command Line Interface Tutorial

}
8 if(argc > 4) {

1 printf("Error: Too many arguments\n");

1 printf("Usage: copyn f1 f2 bytes\n");

1 exit(1);

}
7 bytes = atoi(argv[3]);

7 if((status = copy_file(argv[1], argv[2], bytes)) >0){

6 switch (status) {

case SIZE_0:

1 printf("Nothing to copy\n");

1 break;
case NOT_ENOUGH_BYTES:

2 printf("Not enough bytes\n");

2 break;

case OPEN_ERR:

3 printf("File open error\n");
3 break;

}

6 exit(1);

}

1 }

int copy_file(source, destn, size)

char *source, *destn;

int size;

7 {

char *buf;
int fd1, fd2;

struct stat fstat;

7 if((fd1 = open(source, O_RDONLY)) <= 0){

2 return OPEN_ERR;

}
5 stat(source, &fstat);

5 if(size <= 0){

1 return SIZE_0;

}

4 if(fstat.st_size < size){

2 return NOT_ENOUGH_BYTES;
}

2 if((fd2 = creat(destn, 00777)) <= 0){

28 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

1 return OPEN_ERR;
}

1 buf = (char *)malloc(size);

1 read(fd1, buf, size);

1 write(fd2, buf, size);
1 return 0;

}

As you look at the source code, notice that all lines are covered.

6. Enter cvcov lssource -asm main tut_testset to see the coverage for the
individual assembly lines.

When we list the assembly code using lssource -asm, we find that not all
blocks and branches are covered at the assembly level. This is due to compilation
with the -g flag, which adds debugging code that can never be executed.

Enter cvcov lsline tut_testset to see the coverage at the source line level.
Notice that 100% of the lines have been covered.

Tutorial #3 - Optimizing a Test Set
Tester lets you look at the individual test coverages in a test set. When you put
together a set of tests, you may want to improve the efficiency of your coverage by
eliminating redundant tests. The lsfun, lsblock, and lsarc commands all have
the -contrib option, which displays coverage result contributions by individual
tests. We will now look at the contributions by tests for the test set we just ran,
tut_testset.

Note: This tutorial needs tut_testset and all its subtests; these were created in the
previous tutorial.

1. Enter cvcov lsfun -contrib -pretty tut_testset to see the function
coverage test contribution.

Example 2-9, page 30, shows how the test set covers functions. Note that the
subtests are identified by index numbers; use cattest if you need to map these
results back to the test directories.

007–3986–002 29

2: Tester Command Line Interface Tutorial

Example 2-9 Test Contributions by Function

% cvcov lsfun -contrib -pretty tut_testset
Functions Files Counts

--

main copyn.c 9

copy_file copyn.c 7

main rld_startup.c 6

Functions Files [0] [1] [2] [3] [4] [5]

main copyn.c 1 1 1 1 1 1

copy_file copyn.c 1 0 0 1 1 1

main rld_startup.c 0 0 0 1 1 1

Functions Files [6] [7] [8]

--

main copyn.c 1 1 1

copy_file copyn.c 1 1 1
main rld_startup.c 1 1 1

At the function level, each test covers both functions except for Tests [1] and [2].
The information here is not sufficient to tell us if we have optimized the test set.
To do this, we must look at contributions at the arc and block levels. Tester shows
arc and block coverage information by test when you apply the -contrib flag to
lsarc and lsblock, respectively.

2. Enter cvcov lsarc -contrib -pretty tut_testset to see the arc
coverage test contribution.

Example 2-10, page 30, shows the individual test contributions. Notice that Tests
[5] and [7] have identical coverage to each other; so do Tests [3] and [8].

We can get additional information by looking at block coverage, confirming our
hypothesis about redundant tests.

Example 2-10 Arc Coverage Test Contribution Portion of Report

% cvcov lsarc -contrib -pretty tut_testset

Callers Callees Line Files [0] [1] [2] [3] [4] [5]

--

main copy_file 27 copyn.c N/A N/A N/A N/A N/A N/A

main printf 17 copyn.c N/A N/A N/A N/A N/A N/A

30 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

main printf 18 copyn.c N/A N/A N/A N/A N/A N/A
main __exit 19 copyn.c N/A N/A N/A N/A N/A N/A

main printf 22 copyn.c N/A N/A N/A N/A N/A N/A

main printf 23 copyn.c N/A N/A N/A N/A N/A N/A

main __exit 24 copyn.c N/A N/A N/A N/A N/A N/A

main atoi 26 copyn.c N/A N/A N/A N/A N/A N/A
main printf 30 copyn.c N/A N/A N/A N/A N/A N/A

main printf 33 copyn.c N/A N/A N/A N/A N/A N/A

main printf 36 copyn.c N/A N/A N/A N/A N/A N/A

main __exit 39 copyn.c N/A N/A N/A N/A N/A N/A

copy_file _open 50 copyn.c N/A N/A N/A N/A N/A N/A

copy_file _stat 53 copyn.c N/A N/A N/A N/A N/A N/A
copy_file _creat 60 copyn.c N/A N/A N/A N/A N/A N/A

copy_file malloc 63 copyn.c N/A N/A N/A N/A N/A N/A

copy_file _read 65 copyn.c N/A N/A N/A N/A N/A N/A

copy_file _write 66 copyn.c N/A N/A N/A N/A N/A N/A

Callers Callees Line Files [6] [7] [8]

main copy_file 27 copyn.c N/A N/A N/A

main printf 17 copyn.c N/A N/A N/A

main printf 18 copyn.c N/A N/A N/A

main __exit 19 copyn.c N/A N/A N/A
main printf 22 copyn.c N/A N/A N/A

main printf 23 copyn.c N/A N/A N/A

main __exit 24 copyn.c N/A N/A N/A

main atoi 26 copyn.c N/A N/A N/A

main printf 30 copyn.c N/A N/A N/A
main printf 33 copyn.c N/A N/A N/A

main printf 36 copyn.c N/A N/A N/A

main __exit 39 copyn.c N/A N/A N/A

copy_file _open 50 copyn.c N/A N/A N/A

copy_file _stat 53 copyn.c N/A N/A N/A
copy_file _creat 60 copyn.c N/A N/A N/A

copy_file malloc 63 copyn.c N/A N/A N/A

copy_file _read 65 copyn.c N/A N/A N/A

copy_file _write 66 copyn.c N/A N/A N/A

3. Enter the following to see the test contribution to block coverage:

% cvcov lsblock -contrib -pretty tut_testset

007–3986–002 31

2: Tester Command Line Interface Tutorial

If you examine the results, you will see that Tests [5] and [7] and Tests [3] and [8]
are identical.

Now we can try to tune the test set. If we can remove tests with redundant
coverage and still achieve the equivalent overall coverage, then we have tuned
our test set successfully. Since the arcs and blocks covered by Test [7] are also
covered by Test [5], we can remove either one of them without affecting the
overall coverage. The same analysis holds true for Tests [3] and [8].

4. Delete test0007 and test0008 as shown in Example 2-11, page 32. Then rerun
the test set and look at its summary.

Note that the coverage is retabulated without actually rerunning the tests. The
test summary shows that overall coverage is unchanged, thus confirming our
hypothesis.

Example 2-11 Test Set Summary after Removing Tests [8] and [7]

% cvcov deltest test0008 tut_testset

cvcov: Deleted "/usr/var/tmp/tutorial/test0008" from "tut_testset"

% cvcov deltest test0007 tut_testset

cvcov: Deleted "/usr/var/tmp/tutorial/test0007" from "tut_testset"

% cvcov runtest tut_testset

cvcov: Running test "/usr/var/tmp/tutorial/test0000" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0001" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0002" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0003" ...
cvcov: Running test "/usr/var/tmp/tutorial/test0004" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0005" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0006" ...

% cvcov lssum tut_testset
Coverages Covered Total % Coverage Weight

--

Function 3 3 100.00% 0.400

Source Line 33 33 100.00% 0.200

Branch 9 10 90.00% 0.200
Arc 18 18 100.00% 0.200

Block 48 52 92.31% 0.000

Weighted Sum 98.00% 1.000

32 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Tutorial #4 - Analyzing a Test Group
Test groups are used when you are conducting tests on executables that use a
common dynamically shared object (DSO). The results will be limited to whatever
constraints you set on the DSO and thus will not include branches, arcs, and other
code that lie outside the executables.

Note: This tutorial may be run independently of the previous tutorials. However, it
does use copyn. If you have run the other tutorials previously, the instrumentation
directory ver##1 will be created for the new executable; otherwise, ver##0 is
created when copyn is compiled.

In this tutorial, we will test coverage for a DSO called libc.so.1, which is shared
by copyn, the executable from the previous tutorials, and a simple application called
printtest. The script tut_make_testgroup is provided to run this tutorial.

1. Run the script by typing tut_make_testgroup

The tut_make_testgroup script creates the test group and its subtests.
Example 2-12, page 33, shows the results of running the initial preparation part of
the script using sh -x.

First, the script makes the two applications, printtest and copyn. The next
step is to instrument the programs. The script stores the instrumentation data for
printtest in a subdirectory called print_instr_dir and the copyn data in
copyn_instr_dir.

The script then makes test directories for the applications and names them
print_test0000 and copyn_test0000, respectively. It makes a test group
called tut_testgroup and adds both tests to it.

The mktgroup command is the only one that we have not used previously in the
tutorials. mktgroup creates the test group. As a final part of the preparation, the
script performs a cattest command to show the contents of the test group.

Example 2-12 Setting up a Test Group

% sh -x tut_make_testgroup

+ make -f Makefile.tutorial all

/usr/bin/cc -g -o printtest printtest.c -lc

+ cvcov runinstr -instr_dir print_instr_dir -instr_file tut_group_instr_file printtest

runinstr command: /usr/sbin//cvinstr -coverage tut_group_instr_file -addlibs libss.so:libssrt.so

007–3986–002 33

2: Tester Command Line Interface Tutorial

-D /home/jhanson/Cases/2056786-LANL/tutorial/print_instr_dir/ver##0 "printtest"

/lib32/rld

/usr/lib32/libssrt.so

/usr/lib32/libss.so

/usr/lib32/libc.so.1

cvcov: Instrument "printtest" of version "0" succeeded.

