
SGI® OpenGL Multipipe™

User’s Guide

007-4318-018

Version 2.5.4

CONTRIBUTORS
Written by Ken Jones and Jenn Byrnes
Illustrated by Chrystie Danzer
Production by Karen Jacobson and Ken Jones
Engineering contributions by Ye Cong, Craig Dunwoody, Bill Feth, Alpana Kaulgud, Claude Knaus, Ravid Na’ali, Jeffrey Ungar, Christophe

Winkler, Guy Zadicario, and Hansong Zhang

COPYRIGHT
© 2000–2006 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is “commercial computer software” provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIX, Onyx, Onyx2, OpenGL, and Reality Center are registered trademarks and GL,
InfinitePerformance, InfiniteReality2, Octane2, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer, Performance
Co-Pilot, SGI Propack, Silicon Graphics Prism, Tezro, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or
other countries worldwide.

GNOME is a trademark of the GNOME Foundation. KDE is a trademark of KDE e.V, Incorporated. Linux is a registered trademark of Linus
Torvalds. Netscape is a trademark of Netscape Communications Corporation. XFree86 is a trademark of The XFree86 Project, Inc. Xinerama, X
Window System, and the X device are trademarks of The Open Group. All other trademarks mentioned herein are the property of their respective
owners.

007-4318-018 iii

New Features in This Release

This revision of the guide documents features from both OpenGL Multipipe 2.5.3 and
OpenGL Multipipe 2.5.4.

OpenGL Multipipe 2.5.4 features, released with SGI ProPack 4 Service Pack 3:

• Two performance monitoring tools: ompmon and a Performance Co-Pilot data
collection agent

• Support for context sharing between threads

• Time-Based decomposition using hardware compositors

• Memory placement and use of the tmpfs filesystem

• Support for the OpenGL Shading Language and the ARB_texture_rectangle
extension

• Slave synchronization on glFlush() for single-buffer windows

OpenGL Multipipe 2.5.3 features, released with SGI ProPack 4 Service Pack 2:

• Improved immediate mode performance

• Improved performance for downloading pixel data

• Preservation of triangle strips when spatially splitting a display list

• Better control over the number of splits done by dlSplit

007-4318-018 v

Record of Revision

Version Description

001 August 2000
Beta release.

002 November 2000
Updated for release 1.0 of the OpenGL Multipipe product.

003 February 2001
Updated for release 1.1 of the OpenGL Multipipe product.
New features:
- Increased overall performance
- Support for overlapping screens, as in SGI Reality Center facilities

004 May 2001
Updated for release 1.2 of the OpenGL Multipipe product.
New features:
- Transparent OpenGL Pipe Management
- Subset of multipipe applications made aware of Xinerama

005 August 2001
Updated for release 1.3 of the OpenGL Multipipe product.
New features:
- Enhanced Support for Multithreaded Applications
- Enhanced tgl Script

006 November 2001
Updated for release 1.4 of the OpenGL Multipipe product.

vi 007-4318-018

Record of Revision

Bugfixes:
- Enhanced GLX conformance for context manipulation
- Support for pixmaps, pbuffers, and GLXWindows
Beta features:
- Curved Screen Support
This allows you to run applications on a non-planar Reality Center in
immersive mode by adapting the 3D projections to the display layout.
- Window Manager Support for Aware Windows
All applications started in aware mode can now be under window manager
control by using the customized window manager included with this
release.

007 February 2002
Updated for release 1.4.1 of the OpenGL Multipipe product.
Broader application support
Bugfixes:
- Enhanced OpenGL conformance for applications using glCallList() within
 another display list
- Stability improvements to (beta) aware window manager

008 April 2002
Updated for release 1.4.2 of the OpenGL Multipipe product.
- Broader application support
- Stability improvements to (beta) aware window manager

009 October 2002
Updated for release 2.1 of the OpenGL Multipipe product.
Features:
Replacement of the Transparent OpenGL (TGL) layer with a proxy render
library and render servers
Support for additional servers. The list of supported servers now includes
the following:
- Silicon Graphics Onyx
- Silicon Graphics Onyx2
- SGI Onyx 3000, InfiniteReality

Record of Revision

007-4318-018 vii

- SGI Onyx 3000, InfinitePerformance
- Silicon Graphics Octane2

010 May 2003
Updated for release 2.1.2 of the OpenGL Multipipe product.
Features:
- Performance enhancements over the OpenGL Multipipe 2.1.1 and 2.1

releases
- Increased application compatibility for vertex array applications
- Option of running in master render mode or slave-only mode
- Support for compositor-based systems
- Seamless cursor movement across overlapped or composited screen

regions (IRIX 6.5.20 or later required)
- Support for SGI-SCREEN-CAPTURE and ReadDisplay X extensions in

SGI Xinerama mode (IRIX 6.5.20 or later required)
- An API introduced for integration of multipipe applications with

SGI Xinerama
- Hardware swap-synchronization option (Swap Ready, Genlock)
- Support for additional platforms. The list of supported visualization

systems now includes the following:
o SGI Onyx 3000 series with InfinitePerformance graphics
o SGI Onyx 3000 series with InfiniteReality graphics
o SGI Onyx 350
o Silicon Graphics Octane2
o Silicon Graphics Onyx
o Silicon Graphics Onyx2

011 July 2003
Updated for release 2.2 of the OpenGL Multipipe product.
Features:
- Performance enhancements over the 2.1.2 release including the following:

o Pixel drawing enhancements
o Geometry culling, which can improve application performance for

some applications beyond what can be achieved on a single pipe
- Support for the DMX (Distributed Multihead X) meta display server

viii 007-4318-018

Record of Revision

- Support for DMX and SGI Xinerama meta display servers by the MPC API
for multipipe-aware applications

- Support for additional platforms. The list of supported visualization
systems now includes the following:
o SGI Onyx 3000 series with InfinitePerformance graphics
o SGI Onyx 3000 series with InfiniteReality graphics
o SGI Onyx 350
o Silicon Graphics Octane2
o Silicon Graphics Onyx
o Silicon Graphics Onyx2
o Silicon Graphics Onyx4 UltimateVision

012 December 2003
Updated for release 2.3 of the OpenGL Multipipe product.
Features:
- Performance enhancement options including (disabled by default):

o Geometry culling to optional, additional OpenGL clip planes
o OpenGL viewport clipping and geometry culling to improve fill and

geometry performance when using a compositor
o Spatial partitioning of large display lists for efficient geometry culling

- Baseline performance enhancements over OpenGL Multipipe 2.2
o Swap synchronization and frame latency control improvements between

slave rendering processes
o Improved performance when using geometry culling

- Support for Onyx4 OpenGL extensions
- Support for additional platforms. The list of supported visualization

systems now includes the following:
o SGI Onyx 3000 series with InfinitePerformance graphics
o SGI Onyx 3000 series with InfiniteReality graphics
o SGI Onyx 350
o Silicon Graphics Octane2
o Silicon Graphics Onyx
o Silicon Graphics Onyx2
o Silicon Graphics Onyx4 UltimateVision
o Silicon Graphics Tezro

Record of Revision

007-4318-018 ix

013 April 2004
Updated for release 2.3.1 of the OpenGL Multipipe product.
Enhancements over OpenGL Multipipe 2.3:
- Capability to expand the OpenGL viewport size beyond the single-pipe

limit
- Support for overlay visuals in the DMX proxy X server if supported by

underlying X servers
- Support for applications that use GLX pbuffers or GLX pixmaps
- Improved application compatibility

014 October 2004
Updated for release 2.4 of the OpenGL Multipipe product.
Enhancements over OpenGL Multipipe 2.3.1:
- Support for most OpenGL Multipipe features on Silicon Graphics

Vizualization System for Linux 64-bit platforms
- Small object culling (small relative to screen space)
- Drawpixels culling
- Improved application compatibility

015 November 2004
Updated for release 2.4.1 of the OpenGL Multipipe product.
Enhancements over OpenGL Multipipe 2.4:
- Improved daemon processing
- Improved support for static tiling modes of hardware compositors
- Enhanced application compatibility

016 January 2005
Updated for release 2.5 of the OpenGL Multipipe product.
Enhancements over OpenGL Multipipe 2.4.1:
- Support for vertex buffer objects
- The optional use of the omprun command on selected platforms
- The use of X11 resources to control performance features as an alternative

to command-line options on omprun
- Improved application stability

x 007-4318-018

Record of Revision

017 June 2005
Updated for release 2.5.2 of the OpenGL Multipipe product.
Enhancements over OpenGL Multipipe 2.5.1:
- Support for compositor pixel averaging to provide transparent antialiasing
- Support for multiple compositors
- glDrawPixels() clipping now enabled by default (not tied to geometry

culling)
- Improved application stability and bugfixes

018 January 2006
Updated for releases 2.5.3 and 2.5.4 of the OpenGL Multipipe product.
2.5.3 features:
- Improved immediate mode performance
- Improved performance for downloading pixel data
- Preservation of triangle strips when spatially splitting a display list
- Better control over the number of splits done by dlSplit

2.5.4 features:
- Two performance monitoring tools: ompmon and a Performance Co-Pilot

data collection agent
- Support for context sharing between threads
- Time-Based decomposition using hardware compositors
- Memory placement and use of the tmpfs filesystem
- Support for the OpenGL Shading Language and the

ARB_texture_rectangle extension
- Slave synchronization on glFlush() for single-buffer windows

007-4318-018 xi

Contents

New Features in This Release iii

Record of Revision . v

Figures . . xv

Tables . xvii

About This Guide. . xix
Related Publications . . xix
Obtaining Publications . xx
Conventions . xx
Reader Comments . . xxi

1. OpenGL Multipipe Overview 1
What OpenGL Multipipe Provides 1
Architecture of OpenGL Multipipe 4
Components of OpenGL Multipipe 4

The X Proxy Layer (the DMX Proxy Server) 4
The Session Manager Process (ompmgr) 5
The 3D (Master) Proxy Render Library. 6
The Culling Process (ompcull) 7
3D (Slave) Render Servers 8

Supported Platforms . . 8

2. Installing OpenGL Multipipe 9
General Installation . 9
Installing the Data Collection Agent for Performance Co-Pilot 10

xii 007-4318-018

Contents

3. Using OpenGL Multipipe . 13
Setting up the OpenGL Multipipe Environment 14

Configuring OpenGL Multipipe with DMX as the X Proxy Layer 14
Initializing DMX . . 14
Creating DMX Configuration Files 16

Setting Other Configuration Options 18
Specifying Resource Names 18
The Resource Search Path 19
Resource Types . 19
Resources and Their Default Values 20
Resource Descriptions 22

Verifying That the OpenGL Multipipe Environment is Enabled. 30
Disabling the OpenGL Multipipe Environment 30

Running Applications with OpenGL Multipipe 31
Setting Run-Time Options 32
Running OpenGL Single-Pipe Applications 33
Running Pure X Applications 34
Running Multipipe Applications in Multipipe-Aware Mode 34

Using SGI Scalable Graphics Hardware with OpenGL Multipipe 35
Configuring Composited Screens with DMX 35
Specifying Static Composited Regions with ompstartdmx 36
Using Pixel Averaging Composition Mode for Full-Scene Antialiasing. 37
Using Time-Based Compositing 38
Using Multiple Compositors in an OpenGL Multipipe Session 40
Enabling Duplicate Cursor Images in Overlap Regions 40

Managing Screen Subregions with DMX 40
Managing Multiple Backend X Servers with DMX 41

Managing Windows for Aware Applications 41
Starting an Aware Window Manager 42
Exiting an Aware Window Manager 43
Setting an Aware Window Manager as the Default 43

Contents

007-4318-018 xiii

4. Monitoring Performance . . 45
ompmon - The OpenGL Multipipe Monitoring Tool 46

Starting ompmon . . 46
The ompmon Screen . 46

Active Applications 48
Application Information 48

Performance Information 48
Master Data . 49
Culler Process Data 50
Renderer Data . 50

Geometry Culling Information 52
Scheduling Information 54
Timing Information . . 56
Miscellaneous Controls 58

The OpenGL Multipipe PMDA for Performance Co-Pilot 59

5. Optimizing Performance. . 63
Viewport Clipping. . 63
Geometry Culling . . 64
Small Object Culling . . 65
Display List Partitioning . . 65
Master Rendering Modes . . 65

Master Mode off . . 66
Master Mode track . . 67
Master Mode render . 68

Frame Latency Control . 69
Buffer Swap Synchronization 70

6. Limitations . . 71
Performance Enhancement . 72
X Extensions . 72
The Multipipe-Aware Window Manager 72
OpenGL Window Size Constraints 72
SGI ProPack and OpenGL Multipipe Versions. 73

xiv 007-4318-018

Contents

Overlay Windows Support in DMX 73

7. Troubleshooting . 75
Cannot Connect to the ompslave or ompcull Daemon 76
Problems Starting DMX . 76
Problems Starting Applications with omprun 78
Setting OpenGL Multipipe Resources Has No Effect 78
Shared Memory Failure . 79
Graphics Do Not Display Correctly on All Screens. 79

Coding Problem in the Application 80
You Are Using the Aware Window Manager 80
Set-User-ID (“s-bit”) Applications 80

Cursor Movement Anomaly When Using a DMX Configuration File 81
Multipipe-Aware Applications Fail to Receive Events on Screen 0 81
Nothing Displays or the Graphic Stalls or Hangs 81

Coding Problem in the Application 82
Improperly Wired Genlock or Swap Ready Cables 82

X Applications Are Not Behaving Correctly or Fail to Start 82
X Application Uses Unsupported X Extension 83
Application Window Disappears 83
Application Explicitly Opens a Display Connection to :0.0. 84

Flickering Gray Rubberband During Window Movement 84
Mouse Disappears on Composited or Edge-Blended Display. 85
Problems Running Multithreaded Applications 85
ompstartdmx Does Not Start a Window Manager 85
Problems with Aware Window Management 86

Windows of Some Aware Applications are Not Managed 86
Ghost Windows Appear In Overlap Regions on Edge-Blended Displays 86

Applications Do Not Behave Correctly in Aware Mode 87

Index . . 89

007-4318-018 xv

Figures

Figure 1-1 OpenGL Multipipe with Non-Overlapping Screens 2
Figure 1-2 OpenGL Multipipe with Overlapping Screens 3
Figure 1-3 Master Proxy Library Functions 7
Figure 4-1 The ompmon Monitoring Tool 47
Figure 4-2 Geometry Culling Metrics 53
Figure 4-3 Scheduling Metrics 55
Figure 4-4 Timing Metrics 57
Figure 5-1 Running in Master Mode off. 67
Figure 5-2 Running in Master Mode track 68
Figure 5-3 Running in Master Mode render 69

007-4318-018 xvii

Tables

Table 3-1 X11 Resources and Defaults 20
Table 3-2 omprun Command-Line Options 32
Table 4-1 Metrics for the OpenGL Multipipe Master 49
Table 4-2 Metrics for the Culler Process 50
Table 4-3 Metrics for the Renderers 51
Table 4-4 Geometry Cullling Metrics 52
Table 4-5 Miscellaneous ompmon Controls 58
Table 4-6 PMDA Metrics for the OpenGL Multipipe Master 59
Table 4-7 PMDA Metrics for the OpenGL Multipipe Slaves 60

007-4318-018 xix

About This Guide

This guide describes the OpenGL Multipipe product, which allows you to run
single-pipe applications in a multipipe environment without modification. You can
seamlessly move single-pipe application windows across the single logical display that
OpenGL Multipipe creates from multiple pipes. Both multipipe applications and
single-pipe applications run concurrently.

Related Publications

The following SGI documents contain additional information that may be helpful:

• SGI Scalable Graphics Compositor User’s Guide

• SGI ProPack for Linux Start Here

• Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide

These books might also be helpful:

• Dave Shreiner, OpenGL Architecture Review Board, Mason Woo, Jackie Neider and
Tom Davis. OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Version 1.4. Reading, MA: Addison Wesley Longman Inc., 2003. ISBN 0-321-17348-1.

• Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol, California: O’Reilly
& Associates, Inc., 1992.

xx 007-4318-018

About This Guide

Obtaining Publications

You can obtain SGI documentation in the following way:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can also view man pages by typing man< title> on a command line.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as commands,
files, routines, path names, signals, messages and
programming language structures.

variable Italic typeface denotes variable entries and words or concepts
being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. (Output is shown in nonbold,
fixed-space font.)

interface This font denotes the names of graphical user interface (GUI)
elements such as windows, screens, dialog boxes, menus,
toolbars, icons, buttons, boxes, fields, and lists. Functions are
also denoted in bold with following parentheses.

manpage(x) Man page section identifiers appear in parentheses after man
page names.