+ cvcov runinstr -instr_dir copyn_instr_dir -instr_file tut_group_instr_file copyn

runinstr command: /usr/sbin//cvinstr -coverage tut_group_instr_file -addlibs libss.so:libssrt.so

-D /home/jhanson/Cases/2056786-LANL/tutorial/copyn_instr_dir/ver##0 "copyn"

/lib32/rld

/usr/lib32/libssrt.so

/usr/lib32/libss.so

/usr/lib32/libc.so.1

cvcov: Instrument "copyn" of version "0" succeeded.

+ cvcov mktest -cmd printtest 10 2 3 -instr_dir print_instr_dir -testname print_test0000

cvcov: Made test directory: "/usr/var/tmp/tutorial4/print_test0000"

+ cvcov mktest -cmd copyn tut4_instr_file targetfile -instr_dir copyn_instr_dir -testname

copyn_test0000

cvcov: Made test directory: "/usr/var/tmp/tutorial4/copyn_test0000"

+ cvcov mktgroup -des Group sharing libc.so.1 -testname tut_testgroup libc.so.1

cvcov: Made test directory: "/usr/var/tmp/tutorial4/tut_testgroup"

+ cvcov addtest print_test0000 tut_testgroup

cvcov: Added "/usr/var/tmp/tutorial4/print_test0000" to "tut_testgroup"

+ cvcov addtest copyn_test0000 testgroup

cvcov: Added "/usr/var/tmp/tutorial4/copyn_test0000" to "tut_testgroup"

+ cvcov cattest tut_testgroup

Test Info Settings

Test /usr/var/tmp/tutorial4/tut_testgroup

Type group

Description Group sharing libc.so.1

Number of Objects 1

Object List libc.so.1

Number of Subtests 2

34 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Subtest List

[0] /usr/var/tmp/tutorial4/print_test0000

[1] /usr/var/tmp/tutorial4/copyn_test0000

Experiment List

Finally, the script runs the test group and performs the queries shown in Example
2-13, page 35.

Example 2-13 Examining Test Group Results

+ cvcov runtest tut_testgroup

cvcov: Running test "/usr/var/tmp/tutorial4/print_test0000" ...

2

3
10

cvcov: Running test "/usr/var/tmp/tutorial4/copyn_test0000" ...

copyn: Insufficient arguments.

Usage: copyn f1 f2 bytes

+ cvcov lssum tut_testgroup
tut_make_testgroup[20]: 54679 Memory fault(coredump)

+ cvcov lsfun -pretty -contrib -pat printf tut_testgroup

Functions Files Counts

printf printf.c 0

Functions Files [0] [1]

printf printf.c 0 0

+ cvcov lsfun -pretty -contrib -pat sscanf tut_testgroup

Functions Files Counts

sscanf scanf.c 0

Functions Files [0] [1]

sscanf scanf.c 0 0

You can use any of the query commands to look at test group results that we used in
other tutorials. This tutorial is for illustrative purposes only. Notice that the overall
coverage of the C library is poor and that the summary is too general. It is useful,
however, to look at individual functions to see how they were covered between the
two executables. Performing a list function for printf indicates that it was

007–3986–002 35

2: Tester Command Line Interface Tutorial

adequately convered, three times by printtest (Test [0]) and twice by copyn (Test
[1]). On the other hand, checking sscanf coverage shows that it was covered three
times by Test [0] but not all by Test [1].

36 007–3986–002

Chapter 3

Tester Command Line Reference

This chapter describes the cvcov commands. It contains two parts:

• "Common cvcov Options", page 37, describes the command arguments that are
common to more than one command

• "cvcov Command Syntax and Description", page 39, describes the specifications
with descriptions for each command

A complete description of the cvcov commands, including individual arguments, is
available in the man pages by typing:

man cvcov

Common cvcov Options
This section contains descriptions of some cvcov flags and variables that are
common to more than one command.

[-ver]

Displays the version of cvcov. Note that there are no other
arguments permitted; you enter: cvcov -ver

[-v versionnumber]

Allows you to specify a version of the instrumentation or experiment
directory other than the most recent, which is the default.

[-contrib]

Shows the list of tests that contributed to coverage for the particular
query.

[-exe exe_name]

Lets you specify an executable for coverage testing. This is used
when there are multiple executables involved, as in testing processes
created by the fork, exec, or sproc command.

007–3986–002 37

3: Tester Command Line Reference

[-instr_dir instr_dir]

Allows you to specify an instrumentation directory other than the
current working directory, which is the default.

[-instr_file instr_file]

Specifies the instrumentation file, which is an ASCII description of the
instrumentation criteria you have selected.

[-list list_file]

Specifies a file containing a list of test names to be made part of a test
set or group. If no -list option is specified, an empty test set will
be created.

[-r]

(Recursion) Lets you specify tests in a hierarchy of subdirectories.

[-arg]

Displays functions with their arguments.

[-pretty]

Displays output aligned in columns. Without -pretty, the output is
in columns but more condensed.

[-sort]

Sorts the output by the specified criteria, as follows:

function Alphabetically by function

diff By differences in the counting
information for coverage type

caller Alphabetically by calling function

callee Alphabetically by called function

count By counts for current coverage type

file Alphabetically by file name

type Alphabetically by argument type

38 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

[-functions]

Displays list of constrained functions.

[-pat func_pattern]

Lets you enter a pattern instead of a complete function name. The
pattern can be of the form func_name, dso_:func_name, or
‘dso:*’.

experiment | test_name

Lets you specify either the experiment subdirectory or the test
directory. The test directory is typically of the form test<nnnn>,
where <nnnn> is a number in a sequence counting from 0000. You
can specify your own name. The test directory contains all
information about a test including the experiment directory. The
experiment directory is typically of the form exp##<n>, where <n> is
a sequential number, counting from 0.

cvcov Command Syntax and Description
This section contains the syntax and description for all cvcov commands in the
command line interface. If you need information on command arguments that are not
described in this section, please refer back to "Common cvcov Options", page 37.

The most general command is the help command, as follows:

cvcov help command_name

The help command prints help on the specified command. If the optional command
name is not specified, it prints help for all the commands.

The rest of the commands are divided up into these categories:

• General test commands

– cvcov cattest

– cvcov lsinstr

– cvcov lstest

– cvcov mktest

007–3986–002 39

3: Tester Command Line Reference

– cvcov rmtest

– cvcov runinstr

– cvcov runtest

• Coverage analysis commands

– cvcov lssum

– cvcov lsfun

– cvcov lsblock

– cvcov lsbranch

– cvcov lsarc

– cvcov lscall

– cvcov lsline

– cvcov lssource

– cvcov diff

• Test set commands

– cvcov mktset

– cvcov addtest

– cvcov deltest

– cvcov optimize

• Test group command

– cvcov mktgroup

General Test Commands

The following commands support the creation, inspection, modification, and deletion
of tests:

40 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

cvcov cattest [-r] test_name

Describes the test details for a test, test set, or test group. Example
3-1, shows the ASCII display for a single test.

Example 3-1 cattest Example

% cvcov cattest test0000

Test Info Settings

Test /disk2/tutorial/tutorial/test0000

Type single

Description

Command Line copyn alphabet targetfile 20

Number of Exes 1

Exe List copyn
Instrument Directory /disk2/tutorial/tutorial/

Experiment List

exp##0

exp##1

Example 3-2 shows the ASCII report for a test set without recursion.

Example 3-2 cattest Example without -r

% cvcov cattest tut_testset

Test Info Settings

--
Test /disk2/tutorial/tutorial/tut_testset

Type set

Description full coverage testset

Number of Exes 1

Exe List copyn

Number of Subtests 9
Subtest List

[0] /disk2/tutorial/tutorial/test0000

[1] /disk2/tutorial/tutorial/test0001

[2] /disk2/tutorial/tutorial/test0002

[3] /disk2/tutorial/tutorial/test0003
[4] /disk2/tutorial/tutorial/test0004

[5] /disk2/tutorial/tutorial/test0005

[6] /disk2/tutorial/tutorial/test0006

[7] /disk2/tutorial/tutorial/test0007

007–3986–002 41

3: Tester Command Line Reference

[8] /disk2/tutorial/tutorial/test0008
Experiment List

exp##0

Example 3-3, shows the ASCII report for a nested test set.

Example 3-3 cattest Example with -r

% cvcov cattest -r tut_testset

Test Info Settings

Test /disk2/tutorial/tutorial/tut_testset

Type set
Description full coverage testset

Number of Exes 1

Exe List copyn

Number of Subtests 9

Subtest List
/disk2/tutorial/tutorial/test0000

/disk2/tutorial/tutorial/test0001

/disk2/tutorial/tutorial/test0002

/disk2/tutorial/tutorial/test0003

/disk2/tutorial/tutorial/test0004
/disk2/tutorial/tutorial/test0005

/disk2/tutorial/tutorial/test0006

/disk2/tutorial/tutorial/test0007

/disk2/tutorial/tutorial/test0008

Experiment List

exp##0

cvcov lsinstr [-exe] exe_name [-functions] [-v versionnumber] test_name

Displays the instrumentation information for a particular test.
exe_name is the executable targeted for query. The main program is
the default if no executable is specified. The -functions parameter
shows the functions that are included in the coverage experiment.
The versionnumber parameter allows you to specify the version of the
program that was instrumented. You can specify the test directory
using the test_name parameter. See Example 3-4.

42 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Example 3-4 lsinstr Example

% cvcov lsinstr test0000
Instrumentation Info

Executable copyn

Version 0

Instrument Directory /x/tmp/carol/

Instrument File tut_instr_file
Criteria RBPA

Instrumented Objects copyn_Instr(2.57X)

libc.so.1_RBP_Instr(1.07X)

cvcov lstest [-r] [test_name...]

Lists the test directories in the current working directory. Note that
the test_name parameter will accept regular expressions for lstest.

cvcov mktest -cmd cmd_line [-des description] [-instr_dir directoryname]
[-testname test] [exe1 exe2 ...]

Creates a test directory. You specify the program and command line
options for the program to be tested. This includes any redirection for
stdin, stderr, or stdout as run from the Bourne shell. The -cmd
qualifier is mandatory, even if it only includes the program name. If
no executables are specified, only the main program is tested.
Example 3-5, shows an example of mktest, followed by cattest to
display the contents of the Test Description File (TDF).

Example 3-5 Test Description File Examples

% cvcov mktest -cmd "copyn tut_instr_file targetfile"

cvcov: Made test directory: /d/Tester/tutorial/test0002

% cvcov cattest test0002

Test Info Settings

Test /d/Tester/tutorial/test0002

Type single

Description

Command Line copyn tut_instr_file targetfile

Number of Exes 1

Exe List copyn

007–3986–002 43

3: Tester Command Line Reference

Instrument Directory /d/Tester/tutorial

Experiment List

cvcov rmtest [-r] test_name ...

Removes tests and test sets. Note that the test_name parameter will
accept regular expressions for rmtest. It is recommended to separate
the test set directory from its test subdirectories and the instrument
directory. In this way, rmtest will not remove instrumentation data
or subtests if you choose to remove the test set only.

cvcov runinstr [-instr_dir instr_dir][-instr_file instr_file] [-v
versionnumber] executable

Adds code to the target executable to enable you to capture coverage
data, according to the criteria you specify. The instrument file is an
ASCII description of the instrumentation criteria for the
experiment.You can also specify the version of the executable and
instrument directory.

You can capture basic block counts, function pointer counts, and
branch counts (at the assembly language level). You can use
INCLUDE, EXCLUDE, or CONSTRAIN to modify the set of functions
covered. CONSTRAIN lets you define a set of functions for the test.

cvcov runtest [-bitcount][-compress][-force] [-keep] [-sum]
[-v versionnumber] [-noarc] [-rmsub] test_name

Runs a test or a set of tests. The -bitcount flag compresses count
data file to be 1-bit-per-count. This option can decrease the database
size up to 32 times, although branch count information will be lost.
The -compress flag compresses the experiment database using the
standard utility compress. The -force flag forces the test to be run
again even if an experiment is present. It uses WorkShop
performance tool technology to set up the instrumented process, run
the process, and monitor the run, collecting counting information
upon exit. The -keep flag retains all performance data collected in
the experiment. By default, the performance data is not retained,
because it is not required by the coverage tool. The -sum flag
accumulates (sum over) the coverage data into the existing
experiment results. This allows users to run and rerun the same test
and accumulate the results in one place.

44 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

The -noarc flag prevents arc information from being saved in the
test database. With the -noarc flag, all arc-related queries will not
work (for example, lsarc and lscall). The -rmsub flag removes
results for individual subtests for a test set or test group. There will
be no data to query if you are querying a subtest. -noarc and
-rmsub save disk space.

Coverage Analysis Commands

Once the data has been collected from the test experiments, the user can analyze the
data. There are special commands for the various types of coverage available.

cvcov lssum [-exe exe_name] [-weight func_factor :line_factor : branch_factor
: arc_factor : block_factor] experiment | test_name

Shows the overall coverage based on the user-defined weighted
average over function, line, block, branch, and arc coverage. Example
3-6, shows a typical lssum report.

Example 3-6 lssum Example

% cvcov lssum test0000
Coverages Covered Total % Coverage Weight

Function 2 2 100.00% 0.400

Source Line 17 35 48.57% 0.200

Branch 0 10 0.00% 0.200

Arc 8 18 44.44% 0.200
Block 19 42 45.24% 0.000

Weighted Sum 58.60% 1.000

cvcov lsfun [-arg] [-bf filter_type block_filter_value] [-blocks]
[-branches] [-contrib] [-exe exe_name] [-ff filter_type func_filter_value]
[-pat func_pattern] [-pretty] [-rf filter_type branch_filter_value] [-sort
count | file | function] experiment |test_name

Lists coverage information for the specified functions in the program
that was tested. Several sorting, matching, and filtering techniques
are available. For example, you can show the list of functions that
have 0 counts (were not covered) in alphabetical order. You can

007–3986–002 45

3: Tester Command Line Reference

display arguments with the -arg flag. Example 3-7, shows a typical
lsfun ASCII report.

Example 3-7 lsfun Example

% cvcov lsfun -pretty -sort function test0000
Functions Files Counts

copy_file copyn.c 1

main copyn.c 1

Note: C++ inline functions are not counted as functions.

cvcov lsblock [-addr] [-arg] [-contrib] [-exe exe_name] [-pat
func_pattern] [-pretty] [-sort count| file | function] experiment| test_name

Displays a list of blocks for one or more functions and the count
information associated with each block. Blocks are identified by the
line numbers in which they occur. If there are multiple blocks in a
line, blocks subsequent to the first are shown in order with an index
number in parentheses. Be careful before listing all blocks in the
program, since this can produce a lot of data. The -addr flag show
blocks with the PC range instead of the source line number range.
Example 3-8 shows a typical lsblock ASCII report.

Example 3-8 lsblock Example%

cvcov lsblock -pat main -pretty test0000
Blocks Functions Files Counts

13~16 main copyn.c 1

17~17 main copyn.c 0

18~18 main copyn.c 0

19~19 main copyn.c 0
21~21 main copyn.c 1

22~22 main copyn.c 0

23~23 main copyn.c 0

24~24 main copyn.c 0

26~26 main copyn.c 1
26~27 main copyn.c 1

27~27 main copyn.c 1

28~28 main copyn.c 0

46 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

28~28(2) main copyn.c 0
28~28(3) main copyn.c 0

28~28(4) main copyn.c 0

30~30 main copyn.c 0

31~31 main copyn.c 0

33~33 main copyn.c 0
34~34 main copyn.c 0

36~36 main copyn.c 0

37~37 main copyn.c 0

39~39 main copyn.c 0

41~41 main copyn.c 0

43~43 main copyn.c 1
43~43(2) main copyn.c 0

43~43(3) main copyn.c 1

cvcov lsbranch [-addr] [-arg] [-exeexe_name] [-pat func_pattern]
[-pretty][-sort function | file] experiment | test_name

Lists coverage information for branches in the program, including the
line number at which the branch occurs. Branch coverage counts
assembly language branch instructions that are both taken and not
taken. The -addr flag show blocks with the PC range instead of the
source line number range.

Example 3-9, shows a typical branch coverage ASCII report. Note that branches with
incomplete or null coverage are highlighted (boldfaced).

Example 3-9 lsbranch Example

% cvcov lsbranch -pretty -sort function test0000

Line Functions Files Taken Not Taken

50 copy_file copyn.c 1 0
54 copy_file copyn.c 1 0

57 copy_file copyn.c 1 0

60 copy_file copyn.c 1 0

16 main copyn.c 1 0

21 main copyn.c 1 0
27 main copyn.c 1 0

28 main copyn.c 0 0

28(2) main copyn.c 0 0

28(3) main copyn.c 0 0

007–3986–002 47

3: Tester Command Line Reference

cvcov lsarc [-arg] [-callee callee_pattern] [-caller caller_pattern]
[-contrib][-exe exe_name] [-pretty][-sort caller | callee| count | file]
experiment | test_name

Shows arc coverage, that is, the number of arcs taken out of the total
possible arcs. An arc is a function caller-callee pair. Both callee_pattern
and caller_pattern can be specified in the same way as func_pattern
(used with the -pat option) as shown under "Common cvcov
Options", page 37.

Example 3-10, shows a typical lsarc ASCII report.

Example 3-10 lsarc Example

% cvcov lsarc -callee printf -pretty test0001

Callers Callees Line Files Counts

main printf 17 copyn.c 1

main printf 18 copyn.c 1
main printf 22 copyn.c 0

main printf 23 copyn.c 0

main printf 30 copyn.c 0

main printf 33 copyn.c 0

main printf 36 copyn.c 0

cvcov lscall [-arg] [-exe exe_name][-node func_name] [-pretty] [-r]
experiment |test_name

Lists the call graph for the executable with counts for each function.
The contribution to this coverage by each test is shown in a separate
column. Example 3-11, shows a typical lscall ASCII report. N/A
means the node is excluded.

Example 3-11 lscall Example

% cvcov lscall -pretty test0000

Graph Counts

main 1

copy_file 1

_open N/A
_stat... N/A

_creat N/A

48 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

_malloc... N/A
_read N/A

_write N/A

printf... N/A

exit... N/A

atoi N/A

A function that has more than one parent and has children is called a subnode. Using
-r will display the subnodes. Subnodes are given their own starting point in the
textual call graph. They are identified by a trailing ellipsis (...). For example, see
printf, exit, and malloc in Example 3-11.

cvcov lsline [-arg] [-exe exe_name] [-pat func_pattern][-pretty]
[-sort function | file] experiment | test_name

Lists the coverage for native source lines. Use -arg to show
arguments for functions. If no executable is specified, the main
program is the default. Use -pretty to provide column-aligned
output. See Example 3-12.

Example 3-12 lsline Example

% cvcov lsline -pretty -pat main test0000

Functions Files Covered Total % Coverage

main copyn.c 6 20 30.00%

cvcov lssource [-asm] [-exe exe_name] function experiment test_name

Displays the source annotated with line counts. The -asm switch
displays the assembly level source code annotated with line counts.
Lines with 0 counts are highlighted to show the absence of coverage.
This is useful for mapping to the source level blocks and branches
that were not covered. Lines in functions that were not included in
the test appear without count annotations.

Example 3-13, shows a segment of a typical lssource ASCII report.

Note: lssource requires the code to be compiled with the -g option.

007–3986–002 49

3: Tester Command Line Reference

Example 3-13 lssource Example

% cvcov lssource main test0000
Counts Source

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#define OPEN_ERR 1

#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])

1 {

int bytes, status;

1 if(argc < 4){

0 printf(‘‘copyn: Insufficient arguments.\n’’);

0 printf(‘‘Usage: copyn f1 f2 bytes\n’’);

0 exit(1);

}
1 if(argc > 4) {

0 printf(‘‘Error: Too many arguments\n’’);

0 printf(‘‘Usage: copyn f1 f2 bytes\n’’);

0 exit(1);

}
1 bytes = atoi(argv[3]);

cvcov diff [-arg] [-exe exe_name] [-functions] [-pretty][-sort
diff | function] experiment1 experiment2

Shows the difference in coverage for different versions of the same
program. Example 3-14, shows an example of the diff command
applied to two tests (although you should make sure that the
comparison is relevant). Example 3-15, page 51, shows diff applied
to different instrumentations of the same test.