Right angle brackets (>) These brackets indicate a path through menus to a menu
option. For example, “File > Open” means “Under the File
menu, choose the Open option.”

About This Guide

007-4318-018 xxi

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, CA 94043-1351

SGI values your comments and will respond to them promptly.

007-4318-018 1

Chapter 1

1. OpenGL Multipipe Overview

This overview of OpenGL Multipipe consists of the following sections:

• “What OpenGL Multipipe Provides”

• “Architecture of OpenGL Multipipe”

• “Components of OpenGL Multipipe”

• “Supported Platforms”

What OpenGL Multipipe Provides

SGI has always been focused on high-end graphics solutions. The Silicon Graphics Prism
family of scalable visualization systems allows you to have multiple graphics pipes on
one single-system-image machine in order to reach new visualization performances.
These multipipe systems are commonly used to drive expanded visualization systems
such as SGI Reality Center facilities. OpenGL Multipipe extends the use of these
powerful supercomputers to a broad spectrum of graphics applications without the
requirement of modifying the applications.

Many existing graphics applications—such as Netscape or applications based on Open
Inventor, for example—are constrained to run on a single pipe. On these single-pipe
applications, you can choose the pipe on which to open the application’s windows, but
the windows cannot be dragged from one pipe to another. The main reason is that the
graphics pipes are separate logical units and are handled by an X server as different,
unconnected screens. This means that the X server does not provide any functionality to
group multiple screens into a single logical display. A second reason is that OpenGL
applications connect directly to a specified graphics pipe and bypass the X protocol layer.

In the past, displaying an application on multiple screens required you to explicitly write
the application for that purpose. You had to use tools like the OpenGL Performer or
OpenGL Multipipe SDK libraries to help you create these multipipe applications. These
tools allow you to explicitly open windows on different screens and to draw into them

2 007-4318-018

1: OpenGL Multipipe Overview

using OpenGL. However, this solution lacks consistency. In fact, all of the windows on
the different pipes are independent; hence, moving or iconifying one window on one
screen will not handle the other windows accordingly.

OpenGL Multipipe has been designed to overcome these difficulties. The goal is to group
pipes managed by the X server in order to create a consistent, single virtual screen as
shown in Figure 1-1. This means that the applications are unaware of the underlying
hardware configuration. Rather, they only know about a single display and behave
accordingly.

Figure 1-1 OpenGL Multipipe with Non-Overlapping Screens

In contrast to Figure 1-1, if you have screens that overlap each other (such as in an SGI
Reality Center wall display with edge blending), OpenGL Multipipe allows you to

What OpenGL Multipipe Provides

007-4318-018 3

specify the amount of this overlap. Figure 1-2 shows the image blended on overlapping
screens.

Figure 1-2 OpenGL Multipipe with Overlapping Screens

Note: OpenGL Multipipe does not require you to modify or recompile your application.

4 007-4318-018

1: OpenGL Multipipe Overview

Architecture of OpenGL Multipipe

OpenGL Multipipe provides the illusion that an application is rendering 2D (X
perspective) and 3D (OpenGL perspective) on a single local pipe when it is actually using
one or more pipes. This illusion, or logical display, is created by a set of protocols and
proxies coupled with clients and servers, all of which are hidden from the application.

OpenGL Multipipe uses an X proxy layer to hide the physical screen layout from the
application. This X proxy layer presents a single logical pipe or meta screen to all
applications and allows their windows to be freely moved across or to span any set of
pipes. OpenGL Multipipe uses the Distributed Multihead X (DMX) proxy server.

OpenGL Multipipe also uses an OpenGL proxy library and render servers to send
OpenGL calls to each real pipe. Having 3D render servers separate from the 3D proxy
library allows the application processing and the rendering to occur in separate
processes. This separation aides application compatibility.

Components of OpenGL Multipipe

OpenGL Multipipe has the following components:

• An X proxy layer (the DMX proxy server)

• A session manager process (ompmgr)

• A 3D proxy render library

• An optional culling process (ompcull)

• 3D render servers

The X Proxy Layer (the DMX Proxy Server)

For pure X applications—that is, applications that do not use other graphics libraries
(such as OpenGL) to draw into their windows—the X proxy layer (DMX) is all that is
needed to enable such applications to run transparently over multiple pipes. This means
that windows of applications that are based on the X protocol and that use X extensions
can be dragged from one pipe to another and even span multiple pipes. The applications
behave as if they are running on a single, large virtual pipe. The X proxy layer hides the
real screens from the client applications connecting to it. It distributes to all pipes the X

Components of OpenGL Multipipe

007-4318-018 5

requests from the clients but only sends the clients information about the large virtual
display.

The DMX proxy server is a separate entity apart from the X server; it is an X application
that behaves like an X server to other X applications. DMX is flexible both in regards to
its supported display geometries and in its ability to act as a proxy for many different X
servers. DMX also has built-in support for OpenGL applications through its support of
the GLX X extension. This means that DMX will enable X and OpenGL applications to
run transparently across multiple pipes. However, DMX’s GLX extension is limited in
performance. Hence, it is best to run graphics-intensive applications under the full
OpenGL Multipipe environment.

Administrative privileges are not required to start and stop DMX. For more information
about the DMX proxy server, see the Xdmx(1) man page, which is installed in
/usr/share/omp/doc/user/Xdmx.1.html.

The Session Manager Process (ompmgr)

The session manager process (ompmgr) is used to manage and update special resources
that are used by the 3D render library and render servers. It maintains structures in
shared memory through which all the other components (the render servers, proxy
library, and optional ompcull process) can communicate and share global session
information. The followings tasks are handled by ompmgr:

• Starting the DMX X proxy server during session initialization

• Configuring hardware compositors during session initialization if they are being
used

• Maintaining information about all OpenGL windows in the session and updating
the window(s) position/size when needed

• Maintaining information about all currently running OpenGL applications that uses
OpenGL Multipipe in the session

• Handling hardware compositor re-configuration when using one of the dynamic
composition schemes (dynamic load-balanced tiling or time-based composition)

6 007-4318-018

1: OpenGL Multipipe Overview

The 3D (Master) Proxy Render Library

OpenGL applications are X applications that use another graphics library (namely the
OpenGL library) to draw into their windows. OpenGL applications open a direct
connection to a graphics pipe. This means that the application is bypassing the X protocol
(and the X proxy layer, which replicates the the X protocol stream to each pipe) in order
to draw in the windows through this direct connection. The X proxy layer, which
accounts only for the X protocol, is unable to handle this case.

The master proxy library in OpenGL Multipipe handles the OpenGL side of any
application. It intercepts OpenGL calls to enable distribution to multiple pipes. To
distribute the OpenGL calls, the master library encodes each command using an
OpenGL stream protocol and sends the command stream to the slave renderer processes,
which render to local pipes on behalf of the application.

Figure 1-3 illustrates the functions of the master proxy library.

Components of OpenGL Multipipe

007-4318-018 7

Figure 1-3 Master Proxy Library Functions

In addition to sending an OpenGL stream to each slave, the master also has the capability
of rendering directly to a single local pipe in place of a single slave render process (for
faster GL state queries), or it may use a local pipe only to track OpenGL state while a
slave process renders to that pipe (for improved parallelism). For more information
about performance and the master library modes, see Chapter 5, “Optimizing
Performance”.

The Culling Process (ompcull)

The optional culling process (ompcull) will be activated only if the geometry culling
feature is turned on. This process reads the OpenGL stream encoded by the master proxy
library before it reaches the rendering slaves and modifies each 3D bounding box found
in the stream with its projected 2D screen coordinate bounding box, which will then be
used by the rendering slave to decide whether to render the followed geometry or not.
The purpose of doing that calculation on a separate process is to increase parallelism and
throughput by not “stealing” CPU cycles from either the application or rendering slaves
on configurations making use of multiple CPUs.

Master

Application

OpenGLOpenGL OpenGL

Slave

Pipe

Slave

Pipe

Slave

Pipe

8 007-4318-018

1: OpenGL Multipipe Overview

3D (Slave) Render Servers

An application running under the master render library of OpenGL Multipipe
communicates its OpenGL commands to slave renderer processes. Each slave process
parses the OpenGL command stream and executes the commands on the application’s
behalf. For each rendering application thread of execution, one slave process exists for
each screen of the display.

Supported Platforms

OpenGL Multipipe 2.5.4 runs on Silicon Graphics Prism visualization servers using
SGI ProPack 4 Service Pack 3.

007-4318-018 9

Chapter 2

2. Installing OpenGL Multipipe

Using the following two topics, this chapter describes how you install
OpenGL Multipipe:

• “General Installation” on page 9

• “Installing the Data Collection Agent for Performance Co-Pilot” on page 10

General Installation

The following are the prerequisites for installing OpenGL Multipipe on your system:

Hardware Silicon Graphics Prism visualization system

Software SGI ProPack 4 Service Pack 3

OpenGL Multipipe for Silicon Graphics Prism systems is installed by default when
installing the SGI ProPack package. OpenGL Multipipe contains the following file
subsystem:

sgi-omp-2.x-yyyyy.ia64.rpm

When installed with SGI ProPack 4, the xinetd service is disabled by default. The
service has to be enabled and started in order for OpenGL Multipipe to function. In order
to start the service, the following commands need to be executed as a superuser once
only after SGI ProPack installation:

$ /sbin/chkconfig xinetd on

$ /etc/init.d/xinetd start

When trying to run an application under an OpenGL Multipipe session while xinetd is
disabled, the following error message will be printed:

“Could not connect to sgi-ompslave service.”

10 007-4318-018

2: Installing OpenGL Multipipe

Detailed documentation of the rpm utility for managing software installation on Linux is
available in the rpm(8) man page.

For any critical updated information, you can check the release notes,
/usr/share/omp/release_notes/user/relnotes.html, and the
OpenGL Multipipe website, http://www.sgi.com/software/multipipe/ .

Installing the Data Collection Agent for Performance Co-Pilot

As part of OpenGL Multipipe installation, the OpenGL Multipipe Performance Metrics
Domain Agent (PMDA) is placed in the directory /var/lib/pcp/multipipe. This
PMDA needs to be installed after the initial installation of the OpenGL Multipipe RPM
or if the hardware configuration of the machine changes. You install the
OpenGL Multipipe PMDA by running the following script as a superuser:

/var/lib/pcp/pmdas/multipipe/Install

Note: This script should be executed only after Performance Co-Pilot is properly
installed and configured. For Performance Co-Pilot installation and configuration, refer
to the Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide.

The following session illustrates the installation of the PDMA:

keglevich:/var/lib/pcp/pmdas/multipipe # ./Install

You need to choose an appropriate configuration for installation of
the “multipipe” Performance Metrics Domain Agent (PMDA).

 collector collect performance statistics on this system
 monitor allow system to monitor local and/or remote systems
 both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) b

Updating the Performance Metrics Name Space (PMNS) ...
Compiled PMNS contains
 167 hash table entries
 723 leaf nodes
 105 non-leaf nodes
 7835 bytes of symbol table

Installing the Data Collection Agent for Performance Co-Pilot

007-4318-018 11

Installing pmchart view(s) ...
PMCD should communicate with the multipipe daemon via a pipe or a
socket? [pipe]
Terminate PMDA if already installed ...
Installing files ...
gmake: Nothing to be done for `install’.
Updating the PMCD control file, and notifying PMCD ...
Check multipipe metrics have appeared ... 73 warnings, 73 metrics and 0
values
keglevich:/var/lib/pcp/pmdas/multipipe #

Once the PMDA is installed, you can verify the installation by running the pminfo
command. The following session show the typical output:

keglevich:/var/lib/pcp/pmdas/multipipe # pminfo | grep multipipe
multipipe.master.nframes
multipipe.master.frame_time
multipipe.master.frame_rate
multipipe.master.draw_time
multipipe.master.draw_rate
multipipe.master.encoded_bytes
multipipe.master.encoding_rate
multipipe.master.wait_write_queue
multipipe.master.wait_write_queue_p
multipipe.master.wait_state_query
multipipe.master.wait_state_query_p
multipipe.master.wait_EOF_sync
multipipe.master.wait_EOF_p
multipipe.slave0.nframes
multipipe.slave0.frame_time
multipipe.slave0.frame_rate
multipipe.slave0.draw_time
multipipe.slave0.draw_rate
multipipe.slave0.wait_read_queue
multipipe.slave0.wait_read_queue_p
multipipe.slave0.wait_sync
multipipe.slave0.wait_sync_p
multipipe.slave0.direct_vertices
multipipe.slave0.direct_vertices_rate
multipipe.slave0.direct_culled_vertices
multipipe.slave0.direct_culled_vertices_rate
multipipe.slave0.direct_rendered_vertices
multipipe.slave0.direct_rendered_vertices_rate
multipipe.slave0.direct_bbox_cmd
multipipe.slave0.retained_vertices

12 007-4318-018

2: Installing OpenGL Multipipe

multipipe.slave0.retained_vertices_rate
multipipe.slave0.retained_culled_vertices
multipipe.slave0.retained_culled_vertices_rate
multipipe.slave0.retained_rendered_vertices
multipipe.slave0.retained_rendered_vertices_rate
multipipe.slave0.retained_bbox_cmd
multipipe.slave0.total_vertices
multipipe.slave0.total_vertices_rate
multipipe.slave0.total_culled_vertices
multipipe.slave0.total_culled_vertices_rate
multipipe.slave0.total_rendered_vertices
multipipe.slave0.total_rendered_vertices_rate
multipipe.slave0.total_bbox_cmd
multipipe.slave1.nframes
multipipe.slave1.frame_time
multipipe.slave1.frame_rate
multipipe.slave1.draw_time
multipipe.slave1.draw_rate
multipipe.slave1.wait_read_queue
multipipe.slave1.wait_read_queue_p
multipipe.slave1.wait_sync
multipipe.slave1.wait_sync_p
multipipe.slave1.direct_vertices
multipipe.slave1.direct_vertices_rate
multipipe.slave1.direct_culled_vertices
multipipe.slave1.direct_culled_vertices_rate
multipipe.slave1.direct_rendered_vertices
multipipe.slave1.direct_rendered_vertices_rate
multipipe.slave1.direct_bbox_cmd
multipipe.slave1.retained_vertices
multipipe.slave1.retained_vertices_rate
multipipe.slave1.retained_culled_vertices
multipipe.slave1.retained_culled_vertices_rate
multipipe.slave1.retained_rendered_vertices
multipipe.slave1.retained_rendered_vertices_rate
multipipe.slave1.retained_bbox_cmd
multipipe.slave1.total_vertices
multipipe.slave1.total_vertices_rate
multipipe.slave1.total_culled_vertices
multipipe.slave1.total_culled_vertices_rate
multipipe.slave1.total_rendered_vertices
multipipe.slave1.total_rendered_vertices_rate
multipipe.slave1.total_bbox_cmd
keglevich:/var/lib/pcp/pmdas/multipipe #

007-4318-018 13

Chapter 3

3. Using OpenGL Multipipe

As described in Chapter 1, OpenGL Multipipe consists of three main components: an X
proxy layer, a proxy 3D render library, and 3D render servers. This chapter describes how
to effectively use these components with your graphics applications. The following
sections describe the pertinent tasks:

• “Setting up the OpenGL Multipipe Environment” on page 14

• “Running Applications with OpenGL Multipipe” on page 31

• “Using SGI Scalable Graphics Hardware with OpenGL Multipipe” on page 35

• “Managing Windows for Aware Applications” on page 41

For information about other features of OpenGL Multipipe specific to this release, see the
release notes in the following file:

/usr/share/omp/release_notes/user/relnotes.html

14 007-4318-018

3: Using OpenGL Multipipe

Setting up the OpenGL Multipipe Environment

To begin using OpenGL Multipipe, you must enable an X proxy layer. This will cause all
applications to see a single logical pipe. To deactivate OpenGL Multipipe, just disable the
X proxy layer. Some of the steps required to enable or disable OpenGL Multipipe may
require root access. This section notes this requirement in the applicable steps.

This section describes the following tasks:

• “Configuring OpenGL Multipipe with DMX as the X Proxy Layer” on page 14

• “Setting Other Configuration Options” on page 18

• “Verifying That the OpenGL Multipipe Environment is Enabled” on page 30

• “Disabling the OpenGL Multipipe Environment” on page 30

Configuring OpenGL Multipipe with DMX as the X Proxy Layer

DMX will group multiple screens into a logical display. This section describes how you
initialize DMX and how to create DMX configuration files.