50 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Example 3-14 diff between Two Tests

% cvcov diff test0000/exp##0 test0001/exp##0

Experiment 1: test0000/exp##0

Experiment 2: test0001/exp##0

Coverages Exp 1 Exp 2 Differences

--
Function Coverage 2(100.00%) 1(50.00%) 1(50.00%)

Source Line Coverage 17(48.57%) 5(14.29%) 12(34.29%)

Branch Coverage 0(0.00%) 0(0.00%) 0(0.00%)

Arc Coverage 8(44.44%) 3(16.67%) 5(27.78%)

Block Coverage 19(45.24%) 4(9.52%) 15(35.71%)

Example 3-15 diff between Different Instrumentations of the Same Test

% cvcov diff test0000/exp##0 test0000/exp##1

Experiment 1: test0000/exp##0
Experiment 2: test0000/exp##1

Coverages Exp 1 Exp 2 Differences

--

Function Coverage 2(100.00%) 2(100.00%) 0(0.00%)
Source Line Coverage 17(48.57%) 17(47.22%) 0(1.35%)

Branch Coverage 0(0.00%) 0(0.00%) 0(0.00%)

Arc Coverage 8(44.44%) 8(44.44%) 0(0.00%)

Block Coverage 19(45.24%) 19(44.19%) 0(-1.05%)

Test Set Commands

A test set is a named collection of tests and other test sets. Test sets can be
hierarchical. For example, compiler_language_suite might include C++_suite,
C_suite, and Fortran_suite, where Fortran_suite is a test set with
subdirectories. The following commands support creation, inspection, modification,
and deletion of test sets. Both addtest and deltest are also used with test groups,
described in the next section.

cvcov mktset [-des description] [-list list_file][-testname test]

Makes a test set. If no test name is specified, the command assigns
one automatically.

007–3986–002 51

3: Tester Command Line Reference

cvcov addtest test_name test_set_name | test_group

Adds a test or test set to a test set or test group.

cvcov deltest test_name test_set_name | test_group

Removes a test or test set from a test set or test group.

Note: Do not use UNIX commands mv and cp to rename or copy test
sets because they are constructed with absolute files paths.

cvcov optimize [-blocks][-branches][-cbb filter_type bb_filter_value
][-cbr filter_type br_filter_value] [-exe exe_name] [-pat func_pattern] [
-pretty][-stat]experiment...|test_name ...

Selects the minimum set of tests that give the same coverage or meet
the given coverage criteria as the given set. The -blocks flag shows
block coverage for all the selected tests. The -branches flag shows
branch coverage for all the selected tests. The -cbb filter_type
bb_filter_value gives the basic block coverage criteria for test selection.
The rules are the same as the flag -bf of the lsfun command. The
-cbr filter_type br_filter_value gives the branch coverage criteria for
test selection. The rules are the same as the flag -rf of lsfun
command. The -exe exe_name option lets you specify which
executable is targeted for test optimization. If no executable is
specified, the main program is the default. The -pat pattern option
lets you specify DSO patterns for calculation of coverage on test
selection. The -pretty flag aligns column output. The -stat flag
prints out block and branch coverage for all the selected tests.
Without this option, cumulative coverages for block and branch are
given. The experiment ...|test_name ... option lets you specify names of
experiments or tests to be optimized. Example 3-16, demonstrates
how test sets are optimized. In this case, optimizing is applied to all
tests matching the expression test00*.

52 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Example 3-16 Optimizing Test Sets

% cvcov optimize -pretty -blocks -branches test00*

Test Block Coverage Branch Coverage

test0000 41.54% 0.00%

test0001 7.69% 10.00%

test0002 7.69% 10.00%
test0003 9.23% 20.00%

test0004 9.23% 20.00%

test0005 6.15% 20.00%

test0006 1.54% 10.00%

Total Coverage 83.08% 90.00%

Test Group Commands

A test group is a collection of programs to be tested that have a common dynamically
shared object (DSO). The coverage testing is limited to activity with the DSO so that
the arcs and branches that terminate outside of the DSO will not be included. See
descriptions of addtest and deltest in the previous section as well as the
following command.

cvcov mktgroup [-des description] [-list list_file] [-testname test] target1 target2 ...

This command creates a test group that can contain other tests or test groups. The
targets are either the target libraries or DSOs.

Note: Do not use UNIX commands mv and cp to rename or copy test groups because
they are constructed with absolute files paths.

007–3986–002 53

Chapter 4

Tester Graphical User Interface Tutorial

This chapter provides a tutorial for the Tester graphical user interface. It covers these
topics:

• Setting Up the Tutorial, "Setting Up the Tutorial", page 55

• Analyzing a Single Test, "Tutorial #1 — Analyzing a Single Test", page 56

• Analyzing a Test Setup, "Tutorial #2 — Analyzing a Test Set", page 68

• Exploring the Graphical User Interface, "Tutorial #3 — Exploring the Graphical
User Interface", page 72

Setting Up the Tutorial
If you have already set up a tutorial directory for the command line interface tutorial,
you can continue to use it. If you remove the subdirectories, your directory names
will match exactly; if you leave the subdirectories in, you can add new ones as part of
this tutorial.

If you would like the test data built automatically, run the following script:

/usr/demos/WorkShop/Tester/setup_Tester_demo

To set up a tutorial directory from scratch, do the following; otherwise you can skip
the rest of this section.

1. Enter the following:

% cp -r /usr/demos/WorkShop/Tester /usr/tmp/tutorial
% cd /usr/tmp/tutorial

% echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > alphabet

% make -f Makefile.tutorial copyn

This moves some scripts and source files used in the tutorial to
/usr/tmp/tutorial, creates a test file named alphabet, and makes a simple
program, copyn, which copies n bytes from a source file to a target file.

2. To see how the program works, try a simple test by typing the following at the
command line:

007–3986–002 55

4: Tester Graphical User Interface Tutorial

% copyn alphabet targetfile 10
% cat targetfile

ABCDEFGHIJ

You should see the first 10 bytes of alphabet copied to targetfile.

Tutorial #1 — Analyzing a Single Test
Tutorial #1 discusses the following topics:

• Invoking the graphical user interface.

• Instrumenting an executable.

• Making a test.

• Running a test.

• Analyzing the results of a coverage tes.

These topics are all covered in the following section.

Invoking the Graphical User Interface

You typically call up the graphical user interface from the directory that will contain
your test subdirectories. This section tells you how to invoke the Tester graphical user
interface and describes the main window.

1. Enter cvxcov from the tutorial directory to bring up the Tester main window.

Figure 4-1, page 58, shows the main Tester window with all its menus displayed.

Note: You can also access Tester from the Admin menu in other WorkShop tools.

2. Observe the features of the Tester window.

The Test Name field is used to display the current test. You can switch to
different tests through this field.

Test results display in the coverage display area. You display the results by
choosing an item from the Queries menu. You also can select the format of the
data from the Views menu.

56 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

The Source button lets you bring up the standard Source View window with
Tester annotations. Source View shows the counts for each line included in the
test and highlights lines with 0 counts. Lines from excluded functions display but
without count annotations.

The Disassembly button brings up the Disassembly View window for assembly
language source. It operates in a similar fashion to the Source button.

The Contribution button displays a separate window with the contributions to
the coverage made by each test in a test set or test group.

A sort button lets you sort the test results by such criteria as function, count, file,
type, difference, caller, or callee. The criteria available (shown by the name of the
button) depend on the current query.

The status area displays status messages regarding the test.

The area below the status area will display special query-specific fields when you
make queries.

You can launch other WorkShop applications from the Launch Tool submenu of
the Admin menu. The applications include the Build Analyzer, Debugger, Parallel
Analyzer, Performance Analyzer, and Static Analyzer.

You will find an icon version of the Execution View labeled cvxcovExec. It is a
shell window for viewing test results as they would appear on the command line.

007–3986–002 57

4: Tester Graphical User Interface Tutorial

Admin menu Views menu Queries menu Test menu

Test Name
input field

Coverage
display area

Control buttons

Status area

Figure 4-1 Main Tester Window

58 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Instrumenting an Executable

The first step in providing test coverage is to define the instrumentation criteria in
an instrumentation file.

3. On the command line or from Execution View, enter the following to see the
instrumentation directives in the file tut_instr_file used in the tutorials:

% cat tut_instr_file

COUNTS -bbcounts -fpcounts -branchcounts

CONSTRAIN main, copy_file

TRACE BOUNDS copy_file(size)

We will be getting all counting information (blocks, functions, source lines,
branches, and arcs) for the two functions specified in the CONSTRAIN directive,
main and copy_file.

4. Select Run Instrumentation from the Test menu.

This process inserts code into the target executable that enables coverage data to
be captured. The dialog box shown in Figure 4-2, page 59, displays when Run
Instrumentation is selected from the Test menu.

Figure 4-2 Running Instrumentation

5. Enter copyn in the Executable field.

007–3986–002 59

4: Tester Graphical User Interface Tutorial

The Executable field is required, as indicated by the red highlight. You enter the
executable in this field.

6. Enter tut_instr_file in the Instrument File field.

The Instrument File field lets you specify an instrumentation file containing the
criteria for instrumenting the executable. In this tutorial, we use the file
tut_instr_file, which was described earlier.

7. Leave the Instrument Dir and Version Number fields as is.

The Instrument Dir field indicates the directory in which the instrumented
programs are stored. A versioned directory is created (the default is ver##n,
where n is 0 the first time and is incremented automatically if you subsequently
change the instrumentation). The version number n helps you identify the
instrumentation version you use in an experiment. The experiment results
directory will have a matching version number. The instrument directory is the
current working directory; it can be set from the Admin menu.

8. Click OK.

This executes the instrumentation process. If there are no problems, the dialog
box closes and the message Instrumentation succeeded displays in the
status area with the version number created.

Making a Test

A test defines the program and arguments to be run, the instrumentation criteria,
and descriptive information about the test.

9. Select Make Test from the Test menu.

This creates a test directory. Figure 4-3, page 61, shows the Make Test window.

You specify the name of the test directory in the Test Name field, in this case
test0000. The field displays a default directory test<nnnn>, where nnnn is
0000 the first time and incremented for subsequent tests. You can edit this field if
necessary.

60 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 4-3 Selecting Make Test

10. Enter a description of the test in the Description field.

This is optional, but can help you differentiate between tests you have created.

11. Enter the executable to be tested with its arguments in the Command Line field,
in this example:

copyn alphabet targetfile 20

This field is mandatory, as indicated by its highlighting.

12. Leave the remaining fields as is.

007–3986–002 61

4: Tester Graphical User Interface Tutorial

Tester supplies a default instrumentation directory in the Instrument Dir field.
The Executable List field lets you specify multiple executables when your main
program forks, execs, or sprocs other processes.

13. Click OK to perform the make test operation with your selections.

The results of the make test operation display in the status area of the main Tester
window.

Running a Test

To run a test, we use technology from the WorkShop Performance Analyzer. The
instrumented process is set to run, and a monitor process (cvmon) captures test
coverage data by interacting with the WorkShop process control server (cvpcs).