Initializing DMX

To initialize DMX, do the following:

1. Run DMX on top of the existing X server(s).

You may do this manually after logging into your desktop or you may configure an
.xsession script to run DMX immediately upon login.

To manually initialize DMX, enter the following (root access not needed) in a
command shell:

$ ompstartdmx

You can use the flag –help for more information about the starting options. If you
specify no flags, DMX starts on top of the existing X server and will configure a
single large screen that overlays the existing n screens such that screen 0 will be the
leftmost and screen n –1 will be the rightmost. To use a different configuration, such
as a vertical configuration, you must provide a DMX configuration file. The
following section “Creating DMX Configuration Files”describes how to create such
a configuration file.

Setting up the OpenGL Multipipe Environment

007-4318-018 15

Only the client xterm will be started as the session. For more details, see the later
subsection “Notes About the Behavior of ompstartdmx”.

Configuring DMX to Run Automatically on Linux

This following describes how you configure DMX to run automatically upon login
using GDM or KDM.

At the login screen, choose one of the following from the Session menu:

• GNOME-OpenGL-Multipipe

• KDE-OpenGL-Multipipe

Choosing one of these will start DMX with GNOME or KDE, respectively. The
session will use the default DMX configuration. If you want to customize the
ompstartdmx options (for example, to use a special DMX configuration file),
modify the scripts in the following directory corresponding to your choice of
window manager:

• /usr/share/omp/X11/bin/GNOME-OpenGL-Multipipe

• /usr/share/omp/X11/bin/KDE-OpenGL-Multipipe

If you want to add another new session script, you should add a new desktop
session configuration file in the following directory corresponding to your choice of
window manager:

• /opt/kde3/share/apps/kdm/sessions

• /opt/gnome/share/xsessions

You can copy and change one of the sgiomp_gnome.desktop or
sgiomp_kde.desktop files in that directory.

After DMX has initialized, you will see a new session covering all the screens. At this
point, you can start using OpenGL Multipipe (see “Running Applications with OpenGL
Multipipe” on page 31).

Notes About the Behavior of ompstartdmx

This section lists some noteworthy items about the behavior and command-line options
of the ompstartdmx script:

• The window manager is the default window manager for GNOME or KDE. Use
their standard tools to set your preferred window manager.

• The ompstartdmx script will return control only when the session ends.

16 007-4318-018

3: Using OpenGL Multipipe

• The valid options for the –session flag are as follows:

[-session {gnome | kde | noaware | scriptname}]

Option Behavior

–session unspecified Starts a single xterm as the session. The session ends
when this xterm dies.

gnome Starts a GNOME session with aware support if GNOME
is installed; otherwise, xterm will be used.

kde Starts a KDE session with aware support if KDE is
installed; othersise, xterm will be used.

noaware Launches without aware window management the
default session that would run with the startx
command.

scriptname Runs the script as the session. When the script returns
control, the session ends.
Note:The ompstartdmx script does not launch any
window manager; the session script must do so.

• Use logout or Ctrl-Alt-q to end the session.

DMX Limitations on Linux

When using a GNOME session with an aware window manager, the session will not be
saved; the default session will be used at each login. This happens because thegnome-wm
script does not pass the session ID parameter to any aware window manager, only to
those which are supported by the GNOME environment (sawfish,metacity,twm, and
their like). When using a KDE or GNOME session without aware window management,
the session will be saved and restord at the next login.

Creating DMX Configuration Files

A DMX configuration file is simply a text file that describes the configuration of a virtual
display, the real displays it manages, and the geometry of the virtual screen. This section
provides some short examples of configuration files. These and other example
configuration files may be found in the directory /usr/share/omp/examples/dmx .

To start DMX with one of these configurations, do the following:

Setting up the OpenGL Multipipe Environment

007-4318-018 17

1. Save the configuration to a text file with any name—for example, updown.dmx.

2. Invoke ompstartdmx with the option –cfgfile, as shown in the following entry:

$ ompstartdmx -cfgfile updown.dmx

It is also possible to place many configurations in a single file. In this case, you can
choose one configuration from the file by specifying both the –cfgfile and
–cfgname options, as shown in the following:

$ ompstartdmx -cfgfile allmyconfigs.dmx -cfgname updown

The following example configuration file specifies a vertical layout:

virtual updown 1280x2048 {
 display :0.0 1280x1024;
 display :0.1 1280x1024 @0x1024;
}

This configuration file defines a virtual screen configuration named updown of size
1280x2048. The virtual screen includes the following two real back-end displays:

Display :0.0 It has a size of 1280x1024 and is located at location 0x0 in the virtual
screen space.

Display :0.1 It has a size of 1280x1024 and is located at 0x1024 in the virtual screen
space.

You may also define some overlap between each of the screens, as in the following
horizontal layout:

virtual overlap 2460x1024 {
 display :0.0 1280x1024;
 display :0.1 1280x1024 @1180x0;
}

This configuration file defines two screens of 1280x1024, each with 100 pixels of
overlap, resulting in a virtual screen size of 2460x1024.

The display value specified can be any valid display value, including a display value that
specifies a remote machine, as in the following example:

virtual remote 2560x1024 {
 display localhost:0.0 1280x1024;
 display remotehost:0.1 1280x1024 @1280x0;
}

18 007-4318-018

3: Using OpenGL Multipipe

There is also a graphical tool to create and edit configuration files. You can find
documentation for this tool in /usr/share/omp/doc/user/xdmxconfig.1.html.
The tool is installed in /usr/share/omp/X11/bin/xdmxconfig.

More information about the configuration file format can be found in the file
/usr/share/omp/doc/user/Xdmx.1.html.

Setting Other Configuration Options

Starting with version 2.5, OpenGL Multipipe uses X11 resources to specify configuration
options. This approach allows you to define values per application, per user, and
system-wide. This section describes setting these options in the following subsections:

• “Specifying Resource Names” on page 18

• “The Resource Search Path” on page 19

• “Resource Types” on page 19

• “Resources and Their Default Values” on page 20

• “Resource Descriptions” on page 22

Specifying Resource Names

The full name of each OpenGL Multipipe resource has the following format:

OMP.app_name.resource_name

The app_name field is the application name, defined to be the last component in the
running executable path name. The resource_name is one of the available
OpenGL Multipipe resources.

You can specify a resource with loose binding—that is, matching the resource for all
applications—by using an asterisk in the following manner:

OMP*resource_name

For more information on the X11 resources and their scope, see the X(1) and
XrmInitialize(3) man pages.

Setting up the OpenGL Multipipe Environment

007-4318-018 19

The Resource Search Path

The following ordered list of resource files indicates the search path OpenGL Multipipe
uses to assign values to the resources:

1. Resources set with omprun

2. Resources set with xrdb

3. $HOME/.Xdefaults

4. /usr/share/omp/app-defaults/app_name

5. /usr/share/omp/config

The first match found will be used. However, resources set with the full-name format will
always precede resources set with loose binding even if the full-name format is found
later in the search path. Resources set with the omprun command always have
precedence. For information of the use of the omprun command, see section “Setting
Run-Time Options” on page 32.

If a resource is not specified in the preceding search path, then the defined default value
for that resource will be used.

When you set the environment variable SGIOMP_PRINT_CONFIG to 1, OpenGL
Multipipe prints the configuration values it uses to stdout when an application runs
through OpenGL Multipipe. This is useful to ensure that any overrides you have
specified are being honored.

Resource Types

Each resource value can have one of the following types:

Type Description

Bool A boolean value. Valid values are 0, 1, off, or on.

Enum Enumeration: one of a specified list of tokens.

Float A floating point value.

FloatList A comma-separated list of floating point values.

Int An integer number.

IntList A comma-separated list of integer values.

20 007-4318-018

3: Using OpenGL Multipipe

Enum An enumeration: one of a specified list of tokens.

Resources and Their Default Values

Table 3-1 lists all resources with their default values.

Notes:

• A resource name is not identical to the name of the associated command-line option
of omprun.

• The default values might be changed in future releases.

Table 3-1 X11 Resources and Defaults

Resourcea Value Type Default Value

aa2Jitter.X FloatList 0.24649, -0.24649

aa2Jitter.Y FloatList 0.249999, -0.249999

aa4Jitter.X FloatList -0.208147, 0.203849,
-0.292626, 0.296924

aa4Jitter.Y FloatList 0.353730, -0.353780,
-0.149945, 0.149994

activeScreens IntList The list of all back-end screens of the
meta X server

culling

(cull)

Bool off

culling.cullUserClipPlanes Bool off

culling.minPixels

(minpixels)

Int 1

culling.showStat

(cullshow)

Enum:
off
bbox
stats
all

off

culling.texCulling Bool off

Setting up the OpenGL Multipipe Environment

007-4318-018 21

dlSplit

(dlsplit)

Bool off

dlSplit.maxBoundAspectRatio Int 8

dlSplit.maxDepth Int 8

dlSplit.maxStripLen Int -1

dlSplit.maxTotalTris Int 400000

dlSplit.maxTris

(dlsplitmaxtris)

Int 800

dlSplit.showRandomColors

(dlsplitshow)

Bool off

drawPixelsClipping Bool on

masterMode

(mstrmode)

Enum:
render
track
off

track when omprun is used
off, otherwise

masterScreen Int 0

maxFramesLatency

(latency)

Int 4

pbuffers.disable Bool off

pbuffers.layout Enum:
duplicate
horizSplit
vertSplit
rectSplit

duplicate

shmQueueSize Int DisplayWidth * DisplayHeight * 4

slaveCPUs IntList Empty

Table 3-1 X11 Resources and Defaults (continued)

Resourcea Value Type Default Value

22 007-4318-018

3: Using OpenGL Multipipe

Resource Descriptions

This section briefly describes each of the OpenGL Multipipe tunable resources:

aa2Jitter.X and aa2Jitter.Y
Controls the jittering offset for each input pipe when the hardware compositor
configured for pixel averaging with two pipes. The value must include two values for
both X and Y to specify the frustum offset in pixels on the x and y axes to be applied for
the first and second pipe participating in the pixel averaging.

swapSyncMode

(nosync,swapready)

Enum:
none
soft
barrier

soft

syncOnFlushMode Enum:
never
always
frontBuffer

frontBuffer

texShm Bool off (unless culling.texCulling is
on)

useTmpfs Bool on

useTmpfs.shmPlacement Enum:
master
slaves
all_omp
global
os

os

viewportClippingMode

(novpclip)

Enum:
none
scissor
viewport
subwin

subwin for Xdmx displays

a. The associated omprun command-line options are shown in parentheses, where applicable.

Table 3-1 X11 Resources and Defaults (continued)

Resourcea Value Type Default Value

Setting up the OpenGL Multipipe Environment

007-4318-018 23

aa4Jitter.X and aa4Jitter.Y
Controls the jittering offset for each input pipe when the hardware compositor
configured for pixel averaging with four pipes. The value must include four values for
both X and Y to specify the frustum offset in pixels on the x and y axes to be applied for
the first, second, third, and fourth pipes participating in the pixel averaging.

activeScreens
Specifies the back-end screens to be active. OpenGL Multipipe will render OpenGL
primitives only on those pipes. For example, when Xdmxmanages three physical screens
(pipes), setting the activeScreens resource to 0,1will make OpenGL rendering to be
visible on screens 0 and 1 only. On screens 2 and 3, the OpenGL part of the application
windows will be either black or garbage. By default, all managed screens will be active
with respect to OpenGL.

culling
Specifies the enable switch for the geometry culling feature of OpenGL Multipipe. It can
be either off or on. When this resource is enabled OpenGL Multipipe will draw to each
pipe only the geometry primitives that are visible on that pipe. The default value for this
switch is off. For more information, see section “Geometry Culling” on page 64.

culling.cullUserClipPlanes
Enables culling against user-defined clip planes when one of GL_CLIP_PLANEi is
enabled. The default value is off, in which case OpenGL Multipipe will cull only against
the viewing frustum.

culling.minPixels
Specifies approximate culling—that is, the minimum object size in pixels that should be
drawn. All objects smaller than this size will be culled. For more information, see section
“Small Object Culling” on page 65.

culling.showStat
Enables the drawing of culling statistics. The following are the possible values:

off No statistics are drawn (the default).

bbox The bounding box for each geometry object is drawn in blue.

stats Cull percentage statistics are drawn for each screen (only for doubly
buffered windows).

all Both bounding boxes and culling percentage statistics are drawn.

24 007-4318-018

3: Using OpenGL Multipipe

culling.texCulling
Enables or disables texture culling. When texture culling is enabled, texture loads will be
postponed until the texture is really viewable on each specified pipe. In that case only,
the relevent part from the texture will be downloaded to the pipe. The resource
OMP*culling should be turned on for this feature. For more information and current
limitations of this feature, see the release notes.

dlSplit
Allows OpenGL Multipipe to split a display list into smaller display lists based on a
geometry spatial sort to acheive better culling. The smaller display lists can be
distributed among the rendering pipes. This feature is usually used when culling is
turned on. The valid values for dlSplit are on and off; the default is off. For more
information, see section “Display List Partitioning” on page 65.

dlSplit.maxBoundAspectRatio
Controls the initial cube cell size and, hence, the initial number of grid divisions
produced by the dlSplit algorithm. As part of the dlSplit algorithm, the display list
geometry is spatially sorted into an oct tree data structure by iteratively dividing the
geometry bound to the grid of cube cells. Normally, the cell size is taken to be equal to
the smallest bounding box dimension. However, for models where the aspect ratio of the
bounding box is large (for example, 2D surfaces), the algorithm would produce a large
number of initial cells, which would lead to a high-memory footprint. The default value
is 8.

Note that setting maxBoundAspectRatio to a value less than or equal to 1.0
suppresses the splitting operation. Negative values are not allowed.

dlSplit.maxDepth
Limits the number of recursive subdivisions by the dlSplit algorithm, which is an
adaptive subdivision algorithm. After the specified number of recursive subdivisions are
made, the process will end even if it does not meet the dlSplit.maxTris criterion. The
default value is 8.

dlSplit.maxStripLen
Controls the amount of triangulation. By default with dlSplit enabled, geometry is
triangulated into separate triangles before applying the splitting algorithm. This
resource can be used to preserve the application-supplied strips so that fewer vertices are
generated at the cost of less efficient splitting. When the value of this resource is set to -1
(the default), all geometry will be triangulated before applying the dlSplit algorithm.
When set to 0, each strip given by the application will be considered atomic for splitting
purposes and will not be triangulated. When set to a positive value, each

Setting up the OpenGL Multipipe Environment

007-4318-018 25

application-supplied strip will not be triangulated but will be split into multiple strips of
dlSplit.maxStripLen vertices, of which each will then be considered atomic for
splitting purposes.

dlSplit.maxTotalTris
Limits the number of triangles that will be considered by the dlSplit algorithm at each
iteration. If a display list contains more triangles than the specified number, then the
splitting algorithm will be applied multiple times, once for each group that contains the
specified number of triangles. The default value is 400000.

dlSplit.maxTris
Limits the number of triangles to the specified maximum for each bounding box of
subordinate display lists. Display lists that have fewer triangles (or other primitives) than
the specified number will not be split by the dlSplit algorithm. The default value is
800.

dlSplit.showRandomColors
Allows OpenGL Multipipe to randomly assign a different color for each divided
geometry partition. For testing and debugging purposes, this coloring allows you to
better see the divisions made by the dlSplit algorithm. This may not work for all
applications as it simply uses glColor() to set the color for each partition. The default is
off.

drawPixelsClipping
Controls whether the glDrawPixels() operation will be clipped such that only the
viewable rectangle of pixels will be sent to each pipe.

masterMode
Specifies if and how the master process needs to use one of the graphics pipes. The
following are the valid values:

render The master process will render to the master local pipe and no slave
draw process will be forked for this pipe.

track The master process will use its local pipe for state tracking only so that
each glGet() call will be executed on the local pipe.

off The master will not use any physical pipe for either rendering or state
tracking. Some OpenGL states are being tracked by the master in
software while other states will be queried from one of the slaves when
a glGet() call is being executed.

26 007-4318-018

3: Using OpenGL Multipipe

For more detailed description of the different master modes, see section
“Master Rendering Modes” on page 65.