14. Select Run Test from the Test menu.

The dialog box shown in Figure 4-4, page 63, displays. You enter the test
directory in the Test Name field. You can also specify a version of the executable
in the Version Number field if you do not want to use the latest, which is the
default. The Force Run toggle forces the test to be run again even if a test result
already exists. The Keep Performance Data toggle retains all the performance
data collected in the experiment. The Accumulate Results toggle sums over the
coverage data into the existing experiment results. Both No Arc Data and
Remove Subtest Expt toggles retain less data in the experiments and are
designed to save disk space.

62 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 4-4 Run Test Dialog Box

15. Enter test0000 in the Test Name field.

16. Click OK to run the test with your selections.

When the test completes, a status message showing completion displays and you
will have data to be analyzed. You can observe the test as it runs in Execution
View.

Analyzing the Results of a Coverage Test

You can analyze test coverage data in many ways. In this tutorial, we will
illustrate a simple top-down approach. We will start at the top to get a summary
of overall coverage, proceed to the function level, and finally go to the actual
source lines.

Having collected all the coverage data, now you can analyze it. You do this
through the Queries menu in the main Tester window.

17. Enter test0000 in the Test Name field in the main window and select List
Summary from the Queries menu.

This loads the test and changes the main window display as shown in Figure 4-5,
page 64. The query type (in this case, List Summary) is indicated above the

007–3986–002 63

4: Tester Graphical User Interface Tutorial

display area. Column headings identify the data, which displays in columns in
the coverage display area. The status area is shortened. The query-specific fields
(in this case, coverage weighting factors) that appear below the control buttons
and status area are different for each query type. You can change the numbers
and click Apply to weight the factors differently. The Executable List button
brings up the Target List dialog box. It displays a list of executables used in the
experiment and lets you select different executables for analysis. You can select
other experiments from the experiment menu (Expt).

List Summary shows the coverage data (number of coverage hits, total possible
hits, percentage, and weighting factor) for functions, source lines, branches, arcs,
and blocks. The last coverage item is the weighted average, obtained by
multiplying individual coverage averages by the weighting factors and summing
the products.

Single/test set indicator
Query type

Coverage column headings

Coverage summary

Coverage weighting factors

Executable List
button

Experiment Menu
button

Figure 4-5 List Summary Query Window

64 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

18. Select List Functions from the Queries menu.

This query lists the coverage data for functions specified for inclusion in this test.
The default version is shown in Figure 4-6, with the available options.

Find
string

Display
or enter
function

Number of items
in the list

Sort menu

Include branches
Include blocks

Figure 4-6 List Functions Query with Options

If there are functions with 0 counts, they will be highlighted. The default column
headings are Functions, Files, and Counts.

19. Click the Blocks and Branches toggles.

The Blocks and Branches toggle buttons let you display these items in the
function list. Figure 4-7, page 66, shows the display area with Blocks and
Branches enabled.

007–3986–002 65

4: Tester Graphical User Interface Tutorial

Figure 4-7 List Functions Display Area with Blocks and Branches

The Blocks column shows three values. The number of blocks executed within
the function is shown first. The number of blocks covered out of the total possible
for that function is shown inside the parentheses. If you divide these numbers,
you will arrive at the percentage of coverage.

Similarly, the Branches column shows the number of branches covered, followed
by the number covered out of the total possible branches. The term covered means
that the branch has been executed under both true and false conditions.

20. Select the function main in the display area and click Source.

The Source View window displays with count annotations as shown in Figure 4-8,
page 67. Lines with 0 counts are highlighted in the display area and in the vertical
scroll bar area. Lines in excluded functions display with no count annotations.

21. Click the Disassembly button in the main window.

The Disassembly View window displays with count annotations as shown in
Figure 4-9, page 68. Lines with 0 counts are highlighted in the display area and in
the vertical scroll bar area.

66 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Annotation
column

0-count
highlight

Figure 4-8 Source View with Count Annotations

007–3986–002 67

4: Tester Graphical User Interface Tutorial

Annotation
column

0-count
highlight

Figure 4-9 Disassembly View with Count Annotations

Tutorial #2 — Analyzing a Test Set
In the second tutorial, we are going to create additional tests with the objective of
achieving 100% overall coverage. From examining the source code, it seems that the
0-count lines in main and copy_file are due to error-checking code that is not
tested by test0000.

Note: This tutorial needs test0000, which was created in the previous tutorial.

1. Select Make Test from the Test menu.

This displays the Make Test dialog box. It is easy to enter a series of tests. Using
the Apply button in the dialog box instead of the OK button completes the task
without closing the dialog box. The Test Name field supplies an incremented
default test name after each test is created.

We are going to create a test set named tut_testset and add to it 8 tests in
addition to test0000 from the previous tutorial. The tests test0001 and
test0002 pass too few and too many arguments, respectively. test0003
attempts to copy from a file named no_file that does not exist. test0004

68 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

attempts to pass 0 bytes, which is illegal. test0005 attempts to copy 20 bytes
from a file called not_enough, which contains only one byte. In test0006, we
attempt to write to a directory without proper permission. test0007 tries to
pass too many bytes. In test0008, we attempt to copy from a file without read
permission.

The following steps show the command line target and arguments and description
for the tests in the tutorial. The descriptions are helpful but optional. Figure 4-10,
page 69, shows the features of the dialog box you will need for creating these tests.

2. Enter copyn alphabet target in the Command Line field, not enough
arguments in the Description field, and click Apply (or simply press the
Return key) to make test0001.

3. Enter copyn alphabet target 20 extra_arg in the Command Line field,
too many arguments in the Description field, and click Apply to make
test0002.

Default test name

Test description

Target with
arguments

Apply button

Figure 4-10 Make Test Dialog Box with Features Used in Tutorial

007–3986–002 69

4: Tester Graphical User Interface Tutorial

4. Enter copyn no_file target 20 in the Command Line field, cannot
access file in the Description field, and click Apply to make test0003.

5. Enter copyn alphabet target 0 in the Command Line field, pass bad
size arg in the Description field, and click Apply to make test0004.

6. Enter copyn not_enough target 20 in the Command Line field, not
enough data in the Description field, and click Apply to make test0005.

7. Enter copyn alphabet /usr/bin/target 20 in the Command Line field,
cannot create target executable due to permission problems in
the Description field, and click Apply to make test0006.

8. Enter copyn alphabet targetfile 200 in the Command Line field, size
arg too big in the Description field, and click Apply to make test0007.

9. Enter copyn /usr/etc/snmpd.auth targetfile 20 in the Command Line
field, no read permission on source file in the Description field, and
click Apply to make test0008.

We now need to create the test set that will contain these tests.

10. Click the Test Set toggle in the Test Type field.

This changes the dialog box as shown in Figure 4-11, page 71.

70 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Test set toggle

Tests in working
directory Test set list

Test list control
buttons

Figure 4-11 Make Test Dialog Box for Test Set Type

11. Change the default in the Test Name field to tut_testset.

This is the name of the new test set. Now we have to add the tests to the test set.

12. Select the first test in the Test List field and click Add.

This displays the selected test in the Test Include List field, indicating that it will
be part of the test set after you click OK (or Apply and Close).

13. Repeat the process of selecting a test and clicking Add for each test in the Test
List field. When all tests have been added to the test set, click OK.

This saves the test set as specified and closes the Make Test dialog box.

14. Enter tut_testset in the Test Name field and select Describe Test from the
Queries menu.

007–3986–002 71

4: Tester Graphical User Interface Tutorial

This displays the test set information in the display area of the main window.

15. Select Run Test from the Test menu, enter tut_testset in the Test Name field
in the Run Test dialog box.

This runs all the tests in the test set.

16. Enter tut_testset in the Test Name field in the main Tester window and select
List Summary from the Queries menu.

This displays a summary of the results for the entire test set.

17. Select List Functions from the Queries menu.

This step serves two purposes. It enables the Source button so that we can look
at counts by source line. It displays the list of functions included in the test, from
which we can select functions to analyze.

18. Click the main function, which is displayed in the function list, and click the
Source button.

This displays the source code, with the counts for each line shown in the
annotations column. Note that the counts are higher now and full coverage has
been achieved at the source level (although not necessarily at the assembly level).

Tutorial #3 — Exploring the Graphical User Interface
The rest of this chapter shows you how to use the graphical user interface (GUI) to
analyze test data. The GUI has all the functionality of the command line interface and
in addition shows the function calls, blocks, branches, and arcs graphically.

For a discussion of applying Tester to test set optimization, refer to "Tutorial #3 -
Optimizing a Test Set", page 29. To learn more about test groups, see "Tutorial #4 -
Analyzing a Test Group", page 33. Although these are written for the command line
interface, you can use the graphical interface to follow both tutorials.

1. Enter test0000 in the Test Name field of the main window and press the
Return key.

Since test0000 has incomplete coverage, it is more useful for illustrating how
uncovered items appear.

2. Select List Functions from the Queries menu.

72 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

The list of functions displays in the text view format.

3. Select Call Tree View from the Views menu.

The Tester main window changes to call graph format. Figure 4-12, page 73,
shows a typical call graph. Initially, the call graph displays the main function and
its immediate callees.

Call graph display area

Included (and covered)
nodes

Excluded nodes

Display control buttons

Search node field

Graph type controls

Figure 4-12 Call Graph for List Functions Query

The call graph displays functions as nodes and calls as connecting arrows. The
nodes are annotated by call count information. Functions with 0 counts are
highlighted. Excluded functions when visible appear in the background color.

007–3986–002 73

4: Tester Graphical User Interface Tutorial

The controls for changing the display of the call graph are just below the display
area (see Figure 4-13, page 74).

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button

Realign button

Rotate button a11661

Figure 4-13 Call Graph Display Controls

These facilities are:

Zoom menu icon Shows the current scale of the graph. If clicked on,
a popup menu appears displaying other available
scales. The scaling range is between 15% and 300%
of the nominal (100%) size.

Zoom Out icon Resets the scale of the graph to the next (available)
smaller size in the range.

Zoom In icon Resets the scale of the graph to the next (available)
larger size in the range.

Overview icon Invokes an overview popup display that shows a
scaled-down representation of the graph. The
nodes appear in the analogous places on the
overview popup, and a white outline may be used
to position the main graph relative to the popup.
Alternatively, the main graph may be repositioned
with its scroll bars.

Multiple Arcs icon Toggles between single and multiple arc mode.
Multiple arc mode is extremely useful for the List
Arcs query, because it indicates graphically how

74 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

many of the paths between two functions were
actually used.

Realign icon Redraws the graph, restoring the positions of any
nodes that were repositioned.