When the omprun command is not being used on platforms where the
omprun command is optional, the master mode is forced to be off,
regardless of this resource value. Therefore, this resource is usually set
only by the omprun command using its –mstrmode option.

masterScreen
Specifies which managed screen (pipe) will be used by the master application for either
rendering or state tracking when running OpenGL Multipipe in master mode render or
track (available only when using the omprun command). By default, it will be the first
managed screen of the Xdmx server.

maxFramesLatency
Specifies the maximum latency (in frames) allowed between the application and
rendering slaves. The application process might pack a few frames ahead in the
framebuffer while the slave processes are still drawing the previous frames. This
introduces some latency between the application and the real drawing by the slave but
helps overall throughput of master and slaves. The latency is always 0 when using
masterMode render and is undefined if swapSyncMode is set to none. The default
value for this resource is 4. For more information, see section “Frame Latency Control”
on page 69.

pbuffers.disable
Disables pbuffers support. When this resource is enabled, all pbuffer-capable
framebuffer configurations will be filtered out and will not be exposed to the application.
The default value is off.

pbuffers.layout
Controls how the rendering into a pbuffer is split among the rendering slaves. Each
rendering slave can be configured to draw only to a sub-region of each pbuffer. The
following are the valid values:

duplicate
All slaves renders to all regions of the pbuffer, That makes the content of the pbuffer to
be duplicated on all rendering pipes. Use this configuration when your application uses
glCopy*() to copy the pixels from the pbuffer to some other pixel buffer on the pipe. The
other options might be better if you are using glReadPixels() to read back the pbuffer
content into your process memory. This is the default value.

Setting up the OpenGL Multipipe Environment

007-4318-018 27

horizSplit
The area of the pbuffer is split into N horizontal strips, where N is the number of pipes.
Each slave then limits the rendering to only one strip.

vertSplit
The area of the pbuffer is split into N vertical strips, where N is the number of pipes. Each
slave then limits the rendering to only one strip.

rectSplit
The area of the pbuffer is split into N even rectangular areas as much as possible. For
example, for a four-pipe configuration, it will be split into 2x2 tiles, where each tile is of
size (w/2)x(h/2) and w and h are the pbuffer width and height, respectively. Each pipe
then renders to only one tile.

shmQueueSize
Sets the size in bytes for the shared memory block that will be used for master-to-slaves
communication. When this resource is not specified, the default value depends on the
overall resolution of the meta display as determined by the following:

(DisplayWidth * DisplayHeight * 4) + 32

This allows a single full-screen glDrawPixels() command to fit in the shared memory
since one single OpenGL command cannot be split into multiple packets. Depending on
your application, you may want to set this value to be smaller or larger. When a shared
memory size larger than the default or the specified size is needed, the application will
exit with an error message specifiying the minimum shared memory size needed for that
application.

slaveCPUs
Specifies the CPUs to assign to the draw slave processes for each of the active screens. If
there are more active screens than the size of the specified CPU list, then the remaining
draw processes will not be assigned to any particular CPU. By default, the draw
processes will not be assigned to any particular CPU.

swapSyncMode
Specifies what method OpenGL Multipipe will use to synchronize swap buffers on all
pipes. The following are the valid values:

none No swap synchronization is being performed. Each rendering slave runs
freely.

28 007-4318-018

3: Using OpenGL Multipipe

soft Software synchronization is performed using a software barrier to force
all slaves to issue the glXSwapBuffers() request at the same time.

barrier OpenGL Multipipe uses the hardware ImageSync or Swap Ready line
whenever possible (when no other application is using the hardware
barrier). Otherwise, software synchronization will be used.

For more information on the synchronization of swap buffers, see
section “Buffer Swap Synchronization” on page 70.

syncOnFlushMode
Specifies if the rendering slaves need to be synchronized with each other after the
execution of the glFlush() command. This is commonly required by single-buffer
applications that never calls swap; this leaves the slaves asynchronous with each other.
The following are the valid values for this resource:

never Never synchronize the slaves after glFlush().

always Always synchronize the slaves after glFlush().

frontBuffer Synchronize the slaves after glFlush() only when it is operated on a
single-buffer drawable or when drawing to the front buffer. (Default)

texShm
Controls the caching of textures in shared memory. When this switch is turned on,
OpenGL Multipipe will cache a copy of each texture in shared memory that remains
valid until the texture is used by all pipes. Once the texture has been downloaded to
driver memory of all pipes, the shared memory cache is purged. This feature works
together with texture culling (see the culling.texCulling resource). When
culling.texCulling is turned on, the texShm resource is implicitly turned on. The
default for the texShm resource is off.

useTmpfs
Allocates shared memory under the tmpfs filesystem (mounted under /dev/shm)
rather than using mmap to map a file under the /tmp directory. Note that the /dev/shm
filesystem needs to have enough space to allocate the shared memory. The default value
is on.

useTmpfs.shmPlacement
Governs how OpenGL Multipipe allocates shared memory across a non-uniform
memory access (NUMA) architecture. In a NUMA architecture, some memory areas
have different latencies and bandwidths. This memory placement control requires that
the OMP*useTmpfs resource will be set to on.

Setting up the OpenGL Multipipe Environment

007-4318-018 29

The following are the valid values for this resource:

master Shared memory will be allocated on the application memory node.

slaves Shared memory will be allocated on the slaves memory nodes in a
round-robin fashion.

all_omp Shared memory will be allocated on memory nodes used by OpenGL
Multipipe processes (master and slaves) in a round-robin fashion.

global Shared memory will be allocated across all the system memory nodes in
a round-robin fashion.

os Shared memory will be allocated according to the system default.

Note: If resource is set to master, slaves, or all_omp, you should place OpenGL
Multipipe processes on specific CPUs using the OMP*slaveCpus resource. Otherwise,
the behavior of this resource reverts to the default, that of os.

viewportClippingMode
Specifies viewport clipping mode. Each rendering slave may limit the rendering region
to only the portion of the window that is visible on its rendering pipe. This is required to
support large viewport areas, which are allowed by a single pipe, and it also helps to
scale fill rate performance. The viewportClippingMode resource selects the method
OpenGL Multipipe uses to limit this rendering region. The following are the valid values:

none No viewport clipping is performed. Each hardware pipe clips the
window to the pipe’s boundary.

scissor OpenGL Multipipe uses glScissor() to limit the rendering to the viewing
area only.

viewport OpenGL Multipipe defines a different viewport for each rendering
slave.

subwin OpenGL Multipipe creates a separate child window for each rendering
slave. The window size is the viewable region of the application window
on the slave’s pipe. This option is supported on DMX configurations
only.

When this resource is not specified, the default depends on the meta X
server that is being used. For Xdmx the default is subwin. For more
information, see section “Viewport Clipping” on page 63.

30 007-4318-018

3: Using OpenGL Multipipe

Verifying That the OpenGL Multipipe Environment is Enabled

The OpenGL Multipipe environment is enabled if DMX is enabled.

To verify that DMX is enabled, ensure that your DISPLAY environment variable is
pointing to the correct display (usually :1.0) and enter the following commands in a
command shell:

$ xdpyinfo | grep DMX

If DMX appears as the result of the prior commands, DMX is enabled.

Note: If DMX-DRI appears as the result of the prior commands, not only is DMX enabled
but the use of the omprun command will be optional as well. See section “Running
Applications with OpenGL Multipipe” on page 31.

Disabling the OpenGL Multipipe Environment

To disable the OpenGL Multipipe environment, end a DMX session by simply logging
out. You may also force the DMX server to exit by pressing Ctrl+Alt+q. If you ran
ompstartdmx from the command line, you will be returned to your regular X session
after the session ends.

If you chose DMX as a login option or modified your .xsession file to start your DMX
session, you will return to the login screen after the DMX session ends.

To permanently disable DMX from starting upon login, reverse the DMX-related changes
you made to your .xession file or delete (or rename) your $HOME/.xsession file. On
Linux systems, simply select another default login option.

Running Applications with OpenGL Multipipe

007-4318-018 31

Running Applications with OpenGL Multipipe

Plain X applications will generally run under an X proxy layer without assistance.
OpenGL (3D) applications need to use the OpenGL Multipipe 3D proxy library to handle
3D rendering correctly and efficiently on all screens.

To use the OpenGL Multipipe 3D proxy library with OpenGL applications, just run the
program using the omprun script:

$ omprun app_name app_args

This will preload the OpenGL Multipipe proxy libraries to intercept OpenGL calls.

The following is an example:

$ omprun ivview /usr/share/data/models/Banana.iv

Note: The use of the omprun script is optional on Silicon Graphics Prism systems
running the latest recommended operating system versions (SGI ProPack 4
Service Pack 3). On these platforms, you can invoke the application in the normal
fashion and the application will automatically utilize the full OpenGL Multipipe
environment (master-slave 3D proxy layer) if the DMX proxy layer is detected. Later
references to the use of the omprun script in this guide should be considered optional on
these platforms, unless otherwise noted.

OpenGL Multipipe causes an OpenGL application to use the intermediate 3D proxy
libraries instead of the normal OpenGL library. This enables the OpenGL application to
behave correctly when its windows are moved across parts of the logical screen. Such an
application is considered to be started in multipipe-unaware mode (or simply, unaware
mode), since it is not aware of the underlying graphics hardware structure.

Technically, the omprun command sets LD_PRELOAD,the link editor environment
variable, to use the libOMPmaster.so library of matching format prior to using the
libGL.so library. When the omprun command is not used on systems where it is is
optional, OpenGL Multipipe utilizes the X server’s DRI extension, a mechanism in the
libGL.so library, and a special SGIOMPdmx_dri.so module to intercept and route an
application’s OpenGL calls to the OpenGL Multipipe library libOMPmaster.so.

For more information on using omprun, see the omprun(1) man page or use the –help
command-line option of omprun as follows:

32 007-4318-018

3: Using OpenGL Multipipe

$ omprun –help

The following sections describe run-time options and how to best run different types of
graphics applications:

• “Setting Run-Time Options”

• “Running OpenGL Single-Pipe Applications”

• “Running Pure X Applications”

• “Running Multipipe Applications in Multipipe-Aware Mode”

For more information on running applications with OpenGL Multipipe, see the release
notes, /usr/share/omp/release_notes/user/relnotes.html.

Setting Run-Time Options

Even though the use of the omprun script is optional on Silicon Graphics Prism
platforms, you may want to use the command to invoke the application to set run-time
options, some of which can override configuration options set otherwise. The
configuration options are described in section “Setting up the OpenGL Multipipe
Environment” on page 14.

Table 3-2 shows the run-time options for omprun along with the related configuration
resources. For more information about the various options, see the omprun(1) man page
or use the –help command-line option of omprun.

Table 3-2 omprun Command-Line Options

omprun Option Configuration Resource Description

–cull culling: on Enable geometry culling.

–cullshow
bbox
stats
all

culling.showStat
bbox
stats
all

Show culling information.

–dlsplit dlSplit: on Enable display list spatialization.

–dlsplitmaxtris dlsplit.maxTris Set the display list spatialization
threshold.

Running Applications with OpenGL Multipipe

007-4318-018 33

Running OpenGL Single-Pipe Applications

OpenGL single-pipe applications are the targeted applications for OpenGL Multipipe. To
run such applications, simply enable the OpenGL Multipipe environment and invoke
the application using the omprun script.

Under DMX, OpenGL applications started without the omprun script will display
correctly on all screens, using the GLX indirect rendering support in DMX. However,
using the omprun script will provide better performance for OpenGL applications.

Hint: For an easy way to run a number of single-pipe OpenGL applications under
OpenGL Multipipe without the need to always explicitly invoke omprun, start a
command shell under omprun, as shown in the following :

–dlsplitshow dlsplit.showRandomColors: on Show random colors.

–dmxglx N/A Use GLX instead of master and
slaves.

–latency maxFramesLatency Set latency (how far ahead of the
slaves the master works).

–minpixels culling.minPixels Set the small object culling
threshold.

–mstrmode
render
track
off

masterMode
render
track
off

Set the master rendering mode.

–nodlopen N/A Disable dlopen/dlsym
overriding.

–nosync swapSyncMode: none Disable all slave synchronization.

–novpclip viewportClippingMode: off Disable viewport clipping.

–pthread N/A Force the master to use the pthread
API.

–swapready swapSyncMode: barrier Use hardware swap barrier.

Table 3-2 omprun Command-Line Options (continued)

omprun Option Configuration Resource Description

34 007-4318-018

3: Using OpenGL Multipipe

$ omprun xterm
<omprun xterm>$ app_name app_args

Any application started from this new command shell will be started automatically in
transparent multipipe mode.

Running Pure X Applications

As noted in Chapter 1, “OpenGL Multipipe Overview”, the X proxy layer enables pure
X applications to run transparently over multiple pipes. To run pure X applications,
simply enable DMX before invoking them and they will run correctly. You do not need
to use the omprun script for these applications.

Running Multipipe Applications in Multipipe-Aware Mode

Multipipe applications are intentionally written to take advantage of systems that have
multiple graphics pipes. If they know about the underlying graphics hardware, they can
explicitly address and take advantage of the individual graphics pipes. Typically,
multipipe applications are written using OpenGL Performer or OpenGL Multipipe SDK.

It is best not to run such applications under OpenGL Multipipe, which hides the
hardware configuration of the system from the applications. To run at full potential, these
applications should be aware of the different graphics pipes in the system. To allow such
applications to see the real graphics hardware does not require you to disable
OpenGL Multipipe.

The OpenGL Multipipe layer may be bypassed on a per-application basis. This allows a
multipipe application to be fully aware of the multipipe environment while other
applications, aware of only a single large pipe, continue to run under OpenGL Multipipe.
Applications that bypass the OpenGL Multipipe layer are said to run in multipipe-aware
mode (or simply, aware mode), because they are aware of the different graphics pipes
handled by the X server.

To run a multipipe application in aware mode while other single-pipe applications run
concurrently in unaware mode, set the DISPLAY environment variable to point to the
desired backend display that is managed by the X proxy layer (for example, :0.1), and
then start the multipipe application with the –aware command-line option of the
omprun script, as in the following example:

Using SGI Scalable Graphics Hardware with OpenGL Multipipe

007-4318-018 35

$ setenv DISPLAY :0.0
$ omprun -aware perfly

Under DMX, it is especially important to set the DISPLAY environment variable because
the DMX meta display has a completely different display name than its component
backend displays. By default, the DMX display is :1 and the backend aware display is
:0.

Hint: For an easy way to run a number of commands in aware mode, start a command
shell in aware mode.

$ setenv DISPLAY :0.0
$ omprun -aware xterm
<aware xterm>$ app_name app_args

Any application started from this new command shell will be started automatically in
aware mode.

Using SGI Scalable Graphics Hardware with OpenGL Multipipe

You may configure SGI Scalable Graphics Compositor hardware for use with
OpenGL Multipipe to improve geometry and fill performance for an application. This
requires no changes to the application. Using the following topics, this section describes
how to configure DMX for this purpose as well as settings for OpenGL Multipipe to
improve performance and usability in composited logical screen mode:

• “Configuring Composited Screens with DMX” on page 35

• “Specifying Static Composited Regions with ompstartdmx” on page 36

• “Using Pixel Averaging Composition Mode for Full-Scene Antialiasing” on page 37

• “Using Time-Based Compositing” on page 38

• “Using Multiple Compositors in an OpenGL Multipipe Session” on page 40

• “Enabling Duplicate Cursor Images in Overlap Regions” on page 40

Configuring Composited Screens with DMX

To configure completely overlapped screens under DMX, simply create a DMX
configuration file to manage the screens of the backend X server in the desired order. Do

36 007-4318-018

3: Using OpenGL Multipipe

not specify an offset or a 0x0 offset after the screen specifications. The following is an
example configuration file:

virtual totaloverlap 1280x1024 {
 display :0.0 1280x1024;
 display :0.1 1280x1024;
 display :0.2 1280x1024 @0x0; # “@0x0” is optional
 display :0.3 1280x1024;
}

For more information on DMX configuration files, see section “Creating DMX
Configuration Files” on page 16.

Specifying Static Composited Regions with ompstartdmx

You can specify a static tiling mode for a hardware compositor during DMX startup. The
ompstartdmx script will start both the hardware compositor and DMX with the
specified tiling mode.

The –compositor option on the ompstartdmx script allows you to specify the desired
static tiling mode, as shown in the following example:

$ ompstartdmx -compositor mode

The following values are available for mode:

Mode Description

quad A quad tiling

vert2 Two vertical stripes

vert3 Three vertical stripes

vert4 Four vertical stripes

horiz2 Two horizontal stripes

horiz3 Three horizontal stripes

horiz4 Four horizontal stripes

You can also set up the video format using the –compositor option, as shown in the
following entry:

$ ompstartdmx -compositor quad,1280x1024_75

Using SGI Scalable Graphics Hardware with OpenGL Multipipe

007-4318-018 37

The video format must be supported by both the hardware compositor and the pipes,
and all pipes must have the same video format. Otherwise, ompstartdmx exits with an
error. The default video format is the current one for the pipes.