Rotate icon Flips the orientation of the graph between
horizontal (calling nodes at the left) and vertical
(calling nodes at the top).

Entering a function in the Search Node field scrolls the display to the portion of
the graph in which the function is located.

There are two buttons controlling the type of graph. Entering a node in the Func
Name field and clicking Butterfly displays the calling and called functions for
that node only (Butterfly mode is the default). Selecting Full displays the entire
call graph (although not all portions may be visible in the display area).

4. Select List Arcs from the Queries menu.

The List Arcs query displays coverage data for calls made in the test. Because we
were just in call graph mode for the List Functions query, List Arcs comes up in
call graph rather than text mode.

See Figure 4-14, page 76. To improve legibility, this figure has been scaled up to
150% and the nodes moved by middle-click-dragging the outlines. Arcs with 0
counts are highlighted in color. Notice that in List Arcs, the arcs rather than the
nodes are annotated.

007–3986–002 75

4: Tester Graphical User Interface Tutorial

Figure 4-14 Call Graph for List Arcs Query

5. Click the Multiple Arcs button (the third button from the right in the row of
display controls).

This displays each of the potential arcs between the nodes. See Figure 4-15, page
77. Arcs labeled N/A connect excluded functions and do not have call counts.

76 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Multiple arcs
button

Figure 4-15 Call Graph for List Arcs Query — Multiple Arcs

6. Select Text View from the Views menu.

This returns the display area to text mode from call graph mode. See Figure 4-16,
page 78.

The Callers column lists the calling functions. The Callees column lists the
functions called. Line provides the line number where the call occurred; this is
particularly useful if there are multiple arcs between the caller and callee. The
Files column identifies the source code file. Counts shows the number of times
the call was made.

You can sort the data in the List Arcs query by count, file, caller, or callee.

007–3986–002 77

4: Tester Graphical User Interface Tutorial

Figure 4-16 Test Analyzer Queries: List Arcs

7. Select List Blocks from the Queries menu.

The window should be similar to Figure 4-17, page 79. The data displays in order
of blocks, with the starting and ending line numbers of the block indicated.
Blocks that span multiple lines are labeled sequentially in parentheses. The count
for each block is shown with 0-count blocks highlighted.

78 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

!
Caution: Listing all blocks in a program may be very slow for large programs. To
avoid this problem, limit your List Blocks operation to a single function.

Figure 4-17 Test Analyzer Queries: List Blocks

You can sort the data for List Blocks by count, file, or function.

007–3986–002 79

4: Tester Graphical User Interface Tutorial

8. Select List Branches from the Queries menu.

The List Branches query displays a window similar to Figure 4-18, page 80.

Figure 4-18 Test Analyzer Queries: List Branches

The first column shows the line number in which the branch occurs. If there are
multiple branches in a line, they are labeled by order of appearance within
trailing parentheses. The next two columns indicate the function containing the
branch and the file. A branch is considered covered if it has been executed under

80 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

both true and false conditions. The Taken column indicates the number of
branches that were executed only under the true condition. The Not Taken
column indicates the number of branches that were executed only under the false
condition.

The List Branches query permits sorting by function or file.

007–3986–002 81

Chapter 5

Tester Graphical User Interface Reference

This chapter describes the Tester graphical user interface. It contains these sections:

• "Accessing the Tester Graphical Interface", page 83

• "Main Window and Menus", page 84

• "Test Menu Operations", page 88

• "Views Menu Operations", page 98

• "Queries Menu Operations", page 101

• "Admin Menu Operations", page 117

When you run cvxcov, the main Tester window opens and an iconized version of the
Execution View appears on your screen. It displays the output and status of a
running program and accepts input. To open a closed Execution View, see “Clone
Execution View” in "Admin Menu Operations", page 117.

Accessing the Tester Graphical Interface
There are two methods of accessing the Tester graphical user interface:

• Type cvxcov at the command line with these optional arguments: -testname
test to load the test; -ver to show the Tester release version; and -scheme
schemename to set a predefined color scheme.

• Select Tester from the Launch Tool submenu in a WorkShop Admin menu (see
Figure 5-1, page 84). The major WorkShop tools, the Debugger, Static Analyzer,
and Build Manager provide Admin menus from which you can access Tester.

007–3986–002 83

5: Tester Graphical User Interface Reference

Figure 5-1 Accessing Tester from the WorkShop Debugger

Main Window and Menus
The main window and its menus are shown in Figure 5-2, page 85.

84 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Admin menu Views menu Queries menu Test menu

Test Name
input field

Coverage
display area

Control area

Status area

Search field

Figure 5-2 Main Test Analyzer Window

007–3986–002 85

5: Tester Graphical User Interface Reference

Test Name Input Field

The current test is entered (and displayed) in the Test Name field. You can switch to
a different test, test set, or test group through this field. To the right, the Type field
indicates whether it is a Single Test, Test Set, or Test Group. You can select a test (test
set or test group) from the List Tests dialog box under the Test menu, to appear in
the Test Name field in the main window.

Coverage Display Area

Test results display in the coverage display area. You select the results by choosing an
item from the Queries menu. You can select the format of the data—text, call tree, or
bar chart— from the Views menu. (Note that the Text View format is available for all
queries, whereas the other two views are limited.)

The Query Type displays under the Test Name field, just over the display. It is
followed on the far right of the window by the Query Size (number of items in the
list). Headings above the display are specific to each query.

Search Field

The Search field lets you look for strings in the coverage data. It uses an incremental
search, that is, as you enter characters, the highlight moves to the first matching
target. When you press the Return key, the highlight moves to the next occurrence.

Control Area Buttons

The Apply button is a general-purpose button for terminating data entry in text
fields; you can use the Return key equivalently. Both start the query.

The Source button lets you bring up the standard Source View window with Tester
annotations. Source View shows the counts for each line and highlights lines with 0
counts. By default, Source View is shared with other applications. For example, if
cvstatic performs a search for function A, the results of the query overwrite Tester
query results that are in the shared Source View. To stop sharing Source View with
other applications, set the following resource:

cvsourceNoShare: True

86 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

The Disassembly button brings up the Disassembly View window, called Assembly
Source Coverage, which operates at the machine level in a similar fashion to the
Source View. This view is not shared with other applications.

Note: If a test has very large counts, there may not be enough space in the Source
View and Disassembly View windows to display them. To make more room,
increase the canvasWidth resource in the Cvxcov app-defaults file,
Cvxcov*test*testdata*canvasWidth.

The Contribution button brings up the Test Contribution window with the
contributions made by each test so that you can compare the results. It is available for
the queries List Functions, List Arcs, and List Blocks. When the tests do not fit on
one page, multiple pages are used. Use the Previous Page and Next Page buttons to
display all the tests.

The Sort button lets you sort the test results by criteria such as function, count, file,
type, difference, caller, or callee. The criteria available depend on the current query.

Status Area and Query-Specific Fields

The status area displays status messages that confirm commands, issue warnings, and
indicate error conditions. When you enter a test name in the Test Name field, the
Func Name field appears (along with other items) in the status area for use with
queries. Entering a function in this field displays the coverage results limited to that
function only.

Additional items display in the area below the status area that change when you
select commands from the Queries menu. These items are specific to the query
selected. Some of these items can be used as defaults (see "Queries Menu
Operations", page 101).

Main Window Menus

The Admin menu lets you perform general housekeeping concerning saving files,
setting defaults, changing directories, launching other WorkShop applications, and
exiting.

The Test menu lets you create, modify, and run tests, test sets, and test groups.

The Views menu lets you choose one of the following modes:

007–3986–002 87

5: Tester Graphical User Interface Reference

• Text mode, which displays results numerically in columns

• Graphical mode, which displays the following:

– Functions as nodes (rectangles) annotated by results

– Calls as arcs (connecting arrows)

• Bar graph mode, which displays the summary of a test as a bar graph.

The Queries menu lets you analyze the results of tests. The Help menu is standard in
all tools.

Test Menu Operations
All operations for running tests are accessed from the Test menu in the main Tester
window. Figure 5-3, page 89, shows the dialog boxes used to perform test operations.

The Test menu provides the following selections:

Run Instrumentation Instruments the target executable. Instrumentation adds
code to the executable to collect coverage data. For a
more detailed discussion of instrumentation and
instrument files, see "Single Test Analysis Process", page
5.

88 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 5-3 Test Menu Commands

The Run Instrumentation dialog box (see Figure 5-4,
page 90) provides these fields:

• Executable lets you enter the name of the target.

007–3986–002 89

5: Tester Graphical User Interface Reference

• Instrumentation File is for entering the
instrumentation file, which is an ASCII description
of the instrumentation criteria for the experiment.

• Instrumentation Dir lets you enter the directory in
which the instrumentation file is stored (not
necessary if you are using the current working
directory).

• Version Number lets you specify the version
number of the instrumentation directory
(ver##<versionnumber>). If this field is left blank,
the version number increments automatically.

If you are testing multiple executables (that is,
testing coverage of an executable that forks, execs,
or sprocs other processes), then you need to store
these in the same instrumentation directory. You do
this by entering the same number in the Version
Number field.

Figure 5-4 Run Instrumentation Dialog Box

Run Test Invokes the executable with selected arguments and
collects the coverage data. The Run Test dialog box (see
Figure 5-5, page 92) provides these fields and buttons:

• Test Name is for entering the test name.

90 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

• Version Number is for entering the version number
of the directory (ver## <number>) containing the
instrumented executable. If you are using the most
current (highest) version number, then you can leave
the field blank; otherwise, you need to enter the
desired number.

• Force Run is a toggle that when turned on causes
the test to be run even if results already exist.

• Keep Performance Data is a toggle that when
turned on retains all the performance data collected
in the experiment.

• Accumulate Results is a toggle that when turned on
accumulates (sums over) the coverage data into the
existing experiment results.

• No Arc Data prevents arc information from being
collected in the experiment. It cannot be used with
List Arcs or a Call Tree View. List Summary and
Compare Test will have 0% coverage on arc items.
Use it to save space if you do not need arc data.

• Remove Subtest Expt removes results for individual
subtests for test sets or test groups, letting you see
the top level and taking less space. There will be no
data to query if you are querying a subtest.

007–3986–002 91

5: Tester Graphical User Interface Reference

Figure 5-5 Run Test Dialog Box

Make Test Creates a test directory where the coverage data is to be
stored and stores a TDF (test description file).

The Make Test dialog box (see Figure 5-6, page 93)
provides these fields for tests, test sets, and test groups:

• Test Name is for entering the test name.