Using Pixel Averaging Composition Mode for Full-Scene Antialiasing

You can set up the hardware compositor for pixel averaging during DMX startup. In
pixel averaging mode, the following occurs:

1. OpenGL Multipipe applies a different sub-pixel jittering offset for each pipe’s
frustum.

2. The hardware compositor averages the pixel values.

3. The resulting image on the compositor output is antialiased.

The hardware compositor can be configured for pixel averaging mode with either two or
four input pipes. For proper operation, configure all pipes connected to the compositor
to be fully overlapped.

Note: When using two pipes, connect them to compositor channels 0 and 2, not 0 and 1.

If you are starting a session with only one compositor attached, then the simplest way to
use pixel averaging is to use the -compositor option on the ompstartdmx script, as
follows:

$ ompstartdmx -compositor {aa2 | aa4}

This command entry sets up a DMX configuration file with full overlap for two or four
pipes and configures the compositor and OpenGL Multipipe for pixel averaging.

If you are using more than one compositor or you are use your own DMX configuration
file, you must use a compositor configuration file, described in the “Using Multiple
Compositors” section in the release notes.

You can configure the jittering offset values per application using the following X
resources:

• OMP*aa2Jitter.X and OMP*aa2Jitter.Y (for two-pipe pixel averaging)

• OMP*aa4jitter.X and OMP*aa4Jitter.Y (for four-pipe pixel averaging)

38 007-4318-018

3: Using OpenGL Multipipe

For more information on the resources, see section “Resource Descriptions” on page 22.

Using Time-Based Compositing

You can set up an OpenGL Multipipe session in time-based composition mode. In that
mode, either two or four pipes can be connected to each compositor. This allows two or
four different rendering slaves to render two or four different frames in parallel. The
hardware compositor will be configured to display one pipe at a time in a round-robin
fashion. All frames will be seen on the compositor output while each rendering slave
renders only every fourth or second frame depending on whether two or four pipes are
attached to each compositor. In theory, this approach might scale the rendering
performance by a factor of 4 (for the 4-pipe case). However, the following conditions
should be met in order to get that performance improvement:

• Trivially, the application must be graphics-bounded (rather than host-bounded).
Otherwise, scaling the rendering performance would not get any better overall
performance. Usually, immediate mode applications tend to be host-bounded.
Applications that draw static geometry in retained mode (for example, using
display lists or vertex buffer objects) are more likely to scale.

• The application must use doubly buffered windows. Switching between one pipe to
the next is done at the end of each frame when the application is calling
glXSwapBuffers(). Singly buffered applications may run inside an OpenGL
Multipipe session with time-based compositing but would not gain any
performance improvement.

• The application should allow at least four (or two in a two-pipe configuration)
frames of latency between the application and the visible compositor output. This
minimum is required in order to render more than one frame in parallel. The
maximum allowed frame latency can be controlled with the
OMP*maxFrameLatency resource. Its default value is 4, which is acceptable for
time-based decomposition. However, setting this value to be lower will affect the
rendering parallelism and, hence, performance.

Some operations causes OpenGL Multipipe to synchronize the application with the
rendering slaves, which zero out any possible latency between the application and
rendering slaves. Consequently, the application needs to be free of operations where
synchronization will occur under the following conditions:

• When the application is calling glFinish()

• When the application is calling glXWaitGL()

Using SGI Scalable Graphics Hardware with OpenGL Multipipe

007-4318-018 39

• When the application is calling glXQueryDrawable()

• When the application is doing a glGet*() operation while the OpenGL Multipipe
master mode is off (the default mode when not using the omprun command) and
the specific queried OpenGL state is not being tracked by the OpenGL Multipipe
internal state tracker

• When the application is calling glReadPixels()

• When switching between two different GLX contexts

If you are starting a session with only one compositor attached, then the simplest way to
use time-based decomposition is to use the -compositor option on the ompstartdmx
command as follows:

$ ompstartdmx -compositor {time2 | time4}

This command sets up a suitable DMX configuration file and starts an OpenGL
Multipipe time-based composition session using the first 2 or 4 pipes connected to the
compositor attached to hyperpipe network 0 in the system.

If you are using more than on compositor or need to use your own DMX configuration
file, you must use a compositor configuration file, described in the “Using Multiple
Compositors” section in the release notes.

After the OpenGL Multipipe session has been initialized, every doubly buffered OpenGL
application running in the session will be joined to the time-based composition group.
All such applications will share the same swap group. This means that all such
applications will need to swap at the same time. When one application reaches the
glXSwapBuffers() point, it will wait for all the other applications to reach their swap
point before proceeding with the swap request. The result is that one application might
block the another.

It is possible to run a doubly buffered OpenGL application under this session without
being attached to the time-based composition group by running the application with
omprun -novpclip app_name or by setting the OMP*viewportClippingMode
resource value for that application to none. In this case, the application will not join the
swap group and will not block other applications but will not gain any better
performance either. The same applies for any singly buffered applications.

Applications attached to the time-based composition group will be forced to synchronize
on vertical sync. Therefore, the maximum expected frame rate cannot be higher than the
monitor refresh rate.

40 007-4318-018

3: Using OpenGL Multipipe

Using Multiple Compositors in an OpenGL Multipipe Session

OpenGL Multipipe allows you to configure multiple compositors by specifing a special
compositor configuration file with the -compositor option for the ompstartdmx
command, as shown in the following:

$ ompstartdmx -compositor config-file

The compositor configuration file config-file describes the desired mode of operation for
each compositor in the session. The format and use of the configuration file is described
in the “Using Multiple Compositors” section in the release notes.

Enabling Duplicate Cursor Images in Overlap Regions

When an X proxy layer is used to overlap screen regions on an edge-blended display or
a compositor-based system, the cursor will seem to disappear when it enters the
overlapped or uncomposited regions of the display. In X, a mouse belongs to one screen
of the X server at a time. Therefore, it is normally not possible to draw the mouse multiple
times (on different screens) in the overlap region.

To prevent the cursor from disappearing in these cases, you need to create additional or
duplicate cursor images (not real cursors) where two or more screens overlap. There is still
just one real cursor position on the display.

There are two ways to enable duplicate cursors under DMX:

• Managing an appropriate subarea of each composited input pipe instead of the
whole screen area

• Managing multiple backend X servers

Managing Screen Subregions with DMX

You can use a DMX configuration file to cause DMX to manage less than a whole backend
screen. When the subregions of each screen are visually assembled using a congruent
static compositor tiling, the resulting logical screen will look and behave identically to
the DMX displays with fully overlapping screens described previously. The following
configuration file entry illustrates this feature:

virtual quadtilesubregions 1280x1024 {
 display :0.0 640x512+0+0 @0x0;
 display :0.1 640x512+640+0 @640x0;

Managing Windows for Aware Applications

007-4318-018 41

 display :0.2 640x512+0+512 @0x512;
 display :0.3 640x512+640+512 @640x512;
}

Managing Multiple Backend X Servers with DMX

The X mouse cursor can be made visible in the partially or fully overlapped screen
regions needed for edge-blended or composited displays. As long as the logically
overlapping areas of the DMX display are composed by screens of different backend X
servers, DMX can utilize the mouse cursor that is available on each backend X server.

Instead of having DMX manage multiple screens of a single backend X server, you can
start multiple backend X servers and specify a DMX configuration that logically overlaps
areas from different backend X servers, as shown in the following:

virtual totaloverlapmulti 1280x1024 {
 display :0.0 1280x1024;
 display :1.0 1280x1024;
 display :2.0 1280x1024;
 display :3.0 1280x1024;
}

Note: The multiserver technique can be combined with the technique of managing
screen subregions to create a logical display on which mouse cursors are visible in all
overlapped and composited regions.

Managing Windows for Aware Applications

To allow window manager support for applications started in aware mode,
OpenGL Multipipe provides aware window management. A window manager wrapper
is provided that is much like omprun for GL applications.

When the window manager wrapper is not used, applications started in aware mode
(using omprun –aware app_name) will bypass the window manager. This means that
their windows cannot be moved, resized, iconified, or otherwise managed. This includes
the regular decoration provided by the window manager. The windows will not have
this decoration. This occurs because an unaware window manager does not know about
all of the real screens that the X proxy layer is managing. It cannot manage aware
windows that were not created through X proxy layer.

42 007-4318-018

3: Using OpenGL Multipipe

If you invoke ompstartdmx with the standard arguments (or if DMX is configured to
start automatically when you log in), a window manager of your choice will be
automatically started with the window manager wrapper so that it is able to manage
aware windows. You can change the DMX default window manger by using the
ompstartdmx –wm option. You may follow the steps in the following subsections if you
want to run a different window manager to manage aware windows.

This section describes the following topics:

• “Starting an Aware Window Manager”

• “Exiting an Aware Window Manager”

• “Setting an Aware Window Manager as the Default”

Note: The multipipe-aware window manager is currently not supported for
compositor-based systems.

Starting an Aware Window Manager

To start an aware window manager, perform the following steps:

1. Exit or kill any unaware window manager that is currently managing the display.

If possible, exit your window manager without logging out. One way to do this is to
find the process number for your window manager and kill it manually, as the
following illustrates:

$ ps -e | grep my_window_manager
23878 ? 0:42 my_window_manager

$ kill 23878

Some window managers may not allow you to exit the window manager and
remain logged in. If this is the case, you will need to start the aware window
manager from a .xsession file. See the section “Setting an Aware Window
Manager as the Default” on page 43 for more information.

2. Start the specialized window manager.

Enter the following:

$ ompwrapwm twm

Managing Windows for Aware Applications

007-4318-018 43

The ompwrapwm script starts the window manager twm in aware window management
mode under DMX. If the display server is determined to be compatible, the script starts
the window manager with aware window management support enabled. If the display
server is not compatible, the script will exit. The script can be made to start the window
manager in unaware mode (with aware window management disabled) as a
contingency.

For more information on using the ompwrapwm script, see its man page or use the
-help command-line option of the script as follows:

$ ompwrapwm -help

Notes:

• You can use any window manager with the ompwrapwm script. KDE is the
recommended window manager.

• Starting an application in aware mode and then starting the window manager will
result in the application’s windows being unmanaged by the aware window
manager. An aware window manager must be started prior to running an
application in aware mode in order for its windows to be managed.

Exiting an Aware Window Manager

To exit an aware window manager, simply log out and log back in. The default window
manager will again manage your display.

Setting an Aware Window Manager as the Default

An alternate way to run an aware window manager is to invoke the
ompwrapwm my_window_mgr script in your $HOME/.xsession file. You must set up a
default aware window manager under DMX. See section “Initializing DMX” on page 14.

44 007-4318-018

3: Using OpenGL Multipipe

007-4318-018 45

Chapter 4

4. Monitoring Performance

The main purpose of monitoring OpenGL Multipipe performance is to find bottlenecks.
OpenGL Multipipe provides the following two tools for this purpose:

• “ompmon - The OpenGL Multipipe Monitoring Tool” on page 46

• “The OpenGL Multipipe PMDA for Performance Co-Pilot” on page 59

The ompmon tool is specific to OpenGL Multipipe and the applications running in its
domain. The OpenGL Multipipe Performance Metric Domain Agent (PMDA) collects
data that can be viewed in the Performance Co-Pilot environment along with other
system-wide data (for example, CPU utilization, memory allocation, I/O operations,
etc.).

This chapter describes these two tools. Once you identify performance bottlenecks, see
Chapter 5, “Optimizing Performance”.

Limitations:

With both monitoring tools, the two following limitations apply:

• Performance monitoring only applies to double-buffer applications since most
performance metrics are averaged on a per-frame basis and a frame is defined to be
the end of a glXSwapBuffers() call.

• Vertices drawn using vertex buffer objects (VBOs) or vertex array objects (VAOs) are
not counted either in retained mode or immediate mode.

46 007-4318-018

4: Monitoring Performance

ompmon - The OpenGL Multipipe Monitoring Tool

Theompmonmonitoring tool allows you to monitor OpenGL Multipipe performance and
various other aspects of the applications running under OpenGL Multipipe. This section
describes this tool using the following topics:

• “Starting ompmon” on page 46

• “The ompmon Screen” on page 46

• “Geometry Culling Information” on page 52

• “Scheduling Information” on page 54

• “Timing Information” on page 56

• “Miscellaneous Controls” on page 58

Starting ompmon

You invoke the graphical viewer using the ompmon command. By default, the viewer
connects to and monitors the server specified by the DISPLAY environment variable. If
you want the viewer displayed on a server different from the one where OpenGL
Multipipe is running, you can use the -s option to specify the OpenGL Multipipe server
to monitor. For example, the following entry specifies amstel:0 to be the ompmon
display and keg:1 to be the OpenGL Multipipe display server:

keg % env DISPLAY=amstel:0 ompmon -s :1

The ompmon Screen

As shown in Figure 4-1, the ompmon screen has the following two main sections:

• Active Applications selection box (right side of the window)

• Application information (left side of the window)

ompmon - The OpenGL Multipipe Monitoring Tool

007-4318-018 47

Figure 4-1 The ompmon Monitoring Tool

48 007-4318-018

4: Monitoring Performance

Active Applications

The Active Applications selection box lists the applications currently running
under OpenGL Multipipe. Use this box to select the application you want to
monitor.

Note: ompmon monitors each thread that makes OpenGL calls. Therefore, an
application that has multiple rendering threads will have multiple entries in the list
so that you can select the appropriate thread.

Application Information

The application information portion of the screen is actually a tabbed form that
contains the following tabs:

Performance Application performance behavior

Geometry Culling Culling statitics

Timing Inter-process execution timing

Scheduling The process-to-CPU mapping

Performance Information

As shown in Figure 4-1, the Performance tab provides an overview of the application’s
performance under OpenGL Multipipe. The performance data is divided into the
following three groups:

• Master data

• Culler data

• Renderer data

The various metrics are averaged across the number of frames as displayed in the
Sampled Frames field. In a case where the application has not generated a new frame
during the last sampling period, the data displayed by ompmon will not be updated and
will be displayed in red.

ompmon - The OpenGL Multipipe Monitoring Tool

007-4318-018 49

Master Data

The OpenGL Multipipe master is the layer in OpenGL Multipipe that runs as part of the
application. Its purpose is to intercept the application’s OpenGL calls, encode them, and
send them via shared memory to the renderers (slaves) for display. Table 4-1 describes
the data collected for the master.

Table 4-1 Metrics for the OpenGL Multipipe Master

Metric Description

Sampled Frames Number of frames sampled. The number of sampled frames depends
on the application frame rate and the data collection time defined in
ompmon Preferences (see the File –> Preferences dialog). In order to
get meaningful statistics, the data collection period should be set
about 10 times the frame rate of the application.

Frame Time Frame time, expressed in milliseconds as well as in frames per second,
is defined to be the period between successive calls to
glXSwapBuffers().

Draw Time Draw time, expressed in milliseconds as well as in frames per second,
is defined to be the period between a call to glClear() and a call to
glXSwapBuffers().

Encoded Bytes Amount of bytes per frame encoded by the master. This metric
directly depends on the amount of data the application is sending to
the graphics pipe per frame.

Encoding Rate Encoding rate of the master. The value of this metric is dominated by
the Encoded Bytes per frame value and the encoding performance of
OpenGL Multipipe. A low value for this metric and a high value for
Encoded Bytes might indicate that the application is CPU-bounded.
A CPU pinning for the application should be considered. See the man
page dplace(1) for details.

Wait for Sync Time spent by the master waiting for slaves to catch up. The frame
latency threshold is set by the OMP*maxFramesLatency resource.

Wait for Write Queue Amount of time (and percentage of total draw time) spent by the
master waiting for the queue to be available for writing.

Wait for State Query Amount of time (and percentage of the total draw time) spent by the
master waiting for state queries from the graphics pipes.

50 007-4318-018

4: Monitoring Performance

Culler Process Data

The culler process scans the encoded stream generated by the master and attaches culling
information to it for future culling by the renderers (slaves). Table 4-2 describes the data
collected for the culler.

Renderer Data

The renderers (slaves) are processes that receive the data encoded by the master and
generates OpenGL calls to the graphics pipes. The number of the renderers running (as
part of the an application) is determined by the number of pipes in the system and the
OMP*activeScreens resource.

CPU CPU where the master last executed.

Memory Resident and virtual memory footprint of the application.

Table 4-2 Metrics for the Culler Process

Metric Description

Enabled ON if cull is enabled for this application.

Cull Time Time between successive glXSwapBuffers() calls spent by the culler. Note
that since the master and the culler process are inherently synchronized, the
value for this metric should be close to the application’s frame time. High
values for the culler draw time might indicate a culling bottleneck; in this
case, you should consider turning culling off.