• Test Type is a toggle for indicating the type of test:
single, test set, or test group (for dynamically shared
objects).

• Description lets you enter a description to
document the test.

92 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 5-6 Make Test Dialog Box

If you select Single Test, the following fields are
provided:

• Command Line lets you enter the target and any
arguments to be used in the test.

• Instrument Dir is the directory in which the
instrumentation file and related data are stored (not
necessary if current working directory).

• Executable List is used if you are testing coverage
of an executable that forks, execs, or sprocs other
processes and want to include those processes. You
must specify these executables in the Executable
List field.

007–3986–002 93

5: Tester Graphical User Interface Reference

If you select Test Set, the following fields and buttons
are provided:

• Test List contains all the tests in the working
directory.

• Test Include List (to the right) displays tests
included in the test set or test group.

• Add looks at the selected item in the Test List or
Select field and adds it to the Test Include List.

• Remove looks at the selected item in the Test
Include List and removes it.

• Select displays the currently selected test.

For a test group (see Figure 5-7, page 95), the following
field is added to the same fields and buttons used for a
test set:

• Targets lets you enter a list of target DSOs or shared
libraries, separated by spaces.

94 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Tests in
directory

Selected toggle

Tests selected for
inclusion in group

Figure 5-7 Make Test Dialog Box with Test Group Selected

Delete Test Removes the specified test directory and its contents.
The Delete Test dialog box (see Figure 5-8, page 96)
provides these fields:

• Test Name is for entering the test name.

• Recursive List is a toggle that when turned on
includes all subtests in the removal of test sets and
test groups.

007–3986–002 95

5: Tester Graphical User Interface Reference

Figure 5-8 Delete Test Dialog Box

List Tests Shows you the tests in the current working directory.
The List Tests dialog box (see Figure 5-9, page 97)
provides these fields:

• Working Dir shows the directory containing the
tests.

• A scrollable list field displays the tests present in the
specified directory. The scroll bars let you navigate
through the tests if they do not fit completely in the
field. Clicking an item places it in the Select field.
Double-clicking on a test selects and loads it.

• Select displays the test name you type in or that you
clicked in the list. Click OK to load your selection
into the Test Name field of the main Tester window.

• Close lets you exit without loading a selection.

96 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 5-9 List Tests Dialog Box

Modify Test Lets you modify a test set or test group. You enter the
test name in the Test Name field and press the Return
key or click the View button to load it. The View
button changes to Apply, the Test List field displays
tests in the current working directory, and the Test
Include List field displays the contents of the test set or
test group. You can then add or delete tests, test sets, or
test groups in the current test set or test group,
respectively. The Modify Test dialog box (see Figure
5-10, page 98) has these fields:

• Test Name is for entering the test name.

• Test List displays the tests in the current directory.

• Test Include List displays the subtests for the test
specified in the Test Name field.

• Select displays the test currently selected for adding
or removing. You can enter the test directly in this
field instead of selecting it from the Test List or Test
Include List.

• The Add button lets you add the selected test to the
Test Include List.

007–3986–002 97

5: Tester Graphical User Interface Reference

• The Remove button lets you delete the selected test
from the Test Include List.

• The Apply button applies the changes you have
selected. (The button name is View until you load
something.)

Figure 5-10 Modify Test Dialog Box after Loading Tests

Views Menu Operations
The Views menu has three selections that let you view coverage data in different
forms. The selections are:

Text View Displays the coverage data in text form. The
information displayed depends on which query you
have selected. See Figure 5-11, page 99.

98 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Column headings

Coverage data

Figure 5-11 List Functions Query in Text View Format

Call Tree View Displays coverage data graphically, with functions as
nodes (rectangles) and calls as arcs (connecting arrows).
This view is only valid for List Functions, List Blocks,
List Branches, and List Arcs. See Figure 5-12, page 100.
It is not available if you run a test with No Arc Data on.

007–3986–002 99

5: Tester Graphical User Interface Reference

Included node

Arc

Excluded node

Figure 5-12 List Functions Query in Call Tree View Format

Bar Graph View Displays a bar chart showing the percentage covered
for functions, lines, blocks, branches, and arcs. See
Figure 5-13, page 101. This view is only valid for List
Summary, which is described in detail in "Queries
Menu Operations", page 101.

100 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Coverage bars

Figure 5-13 List Summary Query in Bar Graph View Format

Queries Menu Operations
The Queries menu provides different methods for analyzing the results of coverage
tests. Each type of query displays the coverage data in the coverage display area in
the main Tester window and displays items that are specific to the query in the area
below the status area. When you set these items for a query, the same values are used
by default for subsequent queries until you change them. You can set these defaults
before the first query or as part of any query. For a single test or test set, all queries
except Describe Test have the fields shown in Figure 5-15, page 102.

007–3986–002 101

5: Tester Graphical User Interface Reference

Executable

Button for Target List dialog box
Experiment list

Figure 5-14 Query-Specific Default Fields for a Test or Test Set

The Executable field displays the executable associated with the current coverage
data. You can switch to a different executable by entering it directly in this field. You
can also switch executables by clicking the Executable List button, selecting from the
list in the Target List dialog box and clicking Apply in the dialog box.

The experiment menu (Expt) lets you see the results for a different experiment that
uses the same test criteria.

Note: When you are performing queries on a test group, the Executable field changes
to Object field and the Executable List button changes to Object List as shown in
Figure 5-15, page 102. These items act analogously except that they operate on
dynamically shared objects (DSOs). Refer to "Tutorial #4 - Analyzing a Test Group",
page 33, for more information on test groups.

Object name

Object list
Experiment list

Figure 5-15 Query-Specific Default Fields for a DSO Test Group

The Queries menu (see Figure 5-16, page 103) provides these selections:

102 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Figure 5-16 Queries Menu

List Summary Shows the overall coverage based on the user-defined
weighted average over function, source line, branch,
arc, and block coverage. The coverage data appears in
the coverage display area. A typical summary appears
in Figure 5-17, page 104.

007–3986–002 103

5: Tester Graphical User Interface Reference

Single/test set/test
group indicator

Coverage summary

Coverage weighting
factor fields

Figure 5-17 List Summary Query

The Coverages column indicates the type of coverage.
The Covered column shows the number of functions,
source lines, branches, arcs, and blocks that were
executed in this test (or test set or test group). The
Total column indicates the total number of items that

104 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

could be executed for each type of coverage. The %
Coverage column is simply the Covered value divided
by the Total value in each category. The Weight column
indicates the weighting assigned to each type of
coverage. It is used to compute the Weighted Sum, a
user-defined factor that can be used to judge the
effectiveness of the test. The Weighted Sum is obtained
by first multiplying the individual coverage percentages
by the weighting factors and then summing the
products.

The List Summary command causes the coverage
weighting factor fields to display below the status area.
Use these to adjust the factor values as desired. They
should add up to 1.0.

If you select Bar Graph View from the Views menu,
the summary will be shown in bar graph format as
shown in Figure 5-13, page 101. The percentage
covered is shown along the vertical axis; the types of
coverage are indicated along the horizontal axis.

List Functions Displays the coverage data for functions in the specified
test. The Functions column heading identifies the
function, Files shows the source file containing the
function, and Counts displays the number of times the
function was executed in the test.

List Functions enables the sort menu that lets you
determine the order in which the functions display.
Only the sort criteria appropriate for the current query
are enabled, in this case, Sort By Func, Sort By Count,
and Sort By File as shown in Figure 5-18, page 107.

The Search field scrolls the list to the string entered.
The string may occur in any of the columns. This is an
incremental search and is activated as you enter
characters, scrolling to the first matching occurrence.

Entering a function in the Func Name field displays the
coverage results limited to that function only in the
display area.

007–3986–002 105

5: Tester Graphical User Interface Reference

The Filters button displays the Filters dialog box,
which lets you enter filter criteria to display a subset of
the coverage results. There are three types of filters:
Function Count, Block Count (%), and Branch Count
(%). For blocks or branch coverage, use the toggles
described below. Following each label is an operator
menu to define the relationship to the limit quantity
entered. Each filter type has a text field for entering the
desired limit. The limits for Block Count and Branch
Count are percentages (of coverage) and can also be
entered using sliders.

Two toggles are available for including branch and
block counts. Both appear as actual counts followed by
parentheses containing the ratio of counts to total
possible.

106 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Display
function

Filters dialog
box

Include branches
Include blocks

Sort menu

Figure 5-18 List Functions Query with Options

If you select Call Tree View from the Views menu with
a List Functions query, a call graph displays (see Figure
5-19, page 108). The call graph displays coverage data
graphically, with functions as nodes (rectangles) and
calls as arcs (connecting arrows). The nodes are
color-coded according to whether the function was
included and covered in the test, included and not

007–3986–002 107

5: Tester Graphical User Interface Reference

covered, or excluded from the test. Arcs labeled N/A
connect excluded functions and do not have call counts.

If you hold down the right mouse button over a node,
the node menu displays, including the function name,
coverage statistics, and standard node manipulation
commands. If you have a particularly large graph, you
may find it useful to zoom to 15% or 40% and look at
the coverage statistics through the node menu.

Included node

Arc

Excluded node

Color key

Node menu

Figure 5-19 List Functions Example in Call Tree View Format

List Blocks Displays a list of blocks for one or more functions and
the count information associated with each block (see
Figure 5-20, page 109). The Blocks column displays the
line number in which the block occurs. If there are
multiple blocks in a line, blocks subsequent to the first
are shown in order with an index number in
parentheses. The other three columns show the
function and file containing the block and the count,
that is, the number of times the block was executed in
the test. Uncovered blocks (those containing 0 counts)
are highlighted. Block data can be sorted by function,
file, or count.

Be careful before listing all blocks in the program, since
this can produce a lot of data. Entering a function in

108 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

the Func Name field displays the coverage results
limited to that function only in the display area.

Block coverage
data

Multiple block
line

Figure 5-20 List Blocks Example

List Branches Lists coverage information for branches in the program.
Branch coverage counts assembly language branch
instructions that are taken and not taken. See Figure
5-21, page 110.

The first column shows the line number in which the
branch occurs. If there are multiple branches in a line,

007–3986–002 109

5: Tester Graphical User Interface Reference

they are labeled by order of appearance within trailing
parentheses. The next two columns indicate the
function containing the branch and the file. A branch is
considered covered if it has been executed under both
true and false conditions. The Taken column indicates
the number of branches that were executed only under
the true condition. The Not Taken column indicates the
number of branches that were executed only under the
false condition. Branch coverage can be sorted only by
function and file. Entering a function in the Func Name
field displays the coverage results limited to that
function only in the display area.