Table 4-1 Metrics for the OpenGL Multipipe Master (continued)

Metric Description

ompmon - The OpenGL Multipipe Monitoring Tool

007-4318-018 51

Table 4-3 describes the data collected for the renderers. You can select the renderer of
interest from the Renderer # drop-down menu.

Table 4-3 Metrics for the Renderers

Metric Description

Sampled Frames Number of frames sampled during the last sampling period. See
Table 4-1 for more details.

Frame Time Frame time and period executed by the renderer. Frame time is
defined to be the period between successive calls to
glXSwapBuffers().

Draw Time Draw time, expressed in milliseconds as well as in frames per
second, is defined to be the period between a call to glClear() and a
call to glXSwapBuffers().

Wait for Read Queue Time (and percentage of the total frame time) spent by the renderer
waiting for encoded data to become available for rendering. A high
value for this metric indicates that the system bottleneck is on the
encoding side. In such a case, optimization of the application
(master) should be considered. Such optimization could be
achieved either by allocating more resources to the application or
optimizing the application directly. See Chapter 5, “Optimizing
Performance” for details.

Wait for Sync Time (and percentage of the total frame time) spent by the renderer
waiting for synchronization. The time includes the following:

- Time waiting for the other renderers unless OMP*swapSyncMode
is set to none.

- In time-based decomposition sessions, time waiting its turn to
show the rendered frame. In this mode, several frames may be
rendered in parallel by different slaves and one slave may
completely render its frame before its turn and must wait for all
previous frames to be displayed before it displays its frame.

- In time-based decomposition mode, time waiting for other
applications as well to reach their swap points as all double-buffer
applications on such sessions share the same swap group.

A high value for this metric might indicate either that one of the
other slaves is slower or a wait for other applications if using the
time-based decomposition mode.

52 007-4318-018

4: Monitoring Performance

Geometry Culling Information

The Geometry Culling tab provides information about the geometry generated by the
application and its culling statistics (that is, the amount of geometry eventually sent to
each pipe). The Geometry Culling tab is only enabled if culling is enabled for the
selected application. As shown in Figure 4-2, the statistics about the geometry sent to the
renderer you select fall into the following three categories:

Category Description

Direct Mode Vertices processed by the pipe in direct mode

Retained Mode Vertices processed by the pipe as part of an OpenGL display list

Totals Total number of vertices processed by a pipe

Table 4-4 describes the metrics displayed for each of these categories.

CPU CPU where the renderer process last exectued.

Memory Resident and virtual memory footprint of the renderer.

Table 4-4 Geometry Cullling Metrics

Metric Description

Total Vertices Total number of vertices processed.

Culled Vertices Number of vertices that were culled out.

Rendered Vertices Number of vertices that were eventually rendered.

Bounding Boxes Number of bounding boxes that were used to spatially sort the
vertices. Note that there is a trade-off between the number of
vertices (controlled using the culling configuration resources of
OpenGL Multipipe) and the total performance. On one hand, a
high number of bounding boxes increases the culling overhead.
On the other hand, a low number of bounding boxes makes the
culling less accurate and unnecessary vertices will be sent down
to the pipe for rendering.

Table 4-3 Metrics for the Renderers (continued)

Metric Description

ompmon - The OpenGL Multipipe Monitoring Tool

007-4318-018 53

Figure 4-2 Geometry Culling Metrics

54 007-4318-018

4: Monitoring Performance

Scheduling Information

As shown in Figure 4-3, the Scheduling tab contains a chart with color-coded blocks to
indicate which CPU is used by each OpenGL Multipipe process and the percentage of
CPU time used by this process. The CPU usage is color-coded starting from yellow for
low CPU usage through green and blue for medium usage up to magenta and red for
high CPU usage.

Note: Processes that consume less the 5% of a CPU’s time are not displayed.

For optimum performance, allocate each process with its own CPU. However, this
requirement should be optimized according to the application’s actual needs and the
total amount of resources available in the system. The CPU used by each
OpenGL Multipipe process can be controlled using the resource OMP*slaveCpus (see
Chapter 3, “Using OpenGL Multipipe” for details).

ompmon - The OpenGL Multipipe Monitoring Tool

007-4318-018 55

Figure 4-3 Scheduling Metrics

56 007-4318-018

4: Monitoring Performance

Timing Information

As shown in Figure 4-4, the Timing tab provides a timing chart that shows the
parallelism of the OpenGL Multipipe pipeline. Each frame processed by
OpenGL Multipipe is color-coded and marked with a label T-n, where n is the number of
the frame prior to the last processed frame. In order to avoid display cluttering, the
timing labels are not displayed if the processing time becomes small relative to the
current display scale. Synchronization time is marked in gray and indicates that a
process has completed its current frame and is waiting for synchronization before
proceeding to the next frame. The time scale for the timing chart is controlled using the
Scale drop-down menu. If the timing chart becomes “jumpy” and unreadable, you can
pause the data collection of ompmon as described in the next section “Miscellaneous
Controls” on page 58.

ompmon - The OpenGL Multipipe Monitoring Tool

007-4318-018 57

Figure 4-4 Timing Metrics

58 007-4318-018

4: Monitoring Performance

Miscellaneous Controls

In addition to selecting the application (or application thread) to monitor and the type of
performance information to view using the tabs, you can also control other aspects of
ompmon behavior—for example, pausing the display, controlling the frequency with
which ompmon refreshes the application list, and controlling the reporting periods.
Table 4-5 describes these miscellaneous controls.

Table 4-5 Miscellaneous ompmon Controls

Behavior Description Control

Data collection frequency How often should ompmon sample the
OpenGL Multipipe performance events
queue. If the value for this period is too
high, you lose performance data and,
consequently, get inaccurate
performance readings. If this value is
too low, you get a heavy load on the
ompmon process. A reasonable value
should be in the range of 3 to 5 times the
frame rate of the selected application.

File -> Preferences
dialog from the menu
bar

Data collection pause ompmon collects no new data and
displays a (Paused) string in its
window frame.

View -> Pause from
the menu bar. Toggle
the Pause selection to
resume data
collection.

Reporting period The period over which ompmon is to
collect and report statistics. The value of
this period should allow enough time to
collect statistics and make the display
stable and consistent. A reasonable
value should be approximately 10 times
the frame rate of the selected
application.

File -> Preferences
dialog from the menu
bar

Check for new applications How often to refresh the OpenGL
Multipipe application list to account for
new and exited applications.

File -> Preferences
dialog from the menu
bar

The OpenGL Multipipe PMDA for Performance Co-Pilot

007-4318-018 59

The OpenGL Multipipe PMDA for Performance Co-Pilot

The OpenGL Multipipe PMDA for Performance Co-Pilot collects the performance data
from OpenGL Multipipe and makes it available for the various performance metrics
viewers available with Performance Co-Pilot. For example, you can use the Performance
Co-Pilot graphical viewer pmchart to display OpenGL Multipipe metrics. For the
details about using the Performance Co-Pilot tool suite, see Performance Co-Pilot for IA-64
Linux User’s and Administrator’s Guide.

The OpenGL Multipipe PMDA installation is described in Chapter 2, “Installing
OpenGL Multipipe”. The description of the OMP command can be obtained using the
following command:

% pminfo -t

Table 4-6 and Table 4-7 describe the metrics that the OpenGL Multipipe PMDA provides
for Performance Co-Pilot.

Table 4-6 PMDA Metrics for the OpenGL Multipipe Master

Metric Description

multipipe.master.nframes Number of frames processed in the
statistics period

multipipe.master.frame_time Time elapsed between two successive
glXSwapBuffers() calls

multipipe.master.frame_rate Number of glXSwapBuffers() calls
per second

multipipe.master.draw_time Time elapsed between glClear() to
glXSwapBuffers() calls

multipipe.master.draw_rate 1.0/draw_time

multipipe.master.encoded_bytes Number of encoded bytes per frame

multipipe.master.encoding_rate Encoding rate of the OpenGL
Multipipe master

multipipe.master.wait_write_queue Amount of time spent by the encoder
waiting for the write queue to drain

60 007-4318-018

4: Monitoring Performance

multipipe.master.wait_write_queue_p Portion of the frame time spent by the
encoder waiting for the write queue to
drain

multipipe.master.wait_state_query Amount of time spent by the encoder
waiting for state queries on the
graphics pipes

multipipe.master.wait_state_query_p Portion of the frame time the encoder
was waiting for state queries on the
graphics pipes

multipipe.master.wait_EOF_sync Time spent by the master waiting for
end-of-frame synchronization

multipipe.master.wait_EOF_p Portion of the frame time the encoder
was waiting for end-of-frame
synchronization

Table 4-7 PMDA Metrics for the OpenGL Multipipe Slaves

Metric
(where N denotes the slave number) Description

multipipe.slaveN.nframes Number of frames processed
in the statistics period

multipipe.slaveN.frame_time Time elapsed between two
successive
glXSwapBuffers() calls

multipipe.slaveN.frame_rate Number of
glXSwapBuffers() calls per
second

multipipe.slaveN.draw_time Time elapsed between
glClear() to
glXSwapBuffers() calls

multipipe.slaveN.draw_rate 1.0/draw_time

Table 4-6 PMDA Metrics for the OpenGL Multipipe Master (continued)

Metric Description

The OpenGL Multipipe PMDA for Performance Co-Pilot

007-4318-018 61

multipipe.slaveN.wait_read_queue Amount of time the renderer
was waiting for data to
render

multipipe.slaveN.wait_read_queue_p Portion of the frame time the
renderer was waiting for new
data to render

multipipe.slaveN.wait_sync Amount of time the renderer
to sync with other renderers

multipipe.slaveN.wait_sync_p Portion of frame that the
renderer was waiting to sync
with other renderers

multipipe.slaveN.direct_vertices Number of vertices
generated by the application
in direct mode

multipipe.slaveN.direct_vertices_rate Rate the application sends
vertices in direct mode

multipipe.slaveN.direct_culled_vertices Number of vertices sent by
the application in direct
mode that were culled out

multipipe.slaveN.direct_culled_vertices_rate Culling rate of vertices sent
by the application in direct
mode

multipipe.slaveN.direct_rendered_vertices Vertices rendered in direct
mode

multipipe.slaveN.direct_rendered_vertices_rate Vertex rendering rate in
direct mode

multipipe.slaveN.direct_bbox_cmd Number of bounding boxes
tests for vertices in direct
mode

multipipe.slaveN.retained_vertices Number of vertices sent by
the appliation in retained
mode

Table 4-7 PMDA Metrics for the OpenGL Multipipe Slaves (continued)

Metric
(where N denotes the slave number) Description

62 007-4318-018

4: Monitoring Performance

multipipe.slaveN.retained_vertices_rate Rate of vertices sent by the
application in retained mode

modemultipipe.slaveN.retained_culled_vertices Number of retained-mode
vertices that were culled out

multipipe.slaveN.retained_culled_vertices_rate Culling rate of
retained-mode vertices

multipipe.slaveN.retained_rendered_vertices Vertices rendered in retained
mode

multipipe.slaveN.retained_rendered_vertices_rate Retained-Mode vertex
rendering rate

multipipe.slaveN.retained_bbox_cmd Retained-Mode bounding
box commands

multipipe.slaveN.total_vertices Total number of vertices sent
by the application

multipipe.slaveN.total_vertices_rate Total rate that the application
is generating new vertices

multipipe.slaveN.total_culled_vertices Total number of vertices that
were culled out by OpenGL
Multipipe

multipipe.slaveN.total_culled_vertices_rate Total culling rate of vertices
that were sent by the
application

multipipe.slaveN.total_rendered_vertices Total rendered vertices

multipipe.slaveN.total_rendered_vertices_rate Total vertices rendering rate

multipipe.slaveN.total_bbox_cmd Total number of bounding
box commands generated by
OpenGL Multipipe

Table 4-7 PMDA Metrics for the OpenGL Multipipe Slaves (continued)

Metric
(where N denotes the slave number) Description

007-4318-018 63

Chapter 5

5. Optimizing Performance

OpenGL Multipipe allows single-pipe OpenGL application to be run on multipipe
environment in a transparent manner. However, OpenGL Multipipe defines some
parameters that control the processing pipeline of the OpenGL stream. In order to
achieve the best performance, those parameters will need to be changed depending on
the application type and geometry data. The tools described in Chapter 4, “Monitoring
Performance” can also help you identify areas for optimization.

This chapter describes these parameters and some guidelines for using them in the
following sections:

• “Viewport Clipping” on page 63

• “Geometry Culling” on page 64

• “Small Object Culling” on page 65

• “Display List Partitioning” on page 65

• “Master Rendering Modes” on page 65

• “Frame Latency Control” on page 69

• “Buffer Swap Synchronization” on page 70

The release notes provide a more technical discussion some of these features.

Viewport Clipping

Applications that draw large polygons with complex texturing or shading procedures
are likely to be fill-limited—that is, the rasterization stage of the graphics pipeline is the
bottleneck to improving performance. If slower performance results in proportion to an
increase in the OpenGL window size, this is an indicator that fill performance could be
the problem.

64 007-4318-018

5: Optimizing Performance

To eliminate the pixel fill bottleneck, polygon rasterization work can be divided among
multiple graphics pipes. Using OpenGL Multipipe, this can be accomplished by simply
positioning a window so that it spans multiple graphics pipes and each pipe performs an
equal fraction of the rasterization work. On each component screen of the logical display,
OpenGL Multipipe automatically clips the OpenGL viewport to the physical screen
boundaries.

Viewport clipping is enabled by default. It can be disabled with the omprun -novpclip
option or with the viewportClippingMode resource.

The fill performance benefits of viewport clipping can be more fully realized by using an
SGI Scalable Graphics Compositor and specifying additional parameters to
OpenGL Multipipe.

Geometry Culling

Applications that render large amounts of geometry in display lists can sometimes reach
the limit of the polygon processing capabilities of the graphics hardware. Such an
application is said to be transform-limited or geometry-limited—that is, the geometry
transformation stage of the graphics pipeline is the bottleneck to improving
performance. If performance remains the same when lighting or textures are disabled by
the application, these are indicators that geometry performance is the limiting factor.

To eliminate the geometry transformation bottleneck, OpenGL Multipipe can divide
geometry among multiple pipes. By default, OpenGL Multipipe renders all geometry on
each graphics pipe, even if not all of the geometry is visible on a given pipe. When
geometry culling is enabled, each OpenGL Multipipe slave process renders only the
geometry from display lists, vertex arrays, and immediate mode commands that is
visible on its pipe.

It is also possible for OpenGL Multipipe to cull geometry to user-specified OpenGL clip
planes. See the culling.cullUserClipPlanes resource in section “Resource
Descriptions” on page 22.

Geometry culling is enabled with the omprun -cull command-line option or with the
culling resource.

Small Object Culling

007-4318-018 65

Small Object Culling

OpenGL Multipipe can cull objects whose screen-space bounding box is less than a
threshold number of pixels. You can specify the threshold with the –minpixels
command-line option for the omprun script or with the culling.minPixels resource.
Geometry culling must be turned on in order for this feature to take effect.

This feature can increase the rendering speed in applications that have many features
that are too small to discern and, therefore, may not be of immediate interest—for
example, screws in CAD/CAM applications. With a proper minpixels culling
threshold, OpenGL Multipipe culls such small features and rendering performance is
improved as a result.

Display List Partitioning

When rendering display lists with OpenGL Multipipe’s geometry culling option
enabled, OpenGL Multipipe culls or renders an entire display list as a unit. When the
original display list has a large amount of geometry and spans large areas of the scene,
performance scalability can suffer.

OpenGL Multipipe can optionally spatially divide user display lists to break them into
smaller ones. After the division, the smaller, more spatially coherent pieces are more
friendly to load balancing and display list culling.

This feature is enabled with the omprun -dlsplit command-line option or with the
dlSplit resource. Other options related to display list partitioning are described in the
section “Resource Descriptions” on page 22.

Master Rendering Modes

As cited earlier, the OpenGL proxy layer of OpenGL Multipipe has two components: a
master render library that intercepts OpenGL calls made by the application and render
slave processes that each receive a stream of OpenGL calls from the master and perform
OpenGL rendering on the application’s behalf.

The master render library functions as part of the application process (that is, the “master
process”) and can have additional responsibilities besides intercepting, packing, and

66 007-4318-018

5: Optimizing Performance

distributing OpenGL calls to the slave processes. The master process may also render
directly to a single local pipe in place of a single slave process, or it may use a local pipe
only to track OpenGL state while a slave process renders to that pipe.