Block coverage
data

Multiple branch
line

Figure 5-21 List Branches Example

110 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

List Arcs Shows arc coverage, that is, the number of arcs taken
out of the total possible arcs. An arc is a call from one
function (caller) to another (callee). See Figure 5-22,
page 111. The caller and callee functions are identified
in the first two columns. The Line column identifies the
line in the caller function where the call occurs. The file
and arc execution count display in the last two columns.

Arc coverage
data

Figure 5-22 List Arcs Example

Entering a function in the Func Name field displays the
coverage results limited to that function only.

The Caller and CalleeFunc Name toggles let you view
the arcs for a single function either as a caller or callee.

007–3986–002 111

5: Tester Graphical User Interface Reference

You do this by entering the function name in the field
and then clicking the appropriate toggle, or
CallerCallee.

List Instrumentation Displays the instrumentation information for a
particular test. See Figure 5-23, page 113.

Function List toggle shows the functions that are
included in the coverage experiment.

Ver allows you to specify the version of the program
that was instrumented. The latest version is used by
default.

Executable displays the executable associated with the
current coverage data. You can switch to a different
executable by entering it directly in this field. You can
also switch executables by clicking the Executable List
button, selecting from the list in the dialog box, and
clicking Apply in the dialog box.

112 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Test
description

Figure 5-23 List Instrumentation Example

List Line Coverage Lists the coverage for each function for native source
lines. Entering a function in the Func Name field
displays the coverage results limited to that function
only in the display area. See Figure 5-24.

007–3986–002 113

5: Tester Graphical User Interface Reference

Line coverage
data

Function input
field

Figure 5-24 “List Line Coverage” Example

Describe Test Describes the details of the test, test set, or test group.
When working with test sets and test groups, it is useful
to select the Recursive List toggle, because it describes
the details for all subtests. See Figure 5-25, page 115.

114 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

Test
description

Recursive
list

Figure 5-25 Describe Test Example

Compare Test Shows the difference in coverage for the same test
applied to different versions of the same program. To
perform a comparison, you need to select Compare Test
from the Queries menu, enter experiment directories in
the experiment fields, and click Apply or press
Return. The experiments are entered in the form
exp##<n> if in the same test or in the form
test<nnnn>/exp##<n> when comparing the results
of different tests. See Figure 5-26, page 116.

007–3986–002 115

5: Tester Graphical User Interface Reference

Coverage comparison
results

Experiment fields

Function toggle

Experiment menu

Figure 5-26 Compare Test Example — Coverage Differences

The comparison data displays in the coverage display
area. The basic types of coverage display in the
Coverages column. Result 1 and Result 2 display the
results of the experiments specified in the Expt1 and
Expt2 fields, respectively. Results are shown as the
counts followed by the coverage percentage in
parentheses. The values in the Result 2 column are
subtracted from those in Result 1 and the differences
are shown in the Differences column. If you want to
view the available experiments, click the Expt: menu.

116 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

You can also compare the differences in function coverage
by clicking the Diff Functions toggle. Figure 5-27, page
117, shows a typical function difference example.

Differences
column

Function
toggle

Figure 5-27 Compare Test Example — Function Differences

Admin Menu Operations
The Admin menu is shown in Figure 5-28, page 118.

007–3986–002 117

5: Tester Graphical User Interface Reference

Figure 5-28 Admin Menu

The Admin menu provides these selections:

Save Results Brings up the standard File Browser dialog box so that
you can specify a file in which to save the results.

Clone Execution View Displays an Execution View window. Use this if you
have closed the initial Execution View window and
need a new one. (You need this window to see the
results of Run Test.)

Set Defaults Allows you to change the working directory for work
on tests in other directories. Also, you can select
whether or not to show function arguments. This is
useful when distinguishing functions that have the
same name but different arguments (for example, C++
constructors and overloaded functions). See Figure
5-29, page 118.

Figure 5-29 “Set Defaults” Dialog Box

118 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

“Launch Tool” The Launch Tool submenu contains commands for
launching other WorkShop applications (see Figure
5-30, page 119).

Figure 5-30 Launch Tool Submenu

If any of these tools are not installed on your system,
the corresponding menu item will be grayed out.

Exit closes all Tester windows.

007–3986–002 119

Index

A

Accumulate results button, 62
Add button, 94
addtest, 52
Admin menu, 117
app-defaults file, cvxcov resource, 87
Apply button, 86
-arg, 38
automated testing , 12

B

bar graph example, 105
Bar graph view, 100
batch testing, 12
Blocks button, 107
BOUNDS

example, 59, 60
Branches button, 107

C

call graph controls, 74
Call tree view, 99
callees, 77

cvcov, 38
List arcs and, 112

callers, 77
cvcov, 38

callers List arcs and, 112
canvasWidth resource, 87
cattest, 41

example, , 19, 41, 43
Clone execution view, 118

Command line field, 61
Make test and, 93

command line tutorial, 17
Compare test, 115
compiling, effect on coverage, 2
CONSTRAIN, 6

example, 18, 59, 60
-contrib, 37
Contribution button, 57, 87
control area buttons, 86
COUNTS, 6

example, 18, 59, 60
coverage

defined, 1
display area, 86
kinds of, 2

coverage analysis, 10
procedure, 5

coverage display area, 56
coverage testing hierarchy, 14
coverage weighting factor fields, 105
cp, not using with cvcov, 52, 53
cvcov

addtest, 52
cattest, 41
deltest, 52
diff, 50
help, 17, 39
lsarc, 48
lsblock, 46
lsbranch, 47
lscall, 48
lsfun, 45
lsinstr, 42
lsline, 49
lssource, 49
lssum, 45

007–3986–002 121

Index

lstest, 43
mktest, 43
mktgroup, 53
mktset, 51
rmtest, 44
runinstr, 44
runtest, 44

cvsourceNoShare, 86
cvxcov, 56

D

default instrumentation file, 6
default_instr_file, 6
Delete test dialog box, 95
deltest, 52
Describe test, 114
Description field, 61
diff, 50

example, , 51
Diff functions button, 117
directory

instrumentation, 4
Disassembly button, 57, 66
Disassembly view, 57

example, 66
width, 87

DSO, 1, 3, 14
making a test group, 95
test group commands, 53

dynamically shared object See DSO, 1

E

EXCLUDE, 6
-exe, 37
Executable field, 102
Executable list button, 102
Execution View, 63
Execution view, 83, 118

exp##0, 10
experiment results, 3, 4, 10
Expt menu, 102
Expt1 and expt2 fields, 116

F

Filters dialog box, 106
Force run button, 62
Func name field, 87
-functions, 39

G

Graph call tree
example, 73

graphical user interface, , 56, 58
reference, 83
tutorial, 55

H

help, 17, 39

I

INCLUDE, 6
-instr_dir, 38
-instr_file, 38
Instrument file field, 60
instrumentation, 4

directory, 4
lsinstr, 42
process, 8
tutorial, 18, 59

instrumentation file, 6, 60
CONSTRAIN, 6

122 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

COUNTS, 6
default, 6
EXCLUDE, 6
INCLUDE, 6

K

Keep performance data button, 62

L

Launch tool submenu, 119
List arcs, 111

column headings, 77
example, 75

List blocks, 108
example, 78

List branches, 109
column headings, 81
example, 80

List Functions
column headings, 65
example, 65

List functions, 105
List instrumentation, 112
List line coverage, 113
List Summary

example, 63
List summary, 103
List tests dialog box, 96
-list, 38
lsarc, 10, 48

example, 48
lsblock, 10, 46

example, , 46
lsbranch, 10, 47

example, 47
lscall, 11, 48

example, 48
lsfun, 10, 45

example, , 21, 46
lsinstr, 42

example, , 43
lsline, 49

example, 49
lssource, 11, 49

example, 21, 50
lssum, 10, 45

example, , 20, 45, 63
lstest, 43

M

main tester window, , 56, 58
graphical overview, 84
menus, 87

Make test, 9
dialog box, 92
example, 60

MAX
example, 59, 60

mktest, 9, 43
example, , 19, 43, 60

mktgroup, 53
mktset, 51
Modify test dialog box, 97
Multiple arcs

example, 76
icon, 74

multiple tests, 3, 14
mv, not using with cvcov, 52, 53

N

Next page button, 87
No arc data, 62
Not taken column, 110

007–3986–002 123

Index

O

Object field, test group and, 102
Object list button, test group and, 102
Overview button, 74

P

-pat, 39
-pretty, 38
Previous page button, 87

Q

Queries menu, 101, 103
introduction, 11

Query size, 86
Query type, 86
query-specific fields, 101

R

-r, 38
realign button, 75
Recursive list button

Delete test and, 96
Describe test and, 114

Remove button, 94
Remove subtest expt, 62
resource, cvsourceNoShare, 86
results directory, 10
rmtest, 44
rotate button, 75
Run Instrumentation

example, 59
Run instrumentation

dialog box, 89
Run Test

example, 62

Run test, 10
dialog box, 90

“Run instrumentation”, 8
runinstr, 8, 44

example, 18
runtest, 10, 44

example, 20, 62

S

Save results, 118
Search field, 86

List functions and, 105
Select, 94
Set defaults, 118
setting up the tutorial, 17, 55
sharing source view with applications, 86
Show function arguments button, 118
sort menu, 57, 87

List functions and, 105
-sort, 38
Source button, 57
Source view, 57

width, 87
starting tester main window, 56
status area, 57, 87

T

Taken column, 110
Target list dialog box, 102
Targets, 95
TDF, 9

example, 19
test components, 4
test description file, 9

example, 19
test directory, 9
test group

124 007–3986–002

ProDevTM WorkShop: Tester User’s Guide

commands, 53
Test include list, 94
Test list, 94
Test menu, 88
Test name field, 56, 86
test set, 3, 14, 51, 68

making, 94
test0000, 9
testing procedure, 5
tests, contribution button and, 57
Text call tree example, 77
Text view, 98
tutorial

command line interface, 17
graphical user interface, 55
set up, 17, 55

Type field, 86

U

usage model, 5

V

-v, 37

ver##0, 8
example, 19

-ver, 37
Version number field

Run instrumentation and, 90
Run Test and, 62
”Run executable” and, 60

Views menu, 98

W

WorkShop, 119

Z

Zoom in, 74
Zoom menu, 74
Zoom out, 74

007–3986–002 125