The omprun –mstrmode option (or the masterMode resource) allows you to specify
what functions the master component performs on the single local reference pipe. The
master’s mode may improve or hinder OpenGL performance depending upon the
behavior of a particular application. Therefore, it is important to understand the
implications of each mode.

The following master modes are available:

• off

• track

• render

Note: To use the track or render master mode, you must use the omprun command
to invoke the application.

Master Mode off

The off master mode is most efficient for applications that do not perform glGetxxx()
calls (GL state queries) in every frame, because in this mode querying GL state requires
round-trip communication to a slave. The master process does not render; it only packs
and distributes GL calls to all slave processes. A slave process renders to each pipe and
one of the slaves is designated to track state for any occasional glGetxxx() or glIsxxx()
queries. Figure 5-1 illustrates running in off mode.

Master Rendering Modes

007-4318-018 67

Figure 5-1 Running in Master Mode off

Master Mode track

The trackmaster mode is most efficient for applications that frequently query GL state.
The master process does not render but, in addition to packing and sending GL calls to
all slave processes, it tracks the GL state on a local reference pipe. Slave processes render
on all pipes. Figure 5-2 illustrates running in track mode.

Note: To use the trackmaster mode, you must use the omprun command to invoke the
application.

Master

Application

OpenGL state queried
from slave reference pipe

OpenGLOpenGL OpenGL

Slave

Pipe

Slave

Pipe

Slave

Pipe

68 007-4318-018

5: Optimizing Performance

Figure 5-2 Running in Master Mode track

Master Mode render

The rendermaster mode may yield slightly better performance for applications that do
not use display lists and that run on systems with only two graphics pipes or with a
limited number of processors. The master process renders and tracks GL state on a local
reference pipe. One less slave process is needed because the application (master) process
renders itself. State queries again are made to the master’s local reference pipe. Figure 5-3
illustrates running in render mode.

Notes:

• To use the render master mode, you must use the omprun command to invoke the
application.

• Some of the performance features described in this section, including geometry
culling, are not available in –mstrmode render mode.

OpenGL state queried
from local reference pipe

OpenGLOpenGL OpenGL

Slave

Pipe

Slave

Pipe

Slave

Pipe
Master

Application

Frame Latency Control

007-4318-018 69

Figure 5-3 Running in Master Mode render

Frame Latency Control

OpenGL Multipipe uses a shared memory buffer in between the application and the
drawing slaves. This buffer can introduce latency—that is, multiple frames can be
buffered to be consumed gradually by the slave. If the application does not call glFinish()
by itself, then OpenGL Multipipe allows the number of buffered frames to reach a small
preset limit.

The latency helps smooth out application and drawing speed differences, and thereby
increase throughput. However, if the amount of latency is beyond what you can accept,
it can be limited by using the omprun –latency command-line argument (or the
maxFramesLatency resource) to specify the maximum latency in number of frames.

The following command forces the master and slaves to have zero frames of latency
between them:

omprun -latency 0 app_name app_args

The master will wait for the slaves to finish executing enough of the previous frames so
that the latency is below the threshold before beginning to pack data into the buffer for
the next frame.

OpenGL state queried
from local reference pipe OpenGLOpenGL

Pipe

Slave

Pipe

Slave

Pipe

Master

Application

70 007-4318-018

5: Optimizing Performance

Buffer Swap Synchronization

Variations in pixel fill, geometry load, and many other factors can lead to an unbalanced
load among the graphics pipes. Some pipes will render their parts of the scene faster or
more slowly than the rest. Synchronization among the pipes is required to prevent one
pipe from rendering faster or slower than another, which in some cases can present
visible “tearing” in the output image.

By default, OpenGL Multipipe performs a software synchronization among the slave
processes to ensure that they issue their respective swap buffer commands at the same
time. The software synchronization approximates a synchronized swap in hardware.

Software swap synchronization is enabled by default. It can be disabled with the
omprun -nosync command-line option or with the swapSyncMode resource. Note that
this also disables any meaningful sense of frame latency.

007-4318-018 71

Chapter 6

6. Limitations

OpenGL Mulitpipe allows single-pipe applications to run in a multipipe environment
without any modification and without the need to recompile the application. It also
allows single-pipe and multipipe applications to run concurrently on the same X server.
However, OpenGL Multipipe has limitations and the following sections describe them:

• “Performance Enhancement” on page 72

• “X Extensions” on page 72

• “The Multipipe-Aware Window Manager” on page 72

• “OpenGL Window Size Constraints” on page 72

• “SGI ProPack and OpenGL Multipipe Versions” on page 73

• “Overlay Windows Support in DMX” on page 73

For release-dependent limitations, see the OpenGL Multipipe release notes.

72 007-4318-018

6: Limitations

Performance Enhancement

OpenGL Multipipe does not replace performance-focused multipipe APIs—such as
OpenGL Performer or OpenGL Multipipe SDK—or any other custom multipipe
solution. Using OpenGL Multipipe results in some minimal overhead (performance loss)
for traditional single-pipe applications. This is due to the inherent cost of distributing the
X and OpenGL commands among the graphics pipes.

It should be noted that process placement—that is, the way in which processes are
assigned to processors—can significantly affect performance. For the affect of process
placement on performance, see the OpenGL Multipipe release notes.

X Extensions

Some X extensions are not supported by DMX. Applications using these X extensions
may not function properly. The behavior of these applications started in unaware mode
is undefined, though they will generally behave correctly on screen 0 or in aware mode.
To determine whether a particular extension is supported, see the section “X Application
Uses Unsupported X Extension” on page 83.

The Multipipe-Aware Window Manager

Due to the nature of the screen overlapping required for composited displays, the aware
window manager is currently limited to managing aware windows on noncomposited
displays only. Unaware windows will be managed properly on composited displays.

OpenGL Window Size Constraints

The hardware graphics pipes have a hardware-dependent limit on the size of the region
into which an OpenGL application renders. The consequence is that an OpenGL
application is constrained to draw into a limited area. An OpenGL window may be
placed anywhere within the the total area managed by the X server. Only the size of the
region into which OpenGL renders is restricted.

SGI ProPack and OpenGL Multipipe Versions

007-4318-018 73

Under DMX, however, OpenGL Multipipe allows OpenGL rendering to be unaffected by
the window size limit of the graphics hardware. If the OpenGL application is invoked
using omprun, the application may render into windows of any size.

SGI ProPack and OpenGL Multipipe Versions

Versions of OpenGL Multipipe that ship with SGI Propack for Linux are only supported
on the version of SGI Propack with which they ship due to backwards compatibility
issues on Linux.

Overlay Windows Support in DMX

DMX supports overlay windows—that is, windows that use overlay visuals—only if
overlay visuals are available on each of the underlying X servers that DMX manages.
This is the case on most SGI systems. On Silicon Graphics Prism platforms, you must
explicitly enable support of overlay visuals in the configuration file(s) of the underlying
XFree86 server(s).

007-4318-018 75

Chapter 7

7. Troubleshooting

This chapter describes some problems you might encounter and what to do to solve
them. For additional considerations, see the OpenGL Multipipe release notes,
/usr/share/omp/release_notes/user/relnotes.html.

This chapter documents the following problems:

• “Cannot Connect to the ompslave or ompcull Daemon” on page 76

• “Problems Starting DMX” on page 76

• “Problems Starting Applications with omprun” on page 78

• “Setting OpenGL Multipipe Resources Has No Effect” on page 78

• “Shared Memory Failure” on page 79

• “Graphics Do Not Display Correctly on All Screens” on page 79

• “Cursor Movement Anomaly When Using a DMX Configuration File” on page 81

• “Multipipe-Aware Applications Fail to Receive Events on Screen 0” on page 81

• “Nothing Displays or the Graphic Stalls or Hangs” on page 81

• “X Applications Are Not Behaving Correctly or Fail to Start” on page 82

• “Flickering Gray Rubberband During Window Movement” on page 84

• “Mouse Disappears on Composited or Edge-Blended Display” on page 85

• “Problems Running Multithreaded Applications” on page 85

• “ompstartdmx Does Not Start a Window Manager” on page 85

• “Problems with Aware Window Management” on page 86

• “Applications Do Not Behave Correctly in Aware Mode” on page 87

76 007-4318-018

7: Troubleshooting

Cannot Connect to the ompslave or ompcull Daemon

You will see a cannot-connect-to-daemon error if the ompslave or ompcull daemon is
disabled or missing. OpenGL Multipipe installs and enables these daemons by default;
therefore, this error could indicate an installation problem. If reinstalling OpenGL
Multipipe does not solve the problem, the following instructions demonstrate how to
manually correct the configuration problem.

The following commands should produce the output displayed:

$ chkconfig --list | grep sgi-omp

sgi-ompcull: on
sgi-ompslave: on

If either of the services is labeled off, turn them on by running the following command
as root:

chkconfig sgi-ompcull on

chkconfig sgi-ompslave on

killall -HUP xinetd

If the services do not exist, then the sgi-omp RPM needs to be reinstalled. Remove the
installed RPM using the command rpm -e sgi-omp and re-install the package from the
SGI ProPack CD.

Problems Starting DMX

If there is a problem starting the DMX proxy server, you may see output such as the
following after running ompstartdmx:

ompstartdmx fatal: An error occured when starting Xdmx
Check the Xdmx log file for details: /tmp/Xdmx.log.xxxxx

Problems Starting DMX

007-4318-018 77

This can result from a number of conditions, some of which have workarounds that are
described in the following paragraphs. Inspect the Xdmx.log.xxxxx file, especially
toward the end of the log, for messages that indicate one of the following conditions:

• Incompatible screens, no common visuals

DMX will not create a logical display from graphics pipes with differing graphics
capabilities. If the DMX proxy server detects that there are no common X visuals on
the backend screens it tries to manage, DMX will abort with an error to this effect.

• Only one screen on display

On systems having only one graphics pipe or in the case where the X server is
directed to handle only one pipe, ompstartdmx will exit with an error such as the
following:

ompstartdmx fatal: Display :0.0 has only one screen.
DMX was not started

In these cases, it does not make sense to start DMX since there is only one pipe.
However, specifying a configuration file with the ompstartdmx –cfgfile option
will not prevent DMX from running on a single backend screen. Use the
ompstartdmx –help option for more information.

• ompstartdmx fails to start or hangs with a GLX error.

If a GLX BadMatch error occurs when starting DMX, the back-end screens may not
have matching sets of GLX visuals. This is not a supported configuration and may
be caused by a misconfiguration of the underlying X server(s), whose screens DMX
manages.

The configuration of each screen DMX manages should be identical. To verify that
all screens have identical sets of visuals, inspect the output of the glxinfo
command for each of the back-end screen(s) managed by DMX, as shown in the
following:

$ env DISPLAY=:0.0 glxinfo

$ env DISPLAY=:0.1 glxinfo

Piping the output through wc provides a quick comparison.

Per-screen visual attributes and capabilities can be adjusted by modifying the file
/etc/X11/XF86Config.

78 007-4318-018

7: Troubleshooting

Problems Starting Applications with omprun

If an application will not start when using the omprun command, one likely scenario is
that the DISPLAY environment variable does not point to a meta display. If the DISPLAY
environment variable does not point to a meta display, ensure that the following
conditions are true (check them in the order listed):

1. The DISPLAY environment variable points to the correct display.

2. An X proxy layer is enabled.

See the section “Verifying That the OpenGL Multipipe Environment is Enabled” on
page 30. An X proxy layer must be enabled or when you invoke an application with
omprun, the application will exit with the following error:

SGIomp fatal: “:0.0” is not a meta display

3. The application was not run from a shell that was started with the omprun –aware
command or from a script that used the omprun –aware command to start the
application.

The omprun –aware command effectively disables the X proxy layer for any
programs it invokes.

4. Your application does not use either the OpenGL Multipipe SDK or
OpenGL Performer API.

Recent versions of these APIs may be integrated with DMX and may not run under
OpenGL Multipipe. The solution is to run these applications as is or to simply
ensure that they are run in aware mode (with omprun –aware). Another
alternative is to use older versions of these APIs that do not contain the X proxy
aware code.

Setting OpenGL Multipipe Resources Has No Effect

If you have made changes to an X resource file but the changes do not appear to be
having an effect, set the environment variable SGIOMP_PRINT_CONFIG to 1 so that
OpenGL Multipipe prints the configuration values it uses to stdout when an
application runs through OpenGL Multipipe.

Changing resources in an X resource file does not have an effect until the resources are
merged into the active database in the X server with the xrdb command. For more
information, see the xrdb(1) man page or use the command xrdb --help.

Shared Memory Failure

007-4318-018 79

Shared Memory Failure

You might see a shared memory failure if the slave processes cannot open a connection
to a back-end display server (for example, :0.0). Look in the file /tmp/ompslave.log
to verify that this is the problem. A message indicating the connection was refused may
indicate you need to set the XAUTHORITY environment variable or, otherwise, run
xhost+ on the X server.

If you run the application from within the DMX session, then XAUTHORITY will be set
correctly for you. If you are running a command from a remote shell, you might have to
set the XAUTHORITY environment variable to point to the correct X authority file before
running the application. Otherwise, you will not have permission to open a connection
to :1 or :0.

In some X sessions, the XAUTHORITY variable will point to a temporary X authority file,
but in sessions where XAUTHORITY is not set, xauth defaults to $HOME/.Xauthority.
If XAUTHORITY is not defined in your session, set it to the following before running your
application with omprun:

$ setenv XAUTHORITY $HOME/.Xauthority

For more information, see the xauth(1) man page.

Graphics Do Not Display Correctly on All Screens

If a graphics window displays correctly on some screens only, there are several likely
scenarios, which are described in the following subsections:

• “Coding Problem in the Application”

• “You Are Using the Aware Window Manager”

• “Set-User-ID (“s-bit”) Applications”

80 007-4318-018

7: Troubleshooting

Coding Problem in the Application

If you are using the omprun –cull feature and you resize or move the application
window to different screens, some applications may not draw an image properly on all
screens. This can occur if an application does not call glClear() at the beginning of each
frame (that is, it “builds up” an image, relying on a sort of rendering history from past
frames). When culling is enabled, applications that do not call glClear() at the beginning
of each new frame may have unusual rendering artifacts when they are moved from their
initial window position. The culling feature by nature eliminates drawing commands
that would otherwise be rendered into an off-screen region. To avoid this behavior, do
not use the –cull option.

You Are Using the Aware Window Manager

If you started an application in aware mode (that is, by running the script
omprun –aware app_name...), the application running in aware mode only draws to
one screen. If you are running an aware window manager, it is possible that the window
manager may position the window on a screen other than the one on which the
application is drawing. To see the window rendered correctly, move the application’s
window to the correct screen.

Set-User-ID (“s-bit”) Applications

If the omprun command is required to utilize the full OpenGL Multipipe environment
on your platform, set-user-ID applications may not be able to utilize the full master-slave
environment of OpenGL Multipipe. This is because the omprun script uses the
LD_PRELOAD environment variable to force an application to load the OpenGL
Multipipe library libOMPmaster.so instead of the standard OpenGL library,
libGL.so.

For security reasons, Linux may ignore this environment variable for set-user-ID
programs. Therefore, OpenGL Multipipe is not able to intercept and distribute OpenGL
calls to all pipes. As a workaround, you can run the application using the GLX indirect
rendering support in DMX. This, of course, has a performance price. To do so, set the
GLFORCEDIRECT environment variable to n before running the application.

Cursor Movement Anomaly When Using a DMX Configuration File

007-4318-018 81

Cursor Movement Anomaly When Using a DMX Configuration File

This condition may occur when the DMX screen configuration differs from the screen
connectivity of the back-end X server(s) and the mouse cursor is moved quickly from one
screen to another.

When a back-end X server is configured so that some of its screens are neighbors, the
DMX configuration for these screens should match the back-end neighbor topology for
proper mouse cursor movement. Otherwise, the mouse cursor could jump or move to
unexpected locations when it crosses a screen boundary where the backend screen layout
does not match the DMX screen layout.

To avoid this condition for XFree86 backend X servers, make sure the screen arrangement
in the /etc/X11/XF86Config file matches the screen arrangement in the DMX
configuration file. By default, DMX and XFree86 manage screens left-to-right in a
horizontal row. For more information about configuring XFree86, see the
XF86Config(5x) man page.

Multipipe-Aware Applications Fail to Receive Events on Screen 0

Windows of applications that are run in aware mode are not handled by ordinary
window managers. This can cause some problems on screen 0 for keyboard events.

Moving away all the windows that are overlapping the aware window (even if these
windows are displayed behind the aware window) will set the correct focus. The aware
window will then receive the keyboard events.

Alternately, running the aware window manager will also fix the focus problem.

Nothing Displays or the Graphic Stalls or Hangs

If you start an OpenGL application with omprun and it does not display anything or the
graphic stalls or even hangs, the source of the problem might be one of the following:

• “Coding Problem in the Application”

• “Improperly Wired Genlock or Swap Ready Cables”

82 007-4318-018

7: Troubleshooting

Coding Problem in the Application

You may see a blank display or experience stalls or hangs for OpenGL applications that
do not call glFlush(), glFinish(), or glXSwapBuffers() at the end of each frame. This
causes OpenGL Multipipe to draw only when its internal buffer overflows. It can happen
that the buffer never fills, in the case of an event-driven application—that is, the
application draws one frame and waits for an event before drawing the next frame.
Unfortunately, there is no workaround for applications that are not frame-based because
OpenGL Multipipe relies on regular calls to the functions just cited.

Improperly Wired Genlock or Swap Ready Cables

If you are experiencing long delays between frames of an OpenGL application (whether
or not it was started with omprun), the condition may have resulted from using the
omprun –swapready option with improperly configured or improperly wired Genlock
or Swap Ready cables.

For more information about this problem and a workaround, see the OpenGL Multipipe
release notes.

X Applications Are Not Behaving Correctly or Fail to Start

If X applications are not behaving correctly or fail to start, consider the cases described
in the following subsections:

• “X Application Uses Unsupported X Extension”

• “Application Window Disappears”

• “Application Explicitly Opens a Display Connection to :0.0”

X Applications Are Not Behaving Correctly or Fail to Start

007-4318-018 83

X Application Uses Unsupported X Extension

Verify that the application is not using unsupported X extensions. Unfortunately, there is
no way to accurately list the extensions an application uses. However, the following
examples using the nm command give some hints about the extensions used. If an
application is using an X extension, this can usually be detected by searching for
occurrences of the string extension or for the name of a particular extension. The
xdpyinfo command lists the names of extensions supported by the X server.

Indicating the use of the DOUBLE-BUFFER extension (DBE), the following example
shows that command gmemusage calls XdbeQueryExtension:

nm /usr/sbin/gmemusage | grep -i extension
[116] |2143299120| 436|FUNC |GLOB |DEFAULT |UNDEF| XdbeQueryExtension

For a list of X extensions supported by DMX, see the Xdmx(1) man page in the directory
/usr/share/omp/doc/user. Applications that use unsupported X extensions may be
run in aware mode by running them with the omprun –aware option so that they bypass
the X proxy layer.

X extensions supported on Silicon Graphics Prism systems but not by DMX include the
following:

DOUBLE-BUFFER ReadDisplay
FontCache SGI-SCREEN-CAPTURE
MIT-SCREEN_SAVER SGI-VIDEO-CONTROL
MIT-SHM TOG-CUP
MIT-SUNDRY-NONSTANDARD X-Resource
RANDR XFree86-Misc
READDISPLAY XFree86-VidModeExtension
RENDER XVideo

Application Window Disappears

This can occur if you start an application on one of DMX’s backend displays without
using omprun –aware—for example, if your DISPLAY environment variable is set to
:0.0 and the DMX proxy is managing display :1. The application will run on :0.0, a
backend (“aware”) display, but because it was not started properly in aware mode (using
omprun –aware), the window will not be managed by the window manager running
under DMX. Consequently, it may be “pushed” behind the DMX root window. Exiting
the DMX session will reveal the application window. To avoid this problem, open the
application in aware mode using omprun –aware app_name.

84 007-4318-018

7: Troubleshooting

Application Explicitly Opens a Display Connection to :0.0

This problem can manifest itself in many ways:

• An apparent X error may appear in the output of the application.

• A window may suddenly disappear behind the DMX root window.

• The command omprun may output the following message:

DISPLAY does not point to a meta display.

This problem originates from a program explicitly requesting an X display connection to
:0.0 even if the DISPLAY environment variable contains a different default display
string, which is usually the case when running DMX.

The workaround is for DMX to run as display :0 and to have the backend X servers use
other display numbers so that when the application tries to open :0.0, it correctly
connects to the DMX meta display on :0 instead of a backend display by accident. To
have other X servers use other display numbers so that :0 is available for DMX, do the
following:

1. Open file /var/X11/xdm/Xservers.

2. Replace the instance of :0 with another display number (for example, :1 or :5).

3. Restart graphics.

4. Remove the /tmp/.X11-unix/X0 Unix socket file if it exists.

The existence of this file will cause ompstartdmx to start DMX on a display other
than :0.

Now when you run ompstartdmx, by default, it will use the first available X display
number, which should now be :0.

Flickering Gray Rubberband During Window Movement

This occurs as a result of the lack of overlay visual support in DMX. See “Overlay
Windows Support in DMX” on page 73.

Mouse Disappears on Composited or Edge-Blended Display

007-4318-018 85

Mouse Disappears on Composited or Edge-Blended Display

When an X proxy layer is used to overlap screen regions on an edge-blended display or
a compositor-based system, the cursor will seem to disappear when it enters the
overlapped or uncomposited regions of the display. In X, a mouse belongs to one screen
of the X server at a time. Therefore, it is normally not possible to draw the mouse multiple
times (on different screens) in the overlap region.

To prevent the cursor from disappearing in these cases, you need to create additional or
duplicate cursor images (not real cursors) where two or more screens overlap. There is still
just one real cursor position on the display. See the section “Enabling Duplicate Cursor
Images in Overlap Regions” on page 40.

Problems Running Multithreaded Applications

If the application supports the use of POSIX threads (pthreads), use the pthread threading
model with OpenGL Multipipe.

To force the use of the pthread threading model, use the -pthread option when starting
the application, as shown in the following:

$ omprun -pthread app_name

ompstartdmx Does Not Start a Window Manager

With no arguments, ompstartdmx starts only an xterm on Linux. To start GNOME or
KDE under DMX, use the ompstartdmx –session option. OpenGL Multipipe also
installs some special GNOME and KDE login options that will appear in the gdm login
screen. See ompstartdmx –help and section “Initializing DMX” on page 14.

86 007-4318-018

7: Troubleshooting

Problems with Aware Window Management

The following subsections detail problems with aware window management and
workarounds:

• “Windows of Some Aware Applications are Not Managed”

• “Ghost Windows Appear In Overlap Regions on Edge-Blended Displays”

Windows of Some Aware Applications are Not Managed

For windows of aware applications to be managed, first start the aware window
manager, then start the desired application in aware mode. If the reverse is done, the
windows will not be able to be manipulated.

Ghost Windows Appear In Overlap Regions on Edge-Blended Displays

Aware windows bypass the X proxy layer and are only created on one physical screen,
but when an aware window manager manages an aware window, it creates window
frames on each screen. The frames are multipipe-transparent—that is, drawn on every
screen. However, the application window within the frame is multipipe-aware—that is,
drawn only on one screen.

Since an aware application window is not drawn on every screen, the
multipipe-transparent frame behind the application window will “show through” in
screen-overlap regions on an edge-blended display.

To work around this problem, you may want to run your application in a window of a
size and position such that it does not overlap any of the screen-overlap regions of the
display. Alternatively, you may want to temporarily quit the aware window manager.

Applications Do Not Behave Correctly in Aware Mode

007-4318-018 87

Applications Do Not Behave Correctly in Aware Mode

The ompstartdmx script sets the environment variable SGIOMP_META_DISPLAY,
which is important for running applications in aware mode under DMX. If you are
starting an application in aware mode from a remote shell or other login shell, this
variable will not be set. If unexpected results occur when you try to run an application in
aware mode, ensure that theSGIOMP_META_DISPLAY variable is set to the DMX display
(often :1).

007-4310-018 89

Index

A

aa2Jitter.X configuration option, 22
aa2Jitter.Y configuration option, 22
aa4Jitter.X configuration option, 23
aa4Jitter.Y configuration option, 23
activeScreens configuration option, 23, 50
antialiasing, 37
aware mode, 34, 41

C

clip planes, 23, 64
compositors, 35, 64
configuration files, DMX, 15, 16
configuration options

defaults, 20
descriptions, 22
no effects, 78
overview, 18

culler statistics, 50
culling configuration option, 23
culling process (ompcull), 7
culling statistics, 52
culling.cullUserClipPlanes configuration option, 23,

64
culling.minPixels configuration option, 23, 65
culling.showStat configuration option, 23
culling.texCulling configuration option, 24

D

desktops, 15
display lists, 24, 65
dlSplit configuration option, 24, 65
dlSplit.maxBoundAspectRatio configuration option,

24
dlSplit.maxDepth configuration option, 24
dlSplit.maxStripLen configuration option, 24
dlSplit.maxTotalTris configuration option, 25
dlSplit.maxTris configuration option, 25
dlSplit.showRandomColors configuration option, 25
DMX

configuration files, 15, 16
enabling, 14
limitations, 16
overview, 4
problems starting, 76
unsupported X extensions, 83
verification, 30

drawPixelsClipping configuration option, 25
duplicate configuration option, 26

E

edge blending, 2, 40
errors, 75

90 007-4310-018

Index

F

fill performance, 64
frame latency, 26, 69
FSAA, 37
full-scene antialiasing (FSAA), 37

G

Genlock cables, 82
geometry culling statistics, 52
GLFORCEDIRECT environment variable, 80
GLX BadMatch error, 77
GNOME window manager, 15

H

hardware compositors, 35, 64
horizSplit configuration option, 27

I

ImageSync hardware, 28
indirect rendering, 33, 80
installation, 9

J

jittering offset, 22, 37

K

KDE window manager, 15

L

LD_PRELOAD environment variable, 31, 80

M

master proxy library, 6
master rendering modes, 65
master statistics, 49
masterMode configuration option, 25, 66
masterScreen configuration option, 26
maxFrameLatency configuration option, 38
maxFramesLatency configuration option, 26, 49, 69
mouse cursors, 40, 41, 81, 85
multipipe applications, 34
multipipe-aware mode, 34, 41
multipipe-unaware mode, 31

N

non-uniform memory access (NUMA) architecture,
28

O

ompcull process, 7, 76
ompmgr process, 5
ompmon monitoring tool, 45
omprun script

overview, 31
run-time options, 32
run-time options versus configuration options, 19

ompslave daemon, 76
ompstartdmx script, 14, 15, 36, 37, 39, 40
ompwrapwm script, 43

007-4310-018 91

Index

Open Inventor product, 1
OpenGL Multipipe SDK product, 1, 34, 72, 78
OpenGL Performer product, 1, 34, 72, 78
overlay visuals, 73
overlay windows, 73

P

pbuffers.disable configuration option, 26
pbuffers.layout configuration option, 26
performance

metrics, 48
monitoring, 45
optimizing, 63

Performance Co-Pilot monitoring tool, 10, 45
Performance Metrics Domain Agent (See PMDA.)
pixel averaging, 22, 23, 37
pmchart viewer, 59
PMDA

installation, 10
metrics, 59

POSIX threads, 85
problems, 75
pthreads, 85

R

Reality Center facilities, 1
rectSplit configuration option, 27
release notes, 10, 75
renderer statistics, 50
rendering modes, 65
resources (See configuration options.)
rpm utility, 10

S

s-bit applications, 80
scheduling statistics, 54
session manager process (ompmgr), 5
set-user-ID applications, 80
SGI ProPack software, 8, 9
SGI Reality Center facilities, 1
SGI Scalable Graphics Compositor hardware, 35, 64
SGIOMP_META_DISPLAY environment variable, 87
SGIOMP_PRINT_CONFIG environment variable,

19, 78
shared memory

failure, 79
size, 27

shmQueueSize configuration option, 27
Silicon Graphics Prism visualization servers, 8, 9
single-pipe applications, 33
slave renderer processes, 6, 8
slave statistics, 50
slaveCPUs configuration option, 27
slaveCpus configuration option, 54
Swap Ready cables, 28, 82
swapSyncMode configuration option, 27, 70
syncOnFlushMode configuration option, 28

T

texShm configuration option, 28
time-based composition, 38
timing statistics, 56
troubleshooting, 75

92 007-4310-018

Index

U

unaware mode, 31
useTmpfs configuration option, 28
useTmpfs.shmPlacement configuration option, 28

V

vertex array objects (VAOs), 45
vertex buffer objects (VBOs), 45
vertSplit configuration option, 27
video formats, 36
viewportClippingMode configuration option, 29, 39,

64
visual attributes, 77

W

website, 10
window managers, 15, 41, 42
window size constraints, 72

X

X extensions, 72, 83
X proxy layer (See DMX.)
X11 resources, 18
XAUTHORITY environment variable, 79
xinetd service, 9

	Record of Revision
	Figures
	Tables
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	OpenGL Multipipe Overview
	What OpenGL Multipipe Provides
	Architecture of OpenGL Multipipe
	Components of OpenGL Multipipe
	The X Proxy Layer (the DMX Proxy Server)
	The Session Manager Process (ompmgr)
	The 3D (Master) Proxy Render Library
	The Culling Process (ompcull)
	3D (Slave) Render Servers

	Supported Platforms

	Installing OpenGL Multipipe
	General Installation
	Installing the Data Collection Agent for Performance Co-Pilot

	Using OpenGL Multipipe
	Setting up the OpenGL Multipipe Environment
	Configuring OpenGL Multipipe with DMX as the X Proxy Layer
	Initializing DMX
	Creating DMX Configuration Files

	Setting Other Configuration Options
	Specifying Resource Names
	The Resource Search Path
	Resource Types
	Resources and Their Default Values
	Resource Descriptions

	Verifying That the OpenGL Multipipe Environment is Enabled
	Disabling the OpenGL Multipipe Environment

	Running Applications with OpenGL Multipipe
	Setting Run-Time Options
	Running OpenGL Single-Pipe Applications
	Running Pure X Applications
	Running Multipipe Applications in Multipipe-Aware Mode

	Using SGI Scalable Graphics Hardware with OpenGL Multipipe
	Configuring Composited Screens with DMX
	Specifying Static Composited Regions with ompstartdmx
	Using Pixel Averaging Composition Mode for Full-Scene Antialiasing
	Using Time-Based Compositing
	Using Multiple Compositors in an OpenGL Multipipe Session
	Enabling Duplicate Cursor Images in Overlap Regions
	Managing Screen Subregions with DMX
	Managing Multiple Backend X Servers with DMX

	Managing Windows for Aware Applications
	Starting an Aware Window Manager
	Exiting an Aware Window Manager
	Setting an Aware Window Manager as the Default

	Monitoring Performance
	ompmon - The OpenGL Multipipe Monitoring Tool
	Starting ompmon
	The ompmon Screen
	Active Applications
	Application Information

	Performance Information
	Master Data
	Culler Process Data
	Renderer Data

	Geometry Culling Information
	Scheduling Information
	Timing Information
	Miscellaneous Controls

	The OpenGL Multipipe PMDA for Performance Co-Pilot

	Optimizing Performance
	Viewport Clipping
	Geometry Culling
	Small Object Culling
	Display List Partitioning
	Master Rendering Modes
	Master Mode off
	Master Mode track
	Master Mode render

	Frame Latency Control
	Buffer Swap Synchronization

	Limitations
	Performance Enhancement
	X Extensions
	The Multipipe-Aware Window Manager
	OpenGL Window Size Constraints
	SGI ProPack and OpenGL Multipipe Versions
	Overlay Windows Support in DMX

	Troubleshooting
	Cannot Connect to the ompslave or ompcull Daemon
	Problems Starting DMX
	Problems Starting Applications with omprun
	Setting OpenGL Multipipe Resources Has No Effect
	Shared Memory Failure
	Graphics Do Not Display Correctly on All Screens
	Coding Problem in the Application
	You Are Using the Aware Window Manager
	Set-User-ID (“s-bit”) Applications

	Cursor Movement Anomaly When Using a DMX Configuration File
	Multipipe-Aware Applications Fail to Receive Events on Screen 0
	Nothing Displays or the Graphic Stalls or Hangs
	Coding Problem in the Application
	Improperly Wired Genlock or Swap Ready Cables

	X Applications Are Not Behaving Correctly or Fail to Start
	X Application Uses Unsupported X Extension
	Application Window Disappears
	Application Explicitly Opens a Display Connection to :0.0

	Flickering Gray Rubberband During Window Movement
	Mouse Disappears on Composited or Edge-Blended Display
	Problems Running Multithreaded Applications
	ompstartdmx Does Not Start a Window Manager
	Problems with Aware Window Management
	Windows of Some Aware Applications are Not Managed
	Ghost Windows Appear In Overlap Regions on Edge-Blended Displays

	Applications Do Not Behave Correctly in Aware Mode

	Index

